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HGF  Hepatocyte growth factor 

HUVEC Human umbilical vein endothelial cell 

ICAM  Intercellular adhesion molecule 

ICEC  Inner choroidal endothelial cell 

IGF  Insulin-like growth factor 

IL  Interleukin 

kDa  kilo Dalton 

KDR  Kinase insert domain receptor 
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LDL  Low density lipoprotein 

MAPK  Mitogen-activated protein kinase pathway 

MEM  Minimum Essential Medium 

MHC  Major Histocompatibility complex  

MMP  Matrix metalloproteinases 

mRNA  messenger RNA 

NGF  Nerve growth factor 

NO  Nitric oxide 

NOS  Nitric oxide synthetase 

PDGF  Platelet derived growth factor 

PDT  Photodynamic therapy 

PECAM  Platelet endothelial cell adhesion molecule 

PBS  Phosphate buffered saline 

PEDF  Pigment Epithelial Derived Factor  

PI  Phosphoinositide 

PKC  Protein kinase C 

PLGF  Placental growth factor 

PDR  Proliferative diabetic retinopathy 

RAS  Rat sarcoma 

RCS  Royal College of Surgeons 

ROP  Retinopathy of prematurity 

RPE  Retinal pigment epithelium 

SDF  Stromal derived factor 



 

Rationale and Aims  

 
Intraocular angiogenesis is associated with a number of common 

blinding conditions including wet age-related macular degeneration, 

proliferative diabetic retinopathy, retinopathy of prematurity and rubeotic 

glaucoma. The pathogenesis of these disorders is centred on the 

choroidal, retinal and iris microvascular endothelial cells respectively.  

 

Investigators have attempted to increase the understanding of these 

disorders by studying vascular endothelial cells in vitro. Due to their 

availability in large numbers and relative ease of culture, many studies 

have used ocular cells from non-human sources, or non-ocular human 

endothelial cells derived from sites such as the umbilical vein (HUVEC).  

 

Workers have therefore inferred and applied conclusions from in vitro 

studies of macro- and microvascular endothelial cells derived from 

different species or organs to human eye diseases. It is now widely 

accepted that endothelial cells derived from different species, vascular 

organs and from within different vascular beds within those organs 

display different phenotypical, biochemical and genetic heterogeneity. It 

follows that the extrapolation of results from these non-human ocular or 

HUVEC cells may not provide reliable data applicable to human eye 

disease. Any meaningful insight  into the pathogenesis and selective 

treatment of the diseases mentioned previously would therefore 

probably only be gained by conducting in vitro studies using 

microvascular endothelial cells derived from the particular site(s) 

affected by the disease, i.e. endothelial cells derived from the human 

retina, choroid and the iris. Within the ocular vascular beds themselves, 

many diseases appear site specific, such as diabetes predominantly 

affecting the retinal vasculature and age related macular degeneration 

affecting the choroidal circulation. 
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One disease in particular that is the leading cause of blindness in those 

over 65 is wet age related macular degeneration. The underlying 

pathophysiological mechanisms responsible for disease progression 

remain largely unknown. Current opinion suggests an angiogenic 

response by inner choroidal endothelial cells to a local adverse stimulus 

driven by a range of cytokines and growth factors. Because of the 

impact of wet AMD on the quality of life of a large proportion of the 

elderly population, it was decided to focus attention during the latter 

part of this research project on the cells thought to be central to the 

disorder – the inner choroidal endothelial cell. Until now, these critical 

cells have not been successfully isolated and subjected to in vitro 

examination.  
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The aims of this project are therefore: 

 

1) To successfully isolate and culture matched human retinal, choroidal 

and iris endothelial cells. 

 

2) To acquire and culture unpassaged human umbilical vein 

endothelial cells (HUVEC). 

 

3) To compare the gene expression profiles of proliferating 

unpassaged HUVEC and ocular microvascular endothelial cells to 

determine if HUVEC cells are representative cells to use in ocular 

angiogenic research. 

 

4) To compare the gene expression profiles of matched, unpassaged 

human retinal, choroidal and iris endothelial cells to determine 

whether any differences in gene expression provide insight into the 

site specificity of ocular vascular disorders and to determine whether 

any differences would provide potential targets for future anti-

angiogenic therapies. 

 

5) To develop a technique for the successful isolation of human 

macular inner choroidal endothelial cells and to propagate them in 

culture. 

 

6) To characterise the isolated cells in terms of the surface expression 

of a range of purported endothelial cell markers. 

 

7) To compare the gene expression profiles of matched unpassaged 

human macular inner and outer choroidal endothelial cells to 

determine whether inner choroidal endothelial cells possess any 

gene expression characteristics that make them susceptible to 

growth during wet AMD. 
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8) To compare the gene expression profiles of matched unpassaged 

human macular and peripheral inner choroidal endothelial cells to 

determine whether macular inner choroidal endothelial cells possess 

any gene expression characteristics that make them susceptible to 

growth during wet AMD. 

 

9) To determine the effect of a range of growth factors on the 

proliferation and vascular tube formation of human macular inner 

choroidal endothelial cells. 

 

Overall, the realisation of these objectives will provide an insight as to 

whether HUVEC cells provide a useful alternative to ocular cells in 

research into ocular angiogenic diseases given their widespread 

availability and ease of culture. The comparison of the gene expression 

profile of ocular endothelial cells will also provide an insight into 

endothelial cell heterogeneity within the eye and may provide clues as 

to the reasons for ocular vascular bed disease susceptibility and 

potential future selective anti-angiogenic treatments. 

 

The in vitro characterisation and gene expression profiling of human 

inner choroidal endothelial cells will provide an extremely powerful and 

unique model for the laboratory investigation of the mechanisms 

underlying age related macular degeneration and may provide an 

insight into selective treatment of this disease. 
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Section 1: Vascular Biology 

 

Oxygen is one of the essential requirements for life. The cells of some 

simple organisms receive oxygen by simple diffusion from the air, while 

larger organisms such as the fruit fly have developed a system of air 

filled tubes within cell layers. Because the diffusion limit of oxygen 

through tissue is 100 to 200µm, vertebrates have developed complex 

cardiovascular systems lined by endothelium. These systems efficiently 

maintain oxygen homeostasis in all cells and at the same time facilitate 

bi-directional exchange of solutes and carbon dioxide; waste product 

removal; recruitment and diapedesis of leukocytes; antigen 

presentation; lipoprotein metabolism and temperature regulation.  The 

idea of a vascular system was first proposed by Harvey in 1628 when 

he suggested that blood circulates around the body. Soon afterwards, 

Malphigi described the separation of blood and tissues and for the first 

time visualised blood flow in capillaries. It was not until the nineteenth 

century (1860) that von Recklinghausen suggested that blood flowed 

along vessels lined with endothelial cells. Since then, Simionescu has 

described the interaction of the endothelium with leukocytes and 

endothelial cell junctions (Simionescu et al, 1976) and many others 

have subsequently described the numerous “active” functions of the 

endothelium.  

 

The cardiovascular system is the first organ system to develop in an 

embryo, the failure of which is universally lethal in early embryogenesis 

(Risau W, 1995; Risau W, 1997). It evolves by three different, distinct 

mechanisms: haemovasculogenesis, vasculogenesis and 

angiogenesis. 
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Haemovasculogenesis 

 

While it is widely accepted that embryonic haemopoiesis occurs at early 

stages within the liver before moving to the bone marrow, as long as 

100 years ago, it was noted that there was a link between the 

production of blood cells (erythrocyte precursors) and endothelial cells 

at the earliest stages of development within the blood islands of the 

chick yolk sac (Sabin, 1917).  Similar findings have subsequently been 

found in the aorta and umbilical artery (Jaffredo et al, 1998: Hirai et al, 

2002). With modern methods of examination, it is now thought that this 

budding of erythroblasts from endothelial cells is a common event in the 

embryo and is found to occur in the kidney, brain and skin. The 

existence of a common precursor for both endothelial and 

haematopoietic cells (Murray, 1932: Ogawa et al, 2002) led to the term 

“haemo-vasculogenesis”. This is defined as the formation of blood 

vessels within the embryo during which new blood vessels 

(vasculogenesis) and blood cells (haematopoiesis) develop 

simultaneously within the embryo from a common precursor (the 

haemangioblast) (Sequira-Lopez et al, 2003). Histologically, 

erythroblasts develop within aggregates of endothelial cell precursors. 

As the lumen of a vessel forms, the erythroblasts bud from the lining 

endothelial cells to fill the lumen (Sequira-Lopez et al, 2003). The 

common precursor cells express くl globin and this has been used as a 

marker of haemovasculogenesis (Sequira-Lopez et al, 2003). What is 

not known for certain is the earliest marker of this pluripotent 

haemangioblast. Various elegant experiments by Yamashita in 2000 

and Nishikawa in 1998 using embryonic stem cells show that cells 

positive for Flk-1 (VEGF receptor 2), which is thought to be an early 

haemangioblast marker, can develop into either endothelial or 

haematopoietic cells (and also possibly mural cells) (Yamashita et al, 

2000; Nishikawa et al, 1998). The expression of VE-cadherin or not, is 

an important determinant as to which path the progenitor cell then 

follows (Nishikawa et al, 1998). Ogawa has subsequently shown that 
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progenitor cells following haematopoietic lineage then go on to express 

g δ-integrin. It is suspected that growth factors such as VEGF may be 

important in determining the route of differentiation taken by the original 

cells but this is an area where further research is needed. It has now 

been proposed that the choriocapillaris (part of the choroidal 

vasculature within the eye) originates via haemovasculogenesis 

because precursor cells are positive for epsilon globin (an erythroblast 

marker) and VEGF receptor 2. These cells were seen to aggregate and 

then differentiate into separate endothelial cells and erythroblasts. 

(Hasegawa et al, 2007). 

 

Vasculogenesis 

 

Vasculogenesis describes the formation of blood vessels in which 

endothelial cells differentiate and proliferate in situ within a previously 

avascular tissue. This primary network includes some of the major 

vessels such as the aorta and major veins (Yancopoulos et al, 2000; 

Risau & Flamme, 1995). Vascular progenitor cells either migrate or 

differentiate locally at sites of vascularisation and coalesce to form a 

vascular plexus (Hristov M et al, 2003; Ribatti et al, 2009). This process 

leads to the formation of the major intra-embryonic blood vessels such 

as the aorta and the primary vascular plexus in the yolk sac. Later, the 

vascular networks of organs such as the lungs, the myocardium and the 

liver also form via vasculogenesis (Pardanaud et al, 1989). This initial 

process appears to be pre-programmed and is independent of the local 

oxygen concentration. In the yolk sac, the blood islands are composed 

of haemangioblasts, the precursors of both endothelial and 

haematopoietic cells. In the peripheral areas of the islands, 

haemangioblasts differentiate into angioblasts (CD39 or ADPase 

positive) which later aggregate into vascular networks within the yolk 

sac and the embryo proper (McLeod et al, 2006). During early in vitro 

vasculogenesis, fibroblast growth factor 2 (FGF-2) appears to be 

important for angioblast differentiation (Krail et al 1994; Flamme and 
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Risau 1992; Cox & Pool, 2000). However, in vivo, the vasculature of 

FGF-2 knockout mice models appeared to develop normally (Zhou et 

al, 1998). Although the reason for this discrepancy is uncertain, it may 

be due to a high degree of redundancy in the FGF growth 

factor/receptor system. It is known that at present, there are at least 4 

different FGF receptors, 3 of which have 3 subtypes. Each receptor can 

also bind a number of the 22 structurally related members of the FGF 

growth factor family. Any knock out model of a particular subtype of 

FGF molecule would most likely be easily bypassed, thereby 

suggesting an important role of FGF in embryogenesis. Conversely, 

vascular endothelial growth factor (VEGF) and VEGF receptor 2 

knockout mice die early with vascular maldevelopment suggesting a 

pivotal role for VEGF and its main receptor in early vasculogenesis 

(Carmeliet et al, 1996; Shalaby et al, 1995). Other endothelial 

cytokines/receptors such as the angiopoietins, Tie 1 and 2 and 

neuropilin are thought to play a more minor role in early 

vasculogenesis, with animals undergoing normal vessel development 

but dying of cardiac defects. Once formed, tubes of endothelial cells 

begin to secrete laminin and collagen IV which in turn forms the 

basement membrane. 

 

Until recently it was thought that vasculogenesis only occurred in the 

embryo. It is now known that “post-natal vasculogenesis” occurs via 

bone marrow-derived endothelial stem and progenitor cells (Hristov M 

et al, 2003; Asahara et al, 1999; Käßmeyer et al, 2009). Asahara et al 

isolated mononuclear cells from the blood of patients who had the 

antigenic characteristics of angioblasts and, after inducing ischaemia in 

limbs, found bone marrow endothelial progenitor cells within the vessels 

of the limbs after restoration of blood flow. They state that this is 

consistent with post natal vasculogenesis. Within the eye, it is thought 

that the retinal vasculature develops by the process of vasculogenesis 

(see later) and this is a well studied model of vascular development 

because of the ease with which it can be studied (McLeod et al, 2006; 

Saint-Geniez & D‟Amore, β00δ).  
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Angiogenesis 

 

Angiogenesis is the term applied to the formation of capillaries from 

pre-existing vessels. In the embryo it is responsible for expansion of the 

primary network formed by vasculogenesis. In contrast to 

vasculogenesis, it appears to be less pre-programmed and is more 

dependent on tissue hypoxia for its stimulation and regulation (Pugh & 

Ratcliffe, 2003; Carmeliet, 2003; Semenza, 2007). It occurs by a series 

of well defined steps which include: 

 

1. Endothelial cell (EC) activation by growth factors such as VEGF and 

FGF-2 via VEGF receptor 2 and FGF receptors respectively. These 

receptors are membrane bound tyrosine kinases that lead to the 

activation of multiple intra-cellular signalling cascades. The principle 

drive for growth factor up-regulation, especially for VEGF, is tissue 

hypoxia. There is debate as to whether FGF exerts its pro-

angiogenenic effect on endothelial cells by a direct effect on the 

cellular proliferative mechanism via FGF receptors and intracellular 

signalling cascades or via up-regulation of the effect of VEGF. 

Evidence exists for both hypotheses as it is known that specific pro-

angiogenic pathways are activated when FGF binds to its receptor 

(FGFR1) (Cross and Claesson-Welsh), and FGF has also been 

shown to up-regulate VEGF and VEGF receptor expression on ECs 

(Murakami and Simons, 2008; Murakami et al 2011; Seghezzi et al, 

1998). 

 

2. Degradation of endothelial basement membranes by proteases such 

as matrix metalloproteinases (MMPs), urokinase plasminogen 

activator (uPA), heparinases, trypases and cathepsins (Kalluri, 

2003; Steen et al, 1998). Matrix metalloproteinases are a family of at 

least 20 different zinc-dependent endopeptidases that are capable 

of degrading various components of the extracellular matrix (ECM). 

Under basal conditions, MMPs are capable of remodelling tissue. 
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However, during periods of angiogenesis, they are able to modify 

the ECM ahead of proliferating endothelial cells, aiding their 

passage through tissue. Their activity is regulated by natural 

inhibitors called Tissue inhibitors of metalloproteinases (TIMPs). 

MMPs are known to be secreted by proliferating endothelial cells, 

and in wet AMD, the most important types appear to be MMP2 and 

MMP9 (gelatinase a and b respectively) (Bandyopadhyay and 

Rohrer, 2012). They are able to degrade various components of 

Bruchs membrane such as collagen IV, V and fibronectin (Sethi et 

al, 2000). Proteinases also play a role in angiogenesis by liberating 

extra cellular matrix-bound growth factors such as FGF-2, thereby 

liberating free growth factor which can therefore take part in the 

angiogenic process. 

 

3. Formation of vascular sprouts and migration of activated endothelial 

cells through the adjacent extracellular matrix towards the 

angiogenic stimulus. The tips of the sprouts are formed by 

specialised endothelial tip cells. Tip cells extend numerous filopodia 

to sense their microenvironment and lead the direction of the 

growing sprout. Behind the tip cells, other cells form the stalk of the 

new vessel. Selection of endothelial cells to become tip cells is 

affected by Notch expression (Gerhardt et al, 2003; Suchting & 

Eichmann, 2009). A model of tip cell selection has been proposed 

that starts with binding of VEGF by VEGF receptor 2 on an 

endothelial cell which causes the up regulation of the notch ligand 

delta like ligand 4 (Dll4) on the cell surface. This interacts with notch 

receptors on surrounding ECs and this in turn leads to down 

regulation of VEGFR2 on these cells which are thus less sensitive to 

VEGF signalling. The cells expressing Dll4 and VEGF R2 become 

non proliferative tip cells, forming filopodia and extending into the 

surrounding ECM along VEGF gradients (Hellstrom et al, 2007; 

Gerhardt et al, 2003). Cells expressing notch receptors proliferate 

and become stalk cells which extend the newly forming blood vessel 

(Tung et al, 2012). It is not known how specific tip cells are selected 
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or how their numbers are controlled in relation to the number of stalk 

cells, but it may be linked to Dll4-notch 1 interactions. This brings 

about a down regulation of tip cell formation and angiogenesis 

(Hellstrom et al, 2007; Phng and Gerhardt, 2009) and notch-

1/jagged-1 interactions which antagonise the effect of Dll4, leading 

to pro-angiogenenic signals and increased formation of tip cells 

(Bernedito, 2009). It is obvious that the ratio of tip to stalk cells 

needs to be strictly controlled for organised angiogenesis to occur. 

Growth of the new vessel is affected by integrins which are cell 

surface receptors for specific ECM components that enable signals 

from the ECM to be transmitted into the EC (Hynes, 1992). This 

communication between the activated EC and the ECM is thought to 

be critical because blocking of integrins signalling significantly 

inhibits angiogenesis (Umeda et al, 2006; Yasukawa et al, 2004). 

Microarray analysis of tip cells prepared by laser microdissection 

demonstrated enrichment for CXCR4 (stromal derived factor 

receptor) which is a growth factor/receptor combination thought to 

be important in embryonic vascular development. The tip cells also 

appeared to be enriched for apelin, VEGF Receptor 2 and 

angiopoietin 2. The authors conducted a number of elegant 

experiments and showed that inhibition in CXCR4 signalling resulted 

in defects in neonatal mice retinal tip cell morphology and function 

(Strasser et al, 2010). 

 

4. Endothelial cell proliferation.  

 

5. Capillary tube formation. The mechanisms underlying tube formation 

are largely unknown but probably include changes in cell polarity, 

cytoskeletal components and interactions with the ECM via integrins 

(Tung et al, 2012). Two models have been proposed to explain the 

mechanism of tube formation. The first is cell hollowing. This 

involves the coalescence of intracellular vesicles to eventually form 

a lumen. Once the lumen is formed within an individual cell, the 

ends open and link with adjacent cells to form a primitive vessel 
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(Folkman and Haudenschild, 1980). An alternative model is known 

as cord hollowing. In this model, endothelial cells aggregate into a 

long cord and vesicles form between the cells which eventually form 

into a lumen (Lueng et al, 1999). While other models probably also 

exist, the model taking place in an individual setting is probably 

context driven  

 

6. Recruitment of mural cells to surround and stabilise the newly 

formed vascular tube. For larger blood vessels (arteries and veins), 

this involves the recruitment of smooth muscle cells (SMC), while for 

capillaries, arterioles and venules, pericytes are recruited. It is 

thought that SMCs and pericytes are derived from a similar lineage 

and are part of a phenotype continuum. The number of pericytes 

recruited to a vascular structure per endothelial cell varies within 

different beds. Within the retina there is 1 pericyte per EC whereas 

in skeletal muscle there are 100 pericytes per EC (Shepro and 

Morel, 1993). The reason for this difference is uncertain, but 

pericytes may be important for the formation of the inner blood 

retinal barrier or act as receptors for hypoxia or hypoglycaemia; all 

important factors for normal retinal function. For many years the role 

of pericytes was ignored as they were thought to be passive cells 

providing simple mechanical support. It is now known that they are 

critical for the stability and maintenance of the vessel and the 

endothelial cells. Abnormalities in pericyte biology are now thought 

to cause specific diseases in their own right. Proliferating endothelial 

cells secrete platelet derived growth factor (PDGF) B which attracts 

PDGFR-く expressing mural cells to the nascent vessel (Lindblom et 

al, 2003; Lindahl et al, 1997). Mouse knock out models of PDGF-B 

and PDGFR-く result in a similar lethal phenotype caused by absent 

pericyte recruitment and major vascular abnormalities (Leveen et al, 

1994; Soriano P, 1994). It is thought that localised binding of PDGF-

B to the surrounding endothelial cell ECM aides the orderly 

coverage of the new vessel with pericytes (Armulik et al, 2005). An 

absence of pericytes on pre-formed vessels, either as a result of 
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disease (diabetes) or by pharmacological manipulation by the use of 

PDGF-B antibodies, leads to loss or stripping away of pericytes and 

vascular disorganisation. Another signalling molecule associated 

with pericytes is Angiopoietin 1 (Ang 1). It is thought that Ang1 is 

secreted by pericyte/mural cells and acts in a paracrine fashion on 

endothelial cells via the Tie 2 receptor to stabilise the vessel. Ang 1 

or Tie 2 knockout mice have disorganised basement membranes 

and poor pericyte coverage.(Sato et al, 1995; Suri et al 1996) 

 

Abnormal or pathological angiogenesis  

 
It was recognised over 100 years ago that blood vessels grow around 

tumours and that without these new vessels tumours could not grow 

beyond a certain size or metastasise. In 1968 it was hypothesised that 

tumours secrete a diffusible angiogenic substance (Greenblatt & Shubi, 

1968; Ehrmann & Knoth, 1968) and in 1971 Folkman suggested that 

inhibiting angiogenesis may stop tumour growth (Folkman, 1971a) and 

he attempted to isolate this “factor” (Folkman, 1971b). The tumour 

vessels studied were structurally and functionally abnormal. The 

vessels were disorganised, dilated and tortuous with excessive 

branching and there were many openings or gaps both within 

(fenestrae) and between endothelial cells making them very “leaky”. 

 

In adult normal, non-neoplastic tissue, the majority of vascular 

endothelial cells are dormant and only approximately 0.01% of 

endothelial cells are undergoing division at any one time (Engerman et 

al, 1967). Diseases in which there is excessive angiogenesis are a 

major cause of disease-related morbidity and mortality. Examples 

include: psoriasis, atherosclerosis, haemangiomas and endometriosis. 

Within the eye, a number of common blinding conditions are caused by 

aberrant angiogenesis including wet age related macular degeneration, 

proliferative diabetic retinopathy, rubeotic glaucoma and retinopathy of 

prematurity.  
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Endothelial Cells 

 

Blood vessels are lined by a monolayer of endothelial cells. The adult 

human contains approximately 1-6x1013 endothelial cells and they 

cover an approximate surface area of 7m2 (Cines et al, 1998; Augustin 

et al, 1994). They are flat, polygonal cells that are elongated in the 

direction of blood flow and, on cursory examination, appear identical in 

different parts of the body; but in reality there is significant heterogenic 

diversity. Their life span is in the region of 100 days (Hobson & 

Denekamp, 1984). In cross section, the cells are 2-3µm thick at the 

nucleus but they can be as thin as 0.2µm in the peripheral parts of the 

cell (Anderson et al, 1995). The thinness of the cell may contribute 

many of their attributes. Endothelial cells express a number of cell 

markers that are used to identify them in experimental studies. 

However, none is entirely endothelial specific, but rather more 

“endothelial restricted”. The intensity of expression is also variable 

depending on the site of origin of the cells (Langenkamp & Molema, 

2009). Endothelial cell restricted markers include: CD31, CD34 and von 

Willebrand factor (vWf). 
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Endothelial cell surface markers 

 

CD 31, also known as PECAM 1 (platelet endothelial cell adhesion 

molecule) is a 130kDa glycoprotein found on endothelial cells and was 

first cloned in 1990 (Newman et al, 1990). It is also found on platelets 

and some leukocytes. It is a member of the Ig superfamily and consists 

of 6 extracellular Ig folds. Its role is as a cell-cell adhesion molecule 

with its main ligand being other CD31 molecules. Other ligands are 

thought to include CDγ8, CD177 and うvくγ integrin which are found on 

circulating leukocytes (Deaglio et al, 1998; Sachs et al, 2007). While 

CD31 is responsible in part for the adhesion of adjacent endothelial 

cells, its main role appears to be that of the binding of leukocytes to the 

luminal side of ECs with the specific function of allowing the loosening 

of the binding of adjacent cells, and to facilitate the passage of the 

leukocyte between ECs  into the extra-vascular compartment 

(diapedesis). This phenomenon is commonly seen in states of 

inflammation and allows leukocytes to migrate to sites of trauma and 

infection. While the mechanisms controlling this event are poorly 

understood, it is thought that cell binding or the local release of factors 

by leukocytes leads to activation of the CD31 molecule and the 

subsequent stimulation of an intracellular signalling cascade. It has 

been observed that CD31 binding leads to the intracellular 

phosphorylation of tyrosine and serine/threonine residues on the 

receptor (Newman and Newman, 2003) which, in turn, can alter the 

vigour of cell-cell binding. It is not known if or how CD31 interacts with 

other adhesion molecules important for EC integrity such as ZO-1 and 

occludin. 

 

CD34 is a 105-120kDa trans-membrane glycoprotein expressed by 

bone marrow lymphohaematopoietic stem cells, endothelial cell 

progenitor cells, embryonic fibroblasts and mature vascular endothelial 

cells (especially tip cells). It was discovered in 1984 during the search 

for markers of bone marrow progenitor or stem cells (Civin et al, 1984), 
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labelling approximately 1.5% of bone marrow cells. Despite its wide 

expression on a range of potentially important precursor cells, its role is 

poorly understood. Early studies suggested that its expression on 

endothelial cells plays a role in leukocyte adhesion and homing, 

particularly in lymphoid tissues via L-selectin expressed by circulating 

lymphoid cells (Nielsen and McNagny, 2008). Interestingly, CD34 exists 

as at least two splice variants depending on the maturity of the cells 

(Krause et al, 1996). The smaller splice variant is missing an exon 

responsible for coding part of the intracellular domain, with potential 

sites of phosphorylation which may therefore play a role in intracellular 

signalling, although the importance of this is currently unknown. Both 

forms have the same extracellular domains so are therefore not able to 

be differentiated by antibody labelling of cells.  

 

Another important observation is the loss of vascular endothelial cell 

expression of CD34 after one or two passages or after exposure to 

inflammatory mediators such as TNF alpha (which coincidently up-

regulates expression of ICAM 1) (Delia et al, 1993). These observations 

have led to the theory that CD34 is important in cell–cell adhesion, 

especially during inflammation. Interestingly, CD34 knock out mice 

appear to have normal bone marrow and endothelial cell function 

(Cheng et al, 1996), further increasing the mystery of the role of CD34 

other than being a useful marker of endothelial cells.  

 

von Willebrand factor (vWf) is a circulating protein important in blood 

clotting (haemostasis), an absence of which causes the bleeding 

disorder called von Willibrand‟s disease. The glycoprotein is critical for 

the recruitment of platelets to sites of bleeding, thereby providing part of 

the initial haemostatic plug before the slower activation of blood clotting 

factors. It is also important for the stabilisation of Factor VIII - clotting 

factor (thereby enhancing the clotting cascade). It is synthesised and 

stored within endothelial cells and megakaryocytes (platelet precursors) 

in electron dense Weibel-Palade (WP) bodies. These electron dense 

bodies were first recognised using electron microscopy in 1964 in the 
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cytoplasm of small vessel endothelial cells (Weibel and Palade, 1964). 

They have a diameter of 0.1-0.γ たm, a length of 1-5たm and they have 

characteristic longitudinal striations (Valentijn et al, 2008) (see 

illustration below). In cross section they consist of electron dense 

tubules which are thought to give them the characteristic striated 

appearance surrounded by a less dense matrix. For many years, it was 

thought that vWf was the only secreted constituent of WP bodies. It is 

now known that tissue plasminogen activator (t-PA), P-selectin, 

interleukin-8, angiopoietin 2 and endothelin-1 are also stored and 

secreted (Valentijn et al, 2011). This means that WP bodies contain a 

number of mediators important in haemostasis, inflammation, 

angiogenesis and vascular tone. There is a continuous basal secretion 

of vWf into the blood stream which can be quickly enhanced during 

times of localised vascular stress by degranulation of WP bodies near 

sites of vessel (and endothelial) injury by activation of cell surface G 

protein linked receptors by secretagogues such as thrombin and 

histamine (Valentijn et al, 2011). Unlike CD31 and CD34, vWf appears 

to be much more specific for the identification of endothelial cells in vitro 

and in vivo as the only other cell known to synthesise vWf, 

megakaryocytes, are easily identified by their size and morphology and 

are not found outside of the bone marrow except in certain extremely 

rare instances of malignancy or systemic organ failure. There is still 

debate as to whether all endothelial cells process WP bodies and 

therefore vWf. Much of the confusion appears to derive from species 

differences. Examination of the pig vascular tree demonstrated a 

heterogeneous distribution, with vWf being virtually absent in the 

thoracic and abdominal aorta but present in pulmonary arteries and the 

vena cava. Interestingly, abnormal WP bodies were found in all ECs 

(Gebrane-Younes et al, 1991), while Folkman et al in 1979 found that 

human capillary ECs possessed WB bodies whereas bovine ECs did 

not. As part of the work of this thesis, it was found that human retinal, 

choroidal and iris ECs all stained positive for intracellular vWf and 

expressed mRNA coding for vWf, thereby suggesting that human ocular 

ECs express vWf and by association possess some form of WP bodies. 
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Role of endothelial cells 

 

Endothelial cells act as gate keepers between the vascular lumen and 

the extra-vascular environment. Due predominantly to their cell surface 

receptors and cell-cell junctional molecules they have a range of roles. 

These include: 

 

1. The regulation of substances and cells passing through cell 

junctions and through the cells‟ cytoplasm from the intravascular to 

the extravascular space. This process is thought to be regulated by 

a variety of membrane-bound surface receptors for growth factors 

such as VEGF; pro- and anti-coagulant factors; lipid particles such 

as LDL; and metabolites such as nitric oxide and hormones (Cines 

et al, 1998). The degree of “leakiness” of the vasculature is 

dependent upon the location of the endothelial cells within the body 

and on its phenotype. The inner choroidal vasculature within the 

human eye is generally regarded to be semi-permeable due to the 

presence of fenestrations. As discussed later, these are small, full 

thickness hole-like structures in endothelial cells, often capped by a 

semi permeable membrane. They allow the passage of small and 

Fig 1.1. Electron micrograph of vascular endothelial cell demonstrating 
a Weibel-Palade body with its characteristicstriations.The inset shows 
a cross sectional view demonstrating the intra-organelle tubules which 
contain vWf. (with permission of Nature publishing) 
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medium sized molecules from the vascular lumen to the extra 

vascular space. Within the choroid of the eye, they allow the support 

of retinal pigment epithelial cells and photoreceptors, both of which 

have very high metabolic demands. Other ECs expressing 

fenestrations include those found in the glomerulus of the kidney 

where high rates of solute exchange are required to take place, and 

in the liver. At the other extreme, some endothelia are resistant to 

the passage of fluid, solutes, macromolecules and cells from the 

intra-vascular to the extravascular compartments. Examples are the 

retinal and brain vasculature. The cells form the inner blood-retinal 

and blood-brain barriers respectively, and are necessary for the 

structural integrity and functioning of the retina and brain. The major 

component of the inner blood-retinal barrier is tight junctions or 

zonula occludans between ECs (Sagaties et al, 1987). Astrocytes, 

present in the retina and brain are thought to be important in the 

formation and maintenance of the retinal and brain endothelial 

barrier functions by the expression of zonula occludens -1 (ZO-1) 

(Gardner et al, 1997). 

 

2. The control of blood coagulation by the secretion of factors such as 

vWf (procoagulant), tissue factor pathway inhibitor (anti-coagulant), 

thrombomodulin (anti-coagulant), protein S (anti-coagulant) and 

tissue factor (procoagulant). The coagulation of blood is a complex 

process. At the site of vascular injury, e.g. a cut, a breach in the 

endothelium exposes collagen and extracellular matrix molecules 

which stimulate the clotting cascade, a process characterised by the 

activation of a large number of circulating intravascular proteins 

starting with factor XII. In the initial phase of injury, release of factors 

such as von Willibrand factor by endothelial cells recruits platelets to 

the site of injury to form the primary haemostatic plug. This is a 

transient response that aims to stabilise blood loss before the 

activated clotting cascade permanently closes the defect. In a 

similar fashion to the control of angiogenesis, blood coagulation is 

tightly controlled to avoid total coagulation within the vascular 
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system and relies on a delicate balance of pro- and anti- coagulation 

factors. Endothelial cells are critical to this balance, secreting factors 

such as thrombomodulin in order to abrogate the effects of other 

factors such as vWf.  

 

3. The secretion of substances important in the control of blood flow 

and pressure such as nitric oxide, prostacyclin and endothelin 1.  

 

Endothelin-1 (ET-1) was discovered in 1988 and has subsequently 

been shown to be the most potent vasoconstrictor known to date 

(Yanagisawa et al, 1988). It also has the capacity to induce vascular 

remodelling, fibrosis, cell proliferation and apoptosis and is thought 

to be involved in a number of vascular diseases (Bourque et al, 

2011). While three isoforms exist (ET-1 to ET-3), ET-1 is the most 

important and best studied. It is synthesised predominantly by 

vascular endothelial cells although it has also been found in 

vascular smooth muscle cells, the spleen, pancreas and lung. 

Expression of ET-1 is up-regulated by mediators such as 

catecholamines, angiotensin II, arginine vasopressin and insulin, 

and by mechanical factors such as shear stress, hypoxia and 

bacterial lipopolysaccharide. Expression is inhibited by factors that 

are important in vasodilatation such as nitric oxide, prostacyclin and 

atrial natriuretic peptide (KhimjiA and Rockey D, 2010). Secreted 

ET-1 is functionally inactive, only becoming activated after cleavage 

by endothelin converting enzymes and matrix metalloproteinases 

(Bourque et al, 2011). The actions of ET-1 are brought about by two 

G-protein coupled receptors, ETA and ETB, predominantly on 

vascular smooth muscle cells (thereby bringing about 

vasoconstriction). The main action of endothelin 1 is 

vasoconstriction and is thought to be important in the medical 

condition systemic hypertension. It is now common practice for a 

range of ETA antagonists to be used as treatment for hypertension.  

 



 18 

Nitric oxide (NO) is a gas that can act as a signalling molecule. 

One of its main functions on the endothelium is to act as a stimulator 

of vasodilatation. Its existence was suggested by Furchgott and 

Zawadzshi in 1980 but it was not until 1987 that its role in 

vasodilatation was discovered by Rees et al (1991) and confirmed 

by Ignarro (1989) who demonstrated that NO synthase inhibitors 

blocked vasodilatation. As NO is a volatile gas and lipophilic, it is 

freely diffusible across cell membranes and therefore does not need 

a cell surface receptor to bring about its actions. It is synthesised in 

response to factors such as shear stress on vessel walls by the 

action of nitric oxide synthase (NOS) on L-arginine. Within 

endothelial cells, the NOS isoenzyme is known as endothelial NOS 

or eNOS. Within neuronal cells which may be juxtaposed in tissues 

such as the brain and retina, the NOS isoenzyme is neuronal NOS 

or nNOS. Shear stress (i.e. fast and turbulent flow) within a vessel is 

detected by endothelial cells and this leads to an increase in 

intracellular Ca2+ which in turn, binds to and activates the regulatory 

protein calmodulin. Calmodulin in turn activates eNOS, leading to 

the synthesis of NO. Nitric oxide then diffuses out of the endothelial 

cell and into juxtaposed vascular smooth muscle cells to stimulate 

guanylate cyclase. This in turn, inhibits the calcium dependent 

contraction of the vascular smooth muscle cell i.e. vasodilatation.  

 

Because the up-regulation of NO is both rapid and sensitive to 

changes in shear stress, it is thought to be the main vasodilatory 

mechanism maintaining vascular tone. Since its discovery, it has 

also become apparent that NO has other important vasoprotective 

roles including protection against apoptosis and other endothelial 

cell survival functions. In 2001, Brookes et al demonstrated that 

mice deficient in eNOS, either by gene knockout or by the ingestion 

of eNOS inhibitors, were protected against oxygen induced vaso-

obliteration, thereby suggesting that high levels of NO are 

pathogenic (Brooks et al, 2001). NO is also thought to play a role in 
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endothelial cell VEGF signalling and will be discussed in more detail 

later. 

 

Prostacyclin was discovered in 1977 by Moncada et al although it 

was initially called prostaglandin I2.  It is produced in endothelial 

cells by the action of prostacyclin synthase on a derivative of 

arachidonic acid, released from endothelial cell membranes by 

phospholipase. As well as acting in an autocrine fashion within the 

synthesising endothelial cell, it is secreted from the cell and acts in a 

paracrine fashion on local cells possessing prostacyclin (IP) 

receptors. Stimulation of this G protein coupled receptor can lead to 

vasodilatation and the localised inhibition of platelet aggregation. 

The mechanism of vasodilatation is thought to be due to vascular 

smooth muscle cell hyperpolarisation. The role of prostacylin in 

basal vascular tone and systemic hypertension is dubious given the 

fact that systemic administration of drugs such as aspirin and 

indomethacin which inhibit the production of prostacyclin have no 

measureable effect on blood pressure in humans (Parkington et al, 

2004).  

 

4. Endothelial cells are sensitive to stretch and shear stress, thereby 

acting as a measure of blood flow and pressure (Topper et al, 1996, 

Malek & Izumo, 1995; Korff & Augustin, 1999). The mechanisms 

underlying the detection of intravascular flow and shear stress and 

the changes in the cell are poorly understood. Rapid reactions to 

changes in shear stress include the activation of signalling 

mechanisms such as the generation of nitric oxide as described 

previously, the opening of potassium and calcium channels, the 

activation of focal adhesion kinase, MAPK and PKC (Tzima, 2006). 

Slower changes include the up-regulation of cell surface ICAM-1, 

TGF and PDGF, rearrangement of intracellular microfilaments and 

microtubules (Malek and Izumo, 1996) and their elongation along 

the direction of flow (Levesque and Nerem, 1985). The cellular 

mechanisms for sensing flow and stress are poorly understood but 
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are thought to involve cellular mechano-transducers (Tzima E, 

2006). The mechanism is thought to involve the transmission of 

shear stress from the apical surface of the cell through the 

cytoskeleton to points of attachment (Davies P, 1995) both within 

the cell and at its basal surface junction with its basement 

membrane. Four candidate molecules have been suggested as 

being possible mechano-transducers involved in this process: 

surface integrins by virtue of their interactions with the extracellular 

matrix; ion channels; specialised membrane microdomains and G 

proteins (Traub and Berk, 1998). Recently, a fifth mechanism was 

suggested that involves PECAM-1 (CD31) acting via VE-Cadherin 

and VEGFR2, the latter acting as the signal transduction molecule 

(Tzima et al, 2005). 

 

5. The secretion of extracellular matrix components such as 

fibronectin, laminin, collagen and elastin. Endothelial cells do not 

exist in isolation and require a complex micro-environment around 

them for cell stability and function. Part of this microenvironment is 

composed of the extracellular matrix which includes the cell‟s 

laminin rich basal anchoring basement membrane and a 

surrounding, paracellular fibronectin scaffold. The endothelial cells 

are thought to bind to and interact with the ECM via membrane 

spanning molecules called integrins. A simplified diagram of the 

ECM is shown below (Fig 1.2).  



 21 

 

 

Fig 1.2. Diagrammatic representation of endothelial cell membrane 
interaction with extracellular matrix (with permission from Springer 
images) 
 
 

The base materials of the ECM are proteoglycans, including heparin 

sulphate, glycosaminoglycans and water. Heparin sulphate is able 

to bind growth factors such as VEGF and FGF, thereby inactivating 

them and/or making an extracellular store that can be rapidly 

activated by enzymatic digestion of the heparin sulphate. Binding of 

VEGF by the ECM is also thought to be critical in the formation of 

growth factor gradients, important for both angiogenic sprouting and 

guidance of tip cells and during embryonic vasculogenesis.  

 

Fibronectin is a high molecular weight (440kDa) proteoglycan dimer 

within the ECM that binds the extracellular component of integrin 

molecules. Each molecule has four fibronectin binding domains 

allowing a fibronectin scaffold to be built up around cells. Additional 

binding domains allow binding to collagen, fibrin, fibulin 1 and 

heparin sulphate. In vitro studies of isolated vascular endothelial 

cells have shown that fibronectin is one of the ECM components 

required for the satisfactory adhesion of ECs to culture plates and 
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for their subsequent proliferation. This requirement appears 

particularly important for microvascular ECs. 

 

Integrins are a heterogeneous group of trans-membrane receptors 

that are composed of two dissimilar chains (g and く chains) .The 

integrins most commonly associated with endothelial cells are gv, 

く1 and くγ. Their roles are to anchor the cell to the ECM and to 

provide a signalling pathway from the ECM to the intracellular 

environment. Matrix-integrin signalling is thought to be critical for 

embryonic development, cell proliferation, survival and migration. 

There are many different types of integrin depending on the different 

combinations of g and く chains used. To date, 18 different g chains 

and eight く chains have been characterised (Hehlgans and Cordes, 

2007). Inside the cell, integrins are attached to microfilaments of the 

cytoskeleton. At sites of ECM ligand-integrin binding, integrin 

clustering occurs and complexes form called focal adhesions. It is at 

these sites that signal transduction is thought to take place. It is 

thought that integrins themselves do not have any tyrosine kinase 

activity, but bring about signal transduction by recruitment of 

accessory molecules such as focal adhesion kinase,(FAK) and 

integrin linked kinase (ILK)to the intracellular portion of the 

molecule, thereby activating signalling cascades such as SRC 

((Hehlgans and Cordes, 2007).  

 

6. The synthesis of growth factors. Conventional thinking suggests that 

endothelial cells are acted upon by growth factors secreted by other 

cells such as retinal pigment epithelial cells and ganglion cells within 

the eye, or by circulating VEGF derived from platelets (Webb et al, 

1998) and neutrophils (Guadry et al, 1997). While the role of growth 

factors such as VEGF and FGF 2 in vascular development and 

pathological angiogenesis are well recognised, it has recently been 

discovered that endothelial cells themselves produce VEGF 

(Maharaj et al, 2006). It has also recently been demonstrated that 

genetic deletion of VEGF in the endothelial cells of adult mice led to 
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progressive endothelial degeneration, microhaemorrhagic events, 

intravascular thrombosis and death (Lee et al, 2007). Interestingly, 

circulating levels of VEGF were unaffected. This suggests that the 

requirement for autocrine VEGF cannot be replaced by circulating or 

paracrine VEGF, confirming the importance of autocrine VEGF as a 

cell survival signal. The authors also demonstrated that the actions 

of autocrine VEGF are mediated via the VEGF Receptor 2. 

Endothelial cells have also been demonstrated to produce fibroblast 

growth factor 2 (FGF2) (Yu et al 1993; Cordon-Cardo et al, 1990). 

However, the role of FGF2 in auto/paracrine signalling is much less 

understood than for VEGF. It has recently been reported that 

increased production of FGF2 by pulmonary endothelial cells 

contributes to pulmonary smooth muscle hyperplasia seen in the 

rare condition of primary pulmonary hypertension, although the 

mechanism has yet to be determined (Tu et al, 2011). As discussed 

previously, endothelial cells are known to secrete PDGF B which 

attracts PDGFR-く expressing mural cells to the nascent vessel 

(Lindblom et al, 2003; Lindahl et al, 1997). Mouse knock out models 

of PDGF-B and PDGFR-く result in a similar lethal phenotype 

caused by absent pericyte recruitment and major vascular 

abnormalities (Leveen et al, 1994; Soriano P, 1994). It is thought 

that localised binding of PDGF-B to the surrounding endothelial cell 

ECM aids the orderly coverage of the new vessel with pericytes 

(Armulik et al, 2005). Basal secretion of PDGF by endothelial cells is 

required to maintain the mural cell coverage and the function of the 

vascular structure.  
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Ultrastructure of endothelial cells 

 

Under electron microscopic examination, the luminal surface of 

endothelial cells shows fine projections and a coating of glycocalyx 

(Ryan & Ryan, 1984). The glycocalyx is a mixture of glycoproteins 

which may be involved in the regulation of solute transport and the 

mechanical effects of blood flow on the cell and the inhibition of 

inadvertent activation of the clotting cascade by cell surfaces.  

Caveolae  

 

The luminal surface is covered in pits called caveolae (derived from 

their initial appearance as caves). These structures “bud off” from the 

surface to form 50-100µvesicles and are seen to migrate through the 

cytoplasm (transcytosis) and to fuse with the opposite cell surface and 

release their contents into the extracellular space (Palade and Bruns, 

1968). It is thought that caveolae are important for the transcellular 

passage of solutes and macromolecules such as low-density lipoprotein 

(LDL), very low density lipoprotein (VLDL), insulin, caeruloplasmin 

(copper carrying protein), albumin and transferrin (iron carrying protein) 

from the vascular lumen to the subendothelial space, perhaps by 

specific macromolecule receptors within individual caveolae 

(Simionescu and Simionescu, 1991; King and Johnson, 1985).  
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Fig 1.3. The image above is an electron micrograph of an endothelial 
cell demonstrating numerous caveolae, either budding from the luminal 
surface (upper arrow), within the cytoplasm or fused with the basal 
surface of the cell in direct communication with the subcellular space 
(lower arrow). (with permission from Springer images) 
 

A major structural and critical protein found in caveolae is caveolin-1. 

This is a 22kDa protein that forms a major structural component of the 

vesicle membrane and is critical for its function (Rothberg et al, 1992). 

Without caveolin-1, caveolae do not form as demonstrated in the 

caveolin null mouse (Razani et al, 2001; Drab et al, 2001). It appears 

that without caveolae, increased transfer of solutes and 

macromolecules occurs by an up-regulation of paracellular routes, 

stimulated by up-regulation of intracellular eNOS activity and 

subsequent increased NO levels (Schubert et al, 2002). The passage of 

caveolae through the cell is thought to be along microtubules and is an 

ATP dependent process (D‟Souza et al, β006). 

 

Fenestrations 

 

Fenestrations are round or oval transcellular holes through the thinnest 

parts of the endothelial cell cytoplasm. They are found in areas where a 

high rate of partially selective exchange of components between the 

intra- and extravascular compartments is required. This exchange is 

usually limited to water and small solutes with passage of larger 
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components such as lipids and proteins being inhibited. The 

fenestrations within the choriocapillaris therefore allow the rapid transfer 

of nutrients through Bruch‟s membrane and the RPE, into the highly 

metabolically active photoreceptors. To date, three types of 

fenestrations have been described (Satchell and Braet, 2009).  

 

Type 1 fenestrations are 60-70 µm in diameter and are covered by a 

thin diaphragm. The glycoprotein - plasmalemmal vesicle associated 

protein 1 (PLVAP-1) is thought to be a major component of this 

diaphragm. Each fenestration is surrounded by a cytoskeletal lattice. 

Type I fenestrations are found in the endothelia of endocrine glands, 

gastrointestinal mucosa and renal tubular capillaries (Fig 1.4). It is 

thought that the fenestrations found in the human choriocapillaris may 

be type I by virtue of the expression of PLVAP in gene array 

experiments (see later) and the possession of a diaphragm.  

 

 

 

Fig 1.4. Electron micrograph of endothelial cell membrane 
demonstrating diaphragmed (type 1) fenestrations (with permission of 
Nature publishing) 

Extracellular 
compartment 

Fenestrations 
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Type II fenestrations are found in discontinuous endothelia such as 

those found in the spleen, liver and bone marrow. These fenestrations 

are wider (up to 200µm diameter) and do not have diaphragms or 

express PLVAP.  

 

Type III fenestrations are found in the endothelium of renal glomeruli. 

They are of a similar size to type I, but like type II, do not express 

PLVAP or have diaphragms.  

 

Weibel-Palade Bodies 

 
 Within the cell, the usual cellular constituents such as mitochondria, 

endoplasmic reticulum, microfilaments (actin) and intermediate 

filaments (vimentin) are found. Evidence for the apparatus for cellular 

excretion of specific molecules is scanty. The characteristic organelle of 

endothelial cells is the Weibel-Palade body. As previously described, 

these are intracellular organelles that synthesise and store von 

Willebrand factor (Factor VIII) which is a glycoprotein that is important 

in blood clotting and platelet adhesion to extracelluar matrix. The 

density of these intra-cellular organelles varies with the source or site of 

the endothelial cells. 

 

Endothelial cell junctional complexes 

 

In order to maintain the integrity of the vascular lumen, endothelial cells 

adhere to adjacent (endothelial) cells by a range of cell junctional 

complexes. The range and complexity of the junctions gives a clue to 

the importance of these junctions in the function of the endothelial 

barrier in both health and disease. Solutes and macromolecules can 

pass through the endothelial barrier either by a transcellular route, as 

discussed above (caveolae and fenestrations) or by a paracellular 

route, which is controlled by a range of junctional complexes.  
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These include zonula adherens and zonula occludens. Because of the 

heterogeneity and variation in function of the endothelial cells in 

different vascular beds, junctional complexes vary. This has the effect 

of introducing variability to the barrier function of ECs. As mentioned 

previously, endothelial cells form the inner blood retinal and blood brain 

barriers, and these barriers are necessary for the structural integrity and 

functioning of the retina and brain by excluding toxic solutes and 

macromolecules from reaching the tissues. In these instances, 

essential molecules are taken up by active transcellular processes via 

routes such as caveolae. The major component of the inner blood 

retinal and the blood brain barriers are tight junctions or zonula 

occludans between ECs (Sagaties et al, 1987). Astrocytes, present in 

the retina and brain, are thought to be important in the formation and 

maintenance of the retinal and brain endothelial barrier functions by 

modulating the expression of ZO-1 (Gardiner et al, 1997). 
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Fig 1.5. A diagram demonstrating the two major types of cell-cell 
junctions in endothelial cells (zonula occludens (tight junction) and 
zonula adherens (adherens junction). The diagram demonstrates the 
orientation of the major components and their interaction with the 
cytoskeleton of the cells (with permission of Springer images) 
 
 

Zonula Occludens (ZO) consist of an adhesive belt around cells and 

are composed of components such as occludin and claudin. They 

prevent the movement of fluid between cells and are responsible for 

much of the integrity of the vascular lumen, preventing extravasation of 

fluid to the interstitial tissue. They also limit the movement of membrane 

bound proteins from the luminal to the abluminal surface of the cell. The 

first major protein identified was occludin. This is a 60kDa protein 

consisting of four transmembrane and two extracellular domains. Each 

occludin molecule binds to another occludin molecule on an adjacent 

cell, thereby forming a bond. The intracellular tails of the occludin 

molecules are linked to the actin filaments of the cytoskeleton by ZO-1 

(and ZO-2) molecules. The role of occludin in tight junction formation 

and function may be complex as occludin deficient cells still 

demonstrate tight junction structures (Saltou et al, 2000) and 
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occludin-null mice demonstrated widespread abnormalities such as 

brain calcification. These findings suggest that structural redundancy 

exists in tight junction formation and function and that occludin may 

have wider roles in the body than just tight junction formation. It has 

been shown however, that the permeability of an endothelial cell barrier 

is directly related to the expression of occludin (Harhaj et al, 2006). It is 

widely recognised that increased local levels of VEGF, as seen in 

diabetic retinopathy, leads to increased vascular permeability. One of 

the main mechanisms of this increased permeability is the increased 

phosphorylation of occludin (and probable reduced function), stimulated 

by VEGF via up-regulation of intracellular PKC (Harhaj et al, 2006).  

 

Another important component of tight junctions is claudin. This is a 

family of 24 different proteins that have a similar structure to occludin 

i.e. four transmembrane domains and two extracellular domains. 

Despite this similarity, claudins and occludins are structurally different. 

They bind to other claudin molecules of adjacent ECs and are linked to 

the cytoskeleton, like occludin, by ZO-1. Brain endothelial cells 

specifically express claudins 1, 2, 3, 5, 11 and 12 (Huber et al, 2001, 

Sandoval and Witt, 2008). It is thought that claudin 5 is the critical factor 

in the formation of the blood brain barrier (Tam and Watts, 2010). 

Junctional adhesion molecules (JAM) are another separate group of 

proteins involved in the structure of tight junctions. They are members 

of the immunoglobulin superfamily and three types are found in 

endothelial cells, JAM A to C (Ballabh et al, 2004). Like occludin and 

claudins, they attach to the cytoskeleton via ZO-1. 

 

The accessory protein, ZO-1, is a 220kDa phosphoprotein with specific 

binding sites (PDZ sites) for occludin, claudins and JAM, and binding 

sites on its C-terminus for actin molecules. Its role is to link these tight 

junction molecules to the actin cytoskeleton. The molecule also has 

guanylate cyclase activity and plays a role in signal transduction (Bauer 

et al, 2010). The importance of ZO-1 in tight junction function is 
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illustrated by the fact that cells failing to express ZO-1 demonstrate 

complete disruption of tight junctions (Umeda et al, 2006).  

 

Zonula Adherens (ZA) (cell-cell junctions) usually occur in a more 

basal location of the cell membrane than zonula occludens. They can 

take the form of an encircling band around the cell (zonula adherens) or 

as focal points of adhesion (adhesion plaques). The most important and 

abundant transmembrane proteins are the Cadherin family. These 

proteins form homodimers in a calcium dependent manner with other 

cadherin molecules on adjacent cells. One of the roles of zonula 

adherens junctions is thought to be the direct connection of the actin 

filaments of adjacent cells. The intracellular connection of cadherin 

molecules is via p120 protein and alpha and beta catenin molecules. 

The cadherin molecules most commonly associated with endothelial 

cells are VE-Cadherin (Vascular Endothelial), otherwise called cadherin 

5, and N-Cadherin (Neuronal) which is also found on neuronal and 

smooth muscle cells. N-Cadherin appears to be present across the 

endothelial cell membrane and is not localised to adherens junctions. 

The importance of VE-cadherin in vascular integrity is demonstrated by 

the fact that injection of anti-VE-cadherin antibodies in mice leads to a 

marked breakdown in vascular integrity. In contrast, molecules such as 

VEGF and histamine have a much less dramatic effect and are 

reversible (Weis and Cheresh, 2005). It is thought that changes in 

vascular permeability are in part due to effects of molecules such as 

VEGF on adherens junctions and particular VE-cadherin. Activation of 

intracellular pathways (SRC) by VEGF can lead to phosphorylation, 

cleavage and internalisation of VE-cadherin (Esser, 1998). 
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Effect of growth factors on endothelial cells 

 

The existence of growth factors that stimulate the growth of blood 

vessels was postulated after the observation of an angiogenic response 

in transplanted tumours (Folkman et al, 1963, Folkman et al, 1966; 

Folkman, 1972). Over a hundred years ago, Virchow noted, in a 

number of German language publications, that tumour growth is 

accompanied by an increase in vascularity. This was followed in 1927 

by an observation by Lewis who described the variability in the vascular 

structure of tumours in rats and suggested that the tumours were 

having an influence on the characteristics of the blood vessels (Lewis, 

1927). In 1939 Ide used a transparent chamber devised by Sandison, 

inserted into a rabbit‟s ear, to study the growth of the vascular supply in 

a transplanted carcinoma (Ide et al, 1939). It was observed that tumour 

growth was accompanied by extensive vessel growth, confirming the 

idea that vascularisation was required to “nourish” the growing tumour. 

The technique was developed further by Algire et al by quantifying 

vessel growth with time (Algive et al, 1945). At this point it was noted 

that vascular growth preceded the rapid growth of the tumour and that 

vessel growth is an important rate limiting step in tumour growth. 

 

It was hypothesised at the time that a chemical substance may be 

involved in this process. Potential candidates at the time included the 

breakdown products of chromatin. However, in 1948, Michaelson 

suggested the term “Factor X” (Michaelson, 19δ8). In 1968, a series of 

experiments showed that vessel growth was stimulated by tumours 

even if a filter was placed between the tumour and the growing vessels 

(Greenblatt & Shubi, 1968; Ehrmann & Knoth, 1968). This suggested 

that a diffusible substance was responsible. A series of landmark 

experiments starting in 1971 by Judah Folkman reported attempts to 

isolate “tumour angiogenesis factor” (Folkman, 1971ν Klagsbrun et al, 

1976; Folkman, 1982). Folkman studied the stimulated growth of 

vessels in chick chorioallantoic membrane by this factor using cultured 
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tumour cells and the corneal pocket model (Kenyon et al, 1996). At this 

time, another pro-angiogenic factor, FGF, was isolated and was thought 

to be the postulated “tumour angiogenesis factor”. Subsequent work 

proved that this FGF was not the responsible agent and so the search 

for the factor continued (Dennis & Rifkin, 1990). In 1983, Senger 

reported the partial isolation of a protein that stimulated vascular 

leakage and this was termed “vascular permeability factor” (VPF) 

(Senger et al, 1983). Soon after, Ferrara and Henzel (1989) isolated a 

protein from the conditioned medium of bovine pituitary glands which 

led to a profuse growth of blood vessels in an in vivo assay. The fact 

that the mitogen was secreted and appeared specific for endothelial 

cells made it unlikely to be FGF (which lacks a secretory component 

and therefore may act in an autocrine environment). It was therefore 

termed “vascular endothelial growth factor” (VEGF) (Ferrara & Henzel, 

1989). At a similar time, Plouët et al isolated a similar endothelial 

mitogen and called it “vasculotrophin” (Plouët et al, 1989). It was not 

long before both VPF and VEGF had been cloned and sequenced and 

found to be identical (Leung et al, 1989; Keck et al, 1989)  

 

Ten years later, a large number of growth factors had been isolated 

with pro-angiogenic responses including vascular endothelial growth 

factor (VEGF), acidic and basic fibroblast growth factors (FGF 1 and 2 

respectively), insulin-like growth factor 1 (IGF-1), placental growth 

factor PlGF), hepatocyte growth factor (HGF), tumour necrosis factor 

alpha (TNF- ) (via up-regulation of VEGF) (Yoshida et al, 1997) and 

interleukin-8 (Heidemann et al, 2003). To date, VEGF appears to be the 

most important in bringing about both normal physiological vascular 

development and pathological angiogenesis. In addition, other factors 

such as Transforming Growth Factor (TGF), Angiopoietins 1and 2 and 

Tie 2 are thought to be important in modulating the angiogenic 

response. 
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VEGF 

 

As discussed above, vascular endothelial growth factor was originally 

discovered by Senger, Ferrara and Plouët and was initially called 

vascular permeability factor because its main effect appeared to be to 

increase the permeability of blood vessels. VEGF consists of a family of 

molecules, the most important of which is VEGF A. Other members 

include VEGF B, C, D and placental growth factor (PlGF), (McColl, 

2004). The C and D forms regulate lymphatic angiogenesis. While 

vascular endothelial cells are the principal target for the actions of 

VEGF, other cells such as retinal ganglion cells (Nishijima, 2007; Kilic 

et al, 2006), monocytes (Clauss et al, 1990) and lung alveolar cells 

(Compernolle, 2002) express receptors to VEGF and appear to play a 

role in their physiology.  

 

Actions of VEGF on endothelial cells include: 

 

1. Stimulation of cell proliferation 

 

2. Stimulation of cell migration 

 

3. Enhancement of cell survival by the inhibition of cell apoptosis via a 

PI-3 kinase-Akt pathway and the expression of bcl-2 

 

4. Increasing vascular permeability by alterations in cell-cell adhesion 

molecules such as the phosphorylation of occludin and VE-cadherin 

(discussed previously).  

 

5. Vasodilatation by stimulated release of nitric oxide by activation of 

eNOS.  

 

6. The formation of fenestrae. 
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In 1992 Breier et al showed that VEGF mRNA was temporally and 

spatially correlated with angiogenesis in the developing embryo (Breier 

et al, 1992). The same group later reported that VEGF mRNA was up-

regulated in ischaemic areas of aggressive brain tumours, suggesting 

that it may be stimulated by hypoxia (Plate et al, 1992). It has since 

been discovered that the stimulation of VEGF is principally under the 

control of hypoxia inducible factor 1 (HIF-1) which binds to a binding 

site on the VEGF promoter (Semenza, 2002). In addition, other 

transcription factors such as the ETS family and reactive oxygen 

species affect VEGF expression (Randi et al, 2009). Hypoxia inducible 

factor 1 was discovered in 1992 (Semenza et al, 1992) and is one of 

the cell‟s main mechanisms of reacting to varying levels of tissue 

oxygenation. HIF-1 is a heterodimer protein transcription factor that 

consists of two proteins, HIF-1g and HIF-1く. HIF-1 activates the 

transcription of at least 60 genes that are involved in angiogenesis 

(VEGF), glucose metabolism, and cell proliferation (Semenza G, 2003). 

Interestingly, the effect of oxygen is not on the synthesis of HIF-1 but on 

its degradation. Hypoxia leads to an inhibition of its breakdown, thereby 

leading to elevated levels. Under conditions of normoxia, HIF-1 

degradation is regulated by O2 dependent prolyl hydroxylation which 

targets the protein for ubiquitination by ubiquitin-protein ligases which 

include the von Hippel-Lindau tumour suppressor (an important protein 

mutated in the ocular disease von Hippel-Lindau syndrome) The HIF-1 

is therefore rapidly degraded and angiogenic growth factors such as 

VEGF are not up-regulated. Under conditions of hypoxia, the O2 

dependent hydroxylation does not occur and therefore the HIF-1 is not 

targeted for degradation. This therefore leads to an up-regulation of 

VEGF expression. 



 36 

           Normoxia      Hypoxia 

 

     VHL 

 

 

 

               Poly Ubiquitin 

 

 

  Degradation           Accumulation 

 

 

 

 

 

VEGF down regulated     VEGF up- 

         regulated 

 

 

 Fig 1.6. A simplified representation of the HIF pathway.  
 

 

In von Hippel Lindau disease, mutations in the VHL protein lead to 

inactivation of the ubiquitinisation process thereby inhibiting HIF-1 

degradation and up-regulation of local VEGF expression. The disease 

is characterised by localised vascular tumours in the retina, cerebellum, 

kidney and pancreas.  

 

Further evidence of VEGF‟s pro-angiogenic role is provided by results 

of the in vivo use of VEGF blocking antibodies which reduced the 

growth of glioblastomas (a type of brain tumour) by 80% in mice (Kim et 

al, 1993) and inhibited iris neovascularisation in a monkey model of 

retinal ischaemia (Adamis et al, 1996). In vitro culture of the 

glioblastoma cells revealed that the antibodies had no direct action on 

tumour cell growth but were acting on the tumour blood supply.  

   HIF-1     HIF-1 
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The anti-tumour effect of anti-VEGF antibodies has subsequently been 

demonstrated for a range of animal tumours and has also been shown 

to have a modest clinical effect in human disease. The humanised anti-

VEGF monoclonal antibody referred to as bevacizumab (Avastin™) is 

licensed for the treatment of bowel tumours and has been shown to 

prolong life in clinical trials (Vincenzi et al, 2009). 

 

VEGF isoforms 
 

The gene responsible for VEGF A consists of eight exons and seven 

introns. Alternative splicing of the gene product produces at least four 

different human isoforms: VEGF 121, VEGF165, VEGF189 and VEGF206,, 

consisting of 121, 165, 189 and 206 amino acids respectively. The 

intensely studied mouse isoforms of VEGF each have one less amino 

acid than their human equivalent. The main difference between 

isoforms is the presence of heparin binding domains. While all isoforms 

have an identical “active” region, VEGF121 has no heparin binding 

domain or tail and appears freely diffusible through the extracellular 

matrix (ECM), whereas VEGF 206 and 189 both bind heparin avidly 

and are therefore strongly bound on cell surfaces or within the 

extracellular matrix. VEGF 165 has intermediate heparin binding 

properties. This difference in properties appears to be important in 

vascular development and in the formation of VEGF concentration 

gradients (Ruhrberg et al, 2002). It is known that endothelial cells will 

not form vessels by simply being in a VEGF-rich environment, but need 

a concentration gradient for the endothelial cells to migrate along, 

thereby forming a vasculature (Ruhrberg et al, 2002). It is thought that 

ECM-bound forms of VEGF are released by cleavage by proteases 

such as plasmin, heparinase and matrix metalloproteases.  

 

Mice expressing a null mutation for VEGF A die in utero with an 

extremely disorganised and rudimentary vasculature (Carmeliet et al, 

1996). Ruhrberg et al in 2002 demonstrated that mice solely expressing 
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the VEGF120 isoform, which is devoid of a heparin binding domain and 

is thereby unable to associate with the perivascular ECM, develop a 

vasculature with a marked reduction in branching patterns. They found 

that this reduction in branching was caused by a redistribution of 

endothelial cells from the formation of additional branches to being 

incorporated into the existing vasculature to increase lumen calibre 

instead. They suggest that variations in the ratio or proportions of VEGF 

isoforms around the developing vasculature alter the branching patterns 

by establishing concentration gradients of VEGF along which 

developing blood vessels grow. They hypothesise that VEGF120 will 

rapidly diffuse away from the developing vessel while the VEGF 189 

isoform will remain juxtaposed to the vessel, neither of which will allow 

a sufficient concentration gradient of VEGF to be established. It is 

therefore most likely that a combination of all four isoforms is required 

to establish the required gradient (Ruhrberg et al, 2002). Although 

VEGF A is thought to be the most important member of the VEGF 

family, other members exist such as VEGF B, VEGF C and VEGF D. It 

is known that the C and D forms are involved in lymphangiogenesis. 

Other members include placental growth factor (PLGF) and EG-VEGF 

(endocrine gland VEGF), which is expressed and acts solely on 

endothelial cells within endocrine glands such as the adrenal gland. 

Recently, other VEGF “like” molecules have been described including 

parapox virus open reading frame (VEGFE) (Ogawa et al, 1998) and 

snake venom derived polypeptide (VEGFF) (Yamazaki et al, 2005). 

Their roles, if any, in human endothelial biology are unknown. An 

additional mammalian splice variant of VEGF A is denoted VEGFAxxxb, 

which binds, but fails to activate VEGF receptors and has therefore 

been described as anti-angiogenic (Harper and Bates, 2008). It has 

been found that in the vitreous fluid of diabetic patients, there is a 

switch from the anti-angiogenic VEGFAxxxb splice variants to the pro-

angiogenenic VEGFAxxx variants with increasing retinal ischaemia and 

neovascularisation (Perrin et al, 2005). This little understood or 

researched VEGF splice variant may therefore be an important part of 
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the anti/pro angiogenic balance within tissues, disruption of which can 

lead to aberrant angiogenesis.  

 

VEGF Receptors 
 

The actions of VEGF on endothelial cells are initiated via two cell-

surface receptors. The first of these was discovered in 1992 in the 

mouse and was termed Flt-1 (de Vries, 1992). Its human equivalent is 

termed VEGFR1. A second mouse VEGF receptor was discovered 

soon afterwards and termed Flk1 or KDR (Terman et al, 1992). Its 

human equivalent was termed VEGFR2. While VEGFR2 is 

predominantly expressed on vascular endothelial cells and their 

embryological precursors, it is also found on pancreatic duct cells, 

retinal progenitor cells and megakaryocytes (Oelrichs et al, 1993), 

although its function in these cells is unknown. These two receptors are 

receptor tyrosine kinases with seven extracellular immunoglobulin-type 

domains, a single transmembrane domain and a single intracellular 

tyrosine kinase domain (Costa et al, 2004; Neufeld et al, 1999; Ferrara 

et al, 2003). 

 

VEGFR2 
 

It is widely accepted that VEGFR2 (Flk 1) is the main receptor involved 

in endothelial proliferation, survival, migration, permeability and 

vascular tube formation. VEGFR2 has a binding affinity for VEGF A, ten 

fold lower than VEGFR1. Binding of VEGF to VEGFR2 leads to 

receptor dimerisation and conformational changes within the 

intracellular domain. These changes lead to exposure of the ATP 

binding site in the kinase domain which in turn leads to 

autophosphorylation of a number of tyrosine residues (Takahashi et al, 

2001). One of the most important residues is Tyr 1175, phosphorylation 

of which leads to activation of PLCけ and in turn, IP3 diacyl glycerol 

(DAG), PKCg, く and こ, MER/ERK, phospholipase A2 and RAS (Wu et 
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al, 2000; Yu, 1999, Bullard et al, 2003, Koch et al, 2011). This pathway 

is thought to be important for cell proliferation. Phosphorylation at 

Tyr1214 leads to up-regulation of p38MAPK and this is important for cell 

migration. The activation of PIP2 to PIP3 at the cytosolic surface of the 

cell membrane leads to activation of AKT which is thought to be 

important for cell survival. (Cebe-Suarez et al, 2006). Activation of 

VEGFR2 also appears to have a role of increasing vascular 

permeability via the weakening of cell-cell adhesions. Activation of the 

VEGF receptor leads to eNOS activation via PLCけ with the result that 

intracellular NO is up-regulated. (as discussed previously). A similar 

effect is also seen when other pro-angiogenic growth factors such as 

FGF-2 and TGF beta are added to endothelial cells (Inoue et al, 1995, 

Wu et al, 1996). In addition to its vasodilatory roles, NO is thought to be 

an important intermediary in angiogenesis (Hida et al, 2004). Sodium 

nitroprusside (an exogenous NO donor) stimulates endothelial cell DNA 

synthesis, proliferation and migration (Zheng et al, 2005). It is thought 

that NO exerts its effect by stimulation of cyclic guanosine 

monophosphate (cGMP), a downstream modulator of the VEGF 

signalling pathways (Ziche et al, 1997, Ignarro et al, 1991). Stimulation 

of cGMP leads to activation of MAPK, an important mediator on the 

VEGF signalling pathway. This effect of NO on the up-regulation of 

cGMP can be inhibited by thalidomide, a drug noted for its anti-

angiogenic properties before it was withdrawn from use, by its action on 

guanylate cyclase Majumder et al, 2009) 

 

Lack of VEGFR2 in the Flk-1 null mouse leads to failure of the 

development of blood islands and blood vessels and ultimately causes 

death in utero (Shalaby et al, 1995).  
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Fig 1.7. below is a simplified schematic outline of the actions of VEGF 

on binding to VEGFR2. Note the receptor has formed an activated 

dimer. Many of the reported intermediary steps have been omitted for 

simplicity and clarity.  
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VEGFR1 
 

The role and actions of VEGFR1 are less well understood and still 

subject to debate. It is thought that this may be due to variability in 

receptor function depending on cell type and the developmental stage 

of the animal. Like VEGFR2, VEGFR1 is highly expressed on vascular 

endothelial cells and has a binding affinity for VEGF ten fold higher than 

VEGFR2. It is also expressed on monocytes, macrophages, 

trophoblasts, smooth muscle cells and renal mesangial cells (Koch et 

al, 2001). Like VEGFR2, its expression is up-regulated by hypoxia but 

VEGF binding appears not to stimulate a mitogenic signal. Binding of 

VEGF to VEGFR1 stimulates very weak intracellular tyrosine kinase 

activity with different tyrosine residues being activated depending on 

the ligand i.e. VEGF or placental growth factor (Autiero et al, 2003). 
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Although weak, activation of tyrosine kinase domains on VEGFR1 does 

lead to activation of intracellular phospholipase C (PLC) and the 

generation of inositol 1,4,5 triphosphate (Sawano et al, 1997). One 

hypothesis for the role of VEGFR1 is that it is a “decoy” for VEGFRβ, 

perhaps mopping up VEGF and thereby limiting its binding and 

consequent stimulatory actions on VEGFR2 (Park et al, 1994). Other 

hypotheses include roles as a VEGF reservoir or actin microtubule 

reorganisation and tube formation (Koch et al, 2011). Recently, actions 

such as the stimulation of matrix metaloproteinase 9 and the 

recruitment of endothelial progenitor cells have been ascribed to the 

receptor (Hristov et al, 2003). Despite the conflicting opinions on the 

role and importance of VEGFR1, it is clear that Flt-1 (VEGFR1) null 

mice die in utero because endothelial cells develop but fail to form 

vascular channels (Fong et al 1995). Interestingly, deletion of just the 

intracellular domain is compatible with normal vascular development 

(Hiratsuki et al, 1998), giving credence to the hypothesis that it acts in 

some way as a reservoir or decoy for VEGF. This underlines the 

important but as yet undefined roles of VEGFR1. 

 

Two other receptors have also been found to bind VEGF. The first is 

neuropilin 1 which is a receptor found on axons and is thought to play a 

role in axon guidance (the pathways of blood vessels and nerves often 

co-exist). It may also augment VEGF binding to VEGFR2 but has no 

mitogenic actions itself when binding VEGF (Ferrara, 2004). The 

second is VEGFR3 (or Flt4 in mice). This VEGF receptor is found on 

lymphatic endothelial cells and is important for lymphangiogenesis and 

tumour metastasis via lymphatics. 
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Fibroblast Growth Factors 

 

Fibroblast growth factors (FGFs) are a group of growth factors that 

have mitogenic actions on a wide range of cells such as fibroblasts and 

endothelial cells and are also important in embryogenesis (Javerzat, 

2002). The mitogenic and migratory action of FGFs on vascular 

endothelial cells pre-dates the discovery of VEGF, and ironically, for 

many years was thought to account for the action of VEGF. To date, at 

least 23 isoforms of FGF have been discovered, acting via 4 tyrosine 

kinase receptors (Cronauer et al, 2003).  

 

The main FGF receptor on ECs is FGF receptor 1 (FGFR1) and this 

binds the two most abundant forms, FGF2 (basic FGF) and FGF1 

(acidic FGF). Activation leads to stimulation of the mitogen-activated 

protein kinase pathway (MAPK) (Zubilewicz et al, 2001) and Ca2+ 

channel activation (Rosenthal et al, 2005). An interesting fact about 

FGF2, the main FGF involved in EC mitogenesis, is that it contains no 

signal motif after synthesis on the Golgi apparatus. In theory, it cannot 

be excreted. Interestingly, mice carrying either a null mutation for the 

FGFR 1 or a transgenic mouse with an inducible defect in ocular FGFR 

1 action both demonstrated poor generalised and ocular vascular 

development (Rousseau et al, 2000; Rousseau et al, 2003). Because of 

its lack of secretary signal motif, the action of FGF on endothelial cells 

may either be autocrine in nature or it may leave the cell by an 

unknown mechanism to produce a paracrine or distant action. Clearly, 

cells would not express FGF receptors if it was not present in the ECM 

of cells. Because of the contradictory evidence for FGF having a 

specific role in angiogenesis (presence of FGF receptors on ECs linked 

to a proliferative intracellular signalling cascade (Cross and Claesson-

Welch, 2001) versus a lack of a secretory signal on the intracellular 

protein (thereby suggesting an absence of a true stimulatory role), 

workers have questioned whether FGF 2 acts via a second growth 

factor such as VEGF (Murakami and Simons, 2008). Masaki et al in 
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2002 showed that the therapeutic effect of FGF 2 on the improvement 

of a mouse hind limb ischaemia model could be eliminated by the 

administration of VEGF neutralising antibodies. This suggested that 

VEGF was required for the action of FGF 2. Potential mechanisms of 

action include the stimulation of VEGF secretion by FGF 2 (Seghezzi et 

al, 1998) or that VEGF is required for FGF receptor function (Pepper 

and Mandriota, 1998). Welti et al in 2001 demonstrated that FGF 2 still 

provided pro-angiogenenic signals and stimulated endothelial cell 

proliferation despite inhibition of the VEGFR2 tyrosine kinase activity 

using a drug called Sunitinib. This finding has implications for the 

treatment of angiogenenic diseases such as neovascular age-related 

macular degeneration or cancer because the endothelial cells may 

circumvent anti-VEGF treatments by utilising FGF pathways The picture 

is further confused by the finding that FGF action in the embryo 

precedes the appearance of VEGF signalling and is also required for 

VEGF receptor function (Murakami et al, 2011).  
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Fig 1.8. The diagram below is a simplified schematic outline of the 

actions of FGF2 on binding to FGFR1. Note that the receptor has 

formed an activated dimer. Many of the reported intermediary steps 

have been omitted for simplicity and clarity. Unlike VEGF, many of the 

roles and pathways of FGF2 action are currently unknown 
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Insulin like growth Factor 1 (IGF-1) 

 

Insulin like growth factor 1 (IGF-1) is a 7.6 KDA protein important in 

childhood growth. Its secretion is stimulated by growth hormone and is 

produced predominantly by the liver and to a lesser extent in a 

paracrine fashion by target organs. IGF 1 circulates in the blood almost 

totally bound to at least 6 different IGF binding proteins (Novosyadlyy et 

al, 2004; Lofqvist et al, 2009), with IGF binding protein 3 being one of 

the most important (Baxter, 2001). Target cells (which include 

endothelial cells) possess two different IGF receptors (I and II). Binding 

of IGF 1 to IGF RI leads to activation of its tyrosine kinase activity which 

in turn leads to activation of several intracellular pathways such as 

TOR, Akt, and MAPK (Hellström et al, 2001; Smith et al, 1999) although 

they are poorly understood. As well as directly stimulating intracellular 

signalling pathways, IGF 1 is also thought to lead to an up-regulation of 

VEGF expression by increasing the expression of HIF-1g via PI-3 and 

MAPK (Fukuda et al, 2002). This would suggest that the effect of IGF-1 

on endothelial cells is brought about by direct actions of the IGF 

receptor and by secondary effects on VEGF. This makes research into 

the effects of IGF-1 on disease mechanisms difficult to elucidate. This 

may be the reason why a number of oncology and anti-angiogenesis 

clinical trials using IGF-1 inhibition have produced disappointing clinical 

results despite promising in vitro experiments.  

 

IGF -1 can also bind to insulin receptors but with much less avidity than 

that of the IGF receptor.  

 

In specific relation to the eye, IGF 1 is thought to be required for retinal 

vascular development in utero, acting in conjunction with VEGF and its 

role in retinopathy of prematurity is currently under investigation (Smith 

et al, 1999; Hellström et al, 2002; Hellström et al, 2001). In adults, it is 

thought to be one of a range of growth factors involved in choroidal 

neovascularisation (Lambooij et al, 2003; Rosenthal et al, 2004) and 
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proliferative diabetic retinopathy (Meyer-Schwickerath et al, 1993; Grant 

et al, 1986). Interestingly, when given as a subcutaneous injection to 

diabetic patients, it was found to worsen diabetic retinopathy and is also 

found in high concentration in the vitreous of eyes with proliferative 

diabetic retinopathy (PDR) (Grant et al, 1986). However, pituitary 

dysfunction or surgical removal of the pituitary, with concomitant 

reduction in IGF-1 levels secondary to low growth hormone levels, can 

prevent or reverse proliferative diabetic retinopathy (Sharp et al, 1987; 

Merimee et al, 1970; Wright et al, 1969). Humans with defects in the 

IGF-1 or IGF-1 receptor gene were found to have reduced retinal 

vascular branching points (Hellström 2002). Taken together, all of these 

observations would suggest a critical role for IGF 1 in ocular 

development and angiogenic diseases. 

Placental Growth Factor (PlGF) 

 

PlGF is a member of the VEGF family and was originally cloned from 

the human placenta as the name suggests, in 1991 (Maglione et al, 

1991). Like VEGF, PlGF occurs in at least 4 different isoforms, with 

isoforms 2 and 4 being strongly bound by heparin. Human PlGF 

displays 42% sequence homology with human VEGFA, although their 

3D structures are almost identical. Despite this similarity in 3D 

structure, PlGF is almost solely bound by VEGFR1 (Park et al, 1994). 

However, it may indirectly stimulate VEGFR2 by displacing VEGF from 

VEGFR1. In addition, PlGF is also to bind to neuropilin 1 and 2. Like 

VEGF, its expression is up-regulated by hypoxia despite it not having a 

hypoxia response element in its promoter sequence. Its angiogenenic 

potential was demonstrated in 1997 (Ziche et al) but knockout models 

failed to demonstrate any abnormalities in vascular development 

(Carmeliet et al, 2001) suggesting that its angiogenenic role may be 

limited to pathological states. While it has been found associated with 

choroidal neovascular membranes, its role in disease pathogenesis 

remains uncertain (Rakic et al, 2003). 
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Angiogenesis modifying factors 

 

Platelet Derived Growth Factor (PDGF) 

 

Platelet Derived Growth Factor is a growth and chemotactic factor for 

fibroblasts, smooth muscle cells and glial-derived cells, being found in 

high concentration as the name suggests, in platelets. It has a dimer 

structure, being composed of an A and a B chain. This gives rise to 

three isoforms, PDGF-AA, -BB and -AB. Originally, it was thought that 

endothelial cells were unresponsive to PDGF but it is now known that 

endothelial cells express PDGF receptors (R  and R ) and that, in 

particular, PDGF-BB has some pro-angiogenic action (Risau et al, 

1992). It is known that the pericytes of developing blood vessels (in 

particular, the stlk cells) express PDGF receptors and require 

endothelial cells to secrete PDGF for their survival (Lindblom et al, 

2003). In a PDGF-B knock mouse model animals were found to lack 

pericytes covering brain microvessels and these tended to form 

microaneurysms and were prone to rupture (Lindahl et al, 1997). 

Sprouting capillaries also appeared to fail to attract pericytes. In a 

mouse model of choroidal neovascularisation; inhibition of both VEGF 

and PDGF-B signalling was more effective in causing actual new vessel 

regression than in those animals targeting VEGF alone (Bergers et al, 

2003; Jo et al, 2006). In a similar experiment in mice induced to 

develop proliferative diabetic retinopathy, injection of an anti-PDGF-B 

aptamer demonstrated significant reduction in disease complications 

such as retinal detachment compared with those given sham aptamer 

(Akiyama et al, 2006).  
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Angiopoietin/Tie system 

 

The human angiopoietin (Ang) / Tie system consists of two Tie tyrosine 

kinase receptors (Tie 1 and Tie 2) and three secreted ligands (Ang1, 

Ang2 and Ang4). Angiopoietin 1 functions as a Tie 2 receptor agonist 

and Ang 2 normally functions as an Ang 1 antagonist (Maisonpierre et 

al, 1997), except when present in very high in vitro concentrations, in 

which case it can act as a weak agonist (Kim et al, 2000). Little is 

known about Ang4 but it has been shown to inhibit HUVEC migration 

towards VEGFA and FGF2 and to also inhibit in vitro angiogenesis 

(Olsen et al, 2006) and so may be important in modulating 

angiogenesis. The receptor Tie2 is expressed on endothelial cells and 

binds all angiopoietin ligands whereas Tie 1 has no known ligand but 

has been shown to bind to Tie 2 and to regulate its activity (Milner et al, 

2009). Binding of Ang 1 to Tie2 leads to receptor dimerisation and the 

resultant auto phosphorylation and activation of intracellular signalling 

pathways. Signalling molecules activated include: eNOS, SH2 domain 

containing phosphatase (SHP2) and PI-3K. Many of the signalling 

components and pathways activated are similar to those seen when 

VEGF binds to VEGFR2 (see below). However, Tie activation on its 

own does not cause cell proliferation. This difference in end response 

may be context driven. It has recently been shown that in quiescent 

endothelial cells linked by cell-cell junctions, Ang1/Tie2 activation leads 

to cell survival signals via AKT. Up-regulated “quiescence genes” 

include kruppel like factor 2 and Dll-4 (Zhang et al, 2011). When 

endothelial cells are isolated or detached from the effects of 

surrounding cells, as they may be in angiogenesis, Tie2 is embedded in 

the cell substratum and Ang1 is associated with ECM, and then the 

signal switches to a pro-angiogenic pathway (Zhang et al, 2011).  
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Fig 1.9. The diagram below is a simplified schematic outline of the 

actions of ANG1 on binding to Tie 2. Note that the receptor has formed 

an activated dimer. 
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In quiescent adult vasculature, Ang1 secreted from mural cells induces 

Tie2 activation in endothelial cells to maintain mature blood vessels by 

enhancing vascular integrity (barrier function) and endothelial survival 

(Brindle et al, 2006). It also plays a role in maintaining an effective 

pericyte covering of vessels. In contrast, the antagonist Ang2 leads to 

breakdown of cell barrier function. The importance of the Tie/Ang 

system is revealed when murine gene knock out models for Tie 2 and 

Ang 1 produce animals with abnormal hearts and abnormal vascular 

walls (Tachibana et al, 2005; Suri, 1996) while mice overexpressing 

Ang2 are lethal in utero (Maisonpierre et al, 1997), presumably due to 

competitive inhibition of Ang1. 

 

The role of Tie1 remains elusive but mouse knock down models using 

siRNA s demonstrate increased Ang1-mediated Tie2 activation, 

suggesting that it is a negative regulator of Tie 2 activity. Angiopoietin 1 

is constitutively expressed in tissues by mural cells and fibroblasts 
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whereas Ang2 is usually only expressed by endothelial cells at sites of 

vascular remodelling. At sites of vascular remodelling, expression of 

Ang2 is up-regulated by VEGF, IGF-1 and PDGF and is stored in 

Weibel-Palade bodies along with von Willebrand factor. While acting as 

an Ang1 antagonist at sites of vascular remodelling, Ang2 stimulates 

the dissociation of pericytes from vessels and increases vascular 

permeability. Both of these factors are thought to be important for an 

angiogenic response and so the up-regulation of Ang 2 at sites of 

angiogenesis may be necessary for vessel growth. Our work shows that 

Ang2 is expressed by proliferating ocular vascular ECs (see later). 

Continued Ang2 activity however, after vascular growth has occurred, 

may prevent appropriate pericyte recruitment and maintenance, thereby 

making the new vessels unstable and liable to breakdown, particularly if 

VEGF is withdrawn. As well as maintaining pericyte stability on new 

vessels, ANG1 also maintains the continuous distribution of CD31 

(PECAM1), ZO-1 and VE-cadherin, all of which are important in 

endothelial cell-cell adhesion (Falcon et al, 2009).  

 

Overall, the data on the Ang/Tie system appears confusing and at times 

contradictory. While today we know far more about the signalling 

pathways and interactions within the system, our thoughts on the role of 

the system in the overall maintenance and evolution of the vasculature 

still comes back to the original views of the system which suggested 

that the Ang/Tie system was responsible for vessel “stability”. Several 

research teams are looking at the potential of the Ang/Tie system in 

treating angiogenic diseases but at present results are limited. To date, 

the effect of the system on human disease remains limited to a rare 

mutation in Tie 2 which leads to a disease characterised by 

abnormalities of the smooth muscle surrounding small vessels and 

microaneurysms leading to venous malformations (Vikkula et al, 1996).  
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Anti-angiogenic factors 

 

It has been suggested for many years that the control of normal 

(physiological) and pathological angiogenesis is brought about by a fine 

balance between pro- (VEGF, FGF 2 etc) and anti-angiogenic factors. 

Soon after Folkman discovered his new angiogenic factor he began to 

search for a substance that could inhibit it, as this may potentially be 

used as a treatment for cancer-induced angiogenesis (Folkman, 2004). 

The first endogenous substance to be discovered was interferon alpha 

which has been successfully used in the treatment of life threatening 

haemangiomas in the lung, hand and jaw (White et al, 1989; Marler et 

al, 2002). This was followed by the discovery of angiostatin (a fragment 

of plasminogen by O‟Reilly et al in 199δ)) and endostatin (a fragment of 

collagen XVIII) (Wen et al, 1999). It had long been recognised that 

patients with Down‟s syndrome have a markedly reduced incidence of 

solid tumours. One explanation for this is the possession of three 

copies of the collagen XVIII gene with subsequently higher levels of the 

endostatin collagen fragment (Zorick et al, 2001).  

 

Pigment Epithelial Derived Factor (PEDF) 

 

An angiogenesis inhibitor with specific relevance to the eye is Pigment 

Epithelial Derived Factor (PEDF). This was first identified in the medium 

of cultured foetal retinal pigment epithelial (RPE) cells and was found to 

stimulate the outgrowth of neurites from retinoblastoma cells (Tombran-

Tink, 1989). It is a 418 amino acid protein and is a member of the 

serine protease inhibitor (serpin) family (Barnstable & Tombran-Tink, 

2004). Expression studies have revealed that PEDF is secreted by RPE 

cells into the inter-photoreceptor matrix (Tombran-Tink et al, 1995) and 

also by cells at the corneal limbus and the ciliary body (Barnstable & 

Tombran-Tink, 2004). Another major site of PEDF expression is in the 

central nervous system where it is found in ependymal cells and motor 



 53 

neurones of the ventral horn (Bilak et al, 1999). Interestingly, PEDF 

appears to have two major functions: neurotrophic/ neuroprotective and 

antiangiogenic (Barnstable & Tombran-Tink, 2004). 

 

Neurotrophic/protective functions 
 

In vitro experiments of cultured neurones treated with PEDF show that 

it stimulates outgrowth from the nerve cells. As it is found in high 

concentrations in the eye from an early stage of foetal development, it 

may play a role in retinal development. Support for this role is confirmed 

by a mouse PEDF knockout that showed abnormal development of the 

retinal architecture (Doll et al, 2003). Injection of PEDF into the vitreous 

of mice with mutations in photoreceptor genes significantly reduced 

photoreceptor degeneration Cayoutte et al, 1999), while injection into 

the vitreous of rats rescued photoreceptors from light damage (Cao et 

al, 2001). From these studies, it is thought that PEDF stimulates 

chemical changes in photoreceptors that make them more resistant to 

toxic insults. It is not known, however, if PEDF acts directly on the 

photoreceptors themselves or stimulates adjacent cells such as Muller 

or RPE cells to produce protective factors.  

 

Antiangiogenic function 
 

It is known that the level of PEDF is reduced in the vitreous of patients 

with proliferative diabetic retinopathy and in RPE cells cultured under 

hypoxic conditions and that the degree of neovascularisation appears to 

be negatively correlated with PEDF levels. PEDF has also been shown 

to inhibit the migration of endothelial cells in a dose dependent manner 

(Duh et al, 2002) and is more potent than other naturally occurring 

angiogenesis inhibitors such as angiostatin, endostatin and 

thrombospondin 1. It is not known if PEDF exerts its anti-angiogenic 

effect directly on VEGF expression, on its receptor, or by an 

intracellular downstream mechanism. However, one action of PEDF on 
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VEGF receptor 1 was recently described which may explain some of its 

effect. Cai et al demonstrated that PEDF brings about cleavage and 

intra cellular translocation of the transmembrane domain of VEGFR1, 

thereby indirectly down regulating the effect of VEGF (Cai et al, 2006). 

Evidence for a dedicated PEDF receptor remains elusive. In vitro, 

PEDF has been found to bind to a specific site on retinoblastoma and 

cerebellar granulosa cells (Alberdi et al, 1999). Purification of the cell 

membranes bound with PEDF has identified an 80 kDa protein. It has 

also been found that PEDF binding leads to activation of NF- B, a 

transcription factor important in the activation of anti-apoptotic genes, 

and that it can modify the phosphorylation of ERK1/2 (important in cell 

proliferation) in cerebellar cells. Evidence exists to show that the two 

functions of PEDF: neuroprotective and anti-angiogenic are located on 

two different regions of the molecule (Barnstable & Tombran-Tink, 

2004).  

 

Since most angiogenic diseases of the eye lead to neuronal damage as 

one of the mechanisms of visual loss, PEDF makes a good potential 

candidate for use in the treatment of ocular neovascular disorders. 

Recently, PEDF (Mori et al, 2002) and angiostatin (Lai et al, 2001) have 

been packaged into a viral vector and introduced into rat eyes as a 

treatment for laser-induced choroidal neovascularisation, and when 

given systemically to a mouse model of retinal neovascularisation, 

significant inhibition occurred (Stellmach et al, 2001). Strangely, some 

workers have demonstrated opposing effects of PEDF on endothelial 

cells, with low doses (90µg/ml) being inhibitory and high doses 

(360µg/ml) being stimulatory, with augmentation of choroidal 

neovascularisation (Apte et al, 2004). Hutchings et al in 2002 also 

demonstrated that the action of PEDF on endothelial cells also depends 

on their phenotype, with opposite effects being demonstrated 

depending on whether they are maintained in VEGF or not. Cells 

cultured without VEGF which were subsequently exposed to VEGF did 

not demonstrate proliferation or phosphorylation of ERK1/2 when PEDF 
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was added, while those cultured/maintained in the presence of VEGF 

demonstrated ERK1/2 activation and thereby cell proliferation when 

PEDF was added. The combination of VEGF and PEDF were therefore 

synergistic. Caution is therefore sounded by the authors in deciding on 

the dose being contemplated in viral vector studies as opposing effects 

may be seen to those desired.  

 

Thrombospondin 1  

 

Thrombospondin 1 is a cell attachment factor present in the alpha 

granules of platelets that is released during the blood clotting process. 

Its main functions include the enhancement of fibroblast cell adhesion, 

cancer cell adhesion and prevention of angiogenesis via CD36, the 

thrombospondin 1 receptor, on endothelial cells. In the eye, it is located 

between Bruch‟s membrane and RPE cells and may play a role in 

inhibiting choroidal neovascularisation from breaking through Bruch‟s 

membrane (Miyajima-Uchida et al, 2000) and in inhibiting retinal 

neovascularisation (Shafiee et al, 2000).  

 

Endothelial cell heterogeneity 

 

It is thought that all endothelial cells are derived from a common 

precursor, the embryonic mesoderm. During embryogenesis, 

endothelial precursor cells appear to be co-localised with 

haematopoietic cells and share a number of cell surface markers 

(CD34, CD31, CD39, VEGFR-2 and CXCR4) (Hasegawa et al, 2007; 

Zambidis et al 2005). The production of Hb-i suggests that they share a 

common precursor cell, the haemangioblast (Zambidis et al 2005). 

Although all endothelial cells share a common embryonic precursor, it 

has been known for many years that there is a wide diversity of 

endothelial cell phenotypes in both human and mammalian vascular 

systems (Thorin & Shreeve, 1998). This wide divergence in cell 
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phenotype may in part be secondary to genetic changes amongst the 

precursor cells but may also be due to local environmental effects on 

the developing endothelial cells. 

 

In the human, there are a number of fundamental functional differences 

between different organ vascular beds (Aird, 2003). Endothelial cells in 

the glomerulus and the inner choroid allow the passage of fluid and 

molecules across themselves via small pore-like structures within the 

cell called fenestrations, whilst brain and retinal endothelial cells 

maintain very firm inter-cellular junctions to preserve the blood-brain 

and blood retinal barriers respectively. The liver, spleen and bone 

marrow sinusoids are different again, being lined by discontinuous 

endothelium that allows cellular trafficking which is thought to be 

important in the development of the immune system. 

 

Many human diseases appear to be restricted to specific vascular beds. 

For instance, many systemic vasculitic disorders appear vessel-specific 

such as giant cell arteritis, polyarteritis nodosa and idiopathic retinal 

vasculitis. Tumours also appear to metastasise to selected vascular 

beds. Diabetes, however, preferentially affects the microvasculature of 

the retina, kidney and nerves causing extensive vessel closure and 

subsequent neovascularisation, while the choroid is only mildly affected 

by a micro-angiopathy that appears to produce few clinical findings 

apart from some capillary drop-out and leucocyte aggregation within the 

choriocapillaris microvasculature on histological examination (Cao et al, 

1998, Lutty et al, 1997). While the underlying mechanism of many of 

these processes remains uncertain, it is known that endothelial cells are 

species (Rhodin,1968; Graier et al, 1996), organ and vascular bed 

specific (Keegan et al 1982; Thorin & Shreeve, 1998). These 

differences may in part contribute to the disease site specificity.  

 

At light microscopic level, endothelial cells lining the microvasculature 

are generally flattened and elongated whereas those lining large 

vessels (aorta and iliac arteries) are polygonal (Cornhill et al, 1980). 
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While much of the endothelial cell heterogeneity may be “pre-

programmed”, such as the differences between arterial and venous 

endothelial cells (Adams et al, 1999), it is thought that the cellular 

microenvironment may also play a role (Aird et al, 1997). The particular 

characteristics of an individual cell will depend on factors such as the 

local extracellular matrix, local growth factors, interactions with 

neighbouring cells, including leukocytes, and local mechanical forces. 

Examples of this apparent influence of the local environment influencing 

endothelial cell phenotypes include an animal model (mouse) of 

atherosclerotic disease in which a segment of vein is inserted into the 

arterial circulation. On connecting the jugular vein to the carotid artery 

in mice, the venous endothelial cells change to an arterial phenotype 

and an expansion in smooth muscle cells in the vessel wall occurs 

(Kwei et al 2004). Similarly, a model of tumour induced angiogenesis, 

whereby mouse carcinoma cells are injected subcutaneously, induces 

blood vessel growth with endothelial cells with a skin phenotype. If the 

same tumour is implanted into the brain of the mouse, the new vessels 

are lined by endothelial cells with a brain phenotype (Roberts et al, 

1998). Other similar in vivo studies demonstrate that endothelial cells 

can take on host tissue characteristics after transplantation (Moyon et 

al, 2001; Aird et al, 1997), while removal of ECs from an in vivo to an in 

vitro environment can also change cell phenotype (Grau et al, 1996).  

 

The earliest events controlling the differentiation of mesoderm into 

endothelial cells remain uncertain. Experiments on zebra fish have 

shown that the arterial and venous phenotype of vascular precursor 

cells or angioblasts (expression of gridlock) is determined while they 

are still located in the lateral plate (very early stage of embryogenesis), 

implying a genetic component to endothelial heterogeneity (Zhong et al, 

2001). This finding is reinforced by the finding that in mice, cells 

destined to be arteriolar and venular ECs express ephrin B2 and the 

receptor EphB4 respectively before the establishment of a circulation 

(Adams et al, 1999). In the embryo, venous specification is regulated by 

the expression of a transcription factor, COUP-TFII, which suppresses 
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endothelial cell Notch signalling. This leads to a failure in the 

expression of ephrin-B2, one of the main arterial endothelial 

determinants. Failure to express ephrin-B2 allows the expression of 

Eph-B4 on the endothelial cell and the vessel takes on the 

characteristics of a vein, i.e. thin walled with a sparse muscular coat 

(You et al, 2005).  

 

The Ephrin family of receptor tyrosine kinases has at least 13 members, 

while their ligands, the ephrins are divided into two classes. Class A 

ephrins (ephrin A1-A5) are tethered to the cell membrane and the B 

class (ephrin B1-B3) which have a transmembrane domain and a small 

intracellular domain. It is now understood that Ephrin receptors are not 

specific in the ephrin subtypes that they bind and because both are cell 

membrane bound, cell–cell contact must be made for interaction to 

occur (Aitsebaomo et al, 2008). Activation is thought to be bi-

directional. While signal transduction via Ephrin receptors is thought to 

stimulate cell migration, axonal guidance and cell border formation, 

their precise role in bringing about venous and arterial phenotype 

differentiation is unknown. While the initial identity of ECs appears to be 

genetically determined, later, after angioblast migration, local factors 

such as VEGF gradients can also have an effect on arterio-venous 

phenotype (Le Bras et al, 2010). It is thought that high local expression 

of VEGF leads to the activation of members of the FOXC transcription 

factors which in turn lead to up-regulation of the notch family and an 

arteriolar phenotype. Experiments have also shown that physiological 

requirements and haemodynamic influences can alter phenotype. 

Transplantation of arteriole ECs into veins rapidly changes their 

phenotype to venular (Moyon et al, 2001). This may be due to local 

factors such as VEGF secreted by surrounding cells or it may be 

secondary to differences in flow/shear stress as the placement of 

venules within a section of high flow artery leads to a rapid change to 

an arteriolar phenotype. 
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Inter-organ differences 

 

Craig et al in 1998 showed that endothelial cells derived from the brain, 

lung, adipose tissue and aorta of sheep differed in terms of 

ultrastructure and surface molecule expression depending on the site of 

origin. Müller et al in 2002 also showed that surface expression of 

ICAM-1, VCAM and E-Selectin on cultured HUVEC and human 

pulmonary microvascular endothelial cells differed in both the un-

stimulated and stimulated states. 

 

There are numerous studies demonstrating differences in in vitro 

behaviour between ECs from different anatomical sites. Examples 

include: 

 

 Aortic ECs cultured on ECM derived from the lung start to express 

Lu-ECAM-1 (a lung specific adhesion molecule) whereas the cells 

develop fenestrations when cultured on ECM derived from kidney 

(Augustin et al, 1994).  

 

 Differences in the proliferative response of HUVEC and 

microvascular ECs to VEGF, FGF-2 and placental growth factor. 

Lang et al in 2001 and 2003 demonstrated that the kinetics of the 

proliferative response to VEGF and FGF were different for micro- 

and macrovascular ECs and that placental microvascular ECs 

responded to placental growth factor whereas HUVECs showed little 

response (Lang et al, 2001, Lang et al, 2003). These authors also 

compared the amount of vasoactive substances such as endothelin-

1, thromboxane, angiotensin II and prostacyclin released into the 

medium of HUVEC and placental ECs (microvascular) and found 

that the latter were more similar to dermal microvascular ECs than 

macrovascular ECs (Lang et al, 2003). 
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 Differences in E-selectin expression by human iris and retinal ECs 

(Silverman et al, 2005).Under unstimulated conditions, the gene 

expression as measured by gene array of matched iris and retinal 

ECs were very similar. After inflammatory stimulation by 

lipopolysaccharide (PLS) or TNF alpha, a marked difference in the 

expression of E-selectin was noted, with up-regulation in retinal 

compared with iris ECs.  

 

 Differences in prostaglandin secretion between HUVEC and retinal 

ECs at different glucose concentrations (Rymaszewski et al, 1992). 

The authors studied the synthesis of proteins such as 

prostaglandins and plasminogen activators under normo- and 

hyperglycaemic conditions. They found that hyperglycaemia 

stimulated PGE2 secretion by retinal microvascular ECs but not by 

HUVEC macrovascular ECs. They also found that hyperglycaemia 

stimulated the release of plasminogen activator in retinal ECs but 

not HUVECs. They suggest that these differences may be important 

for the underlying mechanisms of diabetic retinopathy.  

 

 Differences in the expression of CD34, CD31 and vWf by various 

macro- and microvascular EC s in culture (Müller et al, 2002). They 

found that vWf was strongly expressed by HUVECs but less so by 

pulmonary microvascular ECs (although they were still positive), 

while both types of EC strongly expressed CD31 and only weakly 

expressed CD34.  

 

 Differences in retinal and choroidal EC expression of angiopoietin 2 

and VEGF receptors under normoxic and hypoxic conditions (Brylla 

et al, 2003). The authors found that bovine choroidal ECs expressed 

significant levels of VEGF mRNA compared with bovine retinal ECS 

under both norm- and hypoxic conditions. They also found that Ang 

2 mRNA levels were significantly higher in bovine retinal ECs under 

both norm- and hypoxic conditions.  
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 Differences in adenosine receptor (important in vascular tone) 

expression between HUVEC and dermal microvascular ECs 

(Feoktistov et al, 2002). The authors found that HUVECs 

preferentially express A2A adenosine receptors, whereas dermal 

microvascular ECs express A2B receptors. An adenosine agonist 

increased expression of IL-8, VEGF and FGF-2 in dermal 

microvascular ECs but not HUVECs.  

 

 Differences in chemokine receptor (CXCR1-3) and PKC activation 

between HUVECs and dermal microvascular ECs (Mason et al 

1997; Salcedo et al, 2000). Using phorbol esters and more specific 

PKC activators, the authors demonstrated that activation of PKC in 

microvascular ECs led to Thy-1 up-regulation compared with 

HUVECs. They also showed that PKC activation in HUVEC led to 

up-regulation of E-selctin and VCAM-1 but not dermal microvascular 

ECS  

 

 Differences in the expression of CD36 between HUVECs and 

dermal microvascular ECs (Swerlick et al, 1992). CD36 is thought to 

be a cell surface receptor allowing malaria-infected red blood cells 

to gain access into endothelial cells. The authors found strong 

staining for CD36 in dermal microvascular ECs while HUVECs 

showed no reaction and may be important in certain diseases 

affecting blood vessels. .  

 

 Lack of expression of ABO blood group antigens by HUVECs but 

not by other endothelial cells (O‟Donnell et al, β000). The authors 

studied the HUVECs from 45 different umbilical cords and were 

unable to detect ABO antigens on any of the isolated HUVECs. This 

was not due to an absence of the precursor, H substance, but was 

due to the absence of the enzyme needed to form the blood group 

antigens. The authors state that HUVECs are the only ECs to lack 

ABO blood group antigens. This may protect the cord from maternal 
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antibodies during growth of the foetus. They suggest that care 

should be taken when extrapolating results from HUVE cells to other 

adult endothelial cells. 

 

Intra-organ differences 

 

Within the same organ, it has also been shown that ECs from different 

vascular beds differ (Ghitescu & Robert, 2002). In 1968, Rhodin 

described ultrastructural differences in mammalian venous ECs that 

were dependent on whether they were located in veins, venules or 

venous capillaries (Rhodin, 1968). Müller et al have also shown that in 

the human lung, ECs from the large and small vessels differed in their 

staining for CD34, vWf and CD31 (Müller et al, 2002). They found that 

ECs in the pulmonary veins and arteries stained strongly for vWf and 

poorly for CD34, while capillary ECs stained strongly for CD34 but 

poorly for vWf. In 2002, Lang found differences in endothelial cells from 

within the same placenta (HUVEC and placental venous endothelial 

cells), noting that placental vein ECs responded to placental growth 

factor whereas HUVECs did not (Lang I et al, 2003). 

 

Perhaps most importantly, it has also been shown in vivo that ECs from 

larger vessels do not participate in neovascularisation (Klagsbrun and 

Folkman, 1990) and that VEGF receptors are reportedly inducible on 

venular and capillary ECs but not arterial ECs (Ferrara et al, 1992). This 

may explain why neovascularisation in adults appears to originate from 

post-capillary venules (Gimbrone et al, 1974; Grunt et al, 1986). This 

observation has recently been questioned however (Shin et al 2001). 
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Interspecies differences 

 

It has also been recognised for many years that endothelial cells 

derived from different species are heterogeneous in their phenotype 

and functional properties. Imegwu et al have described species 

differences in the growth of human and bovine aortic ECs in co-culture 

with smooth muscle cells (Imegwu et al, 2001), while Ram and Hiebert 

demonstrated differences in the response of porcine and bovine ECs to 

free radical damage (Ram & Hiebert, 2003). Graier et al also found a 

species difference in the endothelium-dependent relaxation of bovine 

and porcine coronary artery endothelial cells in the presence of L-Ng 

nitroarginine and indomethacin (Graier et al, 1996).  

 

It is amazing that much of our knowledge of vascular diseases is based 

on in vitro studies using macrovascular ECs derived from the human 

umbilical vein (HUVEC), the large scale isolation and culture of which 

was first described in 1973 by Jaffe (Jaffe et al, 1973). The main reason 

for the popularity of these cells is that of their wide availability and 

relative ease of culture. Unfortunately, human umbilical vein cells do not 

appear to be susceptible to most of the diseases requiring investigation 

and, in vitro, differ significantly from other endothelial cells in their 

response to important substances such as hyaluronic acid and 

cytokines (Lokeshwar & Selzer, 2000; Tan et al, 2004). The question 

needs to be asked as to whether or not HUVEC should be used in 

experiments investigating human organ selective vascular diseases.  
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Adult Vascular structure 

Arteries  

 

Arteries are usually considered to be high pressure vessels taking 

blood away from the heart towards the target tissue. They absorb part 

of the force of systole and help maintain blood flow during diastole. The 

walls of arteries are composed of three coats. The innermost layer, 

called the intima, consists of a layer of endothelial cells, the basement 

membrane and an internal elastic lamina. The middle layer, or media, 

consists of one or more layers of smooth muscle cells lying within a 

network of elastic and collagen fibres; the thickness of this network 

layer increasing with the size of the artery, being thickest in the aorta 

where it exceeds the thickness of the smooth muscle cells. Lastly, the 

adventitia is a thin layer of loosely arranged collagen and elastic fibres 

that wrap around the outside of the vessel. The adventitia is rich in 

lymphatics and nerves and links the vessel to the surrounding tissue 

(Gabella G, 1995). 

 

Arterioles 

 

Arterioles are small arteries that have proportionately more smooth 

muscle cells within their media (up to 6 layers in the retina) and thus act 

as resistance vessels, controlling the flow of blood within tissues. The 

smooth muscle cells are often well supplied by autonomic nerve fibres 

(not so in the retina) and respond to circulating vasoactive substances, 

to control vessel calibre. Smooth muscle contraction can completely 

obliterate the lumen of an arteriole, thereby reducing blood flow to the 

tissue to zero (Gabella G, 1995). 
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Capillaries 

 

Capillaries are thin walled vessels composed of an inner layer of 

endothelial cells forming a lumen (5-8µm) that is the approximate 

diameter of a red blood cell. Surrounding the endothelial cells are 

pericytes, embedded in a shared basement membrane. Pericytes are 

thought to be supporting cells, providing both structural and “chemical” 

support to the juxtaposed endothelial cells. Capillary structure varies 

depending on the tissue/organ that it serves. The endothelial lining may 

be continuous as in the retina and muscle; sinusoidal as found in the 

liver, adrenal medulla and spleen; or fenestrated as found in the renal 

glomerulus, endocrine glands and the choriocapillaris. Fenestrations 

are thought to be pores through which substances can transfer between 

the luminal side of the endothelial cell and the extracellular tissue. They 

are between 50 and 100µm in diameter and at their edges, the luminal 

and abluminal surfaces of the endothelial cell in contact. It is now 

known that fenestrations are not simple holes in the cell membrane but 

are covered by an electron-dense diaphragm. In continuous capillaries, 

where a marked barrier to diffusion exists (brain), apart from an 

absence of fenestrations, the endothelial cells exhibit strong 

intercellular junctions (zonula occludens) (Gabella G, 1995). 

 

Venules 

 

Venules are formed when at least two capillaries converge. Generally, 

they do not contain any muscle within their walls. Like capillaries, they 

are the site of solute transfer and importantly, leukocyte migration, 

particularly in lymph nodes. In adults, they are thought to be the site at 

which pathological neovascularisation takes place (Gabella G, 1995). 
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Veins 

 

Veins are thin-walled low pressure vessels acting as capacitance 

vessels returning blood to the heart. The intima of veins differs from that 

of arteries in having no internal elastic lamina. Within the media, the 

amount of smooth muscle fibres is significantly less, with relatively more 

collagen and elastic fibres. Certain veins, such as the maternal 

placental vein, the dural sinus veins of the brain and retinal veins, do 

not possess any muscular tissue. The adventitia of veins, like arteries, 

may contain autonomic nerves but these are less abundant. A 

significant difference between arteries and veins is the presence of 

valves in many of the latter. These act to prevent reflux of blood, 

effectively only allowing flow in one direction. Retinal venules do not 

contain valves (Gabella G, 1995). 

 

Arteries and veins 

 

After the formation of a primitive vascular plexus occurs, remodelling 

into a more complex network takes place along with the demarcation 

into arterial and venous territories. Arterial endothelial cells express 

Ephrin B2 whereas EphB4 is only expressed by veins. This expression 

continues down to ECs lining capillaries with a definite boundary 

forming between those cells nearer to arterioles and post capillary 

venules (Adams et al, 1999). 
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Section 2: Human ocular vascular structures 

 

The human eye 

 
Before describing the specialised vascular structures of the human eye, 

it is important to understand the basic anatomy of the eye. The eye ball 

or globe is made up of two modified spheres, fused together. The 

smaller modified sphere consists of the cornea; the clear “window” on 

the front of eye, which allows in light and provides the majority of the 

focussing power of the eye. The larger, posterior sphere is composed of 

sclera, the tough, white outer coating of the eye. The globe has an 

anterior/posterior length of approximately 24mm. The basic structure of 

the eye is shown below. 

 

 

 

 

Fig 1.10. Cross section of a human eye showing its basic structural 
components (Courtesy of University of Utah) 
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The human eye consists of 3 distinct, concentric layers.  

 

1. The external layer is known as the corneoscleral envelope. This 

layer is tough and inelastic and is composed predominantly of type I 

collagen. Depending on their orientation, the collagen fibres either 

give rise to the opaque sclera or the transparent cornea.  

 

2. The middle layer is called the uvea. This layer is highly vascular. 

The anterior part of the uvea is composed of the iris, one of the main 

functions of which is to control the amount of light entering the eye. 

The iris is attached to and supported by another part of the uvea, 

which is known as the ciliary body. The main functions of this 

structure are to produce aqueous, a clear fluid that fills the anterior 

part of the eye, and secondly to control the shape of the lens. The 

third part of the uvea is the choroid. This is a vascular structure and 

provides nutrients and oxygen for the inner layer of the eye, the 

retina. The choroid is discussed in more detail later 

 

3. The retina is the photosensitive layer of the eye. It is a complex, 

multi-layered structure composed of neuronal cells and 

photoreceptors. The inner two thirds of the retina (that part nearest 

the vitreous) receives its oxygen and nutrients from the retinal 

vascular circulation. The outer one third of the retina is supplied 

from the underlying choroidal vasculature. The inside of the eye is 

not hollow, but is full of vitreous. This is composed of a mixture of 

collagens, glycoproteins and water and has the consistency of jelly 

(Sharma and Ehinger, 2003). 
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The structure of the retina 

 

Within the retina, there are two types of photoreceptors: rods and 

cones. Rods are a type of neural cell that convert photons of light into 

electrical signals, and are designed to work at low light levels e.g. at 

night and at dusk. They have no colour discrimination, only shades of 

grey from white to black. The other cells, called cones are designed to 

work in conditions of bright light (i.e. daylight) and can discriminate 

colour. There are three types of cone: red, green and blue which 

respond to colours/ wavelengths suggested by their individual names. 

 

By a process of phototransduction, light is converted via chemical 

reactions into electrical signals. This process takes place in the rods 

and cones and relies on a plentiful supply of vitamin A as one of the 

intermediaries, so that the necessary chemical reactions can take 

place. The resultant electrical signals are transmitted through the layers 

of the retina where they can be modified and amplified by bipolar cells, 

until they reach the surface of the retina (nearest the vitreous) From 

here, the signal is transmitted to the optic nerve by the axons of 

ganglion cells. Fig 1.11 overleaf demonstrates the basic ultrastructure 

of the retina (Courtesy of University of Newcastle). 
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Fig 1.11. The basic histological structure of the human extra macular 

retina  

 

Underneath the retina, a single layer of cells exists that interdigitates 

with the outer segments of the photoreceptors. These cells are called 

retinal pigment epithelial (RPE) cells. The RPE cells are critical for 

recycling of the visual pigments and chemicals necessary for the 

photoreceptors to function. The cells are pigmented (contain melanin) 

and are also important for clearing up the debris from degenerating 

photoreceptors, pumping fluid out of the retina, secretion of pro- and 

anti-angiogenic factors and for forming the outer blood-retina barrier 

(preventing flow of fluid out of choroidal vessels into the retina). Without 

the supportive role played by the RPE cells, retinal photoreceptors soon 

die. The RPE cells sit on a thick basement membrane called Bruchs 

membrane. Bruch‟s membrane is composed of five layers, rich in 

collagen IV and is probably is derived from both the overlying RPE cells 

and the underlying choriocapillaris. It forms a water impermeable 

membrane between the vascular choroidal compartment and the 

overlying RPE and retina (Sharma and Ehinger, 2003). 
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A simplified, close up diagram of the RPE/Bruch‟s membrane/ 

Choriocapillaris orientation is shown in Fig 1.12.  Appreciation of this 

anatomical orientation is critical for the understanding of choroidal and 

retinal diseases.  

       

                                                                                                                      

    

Fig 1.12. Diagrammatic representation of the relationship of outer 
retinal structures, Bruch’s membrane and choroid. (Courtesy of the 
University of Utah). 

 

The macula 

 

While most of the retina has the structure outlined above, an area 

diametrically opposite the lens, at the posterior pole of the globe exists 

called the macula. It has an average diameter of 5-6mm and is the area 

where most of the light entering the eye is focussed. It is bordered by 

the upper and lower vascular arcades and the optic disc. Within the 

macula, there is a disproportionately high density of cones to aid colour 

discrimination and hyperacuity. In the centre of the macula is an area 

called the fovea where the only light sensitive cells are cones and this is 

the area of maximum visual sensitivity. Ultrastructurally, the fovea is 

thinner than the rest of the retina and is seen in cross section as a dip 
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(foveal pit). No retinal blood vessels exist in the fovea (thereby avoiding 

light scattering and aiding resolution of images). The cones in the fovea 

receive their oxygen supply by diffusion via the choroid (Sharma and 

Ehinger, 2003a) 

 

 
 

 
 
 
Fig 1.13. The ultra structure of the human macula and fovea (compare 
this with fig 1.11.). The only structures at the fovea are the fibres of the 
photoreceptors and the dendrites of the bipolar cells. Together these 
are known as Henle’s layer. 
 

 

 

 
 
Fig 1.14. A representative Optical Coherence Tomography (OCT) scan 
through the macula and fovea of a real (normal) patient. The similarities 
with the histopathological specimen (fig 1.13) are obvious and this 
technique has revolutionised patient investigation and management of 
macular diseases (Courtesy of the Royal Victoria Infirmary, Newcastle 
upon Tyne).  
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As the main body of this thesis relates to endothelial cell heterogeneity 

within the human eye, there now follows a description of the different 

human ocular vascular beds. 

 

Retinal vascular structure 

 

The inner two thirds of the retina are supplied by a network of blood 

vessels that emanates from the central retinal artery at the optic nerve 

head. This artery is itself supplied by the ophthalmic artery which 

ultimately is a branch of the internal carotid artery (the main artery 

supplying the brain). The central retinal artery usually splits into four 

arterioles at the optic nerve head which then subdivide to supply each 

retinal quadrant via a network of capillaries. Each arteriole is also 

associated with a corresponding venule which carries deoxygenated 

blood back to the optic nerve head and into the central retinal vein. 

Because of the multiple sub divisions of each retinal vessel, each 

person‟s retinal vasculature is said to be unique and may provide a 

form of finger print (Cioffi et al, 2003). 
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Fig 1.15. shows a photograph of a typical retina demonstrating the 

closely associated arterioles and venules (Courtesy of the University of 

Newcastle).  

 

Retinal vascular development  

 

In humans, development of the retinal vasculature begins at around 

week 14 of gestation. It occurs by the process of vasculogenesis from 

precursors that express CD39 (Fruttiger M, 2002; McLeod et al, 2006). 

This cell surface molecule is otherwise known as ecto ADPase and is 

found on endothelial cells in all vascular beds. The molecule is 

responsible for controlling extracellular ADP concentration and platelet 

aggregation. These precursor cells also express VEGFR2 but not CD31 

or CD34 (McLeod et al 2006), both apparently ubiquitous endothelial 

markers found in mature endothelial-lined vessels. It is thought that the 
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retinal vascular precursor cells (angioblasts) may be attracted to the 

developing retina by stroma derived factor 1 (SDF 1) because the 

angioblasts also express CXCR4 (SDF 1 receptor). It is thought that the 

majority of CXCR4-positive precursor cells originate from within the 

inner retina rather than from distant sites such as bone marrow 

(McLeod et al 2006). Most mature endothelial cells do not appear to 

express CXCR4, implying that its main role is in guiding endothelial 

cells of developing vascular systems. Vasculogenesis begins around 

the optic nerve head by accumulation of angioblasts. They then 

aggregate into blood vessels that align themselves along the routes of 

retinal neurones and an astrocyte template towards the periphery 

(Dorrell & Friedlander, 2006). In the mouse model of the developing 

retinal vasculature, it is thought that as the periphery of the developing 

retina is relatively hypoxic, VEGF188 expression by the resident 

astrocytes and Muller cells acts as a stimulus to the developing 

vascular network which follows the concentration of VEGF188 (Stalmans 

et al, 2002; Carmeliet and Tessier-Lavigne, 2005). The heparin binding 

property of VEGF188 is thought to be important because in mice only 

expressing VEGF120, retinal vascular development is severely 

impaired (Stalmans et al, 2002). 

 

Retinal vascularisation is not often complete at birth. The retinal 

vasculature is composed of arterioles, venules and capillaries rather 

than arteries and veins. The lumen is greatest (100microns) near the 

disc, where the vessels have neither a continuous muscular coat nor an 

internal elastic lamina (Hayreh et al, 1989). Retinal blood vessels have 

no adrenergic vasomotor nerve supply to bring about changes in 

vascular tone (Steinle & Granger, 2003) and it is thought that changes 

in vascular calibre and tone are brought about by local mediators 

secreted, at least in part, by vascular endothelial cells. These factors 

are vasodilators, such as nitric oxide (NO) synthesised by endothelial 

nitric oxide synthetase (eNOS) (Bouloumié et al, 1999), adenosine and 

prostanoids, and vasoconstrictors such as endothelin 1 and  

angiotensin II.  
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Blood supply and drainage of the choroid and retina 

 

The globe is supplied by a branch of the internal carotid artery and is 

drained by the vortex veins which drain into the cavernous sinus as 

shown in figs 1.16. & 1.17 below.  

 
 

 

 

Fig 1.16. The arterial supply of the globe. The eye is supplied by a 
branch of the internal carotid artery, the ophthalmic artery. This then 
gives off various branches within the orbit, some of which are called 
short posterior ciliary arteries. These penetrate the back of the globe to 
supply segments of the choroid. The retina is supplied by branches of 
the central retinal artery which enters the globe within the optic nerve 
before radiating out over the inner retina. Other branches such as the 
long posterior ciliary arteries supply the front of the eye and the 
muscles attached to the eye which bring about movement of the globe 
(non-copyright image). 
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Fig 1.17 The venous drainage of the globe, including the choroid is via 
a variable number of vortex veins. These drain the choroid and then 
pass backwards through the scleral coat of the eye. They then pass 
back into the orbit and congregate in the cavernous sinus which lies 
beside the pituitary gland. The retina is drained via the central retinal 
vein, which passes back out of the eye within the optic nerve. Key: 1 = 
vortex ampullae within choroidal tissue, 2 = superior vortex vein, 3 = 
inferior vortex vein, 4 = central retinal vein (within optic nerve), 5= 
cavernous sinus (Courtesy of Medrounds Publishing). 

 

Choroidal vascular structure 

 

The choroid forms part of the uveal tract (choroid, ciliary body and iris) 

of the eye and lies between the outer sclera (white of the eye) and the 

inner layer composed of the retina and retinal pigment epithelium 

(RPE). Its main roles are to supply the photoreceptors with oxygen, to 

remove waste products from the basal surface of the RPE and to 

regulate temperature within the photoreceptors. It is approximately 100-

ββ0たm thick, depending on site, and is composed almost entirely of 

blood vessels with some supporting cells such as fibroblasts, 

macrophages, mast cells, melanocytes and pericytes which surround 

endothelial capillaries (Bron et al, 2001). 
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Fig 1.18. Haematoxylin/Eosin section of human choroid (macular) 
demonstrating the dense vascular network with vessels of decreasing 
lumen diameter the nearer they are to the RPE layer. The vessels 
furthest from the RPE represent the feeding arterioles and draining 
veins. Those nearest the RPE represent the fine network of the 
choriocapillaris. The cells and tissue between the vessels represent the 
supporting cells such as melanocytes, fibroblasts and pericytes 
together with collagens (with permission of Springer images). 
  

 

Classically, the choroid at the posterior pole has been subdivided into 

three layersμ the outer layer of large vessels (Haller‟s layer), a middle 

layer of medium sized vessels (Sattler‟s layer) and an internal layer 

adjacent to Bruch‟s Membrane composed of capillary vessels 

(choriocapillaris) arranged in a lobular structure (Nuel, 1892; Bron et al, 

2001 Olver J, 1990) (see fig 1.9). The large vessels of the outer choroid 

are supplied by branches of the short posterior ciliary arteries which 

themselves are supplied by branches of the internal carotid artery (main 

vessels supplying the brain) (see fig 1.6). Drainage of the choroid is via 

the vortex veins which drain sectors of the choroid through the scleral 

coat of the eye and converge on the cavernous sinus (see fig 1.7). 
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The large vessels of the choroid (branches of the short posterior ciliary 

arteries) then supply the smaller vessels of Sattler‟s layer which then 

sub divide to supply individual lobules of the choriocapillaris. Each 

choriocapillaris lobule is thought to be composed of a central feeding 

arteriole and a number of peripheral draining venules (see fig 1.9 and 

1.10). Each lobule is not isolated but forms a “honeycombing network” 

where blood is thought to transfer directly between lobules if required 

(fig 1.19).  

 

 

 

Fig 1.19. A 3-dimensional representation of the pattern of blood supply 
of choriocapillaris lobules. A = supplying arteriole, V = draining venule. 
It can be seen that each lobule is supplied by a central arteriole and 
drained by more than one venule at the edge of each arteriole (from 
von Graefes Arch Ophthalmol 1974 with permission). 
 

RPE cells 
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Fig 1.20. Scanning electron micrograph of a cast of human choroidal 
vasculature viewed from the scleral side, showing draining choroidal 
veins (v), arterioles (a) and the choriocapillaris (c) visible through the 
gaps between the large vessels (from Olver J, 1990 Eye, 4:262, with 
permission).  
 

   

 

Fig 1.21. Scanning electron micrograph of a cast of human 
choriocapillaris viewed from the retinal aspect. Remnants of the retinal 
vasculature are visible at the top and bottom of the image. The 
interconnecting nature of the structure of the choriocapillaris is seen. 
(from Olver J, 1990 Eye, 4:262, with permission). 
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The endothelial cells of the choriocapillaris appear to send out 

processes that penetrate the outer level of Bruch‟s membrane. These 

processes do not appear to be a harbinger of choroidal 

neovascularisation, but may stabilise the endothelial cell (Guymer et al, 

2004). The peripheral choroid is simpler in structure and is composed of 

the choriocapillaris and a deeper layer of large vessels (McLeod & 

Lutty, 1994). The choriocapillaris has a lobular structure and, unlike the 

retinal circulation, is not an end organ system. A significant difference 

between the choriocapillaris and most other capillary structures in the 

body is that the endothelial cells lining the choriocapillaris are 

fenestrated on the inner or retinal side of the vessels that face the RPE. 

This corresponds to the polarised expression of VEGF receptors on the 

endothelial cells facing Bruch‟s membrane (Blaauwgeers et al, 1999). 

There is evidence to suggest that the fenestrations within the 

choriocapillaris are dependent upon factors secreted from the RPE, be 

they growth factors such as VEGF and FGF or extracellular matrix 

components. Evidence for this is provided by destroying the RPE either 

surgically (Hayashi et al, 1999), genetically (May et al, 1996) or 

chemically with sodium iodate (Korte et al, 1984); the underlying 

choriocapillaris degenerates, but not the deeper, large choroidal 

vessels. When the RPE recovers, new areas of choriocapillaris re-

establish themselves from the larger choroidal veins by migration of 

endothelial cells. A similar effect is seen in animals with genetic retinal 

degenerations where the RPE is primarily involved (RCS rats with 

hereditary retinal degeneration), although the effect on the 

choriocapillaris is obviously non-reversible (May et al, 1996). In this 

model, despite endothelial cell migration and proliferation, choroidal 

neovascular membranes do not appear to form, perhaps due to Bruch‟s 

membrane being intact (c.f. animals genetically programmed to over 

express VEGF in the RPE, which demonstrate a similar result). 
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The choroid is innervated by both sympathetic and parasympathetic 

neurones. Stimulation of the alpha adrenergic sympathetic nerves 

within the choroid leads to vasoconstriction and a fall in ocular blood 

volume (the choroid acts as a large capacitance vessel within the eye). 

Stimulation of the parasympathetic nerves causes choroidal 

vasodilatation. The arterioles demonstrate a high density of VIPergic 

neurones (vasodilator). It is also thought that some neurones may 

release nitric oxide (NO) which acts as a vasodilator for choroidal 

vessels (Bron et al, 1997a). The choriocapillaris has no innervation.  

 

In contrast to the retina, the choriocapillaris develops at around 6.5 

weeks gestation by a process of haemovasculogenesis (see earlier) 

(Hasegawa et al, 2007; Baba et al, 2009). It is also thought that some of 

the larger choroidal vessels form by the process of haemo-

vasculogenesis as well. However, the density of CD39-positive 

(angioblasts) and haemoglobin epsilon-positive (a haemo-

vasculogenesis marker) cells within the developing choroid at week 12 

was insufficient to produce the whole choroid (Hasegawa et al, 2007). 

Positive staining for proliferation markers at this stage suggests that 

angiogenesis is also taking place in the developing choroid. It should be 

noted that the choroid develops far earlier than the retina and both 

develop by different mechanisms i.e. haemovasculogenesis and 

vasculogenesis respectively (Hasegawa et al, 2007). This may explain 

some of the differences between the mature retinal and choroidal 

vasculature‟s physiological features, responses and susceptibility to 

disease (Saint-Geniez & D‟Amore, β00δν Allende et al, β006). 
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Iris vasculature structure 

 

Traditionally, the vessels of the iris have been regarded as being thick 

and hyaline in appearance. The adventitia has an abundance of loose 

connective tissue, perhaps to accommodate the constant “concertina-

like” movements of the iris which cause frequent straightening and 

wrinkling of the vessels. The arteries have a media of circular non-

striated smooth muscle and elastic fibres. The iris capillary endothelium 

is non-fenestrated and has a thick basal lamina, surrounded by 

pericytes (Bron et al, 1997a). An interesting feature of the iris 

vasculature is that exposure to histamine renders the vessels 

permeable to macromolecules, unlike the retinal vasculature which is 

insensitive (Ashton & Cunha-Vaz, 1965). 

 

Regulation of ocular blood flow 

 

Because the retina has the highest metabolic demand of any tissue and 

those requirements change between light and dark conditions (Buttery 

et al, 1991), rregulation of blood flow is therefore paramount and is 

required to maintain an adequate flow of blood in the face of variations 

in perfusion pressure. It is also paramount that any vessels supplying 

blood do so with minimal impact on the light reaching the 

photoreceptors and on the process occurring in the retina. Interestingly, 

the regulation of blood flow differs between the retina and choroid. 

Retinal blood flow increases in response to raised partial pressure of 

carbon dioxide (pCO2), while raised partial pressure of oxygen (pO2) 

causes vasoconstriction and hence reduced flow. Retinal flow is 

autoregulated, and under most conditions is not affected by perfusion 

pressure. Indeed, elevation of intraocular pressure to twice normal 

levels, resulting in a 36% reduction of perfusion pressure, does not alter 

retinal blood flow (Riva et al, 1981). The main regulator of blood flow is 

thought to be the vascular smooth muscle cells of the retinal arterioles. 
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The depolarisation of the smooth muscle cells can be affected by pCO2 

in the blood (high levels cause muscle relaxation and vasodilatation) 

(Alm and Bill 1972), pH (Hessellund et al, 2006), dark illumination 

conditions (retinal blood flow increases by 40% in dark conditions)( 

Feke et al, 1983), and nitric oxide (Buerk et al, 1996). In contrast to the 

retina, the control of choroidal blood flow is less well understood 

because of the difficulties in studying the choroidal circulation in detail. 

However, it is known that choroidal blood flow is increased by raised 

pCO2 but is unaffected by raised pO2. Choroidal blood flow, unlike 

retinal flow, is not autoregulated, relying on sympathetic (with both 

noradrenergic and neuropeptide fibres) (Bruun et al, 1984) and 

parasympathetic (cholinergic) nerves (Bill and Sperber, 1990). 

Therefore changes in perfusion pressure cause a proportionate change 

in choroidal blood flow. The regulation of iris blood flow is very poorly 

understood and little, if any research has been conducted on it.



 

 

Section 3: Angiogenic diseases affecting the eye  

 

Wet age related macular degeneration 

 

Age related macular degeneration (AMD) is a heterogeneous condition 

characterised by the deterioration of structure and function of a well 

defined area at the posterior part of the eye responsible for central and 

reading vision, i.e. the macula. The disease is the most common cause 

of irreversible visual loss in the elderly populations of the industrialised 

world (Klein et al, 1992; Mitchell et al, 1995; Vingerling et al, 1995).  

 

While the cause(s) of AMD are unknown, it is probably polygenic in 

nature, being affected by multiple genetic and environmental factors 

such as age, smoking, drusen formation and possession of certain 

genetic alleles (Hageman et al, 2005). This concept may help to explain 

the wide range of disease phenotypes. While increasing age is an 

undoubted risk factor, unfortunately this is not modifiable. However, 

smoking has been shown to increase the risk of AMD by between 3 and 

4 fold (Khan et al, 2006). Smoking cessation regimens therefore offer 

the prospect of dramatically reducing the incidence of severe visual loss 

secondary to AMD. While the finding of macular drusen (small yellow 

sub-retinal deposits) increases dramatically with advancing age, the 

possession of the large, soft subtype increases the risk of advanced 

AMD by between 5 and 10 fold (Bird et al, 1995) (see fig 1.23). In 

addition, the occurrence of advanced AMD (e.g.: a large macular scar 

secondary to wet AMD) in one eye means that there is a 50% risk of the 

fellow eye developing a similar lesion over 5 years.  

 

Histologically, the disease is seen to affect all of the major layers of 

tissue at the macula: the choroid, retinal pigment epithelium (RPE), 

Bruch‟s membrane and the retina. Traditionally, the disease is classified 

into “dry” or atrophic and “wet” or neovascular forms. The dry form of 
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the disease is characterised by slow, progressive atrophy of the 

macular retinal pigment epithelium and underlying choroid, leading to 

secondary retinal photoreceptor death. This form of the disease will not 

be discussed any further. 

 

The wet form of the disease is characterised by new blood vessel 

growth (angiogenesis) from the choriocapillaris and inner choroid 

(Sarks et al 1997) to form a choroidal neovascular membrane (CNV). 

Growth occurs through physical defects in Bruch‟s membrane to the 

potential space underneath the retinal pigment epithelium (RPE) and 

retina (Kent & Sheridan, 2003; Campochiaro et al, 1999, Kijlstra et al, 

2005; Tezel, 2004; Coleman et al, 2008), stimulated by cytokines such 

as vascular endothelial growth factor (VEGF). These new vessels are 

associated with massive exudation of fluid and lipid, which 

subsequently leads to severe damage to the retinal photoreceptors and 

fibrosis. This form of the disease is often of rapid onset and progression 

and commonly leads to severe visual loss. A stylised representation of 

events is shown on below (fig 1.22). 
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Fig 1.22. A representation of the underlying steps involved in choroidal 
neovascularisation (courtesy of Netscape, www.Medscape.com). 
 

 

Most established or experimental treatments for AMD such as external 

beam radiotherapy, transpupillary thermotherapy and macular surgery 

aim to bring about closure of the CNV, but do not affect the underlying 

disease or pathophysiological processes involved. One reason for this 

is the paucity of knowledge regarding the main cellular key player, the 

macular inner choroidal endothelial cell. Investigators have studied the 

disease in vitro by studying the phenotype and growth characteristics of 

bovine choroidal endothelial cells (Liu & Li, 1993; Sakamoto et al, 

1995a; Sakamoto et al, 1995b; Morse & Sidikaro, 1990; Hoffman et al, 

1998; Liu et al, 1998; Wang et al, 2002; Zubilewicz et al, 2001a; 

Zubilewicz et al, 2001b ; McLaughlin & de Vries, 2001; Eter & Spitznas, 

2002) and heterogeneous mixtures of human choroidal (Penfold et al, 

2002; Geisen et al, 2005; Peterson et al, 2007; Sakamoto et al, 1995; 

Bargagna-Mohan et al, 2006) or macrovascular (umbilical vein) 
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endothelial cells (Shankar et al, 2008; Stahl et al, 2008). It is known, 

however, that endothelial cells from different species and anatomical 

sites vary markedly in their phenotype and growth characteristics (see 

previous sections). In order to increase understanding of this disease it 

would seem logical to develop a technique to isolate and study human 

macular inner choroidal endothelial cells in vitro. 

 

Epidemiology  

 

As current demographic changes are skewed towards a more elderly 

population, the number of people with AMD is likely to increase even 

further, with marked health economic implications. In the Beaver Dam 

Eye Study in the USA, the prevalence of advanced AMD increased 

from 0.1% at age 43 - 54 years to 7.1% among those aged 75 years or 

older (Klein et al, 1992). In a similar study conducted in Australia, 0 % 

people under the age of 55 had advanced AMD but this increased to 

18.5% in the age 85 and over subgroup (Mitchell et al, 1995). While 

similar large scale epidemiological studies of the prevalence of AMD 

have yet to be undertaken in the UK, it is estimated that there are 

currently 214,000 people visually impaired by the disease and this was 

expected to rise to 239,000 by 2011 (Owen et al, 2003). It is therefore 

obvious that AMD is currently a major health burden which is likely to 

increase substantially in the future due to changes in the demographics 

of the ageing population. While the cause of the disease is unknown, a 

number of risk factors have been determined as listed below. 

 

Established risk factors  Relative risk 
 

Age    - 

Smoking   3.6 

Large drusen   5.7 

Soft drusen   9.9 

Hypertension   1.2 
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Clinical features  

 

Early age-related macular degeneration is characterised by thickening 

and loss of the normal architecture of Bruch‟s membrane, accumulation 

of lipofuscin within RPE cells and the formation of Drusen (convex 

shaped deposits of glycoprotein lipids and inflammation-related 

molecules) beneath the RPE within Bruch‟s membrane, predominantly 

in the macular area. With time, the number of drusen may increase in 

number and size and take on “soft” characteristics. When this occurs in 

association with RPE hypo- and hyper-pigmentation, the risk of 

developing more advanced AMD is high (Klein et al, 2002).  

 

 

 

 

Fig 1.23. A colour fundal photograph of a patient’s right eye 
demonstrating drusen (sub-RPE deposits of amorphous material that 
increase a patient’s risk of developing AMD) (courtesy of the University 
of Nottingham) 

Drusen 
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Wet AMD is characterised by serous or haemorrhagic detachment of 

the RPE by growth of new blood vessels (choroidal neovascular 

membrane or CNV) (see fig 1.24 and 1.25). 

 

 

 

Fig 1.24. Colour fundal photograph of the left eye of a patient with wet 
AMD. It demonstrates a circular area of haemorrhage in the macula, 
which encompasses an area of cream and darker pigmentation. These 
findings would suggest leakage of blood and fluid under the macula. 
(Courtesy of the University of Nottingham) 

Area of  
haemorrhage 
and leakage 
within the macula 
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Fig 1.25. Fundal fluorescein angiogram of a patient’s right eye 
demonstrating the leakage of fluorescent dye in the central macular 
area from growing blood vessels of the choroidal neovascular 
membrane (Courtesy of the University of Nottingham). 
 

 

If left untreated, there is eventual death of the overlying photoreceptors 

and fibrosis, with a significant drop in vision and disruption of the 

structure by end stage fibrosis. Ultrastructurally, aberrant new vessels 

are seen to grow from the inner choroidal vessels (predominantly the 

veins), usually at or near sites of increased deposition of debris within 

and alongside Bruch‟s membrane (drusen), through breaks in the 

overlying membrane, to occupy a position in the potential sub-RPE and 

sub-retinal spaces (Sarks et al, 1997; Killingsworth, 1995). Along with 

endothelial cell proliferation within the CNV, mural cells such as 

pericytes, fibroblasts and smooth muscle cells also proliferate and 

migrate alongside the ECs. Macrophages are also usually seen 

associated with the CNV and may in fact pre-date the angiogenic event 

(Oh et al, 1999; Grossniklaus & Green, 1998; Skeie & Mullins, 2009). In 

keeping with neovascularisation elsewhere in the body, the choroidal 

new vessels leak fluid due to a reduction in endothelial cell-cell 

adhesion. 

Choroidal 
neovascularisation 
within the macula, 
demonstrating 
leakage of dye 
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Pathophysiological mechanisms 

 

As mentioned previously, a number of environmental factors predispose 

to AMD. Recently, the analysis of drusen showed their composition to 

include many complement related proteins and the finding of a number 

of immune related genes that may be important in the pathogenesis of 

“typical” AMD (Hageman et al, 2005, Klein et al, 2005; Edwards et al, 

2005; Haines et al, 2005; Gold et al, 2006) have led researchers to 

suggest that chronic inflammation is a major contributory factor in the 

pathogenesis of the disease. The most important gene found to be 

associated with AMD is that for complement factor H (CFH), with 

patients harbouring the Y402H mutation having a significantly increased 

risk (Hageman et al, 2005, Klein et al, 2005; Edwards et al, 2005; 

Haines et al, 2005). CFH is a component of the alternative complement 

pathway and is involved in the inhibition of activated complement 

species. Reduced inhibitory activity caused by the Y402H mutation may 

lead to uncontrolled complement activation, drusen formation and 

damage to Bruch‟s membrane, thereby simulating the early stages of 

AMD. Recent studies have shown that patients with the Y402H 

haplotype have a 2.7 to 5.8 fold increased risk of AMD and that 

possession of the mutation may account for 50% of the total risk of 

AMD. Patients who are homozygous for the mutation have up to a 7.4 

fold increased risk of AMD (Hageman et al, 2005, Klein et al, 2005; 

Edwards et al, 2005; Haines et al, 2005). 

 

Mutations in other genes such as LOC387715 on chromosome 10q26 

(Rivera et al, 2005) and fibulin 5 (Stone et al, 2004) are also thought to 

confer a higher risk of developing choroidal neovascularisation. 

However, to date, the risk and possible pathophysiological mechanism 

is less well understood than that of CFH. During studies of the genetic 

risk related to CNV, changes in genes coding for complement cascade 

factor B (BF), complement factor 2 (C2) and Apo E were found to 

confer relative protection against AMD (Scholl et al, 2007).  
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Another gene thought to be associated with AMD is SERPING 1 (Ennis 

et al, 2008). 

 

Further evidence for immune and complement dysregulation in the 

pathogenesis of AMD is that drusen, which are thought to be central to 

the early events in the pathogenesis of AMD, contain many 

complement components and immune related substances. To date, it is 

the harbouring of mutations in genes such as CFH that confers the 

highest risk of AMD, implying that some form of immune system 

dysregulation plays a key role in AMD (Kijlstra et al, 2005; Nussenblatt 

& Ferris, 2007; Anderson et al 2002; Nussenblatt, 2009; Patel & Chan, 

2008). Further evidence is given by the finding that macrophages are 

found around AMD lesions (Skeie & Mullins, 2009). It is also known that 

activated macrophages secrete many chemokines (Grossniklaus et al, 

2002) that may in turn stimulate the production of VEGF (Oh et al, 

1999). Recently, a counter argument has been placed that the 

macrophages may in fact inhibit angiogenesis, perhaps via Interleukin 

10 (Apte et al, 2006). Interestingly, an observation in a patient given 

Infliximab, an antibody to tumour necrosis factor g (TNFg) given to treat 

diseases such as rheumatoid arthritis, caused regression of 

concomitant choroidal neovascularisation (Markomichelakis et al, 

2004). This effect is supported by evidence provided by the observation 

that in vitro, TNFg appears to up-regulate the action of Tie2 and VEGF 

receptors (Hangai et al, 2006), again suggesting that immune related 

factors are playing a role in the stimulation of wet AMD.  

 

It has been found that VEGF on its own is not sufficient to cause 

choroidal neovascularisation. Over-expression of VEGF within the 

retina causes retinal neovascularisation but has no effect on the choroid 

(Okamoto et al, 1997). Over expression of VEGF by RPE cells did not 

cause the formation of a true choroidal neovascular membrane except 

when Bruch‟s membrane was breached by trauma (in the case of one 

study, by a needle used to insert the viral vector within the choroid) 



 94 

(Oshima et al, 2004; Spilsbury et al, 2000; Schwesinger C, 2001). 

These models suggest that other factors in addition to raised VEGF 

levels in the choroid are required for wet AMD to occur. Such factors 

may include iatrogenic or spontaneously occurring breaks in Bruch‟s 

membrane. Many growth factors appear to be up-regulated in the area 

of the choroidal neovascular membrane. It is not known if this is a 

response to local hypoxia (HIF-1 stimulating VEGF which is classically 

up-regulated in hypoxia and FGF 2 which can be secreted by 

macrophages in states of hypoxia) (Ishibashi et al, 1995) or because of 

local secretion by other cells such as RPE cells or macrophages, 

stimulated by an unknown non hypoxic stimulus (chronic viral or 

bacterial infection?). Interestingly, another growth factor, FGF2, again 

appears to be insufficient to bring about choroidal neovascularisation 

alone. In a mouse laser model, targeted disruption of the FGF2 gene 

failed to inhibit development of CNV (Tobe et al, 1998). 

 

The role of growth factors in choroidal neovascularisation 

  

It is well documented that, in vitro, endothelial cells from many sites 

express certain receptors for growth factors such as vascular 

endothelial growth factor (VEGF), fibroblast growth factor (FGF), 

platelet derived growth factor (PDGF), transforming growth factor く 

(TGF-く), insulin like growth factor-1 (IGF-1) (Liu et al, 1998; Spraul et 

al, 2002) and pigment epithelium derived factor (PEDF) (Cai et al, 

2006).   In addition, immunohistochemical studies of excised choroidal 

neovascular membranes have shown positive staining for VEGF 

(Kvanta et al, 1996; Kliffen et al, 1997), FGF (Reddy et al, 1995; Amin 

et al, 1994; Frank, 1996; Ogata et al, 1996), TGF-ß (Amin et al 1994), 

angiopoietin 2 (Otani et al, 1999), Tie 2 (Otani et al, 1999), CD 105 

endoglin (Grisanti et al, 2004) and PEDF (Matsuoka et al, 2004). Some 

of these cytokines have a stimulatory effect on human umbilical vein 

and bovine retinal and choriocapillaris endothelial cell proliferation, 

except TGF-く and PEDF which appear to be inhibitory (Lebrin et al, 
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2005; Cai et al, 2006; Renno et al, 2002). Some of these cytokines also 

appear to stimulate the migration of cells towards the source and up-

regulate the production of MMPs, the enzymes necessary for the 

degradation of basement membranes. The role of each of these 

cytokines in the pathogenesis of AMD in humans can, at best, only be 

extrapolated from work carried out on different species or from ECs 

from other sites, as discussed above.  

 

Animal Models 

 

Animal models can provide invaluable insights into the mechanisms 

and possible treatments of a wide range of diseases. It is not surprising, 

therefore, that researchers have attempted to study the mechanisms in 

AMD by using animal models either with genetically induced defects 

that replicate the human disease susceptibility genes, or by studying 

animals with phenotypes that appear similar to human AMD. The most 

commonly used animal in the study of AMD, the mouse, has a major 

drawback, however; it doesn‟t have a macula. Interestingly, none of the 

animal models to date appear to have abnormalities of angiogenesis. It 

appears that the mechanism of disease is an abnormal insult that leads 

to a normal angiogenenic response. This would be in agreement with 

the human disease in which no defects in angiogenesis, e.g. an over-

reaction to an angiogenic stimulus, have been found to date.  

 

Genetic mouse models of AMD 

 

CCR2/CCL2 deficiency: This model leads to the deposition of drusen, 

thickening of Bruch‟s membrane, geographic atrophy and CNV. The 

underlying genetic mechanism leads to reduced accumulation of 

macrophages within tissues such as the RPE/Bruch‟s complex with 

reduced clearance of the components that later go on to form drusen 

(Ambati et al, 2003). 
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Cx3cr1 deficiency: This mouse model is characterised by retinal 

degeneration and drusen-like deposits. The underlying mechanism is 

thought to involve microglial accumulation and damage to 

photoreceptors (Chan et al, 2008). 

 

CFH deficiency: Mice with null mutations for CFH demonstrate 

reduced vision and abnormal retinal electrophysiology, increased retinal 

autofluorescence and accumulation of C3 and outer photoreceptor 

disorganisation. Fundoscopic examination and the choroidal 

vasculature were normal however. This model is therefore not a 

representative model of human disease (Coffey et al, 2007). 

 

Apo E: Mutations in the mouse Apo E4 gene demonstrated many of the 

features of human AMD when fed a diet high in fat. This is contrary to 

informed epidemiological opinion which suggests a protective role for 

Apo E4 in AMD. It also highlights the potential role of diet in AMD 

pathogenesis (Malek et al, 2005).  

 

Bst: It is reported that Bst/+ mice spontaneously develop sub retinal 

neovascular membranes. The Bst gene is thought to be important in 

axonal migration, closure of the optic fissure and involution of the 

hyaloid system (Smith et al, 2000).  

 

VLDL receptor: The very low density lipoprotein (VLDL) receptor is 

widely expressed on heart and skeletal muscle, adipose tissue, smooth 

muscle cells and endothelial cells. It binds a number of ligands 

including apolipoprotein lipase, thrombospondin 1 and urokinase 

plasminogen activator. As well as its role in lipid metabolism, it may 

also play a role in angiogenesis inhibition. Mice lacking the VLDL 

receptor develop a type of wet AMD characterised by a retinal 
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angiomatous proliferation (RAP) (Jiang et al, 2009; Hu et al, 2008; 

Chen et al, 2007). This lesion is also found in some human cases of 

wet AMD.  

 

SOD1: It is hypothesised that a causative factor in the pathogenesis of 

wet AMD is oxidative stress on the macula caused by free radicals. 

Imamura et al demonstrated the formation of drusen, thickening of 

Bruch‟s membrane and CNV in mice with a mutation in superoxide 

dismutase (SOD1) (Imamura et al, 2006). 

 

Laser photocoagulation models of wet AMD 

 

Choroidal neovascularisation can be induced experimentally by rupture 

of Bruch‟s membrane by laser photocoagulation. This technique has 

been conducted in a number of animals such as mice, rats and 

monkeys and provides an efficient and easily reproducible system for 

studying some of the underlying mechanisms and provides a useful 

model to test new agents in vivo to determine their effect on the 

inhibition of CNV growth (Archer & Gardiner, 1981). However, laser 

induced CNV do not have the relentless natural history as pathologic 

CNV in AMD The relevance of this model to human disease is unknown 

as there is probably a major inflammatory mechanism involved in this 

model because the laser disruption of Bruch‟s membrane causes major 

tissue damage. To date, factors such as oestrogens (Tanemura et al, 

2004), ICAM 1 and CD44 (Shen et al, 1998), VEGF (Shen et al, 1998; 

Yi et al, 1997; Baffi et al, 2000), tissue factor (Bora et al, 2003), matrix 

metalloproteinases (Kvanta et al, β000) and gけ- integrin (Yasukawa et 

al, 2004) have all been found to play a role in the growth of these 

artificially induced neovascular membranes. However, their relevance 

to human disease remains unknown. 
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While the initiating event or stimulus for the disease remains unknown, 

it is clear from immunohistochemical examination of excised choroidal 

neovascular membranes (CNV) from both humans and animals 

(Killingsworth et al, 1995; Sarks et al, 1997) that inner choroidal 

endothelial cells (ICECs) and their supporting pericytes are stimulated 

to proliferate by paracrine factors generated by juxtapositioned cells 

such as the retinal pigment epithelium (RPE) or macrophages. Upon 

stimulation, the ICEC cells degrade local basement membranes by 

production of matrix metalloproteinases (MMPs), in particular MMP2 

and 9 (Kvanta et al, 2000), migrate along cytokine concentration 

gradients and form tube-like structures that later mature into new blood 

vessels (angiogenesis).  

 

Treatment 

 

Data from the Macular Photocoagulation Study Group (MPSG) 

suggests that the natural history of wet AMD is bleak. For many years, 

the only treatment proven to be effective in arresting the progression of 

the CNV was laser photocoagulation. However, only a small proportion 

of patients within a specific disease subgroup have been shown to 

benefit from this treatment which is also associated with a high rate of 

disease recurrence (paradoxically often under the fovea) (Macular 

Photocoagulation Study Group, 1991; Macular Photocoagulation Study 

Group, 1994). A major advance in treatment, first described in 1999, 

was the use of Verteporfin photodynamic therapy (PDT). Verteporfin is 

a photosensitiser, injected intravenously, that is selectively taken up by 

the abnormal “growing” vessels of the wet AMD lesion. Irradiation of the 

lesion with a diode laser for 83 seconds leads to vessel thrombosis and 

lesion regression in many cases, while leaving the foveal/macular 

photoreceptors unaffected. A study using this treatment showed that 

after 24 months follow up, the proportion of patients with a particular 

subtype of wet AMD (predominantly classic) losing fewer than 15 letters 

on the visual acuity chart was 61% in those given treatment compared 
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with 46% for those given placebo (TAP Study Group, 2001). Since the 

occluded vasculature commonly re-canalised, patients required an 

average of 5.6 treatments in the 24 months of the study. The type of 

lesion treated in the above trial only constitutes approximately 20% of 

patients with wet AMD; however this treatment received National 

Institute of Clinical Excellence and Health (NICE) approval for lesions 

with a predominantly “classic” appearance on fluorescein angiography. 

Verteporfin PDT appeared not to be as effective in the type of lesions 

that constituted the remaining 80% of cases (minimally classic and 

occult lesions). During the early years of the 21st century, most patients 

with wet AMD were therefore still effectively untreatable. 

 

Research by our colleagues in oncology has shown that tumours rely 

on the growth of new blood vessels for their survival and that those 

blood vessels require VEGF for their growth. This led to the use of a 

number of anti-VEGF agents in the treatment of solid tumours. Based 

on those agents, a number of anti-VEGF agents (antibodies and an 

aptamer) were initially tested in animal models (Krzystolik et al, 2002) 

and have subsequently been licensed for the intra-ocular treatment of 

wet AMD. The first licensed drug was pegaptanib (Macugen™). This is 

an aptamer that binds one subtype of VEGF (VEGF165). It is given every 

6 weeks in the form of an intra-vitreal injection. Results from two large 

randomised placebo controlled trials involving around 1200 patients 

demonstrated visual stabilisation in approximately 70% of patients after 

receiving the drug for 2 years (VISION Clinical Trial Group, 2006). Very 

few patients were noted to have improved vision. Approximately 55% of 

those receiving placebo treatment demonstrated visual stability. 

Importantly, all wet AMD lesion types (classic and occult) appeared to 

respond to treatment. Although the drug appeared to be safe, there was 

a 1.3% incidence of potentially visually devastating intra-ocular infection 

(endophthalmitis).  
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More recently, a second agent, Ranibizumab (Lucentis™) has been 

licensed and approved by NICE. This is a fragment of a monoclonal 

antibody that binds and inhibits the action of all subtypes of VEGF and 

was initially shown to be effective in a laser-induced CNV model in 

monkeys (Krzstolik et al, 2002). It is given every 4 weeks by intra-vitreal 

injection. The results of a large multicentre placebo controlled 

randomised trial showed that at 12 months, 95% of patients receiving 

monthly treatment demonstrated stable vision compared with 62% of 

those receiving placebo (Brown et al, 2006; Rosenfeld et al, 2006). The 

latter result highlights the favourable natural history of the disease in 

some patients. In addition, 34% of those receiving active treatment 

demonstrated improved vision. These benefits persisted for up to 

βδmonths of continuous treatment. As with Macugen™, the major risk 

of treatment was endophthalmitis.  

 

Before Ranibizumab (Lucentis™) received its license, many 

ophthalmologists had begun to treat patients with intra-vitreal 

Bevacizumab (Avastin™) injections. This is an anti-VEGF monoclonal 

antibody, formulated for the intravenous treatment of bowel cancer 

(Vincenzi et al, 2009). On a dose for dose basis, it is much cheaper 

than Ranibizumab (Lucentis™) and may be as effective but it is not 

licensed for intra-ocular use. At present therefore, only Lucentis™ is 

approved by NICE for the treatment of wet AMD. Pegaptanib 

(Macugen™) was not approved for use in the NHS by NICE although 

clinically effective as it was thought not to be cost-effective, and not as 

effective as Ranibizumab (Lucentis™). 
 

In vitro study of endothelial cells with relevance to AMD 

 

In an attempt to further our understanding of the complex processes 

that underlie the proliferation of these inner choroidal endothelial cells, 

investigators have studied, in vitro, the phenotype and growth 

characteristics of bovine choroidal and choriocapillaris endothelial cells 

(Liu & Li, 1993; Sakamoto et al, 1995a; Sakamoto et al, 1995b; Morse 
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& Sidikaro, 1990; Hoffman et al, 1998; Liu et al, 1998; Wang et al, 

2002; Zubilewicz et al, 2001a; Zubilewicz et al, 2001b; McLaughlin & 

Vries, 2001; Eter & Spitznas, 2002) and heterogeneous mixtures of 

human choroidal endothelial cells (Penfold et al, 2002; Geisen et al, 

2005; Peterson et al, 2007; Sakamoto et al,1995; Bargagna-Mohan et 

al, 2006) or macrovascular (HUVECs) (Shankar et al, 2008; Stahl et al, 

2008). 

 

It is well recognised, however, that endothelial cells from different 

species and anatomical sites vary widely in their phenotype and growth 

characteristics. For example, in the eye, retinal endothelial cells 

resemble those of the brain in having tight junctions but no 

fenestrations, whereas choroidal endothelial cells express 

fenestrations. It has also been shown ex vivo and in vitro that 

microvascular endothelial cells in the human lung predominantly 

express CD34, whereas lung macrovascular endothelial cells and 

HUVECs predominantly express vWf in preference to CD34 (Müller et 

al, 2002). This means that it may not be appropriate to extrapolate data 

from more general endothelial cell models to study human choroidal 

neovascularisation due to the discrete species differences and the 

unique, anatomical and microvascular environment of the inner 

choroidal endothelial cell (ICEC). It would therefore seem logical to 

study human inner choroidal endothelial cells in an attempt to further 

our understanding of the neovascular form of AMD.  

 

In vitro experiments using human choroidal endothelial cells  

 

To date, human inner choroidal endothelial cells have not been 

selectively isolated and studied. However, workers have developed 

techniques to isolate human choroidal endothelial cells (hCECs) and 

have conducted a number of studies on them. 

 

Sakamoto et al in 1995a published a method to isolate human CECs 

using a density gradient to separate choroidal fragments after 
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collagenase digestion. The growing human CECs were purified by 

cloning. Using this technique, cells of 95% purity were isolated. 

Subsequently, Fan et al in 2002 enhanced human CEC purification by 

utilising anti-CD31 coated paramagnetic beads. They used these cells 

in a co-culture system with RPE cells stimulated with IL-1 and 

separated by a semi-permeable membrane to identify disease 

mechanisms in choroidal neovascularisation (Fan W et al, 2002). 

Geisen et al (2005) demonstrated increased migration of hCECs across 

a membrane when exposed to RPE cell conditioned medium and, to a 

lesser extent, VEGF. Peterson et al in 2007 demonstrated that PI-3K 

and Akt were important in this process of hCEC migration across a 

similar membrane. Unusually, VEGF had no effect on cell proliferation 

in these experiments. This is a very unusual result as, to date, all 

endothelial cells appear to respond to VEGF. The reason for this 

atypical result may be due to later passage hCECs being used in their 

experiments. It is known that endothelial cells, on passaging, may 

undergo phenotypic change and thus may change their in vitro 

behaviour (Shima et al, 1995; Prasad et al, 2006). Penfold et al in 2002 

also used these cells to demonstrate down-regulation of cell surface 

ICAM 1 and MHC antigens with a type of steroid that has been shown 

to have a beneficial role in the treatment of wet AMD, thereby 

hypothesising a mechanism for its actions.  

 

Steinle et al in 2003 demonstrated that sympathetic denervation in 

animals led to blood vessel growth in both the retina and choroid, and 

increased levels of local nerve growth factor (NGF) levels. They 

hypothesised that NGF was responsible for this up-regulation of 

angiogenesis. Using isolated human retinal and choroidal endothelial 

cells, they showed a difference in response when the cells were 

exposed to NGF in vitro. Choroidal ECs appeared to respond by 

increasing proliferation and migration to NGF via ERK 1/2 and Akt, 

whereas retinal ECs did not respond. An important difference in ocular 

EC response to external factors was therefore found, reinforcing the 

heterogenic nature of ECs within a single organ. In a similar vein, 
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Steinle et al in 2005 also demonstrated that human CECs possess ß 

adrenoreceptors and that stimulation of the ß3 receptors again resulted 

in activation of ERK 1/2 and Akt and affected cell migration and 

invasion. The role of the sympathetic/ parasympathetic nervous 

systems in choroidal neovascularisation remains unknown, however.  

 

Diabetic retinopathy 

 

Diabetes mellitus currently affects 150 million people worldwide. This 

number is set to soar by 2025 to reach 300 million, partly because of 

the epidemic of obesity (King et al, 1998). The majority of patients have 

type 2 diabetes mellitus where there is resistance to the action of 

insulin, although it is initially produced in normal amounts. Most patients 

with this type of diabetes are over the age of 40 years at disease onset. 

A minority of patients have type 1 or insulin-dependent diabetes which 

is caused by a lack of insulin due to autoimmune destruction of the 

pancreatic  cells. Both types of diabetes are characterised by raised 

blood glucose levels. A major effect of the disease process is the 

damage caused to the macrovascular and microvascular circulations 

leading to diseases of large vessels such as stroke and heart attack, 

and microvascular disorders such as renal glomerular damage, 

peripheral neuropathy and retinal vascular complications. 

 

Epidemiological studies have shown that after 15 years, almost all 

patients with type 1 diabetes and around 50% with type 2 diabetes not 

receiving insulin treatment have some degree of diabetic retinopathy. 

After 20 years of diabetes, 5.6% of patients will have developed 

clinically significant macular oedema caused by break down of the inner 

blood retinal barrier. Also, 7.9% will develop sight threatening 

retinopathy which includes proliferative diabetic retinopathy (PDR) due 

to retinal angiogenesis and consequent vitreous haemorrhage and 

tractional retinal detachment (Klein et al, 1989). More specifically, PDR 

occurs in 50% of type 1 diabetics and 15% of type 2 patients who have 
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had the disease for 25 years (Klein et al, 1989), making diabetes the 

leading cause of blindness in people under 65 years of age.  

 

 

 

 

 

 

 

Fig 1.26. Proliferative diabetic retinopathy (neovascularisation of the 
retina (upper), and optic disc (lower)). (Courtesy of the University of 
Wisconsin photographic reading centre) 

Advanced retinal 
neovascuarisation 
Seen in a diabetic 
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Advanced optic disc 
neovascuarisation 
seen in a diabetic 
patient  
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The exact mechanism or pathogenesis of diabetic retinopathy is 

uncertain but persistent hyperglycaemia eventually leads to 

microvascular damage to the retina. Possible mechanisms include 

increased flux of sugars through the polyol or hexosamine pathway with 

subsequent changes in endothelial cell redox potential. This leads to 

the accumulation of intracellular sorbitol and cell damage. Another 

possible important mechanism is excessive activation of the 

intracellular messenger diacylglycerol (DAG) with subsequent activation 

of protein kinase (PKC). Lesions include retinal capillary basement 

membrane thickening, pericyte and vascular smooth muscle cell drop 

out, capillary microaneurysms and capillary occlusion. Other 

mechanisms include alterations in blood rheology, accumulation of 

advanced glycation end products (AGES), free radicals and over-

activation of the renin-angiotensin system (Brownlee, 2001; Stitt et al, 

2005; Curtis et al, 2009). 

 

Whatever the mechanism, the resulting pathological retinal lesions are 

caused by progressive inner retinal ischaemia (secondary to 

microvascular occlusion) and the subsequent secretion of pro-

angiogenic growth factors such as VEGF (Campochiaro, 2000). The 

role of VEGF in the causation of proliferative diabetic retinopathy has 

been strongly implicated by the finding that repeated intravitreal 

injections of VEGF165 into cynomolgus monkeys produces many of the 

changes in the retinal vasculature that are seen in diabetes, such as 

venous dilatation and tortuosity, retinal ischaemia, capillary 

microaneurysmal dilatation and pre-retinal neovascularisation 

(Tolentino et al, 1996; Tolentino et al, 2002). It appears that IGF-1 may 

also play a role in proliferative diabetic retinopathy (Chantelau et al, 

1997; Smith et al, 1997; Smith et al, 1999). It was observed many years 

ago that hypophysectomy (removal of the pituitary gland in patients with 

acromegaly (who also had diabetic retinopathy) led to a resolution of 

the PDR (Wright, 1969). It is known that the main stimulus for IGF-1 is 

growth hormone (GH) produced by the pituitary. Secondly, improved 

diabetic control by increased levels of insulin leads to higher levels of 
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IGF 1 (Chantelau et al, 1997) and VEGF (Lu et al, 1999) in the blood. 

This may explain the commonly occurring worsening of retinopathy 

when blood sugar levels are dramatically improved. It has also been 

observed that cardiac events increase when sudden improvement in 

blood sugars occurs (ACCORDS Group, 2008). Systemic blockade of 

growth hormone by a GH antagonist also leads to improvement in 

diabetic retinopathy (Boehm et al, 2000). 

 

Current proven treatment for diabetic retinopathy involves laser 

photocoagulation to areas of macular oedema (in an effort to stimulate 

regression of oedema by unknown mechanisms) or the obliteration of 

areas of retinal ischaemia in an effort to down regulate the production of 

pro-angiogenic growth factors. As VEGF appears to play a role in both 

the breakdown of the inner blood retinal barrier (due to increased 

vascular permeability) and in the growth of new retinal blood vessels 

(by retinal angiogenesis), researchers have recently investigated the 

use of intravitreal injections of anti-VEGF antibodies. In clinical trials, 

these drugs (ranibizumab, bevacizumab and pegaptanib) appear to 

have a marked effect on the disease. However, they need to be given 

every 4 to 6 weeks by invasive intra- ocular injections in a similar 

fashion to the treatment of wet AMD, as mentioned earlier. Other 

targets for treatment include the interruption of intracellular signalling 

secondary to up-regulation of PKC activity and inhibition of IGF-1. 

 

It is known that hyperglycaemia leads to an increased synthesis of 

intracellular diacylglycerol (DAG) in endothelial cells which in turn leads 

to activation of protein kinase C (PKC) (Donnelly et al, 2004). The effect 

of increased PKC activation in endothelial cells is to bring about 

changes in vascular permeability and blood flow and to modify the 

formation and response to growth factors such as VEGF. The role of 

PKC in the pathogenesis was therefore thought to be important and has 

been the subject of much research (Donnelly et al, 2004). There are at 

least 12 isoforms of PKC with different tissue expression profiles 

(Moriarty et al, 2000). It emerged that hyperglycaemia leads to a 
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proportionately larger increase in the isoforms PKC I and PKC II in 

endothelial cells. Because PKC is widely found in different cells, 

treatment strategies using non-specific PKC inhibition were likely to 

lead to widespread tissue dysfunction and toxicity. In 1996, a more 

selective PKC inhibitor ( I and II ) became available and was used in a 

number of diabetic clinical trials The new drug, called LY-333531 

(Ruboxistaurin) was found to inhibit the increase in retinal blood flow 

and reduce macular oedema in diabetic patients (Frank, 2002). In one 

clinical randomised trial, the drug reduced moderate visual loss by 40% 

in those given the drug (cf. placebo). There was also a significant 

reduction in progression of diabetic macular oedema and the 

requirement of macular laser treatment (Aiello et al 2006). In a second 

study, the drug appeared to have no effect on the progression of 

diabetic retinopathy, a disappointing outcome. This study, however, 

again demonstrated a significant reduction in moderate visual loss 

(PKC-DRS study group, 2005). Although the preliminary results for the 

effects of this drug on diabetic eye disease appear encouraging, the 

drug has yet to be licensed for this use and the FDA in the USA has 

required further data in the form of further clinical trials before making a 

decision on its use.  

 

Retinopathy of prematurity 

 

Retinopathy of prematurity (ROP) is a proliferative retinopathy seen in 

“at risk” newborn infants and remains a leading cause of childhood 

blindness. It was first recognised in 1942 when a link between 

proliferative retinopathy and neonatal oxygen supplementation was 

described. Over the next 20 years, as the rate of oxygen 

supplementation reduced, so did the incidence of ROP. During the 

1960‟s and 70‟s, its incidence increased again due to advances in 

neonatal care in which lower birth weight children survived. The risk of 

developing abnormal retinal neovascularisation or ROP appears to be 

inversely related to birth weight and gestation. During normal 
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development of the retina, vessels migrate from the optic disc to the 

periphery of the eye, starting at week 16. Interruption of this process by 

premature birth leads to areas of avascular peripheral retina being 

present after birth. If the baby is given high concentrations of inspired 

oxygen (necessary due to under-developed lungs) this leads to 

inhibition of normal retinal vascular development by suppressing 

capillary development and causing vascular obliteration at the interface 

between normal and avascular retina. If the oxygen tension is then 

reduced, the areas of avascular retina become hypoxic and secrete 

growth factors such as VEGF. This in turn leads to uncoordinated 

retinal neovascularisation at the junctional zone.  

 

 

 

 

The recognition and treatment of ROP involves regular examination of 

“at risk” eyes for the tell tale signs of retinal neovascularisation forming 

a ridge at the junctional zone. This would lead to treatment to ablate the 

areas of avascular retina by laser or cryotherapy. Failure of treatment 

may lead to retinal detachment by fibrovascular membranes and 

vitreous haemorrhage, both leading to poor visual outcome.  

 

Fig 1.27. Fundus 
photograph of a 
premature baby’s left 
eye, demonstrating a 
ridge of 
neovascuarisation in 
the peripheral area of 
the retina. Also note the 
dilated and tortuous 
retinal vessels, 
indicating marked 
retinal ischaemia 
(courtesy of the 
University of Texas) 
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Much understanding of this disease has come from an animal model in 

which one week old mice are exposed to 75% oxygen for 5 days and 

then are returned to room air. Neovascularisation occurred between 

post natal days 17 and 21, at the junction between vascularised and 

avascular retina in the mid periphery. In contrast to the human disease, 

this murine model develops vasoconstriction and ischaemia around the 

disc at the posterior pole with sparing of the peripheral vessels (in the 

human disease, the opposite distribution of vascular closure occurs). 

This distribution is thought to be because of continued perfusion of the 

murine peripheral retina by remnants of the central hyaloid vessels. The 

retinal ischaemia induced by the vascular closure causes a reflex over-

expression of VEGF which in turn leads to abnormal retinal 

neovascularisation or angiogenesis (Smith et al, 1994). Nowadays, the 

use of lower levels of oxygen supplementation would be thought to 

have led to a marked reduction in the incidence of ROP if the oxygen 

hypothesis is the unifying hypothesis, but in reality this has not 

happened. Slidsborg et al in 2008 found that the incidence of ROP 

doubled in Denmark between 1996 to 2000 and 2001 to 2005, while in 

Canada, Schiatriti et al in 2008 found an increase between the periods 

1992 to 1996 and 1997 to 2001. Conventional treatment of ROP 

involves the ablation of the ischaemic peripheral retina in the hope of 

reducing the risk of ultimate retinal detachment. Recently, intravitreal 

injection of anti-VEGF agents such as bevacizumab (Avastin) has been 

used experimentally in an attempt to reduce or abolish the 

neovascularisation (Mintz-Hittner et al, 2011). While the treatment was 

very successful in treating neovascularisation around the optic disc and 

macula, it was unsuccessful for disease in the more peripheral retina. 

This would imply that peripheral disease is not VEGF driven or that 

other mechanisms are responsible for this stage of disease. Some 

workers suspect that other factors apart from VEGF may be important 

in disease pathogenesis and progression. It has been hypothesised that 

IGF 1 may play a role because its secretion correlates with birth weight 

and gestational age (Hellström et al, 2002; Hellström et al, 2003). In 

addition, IGF-1 levels drop in the neonatal period as the main sources 
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to the infant, the placenta and the amniotic fluid, are lost. Recent 

studies have shown that IGF-1 is important for retinal vascular 

development and is an endothelial survival factor (Modanlou et al, 

2006; Lofqvist et al, 2009; Hellström et al, 2002) and if IGF-1 levels rise 

quickly after birth, normal development occurs. It has also been shown 

that in the presence of low IGF-1 levels, VEGF is insufficient to allow 

retinal vascular development. It is thought that when IGF-1 levels are 

low, retinal vessels fail to develop, allowing the retina to become 

hypoxic and VEGF to accumulate. With the normal increase in IGF 1 

with age a threshold is reached that allows VEGF to trigger the massive 

increase in retinal angiogenesis, implying that IGF 1 is required for 

maximal VEGF action. It has now been hypothesised that a blood test 

to measure IGF 1 levels may predict those babies at risk of ROP and 

that IGF 1 supplementation may restore normal retinal vasculature 

development in such infants (Hellström et al, 2001). 

 

Iris neovascularisation 

 

Very few disorders appear to specifically affect the iris vasculature with 

the exception of anterior uveitis, an autoimmune inflammatory condition 

that targets cells within the iris and the ciliary body. In this condition, 

leukocytes are attracted to the iris vasculature and pass through gaps 

between the endothelial cells to reach the tissue interstitium. The 

underlying pathogenesis of this condition and the target antigens are 

largely unknown.  

 

Occlusion and subsequent ischaemia of the iris vasculature in 

conditions such as herpetic uveitis and acute angle closure glaucoma 

rarely, if ever, give rise to iris neovascularisation. This is perhaps 

because the level of VEGF stimulated by the occlusion is too low or it is 

rapidly removed from the anterior segment of the eye by the rapid flow 

of aqueous. Iris neovascularisation tends to occur in the presence of 

retinal ischaemia caused by diseases such as diabetes mellitus or by 
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retinal vascular occlusions such as central retinal vein occlusion. Both 

of these conditions are thought to generate large amounts of VEGF that 

diffuse into the anterior chamber and hence come into contact with the 

iris vasculature. Iris neovascularisation can occur in the absence of 

retinal neovascularisation. The reason for this is unknown but may 

include the rapid diffusion of VEGF away from the retina towards the 

anterior segment and the potential production of pro-angiogenic 

substances to which the iris but not the retina responds. In a primate 

model of central retinal vein occlusion with iris neovascularisation, 

levels of retinal VEGF and VEGF mRNA are significantly raised, while 

intra-ocular injection of VEGF is sufficient to cause iris new vessel 

growth (Miller et al, 1994). This effect can be neutralised by injection of 

anti-VEGF antibodies (Adamis et al, 1996). Iris neovascularisation 

usually starts at the pupil margin (perhaps due to the flow of VEGF from 

the posterior segment) and grows across the iris to the drainage angle 

and the trabecular meshwork. Angiogenesis in the drainage angle 

impedes the outflow of aqueous and (rubeotic) glaucoma ensues. 

Histopathological examination reveals that the new vessels arise from 

pre-existing capillaries, are thin walled and interestingly are fenestrated. 

Normal iris capillaries are not fenestrated (Bron et al, 1997a).  

 

Conclusion 

 

It is now widely accepted that endothelial cells derived from different 

species, vascular organs and from within different vascular beds, 

display phenotypical, biochemical and genetic heterogeneity. It follows 

that the extrapolation of results from non human ocular or HUVEC cells 

may not provide reliable data applicable to human eye disease. Any 

meaningful insight into the pathogenesis and selective treatment of the 

diseases mentioned previously would therefore probably only be gained 

by conducting in vitro studies using early passage microvascular 

endothelial cells derived from the particular site(s) affected by specific 

diseases because within the ocular vascular beds themselves, many 
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diseases appear site specific. This work therefore aims to develop 

techniques to isolate human ocular vascular endothelial cells, in 

particular, those from the inner macular choroid, as these are thought to 

be crucial to the pathogenesis of the common blinding condition, wet 

AMD. This work also aims to explore their heterogeneity by comparing 

their differential gene expression with endothelial cells from other sites, 

both within the human choroid and at other sites within the eye. I also 

aim to determine the effects of various growth factors on the macular 

choroidal endothelial cells in an attempt to more fully understand some 

of the important mechanisms that may contribute to wet AMD and that 

may perhaps lead to new targets for disease treatment.  
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Introduction 

 
Previous investigators have utilised a variety of techniques to isolate 

vascular endothelial cells from a diverse range of human tissues and 

organs. These include the bone marrow (Rafii et al, 1994; Masek & 

Sweetenham, 1994), myometrium (Gargett et al, 2000), placenta (Dye 

et al, 2001), stomach (Hull et al, 1996), saphenous vein (Scoumanne et 

al, 2002), retinal capillaries (Gitlin and D‟Amore, 198γμ Su et al, 1992) 

and iris (Silverman et al, 2001). Early techniques relied on enzyme 

digestion of the tissue, followed by selective scraping of contaminating 

cells in culture, followed by preferential growth of endothelial cells in 

selective media containing a range of agents such as brain extract, 

retinal extract or heparin. Later, enzyme tissue digestion was first 

followed by density gradient separation and then “sweeping” of cultured 

cells. However, more modern techniques rely on cell isolation by 

endothelial specific/selective antibodies attached to paramagnetic 

beads such as the “Dynabead™”. Endothelial antigens used include 

CD31 (PECAM1) and lectins such as Ulex europaeus agglutinin 1 

(UEA-1). The manufacturer states that binding of CD31 paramagnetic 

beads has no effect on cell properties or stimulation; however, Tiwari et 

al in 2003 stated that CD31 coated beads may have an effect on cell 

proliferation when used in high concentrations (higher than the 

manufacturers recommendation). A method is described below for the 

reliable isolation of ocular microvascular endothelial cells from human 

eyes that may then be used for subsequent analysis. 

 

Methods 

 
Human posterior segments were obtained from UK Transplant within 72 

hours of death. The corneas had previously been removed for 

transplantation and the posterior segments were stored at 4°C in sterile 

normal saline if consent for their use in research had been obtained. 

Donors were free of any known ocular disease or systemic infection. 
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The project had the approval of the Manchester eye bank and the local 

research ethics committee (Nottingham 2 LREC ) (Nottingham 

Q1060301). 

 

Isolation of human choroidal endothelial cells  

 
Human eyes were dissected on sterile Petri dishes on an open 

laboratory bench using a binocular dissecting microscope 

(approximately x10 magnification). It was intended to perform the 

procedure in a laminar flow hood but this would not accept the 

dissecting microscope. It was subsequently found that the rate of 

culture infection using the bench dissection was very low, justifying this 

approach. Dissection was conducted using disposable equipment or 

instruments sterilized in 100% alcohol. 

 

The iris was removed and was stored in isolation medium consisting of 

Minimum Essential Medium (MEM) (Invitrogen Ltd, Paisley, UK) 

containing 0.β5たg/ml amphoterocin B, 100たg/ml streptomycin, 50たg/ml 

kanamycin and γ0たg/ml penicillin for up to 10 minutes at room 

temperature. Four relieving-incisions were made in the sclera, and the 

posterior segment was flat mounted. The vitreous was removed and 

discarded and the neuroretina was teased from the underlying choroid 

and stored in isolation medium consisting of Minimum Essential 

Medium (MEM) (Invitrogen Ltd, Paisley, UK) containing 0.β5たg/ml 

amphoterocin B, 100たg/ml streptomycin, 50たg/ml kanamycin and 

γ0たg/ml penicillin. The overlying retinal pigment epithelium (RPE) was 

removed by gentle brushing with a sterile spatula and irrigated with 

sterile phosphate buffered saline (PBS) and discarded. The full 

thickness choroidal sample could now be separated from the sclera 

with toothed forceps. The bridging vortex veins were cut with sterile 

scissors, as were the adhesions around the optic disc.  
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The choroidal samples from each pair of eyes were combined and 

washed 3 times in isolation medium (composition described above) and 

cut into 1-2mm pieces. The pieces were incubated in collagenase I 

(0.1%) in MEM for 60 minutes at 37°C with frequent agitation. After 60 

minutes, the collagenase was neutralised with MEM and 10% foetal calf 

serum (Invitrogen Ltd, Paisley, UK). The mixture was filtered through a 

sterile 40µm filter (Millipore Ltd, Watford, UK) and the eluate was 

centrifuged at 75g and washed 3 times in isolation medium. The cells 

were re-suspended in 1 ml of PBS/ 0.1% BSA and were incubated with 

25µl of anti-CD31 coated Dynabeads™ for 15 minutes at δºC (Dynal 

Ltd, Wirral, UK). After binding of the Dynabeads, the complexes were 

washed 4 times in PBS/ 0.1% BSA using a magnetic particle 

concentrator (Dynal Ltd, Wirral, UK). The endothelial-bead complexes 

were re-suspended in Endothelial Growth Medium (EGM2-MV with 

hydrocortisone omitted) (Cambrex Biosciences, Wokingham, Berks, 

UK) and seeded onto either 30mm fibronectin-coated culture dishes 

(Beckton Dickinson, Oxford, UK) or into 25cm2 fibronectin-coated flasks 

(Beckton Dickinson, Oxford, UK), depending on the experiment the 

cells were required for. After overnight incubation at 37ºC in a 

humidified atmosphere of 5% CO2, fresh endothelial growth medium 

was added. After 5-7 days, large areas of confluent cells were present 

and were removed for experiments with 0.025% trypsin and 0.01% 

EDTA in sterile PBS, after which the cells were washed 3 times with 

sterile PBS. All reagents were from Sigma-Aldrich, Poole, Dorset, UK 

unless otherwise specified. 

 

Isolation of human iris endothelial cells  

 
During the dissection of human donor eyes, the irides were removed 

and placed into isolation medium as mentioned previously. The irides 

were removed from the isolation medium and placed onto a sterile petri 

dish. The posterior aspect of the iris was brushed with a sterile spatula 

to remove the pigmented epithelium. The irises were then cut up into 

tiny pieces and washed in isolation medium as described above (for the 
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choroidal endothelial cells). The tissue was then treated exactly as 

detailed above to isolate the iris microvascular endothelial cells.  

 

Isolation of human retinal endothelial cells  

 
During the dissection of human donor eyes, the retina was removed 

and placed into isolation medium as mentioned previously. The retinal 

samples were transferred onto a sterile petri dish and cut into tiny 

pieces. The sample was then transferred back into isolation medium 

and processed as detailed previously to isolate the choroidal 

microvascular endothelial cells.  

Human umbilical vein endothelial cells (HUVEC) 

 
Fresh un-passaged HUVEC cells were purchased from PromoCell 

GmbH, Heidelberg, Germany. On arrival, the cells were thawed and re-

suspended in endothelial growth medium (EGM2-MV with 

hydrocortisone omitted, Cambrex Biosciences, Wokingham, Berks, UK) 

and washed 3 times. The cells were purified using Dynabeads and then 

seeded onto fibronectin-coated 35mm culture dishes (Beckton 

Dickinson, Oxford, UK) and incubated at 37 C in a humidified 

atmosphere of 5% CO2 as previously described.  

Endothelial cell characterisation 

 
Prior to use in subsequent experiments, a small sample of trypsinised 

cells, suspended in EGM-2MV, was placed onto sterile glass cover slips 

(VWR Ltd, Poole, UK) coated with 1% gelatin (Sigma) (cover slips were 

immersed in 1% gelatin in sterile PBS for 30 mins at 37°C, then washed 

gently in sterile PBS and dried in a laminar flow hood). After allowing 3 

hours for cells to attach, they were fixed in ice cold methanol at -20°C 

for 20 minutes. A standard two-stage immunofluoresence technique 

was applied using primary antibodies to CD31 (murine IgG1) (Dako, 

Cambridgeshire, UK) at a dilution of 1:20 and vWf (rabbit 

immunoglobulin fraction) (Dako) at a dilution of 1:200. The primary 

antibodies were left in contact with the cells for 60 minutes before 
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washing 4 times with sterile PBS. The secondary antibodies used were: 

rabbit anti-mouse F(ab‟)β fragment fluorescein isothiocyanate (FITC) 

conjugated (Dako) at a dilution of 1:20 when used to visualise the anti-

CD31 primary antibody; and swine anti-rabbit  F(ab‟)β fragment FITC 

conjugate (Dako) at a dilution of 1:20 to visualise the anti-vWf primary 

antibody. The secondary antibodies were left in contact with the cells 

for 60 minutes before washing 4 times with sterile PBS. The slides were 

then mounted in glycerol containing 2.5% 1-4 diazabicyclo[2,2,2] octane 

(DABCO) (Sigma –Aldrich) and observed by confocal fluorescence 

microscopy (Leica TCS0D, Leica, Milton Keynes, UK). A non-specific 

anti-rat epitope murine IgG1 antibody was used as a negative control 

primary antibody for the CD31 (mouse) antibody) and FITC labelled 

non-specific swine anti-rabbit immunoglobulin fraction  (DAKO) as a 

negative control for the vWf  antibody . Negative controls for the 

secondary antibody (only possible for anti-CD31 as anti-vWf was a 

labelled primary antibody)  was performed by replacing the secondary 

antibody with PBS  In assessing the identity and purity of the 

endothelial cells, at least 500 nucleated cells were counted after 

staining with each antibody. For some of the identification experiments, 

the cell nuclei were also stained with propidium iodide (500nM for 60 

seconds) to aid cell detection.  
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Results 

 

After isolation, HUVEC, choroidal, iris and retinal endothelial cells all 

grew with a typical cobblestone morphology (figs. 2.1-2.4). By randomly 

counting at least 500 cells, at least 99.5 % of each cell type 

demonstrated positive expression of CD31 (fig. 2.5) and vWf (fig. 2.8), 

thereby confirming their identity as endothelial cells. Negative control 

samples for both CD31 (primary and secondary antibody) and vWf 

(primary antibody) failed to show any significant staining, thereby 

confirming the positive results for the primary antibodies. Each 25cm2 

flask used to grow each sample provided up to 200,000 endothelial 

cells of extremely high purity for use in subsequent experiments.  

        

 

 

 
Fig. 2.1. Phase contrast photomicrograph of primary cultures of human 
umbilical cells (HUVEC) demonstrating a typical cobblestone 
appearance. The dark clumps are adherent Dynabeads (20x original 
magnification) 
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Fig. 2.2. Phase contrast photomicrograph of primary cultures of human 
choroidal endothelial cells demonstrating a typical cobblestone 
appearance. The dark clumps are adherent Dynabeads (20x original 
magnification). 
 
 

 

 

Fig. 2.3. Phase contrast photomicrograph of primary cultures of human 
retinal endothelial cells demonstrating a typical cobblestone 
appearance. The dark clumps are adherent Dynabeads (20x original 
magnification). 
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Fig. 2.4. Phase contrast photomicrograph of primary cultures of human 
iris endothelial cells demonstrating a typical cobblestone appearance. 
The dark clumps are adherent Dynabeads (20x original magnification). 
 

 

 

 

Fig. 2.5a. Immunofluorescent photomicrograph of human retinal (left) 
and choroidal (right) endothelial cells stained for CD31 (63x original 
magnification). Note the predominance of staining at edges of cells, the 
area where the density of the cell adhesion molecule CD 31 is known to 
be highest. 
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Fig. 2.5b. Immunofluorescent photomicrograph of human iris (left) and 
umbilical vein (right) endothelial cells stained for CD31 (63x original 
magnification). Note the predominance of staining at edges of cells, the 
area where the density of the cell adhesion molecule CD 31 is known to 
highest. Also note that the nuclei have been stained red with propidium 
iodide to aid detection. 
 
 
 

 
 

Fig. 2.6a. Immunofluorescent photomicrograph of human retinal (left) 
and choroidal (right) endothelial cells stained with a non-specific anti-rat 
epitope murine IgG1 antibody as a negative control of the anti-CD31 
primary antibody (63x original magnification).Note the absence of any 
staining of cells. Some non-specific fluorescence from precipitation of 
secondary antibody can be seen. 
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Fig. 2.6b. Immunofluorescent photomicrograph of human iris (left) and 
umbilical vein (right) endothelial cells stained with a non-specific anti-rat 
epitope murine IgG1 antibody as a negative control of the anti-CD31 
primary antibody (63x original magnification).Note the absence of any 
staining of cells. Some non-specific fluorescence from precipitation of 
secondary antibody can be seen. Also note that the nuclei have been 
stained red with propidium iodide to aid detection. 
 
 
 

 
 

Fig. 2.7. Immunofluorescent photomicrograph of human retinal (left) 
and choroidal (right) endothelial cells stained with anti-CD31 and the 
secondary antibody replaced with PBS (63x original magnification).Note 
the absence of any specific staining of cells. Some very faint 
background fluorescence from the cells can be seen. 
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Fig. 2.8a. Immunofluorescent photomicrograph of human retinal (left) 
and choroidal (right) endothelial cells stained for vWf (63x original 
magnification). Note the predominance of staining within granules in the 
cell cytoplasm. While many microvascular ECs are stated not to have 
electron dense Weibel-Palade bodies, the traditional site of vWf 
storage, it is now known that vWf can also be stored in alternative intra-
cellular vesicles. Analysis of gene expression data from chapter 3 
reveals that both choroidal and retinal ECs show a significant 
expression of vWf.  
 

 

 
 

Fig. 2.8b. Immunofluorescent photomicrograph of human iris (left) and 
umbilical vein (right) endothelial cells stained for vWf (63x original 
magnification). Note the predominance of cytoplasmic granular staining 
consistent with the known location of vWf within ECs. Nuclei are stained 
red with propidium iodide to aim cell localisation. 
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Fig. 2.9a. Immunofluorescent photomicrograph of human retinal (left) 
and choroidal (right) endothelial cells stained with a FITC labelled non-
specific swine anti-rabbit immunoglobulin fraction as a negative control 
of the anti-vWf primary antibody. Note the absence of any staining of 
cells. Some very faint fluorescence from non specific binding can be 
seen as well as the natural fluorescence of Dynabeads (green circles) 
 

 

 
 

Fig. 2.9b. Immunofluorescent photomicrograph of human iris (left) and 
HUVEC (right) endothelial cells stained with a FITC labelled non-
specific swine anti-rabbit immunoglobulin fraction as a negative control 
of the anti-vWf primary antibody. Note, the nuclei are stained red with 
propidium iodide to aid cell localisation.  
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Discussion  
 

The work described in this chapter demonstrates that it has been 

possible to reliably isolate microvascular endothelial cells from the 

choroid, iris, and retina. Interestingly, to the naked eye, they appear 

similar with typical cobblestone appearances. Visual inspection also 

failed to show any evidence of Weibel-Palade bodies, often present in 

macrovascular ECs. These bodies are thought to be the site of vWf 

storage before release at the cell surface where it plays a role in blood 

coagulation. It can be seen in Fig 2.8 that numerous points of vWf 

staining are present in the choroidal EC cytoplasm. While these cells 

are thought to lack traditional WP bodies, they may store vWf in 

vesicles that lack the typical electron dense appearance on electron 

microscopy. It will be shown later that iris, retinal and choroidal ECs all 

express significant levels of vWf at a gene level when examined by 

gene microarray analysis, thereby confirming this immunohistochemical 

result. 

 

The origin and purity of the cells was confirmed and they could 

therefore be used in any subsequent experiments. The purity of cells 

matches that from other studies and the reliability of the isolation 

procedure means that matched iris, retinal and choroidal ECs can be 

isolated and cultured from the same patients. This will be a major 

advantage in forthcoming experiments, particularly those utilising gene 

expression techniques, as it removes much of the variability between 

samples due to differences in gene expression between different 

donors e.g. due to their age or genetic “make up”. The technique also 

allowed sufficient cells from each donor to be cultured. Approximately 

200,000 un-passaged endothelial cells could be cultured from a flask 

seeded with isolated ECs within 5-7 days. As will be seen later, this is 

enough to perform the experiments necessary to examine both gene 

expression profiles and to examine their in-vitro behaviour. 
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Introduction 

 
Intraocular angiogenesis causes a number of common blinding 

conditions including wet age-related macular degeneration, proliferative 

diabetic retinopathy, retinopathy of prematurity and rubeotic glaucoma. 

The pathogenesis of these disorders is centred upon choroidal, retinal 

and iris microvascular endothelial cells respectively. Ocular vascular 

disorders also appear to demonstrate a preference for different 

microvascular beds and sometimes particular locations within a 

microvascular bed, e.g. diabetes preferentially affecting the retinal 

vasculature and age related macular degeneration affecting the 

choroidal circulation. 

 

Investigators have attempted to increase the understanding of these 

disorders by studying non-ocular human endothelial cells derived from 

sites such as the umbilical vein (HUVEC) because of their availability in 

large numbers and their relative ease of culture. The conclusions drawn 

from studies using these cells have then been extrapolated to human 

angiogenic eye diseases. Stahl et al used the proliferation of HUVECs 

to study the effect of rapamycin on the production of VEGF by RPE 

cells in co-culture, thereby hypothesising that this drug may have a 

significant role in the treatment of choroidal neovascularisation (Stahl et 

al, 2008). Sakamoto et al used human RPE cells, transfected with 

retroviral vectors in culture with HUVECs, as a model for human ocular 

angiogenic diseases (Sakamoto et al, 1998), while Kumar (Kumar et al, 

2008) also used a co-culture system, this time, of aortic endothelial 

cells with retinal cells in the investigation of growth factors thought to 

important in human ocular angiogenic diseases. Sengutpa et al used 

human lung microvascular ECs to study the effect of stromal-derived 

factor and extrapolated the results to the study of choroidal 

neovascularisation (Sengupta et al, 2010), while Hamilton used a co-

culture system of HUVE cells and RPE cells, both grown on amniotic 
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membrane in order to mimic the choriocapillaris/Bruch‟s 

membrane/RPE complex found in human eyes (Hamilton et al, 2007).  

 

This in vitro system was hypothesised to be a model to investigate the 

mechanisms of wet AMD. Shankar et al recently used HUVECs to 

determine the importance of PI3K/AKT pathways in angiogenesis, 

applying the results to a range of conditions such as proliferative 

diabetic retinopathy and choroidal neovascularisation (Shankar S, 

2008), while Yang et al used HUVECs and RPE conditioned medium to 

study the pathogenesis of choroidal neovascularisation (Yang et al, 

1993). Lastly, Kim et al recently used HUVECs to study the effects of 

heptanomide (an inhibitor of histone deacetylase) (Kim et al, 2009) and 

deguelin (Kim et al, 2008) as models for the potential treatment of wet 

AMD. Because HUVECs are termed macrovascular ECs and are 

derived from a specialised tissue, it is uncertain if they are 

representative of ocular microvascular ECs in general and therefore 

may not be appropriate for investigation of the mechanisms of ocular 

angiogenic diseases.  

 

HUVECs have also been utilised in the investigation of angiogenic 

diseases elsewhere in the body. By association, other groups feel that 

these macrovascular cells offer results that can be applied locally to the 

blood vessels of the individual tissues of interest. These include 

melanoma-associated neovascularisation (Boyd et al, 2002; 

Mangiameli et al, 2007), brain glioblastomas (Chen et al, 2009; Martina 

et al, 2009), kidney (Ho et al, 2008) and the bone marrow (Cenni et al, 

2009). It has been discussed previously in chapter 1, however, that in 

vitro responses of HUVEC cells often differ from those of microvascular 

origin, such as retinal and dermal ECs, thereby emphasising the degree 

of scepticism needed when interpreting the results of experiments using 

HUVECs. 
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In order to use endothelial cells that are phenotypically closer to those 

found in the human choroid, other workers have used ocular cells from 

non-human sources. Examples include the use of bovine choroidal ECs 

in the investigation of cell signalling pathways (VEGF, PLC Ca2+and 

MAPK) thought to be important in choroidal angiogenesis. Bullard et al 

used bovine retinal ECs to investigate the importance of MAPK in 

retinal neovascularisation (Bullard et al, 2003), while Brylla et al used 

both bovine retinal and choroidal ECs to investigate the effect of 

hypoxia on angiogenesis (Brylla et al, 2003). The results of these 

experiments were thought to be applicable to retinal and choroidal 

neovascularisation in humans, but while the use of site-specific ECs is 

important, it is not known how close these bovine cells are 

phenotypically and genotypically to their human counterparts and how 

much inter species heterogeneity exists in important intracellular 

signalling pathways. 

 

As detailed previously in chapter 1, it is now widely accepted that 

endothelial cells derived from different vascular organs and from within 

different vascular beds within those organs display phenotypic, 

biochemical and genetic heterogeneity. Any definitive insight into the 

pathogenesis and selective treatment of human angiogenic eye 

diseases is therefore likely to be gained only by conducting studies 

using microvascular endothelial cells derived from the particular ocular 

site(s) affected by the disease. Recently, Smith et al studied the 

expression of 8500 genes of human retinal and choroidal endothelial 

cells using DNA microarrays (Smith et al, 2007). They demonstrated 

distinct differences in expression profiles between the two cell types, 

particularly in those genes thought to be important in the immune 

response and leukocyte trafficking. This may explain why the retina 

appears to be susceptible to certain inflammatory diseases such as that 

caused by toxoplasmosis (Smith et al, 2004). Recently, Chi et al used 

DNA microarrays to explore the diversity of human ECs from different 

blood vessels (no ocular ECs were examined) (Chi et al, 2003). They 

found distinct differences in gene expression between macro- and 
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microvascular endothelial cells and between microvascular ECs from 

different vascular beds.  

 

The aim of this section of work was to take the previously isolated, 

unpassaged, proliferating human umbilical vein cells and matched 

retinal, choroidal and iris endothelial cells and determine the degree of 

heterogeneity between the macrovascular and ocular microvascular 

ECs by microarray gene expression profiling. The difference in gene 

expression profiles was also determined between groups of different 

matched ocular microvascular ECs. Because of the previously stated 

interest in ocular angiogenic mechanisms, particular attention was paid 

to differences in those genes involved in vascular cell signalling. 
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Methods  

 

Three sets of matched, un-passaged human choroidal, retinal and iris 

endothelial cells and HUVECs from 3 different donors were cultured to 

approximately 80% confluence on fibronectin-coated 35mm culture 

plates as described previously. The age and sex of the donors were: 

47yrs male, 58yrs male and 63yrs female. The times from death to 

endothelial cell isolation were 49, 48 and 52 hours respectively.  

RNA extraction 

 

Total RNA was extracted from primary cultures of un-passaged 

endothelial cells when they had reached approximately 80% 

confluence, using the Qiagen RNeasy Minikit (Qiagen, Crawley, UK). 

This method has the advantage that RNA molecules of greater than 

200 bases are enriched, but smaller RNA molecules (tRNAs and 

rRNAs) are selectively excluded. 

 

To each culture plate was added 350µl of Buffer RLT (with く-

mercaptoethanol added); this lead to almost instant lysis of the cells 

with release of RNA. The lysate was immediately pipetted into a 

microcentrifuge tube and vortexed for 60 seconds to ensure 

homogenisation. To the homogenised lysate was added an equal 

volume (350µl) of 70% ethanol and mixed well by pipetting. Each lysate 

was then added to the top of individual RNeasy columns and 

centrifuged at >8000g for 15 seconds. The flow-through was discarded 

and 700µl of Buffer RW1 was added to each column and again was 

centrifuged at >8000g for 15 seconds. The flow-through was again 

discarded. Next, 500µl of Buffer RPE was added to the column and 

centrifuged as before. Again, the flow-through was discarded. This step 

was repeated as previously, but the tube was centrifuged for 2 minutes 

to dry the RNeasy silica gel membrane in the column. To elute the 

RNA, 50µl of RNase-free water was added to the column and 

centrifuged at >8000g for 1 minute over a clean collection tube.  



 195 

The RNA concentration was measured in each sample using a 

Nanodrop ND-1000 spectrophotometer before the eluate was 

transferred into microcentrifuge tubes and stored at -80°C until used for 

subsequent analysis. It was found that approximately 5 g of total RNA 

was obtained from each 35mm culture plate.  

 

Microarray analysis 

 

The previously stored RNA was thawed and the RNA concentration re-

checked using the Nanodrop ND-1000 spectrophotometer. The RNA 

integrity and quality was assessed using an Agilent 2100 Bioanalyser 

and RNA 6000 Nano kit (Agilent Technologies). Briefly, 1µl aliquots of 

each RNA sample were taken from the stock samples and diluted, if 

necessary, to give a concentration of less than 500ng/µl and then 

stored on ice. The stock sample was immediately returned to the -80°C 

freezer. Prior to use, the Agilent 2100 bioanalyser electrode was 

cleaned with RNasezap by following the manufacturer‟s instructions. 

Next, preparation was made for the chip priming station. A new syringe 

was inserted into the station and 550µl of gel matrix was centrifuged 

through a spin filter for 10 minutes at 1500g. To a 65µl aliquot of filtered 

gel was added 1µl of well mixed dye concentrate. After mixing, the gel-

dye mixture was centrifuged for 10 minutes at 13000g. A new RNA 

6000 nanochip was inserted into the chip priming station and 9µl of the 

gel-dye mix was pipetted into well “G”. Next, the chip priming station 

was activated and the plunger was released exactly 30 seconds after 

activation. The plunger was then pulled back to the 1ml position. The 

chip priming station was then opened and 9µl of gel-dye mix was 

pipetted into all wells marked “G”. 

 

Next, 5µl of the Nano marker was pipetted into the ladder well and the 

12 samples wells. Any unused wells had an extra 1µl of marker added 

so that the volume in all the wells was the same. Next, 1µl of heat-

denatured RNA ladder solution was pipetted into the ladder well.  
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All of the labelled test samples were then heat-denatured at 70°C for 2 

minutes using a heat block and 1µl aliquots of each sample were 

pipetted into the relevant sample well. The chip was then vortex mixed 

for 1 minute in an IKA vortexer at 2400rpm. The chip was then loaded 

onto the Agilent 2100 Bioanalyser, the lid closed and the run started 

(takes 25 minutes). The Agilent 2100 expert software was used to 

analyse the electropherogram. First, the ladder data was viewed to 

assess the function of the chip. If this was satisfactory each individual 

sample was viewed to check for the presence of 2 distinct peaks 

(rRNA) and a normal distribution curve representing mRNA (see 

example below). 

 

 

An Agilant electrophoretogram of biotinylated cRNA probes for 
microarray analysis 
 

 

The Affymetrix microarray chips require the use of biotinylated cRNA 

probes to be generated from the total RNA samples. Briefly, cDNA is 

synthesised form the total RNA using reverse transcriptase. The cDNA 

then undergoes second strand synthesis using DNA polymerase and 

clean up. The dsDNA is then amplified by PCR, to become a template 

for in vitro transcription with RNA polymerase to produce cRNA. This is 

then labelled with biotin for microarray analysis. During the last stage, 

amplification of the original RNA template occurs.  
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First strand cDNA synthesis 

 

First strand cDNA synthesis was conducted using the Roche Applied 

Sciences Microarray Target Amplification Kit. Total RNA samples (1µg) 

from samples that had passed Agilent quality control were pipetted into 

0.5 ml microfuge tubes and 2µl of T7 oligo Target Amplification 

Sequence (TAS) primer added. Nuclease-free water was added to bring 

the final volume up to 10.5µl. After mixing, the samples were incubated 

for 10 minutes at 70°C in a thermal cycler. To each sample was then 

added 4µl of reverse transcriptase buffer, 2µl of dNTP mix, 2µl of 

dithiothreitol (DTT), and 1.5 µl of reverse transcriptase enzyme mix. 

This mixture was then incubated at 42°C for 1 hour. The samples were 

then incubated for 5 minutes at 95°C to denature RNA/DNA hybrids. 

After this, the samples (cDNA) were briefly centrifuged and placed on 

ice.  

 

Second strand cDNA synthesis 

 

Second strand cDNA synthesis was conducted by adding the following 

to the cDNA samples: 13.5 µl of nuclease free water, 5µl of Target 

Amplification Sequence (TAS) – (dN) 10 primer, 5µl of Klenow reaction 

buffer, 2.5µl of dNTP mix, 4µl of Klenow enzyme (DNA polymerase). 

After mixing, the samples were incubated for 30 minutes at 37 °C.  

 

Double stranded cDNA purification 

 

The ds-cDNA was then purified using a Roche Microarray Target 

Purification Kit (Roche). This relies on the binding of nucleic acids to a 

glass fibre fleece (in filter cartridge) in the presence of ethanol. The filter 

is then subjected to a number of rapid wash/spin steps to inactivate and 

wash out RNases and other enzymes. The nucleic acids are then 

eluted by a low salt solution. Briefly, 1.25 µl of carrier RNA and 50µl of 

nuclease-free water are added to each sample. Next, 400µl of cDNA 
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binding buffer (with く-mercaptoethanol added) and 200µl of ethanol 

were added to the ds-cDNA samples, mixed and pipetted onto the 

centre of a cDNA filter cartridge placed in a wash tube. This was 

centrifuged at 6000g for 15 seconds and the eluate discarded. Five 

hundred microlitres of cDNA wash buffer was added to the top of the 

cartridge and centrifuged again, as described previously. A further 

300µl of wash buffer were added and the cartridge centrifuged at 

13000g for 1 minute. The cartridge was then placed into an elution tube 

and 50µl of elution buffer B added to the centre of the cartridge. This 

was left at room temperature for 1 minute, and then centrifuged at 

6000g for 90 seconds. The eluate was placed on ice.  
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cDNA amplification by PCR 

 

To 12.5µl of purified cDNA were added: 1µl of TAS primer, 2µl of dNTP 

mix, 73µl of nuclease free water, 10µl of expand PCR buffer and 1.5µl 

of expand enzyme mix. The mixture was run on a thermocycler for 27 

cycles. The resulting amplified cDNA was purified again using the 

protocol as described previously. The concentration of DNA was 

measured using the Nanodrop ND-1000 spectrophotometer. The 

samples were placed on ice for further use.  

 

Synthesis of cRNA 

 

To synthesise cRNA from the purified ds-cDNA, the Roche Microarray 

Target RNA Target Synthesis Kit was used (Roche Applied Sciences). 

Briefly, 200ng of ds-cDNA were mixed with: 4µl of NTP mix, 2.5µl of 

biotin 16-UTP, 2µl of DTT, 2µl of transcription buffer, 3 µl transcription 

enzyme blend and the required amount of nuclease-free water to make 

the entire volume up to 20µl. The mixture was incubated at 37°C for 3 

hours. The final RNA concentration was measured and individual 

samples were subjected to bioanalysis (Agilent 2100 Bioanalyser RNA 

6000 nanoassay) using the protocol described previously to ensure 

good transcription. The labelled cRNA samples were then fragmented 

by mixing 20µg (in 32µl) of target cRNA with 8µl of Ambion 

fragmentation buffer and incubating them at 94°C for 35 minutes.  

 

Microarray hybridisation 

 

The arrays used in this experiment were Affymetrix GeneChip ® 

Human Genome U133 Plus 2.0 arrays (Affymetrix, High Wycombe, 

Bucks, UK). This array offers complete coverage of the human genome 

plus 6500 additional genes. In reality this offers the potential for 

analysis of 47,000 different transcripts. The following hybridisation 

cocktail was prepared for each sample: 15µg of fragmented cRNA, 5µl 
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of control oligonucleotide B2, 15µl of 20X eukaryotic hybridisation 

controls, 3µl of Herring sperm DNA, 3µl of acetylated bovine serum 

albumin, 30µl of DMSO, 150µl 2X hybridisation buffer and sufficient 

RNase-free water to make a final volume of 300µl. The cocktails were 

heated to 99°C for 5 minutes then to 45° C for 5 minutes. The arrays 

were removed from their packaging and filled with 1X hybridisation 

buffer. The arrays were then incubated for 10 minutes at 45°C while 

rotating. The buffer solution was removed from the arrays and replaced 

with 200µl of hybridisation cocktail which was then incubated for 16 

hours at 45°C while rotating at 45-60 rpm.  

 

After hybridisation, the cocktails were removed and stored at -80°C in 

case they were needed later. The Fluidics Station (Affymetrix Fluidics 

Station 450) required for staining and washing the arrays is prepared as 

are the SAPE (Strepavidin r-phycoerythrin conjugate) and biotinylated 

anti-streptavidin antibody solutions.  Each individual array is washed 

and stained and stored in the dark to await reading by array scanner 

(Affymetrix Scanner 3000). The GCOS software (Affymetrix) was used 

to monitor scanning and to convert the raw image files into cell intensity 

files („.CEL‟). 
 

Data Analysis 

 

Affymetrix CEL files were imported into GeneSpring GX 11.0.1 and 

processed with the MAS5 algorithm to generate PMA flags. Probesets 

were excluded from further analysis if there was not a Present or 

Marginal flag in 100% of the samples in one of the four cell groups. 

Affymetrix control probesets were also excluded to leave a probeset list 

for subsequent analysis. Data were then normalised with GC-RMA to 

provide expression values. To identify differentially expressed genes 

between cell groups, ANOVA was performed on this probeset list with 

Tukey-HSD post-hoc testing and Benjamini-Hochberg false discovery 

rate control. A difference in expression between probesets with a 
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corrected p-value of <0.05 and a fold change of greater than 2 were 

considered to be statistically significant. Data were exported directly 

from GeneSpring 11.0.1. to Ingenuity Pathway Analysis for these 

probesets. Heatmaps were drawn using dChip (Harvard University, 

Boston, USA) (Li and Wong 2001). Pie charts showing the breakdown 

of up regulated probesets with regard to biological processes were 

constructed using Panther microarray data analysis software 

(www.panther.org). 

 

Canonical pathways analysis identified the pathways from the Ingenuity 

Pathways Analysis library of canonical pathways that were most 

significant to the data set. Molecules from the data set that met the cut 

off criteria and were associated with a canonical pathway in Ingenuity‟s 

Knowledge Base were considered for the analysis. The significance of 

the association between the data set and the canonical pathway was 

measured in two ways: 

 

1) A ratio of the number of molecules from the data set that map to the 

pathway divided by the total number of molecules that map to the 

canonical pathway is displayed. 

 

2) Fisher‟s exact test was used to calculate a p-value determining the 

probability that the association between the genes in the dataset 

and the canonical pathway is explained by chance alone. 

  

Real time PCR 

 

Expression data from the microarray experiments were validated by 

TaqMan real time PCR (ABI). This method exploits the 5‟ nuclease 

activity of DNA polymerase to cleave a TaqMan probe during the PCR 

reaction. The TaqMan probe contains a reporter dye at the 5‟ end of the 

probe and a quencher at the γ‟ end. During the reaction, cleavage of 

the probe separates the reporter and quencher dye which results in 
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increased fluorescence of the reporter. Accumulation of the PCR 

product is detected by monitoring the increase in fluorescence of the 

reporter dye. Nine transcripts were chosen that demonstrated at least a 

2-fold differential expression between ECs from various sources on 

microarray analysis and that were thought to be relevant to a range of 

endothelial cellular functions. The chosen transcripts were: Angiopoietin 

2, Keratin 18, CD44, CD73 (5 nucleotidase ecto), MAPK 3, Integrin 3, 

Laminin 2, Decay Accelerating Factor and Carboxypeptidase E. For 

analysis, cDNA from each of the matched donor samples was 

generated from total RNA using the Superscript III first strand synthesis 

system (Invitrogen). Fifty nanograms of RNA from each sample to be 

assayed were mixed with 1µl of primer and 1µl of dNTP and made up to 

10µl with RNase free water. The mixture was incubated at 65°C for 5 

minutes then cooled on ice. To each cooled sample, 10µl of synthesis 

mix was added (composed of 10X RT buffer, MgCl2, DTT, RNaseOUT 

and Superscript III reverse transcriptase). The mixture was incubated at 

25°C for 10 minutes followed by 50 minutes at 50°C. The reaction was 

terminated by heating the mixtures at 85°C for 5 minutes. After adding 

1µl of RNase H and incubating for 20 minutes at 37°C, the samples 

were stored at -20°C unless they were to be used immediately for 

further analysis. The resulting cDNA was subjected to real time PCR 

reaction using the manufacturer‟s TaqMan Universal Mastermix Kit 

protocol. Into each well of a 96 well MicroAmp Optical reaction plate, 

1µl of cDNA (concentration between 1-100ng/µl) and 19µl of reaction 

mixture were mixed together. The reaction mixture consisted of the 

TaqMan probe for the gene of interest or the house keeper gene, 

nuclease free water and the PCR mastermix. Three replicates were run 

for each gene of interest. Control samples, consisting of either water or 

a pooled cDNA mix were used. The 96 well plates were loaded onto the 

ABI PRISM 7000 sequence detection system and run for 45 cycles. The 

expression of hypoxanthine-guanine phosphoribosyltransferase (HPRT) 

was chosen for normalisation. Analysis of the relative gene expression 

data was performed using the Ct method.  
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This is represented as follows:  

 

In the TaqMan system, signal (fluorescence) increases with time in 

direct proportion to the number of starting molecules (mRNA). The 

accumulation of reaction product (or signal) increases in a sigmoid 

fashion. The crossing point or threshold (Ct) occurs at the point 

threshold at which fluorescence can be detected and the Ct is inversely 

proportional to the initial concentration of the target in the sample. The 

Ct is usually expressed as a cycle number and can automatically 

measured by the instrument. The Ct for each target gene can be 

compared to a house keeper gene for comparative or fold-change 

analysis.  

 

The calculation of fold change from a Ct value is as follows: 

 

Ct  (gene of interest) – Ct (housekeeping gene) =  〉Ct 
 

〉Ct  (sample of interest i.e. choroid gene) -  〉Ct (comparator sample 

i.e. HUVEC)  =  〉〉Ct 

 

Fold change = 2- 〉〉Ct 
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Results  

Confirmation of human endothelial cell identity 

 
Samples of cells from all locations displayed homogenous cobblestone 

morphology with no evidence of cell contamination. Greater than 99.5% 

of the endothelial cells from each site demonstrated staining for factor 

VIII and CD31 prior to their use in the aforementioned experiments, 

confirming their purity and identity as endothelial cells.  

 

Overview of gene expression patterns 

 
Between 1.5 and 3.4 µg of total RNA were isolated from each 35mm 

plate. Biotinylated cRNA probes were hybridised to Affymetrix 

GeneChip ® Human Genome U133 Plus 2.0 arrays containing 47000 

transcripts, of which 38500 were well characterised human genes. A 

total of 26312 probe sets passed quality control testing during analysis. 

 

Gene expression patterns of proliferating HUVEC vs ocular 
microvascular endothelial cells 

 
When HUVE cells were compared to ocular microvascular cells, 802 

probesets demonstrated a significant difference. Within this total, 383 

probesets were found to be up-regulated in HUVECs and 419 down-

regulated. The probesets for up-regulated genes in HUVECs were 

enriched with genes important in embryonic development such as the 

homeobox genes HOX B7, B5, A2, A4, A9 and D8, neuroregulin 1 and 

osteonectin. Probe sets for ocular microvascular endothelial cells 

appeared to be enriched in genes important in MHC class I (A – C, F 

and G) and II (alpha and beta chains), immune responses (Interleukin 6 

receptor, CXCL 12  and FAS), signal transduction (EGF receptor, G 

protein receptors, phospholipase C ) and cell response to stimulus 

(TIMP3, collagen types I and III, laminin beta). Tables 3.1 and 3.2 
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indicate the 100 most highly expressed probesets in HUVECs and 

ocular MVECs respectively. 

 

Comparison of HUVECs with different ocular microvascular endothelial 

cells demonstrated a difference of 2146 probesets (8.9% of probesets 

that passed quality control) when HUVECs were compared with 

choroidal ECs (1100 up- and 1046 down-regulated), 1801 probesets 

(6.8%) when HUVE cells were compared with retinal ECs (797 up- and 

1004 down- regulated) and 2325 probesets (8.8%) when HUVE cells 

were compared with iris ECs (1205 up- and 1120 down-regulated). The 

raw data is available at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nfcplwewowqowp

k&acc=GSE20986. 

 

 

Fig 3.1,shows the heatmap of differential gene expression for those 

probesets reaching statistical significance. It can be seen that ECs from 

choroid and iris share similar gene expression profiles, whereas 

HUVEC and retinal ECs have distinct identities. The positions of 

important, differentially expressed genes are indicated at the side.  

 

Examination of fig 3.2a and b pie charts shows that HUVE cells 

demonstrate a greater proportion of up-regulated genes for 

developmental processes (12% vs 8 %) and metabolic processes (27% 

vs 16%) compared with ocular MVECs, while ocular MVEC 

demonstrated a greater proportion of probesets up-regulated for 

immune function (9% vs 5%) and cell adhesion (5% vs 2%) compared 

with HUVECs. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nfcplwewowqowpk&acc=GSE20986
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nfcplwewowqowpk&acc=GSE20986
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    HUVEC           Iris             Choroid          Retina 
 

 
Fig 3.1 Heatmap of ascending differential probeset expression reaching 
statistical significance with reference to HUVEC and different human 
ocular microvascular endothelial cells. Upregulated probesets are 
shown in red, downregulated in blue. A total of 2146 different probesets 
are represented. The positions of selected  probesets thought to be 
important in endothelial cell biology are shown.  
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Table 3.1 One hundred most highly expressed probesets in HUVECs 
compared with ocular microvascular endothelial cells  
 

Gene Title  
 

Fold 
Change 

 
homeobox A9 384.0  
homeobox A9 244.0  
regulator of G-protein signalling 5 201.0  
homeobox B7 163.0  
homeobox B7 145.0  
interleukin 1 receptor-like 1 131.0  
regulator of G-protein signalling 5 128.0  
aldehyde dehydrogenase 1 family, member A2 123.0  
cyclin A1 99.0  
regulator of G-protein signalling 5 92.0  
regulator of G-protein signalling 5 86.0  
gamma-aminobutyric acid (GABA) B receptor, 2 80.0  
ST2 protein 76.0  
serpin peptidase inhibitor, clade D (heparin cofactor), 
member 1 

76.0 
 

chromosome 4 open reading frame 49 66.0  
homeobox A5 60.0  
hypothetical gene supported by BC013438 48.0  
T cell receptor beta constant 1 /// T cell receptor beta 
constant 2 

48.0 
 

growth factor receptor-bound protein 14 35.0  
G protein-coupled receptor 37 (endothelin receptor type 
B-like) 

33.0 
 

sparc/osteonectin, cwcv and kazal-like domains 
proteoglycan (testican) 1 

32.0 
 

kelch-like 13 (Drosophila) 32.0  
gamma-aminobutyric acid (GABA) B receptor, 2 32.0  
GATA binding protein 3 32.0  
family with sequence similarity 101, member A 32.0  
WD repeat domain 69 30.0  
EPH receptor B2 29.0  
erythrocyte membrane protein band 4.1-like 3 29.0  
homeobox A7 27.0  
heparanase 27.0  
fermitin family homolog 3 (Drosophila) 26.0  
ALX homeobox 1 26.0  
EPH receptor B2 25.0  
TRAF2 and NCK interacting kinase 25.0  
ST2 protein 24.0  
prickle homolog 1 (Drosophila) 24.0  
erythrocyte membrane protein band 4.1-like 3 24.0  
placenta-specific 8 23.0  
gamma-aminobutyric acid (GABA) B receptor, 2 23.0  
homeobox B3 23.0  
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Gene Title  
 

Fold 
Change 

 
collectin sub-family member 12 22.0  
gamma-aminobutyric acid (GABA) B receptor, 2 22.0  
homeobox A10 21.0  
BMX non-receptor tyrosine kinase 21.0  
erythrocyte membrane protein band 4.1-like 3 20.0  
globoside alpha-1,3-N-acetylgalactosaminyltransferase 1 20.0  
TRAF2 and NCK interacting kinase 19.3  
TRAF2 and NCK interacting kinase 18.5  
insulin-like growth factor 2 mRNA binding protein 1 18.4  
G protein-coupled receptor 143 17.4  
EPH receptor B2 17.1  
chromosome 6 open reading frame 142 17.0  
phosphatidic acid phosphatase type 2 domain 
containing 1A 

16.7 
 

neuroligin 1 16.4  
caspase recruitment domain family, member 11 16.3  
T cell receptor beta constant 1 15.9  
fibrillin 2 15.7  
neuregulin 1 15.4  
fibronectin type III and SPRY domain containing 1 15.0  
insulin-like growth factor 2 mRNA binding protein 1 15.0  
neuronatin 14.8  
transmembrane protein 163 14.5  
Full length insert cDNA clone YW19A06 13.8  
E2F transcription factor 8 13.8  
thiosulfate sulfurtransferase KAT, putative /// KAT protein 13.7  
transmembrane protein 163 13.3  
homeobox A3 13.0  
paraneoplastic antigen MA2 12.9  
protein tyrosine phosphatase, non-receptor type 22 
(lymphoid) 

12.6 
 

solute carrier family 47, member 1 12.4  
prickle homolog 1 (Drosophila) 12.2  
keratin 80 12.1  
protein tyrosine phosphatase, non-receptor type 22 
(lymphoid) 

12.0 
 

homeobox D1 11.8  
mal, T-cell differentiation protein 2 11.7  
follistatin-like 5 11.5  
hypothetical LOC401022 11.1  
G protein-coupled receptor, family C, group 5, member A 11.0  
tumor necrosis factor (ligand) superfamily, member 15 10.8  
galanin prepropeptide 10.2  
EPH receptor B2 10.2  
glucosaminyl (N-acetyl) transferase 1, core 2 (beta-1,6-N-
acetylglucosaminyltransferase) 

10.1 
 

Prickle homolog 1 (Drosophila) (PRICKLE1), mRNA 10.1  
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Gene Title  
 

Fold 
Change 

 
GATA binding protein 3 9.7  
heparanase 9.7  
homeobox B2 9.1  
protocadherin 7 9.1  
neuregulin 1 9.0  
family with sequence similarity 174, member B 8.6  
runt-related transcription factor 1; translocated to, 1 
(cyclin D-related) 

8.5 
 

TAF7-like RNA polymerase II,  8.5  
PRP31 pre-mRNA processing factor 31 homolog (S. 
cerevisiae) 

8.3 
 

stearoyl-CoA desaturase (delta-9-desaturase) 8.3  
FERM domain containing 5 8.2  
keratin 15 8.1  
homeobox B8 8.1  
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Table 3.2 One hundred most highly expressed probesets in ocular 
microvascular endothelial cells compared with HUVE cells 
 

Gene Title 
 

Fold 
change 

 
collagen, type I, alpha 1 736.0  
major histocompatibility complex, class II, DR beta 1  451.0  
collagen, type I, alpha 1 422.0  
deoxyribonuclease I-like 3 381.0  
collagen, type III, alpha 1 222.0  
periostin, osteoblast specific factor 212.0  
major histocompatibility complex, class II, DR beta 1  202.0  
collagen, type VI, alpha 3 182.0  
collagen, type I, alpha 2 181.0  
cytochrome P450, family 1, subfamily B, polypeptide 1 171.0  
collagen, type I, alpha 2 162.0  
collagen, type III, alpha 1 156.0  
cytochrome P450, family 1, subfamily B, polypeptide 1 156.0  
major histocompatibility complex, class II, DP beta 1 149.0  
major histocompatibility complex, class II, DP alpha 1 145.0  
major histocompatibility complex, class II, DR beta 1  91.0  
chemokine (C-X-C motif) ligand 12 (stromal cell-derived 
factor 1) 

90.0 
 

paired related homeobox 1 90.0  
alpha-2-macroglobulin 85.0  
interleukin 13 receptor, alpha 2 80.0  
ATP-binding cassette, sub-family B (MDR/TAP), member 1 77.0  
selenoprotein P, plasma, 1 71.0  
desmoplakin 70.0  
TIMP metallopeptidase inhibitor 3 66.0  
transgelin 66.0  
MHC class II HLA-DRB3 mRNA (HLA-DRB3*01012 allele) 61.0  
Rho GTPase activating protein 25 58.0  
chemokine (C-X-C motif) ligand 12 (stromal cell-derived 
factor 1) 

54.0 
 

SH3 and cysteine rich domain 53.0  
major histocompatibility complex, class II, DP alpha 1 47.0  
aggrecan 47.0  
insulin-like growth factor binding protein 5 45.0  
collagen, type XV, alpha 1 44.0  
TIMP metallopeptidase inhibitor 3 42.0  
hydroxysteroid (17-beta) dehydrogenase 2 42.0  
doublecortin-like kinase 1 41.0  
periostin, osteoblast specific factor 40.0  
cytochrome P450, family 1, subfamily B, polypeptide 1 40.0  
synaptopodin 2 38.0  
acyl-CoA synthetase long-chain family member 5 38,0  
Thy-1 cell surface antigen 37.0  
kynureninase (L-kynurenine hydrolase) 35.0  
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Gene Title 
 

Fold 
change 

 
Rho GTPase activating protein 25 34.0  
hypothetical protein FLJ22662 34.0  
suppressor of cytokine signaling 2 33.0  
aggrecan 32.0  
sushi domain containing 2 31.0  
tumor necrosis factor receptor superfamily, member 11b 31.0  
GTPase, IMAP family member 5 27.0  
filamin A interacting protein 1 27.0  
carbonic anhydrase XII 26.0  
tenascin C 26.0  
crystallin, alpha B 26.0  
transgelin 25.0  
acyl-CoA synthetase long-chain family member 5 25.0  
lymphocyte cytosolic protein 1 (L-plastin) 25.0  
insulin-like growth factor binding protein 3 25.0  
versican 24.0  
aggrecan 24.0  
lymphocyte cytosolic protein 2 (SH2 domain containing 
leukocyte protein of 76kDa) 

23.0 
 

Ras protein-specific guanine nucleotide-releasing factor 2 23.0  
family with sequence similarity 46, member A 23.0  
hyaluronan synthase 2 23.0  
guanine nucleotide binding protein (G protein), alpha 14 22.0  
GTPase, IMAP family member 5 22.0  
gremlin 1, cysteine knot superfamily, homolog (Xenopus 
laevis) 

22.0 
 

fibroblast activation protein, alpha 22.0  
mannose receptor, C type 1 /// mannose receptor, C type 
1-like 1 

20.0 
 

CDNA clone IMAGE:4826696 20.0  
phosphotriesterase related 20.0  
syndecan 2 20.0  
dipeptidyl-peptidase 4 20.0  
G protein-coupled receptor 116 19.6  
syndecan 2 19.5  
chromosome 10 open reading frame 128 19.2  
G protein-coupled receptor, family C, group 5, member B 19.0  
sprouty homolog 1, antagonist of FGF signaling 
(Drosophila) 

19.0 
 

fibroblast growth factor 13 18.3  
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase-like 4 

18.1 
 

snail homolog 2 (Drosophila) 18.0  
NLR family, CARD domain containing 3 17.7  
zinc finger protein 415 17.0  
CD248 molecule, endosialin 17.0  
cysteine-rich protein 1 (intestinal) 16.8  
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Gene Title 
 

Fold 
change 

 
ependymin related protein 1 (zebrafish) 16.8  
versican 16.8  
carbonic anhydrase II 16.4  
actin, alpha 2, smooth muscle, aorta 16.3  
lymphocyte cytosolic protein 2 (SH2 domain containing 
leukocyte protein of 76kDa) 

16.2 
 

suppressor of cytokine signaling 2 16.1  
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Fig 3.2a. Pie chart of significantly upregulated genes grouped by 
biological processes in proliferating HUVECs compared with 
proliferating ocular microvascular endothelial cells  
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Fig 3.2b. Pie chart of significantly upregulated genes grouped by 
biological processes in proliferating ocular microvascular endothelial 
cells compared with proliferating HUVECs. 
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Proliferating human choroidal versus retinal vascular endothelial 
cells 

 
Comparison of human choroidal endothelial cells with human retinal 

endothelial cells demonstrated a difference of 2217 probe sets (8.4% of 

probesets that passed quality control). Of this total, 1078 were up-

regulated in choroidal ECs and 1139 were up-regulated in retinal ECs. 

Using Ingenuity Pathway Analysis software, differences between retinal 

and choroidal ECs were shown in the expression of genes involved in a 

wide range of biological processes such as cell cycle, DNA replication, 

cell morphology, vascular cell-to-cell interactions, cell movement and 

gene expression. Because of the enormity of the gene expression data 

sets, it is not possible to show it in its entirety in this thesis. Tables 3.4 

and 3.5 show the top 100 differentially expressed genes for each EC 

subtype. The complete data set (raw and post analysis) can be 

obtained from the University of Nottingham, Division of Ophthalmology 

and Visual Sciences academic secretary. The raw data is also available 

at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nfcplwewowqowp

k&acc=GSE20986. 

 

 
 
 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nfcplwewowqowpk&acc=GSE20986
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=nfcplwewowqowpk&acc=GSE20986
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Table 3.3. Differential expression of probe sets involved in cell signalling between matched human choroidal and retinal 
 endothelial cells 
 

Signalling 
Pathway 

Affy ID 
Gene 

Symbol 
Gene Name 

Fold 
Change 

Direction of regulation 
(retina vs choroid) 

IGF-1 
signalling 

201163_s_at IGFBP7 Insulin like growth factor binding protein 7 4.1 Up 

 204686_at IRS1 Insulin receptor substrate 1 6.4 Up 

 225330_at IGF1R Insulin like growth factor 1 receptor 3.0 Up 

VEGF 
signalling 

218488_at EIF2B3 
Eukaryotic translation initiation factor 2B, 
subunit 3 

2.7 Down 

 212351_at EIF2B5 
Eukaryotic translation initiation factor 2B, 
subunit 5 

2.0 Down 

 200989_at HIF1A Hypoxia inducible factor 1 alpha subunit 2.2 Up 

 208351_s_at MAPK1 Mitogen-activated protein kinase 1 2.1 Down 

 
1553694_a_
at 

PIK3C2A Phosphoinositide 3 kinase class 2 alpha 7.9 Down 

 210512_s_at VEGFA Vascular endothelial growth factor A 8.7 Up 

TOR 210949_s_at EIF3C  
Eukaryotic translation initiation factor 3 (subunit 
C)  

2.7 Down 

 211937_at EIF4B Eukaryotic translation initiation factor 4B 2.0 Down 

 208624_s_at EIF4G1 Eukaryotic translation initiation factor 4 gamma 4.6 Down 
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Signalling 
Pathway 

Affy ID 
Gene 

Symbol 
Gene Name 

Fold 
Change 

Direction of regulation 
(retina vs choroid) 

 200989_at HIF1A Hypoxia inducible factor 1 alpha subunit 2.2 Up 

 204686_at IRS1 Insulin receptor substrate 1 6.4 Up 

 226312_at RICTOR RPTOR independent companion of mTOR 2.9 Up 

 211578_s_at 
RPS6KB
1 

Ribosomal protein S6 kinase (70kDa) 7.1 Down 

PI3K/AKT 211968_s_at 
HSP90A
A1 

Heat shock protein alpha, class A 3.0 Down 

 1557910_at 
HSP90A
B1 

Heat shock protein alpha, class B 4.4 Down 

 201474_s_at ITGA3 Integrin alpha 3 (CD49C) 4.4 Up 

 
1552610_a_
at 

JAK1 Janus kinase 1 4.7 Down 

 212240_s_at PIK3R1 Phosphoinositide 3 kinase subunit 1  2.2 Down 

PI3K/AKT 207749_s_a 
PPP2R3
A 

Protein phosphatase 2 subunit B 2.2 Down 

ERK/MAPK 201474_s_at ITGA3 Integrin alpha 3 (CD49C) 4.4 Up 

 201841_s_at HSPB1 Heat shock protein 1 (27kDa) 3.3 Up 

 208351_s_at MAPK1 Mitogen-activated protein kinase 1 2.1 Down 
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Signalling 
Pathway 

Affy ID 
Gene 

Symbol 
Gene Name 

Fold 
Change 

Direction of regulation 
(retina vs choroid) 

ERK/MAPK 
1553694_a_
at 

PIK3C2A Phosphoinositide-3-kinase, class 2, alpha 7.9 Down 

 209785_s_at 
PLA2G4
C 

Phospholipase A2, (group IVC) 3.2 Up 

 207821_s_at PTK2 PTK2 protein tyrosine kinase 2 2.4 Down 

 201213_at PPP1R7 Protein phosphatase 1, subunit 7 2.5 Down 

 204284_at 
PPP1R3
C 

Protein phosphatase 1, subunit 3C 3.4 Up 

T Cell 
Receptor 

215092_s_at NFAT5 Nuclear factor of activated T-cells 5 6.7 Down 

 201502_s_at NFKBIA Nuclear factor of kappa light polypeptide alpha 3.4 Up 

 205263_at BCL10 B-cell CLL/lymphoma 10 3.4 Up 

Interferon 209417_s_at IFI35 Interferon-induced protein 35 2.3 Up 

 214022_s_at IFITM1 Interferon induced transmembrane protein 1 6.3 Up 

 201642_at IFNGR2 Interferon gamma receptor 2 2.9 Up 

IL4 203233_at IL4R interleukin 4 receptor 2.6 Up 
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Signalling 
Pathway 

Affy ID 
Gene 

Symbol 
Gene Name 

Fold 
Change 

Direction of regulation 
(retina vs choroid) 

Wnt 213425_at WNT5A Wingless type family 5.2 up 

 210220_at FZD2 Frizzeled homologue 2 10.3 up 

 200816_s_at 
PAFAH1
B 

Platelet Activating Factor Acetaldehyde 2.0 up 
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Fig 3.3 shows the heatmap of differential gene expression for all 

probesets reaching statistical significance. It can be seen that there is a 

wide disparity between retinal and choroidal ECs. The positioning of 

some of the important, differentially expressed genes is indicated at the 

side. 

 

Figure 3.4a and 3.4b pie charts demonstrate a greater proportion of up-

regulated probesets for cell communication processes in retinal ECs 

(13% vs 8%) when compared with choroidal ECs. All other biological 

process subsets demonstrated similar proportions of expression in both 

retinal and choroidal ECs.  

 

Canonical pathway analysis revealed collections of probe sets from a 

number of signalling pathways that were differentially expressed 

including: ERK/MAPK, mTOR, VEGF, insulin like growth factor 1 (IGF 

1), PI3K/AKT, T cell receptor, and IL4 signalling pathways (Table 3.3). 

Interestingly, this shows that proliferating retinal ECs demonstrate up-

regulation of components of IGF 1 signalling such as IGF binding 

protein 7 and IGF receptor compared with choroidal ECs. Retinal ECs 

also demonstrate up-regulation of HIF 1alpha, VEGF and some 

immune related signalling pathways compared with choroidal ECs.  
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Fig 3.3 Heatmap of ascending differential probeset expression reaching 
statistical significance with reference to human retinal and choroidal 
microvascular endothelial cells. Up-regulated probesets are shown in 
red, down-regulated in blue. A total of 2217 different probesets are 
represented. The positions of selected probesets thought to be 
important in endothelial cell biology are shown.  
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Fig 3.4a. Pie chart of significantly up-regulated genes grouped by 
biological processes in proliferating human choroidal endothelial cells 
compared with proliferating human retinal endothelial cells  
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Fig 3.4b. Pie chart of significantly upregulated genes grouped by 
biological processes in proliferating human retinal endothelial cells 
compared with proliferating human choroidal endothelia cells 
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Table 3.4 One hundred most highly expressed probesets in human 
choroidal microvascular endothelial cells compared with human retinal 
endothelial cells 
 

Gene Title 
 

Fold 
Change 

 
histone 1, H1c 9.4  
phosphatase and actin regulator 2 8.2  
cyclin E2 6.9  
Rho-related BTB domain containing 3 6.6  
WD repeat domain 4 6.5  
epithelial membrane protein 1 6.1  
dipeptidylpeptidase 4 (CD26, adenosine deaminase 
complexing protein  

5.9 
 

NIMA  5.8  
cyclin-dependent kinase 2 5.8  
TAO kinase 1 5.8  
plasminogen activator, urokinase /// plasminogen activator, 
urokinase 

5.5 
 

retinoblastoma 1 (including osteosarcoma) 5.5  
HECT domain containing 1 5.5  
jumonji domain containing 1C 5.4  
KIAA0372 5.3  
squalene epoxidase 5.2  
protein tyrosine phosphatase, non-receptor type 12 5.1  
suppressor of Ty 16 homolog (S. cerevisiae) 5.0  
BUB1 budding uninhibited by benzimidazoles 1 homolog 
(yeast) 

4.9 
 

muscleblind-like 2 (Drosophila) 4.9  
chromosome X open reading frame 53 4.9  
SLD5 homolog /// SLD5 homolog 4.8  
proline-rich nuclear receptor coactivator 2 4.8  
thymopoietin 4.8  
PTPRF interacting protein, binding protein 1 (liprin beta 1) 4.8  
zinc finger protein 146 4.6  
PRP4 pre-mRNA processing factor 4  4.5  
DEAH (Asp-Glu-Ala-His) box polypeptide 9 4.5  
huntingtin interacting protein B 4.5  
nuclear factor I/B 4.5  
phosphoinositide-3-kinase, class 2, alpha polypeptide 4.4  
ATPase family, AAA domain containing 2 4.4  
transcription factor Dp-1 4.4  
dystonin 4.4  
c-Mpl binding protein 4.3  
FERM domain containing 4A 4.3  
cell division cycle associated 2 4.2  
translocase of inner mitochondrial membrane 44 homolog 
(yeast) 

4.1 
 

G protein-coupled receptor kinase 5 4.1  
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Gene Title 
 

Fold 
Change 

 
protein BAP28 4.1  
hypothetical protein FLJ12735 4.1  
UDP-glucose ceramide glucosyltransferase-like 1 4.1  
met proto-oncogene (hepatocyte growth factor receptor) 4.0  
DnaJ (Hsp40) homolog, subfamily C, member 13 4.0  
A kinase (PRKA) anchor protein 1 4.0  
septin 10 3.9  
RAB6A, member RAS oncogene family 3.9  
G elongation factor, mitochondrial 1 3.8  
RAS and EF hand domain containing 3.8  
RAS and EF hand domain containing 3.8  
muted homolog (mouse) 3.8  
matrin 3 3.7  
MLF1 interacting protein 3.7  
lamin B1 3.7  
chromodomain protein, Y-like 2 3.7  
dUTP pyrophosphatase 3.7  
diaphanous homolog 2 (Drosophila) 3.7  
sperm specific antigen 2 3.7  
RAD21 homolog (S. pombe) 3.7  
zinc finger RNA binding protein 3.7  
tetratricopeptide repeat domain 3 3.6  
M-phase phosphoprotein 9 3.6  
vav 3 oncogene 3.6  
DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 3.6  
cell division cycle 27 3.5  
translocated promoter region (to activated MET oncogene) 3.5  
cell division cycle 2, G1 to S and G2 to M 3.5  
guanine nucleotide binding protein-like 3 (nucleolar)-like 3.5  
arrestin, beta 1 3.5  
zinc finger RNA binding protein 3.5  
replication factor C (activator 1) 2, 40kDa 3.5  
nucleolar and spindle associated protein 1 3.4  
c-Mpl binding protein 3.4  
erythrocyte membrane protein band 4.1-like 3 3.4  
cell division cycle 2, G1 to S and G2 to M 3.4  
F-box protein 5 3.4  
chromosome 6 open reading frame 106 3.3  
ankyrin repeat domain 11 3.3  
hydroxyacyl-Coenzyme A dehydrogenase 3.3  
Zwilch 3.3  
chondroitin sulfate proteoglycan 6 3.3  
pericentriolar material 1 3.3  
amyloid beta (A4) precursor protein  3.3  
chromosome condensation 1 3.3  
cell division cycle associated 7 /// cell division cycle 
associated 7 

3.2 
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Gene Title 
 

Fold 
Change 

 
ATPase family, AAA domain containing 2 3.2  
thymidine kinase 1, soluble 3.2  
NACHT, leucine rich repeat and PYD (pyrin domain) 
containing 1 

3.2 
 

MCM4 minichromosome maintenance deficient 4 (S. 
cerevisiae) 

3.2 
 

DEP domain containing 1 3.2  
hypothetical protein FLJ12973 3.2  
erythrocyte membrane protein band 4.1-like 3 3.2  
nucleoporin 35kDa 3.2  
ets variant gene 4 (E1A enhancer binding protein, E1AF) 3.2  
transforming, acidic coiled-coil containing protein 1 3.2  
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Table 3.5 One hundred most highly expressed probesets in human 
retinal microvascular endothelial cells compared with human choroidal 
endothelial cells 
 

Gene Title 
 

Fold 
Change 

 
hepatocyte growth factor (hepapoietin A; scatter factor) 17.2  
gremlin 1 homolog, cysteine knot superfamily (Xenopus 
laevis) 

13.2 
 

collagen, type I, alpha 1 11.3  
neuronal PAS domain protein 2 7.2  
response gene to complement 32 7.2  
Tissue factor pathway inhibitor 2 6.4  
stanniocalcin 2 6.1  
hypothetical gene supported by BC009447 5.8  
aldehyde dehydrogenase 1 family, member L2 5.6  
collagen, type VI, alpha 1 5.2  
lectin, galactoside-binding, soluble, 3 binding protein 5.0  
vascular endothelial growth factor 5.0  
Notch homolog 3 (Drosophila) 4.9  
melanophilin 4.6  
Tropomyosin 4 4.3  
selenoprotein M 4.2  
pecanex-like 2 (Drosophila) 4.2  
adrenomedullin 4.2  
limitrin 4.1  
Hypothetical protein LOC149478 4.1  
interferon regulatory factor 7 4.0  
Full length insert cDNA YI37C01 3.9  
agrin 3.9  
Prickle-like 1 (Drosophila) 3.7  
CDNA FLJ41321 fis, clone BRAMY2045299 3.7  
pleckstrin and Sec7 domain containing 3 3.5  
agrin 3.5  
Full length insert cDNA YI37C01 3.4  
E2F transcription factor 5, p130-binding 3.4  
platelet derived growth factor C 3.4  
gb:AA805633  3.3  
transmembrane anchor protein 1 3.3  
integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 
receptor) 

3.3 
 

MRNA (clone ICRFp507I1077) 0.2  
family with sequence similarity 14, member A 3.2  
DNA-damage-inducible transcript 4 3.2  
UDP-glucose ceramide glucosyltransferase 3.1  
B-cell translocation gene 1, anti-proliferative 3.1  
nephronophthisis 3 (adolescent) 3.1  
tissue inhibitor of metalloproteinase 2 3.1  
follistatin 3.1  
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Gene Title 
 

Fold 
Change 

 
zinc and ring finger 1 3.1  
RNA binding protein with multiple splicing 3.0  
protein phosphatase 1, regulatory (inhibitor) subunit 14B 3.0  
Full length insert cDNA YH99G08 3.0  
ras homolog gene family, member B 3.0  
CDNA FLJ11397 fis, clone HEMBA1000622 3.0  
Sine oculis homeobox homolog 1 (Drosophila) 3.0  
phosphoinositide-3-kinase, class 2, beta polypeptide 2.9  
complement component 1, r subcomponent-like 2.9  
yippee-like 2 (Drosophila) 2.9  
discoidin domain receptor family, member 1 2.9  
Homo sapiens, clone IMAGE:5259272, mRNA 2.9  
ADP-ribosylation factor-like 7 2.8  
hypothetical protein MGC18216 2.8  
Gene 33/Mig-6 (MIG-6) 2.8  
ubiquitin-conjugating enzyme E2E 2 (UBC4/5 homolog, 
yeast) 

2.8 
 

gb:N51405  2.8  
Similar to lymphocyte-specific protein 1 2.8  
cathepsin C 2.0  
glycine receptor, beta 2.8  
SNRPN upstream reading frame 2.8  
LOC439987 2.8  
estrogen-related receptor alpha 2.7  
beta-site APP-cleaving enzyme 2 2.7  
sin3-associated polypeptide, 30kDa 2.7  
pleckstrin homology domain containing, family C (with 
FERM domain)  

2.7 
 

nuclear factor of kappa light polypeptide gene enhancer in 
B-cells inhibitor 

2.7 
 

Hypothetical protein LOC201895 2.7  
regulator of G-protein signalling 10 2.7  
CDNA clone IMAGE:4797120, partial cds 2.7  
LOC440309 2.6  
KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein 
retention receptor 3 

2.6 
 

retinol dehydrogenase 11 (all-trans and 9-cis) 2.6  
PRKC, apoptosis, WT1, regulator 2.6  
ADP-ribosylation factor-like 7 2.6  
methionine sulfoxide reductase B2 2.6  
uronyl-2-sulfotransferase 2.5  
aspartate beta-hydroxylase 2.5  
heat shock 27kDa protein 1 2.5  
microfibrillar-associated protein 2 2.5  
Transcribed locus 2.5  
SAR1a gene homolog 1 (S. cerevisiae) 2.5  
Hypothetical protein BC001096 2.0  
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Gene Title 
 

Fold 
Change 

 
synaptosomal-associated protein, 29kDa 2.5  
insulin-like growth factor binding protein 7 2.4  
Homo sapiens, clone IMAGE:5261213, mRNA 2.4  
Dickkopf homolog 3 (Xenopus laevis) 2.3  
Zinc finger protein 302 2.3  
zinc finger protein 326 2.4  
kinesin family member 22 2.4  
erythrocyte membrane protein band 4.1-like 3 2.4  
methylthioadenosine phosphorylase 2.5  
chromosome 22 open reading frame 18 2.5  
histone 1, H4c 2.5  
G-2 and S-phase expressed 1 2.8  
Protein phosphatase 1F (PP2C domain containing) 2.6  
BAT2 domain containing 1 2.6  
KIAA1641 2.6  
THO complex 3 2.6  
interleukin enhancer binding factor 3, 90kDa 2.7  
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Proliferating human choroidal versus iris vascular endothelial 
cells 

 
Comparison of human choroidal endothelial cells with human iris 

endothelial cells demonstrated a difference of 138 probe sets (0.33% of 

probesets that passed quality control). Of this total, 81 were up-

regulated in choroidal ECs and 57 were up-regulated in iris ECs. This 

study demonstrated a striking homogeneity of gene expression 

between choroidal and iris tissues which may not be surprising 

considering that types of endothelial cells are derived from different 

sites within the uveal tract. Differences in the expression of a small 

number of genes such as thrombospondin 1, synaptopodin 2, CD74, 

Carboxypeptidase and IL8 were noted. Canonical pathway analysis 

failed to reveal any pathways that were significantly represented. A 

representative heat map is shown in fig 3.5 and a complete list of 

differentially expressed probesets reaching statistical significance in 

choroidal and iris ECs are shown in tables 3.6 and 3.7 respectively. 

Although the relative numbers of differentially up-regulated genes were 

small, fig 3.6a and 3.6b pie charts demonstrate a greater proportion of 

up-regulated probesets for cell development in iris ECs (13% vs 8%) 

when compared with choroidal ECs. Choroidal ECs demonstrated a 

greater proportion of up-regulated genes for cell metabolism (28% vs 

13%) All other biological process subsets demonstrated similar 

proportions of expression in both iris and choroidal ECs. 
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Fig 3.5 Heatmap of ascending differential probeset expression reaching 
statistical significance with reference to human iris and choroidal 
microvascular endothelial cells. Up-regulated probesets are shown in 
red, down-regulated in blue. A total of 138 different probesets are 
represented. The positions of selected probesets thought to be 
important in endothelial cell biology are shown.  
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Fig 3.6a. Pie chart of significantly up-regulated genes grouped by 
biological processes in proliferating human iris endothelial cells 
compared with proliferating human choroidal endothelial cells 
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Fig 3.6b. Pie chart of significantly up-regulated genes grouped by 
biological processes in proliferating human choroidal endothelial cells 
compared with proliferating human iris endothelial cells 
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Table 3.6. All probesets reaching differential expression of 2.0 or 
greater in human choroidal microvascular endothelial cells compared 
with human iris endothelial cells. 
  

Gene Title 
 

Fold 
Change 

 
thrombospondin, type I, domain containing 2 6.0     
sushi domain containing 2 4.8  
synaptopodin 2 4.3  
aggrecan 1 (chondroitin sulfate proteoglycan 1, 4.0  
aggrecan 1 (chondroitin sulfate proteoglycan 1, 4.0  
CD74 antigen  3.9  
gb:AB020690.1  3.8  
hypothetical protein FLJ22662 3.7  
erythrocyte membrane protein band 4.1-like 3 3.5  
collagen, type VI, alpha 3 3.4  
gb:AI733234  3.3  
erythrocyte membrane protein band 4.1-like 3 3.2  
succinate dehydrogenase complex, subunit A, 
flavoprotein (Fp)  

3.2 
 

aggrecan 1 (chondroitin sulfate proteoglycan 1,  3.2  
insulin-like growth factor binding protein 5 3.2  
Protease, serine, 12 (neurotrypsin, motopsin) 3.1  
transmembrane protein 46 3.1  
carboxypeptidase E 3.1  
erythrocyte membrane protein band 4.1-like 3 3.1  
interleukin 8 3.0  
carboxypeptidase E 3.0  
FERM domain containing 3 2.9  
steroid sensitive gene 1 2.9  
leucine rich repeat containing 15 2.8  
GTP binding protein over-expressed in skeletal muscle 2.8  
ABI gene family, member 3 (NESH) binding protein 2.8  
crystallin, alpha B 2.8  
keratin 19 2.8  
transketolase (Wernicke-Korsakoff syndrome) 2.8  
KIAA1913 2.7  
phosphatase and actin regulator 3 2.7  
early growth response 1 2.6  
periostin, osteoblast specific factor 2.6  
inhibitor of DNA binding 1, dominant negative helix-loop-
helix protein 

2.6 
 

chemokine (C-X-C motif) ligand 12 (stromal cell-derived 
factor 1) 

2.6 
 

GLI pathogenesis-related 1 (glioma) 2.6  
Inhibin, beta A (activin A, activin AB alpha polypeptide) 2.5  
AE binding protein 1 2.5  
periostin, osteoblast specific factor 2.5  
inhibin, beta A (activin A, activin AB alpha polypeptide) 2.4  
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Gene Title 
 

Fold 
Change 

 
UDP-glucose ceramide glucosyltransferase-like 2 2.4  
lipopolysaccharide-induced TNF factor 2.4  
lipase, endothelial 2.3  
prostaglandin-endoperoxide synthase 1  2.3  
CDNA clone IMAGE:4079668, partial cds 2.3  
GLI pathogenesis-related 1 (glioma) 2.3  
syndecan 2 (heparan sulfate proteoglycan 1, cell surface-
associated 

2.3 
 

Hypothetical protein LOC123722 2.3  
Transcribed locus 2.3  
GAJ protein 2.3  
mitochondrial ribosomal protein L43 2.3  
Noggin 2.3  
transgelin 2.3  
syndecan 2 (heparan sulfate proteoglycan 1, cell surface-
associated 

2.3 
 

platelet-derived growth factor alpha polypeptide 2.2  
Cadherin 11, type 2, OB-cadherin (osteoblast) 2.2  
brain expressed X-linked 2 /// brain expressed X-linked 2 2.2  
tenascin C (hexabrachion) 2.2  
syndecan 2 (heparan sulfate proteoglycan 1, cell surface-
associated,  

2.2 
 

desmoplakin 2.1  
ankyrin repeat domain 1 (cardiac muscle) 2.1  
zinc finger protein 643 2.1  
GLI pathogenesis-related 1 (glioma) 2.1  
KIAA0830 protein 2.1  
trefoil factor 3 (intestinal) 2.1  
Homo sapiens, clone IMAGE:5285282, mRNA 2.1  
deleted in lymphocytic leukaemia, 2 /// BCMS upstream 
neighbor-like 

2.1 
 

deleted in lymphocytic leukemia, 2 /// BCMS upstream 
neighbor-like 

2.1 
 

prostaglandin-endoperoxide synthase 1  2.1  
nucleophosmin/nucleoplasmin, 3 2.1  
Rap guanine nucleotide exchange factor (GEF) 1 2.1  
hypothetical protein LOC144997 2.1  
solute carrier family 38, member 5 2.1  
cytochrome P450, family 1, subfamily B, polypeptide 1 2.1  
cytochrome b5 reductase b5R.2 2.0  
follistatin 2.0  
heme oxygenase (decycling) 1 2.0  
neuron navigator 3 2.0  
chromosome 20 open reading frame 35 2.0  
prostaglandin-endoperoxide synthase 1  2.0  
hypothetical protein LOC286505 2.0  
ST3 beta-galactoside alpha-2,3-sialyltransferase 6 2.0  
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Table 3.7. All probesets reaching diiferential expression of 2.0 or 
greater in human iris microvascular endothelial cells compared with 
human choroidal endothelial cells. 
  

Gene Title 
 

Fold 
Change 

 
cardiomyopathy associated 3 4.2  
popeye domain containing 3 3.8  
Protocadherin 9 3.8  
delta-notch-like EGF repeat-containing transmembrane 3.7  
synaptotagmin I 3.6  
extracellular link domain containing 1 3.6  
CD69 antigen (p60, early T-cell activation antigen) 3.2  
interferon-induced protein with tetratricopeptide repeats 1  3.2  
family with sequence similarity 38, member B 3.1  
extracellular link domain containing 1 2.9  
protein tyrosine phosphatase, non-receptor type 22 
(lymphoid) 

2.9 
 

synaptotagmin I  2.9  
interferon-induced protein 44-like 2.8  
Homo sapiens, clone IMAGE:5312689, mRNA 2.8  
myxovirus (influenza virus) resistance 1, interferon-
inducible protein p78 

2.7 
 

solute carrier family 6, member 15 2.7  
aldo-keto reductase family 1, member C3  2.7  
LOC440156 2.7  
protein tyrosine phosphatase, non-receptor type 22 
(lymphoid) 

2.6 
 

KIAA1598 2.6  
family with sequence similarity 38, member B 2.6  
zinc finger protein 317 2.5  
lanosterol synthase (2,3-oxidosqualene-lanosterol 
cyclase) 

2.5 
 

aldo-keto reductase family 1, member C2  2.5  
nitric oxide synthase trafficker 2.4  
filamin A interacting protein 1 2.4  
neurofilament 3 (150kDa medium) 2.4  
myosin VB 2.4  
calmegin 2.3  
Tissue factor pathway inhibitor 2 2.3  
filamin-binding LIM protein-1 2.3  
collagen, type XXI, alpha 1 /// collagen, type XXI, alpha 1 2.3  
tissue factor pathway inhibitor 2 2.3  
BMX non-receptor tyrosine kinase 2.2  
Zinc finger-like 2.2  
paternally expressed 10 2.2  
aldo-keto reductase family 1, member C1  2.2  
CD34 antigen 2.2  
protocadherin 9 2.3  
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Gene Title 
 

Fold 
Change 

 
zona pellucida glycoprotein 3  2.2  
chromosome 10 open reading frame 10 2.2  
aldo-keto reductase family 1, member C1  2.2  
Homo sapiens, clone IMAGE:5261213, mRNA 2.2  
KIAA0711 gene product 2.1  
KIAA0960 protein 2.1  
chemokine (C-C motif) ligand 2 2.1  
LOC132671 2.1  
hypothetical gene supported by BC009447 2.1  
Homo sapiens, clone IMAGE:5261213, mRNA 2.1  
filamin A interacting protein 1 2.1  
p53 target zinc finger protein 2.1  
gremlin 1 homolog, cysteine knot superfamily (Xenopus 
laevis) 

2.0 
 

cyclin A1 2.0  
lanosterol synthase (2,3-oxidosqualene-lanosterol 
cyclase) 

2.0 
 

protocadherin 19 2.0  
 
 

Proliferating human retinal versus iris vascular endothelial cells 

 

Comparison of human retinal endothelial cells with human iris 

endothelial cells demonstrated a difference of 2041 probe sets (7.8% of 

probesets that passed quality control). Of this total, 880 were up-

regulated in retinal ECs and 1161 were up-regulated in iris ECs. Using 

Ingenuity Pathway Analysis software, differences between retinal and 

iris ECs were shown in the expression of genes involved in a wide 

range of biological processes such as RNA post-translational 

modification, cell signalling, DNA replication and gene expression. As 

described previously, there were close similarities between iris and 

choroidal ECs, meaning that many of the genes differentially expressed 

between iris and retinal ECs were the same as those differentially 

expressed between choroidal and retinal ECs. However, canonical 

pathway analysis revealed a small number of differences in interferon, 

IL 22 and TGF  signalling pathways (table 3.8). A representative heat 

map is shown in Fig 3.7 and a list of the top 100 differentially expressed 

probesets reaching statistical significance in retinal and iris ECs are 
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shown in tables 3.9 and 3.10 respectively. Figs 3.8a and 3.8b pie charts 

demonstrate a greater proportion of up-regulated probesets for cell 

development in iris ECs compared with retinal ECs (19 vs 5%). 

However, all other biological process subsets demonstrated similar 

proportions of up-regulation of expression in both iris and ECs. As can 

be seen from the detailed analysis of differences in gene expression, 

the pie chart is not a good representation of the more subtle differences 

in gene expression.  
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Table 3.8. Differential expression of probe sets involved in cell signalling between matched human iris and retinal endothelial cells 
 
 
 
Signalling  
Pathway 
 

Affy ID 
Gene 

Symbol 
Gene Name 

Fold  
Change 

Direction of 
regulation (retina 
vs Iris) 

IL 22 
 

209575_at IL10RB Interleukin 10 receptor, beta 
2.0 

Up 

 212046_x_at MAPK3 Mitogen-activated protein kinase 3 2.1 Up 

 208992_s_at STAT3 Signal transducer and activator of 
transcription 3 

2.1 
Up 

Interferon 
 

229450_at IFIT3 Interferon-induced protein with 
tetratricopeptide repeats 3 

9.0 
Up 

 217863_at PIAS1 Protein inhibitor of activated STAT, 1 2.1 Up 

TGF Beta 
 

228121_at TGFB2 TGF-beta2 
7.8 

Down 

 207334_s_at TGFBR2 TGF-betaII receptor 2.5 Up 

 212666_at SMURF1 SMAD protein ligase 2.1 Down 

 212046_x_at MAPK 3 Mitogen-activated protein kinase 3 2.1 Up 

 210511_s_at INHBA Inhibin beta A  14.6 Down 
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Fig 3.7 Heatmap of ascending differential probeset expression reaching 
 statistical significance with reference to human retinal and iris micro- 
vascular endothelial cells. Upregulated probesets are shown in red, 
downregulated in blue. A total of 2041 different probesets are represented. 
The positions of selected probesets thought to be important in endothelial 
cell biology are shown.  
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Fig 3.8a. Pie chart of significantly up-regulated genes grouped by 
biological processes in proliferating human iris endothelial cells 
compared with proliferating human retinal endothelial cells 
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Fig 3.8b. Pie chart of significantly up-regulated genes grouped by 
biological processes in proliferating human retinal endothelial cells 
compared with proliferating human iris endothelial cells 
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Table 3.9. One hundred most highly expressed probesets in human 
retinal   microvascular endothelial cells compared with human iris 
endothelial cells. 
 

Gene Title 
 

Fold 
Change 

 

plasminogen activator, urokinase 20.1  
Rho-related BTB domain containing 3 17.5  
phosphatase and actin regulator 2 17.0  
protein tyrosine phosphatase, non-receptor type 22 
(lymphoid) 

16.7 
 

SCY1-like 2 (S. cerevisiae) 15.4  
protein tyrosine phosphatase, non-receptor type 22 
(lymphoid) 

15.0 
 

dipeptidyl-peptidase 4 14.8  
nuclear factor I/B 14.5  
tetratricopeptide repeat domain 37 14.1  
dipeptidyl-peptidase 4 13.9  
fusion (involved in t(12;16) in malignant liposarcoma) 12.8  
histone cluster 1,  12.1  
PRP31 pre-mRNA processing factor 31 homolog (S. 
cerevisiae) 

12.0 
 

TAO kinase 1 11.6  
squalene epoxidase 11.4  
histone cluster 1, H1c 11.3  
PRP4 pre-mRNA processing factor 4 homolog B (yeast) 11.0  
zinc finger protein 480 10.7  
HECT domain containing 1 10.6  
epithelial cell transforming sequence 2 oncogene 10.5  
zinc finger protein 146 10.2  
dystonin 10.0  
jumonji domain containing 1C 9.9  
G elongation factor, mitochondrial 1 9.9  
G protein-coupled receptor kinase 5 9.4  
epithelial membrane protein 1 9.3  
vacuolar protein sorting 13 homolog C (S. cerevisiae) 9.3  
IFIT3 9.3  
cyclin E2 9.1  
nucleoporin 43kDa 9.1  
thymopoietin 8.9  
replication factor C (activator 1) 3, 38kDa 8.9  
cyclin K 8.8  
nuclear factor of activated T-cells 5, tonicity-responsive 8.7  
ADAM metallopeptidase domain 15 8.6  
M-phase phosphoprotein 9 8.5  
septin 10 8.5  
baculoviral IAP repeat-containing 5 8.4  
family with sequence similarity 115, member A  8.4  
mannosidase, alpha, class 1A, member 1 8.3  
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Gene Title 
 

Fold 
Change 

 
spectrin, beta, non-erythrocytic 1 8.3  
serum deprivation response (phosphatidylserine binding 
protein) 

8.3 
 

phosphoinositide-3-kinase, class 2, alpha polypeptide 8.3  
cell division cycle associated 2 8.0  
NIMA (never in mitosis gene a)-related kinase 2 7.9  
neural precursor cell expressed, developmentally down-
regulated 1 

7.8 
 

toll-like receptor 4 7.8  
matrin 3 7.7  
RNA binding motif protein 22 7.7  
Rho-guanine nucleotide exchange factor 7.7  
ubiquitin specific peptidase 34 7.7  
ribonucleotide reductase M1 7.7  
SET domain containing 2 7.6  
polo-like kinase 4 (Drosophila) 7.6  
thrombospondin 1 7.6  
BRCA1/BRCA2-containing complex, subunit 3 7.6  
twinfilin, actin-binding protein, homolog 1 (Drosophila) 7.4  
PCTAIRE protein kinase 2 7.4  
cancer susceptibility candidate 5 7.3  
sperm associated antigen 9 7.3  
AHNAK nucleoprotein 7.3  
ribosomal protein S6 kinase, 70kDa, polypeptide 1 7.2  
Nipped-B homolog (Drosophila) 7.1  
RAS and EF-hand domain containing 7.7  
catenin (cadherin-associated protein), alpha 1, 102kDa 7.1  
FERM domain containing 4A 7.9  
muted homolog (mouse) 7.0  
Meis homeobox 1 7.0  
kelch repeat and BTB (POZ) domain containing 11 7.0  
transcription factor Dp-1 7.0  
protein tyrosine phosphatase, non-receptor type 12 6.9  
hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-
Coenzyme A 

6.9 
 

RAS and EF-hand domain containing 6.9  
Ewing sarcoma breakpoint region 1  6.9  
KIAA1826 6.8  
phosphoinositide-3-kinase, class 2, alpha polypeptide 6.8  
RAB38, member RAS oncogene family 6.7  
Fanconi anemia, complementation group M 6.7  
Senataxin 6.7  
arrestin, beta 1 6.7  
FGFR1 oncogene partner 2 6.7  
muscleblind-like 2 (Drosophila) 6.6  
kinesin family member 22 6.6  
budding uninhibited by benzimidazoles 1 homolog (yeast) 6.6  
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Gene Title 
 

Fold 
Change 

 
NLR family, pyrin domain containing 1 6.5  
suppressor of Ty 16 homolog (S. cerevisiae) 6.5  
PTPRF interacting protein, binding protein 1 (liprin beta 
1) 

6.5 
 

folate hydrolase (prostate-specific membrane antigen) 1 6.5  
sema domain, immunoglobulin domain (Ig), short basic 
domain, secreted 

6.3 
 

ADAM metallopeptidase with thrombospondin type 1 
motif, 9 

6.3 
 

HECT, UBA and WWE domain containing 1 6.3  
asp (abnormal spindle) homolog, microcephaly 
associated (Drosophila) 

6.7 
 

zinc finger E-box binding homeobox 1 6.3  
sulfatase 2 6.3  
DENN/MADD domain containing 3 6.2  
nidogen 1 6.2  
prion protein 6.2  
UEV and lactate/malate dehyrogenase domains 6.2  
pericentriolar material 1 6.1  
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Table 3.10. One hundred most highly expressed probesets in human 
iris microvascular endothelial cells compared with human retinal 
endothelial cells. 

Gene Title 
 

Fold 
Change 

 

wnt 5A 36.4  
collagen, type I, alpha 1 34.1  
interferon, alpha-inducible protein 6 33.8  
pleckstrin homology-like domain, family A, member 2 28.8  
ADAM metallopeptidase with thrombospondin type 1 
motif, 12, 

26.0 
 

transmembrane protein 45A 25.7  
gremlin 1, cysteine knot superfamily, homolog (Xenopus 
laevis) 

24.1 
 

Zic family member 2 (odd-paired homolog, Drosophila) 23.6  
thrombospondin 2 22.2  
CCAAT/enhancer binding protein (C/EBP), beta 21.6  
endothelin receptor type A 21.6  
gremlin 1, cysteine knot superfamily, homolog (Xenopus 
laevis) 

19.8 
 

reticulon 1 19.8  
cytoglobin 18.9  
collagen, type VI, alpha 1 18.8  
crystallin, alpha B 18.6  
GATA binding protein 6 18.5  
brain-derived neurotrophic factor 18.3  
potassium voltage-gated channel, Isk-related family, 
member 4 

17.9 
 

lysyl oxidase-like 1 17.4  
follistatin 17.3  
dermatan sulfate epimerase-like 16.9  
glutamyl aminopeptidase (aminopeptidase A) 16.3  
coagulation factor II (thrombin) receptor-like 1 16.2  
amphiregulin  16.1  
nexilin (F actin binding protein) 15.9  
inhibin, beta A 15.0  
cAMP responsive element binding protein 3-like 1 14.8  
collagen, type VI, alpha 3 14.6  
scinderin 14.6  
EF-hand domain family, member D1 14.5  
Full length insert cDNA clone ZA02A01 14.5  
chemokine (C-X-C motif) ligand 10 14.4  
vascular endothelial growth factor A 14.3  
follistatin 14.2  
lectin, galactoside-binding, soluble, 3 binding protein 14.2  
frizzled homolog 2 (Drosophila) 14.2  
regeneration associated muscle protease 14.2  
inhibitor of DNA binding 4, dominant negative helix-loop-
helix protein 

13.8 
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Gene Title 
 

Fold 
Change 

 
reticulon 1 13.5  
stanniocalcin 2 13.5  
solute carrier organic anion transporter family, member 
2B1 

13.5 
 

collagen, type I, alpha 1 13.5  
collagen, type XII, alpha 1 13.4  
wingless-type MMTV integration site family, member 5A 13.2  
platelet-derived growth factor receptor, beta polypeptide 13.2  
adrenergic, beta-1-, receptor 13.1  
proline rich 16 13.0  
dystrophin 13.0  
fibroblast growth factor 1 (acidic) 12.9  
insulin receptor substrate 1 12.9  
procollagen C-endopeptidase enhancer 12.6  
cadherin 6, type 2, K-cadherin (fetal kidney) 12.5  
hyaluronan synthase 2 12.5  
chemokine (C-X-C motif) ligand 11 12.2  
TP53 regulating kinase 12.1  
ubiquitin associated and SH3 domain containing, B 12.1  
CHD2 11.7  
prostaglandin-endoperoxide synthase 2  11.4  
chromosome 1 open reading frame 64 11.4  
frizzled homolog 7 (Drosophila) 11.2  
mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-
acetylglucosaminyltransferase,  

11.2 
 

interferon induced transmembrane protein 1 (9-27) 11.1  
hexokinase 2 10.9  
forkhead box D1 10.7  
methylenetetrahydrofolate dehydrogenase (NADP+ 
dependent) 2-like 

10.6 
 

chromosome 1 open reading frame 85 10.6  
family with sequence similarity 91, member A2  10.5  
jun D proto-oncogene 10.4  
chromosome 21 open reading frame 7 10.4  
PDZ domain containing ring finger 3 10.2  
similar to lymphocyte-specific protein 1 10.2  
platelet-derived growth factor alpha polypeptide 9.9  
collagen, type V, alpha 3 9.8  
neuronal PAS domain protein 2 9.8  
hypothetical LOC387763 9.7  
chromosome 11 open reading frame 70 9.6  
solute carrier family 16, member 6 (monocarboxylic acid 
transporter 7) 

9.4 
 

ring finger protein 182 9.3  
interferon-induced protein with tetratricopeptide repeats 3 9.3  
spondin 2, extracellular matrix protein 9.2  
alpha-kinase 2 9.2  
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Gene Title 
 

Fold 
Change 

 
pleckstrin and Sec7 domain containing 3 9.2  
synaptotagmin XI 9.1  
hepatocyte growth factor (hepapoietin A; scatter factor) 9.0  
CKLF-like MARVEL transmembrane domain containing 8 9.0  
integrin, alpha 7 8.9  
EPH receptor A4 8.8  
interferon-induced protein with tetratricopeptide repeats 1 8.6  
carboxypeptidase A3 (mast cell) 8.6  
fibroblast growth factor 5 8.5  
vestigial like 3 (Drosophila) 8.5  
translation initiation factor eIF-2B subunit 
alpha/beta/delta-like protein 

8.5 
 

SIX homeobox 1 8.5  
neuronal PAS domain protein 2 8.5  
cystatin SN 8.4  
prostate transmembrane protein, androgen induced 1 8.4  
collagen, type V, alpha 3 8.4  
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Real time PCR 

 

Real time PCR was used to validate the differences in gene expression 

between HUVEC, iris, retinal and choroidal endothelial cells. Nine 

transcripts were chosen that demonstrated at least a 2-fold differential 

expression between ECs from various sources on microarray analysis 

and that were thought to be relevant to a range of endothelial cellular 

functions. The chosen transcripts were: Angiopoietin 2, Keratin 18, 

CD44, CD73 (5 nucleotidase ecto), MAPKK 3, Integrin 3, Laminin 2, 

Decay Accelerating Factor and Carboxypeptidase M. Fig 3.9 

demonstrates examples of real time PCR curves of selected probesets 

in HUVEC and ocular endothelial cells while table 3.11 shows an 

example of the output from the ABI PRISM 7000 sequence detection 

system and demonstrates the reproducibility of the triplicates for each 

cell type and also shows the figures used in the calculation of the fold 

change using the 〉CT method. 

 

Table 3.12demonstrates that the differences in expression between the 

microarray and real time PCR techniques were similar for 8 out of the 9 

transcripts evaluated, with only those results from the decay 

accelerating factor showing a discrepancy. Overall, these results 

confirm the overall reliability of the results obtained by the Affymetrix 

microarray technique.  
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Fig 3.9 demonstrates examples of real time PCR dissociation curves of 
selected probesets in HUVEC and ocular endothelial cells. The Y axis 
depicts the fluorescence of the reporter signal normalised to a 
reference signal (Rn) while the X axis depicts the cycle number. Each 
probeset under investigation is represented by all 3 curves of the 
sample triplicate and also includes a probeset for the reference 
housekeeping gene - hypoxanthine-guanine phosphoribosyltransferase 
(HPRT). Also represented are the curves of the No Template Control 
(NTC) (sterile water). Fig 3.9a, demonstrates the dissociation curves for 
a series of 10 fold dilutions for an Angiopoietin 2 reference sample 
while Fig 3.9b shows the calculated standard curve derived from Fig 
3.9a, demonstrating its linearity of the range tested.  
Ct is the crossing point or threshold at which fluorescence can be 
detected and log C0 is the log of the relative standard concentration 
(chosen to correspond to the expected relative concentration of 
probeset in the samples).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.9a    Fig 3.9b 
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Fig 3.9c demonstrates the QPCR dissociation curves (triplicates) for 
Angiopoietin 2 expression in HUVEC and human choroidal endothelial 
cells. The reference housekeeping gene is HPRT.  
The No Template Controls are also included 
 

 

Ang2 in choroidal 
ECs 

Ang2 in 
HUVEC 

HPRT in choroidal 
ECs and HUVEC 

NTC for 
HPRT 

NTC for Ang2 
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Fig 3.9d demonstrates the QPCR dissociation curves (triplicates) for 
Keratin 18 expression in HUVEC and human retinal endothelial cells. 
The reference housekeeping gene is HPRT.  
The No Template Controls are also included.  

Keratin 18 in HUVEC 

Keratin 18 
in retinal 
ECs 

HPRT in retinal ECs 
and HUVEC 
 

NTC for HPRT 

NTC for Keratin 
18 
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Fig 3.9e demonstrates the QPCR dissociation curves (triplicates) for 
CD44 expression in HUVEC, retinal and iris human endothelial cells. 
The reference housekeeping gene is HPRT.  
The No Template Controls are also included. Note that the dissociation 
curves for HUVEC and retinal ECs are almost identical whereas iris 
ECs shifted to the right (reflecting lower expression of CD44 mRNA). 

CD44 in HUVEC and 
retinal ECs 

CD 44 in iris 
ECs 

HPRT in HUVEC, 
retinal and iris ECs 
 

NTC for CD44 

NTC for 
HPRT 
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Table 3.11. A table showing an example of the output of the ABI PRISM 7000 sequence detection system for Angiopoietin 2  QPCR 
for human iris, retinal, choroidal ECs and HUVEC demonstrating the Ct, average Ct, difference in Ct between the target and 
reference (HPRT). The last column on the right shows the final fold change expression of Ang2 in individual ocular EC type 
compared with the HUVEC reference. (See table 3.12 for the complete set of results. 
 

 Well Detector Ct (Ang 2) Average Ct   Ct  (HPRT) Av Ct DCt Av DCt DDCt Fold Change 

IRIS A1 ab ANG2 24.8  eh HPRT1 Unknown 27.56       
1 A2 ab ANG2 24.59  eh HPRT1 Unknown 27.37       

 A3 ab ANG2 25.05 24.81 eh HPRT1 Unknown 27.31 27.41 -2.6     
IRIS B1 ab ANG2 24.62  eh HPRT1 Unknown 27.83       

2 B2 ab ANG2 25.58  eh HPRT1 Unknown 27.98       
 B3 ab ANG2 24.61 24.93 eh HPRT1 Unknown 27.99 27.93 -3     
IRIS C1 ab ANG2 24.32  eh HPRT1 Unknown 27.82       

3 C2 ab ANG2 24.38  eh HPRT1 Unknown 28.03       
 C3 ab ANG2 24.57 24.42 eh HPRT1 Unknown 27.81 27.89 -3.47 -3.02 -3.25 9.5  
CHOROID D1 ab ANG2 25  eh HPRT1 Unknown 27.08       

4 D2 ab ANG2 25.29  eh HPRT1 Unknown 27.18       
 D3 ab ANG2 25.11 25.13 eh HPRT1 Unknown 27.28 27.18 -2.05     
CHOROID E1 ab ANG2 25.07  eh HPRT1 Unknown 27.05       

5 E2 ab ANG2 25.07  eh HPRT1 Unknown 26.91       
 E3 ab ANG2 25.02 25.05 eh HPRT1 Unknown 27.01 26.99 -1.94     
CHOROID F1 ab ANG2 25.21  eh HPRT1 Unknown 28.42       

6 F2 ab ANG2 25.46  eh HPRT1 Unknown 28.42       
 F3 ab ANG2 25.95 25.54 eh HPRT1 Unknown 28.58 28.47 -2.93 -2.31 -2.54 5.9  
HUVEC G1 ab ANG2 28.23  eh HPRT1 Unknown 27.9       

7 G2 ab ANG2 28.15  eh HPRT1 Unknown 27.62       
 G3 ab ANG2 28.09 28.16 eh HPRT1 Unknown 27.51 27.68 0.48     
HUVEC H1 ab ANG2 27.42  eh HPRT1 Unknown 27.65       

8 H2 ab ANG2 27.73  eh HPRT1 Unknown 27.63       
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 Well Detector Ct (Ang 2) Average Ct   Ct  (HPRT) Av Ct DCt Av DCt DDCt Fold Change 

 H3 ab ANG2 27.88 27.68 eh HPRT1 Unknown 27.86 27.71 -0.03     
HUVEC A7 ab ANG2 27.36  eh HPRT1 Unknown 27.18       

9 A8 ab ANG2 27.35  eh HPRT1 Unknown 27.16       
 A9 ab ANG2 27.56 27.42 eh HPRT1 Unknown 27.18 27.17 0.25 0.23 reference   
RETINA B7 ab ANG2 24.39  eh HPRT1 Unknown 28.95       

11 B8 ab ANG2 24.55  eh HPRT1 Unknown 28.75       
 B9 ab ANG2 24.62 24.52 eh HPRT1 Unknown 28.64 28.78 -4.26     
RETINA C7 ab ANG2 23.21  eh HPRT1 Unknown 27.02       

12 C8 ab ANG2 23.32  eh HPRT1 Unknown 27.19       
 C9 ab ANG2 23.15 23.22 eh HPRT1 Unknown 26.93 27.05 -3.83     
RETINA D7 ab ANG2 25.9  eh HPRT1 Unknown 29.53       

20 D8 ab ANG2 26.05  eh HPRT1 Unknown 29       
 D9 ab ANG2 25.78 25.91 eh HPRT1 Unknown 29.16 29.23 -3.32 -3.8 -4.03 16.3  
              
              
 A10 ab ANG2 Undetermined NTC          
 A11 ab ANG2 Undetermined NTC          
 B10 eh HPRT1 Undetermined NTC          
 B11 eh HPRT1 Undetermined  NTC          
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Table 3.12. Differences in gene expression of selected genes for HUVEC, iris, choroidal and retinal endothelial cells according to 
microarray (MA) and Real time-PCR (RT-PCR) 
 

 
 

  Difference in gene expression  (fold change) 

Gene transcript Affy ID HUVEC Iris Choroid Retina 

  MA RT-PCR MA RT-PCR MA RT-PCR MA RT-PCR 

Angiopoietin 2 205572_at 0 0 9.2 9.5 7.6 5.9 10.7 16.3 

Keratin 18 201596_x_at 0 0 -4.7 -4.2 -4.1 -3.4 -4.7 -2.7 

CD44 204489_s_at 0 0 -4.9 -3.5 -4.8 -5.7 <2.0 0.9 

CD73  203939_at 0 0 3.9 4.5 3.8 3.0 4.1 4.5 

MAPKK 3 201474_s_at 0 0 2.8 3.1 2.3 3.4 4.6 5.3 

Integrin  3 201474_s_at 0 0 <2.0 1.6 <2.0 1.4 5.6 4.6 

Laminin 2 216264_s_at 0 0 2.9 2.5 2.4 1.4 3.4 2.9 

Decay Accelerating 
Factor (CD55)  

201926_s_at 0 0 2.9 1.4 4.0 1.2 <2.0 2.1 

Carboxypeptidase M 235706_at 0 0 - 4.4 -5.3 <2.0 -2.5 <2.0 -1.3 
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Discussion 

 

The well described morphological, biochemical, phenotypical and 

molecular heterogeneity of endothelial cells raises the question as to 

whether conclusions drawn from studies using animal or human 

macrovascular endothelial cells such as HUVECs can be applied to 

different angiogenic diseases causing blindness in humans, such as 

wet AMD, proliferative diabetic retinopathy, rubeotic glaucoma and 

retinopathy of prematurity. Despite their anatomical juxtaposition, the 

diseases appear to be selective for different ocular vascular beds so 

any reliable and meaningful insight into their pathophysiological 

mechanisms and the development of potentially selective treatments 

would most likely only be gained by conducting studies using 

microvascular endothelial cells derived from the particular intra-ocular 

site(s) affected by the condition. 

  

There is a paucity of information as to whether different human ocular 

microvascular endothelial cells demonstrate similarities in the 

intracellular mechanisms involved in angiogenesis. Previously, workers 

have shown a difference between human retinal endothelial and 

HUVEC cell secretory functions (prostaglandin I2, and E2) and their 

responses to high glucose concentrations in an attempt to understand 

the underlying mechanisms of proliferative diabetic retinopathy 

(Rymaszewski et al, 1992). In the investigation of the mechanisms of 

inflammatory eye disease, Silverman et al in 2005 showed differences 

in E-Selectin expression using nylon-based gene array by matched 

human iris and retinal microvascular endothelial cells after stimulation 

with inflammatory agents (LPS and TNF ). Similarly, Smith et al in 

2007 used gene expression profiling to examine differences between 

matched retinal and choroidal endothelial cells as a means to determine 

underlying mechanisms of posterior ocular inflammatory diseases. They 

found an 8.9% difference in transcripts between retinal and choroidal 

ECs after stimulation with toxoplasma tachyzoites. Many of the 
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transcripts related to genes important in inflammatory processes, 

leukocyte trafficking and mediators of immune responses (ICAM 1, E 

Selectin, chemokines and VCAM 1), suggesting that the retinal 

vasculature is susceptible to inflammatory processes.  

 

The present study had two main objectives. The first was to compare 

the gene expression profiles of human umbilical vein ECs with a 

number of different ocular microvascular endothelial cells to determine 

whether HUVECs are representative cells to use in ocular vascular 

research. Secondly, the gene expression profiles, particularly those of 

canonical cell signalling pathways of matched human choroidal, retinal 

and iris endothelial cells were compared to determine whether any 

differences in canonical pathway expression could be identified that 

could provide insights into our understanding of site-specific 

mechanisms of ocular angiogenic diseases and perhaps identify areas 

for future targeted therapies. 

 

In this study, 3% of probesets were differentially expressed between 

HUVECs and ocular microvascular cells, with 1.4% of probesets being 

found to be up-regulated in HUVECs. While there was a wide range of 

different genes that were up-regulated, there was an enrichment of 

genes involved in embryonic development such as the homeobox 

genes. Interestingly, Murthi et al in 2007 found a differential expression 

of homeobox genes between HUVE and placental microvascular 

endothelial cells, with HLX1 (thought to be important in the 

development of B cells) being down-regulated in HUVECs (Murthi et al, 

2007). This finding is not surprising as the umbilical vein and its 

endothelial lining is of foetal origin and forms part of the foetoplacental 

unit and is a high flow vessel with a thick wall containing elastin and 

muscle fibres, surrounded by Wharton‟s jelly, carrying oxygenated 

blood from the placenta to the foetus. It is therefore intrinsically involved 

in embryonic development. Homeobox (HOX) genes encode a range of 

transcription factors, found in clusters named A,B,C and D on four 

different chromosomes and their expression is spatially and temporally 
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regulated during embryonic development. Under this applicant‟s 

guidance, workers in the same laboratory have recently detected 

expression of HOX B7 and A9 protein in HUVECs by Western blotting, 

whereas no expression was detected in human retinal or choroidal ECs. 

Other up-regulated genes included those involved in encoding proteins 

involved in ECM interactions such as MMP 2, heparinase and fibrillin 2, 

and cytoskeletal proteins such as cytokeratin 18. These genes may be 

important given the growth and remodelling of the thick walled umbilical 

vein required during gestation. Specifically, fibrillins have been shown 

to be important in the attachment of endothelial cells to the elastin 

found in the ECM on the abluminal side of vessels, thereby aiding the 

anchoring of cells to underlying structures (Weber et al, 2002). 

Interestingly, some cytokeratins, which are intermediate filaments 

usually found in epithelial cells, have been found to be up-regulated in 

breast cancer by oestrogens via an oestrogen-response element close 

to the cytokeratin gene on chromosome 17 (Choi et al, 2000). Its up-

regulation in HUVECs may therefore reflect its origin from an oestrogen 

rich environment. HUVECs also appear to express a distinct pattern of 

cell membrane components involved in cell signalling, such as the 

hepatocyte growth factor receptor (c-met). Hepatocyte growth factor 

(HGF) is a pro-angiogenic factor found in the placenta and is thought to 

be important in placental and foetal development, although its precise 

role is unknown (Dash et al, 2005). HGF receptors on HUVE cells may 

therefore be important in the vascular development of placental tissues. 

Similarly, ephrin B2 (the transmembrane ligand for the EphB4 receptor) 

was found to be up-regulated in HUVECs by other workers (Kim et al, 

2002) and is one of a group of receptor tyrosine kinases found in 

abundance in placental tissue (Goldman-Wohl et al, 2004). They are 

thought to play a role in embryonal vascular and neuronal development 

and endothelial cell migration. Specifically, the ephrin B2 

transmembrane ligand is found in abundance in the placenta, 

suggesting that the receptor‟s presence on HUVECs is important and 

may play a role in vascular development of the foetoplacental unit 

(Chennakesava et al, 2006). It is interesting to note that ephrin B2 is 
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usually thought to be an arterial-specific marker. Its presence on 

HUVECs is surprising until one recognises that the umbilical vein 

carries highly oxygenated (arterial) blood from the placenta to the 

foetus and that some think of HUVECs as a specific subtype of arterial 

ECs (T Gardiner, personal communication).  

 

Approximately 1.6% of probesets were found to be up-regulated in 

ocular microvascular ECs compared to HUVECs, and again, while this 

included a diverse range of different genes, there were specific groups 

which were enriched. These include genes involved in immune 

responses (MHC class I and II and interleukin receptors), signal 

transduction and the cellular responses to stimuli. These differences 

may be explained by the different roles of HUVEC and ocular 

microvascular ECs. The ocular microvasculature is thought to be 

important as a barrier to blood borne pathogens where immune cells 

such as macrophages and lymphocytes, must interact with ECs to 

traverse this endothelial barrier to enter extravascular tissues. Immune 

mechanisms are also thought to be important in the pathogenesis of 

both diabetic retinopathy and wet AMD.  

 

Given that the microvasculature is always undergoing remodelling and 

is the site of physiological angiogenesis, it is not surprising that a 

number genes involved in cell signalling (G proteins and phospholipase 

C) and interactions with the microenvironment such as those involved 

with the endothelial cell basement membrane (TIMP 3, collagens I and 

III) are differentially up-regulated. Under this applicant‟s guidance, 

workers in the same laboratory have recently detected expression of 

collagen 1 alpha1 sub unit protein in ocular MVECs by Western blotting, 

whereas no expression was detected in HUVECs, thereby adding 

weight to microarray findings. TIMP 3 is thought to modify breakdown of 

the extracellular matrix and type IV and VI collagen alpha chains, both 

of which are components of cellular basement membranes. A gene 

differentially expressed in ocular MVECs is angiopoietin 2, which is 

thought to modulate vascular stability and remodelling by the 
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antagonism of Tie 2 receptors and Sprouty which, in turn, is thought to 

modify the sprouting of growing vessels by interacting with receptor 

tyrosine kinases which have been stimulated by angiogenic growth 

factors such as VEGF (Cabrita & Christofori, 2008). 

  

Proliferating ocular MVEC also appear to possess distinct intracellular 

signalling pathways not utilised significantly by HUVECs. These include 

pathways utilising components such as MAPKK 3, and PLC alpha 2. 

The significance of these alternative pathway components is currently 

unknown but they may provide selective targets for future interventions 

in modulating cellular function. Ocular microvascular endothelial cells 

also demonstrate up-regulation of a range of genes encoding cell 

surface proteins involved in the action of cytokines, cell adhesion and 

binding to the extracellular matrix. As the microvascular environment 

may be a site of inflammation, the up-regulation of cell surface proteins 

involved in leukocyte trafficking such as the mannose receptor 1 and 

versican may also be important in understanding ocular inflammatory 

diseases. The mannose receptor has recently been found on dermal 

MVEC but not HUVEC, reinforcing the significance of the current 

findings (Groger et al, 2000). All of these findings suggest that ocular 

MVECs are actively involved in communicating and remodelling their 

local surroundings and are distinctly different from macrovascular 

HUVE cells. This was suggested over 20 years ago by Klagsbrun and 

Folkman who observed that angiogenesis occurs in the 

microvasculature or capillaries, not in large vessels (Klagsbrun and 

Folkman, 1990). In vitro studies have subsequently shown that 

microvascular endothelial cells have a higher angiogenic potential than 

macrovascular ECs, either by their increased expression of matrix 

metalloproteinases (Jackson and Nguyen, 1997), their response to 

tumour angiogenesis factor (Keegan et al, 1982), IGF-1 (King et al, 

1985) or VEGF (Bian et al, 2006). 
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This dichotomy in differential gene expression suggests that HUVECs 

are probably not a suitable substitute for ocular ECs in the study of the 

underlying mechanisms of ocular vascular diseases. 

  

When matched, proliferating human retinal and choroidal endothelial 

cells were compared; we found that 8.4% of probesets were 

differentially expressed. Because of the importance of angiogenesis in 

a number of common blinding diseases, it was decided to concentrate 

on those genes important in the angiogenic response, in particular 

those of canonical signalling pathways,  

 

The selective treatment of diseases relies on the identification of 

unique, or at least significantly different, attributes in the affected site 

compared with their surroundings. Finding significant differences 

between human retinal and choroidal ECs would therefore be 

advantageous for the selective treatment of either predominantly retinal 

or choroidal neovascular disorders, while at the same time leaving 

juxtaposed ECs intact.  

 

The current study shows that retinal ECs demonstrate selective up-

regulation of some components of the wnt-5 signalling pathway such as 

a frizzled homolog and WNT5a. This is a poorly understood pathway 

that may regulate cell proliferation, apoptosis and branching 

morphogenesis (Masckauchán et al, 2006; Masckauchán et al, 2005). 

The importance of this pathway to human retinal vasculogenesis has 

recently been described (Parmalee & Kitajewski, 2008). Human retinal 

ECs also demonstrated up-regulated gene expression of a wide range 

of growth factors such as VEGF, PDGF-C, PDGF-B chain and IL-32. 

This would imply a local paracrine function for retinal ECs either by 

stimulating surrounding endothelial cells or by stimulating their 

surrounding pericytes which are known to be dependent upon PDGF for 

their maintenance (Jo et al, 2006). It is now known that there is 

extensive communication between ECs and pericytes and each cell 

type relies on the other for many of its functions and perhaps even 
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survival. Pericytes are embedded within the basement membrane of 

endothelial cells and direct communication may occur via peg-socket 

junctions which contain gap junctions (Cuevas et al, 1984). What this 

communication consists of is currently unknown. As mentioned 

previously, endothelial cells secrete PDGF-B which is thought to 

promote proliferation and recruitment of pericytes to newly formed 

vessels. Knockout models show that if this fails to occur, then vascular 

dysfunction ensues with endothelial hyperplasia and the formation of 

abnormal endothelial junctions and leads to perinatal death (Hellstrom 

et al, 2001). It is also thought that TGF-く is secreted by endothelial 

cells and plays a role in the differentiation of vascular mural cells such 

as pericytes. It is also thought to act in an autocrine fashion acting via 

endoglin (a type of TGF receptor) to affect endothelial cell differentiation 

and proliferation. Finally, there is evidence to suggest that Tie 2-

Angiopoietin 1 (Ang-1) interactions are important in EC-pericyte 

communication. Tie-2 is highly expressed on endothelial cells and its 

ligand, Ang 1 is expressed by pericytes. Knockout models show that 

this interaction is essential for vessel maturation and stability (Suri et al, 

1996). 

  

Retinal ECs also demonstrate significant expression of growth factor 

receptors and binding proteins such as the insulin and IGF-2 receptors; 

stromal-cell-derived-factor receptor (CXCR4); IGF binding proteins 2 

and 7; and the interferon gamma and IL-4 receptors. These findings 

may be important in clinical practice as retinal neovascularisation seen 

in diabetes appears in part to be related to diabetic control and insulin 

and IGF levels (Meyer-Schwickerath et al, 1993; Grant et al, 1986). 

This hypothesis is given additional weight because, when under the 

guidance of the applicant, workers in Nottingham have recently 

demonstrated in a functional assay, that IGF 1 stimulates the 

proliferation of human retinal ECs to a similar degree to VEGF (similar 

to the findings of Grant et al, 1993a and 1993b), whereas IGF-1 has 

little effect on matched human choroidal ECs (see later chapter). Other 

workers have also shown an inhibitory effect on retinal 
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neovascularisation by agents that block growth hormone or by removal 

of the patient‟s pituitary gland (thereby down-regulating circulating IGF 

1 levels) (Sharp et al, 1987; Merimee et al, 1970; Wright et al, 1969; 

Palii et al, 2007). Interestingly, our laboratory found that equimolar 

concentrations of IGF-1 and VEGF appeared to have synergistic effects 

on the proliferation of human RECs whereas human CECs did not 

demonstrate any additional effect above that of VEGF alone. This effect 

on human RECs may be explained by the findings of Smith et al in 

1999, when her group looked at the effects of VEGF and IGF-1 on 

bovine RECs and found evidence of interactions between the intra 

cellular signalling pathways for each growth factor, and suggested that 

IGF 1 is required for maximal neovascularisation to be induced by 

VEGF. Finally, in vitro studies on bovine retinal endothelial cells have 

demonstrated a significant effect of IGF-1 on cell survival and 

proliferation (Castellon et al, 2002). IGF-1 is also strongly implicated in 

the pathogenesis of retinopathy of prematurity (ROP), such that 

researchers are suggesting manipulation of IGF-1 levels soon after birth 

as a treatment for this condition.  

 

It is interesting that the proliferation of human CECs does not appear to 

be dependent on IGF (Browning et al, 2007) and in vivo, choroidal 

neovascularisation does not appear to respond to agents that inhibit 

IGF (Papadaki et al, 2003), despite a positive effect in an animal model 

(Bezerra et al, 2005). In contrast, this work has shown that choroidal 

ECs demonstrate up-regulated expression of the FGF receptor 1. This 

is important for binding a number of FGF sub-types which have been 

shown to be important for the development of the choroidal vasculature 

(Rousseau et al, 2003). Choroidal ECs also appear to differentially 

express genes involved in intra-cellular signalling such as G-protein-

coupled receptor kinase, MAPK 1 and G-protein-coupled receptor 89. 

This would imply that compared to retinal ECs, proliferating choroidal 

ECs may be utilising slightly different intra-cellular signalling pathways. 
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In this study the retinal and choroidal endothelial cells were proliferating 

under exactly the same conditions, but there were consistent variations 

in the expression of genes in a number of ubiquitous endothelial cell 

signalling pathways such as the PI3K/ AKT, ERK/MAPK and mTOR 

pathways. While both retinal and choroidal endothelial cells appear to 

utilise all of these pathways, many of the differentially expressed probe 

sets of the PI3K/AKT pathway were up-regulated in choroidal ECs, 

suggesting that this is a potentially more important pathway for these 

cells and perhaps a potential target for inhibitory compounds. 

Examination of the ERK/MAPK signalling pathways also showed that 

choroidal ECs demonstrated up-regulation of MAPK 1. At present, the 

significance of these findings is uncertain but again, it may offer a more 

selective method of inhibiting retinal or choroidal angiogenesis. This 

author and co-workers have recently found that the potency of the 

VEGF 121 and 165 isoforms was greater when used to stimulate 

proliferation of human retinal endothelial cells compared with matched 

human choroidal endothelial cells (Stewart et al, 2011). This suggests 

that components of canonical pathways differentially up-regulated in 

retinal ECs such as the wnt pathway (WNT5A and Frizzled homologue) 

and the ERK/MAPK pathway (Integrin alpha 3 and phospholipase A2 

may account for the increased proliferation and may be important 

drivers for angiogenesis in the retina. This is an area that requires 

further research as, to date, little is known about the fine details of cell 

signalling pathways activated in proliferating human choroidal, retinal 

and iris endothelial cells. Limited data from work on bovine choroidal 

endothelial cells, stimulated by VEGF, showed activation of MAPK/ERK 

via PLCけ (Zubilewicz et al, 2001) However, these are very common 

stimulatory pathways for many different types of cells and so the results 

are not unsurprising. Again, this is an area where further comparative 

work is required.  
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Another specialised feature of the retinal vasculature ECs is the 

formation of the inner blood retinal barrier (similar to the blood brain 

barrier). Unlike the choroidal vasculature, which allows small molecules 

to extravasate from the vascular compartment via fenestrations in 

choriocapillaris endothelial cells, the retinal vasculature possesses very 

tight cell junctions between adjacent endothelial cells in order to stop 

small molecules and cells extravasating unless very specific situations 

exist. The integrity of this endothelial barrier function is dependent on 

tight junctions (TJ), composed of molecules such as ZO-1, occludin, 

cadherins and claudins. The subtypes of TJ molecules found in human 

retinal ECS are poorly understood. However, Luo et al have recently 

described some of the molecules found in the murine retinal 

vasculature. They found that claudins 1,2 and 5 appear to be prominent 

in retinal ECs whereas claudins 3,4,12,22 and 23 were not detected. In 

our experiments, compared with human choroidal ECs, it was found 

that in a similar fashion to Luo et al, human retinal ECs preferentially 

expressed Claudin 5 (4.2 fold expression), ZO-1 (2.7 fold expression). 

Unlike Lou et al however, we also found that Claudin 12 was up-

regulated (2.4 fold). In 1998, Russ et al demonstrated that human 

retinal ECs expressed Cadherin 5 (VE Cadherin), suggesting that it was 

EC specific. In our experiments we did not find it to be preferentially 

expressed by retinal ECs (it being expressed to the same extent by 

both retinal and choroidal ECs). We did find however, that the retinal 

ECs preferentially expressed Cadherin 2. (2.9 fold expression). This is 

more usually associated with neuronal tissue, hence its other name N-

Cadherin and is a new finding. Our results otherwise agree with those 

published for murine retinal ECs.  

 

Both retinal and choroidal ECs demonstrate up-regulated expression of 

genes involved in collagen and integrin synthesis. Retinal ECs show 

up-regulated expression of the alpha chains of collagens XII, VI, V, IV 

(alpha 1) and III, while choroidal ECs express collagen IV alpha 3 

chains. This would suggest that the basement membranes of retinal 

and choroidal ECs may be different. 
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Our results also confirm the findings of others that retinal endothelial 

cells preferentially express genes involved in immune functions (up-

regulation of signalling pathways involved in the interferon and 

interleukin 2 and 4 receptors). There is evidence to suggest that 

proliferative diabetic retinopathy is a pro-inflammatory condition with 

lymphocyte infiltration of blood vessels early in the disease (Joussen et 

al, 2001; Grisanti et al, 1994). There are also elevated levels of 

inflammatory cytokines such as IL 6 and IL 12 and chemokines CXCL8, 

CCL2, 4 and 5 in the vitreous of such patients in addition to VEGF 

(Banerjee et al, 2007; Wakabayashi et al, 2010). Interestingly, 

Interferon was not detected in the vitreous samples of these patients 

with retinal neovascularisation which may be of significance as 

interferon is thought to be anti-angiogenic. 

  

Another striking finding from this study was the similarity between 

choroidal and iris endothelial cells. The iris and choroid are considered 

to be different parts of the same tissue, the uveal tract, although the 

vascular systems in which they belong have entirely different roles. 

Previous workers looking at the characteristics and role of the iris 

vasculature in anterior uveitis have shown that human iris ECs 

constitutively express genes involved in the immune response such as 

Toll-like receptor 4, ICAM-1 and 2, and demonstrate up-regulation of E-

Selectin after LPS stimulation (Silverman et al, 2001; Brito et al, 2004). 

To our knowledge, however, no comparison has been made with 

matched choroidal ECs. However, Hageman et al in 1991 did show that 

choroidal ECs stained positive for carbonic anhydrase IV whereas the 

iris vasculature did not. In our study, we did not find a significant 

difference between the expression of any carbonic anhydrase 

isoenzyme probesets in these two cell types. The small number of 

differentially expressed probe sets did not show any significant 

aggregation into known canonical signalling pathways. The down-

regulation of genes for SMAD 9, Serpine 1 and hyaluronan synthase 

suggests that iris ECs interact slightly differently with their surroundings, 

particularly with respect to the turnover of extracellular matrix and the 
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level of inhibition of local tissue plasminogen activation and fibrinolysis 

compared with choroidal ECs. Interestingly, SMAD proteins are 

intracellular signalling molecules, activated by Bone Morphogenetic 

Protein (BMP) receptors. These in turn are activated by members of the 

TGF-beta superfamily (such as BMPs). SMAD 9 has been found to date 

to be expressed in the heart, lung brain and liver. No ocular expression 

has been reported (to date). Specific mutations in SMAD 9, leading to a 

loss in function, have been found in a number of cases of primary 

pulmonary hypertension (Nasim et al, 2011). This disorder is 

characterised by the abnormal plexiform growth of endothelial cells 

which in turn leads to resistance to flow. It appears that a lack of SMAD 

9 leads to the abnormal growth of blood vessels. It is also known that 

Bone Morphogenetic Protein 4 is important for ocular development via 

the stimulation of SMADs and has also been found to inhibit choroidal 

angiogenesis in an animal model (Xu et al, 2012). Again, SMADs 

(including SMAD 9) appear to be acting as an indirect anti-angiogenic 

factor. Down regulation of SMAD 9 in our experiments would therefore 

suggest a lack of receptor activation by BMPs in iris ECs which in turn 

may indirectly be pro-angiogenic. This is an area where future work 

could be considered. 

 

We found no significant difference in the expression of genes involved 

in inflammation or immune function as alluded to by other workers. This 

may be due to a lack of specific stimulation by factors such as LPS. 

 

Because of the marked similarity between iris and choroidal endothelial 

cells, most of the differences noted between retinal and iris ECs were 

similar to those seen between retinal and choroidal ECs. There were a 

few notable exceptions, however, such as in the expression of 

probesets associated with genes involved in immune or inflammatory 

signalling pathways. It was shown that proliferating retinal endothelial 

cells showed up-regulated expression of genes involved in interferon 

and IL22 signalling compared to iris ECs. This finding adds further 

weight to the findings of Silverman et al (2005) who found differences in 



 269 

E-selectin expression using a nylon-based gene array by matched 

human iris and retinal microvascular endothelial cells after stimulation 

with inflammatory agents (LPS and TNF ). They found that retinal ECs 

consistently expressed higher levels of E-selectin mRNA (and protein) 

after stimulation, compared with matched iris ECs. Similarly, Smith et al 

(2007) used gene expression profiling to examine differences between 

matched retinal and choroidal endothelial cells as a means to determine 

underlying mechanisms of posterior ocular inflammatory diseases. They 

found an 8.9% difference in transcripts between retinal and choroidal 

ECs after stimulation with toxoplasma tachyzoites. Many of the 

transcripts up-regulated in retinal ECs related to genes important in 

inflammatory processes, leukocyte trafficking and mediators of immune 

responses (ICAM 1, E selectin, chemokines and VCAM 1). These 

findings underlie the fact that retinal endothelial cells are probably 

important in immune function and/or leukocyte trafficking within the 

retina and may explain why the retinal vasculature may be preferentially 

susceptible to inflammatory disorders. 

 

The present study has a number of strengths over previous studies. 

Firstly, the use of purified, unpassaged cells means that the in vitro 

gene expression profiles are as close as possible to the in vivo 

proliferative state. It is known that endothelial cell phenotype changes 

quickly in vitro (Miebach et al, 2006; Kalashnik et al, 2000; Shima et al, 

1995) so it would not be unexpected for human ocular vascular 

endothelial cell gene expression profiles to change in a similar manner. 

Secondly, the ocular endothelial cells were matched from the same 

donors, thereby reducing the effect of inter-individual gene expression 

differences in this study and thirdly, the microarray expression results 

were validated by RT-PCR (and later by protein expression and 

functional studies). While the isolation of endothelial cells from 

cryosections would have allowed the “true” in vivo gene expression to 

be measured, the isolation of cells by techniques such as laser capture 

is hampered by its small sample size, contamination by non-endothelial 
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cells and possible post mortem changes in RNA quality. Such a 

technique also has the disadvantage that the profile of proliferating cells 

(important in the study of pathological angiogenesis) cannot be easily 

measured, as most endothelial cells in vivo are in a quiescent state.  

 

A criticism of this study is that the expression levels of probesets and 

the differences between endothelial cells simply reflect different rates of 

proliferation and cell growth between cells. In answering this criticism, it 

should be remembered that the cells were matched for donor, growth 

conditions and confluency. Although not measured directly, all cells 

reached sub-confluence (approx 80%) at approximately the same times 

(5-7 days) as described in chapter 2. Any small differences in the rate 

of growth of cells and therefore reaching the required level of 

confluence would be unlikely to account for the 10 fold differences in 

gene expression between iris/choroid and iris/retina. A further feature 

designed to eliminate low level fluctuation in the differences in gene 

expression is by only accepting differential expression if all 3 samples 

for each cell type demonstrate significant results. 

 

In conclusion, this study has demonstrated a significant difference in 

gene expression between proliferating HUVEC and ocular 

microvascular ECs. This suggests that extrapolation of in vitro results 

derived from HUVECs to the investigation of ocular diseases should be 

avoided. Microvascular ECs derived from different sites within human 

eyes also demonstrated heterogeneity in gene expression. These 

results may provide insight into different ocular vascular disorders and 

allow development of new, targeted treatment strategies.   
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Introduction  

 
The choroid forms part of the uveal tract within the eye and lies 

between the outer sclera (white of the eye) and the inner layer 

composed of the retina, and the retinal pigment epithelium (RPE). It is 

approximately 100-ββ0たm thick, depending on the particular site in the 

eye, and is composed almost entirely of blood vessels with some 

supporting cells such as fibroblasts and melanocytes. As previously 

described, the choroid has historically been sub-divided into 3 layers: 

the outer layer of large vessels (Haller‟s layer), a middle layer of 

medium sized vessels (Sattler‟s layer) and an internal layer adjacent to 

Bruch‟s Membrane composed of capillary vessels (choriocapillaris).  
 

 
 
 
Fig 4.1. A haematoxylin and Eosin stained section of human choroid 
and RPE demonstrating the different calibres of the choroidal 
vasculature (with permission of Springer images)  
 

The choroid derives its blood supply from the short posterior ciliary 

arteries, which are themselves a branch of the ophthalmic artery. This 

means that the choroid has a very rich blood supply which is effectively 

derived from a branch of the internal carotid artery (the main function of 

which is to supply the brain). The choriocapillaris has a honeycomb 

structure of numerous inter-communicating channels which serve to 

supply oxygen and nutrients to the overlying RPE cells and 

photoreceptors. While it appears as a diffuse interconnecting sheet on 
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electron microscopy (see chapter 1), in reality, it has a lobular structure, 

with each lobule being supplied by a central arteriole and drained by a 

peripheral lobular venule. The main “mass” of the choroid is made up of 

sequential subdivisions of the supplying and draining veins which 

ensure a rich blood supply to the choriocapillaris (see below). It is 

thought that the choriocapillaris is important in certain eye disorders as 

they appear to occur selectively within this vascular bed e.g. wet AMD 

and certain inflammatory choriocapillopathies such as MEWDS 

(multiple evanescent white dot syndrome). This suggests that the 

choriocapillaris is “different” from the rest of the choroidal vasculature.  
 

 

 

Fig 4.2. Scanning electron micrograph of a cast of human choroidal 
vasculature viewed from the scleral side showing draining choroidal 
veins (v), arterioles (a) and the choriocapillaris (c) visible through the 
gaps between the large vessels (from Olver J, 1990 Eye, 4:262, with 
permission).  
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Fig 4.3.  Scanning electron micrograph of a cast of human choroidal 
vasculature viewed from the side showing the large and medium sized 
choroidal vessels (Haller’s and Sattler’s layers) and the choriocapillaris 
visible at the top of the image (From Olver J, 1990 Eye, 4:262, with 
permission).  
 

The endothelial cells lining the choriocapillaris have an unusual 

property when compared with the other choroidal, ocular and most 

other endothelial cells (both micro- and macro-vascular); they are 

fenestrated on the side facing Bruch‟s membrane and the RPE cells. 

Fenestrations are round or oval transcellular holes through the thinnest 

parts of the endothelial cell cytoplasm. They are found in areas where a 

high rate of partially selective exchange of components between the 

intra and extravascular compartments is required. This exchange is 

usually limited to water and small solutes with passage of larger 

components such as lipids and proteins being inhibited. The 

fenestrations within the choriocapillaris therefore allow the rapid transfer 

of nutrients through Bruch‟s membrane and the RPE, into the highly 

metabolically active photoreceptors. To date, three types of 

fenestrations have been described (Satchell and Braet, 2009):  

 

Type 1 fenestrations are 60-70 µm in diameter and are covered by a 

thin diaphragm. The glycoprotein - plasmalemmal vesicle associated 

protein, 1 (PLVAP-1), is thought to be a major component of this 

diaphragm. Each fenestration is surrounded by a cytoskeletal lattice. 

Type I fenestrations are found in the endothelia of endocrine glands, 
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gastrointestinal mucosa and renal tubular capillaries. It is thought that 

the fenestrations found in the human choriocapillaris may be type I by 

virtue of the expression of PLVAP in gene array experiments (see later) 

and the possession of a diaphragm.  

 

 

 

 

Fig 4.4. An electron micrograph of a renal glomerular endothelial cell 
membrane demonstrating diaphragmed fenestrations (with permission 
of Springer images)  
 

 

Type II fenestrations are found in discontinuous endothelia such as that 

found in the spleen, liver and bone marrow. These fenestrations are 

wider (up to 200µm diameter) and do not have diaphragms or express 

PLVAP.  

 

Type III fenestrations are found in the endothelium of renal glomeruli. 

They are of a similar size to type I, but like type II, do not express 

PLVAP or have diaphragms.  

 

While possession of fenestrations is thought to be an endothelial 

specific marker, of use in the confirmation of EC lineage, the in vitro 

study of fenestrations is somewhat limited by their paucity of expression 

in many ECs derived from vascular beds known to be fenestrated in 
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vivo. The expression of fenestrations also appears to be lost by 

prolonged culture and sub-culture. Experiments are therefore best 

carried out on fresh tissue or unpassaged cells (Satchell and Braet, 

2009). Interestingly, fenestrations can also be induced in vitro in ECs 

that do not normally express them. This appears to be easier to perform 

in microvascular than macrovascular ECs (Esser et al, 1998) and is 

thought to be dependent on VEGF. Indeed, endothelial cells that are 

not normally fenestrated such as those found in the cremaster muscle 

and skin, can be induced to form them by the application of VEGF 

(Roberts & Palade, 1995). In the eye, VEGF secreted by the RPE is 

thought to be important for maintaining the state of fenestration of the 

choriocapillaris ECs as inhibition of intraocular VEGF by bevacizumab 

(an anti-VEGF antibody) leads to a reduction of choriocapillaris 

fenestration density (Peters et al, 2007).  

 

To better understand the angiogenic mechanisms important in the 

development of wet AMD, the leading cause of blindness in those over 

65, it would be advantageous to study the behaviour of endothelial cells 

derived from the site where the disease occurs, that is within the inner 

choroid of the human macula. This requirement has been reinforced by 

the previous finding in chapter 3 of significant heterogeneity in different 

human ocular endothelial cells. What is not known is whether this 

heterogeneity exists within the choroid at sites known to be predisposed 

to angiogenic disease (wet AMD). 

 

The isolation of ECs from the choriocapillaris/inner choroid has 

previously proved difficult. To date, workers have either used complete 

choroidal enzyme digests which contain all ECs, or have attempted 

selective enzyme separation of the choriocapillaris away from the 

underlying tissue (Liu & Li, 1993). This latter technique was conducted 

in bovine eyes which have a tapetal membrane underlying the 

choriocapillaris, making isolation simpler than in humans. Selective 

isolation in humans is also hampered by the increased susceptibility of 

the choroidal tissues to trypsin/collagenase digestion. This makes 
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selective isolation extremely difficult to achieve reliably and 

consistently.  

 

A new technique is therefore required to separate the 

choriocapillaris/inner choroid from the underlying structures. 

Interestingly, it has been known for over 100 years that the human 

choroid is made up of a lamellar structure. In 1892, Nuel described a 

natural cleavage plane between the layers of Haller (inner choroid) and 

Sattler (outer choroid) (Nuel, 1892), while in 1912, Saltzmann noted 

that dissection of the choroid was achieved most easily by teasing apart 

the layers from the outside (Saltzmann 1912). In order to exploit this 

phenomenon, two different techniques were tried to reliably separate 

the layers so that viable ECs could be extracted from the two layers of 

tissue. The first technique was the use of a Vibratome, which aimed to 

section the different horizontal layers of adult human choroid. The 

second technique was an attempt to isolate the desired ECs by manual 

dissection and cell isolation using paramagnetic beads coated with 

endothelial selective antibodies after enzyme digestion of the choroid.  

 

After isolation using the latter technique, the macular inner choroidal 

ECs were characterised in terms of their antigen expression 

(determined by selective binding of fluorescent labelled antibodies), 

their ability to form capillary-like tubes in a 3D collagen rich matrix and 

the presence of fenestrations. After isolation and characterisation, the 

isolated human inner choroidal endothelial cells could then be used in 

experiments to aid our understanding of the mechanisms of inner 

choroidal neovascularisation.  
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Methods  

 

Vibratome sectioning 

 

The vibratome (Campden Instruments, Loughborough, UK) is a 

vibrating keratome that enables the sectioning of living tissues into 

sheets for further physiological experimentation. Living tissue is held 

within gelatine blocks which is then subject to vibratome sectioning. It 

has been used successfully to produce functioning sections of the brain 

(Snyder et al, 2001) and the outer retina (Tezel & Kaplan, 1998; Kaplan 

et al, 1997; Silverman & Hughes, 1989; Ghosh et al, 1999) which have 

then been used for subsequent intraocular transplantation. Since retina 

is of a similar thickness to choroid, it was felt that this technique may be 

able to produce viable sheets of inner choroid. 

 

Gelatin blocks (10%) (Sigma Alrich, UK) were cast in silver foil and 

cooled at 4ºC to allow solidification. Flat sections of choroid, 

approximately 8mm in diameter, were removed from globe flat mounts 

using an 8mm biopsy punch and layered onto the gelatin block. The 

choroid was then covered with liquid gelatin (10%) and again allowed to 

solidify at 4ºC. The gelatin block was then mounted onto the vibratome 

chuck with superglue and sectioning at various thicknesses (20-50µm) 

was attempted. Despite varying the gelatin concentration and varying 

the thickness of the cut section, it was not possible for the blade to 

enter the choroid to produce a flat sheet of tissue. On all attempts, the 

blade either passed over the choroid sheet, pressing it further into the 

gelatin, or simply lifted the whole section out of the gelatin. The reason 

for this may be that choroid is composed of a dense network of blood 

vessels held together in a fibrous network which impedes the easy 

passage of the vibratome blade. This technique was therefore 

abandoned. 

 



 290 

Manual dissection 

 

Human posterior segments were dissected as described in chapter 2 

and the vitreous gel removed in order to give access to the posterior 

segment. A full thickness macular sample, centred on the fovea, 

consisting of choroidal and scleral tissue was removed with an 8mm 

sterile punch and transferred to a petri dish. The macula was identified 

by the presence of yellow macular pigment. The choroid was then 

gently teased from the attached sclera and turned upside down with the 

outer choroid facing upwards. With the use of a dissecting microscope 

(x10 magnification) and fine forceps, a natural cleavage plane was 

found that allowed the outer choroidal vessels, along with adherent 

pigmented fibrous tissue, to be peeled off, leaving the relatively non-

pigmented inner choroidal vessels and choriocapillaris/Bruch‟s 

membrane complex. The tissue samples (inner and outer choroid) were 

washed 3 times in isolation medium and the vascular endothelial cells 

were isolated by the method described previously using anti CD31 

coated paramagnetic beads (Chapter 2). Matched endothelial cells from 

the inner and outer macular choroid and peripheral inner choroid were 

routinely isolated and cultured for further experiments using this 

technique (described in detail in Chapter 2). 

 

Because of their importance in the pathogenesis of wet age-related 

macular degeneration, human macular inner choroidal endothelial cells 

were chosen for further characterisation with a view to further 

experiments into macular inner choroidal endothelial cell proliferation. 
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Human inner choroidal endothelial cell characterisation 

 

Immunohistochemistry  

 

A small sample of trypsinised cells, suspended in EGM-2MV, was 

placed onto sterile glass cover slips (VWR Ltd, Poole, UK) coated with 

1% gelatin (Sigma) (cover slips were immersed in 1% gelatin in sterile 

PBS for 30 mins at 37°C, then washed gently in sterile PBS and dried 

in a laminar flow hood). After allowing 3 hours for cells to attach, they 

were fixed in ice cold methanol at -20°C for 20 minutes. A standard two 

stage immunofluoresence technique was applied using the primary 

antibodies listed below in table 4.1. The primary antibodies were left in 

contact with the cells for 60 minutes before washing 4 times with sterile 

PBS. The secondary antibodies used were: rabbit anti-mouse F(ab‟)β 

fragment fluorescein isothiocyanate (FITC) conjugated (Dako) at a 

dilution of 1:20 when used to visualise all primary antibodies except 

swine anti-rabbit  F(ab‟)β fragment FITC conjugate (Dako) at a dilution 

of 1:20 which was used to visualise the anti-vWf primary antibody. The 

secondary antibodies were left in contact with the cells for 60 minutes 

before washing 4 times with sterile PBS. The slides were then mounted 

in glycerol containing 2.5% 1-4 diazabicyclo[2,2,2] octane (DABCO) 

(Sigma –Aldrich) and observed by confocal fluorescence microscopy 

(Leica TCS0D, Leica, Milton Keynes, UK). Negative primary antibody 

controls were conducted by replacing the primary antibody with either a 

non-specific anti-rat epitope murine IgG1 antibody, rabbit 

immunoglobulin fraction or PBS. Additional negative controls were 

conducted using the appropriate primary and secondary antibodies on 

human RPE cells. In assessing the identity and purity of the endothelial 

cells, at least 500 nucleated cells were counted after staining with each 

antibody. 
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It was felt important to characterise any contamination from other cells 

found within the choroidal stroma (fibroblasts and RPE cells), therefore 

human RPE cells and Tenon‟s capsule fibroblasts were used as 

controls and staining of samples for gSMA (for RPE cells) and fibroblast 

surface protein (for fibroblasts) was conducted. E-Selectin expression 

on endothelial cells was examined after exposure to TNF-g (100pg/ml) 

for 1 hour.  

 

 
Table 4.1. Primary antibodies used in the study of human inner 
choroidal endothelial cells 
 

Epitope Class Dilution Source 

CD31 murine 

IgG1 

1:20 Dako 

vWf rabbit Ig 

fract 

1:200 Dako 

VEGFR1 murine 

IgG1 

1:100 Sigma-Aldrich 

VEGFR2 murine 

IgG1 

1:800 Sigma-Aldrich 

gSMA murine 

IgG1 

1:50 Dako 

Fibroblast Surface 

Protein 

murine 

IgG1 

1:200 Dako 

E-Selectin murine 

IgG1 

1:20 Serotec 

Negative control murine 

IgG1 

1:20 Dako 

Negative control  Rabbit Ig 

fraction 

1:200 Dako 
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Transmission electron microscopy 

 
A sample of inner choroidal macular endothelial cells was grown to near 

confluence on 35mm fibronectin coated culture plates (Becton 

Dickinson, Oxford, UK) as previously described. The cells were then 

fixed in situ by immersion in 2.5% glutaraldehyde (in 0.1M cacodylate 

buffer, pH 7.4) for 16-24 hours and processed for transmission electron 

microscopy (TEM). The fixed cells, still attached to the plastic culture 

plate, were cut into 1mm thick slices and washed with cacodylate 

buffer, followed by secondary fixation in 1% osmium tetroxide for 1 

hour. The attached cells were then dehydrated in ascending 

concentrations of ethanol, followed by infiltration and embedding in 

Epon resin before polymerization at 60°C for 16 hours. Suitable areas 

for TEM were selected from 0.5µm toluidine blue stained sections. After 

they were trimmed, 80nm sections were cut and mounted on copper 

grids before double staining with uranyl acetate and lead citrate. A 

transmission electron microscope (model 1010; JEOL, Welwyn Garden 

City, UK) was used to observe the prepared sections.  

The transverse sections of macular inner choroidal endothelial cells 

were examined specifically for fenestrations and in vitro tube formation 

 

An important property that appears to be limited to vascular endothelial 

cells is their ability to coalesce into capillary-like tubes in a basement 

membrane matrix such as Matrigel (BD Biosciences, Oxford, UK). This 

property can therefore be utilized to identify isolated cells as originating 

from an endothelial lineage. Matrigel is a solubilised basement 

membrane preparation extracted from the Engelbreth-Holm-Swarm 

mouse sarcoma. This is a tumour rich in extracellular matrix proteins 

such as laminin, collagen IV, heparin sulphate, entactin and nidogen. It 

also contains TGF-beta, fibroblast growth factor and tissue 

plasminogen activator. The product has the property of rapidly forming 

a gel at 22-35°C and should therefore be used as close as possible to 

4°C until ready to gel, at which point it is brought up to room 
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temperature. During use, the product should be keep on ice, and used 

with cooled pipette tips, plates and tubes. 

 

In this experiment, a 1:1 mixture of chilled Matrigel and endothelial 

growth medium (EGM2-MV) was dispensed into pre-chilled wells of a 

cooled 96 well plate. The mixture was allowed to solidify at 37°C for 30 

minutes before macular inner choroidal endothelial cells, suspended in 

endothelial growth medium (EGM2-MV) were seeded at a density of 4.8 

x 104 per well. The wells were observed hourly for the formation of 

tubes. For transmission electron microscopy, the growth medium was 

removed and replaced by 2.5% glutaraldehyde (in 0.1M cacodylate 

buffer, pH 7.4) for 16-24 hours at 37°C. The fixed Matrigel was then 

gently removed from the well and processed as described previously.  
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Results 

 

Human posterior segments from 6 different donors were used. The 

ages of the donors (years) and the lengths of time from death to 

endothelial cell isolation (hours) were 45 (52), 76 (42), 70 (43), 37 (60), 

83 (60) and 56 (60).  

Toludine blue staining of sections of human choroid 

 

After manual dissection of samples of full thickness choroid, light 

microscopy showed the samples to comprise of Bruch‟s membrane, 

along with adherent choriocapillaris and inner choroidal vessels. The 

large outer choroidal vessels were reliably and reproducibly removed. 

Examples of the pre and post dissection toluidine stained choroid are 

shown in 4.5a and 4.5b respectively.  

 

 

 

Fig. 4.5a. Histological section of human sub-macular choroid stained 
with toluidine blue before removal of the outer choroidal vessels 
showing the dark blue staining of Bruch’s membrane with the 
underlying fine complex of the choriocapillaris and the larger calibre 
middle and outer choroidal vessels. The nuclei of the supporting 
choroidal fibroblasts and melanocytes can also be seen (all arrowed.) 

Bruch‟s membrane/choriocapillaris  

Mid/outer choroidal vessels 

Fibroblasts and melanocytes 
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Fig. 4.5b. Histological section of human sub-macular choroid stained 
with toluidine after removal of the outer choroidal vessels. The residual 
Bruch’s membrane, choriocapillaris and inner choroidal vessels can be 
seen. Note the absence of large outer choroidal vessels. 
 
 

Immunohistochemistry 

 
 
The isolates of macular inner choroidal endothelial cells stained positive 

for CD31, vWf, VEGFR1, VEGFR2 and E-Selection after stimulation 

with TNF . They did not stain with mouse anti-rat negative control, 

Smooth muscle actin or fibroblast surface protein. Selected 

photographs of macular inner choroidal ECs along with the appropriate 

negative controls are shown in figures 4.6-4.21. As important as the fact 

that the cells stained positive or negative for a certain antigen, is an 

understanding of the distribution of the stained antigen and whether the 

findings are compatible with the knowledge of this protein within 

endothelial cells.  

 

The macular inner choroidal ECs stained positive for vWf in a granular 

pattern within the cell cytoplasm. On transmission electron microscopy, 

no Weibel-Palade bodies were seen. The cells also stained positive for 

Bruch‟s membrane/ choriocapillaris 

Remnants of middle “feeder” 
arterioles and veins 
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CD31 (PECAM), with staining heaviest at endothelial cell-cell junctions 

while VEGF receptors 1 and 2 stained positively across the entire cell, 

with strong staining particularly around the nucleus (this may represent 

staining within the Golgi, where proteins are modified after synthesis). 

The cells were also positive for E-Selectin after stimulation with TNF 

alpha (the RPE cell control did not show similar up-regulation). The 

most intense staining was seen around the nucleus, perhaps because 

of the abrupt up-regulation of protein synthesis and modification within 

the Golgi.  The ECs did not demonstrate significant binding of alpha 

smooth muscle actin (a marker of RPE cells) or fibroblast surface 

protein (a marker of fibroblasts). Human RPE cells and Tenon‟s capsule 

fibroblasts stained positive for alpha smooth muscle actin and fibroblast 

surface protein respectively.  

 
 

Matrigel tube formation 

 

Human macular inner choroidal ECs formed capillary-like tubes within 3 

hours of suspension (Fig 4.22). By 6 hours the tubes had begun to 

break up. Control Tenon‟s capsule fibroblasts did not show any 

evidence of tube formation. When samples of cells were cultured in 

Matrigel plugs and processed for transmission EM, numerous lumina 

were detected when tubes were cut in cross section. In some instances, 

at least 3 different cells were seen to make up the tube wall (Fig 4.23) 

and were joined by junctional complexes. This suggests that the tubes 

were formed by an active process on the part of the cells and had not 

simply occurred by random cell aggregation. 

 

Fenestrations  

 

Cells were cultured on gelatine coated plastic cover slips in growth 

medium. They were then fixed and examined by TEM. At no point were 

electron dense Weibel-Palade bodies found. Scattered throughout the 

cells, particularly at points where they were at their thinnest were 
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diaphragmed fenestrations (Fig 4.24). These were seen as gaps within 

the cell membranes joined by electron dense lines (the diaphragm). 

Compared to published pictures of fenestrations in freeze fractured 

ECs, the fenestrations in our cells were much less abundant.  

 

 

 

 

Fig 4.6. Macular inner choroidal endothelial cells stained for vWf 
(primary antibody - rabbit polyclonal anti-vWf, secondary antibody - 
swine anti-rabbit  F(ab’)2 fragment FITC conjugate). This demonstrates 
cells staining positive in a granular pattern consistent with the known 
localisation of vWf being within cytoplasmic granules. 
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Fig 4.7. Macular inner choroidal endothelial cells negative control, 
stained with rabbit Ig fraction (primary antibody and secondary antibody 
- swine anti-rabbit F(ab’)2 fragment FITC conjugate). Compared with 
Fig 4.2 (vWf), there is an absence of granular staining within the 
cytoplasm indicating that Fig 4.6 (vWf) shows a true positive result 
There is non-specific staining of cell nuclei. 
 

 
 

Fig 4.8. Macular inner choroidal endothelial cells stained for CD31. 
There is a ring of increased staining around the nuclei, perhaps 
indicating the site of CD31 synthesis. However, maximal staining is 
located at the cell surface, particularly at points of cell contact. This 
would be compatible with the known role of CD31 in being an 
endothelial cell surface adhesion molecule. 
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Fig 4.4. Macular inner choroidal endothelial cells stained for CD105 ( 
 

 

 

 

 

 
Fig 4.10. Macular inner choroidal endothelial cells stained for VEGF 
receptor 1. There is homogeneous staining throughout the cell, 
consistent with the VEGF receptor being abundant on the cell surface. 
In addition, there appears to be increased staining around the nuclei, 
perhaps because of the site of protein synthesis and modification. The 
cell on the left also demonstrates autofluorescence of bound 
Dynabeads.  

Fig 4.9. Human RPE cells stained for CD31 (negative control). 
There is a very faint non specific staining of the cells but no 
paranuclear or cell surface staining. 
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Fig 4.11. Human RPE cells stained for VEGF R1 (negative control). 
There is a very faint non-specific staining of the cells, but no consistent 
staining across the cell surface.  
 
 

 
 

Fig 4.12. Macular inner choroidal endothelial cells stained for VEGF 
receptor 2 (VEGFR2). There is homogeneous staining throughout the 
cell, consistent with the VEGF receptor being abundant on the cell 
surface. In addition, there appears to be increased staining around the 
nuclei, perhaps because of the site of protein synthesis. This would be 
consistent with the known distribution of VEGF R2 being abundant 
across the cell surface.  
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Fig 4.13. Human RPE cells stained for VEGF R2 (negative control). 
There is a very faint non specific staining of the cells, but no consistent 
staining across the cell surface. 
 

 
 

Fig 4.14. Macular inner choroidal endothelial cells stained for E-Selectin 
(unstimulated). There is a faint non-specific, generalised staining of the 
cells, perhaps due to background production of E-Selectin by the cells. 
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Fig 4.15. Macular inner choroidal endothelial cells stained for E-Selectin 
(1 hour post TNF-g stimulation). There is increased staining in a 
granular fashion around the cell nuclei. This may represent the site of 
E-Selectin protein synthesis or modification e.g. the Golgi apparatus.  
 

 
 

Fig 4.16. Human RPE cells stained for E-Selectin (1 hour post TNF-g 
stimulation). This is non specific cell staining and possible secondary 
antibody precipitation, but no evidence of granular paranuclear staining 
as seen in corresponding endothelial cells. 
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Fig 4.17. Macular inner choroidal endothelial cells stained with mouse 
anti-rat isotype negative control. There is evidence of faint cell staining 
and secondary antibody FITC precipitation but no significant or distinct 
pattern of staining. 
 
 

 
 

Fig 4.18 Macular inner choroidal endothelial cells stained for alpha-
smooth muscle actin (g-SMA). The cells demonstrate no discernable 
staining. The faint fluorescence is more likely to be due to non specific 
secondary antibody precipitation.  
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Fig 4.19. Human RPE cell stained for g-smooth muscle actin. There is 
strong staining indicating that RPE cells express gSMA. This can be 
used as a marker for cell contamination. 
 
 

 
 

Fig 4.20. Macular inner choroidal endothelial cells stained for Fibroblast 
surface protein. There is faint and grainy staining across the whole cell 
which may be non-specific. 
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Fig 4.21. Human Tenon’s capsule fibroblasts stained for fibroblast 
surface protein. In comparison with the endothelial cell above, staining 
is much stronger and homogeneous. This marker can be used as a 
measure of fibroblast contamination in cell preparations. 
 
 

 

 

Fig. 4.22. Macular inner choroidal endothelial cells seeded onto 
Matrigel forming capillary-like structures within 3 hours of seeding. 
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Fig. 4.23. Transmission electron microscopy of macular inner choroidal 
endothelial cells showed that the tube-like structures possessed a 
lumen, and each lumen was surrounded by up to 3 cells joined by 
junctional complexes (inset). 
 
 

 
 

Fig. 4.24. Macular inner choroidal endothelial cell fenestrations 
(arrowed) were found scattered throughout the cell on T.E.M. The 
fenestrations had obvious diaphragms suggesting that they were type I 
fenestrations. The dark homogeneous structure is the gelatin coated 
plastic cover slip used to culture the cells on. 
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Discussion 

 

There are certain diseases that appear to selectively affect the human 

choriocapillaris and inner choroid. The reason for this is currently 

unknown. They include wet age-related macular degeneration (Sarks et 

al, 1997) and the primary inflammatory choriocapillopathies such as 

multiple evanescent white dot syndrome (MEWDS) and acute multi-

focal posterior placoid pigment epitheliopathy (AMPPPE) (Cimino et al, 

2000). In these latter disorders, because of their rarity and the fact that 

they tend to affect otherwise young healthy patients, histological 

evidence is lacking of choriocapillaris involvement. However, analysis of 

data from indocyanine green angiography points to the inner 

choroid/choriocapillaris as the site of disease (Cimono et al, 2000, 

Bouchenaki et al, 2002). In all of these disorders, devastating visual 

loss can occur and current treatment modalities may not be particularly 

effective. It is important, therefore to increase our understanding of the 

underlying pathogenesis of these diseases. As the site of disease lies 

within the inner choroidal vasculature, the endothelial cells lining these 

vessels would be obvious candidates for further study.  

 

A major obstacle in trying to correlate endothelial cells with site specific 

pathological processes is endothelial cell heterogeneity. It has been 

shown that endothelial cells derived from large vessels (macrovascular 

ECs) and smaller vessels (microvascular ECs) from different tissues 

have distinct and characteristic gene expression profiles Chi et al, 

2003). Endothelial cell heterogeneity has even been described within 

the same organ such as the lung (Müller et al, 2002, Ghitescu et al 

2002) and the placenta (Lang et al, 2003). These factors and the 

previously discussed differences in the functional differences in EC 

derived from different vascular beds suggest that it is probably 

necessary to use site-specific endothelial cells when studying vascular 

or angiogenic diseases. This means that it would be useful to describe 
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a method for the successful and reproducible isolation of human 

macular inner choroidal endothelial cells  

 

While others have described methods for the isolation of human 

choroidal endothelial cells that contain a mixture of inner and outer 

choroidal endothelial cells (Sakamoto et al 1995, Penfold et al, 2002), 

until now, no method has been described to isolate human macular 

inner choroidal endothelial cells alone. In 1993, Liu and Li described a 

technique to isolate choriocapillaris endothelial cells in bovine eyes. 

This method took advantage of the differences in structure of the 

choriocapillaris – Bruch‟s membrane complex to that of the larger 

choroidal vessels. The method entailed cutting the choroid up into tiny 

pieces with scissors and digesting the fragments with trypsin. This is 

designed to dissolve away the large outer choroidal vessels leaving the 

Bruch‟s-choriocapillaris complex intact. The resulting fragments were 

then washed and the free floating choriocapillaris fragments were 

manually picked out and further digested with collagenase to release 

individual cells. The cells were then plated and grown in endothelial 

selective medium. This method has a number of drawbacks in relation 

to the isolation of the human equivalent cells. Firstly, bovine eyes are 

known to have a much firmer Bruch‟s membrane which means that this 

method is more likely to leave the Bruch‟s – choriocapillaris complex 

intact after enzyme digestion. Secondly, the resultant plated cells would 

have contained a rich mixture of contaminating cells (fibroblasts) which 

can easily overgrow the cultures. When attempted with human tissue, 

we failed to produce the necessary cleavage plane, suggesting a 

stronger bond between the choriocapillaris and the outer choroid in 

humans, 

 

The aim of this chapter was to determine a new technique for the 

reliable isolation of human macular inner choroidal ECs. Initially, a 

manual technique using a Vibratome was attempted. In the past, this 

machine had been used to cut viable sheets of neuronal tissue 

including retina for use in functional experiments. It was thought that a 



 310 

similar technique could be applied to the human choroid. Despite 

numerous attempts, it was found that the tissue was too firm for the 

blade to cut reliable sections. In addition, due to the prolonged time 

taken in attempting to cut the tissue and the severe conditions the cells 

were exposed to while undergoing sectioning (extreme cold necessary 

to solidify the gelatine and potential tissue drying), this technique was 

abandoned.  

 

A different, solution-based approach was taken and in this chapter is 

described a successful technique for the isolation of human macular 

inner choroidal ECs that utilises an observation made around 100 years 

ago. In 1892, Nuel described a natural cleavage plane within the human 

choroid between the layers of Haller (inner choroid) and Sattler (outer 

choroid). In 1912 Salzmann noted that dissection of the choroid was 

easiest when the layers were teased apart from the outside. With the 

aid of a dissecting microscope and a microdissection technique, it was 

easy to peel the large outer choroidal vessels from the underlying inner 

choroid/choriocapillaris complex, hence the adoption of the manual 

dissection technique. The individual outer choroidal vessels or the inner 

choroidal complex could then be finely cut into pieces and the tissues 

gently dissolved in collagenase. In order to increase the purity of cells 

isolated and therefore to improve the reliability of any downstream 

experiments, the use of anti-CD31 coated paramagnetic beads 

replaced the older manual sweeping techniques mentioned previously 

or the use of endothelial-specific culture medium (which may also 

support other cells such as fibroblasts). CD 31, otherwise known as 

PECAM-1 is reported to be a pan-endothelial marker in mature, human 

endothelial cells (manufacturer‟s literature). The anti-CD31 

paramagnetic bead technique is reported to produce cultures with a 

purity in excess of 99%. 
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The isolated, unpassaged cells were found to stain strongly for CD31, 

vWf, VEGF receptors 1 and 2. The cells were also shown to express E-

Selectin (CD62E), an inducible endothelial-leukocyte adhesion 

molecule, after stimulation with TNF- , a feature that may be unique to 

endothelial cells (Bevilacua et al, 1987). The isolated cells were 

negative for alpha smooth muscle actin and fibroblast surface protein. 

The finding of positive staining for vWf is an interesting finding as it was 

originally thought that only macrovascular ECs contained vWf within 

electron dense Weibel-Palade (WP) bodies (Jaffe et al, 1973; Wagner 

and Matthews, 1975). These bodies are seen on electron microscopy, 

as electron dense and contain a defined cytoskeleton. Electron 

microscopy of human inner choroidal ECs did not reveal any WP 

bodies. However, vWf staining on immunohistochemistry was granular 

in pattern within the cell cytoplasm, similar to the known distribution of 

WP bodies. It may be that in these cells, vWf is contained within 

different intracellular structures when compared to macrovascular ECs. 

Interestingly, review of the raw microarray data for macular inner 

choroidal ECs (see chapter 5) reveals significantly up-regulated gene 

expression for vWf (as it was for all choroidal ECs and retinal ECs). 

 

The isolation of human macular inner choroidal ECs is further validated 

by an absence of contamination from RPE cells (negative for -smooth 

muscle actin) and fibroblasts (negative for fibroblast surface protein). In 

this study, the isolated cells also formed fenestrations when grown on 

fibronectin and formed capillary-like tubes when cultured in Matrigel. 

The lumen of these tubes was surrounded by two or more cells joined 

by junctional complexes, suggesting that these cells had not simply 

aggregated together randomly. Again, the formation of fenestrations 

and formation of tubes in culture are thought to be specific to 

endothelial cells.  
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Considering that the choriocapillaris is heavily fenestrated in vivo, I was 

surprised to find that fenestrations were not found in abundance in this 

in vitro model. This discrepancy in in vivo and in vitro rates of 

fenestrations has previously been found in fenestrated kidney ECs 

(Satchell and Braet 2009). Reasons for this include methods used in 

tissue preparation, reduced levels of VEGF within the milieu around the 

ECs (VEGF is thought to be critical for fenestration formation and 

maintenance, (Peters et al 2007, Esser et al, 1998) or dysregulation of 

proteins such as PVLAP, known to be important in the assembly of 

fenestrations. For the purposes of this experiment, no additional VEGF 

was added to the Matrigel and so may be important as it shows that 

these cells still express fenestrations under basal conditions, showing 

that the cells are still reflecting their in vivo phenotype even when 

subjected to in vitro conditions. The fenestrations observed had obvious 

diaphragms thereby suggesting that they are type I fenestrations Their 

ability to form tubes with junctional complexes also shows that they 

retain their endothelial phenotype and this observation could be used 

subsequently as an assay of endothelial cell function.  

 

In summary, a method has been developed to isolate and culture 

human inner choroidal endothelial cells. During early passages these 

cells possess the morphological characteristics of vascular endothelial 

cells; they form fenestrations and capillary tube-like structures and 

express a number of surface markers consistent with their endothelial 

cell origin. These cells may therefore be useful in studying the 

pathophysiological mechanisms of choroidal neovascularisation. This 

technique is also applicable to the isolation of macular outer choroidal 

endothelial cells if required.  



 313 

References 

 
Bevilacqua MP, Pober JS, Mendrich DL, Cotran RS,  Gimbrone MA. 

Identification of an inducible endothelial-leukocyte adhesion molecule. 

Proc Natl Acad Sci 1987;84:9238-9342 

 

Bouchenaki N, Cimino L, Auer C, Tao Tran V, Herbort CP. Assessment 

and classification of choroidal vasculitis in posterior uveitis using 

indocyanine green angiography. Klin Monbl Augenheikd 2002;219:243-

253. 

 

Chi J-T, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, 

Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brown 

PO. Endothelial cell diversity revealed by global expression profiling. 

Proc Natl Acad Sci USA 2003;100:10623-10628. 

 

Cimino L, Auer C, Herbort CP. Sensitivity of Indocyanine green 

angiography for the follow up of acute inflammatory 

choriocapillopathies. Ocul Immunol Inflamm 2000;8:275-283. 

  

Esser S, Wolberg K, Wolberg H, Breier G, Kurzchalia T Risau W. 

Vascular endothelial growth factor induces endothelial fenestrations in 

vitro. J Cell Biol 1998;140:947-959.  

 
Ghitescu L, Robert M. Diversity in unity: The biochemical composition 

of the endothelial cell surface varies between the vascular beds. 

Microsc Res Tech 2002;57:381-389 

 

Ghosh F, Juliusson B, Arnér K, Ehinger B. Partial and full-thickness 

neuroretinal transplants. Exp Eye Res 1999;68:67-74. 



 314 

Jaffe EA, Nachman RL, Becker CG, Minidi CR. Culture of human 

endothelial cells derived from umbilical veins: identification by 

morphological and immunological criteria. J Clin Invest 1973;52:2745-

2756. 

 

Kaplan HJ, Tezel TH, Berger AS, Wolf ML, Del Priore LV. Human 

photoreceptor transplantation in retinitis pigmentosa. Arch Ophthalmol 

1997;115:1168-1172. 

 

Lang I, Pabst MA, Hiden U, Blaschitz A, Dohr G, Hahn T, Desoye G. 

Heterogeneity of microvascular endothelial cells isolated from human 

term placenta and macrovascular umbilical vein endothelial cells. Eur J 

Cell Biol 2003;82:163-173. 

 

Liu X, Li W. Isolation, culture and characterization of bovine 

choriocapillary endothelial cells. Exp Eye Res 1993;57:37-44. 

 

Nuel IP. De la vascularisation de la choroide et de la nutrition de la 

retine principalement au niveau de la fovea centralis. Arch 

d'Ophthalmol 1892;12:70-87. 

 

Penfold PL, Wen L, Madigan MC, King NJ, Provis JM. Modulation of 

permeability and adhesion molecule expression by human choroidal 

endothelial cells. Invest Ophthalmol Vis Sci 2002;43:3125-3130. 

 

Peters S, Heiduschka P, Julien S, Ziemssen F, Fietz H Bart-Schmidt 

KU et al. Ultrastructural findings in the primate eye after intravitreal 

injection of bevacizumab. Am J Ophthalmol 2007;143:995-1002. 

 

Roberts WG, Palade GE. Increased microvascular permeability and 

fenestration induced by vascular endothelial growth factor. J Cell Sci 

1995;108:2369-2379. 

 



 315 

Sakamoto T, Sakamoto H, Hinton DR, Spee C, Ishibashi T, Ryan SJ. In 

vitro studies of human choroidal endothelial cells. Curr Eye Res 

1995;14:621-627 

 

Saltzmann M. The anatomy and histology of the human eyeball in the 

normal state. Leipzig, Chicago: Franz Deuticke; 1912. p. 52-63. 

 

Sarks JP, Sarks SH, Killingsworth MC. Morphology of early choroidal 

neovascularization in age-related macular degeneration: Correlation 

with activity. Eye 1997;11:515-522. 

 

Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an 

integral component of the glomelullar filtration barrier. Am J Physiol 

Renal Physiol 2009;296:947-956. 

 

Silverman MS, Hughes SE. Transplantation of photoreceptors to light-

damaged retina. Invest Ophthalmol Vis Sci 1989;30:1684-1690. 

 

Snyder-Keller A, Costantini LC, Graber DJ. Development of striatal 

patch/matrix organization in organotypic co-cultures of perinatal 

striatum, cortex and substantia nigra. Neuroscience 2001;103:97-109. 

 

Tezel TH, Kaplan HJ. Harvest and storage of adult human 

photoreceptor cells: The vibratome compared to the excimer laser. Curr 

Eye Res 1998;17:748-756. 

 

Wagner RC, Matthews MA. The isolation and culture of capillary 

endothelium from epididymal fat. Microvasc Res 1975;10:286-297.



 

 

 

 

Chapter 5 

 

 

 

 

Comparative Gene Expression 
Profiling of human macular and 

peripheral inner choroidal 
endothelial cells and macular outer 

choroidal endothelial cells 
 

 

 

 

 

 



 317 

Introduction 

 
The posterior segment of the eye is topographically arranged to provide 

different functions. Its most widely recognised feature is the variable 

topographical distribution of rods and cones across the retina which 

provides predominantly photopic (bright light and colour) and scotopic 

(low light level and black/white) functions. The area known as the 

macula has the highest density of photoreceptors (rods and cones), 

with the central foveal area containing only cones. Although the macula 

only occupies 1.4% of the retinal area, it contains 8.4% of all retinal 

cones, 3.4% of rods and 60% of retinal ganglion cells (Curcio et al, 

1990). Not surprisingly, comparison of gene expression between the 

macular and peripheral retina has found that a number of genes are 

preferentially expressed in the macula. Many of these differences were 

of axonal origin and included neurofilament 3, brain specific alpha 

tubulin and light neurofilament (Sharon et al, 2002). Their differential 

expression probably reflects the increased density of ganglion cells in 

the macula. The same study found cone-specific genes such as cone 

alpha transducin, cGMP phosphodiesterase and cone opsins to be 

more abundant in the macula, but the differences did not reach 

statistical significance. In contrast, genes up-regulated in the retinal 

periphery included rod-specific genes such as rhodopsin, transducin 

and recoverin and non-specific genes such as transferrin (involved in 

iron transport) and DOPA decarboxylase. While the topographical 

differences in retinal gene expression can be explained by well 

documented and understood functions, topographical differences in the 

distribution in other cells within the posterior segment are less well 

understood.  

 

Several studies have investigated the variation in RPE gene expression 

across the posterior segment. It is known that at the light and electron 

microscope level, RPE cells differ in appearance between those found 

in the macula and those in the periphery. For example, macular RPE 
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cells are more columnar and contain more melanin than those in the 

periphery (Ishibashi et al, 2004). In 2001, Bron stated that at the fovea, 

each RPE cell measures 12-18µm in width and is 10-14µm in height, 

while in the periphery they are flatter and are up to 60µm in width (Bron 

et al, 1997b). However, with increasing age, macular RPE cells become 

taller and thinner, whilst in the periphery it is vice versa (Watzke et al, 

1993). In addition, with increasing age, RPE cells at the macula 

become less pigmented while those in the periphery become more so. 

At a gene expression level, Ishibashi et al demonstrated a difference in 

the expression of a number of genes between peripheral and macular 

RPE cells prepared by laser microdissection of human eyes (Ishibashi 

et al, 2004). They identified 11 genes that showed differential 

expression, each showing reduced expression in the macular area, 

including: aldehyde dehydrogenase 6, sialic acid synthase, protein 

kinase C and glutathione S-transferase. Van Soest, using a similar 

laser capture dissection technique, found 438 genes that were 

differentially expressed (1-5% of the transcriptome), with 33 showing at 

least a 4-fold change. There was enrichment of extracellular matrix 

genes such as collagen types I, II and VI, laminin, TIMP 2 and 

thrombospondin 4, all being up-regulated in peripheral RPE cells (van 

Soest et al, 2007). When the van Soest study was compared with the 

previous study (Ishibashi et al, 2004), only the results for aldehyde 

dehydrogenase and c-kit were found to be comparable. Reasons for 

this wide discrepancy between the results of the two studies include 

sample contamination by photoreceptors (Bowes Rickman et al, 2006), 

age of the donors and the type of microarray used. The authors of the 

studies suggest that the up-regulation of genes involved in ECM may 

represent a role for the RPE in Bruch‟s membrane turnover. Up-

regulation of the aforementioned genes may also contribute to the 

topographical differences found in the composition and physical 

properties of Bruch‟s membrane, part of the basement membrane of the 

RPE (Chong et al, 2005; Ramrattan et al, 1994; Okubo et al, 1999; Guo 

et al, 1999). This may in turn lead to disease susceptibility of the 

macula to conditions such as age-related macular degeneration. 
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Little is known about the topographical changes within the human 

choroid. It has been subdivided into three layers: the outer layer of large 

vessels (Haller‟s layer), a middle layer of medium sized vessels 

(Sattler‟s layer) and an internal layer adjacent to Bruch‟s Membrane 

composed of capillary vessels (choriocapillaris), as discussed 

previously. The choriocapillaris at the macula is supplied by a higher 

density of pre-capillary arterioles than that found in the periphery, while 

the peripheral choroid is simpler in structure with the meshwork of the 

choriocapillaris being much wider than that found in the macular area. 

In 2006, Mullins et al described differences in the distribution of ICAM 1 

across the choriocapillaris and retina, with labelling being stronger in 

the macular area. They suggested that this may play a role in increased 

leukocyte trafficking in the macula (Mullins et al, 2006). In 2007, 

Radeke studied the gene expression of macular and peripheral 

RPE/choroidal samples and found differences in a number of genes 

that may have relevance to wet AMD. These include an RPE cell 

growth factor (TFP12) and a number of inflammation-related genes 

such as CXCL14, CCL19 and CCL26 (Radeke et al, 2007). 

Unfortunately, it is not known if these gene differences were solely 

derived from the RPE or choroid as the samples tested were a mixture 

of both tissues. 

 

As mentioned previously, choroidal neovascularisation in wet age-

related macular degeneration begins within the inner choroid and is 

almost always within the macular area. Given the fact that the 

topography of photoreceptors, RPE and Bruch‟s membrane is different 

at the macula compared to elsewhere in the eye, it is important to 

establish whether the choroidal endothelial cells in the sub-macular 

area are different to those in the periphery, possibly making them more 

susceptible to certain diseases. It is known that the choroidal 

vasculature is formed by a process of haemovasculogenesis 

(Hasegawa et al, 2007). In theory, all choroidal endothelial cells are 

derived from the same precursor, meaning any differences are probably 
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due to the local microenvironment that the ECs find themselves in, i.e. 

the surrounding “different” Bruch‟s membrane, photoreceptors or RPE 

cells. Any differences might also render them differentially responsive to 

treatment, because selective treatment of disease relies on the 

identification of unique, or at least significantly different, attributes in the 

affected site compared with its surroundings.  

 

The aim of this section was to compare the gene expression profiles of 

matched human sub-macular inner and outer choroidal endothelial cells 

and matched human sub-macular and peripheral inner choroidal 

endothelial cells using the gene microarray technique described 

previously. An additional aim was to determine whether there were, in 

fact, specific gene expression profiles that were unique to cells within 

different areas of the human choroid that may help to explain the 

topographical selectivity of choroidal disease and perhaps lead to the 

development of site-specific treatments. 

 



 321 

Methods  

 
The technique for the isolation of human macular inner choroidal 

endothelial cells has previously been described in Chapter 4. During 

dissection of the human choroid, matched 6mm diameter samples of 

peripheral inner choroid (peripheral area nasal to the optic disc) and 

macular outer choroidal tissue were collected and treated in the same 

manner as described for the macular inner choroidal samples.  

 

Briefly, matched human macular inner and outer and peripheral inner 

choroidal endothelial cells were isolated from anonymised, paired 

human globes, enucleated within 24 hours of death and free of any 

known ocular disease. The globes were obtained from UK Transplant 

after removal of corneas for transplantation. The research had the 

approval of the local research ethics committee (Nottingham 

Q1060301). The matched choroidal endothelial cells from the different 

locations underwent identical isolation procedures using anti CD31 

coated Dynabeads (Dynal Ltd, Wirral, UK), were seeded onto 

fibronectin-coated 35mm culture dishes (Beckton Dickinson, Oxford, 

UK) and incubated at 37 C in Endothelial Growth Medium (EGM2-MV 

with hydrocortisone omitted, Cambrex Biosciences, Wokingham, Berks, 

UK) in a humidified atmosphere of 5% CO2.  

 

Confirmation of EC purity 

 

The identity and purity of cells used in the microarray assays was 

confirmed prior to RNA extraction by staining for Factor VIII and CD31 

as described in Chapter 4.  
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RNA extraction 

 

Total RNA was extracted from primary cultures of un-passaged 

endothelial cells when they had reached approximately 80% 

confluence, using the Qiagen RNeasy Minikit (Qiagen, Crawley, UK) as 

described in chapter 3. As before, the isolated RNA was transferred into 

microcentrifuge tubes and stored at -80°C until used for subsequent 

analysis. It was found that approximately 1–3 g of total RNA was 

obtained from each 35mm culture plate.  

 

Microarray analysis 

 

The previously stored RNA was processed through the different stages 

of microarray analysis using Affymetrix GeneChip ® Human Genome 

U133 Plus 2.0 arrays (Affymetrix, High Wycombe, Bucks, UK) as 

described in chapter 3. 

 

Data Analysis 

 

Affymetrix CEL files were imported into GeneSpring GX 11.0.1 and 

processed with the MAS5 algorithm to generate PMA flags. Probesets 

were excluded from further analysis if there was not a Present or 

Marginal flag in 100% of the samples in one of the four cell groups. 

Affymetrix control probesets were also excluded, leaving a probeset list 

for subsequent analysis. Data was then normalised with GC-RMA to 

provide expression values. To identify differentially expressed genes 

between cell groups, ANOVA was performed on this probeset list with 

Tukey-HSD post-hoc testing and Benjamini-Hochberg false discovery 

rate control. A difference in expression between probesets with a 

corrected p-value of <0.05 and a fold-change of greater than 2 were 

considered to be statistically significant. Data was exported directly 

from GeneSpring 11.0.1. to Ingenuity Pathway Analysis for these 

probesets. Biological functions analysis identified areas of the Ingenuity 
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Functional Analysis library of biological functions that were most 

significant to the data set. Molecules from the data set that met the cut 

off criteria and were associated with an area of biological function in 

Ingenuity‟s Knowledge Base were considered for the analysis. The 

significance of the association between the data set and the biological 

function was measured in two ways:  

 

1) A ratio of the number of molecules from the data set that map to the 

area, divided by the total number of molecules that map to the 

functional area is displayed.  

 

2) Fisher‟s exact test was used to calculate a p-value determining the 

probability that the association between the genes in the dataset 

and the functional area is explained by chance alone. 

 

QPCR 

 

The method for QPCR confirmation of microarray probeset expression 

results has been described previously (Chapter 3).  
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Results  

 

Nine matched, un-passaged EC samples, representing 3 different intra-

choroidal locations from three different donors were propagated under 

identical conditions. The 3 choroidal areas represented by the matched 

samples were: macular inner choroidal ECs, macular outer choroidal 

ECs and peripheral inner choroidal ECs (peripheral area nasal to the 

optic disc). The age, sex and time from death to the cells being placed 

in culture were as follows: 58, male, 28 hours; 42, male, 43 hours; 62, 

female, 36 hours. All eyes were free of ocular disease, in particular the 

macula, on examination with the dissecting microscope. 

 

Samples of cells from all locations displayed homogeneous 

cobblestone morphology with no evidence of cell contamination. 

Greater than 99.5% of the endothelial cells from each site 

demonstrated staining for factor CD31 prior to their use in the 

aforementioned experiments, confirming their purity and identity as 

endothelial cells.  

 

Overview of gene expression patterns 

 

Between 1.5 and 3.4 µg of total RNA were isolated from each 35mm 

plate. Biotinylated cRNA probes were hybridised to Affymetrix 

GeneChip ® Human Genome U133 Plus 2.0 arrays containing 47000 

transcripts, of which 38500 were well characterised human genes. A 

total of 23636 probe sets passed quality control testing during analysis. 
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Proliferating human macular inner choroidal endothelial cells 
(ECs) versus peripheral inner choroidal ECs 

 

Comparison of matched, un-passaged proliferating human macular 

inner choroidal endothelial cells (ECs) with peripheral inner choroidal 

ECs demonstrated a small difference of 35 probe sets (0.15% of 

probesets that passed quality control) Of this total, 19 were up-

regulated in macular inner choroidal ECs and 16 were up-regulated in 

peripheral inner choroidal ECs. This study demonstrated a striking 

homogeneity of gene expression between inner choroidal ECs derived 

from the macula and periphery. Differences in the expression of a small 

number of genes such as Annexin 10, collagen type XVI and mannose 

receptor C were noted. Canonical pathway analysis failed to reveal any 

pathways that were significantly represented. A complete list of 

differentially expressed probesets reaching statistical significance is 

shown in tables 5.1 and 5.2. 
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Table 5.1. All probesets reaching differential expression of 2.0 or 
greater in human macular inner choroidal endothelial cells compared 
with matching peripheral inner choroidal ECs. 
 
  

GENE TITLE 
 

Fold 
Change 

 
mesoderm specific transcript homolog  2.5  
Rho GTPase activating protein 23 3.8  
serine (or cysteine) proteinase inhibitor, clade B 2.9  
lymphocyte cytosolic protein 1 (L-plastin) 2.2  
sema domain, immunoglobulin domain (Ig),(semaphorin) 2.1  
eukaryotic translation initiation factor 1A, Y 2.3  
annexin A10 4.3  
DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked 2.4  
plasmalemma vesicle associated protein 2.2  
solute carrier family 6, member 15 2.1  
ring finger protein 128 2.7  
keratin associated protein 2-1  2.1  
SH3-domain GRB2-like 2 2.1  
interleukin 13 receptor, alpha 2 2.3  
ribosomal protein S4,  2.2  
tetraspanin 7 2.5  
solute carrier family 4, sodium bicarbonate cotransporter, 
member 4 2.2 

 

collagen, type XVI, alpha 1 2.1  
UDP-N-acetyl-alpha-D-galactosamine:polypeptide  2.2  

 

 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=NM_006379
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=NM_004681
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=AI652058
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=NM_004660
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=AF326591
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=NM_018057
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=BC012486
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=BC005248
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=NM_003026
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=NM_000640
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=NM_003759
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=NM_001856
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Table 5.2. All probesets reaching differential expression of 2.0 or 
greater in human peripheral inner choroidal endothelial cells compared 
with macular inner choroidal ECs 
 
 

GENE TITLE 
Fold 

Change 
trefoil factor 3 (intestinal) 3.1  
Meis1, 2.7  
mannose receptor, C type 1  2.2  
pregnancy specific beta-1-glycoprotein 5 2.3  
fatty acid binding protein 4, adipocyte 2.1  
pregnancy specific beta-1-glycoprotein 1 2.1  
extracellular link domain containing 1 2.7  
ATP-binding cassette, sub-family G  2.1  
extracellular link domain containing 1 2.3  
pregnancy specific beta-1-glycoprotein 9 2.1  
zinc finger protein 659 2.1  
coronin, actin binding protein, 1B 2.1  
churchill domain containing 1 2.9  
tumor-associated calcium signal transducer 2 2.1  
periplakin 2.2  
heat shock 70kDa protein 6 (HSP70B') 2.8  
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Proliferating human macular inner choroidal ECs versus macular 
outer choroidal ECs 

 

Comparison of matched, un-passaged proliferating human macular 

inner choroidal endothelial cells (ECs) with macular outer choroidal 

endothelial cells revealed 302 probesets that were differentially 

expressed between the two cell types (1.3%). Of the 302 differentially 

expressed probesets, 96 were up-regulated in macular inner choroidal 

ECs, and 193 were up-regulated in macular outer choroidal ECs. Probe 

sets for a diverse range of functions including nervous system 

development (Brain Derived Neurotrophic factor, Neurofilament light 

and medium polypeptides), cell signalling (MAPK 11, Apelin receptor, 

Parvin beta, diacylglycerol kinase and MAPK binding protein 1 and 

WNT5A), cellular growth and proliferation (VEGF, HGF, CXCL12, TGF 

Beta1 and MMP10), immune response (MHC class II alpha and HLA 

DR B1 and CD200) and cell morphology (Keratin 19, Collagen 11 alpha 

subunit and Collagen 15 alpha subunit and PLVAP) were found to be 

differentially expressed. Lists of the most highly expressed probesets 

reaching statistical significance are shown in tables 5.3, 5.4 and 5.5. 

The difference in probeset expression with regards to groupings of 

biological processes is represented by pie charts in Figs 5.1a and 5.1b. 

This showed a similar distribution in biological processes. However, 

macular ICECs demonstrated a slightly greater proportion of probesets 

involved in cell adhesion, organisation and development  

 

Fig 5.2 demonstrates a heat map of the differential probeset expression 

reaching statistical significance with reference to human macular inner 

and outer choroidal microvascular endothelial cells. Selected genes 

thought to be important in endothelial cell biology are shown on the 

right of the heat map.  
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Table 5.3 All probesets reaching differential expression of 2.0 or greater 
in human macular inner choroidal ECs compared with macular outer 
choroidal ECs. 
 

GENE TITLE 
 

Fold 
Change 

 
insulin-like growth factor binding protein 3 11.5  
neurofilament, medium polypeptide 10.4  
brain-derived neurotrophic factor 8.9  
platelet-derived growth factor receptor, alpha polypeptide 8.8  
keratin 19 7.3  
pleckstrin homology-like domain, family A, member 2 7.1  
solute carrier family 6  6.6  
popeye domain containing 3 5.9  
olfactomedin-like 3 5.6  
SIX homeobox 2 5.5  
neurofilament, light polypeptide 5.2  
mesoderm specific transcript homolog (mouse) 5.1  
mannosyl (alpha-1,3-)-glycoprotein beta-1,4- 4.9  
vascular endothelial growth factor A 4.7  
brain expressed, X-linked 1 4.7  
lysophosphatidic acid receptor 1 4.4  
collagen, type XI, alpha 1 4.4  
pleckstrin and Sec7 domain containing 3 4.3  
carbonic anhydrase XII 4.3  
procollagen C-endopeptidase enhancer 2 4.2  
ABI family, member 3 (NESH) binding protein 4.2  
PNMA-like 1 4.1  
tissue factor pathway inhibitor 2 3.9  
glycine receptor, beta 3.9  
wingless-type MMTV integration site family, member 5A 3.9  
carbonic anhydrase XII 3.9  
forkhead box F2 3.7  
MSTP150 3.8  
glycine receptor, beta 3.7  
TP53 regulating kinase 3.6  
calmegin 3.6  
carbonic anhydrase XII 3.6  
ectonucleotide pyrophosphatase/phosphodiesterase 2 3.5  
hepatocyte growth factor (hepapoietin A; scatter factor) 3.4  
protein phosphatase 1, regulatory (inhibitor) subunit 14B 3.4  
golgi autoantigen, golgin subfamily a, 8A 3.4  
lymphoid-restricted membrane protein 3.4  
sulfatase 1 3.4  
secretogranin II (chromogranin C) 3.4  
poliovirus receptor-related 3 3.4  
folate receptor 1 (adult) 3.4  
transforming growth factor, beta receptor 1 3.3  
tissue factor pathway inhibitor 2 3.3  
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GENE TITLE 
 

Fold 
Change 

 
emopamil binding protein-like 3.3  
aldehyde dehydrogenase 1 family, member A3 3.3  
interferon-induced protein with tetratricopeptide repeats 1 3.2  
tumor necrosis factor (ligand) superfamily, member 15 3.1  
mitogen-activated protein kinase kinase kinase kinase 4 3.1  
chromosome 9 open reading frame 40 3.1  
neuropilin (NRP) and tolloid (TLL)-like 2 3.1  
family with sequence similarity 13, member B 3.1  
aspartyl-tRNA synthetase 3.1  
paternally expressed 10 3.1  
versican 3.1  
phosphoglycolate phosphatase 2.9  
prostaglandin-endoperoxide synthase 2 2.9  
retinol dehydrogenase 14 (all-trans/9-cis/11-cis) 2.9  
carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 2.9  
proline rich 16 2.9  
aryl hydrocarbon receptor 2.9  
glycoprotein (transmembrane) nmb 2.9  
chromosome 13 open reading frame 15 2.9  
B-cell translocation gene 1, anti-proliferative 2.9  
phosphatidic acid phosphatase type 2B 2.8  
TAF10 RNA polymerase II, TATA box binding protein 2.8  
serpin peptidase inhibitor, clade E  2.8  
COMM domain containing 2 2.8  
transducer of ERBB2, 1 2.8  
aldo-keto reductase family 1, member C1  2.8  
DnaJ (Hsp40) homolog, subfamily C, member 1 2.8  
nebulette 2.8  
UDP-N-acetyl-alpha-D-galactosamine: 2.8  
histone cluster 1, H2ac 2.8  
BAT2 domain containing 1 2.7  
lymphoid-restricted membrane protein 2.7  
pleiomorphic adenoma gene-like 1 2.7  
chromosome 1 open reading frame 63 2.7  
insulin-like growth factor binding protein 2, 36kDa 2.7  
glioma tumor suppressor candidate region gene 2 2.6  
kinectin 1 (kinesin receptor) 2.6  
phospholipid scramblase 4 2.6  
brain protein I3 2.6  
zinc finger E-box binding homeobox 2 2.6  
hairy and enhancer of split 1, (Drosophila) 2.6  
Cbp/p300-interacting transactivator 2.6  
Nedd4 family interacting protein 2 2.6  
splicing factor, arginine/serine-rich 18 2.5  
endothelin receptor type B 2.5  
solute carrier family 25, member 37 2.5  
Mdm2 p53 binding protein homolog (mouse) 2.5  
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GENE TITLE 
 

Fold 
Change 

 
chondroitin sulfate N-acetylgalactosaminyltransferase 2 2.5  
zinc finger protein 623 2.4  
plasmalemma vesicle associated protein 2.4  
O-linked N-acetylglucosamine (GlcNAc) transferase  2.4  
transmembrane protein with EGF-like domain 2.4  
phosphoserine phosphatase 2.3  
mitogen-activated protein kinase kinase kinase 2 2.3  
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Table 5.4 Top one hundred probesets reaching differential expression 
of 2.0 or greater in human macular outer choroidal ECs compared with 
macular inner choroidal ECs. 
 

Gene Title 
 

Fold 
Change 

 
histone cluster 1, H3b 14.7  
LSM4 homolog, U6  10.2  
translocase of inner mitochondrial membrane 44 homolog 
(yeast) 

8.9 
 

chromosome 6 open reading frame 108 8.4  
fascin homolog 1, actin-bundling protein  7.9  
FXYD domain containing ion transport regulator 6 7.9  
leucine rich repeat containing 15 7.6  
translocase of inner mitochondrial membrane 44 homolog 
(yeast) 

7.2 
 

kinesin light chain 1 6.9  
cyclin K 6.5  
polypyrimidine tract binding protein 1 6.1  
valyl-tRNA synthetase 6.1  
apelin receptor 5.4  
fascin homolog 1, actin-bundling protein  5.4  
mitogen-activated protein kinase kinase 2 5.1  
cleft lip and palate associated transmembrane protein 1 5.1  
histone cluster 1, H2bf 4.6  
transforming growth factor beta 1 induced transcript 1 4.5  
deoxyribonuclease I-like 3 4.5  
RAN binding protein 3 4.5  
histone deacetylase 5 4.4  
cysteine-rich protein 2 4.2  
cell division cycle 34 homolog (S. cerevisiae) 4.1  
dicarbonyl/L-xylulose reductase 4.1  
collagen, type XV, alpha 1 3.9  
coronin, actin binding protein, 1B 3.9  
mannose receptor, C type 1  3.9  
DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 3.9  
sema domain, transmembrane domain (TM), 3.9  
coronin, actin binding protein, 1B 3.8  
GINS complex subunit 4 (Sld5 homolog) 3.7  
guanine nucleotide binding protein-like 3 (nucleolar)-like 3.7  
protein kinase C and casein kinase substrate in neurons 
2 

3.6 
 

thimet oligopeptidase 1 3.6  
major histocompatibility complex, class II, DR beta 1  3.6  
zinc finger protein 688 3.6  
histone cluster 1, H1b 3.6  
SH3KBP1 binding protein 1 3.6  
cleft lip and palate associated transmembrane protein 1 3.5  
major histocompatibility complex, class II, DR beta 1  3.5  
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Gene Title 
 

Fold 
Change 

 
MAD1 mitotic arrest deficient-like 1 (yeast) 3.4  
exosome component 4 3.4  
YKT6 v-SNARE homolog (S. cerevisiae) 3.4  
zinc finger CCCH-type containing 7B 3.4  
ATPase type 13A2 3.3  
similar to RABEP2 protein  3.3  
hepatoma-derived growth factor-related protein 2 3.3  
matrix metallopeptidase 10 (stromelysin 2) 3.2  
mitogen-activated protein kinase kinase 2 3.2  
endoglin 3.2  
F-box and WD repeat domain containing 5 3.2  
carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 3.2  
lipase, endothelial 3.2  
spectrin repeat containing, nuclear envelope 2 3.2  
kinesin light chain 1 3.1  
homer homolog 3 (Drosophila) 3.1  
hypothetical protein LOC286434 3.1  
exosome component 4 3.1  
glucocorticoid receptor DNA binding factor 1 3.1  
chromosome 21 open reading frame 45 3.1  
cytochrome P450, family 1, subfamily B, polypeptide 1 3.1  
peter pan homolog (Drosophila) 3.1  
cytochrome P450, family 1, subfamily B, polypeptide 1 3.1  
cyclin D1 3.1  
nasal embryonic LHRH factor 3.1  
zinc finger protein 160 3.1  
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 
(soluble) 

3.1 
 

small optic lobes homolog (Drosophila) 3.1  
splicing factor, arginine/serine-rich 8  3.1  
Wolf-Hirschhorn syndrome candidate 1 3.1  
dedicator of cytokinesis 6 2.9  
lysosomal multispanning membrane protein 5 2.9  
ankyrin repeat domain 1 (cardiac muscle) 2.9  
ring finger protein 125 2.9  
sorbitol dehydrogenase 2.9  
sparc/osteonectin,  2.9  
Hypothetical protein LOC100129502 2.9  
hypothetical protein LOC100132181 2.9  
EH-domain containing 1 2.9  
hepatocyte growth factor-regulated tyrosine kinase 
substrate 

2.9 
 

thrombospondin 1 2.9  
Meis homeobox 2 2.9  
mitogen-activated protein kinase 11 2.8  
trefoil factor 3 (intestinal) 2.8  
IMP (inosine monophosphate) dehydrogenase 1 2.8  
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Gene Title 
 

Fold 
Change 

 
ribosomal RNA processing 7 homolog A (S. cerevisiae) 2.8  
major histocompatibility complex, class II, DR beta 1  2.8  
macrophage erythroblast attacher 2.8  
chromosome 7 open reading frame 50 2.8  
LSM7 homolog, U6 small nuclear RNA associated  2.8  
limb bud and heart development homolog (mouse) 2.8  
activin A receptor type II-like 1 2.8  
ATG4 autophagy related 4 homolog B (S. cerevisiae) 2.8  
guanine nucleotide binding protein (G protein), alpha 11  2.8  
major histocompatibility complex, class II, DP alpha 1 2.8  
mitogen-activated protein kinase binding protein 1 2.7  
major histocompatibility complex, class II, DP beta 1 2.7  
translocase of inner mitochondrial membrane 8  2.7  
CXCL12 2.4  
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Fig 5.1a. Pie chart of significantly up-regulated genes grouped by 
biological processes in proliferating human macular inner choroidal 
endothelial cells compared with proliferating human macular outer 
endothelial cells 
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Fig 5.1b. Pie chart of significantly up-regulated genes grouped by 
biological processes in proliferating human retinal endothelial cells 
compared with proliferating human iris endothelial cells 
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Fig 5.2 Heatmap of the differential probeset expression reaching 
statistical significance with reference to human macular inner and outer 
choroidal microvascular endothelial cells. Up-regulated probesets are 
shown in red, down-regulated in blue. A total of 302 different probesets 
are represented. The positions of selected probesets thought to be 
important in endothelial cell biology are shown.  
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Table 5.5. Comparison of selected probesets up-regulated in human macular inner and outer choroidal endothelial cells 
 

 

PROBESET    UP-REGULATED IN MACULAR     UP-REGULATED IN MACULAR  

    INNER CECS (FOLD CHANGE)    OUTER CECS (FOLD CHANGE) 

 

Nervous system development Brain derived neurotrophic factor (BDNF) (8.8) 

     Neurofilament  light polypeptide (NEFL) (5.2) 

     Neurofilament medium polypeptide (NEFM) (10.4)  

 

Cell signalling   WNT5A (3.9)       Apelin receptor (5.4) 

             MAPK 11 (2.8) 

             MAPK binding protein 1 (2.7) 

             DAG kinase zeta (2.3) 

             Parvin beta (2.6) 

 

Cell morphology   Collagen XI alpha subunit (4.4)    Collagen XV alpha subunit (4.0)  

     Keratin 19 (7.3) 
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PROBESET    UP-REGULATED IN MACULAR     UP-REGULATED IN MACULAR  

    INNER CECS (FOLD CHANGE)    OUTER CECS (FOLD CHANGE) 

 

Immune function           HLA DR B1 (2.7) 

             MHC class II alpha (2.8) 

             CD200 (2.3) 

 

Cellular growth and proliferation  VEGF (4.7)       MMP 10 (3.2)    

     Hepatocyte growth factor (HGF) (3.4)   CXCL 12 (stromal cell derived factor) (2.4) 

     PDGF receptor alpha (8.8) 

     TGF beta receptor 1 (3.3)     TGF beta 1 (4.5)    

  

 

Misc     Plasmalemmal vesicle associated protein-1   Endothelial lipase (3.2)   

     (PLVAP) (2.5) 
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Real time PCR 

 

Real time PCR was used to validate the differences in gene expression 

between proliferating human macular inner and outer choroidal 

endothelial cells and also human macular inner and peripheral inner 

choroidal ECs. Five transcripts were chosen that demonstrated at least 

a 2-fold differential expression between the endothelial cells on 

microarray analysis and were thought to be relevant to a range of 

different endothelial cellular functions. The chosen transcripts were: 

Keratin 19, Brain derived neurotrophic factor, CXCL 12 , Annexin 10 

and MAPK 11. The differences in expression between the microarray 

and real time PCR techniques were similar for all 5 transcripts 

evaluated (Table 5.6 and 5.7). Fig 5.3 demonstrates examples of real 

time PCR dissociation curves for Keratin 19 in peripheral inner 

choroidal ECs, macular inner and macular outer choroidal ECs. 

 

These results confirm the overall reliability of the results obtained by the 

Affymetrix microarray technique. 
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Fig 5.3 Examples of the real time PCR dissociation curves for Keratin 
19 in peripheral inner choroidal ECs, macular inner and macular outer 
choroidal ECs. The Y axis depicts the fluorescence of the reporter 
signal normalised to a reference signal (Rn,) while the X axis depicts 
the cycle number. The probeset under investigation is represented by 
all 3 curves of the sample triplicate and also includes a probeset for the 
reference housekeeping gene, hypoxanthine-guanine 
phosphoribosyltransferase (HPRT). Also represented are the curves of 
the No Template Control (NTC) (sterile water). 
Fig 5.3a, demonstrates the dissociation curves for a series of 10 fold 
dilutions for Keratin 19 reference sample while Fig 5.3b shows the 
calculated standard curve derived from Fig 5.3a demonstrating its 
linearity of the range tested.  
Ct is the crossing point or threshold at which fluorescence can be 
detected and log C0 is the log of the relative standard concentration 
(chosen to correspond to the expected relative concentration of 
probeset in the samples).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Fig 5.3a Fig 5.3b 
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Fig 5.3c demonstrates the QPCR dissociation curves (triplicates) for 
Keratin 19expression in peripheral inner choroidal ECs, macular inner 
and macular outer choroidal ECs.  The reference housekeeping gene is 
HPRT. The No Template Controls are also included. 

Keratin 19 in 
peripheral inner 
CECs and 
macular outer 
CECs 

NTC for Keratin 19 

HPRT 
in ECs 

NTC for 
 HPRT 

Keratin 19 in macular 
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Table 5.6. Differences in gene expression of selected genes for 
proliferating human macular inner and outer choroidal endothelial cells 
according to microarray (MA) and Real time-PCR (RT-PCR) 
 

 
 

Difference in gene expression 
  (fold change) 

Gene 
transcript 

Affy ID 
Fold change in gene expression 
relative to human macular inner 

CECs 

  Microarray RT-PCR 

Keratin 19 201650_at 7.3 10.5 

Brain derived 
Neurotrophic 
factor 

206382_s_at 8.9 7.2 

CXCL 12 203666_at -2.4 -3.6 

MAPK 11 
 

206040_s_at -2.8 -3.3 

 

 

 

Table 5.7. Differences in gene expression of a selected gene for 
proliferating human macular inner and peripheral inner choroidal 
endothelial cells according to microarray (MA) and Real time-PCR (RT-
PCR) 
 

 
 

Difference in gene expression 
(fold change) 

Gene 
transcript 

Affy ID 
Fold change in gene expression 
relative to human macular inner 

CECs 

  Microarray RT-PCR 

Annexin 10 210143_at 4.3 3.2 
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Discussion 

 

One of the mysteries for those investigating and treating diseases of the 

ocular posterior segment is why different disorders demonstrate 

exquisite topographic selectivity for the choroidal vascular bed. Another 

is the quest for treatments that are selective for the cells involved in the 

pathological process but which leave normal, juxtaposed cells 

unaffected – the so called magic bullet. In the case of wet AMD, this 

would involve a treatment that specifically targets the proliferating 

endothelial cells of the inner choroid of the macula. Choroidal 

neovascularisation associated with wet age-related macular 

degeneration appears to have a predilection for the macular area of the 

posterior pole, unless some other secondary event has affected another 

area of the posterior segment e.g. damage to Bruch‟s membrane in the 

extra-macular area by inflammation or trauma. Interestingly, in an 

animal model of wet AMD, using focal laser treatment, application of 

identical burns to the extra-macular areas was relatively ineffective at 

stimulating a CNV compared with those placed in the macula, 

suggesting a predilection of the macula for choroidal neovascularisation 

(Shen et al, 2004).  

 

Disease predilection for different layers of the choroid at similar 

locations is exemplified by punctate inner choroidopathy (PIC) and 

multiple evanescent white dot syndrome (MEWDS) which are 

inflammatory diseases that appear to preferentially affect the inner 

choroid (Cimono et al, 2000, Bouchenaki et al, 2002), while central 

serous chorioretinopathy is an idiopathic vasculopathy that also 

appears to involve the inner choroidal vasculature (based on the results 

of indocyanine green angiography ) (Piccolino et al, 1995; Guyer et al, 

1994).  
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For many years, workers have attempted to determine why the human 

macula is predisposed to age-related macular degeneration, the leading 

cause of blindness in those over 65years of age. There are a number of 

theories including: increased free radical production at the macula 

caused by the eye‟s inherent focusing of ultra violet or visible light at 

this location; a localised immune response at the macula causing 

secondary angiogenic eventsν local differences in Bruch‟s membrane 

structure; local differences in the RPE; and local differences in the 

choroid.  

 

The first of these theories is plausible as it is known that visible light 

generates the production of free radicals which in turn can bring about 

local tissue damage which, in theory, could predispose to wet AMD. 

There is animal and epidemiological evidence to suggest that short 

wave length light (blue/UV) can damage the retina and may increase 

the risk of AMD (Cruickshanks et al, 2001; Tomany et al 2004; Grimm 

et al, 2001; Hafezi et al, 1997). However, the majority of large scale 

epidemiological studies have failed to demonstrate an association 

(Delcourt et al, 2001; Darzins et al 1997; AREDS Report 19, 2005; 

McCarty et al, 2001). The lack of a strong association, despite years of 

work in this area, probably means that the effect, if true, does not 

account for the majority of the cases and therefore is unlikely to be the 

major factor in the macular location of the condition.  

 

Chong et al (2005) have shown that the thickness of the elastic layer of 

Bruch‟s membrane in the macular area is up to 6 times thinner and up 

to 5 times less abundant than in the periphery. The integrity of the 

elastic layer was also significantly lower in eyes with some degree of 

AMD. They suggest that for these reasons, the macula is predisposed 

to AMD, perhaps making the in-growth of choroidal blood vessels 

through Bruch‟s membrane easier. 
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The evidence for a local, macular-centred immune response is based 

on the findings of a predilection for drusen (particularly the soft variety, 

associated with increased risk of AMD) to form in the macular area 

(Midena et al, 1994; Abdelsalam et al, 1999) and the recent discovery 

of drusen containing elements of the immune response such as those 

involved in the complement cascade. On ultra structural analysis, cells 

such as macrophages appear to be localised to areas containing 

drusen, and local production of “active” immune mediators has also 

been found near to these cells. The localisation of the immune 

response to the macula is therefore probably based on the 

topographical distribution of drusen. The reason for their predilection at 

the macula is unknown but it may be due to the higher metabolic 

turnover of cells in this area (cones, and RPE cells) and therefore 

increased waste product formation and accumulation at the macula. 

More interestingly, it may also be due to the different architectural 

patterns within the vasculature of the choriocapillaris of the macula 

compared with peripheral areas (Lengyel et al, 2004), making drusen 

deposition between choroidal capillaries more likely in this location. 

 

As mentioned previously, workers have studied both the morphological 

and gene expression differences in human RPE cell topography in an 

attempt to explain the difference in disease site specificity. However, 

very little is known regarding differences in gene expression between 

peripheral and macular choroidal endothelial cells. To date, only one 

study using microarrays has been conducted and this demonstrated a 

difference in 76 probesets between macular and peripheral 

choroid/RPE complexes. Of significance was a number of inflammation 

related genes such as CXCL14, CCL19 and CCL26 that were 

significantly up-regulated in the macula (Radeke et al, 2007). 

Unfortunately, the samples tested were a homogenate of choroid and 

RPE so any differences could not be ascribed solely to the choroid. 
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In order to expand our knowledge of the potential endothelial cell 

diversity within the human choroid, this study compared the differential 

gene expression of matched human macular and peripheral inner 

choroidal cells and macular inner and outer choroidal endothelial cells. 

It would not be surprising if there was heterogeneity within the 

endothelial cells of the choroid because the inner and outer choroid 

subserve different functions, with the inner choroid functioning to 

nourish the outer retina and the RPE layer via its fenestrated 

endothelium while the outer choroid functions to deliver and regulate 

blood flow to the inner choroid.  

 

This study failed to demonstrate any significant difference in gene 

expression between matched human macular and peripheral 

endothelial cells. This confirms that despite the macular and peripheral 

choriocapillaris having different ultra-structural appearances, the lining 

endothelium appears to exhibit the same gene expression. This would 

suggest that the propensity of the macula to suffer choroidal 

neovascularisation is not due to topographical differences in the 

endothelial cells. This would also imply that any treatment designed to 

target the inner choroidal endothelial cell is just as likely to affect the 

peripheral cells as it is the macula, with the potential for widespread 

side effects inside the eye.  

 

Significant differences, however, were found between matched inner 

and outer macular choroidal endothelial cells with around 300 (1.3%) 

probesets showing a significant difference. While no major differences 

in canonical pathways were discovered and many of the probesets 

remain unclassified, differences in functional areas such as nervous 

system development, cell signalling, immune functions and cell 

morphology were represented. In general, inner choroidal ECs 

demonstrated up-regulation of probesets involved in nervous system 

development (brain derived neurotrophic factor and neurofilaments), 

growth factors (VEGF, HGF, PDGF), plasmalemmal vesicle associated 

protein-1 (PLVAP), collagen XI and keratin 19 while macular outer 
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choroidal ECs demonstrated up-regulation of probesets involved in 

immune function (HLA DR B1, MHC class II alpha and CD200), some 

cell signalling components (DAG, MAPK11 and apelin) and other 

growth factors (TGF beta and stromal cell derived factor) and collagen 

XV. These differences are likely to be related to their different functions 

within the choroidal vascular unit. A hypothesis to explain many of 

these differences relies on the assumption that the inner macular CECs 

are the true microvascular ECs where physiological and pathological 

angiogenesis takes place, whereas the outer macular ECs are lining a 

type of “macrovascular vessel” whose function is to supply and regulate 

the supply of blood, including white cells and nutrients, to the 

choriocapillaris/inner choroid. This would explain why a wide variety of 

growth factor genes are found to be up-regulated in inner CECs 

(angiogenesis related ). By contrast, up-regulation of immune function 

genes by the outer choroidal “macrovascular” ECs may control the 

passage of lymphocytes and macrophages into the inner choroid. It has 

also been shown that a fragment of collagen XV forms an endostatin, 

an anti-angiogenic factor thought to be important in inhibition of both 

physiological and pathological angiogenesis (Sasaki et al, 2002). The 

finding of the up-regulation of the gene coding collagen XV in outer 

choroid ECs may explain the absence of pathological angiogenesis in 

this area. 

 

Perhaps one of the most important probesets found to be differentially 

expressed is that of plasmalemmal vesicle associated protein-1 

(PVLAP). This was found to be up-regulated in macular inner CECs. 

PVLAP is a major structural protein known to be associated with 

fenestrations. The macular inner choroidal ECs are known to be 

fenestrated, whilst the outer choroidal ECs are not, and this is one of 

the major features differentiating inner choroidal ECs from other ocular 

endothelial cells. Interestingly, however, not all fenestrated ECs have 

been shown to express PLVAP, with those of the liver and the 

glomerulus being negative (Satchell & Braet, 2009).  
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Brain derived neurotrophic factor (BDNF) is a member of a group of 

proteins called neurotrophins which promote the growth, survival and 

differentiation of neurones in the central and peripheral nervous system. 

Within the eye, it is known that it is secreted by RPE cells, 

photoreceptors and Muller cells and has been shown experimentally to 

prevent ischaemic ganglion cell death and to protect photoreceptors 

from light induced toxicity (Kano et al, 2002). Recently, BDNF has been 

found to be secreted by vascular endothelial cells and may be 

responsible for the levels of the growth factor detected in serum. 

However, its role outside the central and peripheral nervous system 

remains unknown (Nakahashi et al, 2000). In the current work, BDNF 

was found to be up-regulated 5-fold in macular inner choroidal ECs 

compared with matched outer macular ECs. There are a number of 

hypotheses as to why this should be. It may be involved in the 

maintenance and function of neurones found within the choroid which 

are involved in regulation of choriocapillaris blood flow or it may pass 

across Bruch‟s membrane and the RPE and be involved in outer 

photoreceptor function.  

 

Interestingly, inner and outer macular choroidal ECs appear to 

demonstrate preferential up-regulation of collagen types XI and XV 

respectively. Collagens are components of cell basement membranes 

and this difference in collagen expression suggests discrete 

requirements for these structures within the different layers of the 

choroid. Collagen XI is a fibrillar collagen, mutations in which have been 

found in Stickler‟s syndrome, a condition associated with myopia and 

abnormalities of the vitreous, retina and posterior segment. Collagen 

XV is a non-fibrillar type of collagen which is found in some endothelial 

cell basement membranes and is thought to facilitate its binding to 

surrounding connective tissue (Amenta et al, 2005). There also appear 

to be subtle differences in the expression of a number of components 

involved in cell signalling activation. Inner macular ECs demonstrated 

up-regulation of the WNT5 pathway, which may be involved in 

angiogenesis. This is a poorly understood pathway that may regulate 
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cell proliferation, apoptosis and branching morphogenesis 

(Masckauchán et al, 2006; Masckauchán et al, 2005). In contrast, outer 

macular choroidal ECs demonstrated up-regulation of a range of 

probesets including apelin, MAPK11 and diacyl-glycerol kinase zeta. 

These peptides are members of a large family of peptides involved in 

the transduction of cell signalling from cell surface receptors to the 

nucleus, stimulating cell proliferation. Apelin and its receptor have been 

found on a variety of endothelial cells (including those in the eye) and 

activation leads to vasodilatation, proliferation, vasculogenesis and in 

vitro tube formation (Kasai et al, 2004). These findings would suggest 

that there are subtle differences in the intracellular signalling cascades 

of proliferating inner and outer choroidal ECs. This finding may be 

utilised to enable a more selective inhibition of inner choroidal 

endothelial cell function.  

 

Activation of cell signalling pathways usually requires binding and 

stimulation of cell surface receptors by ligands (often growth factors, if 

stimulation of cell proliferation is occurring). Macular inner and outer 

CECs demonstrated a different pattern of growth factor expression. 

Stimulation of vascular endothelial cells is usually via growth factors 

secreted by other cell types such as RPE cells and macrophages which 

are known to secrete VEGF. The role of similar growth factors 

expressed by endothelial cells themselves suggests either local 

paracrine stimulation, perhaps to maintain cell phenotype, or the 

stimulation of different types of juxtaposed cells such as pericytes or 

stromal cells. Macular inner choroidal cells demonstrated up-regulation 

of VEGF and hepatocyte growth factor (HGF). It would be interesting to 

hypothesise that VEGF secretion is required to maintain the specialised 

phenotype of endothelial cells within the choriocapillaris (fenestrations). 

It is known that RPE cells also secrete VEGF which is thought to be 

important in maintaining choriocapillaris fenestrations.  
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Hepatocyte growth factor is another potent endothelial mitogen 

secreted by cells of mesenchymal origin including vascular endothelial 

cells and macrophages. It has a structure very similar to plasminogen, 

contains a heparin binding domain and is secreted by cells in an 

inactive form (Grierson et al, 2000). It relies on the action of serine 

proteases for activation and activates cells via the c-met receptor 

(present predominantly on cells of epithelial lineage but includes 

vascular endothelial cells). In the eye, it is thought to play a role in 

corneal development and maintenance of normal corneal structure and 

in the maintenance of trabecular meshwork structure (Grierson et al, 

2000). In the posterior segment, the RPE demonstrates a high level of 

expression of the c-met receptor and this may be necessary for its 

normal function and secondarily, for photoreceptor health. In vitro 

studies have revealed that HGF protects confluent cultures of RPE cells 

against apoptosis (Jin et al, 2005), promotes RPE cell proliferation and 

migration (Miura et al, 2003) and also leads to disassembly of tight and 

adherens junctions (Jin et al, 2002). Hepatocyte growth factor therefore 

appears to bring about the same effects on RPE cells as does VEGF on 

vascular endothelial cells.  

 

There is controversy as to whether RPE cells also secrete HGF, as this 

would indicate a local paracrine loop (He et al, 1998). However, HGF is 

known to be required for the maintenance of the RPE barrier function 

with local over-expression being linked with retinal detachment (Jin et 

al, 2002; Jin et al, 2004). Elevated levels are also found in the vitreous 

of diabetics and it has been shown to be a potent angiogenic growth 

factor (greater than VEGF) and may therefore play a role in proliferative 

diabetic retinopathy (Nishimura et al, 1999).  

 

While there is a large body of evidence regarding the effect of HGF in 

retinal neovascularisation, its role in choroidal homeostasis and 

neovascularisation is less well understood. In a rat laser model of 

choroidal neovascularisation, HGF was found to be up-regulated early 

on in the angiogenic process within the choroid (Hu et al, 2009). 
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To the author‟s knowledge, no studies on HGF in human eyes, either 

normal or those with CNV, have been conducted. This study 

demonstrated that proliferating human macular inner choroidal 

endothelial cells preferentially express HGF compared with outer 

choroidal ECs. There are a number of possible reasons for this. Based 

on the findings from other parts of the eye (RPE), the expression may 

be part of a paracrine loop required for either the normal functioning of 

endothelial cells or as an amplification factor for CECs already 

proliferating (review of raw microarray data shows that the cells also 

demonstrate background expression of the c-met receptor). However, 

this does not explain why juxtaposed proliferating outer choroidal ECs 

do not demonstrate a similar phenomenon. Another reason could be 

the local (paracrine) secretion of HGF to affect non-endothelial cells 

such as RPE cells which are known to require HGF for normal cell – 

cell interactions. These findings may imply that local targeting of HGF in 

the treatment of choroidal neovascularisation may have inadvertent 

deleterious effects on the posterior segment of the eye.  

 

In contrast, macular outer choroidal ECs demonstrated up-regulation of 

probesets for the growth factors CXCL12 (stromal cell derived factor) 

and TGF-Beta 1. Stromal cell derived factor (SDF-1) is a known 

mitogen for endothelial cells It is also involved in the attraction of 

endothelial progenitor cells to areas of neovascularisation and has been 

found on histological examination of excised choroidal neovascular 

membranes. Its differential expression by outer macular CECs was 

previously unknown. However, Bhutto et al (2006) recently 

demonstrated expression of SDF-1 and its receptor within the choroidal 

stroma (as well as the RPE) and suggested that they may be involved 

in the recruitment of leukocytes and other inflammatory cells to the 

choroidal stroma as well of endothelial progenitor cells during local 

wound healing responses i.e. angiogenesis (Bhutto et al, 2006). 
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In summary, this particular part of the study has demonstrated small 

subtle differences between matched human macular inner and outer 

choroidal endothelial cells. No significant topographical differences 

were found between macular and peripheral inner choroidal endothelial 

cells. This is in contrast to other studies which have shown 

topographical differences in the structure, function or gene expression 

of retinal and RPE cells and in Bruch‟s membrane. Interestingly, when 

one reviews the results of previous studies which examined the gene 

expression differences between macular and peripheral tissue using a 

combination of RPE/choroidal tissue (Radeke et al, 2007; Bowes 

Rickman et al, 2006), none of the gene differences found in their 

studies were represented in this present study. This suggests that most 

of the variation described was probably due to variability within the RPE 

cells. It is further suggested that the non-significant topographical 

variability within proliferating inner choroidal endothelial cells is 

probably not the cause of the site specific selectivity of wet AMD to the 

macula, and that this phenomenon is more likely, as previously stated, 

to be due to topographical differences in other ocular cell types or to 

selective exposure of the macular to a disease causing agent.  

 

Variability was noted, however, in the gene expression of matched 

macular inner and outer choroidal ECs. This differential gene 

expression would suggest subtle differences in the roles and 

microenvironments of the two cell types commensurate with the 

different structures and functions of the inner and outer choroid. These 

observed differences may assist us in understanding some of the 

underlying mechanisms of choroidal neovascularisation and provide 

potential routes for selective intervention to treat the disease. 
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Introduction 

 
While wet AMD remains the leading cause of blindness in people over 

65 years, the underlying pathophysiological mechanisms responsible 

for disease initiation and progression remain largely unknown. Current 

opinion suggests that there is an angiogenic response by inner 

choroidal endothelial cells to a range of cytokines and growth factors, 

driven by a local adverse stimulus. An electron microscopic study by 

Killingsworth in 1995 of eyes with early choroidal neovascularisation 

demonstrated endothelial sprouts continuous with intra-choroidal 

vessels penetrating Bruch‟s membrane. They were also shown to 

spread between the inner layers of Bruch‟s membrane in the space 

normally occupied by drusen. The authors described two phases to the 

growth of vessels - an early intra-choroidal phase which was of a “low 

turnover” type, and a later sub-RPE neovascular phase characterised 

by marked endothelial cell proliferation termed as “high turnover”. 

Interestingly, Guymer et al in 2004 described cellular processes from 

choroidal capillary endothelial cells that penetrate Bruch‟s membrane 

but are not associated with choroidal neovascular membrane formation 

(Guymer et al, 2004). These processes are thought to stabilise the 

endothelial cell and to play a structural role in the maintenance of the 

choriocapillaris. It is not known what factors are important in the 

differentiation of the endothelial cell processes from physiological to 

pathological states.  

 

Immunohistochemical examination of surgically excised human 

choroidal neovascularisation (CNV) and animal models of laser induced 

CNV implicate several growth factors in the pathogenesis of CNV. 

Examination of CNV induced in rats by krypton laser photocoagulation 

has consistently revealed up-regulation of vascular endothelial growth 

factor (Wada et al, 1999; Yi et al, 1997; Shen et al, 1998) and fibroblast 

growth factor 2 (Ogata et al, 1996; Frank et al, 1997) by RPE cells, 

fibroblasts and macrophages within the CNV. Studies conducted on 
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human CNV secondary to AMD and presumed ocular histoplasmosis 

syndrome have shown increased expression of VEGF (Grossniklaus et 

al, 2002; Frank et al 1996; Kliffen et al, 1997; Kvanta et al, 1996), FGF2 

(Frank et al, 1996; Amin et al, 1994; Reddy et al, 1995),  Insulin- like 

growth factor 1 (IGF-1) (Rosenthal R et al, 2004; Lambooij et al, 2003), 

Platelet derived growth factor (PDGF) (Kliffen et al, 1997), connective 

tissue growth factor (CTGF) (Watanbe et al, 2005; He et al, 2003), 

Placental growth factor (PlGF) (Rakic et al, 2003), and Interleukin-1く 

(IL-く) (Zou et al, β006) 

 

Further evidence for the role of growth factors in the pathogenesis of 

CNV is supported by the findings that inhibition of VEGF (Kwak et al, 

2000), FGF2 (Tobe et al, 1998), IGF-1 (Bezerra et al, 2005), PDGF (Jo 

et al, 2006) and IL-

fluorescein leakage in animal models. Recent human studies have 

reported beneficial effects of intra-ocular VEGF inhibition on visual 

acuity in patients with sub-foveal CNV, further implicating a role for this 

growth factor in AMD (Rosenfeld et al, 2006). However, evidence from 

studies of retinal neovascularisation (Watnabe et al, 2005; Dills et al, 

1991, Freyberger et al, 2000), in which IGF 1 may play a role, and the 

observation that inhibition of VEGF does not completely abrogate CNV 

growth and/or leakage in all cases (Williams & Fekrat, 2006; Gragoudas 

et all, 2004) makes it likely that other growth factors are also important 

in choroidal neovascularisation. 

 

In vitro studies using bovine choroidal endothelial cells have shown pro-

angiogenic effects for VEGF, FGF2, IGF-1 and PDGF (Sakamoto et al, 

1995; Wang et al, 2002; Liu et al, 1998). However, as mentioned 

previously, it is well recognised that there is a marked heterogeneity 

amongst endothelial cells from different species and sites, making it 

difficult to extrapolate these results to human inner macular choroidal 

disease i.e. wet AMD. It has been previously shown in Chapters 3 and 
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5 that even within the eye, there is heterogeneity in vascular endothelial 

cells, even within the layers of the choroid. In this chapter, the in vitro 

proliferative and angiogenic effects of a range of candidate growth 

factors on human macular inner choroidal endothelial cells was 

undertaken in order to increase our understanding of the underlying 

mechanisms of human choroidal neovascularisation. This research is 

unique in that, for the first time, it reports the effects of the 

aforementioned factors on human macular inner choroidal endothelial 

cells (ICECs). 
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Methods 

 

Isolation of human macular inner choroidal endothelial cells 

 

The isolation of these cells has been described previously (Chapter 4). 

 

Cell Proliferation assays 

Manual Cell counting 

 

Twenty thousand first passage human macular ICECs in EGM2-MV 

were added to each gelatin (0.1%) coated 35mm cell culture dish, 

marked with 2mm grids (Nunc, Rochester, NY, USA). The number of 

culture dishes used allowed testing of each factor at each concentration 

in triplicate sets. Cells were incubated at 37°C in a humidified 

atmosphere of 5% CO2 for 24 hours to allow cell attachment. The 

medium was then removed and the cells washed 3 times with sterile 

PBS. The PBS was then replaced with serum-reduced medium (EGM-

2), supplemented with Gentamicin (5µg/ml), Amphoterocin B (2.5µg/ml) 

and 0.5% foetal calf serum heat inactivated for 4 hours at 56ºC. After 

18 hours, the medium was replaced with 2 ml of serum-reduced 

medium containing selected growth factors (VEGF165, FGF2, IGF1, 

PDGF-AA, PDGF-BB and IL-1く all from R and D systems, Abingdon, 

UK at 300 and 900pmol/l). Attached cells within 14 squares of each 

plate were counted 3 times at baseline and 48 hours after addition of 

growth factor or serum-reduced medium. Cell proliferation (%) was 

calculated by the mean increase in cell number relative to baseline.  For 

each growth factor investigated, all tests were carried out in triplicate, 

on human macular ICECs derived from the same donor and repeated 

on a total of four separate donors.   
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WST-1 assay 

 

Human macular ICEC proliferation in the presence of different growth 

factors was also assessed using the WST-1 assay (Roche, Lewes, UK). 

This is one of a range of rapid, non-radioactive, liquid based assays for 

assessing cell proliferation by the measurement of metabolic activity. 

The assays utilise the property of viable and proliferating cells cleaving 

a tetrazolium salt to formazan by mitochondrial respiratory chain 

enzymes. This brings about a colour change in the tetrazolium 

compound that can be measured by a spectrophotometer. The assay is 

based on the assumption that the more functioning mitochondria that 

are present, the more intense the colour change that can be measured. 

Over a specified range of viable or proliferating cells, this colour change 

is linear. The most common tetrazolium salt used is MTT [3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. However it 

suffers from the disadvantage that the formazan dye produced from 

MTT is extremely water insoluble, so an additional extraction step is 

needed before quantification. Instead, WST-1 utilizes a tetrazolium salt 

[2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-terazolium] 

which produces a water soluble formazan, which makes the assay 

much easier and user friendly. The change in the structure of the 

tetrazolium salt is shown below 
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In the assay, two thousand five hundred (2500) first passage ICECs, 

suspended in EGM2-MV, were added to each well of a fibronectin 

coated 96 well plate (Beckton Dickinson, Oxford, UK) and incubated at 

37ºC in a humidified atmosphere of 5% CO2 for 24 hours to allow cell 

attachment. The medium was then removed and the cells washed 3 

times with PBS and replaced with serum-reduced medium (EGM-2) 

supplemented with antibiotics and 0.5% heat inactivated serum as 

described above. After 18 hours, the medium in selected wells was 

replaced with 150µl of serum reduced medium containing growth 

factors: VEGF165, FGF2, IGF1, PDGF-AA, PDGF-BB and IL-1く, all from 

R & D systems, Abingdon, UK, at a concentration of 1000 pmol/l. 

Further alterations in growth factor concentrations were then obtained 

by a double dilution technique across the plate. The cells were 

incubated in the presence of the growth factors for 48 hours, after which 

WST-1 was added to each well and incubated for 4 hours at 37ºC and 

then the absorbance of each well was recorded at 450nm and 650nm 

using a Thermamax microplate reader (Molecular Devices, Wokingham, 

UK) according to the manufacturer‟s instructions. Cell proliferation was 

expressed as a percentage increase relative to controls i.e. cells 

exposed to serum reduced medium without any growth factor added. 

Each growth factor concentration was examined in triplicate as stated 

above and the mean values were used in the data analysis. 

 

In vitro Angiogenesis Assay 

 

The three dimensional in vitro angiogenesis assay used in this work 

was a modification of that previously described by Stitt et al in 2005. 

Briefly, chilled first passage human macular ICECs in EGM2, 

supplemented with 1.5% heat inactivated foetal calf serum, was mixed 

with Matrigel (Beckton Dickinson, Oxford, UK) chilled to 4ºC in a ratio of 

1:2 to give a final 0.5% foetal calf serum containing ICECs at a 

concentration of 1x107/ml. Aliquots of the mixture (4µl) were pipetted 

into the base of the wells of a flat bottom 96 well plate using cooled 
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pipette tips. The spots of Matrigel mixture were allowed to polymerise at 

37ºC in a humidified atmosphere of 5% CO2  for 1 hour, after which 

200µl of  serum (0.5%) reduced EGM2 was gently added to each well 

and incubated at 37ºC in a humidified atmosphere of 5% CO2  for 24 

hours. At this stage, ICECs were seen to form a network of tubes within 

and up to the edge of the Matrigel spot. The medium was gently 

aspirated and the plate allowed to stand at room temperature in a 

laminar flow hood for 5 minutes. Fifteen microlitres of a 1:2 mixture of 

serum (0.5%) reduced EGM2 and chilled Matrigel (4ºC), each 

supplemented with the same selected growth factors (VEGF165, FGF2, 

IGF-1, PDGF-AA, PDGF-BB and IL-く1 at a final concentration of 

1000pmol/l), was carefully pipetted around the edge of the spot to give 

a duplex culture as previously described (Stitt et al, 2005). After 

polymerisation at 37ºC for 1 hour, 200µl of serum (0.5%) reduced 

EGM2 were added to each well. After 48 hours, each spot was 

observed by phase contrast microscope. As previously described by 

Stitt et al, a dark line was seen to demarcate the interface between the 

primary and secondary Matrigel layers. The numbers of endothelial 

sprouts that were seen to cross the demarcation line were counted 

around the circumference of each primary Matrigel spot (see Fig 6.1). 

For each growth factor, the mean number of sprouts counted in 10 

wells was compared with the mean number of sprouts counted in 

control wells exposed to serum reduced (0.5%) EGM2 without any 

added growth factors.  
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Fig. 6.1. Phase contrast micrograph demonstrating the invasion of 
preformed microvessels into the secondary Matrigel layer (dark lines 
represent the demarcation of the two layers of Matrigel). 
 

 

Statistics 

 

The results are presented as the mean of at least 3 separate 

experiments ± standard error of the mean (SEM). Differences between 

growth factors and a serum reduced control were analysed by a 

Student‟s t test. Significance was defined as p< 0.05. 
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Results 

 

Human macular ICEC Proliferation 

 
Prior to undertaking the cell proliferation assays, it was shown that  first 

passage human macular ICECs survived without undergoing significant 

proliferation or phenotype change when maintained for 48 hours in 

EGM-2 supplemented with 0.5% foetal calf serum, heat inactivated for 4 

hours. This provided a baseline against which the effects of various 

growth factors on endothelial cell proliferation and in-vitro angiogenesis 

could be determined (Fig 6.2). 

 

Change in human macular ICEC proliferation with different 
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Fig 6.2. Mean proliferation of macular inner choroidal endothelial cells 
measured using cell counting in the presence of different 
concentrations of heat inactivated foetal calf serum (error bars indicate 
± SEM, n=3.)  
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Two different techniques were used to determine cell proliferation. The 

manual cell counting technique allowed determination of absolute cell 

numbers in response to stimulation with growth factors and monitoring 

of cell phenotype over time. The other technique was the WST-1 

colorimetric assay, which measures cellular mitochondrial activity that 

can be used as an indicator of cell viability and/or proliferation.  

 

Manual Cell Counting 

 

The mean of 3 experiments carried out in triplicate are summarised in 

Fig. 6.3 (growth factor concentration of 300pmol/l) and Fig. 6.4 (growth 

factor concentration of 900 pmol/l). Both VEGF165 and FGF2 showed a 

significant increase in proliferation at both concentrations examined. At           

300 pmol/l, VEGF165 and FGF2 increased mean proliferation (± SEM) 

by 40 ± 8% (p=0.004) and 42 ± 4% (p=0.002) respectively, compared 

with control serum reduced medium. At 900pmol/l, VEGF165 and FGF2 

increased mean proliferation (± SEM) by 140 ± 13 % and 107 ± 13 % 

respectively (p<0.0004 for both). Equimolar combinations of VEGF165 

and FGF2 at 300 and 900 pmol/l increased proliferation (± SEM) by 71 

± 10% and 217 ± 52% respectively (effects approximately additive). 

There was no significant effect of IGF-1, PDGF-AA, PDGF-BB or IL-1く 

on hICEC proliferation at either 300 or 900 pmol/l concentrations. 

Equimolar combinations of VEGF165 with any of the other factors, 

namely IGF-1, PDGF-AA, PDGF-BB and IL-1 く at 900pmol/l did not 

show a significant increase in proliferation over VEGF165 alone. 
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Proliferation of human macular ICECs in the presence of growth 

factors (300pmol/l)

0

50

100

Cont
ro

l

VEG
F

FGF2

VEG
F/

FGF
IG

F1

PDGF-A
A

PDGF-B
B

IL
-1

B

P
ro

li
fe

ra
ti

o
n

 (
%

)

 

 

Fig 6.3. Mean proliferation of human macular inner choroidal 
endothelial cells measured by manual cell counting in the presence of 
various growth factors at 300 pmol/l (± SEM, n=3) 
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Proliferation of hCECs with growth factors (900pmol/l)
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Fig 6.4. Mean proliferation of human macular inner choroidal 
endothelial cells measured by manual cell counting in the presence of 
various growth factors at 900 pmol/l (± SEM, n=3) 

 

WST-1 assay 

 

The growth curves representing the mean of 3 different experiments for 

each growth factor are shown in Fig. 6.5. This shows a significant dose-

response effect for VEGF165 (p=0.0002) and FGF2 (p=0.02) between 

7.8 and 1000pmol/l. At 1000pmol/l, an equimolar combination of VEGF 

and FGF2 increased proliferation (± SEM) from 126 ± 9% and 114 ± 

23% respectively for the individual growth factors to 193 ± 62% for the 

combination. There was no significant dose response effect for IGF-1 

(p=0.20), PDGF-AA (p=0.53), PDGF-BB (p=0.88) or IL-1く (p=0.β5) 

between 7.8 and 1000pmol/l. 
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Proliferation of human macular ICECs in the presence of growth 

factors
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Fig 6.5. Growth curves for human macular inner choroidal endothelial 
cells measured using the WST-1 assay in the presence of different 
growth factors. (Error bars indicate ± SEM, n=3)  
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In vitro Angiogenesis Assay 

 

The mean percentage increase in tubes crossing the junction between 

the primary and secondary Matrigel layers is shown in Fig 6.6  
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Fig 6.6. Mean increase in tube formation compared with control as a 
measurement of angiogenesis using 3D double layer Matrigel assay for 
various growth factors (± SEM, n=3) 
 

 

Compared with controls (EBM-2 supplemented with 0.5% FCS), there 

was a significant increase in tube formation (± SEM) for VEGF165 and 

FGF2 at 1000pmol/l by 161± 50 % (p=0.003) and 139 ± 46% (p=0.003) 

respectively. Equimolar combinations of VEGF165 and FGF2 at 

1000pmol/l increased tube formation (± SEM) by 240 ± 28%. There was 

no significant increase in tube formation compared with EBM-2 

supplemented with 0.5% FCS for IGF-1 (p=0.21), PDGF-BB (p=0.36), 

PDGF-AA (p = 0.41) or IL-1く (p=0.8γ). 
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Discussion 

 

A number of different growth factors have been found to be associated 

with CNV tissue removed from human eyes. However, knowledge of 

their individual roles in disease pathogenesis remains incomplete. Many 

growth factors have been found to be pro-angiogenic in in vivo animal 

models of CNV and in in vitro experiments utilising animal choroidal 

ECs or human non-choroidal ECs. It is accepted though, that ECs are 

extremely heterogeneous in nature and may show varying responses to 

a range of potential mitogens (Thorin & Shreeve, 1998; Rhodin 1968; 

Graier et al, 1996; Imegwu et al, 2001; Ram & Hiebert, 2003; Craig et 

al, 1998). To overcome these potential problems in the investigation of 

the effect of various growth factors in the pathogenesis of choroidal 

neovascularisation, we have utilised human macular inner choroidal 

endothelial cells in this work. In addition, all ICECs were used at first 

passage to reduce potential problems associated with phenotypic 

change which is known to occur in cultured ECs (Augustin-Voss et al, 

1993, Fenyves et al, 1993). With multiple passages these cells may 

lose their differentiated characteristics which they had in vivo, and may 

be prone to genetic instability. The modified angiogenesis assay used 

in this work has previously been shown to be an accurate model of the 

concurrent processes involved in angiogenesis: cell proliferation, BM 

digestion, migration and tube formation (Stitt et al, 2005). This makes it 

ideal in the investigation of the factors underlying abnormal choroidal 

angiogenesis.  

 

This work has shown that both VEGF and FGF2 individually stimulate 

human ICEC proliferation and angiogenic tube formation with similar 

potency. This finding is significant because while it is known that the 

biological effects of VEGF are largely restricted to ECs, the role of 

FGF2 on CNV pathogenesis has been largely unexplored and remains 

controversial (Rosenthal et al, 2005; Tobe et al, 1998). Fibroblast 

growth factor is known to have mitogenic effects on fibroblasts, 
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chondrocytes, smooth muscle cells and melanocytes in addition to ECs 

(Burgess & Macaig, 1989). The FGF2 subtype is known to be present in 

CNV (as discussed previously) and may therefore also promote effects 

in cells other than ECs in the formation and propagation of CNV. As 

mentioned in chapter 1, there is still debate as to whether FGF exerts 

its pro-angiogenenic effect on endothelial cells by its own effect on the 

cellular proliferative mechanism via FGF receptors and intracellular 

signalling cascades or via up-regulation of the effect of VEGF. Evidence 

exists for both hypotheses as it is known that specific pro-angiogenic 

pathways are activated when FGF binds to its receptor (FGFR1) (Cross 

and Claesson-Welsh) and FGF has also been shown to up-regulate 

VEGF and VEGF receptor expression on ECs (Murakami and Simons, 

2008; Murakami et al 2011; Seghezzi et al, 1998). This is an area 

where future research would be beneficial. 

 

When hICECs were exposed to equimolar concentrations of VEGF and 

FGF2, the effect of the growth factors was additive even within the 

plateau phase of proliferation of the individual growth factors. This 

suggests that the growth factors may, at least in part, be acting via 

different activation pathways, an important factor for future development 

of anti-angiogenic therapies. This hypothesis is given weight by studies 

on bovine adrenal ECs which demonstrated synergistic effects of VEGF 

and FGF2 (Goto et al,1993; Pepper et al, 1992) and on bovine CECs 

and HUVECs, which showed activation of the intracellular MAPK 

pathway by VEGF and FGF2 by different mechanisms (Mc Laughlin et 

al, 2001; Zubilewitz et al, 2001). While little work has previously been 

conducted on the mechanism of FGF2 stimulation of hCEC, it has 

recently been found that these proliferating cells preferentially express 

mRNA for the FGF Receptor 1 compared with retinal endothelial cells 

(see Chapter 3), again implicating a direct role for FGF-2 in hCEC 

biology. 
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It is known that most of the pro-angiogenic actions of FGF 2 are 

mediated via the receptor tyrosine kinase, FGFR-1. There are at least 

three other FGF receptors (FGFR2-4) which are present on a variety of 

different cells, implying a degree of system redundancy as suggested 

by embryological studies (Cross and Claesson-Welsh, 2001). Activation 

of the receptor requires dimerisation of two receptors which is followed 

by autophosphorylation of specific tyrosine residues (Klint and 

Claesson-Welsh, 1999). The specific sites of phosphorylation have 

been found to bind molecules such as Crk which leads to MAPK 

activation, and PLC-け. Receptor activation is known to lead to activation 

of a number of intracellular signalling cascades including the Ras 

pathway, Src receptor kinases, PI3K and the PLC pathway (see Fig 6.7 

for a diagrammatic representation). 
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Fig 6.7. An overview of FGFR-1 signalling. As mentioned above, 
activation leads to the autophosphorylation of several sites of the 
intracellular molecule which leads to activation of different signalling 
cascades. The end result appears to be up-regulation of MAPK which is 
able to enter the nucleus to modify gene expression i.e. cell proliferation 
and protection from apoptosis. (Reproduced by permission of Elsevier) 
 

 

In contrast, VEGF-A exerts its pro-angiogenic effects on vascular 

endothelial cells via two distinct receptors, VEGFR-1 and VEGFR-2. 

The receptors consist of an extracellular portion composed of seven Ig 

like domains, a transmembrane domain and an intracellular kinase 

domain. While VEGFR-1 is a weak tyrosine kinase, but with a ten fold 

higher affinity for VEGF than R-2, it is VEGFR-2 that is thought to 

important in angiogenic responses. Binding of VEGF-A to its R-2 

receptor activates a number of signalling cascades. Lke FGFR-1, PLCけ 

is activated and leads to up-regulation of MAPK. In addition, PKC, Akt 

and PI3K are also activated. These cascades are not dissimilar to the 

action of FGF (see Fig 6.8 below). 



 380 

    

 

 

Fig 6.8. An overview of VEGFR-1 and VEGFR-2 signalling. Ligand 
binding results in receptor dimerisation and the phosphorylation of 
specific intracellular tyrosine residues. Only the downstream pathways 
for VEGFR-2 are shown as it is this receptor that is thought to be 
important for endothelial cell proliferation. In a similar fashion to FGFR-
1 activation, MAPK is activated and this can then bring about changes 
in gene expression within the nucleus. (Reproduced by permission of 
Elsevier) 
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Despite the similarities, researchers have attempted to detect 

differences in the signalling cascades brought about by the actions of 

VEGF and FGF. In the chick allantoic membrane, FGF 2 mediated 

angiogenesis was blocked following treatment with a specific MEK 

inhibitor (thereby reducing MAPK production) (Eliceiri et al, 1998). The 

same group also demonstrated that the induction of a mouse knockout 

of Src tyrosine kinase inhibited VEGF but not FGF induced 

angiogenesis (Eliceiri et al, 1999). As can be seen from the above 

diagrams, Src is to be found on both cytokine activated pathways. In 

2001, Zubilewicz et al demonstrated that FGF 2 induces a marked 

increase in MEK activity in bovine choroidal EC whereas VEGF did not. 

This study utilised “specific” inhibitors of intracellular messengers to 

dissect out important pathways. It is now widely accepted that these 

inhibitors may not be as specific as once thought and other methods 

such as proteomics would be more reliable. An example of a once 

widely used inhibitor is apigenin. It is used as a specific inhibitor of 

MAPK generation, but can also inhibit Protein Kinase 2 (CK2), nitric 

oxide synthase-2 (NOS2), Hypoxia-inducible factor 1 alpha (HIF-1g), 

lipoxygenase and cyclooxygenase-2 (COX-2) (information from Santa 

Cruz Biotechnology, Ca, USA). This means that any results derived 

from its use are probably a gross over simplification of the true 

pathways and interactions involved. 

 

When one considers the questions surrounding whether FGF and 

VEGF act separately on the stimulation of angiogenesis in endothelial 

cells and how the intracellular signalling cascades differ it would be 

interesting to study the effect of anti-VEGF antibodies on the 

proliferation of CECs when stimulated with FGF and FGF/VEGF 

combinations. The continued controversy as to whether FGF acts as a 

pro-angiogenic factor in its own right or acts via effects on VEGF or its 

receptor is an area where future research is necessary and may lead to 

future improved treatments for ocular angiogenenic diseases.  
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The author and co-workers have recently published a study 

demonstrating the comparative effects of VEGF isoforms on the 

proliferation of first passage human choroidal ECs and human retinal 

ECs using the methods described above (Stewart et al, 2011). It was 

found that both VEGF121 and VEGF165 were equally potent in 

stimulating both retinal and choroidal ECs. In addition, retinal ECs 

demonstrated a higher proliferation than choroidal ECs with equimolar 

concentrations of both VEGF isoforms. This suggests that retinal and 

choroidal ECs differ in their response to growth factors (VEGF isoforms) 

and again validates the results of the gene expression experiments, 

suggesting significant differences in gene expression (and thereby, 

possible functional differences) between retinal and choroidal ECs. It 

would also be interesting to compare the effects of FGF and VEGF/FGF 

combinations on matched retinal and choroidal endothelial cells as this 

may give information regarding the possible differential pathogenesis 

and treatment of retinal and choroidal diseases  

Other factors such as PDGF-AA, PDGF-BB, IGF-1 or IL-1く present in 

excised human CNV tissue did not show significant effects on human 

ICEC proliferation or angiogenic tube formation in this study. These 

results are in contradiction to the results found by workers utilising 

endothelial cells derived from non-human choroidal and animal models 

as a surrogate to the study of human choroidal disease. While we found 

no effect of IL-1く on hCECs, Zou et al in β006 found that inhibition of 

the effects of IL-1 on HUVEC cells significantly inhibited cell 

proliferation. Risau et al (1992) found PDGF-BB and to a lesser extent 

PDGF-AA to be pro-angiogenic in a chick chorioallantoic membrane 

model and to stimulate chemotaxis of rat brain ECs. Importantly, the 

preparations of PDGF were derived from recombinant yeast expression 

systems, so would be unlikely to be contaminated with VEGF. 

Interestingly, it has recently been suggested that PDGF is important in 

CNV pathogenesis due to its effect on pericyte recruitment and 

stabilisation, with absence of PDGF causing regression of new vessels 

due to loss of supporting pericytes. Agents targeting the intracellular 
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effects of PDGF have therefore been proposed as a new treatment for 

CNV. Similarly, whilst a role for IGF-1 in retinal angiogenesis is 

established (Sharp, 1987; Smith et al, 1999, Hellstrom et al, 2001), its 

effect on the pathogenesis of CNV is controversial and appears to be 

dependent on species and/or site under investigation. We found no 

effect of IGF-1 on the proliferation and angiogenic tube formation of 

human ICECs. Spraul et al (2002) recently found that IGF-1 stimulated 

the proliferation of bovine CECs with a similar potency to VEGF, while 

Grant et al (1993) and Castellon et al (2002) independently found a 

stimulatory effect of recombinant IGF-1 on human and bovine retinal 

endothelial cells respectively, suggesting a direct pro-angiogenic effect 

for IGF-1 in diabetic retinopathy. This differential effect of IGF-1 on 

different ECs may explain the lack of significant benefit for lanreotide, a 

potential IGF-1 inhibitor, on the outcome of patients with CNV 

secondary to AMD (Papadaki et al, 2003). Any effect of IGF-1 on the 

pathogenesis of CNV may, therefore, be due to indirect effects on other 

pro-angiogenic cells and pathways.  

 

The author and co-workers recently published a study in which the 

effect of IGF-1 on unpassaged choroidal and retinal ECs was compared 

(Browning et al, 2012). This work showed that compared to choroidal 

ECs, which failed to demonstrate any proliferative response to IGF-1, 

retinal ECs showed a marked response which also demonstrated an 

additive response when used in the presence of VEGF. This work 

supports the gene expression experiments in chapter 3 which found 

that proliferating retinal ECs preferentially expressed various 

components of the IGF-1 activation pathways. This has implications for 

the pathogenesis and future treatments of proliferative diabetic 

retinopathy. Based on one of the conclusions of the gene expression 

studies in Chapter 5, it would be interesting to study the effect of Brain 

Derived Neurotrophic Factor (BDNF) on ICECs.  
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The potential drawback of this work is that the study of the hICECs took 

place in an environment far removed from their natural environment and 

the cells may behave differently in vitro to their in vivo state. To try and 

abrogate this effect, only cells of first passage that formed the typical 

cobblestone morphology in culture on fibronectin plates were used, so 

that the cells used were as near to the in vivo state as possible. 

However, as hICEC do not naturally exist in isolation in vivo, some of 

the factors tested may be able to influence hICEC indirectly via their 

effects on other neighbouring cells.  

 

On the other hand, the culture conditions used in this study allowed 

assessment of individual growth factors without the confounding effects 

of other factors and other cell types. The biological effect of single 

growth factors on the hICECs could therefore be tested in isolation.  

 

In summary, this study has found that VEGF and FGF2 stimulate hCEC 

proliferation and angiogenic tube formation in isolation and produce an 

additive effect when used in combination. Other growth factors such as 

IGF-1, PDGF-AA or BB and IL-1く do not have a direct in vitro 

stimulatory effect on hCECs. It is, however, possible that other 

cytokines, including PDGF-AA or BB, IGF-1 and IL-く 1, may produce 

an effect by stimulation of other cell types involved in CNV formation. 

Such effects will require further investigation using co-cultures of 

different cell types. These results suggest that in addition to VEGF, 

FGF2 could be a potential therapeutic target for the development of 

new agents to treat angiogenic diseases such as CNV in humans 

(Hagedorn et al, 2001).  
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Other than glaucoma, angiogenic driven diseases such as proliferative 

diabetic retinopathy (PDR), wet age-related macular degeneration and 

retinopathy of prematurity (ROP) remain the most common blinding 

disorders in the developed world. Unfortunately, many of the underlying 

mechanisms or causes of these diseases remain unknown and 

definitive treatment is not usually possible. Treatment modalities 

therefore rely on tissue destruction in the case of PDR and ROP or on 

the inhibition of a ubiquitous growth factor (VEGF) in wet AMD. More 

selective treatment of these conditions would reduce the collateral 

damage at the site of disease and allow the treatment to be more 

specific. To allow this more selective treatment to be developed, an 

increase in the knowledge of site specific differences in tissues is 

required. In the case of angiogenic diseases, this requires increased 

knowledge of endothelial cells, particularly those undergoing 

proliferation in the target tissue of interest.  

 

It has been known for many years that endothelial cells are 

heterogeneous in nature, even within a single organ such as the lung. 

It would not be surprising therefore, to speculate that endothelial cells 

within the eye may differ, even though their different vascular beds may 

only be separated by a factor of microns. Evidence for this 

heterogeneity is gleaned from the fact that different diseases appear to 

affect different ocular vascular beds with marked selectivity, e.g. retinal 

vasculitis and diabetes selectively affecting the retinal vasculature and 

wet AMD and inflammatory choriocapillopathies affecting the choroidal 

vasculature. 
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For many years, researchers have used HUVECs to study angiogenic 

processes in normal and pathological states and applied the 

conclusions to both ocular and non-ocular disorders. A major drawback 

of this approach is that HUVECs are specialised cells found in a 

microenvironment not encountered anywhere else in the body and are 

therefore likely to demonstrate unique responses. The usefulness of 

any conclusions derived from these cells in the understanding of 

diseases such as wet AMD and proliferative retinopathy must therefore 

be questioned. As alluded to previously, there is ample evidence in the 

literature demonstrating that HUVECs differ in many aspects in terms of 

their responses to external stimuli compared with other endothelial 

cells.  

 

In this work, it has been shown that at the level of gene expression, 

HUVECs are indeed different. They demonstrate significant differences 

in the expression of at least 800 genes, across many functional groups, 

when compared with ocular microvascular endothelial cells. 

Examination of the results obtained from HUVECs revealed that 

numerous genes involved in embryonic development were up-

regulated. This included numerous homeobox transcription factors 

which have been shown to be crucial to the development of many 

embryological structures and processes. Reasons for this difference 

may include the fact that the umbilical vein has the feature of being 

derived embryologically from the developing foetus. Another reason 

may be that in vivo, angiogenesis tends to occur at the microvascular 

level of the vascular tree, not in large capacitance vessels (such as the 

umbilical vein). These findings would seem to confirm earlier opinions, 

which suggest that HUVECs are different from other endothelial cells, 

and would lead one to suggest that these cells should not be used for 

the investigation of complex angiogenic disorders of specialised organs 

such as the eye. If one is not to use HUVECs in the investigation of 

human ocular disease, then the question arises as to which cells should 

be used in in vitro models.  
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Investigation of the gene expression patterns of human ocular 

endothelial cells revealed that there were significant differences 

between proliferating human retinal and choroidal endothelial cells. 

This study revealed that approximately 8% of tested genes showed a 

significant difference in expression. As the current research is 

particularly focused on angiogenic processes and diseases, genes 

thought to be involved in cell signalling pathways and which could be 

important in cell proliferation were specifically studied. This study found 

that there were a number of genes encoding proteins of signalling 

pathways that were differentially expressed between retinal and 

choroidal endothelial cells. As previously stated, diabetes is the leading 

cause of blindness in people of working age. From this work, it appears 

that as well as VEGF playing an important role in the progression and 

treatment of diabetic retinopathy, IGF-1 also appears to be important. 

This finding is backed by numerous clinical studies in which IGF1 is 

manipulated or measured in diabetic subjects. There is also evidence 

from myself and co-workers that IGF-1 brings about proliferation of 

human retinal endothelial cells but not human choroidal ECs (Stewart et 

al, 2011). In addition, the findings from this work have implications for 

the pathogenesis of ROP, in which the developing retinal vasculature 

appears to show differential responses to IGF-1 and may be involved in 

the disease pathogenesis.  

 

Interestingly, comparison of choroidal and iris endothelial cells 

demonstrated very few significant differences. The reason for this is 

unknown but may be related to the fact that both the iris and the choroid 

are part of the same ocular structure – the uveal tract. They may 

therefore be part of the same embryological precursor.  
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The research presented in this thesis has a number of advantages 

compared to previous or similar studies:  

 

1. The work is conducted on human tissue. Some previous work has 

been conducted on bovine tissue. 

 

2. The endothelial cells are matched in terms of the donor, thereby 

reducing any variability due to donor differences. 

 

3. The cells are unpassaged. This avoids any differences in gene 

expression being due to changes related to passage drift.  

 

4. All cells were isolated and grown under exactly the same conditions, 

thereby avoiding any differences in gene expression being due to 

external factors. 

 

These rigorous culture and examination conditions allow one to directly 

compare gene expression and makes any significant differences more 

meaningful. Also, by studying proliferating cells, cell processes such as 

signalling pathways important in angiogenesis may be studied. Other 

work, particularly on ocular RPE cells has been conducted using laser 

capture microdissection prior to microarray analysis. Unfortunately, this 

would be unlikely to be suitable for this work, as very few endothelial 

cells are undergoing proliferation in the normal eye. Secondly, this 

technique is prone to contamination with other adjacent cells.  

 

In this project, cell purity was maximised by the use of paramagnetic 

bead separation prior to culture. One drawback of this work is that in all 

three types of ocular endothelial cells, no separation of venules, 

arterioles or capillaries was possible. This means that homogeneous 

mixtures of cells from each anatomical site were used. At present, the 

limits of microdissection prevent the isolation of individual retinal 

venules and arterioles to reliably provide enough cells to culture for 

further analysis. The use of laser capture dissection would provide a 
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suitable method of isolating samples of the individual vessels (if they 

could be reliably identified). The previous comments regarding 

contamination and the quiescent state of the isolated cells mean, 

however, that the technique in its present state is unlikely to provide 

additional information than that achieved by the methodology in this 

project.  

 

A major question that needs to be considered is the origin of the 

diversity of endothelial cells. Is this diversity due to nature i.e. genetic, 

or to nurture i.e. the effect of the local environment on the cell? The 

earliest events controlling the differentiation of mesoderm into 

endothelial cells remain uncertain. Experiments on zebra fish have 

shown that the arterial and venous phenotype of vascular precursor 

cells or angioblasts (expression of gridlock) is determined while they 

are still located in the lateral plate (very early stage of embryogenesis), 

implying a genetic component to endothelial heterogeneity (Zhong et al, 

2001). This finding is reinforced by the finding that in mice, cells 

destined to be arteriolar and venular ECs express ephrin B2 and EphB4 

respectively before the onset of a circulation (Adams et al, 1999).  

 

While the initial identity of ECs appears to be genetically determined 

later, after angioblast migration, local factors such as VEGF gradients 

can also have an effect on arterio-venous phenotype (Le Bras et al, 

2010). It is thought that high local expression of VEGF leads to the 

activation of members of the FOXC transcription factors which in turn 

leads to up-regulation of notch family and an arteriolar phenotype. 

Experiments have also shown that physiological requirements and 

haemodynamic influences can alter phenotype. Transplantation of 

arteriole ECs into veins rapidly changes their phenotype to venular 

(Moyon et al, 2001). This may be due to local factors such as VEGF 

secreted by surrounding cells or it may be secondary to differences in 

flow/shear stress as the placement of venules within a section of high 

flow artery leads to a rapid change to an arteriolar phenotype.  
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Less is known about the variability of EC phenotype between/within 

organs. It is not known if angioblasts migrate to these different areas or 

arise de novo. Cells arising de novo at different sites could obviously 

demonstrate variable gene expression patterns as they arise in isolation 

from other endothelial cells. However, it is probable that local factors 

such as differences in extracellular matrix and cytokines also play a 

significant part in local cell differentiation. For example, within the brain, 

the endothelium is highly specialised with avid tight junctions and is 

non-fenestrated. The cells form the crucial blood-brain barrier. It is 

thought that juxtaposed cells such as pericytes, astrocytes and 

neurones are crucial for this EC tight junction formation and thereby the 

formation of the blood-brain barrier (Hawkins and Davis, 2005; Lee et 

al, 2003). 

 

It has recently been suggested that the conventional concept of a 

particular transcription factor binding to the promoter sequence of a 

gene in order to regulate its transcription does not fully explain some 

features of endothelial cell gene expression. For instance, how does the 

endothelial cell environment exert chronic effects on gene expression 

over weeks or years or when the cell divides and how is this information 

regarding the environmental effects transmitted to daughter cells? 

Epigenetics is the term used to try to explain these findings and refers 

to chromatin based effects on the modification of gene expression. 

Three distinct mechanisms have been described: DNA methylation, 

histone post-translational modifications and RNA based mechanisms, 

all of which modify the structure and accessibility of DNA to 

transcription factors (Yan et al, 2010). 

 

DNA methylation refers to the addition of a methyl group on DNA 

cytosine and has the effect of reducing promoter transcription (Meissner 

et al, 2008) by steric interference of the binding of transcription factors 

to specific DNA sequences. This mechanism has been described as 

one method responsible for the modification of HIF-1 alpha gene 

transcription (Wenger et al, 1998). Within the nucleus, DNA is 
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packaged by wrapping around histone proteins, forming nucleosomes. 

Histone proteins can be modified post-translationally by mechanisms 

such as acetylation which can affect DNA transcription. These 

modifications can therefore encode regulatory information for cells that 

reproducibly affect DNA expression and may be passed onto daughter 

cells. Finally, it has been found that small lengths of RNA (less than 200 

nucleotides) can affect DNA expression. These short lengths are called 

non-coding RNA and many have been found associated with the 

human genome. How can the environment affect these epigenetic 

processes? It has been found that shear stress on endothelial cells can 

modify the histones around which DNA is wrapped (Illi et al, 2003). 

Shear stress can therefore affect gene expression, particularly at sites 

of turbulence. This is thought to play a role in the pathogenesis of 

atherosclerosis, which is characterised by focal pathological changes 

within blood vessel walls. 

  

It has been shown that endothelial cells of the choroid, iris and retina 

are all derived from embryonic mesoderm, while supporting pericytes 

are derived from the neural crest (Gage et al, 2005). Following on from 

this is the finding that choroidal blood vessels develop by a process of 

haemovasculogenesis while those of the retina develop by 

vasculogenesis. The endothelial cells of both the retinal and choroidal 

vessels themselves are ultimately thought to be derived from CD39 

positive angioblasts. What is not known is whether all these angioblasts 

are the same i.e. from a common precursor which should therefore 

demonstrate early identical gene expression patterns. 

 

The difference in the gene expression patterns of matched mature 

human retinal and choroidal endothelial cells may therefore be due in 

part to this difference in origin (although all are ultimately derived from 

mesoderm).  
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The alternative argument is that cues from the local environment 

around the identical angioblasts/endothelial cells cause them to 

diversify and differentiate to suit their environment (Janzer and Raff, 

1987). Examples include brain and retinal endothelial cells which 

require strong tight junctions to provide the inner retinal and blood brain 

barrier or adrenal and inner choroidal endothelial cells which are 

fenestrated to facilitate passage of fluid and ions across the 

endothelium. Early experiments using endoderm-derived cells such as 

cells of developing lung have shown that local cues stimulate the 

formation and development of angioblasts that go on to form part of the 

pulmonary vasculature (which is known to be heterogeneous). In 

contrast, ectoderm-derived cells do not have this effect. This is an 

example, therefore, of the cell environment influencing angioblast 

behaviour (probably at the level of the gene).  

 

Further evidence for the effect of the environment on ECs include the 

finding that HUVECs exposed to TGFく grow as a rapidly dividing 

monolayer if cultured on collagen I coated plates, but as tubes when 

cultured within a 360 degree matrix containing collagen I. Many of the 

interactions of ECs with their environment are thought to be facilitated 

by integrins, which are a family of cell surface molecules found on 

endothelial cells. It is known that the subtypes of these receptors 

change as the EC develops, thereby suggesting that changes in the 

development and maturation of the cell are at least in part related to the 

microenvironment.  

 

It has previously been mentioned that fibroblast growth factor 2 (FGF2) 

is important for vascular development. However, the effect of VEGF 

appears to be more dramatic and visual. Culture of mammary gland 

endothelial cells (Esser et al, 1998) and the in vivo exposure of ECs 

within muscle and skin (Roberts & Palade, 1995) (none of which are 

normally fenestrated) to VEGF stimulated the formation of 

fenestrations. This may explain why the retinal pigment epithelium 

secretes VEGF (and other factors) from its basal surface, across 
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Bruch‟s membrane – to maintain fenestrations and cell survival within 

the inner choroid (Liu et al, 1997). Interestingly, large vessel endothelial 

cells such as HUVECs can also be stimulated to form fenestrations by 

exposing them to phorbol ester (Lombardi et al, 1987). Phorbol ester is 

a tumour promoter which activates intracellular signal transduction 

cascades via protein kinase C and is commonly used in research to 

stimulate the cancerous transformation of cells. This finding shows that 

even cells which in vivo have no reason to develop fenestrae maintain 

the capacity to do so. Gregory Roberts & Palade in 1997 and 1998 

found that implantation of tumours containing growing blood vessels 

took on the phenotype of the tissue the tumour was implanted into (skin 

and brain), providing further evidence that the local environment 

influences the phenotype of endothelial cells. Similarly, in a mouse 

model in which a section of vein was interposed into the arterial 

circulation, the venous segment soon took on arterial characteristics 

such as an increase in smooth muscle cells with the vessel wall and the 

endothelial cells took on arterial characteristics (Kwei et al, 2004). 

There is substantive proof therefore that the parenchyma can determine 

the phenotype endothelial cells.  

 

Focussing on the choroidal neovascularisation involved in wet age-

related macular degeneration, one could hypothesise that the 

phenotype of proliferating endothelial cells at the site of disease leads 

to this devastating angiogenic process which is so frequently located at 

the macula, an area only a few mm in diameter. Are the unique gene 

expression profiles previously demonstrated in different proliferating 

ocular endothelial cells occurring at different sites within the human 

choroid? If so, does this “local” gene expression profile also provide any 

clues to future site selective potential treatments? This work has shown 

that there is no significant difference in gene expression profiles 

between macular and peripheral human inner choroidal ECs. This result 

would suggest that the susceptibility of the macula to wet AMD is not 

due to a fundamental difference in the endothelial cells within the inner 

choroid. Other reasons could include the previously noted differences in 
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macular RPE cells or Bruch‟s membrane. This would also imply that 

any “magic bullet” treatment would in theory have an effect on 

peripheral inner CECs as well, giving rise to potential collateral damage 

and side effects.  

 

When macular inner and outer CECs are compared, however, some 

interesting differences are found, perhaps giving insight into the 

different physiological roles of the blood vessels of the two layers of the 

choroid: the inner as a fenestrated layer supplying the outer retina with 

oxygen and nutrients and the outer choroid as a layer of larger vessels 

supplying the inner choroid with a regulated blood supply.  

 

Inner choroidal ECs demonstrated up-regulation of probesets involved 

in nervous system development, in particular brain derived neurotrophic 

factor and certain growth factors such as VEGF and HGF. These may 

act in a local paracrine fashion to maintain local tissue phenotype 

(maintenance of photoreceptor integrity and RPE polarity) or to provide 

a local amplification loop to cell proliferation. It was also found that 

plasmalemmal vesicle associated protein-1 (PLVAP) which is a 

component of fenestrations, was up-regulated in inner macular 

endothelial cells (but not outer macular ECs or retinal and iris ECs) 

[from review of raw microarray data]), confirming the importance of 

fenestrations to the inner choroidal ECs. In contrast, macular outer 

choroidal ECs demonstrated up-regulation of probesets involved in 

immune function, certain cell signalling components and interestingly, 

different growth factors (TGF-beta and stromal cell derived factor).  

 

It has been demonstrated that human macular inner choroidal ECs 

have a unique gene expression profile but the next question to be 

answered is how these cells behave in a microenvironment that aims to 

mimic wet AMD. While all endothelial cells have been shown to respond 

positively to VEGF, there are widely reported differences in ECs‟ 

responses to other growth factors. Excised choroidal neovascular 

membranes from humans have been found to contain a wide range of 
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growth factors, some of which have been found to lead to variable 

responses with other ECs. Newly isolated and characterised human 

macular inner choroidal endothelial cells were used to determine their in 

vitro responses to a range of growth factors using an in vitro 

angiogenesis assay. The main aim of this experiment was to determine 

which growth factors may be important in wet AMD and to perhaps 

provide other therapeutic targets apart from VEGF for the treatment of 

the disease. Interestingly, it was found that FGF2 had a similar positive 

effect on cell proliferation and capillary tube formation and growth to 

VEGF. This would appear to be a new exciting target for disease 

treatment. Unfortunately, to date, no drug has been devised to 

specifically target this growth factor and which could be injected into the 

human eye. Other factors such as PDGF and IGF-1 appear not to have 

any direct effect on these ECs. As such, their role in wet AMD must be 

questioned unless they are acting in a secondary role upon other 

undetermined cell types (such as the proposed role of PDGF in the 

maintenance of vascular pericytes).  

 

This work has a number of advantages over previous work conducted 

on different endothelial cells or other ocular cells in an attempt to 

understand human ocular diseases. The first advantage is that the cells 

are isolated from human eyes and in particular, from the areas of the 

eye affected by various angiogenic diseases. Secondly, unlike 

techniques using laser capture dissection, contamination from 

surrounding cells is minimised by using a method to extract endothelial 

cells using paramagnetic beads. This allows a large number of living 

cells to be isolated for further investigation, such as microarray or in 

vitro proliferation studies. Another disadvantage of laser capture 

dissection studies, particularly in studies such as this, which aims to 

investigate proliferating cells, is that most of the cells isolated are in a 

quiescent state and are only available in small numbers. Thirdly, cells 

used in this study were unpassaged. Many studies using endothelial 

cells, not just those from humans, rely on cells that have undergone 

multiple passages in an attempt to provide enough cells for large scale 
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assays. Unfortunately, it is widely accepted that endothelial cells 

undergo phenotypic changes after multiple passages, thereby making 

any results derived from these cells questionable. This makes any 

conclusions derived from my studies more applicable to human 

disease. In experiments described in this project where cell gene 

expression was studied, the cells were from matched donors and were 

cultured under exactly the same conditions, therefore abrogating any 

differences in gene expression due to differential culture conditions or 

because of differences between donors. 

 

The main disadvantage of this work is that the endothelial cells are 

removed from their “normal” surroundings (basement membrane, 

pericytes etc) which may have an effect on a cell‟s in vitro performance. 

In an attempt to circumvent this, in many of the experiments, conditions 

were made as close as possible to their natural surroundings by using 

specialised endothelial growth medium and collagen coated plates (an 

attempt to re-create cell basement membranes). A counter argument in 

support of studying of cells in isolation is that there is no possibility of 

their being affected by other cells or extraneous factors. This allows a 

strict control of the cell environment to occur with small manipulations 

possible to the experimental conditions, therefore allowing minute 

changes in cell behaviour to be studied.  

 

In summary, this research work has developed new techniques to 

isolate ocular endothelial cells from different vascular beds within the 

human eye and from different levels within the same vascular bed. The 

study has also demonstrated that HUVECs are not suitable surrogates 

to be used in the study of human ocular diseases because there are 

significant gene expression differences between them and ocular 

microvascular endothelial cells which may affect their in vitro behaviour. 

Within the eye, endothelial cells from different vascular beds show 

heterogeneity at a gene expression level which may go some way to 

explaining why different ocular beds appear to be affected by different 

disorders and respond to different treatments. 
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A major advantage of this study is that it has allowed one to study 

endothelial cells from within the human macular inner choroid (the site 

at which AMD occurs), revealing a unique gene expression profile 

which may be important in deriving new treatments for wet AMD. 

Secondly, it has demonstrated that FGF2 may be an important growth 

factor in the pathogenesis of choroidal neovascularisation and therefore 

may be a new candidate for therapeutic intervention. It has, 

furthermore, demonstrated why manipulating IGF may be important in 

retinal vascular disease, but not in choroidal vascular disease. 
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