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ABSTRACT 

Morphological and growth observations made on landraces of African yam bean (AYB) 

used in this study confirm that this species is the most morphologically variable in the 

genus (Potter, 1992). Morphological characters such as seed colour, stem colour, 

internode length, leaf size and number of leaves per plant were found to vary between 

landraces. Growth and development was controlled by both genotype and environment. 

Flowering was observed only when plants were grown at 25°C, rather than at 30°C, with 

a 12 h photoperiod. Tuber formation occurred only in AYBS and not in other landraces. 

Growth rates differed between landraces and between environments with plants grown 

in the soil displaying faster growth than those grown in pots. The response to the 

environment (pot and soil experiment) differed between landraces, i. e. AYB1 performed 

better than AYB2 in the pot experiment, whereas it was surpassed by AYB2 in the soil 

experiment. 

Clonal propagation protocols were developed using nodal explants/propagules to 

reproduce material with a high level of genetic uniformity from existing shoot 

meristems. Clonal propagation was investigated using macro (leafy stem cuttings) and 

micro (in vitro propagation from nodal stem segments) approaches. Axenic shoot 

cultures have been achieved from stem nodal segments sterilised with 10% "Domestos" 

bleach and grown in MS-based medium fortified with cytokinins. Amongst the 

cytokinins used, BAP (6-benzylaminopurine) was found to be more suitable than TDZ 

(N-phenyl-N'-1,2,3thidiazol-5-ylurea) and 2iP (6-(y, y-dimethylallylamino)purine) at 

both culture establishment and shoot multiplication stages, although optimisation of the 

protocol for shoot multiplication requires further study. There was persistent callus 

proliferation at both the establishmentlinitiation of cultures and the multiplication stage 

and the use of other plant growth regulators, such as GA3 (Gibberellic acid) and TIBA 

(2,3,5-triiodobenzoic acid), known to counter callus growth in cultures, did not give 

positive results. Although in vitro adventitious root formation was erratic, some shoots 

were able to root when exposed to auxins (IBA [indole-3-butyric acid] and NAA [a- 

xiv 



naphthaleneacetic acid]) and were established in compost. IBA was preferable to NAA, 

as it induced more root formation. Overall, AYB cuttings produced adventitious roots 

relatively easily with or without auxins. Auxins at low concentrations induced rapid 

formation of roots in high numbers. Unlike in vitro rooting, adventitious rooting of 

cuttings was as high as 100% without any auxin treatment, suggesting a possibility of 

other factors involved in the rooting process in vitro. 

A cheap source of nitrogen for AYB is in the form of biological nitrogen fixation. AYB 

nodulated profusely with strains of both a slow growing Bradyrhizobium sp. and a fast 

growing Rhizobium sp., plants forming nitrogen fixing nodules with strains ORS302, 

CP279 and NGR234. Nitrogen fixed from the atmosphere accounted for 79-98% of the 

plant nitrogen and supported plant growth by an increase of up-to 1547% of dry matter 

in shoots. 
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CHAPTER I 

INTRODUCTION 

1.1 Importance of African yam bean 

African yam bean (Sphenostylis stenocarpa) is one of Africa's under-utilized plant 

species with potential to broaden man's food base. It forms small tuberous roots that 

contain more protein than sweet potatoes, potatoes or cassava roots and above 

ground produces good yields (2000 kg ha'') of edible seeds (National Academy of 

Sciences, 1979). The leaves are also utilized as a spinach/cooked vegetable (Tindall, 

1983). Although it is generally considered a minor crop in most areas of its 

cultivation, farmers in some areas of eastern Nigeria grow it as an important source 

of income and it is the major legume they produce (Potter, 1992). 

African yam bean (AYB) is a highly adaptable crop capable of producing growth 

even on acid and highly leached sandy soils of humid lowland tropics (Potter, 1992), 

an attribute common to most under-utilised food plants known to flourish with little 

inputs in areas too marginal for conventional crops. It has also been shown to form 

nitrogen-fixing nodules if inoculated with slow growing Bradyrhizobium bacteria 

(Assefa and Kleiner, 1997). This ability to fix atmospheric nitrogen means the plant 

will not require large amounts of nitrogen fertilizer to meet growth demands, thus 

making its production affordable to the resource poor farmers living mainly in areas 

where it grows. Okpara and Omaliko (1995) reported yield increases of yellow yam 

(Dioscorea cayensis) in an intercrop between AYB and attributed that to the latter's 

ability to fix atmospheric nitrogen. AYB's climbing habit is also utilised as it can 
form a living fence where it is grown on stakes around fields of cocoyam (Potter, 

1992). 

Various nutritional studies have revealed the potential of AYB as an alternative food 

supplement to most diets consumed in the third world that lack some essential 

nutrients resulting in severe cases of malnutrition. Oshodi et al. (1995) recorded 

comparatively higher values of amino acids (cysteine, lysine, methionine, 

phenylalanine and pyrone) in AYB flour than the 1985 FAOIWHO amino acid 
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reference values recommended as the requirement for infants. In the same analysis, it 

was also found to be a good source of other essential amino acids. Several food 

products available to the world's poor are lacking in dietary nutrients and crops with 

such enormous nutritional potential, such as AYB, will assist the fight against 

malnutrition if their cultivation is developed. In contrast to this potential, some 

studies conducted on under-utilized legumes in Nigeria have revealed AYB to be one 

of the legumes with traces of anti-nutritional substances (Oboh et al., 1998). 

However, some food processing measures, such as dehulling, soaking and 

soaking/cooking, have been found to reduce significantly the contents of some of 

these anti-nutritional substances (Nwinuka et al., 1997), thus making AYB more 

acceptable for human consumption. In other studies, for example, Okeola and 

Machuka (2001), anti-nutritional substances such as lectin in AYB have been found 

to possess some insecticidal properties that can be further exploited to benefit food 

security by reducing storage losses. 

1.2 Background on African yam bean 

1.2.1 Taxonomy and botanical description 

African yam bean, Sphenostylis stenocarpa, is one of three taxa used by humans 

from the large genus Sphenostylis E. Meyer (Leguminosae: Papilionoideae: 

Phaseoleae) comprising 7 species that occur in dry forests and in open or forested 

savannas in tropical and southern Africa. It is the most widely distributed and 

morphologically variable species in the genus and by far the most important 

economically (Potter, 1992). 

The plant is a perennial prostrate or climbing herb from a tuberous rootstock with the 

stem often reddish, glabrous or sparsely puberulus, and woody near the base 

(Verdcourt and Doygaard, 2001). Roots develop starchy tubers that serve as organs 

of perennation when the above ground parts die back during the dry season (National 

Academy of Sciences, 1979; Potter, 1992; Klu et al., 2001). The plants bear leaves 

that are pinnately trifoliate with linear, lanceolate, ovate or elliptic leaflets and 

depending on the landrare, they bear from two to twelve purple to magenta coloured 

flowers with twisted standard petals on pseudoracemes (Potter, 1992). These flowers 

are produced profusely in 100 to 150 days, yielding slightly woody pods measuring 

up to 30 cm long and containing from 20 to 30 seeds that reach maturity within 170 
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days (Klu et al., 2001). The seeds are brown, white, speckled or marbled in colour 

with a dark brown hilum border and are ellipsoid or round in shape measuring 

approximately 9x7 mm (Tindall, 1983). A more detailed botanical description of 

AYB can be found in Potter (1992) and Verdcourt and Doygaard (2001). 

1.2.2 Origin of African yam bean 

AYB is grown widely in West and Central Africa, but its place of origin within 

Africa is not known with certainty because its domestication cannot be traced to one 

locality (Potter and Doyle, 1992). This uncertainty is attributed to the idea that 

African agriculture is noncentric and thus African crops, such as AYB, are not 

assignable to a particular site of origin, but should be categorised according to the 

ecological zones in which they were domesticated. AYB is also believed to have 

originated from Ethiopia and spread to many areas of tropical Africa where it is 

found growing wild (Tindall, 1983). A study to try to locate the possible place of 

origin, though not very conclusive, favoured two independent domestications shown 

by both cpDNA results and linguistic data (Potter and Doyle, 1992). It concluded 

that AYB has West and Central African regions as its areas of domestication, where 

it is grown for seed and tuberous roots, respectively. 

1.2.3 Distribution and cultivation of African yam bean 

AYB seems little affected by altitude and flourishes at elevations ranging from sea 

level to 1800 metres (National Academy of Sciences, 1979). It is found growing wild 

throughout much of tropical Africa and is common in central and western Africa, 

especially Nigeria. The occurrence of wild races can also be traced to east and 

southern African regions (Potter and Doyle, 1992). Although collection of the wild 

plants for consumption seems to be in decline, there is some evidence of the practice 

especially in the Zaire/Congo area where tubers of a narrow-leaflet landrace are 

harvested from the wild, cooked and eaten as a vegetable (Potter, 1992). 

AYB is widely cultivated in most countries in West Africa, particularly in Guinea, 

Ivory Coast, Nigeria and Togo extending to parts of central and equatorial Africa 

(Tindall, 1983). In all areas of its production, it seems to be grown mainly as an 

intercrop with such crops as maize (Zea mays L. ) and cassava (Manihot esculenta 

Crantz) where it twines around their stems for support (Potter, 1992; Klu et al., 
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2001). In an extensive study of S. stenocarpa, Potter (1992) made several 

observations. In major areas of production in Zaire, it is grown as an annual where it 

is propagated by seed planted in September/October for tubers to be harvested seven 

to eight months later. Similarly, though for seed consumption, in most parts of 

Nigeria AYB is grown as an annual, but plants have been seen to regrow from 

rootstocks after the dry season every year and some plants have been maintained for 

more than 20 years. Seeds also take the same time as tubers from planting to harvest, 

normally from April/July to December. In some areas of Ghana, it is also cultivated 

as a minor crop in mixed cropping systems with major crops, where it benefits from 

support provided by their stems (Klu et al., 2001). This support is very valuable to 

the plant since better yields for both seeds and tubers have been obtained when 

planted with such crops as maize and yams (Potter, 1992). In the mixed cropping 

system mentioned above, no special attention is given to the crop but it benefits from 

occasional cultural practices applied to the major crops. 

In the same study, Klu et al. (2001) revealed a decline in production with limited 

quantities of the product offered for sale in local markets, even though the price 

compared favourably with cowpea or groundnut. Improved varieties are not 

available and crop establishment is usually achieved through the use of landraces that 

farmers keep from previous harvests or in some cases collect from the markets. Lack 

of improved varieties with dwarf erect architecture, shorter growth period and easier 

to cook seed coats have been identified as obstacles to large scale commercial 

cultivation (Klu et al., 2001). 

1.3 Motivation and justification of the present study 

The potential of AYB cannot be over emphasised. However, like many other crops 

of the third world it is still under-utilized because of inadequate information on its 

physiology, agronomy, lack of good planting material and improved varieties. Due 

to the restricted attention it receives in terms of production and research, it faces 

eminent danger of extinction/erosion. It is also loosing out to major legume and 

tuber crops such as cowpea (Vigna unguiculata) and potato (Solanum tuberosum) 

that have been improved for better yield, quality, disease and pest resistance. Like 

many other under-utilised crops, its survival as a crop has largely been sustained 
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through tradition and knowledge of the local growers. This is evident from the 

paucity of documented information on its culture in general. 

The study reported here was carried out in order to document culture techniques that 

can benefit further investigations as well as production of AYB as an alternative food 

crop. The study is divided into three principal areas viz. clonal propagation 

protocols, characterisation of plant growth and biological nitrogen fixation. 

In this study, clonal propagation protocols have been developed using nodal 

explants/propagules to reproduce confidently material with a high level of genetic 

uniformity from existing shoot meristems. Clonal propagation was investigated 

using macro (leafy stem cuttings) and micro (in vitro propagation from nodal stem 

segments) approaches. Axenic shoot cultures have been achieved from stem nodal 

segments using the cytokinin BAP in the culture medium and shoots generated have 

been rooted in vitro when exposed to auxins (IBA and NAA) and successfully 

established in compost. Optimisation of the protocol for shoot multiplication 

requires further study. Although tissue culture is possible for the mass production of 

plants, its overall cost limits its application and, therefore, a more affordable 

alternative technology of propagation from stem cuttings was also investigated. It 

was established that AYB is very amenable to propagation by cuttings with or 

without auxins; however, auxins at low concentrations were found to confer benefits 

of rapid formation of roots and high numbers of roots. 

Various disciplines aimed at increasing knowledge of plants are either based on plant 

morphology or are closely related to it (Claben-Bockhoff, 2001), thus plant 

morphology, including morphogenesis, remains relevant to practically all disciplines 

of plant biology (Sattler and Rutishauser, 1997). It is, therefore, important for 

growth and development of AYB to be quantified, and this was achieved for the two 

landraces grown in pots and in soil under glasshouse conditions. 

Although it makes up 80% of the earth's atmosphere, nitrogen is still the most 
limiting nutrient for plant growth and the most deficient in soils, and soil deficiencies 

are recognised to be a major cause of low crop yields in Africa (Dakora and Keya, 

1997). Legumes are known to fix atmospheric nitrogen through root nodules 
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developed in association with some rhizobia and AYB has been reported to form 

nodules and fix atmospheric nitrogen in association with Bradyrhizobium sp. 

AUEB20 isolated from the Ethiopian tree Erythrina brucei (Assefa and Kleiner, 

1997). This potential was explored further in this study to establish its promiscuity 

in nodulation and its efficiency in supporting crop growth from the fixed nitrogen. It 

was established that AYB forms nodules with a variety of rhizobia and is able to 

derive adequate nitrogen from the atmosphere to sustain its growth. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Clonal propagation of plants 

Two principles are recognised in the propagation of plants; vegetative (asexual, also 

called cloning) and generative propagation (sexual, by seeds) (Pierik, 1987). In vivo 

vegetative propagation (cuttings, splitting or division, layering, earthing up, grafting 

and budding) is often adopted when generative propagation becomes unsatisfactory 

due to failure of seed set, low seed yield, short seed longevity and heterozygosity of 

the progeny. If, however, conventional methods of in vivo vegetative propagation 

fail for some reason, in vitro vegetative propagation or micropropagation methods 

are usually adopted. 

2.1.1 In vitro propagation 

The value of tissue culture has long been realised in the field of biotechnology and in 

plant science research in general. It enables clones to be produced under highly 

uniform conditions where the environment and nutrient media can be carefully 

manipulated (Lawrence, 1981). 

Tissue culture is made possible by the property of totipotency inherent in living cells 

described under the cell theory of Schwann and Schleiden (1838-39) that 

characterises the cell as the smallest biological unit capable of developing into a 

complete plant (Pierik, 1987). There are several types of in vitro culture procedures. 

Pierik (1987) lists six types, viz. the culture of intact plants (as in seed germination), 

embryos, organ explants, callus, single cells and protoplasts. George and 

Sherrington (1984) divide methods of in vitro plant propagation into two principal 

categories, namely shoot multiplication from meristematic tissues (axillary and 

apical buds) and formation of adventitious shoots (direct organogenesis or indirect 

organogenesis) on pieces of tissue/organs or unorganised callus tissues. The 

adventitious formation or de novo formation of organs that were not present at the 

time of isolation of an explant is a very complex process because existing 

correlations have to be broken down before new ones can be built up which will lead 
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to organ regeneration (Pierik, 1987). Genetic aberrations that sometimes accompany 

such approaches make propagation by adventitious organogenesis not suitable for the 

production of clones. The occurrence of these genetic variations and mutations is the 

greatest disadvantage of these in vitro methods of vegetative propagation (Pierik, 

1987). Pellegrineschi (1997) observed somaclonal variation following the in vitro 

regeneration of cowpea via organogenesis. Due to the unreliability of adventitious 

shoot regeneration as regards perpetuation of a clone, the shoot multiplication by use 

of organised tissues (existing meristematic tissues) is still the most favoured 

technique. Isolated buds (axillary or apical) are allowed to develop into shoots, 

resulting in progeny identical to the mother plant because the process of de- 

differentiation and re-differentiation of the cellular structures is avoided. 

Success of an explant to regenerate complete plants is governed by the interaction 

between its genotype and environment. An enabling environment is necessary for 

the realisation of an organism's genetic potential, hence, success of any in vitro 

technique is dependent on the provision of a conducive environment. High tissue 

growth and regeneration is obtained through the utilisation of well-developed in vitro 

culture techniques/protocols that provide optimal conditions for physiological 

functions of the explant. Various approaches for optimisation of the necessary 

conditions have been described and utilised in many different plants (Mercier et al., 

1992; Cearley and Bolyard, 1997; Tavares et al., 1998; Girija et al., 1999; Rout et 

al., 2000; Akasaka et al., 2000; Ibrahim and Debergh, 2001; Kieffer et al., 2001). 

2.1.1.1 Plant material/propagule 

The genetic makeup and physiology of the plant propagules have far reaching effects 

on regeneration ability. Different plant genotypes interact differently with the 

environment and the physiological condition of the material governs the capacity to 

respond to the environmental stimuli. Pierik (1987) summarised the influence of the 

plant material as emanating from the genotype, age of the plant and tissue/organ, 

physiological state, health of the plant, position of the explant within the plant and 

general growth conditions of the mother/source plant. Thus, selection and 

management of the source plant is an important aspect of successful 

micropropagation (Hartmann et al., 1997) 
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2.1.1.2 Nutritional requirements (macro and micro-elements and sugars) 

Optimal nutrition is important for plant growth and development both in vivo and in 

vitro. Without nutrients, plant growth and development fail. Different genotypes and 

explants behave differently to culture conditions and hence, in order to realise the 

total genetic potential of the cells, it is also important to furnish them with a medium 

that is fully competent to make them grow (Moore, 1989). In tissue culture, the 

medium volume per explant is usually relatively small and is not replenished for a 

long period, therefore, it is pertinent that medium for maximum growth should 

provide the tissues with sufficient essential nutrients for the duration of the culture so 

that the depletion of such nutrients does not limit growth (Jeong et al., 1995). 

Different formulations for media are available and those commonly used are MS 

medium (Murashige and Skoog, 1962), B5 (Gamborg et al., 1968) and Woody Plant 

Medium (McCown and Lloyd, 1981). MS medium is the most popular as most 

plants react favourably to it, but its content of salt is too high for some plants (Pierik, 

1987). The success of plant tissue culture as a means of plant propagation is greatly 

influenced by the culture medium selected (George and Sherrington, 1984). 

2.1.1.3 Plant growth regulators and other organic substances 

Plant growth regulators (PGRs) are organic compounds other than nutrients 

(supplying energy or mineral elements) that, in small amounts, promote, inhibit or 

otherwise modify any physiological process in plants (Basra, 2000). Plant growth 

regulation by hormones within the plant is directed by the genetic code within the 

DNA of the chromosomes and transcription and translation functions of mRNA, 

tRNA and rRNA during protein synthesis (Hartmann et al., 1997). The PGRs 

include both naturally occurring plant growth substances or phytohormones and 

synthetic compounds or chemical analogs. There are five categories of 

phytohormones; auxins, cytokinins, gibberellins, abscisic acid and ethylene. Several 

other compounds capable of regulating various facets of plant growth and 

development have been recently described such as oligosaccharins, brassinosteroids, 

jasmonates, salicylates and polyamines (Basra, 2000). The success of tissue culture 

work is determined to a large extent by the levels and kinds of plant growth 

regulators included in the culture medium (Rout et al., 2000). 
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Auxins play an important role in the promotion of root growth in many plant species 

(Nikam and Shitole, 1997), while cytokinins are recognised to play an opposing role 

to auxins (Moore, 1989). Cytokinins are known to promote growth through their 

recognised role in influencing cell division. Cytokinins used to induce shoot growth 

frequently inhibit root formation and, usually, such plants do not form roots in vitro 

until they are cultured on a medium with or without auxins. Sometimes, sufficient 

cytokinin is carried over to inhibit root formation in the rooting medium (George and 

Sherrington, 1984), so it may be necessary to subculture the plantlets to remove the 

cytokinin residues. The exogenous regulator requirement (i. e. type of regulator, 

concentration, auxin/cytokinin ratio) depends strongly on the genotype and 

endogenous hormone content (Pierik, 1987) because there are explants that produce 

enough hormones not to warrant addition of any extra regulators in the medium. 

Gibberellins are also naturally occurring growth substances that induce growth but 

are not generally known to favour organ initiation (Rout et al., 2000) and usually 

inhibit adventitious root formation (George and Sherrington, 1984; Pierik, 1987). 

Other plant growth regulators that have been observed to play a role in in vitro plant 

regeneration are auxin polar transport inhibitors and gibberellin biosynthesis 

inhibitors. Auxin polar transport inhibitors are usually used to restore regeneration 

capacity of some explants. It has been suggested that addition of such compounds to 

regeneration media might inhibit the transport of endogenous IAA to regeneration 

sites, so that an auxin/cytokinin balance becomes more favourable for the 

regeneration of shoot buds (Nakano et al., 2000). Since gibberellins are well known 

to promote growth but do not favour organ initiation such as adventitious root 

formation, addition to the culture medium of certain chemicals that block 

biosysnthesis of gibberellins has been reported to give positive results (McKinless 

and Alderson, 1993). 

2.1.2 In vitro regeneration of legumes 

Most legume plants are propagated easily generatively in vivo. However, due to 

shortage or unavailability of good seed, it is sometimes difficult to obtain enough 

plants or the progeny may be highly heterogenous. Therefore, in vitro propagation 

may be used to produce many plants rapidly to generate clones. Although an 

excellent method of propagation, in vitro culture is not always easily achieved in all 
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plant families including the Papilionaceae, because some genotypes have less ability 

to regenerate. Studies with other grain legumes; i. e. black gram (Vgna mungo) 

(Geetha et al., 1997a, b), soybean (Glycine max) (Santos et al., 1997; Samoylov et al., 

1998), cowpea (Vgna unguiculata) (Brar et al., 1999), peanut (Arachis hypogea) 

(Chengalrayan et al., 1998; Ponsamuel et al., 1998), pigeonpea (Cajanus cajan) 

(Geetha et al., 1998; Screenivasu et al., 1998; Singh et al., 2003), rice bean (Vigna 

umbellata) (Bhadra et al., 1991), adzuki bean (Vgna angularis) (Chitra and Padmaja, 

2002), mung bean (Vgna radiata) (Avenido and Hattori, 2001; Devi et al., 2004), 

common bean (Phaseolus vulgaris) (Zambre et al., 1998) and tepary bean (P 

acutifolius) (Zambre et al., 1998), have demonstrated the effectiveness of in vitro 

techniques as propagation tools thus offering hope for application in the propagation 

of AYB. 

2.1.2.1 In vitro shoot growth and multiplication from nodal explants 

As previously mentioned, due to unreliability of adventitious shoot regeneration as 

regards perpetuation of a clone, shoot multiplication by use of organised tissues 

(existing meristematic tissues) is still the most favoured technique because the 

resulting progeny is identical to the mother plant. Various factors and their 

interaction have been observed to play an important role in the success of in vitro 

propagation of many plants. Stimulation of in vitro growth from meristematic 

explants has been recorded by many researchers (Kallak and Koiveer, 1990; Fenning 

et at., 1993; Bennet et al., 1994; Yang and Read, 1996; Ramanayake and 

Yakadawala, 1997; Luo and Jia, 1998; Tavares et al., 1998; Chitra and Padmaja, 

1999; Girija et al., 1999; Naik et al., 1999; Akasaka et al., 2000; Bag et at., 2000; 

Bordon et at., 2000; Ebrahim and Ibrahim, 2000; Mhatre et al., 2000; Naik et al., 

2000; Dielen et al., 2001; Ibrahim and Debergh, 2001; Ramirez-Malagon et at., 

2001; Lu, 2002; Mereti et al., 2002; Chaturvedi et al., 2004). 

Various natural and synthetic cytokinins are used to stimulate growth and 

development in tissue culture, kinetin, 6-benzylaminpurine (BAP), 6-(Y, y- 

dimethylallylamino)purine (2iP) and 6-(benzylamino)-9-(2-tetrahydropyranyl)-9H- 

purine (PBA) being in common use (Pierik, 1987). The effects of cytokinins were 

found to be dependent on many factors, including concentration and type of 

cytokinin, genotype, type of explant and other growth regulators such as auxins. 
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Amongst the cytokinins used in tissue culture, BAP produced the highest efficacy in 

shoot/bud proliferation (Yang and Read, 1996; Brar et al., 1997). Increased 

concentration of BAP from 1.0 to 5.0 mg 1"1 resulted in increased shoot bud 

production of black gram (Vgna mungo) (Geetha et al., 1997b). In the same study, a 

high frequency of shoot-bud differentiation was observed at 3.0 mg 1"'. In some 

instances, high concentrations were observed to favour callus proliferation and 

inhibited shoot growth. High concentrations of BA caused browning of cultures, less 

vigorous thin shoots and shoot tip decay of chickpea (Cicer arietinum) (Polisetty et 

al., 1997). 

Incorrect media formulations have been blamed, in some instances, for failure of 

regeneration, or the abnormal growth and development of some explants (Akasaka et 

at., 2000). High concentration of BA stimulated shoot bud formation but adversely 

affected the rate of shoot differentiation from seed explants of chickpea (Cicer 

arietinum) (Polisetty et al., 1997). Avenido and Hattori (2000) recorded significant 

reduction in adventitious regeneration of shoots and increased callusing from 

hypocotyls of adzuki bean (Vgna angularis) when the concentration of BA was 

increased twofold. A high frequency of shoot-bud differentiation was achieved on 

MS medium supplemented with BAP (3.0 mg 1") and NAA (1.0 mg 1-'), and about 

90% of shoot tips produced up to 15 shoots per culture in the case of Black gram 

(Vigna mungo) (Geetha et al., 1997b). Approximately 80% of the shoots with roots 

survived in the field and produced phenotypically normal plants thus ensuring 

perpetuation of clonal material in vitro. Similar trends were observed in the 

induction of shoot tip multiplication of cowpea from shoot tip explants (Brar et al, 

1997) and, in chickpea (Cicer arietinum), complete plant regeneration has been 

reported from seed explants (Polisetty et al., 1997). 

Sufficient nutrient salts are essential to avoid limited culture growth due to nutrient 

stress. Most formulations referred to here used MS salts as basal medium because 

most plants respond favourably to it (Pierik, 1987). Since it is not optimal for all 

plant species, adjustments are sometimes imposed or an alternative formulation used. 

MS medium adjusted to half of the original strength produced both callus and shoot 

buds while full strength MS inhibited bud formation of black gram (Vigna mungo) 

(Das et al., 1998). Ohki and Sawaki (1999) established the benefit to shoot 

12 



proliferation of Delphinium cardinale by adjusting the strength of MS medium by 

one third. Chaturvedi et al. (2004) reported that half strength MS medium required 

initially to establish nodal segment cultures of neem tree (Azadirachta indica) also 

stimulated subsequent multiple shoot formation when enriched with BAP (1µM) + 

GA3 (0.5 µM) or casein hydrolysate (CH) (250 mg 1"'). However, these media did 

not support shoot growth and the shoots remained compact and stunted until MS was 

used at full strength. An alternative to the adjustment of MS medium is to use other 

salt formulations such as B5 and WPM. MS medium was effective for induction and 

initiation phases of Fraxinus angustifolia but replaced by DKW medium (Driver and 

Kuniyuki, 1984) for bud development (Tonon et al., 2001). Carelli and 

Echeverrigaray (2002) achieved an improved explant survival of rose (Rosa hybrida) 

on QL medium (Quoirin and Lepoivre, 1977) (medium with relatively low 

ammonium ion concentration, increased calcium and chlorine ions to nearly zero) 

than MS and B5 due to low oxidation and probably reduced hyperhydricity. Saadat 

and Hennerty (2002) also found DKW medium to be optimal for in vitro 

multiplication of Persian walnut (Juglans regia) compared to MS and WPM media. 

It has been suggested that addition of auxin polar transport inhibitors, 2,3,5- 

triiodobenzoic acid (TIBA) and N-(1-naphthyl)phtalamic acid (NPA), to regeneration 

media may inhibit the transport of endogenous IAA to regeneration sites, so that an 

auxin/cytokinin balance becomes more favourable for the regeneration of shoot buds 

(Charriere and Hahne, 1998; Nakano et al., 2000). Combination of TIBA and 

cytokinin (BA or TDZ) restored regeneration potential of 75-month-old cultures of 

cell clumps of Liliumformosanum by a 10-fold increase in the number of regenerated 

shoot buds but no somatic embryos (Nakano et al., 2000). Addition of auxin 

transport inhibitors (TIBA and NPA) to medium known to favour somatic 

embryogenesis of sunflower led to shoot formation instead (Charriere and Hahne, 

1998). These observation have shown somatic embryos are replaced by shoots as 

auxin polar transport inhibitors stimulate direct shoot regeneration from callus 

without going through embryogenesis. While both observations indicated that the 

morphogenetic response was found to be dose dependent increasing with 

concentration, relatively high concentrations were deleterious. Although auxin polar 

transport inhibitors have been shown to stimulate morphogenesis, this response 

might vary with species. Shoot tip removal and additional defoliation improved 
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axillary branching of Codiaeum variegatum Blume var. pictum Muell. Arg. but 

addition of TIBA did not replace defoliation nor diminish the size of callus formed at 

the base of shoots (Orlikowska et al., 2000). In contrast, Voyiatzi et al. (1995) 

demonstrated the benefit of TIBA where, together with other growth inhibitors, it 

replaced the need for conventional manual shoot tip pinching usually employed to 

eliminate apical dominance and encourage axillary branching. 

Many researchers have recorded a synergistic effect of BAP and GA3 on in vitro 

shoot growth from nodal explants (Pattnaik and Chand, 1997; Purohit and Singhvi, 

1998; Chitra and Padmaja 1999; Vengadesan et al., 2002). Addition of GA3 to 

medium with an elevated BAP concentration facilitated the elongation of in vitro 

grown shoots of mulberry (Morus indica L. ) that was otherwise impaired (Chitra and 

Padmaja, 1999). They observed no enhancement of multiple shoot induction when 

the concentration of BAP was increased above 1.5 mg 1.1 but shoot tips cultured on 

medium containing both BAP (4.0 mg 1"1) and GA3 (0.05 mg 1-1) resulted in shoot 

elongation followed by sprouting of axillary buds which also developed into shoots. 

Pattnaik and Chand (1997) achieved faster bud break both in apical shoots and nodal 

explants and an enhanced frequency of bud break in three mulberries species through 

the incorporation of GA3 (0.2-0.4 mg 1-1) along with BAP (1.0 mg 1'). Nodal 

segments excised from shoots raised in vitro and cultured in medium with 0.4 mg 1"1 

GA3 and 1.0 mg 1'' BAP gave a high number of shoots that was shown with repeated 

subculture of nodal segments of newly formed shoots. Purohit and Singhvi (1998) 

reported improved shoot elongation and an enhanced rate of shoot multiplication of 

Achras sapota (L. ) when GA3 (1 mg 1'') was incorporated in the medium during the 

first subculture after establishment. A single use of GA3 during subculture 

eliminated the need for prolonged culturing on BAP. Subculturing onto medium 

containing GA3 of stunted shoots that had been proliferated on a medium containing 

TDZ resulted in considerable elongation of the shoots (Vengadesan et al., 2002). 

2.1.2.2 In vitro adventitious root formation and growth 

Rooting of in vitro-derived plants is an important step in micropropagation as the 

ultimate goal is to have the plants grow in vivo. Although some species easily form 

adventitious roots on shoots produced in vitro, other species may require specific 

treatments before they can grow roots hence the third stage of micropropagation 

14 



(George and Sherrington, 1984). Auxins are the most commonly applied PGRs to 

stimulate rooting and their potency varies with type of auxin, concentration and plant 

genotype (Pierik, 1987). The naturally occurring auxin IAA is usually used at 

relatively high concentrations while the synthetic and relatively more active auxins 

(IBA, NAA or 2,4-D) are used at lower concentrations. Nikam and Shitole (1997) 

achieved root formation on shoots of niger (Guizotia abyssinica) grown on hormone- 

free media as well as media with hormones. They found no significant difference in 

the numbers of shoots with roots on media with varying concentrations of IAA and 

NAA, however, the best root growth in all shoots was in the presence of 0.5 mg 1.1 

NAA whereas higher concentrations of IAA and NAA induced callus at the base of 

shoots. It is common that low concentrations of auxins lead to adventitious root 

formation whereas with high auxin concentrations root formation fails and callus 

proliferation predominates (Pierik, 1987). Girija et al. (1999) recorded the best 

rooting with IBA at all concentrations tested (0.5-2.5 mg 1-1), compared to IAA and 

NAA which promoted callus at the basal cut end of firecracker plant/flower 

(Crossandra infundibuliformis). 

Avenido and Hattori (2000) found that explants of adzuki bean grown in the absence 

of BA exhibited high frequency root formation. They showed that while BA 

promoted adventitious shoot induction and regeneration it nevertheless effectively 

inhibited root formation. Polisetty et al. (1997) also found that shoots produced 

under various treatments did not produce any roots upon prolonged culture on BA 

medium. An auxin requirement in rooting was demonstrated for black gram (Vgna 

mungo) when shoots that failed to root on media devoid of auxin for 15 days rooted 

within 15-20 d of culture on medium containing different concentrations of IBA (0.1- 

5.0 mg 1"1) (Geetha et al., 1997b). Maximum percentage rooting was observed with 

3.0 mg 1"' IBA. These observations demonstrate the necessity of different media for 

shoot growth and rooting for different plant species. 

Rooting of species previously known to be slow to root has been achieved with 

shoots exposed to gibberellin biosynthesis inhibitors. Such chemicals have the 

capability to block endogenous gibberellin biosynthesis in cultures and thus promote 

root growth. Several studies have demonstrated the beneficial effect of growth 

retardants and auxin in root formation (Bora et al., 1991; Sebanek et al., 1991; Nagy 
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et al., 1991; Sharma and Webster, 1992; Mckinless and Alderson, 1993; Eliasson et 

al., 1994; Leshem et al., 1994; Wiesman and Lavee, 1994; Wiesman and Riov, 1994; 

Wiesman and Lavee, 1995; Porlingis and KoukourikouPetridou, 1996; 

KoukourikouPetridou and Porlingis, 1997; Pan and Gui, 1997; Pan and Tian, 1999; 

Lakshmanan et al., 2002; Wiesman et al, 2002; Keeley et al., 2003). Growth 

retardants act in synergy with auxin by interfering with the synthesis of gibberellins, 

but sometimes they may be acting individually by increasing the level of endogenous 

IAA such as in Ligustrum vulgare cuttings (Sebanek et al., 1991). Rooting was 

achieved on rhizome buds of Lapageria rosea that were proliferated in the presence 

of the gibberellin biosynthesis inhibitor paclobutrazol (McKinless and Alderson, 

1993). As a growth retardant, paclobutrazol may, however, also have deleterious 

effects on plant growth as observed in delayed seedling emergence and retarded 

vegetative growth of maize (Zea mays) (Khalil and Rahman, 1995) and in inhibition 

of rooting in bean (Phaseolus vulgaris) (Tani and Nagy, 1996). 

2.1.2.3 Acclimation and field establishment of in vitro-derived plants 

Transfer of rooted plants to soil should be done carefully to reduce losses because of 

the differences between the environment inside and outside tissue culture vessels. 

Plants growing in vitro are heterotrophic because of the media they grow in and, 

therefore, need to become autotrophic when transferred to the external environment. 

Leaves developed in vitro are so modified anatomically such that stresses of 

terrestrial environment make them functionally inadequate when such plantlets are 

transplanted immediately to the glasshouse (Grout and Aston, 1978a). It is thus 

important for them to adjust gradually from the heterotrophic to the autotrophic state. 

Two distinct groups of micropropagated plantlets are recognised; those with 

photosynthetically incompetent in vitro formed leaves and those able to adapt to 

autotrophic conditions (Van Huylenbroeck et al., 1998). In addition to the nutrition, 

in vitro grown plants lack wax on the cuticle necessary to reduce transpirational 

losses. To ensure survival, it is imperative for in vitro plants to have enough starch 

reserves and also be in a high relative humidity environment to see them through 

their first days in vivo. Alternatively, modification of the in vitro conditions to 

induce full autotrophic capability of in vitro derived leaves or attempt to increase the 

rate of new leaf production after transplanting (Grout and Aston, 1978b; Grout and 

Millam, 1985). 
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2.1.3 Propagation of plants by stem cuttings 

Although one of the best propagation tools, tissue culture may not be appropriate for 

many nurseries where facilities or technical expertise to conduct an effective micro- 

propagation system are absent (Almehdi et al., 2002). Rooting of cuttings of easy to 

root species is usually used as a method of asexual propagation to achieve genetically 

identical plants. For the induction of a vigorous root system, a simple and rapid 

technique is required which will shorten the growth cycle and provide high 

propagule survival giving rise to vigorous plants (Vesperinas, 1998). 

Two types of adventitious roots are recognised: preformed or latent root initials and 

wound-induced roots (Hartmann et al., 1997). Preformed roots exist naturally on 

stems and may emerge while stem is still attached to the mother plant or lie dormant 

until stems are made into cuttings and placed under conditions conducive to root 

emergence. Wound-induced roots are considered to form de novo and develop only 

after a wound has been made. Formation of adventitious roots on stem cuttings is 

influenced by a number of factors including hormonal balance (auxins and other 

plant growth regulators), condition of propagules (physiological status and genotype) 

and the interaction effects of these factors. Day and Loveys (1998) observed that the 

response of woody plant cuttings might be species specific and that seasonal 

variation in the success of propagation may be mediated through changes in the 

concentrations of endogenous plant growth regulators or carbohydrates. Although 

the application of auxin (IBA) to the base of cuttings improved the rooting potential 

of Cotinus coggygria `Royal Purple', negative effects associated with removing a 

proportion of mature leaves appeared to relate to alteration in the carbon balance 

rather than an influence on the supply of endogenous auxin to the potential rooting 

zone (Cameron et al., 2001). 

2.1.3.1 Hormonal control of stem rooting 

Auxins play an important role in the promotion of rooting in many plant species 

(Henry et al., 1992; Chee, 1995; Goh et al., 1995; Garrido et al., 1996; Cameron et 

al., 2001), although they can also be inhibitory to plant growth in general if applied 

in high concentrations. This observation has been confirmed through several studies 

where exogenous application of auxin was found to hasten the rate of rooting, 
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increased root number and final rooting percentage of most species, although in some 

cases relatively high concentrations resulted in inhibited root formation and growth, 

reduced bud/shoot growth and even mortalities (Badji et at, 1991; Demeke et at, 

1992; Edson et at, 1994; Ofori et at, 1996; Shiembo et at, 1996; Mesen et at, 

1997; De Andres et at, 1999; Copes and Mandel, 2000; Fett-Neto et at, 2001; 

Aminah, 2003; Ercisli et at, 2003). Aminah et at (1995) observed that auxin (IBA) 

significantly increased the rate of root emergence in leafy stem cuttings of Shorea 

leprosula, but higher doses (more than 20 µg per cutting) reduced rooting. Dunn et 

at (1996) also found differences in root formation and growth between cuttings of 

Pistacia chinensis treated with different concentrations of IBA. These observations 

suggest an existence of optimal auxin concentrations for various species, with some 

species requiring it for rapid root development or for stimulating more roots. 

2.1.3.2 Physiological status of propagule/propagation material 

Plant tissues need to be supplied with carbohydrates before they will produce 

adventitious roots and in green tissues this is achieved through photosynthesis 

(George and Sherrington, 1984). The presence of leaves on cuttings has also been 

found to be beneficial due to their ability to produce endogenous auxins (Hartmann 

et al., 1997) as well as assuring necessary metabolic functions (Badji et al., 1991). 

Several researchers have observed the association of higher rooting percentage and 

root number with relatively large leaf area (Ofori et al., 1996; Dick et al., 1998; 

Cameron et al., 2001; Tchoundjeu et al., 2004). Nketiah et al. (1998) recorded 

higher rooting percentage of Triplochiton scleroxylon from cuttings with larger leaf 

area of 100 cm2 than those with 30,50 and 80 cm2. In contrast, (Aminah et al., 

1997) observed highest rooting of stem cuttings with small leaf area (15 em2) and 

decreased rooting with increasing leaf area (30 and 60 em2) in Shorea leprosula, and 

this was attributed to the greater water loss from the larger leaf area. 

2.2 Nodulation and nitrogen fixation 

Nitrogen (N) is the most limiting nutrient for plant growth and the most deficient in 

soils although it makes up about 80% of the earth's atmospheric air. It is an essential 

plant nutrient and the major constituent of both structural and non-structural 

compounds in plants. Nitrogen also comprises 16% of proteins and, thus, neither 
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man, other animals nor plants can survive unless plant roots extract it from the soil 

(Frink et al., 1999). Thus, its deficiency in the soil often results in reduced crop 

yields. To redress the problem of deficiency, nutrients are usually imported in the 

form of mineral fertilizers, but for a variety of social, economic and political reasons 

this is generally difficult, especially in Africa (Giller, 2001). Where fertilizer is less 

costly, as in the developed world, it is feared that humanity's increase in the fixation 

and mobilisation of N by fertilization and combustion is increasing emissions and 

thus deposition of nitrogen oxides and NH4-N that can acidify soils and eutrophy 

waters (Frink et al., 1999). It is also feared that increased depositions of N will lead 

to loss of genetic diversity where plants favouring high N supply will displace others. 

An essential element of agricultural sustainability is the effective management of N 

in the environment (Graham and Vance, 2000) and, in order to combat pollution and 

sustain aquatic culture/agriculture systems, Gard et al. (2001) recommended a 

reduction in the excessive use of organic and inorganic fertilizers. This usually 

involves some use of biologically fixed N2 because N from this source is used 

directly by the host plant and, thus is less susceptible to volatilisation, denitrification 

and leaching. 

The capability of biological fixation of atmospheric nitrogen (diazotrophy) is 

restricted to organisms with prokaryotic cell structure, viz. bacteria and blue-green 

algae (Cyanobacteria) (Marschner, 1995). Three major strategies of N2 fixation can 

be differentiated in terrestrial ecosystems, i. e. symbiotic, associative and free-living 

nitrogen fixing organisms, differing in both energy source and fixation capability 

(Marschner, 1995). The symbiotic system has the highest fixation efficiency because 

the nitrogen fixed is rapidly translocated from the organism into the plant. The 

process is a highly mutualistic relationship between the two organisms because each 

'derives benefit; the host plant (macrosymbiont) provides the bacteria 

(microsymbiont) with energy material (from the photosynthesis process) while the 

bacteria converts atmospheric nitrogen (gaseous N2) to a plant usable form (NH4). 

Legumes are known for their ability to fix atmospheric nitrogen through root nodules 

developed in symbiotic relationship with some strains of gram negative bacteria of 

the Rhizobiaceae (often collectively referred to as rhizobia). There are six genera 

recognised for root-nodule bacteria of legumes (Azorhizobium, Bradyrhizobium, 
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Mesorhizobium, Rhizobium, Allorhizobium and Sinorhizobium). Amongst the six 

genera, Rhizobium (fast growing) and Bradyrhizobium (slow growing) are the 

principal soil inhabitants (Castro et al., 1999) and thus form a nitrogen-fixing 

symbiosis with most members of the family Leguminosae. These two genera are 

generally referred to as promiscuous due to a broad host range nodulated by most of 

their strains. There must be compatibility between the common core elements of the 

legume symbiosis and the most important general principle is the specificity of the 

symbiotic relationship established between the rhizobia and their host plants (Giller, 

2001). 

2.2.1 Nodulation in legumes 

The first step in establishment of rhizobial-legume symbiosis is an interaction 

between a legume species that is susceptible to nodulation and compatible rhizobia 

(Giller, 2001). Certain strains of rhizobia may be termed compatible if they form a 

symbiosis with some legume species or incompatible if they are not able to form a 

symbiosis with the target host plant. Each rhizobial strain has an established host 

range, with which it is capable of forming a symbiotic relationship but not with 

others. Such rhizobia may have been introduced deliberately into the soil by 

inoculation, or they may already be present in the soil as free living bacteria, in 

which case they are termed `indigenous rhizobia'. The rhizobia must first infect or 

enter the plant and induce root/and or stem nodules to prove the ability or 

`infectiveness' of its strain. Infection is achieved through several mechanisms, viz. 

root hair (deformation) penetration and infection thread formation, direct entry via 

wounds or sites of lateral root emergence and penetration of root primordia found on 

the stems of plants (Giller, 2001). The latter mechanisms occur without any 

infection thread formation and thus are termed direct entry. The modes of 

penetration differ between legume species. Harrier et al. (2000) collectively term the 

early events in the symbiotic process leading to legume nodulation as ̀ pre-infection'; 

they take place in the rhizosphere and involve rhizobial chemostasis/electrotaxis 

towards the root, root colonization by rhizobia, attachment of rhizobia to surfaces, 

particularly to emerging root hairs and, in many species root hair deformation and 

curling. Therefore, effective formation of root nodules requires an introduction of 

the bacteria as early as possible in the plant establishment. A major component of 

this initial interaction consists of stimulation of biochemical activity in the rhizobial 
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strains by flavonoid and isoflavonoid molecules in the plant exudates recognised to 

have some specific preference on nodgene (nodulation gene) activation (Giller, 

2001). Flavonoid or isoflavonoid compounds enter the bacterial cell where they bind 

to a protein termed NodD, ultimately converting it into a transcriptional activator for 

stimulation of other remaining nodulation genes to synthesize a signal molecule (Nod 

factor) that is secreted into the rhizosphere. 

Infection begins with attachment to immature emerging root hairs and consequent 

deformation, curling of the root hairs and hydrolysis of root surfaces at the point of 

infection (centre of the crook) that allows penetration of the infection thread. In 

response to this supposed invasion, there is evidence of host-cell proliferation in the 

root cortex adjacent to infected root hairs that become nodule primordia/meristems 

and consequently rhizobia are released into it. The continued infection thread 

penetration of the root cortex, host cell division and enlargement results in formation 

of a visible nodule that can differ in appearance and structure depending on the 

legume host species. Two types of nodules are recognised; the determinate type, 

such as those generally found in peanut, and the indeterminate ones similar to those 

formed on pea and alfalfa (Akasaka et al., 2000). Determinate nodules are round and 

have no pronounced meristematic region, as compared with the elongated and 

pronounced meristematic structure of indeterminate ones (Giller, 2001). Many 

features of the symbiosis are host controlled as a single rhizobial strain is often 

capable of infecting different host plants by different means, and giving rise to 

nodules of different structures. 

Nodulation alone does not necessarily mean nitrogen fixation. Thus, a further 

distinction of nodules is brought about by their capacity/ability to fix N2 from soil 

air. Nitrogen fixing nodules are characterised by a large pink or red region due to the 

presence of leghemoglobin protein while the non-active ones are either white or 

greenish brown. Leghemoglobin (red in colour due to the heure group as in blood 

hemoglobin) is thought to help transport oxygen (02) into the bacteriods at carefully 

controlled rates because too much of it inactivates the enzyme that catalyses nitrogen 

fixation (Salisbury and Ross, 1992). 
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2.2.2 The nitrogen fixation process 

Plants use nitrogen only in the combined forms of ammonium (NH4) and nitrate 

(N03) ions, but the greatest concentration of N is in the form of dinitrogen gas (N2) 

that is not usable by plants. The process of reducing nitrogen to a more available 

form for plants is very costly in terms of energy which explains why N2-fixation 

capability is not universal (tiller, 2001). The reduction of N2 to the useful form of 

ammonia is illustrated by the following equation; 

N=N + 8H+ + 8e + 16ATP-* 2NH3 +H2 + 16ADP +l 6PI 

In biological nitrogen fixation the process is driven by the enzyme nitrogenase found 

in bacteria and, because plants do not possess it, they are unable to carry out this 

reaction on their own, but acquire the capacity once in association with the correct 

rhizobia bacteria through root nodules. The legume as a host supplies the required 

energy in the form of carbohydrates for ATP synthesis and reducing equivalents 

(electrons). Nitrogenase enzyme catalyses N2 and other substrates with triple bonds 

such as H+ and C2H2 (acetylene); this utilization of other substrates offers an 

important tool for studies on its activity and N2 fixation (Marschner, 1995). 

The ammonia generated by nitrogenase is assimilated as ammoniun (NH4) ions into 

glutamine and glutamate (Giller, 2001). This process happens via the joint action of 

the enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT), 

(Marschner, 1995; Giller, 2001). The final fate of the fixed nitrogen is its 

participation in plant growth as a major building block of proteins; therefore it must 

be transported to sites of utilization. According to Giller (2001), in legumes the 

fixed nitrogen is further assimilated and transported predominantly as the amino 

acids asparagine and glutamine in amine exporters, or as the ureides allantoin and 

allantoic acid in ureide exporters. Hence there are two types of nitrogen fixing 

legumes, the amine exporters and ureides exporters based on the composition of their 

xylem sap. The activity of the enzyme (nitrogenase) involved in the nitrogen 

fixation reaction as well as the presence of the fixed nitrogen transportation 

compounds accorded studies in biological nitrogen fixation tools to determine the 

efficacy or effectiveness of the symbiosis process. 
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2.2.3 Nodulation and nitrogen fixation in cropping systems 

While nitrogen fixing legumes benefit directly from fixed nitrogen, beneficial effects 

of legumes on succeeding crops arise through a variety of ways (Giller, 2001). 

Although constrained by various environmental and nutritional factors, including 

cropping patterns used, in Africa, grain legumes still fix 15-210 kg N ha-1 seasonally, 

thus making them an important component of traditional cropping systems (Dakora 

and Keya, 1997). One of the important contributions of AYB and other legumes in 

mixed cropping systems is the contribution to soil productivity. Incorporation of 

rapidly growing legumes that have high nitrogen fixing capacity plays an important 

role in crop productivity through improved soil health and fertility (Pretty et al., 

2003). The use of AYB and other legumes as cover crops has been shown to 

increase efficiency of fertilizer utilization and the amount of organic matter for 

maintenance of high soil productivity (Obiagwu, 1995b). The contribution of 

nodulating legumes to soil and crop productivity has been widely documented 

(Dakora and Keya, 1997; Fettel et al., 1997; Rodriguez-Navarro et al., 1999; Graham 

and Vance, 2000; Hungaria and Vargas, 2000; Mpepereki et al., 2000; Panzieri et al., 

2000; Giller, 2001; Maingi et al., 2001; Molla et al., 2001; Zahran, 2001; Fening and 

Danso, 2002; Aranibar et al., 2003). 

The significance of the contribution of nodulating legumes to soil and crop 

productivity was found to be dependent on the rhizobial strain used and also on the 

legume/rhizobial strain combination. In beans (Phaseolus vulgaris), Rodriguez- 

Navarro et al. (1999) observed that, although there were differences between 

rhizobial strains in terms of biomass and N concentration in shoots resulting from 

differences in nitrogen fixation rates, plant genotype significantly modified the 

performance of rhizobial strains. Inoculation of legumes with an effective strain can 

significantly replace chemical fertilizer for the supply of nitrogen. Maingi et al. 

(2001) recorded the highest seed dry weights and subsequently yields per hectare of 

common bean (Phaseolus vulgaris L. ) from inoculated and N application treatments. 

While the legume-rhizobial symbiosis is understood for many major legume crop 

species, it has been studied less for underutilised crops such as AYB. An 

endosymbiont (characterized and designed Bradyrhizobium sp. AUEB20) isolated 

from the Ethiopian tree Erythrina brucei formed a small number of large, 
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indeterminate N2-fixing nodules with AYB (Assefa and Kleiner, 1997). Obiagwu 

(1995a) recorded the formation of nodules on AYB plants that did not receive any 

fertilizer and those that received phosphorus, but none in plants receiving nitrogen 

treatment. In an intercropping experiment where no fertilizer was applied, AYB was 

one of the crops found to contribute substantially to maize, yam and cassava 

productivity (Obiagwu, 1995b). Contribution of these legumes to soil productivity 

was attributed to nitrogen fixation and also to their low nitrogen harvest index that 

leaves substantial quantities of N behind in their residues and hence available to 

other crops. In a screening experiment for a suitable cover crop, (Obiagwu, 1997) 

observed that nitrogen fixation ability of AYB was low in phosphorus deficient soils 

but improved dramatically under phosphorus application. Tissue nitrogen content 

increased dramatically from 26 to 203 mg kg" in no phosphorus treatment to the 

phosphorus treatment respectively. In the above observations, AYB contributed to 

nitrogen fixation without any inoculation, thus suggesting that AYB is promiscuous 

with a wide range of strains. 

2.3 Conclusion and hypotheses 

Previous work performed in legumes and other plants offer an opportunity of 

application in the study of AYB. 

The main objectives of the study were: 

Develop clonal propagation protocols that can be used as tools for further 

studies requiring either genetically uniform material or planting material 

in place of scarce seed material by testing the hypothesis that AYB is 

amenable to clonal propagation through the use of stem cuttings (macro 

propagules) and in vitro techniques (micro propagules). 

ii. Characterise growth of the plants and variation between landraces through 

the hypothesis that AYB landraces will respond differently to 

environment in regard to growth and development [vegetative growth/dry 

matter accumulation rate and reproductive growth (flowering and seed 

yield)]. 

iii. Explore the biological nitrogen fixation capacity of AYB plants and how 

it can enhance the potential of the species as an alternative food crop for 

resource poor farmers. The hypothesis is that, since most tropical 
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legumes are promiscuous with various rhizobial strains, AYB plants will 

be nodulated by different strains and derive adequate nitrogen from the 

atmosphere to support growth; rhizobial strains also vary in their 

infectivity and efficiency to fix atmospheric nitrogen in association with 

different AYB landraces. 
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CHAPTER 3 

GENERAL MATERIALS AND METHODS 

3.1 Introduction 

Experiments described in this thesis were conducted at the University of Nottingham, 

School of Biosciences, Sutton Bonington Campus, UK from September 2001 to 

September 2004. This chapter describes materials and methods common to the 

whole study and any specific methodologies are described under the relevant 

chapters. 

3.2 Source of plant material 

Seeds of five landraces of African yam bean (AYB) were obtained from Professor 

Richard Mithen of the University of Nottingham, Sutton Bonington, UK with the 

following information (Table 3.1). The description of the seeds is shown in Plate 3.1. 

Table 3.1 AYB landraces used in the study 

Landrace Collector Area of origion/collection Part used 
DP 860108-01 Dr. D. Potter Ohuno, Kwara State, Seed 
(AYB 1) University of California Nigeria 

Davis 

DP 860117-01 Same as above Arugu, Kwara State, Seed 
(AYB2) Nigeria 

DP 880614-05 Same as above Yungu, Bas-Zaire, Root tuber 
(AYB3) Zaire/DRC 

DP 880614-06 Same as above Mbemba Marendi, Bas- Root tuber 
(AYB4) Zaire, Zaire/DRC 

DP 860108-02 Same as above Alife-Kese, Bendel State, Seed 
(AYB5) Nigeria 
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Plate 3.1 Colour. shape and size variation of seeds of AYB landraces [(A) AYB1, (B) 
AYB2. (C) AYB3, (D) AYB4 and (E) AYB5] used in the study. Bar = 10 mm. 

3.3 Establishment and maintenance of plants 

Seeds were surfaced sterilised by shaking for 1 min in a solution of 10 % v/v 

Domestos bleach (Lever Faberge Ltd., Kingston-upon-Thames, UK; 

www. domestos. co. uk), rinsed and soaked in purified water for 1 h. Five seeds were 

incubated at 30°C on filter paper moistened with purified water in Petri dishes. 

Seeds were inspected frequently to replenish water and any germinating seeds 

immediately transferred to compost. Plants were grown in pots using an equal 

mixture by volume of John Innes No. 3 compost (William Sinclair Horticulture Ltd., 

Lincoln. UK; www. william-sinclair. co. uk ) and Levington M3 compost [The Scotts 

Company (UK) Ltd., Ipswich, UK] under glasshouse and controlled environment 

room conditions described in Section 3.7. Water was applied on an ad lib basis (at 

about 3d intervals) as and when the compost showed signs of being dry. Nutrients 

were replenished occasionally through irrigation using Poly-Feed fertilizer 

(18: 18: 18+2) [Haifa Chemicals (Ltd. ), Haifa Bay, Israel] at a normal feed of 1.0 g 1-1 

when plants showed some signs of nutrient stress. Perpetuation of clonal stock plant 

material was maintained by clonally propagated plants (rooted stem cuttings and in 

vitro generated plants). 

Occasional examination for insects/pests was carried out and several insect pests 

were observed and controlled through biological means and in some cases by use of 

chemicals. Red spider mites (Tetranychus urticae) and thrips (Frankliniella sp. ) 
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were effectively controlled by application of predators (Phytoseiulus persimilis) and 

(Amblyseius cucumeris) (Syngenta Bioline, Little Clacton, UK) respectively, every 

14 d until the infestation was under control. Aphids were controlled by the use of the 

systemic chemical Imdacloprid (Intercept; Monro South, Wisbech, UK; 

www. monrosouth. co. uk) applied to soil/growth medium and taken up by roots. Scale 

insects were also observed, but no control measure was applied as infested plants 

were destroyed. 

3.4 In vitro propagation experiments 

3.4.1 Preparation of stock solutions of plant growth regulators (PGRs) 

PGR stock solutions for in vitro trials were made mostly at a concentration of 0.5 mg 

ml-1 for the auxins indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and a- 

naphthaleneacetic acid (NAA), cytokinins 6-benzylaminopurine (BAP), 6-(y, -y- 

dimethylallylamino)purine (2iP), thidiazuron or N-phenyl-N'-1,2,3-thidiazol-5- 

ylurea (TDZ), anti-auxin/auxin polar transport inhibitor 2,3,5-triiodobenzoic acid 

(TIBA) and the gibberellin GA3. Anti-gibberellins/gibberellin biosynthesis inhibitor 

paclobutrazol [N-dimethylaminosuccinamic acid (PP333)] was made at 0.02 mg ml-1 

because of its low solubility in water. To prepare 100 ml of PGR stock solution of 

0.5 mg ml" concentration, 0.05 g of the pure PGR was placed in a small beaker with 

a magnetic stirrer and 1-3 ml of 1M KOH added to dissolve the compound. While 

continuously stirring, water was added very slowly with the aid of a burette and 

volume finally made up to 100 ml with a volumetric flask. To prepare a stock 

solution of PP333,10 mg was placed in a beaker and dissolved, as for the other 

PGRs, and volume made up to 500m1 with purified water. All stock solutions were 

kept in the refrigerator at 4°C. 

3.4.2 Preparation of culture media 

Most growth media used in this study were made from MS medium (Murashige and 
Skoog, 1962) powdered salts (DUCHEFA, Haarlem, The Netherlands) at a 

concentration of 4.41 g I", unless otherwise stated. In the preparation of media, the 

following were added into half volume of purified water, namely sucrose (Fisher 

Scientific UK Ltd., Loughborough, UK, www. fisher. co. uk) at 30 g 1"', MS salts and 
PGRs. The volume of the solution was made up with purified water and the pH 
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adjusted to 5.6-5.8 by adding O. IM or IM HCL or KOH, before adding the gelling 

agent, agar (Sigma-Aldrich Co, St. Louis, USA) at 7g 1"'. The medium was 

autoclaved for 10 min at 106°C to melt the agar and thereafter dispensed while hot 

into screw top glass vessels using an Accuramatic - MK5 dispenser (Accuramatic, 

Wellington, UK). The medium in the culture jars was sterilised by autoclaving at 

120°C (15 psi) for 20 min. 

Heat labile media components such as TIBA and PP333 were filter sterilised using a 

Sartorius Minisart NML single use syringe filter unit with pore size of 0.20 µm 

(Sartorius AG 37070, Goettingen, Germany). The required volume of sterilised heat 

labile components was then added to sterilised medium after it was allowed to cool 

to 40°C and the required volume of medium dispensed aseptically into sterile culture 
jars. 

3.4.3 Aseptic technique 

All aseptic procedures were carried out in a laminar flow cabinet that had been 

thoroughly sterilised with 70 % (v/v) Industrial Methylated Spirit (IMS) to minimise 

contamination. Metallic instruments, such as scalpel blades and forceps were 

sterilised by heating in a hot glass bead sterilizer (Model Steri-350, Steripot; Simon 

Keller ACS Burgdorf, Switzerland; www. simonkeller. ch) at 250°C for 2: 1 min. 
Hands, surfaces of culture vessels and the laminar flow cabinet were regularly 
disinfected by spraying with 70% IMS. Only sterilized material was placed inside 

the lamina flow cabinet. 

3.4.4 Preparation, inoculation and incubation of cultures 
Explants used for establishment of axenic cultures were nodal segments obtained 

from stock plants growing in glasshouses or controlled environment rooms. The 

nodal segments were each cut into length of about 2.5 mm (Plate 3.2), surfaced 

sterilised in 10 % (v/v) Domestos bleach for 20 min and then rinsed 3 times with 

sterile purified water. Each explant was trimmed to 10-15 mm by removing sterilant- 

damaged ends before inoculation/insertion onto culture medium in an incubation 

vessel. Cultures were incubated in glass vessels (60 and 100m1 capacity) with metal 

screw tops. Sterilization and inoculation of explants were conducted in the laminar 
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flow bench under aseptic conditions and cultures incubated in a soil-free controlled 

environment room as described in Section 3.7.1. Cultures were frequently inspected 

to detect and dispose off any contaminated material. 

Plate 3.2 Stem nodal segment with axillary bud (micropropagule) used as explant for 
in vitro propagation (micropropagation). Bar = 15 mm. 

3.5 Propagation by stem cuttings 

3.5.1 Preparation of auxin solution 

IBA potassium salt was used as auxin treatment to stimulate adventitious root 

formation. The stock solution was prepared in the highest concentration required for 

the experiment and then weaker solution made by dilution of the stock solution. 

Since less quantities of solution were usually required, the greatest volume that could 

be prepared was 50 ml. To make a solution of 10 % auxin concentration, 5g of 

potassium salt was placed in a beaker with a magnetic stirrer and dissolved slowly by 

adding purified water. The solution was stirred continuously and the volume finally 

made up to 50 ml using a volumetric flask. To prepare 50 ml of 5% auxin 

concentration. 25 ml of the stock solution (10% auxin) was measured and the volume 

made up to 50 ml with purified water and the same dilution procedure followed for 

other concentrations. Solutions were stored in refrigerator set at 4°C. 

3.5.2 Preparation and incubation of propagules 

Stem segments with one fully developed healthy trifoliate leaf (Plate 3.3) were used 

as propagules. Stem segments were cut into sections of about 10 cm in length and 

auxin applied by dipping about 2 cm of stem basal end in the auxin solution for about 

60 s. About 2.5 cm stem of auxin treated cutting was inserted into the rooting 
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compost made up of equal parts by volume of Perlite (Silvaperl Graded Horticulture 

Perlite, William Sinclair Horticulture Ltd. ) and peat (Scott International B. V., 

Geldermalsen. The Netherlands) placed in Plantpak plastic seedlings trays with 50 

cells each (Desch Plantpak Ltd., Maldon, UK; www. desch-plantpak. co. uk). Each 

cell in the tray had a capacity of 35 cm3. Trays holding cuttings were placed in 

unheated polyvinyl propagators with transparent lids (Base, 41 x51 x8 cm; lid, 15 cm 

height) (Richard Sankey, Nottingham, UK; www. rsankey. co. uk) to maintain 

humidity and incubated in controlled environment growth rooms as described in 

Section 3.7.2. Cuttings were sprayed every 3d with a mist of water to maintain 

humidity around the cuttings. 

Figure 3.3 Stem nodal cutting with an axillary bud used as propagule for rooting 
(macropropagation) (Bar = 20 mm). 

3.6 Nodulation and nitrogen fixation 

3.6.1 Rhizobial inocula 

Inocula used were prepared from strains obtained from various sources as listed in 

Table 3.2. 
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Table 3.2 Rhizobial strains used in experiments 

Strain Host range Host plant Source 
Bradyrhizobium sp. Erythrina brucei Prof. D Kleiner, Microbiologie 
AUEB20 der Universitat, Bayreuth, 

German 
Bradyrhizobium sp. Parasponia Prof. BG Rolfe, The Australian 
CP279 (broad host range) andersonii National University, Canberra, 

Australian. 
Rhizobium sp. NGR234 Lablabpurpureus Prof. BG Rolfe, as above 
(broad host range) 
Rhizobium sp. ORS302 Aeschynomene Dr. A Alazard, ORMSTON, 
(Aeschynomene spp. ) pfundii Dakar, Senegal. 
Rhizobium sp. ANU240 Lablabpurpureus Prof. BG Rolfe, The Australian 
(broad host range) National University, Canberra, 

Australian. 

3.6.2 Cultivation of rhizobia 

Bradyrhizobium AUEB20 strain was cultivated on yeast extract mannitol medium 

[YEM; mannitol (10 g), yeast extract (0.5 g), KH2PO4 (0.5 g), KZHPO4 (0.5 g), 

MgSO4 7H2O (0.2 g), NaCI (0.2 g) and purified water 11] for slow growing bacteria, 

according to Assefa and Kleiner (1997), while the other rhizobial strains were 

cultivated on YEM without KH2PO4 but with yeast extract and NaCl reduced to 0.4 

and 0.1 g, respectively (Dalton, 1980). For the preparation of semi-solid medium, 

agar was added at 20 g for Bradyrhizobium AUEB20 strain and 15 g for other 

rhizobial strains. The medium was sterilised in the autoclave at 120°C (15 psi) for 

20 min and dispensed under aseptic environment into sterile Petri dishes at a volume 

of 30 ml each. Cultures were grown first in semi-solid medium in the dark at 30°C 

±1 for multiplication. Stock cultures were kept in the refrigerator at 4°C and 

subcultured every 28 d for maintenance. 

3.6.3 Preparation of inocula, inoculation and cultural care of plants 

For preparation of inoculum, a Petri dish of semi-solid culture was divided equally 

into 2 and each half transferred to 150 ml liquid medium (broth cultures) and 

incubated in the dark on a shaker for 24 h. The broth culture was diluted to 50% of 

its original strength with liquid medium and number of bacteria (Inoculum strength) 

in the inoculum was estimated by the dilution plate count method (Alexender, 1999). 

AYB1 and AYB2 plants raised through stem cuttings were inoculated as soon as they 
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formed roots by immersing the roots in the inoculum and then potting in low nutrient 

compost made of equal parts by volume of Perlite and Levington F2s compost [The 

Scotts Company (UK) Ltd. ] for all the experiments. Thereafter, the remaining 

inoculum was evenly distributed among the plants. Pots were placed in Stewart 

plastic trays (100x40x5 cm) to trap inoculum-contaminated water. Irrigation was 

with tap water on an ad lib basis from below by capillary to avoid leaching of the 

inoculum. Pest management was practised according to the procedure described in 

Section 3.3. 

3.6.4 Detection of nitrogen fixation by the Acetylene Reduction Assay (ARA) 

for nitrogenase activity 

The ability of nitrogenase, the enzyme responsible for reduction of nitrogen gas to 

ammonium (NH4), to act on other substrates with a triple bond makes it possible to 

be assayed by gas chromatography. The ARA utilises industrial acetylene gas 

(C2H2), which is reduced by nitrogenase acting on the triple bond to give ethylene 

(CZHL). The ethylene produced is assayed by gas chromatography giving an 

indication of the nitrogenase activity in the nodules hence the fixation 

capacity/efficiency. 

Nodules were detached from newly harvested intact plants and assessed for 

nitrogenase activity by using the ARA procedure described by (Hardy et al., 1968) 

and (Turner and Gibson, 1980). Nodules were transferred into 70 ml tubes and 

sealed with gas tight rubber closures (SubasealsTM; Scientific Laboratories Supplies, 

Nottingham, UK); 10% (7 ml) of air was removed with a hypodermic needle and 

replaced with the same volume of industrial acetylene gas. Another tube was filled 

with fresh roots from freshly harvested intact plants of the control treatment (i. e. 

plants that did not receive any rhizobia and thus did not nodulate) and given 

acetylene as above to serve as control. Tubes were incubated at 25°C for 1h and, 

thereafter, 0.5 ml samples of gas from each tube was removed with a hypodermic 

needle and analysed for ethylene production with a Pye Unicam PU4500 gas 

chromatography (GC) (Pye Unicam Ltd. Cambridge UK) with 183 cm (2.0 mm i. d. ) 

glass column containing "Porapak N" with a mesh size of 80-100 (Phase Separations 

Ltd., Watford, UK). The carrier gas was nitrogen: hydrogen: air (15: 17: 300 by 

volume) at flow rate of 27 ml miri 1. The oven containing the column was set at 60°C 
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while flame ionisation detection was set at 121°C. The flame ionisation detection 

range (sensitivity) was set at 256. 

Total ethylene generated was calculated using conversion factors (Table 3.3) from the 

calibration curve for the Pye Unicam PU4500 GC (Webster, 1995; Stone, 2000). The 

peak height from the chart was determined using a ruler and C2H4 produced 

calculated using values given in Table 3.3. The number of nmoles present in a 

sample was calculated as (e. g. at a sensitivity detection range set to 256): 

A1 mm peak height = (2.28/100) x2x head space volume. 

Where head space volume refers to the volume of the tube holding the sample 

(70 ml in the case of this study). 

Table 3.3 Conversion factors for calculating ethylene concentration (Adapted from; 
Stone, 2000) 

Detector Range nmoles of ethylene 

64 0.57 

128 1.14 

256 2.28 

512 4.56 

3.6.5 Quantification of amount of N2 fixed (tissue nitrogen concentration 

analysis) 

Whole above plant samples were dried at 80°C for 48 h and ground to a fine powder 

using CYCLOTEC 1093 Sample mill (FOSS TECATOR, Höganäs, Sweden). 

Determination of total tissue nitrogen was carried out on 55-60 mg of finely ground 

sample using a NA 200 Nitrogen Analyser (Fisons Instruments, Okehampton, UK). 

The instrument was designed for the macro determination of total nitrogen present in 

a wide range of organic and inorganic samples. The analytical method is based on 

the complete and instantaneous oxidation of the sample by "flash combustion", 

which converts all organic and inorganic substances into combustion products. The 

resulting combustion gases pass through a reduction furnace and are swept into the 

GC column by carrier gas (helium). The gases are separated in the column and 

detected by the thermal conductivity detector (TCD) that gives an output signal 

proportional to concentration of the nitrogen of the mixture. 
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Nitrogen was obtained by comparing the values obtained from the analysis of the 

sample with the analysis of a suitable standard. The following equation was used in 

calculation of nitrogen percentage: 

N% =Kx (I - b)/WS, where K= Average factor, I= Sample integral, W= 

Weight of sample in mg, B= blank 

K factor calculation: K= Th% x WS/I - b, where Th% = Theoretical percentage 

of standard, WS = Weight of standard in mg, I= Standard integral (peak area of 

standard), B= Blank (important in trace analysis) 

3.6.6 Chlorophyll estimation 

Chlorophyll in the leaves was estimated following the method established by 

(Inskeep and Bloom, 1985) which employs N, N-dimethylformamide (DMF) as 

solvent for the extraction of chlorophyll. Fully developed leaves were selected 

randomly from vines at the top of the plant and cut into small discs using a cork 

borer. The leaf discs were weighed (aiming for 0.1-0.2 g sample), diameter 

measured and leaf area calculated before immersing them in 10 ml DMF in 125 ml 

conical flasks. The flasks were sealed with Nescofilm (Bando Chemical Ind. Ltd., 

Kobe, Japan), covered with aluminium foil to exclude light and shaken for 24 h at 

20°C. Due to eroding effect of DMF on plastic compounds, instead of using 

automatic sampler in the spectrophotometer, precision optical glass cuvettes of 3.5 

ml volume (Hellma CXA 145.040C, Fisher Scientific UK, Loughborough, UK. 

www. fisher. co. uk) were used to hold chlorophyll samples. A cell attached to 

automatic sampler was gently lifted out of the cell holder of the spectrophotometer 

(Pye Unicam SP6-500 UV; Pye Unicam Ltd., Cambridge UK) and glass cuvettes 

holding 3 ml of chlorophyll extracts inserted into the cell holder. The compartment 

lid was closed and the optical density (OD) read at 647 and 664.5 nm. The 

chlorophyll concentration of the sample leaves (mg 1'') was estimated using the 

following equations: 

Total chlorophyll =17.9*A647,,,,, + 8.808*A664.5nm 

Chlorophyll a= 12.7*A66,4.5i,,,, - 2.79*A64mnn, 

Chlorophyll b= 20.7*A6g7mn - 462*A664.5nm 
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(A=absorbence) 

The resulting value was divided by 100 or 1000 depending on the volume of the 

solvent used to obtain the total quantity of chlorophyll extracted from the leaf sample 

(mg). Total chlorophyll was then divided by fresh weight of sample disc to give 

chlorophyll content in mg g''. 

3.7 Controlled environment facilities 

3.7.1 Tissue culture growth rooms 

Cultures were incubated in a controlled environment room set at a constant 

temperature of 26°C ±1 with a 12 h photoperiod and light intensity of 75-80 µmol 

m2 s'l provided by warm white fluorescent tubes (MCFE 65-80W/29-30, Philips, 

Eindhoven, The Netherlands). 

3.7.2 In vivo plant control environment growth rooms 

Conditions in the growth rooms closely mimicked those in the tropics where the 

species grows. 

Nodulation Experiment 2 and stock plants - 25°C night and 30°C day 

Rooting of stem cuttings and stock plants - 25°C night and day 

The photoperiod was set for 12 h and provided by 400 Watts high pressure mercury 

vapour lamps (HLRG; Philips, Eindhoven, The Netherlands) giving a light intensity 

and irradiance of 450±25 µmol m2 s'1. 

3.7.3 Glasshouse 

Temperature in the glasshouse was controlled by motorised valve regulated by a 

thermostat. The temperature was maintained within 27°C ±3, above which the top 

ventilators opened to provide cooling and below which the heating system would be 

triggered to provide heat supplied by low pressure hot water circulated in pipes 

around the glasshouse perimeter. At the onset of shorter days (from October to 

April), supplementary lighting was provided by 400 Watts high pressure sodium 

lamps providing a total irradiance of 40 Wm -2 to maintain a photoperiod of 12 h. 
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3.8 Plant growth measurements 

3.8.1 In vitro growth measurements 

Measurements taken varied with experiments but generally comprised of shoot 

height, shoot fresh weight, number of nodes, root number, length of the longest root, 

root emergence rate, rooting percentage and callus size (weight and diameter). 

Callus diameter was estimated by taking an average of the longest and shortest 

spread of the callus material on substrate and weight determined from fresh 

friable/soft callus material thus excluding the corky tissue formed by the original 

explants. A bud was scored as a shoot if it measured 10 mm or longer. Shoot height 

was measured of the longest shoot by taking the distance between the point of shoot 

attachment on the original explant and the apex. Height measurement was taken 

while a shoot was still in the culture vessel to avoid contamination. 

3.8.2 Growth measurements of in vivo grown plants 

Growth parameters measured were leaf number, leaf area, stem area and dry weights 

of stems and leaves. Plant material was dried at 80°C for 48 h to determine absolute 

growth, while leaf and stem areas were measured with a leaf area meter (Model LI- 

3100 Area Meter, LI-COR. Inc., Lincoln, USA). 

3.9 Experimental design and data analysis 

Most experiments were conducted as a completely randomised design (CRD). Data 

was subjected to analysis of variance (ANOVA) using Genstat Release 6 and 7 

(Lawes Agricultural Trust, Rothamsted, UK) that provided means, standard errors of 
differences between means (s. e. d. ) for all variables. Comparisons were performed at 
5% level of significance. 
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CHAPTER 4 

MORPHOLOGY AND GROWTH 

4.1 Introduction 

AYB is an important crop in most parts of West and Central Africa relished for its 

protein-rich small tuberous roots and good yields of edible seed (National Academy 

of Sciences, 1979). Its leaves are utilized as a spinach/cooked vegetable (Tindall, 

1983). It is one of three taxa used by humans from the large genus, Sphenostylis E. 

Meyer (Leguminosae: Papilionoideae: Phaseoleae) and the most widely distributed 

and morphologically variable species in the genus although cladistic analysis of 

morphological and chloroplast DNA (cpDNA) support inclusion of these elements in 

a single species (Potter, 1992). 

Various disciplines aimed at increasing knowledge of plants are either based on plant 

morphology or are closely related to it (Claben-Bockhoff, 2001). Thus, the practical 

relevance of plant morphology, including morphogenesis, can be seen in all 

disciplines of plant biology (Sattler and Rutishauser, 1997). Although not detailed, 

observations made on stock plants kept in different conditions during this study have 

also confirmed variability between the landraces regarding their morphology as well 

as response to the environment. However, detailed research on the species growth 

and development has not been undertaken and thus very little documented 

information is available. 

Initially, plants were grown to try to produce seeds and kept in controlled 

environment rooms at 25/30°C (night/day) and a 12 h photoperiod under the tropical 

climatic conditions from which the landraces originate. Later, when these plants 
failed to produce flowers and propagation by cuttings was adopted, day temperature 

was adjusted from 30°C to 25°C to be conducive for the rooting of cuttings. Some 

stock plants (AYB1, AYB2, AYB3 and AYB5) raised from seeds were also kept 

under these same conditions to utilise the space that was available. Observations on 

the morphology and growth of these plants were made and also on plants grown in 

the glasshouse (both in soil and pots) during the summer periods. 
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4.1.1 Seed germination and emergence 

AYB landrace seeds vary in size and colour of seed coat (Plate 4.1). Due to the 

inadequate supply and poor quality (low viability) of seeds that were available, it was 

not possible to make detailed observations on germination. However, seed 

germination was found to be hypogeal with seedling emergence taking >7 d. 
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Plate 4.1 Variability in seeds of AYB landraces. Bar = 10 mm. 

4.1.2 Root growth 

The plants grown in pots and directly in open beds possessed roots with few or no 

root hairs, but directly in open beds, they were highly branched and grew to 

considerable depth (Plate 4.2 A). There was no distinct tap root because the plants 

used were raised from cuttings that only possessed adventitious roots. It was also 

found that AYB formed adventitious roots easily when trailing stems contacted the 

soil (Plate 4.2 B). While other landraces did not develop tubers, AYB5 plants grown 

at 25°C and 12 h photoperiod produced sweet potato or yam-like tubers (Plate 4.2 C 

& D). Nodules were not formed on the roots of all the landraces grown without 

bacterial inoculation under any of the conditions described, including those grown in 

the soil in the glasshouse. 

The extensive fibrous root system observed on plants grown in the soil revealed 

AYB's potential to withstand drought by exploring water in deeper soil layers. 

Although plants in both experiments were watered on an ad lib basis, plants grown in 

pots experienced relatively more leaf drop than those grown in the soil, possibly due 
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to water stress as a consequence of restricted root growth. Although not known to be 

grown for tubers, plants of AYB5 formed tubers, whereas tuberisation was not 

observed in other landraces. including AYB3, which was collected from Congo/Zaire 

where it is known to be cultivated for its tuberous roots. This observation could be 

attributed to various factors such as genotype, environment or their interaction. 

Although mostly grown for seeds in West Africa, AYB is also known to form tubers 

which serve as organs of perennation (Potter, 1992). Information has not been found 

on the effect of environment on tuberisation of AYB. In major areas of production in 

Zaire, tubers are usually harvested 7 to 8 months after plants are propagated by seed 

(Potter, 1992). Studies conducted under tropical conditions with yam bean 

(Pachyrhizus spp. ), a tuberous legume from South America, indicated tuberisation to 

be photothermoperiod insensitive, starting 4-6 weeks after germination although 

development exclusively under short days adversely affected tuber yield due to 

restricted shoot (photosynthetic apparatus) development required for root 

enlargement later (Sorensen et al., 1993). Sweet potato (Ipomoea batatas), although 

not a legume, is one of the tropical tuber crops known to be sensitive to short days 

and low temperature (Onwueme. 1978). 
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Plate 4.2 (A) Extensive roots of AYB landraces (left, AYB I and right, AYB2) Bar = 
150 mm. (B) Adventitious roots growing on AYB1 stem trailing on the ground 
(layered stem). Bar = 40 mm. (C & D) Sweet potato like tubers formed on AYB5 

plant. Bars = 20 mm. 
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4.1.3 Vegetative structures 

Plants from both AYB I and AYB2 landraces produced abundance of twining vines 

that grew through the vents in the roof of the glasshouse where they were estimated 

to exceed 4m height (Plate 4.3). The main stem feature differentiating AYB 

landraces was the stem colouration with AYB1 being light green and AYB2 being 

red in colour (Plate 4.4). The landraces also differed in internode length; AYB2 had 

longer internodes than AYBI (Plate. 4.4). Consequently, AYB 1 usually had more 

leaves per vine than AYB2 and, hence, more leaves per plant. The leaves were 

trifoliate and varied in size but. when fully grown, leaflets exceeded 8 cm in length 

and 4 cm in width (Plate 4.4). AYB2 leaves were slightly larger than those of 

AYB I. 

Plate 4.3 Vigorous growth habit of AYB plants 112 days after transplanting. 

Bar =Im. 
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Plate 4.4 Variation in stem colour and internode length of AYB landraces (left: 
AYB 1 and right: AYB2). Bar = 40 mm. 

4.1.4 Reproductive structures 

Flowering occurred in AYB1, AYB2 and AYB5 growing at 25°C (night and day) 7 

months after sowing, whereas there was no reproductive development after more 

than 12 months in all of the landraces grown at a higher day temperature (30°C). 

The racemose inflorescences arose from the reproductive buds found in the axils of 

leaves alongside vegetative buds and were comprised of 2 or more pink to magenta 

coloured bisexual flowers arranged monopodially such that the pods developed and 

matured at different times (Plate 4.5). Reproductive buds were small with numerous 

oval structures that were possible flower buds, as opposed to the pointed apex of 

vegetative buds with structures that were possible leaflets of a trifoliate leaf (Plate 

4.5A). Fully developed pods measured >20 cm in length and matured into non- 

shattering woody pods that contained up to 20 seeds (Plate 4.6). This reproductive 

growth was observed to be continuous with some signs of disruption in vegetative 

growth as the heavily bearing plant displayed a less prolific vegetative growth 

possibly due to competition for assimilates (Plate 4.7). Amongst the pod bearing 

landraces, AYBS was the most prolific, bearing flowers and pods profusely. 

Flowering of AYB landraces was not realised for most of the study period when 

plants were grown under conditions that were thought to be similar to the species 

natural habitat of the tropics (30°C and 12 h photoperiod). However, some of the 

plants flowered 7 months after planting when grown at 25°C with a 12 h 

photoperiod. and also continued to grow vegetatively. Nigerian genotypes, though 

42 



slow to set seeds, are reported to flower and form pods continually all year-round 

(National Academy of Sciences, 1979). There is little information available on the 

control of flowering in AYB, but there has been a suggestion that AYB might be 

photoperiod sensitive. Tindall (1983) indicated that AYB might be photoperiod 

sensitive, while Okpara and Omaliko (1997), suggested a photoperiodic response to 

short days. The time of planting affected onset of flowering with early sowing dates 

(mid-May to mid-June) causing a delay of up to 2 weeks, while plants sown late 

(mid-July to late-July) flowered within 13 weeks (Okpara and Omaliko, 1997). The 

development pattern of yam bean (Pachyrhizus spp. ) under tropical conditions has 

shown the species to be short-day sensitive where development under long-days is 

characterised by shoot growth with formation of many vine-like shoots and flower 

initiation occurring only when the day-length decreases and approaches 12.5 h 

(Sorensen et al., 1993). Sweet potato is one of the tropical root tuber crops sensitive 

to short days which flowers frequently when the photoperiod is <11 h and fails to 

flower >13.5 h (Onwueme, 1978). As a tropical root tuber and seed producing plant, 

AYB may follow a developmental pattern similar to those displayed by the tropical 

root tuber crops mentioned above. 

Although these reports do not refer to temperature effects, it is possible that 

temperature or the interaction of temperature and photoperiod may also play a role. 

A reduction in natural photoperiod is usually concomitant with a reduction in 

temperature such that flowering is enhanced under short day/lower temperature 

conditions. This could explain why the AYB landraces used in this study did not 

flower when they were grown at 30°C, but flowered when grown at a day 

temperature of 25°C. While flowering in bambara groundnut (Vigna subterranea) 

can be day neutral or show some short day response, some genotypes have been 

reported to flower only at 20 and 25°C, but not at 30°C (Linnemann and Azam-Ali, 

1993). Therefore, AYB response might be similar to that of the bambara groundnut 

genotypes mentioned here. 
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Plate 4.5 Stem nodal segment (A) bearing a vegetative bud (a; long and pointed) and 
a reproductive bud (b; short and round); gives rise to racemose inflorescence (B) 
bearing young developing pods, brightly coloured bisexual flower (C, D). Bars = 10 

mm (A), 20 mm (B. C. D) of AYB5 landrace. 

Plate 4.6 Pods produced by AYB plants (A) immature and (B) mature. Bar = 20 mm. 
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Plate 4.7 AY13-S plant producing pods profusely as well as growing vegetatively. Bar 

= 30 cm. 

4.2 Growth of AYB landraces in pots and in the soil 

The paucity of information on the morphological development of AYB makes efforts 

aimed at broadening scientific knowledge very difficult. This study here focused on 

AYB's external form and structure, to establish changes with time and to characterise 

variability between landraces. The aim of the study was to test the hypotheses that 

AYB landraces will grow at different rates and reach maturity (flowering and seed 

production) at different times; and that landraces differ in yield (dry matter and 

seed). The objective was to identify morphological characters of AYB that delimit 

the AYB landraces with reference to plant growth. The study was conducted in two 

separate trials using two landraces (AYB 1 and AYB2) with plants raised through 

rooted stem cuttings, growing plants in pots filled with a 50: 50 by volume mixture of 
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John Inns No. 3 compost and Levington M3 compost and growing plants directly in 

open beds. 

Two glasshouse experiments were carried out to characterise the growth of AYB 

landraces. In Experiment 1, plants were grown in pots from July to October 2003 

while in Experiment 2 they were in the ground from April to August 2004 (Plate 

4.8). In both experiments, plants of AYB I and AYB2 raised from cuttings were 

used. Curves best fitting each data set were superimposed according to Clewer and 

Scarisbrick (2001) to characterise the growth model followed in each experiment. 

4.2.1 Materials and methods 

Experiment 1: Pot experiment 

Plants were grown in pots in a glasshouse under conditions of natural light 

supplemented with 400 Watts high pressure sodium lamps (Chapter 3, Section 3.7.3 

to maintain a minimum of 12 h photoperiod as the days shortened. Rooted cuttings 

were kept for 4 weeks under nursery conditions and transplanted into 19 cm Plantpak 

plastic pots after acclimation to start the trial. Midway into the experimental period 

(at 6 weeks), the plants were repotted into 25 cm Plantpak plastic pots. A 50: 50 by 

volume mixture of John Innes No. 3 compost and Levington M3 compost was used 

as growing medium throughout the trial. The experiment was set up as a complete 

randomised design with 3 replications (3 plants) and 5 sampling stages. Five 

destructive harvests of the shoots (above ground parts) were taken every 21 d from 

the date of transplanting and growth parameters (leaf number, leaf area, average leaf 

size, leaf dry weight, stem area, stem dry weight, total green (shoot) area and total 

shoot dry weight) measured according to the procedures described in Chapter 3, 

Section 3.8.2. Relative growth was computed according to the procedure for growth 

analysis described by Hunt (1982). 

Experiment 2: Soil experiment 

Plants were grown in the glasshouse soil with a basal fertilizer of nitrogen, potassium 

[N114NO3 (34.5% N; ICI Chemicals & Polymers Ltd., Billingham, UK)], [KNO3 

(13% N and 46% K20; Haifa Chemicals, Haifa Bay, Israel)] and phosphorus [J. 

Arthur Bower's Superphosphate (7.4% P205); William Sinclair Horticulture Ltd., 

Lincoln, UK)] incorporated at 45 kg ha". Rooted cuttings were kept for 4 weeks 
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under nursery conditions (low light and cool temperature conditions) before 

transplanting at a spacing of 80 x 80 cm. The experiment was set up as a randomised 

block design with 5 blocks and 5 plants per landrace in each block. Destructive 

harvests of 5 plants per landrace were made with the first harvest 28 d after 

transplanting (DAT) and subsequent harvests at 21 d intervals. At each harvest, I 

plant was selected at random from each of the 5 blocks and the parameters listed in 

Experiment 1 measured according to the procedures described in Chapter 3, Section 

3.8.2. Extensive growth of AYB plants (Plate 4.9) at the time of the fifth harvest 

made it difficult to separate the plants and hence this final harvest was impractical. 

Plate 4.8 Experimental layouts for Experiment 1 (A) and Experiment 2 (B). Bars = 
40 cm (A). 80 cm (B) 
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Plate 4.9 Extensive entangled stem growth of AYB landraces at 112 d from 

transplanting. Bar = 30 cm. 

4.2.2 Results 

As flowering was not observed in any of the two landraces during these growth trials, 

data for reproductive growth parameters is not available. Only data on vegetative 

parameters is presented. Growth parameters in the pot experiment showed 

characteristic power growth model, while an exponential growth was displayed in the 

soil experiment with growth going through an initial slow phase and then a rapid 

phase characterised by a sudden peak. The experiments were terminated before 

reproductive development and senescence. 

4.2.2.1 Vegetative growth 

4.2.2.1.1 Leaf growth 

In Experiment 1, there were significant differences in the number of leaves between 

the two landraces at 42 DAT (F(/. 4 = 8.43, p<0.05) and 84 DAT (Fq. 4) = 20.78, 

p<0.01), with AYB 1 possessing more leaves than AYB2 (Figure 4.1). Although 

differences were not significant at other harvests, AYB1 still had relatively more 

leaves than AYB2. In Experiment 2, although the differences were not significant at 

all growth stages, AYB 1 appeared to have more leaves than AYB2 at 28 and 49 

DAT, while AYB2 had more than AYBI at 70 and 91 DAT (Figure 4.2). 
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In Experiment 1, the trend for leaf area was the same as that for leaf number with 

AYB 1 having relatively larger leaf area than AYB2 at all stages, but with a highly 

significant (F(J. 4) = 61.48, p <0.001) difference at 84 DAT (Figure 4.3). In contrast, 

in Experiment 2, AYB2 appeared to be more vigorous than AYB 1 although the 

difference was not significant at any stage (Figure 4.4). AYB2 had relatively larger 

leaves than AYB 1 in both experiments, but the difference was only significant at 42 

DAT (F(j. = 51.58, p<0.01) and 105 DAT (F(J, 4) = 10.81, p<0.05) in Experiment 1, 

while in Experiment 2 it was significant (F(J. 4) = 11.16, p<0.05) at 28 DAT (Figures 

4.5 and 4.6). Although there was a change in average leaf size in Experiment 2 from 

10 cm2 to >30 cm2, this did not exceed 40 em2 recorded at the beginning of 

Experiment 1. The average leaf size for both landraces stabilized at <40 cm2 in both 

experiments. Leaf drop occurred more in Experiment 1 than in Experiment 2 for 

both landraces, possibly due to the restriction of root growth imposed by the pots. 
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Figure 4.1 Number of leaves of AYB 1 and AYB2 grown in pots for up to 105 days. 
Bar =2s. ad (n=3) (Experiment 1). 
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Figure 4.2 Number of leaves of AYBI and AYB2 grown in soil for up to 91 days. 
Bar =2s. e. d. (n=5) (Experiment 2). 
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Figure 4.3 Leaf area of AYB 1 and AYB2 grown in pots for up to 105 days. Bar =2 
s. e. d (n=3) (Experiment 1). 
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Figure 4.4 Leaf area of AYB1 and AYB2 grown in soil for up to 91 days. Bar =2 
s. e. d. (n=5) (Experiment 2). 
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Figure 4.5 Average leaf size of plants of AYB1 and AYB2 grown in pots for up to 
105 days. Bar =2s. e. d. (n=3) (Experiment 1). 
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Figure 4.6 Average leaf size of plants of AYB 1 and AYB2 grown in soil for up to 91 
days. Bar =2s. e. d. (n=5) (Experiment 2). 

4.2.2.1.2 Stem growth 

Stem cross sectional area did not vary between the landraces in both experiments, 

although AYBI was more vigorous in Experiment 1 and AYB2 grew better in 

Experiment 2 (Figures 4.7 and 4.8). 
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Figure 4.7 Stem growth of plants of AYB I and AYB2 grown in pots for up to 105 
days. Bar= 2 s. e. d. (n=3) (Experiment 1). 

52 



L 
AYBI   AYB2 

3000 
Expon. (AYBI) --- Expon. (AYB2) 

2500 
y=0.56oseo. 0974x 

2000 RZ = 0.9879 
Ný+ 

ri 
" 

1500 " 
eC 

cl 1000 " 
S i 500 

y=0.112eo. ýoeý: 

0 
R2 = 0.9919 

0 20 40 60 80 100 

Days after transplanting (DAT) 

Figure 4.8 Stem growth of plants of AYB 1 and AYB2 grown in soil for up to 91 
days. Bar =2s. e. d. (n=5) (Experiment 2). 

4.2.2.1.3 Total shoot growth 

In Experiment 1, overall shoot growth, as indicated by total green area, showed a 

superiority of AYB1 over AYB2 although the difference was only significant (F(14) 

= 57.50, p<0.01) at 84 DAT (Figure 4.9). In Experiment 2, the difference between 

the 2 landraces was not significant at all stages of growth although, AYB2 performed 

better than AYBI (Figure 4.10). However, AYB 1 shoot growth exceeded AYB2 

slightly at 105 DAT. The vegetative growth was indeterminate with both landraces 

continuing to grow upwards and sideways forming an entangled mesh (Plate 4.9). 

The largest shoot green area reached by each landrace was 22250 cm2 (AYB 1) and 

21852 cm2 (AYB1) in Experiment 2. 
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Figure 4.9 Total green area of plants of AYB 1 and AYB2 grown in pots for up to 
105 days. Bar =2s. e. d. (n=3) (Experiment 1). 
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Figure 4.10 Total green area of plants of AYB1 and AYB2 grown in soil for up to 
91 days. Bar =2s. e. d. (n=5) (Experiment 2). 

4.2.2.2 Dry matter accumulation 

Dry matter accumulation for all of the parameters differed with landrace depending 

on the growth environment. In the pot experiment, AYB 1 performed better than 

AYB2 in all parameters whereas AYB2 performed better than AYB 1 when grown 

directly in the soil. 
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4.2.2.2.1 Leaf dry matter 

Leaf dry matter accumulation in Experiment I was slightly higher in AYB 1 than 

AYB2 with the only significant (F(J. 4 = 15.21, p<0.05) difference between the 

landraces occurring at 84 DAT (Figure 4.11). In Experiment 2, differences between 

the landraces were not significant (Figure 4.12). 
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Figure 4.11 Leaf dry matter accumulation of plants of AYB 1 and AYB2 grown in 
pots for up to 105 days. Bar =2s. e. d. (n=3) (Experiment 1). 
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Figure 4.12 Leaf dry matter accumulation of plants of AYB 1 and AYB2 grown in 
soil for up to 91 days. Bar =2s. e- d. (n=5) (Experiment 2). 
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4.2.2.2.2 Stem dry matter 

Stem dry matter accumulation followed the same trend as leaf dry weight in both 

experiments, with AYB1 accumulating more dry matter in Experiment 1, while 

AYB2 was more responsive than AYBI in Experiment 2 (Figures 4.13 and 4.14). 

However, the difference between the landraces in both experiments was not 

significant. 
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Figure 4.13 Stem dry matter accumulation of plants of AYB1 and AYB2 grown in 

pots for up to 105 days. Bar =2s. e. d. (n=3) (Experiment 1). 

56 



f AYBI   AYB2 

Expon. (AYBI) --- Expon. (AYB2) 
160 

ä 140 

120 
y=0.035200*0009i 

100 R2 = 0.9899 

80- 

60- 

40- 

20 y=0.0157e110 

01 -S. IE2n R2=0.9987 

0 20 40 60 80 100 

Days after transplanting (DAT) 

Figure 4.14 Stem dry matter accumulation of plants of AYB 1 and AYB2 grown in 
soil for up to 91 days. Bar =2s. e. d (n=5) (Experiment 2). 

4.2.2.2.3 Total shoot dry matter 

AYB1 appeared to possess higher shoot dry matter than AYB2 in Experiment 1 at all 

stages of growth. However, differences were only significant at 84 DAT (F(J. 4) _ 
12.52, p<0.05) (Figure 4.15). Differences between the landraces in Experiment 2 

were not significant (Figure 4.16). Growth of the 2 landraces was better in the 

glasshouse soil than in pots. Daily dry matter accumulation was higher in 

Experiment 2 with an average of 2.89 g d"' (AYB 1) and 3.31 g d"' (AYB2) compared 

to 0.63 g d"1 (AYB1) and 0.53 g d" (AYB2) in Experiment 1 (Table 4.1). Between 

70 DAT and 91 DAT, dry matter accumulation increased dramatically exceeding 7g 

d'1 for both landraces compared to <1 g d"1 recorded at the same harvest interval in 

Experiment 1 (Table 4.1). Plant growth, expressed as crop growth rate (weight of 
dry matter gained per area per day), ranged from 0.32-11.53 g m2 d"' for AYB1 and 
0.42-11.46 g m2 d" for AYB2 (Table 4.1). Overall, AYB 1 achieved an average crop 

growth rate of 4.52 g m2 d" while AYB2 achieved 5.17 g m2 d"1 (Table 4.1). 

Relative growth rate (dry matter accumulated per unit of weight per day) was also 

high in Experiment 2. In Experiment 1, AYB1 experienced a continued reduction in 

the rate of dry matter accumulation, while AYB2 slowed down but increased up in 

the fourth harvest interval (i. e. 84 DAT-105 DAT) (Table 4.2). 
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Figure 4.15 Total shoot dry matter of plants of AYB 1 and AYB2 grown in pots for 
up to 105 days. Bar =2s. e. d. (n=3) (Experiment 1). 
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Figure 4.16 Total shoot dry matter of plants of AYB1 and AYB2 grown in soil for 
up to 91 days. Bar =2s. e. d. (n=5) (Experiment 2). 
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Table 4.1 Absolute growth rate (shoot dry matter accumulation) in g planf1 d'1 of 
AYB 1 and AYB2 landraces at different harvest intervals. 

Harvest interval Experiment 1 (n=3) *Experiment 2 n=5 
AYB1 AYB2 AYB1 AYB2 

1 0.43 0.36 0.21 (0.32) 0.27 (0.42) 
2 0.40 0.45 1.09 (1.70) 2.53 (3.95) 
3 0.73 0.49 7.38 (11.53) 7.14 (11.16) 
4 0.96 0.80 N/A N/A 
Mean 0.63 0.53 2.89 (4.52) 3.31 (5.17) 
N/A = not available because only 4 harvests were carried out 
* Number in parenthesis denotes crop growth rate (expressed as g m2 d"1) 

Table 4.2 Relative growth rate (shoot dry matter accumulation) in g g"1 d"1 of AYB I 
and AYB2 landraces at different harvest intervals. 

Harvest interval Experiment (n=3) Experimen 
AYB1 AYB2 AYB1 AYB2 

1 0.033 0.035 0.041 (0.064) 0.035 (0.055) 
2 0.013 0.014 0.035 (0.055) 0.045 (0.070) 
3 0.013 0.009 0.039 (0.061) 0.026 (0.041) 
4 0.009 0.012 N/A N/A 
Mean 0.017 0.018 0.038 (0.059) 0.035 0.055 
Niiº = not avaiiaoie oecause oniy'+ narvests were cameo out 
* Number in parenthesis denotes relative crop growth rate (expressed as g m2 d'') 

4.2.3 Discussion 

4.2.3.1 Vegetative growth 

Growth of the two AYB landraces was indeterminate. Apparent differences between 

the two landraces were not significant. However, their growth differed with 

conditions under which they were maintained. AYB 1 grew better than AYB2 in pots 

whereas AYB2 was better in the glasshouse soil. The better growth of plants in the 

soil than in pots was due possibly to the more extensive root system in the soil as 

well as adequate nutrients furnished by the fertilizer incorporated at planting. The 

vigorous vegetative growth of the two landraces resulted in heights of more than 4m 

which contradicts the maximum height of 2m mentioned by Tindall (1983), but 

agrees with the National Academy of Sciences (1979) report that the plant is a 

vigorous vine that climbs and twines to heights over 3 m. 
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Growth was very fast with the plants reaching unmanageable heights after 90 d 

particularly when planted in the soil. This fast growth agrees with observations in 

Nigeria, where AYB was one of the four legumes (including local varieties of Vigna 

ungiculata, Phaseolus lanatus and Phaseolus vulgaris) selected as the best legume 

for ground cover, since it achieves 90% ground cover within 6 to 10 weeks after 

planting (Obiagwu, 1997). This heavy vegetative growth may work positively for 

tuber yield, although no information is available on the relationship between 

vegetative and tuber growth. Evidence from other tuber crops, such as yam bean, 

suggests the importance of building up an adequate photosynthetic apparatus for later 

enlargement of tubers. Early growth in yam bean under long days of the tropics is 

characterised by growth with formation of many vine-like shoots that usually result 

in high tuber and seed yields (Sorensen et al., 1993). A short growth cycle due to 

late sowing led to reduction in plant growth of yam bean (Pachyrizus ahipa) and 

ultimately resulted in root and tuber yield reductions of 57 and 20% respectively 

(Leidi et al., 2004). Delay in planting, which effectively shortens the period of 

vegetative growth, also resulted in reduced seed yield of AYB (Okpara and 

Omaliko, 1997). This reaffirms the importance of an extended vegetative growth 

phase in the yield components of AYB and other root tuber crops. 

4.2.3.2 Dry matter accumulation 

The mean relative growth rates of AYB1 (0.017 and 0.038 g g'' d') and AYB2 

(0.018 and 0.035 g g71 d') recorded in both experiments, although in the range of 

growth rates of other legumes, do not compare favourably. Short season soybean 

(Glycine max L. ) grown under different row spacing and planting density had growth 

rates in the range of 0.132-<0.01 g g'1 d'1 (Herbert and Litchfield, 1984). Dry matter 

accumulation was slow early in the growth of plants in the soil compared with those 

in pots, but increased dramatically towards the last stage. This could be attributed to 

a shock that plants experienced when they were transplanted from optimal nursery 

conditions to glasshouse soil. As growth progressed and the plants became 

established with a free root run in contrast to those in the pots, dry matter 

accumulation improved remarkably from 0.21-7.38 g plant" d"1 (AYB1) and 0.27- 

7.14 g planf1 d" (AYB2). It is likely that, once established, plants grown in the soil 

experience minimum physiological stress as roots were able to exploit a large 

reservoir of water, nutrients and even air. 
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When converted to average crop growth rate, AYB1 grew by 4.52 g m2 d"1 and 

AYB2 by 5.17 g m2 d"', considerably less than the growth rates of other tropical 

legumes, such as cowpea. Maximum crop growth rate of cowpea grown in 

experimental plots in the savanna zone has been reported to be 15 g m2 d" 

(Summerfield et al., 1983). Crop growth rates will vary with the genotype and 

prevailing environmental conditions, such as solar radiation. For example, Ntare and 

Willians (1993) recorded average crop growth rates of 0.72,1.35 and 1.61 g m2 d"' 

for 3 cultivars of cowpea grown during the cool period (characterised by night 

temperature between 15 and 20°C) of the Sahelian zone of West Africa. It is clear 

from observations with cowpea that both genotype and the prevailing environment 

played a significant role. Although growth rates achieved in this study were low 

compared to those recorded for cowpea in the savanna zone, it is conceivable that 

AYB would achieve equally high growth rates if grown in a conducive environment. 

Although evidence for variation in the growth of two AYB landraces has been 

presented in this study, it has not been possible to identify the impact that variation 

will have on reproductive growth as the plants in the two growth trials did not 

flower. The reproductive potential shown by stock plants grown under cooler 

conditions indicates a possibility of thermal control of flowering in AYB that needs 

further investigation. During the summer, day temperature in the glasshouse 

sometimes exceed 30 °C and this could have affected the flowering process in same 

way as what happened when stock plants were kept in growth room with similar 

temperature. Continued vegetative growth, dry matter accumulation and the 

production of flowers and seeds by stock plants indicates that AYB plants have an 

indeterminate growth habit. It was not possible to determine the onset of formation 

of the subterranean tubers. An integrated study of the phenology and physiology of 

the species is required to characterise the developmental pattern that will provide 

guidelines for production. 
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CHAPTER 5 

PROPAGATION BY STEM CUTTINGS 

5.1 Introduction 

A simple rapid technique is required for the induction of a vigorous root system on 

stem cuttings that will shorten the growth cycle, provide high transplant survival and 

result in vigorous plants (Vesperinas, 1998). Rooting of cuttings for easy to root 

species is usually used as a rapid method of asexual/clonal propagation to achieve 

genetically identical plants. Adventitious root formation is a developmental process 

comprised of a sequence of histological events each marked by stages with different 

requirements (Hartmann et al., 1997). A number of factors, including auxin 

concentration, propagule position on the mother plant and genotype, play an 
important role in the formation of adventitious roots. In this study some of the 

above-mentioned factors are evaluated and the following hypotheses tested: 

- Formation of adventitious roots is genotypically controlled. 

- Adventitious root formation requires exogenous auxin application. 

- Efficacy of auxin in inducing root formation vary with concentration. 

- Physiological status (leaf size and position of propagule on mother plant) 

of the propagule influences adventitious root formation. 

5.2 Effect of auxin concentration on rooting of AYB stem cuttings 

Auxins play an important role in the promotion of rooting in many plant species 

although they have also been found to be inhibitory to rooting if applied in high 

concentrations (Henry et al., 1992; Chee, 1995; Goh et al., 1995; Garrido et al., 

1996; Nikam and Shitole, 1997; Cameron et al., 2001). Aminah et al. (1995) 

observed that auxin (IBA) significantly increased the rate of root emergence in leafy 

stem cuttings of Shorea leprosula, but that higher doses (more than 20 . tg per 

cutting) resulted in less rooting success. Dunn et al. (1996) also found differences in 

root formation and growth between cuttings of Pistacia chinensis treated with 

different concentrations of IBA. However, Almehdi et al., (2002) tried IBA 

potassium salt at 0,40.0 and 80 g 1-1 on pistachio (Pistachio spp. ) and found no 
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significant difference between these concentrations on percentage of rooted cuttings. 

Mesen et al., (1997) recorded a reduction in percentage rooting of Cordia alliodora 

when concentration of IBA was elevated within the range of 0-1.6 % w/v of 

methanol. 

Shoot initiation and development is sometimes adversely affected even though there 

has been adequate root formation due to inhibition of bud development by the 

application of synthetic auxins at high concentrations (Hartmann et al., 1997). 

Therefore, the aim of this experiment was to test the hypothesis that auxin promotes 

root formation and different auxin concentrations vary in the effectiveness to induce 

root fonnation and growth in AYB. The following were the guiding objectives for 

this investigation: 

- determine the requirement for exogenous auxin application for rooting of 

AYB cuttings. 

- identify the suitable auxin concentration for rooting AYB cuttings. 

5.2.1 Materials and methods 

Two experiments were carried out to determine the suitable auxin concentration for 

rooting of AYB stem cuttings using aqueous potassium salts of IBA at the following 

concentrations based on literature cited above: 

Experiment 1.0. (control), 5.0 and 20 g 1-1 

Experiment 2.0.0 (control), 0.25,0.5,1.0,2.5,5.0,10.0,25.0,50.0 and 

100g1` 

Treatments in both experiments were applied by dipping the stem basal end of nodal 

cuttings to a depth of 2 cm in the auxin solution for 60 s before the cuttings were 

placed in the rooting medium as described in Chapter 3, Section 3.5.2. In 

Experiment 1, there were 15 cuttings per treatment per propagator (described in 

Chapter 3, Section 3.5.2) per landrace while in Experiment 2 there were 5 cuttings 

per treatment per propagator per landrace. In Experiment 1, number of rooted 

cuttings, number of roots per cutting and root length were recorded at the end of the 

experiment (21 d), while in Experiment 2, in addition to parameters measured in the 

first experiment, number of rooted stem cuttings was recorded every 3 days to 

determine the rate of root formation over 15 d. Cuttings rooted in Experiment 1 were 

potted in compost to check their subsequent survival. 
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5.2.2 Results 

5.2.2.1 Root formation 

Adventitious roots originated from different positions on the cuttings depending on 

the treatment imposed. Cuttings that did not receive any auxin (control) formed 

roots at the base from the wound/callus, whereas cuttings treated with auxin 

produced roots higher up the stem and not necessarily from the basal wound (Plate 

5.1). It was evident that auxin application caused damage to the stem base with the 

loss of bark and no roots arising from that region (Plate 5.1). 
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Plate 5.1 Adventitious roots formed on cuttings (A) without auxin roots forming 

mostly on wounded portion (a) and (B) with auxin, note, no roots formed on the 
damaged portion (b) of the stem basal end of the cutting that was in contact with 
auxin. Bar = 15 mm. 

In Experiment 2. although there was a trend towards faster root formation on cuttings 

treated with auxin. it was not possible to make a clear comparison between auxin 

concentrations due to high mortality of cuttings, particularly those receiving the 

greater auxin doses. Nevertheless, AYB landraces were shown to be amenable to 

propagation by cuttings as all of the live cuttings had rooted in the second week of 

both experiments. In Experiment 1, all of the control cuttings and most of the 

cuttings in the 5g 1"1 auxin treatment formed roots. However, root formation in the 

20 g 1"1 treatment was much reduced (Table 5.1). The auxin concentration did not 

seem to influence the rate of root formation, since cuttings that were treated with 
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auxin did not root any faster than the controls. Instead, auxin adversely affected 

cuttings as shown by the high number of mortalities. In AYB1, the difference 

between the proportions of cuttings rooted in week 1 and week 2 were 3.3,5 and 10 

% for the control, 5.0 and 20 g 17' auxin respectively indicating faster rooting in the 

auxin-free treatment. Mortalities did not occurr in the control cuttings. 

In Experiment 2, with the use of more auxin concentrations and the time between 

observations reduced to 3 days, a trend was evident towards enhanced root formation 

with increase in auxin concentration but this declined above 2.5 g 1'' (Table 5.2). 

Mortality of cuttings also occurred in the control treatment, although it was more in 

the auxin treatments. Mortalities were mostly associated with fungal infection and 

could not be blamed entirely on auxin concentration as the control cuttings 

experienced more mortalities than some of the auxin treated cuttings. Rooting was 

not observed at day 3 for either of the landraces in any of the treatments, but by day 

6, rooting had occurred in all treatments for both landraces. Rooting of AYB2 was 

slow with less than 10 rooted cuttings in any treatment at day 6. Although rooting 

started slowly for AYB1, it had improved markedly by days 9 and 12 for the control 

treatment while it was relatively slow for AYB2. The proportion of rooted cuttings 

on the highest auxin treatments (50 and 100 g 1-}) was lower than the controls for 

both landraces (Table 5.2). Overall, best root formation occurred with 0.25 to 

5.0 g 1-1 which had the lowest mortalities. AYB2 showed a higher sensitivity to high 

auxin treatment than AYBI in Experiment 2 (Table 5.2) whereas the opposite 

occurred in Experiment 1 (Table 5.1). 

Table 5.1 Effect of auxin concentration on rooting of stem cuttings of AYB 1 and 
AY132 landraces (Experiment 1). 

Auxin Weekly cumulative number rooted (n=60) Number of dead 
Concentration cuttin gs 
(g 1-1) AYB1 AYB2 AYB1 AYB2 

Weekl Week2 Weekl Week2 

0.0 58 60 60 60 00 

5.0 56 59 52 57 17 

20.0 13 19 26 33 41 27 
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5.2.2.2 Root number 

Application of auxin to cuttings increased the number of roots formed per cutting in 

both experiments (Plate 5.1; Tables 5.3 and 5.4). In Experiment 1, there was no 

significant difference between the number of roots on cuttings treated with the 2 

auxin concentrations, but they both differed (F(2,30) = 12.87, p<0.001) from the 

control (Table 5.3). When more auxin concentrations were assessed in Experiment 

2, there was also a highly significant difference (F(8.162) = 40.76, p<0.001) between 

auxin treatments. The number of roots per cutting seemed to increase with elevation 

of the auxin concentration, but declined after 25.0 g 1" (Table 5.4). There was no 

difference between the control and 0.25 to 0.5 g 1"1 auxin treatments. However, 

cuttings treated with 1.0 to 50 g 1"' auxin had more roots than the control cuttings. 

The highest root numbers were recorded on cuttings that received 25 g 1"' auxin. 

Differences between the 2 landraces were significant in Experiment 1 (F(130) = 4.26, 

p<0.05) and Experiment 2 (F(J, 162) = 15.27, p<0.001) with AYB1 outperforming 

AYB2 with highs of 94.8 roots compared to 76.3 roots (Experiment 1) and 84.3 to 

53.9 roots (Experiment 2). 

5.2.2.3 Root length 

The effect of auxin on root length seemed to be the opposite of root number although 

differences were only slightly significant in Experiment 1 (F(2,30) = 3.51, p<0.05) and 

Experiment 2 (F(8.162) = 2.02, p<0.05) (Tables 5.3 and 5.4). In Experiment 1, cuttings 

that did not receive any auxin had the longest roots (Table 5.3 and Plate 5.2). In 

Experiment 2, root length of AYB 1 appeared to be enhanced by auxin at 0.25 and 5.0 

g l"1 and reduced at concentrations >10.0 g 1.1. This trend was not apparent with 

AYB2. Differences in root length between the landraces were not significant, even 

though AYB1 appeared to produce longer roots (Experiment 1,148.0 mm and 

Experiment 2,146.0 mm) than AYB2 (Experiment 1,117.0 mm and Experiment 2, 

114.6 mm) (Tables 5.3 and 5.4). 
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Plate 5.2 Effect of auxin concentration on root length (A; long roots with no auxin 
and B: short roots with auxin treatment). Bar = 20 mm. 

Table 5.3 Effect of auxin concentration on mean number of roots per cutting and 
mean root length of AYB 1 and AYB landraces. (n=5) (Experiment 1) 

Treatment Number of roots cutting Root length (mm) 

AYB 1 AYB2 AYB 1 AYB2 

Auxin concentration 
(IBA g I"1) 
0.0 (control) 35.2 17.3 148.0 117.5 
5.0 94.8 57.0 112.5 99.5 
20.0 1-1 78.8 76.3 92.5 91.0 

s. e. d 16.26 22.22 
df. 30 30 
Significance (0.05) 

Landrace 0.048 0.252 
Auxin concentration <0.001 0.043 
Interaction 0.319 0.653 
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Table 5.4 Effect of auxin concentration on mean number of roots per cutting and 
mean root length of AYB 1 and AYB2 landraces. (n=10) (Experiment 2) 

Treatment Number of roots cutting" Root length (mm) 

AYB 1 AYB2 AYB 1 AYB2 

Auxin concentration 
(IBA g l"') 
0.0 (control) 6.4 7.1 100.2 71.2 
0.25 13.4 9.0 146.0 104.0 
0.50 11.0 11.1 142.2 97.9 
1.00 19.4 17.2 101.5 105.8 
2.50 27.2 26.0 127.2 87.2 
5.00 38.0 29.0 111.3 114.6 
10.00 50.3 36.2 78.0 74.5 
25.00 84.3 53.9 78.5 100.5 
50.00 64.2 45.4 83.2 88.6 

s, ed. 6.77 24.02 
d 
. 
f. 162 162 

Significance (5%) 

Landrace <0.001 0.088 
Auxin concentration <0.001 0.047 

Interaction 0.017 0.374 

5.2.2.4 Shoot growth 

Shoot height indicated a negative effect of auxin on shoot/bud growth (Plate 5.3, 

Figures 5.1 and 5.2). In Experiment 1, shoots were significantly (F(2.30) = 54.05, 

p<0.001) taller (225.5 mm) from cuttings that were not treated with auxin (Figure 

5.1). Differences between treatments were also significant (F(Z, 162) = 3.06, p<0.01) in 

Experiment 2 with a similar trend to that observed in Experiment 1. In Experiment 

2, control cuttings did not grow any better than those treated with auxin at 0.25 to 5.0 

g 17'. Differences between the landraces were highly significant (F(1,162) = 23.52, 

p<0.001) with AY132 showing more sensitivity to auxin than AYB1 (Figure 5.2). 
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Figure 5.1. Effect of auxin concentration on bud growth (shoot height) of AYB1 and 
AYB2 landraces. Error bars =2s. e. d (n=5) (Experiment 1) 
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Figure 5.2. Effect of auxin concentration on bud growth (shoot height) of AYB1 and 
AYB2 landraces. Error bars =2s. e. d. (n=10) (Experiment 2) 
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5.2.2.5 Acclimation of rooted cuttings 

Treatment of cuttings with auxin did not seem to have any effect on the ultimate 

survival in compost of plants derived from cuttings as most plants survived and grew 

into normal plants (Table 5.5). Plants derived from cuttings that were not treated 

with auxin and those receiving the highest auxin concentration (20.0 g 1-1) had 100% 

success in establishment for both landraces while 5.0 g 1-1 auxin treatment had a 

slightly lower success proportion of 90.0 % and 79.0 % for AYB 1 and AYB2 

respectively. 

Table 5.5 Establishment of AYBI and AYB2 plants derived from cuttings treated 

with different concentrations of auxin (IBA). 

Treatment Landrace 

Auxin AYB1 AYB2 

(IBA g 1-1) Potted Surviving % survival Potted Surviving % survival 
plants plants plants Plants 

0 21 21 100.0 23 23 100.0 
5.0 20 18 90.0 19 15 79.0 

20.0 4 4 100.0 5 5 100.0 
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Plate 5.3 Effect of auxin concentration [A =0 (control), B=5.0 and C= 20 g 1-1 

IBA] on shoot height of AYB2 landrace. Bar = 10 cm. 



5.2.3 Discussion 

From this study it is clear that AYB is amenable to propagation by stem cuttings and 

does not require auxins for root induction, which suggests that the cuttings contain 

enough endogenous auxins. However, auxin treatment was able to speed up rooting 

or give a more uniform root formation pattern as well as boost/increase the number 

of roots formed per cutting such that the combined effect of genotype and plant 

growth regulator were seen to play an influential role in adventitious root formation 

of AYB. Although the duration of the root initiation stage (>3 d) was the same for 

treated and untreated cuttings, application of auxin was found to induce a more 

synchronised rooting pattern in AYB such that more cuttings rooted earlier in the 

auxin treatments than in the control. De novo roots arose from the bark along the 

stem on cuttings treated with auxin while untreated cuttings grew roots from the 

wound/callus surfaces. Cuttings treated with auxin were also found to have more 

roots per cutting compared to control cuttings indicating that more potential root 

forming sites were triggered by auxin activity. This suggests that AYB has 

preformed or latent roots which require a stimulus, such as auxin, to start growth. 

However, this positive action of auxin was not without its limitations as cuttings that 

were treated with auxin experienced reduced root and shoot growth and, in the case 

of high concentrations, a high proportion of mortalities. 

Several other studies have shown that exogenous application of auxin hastened the 

rate of rooting and increased root number of most species and, in some cases, 

relatively high concentrations resulted in inhibited root formation and growth, 

reduced bud/shoot growth and even mortalities (Badji et al., 1991; Demeke et al., 

1992; Edson et al., 1994; Ofori et al., 1996; Shiembo et al., 1996; Mesen et al., 

1997; De Andres et al., 1999; Copes and Mandel, 2000; Fett-Neto et al., 2001; 

Aminah, 2003; Ercisli et al., 2003). Contrary to most findings, including those cited 

above, auxin application conferred no benefit in final rooting percentage as without 

auxin, a high proportion of cuttings rooted. Hartmann et al. (1997) indicated that 

reduced shoot growth with auxin could be due to alteration in sink and source 

dynamics where auxin modified assimilates partitioning in favour of the roots (sink). 

Since AYB rooted successfully without exogenous auxin, this suggests that it 

possesses adequate endogenous auxin such that reduction of bud 
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development/growth was due to elevation of total auxin to levels detrimental to bud 

growth. 

The high root number induced by auxin did not confer any benefit on the 

establishment of rooted cuttings as both the treated and untreated cuttings 

successfully grew into normal plants. Survival of rooted stem cuttings is therefore, 

not controlled or affected by auxin. It was not possible to establish the benefit of 

shoot size achieved during rooting on the subsequent growth of the plants, although 

it is likely that growth of plants from auxin treated cuttings might be initially 

affected. 

The following conclusions were made about the response of AYB cuttings to auxin 

treatment: 

- AYB does not require exogenous auxin to form roots 

- Auxin in low concentrations stimulates root formation and more roots per 

cutting 

- High auxin concentration adversely affects root growth and bud development. 

5.3 Effect of physiological status (leaf area) on rooting of AYB stem cuttings 

Several factors including the carbohydrate status of cuttings have been shown to play 

an important role in the rooting of stem cuttings. Carbohydrates are necessary for 

plant tissues to produce adventitious roots and in tissue culture they are usually 

provided as sugar in the medium and in green tissues through photosynthesis 

(George and Sherrington, 1984). The physiological status of propagules such as the 

age and leaf area/size, plays an important role in the control of rooting. Nketiah et 

al. (1998) recorded higher rooting percentage of Triplochiton scleroxylon K. Schurr 

from cuttings with large leaf area (100 cm2) than smaller cuttings (30,50 and 80 

cm2) using closed propagation boxes without mist. A large leaf area can also have a 

negative effect on root formation due mostly to water loss. Aminah et al. (1997) 

observed the highest rooting with small leaf area (15 cm2) and decreased rooting of 

stem cuttings with larger leaf area (30 and 60 cm) in Shorea leprosula in enclosed 

polythene propagators (lxIxO. 8 m) with a misting unit. The contradiction in the 

above findings is attributed to water loss through transpiration in larger propagators 
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while the smaller propagators tend to maintain more uniform high humidity around 

the cuttings. 

Although it is common to reduce the size of large leaves so that cuttings occupy less 

space in propagation facilities, major reduction of leaf area and the mutual shading of 

leaves of crowded cuttings can reduce rooting and encourage diseases such as 

Botrytis (Hartmann et al., 1997). Cuttings of AYB vary in size depending on their 

position on the vine with the smallest located towards the apex. In the trials reported 

early in this chapter, these small sized cuttings were discarded in case they did not 

root efficiently because of reduced photosynthetic capacity/carbohydrate reserves. It 

is therefore, important to evaluate effect of different propagule sizes on the rooting of 

AYB cuttings to avoid unnecessary wastage of material. This experiment tested the 

hypothesis that cuttings with large leaf size/area, root better than cuttings with 

smaller leaf size/area and that trimming of leaves interferes with rooting due to the 

associated physiological stress. 

5.3.1 Materials and methods 

Leaf cuttings were grouped into the following 3 classes (Plate 5.5) depending on leaf 

size/length of middle leaflet: 

- small; 16 cm2/< 6cm 

" medium; 29 cm2/>_6cm-<_ 8.5cm 

- large; 65 cm2, >8.5 cm) 

An additional treatment consisted of large leaf size class reduced by 50% by 

trimming the leaflets. Position of the cutting node on the vine was also noted to try 

to detect any positional effects. Aqueous IBA potassium salt at a concentration of 

1.0 g 1" (0.1%) (determined from results of Section 5.2) was applied to cuttings using 

the procedure described in Section 5.2.1 before placing them in the rooting medium. 

Three propagators were used, each containing 10 cuttings per treatment per landrace. 

In order to avoid interference with rooting, one box was set aside to monitor the rate 

of root formation by assessing the number of rooted cuttings per treatment at weekly 

intervals. In the third and last week of the experiment, the other two boxes were 

used to determine the number of rooted cuttings, number of roots per cutting and root 

length from 10 rooted cuttings selected randomly (with five cuttings selected from 

each box, where possible). 
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Plate 5.4 Three leaf sizes used to determine the effect of cutting size in rooting. Bar 

= 40 mm. 

5.3.2 Results 

5.3.2.1 Root formation 

The position of a cutting on the parent vine did not seem to affect root formation in 

anyway since small sized cuttings located mostly on the upper position or closer to 

the apex and large sized cuttings on lower position performed similarly. Both of the 

AYB landraces were found to root readily with almost all the surviving cuttings 

rooted by the second week (Table 5.6). Root formation was not affected by leaf size. 

Table 5.6 Effect of leaf size on rooting of single node stem cuttings of AYBI and 
AY 132 landraces. 

Treatment Cumulative number of rooted Number of dead 
(leaf size) cutting s n=10 cuttings 

Week 1 Week 2 

AYBI 
Small 6 9 1 
Medium 4 9 1 

Trimmed 4 8 2 

Large 9 9 1 

AYB2 
Small 8 10 0 

Medium 9 10 0 

Trimmed 7 10 0 

Large 7 10 0 
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5.3.2.2 Root number 

There was a significant effect of leaf size (F(3,70) = 3.23, p<0.05) on the number of 

roots per rooted cutting (Table 5.7). In AYB2, trimmed leaf cuttings produced the 

most roots. Root number formed per cutting did not differ significantly between the 

landraces. 

5.3.2.3 Root length 

Differences in root length between treatments and between landraces were not 

significant (Table 5.7). 

Table 5.7 Effect of leaf size on mean number of roots per cutting and mean root 
length of AYB 1 and AYB2 landraces. (n=10) 

Factor Number of roots per Root length (longest root 
cutting in mm) 

AYB 1 AYB2 AYB 1 AYB2 
Leaf size 
Small 20.4 18.2 116.3 139.1 
Medium 17.7 14.9 145.7 161.2 
Trimmed 23.5 26.7 96.5 129.9 
Large 21.1 16.0 135.5 132.4 

s . ad. 4.18 25.69 
d. f. 70 70 
Significance (5%) 
Landrace 0.415 0.186 
Leaf size 0.027 0.178 
Interaction 0.552 0.783 

5.3.3 Discussion 

Leaf size did not seem to have any influence on the rooting of AYB. In contrast with 

observations made for other species (Aminah et al., 1997; Nketiah et al., 1998), no 

clear differences were detected in the rooting of the AYB landraces and cuttings with 

different leaf sizes were suitable as propagules. This is not unexpected because AYB 

is herbaceous and many relatively succulent non-woody plants that are rooted easily 

by herbaceous cuttings follow a similar response (Hartmann et al., 1997). Although 

smaller cuttings were mostly derived from the apical positions of the vine, this did 

not seem to have any bearing on the rate of root formation as rooting was uniform 

amongst the different cuttings from different positions on the vine. 
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Reducing the leaf size by trimming seemed to enhance mortality of the cuttings. 

Although a common practice, reduction of the size of leaves in order to occupy less 

space in propagating facilities encourages diseases such as Botrytis (Hartmann et al., 

1997). Trimming leaves did not seem to affect rooting of AYB as all the surviving 

trimmed cuttings were also able to root, just like the cuttings with intact leaves. 

There was no trend on root number and root length associated with leaf size of 

cuttings, although cuttings that yielded the highest root number appeared to have 

relatively shorter roots which might imply some kind of competition due to increased 

sink size thus impacting on individual root growth. This indifference of root number 

and root length towards leaf size is in contradiction to what has been reported for 

other plant species. For example, Ofori et al. (1996) reported an increase in root 

number with increase in leaf area of cuttings of Milicia excelsa. 

It can be concluded that leaf size does not have a bearing on rooting of AYB and that 

all of the types of cuttings used in this trial can be successfully used as propagules 

for propagation of AYB. It was also found that trimming of leaves does not 

negatively affect rooting although there were mortalities associated with it due 

possibly to fungal diseases. Further trials involving trimming of leaves should 

include some treatments with fungicides to counteract fungal infection. 
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CHAPTER 6 

IN VITRO PROPAGATION 

6.1 Introduction 

In vitro propagation can be divided into four stages, (i) the establishment of axenic 

cultures, (ii) the proliferation or multiplication of shoots, (iii) the production of 

plantlets with roots and (iv) re-establishment of plants in compost (Debergh and 

Read, 1991). The listing of the four stages above is not prejudicial to stage 0, i. e. the 

preparative stage in which mother plants are raised under hygienic conditions in 

order to limit contamination problems. 

Shoot regeneration from nodal explants can be used to achieve mass propagation of 

clonal progeny by either allowing growth of multiple shoots (axillary shoot growth), 

or a single elongated shoot bearing discrete and separated nodes that can be cut into 

nodal pieces and further subcultured to obtain more shoots. Good growth of plant 

tissues in vitro is obtained using protocols that provide optimal conditions for 

physiological functions of the explant. Naturally occurring and synthetic cytokinins 

are used to stimulate growth and development in tissue cultures (Pierik, 1987), and 

they are recognised to play an opposing role to auxins, that of inhibiting apical 

dominance as well as retarding senescence (Moore, 1989). Such stimulation of in 

vitro growth has been recorded by many researchers with recognisable differences 

between the various cytokinins used. Other plant growth regulators, such as 

gibberellins and auxin transport inhibitors, have been used to stimulate regeneration 

in in vitro cultures (Pattnaik and Chand, 1997; Chitra and Padmaja, 1999; Nakano et 

al., 2000). 

Rooting of in vitro derived plants is an important step in micropropagation as the 

ultimate goal is to grow the plants ex vitro. Although some species easily form 

adventitious roots on shoots produced in vitro, for others it may be necessary to 

apply certain treatments before they can grow roots (George and Sherrington, 1984). 

Auxins have been recognised to play an important role in the promotion of root 

growth in many plant species (Nikam and Shitole, 1997). Cytokinins used to induce 
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shoot growth frequently inhibit root formation and usually such shoots do not form 

roots in vitro until they are cultured on a medium with or without auxins. The 

potency of auxin in formation/induction of roots differs with auxin type, auxin 

concentration as well as plant genotype. Gibberellins are also naturally occurring 

growth substances that induce growth, but are not generally known to favour organ 

initiation (Rout et al., 2000) and usually inhibit adventitious root formation (Pierik, 

1987). Rooting of species previously known to be slow to produce roots has been 

achieved on explants that were exposed to gibberellin biosynthesis inhibitors 

(George and Sherrington, 1984; Mckinless and Alderson, 1993). Such chemicals 

have the capability to block endogenous gibberellin biosynthesis in cultures and thus 

promote root growth. 

Studies with other grain legumes such as cowpea (Vigna unguiculata L. ) 

(Pellegrineschi, 1997; Brar et al., 1997; Brar et al., 1999), common bean (Phaseolus 

vulgaris L. ) (Nagy et al., 1991; Santalla et al., 1998; Zambre et al., 1998) and black 

gram (Vgna mungo L. )(Geetha et al., 1997a, b) have demonstrated the effectiveness 

of in vitro techniques as propagation tools, thus offering hope for application in the 

propagation ofAYB. 

6.2 Establishment of axenic shoot cultures (culture initiation) 

For the rapid multiplication of shoots in vitro, it is important to establish axenic 

cultures from which explants can be subcultured in the shoot multiplication stage and 

these shoots or axillary buds can then be rooted or induced to elongate respectively. 

6.2.1 Effect of BAP on shoot induction and growth 

Various natural and synthetic cytokinins are used to stimulate growth and 

development in tissue culture (Pierik, 1987). Amongst the cytokinins used in tissue 

culture, BAP produced the highest efficacy in shoot/bud proliferation (Yang and 

Read, 1996; Brar et at. 1997). Increased concentration of BAP from 1.0 to 5.0 mg 1-' 

resulted in increased shoot bud production of black gram (Vigna mungo) (Geetha et 

al., 1997b). In the same study, a high frequency of shoot-bud differentiation was 

observed at 3.0 mg I"I. In some instances, high concentrations were observed to 

favour callus proliferation and inhibited shoot growth. High concentrations of BAP 

caused browning of cultures, less vigorous thin shoots and shoot tip decay of 
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chickpea (Cicer arietinum) (Polisetty et al., 1997). 

Two preliminary experiments were carried out to establish the suitable BAP 

concentration for the initiation of shoot growth from stem nodal segments of AYB 1, 

AYB2, AYB3 and AYB4. The experiment tested the hypothesis that cytokinin is 

required for in vitro shoot growth and that the degree of stimulation vary with 

concentration. Due to failure to germinate, AYB5 landrace was not included in this 

experiment. 

6.2.1.1 Materials and methods 

Stem nodal explants were surface sterilised as described in Chapter 3, Section 3.4.4 " 

and cultured separately. The following media treatments within the range of 

common or average concentrations used in other studies were used with five 

replicate explants (cultures) per treatment: 

Experiment 1: BAP at 0.25,0.5,1.0,1.5 and 2.5 mg 1"'. 

Experiment 2: Half strength MS lacking BAP and full strength MS + 0,0.25, 

0.5,1.0,1.5 and 2.5 mg 1" BAP. 

The cultures were incubated for 5 weeks in conditions described in Chapter 3, 

Section 3.7.1, after which shoot growth and callus production were recorded. 

6.2.1.2 Results 

In both experiments, more than 90% of the cultures of all the genotypes were free of 

contamination following the surface sterilisation of explants in 10 % (v/v) 

"Domestos" for 20 minutes (Table 6.1). Overall, there was a positive effect of BAP 

on the induction and growth of shoots of the AYB landraces. However, the 

stimulation of in vitro growth differed in terms of shoot number, shoot length and 

callus proliferation. The shoots were observed to be arising from axillary buds and 

there was no evidence of adventitious shoots formation either from stem or the 

accompanying callus. 
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Table 6.1 Response of AYB1, AYB2, AYB3 and AYB4 landraces to surface 
sterilization with 10 % (v/v) "Domestos" for 20 minutes. 

Landrace Experiment 1 n=25 Experiment 2 n=35 
Number of % of aseptic Number of % of aseptic 
aseptic cultures ex plants aseptic cultures ex plants 

AYB 1 23 92 33 94.29 
AYB2 25 100 34 97.14 
AYB3 25 100 35 100.00 
AYB4 23 92 34 97.14 

Significantly more shoots were produced in medium enriched with high BAP 

concentrations in both experiments [(F(4,80) = 2.80, p<0.05) and (F(6,108) = 31.96, 

p<0.001) for Experiments I and 2 respectively] (Tables 6.2 and 6.3). However, in 

both experiments the trend was similar with an increase in shoot number concomitant 

with BAP concentration. Media without BAP did not stimulate any shoot formation. 

Shoot numbers varied significantly (F(3,8o) = 11.84, p<0.001) and (F(3,108) = 6.30, 

p<0.001) between the different landraces in Experiments 1 and 2 respectively 

suggesting a strong genotypic control (Tables 6.2 and 6.3). In Experiment 1, AYB1 

and AYB2 produced more shoots than AYB3 and AYB4 whereas there was a 

marked improvement in performance of AYB4 in Experiment 2. 

In Experiment 2, addition of 0.25 mg 1"1 BAP to MS medium had a positive effect on 

shoot height (F(6 job) = 41.50, p<0.001) but increasing the level further reduced this 

effect (Figure 6.1 and Plate 6.1). Thus, BAP at 0.25 and 0.5 mg 1" was determined 

to be suitable for growth of AYB explants in vitro. Explants cultured in half strength 

and full strength MS media without BAP made little or no growth. 
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Table 6.2 Effect of BAP concentration on mean number of shoots of AYB1, AYB2, 
AYB3 and AYB4 landraces regenerated in vitro. (n=5) (Experiment 1) 

Treatment Shoot number 
AYB 1 AYB2 AYB3 AYB4 

BAP concentration (mg 1-1) 
0.25 1.8 2.2 1.2 1.6 
0.50 2.8 2.2 1.6 1.2 
1.00 2.0 2.2 1.2 1.2 
1.50 2.0 2.6 1.8 2.0 
2.50 2.4 2.2 1.8 2.0 

s. ed 0.36 

Lf 80 
Significance (0.05) 
Landrace <0.001 
BAP concentration 0.031 
Landrace x BAP concentration 0.231 

Table 6.3 Effect of BAP concentration on mean number of shoots of AYB1, AYB2, 
AYB3 and AYB4 landraces regenerated in vitro. (n=5) (Experiment 2) 

Treatment Shoot number 
AYB 1 AYB2 AYB3 AYB4 

BAP concentration (mg 1-1) 
0 (half MS) 0.8 1.6 0.4 0.5 
0 (full MS) 1.0 1.4 0.0 1.2 
0.25 2.2 2.0 1.6 1.6 
0.50 2.0 3.0 2.4 2.2 
1.00 3.3 3.0 2.2 4.0 
1.50 3.2 4.2 2.8 3.6 
2.50 3.0 4.4 3.6 4.8 

s. e. d 0.61 
df. 108 
Significance (0.05) 
Landrace <0.001 
BAP concentration <0.001 
Landrace x BAP concentration 0.294 
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Plate 6.1 l: liect of BAP concentrations [A; 0.25, B; 0.5, C; 1.0, D; 1.5, E; 2.5, F; 0 
(half MS) and G; 0 mg 1-' (Full MS)] on shoot proliferation and growth of AYB 
landraces. Bar = 25 mm. 
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Figure 6.1 Effect of BAP concentration in MS medium on mean shoot height of 
AYBI. AYB2. AYB3 and AYB4 landraces. Error bars =2s. e. d. (n=5) (Experiment 
2) 

Large amounts of callus (F(6. l08) = 57.14, p<0.001) were produced by explants 

cultured on media containing different concentrations of BAP but less was produced 

by explants cultured on media without cytokinin (Figure 6.2 and Plate 6.1). The 

interaction between landrace and BAP concentration was significant (F(3108) = 2.21, 

p<0.01). AYB I produced the largest amount of callus at all BAP concentrations and 

there was a trend towards more callus with low BAP concentration. 
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Figure 6.2 Effect of BAP concentration in MS medium on mean callus size 
(diameter) produced by AYBI, AYB2, AYB3 and AYB4 landraces. Error bars =2 
s. e. d. (n=5) (Experiment 2) 

6.2.1.3 Discussion 

Although AYB does not have an erect stem, its climbing habit makes it possible to 

keep it away from the ground, thus eliminating contact with soil-borne 

microorganisms. Therefore, in the preparative stage for micropropagation, growing 

the mother/stock plants on a trellis/support enhances success with establishment of 

axenic cultures from explants. 

Cytokinin was found to be essential for the growth of AYB in vitro but, at high 

concentrations, elongation of shoots was adversely affected. The increase in shoot 

number and reduced shoot elongation associated with higher BAP concentration is in 

agreement with observations made by Polisetty et al. (1997) in chickpea and Girija et 

al. (1999) in firecracker plant/flower (Crossandra infundibuliformis). The different 

effects of BAP concentration on shoot proliferation and elongation suggest that a two 

stage approach for the in vitro regeneration of AYB should be adopted, where 

separate media high and low in cytokinin are used for shoot proliferation and 

elongation respectively. The absence of a BAP concentration effect on callus 

production contradicts several findings with other crops. Avenido and Hattori (2000) 

recorded a significant increase in callus from hypocotyls of adzuki bean (Vigna 

angularis) when the BA concentration was increased twofold. The callus produced 

in all cultures grown on media with BAP may interfere with shoot regeneration 
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through competition for growth requirements, and thus needs to be reduced if direct 

shoot proliferation from meristematic tissue is to be achieved. The differences 

observed between the landraces suggest genotypic control in in vitro regeneration as 

observed in other species (Polisetty et al., 1997; Avenido and Hattori, 2000). 

6.2.2 Effect different cytokinins on shoot induction and growth 

The effect of cytokinins is dependent on many factors, including concentration and 

type of cytokinin (Pierik, 1987). An experiment was carried out to identify the most 

suitable cytokinin for in vitro regeneration of AYB landraces. Due to their overall 

positive response in the initial experiments (Section 6.2.1), AYB1 and AYB2 were 

selected for this trial and other subsequent ones. Amongst the cytokinins used in 

tissue culture, BAP produced the highest efficacy in shoot/bud proliferation (Yang 

and Read, 1996; Brar et al., 1997). The following experiment was carried out to test 

the hypothesis that cytokinins differ in their activity to stimulate in vitro shoot 

regeneration. 

6.2.2.1 Materials and methods 

Stem nodal explants of AYB1 and AYB2 landraces were surface sterilised as 

described in Chapter 3, Section 3.4.4 and cultured on MS medium containing TDZ, 

BAP or 2iP at 0.25,0.5,1.0 and 1.5 mg I. There were 5 explants (cultures) per 

treatment and they were incubated as described in Chapter 3, Section 3.7.1 for 5 

weeks after which shoot growth and callus production were recorded. 

6.2.2.2 Results 

There were significant differences in the effects of the cytokinins on shoot number, 

shoot height and callus proliferation (Table 6.4 and Figures 6.3 and 6.4). Differences 

between the landraces of AYB were not significant, however, there were some 

interactions between cytokinin and landrace for some parameters. 

Visual observation found the shoots to be of axillary buds origin. Significantly 

(F(2,92) = 73.20, p<0.001) more shoots were produced on medium supplemented with 

TDZ than with 2iP or BAP (Table 6.4). Shoot number was greater at low TDZ 

concentrations, whereas it increased with an increase in concentration of BAP and 

2iP. Differences in the numbers of shoots stimulated by 2iP and BAP at the lowest 
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concentration were not significant. Although there was a highly significant (F(6,92) = 

5.19, p<0.001) interaction between cytokinin type and concentration, differences 

between concentrations were not significant (Table 6.4). The interaction between 

landrace, cytokinin type and concentration was significant (F(692) = 2.40, p<0.05) 

with AYB1 producing more shoots at 0.25 mg 1"1 TDZ whereas AYB2 had more 

shoots at 0.5 mg 1"1 
. 

Both type and concentration of cytokinin in the media significantly [(F(2,92) = 184.60, 

p<0.001) and (F(j, 92) = 3.32, p<0.05) respectively} influenced shoot height (Figure 

6.3). Compared with TDZ and 2iP, BAP produced shoots that were significantly 

taller, however, there was a significant interaction between cytokinin, concentration 

of cytokinin and genotype. Shoot height varied significantly (F(6,92) = 2.28, p<0.05) 

between landraces and from cytokinin to cytokinin at different concentrations 

(Figure 6.3). 

Table 6.4 Effect of type of cytokinin and cytokinin concentration on mean number 
of shoots of AYB 1 and AYB2landraces regenerated in vitro. (n=5) 

Factor AYB1 AYB2 
BAP 2iP TDZ BAP 2iP TDZ 

Cytokinin concentration (mg 1-1) 
0.25 1.0 1.0 3.2 1.0 1.0 2.6 
0.50 1.4 1.2 2.0 1.5 1.0 3.2 
1.00 1.6 1.0 2.0 1.8 1.2 2.0 
1.50 1.6 1.6 2.3 1.8 1.0 2.2 

s e. d. 0.32 
d 
. 
f. 6 

Significant (0.05) 
Landrace 0.751 
Cytokinin <0.001 
Cytokinin concentration 0.656 
Landrace x cytokinin 0.384 

Landrace x cytokinin conc. 0.105 

Cytokinin x cytokinin conc. <0.001 

Landrace x cytokinin x cytokinin conc. 
0.034 

86 



100 
90 
80 
70 
60 

d0 50 
s 40 

30 
s 20 
ý' 10 

0 

DAMBI  AYB2 

Cytokinins at different concentrations (mg 1-) 

Figure 6.3 Effect of cytokinin type and concentration on mean shoot height of 

AYB1 and AYB2 landraces. Error bars =2s. e. d. (n=5) 

Shoot regeneration from AYB was accompanied by excessive callus growth. All of 

the cytokinins tested stimulated callus, but the amounts differed significantly (F(2,92) 

= 74.03, p<0.001) (Figure 6.4). TDZ produced the largest amount of callus while 

2iP produced the least. Callus proliferation was not dependent on genotype. 

However, the response of individual landraces varied between cytokinins and 

cytokinin concentrations as shown by the significant (F(6,92) = 3.04, p<0.01) 

interaction between landrace. cytokinin and cytokinin concentration. Less callus was 

produced by all landraces in the presence of 2iP than with BAP or TDZ. AYB2 was 

the least prolific landrace on 2iP media and highest on TDZ media (Figure 6.4). 
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Figure 6.4 Effect of cytokinin type and concentration on mean callus size (diameter) 

produced by AYB1 and AYB2 landraces. Error bars =2s. e. d. (n=5) 
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6.2.23 Discussion 

Cytokinins tested in this experiment were shown to differ significantly in their action 

on the type of growth invoked in AYB, affirming previous findings on the potency of 

different cytokinins. TDZ performed better in terms of number of shoots compared 

with BAP and 2iP, while shoot elongation was better in BAP enriched media. Naik 

et al. (1999) observed a similar action of TDZ on pomegranate (Punica granatum) 

and attributed this to its high activity that can be inhibitory to shoot development. 

BAP has been observed to be a better cytokinin for shoot development as well as 

shoot induction (Yang and Read, 1996; Brar et al., 1997; Pattnaik and Chand, 1997; 

Tavares et a1., 1998; Chitra and Padmaja, 1999). The low potency of 2iP with 

respect to shoot induction and development was also observed for callus 

proliferation, which suggests that it could be selected where cultures low in callus 

are required, although it may need to be used at a slightly higher concentration. 

6.2.3 Effect of media salts on shoot induction and growth 

Sufficient nutrient salts are essential to avoid limited culture growth due to nutrient 

stress. Different formulations for media are available and those commonly used are 

MS medium (Murashige and Skoog, 1962), B5 (Gamborg et al., 1968) and Woody 

Plant Medium (McCown and Lloyd, 1981). MS medium is the most popular as most 

plants react favourably to it, but its salt content is too high for some plants (Pierik, 

1987). 

Two experiments were carried out to test the hypothesis that the three commonly 

used media salts, Woody Plant (WPM), Gamborg B5 and Murashige and Skoog 

(MS), do not differ in efficiency to supported shoot regeneration of AYB in vitro. 

6.2.3.1 Materials and methods 

Surface sterilised stem nodal explants (Chapter 3, Section 3.4.4) were cultured on 

WPM, B5 and MS media containing BAP at 1.0 mg 1.1. Both experiments were run 

as a complete randomised design with seven and nine replicates (cultures) for each 

treatment in Experiments 1 and 2 respectively. The cultures were incubated for five 

weeks under conditions described in Chapter 3, Section 3.7.1, after which shoot 

growth and callus production were recorded. 
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6.2.3.2 Results 

In both experiments, all the shoots were observed to arise from axillary buds and 

none from other parts of stem segment or the accompanying callus. In Experiment 1, 

the number of shoots produced differed significantly (F(2,36) = 4.04, p<0.05) between 

media but not between landraces (Table 6.5). In overall, MS gave more shoots than 

B5 and WPM but differences were only significant between MS and WPM. In 

Experiment 2, the difference in the number of shoots due to medium was also 

significant (F(2,35) = 4.79, p<0.05) with MS still producing more shoots and WPM 

producing the least (Table 6.6). The landraces also differed significantly (F(J, 48) _ 

8.64, p<0.01) with more shoots produced by AYB1 (Table 6.6). In Experiment 1, 

shoot fresh weight differed between landraces (F(J, 36) = 29.44, p<0.001) and between 

media (F(2,36) = 23.63, p<0.001) with AYB2 shoots being the heaviest and those 

produced on WPM the lightest (Table 6.5). However, in Experiment 2, shoot weight 

was only affected (F(2,4 = 20.90, p<0.001) by medium with MS producing the 

heaviest and WPM the lightest (Table 6.6). 

Shoot height was affected by genotype (F(I. 36) = 9.63, p<0.01) in Experiment I but 

not by growth medium where AYB2 produced taller shoots than AYB 1 (Figure 6.5). 

In Experiment 2 it was affected by medium (F(2,48) = 3.36, p<0.05) with taller shoots 

produced on WPM than on MS and B5 (Figure 6.6 and Plate 6.2) Both landrace and 

medium had significant effects [(F(J, 48) = 59.27, p<0.001) and (F(2,48) = 34.98, 

p<0.001) respectively] on number of nodes (Table 6.6). Shoots of AYB1 possessed 

more nodes than those of AYB2, and shoots produced on MS had more nodes than 

those on B5 and WPM. 
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Table 6.5 Effect of different media salts on mean shoot number, mean shoot weight 
and mean callus weight of AYB1 and AYB2 landraces regenerated in vitro. (n=7) 
(Experiment 1) 

Factor Shoot number Shoot weight Callus weight 

AYB 1 AYB2 AYB 1 AYB2 AYB 1 AYB2 

Medium 
MS 1.9 2.4 0.148 0.204 3.52 2.57 
B5 2.1 1.6 0.123 0.214 1.52 2.29 
WPM 1.1 1.6 0.076 0.109 1.28 1.38 

s. e. d. 0.40 0.0192 0.689 
d. f. 2 2 2 
Significance (0.05) 
Landrace 0.536 <0.001 0.949 
Medium 0.026 <0.001 0.004 
Landrace x medium 0.098 0.107 0.217 
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Plate 6.2 Effect of different media salts on in vitro shoot regeneration of AYB 1 and 
AYB2. Bar = 20 mm. 

 AYBI  AYB2 

Figure 6.5 Effect of different media salts on mean shoot height of AYB1 and AYB2 
landraces. Error bars =2s. e. d. (n=7) (Experiment 1) 
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Figure 6.6 Effect of different media salts on mean shoot height of AYB I and AYB2 
landraces. Error bars =2s. e. d. (n=9) (Experiment 2) 

Callus proliferation followed similar trends in both experiments with the largest size 

of callus [Experiment 1 (F(236) = 30.28, p<0.001) and Experiment 2 (F(2,48) = 16.07, 

p<0.001)] produced on MS medium (Figures 6.7 and 6.8). An effect of genotypic 

was observed only in Experiment 1, where AYB1 produced slightly more callus than 

AYB2 (F(J. 36) = 5.54, p<0.05) (Figure 6.7). The interaction between media and 

landrace in Experiment 1 was detected because AYBI produced more callus (F(2,3 _ 

4.38, p<0.05) on MS and B5 whereas AYB2 produced more on WPM (Figure 6.7). 

However. in Experiment 2. the interaction was detected because AYB 1 produced 

more callus (F(2.48) = 3.68, p<0.05) than AYB2 on B5 medium (Figure 6.7). Culture 

medium was the only factor that had an influence on callus weight in both 

experiments [Experiment 1 (F(2,36) = 6.45, p<0.01) and Experiment 2 (F(2,48) = 29.88, 

p<0.001)] with MS and B5 being the most supportive and WPM the least (Tables 6.5 

and 6.6). 
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Figure 6.7 Effect of different media salts on mean size of callus (diameter) produced 
by AYB1 and AYB2 landraces. Error bars =2s. e. d. (n=7) (Experiment 1) 
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Figure 6.8 Effect of different media salts on mean callus size (diameter) produced by 
AYBI and AYB2 landraces. Error bars =2s. e. d. (n=9) (Experiment 2) 

6.2.3.3 Discussion 

A nutrient rich medium such as MS is essential to sustain the in vitro regeneration of 

AYB, as it is in other plants for the maximum growth for the duration of the culture 

without depletion of the nutrients (Jeong et al., 1995). This confirms previous 

findings that MS is the most popular medium because most plants react favourably to 

it. Although both landraces reacted positively to MS, there was genotypic variation 

between them, and this supports the view of Pierik (1987) who stated that, whilst MS 
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is the most popular, it may not necessarily be optimal for growth and development of 

other plants because of its high salt content. WPM was found to be least beneficial 

to in vitro regeneration of AYB. 

63 Shoot multiplication/proliferation from axenic explants 

The aim is to produce more shoots by subculturing axenic shoots by either direct 

caulogenesis or axillary bud proliferation before caulogenesis. 

6.3.1 Effect of cytokinins (BAP, TDZ and 2iP) on shoot multiplication 

Cytokinin concentration of 0.25 mg and 0.5 1.1 were found to favour shoot growth 

compared to the other concentrations tried in Section 6.2. Therefore, these 

concentrations were used in this trial. 

6.3.1.1 Materials and methods 

Axenic cultures were initiated from nodal stem explants of AYB 1 and AYB2 

cultured for five weeks on MS medium containing 1.0 mg 1-1 BAP for the production 

of explants for shoot multiplication. Nodal segments were excised from the axenic 

shoots and subcultured onto MS basal medium containing the cytokinins BAP, 2iP 

and TDZ at 0,0.25 and 0.5 mg 1''. The experiment was set up as a completely 

randomised design with 5 replicates (5 cultures each with one explant) per treatment. 

The cultures were incubated for 5 weeks under conditions described in Chapter 3, 

Section 3.7.1 after which callus size (diameter and weight), shoot number and shoot 

height were recorded. 

6.3.1.2 Results 

There were highly significant differences between landraces (F(1144) = 27.66, 

p<0.001), type of cytokinin (F(2,144) = 18.81, p<0.001) and concentration of cytokinin 

(F(2,144) = 33.73, p<0.001) on stimulation of axillary shoot proliferation (Table 6.7). 

The interactions between landrace and type of cytokinin were significant (F(2144) = 

9.28, p<0.001) and between cytokinin and concentration (F(4, )44) = 5.08, p<0.001) for 

shoot number. The difference in number of shoots between landraces was greater 

with TDZ than 2iP and BAP. More shoots were produced by AYB1 than AYB2 

under all cytokinins with TDZ the most active and 2iP the least. There was no 
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difference in the weights of shoots of AYBI and AYB2 but, shoots were relatively 

heavier (Fp, 142) = 33.91, p<0.001) with 2iP than with TDZ and BAP (Table 6.8). 

Shoots possessed more nodes (F(4,144) = 6.61, p<0.001) on media containing 

cytokinin at any concentration than the control (Table 6.7). BAP produced more 

nodes and 2iP produced the least. Landraces also differed significantly (F(J, 144) = 

23.52, p<0.001) in the number of nodes produced with AYB2 possessing more nodes 

than AYB 1. 

The significant interaction between landrace, cytokinin and cytokinin concentration 

(F(4,144) = 6.69, p<0.001) showed AYB2 produced taller shoots with BAP and TDZ at 

0.25 mg 1.1 (Figure 6.9). There was no significant difference between landraces 

when all the cytokinins were at 0.5 mg 1'1 (Figure 6.9). Media without cytokinin did 

not support any shoot elongation for AYB 1. Shoot height produced with each 

cytokinin corresponded with number of nodes, i. e. BAP produced longer shoots that 

possessed more nodes than 2iP and TDZ. 

96 



N 

Q 

"U 

Q 

w 
O 

y 
N 

.d 
O 
O 

4r 
O 

O 
.0 

O 

aý 
E 

0 
0 

aý 
E 

z 
0 

0 

.EO G 

O 

OO 

O "Cj 

ºr 
U 

04 
om, 

. 04 

N 
ÖNC-I 

O 

97 
t"' CA 

\O NN 
ÖMc4 "--4 --4 1. -4 . --4 . --4 \O 

oo0o- n 
ODOOctN 

N oöööööö 
A ry olý 
F o-ö 

ý N 
\O O 

OÖ "-+ 

ý O L N 
oeicýl 

A 't o0 n 
F- d 

cli 
N 

d N dÖO 

s. 

E 
M `r °" ̀ ° c .4 -i 'D. "`°. r r, O(D 0 0oov) an oooaoIr, o ö 
N 

d ö 
ff' 

ov ö ov öö 
A 

AN o 

N d odc; 

ýt N 

N 

p 

52 
E yýÖ 

U 

pvvX 

ei ýU 9'. -ýZ., 
A 

C= 0 41 

UÜ 
OÜU 

x v xX x 

g2 EI" 
tad 

ät 
00A ++ 

w oöö 
CC) 

c; 
ýý cd 

avcýaacýa v y. ýý, 

97 



W 
U 
Cd 

iCS 
. -r 

bp 

cd 

4-ý 
O 

3 

cl U 

cd 
U 

'b 

W 

N 

3 
0 
0 

.C 

O 

O 

a) U 

O 
U 
Q 

O 

UO 

10 2 

B{YO+, 

OÖ 

0O 
OO 

W. = 
00 .b 
%Z 0 
UU 

"'G -ci 
Ci O 

E4 ä 

N ö 
w%0 

CN 
l 000 

%0 00 ch 
C! 14R 
OOý 

Z NO CN eel 
ÖMM T Ö N 

"ý O00 O O 
IT 

It 0 'IT 0-c Cý N T 
Ö 

N O OOvO v 

10 3 v 

E" O q: 

U 

00 ý. o 
N OR OR 

Q' 000 

OR 
ONM 

N en C> 
or H Oo0 

N 
CL4 

en r- %. D 
"T 

N 
Qý' ÖÖÖ 

MN ýh 

pA (3ý 
OOO 

1. 0S 
" ý0[o0ý %0 Co 0N0 i'[l- 

NýO! O Il It I0 -0 

-4 
ý C" d0 0000 

ov 
o Q .. O 

o0 o 
E 

F Oöö 

_ 
a 
N 

öö 
Qý' OÖÖ 

M_ tt 

OO 
OOO 

G"+ 

C". 
ÖV 

"r C 
to 

Jb Ö 

pÜX 

cl 05 

.5r. 
0 A OÖÜÜVÜ 

O 
V x V 

_ý 
v xx x 

O 
pO Cd CIS G 

HO 

In 
, Zi 

G 

'5% "H - w Q000 ; ä 0 QEzä0 
y 

98 



50 

45 

40 

35 

30 

25 
= 20 

15 
vý 10 

5 

0 
0 0.25 0.5 0 0.25 0.5 

BAP 2iP TDZ 

Cytokinin type and concentration (mg 1-1) 

Figure 6.9 Effect of cytokinin type and concentration on mean shoot height of 
AYB1 and AYB2 landraces. Error bars =2s. e. d. (n=5) 

The addition of any of the three cytokinins to the culture medium significantly 

(F(2.144) = 33.91, p<0.001) increased the amount of callus produced, with TDZ the 

most active and 2iP the least (Figure 6.10). While there was no difference between 

the effect of the concentrations tested, there was a clear difference (F(4,144) = 12.77, 

p<0.001) between media with and without cytokinin (Figure 6.10). There was a 

significant (F(2,144 = 5.24, p<0.01) interaction between landrace and cytokinin 

concentration where AYB1 produced more callus than AYB2 at 0.5 mg 1-1 but not at 

0.25 mg 1-1 (Figure 6.10). Differences in callus weight between the two landraces 

were also significant (F(1,142) = 145.92, p<0.001) with the heavier callus produced by 

AYB2 (Table 6.8). The strong interaction (F(/, /42) = 36.81, p<0.001) between 

cytokinin and concentration showed that callus weight also depended on the type and 

concentration of cytokinin. 
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Figure 6.10 Effect of cytokinin type and concentration on mean callus size 
(diameter) produced by AYB 1 and AYB2 landraces. Error bars =2s. e. d. (n=5) 

6.3.1.3 Discussion 

Thidiazuron. as observed in the experiments on the establishment of axenic cultures 

(Section 6.2.2), was a more active cytokinin than BAP and 2iP in terms of shoot 

multiplication and callus production confirming previous reports (Naik et al., 1999). 

BAP was better for shoot growth/development although shoots were not long enough 

to be rooted. These shoots possessed more nodes than the shoots produced by other 

cytokinins, thereby conferring the benefit of shoot proliferation by subculturing of 

axenic nodal segments. Both landraces produced large amounts of callus (size and 

weight) with more produced in the presence of cytokinin, confirming similar 

observations made by other researchers on black gram (Vigna mungo) (Geetha et al., 

1997b) and adzuki bean (Vigna angularis) (Avenido and Hattori, 2000). 

6.3.2 Effect of auxin polar transport inhibitor on in vitro regeneration from 

axenic nodal explants 

It has been suggested that addition of auxin polar transport inhibitors, 2,3,5- 

triiodobenzoic acid (TIBA) and N-(1-naphthyl)phtalamic acid (NPA), to regeneration 

media may inhibit the transport of endogenous IAA to regeneration sites, so that an 

auxin/cytokinin balance becomes more favourable for the regeneration of shoot buds 

(Charriere and Hahne. 1998, Nakano et al., 2000). Replacement of somatic embryos 

100 



by caulogenesis from immature zygotic embryos of sunflower progressed with 

increase in concentration of NPA (10-70 µM) and TIBA (10-100 µM) (Charriere and 

Hahne, 1998). Nakano et al. (2000) restored regeneration potential of 75-months-old 

cultures to about 10-fold increases in the number of regenerated shoot buds through 

addition of 0.5 or 5 µM TIBA in combination with 5 µM BAP or 5 pM TDZ. Two 

experiments were carried out to test the hypothesis that TIBA will induce shoots 

formation instead of callus proliferation from axenic explants of AYB. Due to 

shortage of AYB2 material, only AYB1 landrace was used in Experiment 1. In 

Experiment 2, both landraces were used. 

6.3.2.1 Materials and methods 

Axenic cultures were established on MS medium containing 1.0 mg 1"1 BAP as 

described in Section 6.2.1.1. Nodal explants of AYB1 were excised and subcultured 

onto the same medium as used in the establishment of axenic cultures but also 

enriched with TIBA at 0.0 (control), 0.5,1.5 and 2.5 mg 1-1 in Experiment 1. In 

Experiment 2, nodal explants of AYBI and AYB2 were subcultured onto the same 

media as above but enriched with TIBA at 0.0 (control), 2.5,5.0 and 10 mg 1-1. Each 

experiment was set up as a completely randomised design with 5 replicates (5 culture 

vessels each with one explant) per treatment. The cultures were incubated for five 

weeks (as described in Chapter 3, Section 3.7.1) after which data was recorded for 

shoot growth and callus production. 

6.3.2.2 Results 

Addition of TIBA to the culture medium was not beneficial for the number of shoots 

produced or their growth (weight) in the two experiments (Tables 6.9 and 6.10). 

AYB2 produced more shoots (F(J, 24) = 11.31, p<0.01) than AYB1 (Table 6.10). In 

Experiment 1, the higher TIBA concentrations (1.5 and 2.5 mg 1"') resulted in shorter 

shoots (F(3, /6) = 4.47, p<0.05) (Figure 6.11). A similar trend was observed in 

Experiment 2 but the differences in shoot height were not significant (Figure 6.12). 

The weight of shoots was also not affected by treatments in both experiments (Tables 

6.9 and 6.10). Adventitious shoot proliferation was not observed and all the shoots 

grew from axillary buds. 
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Table 6.9 Effect of TIBA on mean shoot number, mean shoot weight and mean 
callus weight produced by AYB 1 landrace. (n=5) (Experiment 1) 

Factor Shoot number Shoot weight (g) Callus weight (g) 

TIBA concentration 
0 1.4 0.007 4.96 
0.5 1.0 0.012 5.59 
1.5 1.0 0.030 3.15 
2.5 1.2 0.008 2.46 

s. ed 0.22 0.0167 0.532 
d. f. 3 3 3 
Significance (0.05) 0.261 0.493 <0.001 

Table 6.10 Effect of TIBA on mean shoot number, mean shoot weight and mean 
callus weight produced by AYBI and AYB2 landraces. (n=5) (Experiment 2) 

Factor Shoot number Shoot weight Callus weight 

AYB 1 AYB2 AYB 1 AYB2 AYB 1 AYB2 
TIBA concentration 
(mg 1") 

0 1.0 3.5 0.034 0.063 0.90 1.88 
2.5 1.3 1.8 0.024 0.019 1.08 2.28 
5.0 2.1 2.5 0.035 0.038 0.90 1.80 

10.0 1.8 2.5 0.016 0.042 0.25 1.05 

s. e. d 0.78 0.0193 0.551 
4. 3 3 3 
Significance (0.05) 
Landrace 0.003 0.285 0.002 
11BA 0.518 0.180 0.082 
Landrace x TIBA conc. 0.290 0.535 0.961 

102 



12 

10 
8 

g 

6 
CIO 

s 

4 

2 

0 

TIBA concentration (mg 1-1) 

Figure 6.11 Effect of TIBA on mean shoot height of AYB1 landrace. Error bars =2 
s. e. d. (n=5) (Experiment 1) 
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Figure 6.12 Effect of TIBA on mean shoot height of AYB1 and AYB2 landraces. 

Error bars =2s. e. d. (n=5) (Experiment 2) 

All the cultures produced excessive amounts of callus (Tables 6.9 and 6.10, Figures 

13 and 14). In the first experiment, differences in the amounts (size) of callus 

between TIBA concentrations were significant (F(316) = 13.70, p<0.001) with 2.5 mg 

1"1 giving less callus, whereas in Experiment 2, although the trend was similar, the 

difference was not significant (Figures 13 and 14). The highest level of TIBA (10.0 

mg 1-1) did not significantly reduce callus growth except between the landraces where 

AYB2 produced more callus (F(/. 16) = 7.23, p<0.05) than AYB1. Callus weight 
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differed significantly (F(3,16) = 15.37, p<0.001) between concentrations in 

Experiment I with control media and media containing 0.5 mg 1"1 producing the 

heavier callus (Table 6.9). In Experiment 2, there was no differences in the weight 

of callus produced on different TIBA concentrations, but the landraces differed 

significantly (F(2,24) = 12.39, p<0.01) with AYB2 producing more callus biomass 

(Table 6.10). 
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Figure 6.13 Effect of TIBA on mean callus size (diameter) produced by AYBI 
landrace. Error bars =2s. e. d. (n=5) (Experiment 1) 
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Figure 6.14 Effect of TIBA on mean callus size (diameter) produced by AYBI and 
AYB2 landraces. Error bars =2s. e. d. (n=5) (Experiment 2) 
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6.3.2.3 Discussion 

In both experiments, the cultures produced large amounts of callus with little 

proliferation and development of shoots. Contrary to the original hypothesis, TIBA 

did not reduce the amount of callus produced, however, the literature reports that the 

effect of TIBA on shoot cultures tends to be species dependent. Voyiatzi et al. 

(1995) reported reduced apical dominance and increased axillary branching of hybrid 

tea rose cv. `Dr. Verbage' and that this successfully replaced conventional manual 

tipping or shoot tip pinching. Orlikowska et al. (2000) observed that shoot tip 

removal and additional defoliation improved axillary branching of croton/garden 

croton (Codiaeum variegatum Blume var. pictum Muell. Arg. ) while addition of 

TIBA did not replace defoliation nor diminish the size of callus formed at the base of 

shoots. 

6.3.3 Effect of media on shoot proliferation and growth 

MS medium is the most popular as most plants react favourably to it, but its content 

of salt is too high for some plants (Pierik, 1987). It was also found in Section 6.2.3 

to be more suitable for AYB than the other media salts although the cultures were 

still accompanied by excessive callus proliferation. Since it is not entirely optimal 

for all plant species, adjustments are sometimes imposed or an alternative 

formulation used. Ohki and Sawaki (1999) established the benefit to shoot 

proliferation of Delphinium cardinale by adjusting the strength of MS medium by 

one third. Chaturvedi et al. (2004) reported that half strength MS medium required 

initially to establish nodal segment cultures of neem tree (Azadirachta indica) also 

stimulated subsequent multiple shoot formation when enriched with BAP (1µM) + 

GA3 (0.5 µM) or casein hydrolysate (CH) (250 mg 1-1). An experiment was carried 

out to test the hypothesis that adjustment of strength of MS will induce shoot 

proliferation with minimum callus production. 

6.3.3.1 Materials and methods 

Nodal segments of AYB1 and AYB2 landraces were excised from axenic shoot 

cultures established (as described in Section 6.2.1) on MS medium containing 1.0 mg 

1'' BAP and subcultured on the following MS media: half strength MS without BAP, 

full strength MS medium without BAP, half strength MS plus BAP and full strength 

MS medium plus 0.5 mg 1-1 BAP determined in Section 6.2.1 to be one of the 
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suitable concentration for shoot regeneration. The experiment was set up as a 

completely randomised design with 9 replicates (9 culture vessels each with one 

explant) per treatment. The cultures were incubated for five weeks under conditions 

described in Chapter 3, Section 3.7.1 after which data were recorded for shoot and 

callus growth. 

6.3.3.2 Results 

Shoot formation and growth of shoots were highest with full strength MS medium 

containing BAP (Table 6.11). There was an interaction (F(3,64) = 4.02, p<0.05) 

between media and landrace with AYBI responding best to full strength MS as the 

number of shoots was high with or without BAP. However, AYB2 responded 

negatively to MS but positive to BAP as it produced about 2 or more shoots on media 

containing BAP. This same trend was observed for shoot elongation (height) and 

number of nodes. The number of nodes produced did not differ between landraces 

but was more dependent on the medium (F(3,64) = 11.27, p<0.001) and full strength 

MS medium containing BAP produced the highest number (Table 6.11). The 

interaction between landrace and medium on shoot height was significant (F(3,64) = 

3.67, p<0.05) (Figure 6.15). While shoot height differed between landraces (F(164) _ 

5.43, p<0.05) with AYB2 producing the tallest, it was more influenced by medium 

(F(3,64) = 23.03, p<0.001) with full strength medium containing cytokinins producing 

the tallest shoots (Figure 6.15). The trend in origin of shoots was similar to that in 

the previous sections where shoots came from axillary buds. 
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Table 6.11 Effect of media on mean shoot number, mean number of nodes and mean 
callus weight of AYB I and AYB2 landraces. (n= 9) 

Factor Shoot number Number of Callus weight 
nodes 

AYB 1 AYB2 AYBI AYB2 AYB 1 AYB2 
Media 

1/2MS 0.7 1.0 0.8 0.8 0.06 0.01 
MS 1.8 0.3 0.8 1.2 0.11 0 
'/%MS + BAP 0.7 1.9 1.1 1.4 0.80 1.97 
MS + BAP 1.8 2.6 3.3 2.7 4.46 5.01 

s. e. d 0.36 0.59 0.345 

df. 3 3 3 
Significance (0.05) 
Landrace 0.010 0.925 0.026 
Media <0.001 <0.001 <0.001 
Landrace x Media. 0.011 0.587 0.035 
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Figure 6.15 Effect of media on mean height of shoots generated from axenic 
explants of AYB1 and AYB2 landraces. Error bars =2s. e. d. (n=9) 

Explants cultured on the media without cytokinins produced very little or no callus 

(Table 6.11 and Figure 6.16). The interaction (F(3.64) = 8.74, p<0.001) between 

landrace and medium indicates that AYB2 produced more callus than AYB1 on half 

strength MS containing BAP while AYB 1 produced more on full strength MS 

without cytokinins. The largest amount of callus (diameter) for both landraces was 
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produced on full MS containing BAP. The trend was similar for callus weight (Table 

6.11). 
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Figure 6.16 Effect of media on mean size of callus (diameter) produced by axenic 
explants of AYBI and AYB2 landraces. Error bars =2s. e. d. (n=9) 

6.3.3.3 Discussion 

AYB requires MS medium at full strength for reliable proliferation and 

growth/development of shoots. However, this regeneration capacity is also 

accompanied by the production of excessive callus. This contrasts with findings for 

black gram (Vigna mungo). where half strength MS produced both callus and shoot 

buds while full strength MS inhibited bud formation (Das et al., 1998). Likewise, 

Ohki and Sawaki (1999) established that adjusting MS strength by one third 

benefited shoot proliferation of scarlet larkspur (Delphinium cardinale). Chaturvedi 

et al. (2004) reported that half strength MS enriched with BAP and GA3 or casein 

hydrolysate stimulated multiple shoot formation, but shoot growth was not supported 

and the shoots remained compact and stunted until MS was used at full strength. 

This observation is consistent with the present study and suggests there may be 

differences between species. The better shoot growth of AYB on full strength MS 

observed in this experiment supports findings from the comparison between MS, 

WPM and B5 salts (Section 6.2.3). 
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The need for cytokinin in the in vitro regeneration of AYB has also been confirmed 

in this experiment. All growth parameters were affected by absence of BAP in the 

media. Although full strength MS was found to be favourable for AYB regeneration, 

shoot growth and callus growth were highly influenced by BAP. This observation is 

consistent with the literature and findings reported in Section 6.2.1 of the current 

study. 

6.3.4 Effect of GA3 on shoot proliferation and elongation 

Synergistic effect of BAP and GA3 on in vitro shoot growth from nodal explants has 

been reported by many researchers (Pattnaik and Chand, 1997; Purohit and Singhvi, 

1998; Chitra and Padmaja 1999; Vengadesan et al., 2002). Purohit and Singhvi 

(1998) reported improved shoot elongation and an enhanced rate of shoot 

multiplication of Achras sapota (L. ) when GA3 (1 mg 1-1) was incorporated in the 

medium during the first subculture after establishment. Pattnaik and Chand (1997) 

achieved faster bud break both in apical shoots and nodal explants and an enhanced 

frequency of bud break in three mulberries species through the incorporation of GA3 

(0.2-0.4 mg 1"1) along with BAP (1.0 mg 1-1). Three experiments were carried out to 

test the hypothesis that gibberellin will encourage shoot elongation and suppresses 

callus proliferation of AYB axenic explants. 

6.3.4.1 Materials and methods 

Axenic cultures of AYB1 and AYB2 landraces were established on MS medium 

containing 1.0 mg 1" BAP for five weeks under conditions described in Chapter 3, 

Section 3.7.1. Thereafter, nodal segments were excised and subcultured on MS 

medium containing BAP and GA3 as described in Tables 6.12,6.13 and 6.14. These 

cultures were also incubated for five weeks under conditions described in Chapter 3, 

Section 3.7.1 after which shoot growth and callus production data were recorded. 

Experiments 1 and 3 had 8 replicates (cultures vessels each containing 1 explant) 

while Experiment 2 had 7 replicates. 
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Table 6.12 Experiment I treatments. 

BAP concentration (mg 1-1) GA3 concentration (mg 1- ) 
0 0.25 0.5 

0 0 - 0.5 

0.25 - 0.25+0.25 - 
0.50 0.5 - - 

Table 6.13 Experiment 2 treatments. 

BAP concentration (mg 1") GA3 concentration (mg 1" 

0 0.25 0.5 
0 - 0.25 0.25 

0.5 0.5 0.5+0.25 0.5+0.5 
2.5 2.5 2.5+0.25 2.5+0.5 

Table 6.14 Experiment 2 treatments. 

BAP concentration (mg 1-1) GA3 concentration m 1-1) 

0 0.5 1.5 2.5 5.0 
0.5 0.5+0 0.5+0.5 0.5+ 1.5 0.5+2.5 0.5+2.5 
2.5 2.5+0 2.5+0.5 2.5+1.0 2.5+2.5 2.5+5.0 

6.3.4.2 Results 

As in other experiments, shoots originated from axillary buds rather adventitious 

growth. In Experiment 1, the combination of BAP and GA3 produced the best 

growth with more shoots (F(3,56) = 23.37, p<0.001) compared to the other media 

(Table 6.15). The control medium (without any PGRs) was the least effective. In 

Experiment 2, with higher concentrations of BAP and GA3, differences in shoot 

number were only significant (F(780) = 4.76, p<0.001) where GA3 was used alone 

(Table 6.16). In Experiment 3, when GA3 was not used alone, there were no 

differences between the treatments in the number of shoots produced, however, 

differences between the landraces were significant (F(1, j39) = 17.43, p<0.001) with 

AYB2 producing more shoots than AYB1 (Table 6.17). 

Shoot weight was not affected by media formulation in Experiments 2 and 3. In 

Experiment 2, the interaction between landrace and media formulation was 

significant (F(7,8o) = 4.36, p<0.001) (Table 6.16). Shoot weight differed (F(1,139) = 

36.34, p<0.001) between landraces in Experiment 3 with AYB2 producing the 

heaviest shoots (Table 6.17). The number of nodes produced corresponded to shoot 
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height for Experiments 1 and 2 but not in Experiment 3 where the only difference 

was between landraces (F(J, 139) = 21.15, p<0.001) (Table 6.17). 

Shoot height varied between the media treatments in Experiments 1 (F(3,56) = 27.98, 

p<0.001), 2 (F(7, so) = 7.16, p<0.001) and 3 (F(9139) = 2.00 p<0.001) and the longest 

shoots were produced with equal concentrations of BAP and GA3 (0.25 mg 1"1 for 

Experiment 1) and (0.5 mg 1'1 for Experiments 2 and 3) (Figures 6.17,6.18 and 6.19). 

This trend was not observed when equal concentrations increased to 2.5 mg 1.1 in 

Experiment 3. Landraces differed (F(I. 139) = 24.72, p<0.001) with AYB2 producing 

the taller shoots than AYB1 particularly in relation to media where GA3 was used 

alone (Figure 6.17). 

Table 6.15 Effect of GA3 on mean shoot number, mean number of nodes and mean 
callus weight of AYB 1 and AYB2 landraces. (n=8) (Experiment 1) 

Factor Shoot number Number of Callus weight 
nodes 

AYB 1 AYB2 AYB 1 AYB2 AYB 1 AYB2 

Treatment (PGR mg 0) 

0 (control) 0 0.5 0 0.6 0.01 0.07 
0.5 (GA3) 0.3 0.9 0.5 1.0 0 0.18 

0.5 (BAP) 1.4 1.5 2.5 2.1 3.61 3.33 
0.25 + 0.25 (BAP + GA3) 2.3 2.3 3.0 2.9 3.72 3.96 

s. ad 0.37 0.41 0.418 
Lf, 3 3 3 
Significance (0.05) 

Landrace 0.100 0.449 0.808 
Treatment <0.001 <0.001 <0.001 
Landrace x treatment. 0.596 0.256 0.821 
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Plate 6.3 Effect of combining of GA3 and BAP on in vitro regeneration. Ti (0 mg 1-1 
PGRs/control), T2 (0.5 mg 1-' GA3), T3 (0.5 mg 1-1 BAP) and T4 (0.25 BAP +0.25 
mg 1-1 GA3). Bar = 20 mm. 
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Figure 6.17 Effect of GA3 on mean shoot height of AYB1 and AYB2 landraces 

cultured from axenic explants. Error bars =2s. e. d. (n=8) (Experiment 1) 
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Figure 6.18 Effect of GA3 on mean shoot height of AYBI and AYB2 landraces 

cultured from axenic explants. Error bars = s. e. d. (n=7) (Experiment 2) 
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Figure 6.19 Effect of GA; on mean shoot height of AYB 1 and AYB2 landraces 

cultured from axenic explants. Error bars =2s. e. d. (n=8) (Experiment 3) 

115 

0.5 BAP 25 BAP 0-5 BAP + 2.5 BAP + 0.5 BAP + 2.5 BAP + 0.25 GA 0.5 GA 
0.25 GA 0.25 GA 0.5 GA 0.5 GA 

Concentration of BAP and GA3 (mg 1') 



Compared with the media containing BAP alone, there was no reduction in callus 

proliferation on media containing BAP + GA3 (Tables 6.15,6.16 and 6.17; Figures 

6.20,6.21 and 6.22). In contrast, growth of callus was very low in media without 

PGRs or with GA3 alone. In terms of callus weight, a combination of PGRs in 

Experiments 1 and 2 did not produce a significant reduction, but in Experiment 3 

there was some trend towards low callus production (F(9,139) = 3.57, p<0.001) as the 

concentration of BAP and GA3 was increased in the media (Table 6.17). In 

Experiments I and 2. there was no difference between the landraces but, in 

Experiment 3. AYB2 produced heavier callus (F(9,139) = 4.56, p<0.001) (Table 6.17). 

®AYBI  AYB2 

25 

E 
20 

15 
8 

10 

5 

0 
0 0.5 GA 0.5 BAP 0.25 BAP + 

0.25 GA 

Concentration of BAP and GA3 (mg -l-1) 

Figure 6.20 Effect of GA3 on mean callus size (diameter) produced by AYB1 and 
AYB2 landraces cultured from axenic explants. Error bars =2s. e. d. (n=8) 

(Experiment 1) 
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Figure 6.22 Effect of GA3 on mean callus size (diameter) produced by AYB1 and 
AYB2 landraces cultured from axenic explants. Error bars =2s. e. d. (n=8) 

(Experiment 3) 

6.3.4.3 Discussion 

The synergistic effect of BAP and GA3 on in vitro shoot growth observed in 

Experiment I confirmed previous findings (Pattnaik and Chand, 1997; Purohit and 
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Singhvi, 1998; Chitra and Padmaja, 1999; Vengadesan et al., 2002), however, a 

reduction in callus proliferation was not observed. The concentrations of BAP and 

GA3 were increased in the subsequent experiments to try to encourage shoot 

elongation and reduce callus proliferation, but the benefit was not clear suggesting 

that the concentrations may be critical. Chitra and Padamaja (1999) observed the 

elongation of in vitro grown shoots and sprouting of axillary buds of mulberry 

(Morus indica L. ) when GA3 (0.05 mg 1'') was added to medium with elevated BAP 

concentration (4.0 mg 1''). Without the addition of GA3, the shoots did not elongate 

and this was also observed in the present study. 

6.4 Rooting of in vitro shoots and acclimation of plantlets 

Rooting of in vitro-derived plants is an important step in micropropagation as the 

ultimate goal is to have the plants grow in vivo. Although some species easily form 

adventitious roots on shoots produced in vitro, other species may require specific 

treatments before they can grow roots hence the third stage of micropropagation 

(George and Sherrington, 1984). 

6.4.1 Effect of auxins and auxin concentration on adventitious root formation 

in vitro 

Auxins are the most commonly applied PGRs to stimulate rooting and their potency 

varies with type of auxin, concentration and plant genotype (Pierik, 1987). Nikam 

and Shitole (1997) achieved root formation on shoots of niger (Guizotia abyssinica) 

grown on hormone-free media as well as media with hormones and found no 

significant difference in the numbers of rooted shoots on media with varying 

concentrations of IAA and NAA. However, the best root growth in all shoots was in 

the presence of 0.5 mg 1-1. Girija et al. (1999) recorded the best rooting with IBA at 

all concentrations tested (0.5-2.5 mg 1-1), compared to IAA and NAA which 

promoted callus at the basal cut end of firecracker plant/flower (Crossandra 

infundibuliformis). Geetha et al. (1997b) demonstrated auxin requirement in rooting 

of black gram (Vigna mungo) when shoots that failed to root on media devoid of 

auxin for 15 d rooted within 15-20 d of culture on medium containing different 

concentrations of IBA (0.1-5.0 mg 1''). They observed maximum percentage rooting 

was with 3.0 mg I" IBA. 
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Rooting of axenic shoots of AYB1, AYB2, AYB3, AYB4 and AYB5 established in 

experiments reported in Section 6.2.1 was tested in three experiments. Experiment 1 

tested the hypothesis that rooting of shoots is controlled by auxin application method 

whereas Experiments 2 and 3 tested the hypotheses that auxins are required to induce 

rooting of shoots in vitro, different auxins vary in their ability to induce rooting and 

rooting of shoots depends on auxin concentration. 

6.4.1.1Materials and methods 

In Experiment 1, cultured shoots ofAYB1, AYB2, AYB3 and AYB4 were transferred 

to half strength MS medium containing no auxin or IBA at 1.0 mg 1-1. The following 

treatments were used, namely (i) continuous culture of shoots on medium without 

auxin (no pulse treatment), (ii) culture of shoots on medium containing auxin for one 

day then transferred to medium containing no auxin (1d pulse treatment) and (iii) 

culture of shoots on medium containing auxin for 7d before transfer to medium 

without auxin. In experiment 2, shoots of AYB 1, AYB2, AYB3 and AYB4 were 

rooted on half MS containing IBA and NAA at 1.0,1.5 and 2.0 mg 1-1. In 

Experiment 3, shoots of AYB 1, AYB2, AYB3, AYB4 and AYB5 were rooted on half 

MS containing IBA, NAA and 2.4-D at 3.5 mg 1''. 

The experiments were laid out as complete randomised designs with five replicates 

(culture vessels each containing one shoot) per treatment. The cultures were 

incubated for 6 weeks under conditions described in Chapter 3, Section 3.7.1 after 

which the number of shoots producing roots were recorded and rooted shoots 

transferred to equal volume peat and Perlite compost mix (Chapter 3, Section 3.5.2) 

in 8 cm plastic pots (Richard Sankey and Son, Nottingham, UK) and kept in a high 

humidity environment provided by polythene propagation boxes described in 

Chapter 3, Section 3.5.2. 

6.4.1.2 Results 

In the first experiment, rooting of AYB shoots was very low with no rooting 

observed in the control cultures that did not receive auxin and up to 7 out of 20 

shoots rooting with auxin treatments (Table 6.18). In the second experiment, IBA 

appeared to be better for root induction than NAA (Table 6.19). When IBA, NAA 
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and 2,4-D were tested at the higher concentration of 3.5 mg 1'', differences between 

IBA and NAA were not apparent, however, no rooting occurred in the presence of 

2,4-D (Table 6.20). Differences in rooting between the landraces were not consistent 

between the three experiments. 

Table 6.18 Number of shoots of AYB1, AYB2, AYB3 and AYB4 landraces rooting 
on half strength MS without IBA pulse (control) and with 1 and 7d pulses on half 
strength MS plus 1 mg 1'' IBA. (n=5) 

Genotype No pulse 1 day pulse 7 day pulse Total 

AYB 1 0 2 1 3 
AYB2 0 0 1 1 
AYB3 0 0 3 3 
AYB4 0 0 2 2 

Total 0 2 7 

Table 6.19 Effect of auxin type and concentration on number of shoots of AYB 1, 
AYB2, AYB3 and AYB4landraces forming roots. (n=5) 

Landrace IBA (mg 1' NAA (mg 
1.0 1.5 2.0 1.0 1.5 2.0 

AYBI 1 2 1 1 1 3 
AYB2 2 3 2 1 1 2 
AYB3 2 2 3 2 1 2 
AYB4 0 2 3 1 2 0 

Total 5 9 9 5 5 7 

Table 6.20 Effect of auxin type at 3.5 mg 1"' on number of shoots of AYB1, AYB2, 
AYB3, AYB4 and AYB5 landraces forming roots. (n=5) 

Landrace Auxin Total 
IBA 2.4D NAA 

AYBI 2 0 1 3 
AYB2 5 0 4 9 
AYB3 0 0 1 1 
AYB4 1 0 0 1 
AYB5 0 0 1 1 

Total 8 0 7 

When rooted plants were transferred to compost, vigorous plantlets with well 

developed roots and shoots (Plate 6.4B) compared to smaller shoots (Plate 6.4A) 
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grew successfully into normal plants and were subsequently used as clonal stock 

plants (Plate 6.4C). 

Plate 6.4 Shoots rooted in vitro and growing in compost after successful acclimation. 
Bars = 25 mm (A. B), 9 cm (C). 

6.4.1.3 Discussion 

The absence of rooting in the control treatment indicated the need for auxin for the 

rooting of AYB. Some plants are known to have a high endogenous production of 

auxin and thus do not require any exogenous application, while others have a 

requirement for exogenous application (Pierik, 1987). It is likely that, based on the 

observations to date. AYB may conform to the latter category of plants. This is 

perhaps unexpected when it is considered that the large amounts of callus produced 

by AYB explants may reflect high levels of endogenous auxins. IBA appeared to be 

relatively better for root induction than NAA and 2,4-D, as has been reported for 

most plants (Geetha et al.. 1997b; Girija et al., 1999). 
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6.4.2 Effect of PP333 on rooting of shoots of AYB landraces 

Gibberellins are naturally occurring growth substances that induce growth but are not 

generally known to favour organ initiation (Rout et al., 2000) and usually inhibit 

adventitious root formation (George and Sherrington, 1984; Pierik, 1987). Rooting 

of species previously known to be slow to root has been achieved with shoots 

exposed to gibberellin biosynthesis inhibitors. Rooting was achieved on rhizome 

buds of Lapageria rosea that were proliferated in the presence of the gibberellin 

biosynthesis inhibitor paclobutrazol at 5µM (McKinless and Alderson, 1993). As a 

growth retardant, paclobutrazol may, however, also have deleterious effects on plant 

growth as observed in delayed seedling emergence and retarded vegetative growth of 

maize (Zea mays) (Khalil and Rahman, 1995) and in inhibition of rooting in bean 

(Phaseolus vulgaris) (Tani and Nagy, 1996). 

Two experiments were carried out to test the hypothesis that PP333 promotes rooting 

by blocking the synthesis of gibberellins known to inhibit root formation. The 

application of PP333, a gibberellin biosynthesis inhibitor, at the shoot initiation and 

rooting stages was evaluated on rooting of AYB 1 and AYB2 landraces. 

6.4.2.1 Materials and methods 

In the first Experiment, nodal explants were surface sterilised according to procedure 

described in Chapter 3, Section 3.4.4 and cultured on full strength MS medium 

containing 0.5 mg 1"' BAP and PP333 at 0,0.75 and 1.5 mg 1"' for 5 weeks under 

conditions described in Chapter 3, Section 3.7.1. Shoots were then transferred to half 

strength MS medium containing 3.0 mg 1-1 IBA for rooting. In Experiment 2, nodal 

explants were also surfaced sterilised according to procedure described in Chapter 3, 

Section 3.4.4 and cultured first on MS medium containing 0.5 mg 1'' BAP under 

conditions described in Chapter 3, Section 3.7.1 for five weeks and then transferred 

to half strength MS containing 3.0 mg 1-' IBA and PP333 at 0,1.5 and 3.0 mg 1"'. In 

both experiments, the cultures were incubated for six weeks in conditions described 

in Chapter 3, Section 3.7.1 and evaluated every two days for root formation. Rooted 

plantlets were transferred to compost mix (described in Chapter 3, Section 3.5.2) in 

8cm plastic pots and kept in a high humidity environment provided by polythene 

propagation boxes described in Chapter 3, Section 3.5.2. 
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6.4.2.2 Results 

No benefit in rooting of shoots was derived from PP333 applied at either the shoot 

culture or the rooting stages (Table 6.21) and there was a marked retardation in the 

growth of shoots when PP333 was applied at the shoot culture growth stage (Plate 

6.5A) and tissue deformation when applied at the rooting stage (Plate 6.6). Shoots 

rooted in the presence of PP333 produced more root primodia and less root extension 

(Plate 6.6). 

Table 6.21 Effect of PP333 on in vitro rooting of shoots of AYB1 and AYB2. 

Treatment AYB1 AYB2 
Number Percentage Number Percentage 

rooting rooting rooting rooting 

n=15) (n=15) 

PP333 applied at 
shoot growth (mg 1-1) 
0 3 20.0 10 66.0 
0.75 3 20.0 8 53.3 
1.5 2 13.3 6 40.0 
PP333 applied at 

rooting (mg 1-1) 
0 3 20.0 5 33.3 

1.5 3 20.0 4 26.7 
3.0 0 0 0 0 

Plate 6.5 Effect of PP3 33 applied at shoot growth stage (A, shoots 5 weeks in 
initiation culture and B. shoots after rooting). Bars: A= 20 mm and B 30 mm. 
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There was a negative effect of PP333 on acclimation as all shoots rooted in the 

presence of PP333 failed to develop into normal plants (Table 6.22). In contrast, 

shoots rooted in the absence of PP333 grew well after transfer to compost. 

Table 6.22 Acclimation of plants of AYB1 and AYB2 landraces rooted in vitro after 
PP333 treatment. 

Treatment AYB1 AYB2 
Potted Surviving Potted Surviving 

plants plants plants plants 

PP333 applied at 
shoot growth (mg f) 

0 2 2 9 4 
0.75 5 0 6 0 

1.5 0 0 4 0 

PP333 applied at 
rooting (mg f') 

0 2 1 5 3 
1.5 0 0 2 0 
3.0 0 0 2 0 

6.4.2.3 Discussion 

Addition of PP333 to the culture medium did not improve the rooting of AYB 

shoots. Shoots that received PP333 either in the shoot growth medium or rooting 

medium showed signs of growth retardation and those that rooted did not survive 

transfer to compost. The size of a shoot seemed to play a major role in the 

establishment of rooted plants with less vigorous plants failing to grow ex vitro. 
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While many studies have reported beneficial effects of growth retardants such as 

PP333 on rooting, Khalil and Rahman (1995) observed delayed seedling emergence 

and retarded vegetative growth of maize (Zea mays L. ) and Tari and Nagy (1996) 

recorded inhibited root formation in bean (Phaseolus vulgaris L. ). Results with 

AYB are consistent with this negative action. While the negative effect of PP333 on 

AYB shoots could be due to its action as a growth retardant, it is also possible that its 

capacity to increase the concentration of endogenous IAA (Sebanek et al., 1991) 

resulted in the combined effect of exogenous and endogenous auxin leading to 

toxicity. 
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CHAPTER 7 

NODULATION AND NITROGEN FIXATION 

7.1 Introduction 

It is paradoxical that nitrogen (N) constitutes about 80% of the earth's atmosphere 

yet it is the most limiting nutrient for plant growth and the most deficient in soils. In 

an endeavour to redress the problem, mineral fertilizers are usually incorporated into 

soils although for various reasons it is generally difficult in most impoverished parts 

of the world such as Africa (Giller, 2001). However, in the developed world where 

fertilizer is less costly, there is fear of environmental contamination and loss of 

biodiversity due to increased fixation and mobilization of N through fertilizers and 

combustion (Frink et al., 1999). Therefore, an essential element of agricultural 

sustainability is the effective management of N in the environment, which usually 

involves some use of biologically fixed N because N from this source is used directly 

by the host plant and is less susceptible to volatilisation, denitrification and leaching 

(Graham and Vance, 2000). One of the important contributions of AYB in mixed 

cropping systems is its contribution to soil productivity. The use of AYB and other 

legumes as cover crops has increased the efficiency of fertilizer utilization and 

contributed organic matter for maintenance of high soil productivity (Obiagwu, 

1995b). 

Legumes are known for their ability to fix atmospheric nitrogen through root nodules 

developed in association with some strains of bacteria of the Rhizobiaceae. The fast 

growing Rhizobium and the slow growing Bradyrhizobium are the two types of 

bacteria species involved in nodulation of legumes. Some strains of rhizobia may be 

termed compatible if they form a symbiosis with some other legume species or 

incompatible if they cannot form a symbiosis with the host plant in question. 

Specificity of the microsymbiont is very important, as it has been shown that if such 

a strain is present in sufficient numbers, certain legumes such as soybean can obtain 

their total nitrogen needs from the air (Panzieri et al., 2000). Plant species vary in 

their degree of specificity in the requirement of effective rhizobial strains, and hence 

it is important to evaluate and select the most effective strain to use as an inoculant 
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for AYB. Deliberate selection and introduction of adapted rhizobial genotypes can 

also be used as a tool to optimise the legume symbiosis under stressful situations 

(Howieson and Ballard, 2004). Therefore, an ideal legume crop may not only be a 
high yielding one, but also one capable of symbiotic relations with most nitrogen 

fixing bacteria. 

Nitrogen fixation (% nitrogen derived from atmosphere when only above ground 

parts are considered) varies amongst grain legumes grown under different conditions, 

but is quite substantial with ranges of 16-92% (Arachis hypogea), 0-96% (Cicer 

arietinum), 12-100% (Glycine max), 85-91% (Lathyrus sativus), 9-91% (Lens 

culinaris), 0-88% (Cajanus cajan), 0-73% (Phaseolus vulgaris), 0-100% (Vigna 

radiata) and 32-76% (Vigna unguiculata) (Giller, 2001). While the legume- 

rhizobial symbiosis is understood for many major legume crop species, it has been 

less studied for non-conventional and under-utilised crops such as AYB, because 

they attract less research interest. An endosymbiont, characterized and designated as 

Bradyrhizobium sp. AUEB20, isolated from the Ethiopian tree Erythrina brucei has 

been reported to form a small number of large branched (each about 1 cm in 

diameter) indeterminate N2-fixing (1.02 pmoles g" h" C2H4) nodules with AYB 

(Assefa and Kleiner, 1997). This strain was also found to be promiscuous with 

respect to other tropical legumes since it also infected and caused nitrogen fixation 

on Cajanus cajan (21.4 µmoles g'' h'l C2H4), Dolichos lablab (8.9 gmoles g" h"' 

C2H4), Vigna unguiculata (3.6 pmoles g"1 h'I C2Ha) and Vigna subterranean (1.6 

pmoles g'' h"' C2H4). The AYB nitrogen fixation in association with strain AUEB20 

was less efficient compared to the other legumes tested, hence the need to evaluate 

more rhizobial strains to identify efficient ones. 

The purpose of this study was to determine the response of AYB to inoculation with 

nitrogen fixing bacteria and to identify the hostlmicrosymbiont combination for 

optimal performance of the N-fixing symbiosis. The hypothesis guiding the study 

was that, various rhizobial strains known to nodulate tropical legumes will cause 

formation of nitrogen fixing nodules on AYB landraces to sustain plant growth 

without need for nitrogen supplementation. The objectives were as follows: 
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- Determination of the infectivity (nodulation ability/formation of nodules) of 

various rhizobial strains on AYB landraces 

- Establish the effectivity (nitrogen fixation capacity) of nodulation by 

nodulating strains of rhizobia 

- Quantify contribution of the various strains to AYB growth and yield. 

Three experiments were carried out as described below. 

7.2 Nodulation and nitrogen fixation of AYB with Bradyrizizobium sp. AUEB20 

(Experiment 1) 

This experiment was conducted as a preliminary trial to establish the infectivity and 

effectivity of strain AUEB20 on 2 AYB landraces, since it is recognised that plant 

species or genotypes vary in their degree of specificity with respect to effective 

rhizobial strains. 

7.2.1 Materials and Methods 

The experiment was conducted in the glasshouse (conditions described in Chapter 3, 

Section 3.7.3) during the summer of 2003 (May-August) with AYB 1 and AYB2 

landraces. There were 2 treatments in this experiment, specifically; control treatment 

(uninoculated plants) and treated (inoculated plants). Inoculum preparation and plant 
inoculation were according to the procedure described in Chapter 3, Section 3.6.3. 

The inoculum used had a bacterial concentration >3.0 x 1011 cells ml-I. Plants were 

grown in 13 cm OS plastic (thermoformed polypropylene) pots (Soparco, Conde sur 
Huisne, France) placed in plastic trays (described in Chapter 3, Section 3.6.3) to trap 

inoculum-contaminated water. The experiment was set up with 20 plants inoculated 

and 10 uninoculated (control) plants for each landrace. Five plants were selected 

randomly every 28 d to check for nodule development. The experiment was 
terminated 12 weeks after inoculation and plants assessed for presence of nodules. 

7.2.2 Results 

Nodulation was not observed in any of the landraces inoculated with Bradyrhizobium 

strain AUEB20. Inoculated and uninoculated plants were stunted in their growth. 
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7.3 Evaluation of nodulation and nitrogen fixation of AYB landraces by 

different strains of rhizobia (Experiment 2) 

This experiment was set up to evaluate compatibility of AYB landraces with other 

rhizobial strains since, in the preliminary trial (Experiment 1), strain AUEB20 did 

not nodulate AYB plants contrary to observations reported by Assefa and Kleiner 

(1997). 

7.3.1 Materials and methods 

The experiment was conducted in the controlled environment room (conditions 

described in Chapter 3, Section 3.7.2) during the winter of 2003/04 (December- 

February). The following rhizobial strains (described in Chapter 3, Section 3.6.1), 

AUEB20, ORS302, CP279, NGR234 and ANU240 were used with strength > 3.0 x 

loll cells ml'', including a control treatment of uninoculated plants. Plants were 

inoculated according to the procedure described in Chapter 3, Section 3.6.3 and 

grown in 9 cm OS plastic (thermoformed polypropylene) pots placed in plastic trays 

to trap inoculum-contaminated water. Thirty plants per strain were used and a 

control treatment with 10 uninoculated plants for each landrace was set up alongside 

inoculated plants. Measurements were taken after 12 weeks of incubation with a 

total of 15 plants per treatment randomly sampled to assess the percentage 

nodulation. Five plants from each treatment were used to record number of nodules, 

nodule mass, nitrogen fixation capacity (nitrogenase activity and tissue nitrogen 

content) and leaf chlorophyll content for each landrace. Data was subjected to 

analysis of variance (ANOVA) using Genstat (Chapter 3, Section 3.9) at a 5% level 

of significance. 

7.3.2 Results 

Formation of nitrogen fixing nodules on the 2 landraces used was recorded with 

strains ORS302, CP279 and NGR234 and the results are presented below. Strains 

AUEB20 and ANU240 did not cause nodulation of host plants and hence were not 

included in data analysis. 
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7.3.2.1 Nodule formation on AYB landraces 

Two rhizobial strains, ORS302 and CP279, successfully infected roots of both AYB 

landraces by inducing nodulation in all 15 plants sampled, while strain NGR234 

caused nodulation on only 6 and 7 plants of AYBI and AYB2 respectively (Table 

7.1; Plate 7.1). Amongst the strains that caused nodule formation, the number of 

nodules per plant differed significantly (F(2,24) = 27.01, p<0.001) with strain ORS302 

inducing the largest number [349 (AYB1) and 365 (AYB2)], followed by CP279 [97 

(AYB1) and 128 (AYB2)] and NGR234 the least [5 (AYB1) and 12 (AYB2)]. 

The strains differed significantly (F(2,24) = 44.49, p<0.001) in dry weight of nodules 

and the trend was similar to that observed with number of nodules where strains 

ORS302 performed better, followed by strain CP279. Strains ORS302 caused 

formation of greater nodule dry weight of 0.211 and 0.32 g plant-' on AYB1 and 

AYB2 respectively, in relation to strain CP279 of 0.094 g plant' (AYB1) and 0.123 

g plant' (AYB2). However, there was also some significant (F(1,24) = 5.58, p<0.05) 

difference in nodule dry weight between landraces. AYB2 was the most responsive 

landrace, since it generally performed better than AYB I when inoculated with the 2 

most efficient rhizobial strains (ORS302 and CP279). 

Table 7.1 Nodulation (number nodulated plants, mean number of nodules per plant 

and mean nodule dry weight per plant) of AYB landraces by different rhizobial 

strains 

Treatment Number of Number of Nodule dry 

(rhizobial strain) nodulated nodules per weight (g) per 
plants nodulated plant (n=5) 

n=15 plant n=5 
AYBI AYB2 AYB 1 AYB2 AYB 1 AYB2 

Uninoculated 0 0 - - - 
ORS302 15 15 349 365 0.211 0.320 
CP279 15 15 97 128 0.094 0.123 
NGR234 6 7 5 12 0.046 0.046 

s. ad - 68.9 0.034 

d 
. 
f. - 

24 24 
Significance (5%) 

Landrace - 0.654 0.027 
Rhizobial strain - <0.001 <0.001 
Interaction - 0.970 0.080 
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Plate 7.1 AYB2 plant showing root nodules following inoculation with rhizobial 
strain ORS302. Bars. main picture = 100 mm; insert = 20 mm. 
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7.3.2.2 Nitrogen fixation capacity of AYB landraces 

All the plants that produced nodules were active in nitrogen fixation, but fixation 

capacity differed between rhizobial strains and between landraces (Table 7.2). On a 

nodule dry weight basis, nitrogen fixation ability of nodules revealed by nitrogenase 

activity differed significantly (F(2,24) = 6.89, p<0.01) between strains. Strain 

NGR234, which induced the least number of nodules on host plants, was more active 

in nitrogen fixation on AYB2 than strains ORS302 and CP279 and was also more 

efficient in AYB1 than strain CP279. Nitrogenase activity of 7.04 Pmoles C2114 g" 

h"1 on AYB2 nodules caused by strain NGR234 was the greatest, while -nodules 

induced by strain CP279 were the least active with 0.46 gmoles C2H4 g'' h" for both 

AYB 1 and AYB2. However, when nitrogen fixation was assessed on a per plant 

basis, the difference between rhizobial strains was highly significant (F(2,24) = 29.20, 

p<0.001), but strain ORS302 that evoked more nodules per plant performed better 

than the strains CP279 and NGR234 which caused the formation of less nodules. 

Genotypic variation on nitrogen fixation 'was evident as the landraces also differed 

significantly (F(I, 24) = 23.63, p<0.001) from each other, where landrace AYB2 with 

more nodules per plant had a high nitrogenase activity compared to AYB1 which had 

smaller number of nodules per plant. The interaction between rhizobial strain and 

landrace was also highly significant (F(2,24) =10.41, p<0.001). 

Accumulation of nitrogen in host plant tissues also revealed a significant (F332) _ 

44.44, p<0.001) difference between rhizobial strains as well as significant interaction 

(F(, 32) = 3.95, p<0.05) between strain and landrace (Table 7.2). Plants inoculated 

with strain CP279 yielded more nitrogen (AYBI, 3.01 % and AYB2,2.62 %) than 

strains ORS302 (AYB1,1.93 % and AYB2,2.40 %) and NGR234 (AYB1,1.72 % 

and AYB2,1.93 %). Difference in rhizobial strain/host plant association was 

evident, as AYBI accumulated more nitrogen with strain CP279, while AYB2 

yielded more nitrogen when inoculated with strains ORS302 and NGR234. As might 

be expected, uninoculated plants (control) had the lowest nitrogen content (Table 

7.2). 
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Table 7.2 Mean nitrogen fixation of AYB landraces nodulated by different rhizobial 
strains estimated by the Acetylene Reduction Assay (ARA) and tissue nitrogen 
content (%). (n=5) 

Treatment ARA (pmoles ARA (pmoles C2H4 Tissue nitrogen 
(rbizobial strain) C2H4 per per plant content (%) 

nodule dry wt h-1) 
h-i 

AYB 1 AYB2 AYB 1 AYB2 AYB 1 AYB2 

Uninoculated - - - - 1.28 1.46 
ORS302 2.15 4.63 0.37 1.39 1.93 2.40 
CP279 0.46 1.99 0.04 0.13 3.01 2.62 
NGR234 1.98 7.04 0.10 0.32 1.72 1.93 

s. ad 1.272 0.158 0.182 
d. f. 24 24 32 
Significance (5%) 
Landrace <0.001 <0.001 0.190 
Rhizobial strain 0.004 <0.001 <0.001 
Interaction 0.151 <0.001 0.017 

7.3.2.3 Chlorophyll content 

Total leaf chlorophyll content (mg g"' fresh weight) differed significantly between 

strains (F332) = 119.61, p<0.001) and between landraces (FJ, 32) = 5.28, p<0.05) 

(Figure 7.1). Surprisingly, strain NGR234 yielded more chlorophyll than the other 

strains in both landraces although it induced formation of the least number of nodules 

(Figure 7.1). Uninoculated plants were the lowest in leaf chlorophyll content as was 

the case with tissue nitrogen content. The interaction between landrace and strain 

was also significant (F3,32) = 119.61, p<0.01), where AYB1 performed as good as 

AYB2, with strain CP279 whereas AYB2 had higher chlorophyll content with strain 

NGR234 and ORS302 (Figure 7.1). 
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Figure 7.1 Effect of different rhizobia strains on total leaf chlorophyll of AYB1 and 
AYB2 landraces. Error bars =2s. e. d. (n=5) 

7.4 Evaluation of symbiotic effectiveness of different rhizobial strains 

nodulating AYB landraces (Experiment 3) 

In the second experiment, 3 strains were found to form a symbiosis with AYB 

landraces. The purpose of Experiment 3 was to evaluate the contribution or 

effectiveness of that symbiosis in nitrogen fixation and growth of AYB landraces. 

7.4.1 Materials and methods 

The experiment was conducted in the glasshouse (conditions described in Chapter 3, 

Section 3.7.2) in the summer of 2004 (June-August) with AYB1 and AYB2 

landraces using 3 rhizobial strains (ORS302, CP279 and NGR234) found to form 

nitrogen fixing nodules in Experiment 2. Inocula preparation and plant inoculation 

were carried out according to the procedure described in Chapter 3, Section 3.6.3. 

Twenty plants per strain were used and a control treatment with 10 uninoculated 

plants for each landrace was set up alongside inoculated plants. Plants were grown 

in 13 cm OS plastic (thermoformed polypropylene) pots placed in plastic trays to trap 

inoculum-contaminated water. Measurements were taken after 12 weeks of 

incubation. A total of 10 plants per treatment were sampled randomly to assess 

percentage nodulation, while for nodule formation (number of nodules and nodule 

mass), nitrogen fixation [tissue nitrogen content (%), total shoot nitrogen content and 
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fixed nitrogen per shoot] and plant growth parameters (dry matter accumulation and 

leaf area) six plants were used because of senescence of some of the control plants. 

Fixed nitrogen per shoot was calculated as the difference between total shoot 

nitrogen content of inoculated and uninoculated (control) plants [i. e. total shoot 

nitrogen content (mg) of inoculated plants less total shoot nitrogen content (mg) of 

uninoculated plants]. Shoot dry weight increase was estimated by expressing shoot 

dry weight of inoculated plants as a percentage of the shoot dry weight of 

uninoculated plants (control). Data was subjected to analysis of variance (ANOVA) 

using Genstat (Chapter 3, Section 3.9) at a 5% level of significance. 

7.4.2 Results 

A substantial contribution of different rhizobial strains to nitrogen fixation and 

growth of AYB landraces was observed in this experiment. 

7.4.2.1 Nodule formation 

Nodules were observed to have formed within 28 d of inoculation with strains 

ORS302 and CP279. At the termination of the experiment, strains ORS302 and 

CP279 had nodulated all the plants of the 2 landraces, while strain NGR234 caused 

nodule formation only on AYB2, but on a relatively smaller proportion (Table 7.3). 

There was a significant (F(2,30) = 76.95, p<0.001) difference in number of nodules 

recorded between plants inoculated with different rhizobial strains but not between 

the landraces. Strain CP279 caused the greatest number (319 and 329) of nodules 

plant-' on both landraces (AYB1 and AYB2 respectively), while strain ORS302 

followed with 186 and 182 nodules for AYB 1 and AYB2, respectively (Table 7.3). 

A trend similar to that displayed in number of nodules was observed in nodule dry 

weight per plant where the difference between rhizobial strains was significant 

(F(2,30)-"'256.60, p<0-00l)- Strain CP279 caused the formation of heavier nodules per 

plant (AYBI, 1.09 g and AYB2,1.63 g) than the other two strains. NGR234 was the 

least effective strain in terms of both nodule number and nodule mass. Observations 

on nodule dry weight showed that, unlike the number of nodules, landraces differed 

significantly (F(2,30) = 9.88, p<0.01) with AYB2 producing a greater nodule mass 

than AYB 1 with all rhizobial strains. 
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Table 7.3 Nodulation [number of nodulated plants, mean number of nodules per 
plant and mean nodule dry weight (g) per plant] of AYB landraces by different 

rhizobial strains. 

Treatment Number of Number of Nodule dry 
(rhizobial strain) nodulated plants nodules per weight (g) per 

n10 plant (n=6) plant (n=6) 

AYB1 AYB2 AYB1 AYB2 AYB1 AYB2 
Uninoculated 0 0 - - - - 
ORS302 10 10 186 182 0.94 1.08 
CP279 10 10 319 329 1.09 1.63 
NGR234 0 6 0 26 0 0.25 

s. ed - 35.6 0.169 
d. f. - 30 30 
Significance (5%) 
Landrace - 0.607 0.004 
Rhizobial strain - <0.001 <0.001 
Interaction - 0.838 0.257 

JI 

7.4.2.2 Nitrogen fixation 

As with other parameters, nodulation with ORS302 and CP279 improved remarkably 

the nitrogen nutrition of AYB landraces (Table 7.4). There was a significant (F(3,40) 

= 84.89, p<0.001) difference in tissue nitrogen accumulation between plants 

inoculated with strains ORS302 and CP279 and those inoculated with NGR234 and 

uninoculated ones (control). Plants inoculated with strains ORS302 and CP279 

accumulated more nitrogen in AYB 1 (3.00 and 3.02 % respectively) and AYB2 (3.18 

and 3.05 % respectively), while relatively small amounts were recorded with strain 

NGR234 (AYB1; 1.38 % and AYB2; 2.13 %) and the control treatment (AYB1; 1.22 

% and AYB2; 1.18 %) (Table 7.4). While strain NGR234 did not perform to the 

level of the other strains, it still differed significantly from the control treatment. 

Total shoot nitrogen content followed a similar trend as tissue nitrogen content, since 

strains still showed a highly significant (F(3,40) = 124.73, p<0.001) difference. 

Although there was no difference in tissue nitrogen accumulation between strains 

ORS302 and CP279, the latter gave a relatively high total shoot nitrogen content of 

907 mg (AYB2) and 681 mg (AYB1) compared to 784 mg (AYB2) and 705 mg 

(AYB1) for strain ORS302 (Table 7.4). The landraces did not differ significantly 

from each other, but a significant (F(, 3,40) = 3.93, p<0.05) interaction between strains 

and landraces detected suggests some genotypic difference in landrace/rhiozobial 

strain association. Although, due to its large dry matter yield, AYB2 had larger total 
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tissue nitrogen than AYB1 with strains ORS302 and CP279, both landraces 

performed equally in terms of proportion (%) of nitrogen derived from the 

atmosphere with over 97% of their nitrogen obtained through symbiosis (Table 7.4). 

Table 7.4 Mean nitrogen fixation [tissue nitrogen content (%), total shoot nitrogen 

content (mg) and fixed nitrogen (mg)] of AYB landraces inoculated with different 

strains of rhizobia. (n=6) 

Treatment Tissue Total shoot N *Fixed nitrogen (mg) 
(rhizobial strain) nitrogen content (mg) per shoot 

content (% of 
dry ei ht 

AYB 1 AYB2 AYB 1 AYB2 AYB 1 AYB2 

Uninoculated 1.22 1.18 19 22 - - 
ORS302 3.00 3.02 705 784 686 (97.3) 762 (97.2) 
CP279 3.18 3.05 681 907 662 (97.2) 885 (97.6) 
NGR234 1.38 2.13 23 105 4(17.4) 83 79.1 

s. e. d 0.205 75.3 - 
d. f. 40 40 - 
Significance (5%) 

Landrace 0.148 0.013 - 
Rhizobial strain <0.001 <0.001 - 
Interaction 0.015 0.221 - 

* Number in parenthesis denotes % nitrogen aenvea irom aunospnere 

7.4.2.3 Plant growth 

Plant growth parameters showed that successful nodulation with strains ORS302 and 

CP279 contributed immensely to plant growth compared to strain NGR234 and the 

control treatment (uninoculated plants) (Table 7.5; Plate 7.2). Contribution to the 

growth of the two landraces by the strains was found to be very substantial ranging 

from 97.5 to 1547.4% increase in shoot dry weight (Table 7.5). There was also a 

significant difference in shoot dry weight (F(J, 40) = 13.61, p<0.001) between 

landraces and between strains (F(3,40) = 157.00, p<0.001). Although AYB1 did not 

perform any better than AYB2 following inoculation with all the strains, the 

significant (F(J, 4o) = 157.00, p<0.001) interaction observed between landrace and 

strain suggested a genotypic difference in response of landrace to rhizobial strain. 

Shoot dry weight of AYBI was greater (23.4 g) with strain ORS302 than with the 

other strains, while AYB2 achieved its greatest shoot dry weight (29.7 g) with strain 

CP279. As dry matter accumulation revealed, inoculation contributed substantially 

to vegetative growth of AYB landraces and this was also revealed by the difference 
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in leaf area of the inoculated and uninoculated plants (Figure 7.1). Strain CP279 

produced a larger leaf area for both landraces than strain ORS302, while there was 

no significant difference between plants from the control and strain NGR234. Plants 

from the control and those inoculated with strain NGR234 were characterised by 

poor vegetative growth and yellowish leaves, usually associated with nitrogen 

deficiency (Plate 7.2). 

Table 7.5 Mean plant growth [shoot dry weight (g) and shoot dry weight increase 

(%)] of AYB landraces inoculated with different rhizobial strains. n=6 

Treatment Shoot dry weight (g) Shoot dry weight increase 

(rhizobial strains) (% of control) 

AYB 1 AYB2 AYB 1 AYB2 

Uninoculated 1.61 1.92 - - 
ORS302 23.40 26.01 1453.42 1354.69 

CP279 20.55 29.71 1276.40 1547.40 

NGR234 1.57 4.77 97.52 248.44 

s. e. d. 2.071 - 
d. f. 40 - 
Significance (5%) 

. andrace <0.001 - 
Rhizobial strain <0.001 - 
Interaction 0.029 - 
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Plate 7.2 Effect of different rhizobial strains (left to right, ORS302, CP279, 

NGR234) on growth of landrace AYB2. An uninoculated plant is shown far right. 
Bar = 20 cm. 
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Figure 7.2 Effect of different rhizobial strain on mean leaf area of AYB I and AYB2 
landraces. Error bars =2s. e. d. (n=6) 

7.5 Discussion 

7.5.1 Nodulation 

Results from Experiments 2 and 3 have indicated the potential of AYB as a 

promiscuous legume. since it was able to form nitrogen fixing nodules with 3 of the 

5 strains tested and classified as both Rhizobium spp. and Bradyrhizobium spp.. The 

large numbers of nodules plant' (up to 365) formed on AYB landraces by some of 

the strains tested were comparable to that recorded in cowpea (>100) inoculated with 

bradyrhizobia indigenous to Ghanaian soils by Fening and Danso (2002). Cowpea 

was regarded as a profuse nodulator. thus indicating that AYB can be regarded as a 

highly profuse type. Strain ORS302, that effectively and efficiently formed a 

symbiosis with AYB landraces, was originally supplied from Senegal, a country in 

the same geographic region (West Africa) as Nigeria where the two landraces used in 

these experiments were collected, thus reiterating its ability to associate with various 

strains. In intercropping trials conducted in the sandy soils of the Benue River 

Basins of Nigeria to assess the effect of some food legumes used as cover crops in 

cassava, yam, and maize based cropping systems, Obiagwu (1995b) observed that 

AYB formed nodules and contributed to soil productivity and yield of the main crops 

without any inoculation, thus corroborating the above suggestion. 
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However, when inoculated with the strain (AUEB20) that has been reported by 

Assefa and Kleiner (1997) to induce nitrogen fixing nodules, AYB did not yield any 

positive results. This outcome could be attributed to several possible factors, 

amongst which was the quality of the strain as regards its plasmids, since the supplier 

indicated that the stock was very old. Another possible reason could be the genotype 

of AYB landraces used in this study and that used by Assefa and Kleiner (1997). 

Genotypic variation has been observed in this study, where the response of 2 

landraces used differed from one strain to the other. Various reports have also 

indicated genotypic variation amongst both the microsymbionts and the hosts 

(Kishinevsky et al., 1996; Masutha et al., 1997; Robinson et al., 2000). It is possible 

that the landraces used in this study were not compatible with strain AUEB20 and 

thus failed to develop nodules. 

7.5.2 Nitrogen fixation of AYB landraces 

All the nodule-inducing strains have been shown to be effective in nitrogen fixation. 

However, plants with the greatest number of nodules fixed more nitrogen than those 

with fewer nodules, indicating the importance of root colonisation in nitrogen 

fixation. This outcome is in agreement with observation on soybean by Zhang et al. 

(1997) that cultivars with a high nodule mass usually have a higher capacity to fix 

more nitrogen. Giller (2001) also indicated that the most obvious requirement for a 

legume to form an effective N2-fixing symbiosis is the ability to form nodules that 

possess the necessary organisation and ancillary machinery for fixation. The reddish 

colouration observed on nodules and the fixation ability revealed by the ARA assay, 

indicated the presence of the necessary properties of an effective symbiosis. The 

ARA results of up to 7.04 pmoles g'l h" compared to 1.02 µmoles g'1 h" reported by 

Assefa and Kleiner (1997) indicated the necessity and importance of 

selectionrdentification of a more compatible microsymbiont. Under efficient 

nodulation, AYB landraces obtained 79.0-97.6% of their nitrogen from the 

atmosphere which compared favourably to most tropical legumes mentioned by 

Giller (2001). This outcome reveals potential of the crop to satisfy its nitrogen needs 

through biological nitrogen fixation, as nodulated plants also looked healthier than 

the poorly nodulated and non-nodulated plants (Plate 7.2). Inoculation of legumes 

with an effective strain can significantly replace chemical fertilizer in supply of 

nitrogen. 
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While it is important to look at AYB's fixation capacity against other grain legumes 

studied elsewhere, the difference in the environment under which those observations 

were made puts a limit to the extent of the comparison. As Giller (2001) mentioned, 

fixation capacities mentioned under previous studies are only potentials in certain 

environmental conditions and, hence, arriving at a useful generalisation about N2- 

fixing ability is difficult. The difference in tissue N accumulated by landraces 

suggests some underlying genotypic variation between AYB landraces. In beans 

(Phaseolus tiulgaris L. ), Rodriguez-Navarro (1999), observed that, although there 

was a difference between rhizobial strains on biomass and N concentration in shoots 

as a result of differences in nitrogen fixation rates, plant genotype significantly 

modified the performance of strains in that highly effective strains in one cultivar 

performed below par in another cultivar. 

Since grain legumes are not only incorporated in cropping systems because of their 

ability to supply their own nitrogen through BNF but also contribute residual 

nitrogen to succeeding crops, it is important to know the amount of N fixed vis-ä-vis 

that left behind in the field after removing the grain. Incorporation of groundnut 

residue, a relatively low N harvest index legume, substantially increased the yield of 

maize and significantly replaced the addition of urea at a rate of 75 kg ha" (Boddey 

et al., 1997). However, it was not possible to quantify nitrogen harvest index of 

AYB landrares because of failure of the plants to flower and produce grain. Some 

grain legumes such as soybean although known to be good nitrogen fixers are also 

known to utilise a lot the fixed nitrogen and, as such, are unlikely to contribute much 

N to the next crop (Boddey et al., 1997). Such legumes will not be suitable for 

inclusion in cropping systems commonly practised by resource-poor farmers in 

developing countries. Therefore, it is vital in the future to investigate nitrogen 

harvest index of AYB growing under conditions that allow reproductive growth in 

order to quantify its contribution to nitrogen fertility for the succeeding crop. 

7.5.3 Plant growth of AYB landraces 

Symbiotic N contribution to AYB plants has been immense with plants that received 

inoculum performing better than the uninoculated plants. Symbiotic effectiveness of 

a rhizobial population is one of the important parameters for selecting strains for 

inoculant production (Fening and Danso, 2002). As with nitrogen fixation, full root 
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colonisation by rhizobia is an important element of efficient nitrogen fixation. 

Increase of growth of the inoculated plants by 1547% of uninoculated plants showed 

that it is possible to grow AYB without the addition of any supplementary N 

fertilizer. However, this still needs to be investigated further under conditions 

allowing reproductive growth to characterise the response of the plant when it 

flowers and produces grain. 

Although the variety of bacterial strains tested in this study was narrow, the variation 

observed underlines the importance for further investigations, such as screening of 

strains indigenous to AYB natural habitats or potential production areas and 

commercially available strains to formulate a composite BNF approach for the crop. 

Evaluation of the ability of different landraces to form effective partnership with 

various strains is very important, as it was clear that effectiveness of symbiosis did 

not only rely on the strain but also on the target landrace. 
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CHAPTER 8 

GENERAL DISCUSSION AND CONCLUSION 

8.1 Introduction 

Non-conventional crops, of which AYB is one, receive very little research attention 

because of the high priority given to conventional crops. Such non-conventional 

crops are mostly neglected and under utilised hence face a threat of genetic erosion. 

In this study, clonal propagation protocols, characterisation of plant growth and 

biological nitrogen fixation were investigated with the aim of establishing basic 

techniques that can benefit further investigations as well as enhance production of 

the species as an alternative food crop. This chapter provides a general discussion of 

the findings and puts forward suggestions for further studies. 

8.2 Morphology and growth 

AYB is the most morphologically variable species in the genus (Potter, 1992). 

Although morphological observations were not detailed and were conducted on a 

narrow range of genotypes of this species, morphological variations were evident 

from the literature. Features such as seed colour, stem colour, internode length, leaf 

size and number of leaves per plant were found to be some of the differentiating 

characters. Growth of certain plant parts, such as root tubers, were observed only in 

some landraces and not in others. However, this cannot be attributed entirely to 

genotypic variation as other important factors controlling plant development such as 

environment were not investigated. Indeed, environment was found to be worthy of 

investigation, since some important developmental stages, such as flowering were 

observed only with certain temperature regimes. AYB plants grown in growth rooms 

at 30°C with a 12 h photoperiod as well as in the glasshouse with natural summer 

conditions did not flower, but flowering was observed within 7 months in plants 

grown in a similar room at 25°C and with the same photoperiod. Photoperiod in the 

tropics is relatively short and some legumes adapted to the tropics have been found 

to flower only at certain relatively lower temperatures, including Phaseolus spp. 

(Davies, 1997) and Vigna subterranean (Linnemann and Azam-Ali, 1993). The 
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period of development in yam bean (Pachyrhizus spp. ) up to flowering is reported to 

vary with photoperiod where flower initiation is early under short days but late under 
long days, occurring only when photoperiod approaches 12.5 h (Sorensen et al., 
1993). Since photoperiodic change is concomitant with temperature, it is likely that 

lower temperature might play a part in Pachyrhizus as well as in AYB. Since tubers 

develop underground, it has not been possible to identify the actual time of tuber 

initiation, but the report that tubers are harvested about the same time as seeds 

(Potter, 1992) supports the possibility that tuber development follows the same 

pattern as that reported in yam bean (Sorensen et al., 1993). In yam bean, tuber 

initiation occur within 4-6 weeks after establishment whatever the 

photothermoperiod and vegetative growth under long days is only important for 

shoot (photosynthetic apparatus) development required for tuber enlargement later 

(Sorensen et al., 1993). 

Vegetative growth in AYB is very vigorous with formation of numerous twining 

vines growing to heights >3 m. Generally, variation in growth between the landraces 

existed, although it was mostly not statistically significant. The difference in growth 

conditions between pot and soil experiments, influenced performance of the two 

landraces. Average growth rate was relatively slow for plants grown in pots 

compared to plants grown in the soil, although growth in the early stages of the soil 

experiment was slower than in the pot experiment. Consistent growth observed in 

plants grown in pots could have been due to the absence of disturbance usually 

associated with transplanting but was restrictive because of the pot environment. In 

soil, slow growth in the early stages was possibly due to transplanting shock but 

became fast later due to a free root run and possibly abundant mineral nutrients from 

basal fertilizer applied prior to planting. Different genotypes vary in their adaptation 

to the environment and it is likely that AYB1 performed better under restrictive pot 

conditions because it is more tolerant to stress than AYB2. AYB2 appeared less 

tolerant to stress and hence not suitable for marginal environments. Although 

genotypic variation in growth of AYB landraces has been confirmed, it has not been 

possible to identify the impact it will have on reproductive growth as the plants did 

not flower during these experiments. 
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8.3 Development of clonal propagation protocols/techniques 

If genetic variation within some plant populations influences the effect of specific 

treatments, then it is essential to be able to work with clonal material. In this study, 

clonal propagation protocols were developed using nodal explants/propagules to 

reproduce material from existing shoot meristems with high genetic uniformity. 

8.3.1 In vitro propagation/micropropagation (axillary buds) 

Shoot regeneration from nodal explants can be used to achieve mass propagation of 

clonal progeny by either allowing growth of multiple shoots or a single enlongated 

shoot bearing discrete and separated nodes that can be cut into nodal explants and 

further subcultured to obtain more shoots. Tissue growth and regeneration is 

obtained through the utilisation of well-developed in vitro protocols that provide 

optimal conditions for physiological functions of explants. In vitro propagation can 

be divided in four stages, specifically, stage I (establishment of axenic and still 

cultures), stage 2 (proliferation or multiplication), stage 3 (production of cuttings or 

plantlets/root formation) and stage 4 (reestablishment in the glasshouse) (Debergh 

and Read, 1991). The listing of the four stages above is not intended to denigrate the 

initial stage of preparing or raising of stock plants under hygienic conditions limiting 

contamination problems. Each stage usually receives specific treatments to achieve 

the desired goals. In vitro propagation of AYB was also found to more or less follow 

this pattern. 

Axenic cultures (>97% contamination free cultures) was achieved by surface 

sterilization of AYB explants through the use of Domestos bleach, although 
following insect infestation it was difficult to achieve the same proportion of 

contamination-free cultures. The climbing habit has enabled AYB to grow away 
from the ground where it could have been in contact with soil-borne contaminants. 

Axenic shoot cultures were achieved from stem nodal segments using cytokinins in 

different culture media, and shoot multiplication for mass propagation from such 

axenic explants was investigated using various media salts and media formulations. 

Experiments were carried out to identify the most suitable protocol to generate more 

shoots from axenic explants. Shoots generated in culture have been rooted in vitro 

when exposed to auxins (IBA and NAA) and successfully established in compost. 
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There are explants that produce enough hormones not to warrant addition of any 

extra regulators in the medium, and the exogenous regulator requirement, if it exists, 

depends strongly on the genotype and endogenous hormone content (Pierik, 1987) 

Cytokinin in the culture medium was required to stimulate growth from nodal 

explants and the AYB cultures grown on media devoid of cytokinins did not support 

any significant growth. Shoot growth was responsive to BAP concentration. At high 

BAP concentration (2.5 mg 1'1), more shoots were produced whereas at lower 

concentrations (0.25-1.0 mg 1'') the shoots produced were longer. Increase in shoot 

number with BAP concentration, with their elongation being inversely proportional 

to BAP concentration, is in agreement with the observations made by Polisetty et al. 

(1997) in chickpea (Cicer arietinum) and Girija et al. (1999) in Crossandra 

infundibuliformis. The addition of BAP to media that favoured callus proliferation, 

regardless of the concentration, contradicts the report on the significant increase in 

callus proliferation of hypocotyls of adzuki bean (Vigna angularis) only when the 

BA level was increased twofold (Avenido and Hattori, 2000). 

Although the performance of explants differed between establishment cultures and 

subcultures, the response to various culture conditions followed a similar trend. 

Excessive callus proliferation in the cultures still occurred at the expense of shoot 

proliferation and growth, but was more pronounced with subculture, resulting in the 

production of shoots too small for rooting. When BAP was tested alongside 2iP and 
TDZ, larger numbers of shoots were produced on media containing TDZ followed by 

BAP, although the trend changed with decrease in cytokinin concentration. In 

contrast, the number of shoots produced increased with increase in concentration of 
2iP. Shoots were longer on media containing BAP than with TDZ and 2iP. All of 

the cytokinins promoted callus proliferation, although to a lesser degree with W. 

Callus production was found to be dependent on the concentration with TDZ, but not 

with BAP and 2iP. Naik et al. (1999) attributed this same action of TDZ on 

pomegranate (Punica granatum) to its high activity that can also be inhibitory to 

shoot development. While cytokinin enriched media promoted callus proliferation, 

growth was not supported by media devoid of cytokinins, confirming the necessity 
for cytokinins in in vitro shoot growth. However, BAP has been observed to be a 
better cytokinin for shoot development as well as for induction (Yang and Read, 
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1996; Brar et al., 1997; Pattnaik and Chand, 1997; Tavares et a!., 1998; Chitra and 

Padmaja., 1999). In contrast, 2iP is less active and needs to be used at higher 

concentration to compensate for this difference. 

An ideal tissue culture medium for maximum growth should provide the tissues with 

sufficient essential nutrients for the duration of the culture so that the depletion of 

such nutrients does not limit growth. Manipulation of nutrient content in the culture 

medium has been shown to give varying results. The three most commonly used 

media [MS medium (Murashige and Skoog, 1962), B5 (Gamborg et al., 1968) and 

Woody Plant Medium (McCown and Lloyd, 1981)] evaluated gave different results. 

MS was found to be more suitable than the other two in terms of shoot size (fresh 

weight) and shoot number. However, there was also a significant difference between 

the amounts of callus produced on the three media, with more callus produced on MS 

than on the other media. MS medium contains the highest concentration of nutrients 

amongst the three and could have influenced this outcome. Most plants react 

positively to NIS medium (Pierik, 1987) and AYB seems to be amongst such species. 

As MS medium was found to be suitable for the establishment of axenic cultures of 

AYB, adjustment of the MS salt concentration (full strength MS and half strength 

MS) with and without cytokinin (BAP) was compared on shoot proliferation and 

growth from axenic explants. Although full strength MS with BAP produced more 

callus, the presence of callus was attributed to cytokinin because callus proliferation 

was still observed on half strength MS containing BAP but less on BAP-free MS 

media formulations. Shoot number, shoot height and number of nodes produced in 

culture were also enhanced by full strength MS and BAP than other formulations. 

Since reduction of MS strength affected growth of shoots, this suggests that full 

strength MS should be used as the basal medium and future work should focus on 

optimisation of cytokinin concentrations. 

Auxin polar transport inhibitors prevent the transport of endogenous IAA to 

regeneration sites, so that an auxin/cytokinin balance becomes more favourable for 

the regeneration of shoot buds (Charriere and Hahne, 1998; Nakano et al., 2000). 

Auxins usually promote callus growth (George and Sherrington, 1984), thus it may 

be possible to suppress callus growth in AYB cultures by using auxin polar transport 
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inhibitors such as 2,3,5-triiodobenzoic acid (TIBA). However, it was observed in 

this study that axenic explants treated with TIBA continued to produce a 

considerable amount of callus and there was little benefit in terms of shoot 

proliferation and growth. This contradicts the theory that TIBA may inhibit the 

transport of endogenous IAA to regeneration sites, so that an auxin/cytokinin balance 

becomes more favourable for the regeneration of shoot buds (Nakano et al., 2000). 

TIBA had no beneficial effect on shoot growth and callus proliferation of two AYB 

genotypes. 

Many researchers have recorded a synergistic effect of BAP and GA3 on the growth 

of shoots in vitro from nodal explants (Purohit and Singhvi, 1998; Vengadesan et al., 

2002; Chitra and Padmaja, 2002) but this has not been the case with AYB. The 

initial experiment with axenic explants in the present study indicated some benefit 

from the addition of GA3, with considerable elongation of shoots initiated in medium 

containing cytokinins although this was still accompanied by excessive callus 

proliferation. This suggested some form of synergistic effect of BAP and GA3 as 

reported in other species. However, subsequent experiments did not confirm a clear 

benefit of enhanced shoot growth or reduced callus growth from media containing 

BAP with GA3. This outcome suggests no benefit to AYB in vitro growth from the 

addition of GA3. 

The ultimate goal in in vitro propagation is to establish regenerated plants in the field 

and this is achieved by ensuring that in vitro-derived shoots develop roots for 

anchorage, water and nutrient uptake. Some species easily form adventitious roots 

on shoots produced in vitro, while in other it may be necessary to apply specific 

treatments for rooting (George and Sherrington, 1984). The trials carried out to 

evaluate commonly used auxins for the rooting of in vitro shoots of AYB revealed 

that rooting of AYB in vitro was very erratic, however, a requirement for exogenous 

auxin was established. IBA induced more shoots to root than NAA and 2.0 mg 1'' 

was better than 1.0 and 1.5 mg 1'1. Many authors report IBA as the preferred auxin 

for rooting most plants (Geetha et al., 1997a, b; Girija et al., 1999), usually with 

relatively low concentrations. 
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Gibberellins enhance shoot extension but inhibit adventitious root formation (George 

and Sherrington, 1984; Pierik, 1987). Addition to the culture medium of substances 

that block biosysnthesis of GA has been reported to give positive effects on rooting 

for some plants (Mckinless and Alderson, 1993). For root formation of AYB, no 

benefit was derived from addition of the anti-gibberellin PP333 at either the shoot 

initiation stage or root formation stage. Instead, there was a marked retardation in 

the growth of shoots when PP333 was applied at the shoot growth stage. It is 

concluded that the synergistic effect of auxin and the growth retardant PP333 

observed in other plants was not beneficial in AYB. 

Plants derived from in vitro culture were able to acclimatise in compost and grow 

into normal plants. Although a trial was not conducted in acclimation of plants due 

to a limited number of rooted shoots, the size of shoots seemed to play a major role 

as larger plants with more leaves survived compared to the relatively smaller ones. 

Large plants survived possibly because they had sufficient reserves to sustain them 

through the transition from heterotrophic to autotrophic nutrition. Transplanted 

strawberry plantlets were also thought to depend on stored carbohydrates within their 

tissues for growth and development in the early period following transplanting prior 

to emergence of new photosynthetically competent leaves (Grout and Millam, 1985). 

Since it was not determined whether the in vitro-derived leaves of AYB were 

persistent or not, it is also possible that large plants survived because of a higher 

photosynthetic activity furnished by their larger leaf area. The benefit of large shoots 

in acclimation has also been observed when large plants which were cultured in the 

absence of PP333 survived ex vivo while those retarded and deformed by because of 

PP333 failed. 

8.3.2 Propagation from nodal stem cuttings 

While tissue culture is possible for the mass production of plants, its overall costs 

limit its application and, therefore, there is a need to develop a more affordable 

alternative technology. The propagation of plants from stem cuttings is one such 

approach. Experiments carried out to determine the necessity of an auxin and a 

suitable auxin concentration for the rooting of stem cuttings of AYB proved that 

AYB cuttings root readily without auxin. Leafy single node stem cuttings formed 

roots without auxin and high auxin concentrations were detrimental, causing 
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mortality of cuttings, retarded buds/shoots and shorter roots. While cuttings rooted 

successfully without auxins (up-to 100%), root formation was more synchronised in 

cuttings treated with low concentrations of auxin (1.0-5.0 g 1-1 IBA) and auxin also 

stimulated a larger number of roots per cutting. These findings are in agreement with 

other studies that found application of exogenous auxin to hasten the rate of rooting, 

increased root number of most species although, in some cases, relatively higher 

concentrations resulted in inhibited root formation and growth, reduced bud/shoot 

growth and even lead to mortality (Badji et al., 1991; Demeke et al., 1992; Edson et 

al., 1994; Ofori et al., 1996; Shiembo et al., 1996; Mesen et al., 1997; De Andres et 

al., 1999; Copes and Mandel, 2000; Fett-Neto et al., 2001; Aminah, 2003; Ercisli et 

al., 2003). The ease of rooting AYB cuttings and even layered stems raises a 

question of why rooting in vitro was found to be difficult. The residual cytokinins 

inherent in in vitro derived shoots, the culture environment such as aeration of the 

culture medium and other factors could be playing a part in this paradox. 

Carbohydrate reserves or photosynthetic capacity of plant tissues are necessary for 

the production of adventitious roots (George and Sherrington, 1984). AYB stem 

nodal cuttings possess different leaf sizes depending on their position on the vine. 

Initially, larger stem cuttings were used instead of smaller ones in the other 

experiments because it was thought they have enough carbohydrates reserve or better 

photosynthetic capacity to support rooting. However, rooting of AYB did not 

depend on leaf size as successful rooting of cuttings with different leaf sizes was 

achieved. Nketiah et al. (1998) recorded better rooting of Triplochiton scleroxylon 

K. Schum from cuttings with a larger leaf area than smaller cuttings. In contrast, 

AYB propagules of different sizes can be used, thus avoiding wastage of parent plant 

material. 

8.4 Nodulation and nitrogen fixation 

Nitrogen is the most limiting nutrient for plant growth and the most deficient in soils 

although it makes up about 80% of the earth's atmospheric air. Soil constraints such 

nitrogen deficiency are recognised to contribute to low crop yields in Africa (Dakora 

and Keya, 1997). A cheap nitrogen source exists in biological nitrogen fixation 

because legumes are known for their ability to fix atmospheric nitrogen through root 
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nodules developed in association with some strains of Gram negative bacteria of the 

Rhizobiaceae. 

An evaluation of five different strains of Rhizobium, i. e. ORS302, CP279, NGR234, 

ANU240 and AUEB20, confirmed that AYB can derive adequate nitrogen through 

atmospheric fixation. AYB was found to be a profuse nodulator with 3 of the 

rhizobial strains (ORS302, CP279 and NGR 234) able to form nitrogen fixing 

nodules, although strain AUEB20 failed to induce nodulation contrary to the report 

by Assefa and Kleiner (1997). The nodulating strains varied in their infectivity 

(nodule number formed) as well as nitrogen fixation efficiency per nodule mass. 

Efficient nodulating strains also contributed to the overall growth of the plants. AYB 

landraces obtained 79.0-97.6% of their nitrogen from the atmosphere and increased 

growth of the inoculated plants by up to 1547%. These results compare favourably 

to most tropical grain legumes mentioned by Giller (2001) and show that it is 

possible to grow AYB without the addition of any supplementary N fertilizer if 

inoculated with compatible rhizobial strains. 

8.5 Conclusions 

Genotypic variation exists in morphology and growth of AYB landraces. Seed 

colour, stem colour, intemode length, leaf size and leaf number per plant are some of 

the delimiting characters of AYB landraces. AYB development patterns such as 

flowering are likely to be photothermally controlled. Growth varies between 

landrares and environmental response is likely to be genotype dependent. 

AYB is amenable to clonal propagation by both micro and macro means. Although 

clonal propagation protocols cannot be adapted to replace seed in large production 

systems because of their cost, they still have a role to play in providing material for 

research purposes to enhance the status of AYB as an alternative food crop. 

In vitro propagation of AYB from nodal segments can follow two patterns; a3 stage 

direct caulogenesis approach (production of micro-cuttings, induction of adventitious 

roots and re-establishment in the greenhouse) from initial cultures and a4 stage 

approach characterised by establishment of axenic cultures, multiplication of shoots 
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from axenic cultures (subculture for caulogensis or further multiple shoot induction), 

adventitious root induction and re-establishment in the glasshouse. Explants from 

AYB plants grown with support respond positively to surface sterilisation with 

domestic bleach, however, it is imperative to keep stock plants free of diseases and 

pests to avoid internal contaminants which are difficult to eliminate. Cytokinins are 

necessary to stimulate in vitro growth of shoots at the stages of axenic culture 

establishment and shoot multiplication. BAP is a more suitable cytokinin than TDZ 

and 2iP. The contradictory response to cytokinin concentration between shoot 

proliferation and elongation suggests a2 step approach for shoot multiplication 

where separate media are used; one high and the other low in cytokinin for multiple 

shoot proliferation and elongation respectively. Other PGRs such as GA3 and TIBA 

were not beneficial to in vitro regeneration of AYB. MS used in its full strength is 

the most suitable growth medium for AYB regeneration. Auxins are necessary for 

the induction of roots and IBA was found to be the most suitable auxin. The benefits 

of anti-gibberellin PP333 on rooting observed in other plants were not observed with 

AYB. 

AYB readily forms adventitious roots in the absence of auxin. Plants are ready for 

transplanting into pots within 2 weeks of root induction. However, auxin used at low 

concentration can improve uniformity of rooting and increase number of roots per 

cutting whereas high auxin concentration causes mortality of cuttings, reduces root 

growth and retards shoot bud development. Leaf area/size does not affect rooting 

ability of AYB plants and cuttings of different sizes can successfully serve as 

propagules. Where researchers need to work with clones and are constrained 

financially to utilise in vitro protocols for mass production, propagation of AYB by 

stem cuttings is recommended as a low cost technology and hence appropriate for 

use. 

AYB is a legume that nodulates profusely with a wide range of both slow growing 

Brad}yrhizobiurn spp. and fast growing Rhizobium spp. Therefore, there exists a 

cheaper alternative source of nitrogen for AYB in the form of biological nitrogen 

fixation and growers of crop should be encouraged to utilise the technology in order 

to minimise production costs. 

152 



The work reported in this thesis will add impetus to endeavours to enhance the 

potential of African yam bean as an alternative food crop. The clonal propagation 

techniques investigated have shown that large amounts of seed are not required to 

carry out experiments as the crop is amenable to vegetative propagation from a 

limited source of plant material. This has made it possible to investigate important 

areas such as morphology/growth and nitrogen fixation of the crop. These studies 

were carried out using clonal material raised through in vitro culture by nodal 

explants and rooting of single node stem cuttings, thus eliminating genetic variation 

in the experimental units that may influence response to treatments. The 

micropropagation procedure established in this study is expected to form the basis 

for future studies using in vitro techniques for the genetic improvement of AYB with 

respect to yield, disease and pest resistance and water relations. 

8.6 Suggestions for future work 

As a new or neglected crop, there are many avenues that still need to be explored in 

order to enhance the status of AYB as an alternative food crop. This section outlines 

areas related to work done in this study but which could not be covered because of 

time and other circumstantial constraints and outlines other areas the author feels are 

pertinent to enhancement of utilisation of the species. 

8.6.1 Morphology and growth studies 

Morphological and molecular characterisation studies of the existing landraces is 

required. Morphological characteristics of existing landraces need to be correlated 

with detailed studies using state-of-the-art molecular approaches as applied to other 

grain legumes (Massawe et al., 2005; Phansak et al., 2005). The growth and 

development of plants should be investigated in various environment to characterise 

developmental patterns (how photoperiod and temperature affect phenology), 

production of assimilates and partitioning of assimilates. An integrated study of the 

phenology and physiology of the species is required to characterise the 

developmental pattern that will provide guidelines for production. 
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8.6.2 In vitro studies 

In vitro protocols are useful tools in the field of plant science in general, benefiting 

areas from genetic improvement (breeding) to germplasm conservation 

(cryopreservation) either as nodal segments or somatic embryos. Experiments are 

required to optimise protocols for propagation from nodal segments such as shoot 

multiplication from axenic explants (optimal concentration of cytokinins for shoot 

multiplication) and rooting of shoots (look into different auxin application methods 

such as pulse treatments and alteration of in vitro culture conditions). The possibility 

for direct embryogenesis or indirect embryogenesis from cell suspensions from either 

the voluntary callus or callus induced on various explants should be investigated. It 

is also necessary to establish protocols for anther and ovule culture for the production 

of haploid plants to be used in breeding or for development of varieties. There is 

also need for exploration of other protocols such as protoplast culture for genetic 

manipulation for breeding purposes. 

8.6.3 Propagation by stem cuttings 

Plants produced following different auxin treatments vary in quality attributes such 

root length, number of roots per cutting and size of shoot. It is important to 

determine how these attributes affect the ultimate establishment and growth of plants 

in the field. 

8.6.4 Nodulation and nitrogen fixation 

Work done in the current study was restricted to a few strains of bacteria and a 

restricted environment, hence there is a need to conduct detailed studies of the 

interaction of AYB with different rhizobial strains. There is also a need to utilise the 

in vitro culture protocols to study host/strain interactions at the micro level. 

Evaluation of the infectivity and effectivity of more rhizobial strains and further field 

evaluation of the effectiveness of symbiosis with different strains (commercial and 

indigenous) under different environments are required. 
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