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ABSTRACT

In this Thésis, the collapse mode of failure of tapered
steel beams is examined for three different loéding cases.
Firstly, for the case when the beam is loaded inside the tip;
secondly, when the beam is loaded outside the tip, and thirdly,
when the beam is loaded at the tip. The theoretical collapse
mode of failure presented here provides an identical coilapse
load whether obtained from lower or upper bound solutions.
Fourteen Tesfs on tapered steel beam specimen were carried out
to examine the col lapse modes of failure and their ultimate
strengths for steel tapered beams loaded inside, outside and at
‘The'+ip, The experimental collapse loads and their coliapse
modes of failure are compared with theoretically predicted
collapse loads and the proposed collapse mechanisms respectively.

The first elastic yield load of the tapered web panels is
assessed on the basis of 'cfrculér Arc Theory! simplified by

(6)

Davies et al. and is compared with the predicted theoreti-

cal collapse loads.
Conclusions are drawn relating to the plastic collapse

modes of failure and ultimate strengths of tapered steel beams.
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CHAPTER ONE

INTRODUCT LON

Owing to thelr economy, aesthetic appeal, suitabllity for
fabrication and reduced self weight, tapered beams are bécoming
more and more popular in various types of structural construction.
The cause of economy Is best served when the beams have adequate
lateral support, .and thelr design capacities can easily be deter-
mined.

Although, tapered stee! members have been used in a large
variety of structural applications for some time, and some
analysis procedures were available prior to 1955, a joint task
commi+tee of the Column Research Council (C.R.C.) and the Welding
Research Council| (W.R.C.) was formed, in 1966, in the United

States of America, to study and formulate design information and
| recommendations relating to tapered members. Since then numerous
results I(ncluding the studies of elastic behaviour of tapered
members and its stability aspects by Lee and Morrell(l’.z’ 3),

Chong e*.alf4), Kitiponarchai and Trahair(S), Davies ef.alfs) and

(7, 8)

Butler et. al. have been published. Aleng with the

analytical sfqdies, two test programmes were carried out in the
United States of America. The first experimental program was
conducted at Columbia University under the direction of Butler.
In the Columbia test program, |-shaped beams and channel sections,
tapered in both web and flanges, were tested as a cantilever beam-
columns. The primary interest was the elastic stability of these
beams and their bracing requirements. |

The second experimental program under +hé technical guidance

of C.R.C. - W.R.C. Joint task committee was begun in 1966 by



(N

Lee et. al. at the state university of New York at Buffalo. The

results of this series of tests are reported by Prawel et. al. 9,
The primary interest in the second set of tests was inelastic
s+abiii+y of tapered |-shaped beam-columns.

However, still very limited Informafion»is available to
facilitate the plastic design of tapered beams.

On the other hand there has been a progressive development
in the field of paralle!l filange plate girders to establish the
plastic collapse mode of failure and to predict its ultimate
strength. A review of the existing method of analysis of the
collapse behaviour of parallel flange plate girder is presented in
Chapter Three of this thesis. However, the princfples of buckling
and post buckling behaviour and the design criteria of plate girders
are briefly discussed in the present chapter.

Until the early 1960's, web buckling was accepted as a
basis for the design of plate girders. Principally, this was due
to the fact that formulas for predicting buckling are relatively
simple and have been known for many years, while suitable analyses
of post buckling strength were relatively new. However, the post
buckiing strength was acknowledged in most specifications by using
a smaller factor of safety for web buckling than for yielding or

fallure of other elements. But all this work gave poor correlation

with ultimate strength test resul+ts.

The sources of the post buckling strength of stiffened

plate girder webs In shear wag explained by Wilson(|0) in 1886.
He discovered by means of a Paper mode! with very thin flexible
web, that whgn stiffeners were proper|y introduced the web no

longer resisted by compression, byt by tension, the stiffeners

taking up the duty of compressive resistance, Iike the post of a



Pratt truss, and dividing fﬁe girder into panels equivalent to those
of ah open truss, the web in each panel acting as an inclined tie
as shown In°Figure 1.l.1. However he did not explain his analysis.
Wagner(ll) in the 1930's developed a diagonal tension theory
of web shear. Extensive studies, both analytical and experimental,
were made in the late 1950's by Basler and Thurlimann(lz’ 13, 14)
on the post buckling behaviour of web panels in bending, shear and
also under the action of combined bending and shear. Practical
procedures were developed and have been adopted in some speci-
fications in the U.S.A. Widespread interest in the post buckling
strength of pfafe girders resulted in a number of modifications to
the Basler-Thurlimann's approach to achieve better correlation bet-
ween theoretical predictions and experimental results. Among those
modifications, the most considerable work was presented by Gaylord('S),

(16) (17, 18, 19, 20, 21, 22)

Fujii , Rockey and Skaloud

and Chern(zs), Komafsu(24) and Calladine(ZS), whose analyses and

» Ostapenko

results are described and discussed in Chapter Three. However,
i+ seems that the collapse mode of failure presented by Porter,

Rockey and Evans(26)

is the true collapse model for plate girders
loaded In shear, which contains all the best features of the
already existing ones. It provides identical lower and upper
bound solutions, and is also capable of predicting the col lapse .
load which has good agreement with the experimental resulfs. In
addition to their previous work(26) Rockey et. al.(27), very recently,
presented a design method which is appilcable to both symmetrical

and unsymmetrical plate girders, reinforced by both transverse and

longitudinal stiffeners and subjected to the combined action of

bending moment and shear force.

In this fhesis, the post huckling behaviour of steel| beams



having tapered web and inclined compression flange have been
studied hoth analytically and experimentally. The tapered beams
were reinforced by transverse stiffeners and were loaded inside
the tip, outside the tip and at the tip. Where the tip of a
tapered beam is defined as the point of intersection of the top
flange and the projection of the sloping flange. For the
analyses, the load acting at any point on a tapered beam can be
replaced by an equivalent 'tip-load' and a 'tip-moment'. However,
the magnitude and direction of 'tip-moment' will depend upon the
way of loading as shown in Figures |.1.2(a), 1.1.2(b) and I.1.2(c).
Clearly the direction of tip-moments for the two cases viz. when
loads are inside and outside the tip, will be opposite to each
other and its magnitude will be zero when the load is at the tip.
In the next chapter, for all the three different cases
mentioned above, the first elastic yield load of the tapered panels
is assessed by using the 'circular arc theory' simplified by
Davies et. al.(6). The comparison shows that these loads are
significantly lower than either the predicted or the experimental
collapse load of the panel.
Although, the specified depth/thickness ratios (B.S. 153,
Part 3B and 4) for +ransvérsely stiffened webs of plate girders are
' ‘imlt‘ed‘ & 180 or 230 5+ was decided to use higher values of an
average depth/thickness ratio of tapered webs. The ratios of an
average depth/thickness of Tapered'webs considered In this thesis
vary from 235 to 309 which Is in similar range to the d/t ratio
(between 255-316) used by Basler eft, al.(za) and Rockey and
(21)

~ Skaloud in their tests on transversely s*iffened'plafe girders.

"The aspect ratio (width/depth ratio) specified to Iimit the web-

buckling (B.S. 153, Part 3B and 4) for transverselv stiffened web
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of thickness less than d/85 (Grade 43 Steel) is 1.5, whereas the
ratios of width/average depth of tapered web panel considered in
this thesis vary from 1,55 to 1,57,

The analytical and experimental studies show that the post
buckling sfrengfh of a tapered web panel makes a significant con-
tirbution to its ultimate strength. After the web plate buckles,
the tensile membrane stress field develops’along the tension
diagonal of the Tapéred panel. However, it Is interesting to note
that the tension and compression diagonals of a +apefed panel
Inferchanée with the change in the direction of the tip moment as
shown in %igures 1.1.3(a) and I1.1.3(b). This reversal in the
direction of the tension dlagqhal can also be demonstrated by a
pin Joln+éd statical ly determinate cantilever shown in‘Figures
l.1.4(a) and !.1.4(b), where the web members occurring are either
solid or dotted line members. As mentioned previously the effect
of a load 'W!' é+ an eccentricity 'e' from the tip can be estimated
from the combined éffecf.of '"W' applied at the tip and an equive-
lent tip momeﬁf (M* = W.e). Using the method of sections, it Is

quickly seen that the force in the Infternal member -is easily

obtained, e.q.

=

-

t W.e '

F B o B o— ('ol)
€ Peg  Peg |

where Ped is the perpendicular distance of the member cd under

consideration from the tip. vCleariy as the eccentricity changes

the sign, i.e. depending on whether the load 'W' is inside or out-

side the tip, the sign of ch will also change and web members

which were fensile In Figure 1.1.4(a) become compressive in

Figure 1.1.4(b). On the ofher hand, when the tip moment is zero
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(beam loaded at the tip) the shear stress in the web becomes zero
and hence in this particular case the tensile membrane stress
fteld does not form in the weh, fthis causes the girder to fail due
to yielding of The inclined compression flange. However, it can
be seen that when the load 'W' is at the tip of a pin jointed
statically determinate cantilever, shown in Fiéure l.1.4(c), there
is no force in the internal member. This verifies the fact that
there will be no tension field action in the web of a tapered beam
loaded at the tip.

Because the axial forces in the inclined compression flange
is very high, the lateral instability of tapered beams becomes more
critical. In particular, tapered beams loaded at or near the tip
(where the beams fail! due to yielding of the compression flange),
would fail due to lateral instability unless sufficient lateral
supports were provided. It is evident from the theoretical
predictions that as the eccentricity of load about the tip decreases,
axial forces in the tension and compression flanges increase, this
increase in axial forces cause more lateral instability problems.
Although, in this thesis the author's sole aim Is to study the
col lapse behaviour and ultimate strengths of tapered beams (beams
failing in the plane of the girder), it was found during the
experimental studies that lateral supports of adequate strength
were necessary in order to develop a proper collapse mechanism.

The collapse modes of failure of tapered beams |oaded
inside, outside and at the tip are presented in this thesis. One
of the interesting features of the collapse mechanism proposed for

the two cases (heam loaded inside and outside the tip), is that
It provides an identical collapse load whether obtained from an

upper or lower bound solution. |t is shown that the stress con-



dition assumed in the presented collapse mechanism does not
violate the plasticity yield condition. The collapse loads, with
full plastic moment capacity and reduced plastic moment capacity
(due to the presence of axial forces) of the flanges, are predicted.
However, it must be recognised that the actual predicted collapse
loads are those which take into consideration a reduced plastic
moment capacity of the flanges. The experimen+af studies which
examine the collapse behaviour and ultimate strengths of four+eeﬁ
tapered steel girders are presented. Experimental results are
described and discussed. The predicted collapse loads are in good
agreement with the experimental! collapse loads. On the basis of
analytical studies and comparison with the experimental results,
conclusions are drawn about the collapse modes of failure and

ultimate strengths of tapered steel beams.



CHAPTER TWO

THE ELASTIC ANALYSIS OF TAPERED STEEL BEAMS

2.} Introductory Remarks

In order to proceed to the collapse load behaviour of
tapered beams, it is necessary, as a first stage, +6 assess the
first elastic yield. |+ is then possible to examine and verify
whether the calculated theoretical collapse load is significantly
higher than the first elastic yield load or not. Therefore, in
this chapter, the existing methods of elastic analysis of
tapered beams are reviewed and the first elastic yield load (for

beams loaded inside, outside and at the tip) is calculated and

finally conclusions are drawn,

2.2 Existing Methods of Elastic Analysis of Tapered Beams

The various approaches may be split into two dfsfincf
groups:
l. Those which examine the equilibrium of an element bounded
by two vertical faces (ver+ical cut theory).
2. Those which evaluate component stresses at points on

circular arc drawn about the beah Tip'(clrcular arc theory).

I. Vertical cut theory

The simplest and crudest approach is to ignore the effect

of the taper and merely to apply 'conventional' prismatic beam

theory to the vertical section. Thus (from Figure 2.2.1);

Ms.y : Ns
cx = I + r (2.')
XX X
V_[ydA
X
and Txy = b—s—l——- (2.2)



where the integration extends from the top of the beam down to

the point considered, and Oy and Txy are the normal and shear

stresses at a point yp on a vertical section due to the forces

Vs’ MS and Ns as shown in Figure 2.2.1.

Second moment of area of vertical section

XX
Ax = Area of vertical section
bp = Breadth of section at the point 'p'.
Guyon(35) suggested that the equation of a 'conventional'

analysis should be retained, except that in calculating the shear
stress 'Txy', the external force'VS' should be replaced by 'Vg',

a modified 'shear force' which takes into account the inclination
to the horizontal of the stresses on the 'elemenfary_fibres'. 1t
Is assumed that the value of the flexural stress 'of' in the
'elementary flbre' at the point p (Figure 2.2.1) on the vertical
section, is inclined along Po, where 0 is the point of inter-
section of the extreme tangents to the vertical section under
consideration. He assumes that the horizontal component of force,

due to a stress P along the elementary fibre is ox.dAx, so that

vertical component (dq) Is glven by
-dq = ox.fany.dAx (2.3)

where Yy = angle of inclination of the line FO.

(y,=-vy) .
le. tany = ———FP (2.4)
9 ' |

y
and o = -;P- (2.5)
g

assuming y is small, y = tany
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M.y N (y, =vy)
* -dq = (_S__E + _5) T P 4a (2.6)
. Ixx Ax Xg X

Integrating over the complete cross section the upward force (q)

is given by
Y M.y Ns I M .y2 Nsy
- 1 2o - Ei(ES ) e @
o) XX X g XX X
Equation (2.7) reduced to:
M NY
q = -5 (2.8)
g 9
and If B is small, one can write;
Ms
Vg = Ve - X * Ng-8, | (2.9)

Vg =V - Q)

Guyon then evaluates principal stresses using the values of
Oy and Txy thus ob+afned, Clearly the internal arrangement of
stresses cannot alter the shear force~?s which is carried on +hé
vertical section and which ié governed by basic equilibrium, but
the reduction may be regarded as that portion of the shear force

which is carried by the inclined flexural stresses.

Although, the net vertical shear can be calculated using
the vertical cut theory (as explained above), this does not
explain the presence of radial and tangential stresses in the
panel.. It was, therefore, decidedvnof to use this method to

analyse the first elastic yield of the panel.

2. Circular arc theory
(36)

The Boussinesq solution for a plane elastic wedge

relates radial and tangential stresses to forces applied at the



tip of a wedge shown in Figure 2.2.2. |t would seem that such

a solution could be applied to a plane wedge with loads acting
at points other than the tip, provided equivalent tip forces
are calculated and used.

Using the notation and sign convention illustrated in
Figure 2.2.2, the Boussinesq solution, at any point P(R,a) for

a plate of thickness t; gives radial stresses at point P(R,a):

Ny v, 2M

- cosa . sina . +

°% "R.T "B+ Esinzg) RT (B-1%sin2B) g2,

2.s1n2o
* {STnZ8 - 28.cos28) (2.10)

Tangential stress at point P(R,a)

ou =0 : (2.11)

M ,
= + (cos2a - cos2B) (2.12)
ro R2 + * (sin2B8 - 2B.cos2B) *

For these solu+ions,-oa is identically zero, and hence there
caé be no bearing pressure on the faces of the wedge. |t should
be noted that for the case of shear force Vf only, the shearing
stresses along the arc are zero. |t can be recognised as
arising from pairs of symmetric equally stressed 'fibres' giving
a contribution to V* only, and extending or contracting so as to
require no shear stress between adjacent fibres. However; since

the radial fibres pass through the tip, a moment M? applied at
that point can only be resisted by shear stresses along the arc.
Since o Is always zero then when M_ = 0, t__ is also zero
a , t ro
and or may be found from equation (2.10). The simple form that

this equation takes leads to the result.that for a more general

cross section made up from a web and flanges, each of‘consfan+
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thickness as shown in Figure 2.2.3, the modified radial stresses

is given by:

. - N* cosa
" R[b, (B + isin28) - (b

+
| = by) (¥ + sin2y)]

V, sina
1.
_ (2.13)
R[p|(8 - $sin28) - (b, - b)) (y * isin2y)]
c =0 (2.14)
[+ )
T =0 ' (2.15)
Yo - _

For cases where the angles a,B and y are small, which is

generally true for bridge structures, an approximate form of the
~ basic equations were obtained by Davies et a|(6). By expanding
the trigonometrical functions, and only retaining first order
quantities they (Ref. 6) approximated the equations (2.10) and

(2.12) in the form:

N* (Vf.R + M+) Yarc

c = + (2.16)
r A | .
arc arc
M? f
and T el e mad Y .dA , . (2.17)
ra R.’r.larc arc arc

where suffix 'arc' refers to dimensions and properties measured
around the arc, the integral is again for the part area above the
point under consideration. |t can be noted fhaf (V+.R + M*) and
(M*/R) are respectively the moment and shear at the centroid of
arc-section.
The extension of equations (2.16) and (2.17) for the case
when M* does not equal to zero, and when the arc section is

symme*rical,‘lnvolves the same assumptions that are made in the
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derivation of conventional beam theory at the web flange inter-
face. Therefore these equations can be used to calculate the
radial and shear stresses of the tapered steel beams and hence

the first elastic yield load can be assessed by considering any

yield criterion.

The distributions of elastic shear and radial stress in a
tapered panel are shown in Figure 2.2.4. |t can be seen that
shear stresses in this case vary along the length of the panel,

which is not the case with the rectangular panel.

2.3 The first elastic yield load of tapered steel beams loaded

inside the tip

For the case when a tapered beam is loaded [nside the tip,
the equivalent tip forces and moment are shown in Figure 2.3.1(a).

The magnitude of 'Vf', 'N*' can be obtained byvresolving

the components of the load 'W';

VT = W.cosR (2.18)
Nf = -W.sing (2.19)
and MT = -W.e ' (2.20)

where 'e' iIs the eccentricity of the load about the tip.

For any point P(X,Y), one can obtain the following relations

(Figure 2.3.1)

v 2 2
R="x"+y (2.21)
6 =8 - tan" | (Y/X) (2.22)
Yore = Red (2.23)
Yarc(max.) = R.8 (2.24)

where 'x' and 'y' are measured along the direction shown in
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Figure 2.3.1(b).

Ajpe = 2(Ag + R.B.T) (2.25)
- T2y . | 3
lare = 2[4 + Af(R.B + 5] + 1. 1(2R.8) (2.26)
. T _ (R.8 + R.¢) v
fYarc.dAarc Ag(R.B + ) + T(R.B - R§) It (2,27
By substituting the values of Nf, VT’ MT‘ R, Yarc’ Aarc’

| t and fY__ .dA
arc

’ in equations (2.16) and (2.17) one can
arc c

ar
calculate the values of radial and shear stresses at any point.
For the stress system shown in Figure 2.3.3(a) and 2.3.3(b),

the first elastic yield load can be calculated by using the Huber

von Mises plasticity condition. For uniaxial stress system this

plasticity condition reduces to:

——
g = (or)z + 372 (2.28)

where yw is the yield stress of the web material. However, in
the case where the flange has a lower yleld stress than the web,
the first elastic Yield may occur in the flange and therefore in
placé of 'cyw', Oyt should be used where 'oyf' is the yleld stress
of the flange material.

Table 2.3.1 presents the first elastic yleld load of the
web banels for the beams loaded inside the tip and compares them
with the predicted plastic collapse loads (with full plastic
moment capacity and reduced plastic moment capacity of flanges).

It can be noted that the predicted collapse load of the beams

is sufficiently large when compared to the first elastic yield

of the webs. However, it is Interesting to note that the first

elastic yield occurs at the same point (X = 750, Y = 398 (Figure

2.3.1(a))) of the web panels Irrespective of the eccentricity of
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the loads about the tip.

2.4 The first elastic yield load of tapered steel beams loaded

outside the tip

The equivalent tip forces and moment for a tapered beam
loaded outside the tip are shown in Figure 2.4.1(a). |t can be
noticed that apart from the reverse direction of the tip moment
'M*', all the relations obtained in the previous section (2.3)
can be used to assess the first elastic yield load. For this

case 'M*' Is given by:

M* = +W.e (2.29)

The first elastic yield load of the web panels for the
beams loaded outside the tip is presented and is compared with
the predicted plastic collapse loads (with full plastic moment
and reduced plastic moment capacity of flanges) in Table 2.4.1.
It can be noticed that the ratios of the first elastic yield
load and the predicted collapse load are much lower when compared
to the previous case when the beam was loaded Inside the tip.
However, it is interesting to note that the first yield occurs
at the same point on the web panel, irrespective of the eccentri-
~city of the loads about the tip and the direction of the 'tip-

moment' .

2.5 The first elastic yield load of tapered steel beams l|oaded

at the tip

As explained previously the shear stress 'rcr' becomes zero
when the tip moment 'M*' is zero. In other words, there will be
no shear stresses in the webs when the tapered beams are loaded

at the tip. The equivalent tip forces and the stresses in the

web panel are shown in Figure 2.5.1. The radial stresses are

given by:



(Q)g"p°z @anbi4 (e)g*p°z o@4nby4

] ®Jql4 wojjoq 4e eJqly doy e
Q WoLSAS SS8U4S Wwo4SAS SS8JY4S
R
pl l'

Z'v'z @4nb4

: "
a
-~ (A _
s ] | | Somm]

(art+) X

Iﬂl- o\em\ .N $
| [ ey -

&.TAXNEVU L@) e .qh

5
i\
Ay
{ '
ay
|




26.

*8A14 Jejydey) u] umoys ase speo| asde| |02 ©Y4 JOJ SUO|LB|ND|ED

l*t°Z @1qe}
(a)
65°0 L£°0 226 00°6Z1 0°102 08°¢L 86¢ 0sL 09
, (V)
09°0 1€°0 ZLE 06°vZI 0°1¥Z 01°GL 86¢ 0SL ov
. ()
ZL0 22'0 A4 - 06°¢< | 80y 9°96 86¢€ 0sL o€
(v)
L9°0 ov'0 2zZs G'L6 8°Z91 6°v9 86¢€ 0sL og
22 |12 19
(DD (M) ] oo CTm) | () M
2, 19, (uw) | 4w peonpeu dW tiIn} | peoj pia)h
T ON 19, Y4 1M peoj Y4 iM peoj ol4seje (ww) (W) *ON
M M Af10)144ue203 esde||0) esde| 0D 4s414 WA 1Xa J9p4 19




(9)s°G"Z @4nbiy4 (e)g° gz ©4nbi4

~ ————
o 84ql4 woiioq 4e @4qiy doy 4e
W8}SAS SS844S WaLSAS SS84]1§

et | (..h. sy Js

2°G'Z 94nbi4 1*6*Z ©Jnbi4
A4
Hﬂ.lln’ | { I A u>
e b Q_
} :_.@?L X |

G

1 ,.,W g no - — 1
’ WL (ewr) 1w -~ . - ° |
o b0 M N o [l [r2




Girder X! 'yt First Col lapse L
No. (mm) (mm) elastic load cwc) "B

yield load (KN) c

W, 1 (KN)

el
40 750 398 127. 10 165.0 0.77
(B)
50 750 398 123,40 162.0 0.76
(A)
50 750 398 123,40 162.0 0.76
(B)
Table 2.5.1

* calculations for

the collapse loads are shown in Chapter Six.
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0. = A * (2.30)
arc arc

In the same way as for the previous cases (beams |oaded
inside and outside the tip), the first elastic yield loads
presented in Table 2.5.1 are calculated by using 'Huber von
Mises yield criterion'. The comparison between the estimated
first elastic yield load of the web panel and the plastic col lapse
load (based on the plastic yield of the inclined compression
flange) js also shown in Table 2.5.1.

Howéver, it is clear that for similar dimensions of the
panels, the first elastic yield occurs at a particular point
irrespective of the eccentricity of the load about the tip and
the magnitude and direction of the 'tip moment'.

2.6 General Conclusions

On the basis of the analyses of the theorefical resulits,
the following conclusions can be drawn:
(1) The equations modified by Davies et al(6) to calculate
the radial and shear stresses of tapered beams provide

simple solutions to assess the first elastic yield load

of tapered web panels.

(i1) With thechange in direction of the 'tip moment' the
direction of the shear stresses changes.

(i11) The shear stresses In the web panel of beams loaded at the
fip are zero.

(1v) The first elastic yleld load of the web panels loaded .
Inside, outside and at the tip are 62% to 89%, 59% to 72%
and 76% to 77% of the predicted col lapse loads respectively.

(v) For a tapered web panel, the first elastic yleld occurs at

the same point irrespective of the eccentricity of the load



about the tip and the magnitude and direction of the

"tip moment'.

30.
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CHAPTER THREE

THE COLLAPSE LOAD BEHAVIOUR OF PLATE GIRDERS -

HISTORICAL DEVELOPMENT

3.1 Introductory Remarks

In this chapter a review of the existing methods for the
analysis of the collapse behaviour of paraliel flange plate
girders is presented. Also, significant developments in the
design method of predicting the collapse load of plate girders

are described and discuésed.

3.2 Development in Design Methods and Col lapse Load Behaviour

of Plate Girders

The shearing stresses In webs of plate girders may be
analysed according to the classical beam theory established by
Navier and St. Venant. According to this theory the shear
‘force is resisted by the shearing stresses as shown in Figure
3.2.1(a). The principal stresses at the neutral axis are of
the same magnitude as the shear stress and act at 45° with the
longitudinal axis (Figure 3.2.1(b)). Such a shear carrying
action may be called "beam action". To satisfy the condition
of small deformafions, on which this beam theory Is based,
transverse stiffeners must be spaced close enough so that
Instability due to shear is excluded.

Ever since plate girders were introduced, i+ has been
recognised that beam action alone is not the only way that shear
can be carried. Extensive discussion of the problem of web
stiffening took place near the end of the las+ century (Ref. 37,
38, 39, 40, 41). |Intuition led to the opinion that the action

of a plate girder was similar to that of a Pra++-Truss(37)
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Turneaure(39) concluded from a girder test "that there is as

much reason to suppose that the web stresses follow down the
web and up the stiffeners, as in a Howe-Truss, as to suppose
that they follow the line of a Pratt-Truss'". However, model
studies (Ref. 38 and 41) and a girder test {Ref. 40) clearly
Iindicated the importance of the web as a ftension element and
the sfiffeners.as compression elements. The goal, at that time,
was to assess the nature of the stress-fiow in the web rather
+han to estimate the load carrying capacity. Thus, more quali-
tative than quanfifafive‘resulfs emerged. At the beginning of
this century, this led to a rather liberal design of girder
webs, with web depths greater than 170 times the web thickness.
Meanwhile, a web-buckling +heor§iﬁas developed to determine
safeAllmlfs for the design of plate girders. A possible truss
action was advanced merely to Justify a somewhat lower factor
of safety against web buckling than that required against other
stability cases such as column failure.

It appears that Rode(az) may have been the first to formu-
late mathematically the effect of a 'tension fleld' or 'fruss
action! which develops after the web loses its rigidity due
to buckliing. He proposed to evaluate its influence by consider-
ing a2 'tension diagonal' of a width equal to 80 times the web

thickness.

With the development of aeronautical science the shear- |
carrying capacity of membrane-like structures received new
attention. The paramount requirement of aircraft design (to
minimise the weight of the structure) led +to extremely thin webs.

Since such structures were bullt of aluminium alloys, the

modulus of elasticity and hence the web buckling stress were
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correspondingly lower than for steel girders. By neglecting
the beam action completely in such structures and considering
the web as a membrane resistant only to tension, Wagner formu-
lated the "Theory of Pure Diagonal Tension".

Although Wagner formulated the theory of pure diagonal
tension for thin webs, he did not explain any methods tfo
predict its load carrying capacity. Later Rockeyf43’ 44, 45)
explained the buckling phenomena and its effect on the load
carrying capaci+y of plate girders and showed that the buckling
of a plate subjected to shear does not result in immediate
fal lure of the panel, but merely produces a change in the
manner in which any additiona! shear load Is carried by the plate.
After the plate has buckled, +He rigidity of the plate normal
to the direction of the principal compressive stresses are equal,
but is carried in part by a pure shear action, and in part by
truss action as illustrated in Figure 3.2.2. Thus, after
buckling has occurred; the principal compressive stresses increase
slowly, whilst the principal tensile sftresses increase rapidly.
These principdl: tensile stresses, which act along the length of
the waves, exerflfafera| and direct loads upon the flanges
which obviously have to be stiff enough to take these loads.

However, later it was realised that fhe‘compressive stresses
do not Increase but remain constant and, once the plate has
buckled, any additional load \s carried by the tensile membrane

stresses developed along the tension diagonal of web.

(4
Although Rockey 2 showed the influence of the flexural

rigidity of the flanges on the ultimate load of the plate

girders and also demonstrated the 'truss action' forming along

the tension diagonal, he did not propose any method for predict-
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ing the failure load of plate girders.

In 1960, Basler and Thurlimann®'Zs 13, 14)

were the first
to propose the ultimate load method for predicting the failure
load of plate girders. A web plate which is subjecTéd to shear,
prior to buckling, develops equal tensile (ol) and compressive
(02) direct stresses inclined at 45° and 135° to the flanges as
shown in Figure 3.2.1(b). Once the web plate buckles, it loses
the capacity to carry any additional compressive loading. Any
additional shear load is carried by tensile membrane stresses
'cf' (Figure 3.2.3a). Basler and Thuriimann assumed that the
flanges of a conventionally buiilt welded plate girder have so
I1+tle rigidity in the plane of the web that they cannot
effectively resist vertical stresses at its junction with the
web and therefore such flanges do not serve as anchors for a
tensile stress fleld. They established that in such a case
the girders fail when an 'off diagonal yield band' (EFIH)
develops in the web as shown in Figure 3.2.3(a). They also
assumed that the stresses in the triangular wedge 'DEF' and
'GHI' remain gqual to the critical shear stress 't r' (which
causes buckling of the web) and the girder falls with the
yleld of web material In the region of 'EFIH' caused by the
tenslle membrane stresses ‘o+y' which acts together with the
critical shear stresses.

Since the Increase In the width of the 'tension field' (s)
is gained by virtue of a decrease in the 'inclination of the
tensile stress' (¢), an optimum value of the tension field

contribution 'AVU' to the shear force 'Va' Is reached. It was

postulated that, at ultimate shear load, the Inclination of +he

tension field is the one that furnishes the greatest total shear
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component 'AVG' of this tension field and can be obtained from
the condition - (Figure 3.2.3(a))

d =94 (oY -

EE'(AVG’ ) (c+ .s.T.sing) = 0 (3.1)

which gives:

tang = | + az -a (3.2)
a %
sing = [% - -———-———-] (3.3)
22| + az
and
-4 '
cost = [21 + a2 ("I + o? - b)) (3.4)
where a = %_(Figure 3.2.3(a)).

A succession of equal web panels all subjected to the same
shear force was assumed as shown in Figure 3.2.4(a). By cutting
sections through A-A, B-B and C-C a free body diagram can be
obtained as shown in Figure 3.2.4(b), where Fw’ Ff and FS ére
the forces in the webs, flanges and the stiffener respectively.
The flange force changes by amount AFf. By consldering‘fhe

horizontal and vertical equilibrium of forces and moment about O

(Figure 3.2.4(b)), one obtains:

AF = -afy.t.b.sin¢.cos¢ = -o*y.‘r.d.——“-— | (3.5)
271+ o2
(3 + Q
d y o
V =S AF, =g,7.t.d (3.6)
o b f + N
21 +a

As explained before, the ultimate shear load (V ,.) Is

uilt

the sum of shear action (1) and tension field action. Therefore
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t+he ultimate shear load is:

Vart = Ve * Vg (3.7)
T.ofy.d
Vyig = Teredet * — : (3.8)
22 + o
TCI"
where U+y =g W [I - ] (3.9)
y YW
r =K —TE (*) (3.10)
cr 121 = v2)

The values of K are given by:

K =535+ 4h? for 2> | (3.11)

K =5.35 (97 + 4.0 for 2 < | (3.12)

By making the assumption that c*y could be represented by

equaTion (3.9) which does not allow the effect qf the inclination
of the tensile field, Basler and Thurlimann were able to show
that "off diagonal band" would develop at an inclination equal

to half the inclination of the web diagonal.

It was pointed out first by Gaylord('S) and later by -
FuJil(|6) that equation (3.8) does not actually represent the
true resistance of the Basler model, which was correctly gliven

by equation (3.13)

o .d.t
V . =1 _.d.t+ A

ult cr /——
(201 +

| - S (3.13)

Although, Basler's solution gave a new approach to predict
the ultimate strength of plate girders, clearly the assumption

that the flanges could not withstand any latera! loading imposed
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by the inclined tension field was a conservative assumption.

(7, 18, 21)

Rockey and Skaloud showed that for plate

girders having proportions similar fo those employed in civil
engineering construction, the flexural stiffness of flanges have
a significant effect upon the load carrying capacity of plate
girders loaded in shear. They also showed that the girders fail
with the formation of a collapse mechanism in which a diagonal
strip of the web yields plastically with the development of
plastic hinges in the flanges as shown in Figure 3.2.5. They
noted that the positions of internal plastic hinges A and A',
(Figure 3.2.5) varied with the flange stiffness, the value of
'C' (Figure 3.2.5) increasing from near zero in the case of

flexible flanges to approximately half of the width of the panel

(0.5b) when the flanges were very stiff.

Rockey and Skaloud‘?!) considered that the collapse of

plate girders could be represented by a two-phase action as
shown in Figure 3.2.6(a) and 3.2.6(b). They noted that If the
diagonal tension loading is insufficient to develop the plastic
hinges In the flanges, then after the web has yielded, any
addiTionaI‘load has to be carried by +hev'frame-mechanism' as

a Vierendeel girder (Figure 3.2.6(b)). However, they restricted
their analysis to the beam action shown in Figures 3.2.6(a) and
3.2.7 and assumed that the tensile membrane stress field
developed in the direction of the tension diagonal. The value
of 'oty' which causes the web to yield can be computed by using

the Von Mises Hencky yield criterion. From the stress conditions

shown in Figure 3.2.8(a), 3.2.8(b) and 3.2.8)c), one can obtain:

o = rcr.stnzede | ' (3.14)
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°n =.-rcr_.sin26d (3.15)

T = rcf.cOSZBd (3.16)

Using the Huber von Mises plasticity condition, the material

ylelds when L

= where:
c ayw’

o =V[G 2 + Qg 2 _ g .0 + 3r2 (3.17)
mc € n n ¢

Substituting the values of s On and t in equation (3.17) and

rearranging the terms, one can obtain:

Y2 2 ¢,3 . 2 .
rcr.sanGd vt (rcr) [CE sin2q)” - 3] (3.18)

Q
<
L]
]
Nl

The vertical component Vg of the diagonal stress ofy is given by

equation (3.19)

v

- 2 _ Y2 2 r 3 2
Vo 2.cf#.sin ed [. Tcr.sinZGd + GYW + (rcr) [07 sin20)” - 3]

LK BN J (3"9)

The total shear force (Vu|+) Is equal to the sum of Vo and the

shear force (Vcr) necessary to cause the plate to buckle.

= +
Vait " Vo * Ver

. . 2 : 3
he. Vyjp = Topedet + 2ecutusine, [— 7. TepSin20, ¢

——

V) 2/.3 ‘
Y * (r ) ((-2- sin2q,,)2 - 3)] (3.20)

The position of the internal plastic hinge may be obtained
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from the beam mechanism shown in Figure 3.2.7, which gives the

<

following relationship between 5 and the plastic moment of

resistance of the flanges (Mp):

am |
&3 - &2, E = 0 (3.21)
b b 2 2 y

b*.t.sine .0,

Although this solution proposed by Rockey and Skaloud was
f[rgffodemonsfrafe the influence of flange rigidity upon the
width of the'diagonal' yield band and provided better agreement
between the experimental and the predicted collapse loads of
plate girders than that provided by the Basler formula, clearly
the assumption that the angle of inclination of the tensile band

coincides with the Inclination of the panel diagonal was a weak-

ness.

Fugii ot al*®, 1n 1969, presented a solution for the

ultimate strength of plate girders in which they considered that
the web panel fails with the development of a plastic hinge at
the central, mid-panel, positions under the action of a

uni formly distributed tensile field. Although, like Rockey and
Skaloud, Fujii et al recognised the presence of an Internal

plastic hinge, their solution was Ilimited to only the case of the

mid-span hinge position.

Chern and Osfapenko(47), In the same year presented a
modified version of the Basler collapse mechanism. The ultimate
shear strength of a transversely stiffened plategirder was com-
posed of three contributions: (i) the beam action sﬁear V_»

(11) the tension field action shear Vge @nd (1i1) the frame

action shear vf. ..

Vurt " Ve * Vo Ve (3.22)
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However, the first two contributions of loads by beam
action and tension field action are similar to Basler's(IS)

considerations.

VT = Tcr'd'* (3.23)

where the values of critical shear stresses were calculated from
equation (3.10).

Unilke Bas|er(|3), Chern and Ostapenko assumed that the
tens!le membrane stresses in the web vary across the section as
shown In Figure 3.2.9(a) and 3.2.9(b).

For ease ;f calculation, they replaced the unevenly
distributed stresses in the triangular portions by a uniform
sfreSSp.cTy, as shown in Figure 3.2.9(b); where p is the para-
meter depending on the rigidity of the flanges.

The tension field acfion.shear is given by the vertical

component of the tension field force (Figure 3.2.9(b)):

= y H - b b
vy = 4t.dioy” [sin2g - (1 -0) 3+ (1 -p) T, cos2¢] (3.24)

However, they recognised that the value of'o*y' varies with
the inclination of the yield band (¢) and hence they obtalned
and used the value of ¢ which provides the maximum value of Vg

This value of ¢ may be defined as ¢m and hence:

v, = tt.d.o) [sinze - (1 - °) 2e-0 > . cos2 ] (3.25)

wherethe values of ofy were caicula+ed from equation (3.18).
The frame mechanism assumed by Chern and Ostapenko is shown
in Figure 3.2.10. They considered that each flange behaves |ike

a beam with both ends fixed. The maximum frame action contri-

bution is given by:
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T, M b) (3.27)

2
= = (M
v 3 ( b p

f

The final form of the static ultimate shear strength

formula can be obtained by adding equations (3.23), (3.25) and

(3.27),
oo V., =1 .dut + 4doto,) [sin2g - (1-0) 2+ (1 -p) 2
= Tult cr' N m d d
2 .t b
c052¢m] + 3-(Mp + Mp ) (3.28)

Although Chern and Ostapenko demonstrated quite clearly that
the inclination of the yield band varies with the panel dimensions
and the buckling stress (rcr) of webs, they ignored the formation
of the internal plastic hinges in the flanges.

Komafsu(24)

in 1971 studied the coilapse behaviour of

plate girders stiffened by transverse and longitudinal stiffeners,
loaded in shear. The collapse mechanism proposed by him is

shown in Figure 3.2.6(c). He concluded that a pure shear loading
caused various faillure modes which were cﬁiefly dependent on the
relation between the slenderness of web and the strength of
smaller flange. Although his so|u+ion recognised the presence

of internal plastic hinges and that the Inclination of the
tensile membrane field varied with the flange and panel proper-
ties, it was based on a study of elastic shear deformations.

In 1973, Ca||adine(25) presented a plastic theory for the
collapse of plate girders under combined shearing force and
bending mement. He considered a model of a typical panel of a
plate girder restrained against lateral buckling and subjected
to a shear load 'Q' and a couple 'M' as shown in Figure 3.2.11.

As the value of 'Q' Increases the thin web eventually buck!led

and the 'tension field' developed along the diagonal BD. He
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assumed that the action of the web having negligible buck!ing
resistance could be represented by a series of parallel tendons
and proposed that the panel fails when the web yields between
the two inclined Iines 'DE' and 'BF' with the formation of
plastic hinges in the flange at these points (Figure 3.2.12(b)).
He assumed that the zone 'J' and 'K' (Figure 3.2.12(a)) may
either be unbuckled or elastically buckled; but since they do
not undergo changes in strain during rofaf?on of the plastic
hinges they can be idealised as 'rigid' in a plastic collapse.
He showed that the position of the plastic hinges and the
inclination of the tensile membrane stress field varied with
flange stiffness. He also showed that for a thick web which
ylelded before it buckled, the failure would occur because the
web yields and simultaneously with this plastic hinges develop
at the corners of the panel.

AS explained previously, Rockey and Skaloud(2|)

located
the position of the internal plastic hinge 'E' by analysing

the plastic collapse of the flange 'AB'as a beam and then found
the shear load 'Q' by resolving the forces in the web across
the section X-X (Figure 3.2.12(a)). Calladine pointed out

that this assumption of a full plastic moment at A, correspond-
ing to rotation of a plastic hinge, was geometrically incompat-
ible with the fact that the region 'J' was not straining
plastically. Therefore equation (3.21) presented by Rockey and

Skaloud Is not valid for the calculation of the position of

plastic hinges.
However, Calladine did not extend his solution for the

practical englineering cases where the webs may have significant

load carrying capacity before i+ buckled.



49,

(Q)Z21°2°¢ @unb1 4

(e)Z1°2'¢ ©4nbiy4

-

T ————

11°2°¢ @4nbj 4

FE

REiraes



50.

Porter, Rockey and Evans(ZG), in 1975, presented an

ultimate load method of design for predicting the collapse
load of conventional plate girders having webs reinforced by
both longitudinal and transverse stiffeners. Thelr proposed
col lapse mechanism which provides identical lower and upper
bound solutions is shown in Figure 3.2.13(e).

They divided the loading of the panel into three phases
(Figures 3.2.13(a), 3.2.13(b) and 3.2.13(c)), which are:
Phase : |

As explainedpreviously,prior to buckling, there will be
a uniform shear stress in a perfectly flat web plate and the
principal ftensile and compressive stresses of equal magnitude
‘o' will act at 45° and 135° to the flange (Figure 3.2.1(b)).
This stress system exists until the shear stress reaches the
value of critical shear stress (rcr).

For a simply supported rectangular plafé, the value of
't ' may be calculated from equations (3.10), (3.11) and (3.12).

cr
Phase : 2 POST BUCKLED BEHAVIOUR

Once the shear stress (1) reaches the value of critical
shear stress (rcr), the panel cannot sustain any increase In the
compressive stress and it buckles. After the panel has buckled
any additional load is supported by the tensile membrane stress
'o*' (Figure 3.2.13(b)) which develops along the tension dlagonal.
This membrane stress '0*’ Imposes a lateral thrust on the

flanges and under this action, the flanges clearly bend inward

(Figure 3.2.13(b)).

Phase : 3 ULTIMATE BEHAVIQUR

With a further increase of load, a stage Is reached where

the tensile membrane stress (a*y) together with the critical shear
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stress (rcr) cause yielding in the web. The panel falls when
the plastic hinges in the flanges have formed which together
with the yield zone 'WXYZ' make up a plastic mechanism (Figure
3.2.13(c)).

Because the inclined membrane stress field having uniform
magnitude acts throughout the zone 'WXYZ' (Figure 3.2.l4(a)),
the region 'WXYZ' may be considered to be cut out from the web
plate and Its action upon the flanges and the adjacent web
material can be replaced by the inclined membrane stresses as
shown in Figure 3.2.14(a). The fallure load can then be deter-

mined by considering the collapse mechanism developed in 'Phase 3'.

Upper bound (Mechanism) Solution

Porter et al considered a particular case of pure shear with
identical flanges where 'ct' and 'cc' were equal. In that case,
however, the rofaflons of the plastic hinges at W, X, Y and Z
will also be equal. Clearly the displacement of the web section

‘wz'is zero and hence the sffesses acting on section WZ'do no
work. The virtual work done by ¢ Y acting on the tension and

1.
compression flanges will be equal and of opposlte sign and hence

will be cancelled. Other work done is:

(1) The Internal virtual work done by 'o*y' acting on the web

section XY will be

- +.U+Y(YP)s|ne.(c¢)

where ¢ = rotation of the plastic Hlnges
(YP) = c.sin8 + (d - b tan).cos6 - (3.29)

(11) The internal virtual work done due to rotations at the

plastic hinges will be equal to:

MP(¢ *o+td )= 4Mp¢
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Therefore the total internal virtual work done will be

equal to:

+.o+Y (YP).sino.(cd) + 4Mp¢

and the external work done will be equal to:
m
Vul*.(c¢)

By equating the external and internal work done and substituting
the value of (YP) from equation (3.29) the following relation-
ship can be obtained:

aM
m_ Y . 2 Yy _b 2
Vip = =2+ t.0. .cusin® + t.0,7.d [cote - 3]sin‘e (3.30)

The uitimate load will be equal to the load 'V$|+' carried
by the membrane field and the flanges plus the shear load which

causes buckling:

m

Vulf = vulT + Tcr.d.f (3.31)

4M 2 )

J. Vul+ = —EE + T.o*y.c.sin 0 + ?.a*y.d(cofe - cofed) sin’@
+ T _.d.t oo (3.32)

where Mp is the full plastic moment capacity of the flanges.
8 is the inclination of the tensile membrane stress field

vo*Yv.

and 84 is the inclination of the panel diagonal.

Since the internal plastic hinges occur at the point of
maximum bending moment where the shear s zero, the positions of
W and Y can be determined by considering the free body diagrams
of the beam sections W-X and Z-Y, and taking moments about the

position X and Z respectively;
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Y 2, ¢ _
c(f.o* ) sin e.2 ZMp (3.33)
I M
2 / p
f.e. C = . (3.34)
siné T.cfy

Equation (3.34) holds for all positive values of 'a,”' and for
all values of 'c' within the range of 0 < ¢ < b.

By substituting the value of Mp from equation (3.33) into

equation (3.32) the following relationship can be obtained:

- Y «in2 y 2 -
Vulf = 2.c.+.o* .sin“9 + T.c* .d.sin“® (cote cofed) + tcr.d.f

ves (3.35)

Lower bound (Equilibrium) Solution

Consider a section 'W-Y' passfng through the two internal
plastic hinges as shown in Figure 3.2.14(b) which also shows the
internal and external forces acting in the post-buckled range.

To satisfy the vertical equilibrium of forces, the follow-

Ing equation can be obtalned:

0 =\ =
Fs.sin v v

ult =V

ult cr

- Y
where Fs +.o+ . (WR)

and (WR) = 2.c.sin® + (d - b tan8).cosé

therefore by substituting the values of 'Fs' and 'Vcr‘ one can

obtain:

2, . 2
Voit * 2.c.+.afy.sin 8 + T.a*y.d.sln 9 (coto - cofed) + tcr.d.f

LR N (3.36)

If_can be seen that the equations (3.35) and (3.36) obtalned

for the ultimate load from an upper bound and a lower bound
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solufibns are identical.

Porter et al showed that the extent and inclination of
+he tensile membrane stress field is greatly influenced by the
flange rigidity. They also showed that many of the existing
solutions (for the ultimate load of plate girders) are con-
tained as special cases of their solution. Their solution not
only provided very good agreement between the predicted and
experimental collapse loads, but also gave good agreement bet-
ween predicted and experimental plastic hinge positions.

Although the work of Porter et al is confined to a study
of the method of predicting the failure load of panels {oaded
mainly in shear, it established a new and unifying method of
predicting the fallure load of webs loaded in shear and also is
capable of predicting accurately the overall collapse behaviour
of transversely and longitudinally stiffened panels loaded in
shear.

However, recently in March 1978, Rockey et al(27), in
addition to their previous work(zs), presented a design method
which Is appliéable to both symmetrical and unsymmetrical plate
girders, reinforced by both transverse and longitudinal stiffeners
and subjected to the combined action of bending moment and shear

force.
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CHAPTER FOUR

THE COLLAPSE MODE OF FAILURE OF TAPERED BEAMS

LOADED INSIDE THE TIP

4.1 Introductory Remarks

In this chapter a plastic collapse mode of fallure for
tapered steel beams loaded inside the tip is presented which
gives an identical collapse Ioad whether determined from an
upper bound or a lower bound solution. The effect of the
axial forces on the full plastic moment capacity of flanges is
considered and the collapse loads are predicted using these
reduced values of plastic moment. Finally, the theoretical
results are described and discussed and conclusions are drawn.

4.2 Possible Modes of Failure

The possible collapse modes of failure of tapered beams
loaded Inside the tip are divided into three phases which are

similar to the loading phases considered by Porter, Rockey and

(26)

Evans for parallel flange plate girders.

Phase : | PURE_SHEAR BEHAVIOUR

Because the buckling load of the tapered panel Is not

significant in comparison with the collapse load of the beam,
and as there is very limited information available to assess

the buckling load of the tapered web panel, it was decided to
consider the tapered panel as an equivalent rectangular panel
(as shdwn in Figure 4.2.1(a)) in order to assess the buckling
load. Although it is shown in Chapter Two that in comparison
with a rectangutar panel the shear stress distribution in a
tapered panel Is different, it is assumed that for an equivalent

rectangular panel considered In this chapter, the shear stress
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distribution-is similar to a rectangular plate.

For a perfectly flat rectangular web plate, there will be

a uniform shear stress throughout the panel prior to buckling.

A prIncipai tensile stress (o*) and a principal compressive

stress (cc) of magnitude 't' will act at 45° and 135° respectively
to the horizontal (Figure 4.2.2). This stress system which

exists for the loading below the critical shear stress 'rcr' s
known as the state of pure shear behaviour,

Although the torsional rigidity of the Rectangular Hol low
Section used for the flanges is higher than the rectangular
flange plates normally used, It is nevertheless assumed that the
web Is simply supported on all edges and the value of critical
shear stress is calculated using equations (4.1), (4.2) and
(4.3) forvequlvalen+ rectangular plates. The depth of the panel
indicated in these equations is the average depth of the

tapered panel.

K.ﬂz.E

1201 - v2) (d/h)? 4.1

T
cr.

where the value of 'K' for simply supported edge conditions is

given by the following equations.

K=535+4 % 1455000 (4.2)
' d.2 b
K=5.35 7+ 4.0 1£Z<1.0 (4.3)

Clearly the values obtained for the critical shear stress
from the above equations Is conservative. However, the buckling
load of the tapered panel can be assessed more accurately by

using the corresponding value of 'K' analysed by Cook and
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(48) (49)

Rockey or El-Gaaly

Phase : 2 POST BUCKLED BEHAVIOUR

Once the value of critical shear stress is reached, the
panel cannot sustain any increase in the compressive stress and
it buckles. Subsequently any additional load has to be carried
by the fensile membrane stress 'of' (Figure 4.2.1(b)) which
develops along the tension diagonal. The solution presented in
this chapfef does not attempt to deal with the very complicated
stress field which occurs in the elastic post-buckled range;
it Is solely concerned with the final collapse mode. This
membrane stress imposes a lateral pull on the flanges and, under

this action, the flanges clearly bend inwards as shown in Figure

4.2.1(b).

Phase : 3 ULTIMATE BEHAVIOUR

On further loading the tensile membrane stress (o+) and the

buckling stress (rcr) produces yielding In the web.‘ The membrane
stress at yleld is defined as a+y. The panel fails when the
plastic hinges in the flanges have formed which, together with
the yleld zone 'UVWX' (Figure 4.2.1(c)),makes up a plastic |
col lapse mechanism. - Because the shear stress ls considered
uniform throughout the web plate, the membrane stress c*y which
causes ylelding will be a constant value throughout the yielded
reglon. |t should be appreciated that the plastic ylelding

could extend beyond the boundaries 'UVWX', but the minlmum
requirement for a plastic mechanism to form Is that the complete

region 'UVWX' must yleld.

4,3 Collapse Mechanism Proposed

The proposed collapse mechanism consists of two plastic

hinges In the tension flange and two plastic hinges In the
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compréssion flange as shown in Figure 4.4.1. At collapse it

Is assumed that the wedge 'WXT' (Figure 4.2.1(c)) rotates about
the tip in the direction of the tip-moment, such that the
vertical dfsplacemenf of the tip is zero. Obviously, for the
tapered beams loaded inside the tip, the direction of the tip-
moment will be anticlockwise and hence the wedge 'WXT' will
rotate about the tip in an anticlockwise direction as shown in
Figure 4.2.1(c).

The failure load can be determined by considering the
mechanism developed in 'phase 3! (Figure 4.2.1.(c)). It is
important to recognise that the stresses shown in Figure 4.4.1
are the membrane stresses developed in the web after it buckles.
Thus there Is an inclined tensile membrane stress field of
uni form magnitude acting throughout the region 'UVWX'. Therefore
it Is possible to consider the region 'UVWX' cut out from the
web plate and its action upon the flanges and the adjacent web

material replaced by the inclined membrane stresses as shown in

Figure 4.4.1.

4.4 Lower Bound (Equilibrium) Solution

The ultimate load condition is considered to be comprised
of a critical shear stress condition plus the post buckled action.
As mentioned before In the critical stress condition there is no

lateral pull on the flanges and the load is carried by the pure

shear action of the web panel.
Consider a section 'WU', passing through the two internal
plastic hinges where the Internal and external forces acting in

the post buckled range are shown In Figure 4.4.2.

To satisfy the equilibrium of vertical forces and moments

at W, the following equations are obtained:



.
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iv=20

W= Fs.sine + Fc.siny

Fc.siny = W - Fs.sine (4.4)
Fo = [W- Fg.sine]/siny (4.5)
tMat wW=20

v (MR, _ -
Wz = Cp) o+ Fy (52 = M+ M, Moc = Fer

(z - C+)slny = 0

r

After substituting the value of Fc.slny from (4.4) and letting
Mpf = Mpc (for full plastic moments of the flanges) the above

equation can be expressed as:

WR

Wz - Cp) +F_ () - We=-(z-0C) [W-

Fg.sing} = 0

(WR)q
l.e. W.e=F_ [z -Cosine + 2=7]

Fi (WR)
W= [z -Cpsine + ir']

a_S - (WR)-
. wulf S '[(z Cf)sine + 5—-]+ vcr (4.6)

Also the axial forces in the tenslion flange can be calculated

from the horizontal equilibrium of forces IH = O, i.e.
Fy = [Fe-cosy - F.cose]
i.e. F* = [w.co*y - Fs(cose + cofy.sine)] (4.7)

Since the Internal plastic hinge will occur at the point

of maximum bending moment where the shear is zero. The positions
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of the internal plastic hinges 'W' and 'U' can be obtalned by
considering the equilibriums of the beam section 'V-W' and
'U-X' respectively (Figure 4.4.2). By taking moments at V and

X one can obtain the following equations respectively

2 ['pt
C = (4-8)
+ siné T.c*y
2 " pc
and Cc STh (8 ) T (4.9)
AL

Equations (4.8) and (4.9) hold for all positive values of o*y
and for all values of 'C+' and 'Cc' within the range of
0 < C* < b and O < C. < bsecy respectively.

The value of c+y is obtained by applying the von Mises
Hencky yield criterion to the two stress fields which are
acting on the web plate I.e. the shear buckling stress and the
membrane stress aTy which Is acting at an angle of '6' to the
horizontal flange (Figure 4.4.3(a)).

From the stress condition shown in Figure 4.4.3(b) and

4.4.3(c) one can obtain the values of Oy g and Tt:
Op = T -SiN28 + °+y (4.10)
o, = Top-sin2o H (4.1
T T " Tz“ " T,.+COS20 (4,12)

Using the Huber von Mises plasticity condition for blaxlal

stress sys+em which can be expressed as:

2_ 2. 2_ .2
dyw "% 9 T g * 3w

and substituting the values of Tes % and t from equations (4.10),
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(4.11) and (4.12) respectively, one can obtain

a) - -%r sin20 + g %4 T [(% sin20)? - 3] (4.13)

To support the validity of the lower bound solution it is
necessary to show that the stress distribution throughout the
structure is in equilibrium, balances the external loads and
does not violate the yield condition.

It has been shown previously in this section that for the
lower bound solution, the forces are in equilibrium. A set of
forces can be obtained which will maintain equilibrium in the
wedges 'AWB'.and 'CUD' (Figure 4.4.4(a)) without violating yield.
As shown in Figure 4.4.4(a) the yleld band coincides with the
Internal plastic hinge positions at W and U. Because the shear
force is zero at the internal plastic hinge position, the normal
~reactions at A and C will be zero as shown In Figure 4.4.4(b)
and 4.4.4(c) respectively. Therefore the flange moment will
remain constant and equal to the plastic moment between the
flange portion '"W-A' and 'U-C' in the tension and compression
flange respectively (Eigure 4.4.4(b) and 4.4.4(c)) and hence it
does not violate the yield condition.

If the yield band extends beyond W and U, then the moment

acting between W and A in the tension flange and U and C In the

compression flange will be reduced as shown in Figure 4.4.5(a)

and 4.4.5(b) respectively. It can be seen from Figure 4.4.6 that

even when the yield band extends beyond the tension dlagonal band,
the equilibrium qf forces at any section P-P remains unchanged.
Thus the lower bound solution presented in this section Is

valld because in any case the equilibrium of internal and
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"external forces are maintained and at the same time it does not
violate the yield condition.

4.5 Upper Bound (Mechanism) Solution

Assume the rotations of the plastic hinges at V, W, X and
U are ei, 62, 63 and 94 respectively as shown in Figure 4.5.1.
For small value of B (Figure 4.5.1), the magnitude of el, 62 and
63, 94 can be obtained from the geometrical relations of triangles

VW'T and UX'T (Figure 4.5.1) respectively.

(z - Cf)
Cc

-B (4.14)

1.

D
0

2 - [ci;] -8 (4.15)

@D
W
t
—
O
0
e | a
W |——
3
2
+
—
w

(4.16)
d
and 94 = W .8 (4.17)

From the collapse mechanism In Figure 4.5.1, it is clear
that the stresses acting on section U=V do no work, and there-
fore only those stresses acting on the inclined right hand web
section (W-X) and the flanges will do work. The total work
done can be divided into four parts as shown below:

(1) The internal virtual work done by the tensile membrane

stresses acting on the tension flange (Figure 4.5.2(a)) will be

egual to

Y
t.o (z -C,)
+ 2

This work will be negative because the dlsplacehenT of the ?lange
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takes place in the opposite direction to the directlion of the
forces (Figure 4.5.2(a)).

(i1) The internal virtual work done by the tensilie membrane
stresses acting on the compression flange (Figure 4.5.2(b) will
be equal to |

t.a,” d
+ 2* [Cc.sln(e +Y)]2 !

Cc.suny

-8

(iii) The Internal virtual work done by the tensile membrane

stresses acting on the inclined web section W-X (Figure 4.5.2(c))
will be equal to

t.0o v,
LI [C,sine + d cose - bslne] (z-C,).sing +
) + | . +’+8'0

+

d sin(e + y)] ?.afy
—_—— {.B8 = 1R -
T B =+ —— . (WM. [}z C,).sine +

dlsln(e +v)
8
siny ]

(iv) The internal virtual work done due to rotations at the

plastic hinges will be equal to

Mp(e| + 82 + 93 + 94)

’2M —Z-.+_d-|—_ 8
p C* Cc.slny '

Therefore the total internal vlffual work done will be equal to .

d toa, Td sinte + y)

z [
ZMP'(‘C—""*W ).B #—T

ST (WR) +

(z - C+).sln0(R'R")] -8
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External work done in the mechanism will be equal to
WxO0+Mxg=We.B.
By equating the external and internal virtual work done

ong can obtain:

. , d, tia,Y rd) sinte + )
W=—=|2M (=— + ) + ~L - (WR) +
e p C* C _.siny 2 siny
C
(z - c*)-srne(R'R")]] (4.18)
The ultimate load will be equal to the load 'W' carried

by the membrane field and the flanges, together with the shear

load which causes buckling.

W + =W vcr

ul

d t.0,) _d, sin(® + y)
| 2 | + |
Wars * E[ZMp' ‘?;: * Cc.siny) +——L STny (WR) +

(z - C,) stne(R'R”)]:\+ r L9 wae
cr 2

A computer programme shown in Appendix | (Al.1) was written
by the author to calculate the collapse loads, with full plastic
moment capacity of the flanges, obtained from an Upper bound and

Lower bound solutions for various values of '6' (inclination of

+he tensi le membrane stress field).

4.6 Effect of Axial Forces on Plastic Moment Capacity of Flanges

It is evident from the analysis of forces of Figure 4.4.2

that the axial forces in the flanges of tapered beams are quite

large and In particular, in the Inclined compression flange the
axial forceé are very high. However, it will be shown later

(Table 4.7.2) that for smaller eccentricity of load Inside the

tip, the plastic moment of the inclined compression flange
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reduces quite significantly. Therefore, it is necessary to
allow for the reduction in the plastic moment capacity of the
flanges resulting from the presence of the axial forces.

The magnitude of axial forces in the tension and compression
flanges can easily be calculated from equations (4.7) and (4.5)
respectively, which were obtained from the Lower bound solution
presented in section (4.4).

However, it is also possible to calculate the magnitude of
the axial forces In the flanges from the ultimate load obtained
from the equilibrium of forces and moments shown in Figure
4.6.1. This solution can include the effect of the horizontal
(complementary) shear stresses. Because the effect of horizontal
buckling stresses on the ultimate load is not significant and
also the equation for the ultimate load becomes very complicated,
in this section the axial forces in the tension and compression
flange will be calculated from equations (4.7) and 4.5)

" respectively. However, the effect of vertical and horizontal
buckling stress acting on the flanges will be taken into account
while calculating the average flange stresses, as shown below.

The average axlal force in compression flange contributed
by the membrane stresses acting on the flange (Figure 4.6.2(a))
will be

t.0 y
. 1-
5 Cc.sln(e + y).cos(® + vy) (4.20)

The average axial force in the compression flange con-

tributed by the buckling stresses (Figure 4.6.2(b)) will be

= itcr.sln27.+.CC (4.21)
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Therefore the total average flange stress for the

compression flange will be

’ t.C
Fc - [a,ry.s,in(e + yl.cos(g + y) + Tcr'S'nzY]- c

0 cf = A

cf

oo (4.22)

The average axial force in the tension flange contributed
by the membrane stresses acting on the flange (Figure 4.6.2(c))

will be

- Yy
*.o+ .Cf.sine.cose (4.23)

The average axial force in the tension flange contributed

by the buckling stress will be
= t__.t.C (4.24)

Therefore the total average flange stress for the tension
flange will be

y +lc1.
) Ff + [6+ .sind.cosf + Tcr]“-i—-

(4.25)
t . Ars

g

To calculate the values of full plastic moment and the
reduced plastic moment capacity of the flange due to the presence
of axial forces, It was assumed that a section of that web plate
(as shown In Figure (4.6.&?)ac+s with the flange. The expression
shown below was used to calculate the depth of the web plate

which acts with the flange as proposed by Rockey and Skaloud(ZZ).

ZTCI"
d = 3o.+.[| - ]

4.26)
Tyw (4.26
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At zero axial load, the neutral axis at full plasticity
for the flange section is the equal area axis as shown in
Figures 4.6.3(b) and 4.6.4(b) but if there is any axial force,
the position of neutral axis will vary and will depend upon the
magnitude of the axial tension or compression and the sign
(hogging or sagging) of the bending moment. For the various
positions of the neutral axis shown in Figures 4.6.3(b) to
4.6.3(e) and 4.6.4(b) to 4.6.4(e), the values of %— and %— were
calculated for the flanges of all the girders used? Figuge
4.6.5(a) to 4.6.5(d) show %; plotted against N by using the
nfh order Regression Analysis. The second orZer equations were
obtained for all the flanges used and the corresponding coef-
ficients of those eqdafions were used to analyse the values of
the reduced plastic moments of the flanges. Because the area

of the web, which makes one axis of the flange section asym-

metrical, is very small, the plots of %}-againsf %— are
p

P
apparently identical for hogging and sagging bending moment
(Figure 4.6.6(a) to (d)). |
Therefore, the relationships for reduced plastic moment

of resistance of the flanges, obtained from the 'Regression

Analysis' is given by:

: g £ 2 et o]
Mo = M|l - [0.8 x < L v o0.2 x =] (4.26)
pc P % o
yw " -
. 944 2
M' 4 = M x | - 0.8 x (= +o0.2x ( )] (4.27)
pt = T T

Because the values of M'__ and M'p_r will be different, the

Lower bound Load will be given by the equation shown below:
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L -C (WR) U Y1 ]
wuH =3 [Fs[(z C*)sine * 5 ]+ [M pt M pc] + Vcr
eoo (4,28)

A computer program, shown in 'Appendix I' (Al.2), was
written by the author to analyse the collapse load by considering
the reduced plastic moment capacity of the flanges for tapered
beams loaded inside the tip.

4.7 Analysis and Discussions of the Theoretical Results

The variations of upper and lower bound loads with inclin-
ation of the tensile membrane stresses are shown in Figures 4.7.1|
(a) to (g) where 'em' is defined as the inclination which provides
the maximum value of the upper and lower bound load. Figure
4.7.2 shows how the eccentricity of the load about the tip
affects the ultimate loads obtained from consideration of the
full plastic moment and the reduced plastic moment capacity of
flanges. This figure shows that as the eccentricity of load
about the tip decreases, the ultimate load for full plastic
moment capacity of the flanges increases signiflcantly.

It can be seen from the results presented in Table 4.7.1
that the upper and lower bound loads are identical for all
girders loaded inside the tip.

The results presented in Table 4.7.2 show that as the
eccentricity of loads about the tip becomes smaller the magnitude
of axial forces in the tension and compression flanges becomes
higher and accordingly the plastic moment capacity of the flanges
is reduced, hence decreasing the ultimate load quite signifi-

cantly (Figure 4.7.2).

As expla)ned previously, the calculation of the web
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Uitimate Load with full Plastic
Moment Capacity of Flanges

Ultimate Load with reduced
Plastic Moment

®

I
O
O
Ultimate Load in KN.

700 " 600 ' 500 ' 400 ' 300" 200 ' 100
Eccentricity in mm. -
Load inside the tip \gure 4.7.2

T
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buckiing load is based on the equivalent rectangular panel of
+he same width and an average depth of the tapered panel
(Figure 4.2.1(a)). However, it can be seen from the results
presented in Table 4.7.1 that the buckling load of the panel is
significantly lower than the plastic collapse load of the
panel. Hence in order to simplify the solution of the plastic
col lapse of tapered beams, loaded inside the tip, equivalent
rectangular panel of the same width and an average depth can

be considered.

4.8 General Conclusions

On the basis of the analyses of theoretical results, the
following conclusions can be drawn;
(1) The proposed collapse mechanism which consists of two
plastic hinges in the tension flange and two plastic hinges in
the compression flange (Figure 4.4.1) provides identical
collapse loads from uppef and lower bound solutions.
(11) The axial forces in the tension and compression flanges
which reduce the plastic moment capacities of the flanges have
a significant effect on the ultimate load of tapered beams
loaded inside the tip.
(1i1) As the eccenfrlcf?y about the tip decreases the ultimate
load, with full plastic moment capacity of flanges, increases
significantly (Figure 4.7.2) and theoretically It becomes
infinity for zero eccentricity.
(iv) The buckling load of the web panel is significantly
lower than the plastic collapse load of the panel. In assessing
the buckliing load for the plastic collapse load caiculations of
the tapered panel, an equivalent rectangular panel of same width

and an average depth (Figure 4.2.1(a)) can be conslidered.
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CHAPTER FIVE

THE COLLAPSE MODE OF FAILURE OF TAPERED BEAMS

LOADED QUTSIDE THE TIP

5.1 |Introductory Remarks

In this chapter a plastic collapse mode of fallure for
tapered steel beams loaded outside the tip is presented which
provides an ldentical collapse load whether obtained from an
upper bound or a lower bound solution. The effect of the axlal
forces on full plastic moment capacity of flanges are discussed
and the collapse loads are predicted using these reduced values

of plastic moment. Finally, the theoretical results are

described and discussed and conclusions are drawn.

5.2 Possible Modes of Failure

As with the possible collapse modes of failure of tapered
steel beams loaded Iinside the tip, explained in Chapter four,
sfmllarly the collapse modes of fallure of tapered steel beams
loaded outside the tip are divided into three phases.

Phase : | PURE SHEAR BEHAVIOUR

For a perfectly rectangular flat, web plate, there will be

a unlform shear stress throughout the web panel prior to buckling.
A principal tensile stress (of) and a principal compressive
stress (ac) of magnitude 't' will act at 45° and |135° respectively

to the horizontal (Figure 5.22). This stress system which exists

for the loading below the critical shear stress 't ' Is known
cr

as the state of pure shear behaviour.
To assess the buckling load of the tapered pane! loaded
outside the tip, similar assumptions are made as explalned in

section 4.2 (Chapter four). The values of critical shear stresses
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are calculated by using equation (4.1), (4.2) and (4.3)
presented in the previous chapter.

Phase : 2 POST BUCKLED BEHAVIOUR

When the shear stress reaches the value of the critical
shear stress, the panel buckles and it cannot sustain any
increase in the compressive stress. After the panel has
buckled, any additional load has to be carried by the fensile
membrane stress 'OT' (Figure 5.2.1(b)) which develops along the
tension diagonal. Because the beam is loaded outside the tip,
the direction of the 'tip-moment' will be opposite to direction
of 'tip-moment' when the load was inside the tip (Chapter Four).
Due to change in the direction of 'tip moment' the tension and
compression diagonals (considered in previous chapter) inter-
change. The tensile membrane stress imposes a lateral pull on
the flanges and under this action, the flanges clearly bend
inwards as shown in Figure 5.2.1(b).

Phase : 3 ULTIMATE BEHAVIOUR

On further loading the tensile membrane stress (o*) and

the critical shear stress (rcr) produce ylelding in the web.

The membrane stress at yleld is defined as ofy. The panel

fails when the plastic hinges have formed in the flanges which
together with the yield zone 'UVWX' (Figure 5.2.1(c)) forms a
plastic collapse mechanism. As explalined in Chapter Four, the
plastic yielding could extend beyond the boundaries 'UVWX', but
the minimum requirements for a plaéflc mechanism to form Is that
the Comp|e+e region 'UVWX' must yleld.

5.3 Collapse Mechanism Proposed

The proposed collapse mechanism consists of two plastic

hinges in the tension flange and two plastic hinges In the com;
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pression flange as shown in Figure 5.4.1. AT collapse it is
assumed that the wedge 'UVT' (Figure 5.2.1(c)) rotates about
the tip in the direction of the '+ip moment', such that the
vertical displacement of the tip is zero. Because the direction
of tip monent is clockwise, so the wedge 'UVT' wiil rotate about
the tip in clockwise direction as shown in Figure 5.2.1(c).

The failure load can be determined by considering the mecha-
nism developed in 'phase : 3' (Figure 5.2.1(c)). As explained
in Chapter Four, the region 'UVWX' can be considered cut out from
the web plate and its action upon the flanges and the adjacent
web material can be replaced by the inclined membrane stresses
as shown in Figure 5.4.!.

5.4 Lower Bound (Equilibrium) Solution

As explained in section 4.4 of the previous chapter, the
ultimate load condition will be considered to be composed of a
critical shear stress condition plus the post buckled action.
The forces in the post buckled range are shown In Figure 5.4.1.
Consider a section 'W-U' passing through the two internal plastic
hinges where the Internal and external forces acting in the
post buckled range are shown in Figure 5.4.2(a).

To satisfy the equilibrium of vertical forces and moments

at 'W', the following equations are obtalned:

Iv=20
W= Fc.slny - Fs.slne

l.e. F_siny = W + F_.sing | | (5.1

F = [w + Fs.slne]/slny (5.2)
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tMat Ww=20

WR
W.(z-b + C*) + Fs' 5 ¢ M+ Mpf Mpc Fc.

siny(z - b + CT) = 0
After substituting the value of Fc.siny from equation (5.1)

and letting MpT = Mpc (for full plastic moment capacity of

flanges) the above equation can be expressed as:

WR

W(z -b + C+) + Fs'(f_) +W.e=-(z-Db+C).

1.

[w + Fs.sine] =0

(WR)
i.e. W.e = Fs.[(z -b + C+)sine - ET‘]

F
S (WR)
W s E;_.l:(z - b +C.).sind E—']
oW =E§[<z-b+C)sine-‘1’5’]+v (5.3)
- ult e +°° 2 cr :

The axial forces in the tension flange can be calculated

from the horizontal equilibrium of forces, i.e.

Fy = [Fc.cos(y) - Fs.cose]
" l.e. Ff = [w coty - Fs.(cose - co?y.slne)] | (5.4)

The positions of internal plastic hinges 'U' and 'W' can
be obtalned in similar way as explained in section 4.4 of the
previous chapter, by considering the equilibrium of the beam
section 'W-V' and X-U' respectively. By takling moments at 'V!'
and 'X' (Figures 5.4.2(b) and 5.4.2(c)) one can obtain the

fol lowing equations respectively:
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2 pt
C = (5.5)
+ sind t.q Y
1.
- 2 .[-P<
Cc = 3Tate =1 7 ¥ (3.6)
1

Equations (5.5) and (5.6) hold for all positive values of c+y
and for al!l values of 'C*' and 'Cc' within the range of
0 < C_r <band O < CC < b-secy respectively.

The value of 'o*y' is obtained by using equation (4.13)
presented in the previous chapter.

As explained in Chapter Four (section 4.4) that to support
the validity of the lower bound solution it is necessary to show
that the stress distribution throughout the structures, is in
equilibrium, balances the external loads and does not violate
the yield condition. The lower bound solution presented
previously in this section shows that the forces are in equili-
brium. Similar to the previous case when the tapered beam was
loaded inside the tip (Chapter Four), a set of forces can be
obtained which will maintain equilibrium in the wedge 'AWB'
and 'CUD' (Figure 5.4.3(a)) without violating yield. As shown
in Figure 5.4.3(a) the yleld band coincides with the Internal
plastic hinge position at 'W' and 'U'. Because the shear forces
are zero at the internal plastic hinge positions, the normal
reactions at A and C will be zero as shown In Figures 5.4.3(b) and
5.4.3(c) respectively. Therefore the flange moment will remain
~constant and equal to the plastic moment between the flange portion
'W-A' and 'U-C' in the tension and compression tlange respectively

(Figures 5.4.3(b) and 5.4.3(c)) and hence it does not violate the
yield condition.
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If the yield band extends beyond 'W' and 'U' then the
moment acting between 'W' and 'A' in the tension flange and
'U' and 'C' in the compression flange will| be reduced as shown
In Figures 5.4.4(a) and 5.4.4(b) respectively.

It can be seen from Figure 5.4.5 that even when the ylield
band exfends beyond the tension dlagdnal band, the equilibrium
of forces at any section P-P remains unchanged.

Thus the lower bound solution presented in this section
Is valid because in any case the equilibrium of internal and
external forces are maintained and at the same time it does not
violate the yield condition.

5.5. Upper Bound (Mechanism) Solution

Consider the rotations of plastic hinges at W, V, U and X
are ei, 62, 03 and 64 respectively as shown In Figure 5.5.1.
For small value of B (Figure 5.5.1), the magnitude of e|, ez,
63 and 64 can be obtained from the geometrical relations of

triangles WV'T and XU'T (Figure 5.5.1) respectively.

(z - b)

8, = ——'.B . (5.7)
| C,
(z-b + CT)
6, = Cy -8 (5.8)
d .
6. = Z_ 3
3 Ec.siny * (5.9)
and 8, =[ =2 = | 8 '
4 [Cc.siny ] (5.10)

From the collapse mechanism shown In Figure 5.5.1, It is

clear that the stresses acting on section W-X do no work, and

therefore only those stresses acting on the inc!ined right hand
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web section (U-V) and the flanges will do work.
The total vir+uaj work done can be divided into four

parts:

(1) work done by stresses acting on tension flange (Figure 5.5.2(a))
(11) work done by stresses acting on compression flange

Figure 5.5.2(b))

(111) Work done by stresses acting on the inclined web section
U-V (Figure 5.5.2(c))

(iv) work done due fo rotations at the plastic hinges.

(1) Internal virtual work done by o+y on the tension flange will
be equal to:

Yy
+.o+

2

2 (z - b)
. [Cy.sine] N .8 (5.11)

+

(ii) Internal virtual work done by c*y on the compression flange

will be equal to:
4
t.o d
+ 2 2
T [c_.sinte - v]°. [.é_c?_n;- 1] .8 (5.12)

This work will be negative because the displacement of the flange

takes place in the opposite direction to the direction of the

forces (Figure 5.5.2(b)).

(111) The internal virtual work done by afy on the inclined web

section U-V (Figure 5.5.2(c)) will be equal to:
t.a.y d
1 ' 2 '
+ .[RR']-[(Z - b).siné +[Slmr - CJ-sln(e - Y)] .8

eee (5.13)

where RR' = [C_.sin(8 - y) + d,cos8 - b.sing]

(Iv) The internal virtual work done due to rotations at the
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plastic hinges will be equal to:

d

ol (2 = b) 2 ]
My(8) + 8, * 03) sz[ T, sty .8 (5.14)

c.

Therefore the tota! internal virtual work done will be equal to:

d t.0,’
(z - b) 2 + [ _
2Mp' [ g + CC-S-THY] B +—> (z b)slne.(WR)

1.
9
(5% - CC).sin(a - Y).(dc0s8 - b.sine)] .8
External work done in the mechanism will be equal to:

WxO+MXB =We.B.

By equating the external and internal virtual work done

one can obtain:

wellom. (22, e ]+f'°*y (z - b)sing. (WR) +
e p’ C; C_.siny 2 [ z sine.

d .
(?l%? - ¢ )sin® - ) -x(R'R")]] (5.15)

The ultimate load will be equal to the load 'W' carried

by the membrane field and the flanges, together with the buckling

load.
Therefore wul’rlma“re a W+ vcr
. 1 (z - b) 2 +
Yot e_[ZMp[ AR Cc.slny] * =3 [‘z - b).
' d
2 _ Tcr'(dl + dz)-d-
sind.(WR) +(slny C;).S‘n(e - Y)_(R!vaii] . >

s e (5.'6)
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A computer program shown in Appendix 2 (A2.1) was
written by the author to calculate the collapse loads, with
full plastic moment capaclity of flanges, obtained from an upper
and lower bound solutions for various values of '6' (inclination
of the tensile membrane stress field).

5.6 Effect of Axial Forces on Plastic Moment Capacity of Flanges

It can be noted from Table 5.7.2 that the axial forces in
the flanges of tapered beams loaded outside the tip are quite
large. |t can also be noted (Table 5.7.2) that for smaller
eccentriclity of load outside the tip, the plastic moment of
resistance of the inclined compression flange reduces quite
significantly. Therefore 1t Is necessary to allow for the
reduction of the plastic moment capacity of the flanges result-
ing from the presence of the axial forces.

The magnitude of axial forces In the tension and compression
flanges can be obtained from the equations (5.4) and (5.2)
respectively. These equations for the axial forces do not
include the effect of horizontal (complementary) shear stresses.
However, it is possible fo obtain the expressions for the axial
forces in the flanges from the Figure 5.6.1, which can Include
the effect of complementary shear stresses. As mentloned
before, the effect of complemenTa}y shear stresses on the
ultimate load is not significant and also the equation for the
ultimate load becomes very complicated. Therefore, It was
decided to calculate the axial forces in the compression and
tension flange (for tapered beams loaded outside the +ip) by
using equations (5.2) and (5.4) respectively.

However, the effect of vertical and horizontal shear

stresses of the web acting on the flange will be taken into
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account while calculating the average flange stresses, as
Indicated below.
The average force in the compression flange contributed

by the membrane stresses acting on the flange (Flgure 5.6.2(a))

will be equal to
. T.o*y
7 .Cc.sin(e - y).cos(® = ¥v) (5.17)

The average axial force In the compression flange con-
tributed by the buckling stresses (Figures 5.6.2(a) and (b))

wil'l be equal to:

3 rcr.sanY.f.Cc . (5.18)

Therefore the total average flange stress for the compression

flange will be equal to:

y f.CC
Fc- [§+ .sln(® - y).cos(® - y) + Tcr's'nzY]'—TT—-

c =
cf Acf

L ] (5. |9)

The average axial force in the tension flange contributed
by the membrane stresses acting on the flange (Figure 5.6.2(c))

will be

= y
*.o* .Cf sind.cos6 (5.20)

The average axial force in the tension flange contributed
by the shear stresses acting on the flange (Figure 5.6.2(c))
will be

=&t .1.C, (5.21)
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Therefore the total average flange stresses for the tension

flange will be:

_ r-'Jr +(01_ .sinf.cosd .+ rcr)--—z-

g (5.22)

t
Ars

The assumptions, procedures and other details for cal-
culating the full plastic moment and the reduced plastic
moment capacity of the flanges of all the tapered beams loaded
outside the tip are the same as described and discussedzln the
previous chapter (section 4.6). Therefore the values of reduced
plastic moments of the compression and the tension flanges are
calculated from equations (4.26) and (4.27) respectively.

However, the plotted graphs of %}-agains? %— for hogging
and sagging moments (for all girders loaded oufsldz the tip) are
shown in Figures 5.6.3(a) to 5.6.3(c).

Because the values of reduced plastic moment capacity of

tension flange (M'pf) and compresssion flang (M! c) will be

di fferent, the lower bound load will be gliven by the equation

shown below:
= —|-n ] - (WR)
wu|1- o [Fs[(z b + C,]_).Slne - T] - [Mvp_'_ - M'pc]]

* v, (5.23)

A computer program, shown In Appendix 2 (A2.2), was written
by the author to analyse the collapse load by considering the
reduced plastic moment capacity of the flanges for tapered beams

loaded outside the tip.
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5.7 Analysis and Discussions of the Theoretical Results

The analysis of results obtained from the collapse
mechanism pfoposed in this chapter shows that the col lapse
loads with full plastic moment capacity of the flanges are the
same, obtained from both the upper and lower bound solutions
as shown in Table 5.7.1.

The variations of upper and lower bound loads with inclina-
tions of the tensile membrane stresses are shown in Figure 5.7.1(a)
to 5.7.1(d) where 'em' Is defined as the inclination which
provides the maximum value of the upper and lower bound load.

The results presented in Table 5.7.2 show that as the
eccentricity of loads about the tip becomes smaller, the ultimate
load for full plastic moment capacity of the flanges increases
significantly. Figure 5.7.2 shows how the eccentricity of the
load about the tip affects the ultimate loads obtained from the
consideration of the full plastic moment and the reduced
plastic moment capacity of flanges.

It can be noticed from the results presented in Table
5.7.2 that as the eccentricity of load about the tip decreases,
the magnitude of axial forces in the tension and compression
flanges Increases and accordingly the plastic moment capacity
of the flanges is reduced, hence decreasing the ultimate load
quite significantly (Figure 5.7.2).

As explalined in the previous chapter, the calculation of
the buckling load of the tapered pane; Is based on the
equlvalent rectangular panel of the same width and an avefage
depth (Figure 5.2.1(a)). However, it can be seeh from the
results presented In Table 5.7.2 that the buckling load of the

panel Is very low compared with the plastic collapse load of
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600
500+
400-
400 Utimate Load with full _Plastic
Moment Capacity of Flanges(Mp)
-
Ultimate Load with
200- reduced Mp
100+
!

b ' 100 200 300 400 ' 500 600 700 800
| Eccentridty in mm. _
Load outside the tip Ligure 5:7:2




110.

the panel and hence to provide the simplicity to the solution

of the plastic collapse of tapered beams loaded outside the tip,
equivalent rectangular panel of the same width and an average
depth can be considered.

5.8 General Conclusions

On the basis of the analyses of theoretical results, the
following conclusions can be drawn:
(1) The proposed collapse mechanism which consists of two
plastic hinges in the fension flange and two plastic hinges in
compression flange (Figure 5.4.1) provides identical collapse
loads from upper and lower bound solutions.
(11) The axial forces in the tension and compression flanges
which reduces the plas+lc moment capaclty of the flanges have
a significant effect on the ultimate load of tapered beams
loaded outside the tip.
(111) The buckling load of the web panel is significantly
low with compared to the plastic collapse load of the panel,
therefore to assess the buckling load for the plastic collapse
load calculations of the tapered panel, an equivalent rectangular
panel of the same width and an average depth (Figure 5.2.1(a))
can be considered.
(1v) As the eccentricity of loads about the tip becomes
smaller, tThe ultimate load, with full plastic moment capacity

of flanges, increases significantly (Figure 5.7.2).



CHAPTER S I X

THE COLLAPSE MODE OF FAILURE OF TAPERED BEAMS

" LOADED AT THE TIP

6.1 Introductory Remarks

In this chapter a plastic collapse mode of failure for
tapered stee! beams loaded at the tip is presented. The
collapse loads are predicted and the theoretical results are
described and discussed and finally conclusions are drawn.

6.2 Collapse Mechanism Proposed

As described and discussed in Chapter Two (section 2.5),
when a tapered beam Is loaded at the tip, the elastic shear
stresses in the web will be zero, because the tip moment Is
.zero. |

However, if there Is no shear stress in the web panel,
the col lapse mode of failure of the beam will be entirely
different to the collapse modés when the beam is loaded inslde
or outside the tip.

Furthermore, because there s no shear stress in the
web, tensile membrane stresses will not form in the web panel.
In 'Appendix 3' it Is analytically varified that the magnitude of
the tensile membrane stress must be zero.

Because, there is no tensile membrane stress In the web,
the webs will not play any significant role in carrying the
load for the plastic col lapse of the beam. Therefore the load
Is carried solely by the flanges which act as members of a

truss and hence the web can be neglected while calculating the

col lapse load of the panel. A section of the web is assumed to

act with the flange as described in Chapter Four and shown in
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Figure 4.6.3. 1t will of course be recognised that the web
stiffens the flange to some extent (although by a reduced
amount if there are large imperfections), and this prevents
the flange buckling and allows the flange to yield.

At the collapse, when flange material ylelds, the beam
fails with three hinge rotations of the inclined compression
flange and one hinge rotation of the tension flange. There-
fore the proposed collapse mechanism consists of one plastic
hinge in the tension flange and three plastic hinges in the
compression flange as shown in Figure 6.3.1(a). At collapse it
Is assumed that the wedge 'WXT' rotates in the direction of
load giving a large deflection of the tip (Figure 6.2.1).

However, from the geometrical considerations the magni-
tude of axial forces in the compression flange is higher than
the éxial forces in the tension flange. Hence for the identical
flange properties for both the flanges, the collapse occurs
when the compression flange yields or buckles (1.e. when the
web either provides negligible resistance to the flange buckling
or has large imperfections). For the case wheh the web provides
resistance to the flange buckling, the failure toad can be
determined by considering a section through 'X-V' (Figure
6.3.1(a)) and resolving the forces vertically and horizontally.

6.3 Lower Bound (Equilibrium) Solution

Consider a section 'X-V' passing through the two plastic
hinges where the internal and external forces acffng on the
section at collapse are shown In Figure 6.3.1(b).

To satisfy the equilibrium of vertical and horlzontal

forces, the following equations are obtained:
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Fc.slny =W (6.1)
F-cosy = Fs (6.2)

At yleld, F_ = (cyf x A_g) (6.3)
L W= (oyf X Acf) X siny (6.4)
and F* =(oyf X Acf) X COSY (6.5)

As described in Chapter Four (section 4.6), a section of
the web plate was considered to act with the flange section and
the depth of the web plate which acts with the flange was
calculated from equation (4.26). Similar assumptions are made
In this chapter, therefore at yield fhe axial force 'FC' will

be given by:

Fc = (cyf X Acf + wa X Aw) (6.6)

Accordingly, the values of 'W' and 'Ff' will be glven by

equations (6.7) and (6.8) respectively.

W= (Acf X cyf + Aw X cyw) x siny (6.7)

and F, = (A X O

+ of + Aw X cyw) X COSYy (6.8)

yf

6.4 Analysis and Discussions of the Theoretical Results

As explained fn the previous section, the axlal force
in the compression flange will always be greater than the axial
force In the tension flange. 'Therefore the calculation of the
col lapse loads of the beams are based on the yield of the
compression flange. The collapse loads, axial tension and
axial compression of the flanges presented in Table 6.4.1 are

calculated from equations (6.7), (6.8) and (6.6) respectively.



115,

e ——— ——————

|*¥°9 @jqel
(8)
0°291 0°¥9¢ 0°92¢ 9v°0 2¢¢ 66 Lg GOl v6Z 0s
(v)
0°29I 0°v9¢ 0°9¢2¢ 9% 0 2¢2 66 Lig Gol! vel 05
(8)
0°691i 08°1LE ol°¢¢ce 9%°0 6¢2 €9 vZe 1011 y6z oy
(punt)
(1) obery |  (ZW/N
(N) | ebuery (z40/N) grim| ghottoE
() abue} s uo|suelt (suejped) onmz oud joe o4 ebue}} aui (Zww)
diy sy} * dwod oy} u||ebuejy *dwod 4 mmmM+M pe.Jap | suod 30 mmmm+w ebue)y
je peoj uj °dwod uo|suay} ayl jo u.:» qom 8y} Pl M eysy | ojded *‘ON
esde| |0 leixy jejxy| uojjeuj|du] o 340 eaJdy o Jo d/y +/p Jepai9




6.

6.5 General Conclusions

The following conclusions can be drawn about the col lapse
behaviour of tapered beams loaded at the tip:
(i) The shear stresses in the web panel are approximately zero.
(ii) The tensile membrane stresses in the web do not develop.
(111) At the collapse, when flange material yields, the tapered
beam fails with three hinge rotations of the compression flange
and one hinge rotation of the ¥ension flange.
(iv) The webs of tapered beams loaded at the tip do not play

any significant role in carrying the load.
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CHAPTER SEVEN

EXPERIMENTAL STUDIES

7.1 Introductory Remarks

This chapter is concerned with the objectives, fabrications,
instrumentation and col lapse behaviour of steel beams having
tapered webs. Each of the beam specimens was investigated as a
balanced cantilever beam. Experimental Investigations were
divided into three test series. In Test Series One, the beam
was loaded inside the tip; in Test Series Two, the beam was loaded
outside the tip, and in Test Series Three the beam was loaded at
or near the tip. Because all the calculations were based on the
central dimensions, it was decided to measure the eccentricity
of loads (inside and outside the tip) from the central tip as
shown in Figures 7.1.1(a) and 7.1.1(b).

7.2 General aim of the experimental studies

Although the main aim of the experimental work was to study
the collapse mode of failure and to assess the ultimate load of
stee| beams having tapered webs, other objectlives were to
investigate:

(a) The buckling pattern of the web panel by measuring the 'out
of plane deflection' of the web.

(b) The presence of the tensile membrane stress fleld In the web,
and to assess Its inclination.

(c) The valldity of the assumption of 'no tip deflection' for the

tapered beams loaded inside and outside the tip.

7.3 Method of Fabrication

It was necessary to use very thin mild steel plate for the

web panel to ensure that the critical shear stress 't _' was not
cr
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éo targe as to cause the web to yield before it buckled, preventing
the formation of the tensile membrane stress field and other post
buckling behaviour of the web panel. The web thicknesses varied
from 1.5 mm to 2.0 mm for all tapered beam specimens. In order to
facilitate testing, tapered beams'were fabricated with two identi-
cal panels back to back. To reduce the possibility of out of plane
failure due to lateral torsional instability, the flanges were
fabricated from rectangular rolled hollow sections. First two
girders, number 10 and 20, were fabricated from two 50.8 x 25.4 mm
Rectangular Hollow Sections of wall thickness 3.2 mm welded back to
back on their sh9r+er face with the 1.5 mm thick web plate in the
middie (a cross-section of a girder is shown in Figure 7.6.3(a)).
The end panels supporting the central tapered panel of the girder
were made stronger to ensure that these should not fail before the
tapered panel. For the end panels, 3.2 mm thick web plate was used.
The cross-section of the flange was the same throughout the length
of the girder. Figure 7.3.1 shows the positlions of welds and the
transverse stiffeners in the central and end panels. The central
panel of girders other than girder no. 10 and 20 were fabricated
from two 50 x 30 mm R.H.S. of wall thickness 3.2 mm welded back to
back on their shorter face with the web plate In the middle. 356 mm
x 127 mm x 33 kg/m Universal Beams were used as the end paneis.
Special precautions were taken while connecting the ends of the
universal beams to the central panel. |t was ensured that the webs
of the universal beams and the central tapered panels were In the
same vertical plane and were rigidly connected to each other to get
continuous connection between panels so that the applied bending
moment and shear force from the end panel could be transferred

accurately to the central panel. Figure 7.3.2 shows the positions

Of_ welds and other details for the glrders numbered 30' 40, 50’ 60
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and 70.

Although care was taken during the fabrication, initial

buckling of the webs was unavoidable due to its small thickness.

7.4 Material Tests

A number of test specimens were made from the same lengths
of steel p!afes and Rectangular Hollow Sections used for the
fabrication of tapered beams (according to B.S.18(6)). The
speciﬁens were tested in an 'Instron' machine. The typical
stress/strain curves plotted by using the readings obtained from
the tension test are shown in Appendix 5 (A5.1). To obtain
accurately the yield stress of the materials, it was later
declded to test the specimens prepared from the coupons obtained
ffom the unyielded parts of each tested tapered beam specimens on
a 'Housfield Tensometer'. The values of yield stresses obtained
for the web and flange materials are shown in Tables 8.2.4-(3),
8.3.4(a) and 8.4.7 . The typical curves obtained from the
Hounsfield Tensometer test for the web and flange materials are
shown in Appendix 5 (A5.2).

The plastic moment of resistance of the flanges was obtained
from the product of yield stress of the material and the plastic
modulus about the equal area axis of the cross section of the
" flanges. The values of plastic momeﬁf of resistance of the
flanges Is shown in Tables 8.2.4(a), 8.3.4(a) and 8.4.7..

7.5 Test rig and test procedure

7.5.1 Test rig:

The test rig was designed to meet the following requirements:
(1) The tapered beam specimens could be supported to give the
required magnitude of eccentricity (up to 600 mm) about the tip.

(i1) Llateral restraints to the tension and compression flanges

of the beam could be provided at any point along their length to
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prevent lateral torsional Instability and to provide free rotation
in the plane of the beam.

(i1i) Loading increments were arranged such that the pre-buckling
and the post-buckling behaviour of beams could be studied.

The overal |l test arrangement is illustrated in Figure 7.5.!
and 7.5.2 and a pictorial view of the set up is shown in Plate |.
The beam specimen was inverted in the rig. A rectangular steel
plate of thickness I" was welded on the apex of the tapered section
to give a flat platform for loading the beam at the top. Load
was applied by a hydraulic jack. The beam was simply supported
at the bottom of the tension flange. The support at each end
Incorporated a load cell. One end was supported on rollers and
a ball seating, and the other end was supported on a knife-edge.
As shown in Plate 2(a) the lateral supports consisted of a ball-
bearing roller attached to a rigid frame bolted to the laboratory
floor. Lateral supports were provided at the section A-A, B-B
and C-C as sﬁown in Figure 7.5.2 and at the end panels. These
supports permitted free rotation in the plane of loading but
prevented both lateral displacement and longitudinal twist.

A dial gauge frame was designed to measure the out of plane
deflections of the web panels relative to the boundaries. This
frame was clamped to the top Inclined flange and was held by a
pair of springs to the bottom flange. As shown in Figure 7.5.3
the dial gauge frame consisted of five columns. The first three
columns from the larger end held six dial gauges and the other
two columns held five and four respectively to form a rectangularly
spaced grid.

The initial Imperfections were measured wi+h a device

(shown in Plate 2(b)) which consisted of a vertical steel rod of
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cross-section 20 mm square and 700 mm high. Six circular holes

of diameter !O mm were drilled along the centre line of the rod

at the same spacings as the holes in a column of the dial gauge
frame shown in Figure 7.5.3. A cublc steel block of 18 mm side
was joined perpendicularly to the inner face of the vertical rod
near its lower end. This cube was designed to sit on fop of the
tension flange. The lower part of the vertical rod rested against
the tension flange and the upper part rested against the inciined
compressioﬁ flange in the same manner as the dial gauge frame.

I+ could be placed at points on the web pane! corresponding to the
vertical columns of the dial gauge frame. A sfee] block machined
to hold a dial gauge could slide along the rod. Before mounting
the dial gauge frame to the web panel the positions of each column
of the dial gauge frame were marked and the initlal profiles
(initial imperfections) were‘measured (using the profile measuring
device) at each dial gauge positions.

The load was applied by a hydraulic Jack and measured by an
electric load cell. Load increments were applied to the specimen
by monitoring the voltage output (on a digital voltmeter) from
the support load cell of the panel being tested. Loads from all
three load cells were also recorded by pen-recorders. In the

first experiments, the beam was loaded by a hand-operated

hydraulic jack. Later on, it was decided to use the L.O.S.

hydraulic control system to load the beam because at the collapse
It was very difficult to maintain the load on the panel by using a
hand-jack. The testing Installation of the L.0.S. system provided
a precise means of controlling individual loading rams under

various conditions of load or deformation. The instaltation com-

prised of a double pump unit, passing oil to a distributor on which
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is mounted a2 high flow servo valve. The servo valve controls the
fiow of oil to the loading rams. The loading rams were connected
to the distributor by meéns of quick release leakfree couplings
and flexible hoses. The loading ram was mounted beneath the
cross beam of the test rig as shown in Figure 7.5.1.

After the first six experiments it was decided to record the
central deflection with respect to the central load on an X-Y
plotter. A Linear Variable Differential Transformer (L.V.D.T.)
was mounted at the bottom of the tension flange to record the
central deflection and was connected to the X-channel of the X-Y
plotter. The load from the central load cell was recorded on Y-
channel .

A number of dial gauges were mounted underneath the tension
flange to measure the deflections at various points. The positions
of these dial gauges varied according to the positions of the
supports.

7.5.2° Test Procedure

Prior to actual testing, the beam was loaded and unloaded
in the elastic range to ensure smooth working of the rig and to
check the functioning of the rosettes and strain gauges.

After taking the initial readings of all the instruments,
the load was applied In equal Increments in the elastic range of
loading. Readings of strain gauges and rosettes were taken by
punched paper tape output at each increment of load. Readings
of all dial gauges mounted to the web panel and bottom of the

tension flange were taken also. The stress coat on the web

panel was inspected for any cracking in the resin coating which

would Indicate the formation of the tensile membrane stress

field in the web panel. In the inelastic range, when the plastic
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hinges in the flanges were distinct, the dial gauge frame was
removed. The beam specimen was loaded up to the collapse in
certain increments of load, and the readings of strain gauges
and rosettes were recorded by punched paper tape output.

The test was continued until either the load dropped |0
to 15% below the peak load or the central deformations became
large.

7.6 Instrumentation

In the first experiment of girder number 10, electrical
resistance strain gauges were used to measure the longitudinal
and shear strains in the tension and compression flanges.
Figures 7.6.1(a) and 7.6.1(b) show the positions of strain
- gauges in the tension and compression flanges on both faces A
and B of the panel respectively. FLA-6-11 type foil gauge of
6 mm gauge length manufactured by Tokyo Sokki Kenkyujo Co. Ltd.
were used. The gahge factor and resistance of the strain gauges
were 2.10 and (120 * 0.3) Q respectively.

Nine 45° rosettes (FRA-6-11 type) were used on both faces
'A' and 'B' of the web panel to measure the principal and shear
strains at varlous points. The positions of rosettes on both
faces A and B of the web panel are shown in Figures 7.6.2(a) and
7.6.2(b) respectively. The gauge length and resistance were
6 mm and (120 2 0.5) Q respectively. As shown in Figures 7.6.2(a)

and 7.6.2(b) the rosettes numbered | and 10 were bonded exactly
at the same point and opposite to each other on faces A and B
respectively. Similarly rosettes numbered 2, 3, 4, 5, 6, 7, 8 and

9 were bonded opposite to rosettes numbered Iy, 12, 13, 14, 15,
16, 17 and 18 on either side of the web panel respectively.

Also, for the first experiment of girder number 50, thirty-
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six PL-10 foil electrical resistance strain gauges were used 1o
measure the bending, shear and longitudinal strains of the tension
and compression flanges. The positions of the sets of strain
gauges at six different sections in the tension and compression
flanges are shown in Figure 7.6.3(b). Six strain gauges were

used at each section of the tension and compression flanges as
shown in Figure 7.6.3(a).

Rosettes and strain gauges were bonded in place with
"MBOND - 200" and protected with polyurethane varnish.

A "SCHLUMBERGER" data logging system in combination with a
paper tape punch were used to record the strain gauge, rosette
and load cell readings. 'SCHLUMBERGER' défa logging system com-
prises of a digital voltmeter fitted with a fan-out unit, data-
transfer unit, strain gauge power supply unit and an analogue
scanner unit. The data logging system consists of ninety channels
numbered from 50 to I39.for strain gauges and three channels

numbered from 140 to 142 for load cells.

A computer program, shown in 'Appendix 4' was written by the
author to analyse the paper tape output and to calculate the

axlal forces and stresses in the flanges and the principal and

shear strains of the web panel.

The web panel of girder number 10, experiment number | was

Coated with 'Brittle Lacquer'. The minimum strain for cracks to

develop was 500 micro strain. Later on, for all other experi-

ments, 1t was decided to use 'Plumber's Resin' as a stress coat

to '
the web panels. The recommended method of applying a stress

coat i
of Plumber's Resin suggested That the panel should be heated

f
rom the bottom using an acetylene torch and a coat of resin was

applied to the top surface.
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7.7 Tapered beams loaded inside the tip (Test Series One)

7.7.1 Introductory Remarks

Seven tests on tapered beam specimens loaded inside the tip
were carried out to examine the collapse mode of failure and
their ultimate strengths. Al beam specimens consisted of two
symmetrical tapered web panels and éach panel was tested separately.
For the first experiment of any beam loaded inside the tip, the
panel chosen was the one which was supported nearer to the central
load. The other panel of the beam was supported at the point
where the eccentricity from the tip was minimum and the theoretical
predicted load was higher than the first panel. It was possible
to test the first panel up to its collapse without significant
yield of the second panel. Before the second experiment of any
beam, the collapsed panel was stiffened by welding a 2" x 1" steel
plate machined to fit exactly to the inner face of the panel and
along the tension diagonal, as shown in Figure 7.7.1. The
stiffened panel provided sufficient strength to the collapsed
panel and it was possible to test the second panel for any
- eccentricity about the tip.

7.7.2 Observations

It was difficult to estimate the exact buckling load of the
web panel due to the fact that the webs of the tapered beams were
not fléf before the tests. However, during the tests, it was
observed that at certain load levels the web panels buckled.

n the post buckled range, cracks in the resin showed the
formation of the tensile membrane stress field along the tension
diagonal. It was also observed that some of the plastic Hinges
in the compression flange were very distinct and the yielding of

the compression flange extended al | along its length. On the
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other hand, only one plastic hinge in the tension flange near
the central stiffener was distinct, and there was very little
impression of ytelding in the tension flange. However, In the
next chapter it is shown that by plotting the profile of the
tension and compression flanges it was possible to easily detect
the position of plastic hinges in the tension and compression
flanges.

Apart from the analyses of the rosette readings, to be
shown in the next chapter, it has been observed here that the web
panel yielded completely in the region bounded by the plastic
hinges in the tension and compression flanges.

As the eccentricity of loads about the tip was decreased,
the la#éral instability of beams became more critical. Eventually,
small eccentricity of load about the tip not only caused the
compression flange to yield all along its length, but also caused
more lateral instability problems. However, these lateral
Instabilities were prevented by providing sufficient lateral
supports.

7.7.3 General Concluslons

On the basis of physical inspections and observations, the

following conciusions can be drawn:

(1) The cracks in the resin confirm that, in the post buckling
stage, the tensile membrane stresses develop along the short
diagonal of the web panel.

(1)  The collapse mechanism consists of two plastic hinges in
the compression flange near the smaller end of the panel aﬁd

two plastic hinges In the tension flange.
(ifi) The web panel between the two inclined boundaries, joining

the plastic hinges in the tension and compression flanges, yields
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completely.
(iv) As the eccentricity of the load about the tip of the panel

decreases, the tendency for general yielding of the compression

and tension flange spreads.

7.8 Tapered beams loaded outside the tip (Test series - two)

7.8.1 Introductory Remarks

Four tests on tapered beam'specimens loaded outside the
tip were carried out to examine the col lapse mode of failure and
their ultimate sTrengThs.. All the beam specimens consisted of
two panels and each panel was tested separafely. In the first
experiment on each of the four beams loaded outside the tip,
the panel chosen was the one which had the support farthest from
the centre. In other words, the second panel was supported at
a point where the eccentricity about the tip was smal!l and there-
fore the theoretical collapse load was higher than for the first
panel. |t was possible to test the first panel up to its collapse
without significant yield of the second panel. However, it was
noticed that the web of the second panel still buckled, but there
was very little post buckling‘effecf on the second panel. The
col lapsed pane! Was stiffened by welding 2" X 1" steel plates
machined to fit exactly along the inner face of the flanges and
along the tension diagonal as shown in Figure 7.8.1.

Because the 'tip moment' changes sign when the support
Position Is changed from inside to outside the tip, the tension
‘and compression diagonals interchange.

7.8.2 Observations

Apart from the change In direction of the tension diagonal,

the observations were similar +o the previous case as explained

in section 7.7.2. Also, the yielding of compression flanges as
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well as the lateral instability problems for small eccentricity

of loads about the tip were similar as explained in section 7.7.2.

7.8.3 General Conclusions

On the basis of physical inspections and observations, the
following conclusions can be drawn:
(1} The direction of the tension diagonal for the case when the
beam was l|oaded outside the tip is opposite to the direction of
the tension diagonal when the beam was loaded inside the tip.
(i1) The cracks in the resin confirm that in the post buckling
stage the tensile membrane stresses develop along the long diagonal
of the tapered web panel.
(i) The web area between the two inclined boundaries, Joining
the plastic hinges in the tension and the compression flanges
yields completely.
(iv) As the eccentricity of the load about the tip of the panel
decreases, the ylelding of the compression and tension flange

increases.

7.9 Tapered beams loaded at the tip (Test series - Three)

7.9.1 lnfroducfory Remarks

Three tests on tapered beam specimens loaded at the tip
were carried out to examine the collapse mode of failure and
thelr ultimate strengths. Three different positions of support
at the t+ip were chosen. In the first experiment the beam was
Supported near the central fip, in_second experiment 1t was
Supported near the inner tip, and In the third experiment it
was supported near the outer tip. Because the beam was |oaded
symmetrically having Its supports at the tip, it was not possible

o fest the first panel up to Its collapse without the yielding

~ of the second panel. So i+ yas decided to stiffen one pane! by
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welding 2" x " steel plates machined to fit exactly to the inner
face of the flanges and along the short diagonal as shown in
Figure 7.9.1(a). After the first experiment the plates welded

to the stiffened panel were cut out of the panel and the collapsed
panel was stiffened in a similar way as shown in Figure 7.9.1(b).
Precautions were taken while cutting the welds of the stiffening

plates from the uncollapsed panel so as not to damage the flange

tube.

7.9.2 Observations

During the experiment, it was observed that up to the load
level of about 35% of the collapse load, there was no crack In
the stress coat (Plumber's resin) nor any sign of buckling of the
web panet. |

However, when the flange material started yielding with
some impression of the formation of the plastic hinges in the
tension and compression flange, a large diagonal band 'X-U-V-W-X'
(Figure 8.4.8) along the diagonal 'X-W' formed in the web banel.
This diagonal band was entirely different from the previous

tensile diagonal band when the tapered beams were loaded inside

and outside the tip.

Although the 'out-of-plane' deflections of the web were
large, there was still no sign of the presence of tensile membrane
stresses lnlfhe web. It wés observed that the plastic deformation
In the compression flange extended all along Its length. There
were three plastic hinges in the compression flange and one
plastic hinge In the tension flange.

" However, it was clear that the panel failed due to three
hinge rofations and overall plastic deformation of the compression

flange together with one hinge rotation of the tension flange.
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Also, there was no crack in the stress coat, which indicated
clearly that the tensile membrane stresses were not present in
the web.

The lateral instability problems were more critical in
comparison with the cases when girders were loaded inside and
outside the tip. It was quite clear that the girders loaded at
or near the tip would have failed due to lateral instability if
sufficient lateral supports were not provided.

7.9.3 General Conclusions

On the basis of physical inspections and observations, the
following conclusions can be drawn for the tapered beams |oaded
at tip:

(i) The collapse mechanism consists of three plastic hinges in
the compression flange and one plastic hinge in the tension
flange.

(11) The tensile membrane stresses do not form in the web panel.
(iii) The plastic collapse occurs due to the plastic yleld and
three hinge rotations of the compression flange and one hinge
rotation of the tension flange.

(Iv) The collapse loads and the modes of failures were identical
for all the three cases; that is, when the beams were loaded near

the inner tip, near the central tip and near the outer tip.



142,

CHAPTER EIGHT

RESULTS OF THE EXPERIMENTAL STUD1ES AND

THEIR COMPARISON WITH THE THEORETICAL PREDICTIONS

8.1 Introductory Remarks

The purpose and details of the experimental programmes were
given in the previous chapter. The results of those experiments
are described, discussed and compared with the theoretical
predictions In this chapter. Conclusions are drawn about the
plastic col lapse mode of fallure of tapered beams and their

ultimate strengths.

8.2 Tapered beams loaded inside the tip (Test Series One)

8.2.1 |Introductory Remarks

As explained in Chapter Seven, in Test Series One, seven
experiments were perforhed to examine the ultimate strengths
and the collapse mode of failure of tapered beams loaded inside
the tip. The dimensions of the girders tested and the material
propertles are presented In Table 8.2.4(a). In this chapter,
the results of one experiment (Girder - 60) will be used to plot
the out-of-plane defleéflons of the web panel aﬁd the deflected
profile of the tension and compression flanges. The plotted
profiles of the remaining experiments are shown In Appendix 6.

- 8.2.2 Qut-of-plane deflections of the web panels

The out-of-plane deflections of the webs were measured by
the profile measuring device as illustrated in section 7.5.1.
The readings for the initial imperfections, the out-of-plane

deflectlons at 26%, 44% and 63% of the collapse load and the

final deflected profile of the web panel of the girder (Girder -

60) are presented in Table 8.2.1. The column numbers and the
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. dial gauge numbers shown in the table are in the same order as
shown in Figure 7.5.3. The contours of the initial imperfect-
ions are shown in Figure 8.2.1. The contour lines showing the
formation of the tension band along the tension diagonal of the
web pane! at the three loads mentioned previously (26%, 44% and
63% of the collapse load) are shown in Figures 8.2.2, 8.2.3 and
8.2.4 respectively. Also, the contour lines showing the final
deflected profile of the web panel are shown in Figure 8.2.5.
In Figure 8.2.6 the deflections of various points of the web
panel are shown at the three different loads (mentioned
previously). The deflected profiles of the web panels of all
other experiments are shown in Appendix - 6.

It can be seen from Figure 8.2.6 that the out-of-plane
deflecfions of the web increase with the increase of load on the
panel.

Because the panel was supported laterally at the position
of column number five of the dial gauge frame (Figure 7.5.3),
the out-of-plane deflections of the web panel during the experi-
ment along the 5th column (Tables 8.2.1, 8.3.!1 and 8.4.1) were

not recorded.

8.2.3 Analysis of the strain gauges and rosettes readings

In the first experiment on girder number - 10, as explained
in section 7.6, twenty-four strain gauges were used to measure
the longitudinal and shear strain in the tension and compression
flange. Also, eighteen rosef+es were used to measure the
principal and shear strains at various points of the web panel.

Figures 8.2.7(a) and 8.2.7(b) show the strain gauge
readings In the tension and compression flanges respectively at

254, 50%, 75%, 90% and 100% of the collapse load. It can be seen
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that at the collapse load, the strain levels at the points shown
in the fension and compression flange have attained their yield
values. |

_ The variations of the strains across the tension band at
various points of the web measured by the rosettes at 25%, 50%,
75% and 90% of the collapse load of the panel are shown in
Figure 8.2.8. The plottings of the strains in Figure 8.2.8
clearly illustrate the magnitude of strains at various points
and the width and iﬁclinafion'of the tensile band. It can be
seen that the strains at every point across the tension band
have exceeded yield.

8.2.4 Deflected profile of the tension and compression flanges

8.2.4.1 Deflected profile of the tension flange

Before piacing the tapered beam specimen in the test rig,
i+ was Inverted and placed on a lathe-bed so that the central
vertical stiffener was perfectly vertical. The measurements
for the initial and final vertical profile of the tension flange
were taken by setting a dial gauge at chosen points along its
length. The dial gauge was fixed with a magnetic base to the
lathe bed and so for each point a constant datum level was
maintained. A set of readings for the initial and final
profiles of the tension flange of Girder number - 60, Is

presented In Table 8.2.2.

8.2.4.2 Deflected profile of the Compression flange

To obtain the deflected profile of the compression flange,
a straight-edged steel rod was clamped to the flange as shown in’
Figure 8.2.9 and the offsets were measured by a Vernier depth
gauge which slid along the straight edge. A set of readings

for the final profile of the compression flange is presented In



(628 22rn€3d), X, (‘ww) PVU2  s33soNp

TUW Ul _JoUdQNS [Bfjuod a4 JO oJjuad Wiod) aouelsi(

MF qc Jausod fo;&. 2o u0lY2q
0Qs_0OQv € QoL
.wo “ooN_ Q2 Oooo-—92 005 00F 00t 0pc 0@ D
. i | | 0 i _ _ " § 1 08N|
2 N N ] et R ! _ I | iomig |- OOBI-
1| Q2128 34014 .oz.qm.doo - _ | I . { e
T ! \“ |- | _ ! @“m c8 nbid] ! - 0091 -
mocmwm " 000" 1o ! ! T " -OOPL-
| 0009- I [ 26ue
_ “ _ | L2 "u_ co_d_ _ FoozL-
| | 000G- I _
_ _ oon. _ , ! _ ! -O0OL-
“ ! _ _ : ! _ -008-
_ roo0e Mook | | _ _
| _ I I ! _ - 009-
! -O00¢- I I | !
I _ " I I _ IOOVI
v.3&_ I OO0L~ *Mis44 I I I I I L 002 -
- 3 -2 0 M09 | | | | |
_ “ _ ooo_,s.ca_ — L " -0
I N |
! Lo O T S S R 002
| I | -000¢ | N | |
| _ _ 3 ~ oy ! , [ oor
T _ Itoooe & | N st .ﬁ\ :
roor _ooovm. _ AN | - 009
I _ _ _ _ | N 4 I toos
1 1 1 lrooos | - _ !
N ! _ } [Oo0
T _ foooo | ! _ _
l ] i ! ) I FOOZCl
" ! “ | foooz | : !
' ) ! | 1Lo00g _ " " “ (0]0) 4"
+ FOOSL

uleals oudin



153.

T3INVd 83M 3HL

NI SONIQV3IY S3L13S0Y WOYd Q3NIVLIE0 SNIVYLS 3HL 40 107d

g8°Z°8 3N9Id

|
!
i "
! _
| . ]

b oo —— -
asdejioo Joigz el




154,

Initial

Distance initial Final Distance Final
from ¢ of profile profile from ¢ of profile profile
the central (mm) (mm) the central | (mm) (mm)
stiffener stiffener :
(mm) (mm)
0 0.00 0.00 1150 0.94 15.11
50 0.17 2.23 1200 0.88 12.98
100 0.34 5.63 1250 1.17 10.72
150 0.47 9.30 1300 1.00 '8.84
200 0.49 13.03 1350 0.79 6.63
250 0.38 16.71 1400 0.72 4,50
300 0.33 20.45 1450 0.71 2.12
350 0.35 23.93 1500 0.70 0.06
400 0.32 27.17 1550 0.62 ~-2.16
450 0. 39 30.10 1600 0.60 -4.24
500 0.41 32.57 1650 0.72 -6.46
550 0.44 34,52 700 0.84 -8.65
600 0.47 35,58 1750 0.84 ~-10.85
650 0.51 35.58 1800 0.93 -13.31
850 .27 28.32 1850 1.02 -15.47
900 1.04 26.21 1900 1.05 -
950 1.03 24.11 1950 0.91 -
1000 1.05 21,94 2000 0.91 -
1050 .00 19.80 2050 0.47 -
| 100 0.94 17.49 2100 0.63 -

Table 8.2.2
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Table 8.2.3.

8.2.4.3 Plotting the deflected profile of the tension and

compression flange

The deflected profile of the tension and compression
flange was plotted by using the readings given in Tables
8.2.2 and 8.2.3, and is shown in Figure 8.2.10.

I+ can be noticed from this figure that the wedge 'WXYZ'
rotates about the tip and that the tip does not deflect verti-
cally.

8.2.5 Central load deflections of the tapered beam specimen

As explained in Chapter Seven, an L.V.D.T. was mounted
at the bottom of the tension flange to. record the central
deflection, which was plotted with respect to the central load
on an X-Y plotter. Figure 8.2.11 shows the plotted curve.

It cén be seen from Figure 8.2.11 that at failure
(col lapse) the beam was subjected to large central deformations.

8.2.6 Comparison of the coliapsed panel with the proposed

theoretical collapse mechanism

At about 55% of the collapse load, the cracks in resin
(Plate 3) show clearly the formation of the tensile membrane
stresses along the tension diagonal of the panel. The
photographs (plates 4 and 5) as well as the plotted profile
shown In Figure 8.2.10 of the collapsed panel show clearly
the two plastic hinges In the tension flange and the two
plastic hinges in the compression flange. Also, the profiles
of the tension and compression flanges (Figure 8.2.10) show
that the collapse mechanism occurs with rotation of the wedge

'WXYZ' about the tip. It can be seen that +he proposed

theoretical collapse mode of fallure as Illustrated in Chapter
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Distance Vernier Deflected | Distance Vernier Deflected
(X) (mm) readings profile (X) (mm) readings profile
(8) (mm) (mm) (§) (mm) (mm)

0 19.00 10.00 400 34.80 15.80

25 19.90 0.90 425 33.90 14.90

50 21.70 2.70 450 32.90 13.90

75 23,90 4.90 475 32.00 13.00

100 25.70 6.70 500 30.90 11.90

125 . 27.80 8.80 525 29.90 10.90

150 29.70 10.70 550 28.90 9.90

175 31.60 12.60 575 27.80 8.80

200 33.30 14.30 600 27,00 8.00

225 35.00 16.00 625 25.80 6.80

250 36.30 17.30 650 24.70 5.70

275 36.90 17.90 675 23.60 4.60

300‘ 37.20 18.20 700 22.50 3.50

325 37.10 18.10 725 21.50 2.50

350 36.40 17.40 750 20.40 |.40

375 35.70 16.70 775 19.30 0.30
Table 8.2.3.

Final profile of the Compression flange
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Figure 8.2.10 Plotted profile of the collapsed panel (Girder - 60A)
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Four is identical with the experimental collapse mode.

The analysis of the rosette readings plotted in Figure
8.2.8 shows that the web portion 'UVWX' has yielded completely
at 90% of the collapse load. In other words, failure occurs
when the plastic hinges in the flanges have formed, which,
together with the yield zone 'UVWX'! form a plastic mechanism.
I+ is appreciated that the plastic yielding could extend
beyond the boundaries 'UVWX', but the minimum requirement,
that the complete region 'UVWX!' mﬁsf yield for a mechanism to
develop, was achieved.

Table 8.2.4(b) shows the comparison between the experi-
mental and predicted theoretical collapse loads of all the
tapered beam specimens loaded inside the tip. The experimental
col lapse loads are within 8% of the predicted collapse loads.

I+ can be seen from Figure 8.2.5 that the predicted
inclination of the tensile stress field (em) is in good agree-
ment with the inclination of the tension field indicated by
the plotted contour lines.

8.2.7 General Conclusions

On the basis of the analyses of results, the following
conclusions can be drawn:
(1) The collapse of the tapered beam specimen occurs when the
plastic hinges form in the flanges which together with the yield
zone 'UVWX' (Figure 8.2.10) forms a plastic mechanism.
(11) At the plastic collapse of the girder, the wedge (WXYZ -
Figure 8.2.10) rotates anticlockwise (in the direction of the
'tip-moment') about the tip such that the vertical deflection

a+ the tip Is zero.

(it1) The experimental collapse loads of tapered beams loaded
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Sérder dI d2 b 1 °yw ny Ter pr
{mm) (mm) (mm) (mm) N/mmz N/mm2 N/mmz (mm3)
10 301 677 750 1.5 255 330 12 11726
(A)
10 301 677 750 1.5 255 330 12 11726
(B)
20 301 677 750 1.5 276 300 12 11726
(A)
20 301 677 750 1.5 276 300 12 11726
(B)
60%* 315 685 750 1.7 283 386 16 14812
(A)
70 315 685 750 2.0 290 378 24 15272
(A)
70 315 685 750 2.0 290 378 24 15272
(B)

Table 8.2.4(a)

#* Girder considered in this chapter to analyse the results.
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inside the tip give good agreement with the theoretical loads
calculated by considering the reduced plastic moment of the

f langes.

(iv) The inclinations of the tensile membrane stress field
indicated by the contour lines of the out-of-plane deflections
of the web are in good agreement with the theoretical values.

8.3 Tapered beams loaded outside the tip (Test Series Two)

8.3.1 introductory Remarks

As specified in Chap+ervSeveﬁ, In Test Series Two, four
experiments were performed to examine the ultimate strengths and
the col lapse mode of failure of tapered beams Ioaded.ou+side
the tip. The dimensions of the girders tested and the material
properties are presented in Table 8.3.4(a). In this section,
the results of one experiment (Girder - 60, panel - 2) will be
used to plot the out-of-plane deflections of the web panel and
the deflected profile of the tension and compression flanges.

8.3.2 Qut-of-plane deflections of the web panel

The technique for the measurements of the out-of-plane
deflections of the web panels Is given in Chapter Seven. The
readings of the initial Imperfections, the out-of-plane
deflections at 31%, 63% and 91% of the collapse load and the
final deflected profile of the web panel of the girder (Girder -
60) are presented In Table 8.3.1. The contours of the initial
imperfections are shown in Figure 8.3.1. The contour Ilines
showing the formation of the tension band along the tension
diagonal of the web panel at the three loads mentioned previously
(3[%, 63% and 91% of the collapse load) are shown in Figures

8.3.2, 8.3.3 and 8.3.4 respectively. Also the contour Ilnes

showing the final deflected profile of the web panel are plotted
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Contour plot for web deflections at 91% of

Figure 8.3.4

the col lapse load (Girder 60B)
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in Figure 8.3.5. In Figure 8.3.6 the profiles of the web panel
are plotted for the three different panel loads as mentioned
previously. The contours showing the deflected profiles of the
web panels of all other experiments are shown In Appendix 7.

I+ is clear from Figure 8.3.5 that when a tapered beam
is loaded outside the tip, the tension diagonal is élong the
long diagonal, whereas the tension diagonal was along the short
diagonal of the tapered panel for the case when the beam was
loaded inside the tip.

8.3.3 Deflected profile of the tension and compression flanges

The techniques for the measurements of the profile of
the tension and compression flange are explained in section
8.2.4. A set of readings for the initial and final profile of
the tension flange Is presented in Table 8.3.2.

The profile of the compression flange was measured in
the same way as explained In section 8.2.4. A set of readings
for the final profile of the compression flange Is presented
In Table 8.3.3.

The final profiles of the tension and compression flange
were plotted by using the readings in Tables 8.3.2 and 8.3.3
and are shown in Figure 8.3.7.

It can be noticed from Figure 8.3.7 that the wedge 'WXYZ'
rotates about the tip. The slight vertical deflection of the
t+ip occurred because this experiment was the second experiment
on the girder (Girder 60, panel no. 2), and In the first
experiment this panel was supported near the tip.

8.3.4 Central load deflections of the tapered beam specimen

The central deflection was recorded with respect to the

central load In the same way as explained previously. The
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Distance Initial Final Distance Initial Final
from ¢ of profile profile from @ of profile profile
the central (mm) (mm) the centrall (mm) (mm)
stiffener stiffener
(mm) (mm)
0 0.00 0.00 1100 3.22 -0.12
50 -0.58 -0.35 1150 3.31 1.76
100 -0.48 ~-0.63 1200 3.47 4.20
150 -0.08 -1.14 1250 3.57 5.66
200 0.13 -1.51 1300 3.78 7.76
250 0.29 -1.94 1350 3.90 9.32
300 0.03 -2.15 1400 4.05 11.21
350 0.51 -3.03 1450 4,27 13.21
400 0.69 -3.85 1500 4,37 15.04
450 0.71 -4.72 1550 4,57 16.84
500 0.91 -6.19 1600 4,65 18.77
550 .06 -7.91 1650 4.81 20.56
600 f.15 -9.79 1700 4.92 22.13
650 .36 -11.85 1750 5.05 23.96
700 .48 -13.25 1800 5.17 25.90
800 2.78 -11.51 1850 5.27 27.81
850 2.61 -9.62 1900 5.43 29.67
900 2.77 -7.75 1950 5.44 31.77
950 2.86 -5.75 2000 5.67 33.28
1000 2.99 -4.00 2050 5.80 35.12
1050 3.06 -1.97

Table 8.3.2
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Distance Vernier Deflected | Distance Vernier Def lected
(X) (mm) readings profile (X) (mm) readings profile
(8) (mm) (mm) (8) (mm) (mm)
0 21.30 1.68 400 33.20 13.58
25 22.96 3.34 425 31.38 11.76
50 24,60 4,98 450 28.50 8.88
75 26.50 6.88 475 26.50 6.88
100 28.04 8.42 500 24.50 4.88
125 29.60 9.98 525 22.80 3.18
150 31.20 1'1.58 550 21.30 1.68
175 32.60 12.98 575 20.20 0.58
200 34.02 14.40 600 19.62 0.00
225 35.30 15.68 625 19.62 0.00
250 36.60 16.98 650 19.62 0.00
275 37.30 17.68 675 19.94 0.32
300 37.80 18.18 700 20.42 0.80
325 37.46 17.84 725 20.86 1.24
350 36.50 16.88 750 21.20 1.58
375 35.10 15.48

Table 8.3.3
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plotted curve is shown in Figure 8.3.8 from which It can be

noticed that at collapse the heam has falled gliving large

central deflections.

8.3.5 Comparison of the collapsed panel with the proposed

theoretical collapse mechanism

The photographs (plates 6 and 7) and the plotted profile
(Figure 8.3.7) of the collapsed pane! show clearly the two
plastic hinges in the tension flange and the two plastic hinges
in the compression flange. The plotted profile of the flanges
(Figure 8.3.7) also show§ that the collapse mechanism occurs
with rotation of the wedge 'WXYZ' about the tip. It can be
seen that the proposed theoretical collapse mode of fallure as
i1lustrated in Chapter Five is identical with the experimental
col lapse mode.

Although the measurement of strains In the webs and the
flanges was not carried out in this test series, &ue to the
cost Involved, it is clear from fhé photographs (plates 6 and
7) and Figure 8.3.7 that the web portion of the wedge 'UVWX' has
ylelded completely.

In the same way as explained in section 8.2.5, the failure
of the girder occurs when the plastic hinges In the flanges form,
which, together with the yield zone 'UVWX' form a plastic

mechanism.

The comparison between the experimental and the theoretical
col lapse loads of all the tapered beam specimens |oaded outside
the tip is presented in Table 8.3.4(b). The experimental collapse

loads are within 9% of the predicted collapse loads.

I+ can be seen from Figure 8.3.5 that the predicted
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inclination of the tensile stress field (em) Is In good agree-
ment with the inclination of the tension field indicated by
the plotted contour lines.

8.3.6 General Conclusions

On the basis of the analyses of results, the following
conclusions can be drawn:
(i) The collapse of the tapered beam specimen loaded outside
+he tip occurs when the plastic hinges form in the flanges which
together with the yield zone 'UVWX' (Figure 8.3.7) forms a
plastic mechanism.
(11) At the plastic collapse of the girder, the wedge (WXYZ -
Flgure 8.3.7) rotates clockwise (in the direction of the tip-
moment) about the +ip such that the vertical deflection at the
+ip Is zero.
(1i1) The experimental collapse loads of the tapered beams
loaded outside the tip give good agreement with the theoretical
loads calculated by considering the reduced plastic moment of
the flanges.
(iv) The inclinations of the tensile membrane stress field
indicated by:fhe contour |ines of the out-of-plane deflections
of the web are in good agreement with the theoretical values.

8.4 Tapered beams l|oaded at the tip (Test Serles Three)

8.4.1 Introductory Remarks

In Test Series Three, as explained in Chapter Seven,
three experiments were performed to examine the ultimate
strengths and the collapse mode of fallure of tapered beams
loaded at the tip. The dimensions of the girders tested and
the material properties are presented in Table 8.4.7. In

this section, the results of one experiment (Girder - 50
?
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panel = |) will be used to plot the out-of-plane deflections
of the web panel and the deflected profiles of the flanges.

8.4.2 Qut-of-plane deflec+jons of the weh panel

The technique for the measurements of the out-of-plane
deflections of the web panels is explained in Chapter Seven.
The readings of the initial imperfections, the out-of-plane
deflections at 30%, 60% and 91% of the collapse load and the
final deflected profile of the web panel of the girder
(Girder - 50) are presented in Table 8.4.1. The contours of
the initial imperfections are shown in Figure 8.4.1. The contour
Iines showing the out-of-plane deflections of the web at the
three loads mentioned previously are shown in Figures 8.4.2,
8.4.3 and 8.4.4 respectively. Also +he contour |ines showing
the final profile of the web panel are plotted in Figure 8.4.5.
In Figure 8.4.6 the profiles of the web pane! are plotted for
the three different panel loads as menfi§ned previously. The
contours showing the deflected profile of the web panels of
all other experiments are shown in Appendix 8.

8.4.3Analysisof the strain gauge readings

In the first experiment on Girder number 50, as explalned
In Chapter Seven (7.6), thirty-six straln gauges were used to
- measure the bending, shear and longitudinal strains of the
tension and compression flanges.

The theoretical and experimental values of the axial forces
in the tension and compression flanges are presented In Tables
8.4.2 and 8.4.3 respectively. The experimental values of the
axlal forces are calculated from the measured strains in the
flanges by using the corresponding values of stresses from the

stress-strain curve of the tension tests of the flange material,
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Panel Average Corresponding | Axial tension Theoretical
load strain in the | stress from (Stress x Axial force
In (KN) [ tension flange| the tension Area) (KN} (KN)
(micro strain)| test (N/mm2)

50 459 94 96 101

75 742 145 148 151

100 1030 200 204 202

124 1336 250 255 250

147 1800 328 335 297

159 2592 344 351 321

Table 8.4.2
Panel Average '’ Corresponding Axial Theoretical
load strain in the | stress from compression axial
(KN) comp. the fensioB (KN) comp. (KN)
(micro strain)| test (N/mm<) '

50 471 926 98 s

75 733 140 143 169

100 1104 210 214 225

124 1587 300 306 279

147 4038 352 359 331

159 5397 355 362 358

Table 8.4.3

186.
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The experimental values of the axial forces in the tension

and compression flanges are plotted against their theoretical

values in Figure 8.4.7.

8.4.4 Deflected profiles of the tension and compression flanges

The techniques for the measurements of the profiles of
the tension and compression flanges are explained in section
8.2.4. A set of readings for the final profiles of the tension
and compression flange is presented in Tables 8.4.4 and 8.4.5
respectively. The deflected profiles of the tension and com-
pression flanges were plotted from these readings and are
shown in Figure 8.4.8.

I+ can be observed from Figure 8.4.8 that there are three
plastic hinges in the compression flange and one plastic hinge
in the tension flange. |t is also clear from Figure 8.4.8
that due to three hinge rotation of the compression flange; the
wedge 'WX-ZP' has large rotation in the direction of the load,
giving a large vertical deflecfion of the tip 'T'.

8.4.5 Central Load - Deflection of the Tapered Beam Specimen

The central deflection was recorded with respect to the
central Iéad on an X-Y plotter as explained previously. The
plotted curve is shown in Figure 8.4.9. It can be seen from
the figure that the beam has failed giving large central
deflections.

8.4.6 Comparison of the Collapsed Panel with the Proposed

Theoretical Collapse Mechanism

The photograph (plate8) and the plotted profile (Figure

8.4.8) of the collapsed panel show clearly that there are
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Distance from Final profile Distance from Final profile
¢ of the of the tension ¢ of the of the tension
central stif- flange (mml central stif- flange (mm)
fner (mm) fner (mm)
0 0.00 700 28.61
50 0.40 850 37.40
100 I bl 950 43,19
200 3.77 1050 48,91
300 7.68 1150 54.75
400 11.96 1250 60.76
500 16.96 1450 82.84
600 23.01 1550 88.76
650 26.12 1650 94,24
Table 8.4.4 Final Profile of the tension flange
Distance Xf ?zglecflons ?;s;ance ?:;;ecflons
(figure 8.2.9) +
(mm) (rm) (In mm)
50 .50 500 34,00
100 4.00 550 28.00
150 6.50 600 20.50
200 7.50 650 11.50
250 8.50 700 5.50
300 12.00 750 0.00
350 18.50 800 0.00
400 27.00 850 0.00
450 34,00 900 0.00

Table 8.4.5 Final profile of the compression flange
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CENTRAL LOAD - DEFLECTION CURVE
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Figure 8.49
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three plastic hinges in the compression flange and one plastic
hinge in the tension flange.

Although a very limited number of experiments was carried
out to examine the collapse mode of failure of tapered beams
loaded at the tip, it is clear that the beam specimen fails with
the overall plastic yield and three hinge rotations of the
compression flange and one hinge rotation of the tension flange
as assumed in the theoretical col lapse mechanism. It is also
clear from Figure 8.4.8 that the wedge 'WXT' rotates in the
direction of load giving a large tip deflection which varifies
the assumption made in the theoretical collapse mechanism.

| The three hinge rotations of the compression flange
caused the flange to bend inward, which produced a large 'out-
of-plane' deflection of the web causing a large diagonal band.
However, as mentioned in Chapter Seven also, there was no sign
of the presence of tensile membrane stresses in the web.

The comparison between the experimental and the theoreti-
cal collapse loads of all the tapered beam specimens loaded at

the tip is presented in Table 8.4.6. The experimental collapse

loads are within 1% of the predicted col lapse loads.
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8.4.7 General Conclusions

On the basis of the analyses of the results, the following
conclusions can he drawn about the collapse behaviour of
tapered steel beams loaded at the tip:
(1) The collapse of Theibeam specimen occurs when the compression
flange yields and the beam fails with three hinge rotations of
the compression flange and one hinge rotation of the tension
flange. This verifies the proposed theoretical collapse
mechanism.
(i1) The experimental collapse loads of the beams are within 1%
of the predicted theoretical collapse loads.
(it1) The three hinge rotations of the compression flange cause
the flange to bend inward (Figure 8.4.8), and this produces
large 'out-of-plane' deflections of the web. Hence the diagonal

band becomes large.

(iv) No tensile membrane stresses form in the web.
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CHAPTER NINE

SUMMARY OF CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

9.1 Summary of Conclusions

9.1.1 Tapered Beams Loaded Inside the Tip

(1) Although the estimates of buckling load of fapered web
plates bésed on an equivalent rectangular web (Figure 4.2.1(a))
are likely to be inaccurate, this assumption can be made as the
buckling loads of the panels (studied in this thesis) are
significantly lower than the corresponding plastic col lapse
loads of beams. However, the buckling load may be significant
for various d/t (depth/thickness) ratios (other than those
studied in this thesis) and therefore accurate predictions are
necessary.
(i1) The collapse mechanism of tapered steel beams loaded
inside the tip consists of two plastic hinges in the tension
flénge and two plastic hinges in the compression flange (Figure
4.4.1). The collapse occurs when the ﬁlasflc hinges form in
the flanges which together with the yield zone 'UVWX' (Figure
8.2.10) forms a plstic collapse mechanism.
(111) The pattern of cracks In the stress coat (Plumber's
resin) and the plofféd profiles of the web panel, in the post
buckled range, confirm that the tensile membrane sfresseg
develop diagonally depending upon the direction of the 'tip-
moment"' .

In this case, when the beams are loaded inside the tip,

The direction of the 'tip-moment' is anticlockwise and the

membrane stresses develop along the short diagonal of the

tapered web panel.
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(iv) The col lapse mechanism (Figure 4.4.1) provides identical
collapse loads (for any value of the inclination of the tensile
membrane stresses) from upper and lower bound solutions.

(v) At the plastic collapse of the girder, the web between the
two inclined boundaries 'U-V' and 'W-X' (Figure 8.2.10) ,
Joining the plastic hinges in the tension and the compression
flanges yields completely and the wedge 'WXYZ' (Figure 8.2.10)
rotates in the direction of the 'tip-moment' (anticlockwise)
about the tip such that the vertical deflection of the tip is
zero.

(vi) As the eccentricity of the load about the tip decreases,
the ultimate load (with full plastic moment capacity of flanges)
increases significantly (Figure 4.7.2).

(vii) The axial forces in the flanges of tapered beams are quite
large, especially in the inclined compression flange. These
‘axlal forces in the tension and compression flanges, reduce the
plastic moment capacities of flanges, and have a significant
effect on the col lapse load. Therefore, while calculating the
col lapse load of tapered beams loaded inside the tip, it is
essential to consider the reduced plastic moment capacity of
flanges due to the presence of axlal forces in the flanges.
(viti) VYielding of the flange material beyond +he portion
between the plés#lc hinges could occur because, when the plastic
hinges form in the flanges, the plastic moment extends through-
out the flange (Figures 4.4.4(bf and 4.4.4(c)).

(Ix) The experimental collapse loads of tapered beams |oaded
inside the tip gfve good agreement with the theoretically
predicted collapse loads (calculated by considering the reduced

plastic moment capacity of the flanges).



197.

(x) The inclinations of the tensile membrane stress field
Indicated by the plotted contour lines of the 'out-of-plane!'
defleéfions of the web are in good agreement wi+h the theoreti-
cal predictions.

9.1.2 Tapered Beams Loaded Outside the Tip

(1) As the buckling load of the web pénel (studied in this
thesis) is significantly lower than the plastic collapse load
of the panel, to predict the buckling load for the plastic
collapse load of the tapered panel, an equivalent rectangular
panel of the same width and an average depth (Figure 5.2.1(a))
can be considered.

(1) The collapse mechanism of tapered steel beams loaded out-
side the tip consists of two plastic hinges in the tension
flange and two plastic hinges In the ‘compression flange (Figure
5.4.1). The collapse occurs when the plastic hinges form in
the flanges which together with the yield zone 'UVWX' (Figure
8.3.7) forms a plastic col lapse mechanism.

(i1i) "The direction of the 'tip-moment' for this case (beams
loaded outside the tip) is opposite to the direction of the
'tip-moment' when the beam was loaded Inside the tip, and
because of this change in direction of the tip-moment, the
tension and compression diagonals Interchange.

The crack-patterns in the s+ré§s coat and the plotted
profiles of the web panel, in the posf'buckled range, conflrm
that the tensile membrane stresses develop along fhe log dlagonal
of the tapered web panel.

(iv) The collapse mechanism (Flgure 5.4.1) provides ldentical
collapse loads (for any value of the inclination of the tensile

membrane stresses) whether obtained from upper or lower boy d
n
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solutions.

(v) At the plastic collapse of the girders, the web between the
two inclined boundaries ('U-V' and 'W-X' (Figure 8.3.7)),

joining the plastic hinges in the tension and compression flanges
yields completely, and the wedge '"WXYZ' rotates clockwise (in

the direction of the 'fip-moment') aboﬁf the tip such that the
vertical deflection of the tip is zero.

(vi) As the eccentricity of load about the tip decreases, the
ultimate load, with full plastic moment capacity of flanges,
Increases significantly (Figure 5.7.2).

(vii) The axial forces in the tension and compression flanges
which reduces the plastic moment capacity of the flanges have

a significant effect on the ultimate load of tapered beams

loaded outside the tip and therefore it is necessary to consider
the reduced values of the plastic moment capacity of the flanges
while calculating the collapse load of the beam.

(viii) At the stage when the plastic hinges form In the flanges,

the yielding of the flange can extend all along its length
(Figures 5.4.3(b) and 5.4.3(c)).

(ix) The experimental collapse loads of tapered beams loaded
outside the tip gfve good agreement with the predicted theoretical
col lapse loads calculated by considering the reduced plastic
moment capacity of the flanges. |

(x) The Inclinations of the tensile membrane stresses measured
from the plotted contour Iines of the 'out-of-plane' deflections

of the web panels are in good agreement with the theoretical

predictions.
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9.1,3 Tapered Beams Loaded at the Tip

(1) For the tapered beams loaded at the tip, the shear stresses
In the webs are approximately zero because the 'tip-moment' is
zero.

(11) Tensile membrane stresses in the web pane! do not form.
(111) The collapse mechanism of tapered steel beams loaded at
the tTip consists of one plastic hinge in the tension flange and
three plastic hinges in the compression flange (Figure 8.4.8).
The collapse occurs when the compression flange yields and the
beam falls with three hinge rotations of the compression flange
and one hinge rotation of the tension flange.

(iv) 'Because the three hinge rotations of the compression
flange causes the flange to bend inward (Figure 8.4.8) which pro-
duces large 'out-of-plane'deflections of the web giving a large
diagonal band.

(v) Because the shear stress in the web is zero and the tensile
membrane stresses do not form in the web, the webs of tapered
beams loaded at the tip do not play any significant role in
carrying +he load.

(vi) The experimental collapse loads of the tapered steel beams
loaded at the tip are within one per cent of the predicted
theoretical collapse loads which are based on the yield of the
compression flange.

(vil) The collapse loads and the mode of fallure of tapered
beams loaded near the inner, central and outer tips are ldentical.

9.2 Suggestions for Future Research

I. Further Investiation to extend the validity of the proposed
col lapse mechanisms for its suitability for inclusion in the

relevant code of practice for the ultimate load design of tapered
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stee| beams.
2. Investigations fto provide a more accurate method assessing
the buckling load of the tapered web panel.
3. Investiation into the collapse load behaviour of tapered
steel beams with a soffit of large radius of curvature in relation
to its depth.
4. Investigation into the collapse load behaviour of tapered
steel beams héving

(a) Transversely reinforcéd webs, and

(b) Longitudinally reinforced webs.
5. Investigation into the lateral instabilities of tapered
web pane!l for various depth/thickness ratios.
6. Investigation to choose the appropriate slope of the
inclined compression flange which may provide the least lateral

instability and also minimise the yielding caused by large axial

forces in the flanges.
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APPENDI X |

Listing of Computer Programs for the Calculation of Collapse Loads
for Tapered Beams Loaded Inside The 1ip

Computer Program for Upper and Lower Bound Loads with Full
Plastic Moment Capacity of Flanges

MASTER VULI3

REAL M

READ(5,200)8,M,S1,T,DI1,D2,EI,C

FORMAT(8F0.0)

IF(B.EQ.99.9) CALL EXIT

WRITE(6, 800)

FORMAT(IH, 5X, 'X1'20X, 'CT',20X,'CC',20X, 'WLI',20X, "WUi ")
X1=0.20

DO 400 1=1,35

X1=X1+0.01

S=(SQRTC((S1)*¥*¥2) +C*(((1.5*SIN(2%X|))*%*2)=3))}=(|. 5*C*SIN(2*Xl))
Z=(D2*B)/(D2-D1)

A=ATAN((D2-D1)/B)

D4=(D1+D2)/2

CT=(2/SIN(XI))*(SQRT(M/(S*T)))
CC=(2/SINCXI+A))*(SQRT(M/(S*T)))
SS3=CT*SIN(XI)+CC*SIN(XI+A) +DI*COS(X|)-B*SIN(XI)
S152=DI*COS(XI)=-B*SIN(X1)

VCR=C*T*D4

FS=(T*S*SS3)

PI=((Z-CT)*SIN(X1))+(SS3/2)
Q1=2.0*M*((Z/CT)+(DI/(CC*SIN(A))))
Q2=(Z-CT)*SIN(X1)*S|S2
Q3=((DI*SIN(XI+A)*SS3) /SIN(A))
WLI=C(FS*P|)/EI)+VCR
WULI=C((QI+(S*T*(Q2+Q3)*0.5))*(1.0/E!))+VCR
WRITE(6,801)X1,CT,CC,WLI , WUl

FORMAT(IH 6X, FS 2,15X,F8.2,15X,F8.2,15X,F15.3,15X,F15.3
CONT INUE

WRITE(6,895)
FORMAT(IHI,30X,'*************************************')
WRITE(6,898)M,8,EI

FORMAT(1H, 30X, 'M=",F15.2,1X,'B=',F6.2,'EI¢,F6.2)
WRITE(6,900)

FORMAT ( [H, 30X, TR H KKK KN KRNI N K 1 )
GO TO 100

END
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Al.2 Computer Program for the Col lapse Loads with Reduced Plastic
Moment Capacity of Flanges

MASTER VULII
REAL M
100 READ(5,200)M,S1,T,D!,D2,El,XI,C,ATF,SYF,B,CI,C2
200 FORMAT(13F0.0)
IF(M.EQ.99.9) CALL EXIT
ACF=ATF
S=(SQRT(((S1)*%¥2) +C*(((1 .5*SIN(2%X1))*¥2)-3)))~(I. S*C*SIN(Z*XI))
Z=(D2*B)/(D2-D1)
A=ATAN((D2-D{)/B)
D4=(D1+D2)/2
CT=(2/SIN(XI))*(SQRT(M/(S*T)))
CC=(2/SINCXI+A) ) *(SQRT(M/(S*T)))
SS3=CT*SIN(X!)+CC*SIN(XI+A) +DI*COS(X1)=-B*SIN(XI)
FS=(T*S*SS3)
VCR=C*T*D4
PI=((Z-CT)*SIN(XI))#553/2)
Al=S*SIN(X1+A)*COS(X|+A) +2*C*SIN(A)*COS(A)
A2=S*SIN(X1)*COS(X1)+C
WLI=C(FS*PI)/EI)
A9=0.00
GO TO 250
777 CONTINUE
WLI=(WLI+ACC)/2.00
IF(A9.LT.9.0) GO TO 250
WLI=(WLI+ACC)/2.00
IF (A9.LE.20.0) GO TO 250
WLI=(WLI1+ACC)/2.00
WLI=(WLI+ACC)/2.00
IF(EI.GT.300.0) GO TO 250
WLI=(WLI+ACC)/2.0
WLI=(WLI+ACC)/2.0
WLI=(WLI+ACC)/2.0
250 FCl=(WLI-(FS*SIN(XI)))/SIN(A) -
IF(FCI.LT.0.00)FCi=0.00
FT1=FCI*COS(A)-FS*COS(X1I)
IF(FTI.LT.0.00)FT{=0.00
SCF=(FCI-((A1*CC*T)/2.0))/ACF
STFB(FTI+((AZ*T*CT)/Z))/ATF
X2=SCF/SYF
IF(X2.LT.0.00)X2=0.00
IF(X2.GT.1.00)X2=1.00
RMPC=M* (| .0=-((CI*((X2)*%2))+C2%X2))
500 X3=STF/SYF
IF(X3.LT.0.00) X3=0.00
IF(X3.GT.1.00)X3=1.00
RMPT=M*( | 0-((Cl*((X3)**2))+CZ*X3))
600 CT=(2/SIN(XI))*(SQRT(RMPT/(S*T)))
CC=(2/SIN(XI+A) )Y *(SQRT(RMPC/(S*T)))
SS3=CT*SIN(XI)+CC*SIN(XI+A) +DI*COS(X1)-B*SIN(XI)
ACC=WL1
FS=(T*S*SS3)
Pl=((Z-CT)*SIN(X1))+(SS3/2) .
WLI=(((FS*P1)+(RMPT-RMPC)) /EI)
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PDIF=ABS( (ACC-WLI)*100.00/ACC)

A9=A9+].0

IF(A9.GT.200) CALL EXIT

WRITE(6,800)S,5S3,VCR

FORMAT(IHI, 10X, 'S=",F10.3,10X, 'SS3=",F10.3,'"VCR=",F10.3)
WRITE(6,810)FS,FCI,FTI

FORMAT( IH, 10X, "FS=",F10.3, 10X, 'FCI=",F10.3,'FTI="',F10.3)
WRITE(6,820)X2, SCF,RMPC

FORMAT (IH, 10X, 'X2=",F5.3,10X, 'SCF=",F8.3, 10X, '"RMPC=",F 15.3)
WRITE(6,830)X3,STF,RMPT

FORMAT(IH, 10X, 'X3=', F5.3,10X,'STF=',F8.3,10X, '"RMPT=",F|5.3)
WRITE(6, 840)CT,CC,E|

FORMAT(IH, 10X, 'CT=",F10.3, 10X, 'CC=",F10.3, 10X, "El=",F5.1)
WRITE(6,850)WLI ,ACC,PDIF

FORMAT(IH, 10X, 'WLI=",F15.3, 10X, 'ACC=",F15.3,10X, '"PDIF=",F7.2)
WRITE(6,860)A9

FORMAT( IH, 10X, 'A9="F5.0)

IF(PDIF-1.0)778,777,777

WLT=WL|+VCR

WRITE(6,350)

FORMATC(IHI , 30)(' ¥ 363636 36 3 36 36 6 3636 3636 36 336 I I3 336 36 3 3 3 363636 T 36 3 39 32 I3 KA H KX 1 )
WRITE(6,880) |

FORMAT(IH, IX,'XI', 14X, "WLT', 10X, 'FCI', 13X, 'SCF', 12X, '"RMPC', 12X, 'F
ITI', 12X, 'STF', 10X, "RMPT")
WRITE(6,890) X1, WLT,FCI,SCF,RMPC,FT1,STF, RMPT

FORMAT( [H,F4.2,7(3X,F12.2))

WRITE(6,895)

FORMATC( IH] ’30)(, ¥ 363636 363 36 369 36 36 36 36 36 36 96 3636 3 36 36 36 96 36 96 36 36 3636 36 3636 36 6 36 36 36 3 3% 1 )
WRITE(6,898)M,B,E|

FORMAT(IH, 30X, 'M=",F15.2,1X,'B=",F6.2,'El="',F6.2)
WRITE(6,899)Z,A

FORMAT( IH, 30X, 'Z=',F7.1,5X, 'A=",F4.2)

WRITE(6,900)

FORMAT( |H’ SOX, T 363696 36 96 36 36 36 363696 3636 36 369636 36 36 36 36 36 36 36 36 36 9696 I3 3% 36 36 36 3 %3¢ 1 )

GO TO 100 |

- END
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APPENDI X 2

A2. Listing of Programs for the Calculation of Collapse Loads for
Tapered Beams Loaded Outside the Tip

A2.1 Computer Program for Upper and Lower Bound Loads with Full Plastic
Moment Capacity of Flanges

MASTER VULO3
REAL M

100 READ(5,200)8,M,51,T,D1,02,E1,C

200 FORMAT(8F0.0)
IF(B.EQ.99.9) CALL EXIT
WRITE (6, 800)

800 FORMAT(IH,5X, 'XI',20X, 'CT",20X, 'CC', 20X, 'WLI ', 20X, WUl ")
X1=0. 64
DO 400 1=1,35
X1=X1+0.01
S=(SQRT(((S1)¥*2) +C¥(((1.5¥SIN(2¥X1))*¥2)=3)))=(1.5%C*SIN(2*X1))
Z=(D2*B) /(D2-DI)
A=ATAN((D2-D1) /B)
D4=(DHD2) /2
CT=(2/SIN(XI))*(SQRT(M/(S*T)))
CC=(2/SIN(XI=A))*SQRT(M/(S*T)))
SS3=CT*SIN(X 1) +CC*SIN(X1~A) +DZ*COS(X1)=B¥*S IN(XI)
$152=D2*C0S (X! )=B*SIN(XI)
VCR = C*T*D4
FS=(T*S*SS3)
Pl=((Z-B+CT)*SIN(XI))~(553/2.0)
Q1=2.0*M* ( ((Z-B)/CT) +(D2/(CC*SIN(A))))
Q2=(Z-B)*SIN(X|)*SS3
Q3=((D2/S IN(A))-CC)*SIN(XI-A)*S |52
WLI=((FS*P1)/E1)+VCR
WUL=((Q1+(S*T*(Q2+Q3)*0.5))*(1.0/E1)) +VCR
WRITE(6,801)XI,CT,CC,WLI,WUI

801 FORMAT(IH,6X, F5 2, I5X F8 2,15X,F8.2,15X%,F15, 3 15X,F15.3)
400 CONTINUE

WRITE(6,895)

895 FORMAT( IHI , 30X, 1R MM EH KKK HK I 1K I HHII KNI MH KR |
WRITE(6,898)M,B,E1

898 FORMAT(IH 30X, 'M—' F15.2,1X,'B=",F6.2,2X,'El=",F6.2)
WRITE(6, 899)2 A

899 FORMAT(IH 30X,'Z="',F7.1,5X, 'A=",F4,2)
WRITE(6, 900)

900 FOPMAT(IH 30X, T HRKRKHRKHRIRIIEH SIS M RN 1
GO TO 100 .
END



A2.2

A2.2 Computer Program for the Collapse Loads with Reduced Plastic

100
200

171

250

Moment Capacity of Flanges

MASTER VULOI

REAL M
READ(5,200)M,S1,T,D1,D2,E1,X!,C,ATF,SYF,B,CI,C2
FORMAT(13F0.0)

IF(M.EQ.99.9) CALL EXIT

ACF=ATF

S=(SQRT(((SI)**2) +C*(((1.5*SIN(2%X|))*¥2)-3)))=(|.5*C*SIN(2*¥X1))
Z=(D2*B)/(D2-D!)

A=ATAN((D2-D1)/B)

D4=(D1+D2)/2
CT=(2/SINCXI))*(SQRT(M/(S*T)))
CC=(2/SIN(XI-A))*(SQRT(M/(S*T)))
SS3=CT*SIN(X!)+CC*SIN(XI1-A) +D2*COS(X1)-B*SIN(X1)
VCR=C*T*D4

FS=(T*S¥*SS3)
P1=((Z-B+CT)*SIN(XI))-(S53/2.0)
Al=S*SIN(XI-A)*COS(XI-A)+2*C*SIN(A)*COS(A)
A2=S*SIN(X1)*COS(X1)+C
WLI=C(FS*PI)/EI)

A9=0.00

GO TO 250

CONTINUE

WLI=(WLI+ACC)/2.00

IF(A9.LE.9.0) GO TO 250
WLI=(WLI+ACC)/2.00
WLI=(WLI+ACC)/2.00
WLI=(WLI+ACC)/2.00
WLI=(WLI+ACC)/2.00

IF(E1.GT.200.0) GO TO 250
WLI=(WLI+ACC)/2.00
WL1=(WL1+ACC)/2.00
FCl=(WLI+(FS*SIN(X1)))/SINCA)
IF(A9.GT.250) GO TO 999

iIF (FCl.LT.0.00)FC1=0.00
FTI=FCI*COS(A)-FS*COS (XI)
IFCFTI.LT.0.00)FTI=0.00
SCF=(FCI-((A1*CC*T)/2.0))/ACF
STF=(FT1+((A2*T*CT) /2)) /ATF
X2=SCF/SYF

IF(X2.LT.0.00)X2=0.00
IF(X2.GT.1.00)X2=1.00

RMPC=M* (1 .0-((CI*((X2)¥%2))+C2%X2))
X3=STF/SYF

IF(X3.LT.0.00)X3=0.00 -
IF(X3.GT.1.00)X3={.00

RMPT=M¥* (] .0-((CI*((X3)*%2))+C2%¥X3))
CT=(2/SIN(X1))*(SQRT(RMPT/(S*T)))
CC=(2/SIN(XI-A))*SQRT(RMPC/(S*T)))
SS3=CT*S IN(X1)+CC*SIN(XI=-A) +D2*COS(X1)-B*S IN(X])
ACC=WLI

FS=(T*S*SS3)
PI=((Z-B+CT)*SIN(X1))=(S53/2.0)
WLI=C(((FS*P|)+(RMPC~RMPT)) /EI)
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PDIF = ABS((ACC-WL|)*]00.00/ACC)
A9=A9+1.00
WRITE(6,800)S,553,VCR -
800 FORMAT(IHI, 10X, 'S=",F10.3,10X,'SS3="',F10.3,'VCR=",F10.3)
WRITE(6,810)FS,FCI,FT!
810 FORMAT(IH, 10X,'FS=",F10.3,10X,'FCI=",F10.3,'FTI=",F|0.3)
WRITE(6,820)X2,SCF,RMPC
820 FORMAT(IH, 10X, 'X2=',F5.3, 10X, 'SCF=',F8.3, |0X, "RMPC=" ,F15.3)
WRITE(6,830) X3, STF, RVPT
830 FORMAT( IH, [0X, 'X3=1,F5.3, 10X, 'STF=",F8.3, 10X, "RWPT=",F| 5. 3)
WRITE (6,840)CT,C,E|
840 FORMAT(IH, 10X, 'CT=",F10,3, 10X, 'CC=",F10.3, 10X, "E | =" ,F5. 1)
WRITE(6,850)WL1,ACC,PDIF
850 FORMAT(IH, 10X, "WLI=",F15.3, |OX, 'ACC=", F|5 3,10X, 'PDIF=",F7.2)
WRITE (6,860)A9
860 FORMAT(IH, |0X, 'A9=",F5.0)
|F(PDIF~1.0)778,777,777
778 WLT=WLI+VCR
WRITE(6,350)
350 FORMAT( lHl 30)( '*********************************************!
WRITE (6, 880)
880 FORMAT( iH, IX, 'X1', 14X, "WLT', 10X, 'FC1', 13X, 'SCF', 12X, "RMPC', 12X, 'F
ITI', 12X, 'STF', [OX, '"RMPT")
WRITE(6,890)XI ,WLT,FCI ,SCF, RMPC, FT1,STF, RMPT
890 FORMAT(IH,F4.2,7(3X,512.2))
WRITE(6, 895)
895 FORMAT( lH | , 30)(’ 1363636 3636 26 3636 36 36 36 36 36 3636 36 36 26 36 36 36 3 6 3696 363 336 36 36 % 36 3 ¥ % l)
~ WRITE(6,898)M,EI,B '
898 FORMAT( IH,30X, 'M2!,F (5.2, IX, 'El=",F6.2, 2X,'8=",F6.2)
WRITE (6.900)
900 FORMAT( lH 30)() , 136 363696 36 3636 36 36 36 36 36 3636 96 36 36 96 36 36 36 36 96 3 9 6 36 3696 96 96 36 3 % 3% 1
999 GO TO 100 :
" END
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APPENDI X 3

A3. Membrane Stresses in the Web Plate of Tapered Beams Loaded

at_the Tip
4

I W

‘ T

Flgure A3. |

A3.| General

In order to show that the tensile membrane stresses do not form

in the web panel of a tapered beam loaded at the tip, It will be

demonstrated here that even if it Is assumed that the membrane stresses
form in the web panel, their magnifude can be shown equal to zero.
A3.2 Proof

Consider a section, X-V, passing through the plastic hinge
positions at X and V. The forces acting on the section are shown in
Figure A3.1. Considering the vertical equilibrium of forces and taking

moments about the position X, the following equations can be obtained:

V=0

W- F_.sing - Fe-siny = 0
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L Foesiny = W~ F,.s1ne) (A3. 1)

Wz + F [ = F.z.siny = 0

By substituting the value of Fc.siny from eduafion (A3.1),

W.z + F_. (%3) - z.[w- F_.sing] =0

le. FBE+ z.sing] =0

Clearly for any positive value of (VR), the magnitude of 'FS'
will be zero.
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APPENDI X 4

A4. Listing of Computer Program for the Analyses of Strain Gauges
and Rosettes Readings

MASTER ROS22
REAL M
DIMENSION  1SG(36)
DIMENSION STRAINI(95),STRESS(50)
DIMENSION 1S1(95),11(99),NN(95)
DIMENS ION AVG(58)
DIMENSION 1C(95),1CC(95),STRAIN(95) ,STRAIN2(95) ,ALOAD(3)
DIMENSION EI(18),E2(18),F1(18,F2(18),THETA(18)
PY=3.14159
ICN=26
ICK=1
YE=200000
YE=YOUNG MODULUS OF ELASTICITY IN N/MM2
E=YE/ 1000000
M=3
DO 300 J=1,93,5
300 READ(5,400) (1C(1),STRAINI(1), I=J,J+4)
400 FORMAT(5(13,F6.0.4X))

DO 410 Ji=1,54

AVG(J 1) =(STRAINI(J1)+STRAINI(J1+27))/2
410 CONTINUE
.425 NT=0.00
450 NT=NT+|

DO 500 K=1,93,5

500 READ(5,600) (1CC(1),STRAIN2(1),1=K,K+4)

600 FORMAT(5(13,F6.0,4X))
NROS=0
DO 750 KROS=1,27,3
NROS=NROS + |
NN(NROS) =9 +NROS
STX=(STRAIN2(KROS) +STRAIN2(KROS+27) ) /2-AVG(KROS)

- ST45=(STRAINZ(KROS+1)+STRA IN2(KROS+28) ) /2-AVG(KROS+1 )

STY=(STRAIN2(KROS+2) +STRAIN2(KROS+29)) /2-AVG(KROS+2)
Pl= (STX+STY)/2
P2=(SQRT((STX=ST45)**2+(ST45-STY ) *%2))*0, 707
E1(NROS)=P|+P2
E2(NROS) =P |-P2
F(NROS) =(STX+STY-(2.0%*ST45))
F1(NROS) =(E*M* (M*E | (NROS) +E2(NROS)) ) /( (M¥%*2) - |
F2(NROS) =(E*M* (E| (NROS) +M*E2(NROS) ) ) / ((M**2)~ )
IF(STX.EQ.STY)GO TO 650
THETA(NROS) = (ATAN(F(NROS) /(STX=STY) ) /2)*57.30
GO TO 750

650 THETA(NROS)=PY/2

750 CONTINUE
DO 800 KST=55,59
L=KST-54
ISG(L) =I1CC(KST)
ISI(L)=1CC(KST+5)

STRAIN(L)=(STRAIN2(K -
STRA ST)+STRAIN2(KST+5) 5TRAINI(KST)-STRA|N|(KST+5
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STRESS(L)=STRAIN(L)*E

800 CONTINUE
DO 801 1=65,71
LZ=1-64+5
ISG(LZ)=1CC(1)
ISI(LZ)=1CC(1+7)
STRAIN(LZ) =(STRAINZ(1)=STRAINI(1)+STRAIN2(1+7)-STRAINI(1+7))/2
STRESS(LZ)=STRAIN(LZ)*E

801 CONTINUE
DO 850 KLD=91,93
LM=KLD~90
STR=STRAINZ2(KLD)-STRAIN I (KLD)
ALOAD(LM)=STR/48.00

850 CONTINUE
WRITE(6,930) (ALOAD( 1), 1=1,3) _

930 FORMAT(IHI, 10X, 'LOAD 1=',F10.3,/1H, IOX, 'LOAD 2=',F10,3,/IH, 10X,
| 'LOAD3="',F10.3) '
WRITE(6,935)

935 FORMAT(1IH, 10X, 'ALL LOADS ARE IN KN')
WRITE(6,936)

936 FORMAT(IH,10X,'El AND E2 ARE THE PRINCIPAL STRAINS IN MCSTRAIN')
WRITE(6,937)

937 FORMAT(IH, I0X,'FI AND F2 ARE THE PRINCIPAL STRESSES IN N/MM2')
WRITE (6,938)

938 FORMAT(IH,IOX,'THETA IS THE INCLINATION OF PR.PLA.TOTHE XAXIS')
WRITE(6,939)

939 FORMAT(IH, 10X, 'FAl IS THE SHEAR STRAIN IN MICRO STRAIN')
WRITE(6,950)

950 FORMAT(IH, IOX, '"ROSETTE NO', I5X,'EL", 10X, 'E2', 10X, 'FI', 10X, 'F2',
110X, '"THETA', IOX, 'FAI")
WRITE(6,955) (1 ,NNCL),EIC1),E2C1),FI(1),F2(1),THETAC(1),F(1),1=1,NR
10S)

955 FORMAT(IH, I0X, 14, 1H,,12,10X,6F10,2)
WRITE(6,959)

959 FORMAT(IH 10X, 'CHANEL 104 TO |13 INDICATES STRAIN GAUGE IN COMP.F
IéA?GE ,/IH lOX 'CH 114 TO 127 ARE THE STRAIN GAUGE IN TENSION FLAN
- 2GE")
WRITE(6,960)
960 FORMAT(IH 10X, 'NO OF STRAIN GAUGE',25X, "MICRO STRAIN',20X,
ISTRESSES IN N/MMZ')
WRITE(6,961) (1SG(1),ISI1C1),STRAINCI),STRESS(1),1=1,12)
961 FORMAT(IH,I5X,l5,IH,,l5,25X,FI5.5,I5X,FI5.5)
ICK=1CK+1|
IF(ICK~1CN)425,425,701
701 CALL EXIT
END
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STRESS/STRAIN CURVES FOR THE WEB AND FLANGE MATERIAL

A5.1 Stress/strain curve from Iinstron tension tests: -
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104 | |
Girder 40 |
Transverse Web Spedmen

3001
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YieldStress 213 N/mm2
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4404 :
Girder 40
400 Flange Specimen
360 -
320 -
Yield Stress 352 N/mm2
601 ] Ultimate Stress 412 N/mm?
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A7 PLOTTED PROFILES OF WEB PANELS FOR THE BEAMS LOADED OQUTSIDE THE TIP

A7.1 - Girder 30A

Predicted Angle of Membrane

Field

Contour plot for the final deflected profile

of the web panel after collapse

A7.1




A7.2

asde| |00 Jotje |aued gom 8y} jo a|ljoid

psjo8|40p |eulj ay4 404 jo|d anojuo)

P14

UBIGUIDIA JO 2IBUY P21DIP2d \

80¢ J49p4j9 Z°LY



.3

A7

asde| joo J4aj4e |sued gam By} 4O

91140J4d pajoa|jep |eul4 8y} Joj 40|d Jnojuo)

P2} 21p2.d

D2l 4 2UBIGUIDIA 1O u_mi

YOb J49p419 ¢ LV



A8. |

asde| |00 4o)je |oued gqom 8y}

jo oj140ad pajda|4op |eul4 ey} Joj 4o|d Unojuo)

805 - 48p419 |°8Y

dil 3HL LV 03av01 SWy3g JHL ¥04 13Nvd 83M 3HL 40 31140dd G3L107d 8Y

8-X1GN3ddV



