
Syafwan, Mahdhivan (2012) The existence and stability 
of solitons in discrete nonlinear Schrödinger equations. 
PhD thesis, University of Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/12916/1/Thesis_Mahdhivan.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


The existence and stability of solitons in

discrete nonlinear Schrödinger equations

Mahdhivan Syafwan, S.Si.

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

November 2012



“...Then which of the favours of your Lord would you deny?...”

(QS. Ar-Rahman 55)

Dedicated to:

My parents, my wife and my son.

i



Acknowledgements

First and above all, I praise the Almighty Allah, the Most Gracious and the Most Mer-

ciful. Indeed, it is only because of His favours and bounties that I got the ability to

accomplish this thesis.

There were many people who contributed in the completion of this thesis. Thus, I

take this opportunity to express my gratitude to them. However, to mention them all

here is indeed not possible, but they will never be forgotten. Firstly, and certainly, I

would like to offer my deepest gratitude to Dr. Hadi Susanto and Dr. Stephen M. Cox

who provided me invaluable supervision throughout my PhD studies. I feel honoured

while getting benefits from their knowledge and mathematical experiences. I am also

grateful for their kind support, guidance and suggestions during my studies, including

their useful comments and corrections on the manuscripts of this thesis. Special thanks

should be addressed to mas Hadi who helped me lot during my stay in the UK.

Next, I must express my sincere thanks and respect to my parents, Mama and Papa,

for their boundless love and unlimited support. Their continuous prayers brought me

at this stage. My sincere thanks also goes to my late grandmother (may Allah bless

her with jannah) for her amazing kindness and care, as well as to my father-in-law who

always treated me as his own son.

The most heartfelt gratitude is to my beloved wife and truly friend, Maya Sari Syahrul,

for her total moral support, passion and companionship. Also for my little prince and

beloved son, Faithulkhaliv Mahdhivan, the most lovely ‘gift’ who arrived in the period

of my studies. Both of you have been sources of my inspiration. Furthermore, I also

thanks to my brother and sister, Havid and Ivat, for their prayers and encouragement.

It is a pleasure to single out pak Saeed and Irfan bhai, for their help and warm brother-

hood. I also acknowledge Boris Malomed for his valuable suggestions while working

on variational approximations as well as Hill Meijer for fruitful discussions on Mat-

cont. Finally, I am thankful to the Ministry of National Education of the Republic of

Indonesia for providing me financial support.

ii



Contents

Acknowledgements ii

Contents iii

Abstract vii

Frequently used abbreviations viii

Publications ix

1 Introduction 1

1.1 What is a soliton? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A brief history of solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Discrete solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Development of studies on discrete solitons: a review . . . . . . . 6

1.3.1.1 Cubic DNLS equation . . . . . . . . . . . . . . . . . . . . 8

1.3.1.2 Ablowitz-Ladik (AL) DNLS equation . . . . . . . . . . . 9

1.3.1.3 Salerno DNLS equation . . . . . . . . . . . . . . . . . . . 10

1.3.1.4 Saturable DNLS equation . . . . . . . . . . . . . . . . . . 10

1.3.2 Discrete solitons in two relevant applications . . . . . . . . . . . . 11

1.3.2.1 Optical waveguide arrays . . . . . . . . . . . . . . . . . 11

1.3.2.2 MEMS and NEMS resonators . . . . . . . . . . . . . . . 13

1.4 The cubic and saturable DNLS equations . . . . . . . . . . . . . . . . . . 16

1.4.1 Stationary discrete solitons: preliminary analysis . . . . . . . . . 16

1.4.2 Gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



CONTENTS

1.4.3 Travelling discrete solitons: Peierls-Nabarro (PN) barrier analysis 18

1.4.4 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.4.1 The anticontinuum limit approach . . . . . . . . . . . . 22

1.4.4.2 Perturbation expansions . . . . . . . . . . . . . . . . . . 22

1.4.4.3 The variational approximations . . . . . . . . . . . . . . 23

1.5 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Lattice solitons in a parametrically driven discrete nonlinear Schrödinger equa-

tion 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Review of some previous works . . . . . . . . . . . . . . . . . . . 29

2.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Bright solitons in the focusing PDNLS . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Analytical calculations . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1.1 Onsite bright solitons . . . . . . . . . . . . . . . . . . . . 34

2.2.1.2 Intersite bright solitons . . . . . . . . . . . . . . . . . . . 35

2.2.2 Comparisons with numerical calculations . . . . . . . . . . . . . . 37

2.2.2.1 Onsite bright solitons . . . . . . . . . . . . . . . . . . . . 38

2.2.2.2 Intersite bright solitons . . . . . . . . . . . . . . . . . . . 38

2.3 Dark solitons in the defocusing PDNLS . . . . . . . . . . . . . . . . . . . 41

2.3.1 Analytical calculations . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1.1 Onsite dark solitons . . . . . . . . . . . . . . . . . . . . . 46

2.3.1.2 Intersite dark solitons . . . . . . . . . . . . . . . . . . . . 48

2.3.2 Comparison with numerical computations . . . . . . . . . . . . . 50

2.3.2.1 Onsite dark solitons . . . . . . . . . . . . . . . . . . . . . 50

2.3.2.2 Intersite dark solitons . . . . . . . . . . . . . . . . . . . . 53

2.4 PDNLS in electromechanical resonators . . . . . . . . . . . . . . . . . . . 58

2.4.1 The model and the reduction . . . . . . . . . . . . . . . . . . . . . 58

2.4.2 Numerical integrations . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

iv



CONTENTS

3 Lattice solitons in a parametrically driven damped discrete nonlinear Schrödinger

equation 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 The model and review of earlier studies . . . . . . . . . . . . . . . 65

3.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Analytical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Perturbation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.1 Onsite bright solitons . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1.1 Onsite type I . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1.2 Onsite type II . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Intersite bright solitons . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2.1 Intersite type I . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2.2 Intersite type II . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.2.3 Intersite type III and IV . . . . . . . . . . . . . . . . . . . 77

3.4 Comparisons with numerical results, and bifurcations . . . . . . . . . . . 78

3.4.1 Onsite bright solitons . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1.1 Onsite type I . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1.2 Onsite type II . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1.3 Saddle-node bifurcation of onsite bright solitons . . . . 85

3.4.2 Intersite bright solitons . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.2.1 Intersite type I . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.2.2 Intersite type II . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.2.3 Intersite type III and IV . . . . . . . . . . . . . . . . . . . 91

3.4.2.4 Saddle-node and pitchfork bifurcation of intersite bright

solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Nature of Hopf bifurcations and continuation of limit cycles . . . . . . . 97

3.5.1 Onsite type I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5.2 Intersite type I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.5.3 Intersite type III and IV . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6 Numerical integrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

v



CONTENTS

3.6.1 Stationary solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.6.2 Periodic solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Travelling solitons in a discrete nonlinear Schrödinger equation with sat-

urable nonlinearity 113

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.1.1 The considered model and preliminary analyses . . . . . . . . . . 114

4.1.2 Previous works on the saturable DNLS model . . . . . . . . . . . 115

4.1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Dispersion relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Numerical scheme: a finite-difference method . . . . . . . . . . . . . . . 121

4.3.1 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.2 The measure for seeking the embedded solitons . . . . . . . . . . 124

4.3.3 Numerical results for the existence of travelling lattice solitons . 125

4.4 The variational approximation . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4.1 Core soliton solutions . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4.2 Prediction of the VA for embedded solitons . . . . . . . . . . . . . 134

4.4.3 The VA-based stability analysis . . . . . . . . . . . . . . . . . . . . 137

4.5 Comparisons: numerics vs analytics . . . . . . . . . . . . . . . . . . . . . 138

4.5.1 The soliton’s core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5.2 Embedded solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.5.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6 A failure of the finite-difference method: numerical stability . . . . . . . 147

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5 Conclusion 151

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

References 158

vi



Abstract

In this thesis, we investigate analytically and numerically the existence and stability of

discrete solitons governed by discrete nonlinear Schrödinger (DNLS) equations with

two types of nonlinearity, i.e., cubic and saturable nonlinearities. In the cubic-type

model we consider stationary discrete solitons under the effect of parametric driving

and combined parametric driving and damping, while in the saturable-type model we

examine travelling lattice solitons.

First, we study fundamental bright and dark discrete solitons in the driven cubic DNLS

equation. Analytical calculations of the solitons and their stability are carried out for

small coupling constant through a perturbation expansion. We observe that the driv-

ing can not only destabilise onsite bright and dark solitons, but also stabilise intersite

bright and dark solitons. In addition, we also discuss a particular application of our

DNLS model in describing microdevices and nanodevices with integrated electrical

and mechanical functionality.

By following the idea of the work above, we then consider the cubic DNLS equation

with the inclusion of parametric driving and damping. We show that this model ad-

mits a number of types of onsite and intersite bright discrete solitons of which some

experience saddle-node and pitchfork bifurcations. Most interestingly, we also observe

that some solutions undergo Hopf bifurcations from which periodic solitons (limit cy-

cles) emerge. By using the numerical continuation software Matcont, we perform the

continuation of the limit cycles and determine the stability of the periodic solitons.

Finally, we investigate travelling discrete solitons in the saturable DNLS equation. A

numerical scheme based on the discretization of the equation in the moving coordi-

nate frame is derived and implemented using the Newton-Raphson method to find

traveling solitons with non-oscillatory tails, i.e., embedded solitons. A variational ap-

proximation (VA) is also applied to examine analytically the travelling solitons and

their stability, as well as to predict the location of the embedded solitons.
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CHAPTER 1

Introduction

Solitons are the main object of study in this thesis. Particular attention is given to mod-

els described by discrete nonlinear Schrödinger equations. Therefore, it will be advan-

tageous to firstly provide introductory information and a general review about solitons

and the considered models. In addition, it is also important to outline particular topics

which are relevant and useful for subsequent chapters. This outline is discussed in this

chapter.

1.1 What is a soliton?

Following Scott [1] and Drazin & Johnson [2], the term soliton is defined as a localised

nonlinear wave which:

(i) maintains its shape when it travels at constant speed, and

(ii) can interact strongly with other solitons and retain its identity unchanged (except

possibly for a phase shift).

The first condition reflects a characteristic of the so-called solitary wave while the second

describes the particle-like interaction property from which the name soliton was coined

in 1965 by Norman Zabusky and Martin Kruskal [3]. The phenomenon of solitons

appears not only in continuous media, but also in discrete systems. For the latter, they

are called discrete or lattice solitons, which are the main objects of investigation in this

thesis.

The word soliton originally refers to a solitary wave of an ‘ideal’ system which supports

precisely the solitonic conditions as described above. In the real world, however, such

an ‘ideal’ soliton rarely occurs. Instead, one should deal with a situation where nonsoli-

tonic or perturbational effects such as frictional loss, damping loss, internal or external

1



1.2 A BRIEF HISTORY OF SOLITONS

driving force, defects and so forth, are inevitable (some of these effects are considered

in two chapters of this thesis, i.e., internal (or so-called parametric) driving in Chapter

2 and combined parametric driving and damping in Chapter 3). For such systems, the

meaning of soliton becomes degraded, i.e., it refers to a merely localised entity whose

persistence and interaction properties are not really emphasised. Throughout this the-

sis, we use the terminology soliton with this weaker meaning. Moreover, since we

omit the interaction property in our definition of soliton, the distinction between soli-

tary waves and solitons becomes blurred. Thus, in this thesis, as most widely adopted in

the physics literature, we will use these two terms interchangeably.

Before proceeding to the next section, it should be noted here that what we mean by a

localised wave in this thesis is restricted to either the solution having a peak with tails

decaying exponentially to 0 as the spatial coordinate x tends to ±∞, or one which has

different asymptotic values at x = ∞ and x = −∞. The former is called a pulse, while

the latter is a kink (see Fig. 1.1). In addition to a kink, there is also an anti-kink, which

is simply a mirror-image of the kink. Unless otherwise stated, from now on we refer to

the profile with a pulse-like shape as a soliton.
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Figure 1.1: (a) A pulse soliton. (b) A kink and anti-kink soliton.

1.2 A brief history of solitons

In the following, we explain a brief historical development of solitons. What we present

here is mostly extracted from [1, 2, 4–8].

The birth of the soliton (or solitary wave) was first scientifically reported by the Scot-

tish engineer John Scott Russell in August 1834 through an accidental event. At that

time, he was carrying out experiments on the Union Canal near Edinburgh to measure

the relationship between the speed of the boat and its propelling force in order to find

design parameters for conversion from horse power to steam. One day, the boat sud-

denly stopped since the tow rope connecting the horses to the boat broke. Surprisingly

2



1.2 A BRIEF HISTORY OF SOLITONS

he observed that the mass of water in front of the boat “...rolled forward with great veloc-

ity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap

of water, which continued its course along the channel apparently without change of form or

diminution of speed” (Russell [9]). He excitedly followed this “strange” wave on horse-

back and found it still rolling at a constant rate and preserving its original form for over

two miles. Later, he called this serendipitous phenomenon the Wave of Translation.

Scott Russell reported his observations to one of the leading scientists of the day, Sir

John Herschel. However, Herschel was not impressed with Scott Russell’s finding

and commented that it was simply half of a common wave that had been cut off.

To disprove this assertion, Scott Russell then set a number of laboratory experiments

with shallow water waves in a tank to recreate his solitary waves’ phenomenon. The

research brought him to demonstrate the following four facts (see, e.g., Zabusky &

Porter [6]):

1. The solitary waves have a hyperbolic secant shape and travel with permanent

form and velocity.

2. A sufficiently large initial mass of water produces two or more independent soli-

tary waves.

3. Solitary waves can cross each other without change, except for a small displace-

ment to each as a result of their interaction.

4. In a shallow water channel of height h, a solitary wave of amplitude A travels

at a speed
√

g(A + h) (where g is the gravitational acceleration), implying that

larger-amplitude solitary waves move faster than smaller ones, i.e., confirming a

nonlinear effect.

Scott Russell thought that his observations were of huge scientific impact. Unfortu-

nately, his work had difficulty to get acceptance from the scientific community at a

meeting of the British Association for the Advancement of Science in 1844, because it

could not be explained by the existing waves theory at that time: waves either spread

out to nothing or rise up until they break.

In 1895, after about 50 years being ignored, interest in Scott Russell’s soliton was rekin-

dled by Diederik Korteweg together with his PhD student, Hendrik de Vries [10]. They

derived a nonlinear partial differential equation (PDE) confirming the existence of Scott

Russell’s (hydrodynamic) solitary waves mathematically. The equation, now called the

Korteweg-de Vries (KdV) equation, modelled the evolution of waves in a shallow one-

3



1.2 A BRIEF HISTORY OF SOLITONS

dimensional (1D) water channel, and is given by

ηt + cηx + εηxxx + γηηx = 0. (1.2.1)

In the above equation, c =
√

gh represents the velocity of small amplitude waves,

ε = c(h2/6−T/(2ρg)) indicates the dispersive parameter, γ = 3c/(2h) is the nonlinear

parameter, T is the surface tension and ρ is the density of water. Korteweg and de

Vries showed that Eq. (1.2.1) has exact travelling localised solutions which agreed with

Scott Russell’s observation. It should be noted that although Eq. (1.2.1) is named for

Korteweg and de Vries, it was apparently first investigated (in the absence of surface

tension) independently by Boussinesq [11] and Lord Rayleigh [12].

Mathematically, the formation of a soliton in the KdV equation can be explained as

follows. In the absence of dispersive and nonlinear terms, i.e., when ε = γ = 0, the KdV

equation becomes a dispersionless linear wave equation and thus has a travelling wave

solution for any shape (including a localised form) at any velocity c. If one reinstates

the dispersion term only, i.e., by setting ε 6= 0 and γ = 0, different Fourier components

of any initial condition will propagate at different velocities, thus the wave profile will

spread out (disperse). In contrast, if one reinstates only the nonlinear term, i.e., when

ε = 0 and γ 6= 0, the wave will experience harmonic generation so that the crest of

the wave moves faster than the rest; this then leads to wave breaking. However, by

considering both dispersion and nonlinearity, there will be a situation such that the

effect of dispersion is balanced by that of nonlinearity. In the latter case, a solitary

wave can form.

Although Korteweg and de Vries had succeeded in modelling Scott Russell’s solitary

waves, they could not find general solutions of their equation. As a result, their work

and also interest in the soliton fell (again) into obscurity.

The next development which indirectly restimulated interest in Scott Russell’s solitary

waves was made in the post-war era via the rapid advances in digital computers. In

1955, through the Los Alamos MANIAC computing machine, Enrico Fermi, John Pasta

and Stanislaw Ulam (FPU)1 [13] explored the dynamics of energy equipartition in a

slightly nonlinear mechanical system, i.e., a chain of equal mass particles connected

by slightly nonlinear springs (the equation model of such a nonlinear spring-mass sys-

tem will be introduced in the following section). It was expected that if all the energy

was initially introduced in a single mode, the small nonlinearity would cause energy

redistribution among all the modes (thermalisation). But surprisingly, their numeri-

1Maria Tsingou also contributed significantly in the numerical part of the FPU study, therefore some

also quote this study as the Fermi-Pasta-Ulam-Tsingou (FPUT) problem as first recommended by Daux-

ois [14].

4



1.2 A BRIEF HISTORY OF SOLITONS

cal results confirmed that all the energy returned almost periodically to the originally

excited mode and a few nearby modes.

Motivated to find an explanation for this “FPU recurrence”, two American physicists,

Norman Zabusky and Martin Kruskal [3], in 1965 approximated the FPU spring-mass

system in the continuum limit using the KdV equation. They solved the equation

numerically through a finite difference approach and reported that the KdV solitary

waves can pass through each other without change in their shape or speed (the only

change was a small phase shift after a collision). In fact, this is the same as what had

been discovered by Scott Russell more than 100 years earlier. Zabusky and Kruskal

then introduced for the first time the term soliton for such solitary waves, in order to

emphasise their particle-like character (the ending “on” is Greek for “particle” (Dodd

et al. [8])).

In 1967, another new development stimulating the mathematical study of solitons ac-

credited to Clifford Gardner, John Greene, Martin Kruskal and Robert Miura [15], who

discovered a method to find exact solutions (including soliton solutions) of the KdV

equation. Their method is now known as the inverse-scattering method (ISM) and has

become one of the most important discoveries achieved in mathematics in the past 50

years (Skuse [16]). Though it was initially used to explain solitons in the KdV equation,

ISM was later found to provide a more general means for generating the exact soliton

solutions in many integrable nonlinear PDEs.

Next, Vladimir Zakharov and Alexei Borisovich Shabat [17] in 1972, by constructing

ISM, solved the nonlinear Schrödinger (NLS) equation. They demonstrated both the

integrability and the existence of soliton solutions. The NLS equation is written as

iψt + ψxx ± β|ψ|2ψ = 0. (1.2.2)

The ‘plus’ and ‘minus’ signs in the nonlinearity term are referred to as the so-called

focusing and defocusing nonlinearities, respectively. The focusing NLS permits a pulse-

like soliton, while the defocusing one has a kink-shaped soliton (see again Fig. 1.1).

In nonlinear optics, they are known as bright and dark solitons, respectively (we shall

use these terminologies in this thesis in a general manner). The NLS equation takes its

name because its structure is formally similar to the Schrödinger equation of quantum

mechanics (Dodd et al. [8]). The NLS equation was found as a fundamental model in

many important applications. To mention but a few, it was used to describe nonlinear

envelope waves in hydrodynamics, nonlinear optics, nonlinear acoustics and plasma

waves (see, e.g., Scott [7]).

Next, in 1973, Mark Ablowitz, David Kaup, Alan Newell and Harvey Segur [18] also
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1.3 DISCRETE SOLITONS

applied ISM for solving the sine-Gordon (SG) equation and presented its soliton solu-

tions as well. The SG equation is given by

θtt − θxx = sin(θ), (1.2.3)

which admits kink and anti-kink solitons. The SG equation also appears in many phys-

ical applications, including the propagation of crystal defects and the propagation of

quantum units of magnetic flux (called fluxons) on long Josephson (superconducting)

transmission lines (Scott [7]).

In addition to the discovery of the integrable nonlinear PDEs (continuous systems)

mentioned above, from which the corresponding exact soliton solutions can be con-

structed, some integrable difference-differential equations (discrete systems) admitting

exact discrete solitons have also been discovered. Among the prime examples are the

Toda lattice [19, 20] and the Ablowitz-Ladik equation [21] (these two lattice equations

will be explored more in the next section).

Since the mid-1970s, many other integrable nonlinear equations exhibiting soliton solu-

tions both in continuous and discrete systems have been studied by many researchers.

These studies have established the soliton concept in several areas of applied science.

Nevertheless, soliton studies in non-integrable equations (either continuous or dis-

crete) are also of great interest. Apart from their rich mathematical properties, these

equations are of interest because they arise in a huge number of useful and promising

applications. This motivates many researchers to perform both theoretical and experi-

mental observations of solitons in those systems.

In this thesis, our study is devoted to the investigation of solitons in lattice systems

governed by discrete nonlinear Schrödinger (DNLS) equations. Before discussing these

lattice equations further, we first give a short review about the development of studies

on discrete solitons. This also includes a review of some relevant applications.

1.3 Discrete solitons

1.3.1 Development of studies on discrete solitons: a review

As explained in the previous section, the rise of interest in solitons, although they were

first observed in 1834, is mainly due to the attempts at explaining a nonlinear lattice

problem, namely FPU recurrence (reported by Fermi et al. [13]). This problem was mod-

elled by a one-dimensional lattice consisting of equal masses connected with weakly

6
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nonlinear springs, which can be written mathematically as

d2rn

dt2
= V ′(rn+1)− 2V ′(rn) + V ′(rn−1). (1.3.1)

Here rn = yn − yn−1, where yn is the displacement of the nth spring from its equilibrium

position, and V ′(r) is the derivative of the spring potential given by

V ′(r) = r + arm, m = 2, 3. (1.3.2)

The spring-mass lattice equation above is now known as the FPU lattice. Zabusky and

Kruskal [3] showed that the FPU lattice in the continuum limit can be reduced to the

KdV equation from which its soliton solutions were then confirmed numerically.

In the meantime, a Japanese mathematical physicist, Morikazu Toda [19, 20], in 1967

investigated a spring-mass system (1.3.1) but with spring potential of the form

V(r) = ar +
a

b
e−br, a, b > 0. (1.3.3)

The resulting equation of motion is thus given by

d2rn

dt2
= −a(e−brn+1 − 2e−brn + e−brn−1), (1.3.4)

which is now called Toda lattice. Toda found explicit solutions of Eq. (1.3.4) for two-

soliton collisions. Seven years later Flaschka [22] proved the integrabililty of Toda lat-

tice using ISM formulations.

It should be mentioned here that an early recorded study on discrete solitons was made

in 1962 by Perring and Skyrme, who studied the discrete sine-Gordon equation derived

originally by Frenkel and Kontorova in 1939 (see, e.g., Scott [7]). The lattice equation

modelled a motion of crystal dislocations, given by

d2θn

dt2
− θn+1 − 2θn + θn−1

h2
= sin (θn), (1.3.5)

where θn is the displacement of the nth atom from its equilibrium position and h rep-

resents the lattice spacing. The discrete sine-Gordon equation (1.3.5) in the limit h → 0

reduces to the sine–Gordon equation (1.2.3); this suggests the name ‘discrete’ in the

former equation. Analogous with its continuum counterpart, the discrete sine-Gordon

lattice supports discrete kink and anti-kink solitons. Perring and Skyrme examined

numerically a collision of two kinks from which it was shown in the continuum limit

that the solitons emerging from the collision have the same shapes and velocities with

which they entered. They also found an exact analytical description of the collision

phenomenon, although, in fact, had been derived a decade earlier by Seeger, Donth

and Konchendörfer (see Scott et al. [23]).

7



1.3 DISCRETE SOLITONS

The next lattice equation which should be discussed here is the discrete nonlinear

Schrödinger (DNLS) equation. This equation is found as a ubiquitous model in dis-

crete systems with profoundly important and wide-ranging applications. There is a

number of types of DNLS equations which can be identified from their nonlinearities.

We next point out some of them (we refer the reader to the book by Kevrekidis [24] for a

comprehensive review of theoretical and experimental studies in the DNLS equations).

1.3.1.1 Cubic DNLS equation

The cubic DNLS equation is arguably the most studied version of the DNLS equations.

Due to this fact, this equation is also referred to as a “standard DNLS” or simply a

“DNLS” lattice. A cubic DNLS equation is given by

iψ̇n = −ε∆2ψn + β |ψn|2 ψn, (1.3.6)

where ψn ≡ ψn(t) represents a complex function of time t at site n, the overdot denotes

time derivative, ε is the so-called coupling constant between two adjacent sites, ∆2ψn =

ψn+1 − 2ψn + ψn−1 is the 1D discrete Laplacian and β is the nonlinearity parameter.

The value of β can be either negative or positive, indicating the focusing or defocusing

nonlinearity, respectively. In the above equation, both ε and β can be scaled out without

loss of generality, i.e., ε > 0 and β ≷ 0 can be scaled out to 1 and ±1, respectively, by

the transformation

t → t/ε, ψn → ψn/
√

ε/|β|. (1.3.7)

However, we let ε and β remain in Eq. (1.3.6) for later illustrative purposes.

The cubic nonlinearity in the above equation is sometimes called the diagonal (“on-

site”) nonlinearity. This because the matrix representing the nonlinearity term is di-

agonal. Another name for the cubic nonlinearity, in the context of nonlinear optics, is

the so-called Kerr nonlinearity, subject to a particular type of material whose nonlinear

refractive index change ∆n(I) is linearly dependent upon the light intensity I (Lederer

et al. [25]), i.e.,

∆n(I) = n2 I, (1.3.8)

where n2 is the Kerr coefficient.

The DNLS (1.3.6) serves both as a model in its own right, i.e., modelling cases where

the nature of the problem is discrete, or as a discretization of the continuous nonlinear

Schrödinger equation (1.2.2), i.e., by considering the discrete Laplacian term as a central

difference approximation for the spatial derivative term in Eq. (1.2.2). In this thesis, the

DNLS equation (1.3.6) is considered in its own right (the former case), thus we will

8
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not relate its properties with the corresponding continuous equation. This also holds

for the study of another type of DNLS equation, i.e., saturable lattice, which will be

explained later. The cubic DNLS system is known, except for the case of only two

lattice sites, to be nonintegrable (Scott [7]).

Historically (see, e.g., Scott [1, 7] and references therein), the cubic DNLS equation

was first derived by Holstein in 1959 to model the motion of a self-trapped electron

(polaron) in a one-dimensional crystal lattice. The equation reappeared in 1972 when

Davydov studied the energy transfer in biomolecules. The same equation was also

used by Christodoulides and Joseph in 1988 to model the dynamics of an optical field

in a nonlinear coupled waveguide array. Furthermore, in the 1990s the DNLS equation

was also studied as a model of systems of coupled anharmonic oscillators which ad-

mit the so-called intrinsic localised modes or discrete breathers (we will explain this later).

Quite recently, Trombettoni and Smerzi also used this equation in 2001 to describe a

Bose-Einstein (BEC) condensate trapped in a periodic potential. Two of those applica-

tions mentioned above, i.e., optical waveguide arrays and systems of coupled anhar-

monic oscillators (in the context of micro- and nano-electromechanical resonators) will

be discussed in more detail later.

1.3.1.2 Ablowitz-Ladik (AL) DNLS equation

Another type of DNLS equations, which is integrable, is the Ablowitz-Ladik (AL) lat-

tice. This equation was originally formulated by Ablowitz and Ladik [21] in 1976. This

lattice is obtained by replacing the diagonal (“on-site”) nonlinearity in Eq. (1.3.6) with

an off-diagonal (“inter-site”) nonlinearity, resulting

iψ̇n = −ε∆2ψn +
β

2
|ψn|2 (ψn+1 + ψn−1) . (1.3.9)

In the continuum limit, i.e., when ψn ≈ ψ, (ψn+1 + ψn−1)/2 ≈ ψ and ε∆ψn ≈ ψxx, the

above equation reduces to the NLS equation (1.2.2). Since the AL equation is integrable,

there exists an exact soliton solution, given by (after the rescalings ε = 1 and β = 2)

ψn(t) = sinh(χ) sech[χ(n − ct)]ei(kn+ωt+α), (1.3.10)

where χ, k and α are free parameters, c = 2 sinh(χ) sin(k)/χ and ω = 2(cosh(χ) cos(k)−
1). In spite of having no direct physical application (up to this date), the AL equation

is commonly used as a starting point in perturbational studies for other models, like

Eq. (1.3.6), which are more physically meaningful (Scott [7]).

9
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1.3.1.3 Salerno DNLS equation

In 1992, Salerno [26] proposed an interesting model of the DNLS equation of the form

iψ̇n = −ε∆2ψn + 2(1 − α) |ψn|2 ψn + α |ψn|2 (ψn+1 + ψn−1) , (1.3.11)

which interpolates between the cubic DNLS (1.3.6) at α = 0 and the AL lattice (1.3.9) at

α = 1. Due to its property of incorporating the cubic and AL DNLS lattices, the Salerno

equation becomes an ideal general model for studying, e.g., the interplay between on-

site and inter-site nonlinearities, discreteness and continuum, integrability and non-

integrability, etc (see Scott [1] and references therein).

1.3.1.4 Saturable DNLS equation

Another variant of DNLS equations that is very relevant to discuss in this thesis is a

DNLS lattice featuring the so-called saturable nonlinearity. This equation is written as

iψ̇n = −ε∆2ψn +
σψn

1 + |ψn|2
, (1.3.12)

which represents a discrete version of the Vinetskii-Kukhtarev equation [27]. Most

recently, the continuum version of Eq. (1.3.12) in the defocusing case also occurred in

azo-dye doped nematic liquid crystal as reported by Piccardi et al. [28].

As in the cubic case, the nonlinearity term in the saturable DNLS lattice can be either

focusing or defocusing, indicated by σ > 0 or σ < 0, respectively. In the optical con-

text, this equation appears to model light propagation in photorefractive media which

exhibit a saturation behaviour, i.e., the nonlinear refractive index change has an upper

limit (Lederer et al. [25]), which is modelled by

∆n(I) =
∆n0

1 + I/Is
, (1.3.13)

where Is is the saturation intensity.

Among the DNLS equations discussed above, the cubic and saturable lattices are stud-

ied in this thesis. These two equations will be elaborated further in the next section.

Before that, we review two relevant applications motivating cubic and saturable DNLS

equations.
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1.3.2 Discrete solitons in two relevant applications

1.3.2.1 Optical waveguide arrays

In optics, arrays or lattices of coupled waveguides are considered as prime examples

of physical structures in which the dynamics of a discrete optical field (light) can be

observed (Christodoulides et al. [29]). These arrays consist of equally spaced identical

waveguide elements or sites (see Fig. 1.2). From a classical perspective, light discretiza-

tion is rather naturally impossible since light itself is a continuous function in time and

space. However, the realisation of microfabrication technology for such arrays made

this unnatural idea into reality.

Figure 1.2: A nonlinear array of coupled waveguides. Reprinted from

Christodoulides & Joseph [32].

The study of light propagation in a linear coupled waveguide array was first theoreti-

cally investigated by Jones [30] in 1965, and then experimentally observed by Somekh et

al. [31] using a gallium arsenide (GaAs) waveguide array in 1973. Both studies showed

that the coupling among adjacent waveguides causes light to spread from one waveg-

uide to the others, i.e., confirming the effect of the so-called discrete diffraction.

In 1988, Christodoulides and Joseph [32] theoretically suggested that the discrete diffrac-

tion could be counteracted in a nonlinear waveguide array which allows the light to be

self-localised. This state of self-localisation emerges as a result of a balance between

nonlinearity and discrete diffraction effects. As a result, the light is confined within

only a few waveguide lattices, i.e., propagating as a discrete soliton.

In deriving their model, Christodoulides and Joseph assumed that the waveguide array

is lossless, infinite (big enough), weakly coupled (considering only nearest-neighbour

interactions) and made from a Kerr material. Under these assumptions, they showed

that the dynamics of discrete optical solitons can be described by the cubic DNLS equa-

tion (1.3.6). In the context of this model, the integer variable n in Eq. (1.3.6) indexes

the waveguides, while t indicates the longitudinal spatial coordinate, i.e., the distance

along the waveguides. |ψn(t)|2 is the light intensity at a distance t along the nth waveg-

uide.
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The above theoretical prediction was tested initially by Eisenberg et al. [33] in 1998. Us-

ing a nonlinear aluminium gallium arsenide (AlGaAs) waveguide array (see Fig. 1.3(a)),

they obtained the following experimental results (see Fig. 1.3(b)). At low powers (70 W)

the input light beam injected into one waveguide becomes discretely diffracted in the

array. This can be justified theoretically by neglecting the nonlinear term of Eq. (1.3.6),

which basically reconfirms the earlier study of a linear coupled waveguide array. If

the power is increased (320 W), the distribution of light converges to form a bell shape.

Providing even more power (500 W), the optical field self-localises leading to a discrete

soliton formation.

(a) (b)

Figure 1.3: First experimental observations of discrete optical solitons in a coupled

waveguide array made from aluminium gallium arsenide (AlGaAs). (a)

Microscopic image of the array. (b) Experimental results depicting the out-

put facet of a waveguide array for different power levels: at 70 W (top) the

beam is discretely diffracted, at 320 W (centre) the beam’s distribution is

narrowing, and at 500 W (bottom) a discrete soliton is formed. Reprinted

from Christodoulides et al. [29].

The above initial experiment stimulated a large number of subsequent observations

from which interesting phenomena were reported. These include the first experimental

demonstration of the effect of the Peierls-Nabarro (PN) potential (Morandotti et al. [34]),

diffraction management (Eisenberg et al. [35]), the interaction of discrete soliton with

structural defects (Morandotti et al. [36]), discrete solitons in photorefractive arrays

(Segev et al. [37], Efremidis et al. [38] and Fleischer et al. [39]), to mention a few. For a

comprehensive review of recent experimental and theoretical developments in the field

of optical discrete solitons, the interested reader can refer to, e.g., Lederer et al. [25] and

Kivshar & Agrawal [40]. In what follows, we point out the last mentioned example.

Initially, optical waveguide arrays were fabricated as a lattice of separate waveguides

where specialised materials with fixed geometries are required. This would limit their
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potential application. However, as firstly suggested by Segev et al. [37] and experi-

mentally tested by Efremidis et al. [38] and Fleischer et al. [39], waveguide arrays can

be optically induced in media made from photorefractive materials. The most com-

monly used form of nonlinearity for such materials is the saturable nonlinearity. This

leads to the creation of a new type of optical discrete soliton governed by saturable

DNLS (1.3.12). In the initial experiments of Efremidis et al. [38], the photorefractive

material of choice was SBN:75 crystal.

One of the fascinating applications of discrete solitons in optical waveguide arrays

is their realisation in optical routing and switching processing which, in fact, play a

vital role in future communication and information systems. In such a realisation, as

theoretically demonstrated by Christodoulides & Eugenieva (& Efremidis) [41–43] and

experimentally tested recently by Keil et al. [44], a discrete soliton moves transverse

to the axes of waveguide array networks and can be routed along the pre-assigned

array pathways which act like “soliton wires” (see Fig.1.4(a)). In addition, and more

interestingly, a discrete soliton at array intersections can also be routed towards one of

the paths. The basic idea for such a scheme, as illustrated in Fig.1.4(b), is by utilising an

elastic collision of two different discrete soliton families, i.e., the so-called ‘signals’ and

‘blockers’. Blockers are immobile and strongly confined (localised effectively to a single

lattice), while, in contrast, signals are highly mobile and moderately confined. The

blockers are used to block, reflect or redirect a signal, and placed at the entrance of the

paths which a signal is prohibited to pass through. As a consequence, a signal is routed

towards the other branch. The later implementation opens the gate for the possibility

of optical switching processing. Apparently, the mobility of travelling solitons plays a

main role in the abovementioned schemes, and this is the subject of Chapter 4 in this

thesis.

1.3.2.2 MEMS and NEMS resonators

Current advances in the fabrication and control of electromechanical systems on a mi-

cro and nanoscale bring many technological promises (Ventra et al. [45]). These include

efficient and highly sensitive sensors to detect stresses, vibrations and forces at the

atomic level; to detect chemical signals; and to perform signal processing (Cleland [46]).

As a particular example, a nanoelectromechanical system (NEMS) can detect the mass

of a single atom, due to its mass that is very small (Roukes (and Cleland) [47, 48]).

On a fundamental level, NEMS with high frequency will allow research on quantum

mechanical effects. This is because NEMS, as a miniaturisation of microelectromechani-

cal systems (MEMS), can contain a macroscopic number of atoms, yet still require quan-
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(a) (b)

Figure 1.4: (a) Intensity profile of a discrete soliton, S, travelling along the specific

pathways (shown by the arrow) in a transverse x − y plane perpendicular

to the nonlinear waveguide array network (the cross-section of the lattice

network is shown by the circles). The pulse, as shown by Christodoulides

& Eugenieva [41], can successfully negotiate a sequence of bends, i.e., it

can be routed on predefined tracks. (b) An X-switching junction using two

different discrete soliton families, i.e., the so-called ‘signals’ and ‘block-

ers’ (see text). In the junction, the signal S interacts elastically with two

blockers (B1 and B2) placed at the entries of the respective pathways. As

a result, the signal is routed towards the other branch as indicated by the

arrow. Reprinted from Christodoulides et al. [29].

tum mechanics for their proper description. Thus, NEMS can be considered as a natural

playground for a study of mechanical systems at the quantum limit and quantum-to-

classical transitions (see, e.g., Katz et al. [49] and references therein).

Typically, nanoelectromechanical devices comprise an electronic device coupled to an

extremely high frequency nanoresonator (recently going beyond 10 GHz) with rela-

tively weak dissipation parametrised by a quality factor2 in the range of 102 − 104 (Lif-

shitz et al. [50]). In such devices, it will be easy to obtain sufficient data to characterise

the steady state motion, as transients tend to disappear rapidly. Moreover, weak dissi-

pation and weak nonlinearity can be treated as small perturbations. These facts provide

a great advantage for quantitative comparisons between theoretical and experimental

studies.

A large number of arrays of MEMS and NEMS resonators have recently been fabricated

experimentally (see, e.g., Buks & Roukes [51]). One direction of research in the study of

such arrays has focused on intrinsic localised modes (ILMs) or discrete breathers. ILMs

can be present due to parametric instabilities in an array of oscillators (Wiersig [52]).

ILMs in driven arrays of MEMS have been observed experimentally by Sato et al. [53–

2A quality factor of the nanoresonator is defined as Q = ω0/∆ω, where ω is the fundamental resonance

frequency of the resonator and ∆ω is the frequency width of the resonant response at half maximum

(Cleland & Roukes [48]).
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55] (to illustrate how such experiments are constructed, see Fig. 1.5 and the explanation

in the figure).

(a) (b)

(c)

Figure 1.5: An experimental setup for observing ILMs. (a) The cantilever array in

which each behaves as a nonlinear oscillator coupled together via an over-

hang region. (b) The observational technique for recording the dynamics

of the cantilever array. A line shaped laser beam is focused on and reflected

from the array. The reflected beam is imaged on a 1D CCD camera. When

a cantilever acquires a large vibrational amplitude, its image darkens. (c)

The resulting image of vibration of the array. After a few tens of millisec-

onds, the vibration becomes localised as shown by dark horizontal line.

Reprinted from Sato et al. [53] and Porter et al. [56].

The first realisation of a large array of MEMS and NEMS resonators was reported by

Buks and Roukes (BR) [51]. The device was designed in the form of two interdigitated

combs such that all even-numbered beams were connected to one comb and all odd-

numbered beams to a second one (see Fig. 1.6(a)). A dc voltage Vdc was then applied

to introduce a coupling between each beam and its nearest neighbours. Also, an ac

voltage Vac was used to parametrically excite the modes of vibration. To describe the

dynamics of the system, BR employed a simple 1D model for an N-element array of

coupled pendulums (see Fig. 1.6(b)). The first and last pendulums in the array are

stationary and clamped with distance L, while all others (n = 2, 3, ..., N − 1) are free

to oscillate about their equilibrium positions na, where a is the equilibrium spacing

between neighbouring pendulums. The displacement of the system is described by a

set of coordinates xn for n = 1, 2, ..., N.

15



1.4 THE CUBIC AND SATURABLE DNLS EQUATIONS

The experiment of BR above was modelled mathematically by Lifshitz and Cross [57]

and simplified later by Kenig et al. [58]. In the latter reference, the creation, stability and

interaction of ILMs in the simplified model with low damping have been studied in the

case of strong-coupling limit or slowly varying solutions. In Chapter 2 of this thesis, we

consider a similar study but in the case of small coupling or strongly localised solutions.

(a) (b)

Figure 1.6: (a) A side view micrograph of an array of MEMS resonators. (b) A

model of N coupled pendulums employed to describe the dynamics of

(a). Reprinted from Buks & Roukes [51].

1.4 The cubic and saturable DNLS equations

1.4.1 Stationary discrete solitons: preliminary analysis

Let us first consider cubic DNLS (1.3.6). To obtain stationary discrete soliton solutions,

we substitute the ansatz

ψn(t) = uneiΛt, (1.4.1)

where un is time independent and Λ is the oscillation frequency, into Eq. (1.3.6). Thus,

the stationary amplitudes un satisfy the coupled lattice equation

(Λ + β|un|2)un = ε(un+1 − 2un + un−1). (1.4.2)

Solutions un are generally complex valued. However, for localised solutions under the

condition

un → ±a as n → ±∞, (1.4.3)

with either a = 0 (bright solitons) or a 6= 0 (dark solitons), the analysis can be sim-

plified, without loss of generality, by taking real-valued solutions only. This fact can

be explained as follows (our presentation here is mainly adopted from Kevrekidis [24]

and Hennig & Tsironis [59]).
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If one multiplies Eq. (1.4.2) by u∗
n (i.e., complex conjugate3 of un) and then subtract the

complex conjugate of the resulting equations, this leads to a conserved quantity

u∗
nun+1 − unu∗

n+1 = const. (1.4.4)

Since we consider localised solutions under the condition (1.4.3), the constant in the

last equation becomes 0. Thus, we have

un+1

u∗
n+1

=
un

u∗
n

⇒ arg(un+1) = arg(un) (mod π). (1.4.5)

Consequently, if one chooses arg(un0) such that un0 is real for at least one n0 ∈ Z, then

un are real for all n ∈ Z. One can check that this fact also holds for stationary discrete

solitons in saturable DNLS (1.3.12).

Basically, there are infinitely many configurations for discrete soliton solutions. How-

ever, the two most commonly studied solutions are the one centred on a lattice site and

the one centred between two subsequent lattice sites (Kevrekidis et al. [60]). We call

the former onsite soliton and the latter intersite soliton. For bright and dark solitons,

i.e., when a = 0 and a 6= 0 in Eq. (1.4.3), respectively, these two modes become onsite

and intersite bright solitons, and onsite and intersite dark solitons. In the case of bright

solitons, onsite and intersite modes were initially proposed by Sievers and Takeno [61]

and by Page [62], respectively.

In addition to the abovementioned configurations, there also exist the so-called stag-

gered solitons, i.e., those obtained by simply using staggering transformations vn =

(−1)nun. Thus, the fundamental localised modes in staggered configurations also

emerge accordingly from the unstaggered ones; they are onsite and intersite staggered

bright solitons, and onsite and intersite staggered dark solitons. Note that in each of

the cubic and saturable DNLS equations, the corresponding staggered bright (dark)

solitons exist in the de(focusing) case. In this thesis, we will not study such solitons

and thus reserve the names bright and dark soliton, unless otherwise stated, to the

unstaggered case.

It is noteworthy to mention here that the intersite modes can be either in-phase or out-

of-phase. The latter case is also called a twisted mode. In carrying out the study of

stationary lattice solitons in the next chapters, the only intersite modes that we consider

are those with in-phase oscillations.

3Another way to represent complex conjugation which is also used in this thesis is by writing un.
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1.4.2 Gauge invariance

One of important properties of cubic and saturable DNLS equations, that we should

address here, is the existence of the so-called gauge invariance (Kevrekidis et al. [24, 60]),

i.e., if we use a transformation

ψn → ψneiθ , (1.4.6)

for an arbitrary θ ∈ R, then Eqs. (1.3.6) and (1.3.12) are left unchanged. The above

invariance is also called phase or rotational invariance. Thus, another way to express

Eqs. (1.3.6) and (1.3.12) is by writing

ψn(t) = φn(t)e
iΛt, (1.4.7)

where φn(t) is now a solution of

iφ̇n = −ε∆2φn + Λφn + β |φn|2 φn, (1.4.8)

for the cubic case, or

iφ̇n = −ε∆2φn + Λφn +
σφn

1 + |φn|2
, (1.4.9)

for the saturable case. Parameter Λ in Eq. (1.4.7) is an adjustable parameter. However,

we also can treat it as a frequency parameter.

Stationary discrete solitons for the last two equations can be obtained by simply setting

φn to be time-independent. Thus, the obtained stationary solitons for these equations

will be exactly the same as the previous ones [Eqs. (1.3.6) and (1.3.12)]. The funda-

mental difference between the former and the latter forms of the DNLS equations is in

its dynamical manifestation. In Eqs. (1.3.6) and (1.3.12), its dynamics is in the form of

soliton oscillation while in Eqs. (1.4.8) and (1.4.9), the oscillation is absent. We call the

solution in the former situation an intrinsic localised mode (ILM) or discrete breather, i.e.,

one which is localised in space and periodic in time. In the rest of this thesis, except

for some particular purposes, we will take cubic and saturable DNLS equations in the

latter forms, i.e., Eqs. (1.4.8) and (1.4.9).

1.4.3 Travelling discrete solitons: Peierls-Nabarro (PN) barrier analysis

In continuous systems, the translational invariance (also known as Galilean or Lorentz

invariance) hints at the existence of a travelling soliton, provided a stationary one ex-

ists. In discrete models (in most cases), however, such a property no longer exists.

Before moving to the next discussion, we note that cubic and saturable DNLS systems

are conservative under the respective Hamiltonians [for notational convenience, here
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1.4 THE CUBIC AND SATURABLE DNLS EQUATIONS

we consider Eqs. (1.3.6) and (1.3.12)],

Hcub =
∞

∑
n=−∞

[

ε|ψn+1 − ψn|2 +
β

2
|ψn|4

]

, (1.4.10)

and

Hsat =
∞

∑
n=−∞

[

ε|ψn+1 − ψn|2 + σ ln(1 + |ψn|2)
]

. (1.4.11)

In addition, the total power,

P =
∞

∑
n=−∞

|ψn|2, (1.4.12)

is also conserved in both systems.

When a discrete soliton moves across the lattice, there are only two possibilities: one

centred on a lattice site (onsite soliton) and the other centred between two adjacent

lattice sites (intersite soliton). The difference between the Hamiltonians (for the same

power) in the two configurations is termed the Peierls-Nabarro (PN) barrier [63, 64],

which accounts for the resistance that the soliton has to overcome during transverse

propagation. Therefore, to make a soliton moves freely along the lattice, the PN barrier

must be surmounted.

In the cubic DNLS, it is known that, for the same power, the Hamiltonian is always

minimum in the (stable) onsite soliton, and maximum in the (unstable) intersite one.

Thus, as power level increases, the PN barrier also increases. This fact has also been

demonstrated experimentally by Morandotti et al. [34]; see Fig. 1.7. This sign-definite

PN barrier indeed restricts the mobility of solitons in the cubic case.

Interestingly, in the saturable DNLS model, the sign-definite PN barrier is no longer

the case. The PN barrier in this equation, in fact, can exhibit sign reversal, hence may

vanish at isolated points. This fact was initially investigated by Hadžievski et al. [65];

see Fig. 1.8. Instead of measuring the PN barrier ∆E = Hos
sat − His

sat as a function of

power P as that used in the latter reference (here the superscripts os and is represent

onsite and intersite modes), Melvin et al. [66, 67] measured the generalised PN barrier

defined by ∆G = Gos −Gis, where Gx = Hx
sat −ΛPx (x = os or is) and Λ is the frequency

of the solution, as a function of one of parameters (in this case ε). By performing linear

stability of the solitons using linearisation around a solution profile un of the form

ψn = eiΛt[un + δ(aneλt + bneλ∗t)], they found that stability-instability alternation in both

onsite and intersite solitons occurs not at the points of vanishing ∆E, but at the zeros of

∆G (see Fig. 1.9). At these points, the corresponding eigenvalue λ crosses zero, i.e., may

possibly restore an effective translational invariance in the model. Therefore, one might

intuitively expect that genuinely travelling localised solutions, i.e., ones with vanishing

oscillatory tails, might exist in the saturable lattice. The issue of undistorted travelling
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Figure 1.7: The experimental results of Morandotti et al. [34] showing Hamiltonian

versus power for onsite and intersite solitons in cubic DNLS (1.3.6).

The difference between the Hamiltonians is the Peierls-Nabarro potential

(PNP) barrier. The inset exhibit the profile for two types of solitons in a

peak power indicated by the vertical dashed lines. Reprinted from Moran-

dotti et al. [34].

solitons in DNLS type lattices is of particular interest, since it would be desirable to

transport optical (in the case of optical waveguides) or quantum (in the case of Bose-

Einstein condensates (BECs) in optical lattices) bits of information without radiative

losses (Melvin et al. [67]).

Motivated by the interesting results mentioned above, Melvin et al. [66, 67] then pro-

ceeded to numerically study the existence and stability of travelling discrete solitons

in the saturable DNLS model, from which it was confirmed that genuinely travelling

lattice solitons exist at isolated points. In Chapter 4, we revisit this study by follow-

ing the ideas in the previous works but by using a different numerical scheme and

corroborated with an analytical approach.

Travelling solitons with vanishing oscillatory tails have also been observed earlier in

the Salerno model (1.3.11) using a different numerical method (Gómez-Gardeñes et.al [68]),

showing that the travelling localised waves acquire non-vanishing tails as soon as pa-

rameter α deviates from the integrable AL limit α = 1. Later, Melvin et al. [69] used

exponential asymptotic expansions to prove the (non)existence of travelling solitons in

this model.
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Figure 1.8: PN barrier versus power P for discrete solitons in saturable DNLS (1.3.12),

calculated analytically and numerically using parameter values σ = 18.2

and ε = 2. Reprinted from Hadžievski et al. [65].

Figure 1.9: The upper panel shows the imaginary part (on an exponential scale) of the

eigenvalues λ for the onsite (dashed line) and intersite (solid line) modes

as functions of ε with frequency Λ = 0.5 (see text how the eigenvalues

arise). The middle panel indicates the maximum of the real part of the cor-

responding eigenvalues λ as shown in the upper panel. The lower panel

indicates the values of log(|∆E|) (solid lines) and log(|∆G|) (dashed lines)

as functions of ε (see text). Reprinted from Melvin et al. [66].
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1.4.4 Analytical methods

In this section, we review some theoretical approaches which will be employed in this

thesis.

1.4.4.1 The anticontinuum limit approach

The so-called anticontinuum (AC) limit approach was introduced initially by MacKay

and Aubry [70] when they studied the existence of localised solutions (in the form of

breathers) for networks of weakly coupled oscillators. In the same paper, they also

applied this approach to prove the existence of breather solutions in the DNLS equa-

tion (1.3.6).

In this approach, as the name suggests, the analysis of the lattice equation is started by

considering the case of zero coupling limit (ε = 0). In this limit, the sites are uncoupled

and one can construct exact solutions of the ensuing equation. These solutions then

can be continued for nonzero ε. MacKay and Aubry [70] have shown that all solutions

which exist in the limit ε = 0 can be continued up to some positive value ε∗. Later, a

number of various bounds for the limit value of ε∗ have been explored (see, e.g., Hennig

& Tsironis [59] and Alfimov et al. [71]). In particular, for localised solutions, for example

by setting all sites but one to be zero in the AC limit, they remain localised under this

continuation with the tails decaying exponentially as n → ±∞. A justification for this

statement was given by Alfimov et al. [71].

1.4.4.2 Perturbation expansions

These methods are used to approximate solutions of a system, which is not explicitly

solvable, in a small range of parameter values. As ‘small’ is relative, we first need to

nondimensionalise the variables of the system. The next step is to find special cases that

can serve as a starting point for approximating the solution in the nearby cases. Most

often, these cases can be obtained by setting some of the parameters equal to zero. This

applies in our case as the exact solutions of the lattice equations are available in the AC

limit ε = 0. Once an exact solution is obtained, we then can generate the approximate

solution in the form of a perturbation expansion for the first few terms, usually for the

first two or three terms. A standard form of a perturbation expansion is in a power

series of a small perturbation parameter. For example, we can expand a solution un in

the stationary equation (1.4.2) as

un = u
(0)
n + εu

(1)
n + ε2u

(2)
n + · · · , (1.4.13)
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1.4 THE CUBIC AND SATURABLE DNLS EQUATIONS

where u
(0)
n is the exact solution in the AC limit. Upon substituting the above expansion

into Eq. (1.4.2) and collecting the terms in successive powers of ε, we obtain a number

of order equations from which the solutions u
(1)
n , u

(2)
n , etc can be solved iteratively.

A guarantee that the above expansion is convergent in an interval 0 6 ε < ε0 for some

ε0, was given by Lemma 2.2 in Pelinovsky et al. [72]. A basis for the lemma follows

from the Implicit Function Theorem, as the Jacobian matrix for the system (1.4.2) is

non-singular at un = u
(0)
n , while the right hand-side of the system (1.4.2) is analytic in

ε.

1.4.4.3 The variational approximations

The variational approximation (VA) is a semi-analytical technique which is well known

and has been long used to approximate solutions (including the localised states) of a

nonlinear evolution equation. It is called semi-analytical because in practice this method

involves numerical computations in dealing with the resulting equations which are

generally too complicated to be solved analytically.

The method of the VA is systematically described in the following steps (Kaup & Vo-

gel [73]):

1. Establish the Lagrangian of the governing equation.

2. Choose a reasonable trial function (ansatz) containing a finite number of param-

eters (also called variational parameters).

3. Substitute the chosen ansatz into the Lagrangian and perform the resulting sums

(for discrete systems) or integrations (for continuous system).

4. Determine the critical points of the variational parameters by solving the Euler-

Lagrange equations.

One would expect that the ‘success’ of the variational method mainly depends on the

choice of the trial function representing the ‘actual shape’ of the system. At the same

time, the selection of this function should be in line with the practical consideration,

i.e., they must be such that the resulting sums or integrations are expressible in a closed

form. In addition, as this method basically reduces an original system with infinitely

many degrees of freedom into a finite-dimensional one, we may argue that the number

of the parameters capturing the ‘nature’ of the system would also affect to the accuracy

of the VA; the more parameters used, the more accurate the approximations obtained.

However, adding more parameters to the VA indeed increase the complexity of the
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calculations. This makes the VA sometimes an art rather than a science. For a compre-

hensive review of the VA in various applications, we refer the reader to Malomed [74].

In the context of DNLS model with cubic nonlinearity, the VA has been applied in a

number of papers and its agreement has been confirmed with the corresponding nu-

merical results; see, e.g., Aceves et al. [75], Cuevas et al. [76] and Kaup [77]. In those ref-

erences, various trial functions have been exploited where some better than others. For

example, the ansatz used by Aceves et al. [75] can only construct the onsite solutions,

while the ansatz by Cuevas et al. [76] is also applicable for the (symmetric) intersite con-

figurations. Moreover, the ansatz proposed by Kaup [77] can predict the asymmetric

intersite solutions, thus the VA can also be used to explain bifurcations linking solu-

tions. The validity of the VA for the cubic DNLS equation in the limit of small coupling

has been justified rigorously by Chong et al. [78] from which it was shown that the trial

function for stationary discrete solitons with more parameters provides more accurate

approximations.

The use of VA has been also applied for other variants of DNLS equations, for exam-

ple those with power-law cubic nonlinearity (Malomed & Weinstein [79] and Cuevas

et al. [80]), combination of competing self-focusing cubic and defocusing quintic on-

site nonlinearities (or so-called cubic-quintic DNLS) (Carretero-González et al. [81] and

Chong & Pelinovsky [82]) and extended linear coupling (Rasmussen et al. [83] and

Chong et al. [84]). By using different forms of the trial configuration, including those

used in the cubic model, the VA in those DNLS was successful in approximating the

different types of emerging solutions. In particular, the VA developed by Chong & Peli-

novsky [82] was also able to predict correctly the spectrum determining the stability of

a configuration.

1.5 Overview of thesis

The aim of this thesis is to examine the existence and stability of lattice solitons gov-

erned by discrete nonlinear Schrödinger (DNLS) equations with cubic and saturable

nonlinearities. For the cubic-type DNLS model, we introduce a parametric driving

and combined parametric driving and damping, where attention is on the study of the

stationary soliton solutions. For the saturable DNLS model, we particularly focus on

investigations of travelling lattice solitons.

We begin our work in Chapter 2 by considering the DNLS equation (1.3.6) in the pres-

ence of a parametric driving; we call this model a parametrically driven discrete nonlin-

ear Schrödinger (PDNLS) equation. Analytical and numerical calculations are carried
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out to determine the existence and stability of stationary discrete solitons. In particular,

we examine the fundamental onsite and intersite lattice solitons in both focusing and

defocusing PDNLS equations, which admit bright and dark discrete solitons, respec-

tively. Our analytical method in this study is based on the anticontinuum (AC) limit

approach which has been already discussed in the previous section. This method al-

lows us to perform existence and stability analyses for small coupling constant using

a perturbation expansion. The analytical results are then corroborated with numerics.

Moreover, numerical integrations of the considered model are performed to confirm

the stability results of our analysis.

A further complementary work of our study in Chapter 2 is the application of a para-

metrically driven DNLS model in arrays of parametrically-driven nonlinear resonators

of microelectromechanical and nanoelectromechanical systems (MEMS and NEMS). A

brief review about the experimental and theoretical studies on MEMS and NEMS res-

onators has been discussed in the previous section. As we shall show, the PDNLS

equation, by using a multiscale expansion method, can be derived from the govern-

ing equation of MEMS and NEMS resonators, i.e., a particular type of the so-called

parametrically driven discrete Klein-Gordon equation. We then perform numerical

simulations of the Klein-Gordon equation and confirm the relevance of our analysis.

Next, in Chapter 3 we extend the ideas of Chapter 2 by introducing the effect of damp-

ing in the PDNLS system; we refer to this model as a parametrically driven damped

discrete nonlinear Schrödinger (PDDNLS) equation. As we identify later, there exist a

number of types of onsite and intersite stationary discrete soliton in this model. Our

further analysis demonstrates that saddle-node and pitchfork bifurcations occur in the

lattice soliton solutions. More interestingly, some solutions admit Hopf bifurcations

from which periodic solitons (limit cycles) emerge. The continuation of the limit cycles

as well as the stability of the periodic solitons are computed through the numerical

continuation software Matcont. To confirm our stability findings, the numerical in-

tegrations of the PDDNLS equation are performed for both stationary and periodic

solitons.

In Chapter 4, we study the existence and stability of travelling solitary waves in the

saturable DNLS (1.3.12). As mentioned previously, this study has been discussed ear-

lier numerically by Melvin et al. [66, 67]. In their work, they used a pseudo-spectral

method to solve the equation in a moving coordinate frame, which is an advance–

delay-differential equation. The numerically obtained soliton solutions generally ex-

hibit nonzero oscillatory tails, which is due to a resonance with the system’s linear

radiation. To obtain an isolated genuine travelling-soliton state on the discrete lattice,
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they proposed the use of a measure based on an appropriately crafted tail condition.

Our work in Chapter 4 basically follows the idea in the abovementioned references but

by employing a different numerical scheme based on the discretization of the advance–

delay-differential equation. To find a genuinely travelling discrete soliton, we propose

an alternative measure to be used together with the measure modified from the previ-

ous work. Moreover, to study analytically the travelling solitary waves of the saturable

DNLS lattice and their stability, as well as to predict the location of travelling solitons

with non-oscillatory tails, we apply a semi-analytical approach based on the formula-

tion of variational approximation (VA). A brief review of this analytic method has been

discussed in the previous section of this chapter.

Finally, in Chapter 5 we summarise our work carried out in this thesis. In the same

chapter, we also outline several interesting problems related to our models which might

be proposed for future investigations.
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CHAPTER 2

Lattice solitons in a parametrically

driven discrete nonlinear

Schrödinger equation

In the previous chapter, we have briefly discussed some properties and early works on

lattice solitary waves in the discrete nonlinear Schrödinger (DNLS) equation with cubic

nonlinearity. In this chapter, we examine the existence and stability of fundamental

bright and dark discrete solitons in the DNLS equation in the presence of parametric

driving.

2.1 Introduction

We consider a parametrically driven discrete nonlinear Schrödinger (PDNLS) equation

given by

iφ̇n = −ε∆2φn ± Λφn ± γφn ∓ |φn|2φn, (2.1.1)

where φn ≡ φn(t) is a complex-valued wave function at site n ∈ Z, the overdot and

the overline denote, respectively, the time derivative and the complex conjugation, ε

represents the coupling constant between two adjacent sites, ∆2φn = φn+1 − 2φn +

φn−1 is the discrete Laplacian in one spatial dimension and γ is the parametric driving

coefficient with frequency Λ. The “minus” and “plus” signs of the nonlinearity term

(or, accordingly, the “plus” and “minus” signs in front of Λ and γ) correspond to the

focusing and defocusing cases, respectively. To the best of our knowledge, Eq. (2.1.1)

was studied for the first time by Hennig [85] with the inclusion of a damping term (the

presence of this term will be discussed in the next chapter of this thesis).
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The PDNLS (2.1.1) has a conserved quantity

H =
∞

∑
n=−∞

ε(φnφn+1 + φnφn+1)− (2ε ± Λ)|φn|2 ∓
γ

2
(φn

2
+ φ2

n)±
1

2
|φn|4. (2.1.2)

With canonical variables pj = φn and qj = φn, the equations of motion (2.1.1) can be

derived from (2.1.2) by the Hamilton equations ṗj = −i ∂H
∂q j

and q̇j = i ∂H
∂pj

, where H is the

Hamiltonian density, i.e., the summand of Eq. (2.1.2). Due to the parametric driving,

Eq. (2.1.1) does not have a conserved norm. The change of the norm is given by

dP

dt
= ∓i

∞

∑
n=−∞

γ(φ
2
n − φ2

n), (2.1.3)

where P = |φn|2. Note that when γ = 0, the norm is indeed conserved.

In the undriven case (γ = 0), Eq. (2.1.1) admits the existence of the phase or gauge in-

variance as we explained in Section 1.4.1 (see the transformation (1.4.6)). In the driven

case (γ 6= 0), this invariance no longer exists due to the presence of the complex-

conjugate term. However, transformation φn → φneiθ is valid in the parametrically

driven DNLS (2.1.1) for θ = π + 2kπ and θ = −π/2 + 2kπ with k ∈ Z, which lead,

respectively, to the reflection symmetry under transformation

φn → −φn, (2.1.4)

and

φn → −iφn, γ → −γ. (2.1.5)

Consequently, transformation (2.1.5) allows us to only consider the driving constant

γ > 0.

In this chapter, we are particularly interested in steady-state localised solutions of

Eq. (2.1.1) having the form φn = un where un is complex valued and time-independent.

In this case, un satisfies the stationary equation,

− ε∆2un ± Λun ± γun ∓ |un|2un = 0, (2.1.6)

under localisation conditions

un → 0 as n → ±∞, (2.1.7)

which correspond to discrete bright soliton solutions in the focusing case, and

un → ±a for a 6= 0, as n → ±∞, (2.1.8)

which yield discrete dark soliton solutions in the defocusing case. Here we set ε > 0.

The case ε < 0 can be obtained accordingly by the staggering transformation

un → (−1)nun, Λ → (Λ − 4ε). (2.1.9)
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By this transformation, localised solutions with boundary conditions (2.1.7) and (2.1.8)

then lead to the respective staggered bright and dark discrete solitons. However, as we

mentioned in the previous chapter, we will not discuss such solitons in this thesis.

2.1.1 Review of some previous works

In the absence of parametric driving, i.e., when γ = 0, it was shown, e.g., by Kevrekidis [24]

and Hennig & Tsironis [59] that all localised solutions of Eq. (2.1.6) satisfying the con-

ditions (2.1.7) and (2.1.8) are real-valued (see again the relevant explanation in Section

1.4.1). Discrete bright solitons in such a system have been discussed, e.g., by Hennig &

Tsironis [59], Alfimov et al. [71] and Pelinovsky et al. [72], where it was shown that one-

excited-site (onsite) solitons are stable for any coupling constant ε and two-excited-site

(intersite) solitons are unstable for nonzero ε. Undriven discrete dark solitons have also

been examined [86–90]; it is known that intersite dark solitons are always unstable for

any ε, and onsite dark solitons are stable only in a small window of ε. For larger ε, an

onsite dark soliton is unstable due to the presence of a quartet of complex eigenvalues,

i.e., it suffers oscillatory instability.

The parametrically driven DNLS (2.1.1) with focusing nonlinearity and finite ε has been

considered briefly by Susanto et al. [91], where it was shown that an onsite bright dis-

crete soliton can be destabilised by parametric driving. The existence and stability of

localised solutions of Eq. (2.1.1) in the presence of a dissipation term have been ex-

plored earlier by Hennig [85] using a nonlinear map approach which exhibited rich

dynamical localisation effects.

In the continuous limit, localised excitations of the parametrically driven DNLS, i.e.,

Eq. (2.1.1) with ε → ∞, have been considered by Barashenkov and co-workers in a dif-

ferent context of applications [92–100]. The same equation also applies to the study of

Bose–Einstein condensates, describing the so-called long bosonic Josephson junctions

(Kaurov & Kuklov [101, 102]).

2.1.2 Overview

In this chapter, we consider Eq. (2.1.1) with either focusing and defocusing nonlinear-

ities, which admits bright and dark discrete solitons, respectively. The existence and

stability of the fundamental onsite and intersite excitations of each of bright and dark

solitons are examined analytically and numerically

The analytical calculations of the soliton solution and its stability are carried out for
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small coupling constant ε by using a perturbation expansion, i.e., we follow the idea

of the anticontinuum (AC) limit approach which was introduced initially by MacKay and

Aubry [70] (a brief review of this approach was given in the previous chapter).

In the presence of parametric driving, i.e., when γ > 0, we will show later in Chap-

ter 3 that, there are only two possibilities for a localised solution of the stationary

PDNLS (2.1.6), i.e., either real (provided Λ > −γ) or purely imaginary (provided

Λ > γ), where the purely imaginary solution in the focusing case is always unsta-

ble. We should notice that the purely imaginary solution can always be obtained from

the real one through transformation (2.1.5). Therefore, the study in this chapter will be

only devoted for real valued solutions un.

The findings obtained from the analytical calculations are then compared with the cor-

responding numerical counterparts. By solving a corresponding eigenvalue problem

numerically for a range of values of the coupling and driving constants, ε and γ, we

produce stability regions in the (ε, γ)-plane for all the fundamental solitons. Approx-

imations to the onset of instability are also derived using perturbation theory, with

accompanying numerical results. The typical dynamics of solitons in the stable and

unstable parameter ranges is then confirmed by direct numerical integrations of the

governing equation (2.1.1). These theoretical analyses are presented in Sections 2.2

and 2.3 which are devoted, respectively, for bright and dark solitons.

In Section 2.4, we particularly discuss parametrically driven DNLS (2.1.1) in arrays of

parametrically-driven nonlinear resonators with application to microelectromechanical

and nanoelectromechanical systems (MEMS and NEMS). As we shall show, a particular

type of parametrically driven discrete Klein-Gordon equation describing MEMS and

NEMS resonators can be reduced, by using a multiscale expansion, to the PDNLS (2.1.1).

The stability results obtained for the PDNLS are then confirmed by numerical simula-

tions of the Klein-Gordon equation.

Finally, in Section 2.5 we summarise our work and give conclusions to our findings.

2.2 Bright solitons in the focusing PDNLS

In this section we first consider the existence and stability of bright solitons in the fo-

cusing stationary PDNLS equation (2.1.6). For a real valued solution un, it follows that

− ε∆2un + (Λ + γ)un − u3
n = 0. (2.2.1)

Once such discrete solitary-wave solutions have been found, their linear stability is

determined by solving a corresponding eigenvalue problem. To do so, we introduce
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the linearisation ansatz φn = un + δǫn where δ ≪ 1, and substitute this into Eq. (2.1.1)

to yield the following linearised equation at O(δ):

iǫ̇n = −ε∆2ǫn + Λǫn + γǫn − 2u2
nǫn − u2

nǫn. (2.2.2)

Writing ǫn = ηneiωt + ξne−iωt, we then obtain from Eq. (2.2.2) the eigenvalue problem

(EVP)

[

ε∆2 − Λ + 2u2
n u2

n − γ

−u2
n + γ −ε∆2 + Λ − 2u2

n

] [

ηn

ξn

]

= ω

[

ηn

ξn

]

, (2.2.3)

which can be subsequently solved numerically for the eigenvalues ω and the corre-

sponding eigenvectors [ηn, ξn]T.

In the physics literature, ω is referred to as eigenfrequency, while λ = iω is an eigen-

value. Moreover, as the stability matrix of the EVP (2.2.3) is real-valued, ω is also an

eigenvalue. Therefore, we can conclude that the solution un is (linearly) stable only

when Im(ω) 6= 0 for all eigenvalues ω.

We note that Eq. (2.2.3) is linear. Hence, we may eliminate one component of the eigen-

vectors, for instance the component ξn, to obtain an alternative expression of the eigen-

value problem in the form

L+(ε)L−(ε)ηn = ω2ηn = Ωηn, (2.2.4)

where the operators L−(ε) and L+(ε) are defined by

L−(ε) ≡ −ε∆2 − (3u2
n − Λ − γ), (2.2.5)

L+(ε) ≡ −ε∆2 − (u2
n − Λ + γ). (2.2.6)

In view of the relation Ω = ω2, it follows that a soliton is unstable if it has an eigenvalue

with either Ω < 0 or Im(Ω) 6= 0.

2.2.1 Analytical calculations

Analytical calculations of the existence and stability of discrete solitons can be carried

out for small coupling constant ε, using a perturbation analysis. This analysis exploits

the exact solutions of Eq. (2.2.1) in the uncoupled limit ε = 0, which we denote by

un = u
(0)
n , in which each u

(0)
n must take one of the three values given by

0, ±
√

Λ + γ, (2.2.7)

provided

Λ > −γ. (2.2.8)
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Solutions of Eq. (2.2.1) for small ε can then be calculated analytically by writing

un = u
(0)
n + εu

(1)
n + ε2u

(2)
n + · · · . (2.2.9)

On substituting the above expansion into Eq. (2.2.1) and collecting the terms in succes-

sive powers of ε, one obtains, at O(1) and O(ε), respectively, the equations

(

u
(0)
n

)3
− (Λ + γ)u

(0)
n = 0, (2.2.10)

∆2u
(0)
n − (Λ + γ)u

(1)
n + 3u

(1)
n

(

u
(0)
n

)2
= 0. (2.2.11)

Together, the above equations give the leading order correction, u
(1)
n , as

u
(1)
n =

∆2u
(0)
n

−3
(

u
(0)
n

)2
+ Λ + γ

. (2.2.12)

Because solutions u
(0)
n at each site n are independent of each other, there will be in-

finitely many combinations for configuration of u
(0)
n . Here, however, we focus our

attention on configuration of onsite and intersite bright solitons whose the mode struc-

tures in the AC limit ε = 0 are, respectively, of the form

u
(0)
n =

{ √
Λ + γ, n = 0,

0, otherwise,
(2.2.13)

and

u
(0)
n =

{ √
Λ + γ, n = 0, 1,

0, otherwise.
(2.2.14)

In the above configuration, due to the reflection symmetry (2.1.4), we neglect the neg-

ative quantity of the excited site(s).

Next, in studying the stability problem, it is natural to also expand the eigenvector

having component ηn and the eigenvalue Ω in powers of ε, as

ηn = η
(0)
n + εη

(1)
n +O(ε2), Ω = Ω(0) + εΩ(1) +O(ε2). (2.2.15)

Upon substituting this expansion into Eq. (2.2.4) and identifying coefficients of succes-

sive powers of the small parameter ε, we obtain from the equations at O(1) and O(ε)

[

L+(0)L−(0)− Ω(0)
]

η
(0)
n = 0, (2.2.16)

[

L+(0)L−(0)− Ω(0)
]

η
(1)
n = fn, (2.2.17)

where

fn = [(∆2 + 2u
(0)
n u

(1)
n )L−(0) + L+(0)(∆2 + 6u

(0)
n u

(1)
n ) + Ω(1)]η

(0)
n . (2.2.18)
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As L+(0)L−(0) = (3(u
(0)
n )2 − Λ − γ)((u

(0)
n )2 − Λ + γ) represents only a single inde-

pendent quantity for each n, we simply infer that the operator [L+(0)L−(0)− Ω(0)] in

the above equations is self-adjoint.

In the uncoupled limit, ε = 0, the eigenvalue problem is thus simplified to

Ω(0) = L+(0)L−(0), (2.2.19)

from which we conclude that there are two possible eigenvalues, given by

Ω
(0)
C = Λ2 − γ2, Ω

(0)
E = 4(Λ + γ)γ, (2.2.20)

which correspond, respectively, to the solutions u
(0)
n = 0 (for all n) and u

(0)
n = ±√

Λ + γ

(for all n). Note that the expression of Ω
(0)
C in Eq. (2.2.20) shows that Λ plays an impor-

tant role. When Λ < γ or Λ < −γ, it is clear that 0 is an unstable solution.

Considering onsite and intersite bright soliton solutions then implies that (for ε = 0)

the eigenvalues Ω
(0)
E and Ω

(0)
C have finite and infinite multiplicity, respectively. These

then generate a corresponding discrete and continuous spectrum (phonon band) for

finite positive ε.

To investigate the significance of the continuous spectrum, we introduce a plane-wave

expansion

ηn = aeiκn + be−iκn, (2.2.21)

from which one obtains the dispersion relation

Ω = [2ε(cos κ − 1)− Λ]2 − γ2. (2.2.22)

This in turn shows that the continuous band lies between

ΩL = Λ2 − γ2, when κ = 0, (2.2.23)

and

ΩU = Λ2 − γ2 + 8ε(Λ + 2ε), when κ = π. (2.2.24)

Let us now investigate all the possible cases in the continuous spectrum through the

analysis of the parameter values Λ and γ and their relation (recall that ε and γ have

been set to be positive in the beginning). For Λ > 0, by considering the condition (2.2.8),

there are two cases, i.e., Λ ≥ γ > 0 or γ > Λ > 0. The first case implies that all the

eigenvalues Ω ∈ [ΩL, ΩU ] lie along the positive real axis for all ε which means that

the continuous spectrum does not cause instability. On the contrary, the second case

yields ΩL < 0 which leads to the instability of soliton for all ε. Next, for Λ ≤ 0, we

should require γ > −Λ ≥ 0 due to the condition (2.2.8). The latter case, as in the case
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of γ > Λ > 0, makes ΩL always negative resulting in the instability of soliton for any

value of ε.

We are not interested in the case in which the solitons are already found to be unstable

for all ε. Therefore the range of parameter values Λ and γ which we consider in the

next analysis for onsite and intersite bright solitons is

Λ ≥ γ > 0. (2.2.25)

By this consideration, we only need to examine the stability of the soliton from the

dynamics of the discrete spectrum. For this reason, we also sometimes call the discrete

spectrum the critical eigenvalues.

2.2.1.1 Onsite bright solitons

The existence and stability of a single excited state, i.e., an onsite bright soliton, in the

presence of parametric driving have been considered by Susanto et al. [91]. When ε =

0, as previously explained, this soliton has the leading-order solution (2.2.13). Upon

substituting the values of u
(0)
n into Eq. (2.2.12), one obtains

u
(1)
n =

{

1/
√

Λ + γ, n = 0, 1,−1

0, otherwise.
(2.2.26)

Thus, for small ε, an onsite bright soliton is given by

un =















√
Λ + γ + ε/

√
Λ + γ +O(ε2), n = 0,

ε/
√

Λ + γ +O(ε2), n = −1, 1,

O(ε2), otherwise.

(2.2.27)

Let us now evaluate the discrete eigenvalues of the above soliton. At ε = 0, there

is only one nonzero excited site. Therefore, from Eq. (2.2.16), an onsite bright soliton

has one leading-order eigenvalue Ω
(0)
E = 4(Λ + γ)γ corresponding to the normalised

eigenvector with the components η
(0)
n = 0 for n 6= 0 and η

(0)
0 = 1.

To calculate the continuation of the eigenvalue Ω
(0)
E for nonzero ε, we can consider

Eq. (2.2.17). As the rank of the corresponding operator is not full due to L+(0)L−(0)−
Ω

(0)
E = 0 at n = 0, we need a solvability condition. From the Fredholm alternative

theorem, we should require that f = col(..., f−1, f0, f1, ...) is orthogonal to the nullspace

of the adjoint of the operator [L+(0)L−(0)− Ω
(0)
E ]. Nevertheless, the operator is self-

adjoint thus the eigenvector associated with the eigenvalue Ω
(0)
E is in the nullspace of

the adjoint of the operator (see again Eq. (2.2.16)). Because all the components of the

eigenvector are zero except at site n = 0, this in return, gives f0 = Ω(1) − 8γ = 0 from
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which we deduce that Ω(1) ≡ Ω
(1)
E = 8γ. Hence the discrete eigenvalue of an onsite

bright soliton is given by

ΩE = 4(Λ + γ)γ + 8γε +O(ε2). (2.2.28)

It was shown by Susanto et al. [91] that the configuration (2.2.27), which is known to be

stable for any value of ε when γ = 0, can be destabilised by parametric driving. Fur-

thermore, it was shown that there are two mechanisms of destabilisation, as sketched

in Fig. 2.1. The two instability scenarios, as illustrated in the figure, are determined

by the relative positions of Ω
(0)
E and Ω

(0)
C , as we now summarise. First, we note that

there is a threshold value1, γth = Λ/5, at which the two leading-order eigenvalues

coincide, so that Ω
(0)
E = Ω

(0)
C . For γ > γth (see lower panel of Fig. 2.1), upon increasing

ε from ε = 0, the instability is caused by the collision of ΩE with ΩU (this leading-to-

instability collision is confirmed after numerical observation); taking ΩE = ΩU then

yields the corresponding approximate critical value

γcr,1 = −2

5
Λ − 4

5
ε +

1

5

√

9Λ2 + 56εΛ + 96ε2. (2.2.29)

For γ < γth (see upper panel of Fig. 2.1), by contrast, the instability is caused by the

collision of ΩE with an eigenvalue bifurcating from ΩL. However, we assume here that

the bifurcating eigenvalue moves slowly so that it can be represented by ΩL. In this

case, the critical value of γ can be approximated by taking ΩE = ΩL, giving

γcr,2 = −2

5
Λ − 4

5
ε +

1

5

√

9Λ2 + 16ε(Λ + ε). (2.2.30)

Together, γcr,1 and γcr,2 give approximate boundaries of the instability region in the

(ε, γ)-plane.

2.2.1.2 Intersite bright solitons

The next natural fundamental solution to be considered is an intersite bright soliton,

i.e., a two-excited-site discrete mode. In the uncoupled limit, as presented above,

the mode structure u
(0)
n is of the form (2.2.14). By substituting the values of u

(0)
n into

Eq. (2.2.12), one can show that

u
(1)
n =















1/(2
√

Λ + γ), n = 0, 1,

1/
√

Λ + γ, n = −1, 2,

0, otherwise.

(2.2.31)

1There is a typo for this value in Susanto et al. [91].
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Figure 2.1: A sketch of the dynamics of the eigenvalues and the continuous spectrum

of a stable onsite bright soliton in the (Re(Ω),Im(Ω))-plane. The arrows

indicate the direction of movement as the coupling constant ε increases.

Note that a soliton is unstable if there is some Ω with either Ω < 0 or

Im(Ω) 6= 0.

Therefore, an intersite bright soliton for small coupling ε is given by

un =















√
Λ + γ + 1

2 ε/
√

Λ + γ +O(ε2), n = 0, 1,

ε/
√

Λ + γ +O(ε2), n = −1, 2,

O(ε2), otherwise.

(2.2.32)

To study the stability of the intersite bright soliton above, let us first consider the O(1)

equation (2.2.16). Due to the presence of two non-zero excited sites at ε = 0, the soliton

(2.2.32) has at leading order the double eigenvalue Ω
(0)
E = 4(Λ + γ)γ, which corre-

sponds to the eigenvector having components η
(0)
n = 0 for n 6= 0, 1, η

(0)
0 6= 0, and

η
(0)
1 6= 0.

The continuation of the eigenvalue Ω
(0)
E for nonzero coupling ε can be obtained from

Eq. (2.2.17) by applying, as before, a Fredholm solvability condition. Because the eigen-

vector corresponding to the eigenvalue Ω
(0)
E has zero components except at n = 0, 1,

we only need to require f0 = 0 and f1 = 0, i.e.,

(2Λ + Ω(1))η
(0)
0 − 2(Λ + 2γ)η

(0)
1 = 0, (2.2.33)

(2Λ + Ω(1))η
(0)
1 − 2(Λ + 2γ)η

(0)
0 = 0. (2.2.34)

Our simple calculation then shows η
(0)
0 = ±η

(0)
1 from which we immediately deduce

that the double eigenvalue Ω
(0)
E splits into two distinct eigenvalues, which are given as

functions of ε by

ΩE,1 = 4(Λ + γ)γ + 4γε +O(ε2), (2.2.35)

ΩE,2 = 4(Λ + γ)γ − 4(Λ + γ)ε +O(ε2). (2.2.36)
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As is the case for onsite discrete solitons, interite bright solitons can also become unsta-

ble. The mechanism of the instability, after confirmation from numerics, is again deter-

mined by the relative positions of Ω
(0)
E and Ω

(0)
C , as sketched in Fig. 2.2. Performing an

analysis corresponding to that in Susanto et al. [91], we find that the two mechanisms

of destabilisation for an onsite discrete soliton also occur here. The two scenarios have

corresponding critical values of γ, which are given as functions of ε by

γcr,1 = −2

5
Λ +

2

5
ε +

1

5

√

9Λ2 + 52Λε + 84ε2, (2.2.37)

γcr,2 = −2

5
Λ − 2

5
ε +

1

5

√

9Λ2 + 8Λε + 4ε2, (2.2.38)

which are obtained, respectively, by taking ΩE,2 = ΩU for γ > γth and ΩE,1 = ΩL for

γ < γth.

Figure 2.2: As Fig. 2.1, but for a stable intersite bright soliton.

We emphasise, as is apparent from the sketch shown in Fig. 2.2, that there is another

possible mechanism of destabilisation for γ < γth, namely when ΩE,2 becomes nega-

tive. The third critical choice of parameter values is then obtained by setting ΩE,2 = 0

which gives

γcr,3 = ε. (2.2.39)

Furthermore, by solving γcr,2 = γcr,3 we find that γ = (
√

13− 2)Λ/9, which then gives

a more specific domain of γ’s for the two possible scenarios of destabilisation above;

γcr,3 is for γ < (
√

13 − 2)Λ/9 and γcr,2 for (
√

13 − 2)Λ/9 < γ < γth.

2.2.2 Comparisons with numerical calculations

We have solved the steady-state equation (2.2.1) numerically using a Newton–Raphson

method and analysed the stability of the numerical solution by solving the eigenvalue

problem (2.2.3). In this section, we compare these numerical results with the analytical
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calculations of the previous section. For the sake of simplicity, we set Λ = 1 in all the

illustrative examples. This setting, however, does not lose generality as Λ > 0 can be

scaled out to 1 by the transformation

un → un

√
Λ, ε → εΛ and γ → γΛ. (2.2.40)

2.2.2.1 Onsite bright solitons

Comparisons between numerical calculations and analytical approximations for the

case of onsite bright solitons have been fully presented and discussed by Susanto et

al. [91]. For the sake of completeness, we reproduce the results of [91] for the (in)stability

domain of onsite bright solitons in the (ε, γ)-plane in Fig. 2.3 by introducing the colour

representation for the maximum value of |Im(ω)|. Approximations (2.2.29) and (2.2.30)

are also shown there from which we can see that the former gives better prediction for

the occurrence of the instability point than the latter. This is understandable as the

onset of the instability approximated by Eq. (2.2.29) is indeed caused by the collision

of the discrete eigenvalue with the upper band of the continuous spectrum and also

typically occurs for small ε. This is not the case in approximation (2.2.30) where the ac-

tual collision is with an eigenvalue bifurcating from the inner edge of the phonon band

and occurs for relatively large ε. Moreover, for γ < 0, as shown in Fig. 2.3, the onsite

bright soliton is always unstable for all ε. This is still in accordance with our analytical

prediction, i.e., if we set γ to be negative (provided Λ > −γ) in approximate eigen-

value (2.2.28), the eigenvalue ΩE becomes negative for any value of coupling constant

ε.

2.2.2.2 Intersite bright solitons

For the stability of intersite bright solitons, we start by examining the validity of our

analytical prediction for the critical eigenvalues as given by Eqs. (2.2.35) and (2.2.36).

In Fig. 2.4, we present a comparison between the analytical approximation and the nu-

merics for some values of γ, specifically γ = 0.1, 0.18, 0.5, to represent the three possible

cases explained in the previous section. One should notice that the appearance of the

branching curves for each value of γ in the figure manifests the fact (from numerics

and analytics) that the double eigenvalue of an intersite bright soliton splits into two

distinct eigenvalues once the coupling is turned on. The figure reveals the relative ac-

curacy of the small-ε approximations, and we conclude that their range of validity is

wider for the lower branches of each branching curve.

Next we turn to a description of the eigenvalue structure of this intersite configuration
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Figure 2.3: The (in)stability region of onsite bright solitons in (ε, γ)-space. For each

value of ε and γ, the corresponding colour indicates the maximum value of

|Im(ω)| (over all eigenvalues ω) for the steady-state solution at that point.

Stability is therefore indicated by the region in which Im(ω) = 0, namely

the black region (recall that ω and ω are eigenvalues as the stability matrix

of the EVP (2.2.3) is real-valued). White dashed and dash-dotted lines give

the analytical approximations (2.2.29) and (2.2.30), respectively.

for the three values of γ given above; this is shown in Fig. 2.5, where the left and right

panels respectively present the structure just before and just after the first collision that

results in the mode instability. We now describe the results in more detail for the three

values of γ above.

For γ = 0.1, when ε = 0 the critical eigenvalues ω lie in the gap between the two parts

of the continuous spectrum, and the instability is caused by a collision between one of

the critical eigenvalues and its twin at the origin (see the top panels of Fig. 2.5). For

γ = 0.18, the critical eigenvalues ω also lie in the gap between the two parts of the

continuous spectrum, but the instability in this case is due to a collision between one of

the critical eigenvalues and the inner edge of the continuous spectrum at ω = ±
√

ΩL

(see the middle panels of Fig. 2.5). In contrast to the two cases above, for γ = 0.5 the

critical eigenvalues lie beyond the continuous spectrum, and the instability is caused

by a collision between one of the critical eigenvalues and the outer boundary at ω =

±
√

ΩU (see the bottom panels of Fig. 2.5). All the numerical results presented here are

in accordance with the sketch shown in Fig. 2.2. Back to Fig. 2.4, the critical eigenvalues

which are most responsible for the instability as illustrated above are shown by the

upper branch for γ = 0.18 (the middle branching curve) and the lower ones for γ = 0.5

and γ = 0.1 (the other branching curves).
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Figure 2.4: Comparison between the critical eigenvalues of intersite bright solitons ob-

tained numerically (solid lines) and their analytical approximation (dashed

lines). The appearance of the branching curves confirms the fact of the

splitting of the double eigenvalues as ε increases (see text). The upper

and lower branching curves correspond, respectively, to γ = 0.5 and

γ = 0.1, whereas the middle one corresponds to γ = 0.18. The upper and

lower branches of each branching curve is approximated, respectively, by

Eq. (2.2.35) and Eq. (2.2.36); note that these approximations for γ = 0.1 (the

lower branching curve) are indistinguishable from the numerical results.
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Numerical solution of the EVP (2.2.3) for intersite bright solitons, for a relatively large

range of ε and γ, give us the (in)stability domain of the bright solitons in the two-

parameter (ε, γ)-plane, which is presented in Fig. 2.6. Again, we use colours to rep-

resent the maximum of |Im(ω)| as a function of ε and γ; thus solitons are stable in

the black region. Our analytical predictions for the occurrence of instability, given by

Eqs. (2.2.37)–(2.2.39), are also shown, respectively, by dash-dotted, dotted and dashed

lines. Particularly for γ < 0, Fig. 2.6 reveals the unstable region of the intersite bright

solitons for all ε. This fact also agrees with our analytical prediction shown by both ΩE,1

in Eq. (2.2.35) and ΩE,2 in Eq. (2.2.36) being negative at any value of ε when driving γ

is negative (provided Λ > −γ).

We now move on the examination of the dynamics of the governing equation (2.1.1) for

an intersite bright soliton. By using a Runge-Kutta time integrator with the perturbed

intersite soliton solution as the initial condition, we show in Fig. 2.7 the numerical evo-

lution of the soliton for the same parameter values as those used in Fig. 2.5, which

corresponds to each of the instability scenarios. We can see from the figure that the

dynamics of the unstable solitons (right panels) manifests itself into different mecha-

nisms. In the top right panel, the soliton’s centre shifts to another site forming an onsite

configuration. In contrast, the typical instability of the unstable soliton in the middle

right panel is in the form of soliton decay, while in the bottom right panel the soliton

collapses into different sites.

2.3 Dark solitons in the defocusing PDNLS

In this section we consider the existence and stability of onsite and intersite dark soli-

tons for the defocusing PDNLS equation. Then a stationary (real-valued and time-

independent) solution un of Eq. (2.1.1) satisfies

− ε∆2un − (Λ + γ)un + u3
n = 0. (2.3.1)

To examine the stability of un, we again introduce the linearisation ansatz φn = un +

δǫn, where δ ≪ 1. Substituting this ansatz into the defocusing equation (2.1.1), writing

ǫn = ηneiωt + ξne−iωt and linearising in δ, we find

[

ε∆2 + Λ − 2u2
n −u2

n + γ

u2
n − γ −ε∆2 − Λ + 2u2

n

] [

ηn

ξn

]

= ω

[

ηn

ξn

]

. (2.3.2)

The eigenvalue problem above can be simplified further as for the focusing case, to the

alternative form

L+(ε)L−(ε)ηn = ω2ηn = Ωηn, (2.3.3)
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(c) γ = 0.18, ε = 0.05
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(d) γ = 0.18, ε = 0.18
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(e) γ = 0.5, ε = 0.05
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(f) γ = 0.5, ε = 0.2

Figure 2.5: The structure of the eigenvalues of intersite bright solitons in the complex

plane for three values of γ, as indicated in the caption of each plot. Left

and right panels depict the eigenvalues of stable and unstable solitons,

respectively.
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Figure 2.6: As Fig. 2.3, but for intersite bright solitons. Our analytical approximations,

given by Eqs. (2.2.37), (2.2.38) and (2.2.39), are shown as white dash-dotted,

dotted and dashed lines, respectively.

but the operators L±(ε) are now defined as

L−(ε) ≡ −ε∆2 + (3u2
n − Λ − γ), (2.3.4)

L+(ε) ≡ −ε∆2 + (u2
n − Λ + γ). (2.3.5)

2.3.1 Analytical calculations

To perform analytical calculations of the existence and stability of the dark solitons

for small coupling constant ε, we again use a perturbation analysis. As before, in the

uncoupled limit ε = 0, the exact solutions un = u
(0)
n at each site n can acquire one of

the three values 0,±√
Λ + γ, provided Λ > −γ. By expanding un in powers of ε as in

(2.2.9), we arrive at O(1) and O(ε) equations which, in turn, give the solutions un at

order ε as

u
(1)
n =

∆2u
(0)
n

3
(

u
(0)
n

)2
− (Λ + γ)

. (2.3.6)

In this section, we consider onsite and intersite dark solitons where the respective con-

figurations in the AC limit ε = 0 are given by

u
(0)
n =















−√
Λ + γ, n = −1,−2, . . .,

0, n = 0,
√

Λ + γ, n = 1, 2, . . .,

(2.3.7)
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Figure 2.7: The numerical evolution of the time-dependent Eq. (2.1.1) for an intersite

bright soliton (the contour plot shows the square modulus |φn|2). The pa-

rameter values are indicated in the caption of each panel which are the

same as those in Fig. 2.5. The left and the right panels exhibit the dynamics

of stable and unstable solitons, respectively.
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and

u
(0)
n =

{

−√
Λ + γ, n = 0,−1, . . .,

√
Λ + γ, n = 1, 2, . . ..

(2.3.8)

Next, to study the eigenvalue(s) of the dark soliton analytically, we again expand ηn

and Ω in powers of ε as in (2.2.15), and hence obtain from Eq. (2.3.3), at O(1) and O(ε),

respectively, the equations

[

L+(0)L−(0)− Ω(0)
]

η
(0)
n = 0, (2.3.9)

and
[

L+(0)L−(0)− Ω(0)
]

η
(1)
n = fn, (2.3.10)

where

fn = [(∆2 − 2u
(0)
n u

(1)
n )L−(0) + L+(0)(∆2 − 6u

(0)
n u

(1)
n ) + Ω(1)]η

(0)
n . (2.3.11)

As in bright solitons, the operator [L+(0)L−(0)− Ω(0)] is self-adjoint.

Performing a stability analysis as before, we firstly investigate the significance of con-

tinuous spectrum for a dark soliton by substituting a plane-wave expansion (2.2.21)

into Eq. (2.3.3). From this, we find the dispersion relation for a dark soliton to be

Ω = [2ε(cos κ − 1)− (Λ + 2γ)]2 − Λ2, (2.3.12)

and so the continuous band lies between

ΩL = 4(Λ + γ)γ, when κ = 0, (2.3.13)

and

ΩU = 4(Λ + γ)γ + 8ε(Λ + 2γ + 2ε), when κ = π. (2.3.14)

Our analysis shows that there are only three possibilities for parameter values Λ and

γ in the continuous spectrum above, i.e., either Λ ≥ γ > 0, γ > Λ > 0 or γ > −Λ ≥ 0

(note that the latter is for Λ ≤ 0). For all cases, we can check that all the eigenvalues in

[ΩL, ΩU] are real positive for any value of ε which means that the continuous spectrum

does not create any instability. In this section, however, we restrict ourselves to the first

case only to make the same treatment with the focusing PDNLS.
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2.3.1.1 Onsite dark solitons

The configuration of an onsite dark soliton at ε = 0 is given by (2.3.7). Upon substitut-

ing this into Eq. (2.3.6), we obtain the leading order correction, u
(1)
n , as

u
(1)
n =







































0, n = −2,−3, . . .,

1/(2
√

Λ + γ), n = −1,

0, n = 0,

−1/(2
√

Λ + γ), n = 1,

0, n = 2, 3, . . ..

(2.3.15)

Therefore, with errors of order ε2, an onsite dark soliton is given by

un =







































−√
Λ + γ, n = −2,−3, . . .,

−√
Λ + γ + 1

2 ε/
√

Λ + γ, n = −1,

0, n = 0,
√

Λ + γ − 1
2 ε/

√
Λ + γ, n = 1,

√
Λ + γ, n = 2, 3, . . ..

(2.3.16)

For this configuration, we have

L+(0)L−(0) =

{

Λ2 − γ2, n = 0,

4(Λ + γ)γ, n 6= 0.
(2.3.17)

From Eq. (2.3.9), we then deduce that at ε = 0 the eigenvalues of onsite discrete dark

solitons are given by Ω
(0)
C = 4(Λ + γ)γ and Ω

(0)
E = Λ2 − γ2 which, respectively, be-

come the continuous and discrete spectrum for nonzero ε. The eigenvalue Ω
(0)
E has the

normalised eigenvector whose components are η
(0)
n = 0 for n 6= 0 and η

(0)
0 = 1.

Because the continuous spectrum does not contribute to the instability of the soliton,

the eigenvalue Ω
(0)
E must be taken into account to examine the stability. To do so,

we need to find the continuation of the eigenvalue Ω
(0)
E for nonzero ε which can be

calculated from Eq. (2.3.10). But, the coefficient of η
(1)
n which is given by

L+(0)L−(0)− Ω(0) =

{

0, n = 0,

4Λγ − Λ2 + 5γ2, n 6= 0,
(2.3.18)

leads to the rank deficiency in operator L ≡ [L+(0)L−(0)− Ω(0)]. Therefore we need

a solvability condition, i.e., the nullspace of the adjoint of L, which is the eigenvector

corresponding to the eigenvalue Ω
(0)
E due to the self-adjointness of L, is orthogonal to

f = col(..., f−1, f0, f1, ...). Because the components of the eigenvector are zero except at

site n = 0, we only require f0 = 4Λ + Ω(1) = 0 which then gives Ω(1) ≡ Ω
(1)
E = −4Λ.

Hence the discrete eigenvalue of an onsite dark soliton for small ε is

ΩE = Λ2 − γ2 − 4Λε +O(ε2). (2.3.19)
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Initially, i.e., for ε = 0, the relative positions of the eigenvalue and the continuous

spectrum can be divided into two cases, according to whether γ ≷ γth = Λ/5 (recall

that the threshold value γth is obtained by taking Ω
(0)
E = Ω

(0)
C ). When ε = 0 and γ < γth

(γ > γth) the eigenvalue (2.3.19) will be above (below) the continuous spectrum, as

sketched in Fig. 2.8. These relative positions determine the instability mechanism for

an onsite dark soliton, as we now describe.

Figure 2.8: As Fig. 2.1, but for a stable onsite dark soliton.

For γ < γth, after numerical observations, the instability is due to a collision between

the eigenvalue (2.3.19) and ΩU , which approximately occurs when γ = γcr,1, where

γcr,1 = −2

5
Λ − 8

5
ε +

1

5

√

9Λ2 − 28Λε − 16ε2. (2.3.20)

Note that for small ε, this critical value is meaningful only when ε ≤ 9Λ/(14 + 2
√

85).

For γ > γth, the instability is caused by the eigenvalue (2.3.19) becoming negative,

which occurs when γ = γcr,2, where

γcr,2 =
√

Λ2 − 4Λε. (2.3.21)

This value is meaningful only when ε ≤ Λ/4.

Furthermore, if we include terms up to O(ε2), we obtain

ΩE = Λ2 − γ2 − 4Λε + 6ε2 +O(ε3) (2.3.22)

as the eigenvalue of an onsite discrete dark soliton. Using this expression, we find the

critical value of γ indicating the onset of instability as

γ′
cr,1 = −2

5
Λ − 8

5
ε +

1

5

√

9Λ2 − 28Λε + 14ε2, (2.3.23)

for γ < γth, and

γ′
cr,2 =

√

Λ2 − 4Λε + 6ε2, (2.3.24)

for γ > γth. For small ε, γ′
cr,1 above is defined on ε ≤ (1 −

√
70/14)Λ.
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2.3.1.2 Intersite dark solitons

The leading-order solution of an intersite dark soliton is given by the configuration (2.3.8)

and the next correction can be obtained from Eq. (2.3.6) resulting

u
(1)
n =



























0, n = −2,−3, . . .,

1/
√

Λ + γ, n = −1,

−1/
√

Λ + γ, n = 0,

0, n = 1, 2, . . ..

(2.3.25)

Hence, an intersite discrete dark soliton is given, with errors of O(ε2), by

un =



























−√
Λ + γ, n = −2,−3, . . .,

−√
Λ + γ + ε/

√
Λ + γ, n = −1,

√
Λ + γ − ε/

√
Λ + γ, n = 0,

√
Λ + γ, n = 1, 2, . . ..

(2.3.26)

Starting from Eq. (2.3.9), we then find

L+(0)L−(0) = 4(Λ + γ)γ for all n, (2.3.27)

from which we deduce that there is a single leading-order eigenvalue, given by Ω(0) =

4(Λ + γ)γ, with infinite multiplicity. This eigenvalue then expands to form the contin-

uous spectrum for nonzero ε.

From the fact of a single eigenvalue above, we cannot say anything about the discrete

eigenvalue(s) yet. However, we still can calculate its continuation as the coupling con-

stant is turned on, which can be carried out from Eq. (2.3.10). Because

L+(0)L−(0)− Ω(0) = 0 for all n, (2.3.28)

the solvability condition for Eq. (2.3.10) requires fn = 0 for all n. A simple calculation

then yields

fn =







[

4Λ + 16γ + (2Λ + 4γ)∆2 + Ω(1)
]

η
(0)
n , n = −1, 0,

[

(2Λ + 4γ)∆2 + Ω(1)
]

η
(0)
n , n 6= −1, 0.

(2.3.29)

Notice that the eigenvector for a localised mode in which there is only one eigenvalue

with infinite multiplicity is also localised and decaying exponentially (see, e.g., Baesens

et al. [103] for a justification). Thus, a suitable ansatz for η
(0)
n can be chosen as

η
(0)
n =



























Aec(n+3/2), n ≤ −2,

A0, n = −1,

B0, n = 0,

Be−c(n+3/2), n ≥ 1,

(2.3.30)
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for A, A0, B0, B 6= 0 and c > 0. Substituting this ansatz into Eq. (2.3.29) and imposing

the solvability condition fn = 0 for all n, we arrive at the following equations

Ae−c/2[(2Λ + 4γ)(e−c − 2) + Ω(1)] + A0(2Λ + 4γ) = 0, n = −2,

A0(8γ + Ω(1)) + B0(2Λ + 4γ) + A(2Λ + 4γ)e−c/2 = 0, n = −1,

B0(8γ + Ω(1)) + A0(2Λ + 4γ) + B(2Λ + 4γ)e−5c/2 = 0, n = 0,

Be−5c/2[(2Λ + 4γ)(e−c − 2) + Ω(1)] + B0(2Λ + 4γ) = 0, n = 1,

(2Λ + 4γ)(ec − 2 + e−c) + Ω(1) = 0, n 6= −1, 0.

(2.3.31)

Our analysis of the first four equations above shows that either A0 = B0 or A0 = −B0

from which we obtain, respectively, either

c = ln

(

3Λ + 10γ

Λ + 2γ

)

, Ω(1) =
−8(Λ + 4γ)2

3Λ + 10γ
, (2.3.32)

or

c = ln

(

Λ + 6γ

Λ + 2γ

)

, Ω(1) =
−32γ2

Λ + 6γ
. (2.3.33)

Therefore, the bifurcating discrete eigenvalues of an intersite dark soliton for small ε

are respectively given by

ΩE,1 = 4(Λ + γ)γ − 8(Λ + 4γ)2

3Λ + 10γ
ε +O(ε2), (2.3.34)

ΩE,2 = 4(Λ + γ)γ − 32γ2

Λ + 6γ
ε +O(ε2). (2.3.35)

In the absence of parametric driving (γ = 0) and for Λ = 1, our results agree with that

reported by Pelinovsky & Kevrekidis [90]. One should notice that in the AC limit ε = 0

the above eigenvalues correspond, respectively, to the following normalised eigenvec-

tors

η
(0)
n =



































2
√

(Λ+3γ)(Λ+4γ)
Λ+2γ

(

3Λ+10γ
Λ+2γ

)n
, n ≤ −2,

2
√

(Λ+3γ)(Λ+4γ)
3Λ+10γ , n = −1,

2
√

(Λ+3γ)(Λ+4γ)
3Λ+10γ , n = 0,

2
√

(Λ+3γ)(Λ+4γ)
3Λ+10γ

(

3Λ+10γ
Λ+2γ

)−n
, n ≥ 1,

(2.3.36)

and

η
(0)
n =



































2
√

γ(Λ+4γ)
Λ+2γ

(

Λ+6γ
Λ+2γ

)n
, n ≤ −2,

2
√

γ(Λ+4γ)
Λ+6γ , n = −1,

− 2
√

γ(Λ+4γ)
Λ+6γ , n = 0,

− 2
√

γ(Λ+4γ)
Λ+6γ

(

Λ+6γ
Λ+2γ

)−n
, n ≥ 1.

(2.3.37)

Let us now analyse the above discrete eigenvalues. From Eq. (2.3.35) one can show that

when ε > 0 the eigenvalue ΩE,2 is always less than ΩL. As ε increases, both ΩE,1 and
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Figure 2.9: As Fig. 2.1, but for a stable intersite dark soliton.

ΩE,2 decrease to zero but ΩE,1 < ΩE,2 (note that ΩE,2 decreases more slowly than ΩE,1).

Therefore, we conclude that the instability may be due to ΩE,1 becoming negative as

illustrated in Fig. 2.9. Equating ΩE,1 = 0 yields the critical values

εcr =
γ(3Λ + 10γ)(Λ + γ)

(Λ + 4γ)2
, (2.3.38)

which approximate the onset of instability.

2.3.2 Comparison with numerical computations

We now compare our analytical results with corresponding numerical calculations. As

for bright solitons, for illustrative purposes we set Λ = 1. Again, such a setting is with-

out loss of generality because Λ > 0 can be scaled to be 1 by transformation (2.2.40).

2.3.2.1 Onsite dark solitons

We start by checking the validity of our analytical approximation for the critical eigen-

value. As explained above, the change in the position of the eigenvalues relative to

the continuous spectrum at ε = 0 occurs at γ = 1/5. Therefore we consider two val-

ues γ = 0.1 and γ = 0.6, representing both cases. Figure 2.10 depicts a comparison

between our analytical result (2.3.19) and the numerical computations, from which we

conclude that the prediction is quite accurate for small ε. The accuracy can be improved

if one includes further orders in the perturbative expansion (2.3.22); this improvement

is shown in the same figure by the dotted line.

The eigenvalue structure of onsite dark solitons for the two values of γ used above is

depicted in Fig. 2.11; left and right panels refer respectively to conditions just before

and just after a collision resulting in an instability. As sketched in Fig. 2.8, for γ = 0.1

the instability is caused by a collision between the critical eigenvalue and the upper

edge of the continuous spectrum. On the other hand, when γ = 0.6 the instability

is caused by a collision between the critical eigenvalue and its twin at the origin (see

the bottom panels of Fig. 2.11). In the latter case we notice that there is an eigenvalue

bifurcating from the lower edge of the continuous spectrum.
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Figure 2.10: Comparisons between the critical eigenvalue for on-site dark solitons ob-

tained numerically (solid lines) and analytically using Eq. (2.3.19) (dashed

lines) for γ = 0.1 (upper curves) and γ = 0.6 (lower curves). An approx-

imation that explicitly includes the next term in expansion Eq. (2.3.22) is

also plotted (dotted lines).

We now proceed to evaluate the (in)stability region of this solution in (ε, γ)-space.

We show in Fig. 2.12 the maximum of the imaginary part of the eigenvalue, together

with our approximation to the (in)stability boundary. The white solid line represents

Eq. (2.3.21), corresponding to the instability caused by the collision with the continuous

spectrum. Equation (2.3.20) is represented by the white dash-dotted line, which corre-

sponds to the other instability mechanism. In addition, white dashed and dotted lines

show, respectively, Eqs. (2.3.24) and (2.3.23), where a better analytical approximation is

obtained.

An important observation from Fig. 2.12 is that there is an interval of values of γ in

which the onsite dark soliton is always stable, for any value of the coupling constant

ε (numerically, it is 0.2 < γ < 0.335). This indicates that a parametric driving can

fully suppress the oscillatory instability reported for the first time by Johansson &

Kivshar [87]. One can also check from Fig. 2.12 that for γ < 0 the onsite dark soliton

is always unstable. In fact, contribution for such instability comes from the lower band

of the continuous spectrum at ω = ±
√

ΩL (see Eq. (2.3.13)) which becomes purely

imaginary when γ < 0 (on condition Λ > −γ).

Next, to confirm our stability findings above, we present in Fig. 2.13 the numerical evo-

lution of onsite dark solitons which correspond to the stability and instability modes in

the respective left and right panels of Fig. 2.11. The typical dynamical behaviour of the
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Figure 2.11: The eigenvalue structure of on-site dark solitons for several values of γ

and ε, as indicated in the caption of each panel.
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Figure 2.12: The (in)stability region of onsite dark solitons in the two-parameter (ε, γ)-

space. The white solid and dashed lines respectively give the analytical

approximations Eq. (2.3.21) and (2.3.24). White dash-dotted and dotted

lines show Eqs. (2.3.20) and (2.3.23); note that these curves are indistin-

guishable in this plot.

unstable soliton in the top right panel of Fig. 2.13 is in the form of soliton destruction of

which the centre then eventually shifts to the other site, while, interestingly, in the bot-

tom right panel the unstable soliton becomes a discrete breather where the amplitude

is alternately changed between the two neighbouring sites.

2.3.2.2 Intersite dark solitons

Now we examine intersite dark solitons. First, Fig. 2.14 shows the analytical predic-

tion for the critical eigenvalues, given by Eqs. (2.3.34)-(2.3.35), compared to the cor-

responding numerical results. One should not be surprised by the appearance of the

branching curves in the figure as they reveal the bifurcation of the critical eigenvalues

from the inner edge of the continuous spectrum as soon as ε is turned on from which

they then split into two distinct eigenvalues. We see that the approximations given by

Eqs. (2.3.34)-(2.3.35) are in good agreement with the numerics. The range of validity of

these approximations is wider for the upper branches in each branching curve.

The analytical calculation of the eigenvalues (2.3.34) and (2.3.35) is based on the formu-

lation of the leading-order eigenvectors (2.3.36) and (2.3.37), respectively. The compar-

isons between the approximate eigenvectors and the numerical results, as presented in

Fig. 2.15, show that our theoretical prediction is excellent.
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Figure 2.13: The numerical integration of Eq. (2.1.1) for the onsite dark solitons corre-

sponding to the mode (in)stability in Fig. 2.11.
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Figure 2.14: Comparisons between the critical eigenvalue of intersite dark solitons ob-

tained numerically (solid lines) and analytically (dashed lines) for two

values of γ. The upper branching curves correspond to γ = 0.8 while the

lower ones to γ = 0.1. The analytical approximations for the lower-upper

branches in each branching curve are given by Eqs. (2.3.34)-(2.3.35).

Next, we plot in Fig. 2.16 the eigenvalue structure of this configuration for the two

values γ = 0.1, 0.8. The mechanism of instability explained in the section above can

be seen clearly in the top panels of Fig. 2.16, i.e., the instability is caused by a collision

between one of the critical eigenvalues and its twin at the origin (in Fig. 2.14, this eigen-

value corresponds to the lower branch of the lower branching curves). It is interesting

to note that a parametric driving can also fully suppress the oscillatory instability of an

intersite dark soliton. As shown in the bottom panels of Fig. 2.16, there are values of

the parameter γ for which no instability-inducing collision ever occurs.

The (in)stability region of this configuration as well as the analytical prediction for the

onset of instability are summarised in Fig. 2.17. We see from the figure that for any ε

and γ > 0.305 an intersite dark soliton is always stable. By contrast, we also see that

the intersite dark soliton is always unstable for γ < 0. The instability in this case is

caused by the fact, as in onsite dark solitons, that the lower band of the continuous

spectrum (ω = ±
√

ΩL) lies on the imaginary axis.

As a confirmation for the (in)stability scenarios discussed above, we depict in Fig. 2.18

the numerical dynamics of stable and unstable intersite dark solitons which correspond

to stable and unstable modes of the eigenvalues in the top panels of Fig. (2.16). Inter-

estingly, the unstable soliton eventually travels with the negative velocity which seem-

ingly remains constant. This leading-to-travelling instability is similar to that reported
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Figure 2.15: Comparisons between the eigenvectors corresponding to the discrete

eigenvalues of an intersite dark soliton in the uncoupled limit ε = 0 ob-

tained numerically (solid lines) and analytically (circles) for two values

of γ as indicated in the caption for each panel. The analytical approx-

imations are obtained from Eqs. (2.3.36) (left panels) and (2.3.37) (right

panels).
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Figure 2.16: The eigenvalue structure of intersite dark solitons with parameter values

as indicated in the caption for each panel.
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Figure 2.17: As Fig. 2.12, but for an intersite dark soliton. The white dashed line is our

analytical approximation (2.3.38).
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Figure 2.18: As Fig. 2.13, but for an intersite dark soliton with γ = 0.1. The left and

right panels depict the evolution of a stable dark soliton with ε = 0.05

and an unstable one with ε = 0.5, respectively.

by Fitrakis et al. [86] for the case of undriven cubic and saturable DNLS equations.

2.4 PDNLS in electromechanical resonators

In this section, we discuss the use of parametrically driven DNLS equation in describ-

ing the dynamics of MEMS and NEMS resonators. We have provided a brief review of

MEMS and NEMS resonators in Section 1.3.2.2.

2.4.1 The model and the reduction

Motivated by a recent experiment of Buks and Roukes [51] that succeeded in fabricating

and exciting an array of MEMS and measuring oscillations of the resonators, here we

consider the equation (Kenig et al. [58])

ϕ̈n = D∆2 ϕn − [1 − H cos(2ωpt)]ϕn ± ϕ3
n, (2.4.1)

which governs the oscillation amplitude of such an array. Equation (2.4.1) is a simpli-

fied model of that discussed by Lifshitz & Cross [57], subject to an assumption that the

piezoelectric parametric drive is applied directly to each oscillator as recently demon-

strated by Masmanidis et al. [104]. The variable ϕn represents the oscillation ampli-

tude of the nth oscillator from its equilibrium position, D is a dc electrostatic nearest-

neighbour coupling term, H is a small ac component with frequency 2ωp responsible

for the parametric driving, ∆2 ϕn = ϕn+1 − 2ϕn + ϕn−1 is the discrete Laplacian, the dot

denotes the derivative with respect to time t (notice that time t here is not the same as

time t in Eq. (2.1.1)), and the ‘plus’ and ‘minus’ signs of the cubic term correspond to
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2.4 PDNLS IN ELECTROMECHANICAL RESONATORS

‘softening’ and ‘stiffening’ nonlinearities, respectively. Here, we assume ideal oscilla-

tors, so there is no damping present. The creation, stability and interactions of ILMs

in Eq. (2.4.1) with low damping and in the strong-coupling limit or slowly varying so-

lutions, have been investigated by Kenig et al. [58]. Here, we extend that study to the

case of small coupling parameter D or strongly localised solutions.

In performing our analysis to the governing equation (2.4.1), we introduce a small pa-

rameter δ ≪ 1 and assume that the following scalings hold:

D = δ2D̃, H = δ2H̃, ωp = 1 + δ2ω̃p. (2.4.2)

Note that the leading order term for ωp in the above equation is 1 due to it being the

natural frequency of the unforced system linearised about φn = 0, namely φ̈n = −φn.

We then expand each ϕn in powers of δ, with the leading-order term being of the form

ϕn ∼ δ
(

ψn(T1, T2, T3, . . . )e−iT0 + ψn(T1, T2, T3, . . . )eiT0

)

, (2.4.3)

with slow temporal variables Tn = δnt. Substituting Eq. (2.4.3) into Eq. (2.4.1) and

equating coefficients of powers of δ then yield

O(δ2) : 2i
∂ψn

∂T1
e−iT0 + c.c. = 0, (2.4.4)

O(δ3) :

(

2i
∂ψn

∂T2
− ∂2ψn

∂T2
1

+ D̃∆2ψn +
1

2
H̃ψne−2iω̃pT2 ± 3|ψn|2ψn

)

e−iT0

+

(

1

2
H̃ψne−2iω̃pT2 ± ψ3

n

)

e−3iT0 + c.c. = 0, (2.4.5)

where c.c. stands for the complex conjugate of the preceding expression.

Because ∂2ψn/∂T2
1 = 0, i.e., from Eq. (2.4.4), the terms at O(e−iT0) in Eq. (2.4.5) then give

the following equation for ψn (see Kivshar [105] and Remoissenet [106] for a related

reduction method)

− 2iψ̇n = D̃∆2ψn +
1

2
H̃ψne−2iω̃pT2 ± 3|ψn|2ψn, (2.4.6)

where the overdot now denotes the derivative with respect to T2. Correction terms in

Eq. (2.4.3) are O(δe±i(k+1)T0 , δ3e±i(k−1)T0), with k ∈ Z+. A justification of this rotating-

wave-type approximation can be obtained in, e.g., Kosevich & Corso [108].

Using the following scalings2

D̃ = 3ε, H̃ = ∓6γ, ω̃p = ∓3Λ/2, (2.4.7)

and then writing ψn(T2) = φn(T2)e±3iΛT2/2, Eq. (2.4.6) can be rewritten as

− 2

3
iφ̇n = ε∆2φn ∓ Λφn ∓ γφn ± |φn|2φn. (2.4.8)

2There is a typo in the scaling of H̃ in Syafwan et al. [107].

59



2.4 PDNLS IN ELECTROMECHANICAL RESONATORS

Finally by taking T2 = 2
3 t̂, we find that the equation above becomes the parametri-

cally driven discrete nonlinear Schrödinger (PDNLS) equation as written in Eq. (2.1.1),

where the overdot denotes the derivative with respect to t̂. The softening and stiffen-

ing nonlinearities of Eq. (2.4.1) correspond, respectively, to the focusing and defocusing

cases in the PDNLS (2.1.1). The continuum limit of Eq. (2.1.1), i.e., φn ≈ φ, ε∆2φn ≈ ∂2
xφ,

was considered by Kenig et al. [58] from Eq. (2.4.1) and by Barashenkov et al. [109] from

a parametrically driven sine-Gordon equation by considering slowly varying solitons.

2.4.2 Numerical integrations

In Sections 2.2 and 2.3, we discussed the existence and the stability of localised modes

of the PDNLS equation (2.1.1). In this section, we confirm the relevance of our findings

through solving numerically the time-dependent equation (2.4.1). We use a Runge–

Kutta integration method, with the initial condition ϕn = 2δun and ϕ̇n = 0, where un

is the static solution of the PDNLS (2.1.1) and δ is the small parameter of Section 2.4.1.

Throughout this section, we use the illustrative value δ = 0.2. Recall that we have

made scalings to the parameters as

D = 3δ2ε, H = ∓6δ2γ, ωp = 1 ∓ 3δ2Λ/2. (2.4.9)

In the left and right panels of Fig. 2.19, we plot the numerical evolution of a stable and

unstable onsite bright soliton, respectively. From the top right panel of the figure, we

note that a parametric driving seems to destroy an unstable soliton. This observation

is similar to the corresponding observation for the dynamics of an unstable soliton in

the DNLS equation (2.1.1) reported by Susanto et al. [91]. In the bottom right panel,

we present another case of unstable dynamics for a relatively large parametric driving

amplitude γ, where the bright soliton is seemingly still preserved up to some time and

then suddenly decays.

In Fig. 2.20 we present the numerical evolution of intersite bright solitons for the same

parameter values as those in Fig. 2.5, corresponding to each of the instability scenarios.

From the panels in this figure, we see that the typical outcome of the instability is that

the profile of the soliton changes to a different form. In the top and middle right panels,

the soliton becomes an onsite breather with the latter changing its centre position alter-

nately. In the bottom right panel, the unstable soliton becomes two-separated-excited

sites with radiation forming a breather.

We have also examined the dynamics of onsite dark solitons in the Klein–Gordon sys-

tem (2.4.1). We show in Fig. 2.21 the numerical evolution of a solution with the eigen-

value structure illustrated in Fig. 2.11. The instability of an unstable onsite dark soliton
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Figure 2.19: The spatio-temporal evolution of an onsite bright soliton governed by the

time-dependent parametrically driven Klein–Gordon system (2.4.1), with

δ = 0.2 (the contour plot of the square modulus |ϕn|2 is shown). The

parameter values are indicated in the caption for each panel. The left and

right panels show stable and unstable solitons, respectively.
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Figure 2.20: As Fig. 2.19, but for an intersite bright soliton, with parameter values as

indicated in the caption for each panel. The initial profile in each panel

corresponds to the same parameters as in Fig. 2.5.
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Figure 2.21: As Fig. 2.19, but for onsite dark solitons. The parameter values are as in

Fig. 2.11.
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Figure 2.22: As Fig. 2.19, but for an intersite dark soliton with γ = 0.1. The left panel

shows the evolution of a stable dark soliton with ε = 0.05, while the right

panel shows the evolution of an unstable dark soliton with ε = 0.5.
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typically manifests itself in the form of soliton destruction (top right panel) or travelling

soliton (bottom right panel).

Finally, we illustrate the dynamical behaviour of an unstable intersite dark soliton in

Fig. 2.22, from which we see that the instability makes the soliton travel but eventu-

ally is destroyed. This dynamics is similar to that presented in Fig. 2.18 for the time-

dependent PDNLS equation (2.1.1).

2.5 Conclusion

In this chapter, we have performed analytical and numerical calculations to determine

the existence and stability of fundamental bright and dark discrete solitons in the para-

metrically driven discrete nonlinear Schrödinger equation. We have shown that the

presence of a parametric driving can destabilise an onsite bright soliton. On the other

hand, a parametric driving has also been shown to stabilise intersite bright and dark

discrete solitons. We even found an interval in γ for which a discrete dark soliton is

stable for any value of the coupling constant, i.e., a parametric driving can suppress

oscillatory instabilities. Stability windows for all the fundamental solitons have been

presented and approximations using perturbation theory have been derived to accom-

pany the numerical results.

In addition, by using a multiscale expansion method, we also show that our discrete

nonlinear Schrödinger equation can be derived from a parametrically driven Klein–

Gordon system describing the dynamics of nonlinear resonators in micro- and nano-

electromechanical systems (MEMS and NEMS). Numerical integrations of the Klein–

Gordon system have demonstrated that our analytical and numerical investigations of

the discrete nonlinear Schrödinger equation provide a useful guide to the behaviour in

the MEMS and NEMS resonators.
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CHAPTER 3

Lattice solitons in a parametrically

driven damped discrete nonlinear

Schrödinger equation

Here we extend the previous chapter by considering the presence of a damping term.

The existence and stability analyses of the model are performed for fundamental bright

discrete solitons.

3.1 Introduction

3.1.1 The model and review of earlier studies

The model studied in this chapter is governed by a parametrically driven damped dis-

crete nonlinear Schrödinger (PDDNLS) equation in the focusing nonlinearity, given by

iφ̇n = −ε∆2φn + Λφn + γφn − iαφn − |φn|2φn. (3.1.1)

The notations used in the above equation are the same as those in Eq. (2.1.1), except the

additional damping term with strength α. Note that for α 6= 0 the PDDNLS (3.1.1) does

not admit a Hamiltonian structure. Similarly to the driven case considered in Chapter

2, the present model also does not have a conserved norm. The change of the norm is

given by
dP

dt
= −i

∞

∑
n=−∞

γ(φ
2
n − φ2

n)− 2iα|φn|2, (3.1.2)

where P = |φn|2.

In the absence of parametric driving and damping, i.e., when γ = 0 and α = 0,

Eq. (3.1.1) reduces to the cubic discrete nonlinear Schrödinger (DNLS) equation (this
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3.1 INTRODUCTION

model has been reviewed in Chapter 1). The undamped parametrically driven discrete

nonlinear Schrödinger (PDNLS) equation, i.e., when γ 6= 0 and α = 0, has been studied

in Chapter 2. In particular, we showed that the PDNLS model can be derived, using a

multiscale expansion reduction, from a parametrically driven Klein-Gordon system de-

scribing coupled arrays of nonlinear resonators in micro- and nano-electromechanical

systems (MEMS and NEMS).

The discrete nonlinear Schrödinger equation with the inclusion of parametric driving

and damping terms as written in Eq. (3.1.1) was studied for the first time, to the best

of our knowledge, by Hennig [85] focusing on the existence and stability of localised

solutions using a nonlinear map approach. He demonstrated that, depending upon

the strength of the parametric driving, various types of localised lattice states emerge

from the model, namely periodic, quasiperiodic and chaotic breathers. The impact

of a damping parameter and external driving in the integrable version of the DNLS

system, i.e., the discrete Ablowitz-Ladik equation, has also been studied by Kollmann

et al. [110] who confirmed the existence of breathers and multibreathers. In deriving

Eq. (3.1.1), one can follow, e.g., the method of reduction performed in Section 2.4.1 by

including a damping term in the MEMS and NEMS resonators model.

On the other hand, the continuous version of the PDDNLS (3.1.1), i.e., when φn(t) ≈
φ(x, t) and ε∆2φn(t) ≈ ∂2

xφ(x, t) [x ≡ n∆x and ε ≡ 1/∆x, with a spatial grid size ∆x],

was numerically discussed earlier by Bondila et al. [111] resulting in a single-soliton

attractor chart on the (γ, α)-plane from which one may determine the regions of exis-

tence of stable stationary solitons as well as stable time-periodic solitons (with period-1

and higher). Instead of using direct numerical integration as performed by Bondila et

al. [111], Barashenkov and co-workers recently proposed obtaining the time-periodic

one-soliton [112] and two-soliton [113] solutions as solutions of a two-dimensional

boundary-value problem.

3.1.2 Overview

Our objective in the present chapter is to examine the existence and stability of the fun-

damental onsite and intersite bright discrete solitons in the focusing PDDNLS (3.1.1).

As in the previous chapter, the analysis of this model is performed through a pertur-

bation theory for small ε which is then corroborated by numerical calculations. More-

over, our study here is also devoted to exploring the relevant bifurcations which occur

in both stationary onsite and intersite discrete solitons, including time-periodic soli-

tons emerging from Hopf bifurcations. For the latter scheme, we employ the numerical

continuation software Matcont to path-follow limit cycles bifurcating from the Hopf
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3.2 ANALYTICAL FORMULATION

points.

The presentation of this chapter is organised as follows. In Section 3.2, we firstly

present our analytical formulation for the considered model. In Section 3.3, we per-

form the existence and stability analysis of the discrete solitons through a perturbation

method. Next, in Section 3.4, we compare our analytical results with the correspond-

ing numerical calculations and discuss bifurcations experienced by the fundamental

solitons. The time-periodic solitons appearing from the Hopf bifurcation points of the

corresponding stationary solitons are furthermore investigated in Section 3.5. Confir-

mation of the stability findings through numerical integration of Eq. (3.1.1) for both

stationary and periodic solitons is given in Section 3.6. Finally, we conclude our results

in Section 3.7.

3.2 Analytical formulation

Steady-state localised solutions of the focusing system (3.1.1) in the form of φn(t) = un,

where un is complex valued and time-independent, satisfy the stationary equation

− ε∆2un + Λun + γun − iαun − |un|2un = 0, (3.2.1)

with spatial localisation condition un → 0 as n → ±∞. We should notice that Eq. (3.2.1)

(and accordingly Eq. (3.1.1)) admits the reflection symmetry under the transformation

un → −un. (3.2.2)

Following Bondila et al. [111] and Barashenkov et al. [112, 113], we assume that both the

damping coefficient α and the driving strength γ are positive. We also set the coupling

constant ε to be positive (the case ε < 0, as in Chapter 2, can be obtained accordingly

by the staggering transformation (2.1.9)). The range of the parameter Λ is left to be

determined later in the following discussion.

In the undriven and undamped cases, the localised solutions of Eq. (3.2.1) can be cho-

sen, without lack of generality, to be real-valued (see Kevrekidis [24] and Hennig &

Tsironis [59]); this has been discussed in Section 1.4.1. This is no longer the case for

non-zero γ and α in the stationary PDDNLS (3.2.1), therefore we should always take

into account complex-valued un. By writing un = an + ibn, where an, bn ∈ R, and de-

composing the equation into real and imaginary parts, we obtain from Eq. (3.2.1) the

following system of equations:

− ε∆2an + (Λ + γ)an + αbn − (a2
n + b2

n)an = 0, (3.2.3a)
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− ε∆2bn + (Λ − γ)bn − αan − (a2
n + b2

n)bn = 0. (3.2.3b)

Thus, the solutions of Eq. (3.2.1) can be sought through solving the above system for an

and bn.

Next, to examine the stability of the obtained solutions, let us introduce the linearisa-

tion ansatz φn = un + δǫn, where δ ≪ 1. Substituting this ansatz into Eq. (3.1.1) yields

the following linearised equation at O(δ):

iǫ̇n = −ε∆2ǫn + Λǫn + γǫn − iαǫn − 2|un|2ǫn − u2
nǫn. (3.2.4)

By writing ǫn = ηneiωt + ξne−iωt, Eq. (3.2.4) can be transformed into the eigenvalue

problem (EVP)

[

ε∆2 − Λ + iα + 2|un|2 u2
n − γ

γ − u2
n −ε∆2 + Λ+iα − 2|un|2

] [

ηn

ξn

]

= ω

[

ηn

ξn

]

. (3.2.5)

The stability of the solution un is then determined by the eigenvalues ω, i.e., un is stable

only when Im(ω) ≥ 0 for all eigenvalues ω.

As the EVP (3.2.5) is linear, we can eliminate one of the eigenvectors, for instance ξn, so

that we obtain the simplified form

[

L+(ε)L−(ε)− 4(anbn)
2
]

ηn = (ω − iα)2ηn, (3.2.6)

where the operators L+(ε) and L−(ε) are given by

L+(ε) ≡ −ε∆2 − (a2
n + 3b2

n − Λ + γ),

L−(ε) ≡ −ε∆2 − (3a2
n + b2

n − Λ − γ).

3.3 Perturbation analysis

Solutions of Eq. (3.2.1) for small coupling constant ε can be calculated analytically

through a perturbative analysis, i.e., by expanding un in powers of ε as

un = u
(0)
n + εu

(1)
n + ε2u

(2)
n + · · · . (3.3.1)

Solutions un = u
(0)
n correspond to the case of the uncoupled limit ε = 0. For this case,

Eq. (3.2.1) permits the exact solutions u
(0)
n = a

(0)
n + ib

(0)
n in which

(

a
(0)
n , b

(0)
n

)

can take

one of the following values

(0, 0), (sA+,−sB−), (sA−,−sB+), (3.3.2)
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3.3 PERTURBATION ANALYSIS

where

A± =

√

(γ ±
√

γ2 − α2)(Λ ±
√

γ2 − α2)

2γ
,

B± =

√

(γ ±
√

γ2 − α2)(Λ ∓
√

γ2 − α2)

2γ
,

and s = ±1. Due to the reflection symmetry (3.2.2), we are allowed to restrict consid-

eration to the case s = +1.

Following the assumption γ, α > 0, we can easily confirm that nonzero (A+,−B−) and

(A−,−B+) are together defined in the following range of parameters

Λ > γ ≥ α > 0. (3.3.3)

In particular, when γ = α, the values of (A+,−B−) are exactly the same as (A−,−B+).

Moreover, one can notice that when α = 0, i.e., for the case of a parametrically driven

DNLS model, the resulting nonzero solution in the AC limit ε = 0 is either real or

purely imaginary. By using perturbation expansions, we can conclude that the un-

damped solutions remain real or purely imaginary for all ε.

Once a configuration for u
(0)
n is determined, its continuation for small ε can be sought

by substituting expansion (3.3.1) into Eq. (3.2.1). Here we only focus on two fundamen-

tal localised solutions, i.e., onsite and (in-phase) intersite bright solitons.

Next, to study the stability of the solitons, we also expand the eigenvector having com-

ponent ηn and the eigenvalue ω in powers of ε as

ηn = η
(0)
n + εη

(1)
n +O(ε2), ω = ω(0) + εω(1) +O(ε2). (3.3.4)

Substituting these expansions into Eq. (3.2.6) and collecting coefficients at successive

powers of ε yield the O(1) and O(ε) equations which are respectively given by

Lη
(0)
n = 0, (3.3.5)

Lη
(1)
n = fn, (3.3.6)

where

L = L+(0)L−(0)− 4(a
(0)
n b

(0)
n )2 − (ω(0) − iα)2, (3.3.7)

fn =
[

L−(0)(∆2 + 2a
(0)
n a

(1)
n + 6b

(0)
n b

(1)
n ) +L+(0)(∆2 + 2b

(0)
n b

(1)
n + 6a

(0)
n a

(1)
n )

+8a
(0)
n b

(0)
n (a

(0)
n b

(1)
n + a

(1)
n b

(0)
n ) + 2ω(0)ω(1) − 2iαω(1)

]

η
(0)
n . (3.3.8)

One can check that the operator L is self-adjoint and thus the eigenvector h = col(..., η
(0)
−1 ,

η
(0)
0 , η

(0)
1 , ...) is in the null-space of the adjoint of L.
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From Eq. (3.3.5), we obtain that the eigenvalues in the uncoupled limit ε = 0 are

ω
(0)
C = ±

√

Λ2 − γ2 + iα, (3.3.9)

and

ω
(0)
E = ±

√

L+(0)L−(0)− 4(a
(0)
n b

(0)
n )2 + iα, (3.3.10)

which correspond, respectively, to the solutions u
(0)
n = 0 (for all n) and u

(0)
n = a

(0)
n +

ib
(0)
n 6= 0 (for all n). For bright soliton solutions having boundary condition un → 0

as n → ±∞, the eigenvalues ω
(0)
E and ω

(0)
C have, respectively, finite and infinite multi-

plicities which then generate a corresponding discrete and continuous spectrum as ε is

turned on.

Let us first investigate the significance of the continuous spectrum. By introducing a

plane-wave expansion ηn = µeiκn + νe−iκn, one can obtain the dispersion relation

ω = ±
√

(2ε(cos κ − 1)− Λ)2 − γ2 + iα, (3.3.11)

from which we conclude that the continuous band lies between

ωL = ±
√

Λ2 − γ2 + iα, when κ = 0, (3.3.12)

and

ωU = ±
√

Λ2 − γ2 + 8ε(Λ + 2ε) + iα, when κ = π. (3.3.13)

From the condition (3.3.3), one can check that all the eigenvalues ω ∈ ±[ωL, ωU] always

lie on the axis Im(ω) = α > 0 for all ε, which means that the continuous spectrum

does not contribute to the instability of the soliton. Therefore, the analysis of stability

is only devoted to the discrete eigenvalues. As in Chapter 2, discrete eigenvalues that

potentially lead to instability are also sometimes referred here to as critical eigenvalues.

3.3.1 Onsite bright solitons

In this section we perform perturbation analysis for the existence and stability of onsite

bright soliton in Eq. (3.2.1). In the context of this theory, the exact solutions of Eq. (3.2.1)

are available when ε = 0 which has been given in (3.3.2). For an onsite bright soliton,

its configuration in the uncoupled limit is of the form

u
(0)
n = 0 for n 6= 0, u

(0)
0 = A + iB, (3.3.14)

where (A, B) 6= (0, 0). From the combination of nonzero solutions (3.3.2), we can

classify the onsite bright solitons, indicated by the different values of (A, B), as follows:

(i) Type I, which has (A, B) = (A+,−B−),
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(ii) Type II, which has (A, B) = (A−,−B+),

which we denote hereinafter by un{±} and un{∓}, respectively.

The continuation of the above solutions for small ε can be calculated from the expan-

sion (3.3.1), from which one can show that an onsite soliton type I and type II, up to

O(ε2), are respectively given by

un{±} =



















(A+ − iB−) +
(A+−iB−)ε

Λ+
√

γ2−α2
, n = 0,

(A+−iB−)ε

Λ+
√

γ2−α2
, n = −1, 1,

0, otherwise,

(3.3.15)

and

un{∓} =



















(A− − iB+) +
(A−−iB+)ε

Λ−
√

γ2−α2
, n = 0,

(A−−iB+)ε

Λ−
√

γ2−α2
, n = −1, 1,

0, otherwise.

(3.3.16)

In particular, when α = γ, the onsite type I and type II become exactly the same.

To examine the stability of the solitons, we need to calculate the corresponding discrete

eigenvalues for each of type I and type II, which we elaborate successively.

3.3.1.1 Onsite type I

One can show from Eq. (3.3.5) that at ε = 0, an onsite bright soliton type I has a leading-

order discrete eigenvalue which comes as the pair

ω
(0)
{±} = ±

√
P + iα, (3.3.17)

where

P = 4Λ

√

γ2 − α2 + 4γ2 − 5α2. (3.3.18)

The eigenvector corresponding to the above eigenvalue has components η
(0)
n = 0 for

n 6= 0 and η
(0)
0 6= 0.

We notice that P can be either positive or negative depending on whether α ≶ αth,

where

αth =
2

5

√

5γ2 − 2Λ2 + Λ

√

4Λ2 + 5γ2. (3.3.19)

Therefore, the eigenvalue ω
(0)
{±} can be either

ω1
(0)
{±} = ±

√

4Λ

√

γ2 − α2 + 4γ2 − 5α2 + iα, (3.3.20)
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for the case α < αth, or

ω2
(0)
{±} = i

(

α ±
√

5α2 − 4Λ

√

γ2 − α2 − 4γ2

)

, (3.3.21)

for the case αth < α ≤ γ.

The continuation of the eigenvalues (3.3.20) and (3.3.21) for nonzero ε can be evaluated

from Eq. (3.3.6) by applying a Fredholm solvability condition. As the corresponding

eigenvector has zero components except at site n = 0, we only need to require f0 = 0,

from which we obtain the discrete eigenvalue of un{±} for small ε, up to O(ε2), as

follows.

(i) For the case α < αth:

ω1{±} = ±
√

4Λ

√

γ2 − α2 + 4γ2 − 5α2 ± (4
√

γ2 − α2)ε
√

4Λ
√

γ2 − α2 + 4γ2 − 5α2

+ iα.

(3.3.22)

(ii) For the case αth < α ≤ γ:

ω2{±} = i



α ±
√

5α2 − 4Λ

√

γ2 − α2 − 4γ2 ∓ (4
√

γ2 − α2)ε
√

5α2 − 4Λ
√

γ2 − α2 − 4γ2



 .

(3.3.23)

We should note here that the above expansions remain valid if ±P are O(1).

Let us now investigate the behaviour of the above eigenvalue in each case. In case (i),

the imaginary part of ω1
(0)
{±} (i.e., when ε = 0) is α, which is positive. We also note that

|ω1
(0)
{±}| ≷ |ω(0)

C | when α ≶ αcp, where

αcp =
1

5

√

25γ2 − Λ2. (3.3.24)

As ε increases, the value of |ω1{±}| also increases. As a result, the eigenvalues ω1{±}
will collide either with the upper band (ωU) of the continuous spectrum for α < αcp,

or with the lower band (ωL) for αcp < α < αth. These collisions then create a corre-

sponding pair of eigenvalues bifurcating from the axis Im
(

ω1{±}
)

= α. This collision,

however, does not immediately lead to the instability of the soliton as it does for α = 0

(shown in the previous chapter). In addition, the distance between ω1
(0)
{±} and ω

(0)
C in-

creases as α tends to 0, which means that the corresponding collisions for smaller α

happen at larger ε. From the above analysis we hence argue that for α < αth and for

relatively small ε, the onsite soliton type I is stable.
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In case (ii), due to the condition (3.3.3) and after some algebraic manipulations, we have
√

5α2 − 4Λ
√

γ2 − α2 − 4γ2 ≤ α. The latter implies 0 ≤ min(Im(ω2
(0)
{±})) < α which

indicates that the soliton is stable when ε = 0. As ε increases, both max(Im(ω2{±}))

and min(Im(ω2{±})) tend to α at which they finally collide. From this fact, we conclude

that for small ε and for αth < α ≤ γ, the soliton remains stable. In particular, when

α = γ, we have min(Im(ω2{±})) = 0 for all ε, which then implies that the soliton is

always stable.

3.3.1.2 Onsite type II

Performing the calculations as before, we obtain that the discrete eigenvalue (in pairs)

of an onsite bright soliton type II is given, up to O(ε2), by

ω{∓} = i



α ±
√

4Λ

√

γ2 − α2 − 4γ2 + 5α2 ± (4
√

γ2 − α2)ε
√

4Λ
√

γ2 − α2 − 4γ2 + 5α2



 . (3.3.25)

Again, we should assume that the term (4Λ
√

γ2 − α2 − 4γ2 + 5α2) in the above expan-

sion is O(1).

When α < γ, we simply have
√

4Λ
√

γ2 − α2 − 4γ2 + 5α2 > α, from which we deduce

min(Im(ω
(0)
{∓})) < 0, meaning that at ε = 0 the soliton is unstable. In fact, as ε increases,

the value of min(Im(ω{∓})) decreases. Therefore, in this case we infer that the soliton

is unstable for all ε (notice that the same type of instability also occurs for the case of

the undamped onsite bright soliton type II which is purely imaginary).

When α = γ, by contrast, the value of min(Im(ω{∓})) is zero for all ε, which indicates

that the soliton is always stable. In fact, the stability of an onsite type II in this case

is exactly the same as in type I. This is understandable as the onsite type I and type II

possess the same profile when α = γ.

3.3.2 Intersite bright solitons

Another natural fundamental solution to be studied is an intersite bright soliton whose

mode structure in the uncoupled limit is of the form

u
(0)
n =















A0 + iB0, n = 0,

A1 + iB1, n = 1,

0, otherwise,

(3.3.26)

where (A0, B0) 6= (0, 0) and (A1, B1) 6= (0, 0). The combination of the nonzero solu-

tions (3.3.2) gives the classification for the intersite bright solitons, indicated by differ-

ent values of (A0, B0) and (A1, B1), as follows:
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(i) Type I, which has (A0, B0) = (A1, B1) = (A+,−B−),

(ii) Type II, which has (A0, B0) = (A1, B1) = (A−,−B+),

(iii) Type III, which has (A0, B0) = (A+,−B−) and (A1, B1) = (A−,−B+),

(iv) Type IV, which has (A0, B0) = (A−,−B+) and (A1, B1) = (A+,−B−).

Let us henceforth denote the respective types by un{±±}, un{∓∓}, un{±∓} and un{∓±}.

From the expansion (3.3.1), we obtain the continuation of each type of solution for

small ε, which are given, up to order ε2, by

un{±±} =



































(A+ − iB−) + 1
2

(A+−iB−)ε

Λ+
√

γ2−α2
, n = 0,

(A+ − iB−) + 1
2

(A+−iB−)ε

Λ+
√

γ2−α2
, n = 1,

(A+−iB−)ε

Λ+
√

γ2−α2
, n = −1, 2,

0, otherwise,

(3.3.27)

un{∓∓} =



































(A− − iB+) +
1
2

(A−−iB+)ε

Λ−
√

γ2−α2
, n = 0,

(A− − iB+) +
1
2

(A−−iB+)ε

Λ−
√

γ2−α2
, n = 1,

(A−−iB+)ε

Λ−
√

γ2−α2
, n = −1, 2,

0, otherwise,

(3.3.28)

un{±∓} =















































(A+−iB−)ε

Λ+
√

γ2−α2
, n = −1,

(A+ − iB−) + 1
2

(A+−iB−)ε

γ(Λ+
√

γ2−α2)
, n = 0,

(A− − iB+) +
1
2

(A−−iB+)ε

γ(Λ−
√

γ2−α2)
, n = 1,

(A−−iB+)ε

Λ−
√

γ2−α2
, n = 2,

0, otherwise,

(3.3.29)

un{∓±} =















































(A−−iB+)ε

Λ−
√

γ2−α2
, n = −1,

(A− − iB+) +
1
2

(A−−iB+)ε

γ(Λ−
√

γ2−α2)
, n = 0,

(A+ − iB−) + 1
2

(A+−iB−)ε

γ(Λ+
√

γ2−α2)
, n = 1,

(A+−iB−)ε

Λ+
√

γ2−α2
, n = 2,

0, otherwise,

(3.3.30)

where

A± = 2γA± + (Λ ±
√

γ2 − α2)A∓, (3.3.31)

B± = 2γB± − (Λ∓
√

γ2 − α2)B∓. (3.3.32)
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All solutions above are defined on the region (3.3.3) and exhibit the same profiles when

α = γ. One can check that intersite type III and IV are symmetric, thus they should

really be considered as one solution. However, we write them here as two ‘different’

solutions because, as shown later in the next section, they form two different branches

in a pitchfork bifurcation (together with intersite type I).

Let us now examine the stability of each solution by investigating their corresponding

discrete eigenvalues.

3.3.2.1 Intersite type I

By considering Eq. (3.3.5) and carrying out the same analysis as in onsite type I, we

obtain that the intersite type I has the double leading-order discrete eigenvalue

ω1
(0)
{±±} = ±

√

4Λ

√

γ2 − α2 + 4γ2 − 5α2 + iα, (3.3.33)

for α < αth, and

ω2
(0)
{±±} = i

(

α ±
√

5α2 − 4Λ

√

γ2 − α2 − 4γ2

)

, (3.3.34)

for αth < α ≤ γ. The corresponding eigenvector for the above eigenvalues has compo-

nents η
(0)
n = 0 for n 6= 0, 1, η

(0)
0 6= 0, and η

(0)
1 6= 0.

One can check, as in onsite type I, that the position of ω1
(0)
{±±} relative to ω

(0)
C depends

on whether α ≶ αcp = 1
5

√

25γ2 − Λ2, i.e., the value of |ω1
(0)
{±±}| is greater (less) than

|ω(0)
C | when α is less (greater) than αcp.

The next correction for the discrete eigenvalues of an intersite type II can be calculated

from Eq. (3.3.6), for which we need a solvability condition. Due to the presence of two

non-zero components of the corresponding eigenvector at n = 0, 1, we only require

f0 = 0 and f1 = 0. Our simple analysis then shows η
(0)
0 = ±η

(0)
1 from which we

obtain that each of double eigenvalues (3.3.33) and (3.3.34) bifurcates into two distinct

eigenvalues, which are given, up to order ε2, as follows.

(i) For the case α < αth:

ω11{±±} = ±
√

4Λ

√

γ2 − α2 + 4γ2 − 5α2 ± (2
√

γ2 − α2)ε
√

4Λ
√

γ2 − α2 + 4γ2 − 5α2

+ iα,

(3.3.35)

ω12{±±} = ±
√

4Λ

√

γ2 − α2 + 4γ2 − 5α2 ∓ 2(Λ +
√

γ2 − α2)ε
√

4Λ
√

γ2 − α2 + 4γ2 − 5α2

+ iα.

(3.3.36)
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(ii) For the case αth < α ≤ γ:

ω21{±±} = i



α ±
√

5α2 − 4Λ

√

γ2 − α2 − 4γ2 ∓ (2
√

γ2 − α2)ε
√

5α2 − 4Λ
√

γ2 − α2 − 4γ2



 ,

(3.3.37)

ω22{±±} = i



α ±
√

5α2 − 4Λ

√

γ2 − α2 − 4γ2 ± 2(Λ +
√

γ2 − α2)ε
√

5α2 − 4Λ
√

γ2 − α2 − 4γ2



 .

(3.3.38)

te

As before, we assume here that the terms ±(4Λ
√

γ2 − α2+4γ2−5α2) are O(1) so that

the above expansions remain valid.

Let us first observe the behaviour of the eigenvalues in case (i). In the uncoupled limit

ε = 0, the imaginary part of ω11
(0)
{±±} = ω12

(0)
{±±} is α > 0 which indicates that the

soliton is initially stable. When ε is turned on, the value of |ω11{±±}| increases but

|ω12{±±}| decreases. Therefore, we can determine the mechanism of collision of these

two eigenvalues with the inner or outer boundary of continuous spectrum (ωL or ωU)

as follows.

• For α < αcp, the first collision is between ω12{±±} and ωU. Because ωU moves

faster (as ε is varied) than ω11{±±}, the next collision is between these two afore-

mentioned eigenvalues.

• For α > αcp, the mechanism of collision can be either between ω11{±±} and ωL,

or between ω12{±±} and itself.

All of the mechanisms of collision above generate new corresponding pairs of eigen-

values bifurcating from their original imaginary parts, which is α. Yet these collisions

do not immediately cause an instability, because α > 0. Therefore, we may conclude

that for sufficiently small ε and for α < αth, an intersite bright soliton type I is stable.

Next, we describe the analysis for the eigenvalues in case (ii). When ε = 0, we have 0 ≤
min(Im(ω21

(0)
{±±})) = min(Im(ω22

(0)
{±±})) < α. As ε is increased, min(Im(ω21{±±}))

increases but min(Im(ω22{±±})) decreases. The latter then becomes negative, leading

to the instability of soliton. By taking min(Im(ω22{±±})) = 0, one obtains

εcr =
α
√

5α2 − 4Λ
√

γ2 − α2 − 4γ2

2(Λ +
√

γ2 − α2)
− 5α2 − 4Λ

√

γ2 − α2 − 4γ2

2(Λ +
√

γ2 − α2)
, (3.3.39)

which yields an approximate boundary for the onset of instability, e.g., in the (ε, α)-

plane for fixed Λ and γ.
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3.3.2.2 Intersite type II

From our analysis of Eqs. (3.3.5) and (3.3.6), we obtain the discrete eigenvalues for an

intersite bright soliton type II, which are given, with errors of order ε2, by

ω1{∓∓} = i



α ±
√

4Λ

√

γ2 − α2 − 4γ2 + 5α2 ± (2
√

γ2 − α2)ε
√

4Λ
√

γ2 − α2 − 4γ2 + 5α2



 ,

(3.3.40)

ω2{∓∓} = i



α ±
√

4Λ

√

γ2 − α2 − 4γ2 + 5α2 ± 2(Λ −
√

γ2 − α2)ε
√

4Λ
√

γ2 − α2 − 4γ2 + 5α2



 ,

(3.3.41)

assuming the term (4Λ
√

γ2 − α2 − 4γ2 + 5α2) is O(1). Notice that ω1{∓∓} and ω2{∓∓}
are equal when α =

√

4γ2 − Λ2/2.

When α < γ, both min(Im(ω1{∓∓})) and min(Im(ω2{∓∓})) are negative at ε = 0

and always decrease as ε is increased; the decrement of min(Im(ω2{∓∓})) is greater

than min(Im(ω1{∓∓})) for α >

√

4γ2 − Λ2/2. When α = γ, min(Im(ω1{∓∓})) and

min(Im(ω2{∓∓})) are zero at ε = 0. At nonzero ε, the former remains zero, but the

latter becomes negative and decreases as ε increases. These facts allow us to conclude

that an intersite bright soliton type II is always unstable, except at α = γ and ε = 0 (this

is also the case for the undamped intersite type II, which is, in fact, a purely imaginary

valued solution). One can check that when α = γ, the eigenvalues of intersite type II

are the same as in intersite type I.

3.3.2.3 Intersite type III and IV

As intersite type III and IV are symmetric, their eigenvalues are exactly the same. Our

calculation shows the following.

(i) For the case α < αth, the eigenvalues of the intersite type III and IV, up to O(ε2),

are

ω11{±∓} = ω11{∓±} = iα ±
√

4Λ

√

γ2 − α2 + 4γ2 − 5α2

± (2γ
√

γ2 − α2 − Λγ + α
√

Λ2 − γ2 + α2)ε

γ
√

4Λ
√

γ2 − α2 + 4γ2 − 5α2

, (3.3.42)

ω12{±∓} = ω12{∓±} = i

(

α ±
√

4Λ

√

γ2 − α2 − 4γ2 + 5α2

± (2γ
√

γ2 − α2 + Λγ − α
√

Λ2 − γ2 + α2)ε

γ
√

4Λ
√

γ2 − α2 − 4γ2 + 5α2



 . (3.3.43)
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(ii) For the case αth < α ≤ γ, the eigenvalues, up to order ε2, are

ω21{±∓} = ω21{∓±} = i

(

α ±
√

5α2 − 4Λ

√

γ2 − α2 − 4γ2

∓ (2γ
√

γ2 − α2 − Λγ + α
√

Λ2 − γ2 + α2)ε

γ
√

5α2 − 4Λ
√

γ2 − α2 − 4γ2



 , (3.3.44)

ω22{±∓} = ω22{∓±} = i

(

α ±
√

4Λ

√

γ2 − α2 − 4γ2 + 5α2

± (2γ
√

γ2 − α2 + Λγ − α
√

Λ2 − γ2 + α2)ε

γ
√

4Λ
√

γ2 − α2 − 4γ2 + 5α2



 . (3.3.45)

We should assume again that the terms ±(4Λ
√

γ2 − α2 + 4γ2 − 5α2) and (4Λ
√

γ2 − α2 −
4γ2 + 5α2) in the above expansions are of O(1).

In the first case, the eigenvalues (3.3.43) are apparently pure imaginary, with an imag-

inary part whose minimum value is negative for all ε. In the second case, it is clear

that for α < γ the minimum value of the imaginary part of the eigenvalues (3.3.44) is

positive (less than α) initially at ε = 0 and then increases as ε increases. However, for

this case (α < γ), the minimum value of the imaginary part of the eigenvalues (3.3.45),

which are exactly the same as the eigenvalues (3.3.43), is negative at ε = 0 and then

decreases as ε is turned on. In contrast, for α = γ the minimum value of the imaginary

part of the eigenvalues (3.3.44) and (3.3.45) remains zero for all ε. The above fact shows

that both intersite soliton type III and IV are always unstable, except at α = γ. In fact,

as shown in the numerical calculation later, the intersite type III and IV are no longer

defined along this line, due to a pitchfork bifurcation with intersite type I.

3.4 Comparisons with numerical results, and bifurcations

In order to find the numerical solutions for each soliton discussed in the previous sec-

tion, we solve the stationary equation (3.2.1) [cf. Eq. (3.2.3)] using a Newton-Raphson

(NR) method. The evaluation is performed in domain n ∈ [−N, N], i.e., for a lattice of

2N + 1 sites, with periodic boundary conditions u±(N+1) = u∓N. As an initial guess,

we use the corresponding exact soliton solutions in the uncoupled limit ε = 0 from

which we then numerically continue for nonzero ε. As an illustrative example, the

numerical solutions for each type of onsite and intersite bright soliton with param-

eter values (ε, Λ, γ, α) = (0.1, 1, 0.5, 0.1) are depicted in Fig. 3.1. The corresponding

analytical approximations are also plotted therein showing good agreement with the

numerical results.
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Figure 3.1: Profiles of onsite and intersite bright solitons of different types, as indi-

cated in the caption of each panel, for parameter values (ε, Λ, γ, α) =

(0.1, 1, 0.5, 0.1). Solid lines show the numerical results while dashed lines

indicate the analytical approximations given by Eqs. (3.3.15) and (3.3.16)

for the onsite type I and II, respectively, and by Eqs. (3.3.27), (3.3.28),

(3.3.29) and (3.3.30) for the intersite type I, II, III and IV, respectively. The

circle and cross markers correspond to the real and imaginary part of the

solutions, respectively.
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To examine the stability of each soliton, we solve the eigenvalue problem (3.2.5) nu-

merically and then compare the results with the analytical calculations. Moreover, we

show later that the relevant solitons experience saddle-node and/or pitchfork bifurca-

tions. To depict the diagram of these bifurcations, we use a pseudo-arclength method

which allows us to continue the solution past turning points (by varying one param-

eter). In addition, our analysis of the eigenvalues for some particular solutions leads

to the fact of the presence of Hopf bifurcations. We will determine the nature of Hopf

bifurcation points and perform continuation of the bifurcating limit cycles in the next

section by employing the numerical continuation package Matcont.

In all illustrative examples below, we use N = 50 (we also used larger values of N but

there was almost no change in the quantitative behaviour). In addition, for the sake of

simplicity, we set Λ = 1 and γ = 0.5.

3.4.1 Onsite bright solitons

3.4.1.1 Onsite type I

We start by testing the validity of our analytical approximation for the critical eigen-

values given by Eqs. (3.3.22) and (3.3.23). We present in Fig. 3.2 comparisons between

the analytical and numerical results for the critical eigenvalues as functions of ε. We

plot comparisons for three values α = 0.1, 0.485, 0.497 to represent the cases α < αcp,

αcp < α < αth and αth < α < γ, respectively (see again the relevant discussion in

the previous section). From the figure, we conclude that our prediction for small ε is

relatively close to the numerics.

For the three values of α given above, we now present in Fig. 3.3 the eigenvalue struc-

ture of the soliton and the corresponding diagram for the imaginary part of the critical

eigenvalues as functions of ε. Let us now describe the results in more detail.

First, we notice that at ε = 0 the critical eigenvalues for α = 0.1 lie beyond the outer

band of the continuous spectrum, while for α = 0.485 they are trapped between the

two inner bands of the continuous spectrum. As ε is turned on, the corresponding crit-

ical eigenvalues for α = 0.1 and α = 0.485 collide with, respectively, the outer and the

inner bands, leading to the bifurcation of the corresponding eigenvalues. The mini-

mum imaginary part of these bifurcating eigenvalues, however, does not immediately

become negative. Hence, for relatively small ε we conclude that the soliton is always

stable; this in accordance with our analytical prediction of the previous section. The

critical values of ε at which min(Im(ω)) = 0 indicating the onset of the instability are

depicted by the star markers in panels (c) and (f) in Fig. 3.3. Interestingly, for α = 0.485
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Figure 3.2: Comparisons between the critical eigenvalues of an onsite bright soliton

type I obtained numerically (solid lines) and analytically (dashed lines).

The upper and middle curves correspond, respectively, to α = 0.1 and

α = 0.485, which are approximated by Eq. (3.3.22), whereas the lower cor-

responds to α = 0.497, which is approximated by Eq. (3.3.23).

there is a re-stabilisation of the soliton as shown by the larger ε star marker in panel (f).

Next, for α = 0.497 the discrete eigenvalues initially (at ε = 0) lie on the imaginary

axis; they come in pairs and are symmetric about the line Im(ω) = α = 0.497, and the

minimum one is above the real axis. When ε increases, both eigenvalues approach one

another and finally collide at the point (ε, α) = (0, 0.497) creating a new pair of discrete

eigenvalues along the line Im(ω) = α = 0.497. Each pair of the eigenvalues then

again bifurcates after hitting the inner edge of the continuous spectrum. However, the

minimum imaginary part of these bifurcating eigenvalues is always greater than zero

even for larger ε [see panel (i)]. From this fact, we therefore conclude that the soliton in

this case is always stable. This conclusion agrees with our analytical investigation.

The minimum value of Im(ω) (in color representation) of the onsite bright soliton type

I for a relatively large range of ε and α gives the (in)stability region in the (ε, α)-plane as

presented in Fig. 3.4. The stable region is indeed determined whenever min (Im(ω)) ≥
0 for each ε and α. The lower and upper dotted horizontal lines in this figure, i.e., re-

spectively, α = αcp ≈ 0.4583 and α = αth ≈ 0.49659, represent the boundaries of the

regions which distinguish the description of the eigenvalue structure of the soliton. The

solid line in this figure indicates the (in)stability boundary, i.e., when min (Im(ω)) = 0.

Three representative points (star markers) lying on this line reconfirm the correspond-

ing points in panels (c) and (f) in Fig. 3.3. As shown in the figure, there is an interval of
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Figure 3.3: The first and second columns of panels show the (Re(ω), Im(ω))-plane of

the eigenvalues of onsite bright solitons type I for several values of α and ε,

as indicated in the caption of each panel (each row of panels depicts three

different values of α). For α = 0.1 and α = 0.485, the corresponding left

and middle panels illustrate the eigenvalues of stable and unstable soli-

tons. The third column shows the path of the imaginary part of the critical

eigenvalues ωcrit as functions of ε for the corresponding α. The locations of

ε at which Im(ωcrit) = 0 are indicated by the star markers.
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α in which the soliton is stable for all ε. This is interesting as the onsite soliton, which

was shown in Chapter 2 to be destabilised by a parametric driving in the case of no

dissipation, now can be re-stabilised by a damping constant.
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Figure 3.4: The (in)stability region of onsite bright solitons type I in the (ε, α)-plane.

The corresponding color represents the minimum value of Im(ω) (for all

eigenvalues ω) for each ε and α. Thus, the region in which min (Im(ω)) ≥
0 indicates the region of stable soliton, otherwise unstable. The boundary

of stable-unstable regions, i.e., when min (Im(ω)) = 0, is given by the solid

line (three representative points (star markers) on this line correspond to

those points in panels (c) and (f) in Fig. 3.3). The boundary curve also indi-

cates the occurrence of Hopf bifurcations with one degenerate point, i.e., a

double-Hopf bifurcation, at ε ≈ 1.46 as indicated by the white-filled circle.

The lower and upper horizontal dotted lines correspond to Eqs. (3.3.24)

and (3.3.19), respectively (see text).

Let us revisit Fig. 3.3 for α = 0.1 and α = 0.485. We notice that at zero-crossing points

εc (shown by the star markers in panels (c) and (f)), the following conditions hold:

(i) There is a pair (equal and opposite) of non-zero real eigenvalues, and

(ii) The ε-derivative of the imaginary part of the pair of eigenvalues mentioned in (i)

is non-zero at εc.

The second condition is also called the transversality condition. We assume that the

so-called first Lyapunov coefficient of the zero-crossing points is nonzero, i.e. the gener-

icity condition. According to the Hopf bifurcation theorem (see, e.g., Kuznetsov [115],

keeping in mind that our eigenvalue is denoted by iω), the above conditions imply

that at ε = εc Eq. (3.1.1) has time-periodic (limit cycle) solutions bifurcating from a
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(steady-state) onsite bright soliton type I. We then call such a critical point εc a Hopf

point.

Because the occurrence of Hopf bifurcation in the onsite type I also indicates the onset

of (in)stability, the collection of Hopf bifurcation points in the (ε, α)-plane therefore lies

precisely on the (in)stability boundary line (see again Fig. 3.4). However, at the sta-

tionary point ε ≈ 1.46 the condition (ii) for the occurrence of a (non-degenerate) Hopf

bifurcation does not hold. At this special point, we have a saddle-node bifurcation of

Hopf points, i.e., a double-Hopf (Hopf-Hopf) bifurcation. Due to the violation of the

transversality condition, there may be no periodic solution or even multiple periodic

solutions at the denegerate point. We will examine this point later in Section 3.5, where

it will be shown through numerical continuations of limit cycles near the degenerate

point that the former possibility occurs.

3.4.1.2 Onsite type II

For this type of solution, a comparison between the critical eigenvalues obtained by

analytical calculation, which is given by Eq. (3.3.25), and by numerics, is presented in

Fig. 3.5. We conclude that our analytical prediction for small ε is quite accurate.
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Figure 3.5: Comparison between the critical eigenvalues of onsite bright solitons type

II for α = 0.1 produced by numerics (solid line) and by analytical approxi-

mation (3.3.25) (dashed line).

The eigenvalue structure of onsite solitons type II for α = 0.1 and the two values ε =

0.1, 1 and the corresponding curve of imaginary part of the critical eigenvalues are

given in Fig. 3.6. This figure shows that the soliton is always unstable even for a large ε.
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This fact is consistent with the analytical prediction. We notice in the figure that there

is a new pair of discrete eigenvalues bifurcating from the inner edge of continuous

spectrum at relatively large ε [see panel (b)].
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Figure 3.6: The top panels show the eigenvalue structure of onsite bright solitons type

II for α = 0.1 and two values of ε as indicated in the caption. The bottom

panel depicts the imaginary part of the critical eigenvalues as a function of

ε.

By evaluating the minimum value of Im(ω) for a relatively large ε and α, we obtain

that the soliton is always unstable for α < γ = 0.5 and, contrastingly, stable for α = γ.

In the latter case, the eigenvalues of the onsite type II are exactly the same as in the

onsite type I; the minimum value of the imaginary part remains zero for all ε.

3.4.1.3 Saddle-node bifurcation of onsite bright solitons

We observed from numerics and analytics that when approaching α = γ, the onsite

bright soliton type I and type II possess the same profile as well as the same stability,

consistent with the saddle-node bifurcation experienced by the two solitons. A dia-

gram of this bifurcation can be produced, e.g., by plotting the norm of the numerical
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solution of these two solitons as a function of α for fixed ε = 0.1. To do so, we apply

a pseudo-arc-length method to perform the numerical continuation, starting from the

onsite type I at α = 0. The obtained diagram is presented in Fig. 3.7 and the corre-

sponding analytical approximation is also depicted therein. As shown in the figure,

the onsite type I, which is stable, turns into the onsite type II, which is unstable. Both

numerics and analytics give the same turning point [or so-called limit point (LP)] at

α = γ = 0.5. We also conclude that the analytical approximation for the norm is quite

close to the numerics, with the accuracy for the onsite type I better than type II. Indeed,

their accuracy could be improved if one uses smaller ε.
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Figure 3.7: A saddle-node bifurcation of onsite bright solitons for ε = 0.1. The onsite

type I (stable) merges with the onsite type II (unstable) at a limit point

(LP) α = γ = 0.5. The solid and dashed lines represent the norm of the

solutions obtained by numerical calculation and analytical approximation,

respectively. The insets depict the profile of the corresponding solutions

at the two values α = 0.1, 0.5. As in Fig. 3.1, solid (dashed) line in the

insets corresponds to numerical (analytical) solution whose the real and

imaginary parts are indicated by circle and cross markers, respectively.

3.4.2 Intersite bright solitons

3.4.2.1 Intersite type I

Let us first compare our analytical prediction for the critical eigenvalues, given by

Eqs. (3.3.35)-(3.3.36) or (3.3.37)-(3.3.38), with the corresponding numerical results. We
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present the comparisons in Fig. 3.8 by considering three values of α = 0.1, 0.465, 0.497

as representative points for the three cases discussed in the previous section. From the

figure we see that the double eigenvalues which coincide originally at ε = 0 then split

into two distinct eigenvalues as ε increases. One can notice a ‘kink’ in the upper solid

line in Fig. 3.8(b). This occurs due to the collision of the corresponding eigenvalue with

the lower boundary of the continuous spectrum (this will be discussed further in the

next paragraph). We conclude that our approximation for small ε is generally quite

accurate.
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Figure 3.8: Comparisons of the two distinct critical eigenvalues of intersite bright soli-

tons type I obtained numerically (solid lines) and analytically (dashed

lines) for three values of α as indicated in the caption of each panel. The

upper and lower curves in panels (a) and (b) are plotted from, respectively,

Eqs. (3.3.35) and (3.3.36), while in panel (c) from Eqs. (3.3.38) and (3.3.37).

Next, we move on to the description of the eigenvalue structure of the intersite bright

solitons type I and the corresponding imaginary part of the two critical eigenvalues as

functions of ε; these are depicted in Fig. 3.9 for the three values of α used before. The

first and second columns in the figure represent conditions of stability and instability,
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respectively. For α = 0.1, the two critical eigenvalues successively collide with the

outer band of the continuous spectrum and the corresponding bifurcating eigenvalues

coming from the first collision contribute to the instability. For α = 0.465, the first

collision is between one of the critical eigenvalues with the inner edge of the continuous

spectrum. The second collision is between the other critical eigenvalue with its pair. In

contrast to the previous case, the instability in this case is caused by the bifurcating

eigenvalues coming from the second collision. Moreover, for α = 0.497, contribution

to the instability is given by one of the critical eigenvalues moving down along the

imaginary axis. All the numerical results described above are in accordance with our

analytical observations in Section 3.3.

Let us now focus our attention on the right panels of Fig. 3.9 by particularly discussing

the properties of the critical points of ε at which the curve of the minimum imaginary

part of the critical eigenvalues crosses the real axis (these are shown by the star mark-

ers). The first and third points (from left to right) in panel (c) as well as the points

in panels (f) and (i) indicate the onset of stable-to-unstable transition. Contrastingly,

the second point in panel (c) illustrates the beginning of the re-stabilisation of solitons.

In fact, the first three points in panel (c) mentioned above admit all conditions for the

occurrence of a Hopf bifurcation (see again the relevant explanation about these condi-

tions in our discussion of onsite type I); therefore, they also correspond to Hopf points.

In addition, the fourth point of zero crossing in panel (c), which comes from one of

the purely imaginary eigenvalues, indicates the branch point of a pitchfork bifurcation

experienced by the solutions of intersite type I, III and IV. We will discuss this type of

bifurcation in more detail in the next section.

The (in)stability region of intersite bright solitons type I in the (ε, α)-plane is given

in Fig. 3.10. In the figure, we also depict the two distinguishable (solid and dashed)

lines representing the two distinct critical eigenvalues whose imaginary parts become

zero. The star points on the lines correspond to those points in the right panels of

Fig. 3.9. The boundary line which separates the stable and unstable regions in the figure

is shown by the bold (solid and dashed) lines. The lower and upper dotted horizontal

lines in the figure represent, respectively, α = αcp ≈ 0.4583 and α = αth ≈ 0.49659

which divide the region into three different descriptions of the eigenvalue structure.

Interestingly, for αth < α, we can make an approximation for the numerically obtained

stability boundary (see the inset). This approximation is given by Eq. (3.3.39) which is

quite close to the numerics for small ε.

We notice in Fig. 3.10 that the solid line (not the rightmost) and dashed line also repre-

sent Hopf bifurcations, with one special point (the white-filled circle) which does not
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Figure 3.9: The first and second columns of panels show the structure of eigenvalues

of intersite bright solitons type I in the complex plane, for three values of α,

each of which uses two different values of ε, to depict the condition of sta-

bility (left panel) and instability (middle panel). The third column shows

the imaginary part of the two distinct critical eigenvalues (presented by

solid and dashed lines) as functions of ε for the corresponding α. The loca-

tions of zero-crossings in these panels are indicated by the star markers.
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meet the second condition for the occurrence of a (non-degenerate) Hopf bifurcation

mentioned above (we will analyse the special point in the next section). We see from

the figure that the bold parts of the Hopf lines coincide with the (in)stability boundary,

while the nonbold ones exist in the unstable region. In addition, we also observe that

the rightmost solid line in Fig. 3.10 indicates the collection of branch points of pitchfork

bifurcation experienced by the intersite type I, III and IV; the bold part of this line also

indicates the (in)stability boundary.
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Figure 3.10: As Fig. 3.4 but for intersite bright solitons type I. The boundary between

stable and unstable regions is given by the bold (solid and dashed) lines.

The dashed-dotted line in the inset is our analytical approximation given

by Eq. (3.3.39). The Hopf bifurcation lines are depicted by the solid (not

the rightmost) and dashed lines. The white-filled circle indicates a degen-

erate Hopf point. The branch points of pitchfork bifurcation are shown

by the rightmost solid lines.

3.4.2.2 Intersite type II

For intersite bright solitons type II, we present in Fig. 3.11 a comparison of two critical

eigenvalues between the numerics and the analytical calculation given by Eqs. (3.3.40)

and (3.3.41). We see from the figure that our approximation for relatively small ε is

quite close to the numerics. The snapshot of the eigenvalue structure of this type of

solution for two points (α, ε) and the path of the imaginary part of corresponding two

discrete eigenvalues are depicted in Fig. 3.12. We conclude that the intersite soliton

type II is unstable even for large ε.

Moreover, the evaluation of the minimum value of Im(ω) of the intersite bright solitons
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Figure 3.11: Comparison of two critical eigenvalues of intersite bright solitons type II

for α = 0.3 between numerics (solid lines) and analytics (dashed lines).

The analytical approximation is given by Eq. (3.3.40) (lower curve) and

Eq. (3.3.41) (upper curve).

type II in the (ε, α)-plane shows that the soliton, except at the point α = γ = 0.5 and

ε = 0, is always unstable. This result agrees with our analytical prediction.

3.4.2.3 Intersite type III and IV

Now we examine the intersite bright soliton type III which, due to symmetry, has ex-

actly the same eigenvalues as type IV. In Fig. 3.13, we plot the analytical approximation

for two critical eigenvalues given by Eqs. (3.3.42)-(3.3.43) or (3.3.44)-(3.3.45), which are

compared with the corresponding numerical results. We conclude that the approxima-

tion is quite accurate for small ε and that the range of accuracy is wider for smaller

value of α.

The structure of the eigenvalues of this type of solution and the curves of the imag-

inary part of the corresponding two critical eigenvalues are given in Fig. 3.14 for the

three values of α used in Fig. 3.13. The figure reveals the condition of instability of

solitons up to the limit points of ε at which the minimum imaginary part of the eigen-

values becomes zero; these conditions are indicated by the corresponding vertical lines

in the third column. In fact, these limit points indicate the branch points of pitchfork

bifurcation experienced by the intersite solitons type I, III and IV (we will discuss this

bifurcation in more detail in the next section).

The first and second columns of Fig. 3.14 respectively present the condition just be-
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(c) α = 0.3

Figure 3.12: (a)-(b) The eigenvalue structure of intersite bright solitons type II for two

values (α, ε) as indicated in the caption. (c) The imaginary part of two

discrete eigenvalues in varied ε (indicated by solid and dashed lines).
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Figure 3.13: Comparisons between two critical eigenvalues of intersite bright solitons

III and IV obtained numerically (solid lines) and analytically (dashed

lines) for values of α as shown in the caption. In panels (a) and (b), the up-

per and lower dashed curves correspond, respectively, to Eqs. (3.3.42) and

(3.3.43), whereas in panel (c) they correspond to Eqs. (3.3.44) and (3.3.45).
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fore and after a collision of one of the discrete eigenvalues which does not contribute

to the instability of solitons. Interestingly, as shown in panel (c), such an eigenvalue

also crosses the real axis at some critical ε as indicated by the empty circle. The lat-

ter condition, in fact, indicates a Hopf bifurcation, which occurs when the soliton is

already in unstable mode. This is different from the previous discussions where the

Hopf bifurcations also indicate the change of stability of solitons.
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Figure 3.14: (First and second columns) The structure of eigenvalues of intersite bright

solitons type III and IV for parameter values (α, ε) as indicated in the

caption. (Third column) The imaginary part of two critical eigenvalues

(shown by solid and dashed lines) obtained by varying ε. The vertical

lines indicate the limit points of ε up to which the soliton exists, i.e., when

the minimum imaginary part of the eigenvalues becomes zero.

In Fig. 3.15 we present the (in)stability window for intersite bright solitons type III and

IV which is defined as the area to the left of the solid line; this line represents the set

of the branch points of pitchfork bifurcation in the (ε, α)-plane. From the figure, we

conclude that the intersite type III and IV are always unstable. The area to the right of
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the solid line belongs to the unstable region of intersite type I. One can check that this

line is exactly the same as the rightmost solid line in Fig. 3.10. In addition, the dashed

line appearing in Fig. 3.15 depicts the occurrence of Hopf bifurcations. However, there

is one special point indicated by the white-filled circle, at which the ε-derivative of

the imaginary part of the corresponding critical eigenvalue is zero; this degenerate

point will be discussed further in Section 3.5. The empty circle lying on the Hopf line

reconfirms the corresponding point in panel (c) of Fig. 3.14.
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Figure 3.15: The (in)stability region of intersite bright solitons type III and IV in (ε, α)-

space. The solid line indicates the branch-point line of pitchfork bifur-

cation. The dashed line represents the occurrence of Hopf bifurcations

(with one degenerate point at the white-filled circle), which arises from

one of the critical eigenvalues which does not contribute to the instability

of solitons. The empty circle lying on the dashed line corresponds to that

point depicted in panel (c) of Fig. 3.14.

3.4.2.4 Saddle-node and pitchfork bifurcation of intersite bright solitons

From both numerical and analytical results discussed above, we observed that the in-

tersite type I and II have the same profile and stability when approaching α = γ. This

fact indicates the appearance of a saddle-node bifurcation undergone by the two soli-

tons. Moreover, there also exists a pitchfork bifurcation experienced by the intersite

type I, III and IV.

One can check that the norm of the intersite type III and IV is exactly the same for

all parameter values so that this quantity can no longer be used for depicting a clear

bifurcation diagram. Therefore, we now simply plot the value of |u0|2 for each solution,
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e.g., as a function of α and fixed ε = 0.1; this is shown in Fig. 3.16 where the numerics

(solid lines) is obtained by a pseudo-arc-length method. As seen in the figure, the

intersite type I, III and IV meet at a (pitchfork) branch point (BP) α ≈ 0.49. At this point,

the stability of the intersite type I is switched. Furthermore, the intersite type I and II

also experience a saddle-node bifurcation where they merge at a limit point (LP) α =

γ = 0.5. Just before this point, the intersite type I possesses one unstable eigenvalue,

while the type II has two unstable eigenvalues. The two critical eigenvalues for the

intersite type I and II then coincide at LP. We confirm that our analytical approximation

for the value of |u0|2 is relatively close to the corresponding numerical counterpart.

Next, let us plot the value of |u0|2 for each soliton by fixing α = 0.1 and varying ε

(presented in Fig. 3.17). The pitchfork bifurcation experienced by the intersite type

I (solid line), type III (upper dashed line) and type IV (lower dashed line) is clearly

shown in the figure. The three solitons meet together at a branch point BP. We also

depict in the figure the points at which Hopf bifurcations emerge (labelled by indexed

H). For the shake of completeness, we also plot the relevant curve for the intersite type

II (dotted line).
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Figure 3.16: Saddle-node and pitchfork bifurcations of intersite bright solitons by

varying α and fixing ε = 0.1. The curves depict the value of |u0|2 of

each solutions obtained numerically (solid lines) and analytically (dashed

lines). The profiles of the corresponding solutions at some values of α are

shown in the relevant insets. The intersite type I, III and IV merge at a

branch point (BP) α ≈ 0.49 and the intersite type I and II meet at a limit

point (LP) α = γ = 0.5.
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Figure 3.17: A pitchfork bifurcation of intersite bright solitons for fixed α = 0.1 and

varied ε. The curves represent the numerical value of |u0|2 for the corre-

sponding solutions as a function of ε. The intersite type I (solid line), type

III (upper dashed line) and type IV (lower dashed line) merge at a branch

point (BP). The occurrence of Hopf bifurcation (Hi) is detected in intersite

type I, III and IV. The dotted line corresponds to the intersite type II.

3.5 Nature of Hopf bifurcations and continuation of limit cy-

cles

If there is only one pair of non-zero real eigenvalues and the other eigenvalues have

strictly positive imaginary parts, a Hopf bifurcation also indicates the change of sta-

bility of the steady state solution. In this case, the periodic solutions bifurcating from

the Hopf point coexist with either the stable or unstable mode of the steady state solu-

tion. If the periodic solutions coexist with the unstable steady state solution, they are

stable and the Hopf bifurcation is called supercritical. On the other hand, if the periodic

solutions coexist with the stable steady state solution, they are unstable and the Hopf

bifurcation is called subcritical.

By applying, for example, the centre manifold theorem, we can generally determine

the nature of a Hopf point εc through its first Lyapunov coefficient l1(εc) (see, e.g.,

Kuznetsov [115]); the Hopf bifurcation is subcritical iff l1(εc) > 0 and supercritical iff

l1(εc) < 0.

To numerically calculate the first Lyapunov coefficient for a Hopf point and perform a

continuation of the bifurcating limit cycle, we use the numerical continuation package

Matcont. Due to the limitations of Matcont, we evaluate the soliton using 21 sites. In

fact, this setting does not affect significantly the soliton behaviour compared to that
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used in the previous section.

In this section, we examine the nature of Hopf points and the stability of cycle contin-

uations in onsite type I, intersite type I and intersite type III-IV.

3.5.1 Onsite type I

For this type of solution, in particular at α = 0.1, we have one Hopf point, which oc-

curs at εc ≈ 0.3077 (see again panel (c) in Fig. 3.3). From Matcont, we obtain l1(εc ≈
0.3077) > 0 which indicates that the Hopf point εc is subcritical and hence the limit

cycle bifurcating from this point is unstable. A continuation of the corresponding limit

cycle is given in Fig. 3.18(a). As the Hopf point in this case also indicates the change

of stability of the stationary soliton, one can confirm that the bifurcating periodic soli-

tons are unstable because they coexist with the stable onsite type I; this agrees with the

computed first Lyapunov coefficient above (the instability will be clearly shown in the

next section when we numerically evaluate its dynamics). Interestingly, the continua-

tion of the limit cycle also experiences saddle-node and torus bifurcations, as indicated

by the points labelled LPC (limit point cycle) and NS (Neimark-Sacker), respectively.

The profile of a representative periodic soliton over one period is shown in Fig. 3.18(b),

from which we clearly see the typical oscillation in the soliton amplitude.
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Figure 3.18: (a) The continuation of the limit cycle from a Hopf point H for an onsite

soliton type I with α = 0.1. The first Lyapunov coefficient for H cal-

culated by Matcont is positive, i.e., H is subcritical. The bold solid line

represents the norm of the stationary soliton while the solid and dashed

lines indicate, respectively, the maximum and minimum of the norm of

the bifurcating periodic solitons. (b) The profile of a periodic soliton over

one period (T ≈ 3.4319) corresponding to the black-filled circle in panel

(a).
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From the previous discussion we have mentioned that there is one degenerate point

for Hopf bifurcations in onsite type I, which is indicated by the white-filled circle in

Fig. 3.4. In Fig. 3.19, we depict numerical continuations of periodic orbits of two Hopf

bifurcations near the degenerate point. We obtained that the limit cycle branches bi-

furcating from the Hopf points are connected and form a closed loop. This informs us

that as α approaches the critical value for a degenerate Hopf point, the “radius” of the

loop tends to zero. Hence, one may conclude that at the double-Hopf point, there is no

bifurcation of periodic orbits.
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Figure 3.19: As Fig. 3.18(a) but for α = 0.492642. Two Hopf points (stars) in the neigh-

bourhood of the degenerate point (the while-filled circle in Fig. 3.4) are

shown to be connected by a branch of limit cycles.

3.5.2 Intersite type I

In particular for α = 0.1, there are three Hopf points detected for the intersite type I (see

again Fig. 3.17). For point H1 (εc ≈ 0.2782), Matcont gives a negative value for the first

Lyapunov coefficient, which means that the bifurcating periodic soliton is stable or H1

is supercritical (we confirm the stability in the next section by examining its numerical

evolution). The corresponding cycle continuation is presented in Fig. 3.20(a). As shown

in the figure, the limit cycle bifurcating from H1 coexist with the unstable mode of the

(steady-state) intersite type I which confirms the supercritical H1 (recall that the Hopf

bifurcation in this case also indicates the change of stability of the soliton, i.e., it is

stable (unstable) just below (above) εc ≈ 0.2782 [see again Fig. 3.9(c)]). We also see

from the figure that the cycle continuation contains NS, LPC and BPC (branch point

cycle) points which indicate the occurrence of, respectively, torus, saddle-node and

99



3.5 NATURE OF HOPF BIFURCATIONS AND CONTINUATION OF LIMIT CYCLES

pitchfork bifurcations for limit cycle. The branches of the cycle continuation from the

BPC point are shown in the figure. A representative periodic soliton (in one period)

which occurs at one representative point along the cycle continuation is depicted in

Fig. 3.20(b), which shows the oscillation between the two excited sites.

Next, for H2 (εc ≈ 0.3871) and H3 (εc ≈ 0.4934), the first Lyapunov coefficients given by

Matcont are negative and positive valued, respectively. Thus, H2 is supercritical while

H3 is subcritical, which implies that the limit cycles bifurcating from H2 and H3 are

stable and unstable, respectively (confirmation of these stability findings through their

numerical dynamics will be shown in the next section). The continuations of the corre-

sponding limit cycles are shown in Fig. 3.21(a). From the figure, we see that the limit

cycles bifurcating from H2 and H3 respectively coexist with the unstable and stable sta-

tionary intersite soliton type I. This fact is consistent with the nature of H2 and H3 as

given by Matcont. In addition, as shown in the figure, a period-doubling (PD) bifur-

cation also occurs in the cycle continuation coming from H3. This bifurcation seems to

coincide with the turning point of cycle (LPC) which appears in the cycle continuation

starting from H2. The profile of one-period periodic solitons at the two representative

points near H2 and H3 are presented in Figs. 3.21(b) and 3.21(c), respectively. We can-

not see clearly the typical oscillation of the periodic soliton shown in the upper panel of

Fig. 3.21(b) as it occurs very near to H2. However by plotting the absolute value of the

solution at site n = 0 and n = 1 over one period (see the lower panel of Fig. 3.21(b)), one

can confirm the oscillation between the two excited sites. By contrast, the oscillation in

the soliton amplitude is clearly visible in Fig. 3.21(c).

Similarly to the onsite type I, we also noticed the presence of a double-Hopf bifurcation

in the intersite type I, i.e., the white-filled circle in Fig. 3.10. To investigate the point,

we evaluate several Hopf points nearby the bifurcation point and perform numerical

continuations for limit cycles, which are presented in Fig. 3.22. Unlike the case in the

onsite type I, here the (non-degenerate) Hopf points are not connected to each other by

a closed loop of a branch of limit cycles. As we observe this scenario at any Hopf point

that is arbitrarily close (up to a numerical accuracy) to the degenerate (codimension 2)

bifurcation, it indicates that at the double-Hopf point, there is a bifurcation of at least

two branches of periodic solutions.

3.5.3 Intersite type III and IV

As intersite bright soliton type III and IV possess the same eigenvalue structures, the

nature of the corresponding Hopf bifurcation and the stability of the continuation of

each limit cycle will be the same as well. Therefore it is sufficient to devote our discus-
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Figure 3.20: (a) The cycle continuation from Hopf point H1 for intersite bright soliton

type I with α = 0.1. In this case, H1 is supercritical. The bold solid line

indicates the value of |u0|2 for the stationary soliton, which is the same

as that shown in Fig. 3.17. The solid and dashed lines represent, respec-

tively, the maximum and minimum value of |u0|2 for the bifurcating pe-

riodic solitons, which also experience a pitchfork cycle bifurcation. The

branches of the cycle are depicted by the dash-dotted (maximum |u0|2)

and dotted (minimum |u0|2) lines. (b) The profile of a periodic soliton

over one period (T ≈ 5.5265) corresponding to the star point in panel (a).

(c,d) Enlargements of, respectively, the upper and the lower rectangles in

panel (a).

.
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Figure 3.21: (a) As Fig. 3.20(a) but for H2 and H3, where the inset gives the zoom-in

for the corresponding region showing that H2 and H3 are supercritical

and subcritical, respectively. The bold solid line is the same as that shown

in Fig. 3.17, i.e., representing the value of |u0|2 for the stationary intersite

soliton. The solid (dashed) and dash-dotted (dotted) lines shows the max-

imum (minimum) value of |u0|2 for the periodic soliton which bifurcates

from, respectively, H2 and H3. (b,c) The profile of periodic solitons over

one period T ≈ 6.708 and T ≈ 3.4985 which corresponds, respectively, to

the star and the black-filled circle in panel (a).
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Figure 3.22: As Fig. 3.21(a) but for α = 0.108 (triangles) and α = 0.11082 (stars) in the

proximity of the while-filled circle in Fig. 3.10.

sion to intersite type III only.

As shown in Fig. 3.17, there is one Hopf point, namely H4, for the intersite type III at

α = 0.1. In this type of solution, the Hopf bifurcation occurs while other eigenvalues

already give rise to instability; this is different from the type of Hopf bifurcation dis-

cussed previously. Therefore we cannot perform the analysis as before in determining

the stability of the bifurcating periodic soliton. In fact, according to calculation given

by Matcont, the first Lyapunov coefficient for H4 is positive (subcritical), which means

that the bifurcating periodic soliton is unstable. As shown in the next section, this

instability will be confirmed through its time evolution.

Fig. 3.23(a) shows the continuation of the corresponding limit cycle from H4. A repre-

sentative one-period periodic soliton at ε near H4 (indicated by the black-filled circle)

is shown in Fig. 3.23(b), from which we can see clearly the oscillation in the amplitude

of soliton.

Next, we study the double-Hopf bifurcation for the intersite type III-IV shown by the

white-filled circle in Fig. 3.15. We present in Fig. 3.24 the continuation of the limit

cycles from two Hopf points about the degenerate point, from which we see that they

are connected to each other. Therefore, as for the case of the onsite type I, we argue that

there is no bifurcation of periodic solutions at the degenerate point.

103



3.5 NATURE OF HOPF BIFURCATIONS AND CONTINUATION OF LIMIT CYCLES

0.32 0.34 0.36 0.38 0.4

1

1.5

2

2.5

3

H
4

ε	

m
ax

(|
u 0|2 ),

 m
in

(|
u 0|2 )

LPC

LPC

LPC

LPC

(a)

−10
−5

0
5

10

0 

1.8694

3.7388
0

0.5

1

1.5

nt

|u
n|

(b)

Figure 3.23: (a) The cycle continuation from Hopf point H4 for intersite bright soliton

type III with α = 0.1 showing that H4 is subcritical. The dashed line

shows the value of |u0|2 for the stationary soliton (the same as that shown

in Fig. 3.17) while the solid and dotted lines represent, respectively, the

maximum and minimum |u0|2 of the bifurcating periodic solitons. (b) The

profile of a periodic soliton over one period T ≈ 3.7388 corresponding to

the black-filled circle in panel (a).
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Figure 3.24: As Fig. 3.23(a) but for α = 0.1411. The degenerate (Hopf-Hopf) point

indicated as the while-filled circle in Fig. 3.15 is at ε ≈ 0.49.
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3.6 Numerical integrations

In this section, we confirm our stability findings through integrating numerically the

time-dependent equation (3.1.1). To do so, we use a fourth-order Runge-Kutta method

with the initial condition being the corresponding stationary soliton solution of equa-

tion (3.2.1). The numerical integration of Eq. (3.1.1) is also examined to confirm the

stability findings for the bifurcating periodic solutions as discussed above.

3.6.1 Stationary solitons

Here we particularly examine the dynamics of the stationary solitons of which the

initial profiles correspond to the eigenvalue structures depicted in the figures of Sec-

tion 3.4. We show that the dynamics of the stable and unstable solitons are consistent

with, respectively, the stability and instability mode of the corresponding eigenvalue

structures.

We begin by evaluating the onsite soliton type I. The numerical evolution of this type

of soliton is shown in Fig. 3.25. In the top right panel, the typical dynamics of the

unstable soliton is in the form of oscillatory instability which decays and then vanishes

completely. In contrast, the unstable soliton in the middle right panel evolves to a

seemingly stable oscillatory solution.

In Fig. 3.26 we present the dynamics of the onsite soliton type II which was observed

previously as being always unstable, except at α = γ (note that the linearised Eq. (3.1.1)

has solutions of the form e(γ−α)t, thus the stability of soliton when α = γ is basically

due to a balance between damping and driving parameters). As shown in the left panel,

the unstable soliton manifests itself in the form of oscillation in the centre of the soliton

with different frequency and amplitude, which then becomes constant. Contrastingly,

the typical instability of the unstable soliton in the right panel is in the form of soliton

decay, which leads to the zero solution just after a short period of time.

Next, we examine the dynamics of the intersite bright soliton type I, which is illustrated

in Fig. 3.27. In the middle and bottom right panels, we see that the unstable intersite

soliton changes into an onsite soliton. By contrast, the unstable intersite soliton in the

top right panel still preserves its two-excited-state nature but suddenly shifts to the

next sites with different amplitude.

For intersite bright soliton type II, which was shown to be always unstable except at

the point α = γ = 0.5 and ε = 0, we present its time dynamics in Fig. 3.28 for two

representative unstable solitons. As we see from the figure, the instability makes the
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Figure 3.25: The time evolution of onsite bright soliton type I governed by the time-

dependent equation (3.1.1). The parameter values are indicated in the

caption of each panel, i.e., they correspond to the same parameters as

those in the left and middle panels of Fig 3.3. The contour plot indicates

the value of |φn|.
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Figure 3.26: As Fig. 3.25, but for onsite type II. The eigenvalue structure of the initial

profile in each panel is shown in Fig. 3.6.

soliton change its profile into an onsite mode (left panel) or decay (right panel).

Finally, we present the numerical evolution of intersite soliton type III-IV in Fig. 3.29.

We have confirmed the instability of this soliton in the previous discussion. All the

typical dynamics of the unstable soliton presented in Fig. 3.29 are in the form of loss of

its asymmetry, i.e., each soliton turns into a symmetric intersite soliton just after a short

time.

3.6.2 Periodic solitons

In this section, we examine the dynamics of the time-dependent Eq. (3.1.1) for the pe-

riodic solitons which arise at the corresponding Hopf bifurcations experienced by the

onsite type I, intersite type I and intersite type III-IV. The time evolution of the peri-

odic solitons whose profiles were depicted in the corresponding figures in Section 3.5

is presented in Fig. 3.30. From the figure, we can confirm the relevance of the stability

of the periodic solitons investigated in Section 3.5. The typical dynamics of the unsta-

ble periodic solitons is in the form of breather destruction which eventually leads to

zero solution. For periodic intersite soliton type III and IV [panel (e)], this destruction

happens after just a short time.

3.7 Conclusion

In this chapter, we have considered a parametrically driven damped discrete nonlin-

ear Schrödinger (PDDNLS) equation. The existence and stability of fundamental dis-

crete bright solitons have been examined analytically through a perturbation theory for
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Figure 3.27: As Fig. 3.25, but for intersite type I with the same parameter values as

those in the left and middle panels of Fig. 3.9.
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Figure 3.28: As Fig. 3.25, but for intersite bright soliton type II. The initial profile

in each panel has the corresponding eigenvalue structure depicted in

Fig. 3.12.

small ε and then corroborated by numerical calculations. We showed that there are two

types of onsite discrete soliton, namely onsite type I and II. For onsite type I, we found

an interval in α for which the soliton is stable for any coupling constant, i.e., a damping

can re-stabilise a driven onsite soliton. Contrastingly, the onsite type II was found to be

always unstable for all ε. These two solitons experience a saddle-node bifurcation with

the limit point α = γ for any ε.

We also showed that there are four types of intersite discrete soliton, called intersite

type I, II, III and IV. In fact, intersite type III and IV are essentially considered as one

solution due to its symmetry. We obtained that intersite type I in the region of insta-

bility in the non-dissipative case can be stabilised by damping while intersite type II

and III-IV are always unstable. A saddle-node bifurcation, as for the onsite soliton,

was found to be undergone by intersite type I and II. Moreover, we also obtained that

intersite type I, III and IV experience a pitchfork bifurcation. The branch points of such

a bifurcation in the (ε, α)-plane have been calculated numerically.

More interestingly, we observed that Hopf bifurcation also occurs in onsite type I, in-

tersite type I and intersite type III-IV, which confirms the existence of the correspond-

ing periodic solitons (limit cycles) in the PDDNLS equation. The continuation of the

limit cycles as well as the stability of the periodic solitons have been demonstrated nu-

merically using the numerical continuation software Matcont. In particular, subcritical

Hopf bifurcations for onsite type I and intersite type III-IV were observed. Moreover,

we obtained three Hopf bifurcations for intersite type I. It was shown that two of these

points generate stable periodic solitons, i.e., the bifurcations are supercritical. The rel-

evance of the stability findings has been confirmed through numerical integrations of
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Figure 3.29: As Fig. 3.25, but for intersite type III and IV. The dynamics of all unstable

solitons presented here corresponds to the unstable mode of the eigen-

value structures in Fig. 3.14.
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Figure 3.30: The time dynamics of Eq. (3.1.1) for periodic solitons bifurcating from the

Hopf bifurcation of onsite type I, intersite type I and intersite type III-IV.

The initial profile in panels (a)-(f) corresponds to the profile of the peri-

odic soliton depicted in Figs. 3.18(b), 3.20(b), 3.21(b), 3.21(c) and 3.23(b),

respectively. The contour plots show the value of |φn|.

111



3.7 CONCLUSION

the time-dependent PDDNLS equation for both stationary and periodic solitons.
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CHAPTER 4

Travelling solitons in a discrete

nonlinear Schrödinger equation

with saturable nonlinearity

In the last two chapters, we have dealt with the discrete nonlinear Schrödinger (DNLS)

equation with cubic nonlinearity by introducing the effect of parametric driving and/or

damping. In this chapter, our study is devoted to another type of DNLS systems char-

acterised by the so-called saturable nonlinearity. While the study in Chapters 2 and 3

is particularly concerned with standing wave solutions, here we focus our attention on

travelling waves of the lattice system.

4.1 Introduction

One of the major issues in studies of spatially discrete systems is whether such systems

can support solitary waves that travel without losing energy to radiation, which results

in deceleration and eventually pinning of the solitons. The celebrated Peierls-Nabarro

(PN) barrier [63, 64] is the reason that discrete systems do not generically support ex-

ponentially localised travelling solitary waves. The barrier corresponds to the energy

difference between the onsite- and the intersite-centred lattice solitons, with the latter

usually having a higher energy.

The first attempt at finding travelling solitons in lattice system modelled by a discrete

nonlinear Schrödinger (DNLS) equation was undertaken by Eilbeck [116], followed

by a more systematic study by Feddersen [117] and Duncan et al. [118]. The latter

works indicate that travelling lattice solitons in the DNLS system are accompanied by

nonzero-radiation tails, which was confirmed by more recent studies (see, e.g., Gómez-
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Gardeñes et al. [68, 119], Melvin et al. [69] and Pelinovsky et al. [120]).

While the most typical onsite nonlinearity in DNLS models is cubic, waveguiding ar-

rays made of photorefractive materials feature the saturable nonlinearity. Under appro-

priate conditions, the saturable nonlinearity may be approximated by a truncated poly-

nomial nonlinearity, e.g., a cubic–quintic truncation. One- and two-dimensional (1D

and 2D) solitons in the DNLS with the cubic–quintic onsite nonlinearity have also been

studied in some detail (see, e.g., Carretero-González et al. [81] and Chong et al. [121]).

It was found that the saturable nonlinearity readily supports travelling solitons in

discrete media (Hadžievski et al. [65] and Vicencio & Johansson [122]). A reason for

this property is the fact that the PN barrier can change its sign in the case of the sat-

urable nonlinearity [65], hence the barrier may vanish at isolated points (see the rele-

vant discussion about this in Section 1.4.3). This property may be essential in finding

lattice solitary waves that can travel permanently without emitting radiation (lattice

phonons).

4.1.1 The considered model and preliminary analyses

The saturable DNLS equation modelling the propagation of optical waves in a photore-

fractive medium is

i
dφn

dt
= −ε∆2φn(t)− Λφn(t) +

σφn(t)

1 + |φn(t)|2
, (4.1.1)

where, as in the previous governing equations in Chapters 2 and 3, φn is a complex-

valued wave function at site n, ε is the strength of the coupling between adjacent sites,

∆2φn(t) = φn+1(t) − 2φn(t) + φn−1(t) is the 1D discrete Laplacian, Λ is a background

frequency and σ is the nonlinearity coefficient. We note that the transformation

t → t/σ, ε → σε, Λ → σΛ (4.1.2)

allows us to replace σ in Eq. (4.1.1), without loss of generality, by 1, implying that the

onsite nonlinearity is self-focusing provided that ε > 0.

To study travelling-wave solutions of Eq. (4.1.1), an ansatz of the form

φn(t) = ψ(z, τ), (4.1.3)

with z = n − ct and τ = t, is substituted into the equation to yield the time-dependent

advance–delay-differential equation

− icψz(z, τ) + iψτ(z, τ) = (2ε − Λ)ψ(z, τ)− ε [ψ(z + 1, τ) + ψ(z − 1, τ)]

+
ψ(z, τ)

1 + |ψ(z, τ)|2 , (4.1.4)
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where c is the velocity. Travelling-wave solutions of Eq. (4.1.1) can be sought using the

time-independent version of Eq. (4.1.4),

− icψ′ = (2ε − Λ)ψ(z)− ε [ψ(z + 1) + ψ(z − 1)] +
ψ(z)

1 + |ψ(z)|2 , (4.1.5)

with ψ′ ≡ dψ
dz .

Eq. (4.1.5) admits the existence of rotational and translational invariance under trans-

formations

ψ → ψeiθ, θ ∈ R, (4.1.6)

and

ψ(z) → ψ(z + z̃), z̃ ∈ R, (4.1.7)

respectively. However, our attention is focused on the fundamental single hump soli-

ton solutions of Eq. (4.1.5). Therefore we will look for solutions that are invariant under

the reversing symmetry

z → −z, ψ → ψ∗, (4.1.8)

where the asterisk denotes complex conjugation. From this reversibility property, we

may construct a soliton solution whose real part is an even function whereas the imag-

inary part is odd, and thus ψ(0) is real.

4.1.2 Previous works on the saturable DNLS model

In the particular case of σ = Λ, exact stationary solutions of Eq. (4.1.1) including the

soliton solutions have been derived by Khare et al. [123, 124]. The stability of the ob-

tained solutions was also discussed therein, and the solutions were shown numerically

to be linearly stable in most cases. Moreover, the stationary onsite and intersite dark

solitons in the defocusing case of Eq. (4.1.1), i.e., when Λ < 0 and σ < 0, have also been

considered by Fitrakis et al. [86] by using an anticontinuum (AC) limit approach. In the

latter reference, it was shown that the onsite solutions are stable for small values of ε,

while the intersite solutions are always unstable.

The existence of travelling solitons for the saturable DNLS was investigated numer-

ically by Melvin et al. [66, 67] by solving Eq. (4.1.5) using a pseudo-spectral method,

which yielded weakly delocalised solitary waves, i.e., the solutions are accompanied

by nonzero oscillating tails. Genuinely localised pulse-like solutions were then gener-

ated by finding zeros of an appropriately defined measure of the tail amplitude. The

idea of identifying truly localised solutions from the “tail condition” is similar to that

used by Yang et al. [125]. In the later reference, the term embedded solitons (ESs) was in-

troduced for the first time for such solutions, which we will explain later. In Melvin et
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al. [66], the stability of the obtained solutions was analysed numerically by calculating

the Floquet multipliers of the solutions, using methods similar to that developed by

Gómez-Gardeñes et al. [119].

The presence of genuinely travelling lattice solitons in the saturable DNLS in the strong-

coupling case has been shown analytically by Oxtoby and Barashenkov, using expo-

nential asymptotic methods [126] (see also Melvin et al. [69]). The use of this sophisti-

cated technique is necessary, as the radiation emitted by moving solitary waves is expo-

nentially small in the wave’s amplitude. This is a reason why broad, small-amplitude

pulses in weakly coupled systems or lattice solitons in strongly coupled systems are

highly mobile, seeming like freely travelling solitons.

4.1.3 Overview

In this chapter, we revisit the study of the existence and stability of travelling solitary

waves in the saturable DNLS (4.1.1), which, as pointed out in the previous section, has

been discussed and solved numerically by Melvin et al. [66, 67]. Here we use a different

approach in both our numerical and analytical methods.

To examine the existence of the travelling solitary waves, following Melvin et al. [66,

67], first we need to solve the linear spectrum of Eq. (4.1.5); we perform this both nu-

merically and analytically using a perturbation expansion. The analysis leads us to

produce the diagram of the spectral bands from which we can identify the parameter

regions where a single resonance of the travelling solutions with plane waves occurs,

and thus finding isolated solutions with vanishing tails by varying one parameter only

within this regions becomes possible.

Next, to solve numerically Eq. (4.1.5) within the single-resonance parameter regions,

instead of using a pseudo spectral method as implemented by Melvin et al. [66, 67],

we propose an alternative scheme based on the discretization of Eq. (4.1.5). This dis-

cretization results in a system of difference equations which is then solved using a

Newton–Raphson method.

The numerically obtained soliton solutions in our scheme, as in Melvin et al. [66, 67], are

generally accompanied by oscillatory tails with a non-vanishing amplitude. Therefore,

to find solutions with non-oscillatory tails, as suggested in the latter references, we

need to add an extra tail condition. For this condition we consider either the measure

modified from that proposed by Melvin et al. [66, 67] or our alternative measure. All

of our numerical findings are then benchmarked against those in [66], confirming the

robustness of the results. However, we find that our numerical method is not accurate
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to examine the stability of solitons as the calculation of the corresponding eigenvalue

problem by means of our alternative scheme gives spurious unstable eigenvalues. This

is in contrast to the numerical results of [66], where the solitons were reported to be

linearly stable.

Moreover, we apply the variational approximation (VA) to study travelling solitary

waves and their stability analytically. The VA is also derived to predict the location

of ESs, i.e., the genuinely localised travelling solitary waves. The VA was applied to

construct fundamental discrete soliton solutions in the DNLS equation with cubic non-

linearity as well as in other variants of DNLS models (see Section 1.4.4.3 for a review

of the previous works which implemented the VA).

The chapter is organised as follows. In Section 4.2, we discuss the linear spectrum

of the advance–delay equation (4.1.5), and a perturbation expansion is performed to

obtain analytical approximations for the spectral bands. In Section 4.3, we introduce

our numerical scheme for solving Eq. (4.1.5) and then benchmark our results against

those obtained by Melvin et al. [66]. Next, in Section 4.4, we develop the VA for the

solitary-wave solutions of the advance-delay equation. In the same section, we derive

an analytical function whose zeros correspond to the location of ESs. The use of the VA

in analysing the stability of the travelling solitary waves is also discussed in the section.

In addition to saturable model, for comparison purposes, we also derived in Section 4.4

the similar variational formulations for a polynomial DNLS equation. Comparisons

of our findings obtained from the VA with the corresponding numerical results are

then presented in Section 4.5. Moreover, we address in Section 4.6 the failure of our

numerical scheme in examining the stability of the solitons. Finally, we summarise our

results in Section 4.7.

4.2 Dispersion relations

As discussed by Melvin et al. [66, 67], travelling solitary waves of the saturable DNLS

are in general accompanied by nonzero oscillating tails, i.e., Λ will always resonate

with the system’s linear spectral (phonon) band. Because of this, a genuinely travelling

solitary wave is embedded into the continuous spectrum, which appears as an excep-

tional solution. For that reason, such a solution is called an “embedded soliton” (ES).

Therefore, in order to find localised solutions, it is necessary to minimise such reso-

nances.
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The frequency of the oscillating tail can be obtained by substituting

ψ(z) = eiλz (4.2.1)

into the linear part of Eq. (4.1.5), i.e.,

icψ′ + (2ε − Λ + 1)ψ(z)− ε [ψ(z + 1) + ψ(z − 1)] = 0, (4.2.2)

which then yields

F ≡ cλ + (Λ − 1)− 2ε (1 − cos(λ)) = 0. (4.2.3)

There is always at least one real value of λ satisfying this equation. To minimise the

resonances, one needs to find a region in parameter space in which Eq. (4.2.3) has only

one root with λ > 0. To find such a region efficiently, we need to solve Eq. (4.2.3)

simultaneously with the condition for the (dis)appearance of a double root (dF/dλ =

c − 2ε sin(λ) = 0), i.e.,

λ = λ+ ≡ 2mπ + arcsin
( c

2ε

)

, λ = λ− ≡ (2m + 1)π − arcsin
( c

2ε

)

, (4.2.4)

with integer m. These roots produce curves separating regions with different numbers

of roots. Equations (4.2.3) and (4.2.4) have been solved numerically and analysed by

Melvin et al. [66, 67]. In the following, we will solve Eqs. (4.2.3) and (4.2.4) analytically,

using perturbation expansions.

When |c| ≪ 1, ε = O(1), and λ = λ+, Eq. (4.2.3) yields

Λ = 1 − 2mπc − (4ε)−1 c2 +O(c3). (4.2.5)

Omitting the terms of O(c3), we may solve Eq. (4.2.5) for c, to give

cs,1 = −4mπε ± 2
√

(2mπε)2 − (Λ − 1)ε, (4.2.6)

which is meaningful only when Λ ≤ (2mπ)2ε + 1. In particular, one needs Λ ≤ 1 to

ensure that Eq. (4.2.6) is valid for all n and ε. For Λ < 1, taking the plus and minus

signs in Eq. (4.2.6) will, respectively, make cs,1 positive and negative, while taking the

plus sign in Eq. (4.2.6) will make cs,1 = 0 for Λ = 1.

With the same small parameter (c), but now λ = λ−, the solution of Eq. (4.2.3) is given

by

Λ = 1 + 4ε − (2m + 1)πc + (4ε)−1 c2 +O(c3). (4.2.7)

Eq. (4.2.7), after omission of the terms of O(c3), may also be solved for c, to yield

cs,2 = 2(2m + 1)πε ± 2
√

((2m + 1)πε)2 − 4ε2 + (Λ − 1)ε, (4.2.8)
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provided that Λ ≥ (4 − (2m + 1)2π2)ε + 1. Note that setting Λ ≤ 1 in the above

equation will result in cs,2 being non-negative for all m and ε.

Together, cs,1 and cs,2 are defined for all m and Λ ≤ 1 if

ε ≥ ε1 ≡ 1 − Λ

(2m + 1)2π2 − 4
. (4.2.9)

Furthermore, our analysis shows that cs,1 = cs,2 when either ε = ε2 or ε = ε3, where

ε2 =

(

−4 + π2 + 4π2m −
√

π2(π2 − 8)(4m + 1)2
)

(1 − Λ)

8(1 + 8m2π2 + 2π2m)
, (4.2.10)

ε3 =

(

−4 + π2 + 4π2m +
√

π2(π2 − 8)(4m + 1)2
)

(1 − Λ)

8(1 + 8m2π2 + 2π2m)
, (4.2.11)

which then gives the following two possible relations,

1. cs,1 ≤ cs,2 if either ε ∈ [ε1, ε2] or ε ∈ [ε3, ∞),

2. cs,1 > cs,2 if ε ∈ (ε2, ε3).

In practice, since ε is assumed to be of O(1), we should choose cs,1 and cs,2 defined for

ε ∈ [ε3, ∞).

Another case in which useful asymptotic progress may be made is where |c| ≪ 1 and

0 < ε ≪ 1. Substituting λ = λ+ into Eq. (4.2.3) and expanding quantities in terms of ε

yields, for m 6= 0,

Λ = 1 − Λ1ε2, c =
Λ1ε2

2mπ
− Λ2

1ε3

4(2mπ)3
+O(ε4). (4.2.12)

Eliminating Λ1 from Eq. (4.2.12) for c then yields the approximate relation

cl,1 =
1 − Λ

2mπ
− (1 − Λ)2

4ε(2mπ)3
. (4.2.13)

For m = 0, substituting λ = λ+ into Eq. (4.2.3) gives instead the expansions

Λ = 1 − Λ1ε3, c = ±
(

2
√

Λ1ε2 − Λ3/2
1 ε4

12
+O(ε6)

)

. (4.2.14)

This time, eliminating Λ1 from Eq. (4.2.14) for c yields the approximate relations

cl,2 = ±
(

2
√

1 − Λ
√

ε − 1

12
√

ε
(1 − Λ)3/2

)

, (4.2.15)

which is defined only for Λ ≤ 1. One may readily check that, for Λ < 1, the plus and

minus sign in the above equation correspond, respectively, to positive and negative cl,2,

whereas for Λ = 1 it follows that cl,2 = 0.
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Next, for the same small parameter (c), but with λ = λ−, we obtain from Eq. (4.2.3)

Λ = 1 + Λ1ε, c = c1ε +O(ε2), (4.2.16)

for m 6= 0 and for c1 satisfying

− c1 arcsin
( c1

2

)

+ (2m + 1)πc1 + Λ1 − 2 −
√

4 − c2
1 = 0. (4.2.17)

Then, by eliminating Λ1 and c1 from this equation, we obtain cl,3 as a function of ε,

defined implicitly by

− cl,3 arcsin
( cl,3

2ε

)

+ (2m + 1)πcl,3 + Λ − 1 − 2ε −
√

4ε2 − c2
l,3 = 0; (4.2.18)

in practice this equation must be solved numerically. For m = 0, after substituting

λ = λ− into Eq. (4.2.3), we obtain instead

Λ = 1 + 4ε + Λ1ε2, c = −Λ1

π
ε2 +

Λ2
1

4π3
ε3 +O(ε4), (4.2.19)

which, after elimination of Λ1, gives

cl,4 = −Λ − 1 − 4ε

π
+

(Λ − 1 − 4ε)2

4π3ε
. (4.2.20)

It turns out that for some values of ε (ε = εL, say, which must obtained numerically)

we have cl,1 = cl,3. In the case of |c| ≪ 1, cl,1 and cl,3 are defined for ε ∈ [εL, ∞). Similar

remarks apply to cl,2 and cl,4.

The results of numerically solving Eqs. (4.2.3) and (4.2.4) for non-negative c and Λ =

0.5, i.e., the same parameter values as used by Melvin et al. [66, 67], are shown as solid

lines in Fig. 4.1. The figure shows the first few spectral bands with more than one pair

of roots to Eq. (4.2.3). The fact that the spectral bands accumulate at one point as c → 0

in Fig. 4.1 indicates that the number of resonances increases as c approaches 0. On the

other hand, there are no resonances in the decoupling limit, ε = 0: as ε increases, the

number of resonances increases.

We also show in Fig. 4.1 the analytical approximations of the spectral bands that were

obtained above. For small c and ε = O(1), the approximations using Eqs. (4.2.6) and

(4.2.8) for m = 0, 1, 2, . . . are given as the lower and upper dashed lines, respectively,

for each m. For small c and small ε, the approximations using Eqs. (4.2.15) and (4.2.20)

are shown as the lower and upper dotted lines, respectively, for m = 0. Moreover, the

lower and upper dash-dotted lines in Fig. 4.1 show, respectively, the approximations

using Eqs. (4.2.13) and (4.2.18), for each m 6= 0. We can see that the approximations

are in excellent agreement with the numerical results. Interestingly, as shown in the
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figure, our approximations which are calculated for small parameters, in fact, are still

relatively good in the O(1)-parameter regions.

The value of frequency Λ (see Eq. (4.1.3)) influences the shape of the spectral bands,

as shown in Fig. 4.2. Taking a smaller value of Λ results in a wider gap between the

fundamental and the second lower band, as illustrated in Fig. 4.2(a) for Λ = 0. On the

other hand, a larger value of Λ yields a smaller gap, as illustrated in Fig. 4.2(b) with

Λ = 0.7. Furthermore, the gap disappears for Λ = 1, as seen in Fig. 4.2(c).

4.3 Numerical scheme: a finite-difference method

To solve Eq. (4.1.5) numerically, we use a scheme based on the discretization of the

equation, resulting in a system of difference equations. For approximating the spa-

tial derivative terms, we employ the central finite difference, so that the corresponding

Jacobian matrix is sparse. The difference equations are then solved using a Newton–

Raphson method. This is different from the previously used pseudo-spectral colloca-

tion method (Melvin et al. [66, 67]), in which the dependent variable ψ was represented

as a Fourier series, whose coefficients were then determined by solving a system of

algebraic equations obtained by requiring the series approximation to satisfy the gov-

erning equation at collocation points.

4.3.1 Numerical setup

In the framework of the finite-difference method, with grid size ∆z, we approximate

ψ(z) on a finite interval [−L, L], where L ∈ Z+, as follows:

ψ(z) ≈ ψ(−L + (k − 1)∆z) ≡ ψk, (4.3.1)

ψ(z ± 1) ≈ ψ(−L + [(k − 1)± (1/∆z)]∆z) ≡ ψk±(1/∆z), (4.3.2)

for k = 1, 2, ..., N = 2L/∆z + 1. N is the number of grid points which is odd (positive)

integer provided 1/∆z ∈ Z+. For ψ′(z) ≡ dψ
dz , we use the central two-point stencil,

ψ′(z) ≈ ψk+1 − ψk−1

2∆z
. (4.3.3)

Substituting the discretizations (4.3.1)–(4.3.3) into Eq. (4.1.5) yields

ic

2∆z
(ψk+1 − ψk−1) + (2ε − Λ)ψk − ε(ψk+(1/∆z) + ψk−(1/∆z)) +

ψk

1 + |ψk|2
= 0. (4.3.4)

Here, we use periodic boundary condition

ψN−1+j = ψj and ψ1−j = ψN−j, (4.3.5)
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Figure 4.1: Spectral bands in the (ε, c) plane obtained by solving Eqs. (4.2.3) and (4.2.4) for Λ = 0.5. The shaded areas and the values therein

show different regions with different numbers of roots to Eq. (4.2.3). The subplots show F, as defined in (4.2.3), indicating (i) one

root at parameter values ε = 1, c = 3, (ii) three roots at ε = 3, c = 3.5, and (iii) seven roots at ε = 3.5, c = 0.6. Panel (iv) zooms

in on the region of small ε and c, and only the first five bands are shown. The approximations for the spectral bands at small c,

obtained from Eqs. (4.2.6) and (4.2.8), are shown by the lower and upper dashed lines, respectively, for each m, while for small ε and

c, approximations using Eqs. (4.2.15)–(4.2.20) and Eqs. (4.2.13)–(4.2.18) are, respectively, shown by the lower-upper dotted lines for

m = 0 and lower-upper dash-dotted lines for each m 6= 0.
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(a) Λ = 0

(b) Λ = 0.7

(c) Λ = 1

Figure 4.2: As in Fig. 4.1, but using Λ as indicated in the caption of each panel.
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for j = 1, 2, . . . , 1/∆z.

Next, we solve the resulting system of nonlinear equations (4.3.4) numerically for a

fixed set of parameters (c, ε, Λ), using the Newton–Raphson method with an error tol-

erance of order 10−15. To do so, we define the left-hand side of Eq. (4.3.4) as fk and

then seek a solution with fk = 0 for k = 1, 2, ..., N − 1. Because ψ is complex, we

seek solutions in the form of ψ = Re(ψ) + iIm(ψ) (note that one may apply Newton’s

method to the complex equations (4.3.4), but the convergence can be complicated as

was demonstrated by Cayley [127]). Accordingly, we define a (real) functional vector,

F = [Re( f1), . . . , Re( fN−1), Im( f1), . . . , Im( fN−1)]
T, (4.3.6)

and a (real) solution vector,

Ψ = [Re(ψ1), . . . , Re(ψN−1), Im(ψ1), . . . , Im(ψN−1)]
T. (4.3.7)

Note that Eq. (4.1.5) has rotational and translational invariance. Therefore, to ensure

the uniqueness of solutions, we impose two constraints,

Re
(

ψ N+1
2 −1

)

− Re
(

ψ N+1
2 +1

)

= 0,

Im
(

ψ N+1
2

)

= 0,
(4.3.8)

upon F at ((N + 1)/2 + 1)th and ((N + 1)/2 + N)th elements, respectively (the posi-

tion of these imposed constraints in F is chosen solely based on trial-and-error). These

constraints significantly improve the convergence of the Newton–Raphson scheme.

4.3.2 The measure for seeking the embedded solitons

As shown by Melvin et al. [66, 67], in the general case the numerically obtained solitary

waves are weakly delocalised, i.e., oscillatory tails with a nonvanishing amplitude are

attached to them. Nevertheless, as suggested in [66, 67], it is possible to find solutions

with vanishing tails (i.e., genuine solitons) by considering a quantity

∆i = Im(ψN), (4.3.9)

which is a signed measure, whose zeros correspond to solutions with vanishing tails.

Note that the periodic boundary condition (4.3.5) leads to Im(ψ(N)) = 0, since the

imaginary part of ψ is odd. Therefore, we modify the signed measure (4.3.9) and define

it as

∆r = Re(ψN). (4.3.10)

124



4.3 NUMERICAL SCHEME: A FINITE-DIFFERENCE METHOD

In addition, we also define and use an alternative measure, given by

ρ = max {|ψi/ψN | : i = N − ζ/∆z, . . . , N} , (4.3.11)

whose usefulness in detecting genuine solitons will be compared with that of the func-

tion ∆r. In all the illustrative figures presented in the next discussion, we take ζ =

L− 20 (provided L > 20), which means that the observed tail is in interval [L/2+ 10, L].

Thus the longer L we use, the longer interval of tail we observe.

It is clear that ρ → ∞ whenever ψN → 0. Hence, if ρ is plotted as a parameter is varied,

then any vertical asymptote(s) will correspond to solutions with decaying oscillatory

tails. We note that, in general, both ∆r and ρ depend on the finite value chosen for L.

However, if L is large enough, then the positions of the zeros of ∆r and the asymptotes

of ρ may be considered to have converged, and should change little with any further

increase in L (corresponding to the limit of L → ∞).

4.3.3 Numerical results for the existence of travelling lattice solitons

In this work, we do not provide any rigorous proof of the convergence of the numer-

ical scheme outlined above. Therefore, to check the validity of our numerical scheme,

we benchmarked our results against those reported by Melvin et al. [66] for the same

parameter values. We show in Fig. 4.3 an example of a soliton with ε = 1, c = 0.7, Λ =

0.5, L = 60, ∆z = 0.2, which is virtually the same as that obtained using the pseudo-

spectral collocation method in [66].
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Figure 4.3: A soliton obtained by means of the alternative scheme presented herein

for ε = 1, c = 0.7, Λ = 0.5, L = 60, with the grid spacing ∆z = 0.2. This

solution is to be compared with the profile that was found by Melvin et

al. [66]. The solid and dashed lines are, respectively, Re(ψ) and Im(ψ). The

inset shows a magnification of the oscillating tail.
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(a) ∆z = 0.2, ε ≈ 0.988
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(b) ∆z = 0.1, ε ≈ 1.012

Figure 4.4: A soliton with a vanishing tail, corresponding to a zero of ∆r found by

varying ε. Both panels use c = 0.7, Λ = 0.5, L = 60, but use different

values for ∆z; correspondingly, slightly different values for ε are necessary

to achieve a zero of ∆r , as indicated in the caption to each panel.
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Once a solution is obtained, we perform numerical continuation by varying a param-

eter, calculating and recording the signed measure ∆r for each solution, as given by

Eq. (4.3.10). We seek the zeros of ∆r, which indicate solutions with vanishing oscilla-

tory tails. Using the parameter values in Fig. 4.3, we exhibit in Fig. 4.4 an example of

a soliton with a vanishing tail amplitude, which corresponds to a zero of ∆r, found by

varying ε. In this example, the soliton is found at ε ≈ 0.988. If we decrease the grid

size to ∆z = 0.1, the parameter value for an ES changes slightly to ε ≈ 1.012; thus the

location of the zero of ∆r depends slightly on the spatial discretization parameter ∆z.

However, we argue that the locations of the zeros converge as ∆z decreases, a conjec-

ture supported by numerical observations shown in Fig. 4.5. We plot in the figure the

measure ∆r as a function of ε for several values of ∆z, at parameter values c = 0.7,

Λ = 0.5 and L = 30. It was reported by Melvin et al. [66] that, for the same parameters,

∆r = 0 occurred for ε ≈ 0.76, 1.02, 1.36 (or, equivalently, for 1/ε ≈ 1.316, 0.98, 0.74).

From our figures, we see that our numerical scheme yields nearly the same values.

Note that, as discussed by Melvin et al. [66], in the regions where the dispersion relation

has more than one root, travelling lattice solitons would become objects of codimension

two and might cease to exist. Interestingly, from our numerical scheme, as shown in

Fig. 4.5, we found zero crossings in regions where three roots of linear wave frequency

λ occurs by varying one parameter only (see the shaded areas, cf. Fig. 4.1). This result,

however, needs a further justification which is beyond the scope of this thesis.

Just as ∆r was shown to be a function of the discretization parameter ∆z, it is to be

expected that ∆r should also be a function of L. In Fig. 4.6 we plot the signed measure

∆r (top panels) and function ρ (bottom panels), obtained from Eq. (4.3.11), for c = 0.7,

Λ = 0.7, ∆z = 0.2 and several values of L.

First we consider the value L = 30. In Fig. 4.6(a) we show ∆r and ρ as functions of

1/ε. We observe that ∆r has several zeros at which coincide with the asymptotes of

ρ. When L is taken slightly larger, i.e., L = 50, we see, in Fig. 4.6(b), that the number

of zeros of ∆r decreases and ρ has asymptotes that coincide with zeros of ∆r at ε ≈
0.828, 1.158, 1.544, 1.560, 1.623. For the sake of completeness, in Fig. 4.7 we depict the

deformation of the tail of the soliton as we vary the coupling constant ε around one of

the zeros of ∆r. Increasing the value of L further, to L = 100, we observe in Fig. 4.6(c)

that the zeros of ∆r are nearly the same as at L = 50, i.e., at ε ≈ 0.828, 1.158, 1.584,

with the local maxima of ρ also occurring at the same values. Note that the leftmost

zero-crossing point in both Figs. 4.6(b) and 4.6(c) is also found in the regions where

the number of resonances of the travelling solution with plane waves is three (see the

shaded areas, cf. Fig. 4.2(b)).
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(a)

(b)

(c)

(d)

Figure 4.5: Numerical continuations of weakly nonlocal solitons obtained by varying

1/ε for c = 0.7, Λ = 0.5 L = 30, and the grid spacing: (a) ∆z = 0.2,

where zeros of ∆r are found at ε ≈ 0.737, 0.987, 1.306, 1.850, 2.181, 2.212 (or

at 1/ε ≈ 1.357, 1.013, 0.766, 0.541, 0.459, 0.452); (b) ∆z = 0.1, with the ze-

ros of ∆r occurring at ε ≈ 0.756, 1.012, 1.338, 1.629, 1.853, 2.167, 2.182 (or at

1/ε ≈ 1.323, 0.988, 0.747, 0.614, 0.540, 0.461, 0.458); (c) ∆z = 0.05, where the

zeros of ∆r occur at ε ≈ 0.761, 1.018, 1.346, 1.666, 1.919, 2.182, 2.249 (or at

1/ε ≈ 1.314,0.982,0.743,0.600,0.521,0.458,0.445); and (d) ∆z = 0.01, with

the zeros of ∆r found at ε ≈ 0.761, 1.019, 1.349, 1.678, 1.938, 2.183, 2.273 (or

at 1/ε ≈ 1.314,0.981,0.741,0.596,0.516,0.458,0.440). Empty circles show the

positions of the zeros. The shaded regions indicate the regions in which

there are three roots of the linear wave frequency λ (see cf. Fig. 4.1).

128



4.3 NUMERICAL SCHEME: A FINITE-DIFFERENCE METHOD

(a)

(b)

(c)

Figure 4.6: The signed measure ∆r (top panel, cf. Eq. (4.3.10)) and ρ (bottom panel, cf.

Eq. (4.3.11)) as a function of 1/ε for c = 0.7, Λ = 0.7, ∆z = 0.2, and (a)

L = 30, with the zeros of ∆r occurring at ε ≈ 0.846, 1.037, 1.297, 1.326 at

which coincide with the asymptotes of ρ; (b) L = 50, with ∆r vanishing

at ε ≈ 0.828, 1.158, 1.544, 1.560, 1.623 and ρ exhibiting asymptotes at the

same values; (c) L = 100, with zeros of ∆r and asymptotes of ρ at ε ≈
0.828, 1.158, 1.584. The shaded regions correspond to the regions where

the number of resonance with linear waves is three (see cf. Fig. 4.2).
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From the computational results discussed above, we conclude that for parameter val-

ues c = 0.7 and Λ = 0.7, L = 30 is too small to be used to capture the behaviour

of travelling solitons in an infinite domain. In addition, as clearly seen in Figs. 4.6(b)

and 4.6(c), we notice the increasing of the magnitude of the asymptotes of ρ for larger ε

(smaller 1/ε) which happens because the solitons are getting broader when ε increases

(1/ε decreases). Therefore, we argue that the measure ρ can also be used to detect

whether or not the value taken for L is sufficiently large.
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Figure 4.7: The change in the soliton profile around one of the zeros of ∆r shown in

Fig. 4.6(b), as one varies ε. The bold curves show the profile with zero

amplitude tail at ε ≈ 1.158 (or at 1/ε ≈ 0.864). (a) Re(ψ), (b) Im(ψ).

Using the conclusions for the measure ρ formulated above, we have tested the results

shown in Fig. 4.5 by using this measure; this is presented in Fig. 4.8. From the two

aforementioned figures, we conclude that the local maxima of ρ coincide with zeros

of ∆r. However, the results in the shaded region are rather inconclusive. It is because

the solitons, as also the case for Λ = 0.7 (Fig. 4.6), become wider as ε increases (1/ε

decreases) while the value of L taken is not long enough to permit meaningful inves-

tigation of the behaviour of the soliton’s tail. Therefore, to obtain convincing results

concerning the presence of the additional zeros, we now use L = 60 and ∆z = 0.1; we

present ∆r and ρ for this setting in Fig. 4.9, which is focused on the additional zeros.

We observe in the figure that the positions of the asymptotes of ρ coincide with those of

the zeros of ∆r. Another interesting output we notice in that figure is that we still can

find a zero crossing in the region where the number of roots λ is five (see the darker

shaded areas, cf. Fig. 4.1). Again, the result for this additional zero does not necessarily

mean that it is a genuine one as a further justification is required.

It is also interesting to note that L = 30, which is not long enough for the case Λ = 0.7,

may be sufficient for the case Λ = 0.5 for some values of ε. This happens because
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(a)

(b)

(c)

(d)

Figure 4.8: The measure ρ corresponding to Fig. 4.5. The asymptotes of ρ coincide

with the zeros of ∆r in Fig. 4.5.
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larger values of Λ correspond to wider profiles for the soliton, which then require a

longer computational domain (see, e.g., Fig. 4.10).

Figure 4.9: Measures ∆r (top panel) and ρ (bottom panel) as a function of 1/ε fo-

cusing on the additional zeros of ∆r in Fig. 4.5, i.e., obtained by using

∆z = 0.1 and a longer computational domain with L = 60. The ze-

ros of ∆r and the asymptotes of ρ occur at ε ≈ 1.726, 2.179, 2.695 (or at

1/ε ≈ 0.579, 0.459, 0.371) with the latter lying in the region where the num-

ber of roots of frequency λ is five (darker shaded regions).

4.4 The variational approximation

The objective of this section is to derive a variational approximation (VA) for the soli-

tons obtained numerically above.

4.4.1 Core soliton solutions

As suggested in previous work (Gómez-Gardeñes et al. [119]), a travelling lattice wave

may be considered as superpositions of an exponentially localised core, ψcore, and a

non-vanishing oscillatory background, ψbckg, which is a delocalised solution of the lin-

earised version of Eq. (4.1.5). Hence, we may write

ψ(z) = ψcore(z) + bψbckg(z), (4.4.1)

where b is an arbitrary real small amplitude.

In this section, we first derive the VA for the core. To this end, we recall that Eq. (4.1.5)

can be represented in the variational form,

δL

δψ∗(z)
= 0, (4.4.2)
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where δ/δψ∗ stands for the variational derivative of a functional and the Lagrangian is

L =
∫ ∞

−∞

[

(2ε − Λ)|ψ|2 + ln
(

1 + |ψ|2
)

+
ic

2

[

ψ∗ψ′ − ψ(ψ∗)′
]

− ε

2
{ψ∗[ψ(z + 1) + ψ(z − 1)] + ψ[ψ∗(z + 1) + ψ∗(z − 1)]}

]

dz. (4.4.3)

A suitable trial function, or ansatz, for the core may be chosen as

ψcore(z) = F(z) eipz, (4.4.4)

where

F(z) = A sech(az), (4.4.5)

with A, a and p non-zero real variational parameters. The ansatz is chosen because it

is an exact solution of the continuous nonlinear Schrödinger equation with cubic non-

linearity. While this ansatz postulates exponential tails of the soliton, the prediction

of solitons within the framework of the VA does not necessarily mean that the corre-

sponding solitons exist in a rigorous sense, as the actual tail may be non-vanishing at

|z| → ∞. In fact, the prediction of solitons by the VA may imply a situation in which

the amplitude of the nonvanishing tail is not zero, but attains its minimum (Kaup &

Malomed [128]).

The next step is to substitute ansatz (4.4.4) into Lagrangian (4.4.3), perform the integra-

tion, and derive the (stationary) Euler-Lagrange equations

∂L

∂A
=

∂L

∂a
=

∂L

∂p
= 0. (4.4.6)

By substituting ansatz (4.4.4) into the Lagrangian and performing the integration, we

obtain the effective Lagrangian, as a function of parameters A, a and p,

Leff =
2A2(2ε − Λ − cp) +A2

+ +A2
−

a
− 4A2ε cos(p)

sinh(a)
, (4.4.7)

where A± = ln
(√

1 + A2 ± A
)

.

Then, substituting Lagrangian (4.4.7) into Eqs. (4.4.6) yields

A(2ε − Λ − cp)

a
+

A+

a
√

1 + A2
− 2Aε cos(p)

sinh(a)
= 0, (4.4.8)

−2A2(2ε − Λ − cp) +A2
+ +A2

−
a2

+
4A2ε cos(p) cosh(a)

sinh2(a)
= 0, (4.4.9)

− c

a
+

2ε sin(p)

sinh(a)
= 0. (4.4.10)

This system of algebraic equations for A, a and p will be solved numerically.

133



4.4 THE VARIATIONAL APPROXIMATION

Before proceeding to the next section, it is noteworthy to mention that if one replaces

the term ln
(

1 + |ψ|2
)

in the Lagrangian (4.4.3) by its truncated expansions (up to some

order), then the new expression of the integral becomes a Lagrangian of a DNLS equa-

tion with polynomial nonlinearity. Therefore, using the ansatz (4.4.4), the effective

Lagrangian (4.4.7) can be used to determine an effective Lagrangian of a polynomial

DNLS equation whose the nonlinearity is a Taylor expansion of the transcendental

function. This is carried out by simply expanding the term (A2
+ +A2

−)/a in Eq. (4.4.7),

which is the exact result of the integration of the transcendental function in Eq. (4.4.3),

with respect to A up to some order, depending on a polynomial DNLS system one

is interested in. For example, if one uses O(A4) and O(A6) expansions, the result-

ing effective Lagrangian corresponds to the cubic and cubic-quintic DNLS equations,

respectively.

Here, for the sake of comparison, we analyse the polynomial DNLS model

icψ′ + (2ε − Λ)ψ − ε [ψ(z + 1) + ψ (z − 1)] +
(

1 − |ψ|2 + |ψ|4 − |ψ|6
)

ψ = 0. (4.4.11)

The effective Lagrangian and the system of variational equations, by expanding (A2
+ +

A2
−)/a up to O(A8), are given, respectively, by

L′
eff =

2A2(2ε − Λ + 1 − cp)

a
− 2A4

3a
+

16A6

45a
− 8A8

35a
− 4A2ε cos(p)

sinh(a)
, (4.4.12)

and

2ε − Λ + 1 − cp

a
− 2A2

3a
+

8A4

15a
− 16A6

35a
− 2ε cos(p)

sinh(a)
= 0, (4.4.13)

−2ε − Λ + 1 − cp

a2
+

A2

3a2
− 8A4

45a2
+

4A6

35a2
+

2ε cos(p) cosh(a)

sinh2(a)
= 0, (4.4.14)

− c

a
+

2ε sin(p)

sinh(a)
= 0. (4.4.15)

We also have computed the effective Lagrangian (4.4.12) directly by integrating a corre-

sponding Lagrangian of the polynomial DNLS equation and obtained the same result.

4.4.2 Prediction of the VA for embedded solitons

We now seek a condition for the possible existence of ESs. Following Kaup & Mal-

omed [128], we consider b in the general form of tailed solution (4.4.1) as an additional

variational parameter. Thus, a new variational equation,

∂L

∂b
= 0, (4.4.16)
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must be added to the system of equations (4.4.10). By writing the integrand in the La-

grangian (4.4.3) as L(ψ, ψ∗, ψ′, (ψ∗)′), which is the Lagrangian density, differentiation

in Eq. (4.4.16) yields

∫ +∞

−∞

[

∂L
∂ψ

ψbckg +
∂L
∂ψ∗ ψ∗

bckg +
∂L
∂ψ′ ψ

′
bckg +

∂L
∂(ψ∗)′

(ψ∗
bckg)

′
]

dz = 0. (4.4.17)

By integrating the third and the fourth terms by parts to obtain common factors ψbckg

and ψ∗
bckg, respectively, and from the fact that

∂L
∂(ψ∗)′

= − ic

2
ψ, (4.4.18)

∂L
∂ψ′ =

ic

2
ψ∗, (4.4.19)

Eq. (4.4.17) becomes

∫ +∞

−∞

[(

∂L
∂ψ∗ − d

dz

∂L
∂(ψ∗)′

)

ψ∗
bckg + c.c.

]

dz +

[

− ic

2
ψψ∗

bckg + c.c.

]∞

−∞

= 0, (4.4.20)

where c.c. stands for the complex conjugate of the preceding expression.

As we are interested in solutions with the absence of nonzero backgrounds, one should

substitute ψ(z) in Eq. (4.4.20) with the solution form (4.4.1) by setting b = 0 (no tail).

This setting leads to the vanishing of the second term in the left-hand side of Eq. (4.4.20).

Therefore, the condition for the possible existence of ESs is given by a natural orthogo-

nality relation,

∫ +∞

−∞

{

δL/δψ∗|ψ(z)=ψcore(z)
ψ∗

bckg(z) + c.c.
}

dz = 0, (4.4.21)

where the variational derivative δL/δψ∗|ψ(z)=ψcore(z)
is the left-hand side of Eq. (4.1.5)

with ψ(z) replaced by ψcore(z).

In the context of the VA, ψcore(z) in Eq. (4.4.21) should be substituted by the (approxi-

mate) form (4.4.4) corresponding to the soliton. Here, the background function is taken

as

ψbckg(z) = eiλz, (4.4.22)

which is nothing other than the linear solution (4.2.1). Note that this background func-

tion is a crude approximation because to the leading order ψbckg should satisfy the

linearised equation of (4.1.5) about ψcore with the limiting properties ψbckg → eiλz as

z → ±∞.

The substitution of Eqs. (4.4.4) and (4.4.22) into Eq. (4.4.21) yields

∫ ∞

−∞
M(z)dz = 0, (4.4.23)
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where

M(z) = −ε [F(z + 1) cos((λ − p)z − p) + F(z − 1) cos((λ − p)z + p)]

+

{

(2ε − cλ − Λ) F(z) +
F(z)

1 + F(z)2

}

cos((λ − p)z). (4.4.24)

It is readily checked that M(z) is an even function. Therefore, after some manipula-

tions, integral relation (4.4.23) may be cast into the form

∫ ∞

0

[

(2ε − cλ − Λ) cos((λ − p)z)

cosh(az)
− 2 cosh(az) cos((λ − p)z)

cosh(2az) + 1 + 2A2

−Bε cos((λ − p)z) cosh(az)

cosh(2az) + cosh(2a)
+

Cε sin((λ − p)z) sinh(az)

cosh(2az) + cosh(2a)

]

dz = 0,
(4.4.25)

where B = 4 cos(p) cosh(a) and C = 4 sin(p) sinh(a). The integrals in each term can be

evaluated using the formulas (Gradshteyn & Ryzhik [129])

(i)
∫ ∞

0

cos(ax)

cosh
(

b

2 x
)dx =

π

b cosh
(

aπ
b

) , (4.4.26)

provided Re(b) > 0 and a ∈ R;

(ii)
∫ ∞

0

cos(ax) cosh
(

b

2 x
)

cosh(bx) + cosh(c)
dx =

π cos
(

ac

b

)

2b cosh
(

c

2

)

cosh
(

aπ
b

) , (4.4.27)

provided πRe(b) > |Im(b∗c)|;

(iii)
∫ ∞

0

cos(ax) cosh
(

b

2 x
)

cosh(bx) + d
dx =

π cos
(

a

b
cosh−1(d)

)

2b cosh
(

1
2 cosh−1(d)

)

cosh
(

aπ
b

)

, (4.4.28)

provided πRe(b) > |Im(b∗ cosh−1(d))|;

(iv)
∫ ∞

0

sin(ax) sinh
(

b

2 x
)

cosh(bx) + cos(e)
dx =

π [χ+ − χ−]

b sin(e)
[

cosh
(

2aπ
b

)

− cos (π)
] , (4.4.29)

where χ± = sin
(

1
2(π ∓ e)

)

sinh
(

a

b
(π ± e)

)

, provided πRe(b) > |Re(b∗e)|,
Re(b) > 0 and a > 0.

Substituting a = λ − p, b = c = 2a, d = 1 + 2A2 and e = 2ai into Eqs. (4.4.26)–(4.4.29),

the calculation for the integration (4.4.25) yields

E ≡ (2ε − cλ − Λ)− 2ε cos(λ) +

cos

(

1

2a

[

(λ − p) cosh−1(1 + 2A2)
]

)

cosh

(

1

2

[

cosh−1(1 + 2A2)
]

) = 0, (4.4.30)

provided a > 0 and λ > p. Thus, in the framework of the VA, along with the results

of the VA for the soliton’s core given by Eqs. (4.4.8)–(4.4.10) and with the root(s) λ of

Eq. (4.2.3), we may predict a curve E as a function of (ε, c, Λ) along which the existence

of the ESs may be expected, i.e., when E = 0.
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If we expand E with respect to A up to O(A8), we arrive at the following form:

E′ ≡ (2ε− cλ−Λ+ 1)− 2ε cos(λ)+
3

∑
k=1

[

(−1)k

(2k)!

(

A

a

)2k k

∏
j=1

(

(λ − p)2 + (a(2j − 1))2
)

]

= 0,

(4.4.31)

which is the corresponding result of the integral relation (4.4.21) for the polynomial

DNLS (4.4.11). The same result for E′ is also obtained through the integration of poly-

nomial terms which confirms the validity of the result in Eq. (4.4.30). As we discuss

later in Section 4.5.2, Eq. (4.4.31) is useful to support our conjecture regarding the use

of VA in searching for ESs in the saturable DNLS model.

4.4.3 The VA-based stability analysis

Here, we propose to use the VA to study the stability of the core of the travelling lat-

tice solitary wave by calculating eigenvalues for modes of small perturbations in the

moving coordinate frame, following Flytzanis et al. [130]. The stability of the back-

ground, i.e., the modulational (in)stability of the plane lattice waves, was studied by

Gómez-Gardeñes et al. [119].

The Lagrangian of the time-dependent equation (4.1.4) is

L =
∫ ∞

−∞

[

(2ε − Λ)|ψ|2 + ln
(

1 + |ψ|2
)

+
ic

2
[ψ∗ψz − ψψ∗

z ]

− ε

2
{ψ∗[ψ(z + 1, τ) + ψ(z − 1, τ)] + ψ[ψ∗(z + 1, τ) + ψ∗(z − 1, τ)]}

− i

2
(ψ∗ψτ − ψψ∗

τ)

]

dz. (4.4.32)

Note that Eq. (4.1.4) is produced by the variation with respect to ψ∗ from the action

functional S =
∫

Ldτ, not from the Lagrangian (4.4.32). However, for practical pur-

poses (the derivation of VA equations), it is enough to calculate Lagrangian (4.4.32) (it

is not necessary to calculate the action functional explicitly).

A time-dependent ansatz, generalising the static one (4.4.4), is

ψcore(z, τ) = A(τ)sech [a(τ)(z − ξ(τ))] e(iφ(τ)+ip(τ)z+ i
2 C(τ)[z−ξ(τ)]2), (4.4.33)

where all parameters are real functions of time. Additional variational parameters

which appear here are the coordinate of soliton’s centre, ξ(τ), the overall phase, φ(τ),

and the intrinsic chirp, C(τ). In particular, the inclusion of the chirp in the above ansatz

was due to Anderson [131]. Substituting ansatz (4.4.33) into Lagrangian (4.4.32) and
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performing the integration yields the corresponding effective Lagrangian,

Leff = A(τ)2

{−2Λ + εQ(τ) + 2 [ξ(τ)p′(τ) + φ′(τ)− cp(τ)]

a(τ)
+

π2C′(τ)
12a(τ)3

}

+
ln2
(

√

1 + A(τ)2 + A(τ)
)

+ ln2
(

√

1 + A(τ)2 − A(τ)
)

a(τ)
, (4.4.34)

with primes standing for the derivatives, and

Q(τ) = 4 −
4π sin

(

C(τ)
2

)

cos (p(τ))

sinh (a(τ)) sinh
(

C(τ)π
2a(τ)

)

= 4 − 4a(τ) cos(p(τ))

sinh(a(τ))
+

(a(τ)2 + π) cos(p(τ))C(τ)2

6a(τ) sinh(a(τ))
+O(C4).(4.4.35)

The (dynamical) Euler–Lagrange equations for the variational parameters take the form

of a nonlinear ODE system, which can be symbolically written in the vectorial form,

ẋ = g(x), (4.4.36)

where x = [A(τ), a(τ), p(τ), C(τ), φ(τ), ξ(τ)]T . The VA-predicted linear stability anal-

ysis is based on the linearisation ansatz,

x = x0 + δyeΩτ, δ ≪ 1; Ω ∈ C, (4.4.37)

where x0 = [A0, a0, p0, 0, 0, 0]T represents the steady state solution of the core soliton

with (A0, a0, p0) satisfying the system of variational equations (4.4.8)–(4.4.10). The sub-

stitution of Eq. (4.4.37) into Eq. (4.4.36) and the linearisation in δ lead to the eigenvalue

problem,

Hy = Ωy, (4.4.38)

with the corresponding stability matrix H. The stability of the stationary solution x0 is

then determined by the eigenvalues Ω, which must be found in a numerical form; the

solution x0 is stable if Re(Ω) ≤ 0 for all eigenvalues.

4.5 Comparisons: numerics vs analytics

4.5.1 The soliton’s core

For given parameters ε, c and Λ, we solved the variational equations (4.4.8)–(4.4.10)

to produce suitable real solutions A, a and p, which then give a quasi-analytical ap-

proximation for the soliton’s core described by function ψcore(z) (see Eq. (4.4.4)). As

generic examples, in Fig. 4.10 we present, at ε = 1 and c = 0.7, the comparison of two
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soliton profiles obtained from the numerical results and VA for two different values of

Λ. We have found A ≈ 1.228, a ≈ 0.554, p ≈ 0.377 for Λ = 0.5 (Fig. 4.10(a)), and

A ≈ 0.685, a ≈ 0.414, p ≈ 0.368 for Λ = 0.7 (Fig. 4.10(b)). Particularly good agreement

is observed in both cases.
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(a) ε = 1, c = 0.7, and Λ = 0.5
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(b) ε = 1, c = 0.7, and Λ = 0.7

Figure 4.10: The comparison of two soliton profiles for two different values of Λ, as

indicated in the caption to each panel. The solid lines correspond to nu-

merical results, i.e., solutions of Eq. (4.3.4) imposed by constraints (4.3.8),

with ∆z = 0.2 and L = 50 (the z-axis is truncated to focus the picture

on the soliton’s core), both the real and imaginary parts being shown.

The dotted lines are predictions of the variational approximation through

solving system of Eqs. (4.4.8)–(4.4.10).

As we have considered the polynomial DNLS (4.4.11) in our VA calculations, here we

also present the comparison of two profiles of the soliton’s core, which are calculated

from numerics and VA formulations for two different sets of parameter values; this is

shown in Fig. 4.11. The obtained variational parameters in Figs. 4.11(a) and 4.11(b) are

(A, a, p) ≈ (1.034, 0.338, 0.071) and (A, a, p) ≈ (0.668, 0.426, 0.369), respectively. As in

the case of the saturable DNLS system, we observe from the figures that the VA-based

analytical calculations for the polynomial DNLS equation are also in a good agreement

with the corresponding numerical results.

To further confirm the agreement for different values of Λ, ε and c, in the following we

compare parameters A, a and p produced by the VA with their numerical counterparts

(we only do this for the saturable case). To calculate the latter, we make use of the

following relations, which are generated by ansatz (4.4.4) at z = 0:

ψ(0) = A, ψ′(0) = ipA, ψ′′(0) = −A(a2 + p2). (4.5.1)

Thus, using the central finite differences, we obtain the numerical counterparts of A, p
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Figure 4.11: As Fig. 4.10 but for the polynomial DNLS equation (4.4.11) where the VA

solutions for the soliton’s core are obtained through solving Eqs. (4.4.13)–

(4.4.15).

and a as

Anum = ψ N+1
2

, (4.5.2)

pnum =
Im
(

ψ N+1
2 +1

)

− Im
(

ψ N+1
2 −1

)

2Anum∆z
, (4.5.3)

anum = ±

√

√

√

√−
Re
(

ψ N+1
2 −1

)

− 2Re
(

ψ N+1
2

)

+ Re
(

ψ N+1
2 +1

)

Anum(∆z)2
− p2

num. (4.5.4)

The comparison of parameters (A, a, p) obtained numerically (solid lines) and from the

VA (dashed lines) is shown in Fig. 4.12(a) for varying 1/ε and fixed (c, Λ) = (0.7, 0.5).

In that figure we only take the positive value of a in Eq. (4.5.4) to make it in accor-

dance with the VA. We observe that the solid and dashed lines are generally close for

all the three parameters. Nevertheless, we also obtain isolated values of 1/ε, which

behave as singular points. Near the singularities the numerical results deviate very

rapidly from the predictions of the VA. In fact, at these singular points the numerically

obtained solutions are strongly delocalised due to the resonance of the oscillating tails

with the finite size of the computational domains (compare these points with those in

Fig. 4.14(a)). Hence, the positions of such singularities depend on L and they may be

considered as artifacts of approximating the infinite region by the finite domain.

Next, as in Fig. 4.10, where a better approximation is obtained for larger Λ, we also

observe in Fig. 4.12(b) that the variational and numerical curves for A, a, p are closer

for Λ = 0.7 than those in 4.12(a). In the latter case, the singularities are present too,

even though they are less pronounced here.

To obtain a full description of the effect of Λ on the validity of the VA, let us now
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Figure 4.12: The comparison of parameters (A, a, p) calculated from the numerical

data (solid lines) through Eqs. (4.5.2)–(4.5.4), and from the VA (dashed

lines) through Eqs. (4.5.1), for varying 1/ε and fixed (c, Λ), as shown in

the caption of each panel.
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Figure 4.13: As Fig. 4.12 but for varying Λ and fixed (ε, c) = (1, 0.7).
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examine (A, a, p) as functions of Λ for fixed (ε, c) = (1, 0.7), which is presented in

Fig. 4.13. From the figure, we can confirm that the VA is more accurate for larger Λ.

This agreement still holds even when the solutions become wide and vanish indicated

by a → 0 and A → 0, respectively.

From the comparisons presented in Figs. 4.12 and 4.13 above, we can conclude that

the VA provides a reliable approximation for the soliton’s core. Nevertheless, the

VA as well as our numerics are not capable of exploring the regime close to the anti-

continuum limit. We observed that the amplitude of the oscillating tails of the numeri-

cal solutions increases as ε decreases, which creates a problem in the convergence of our

numerical continuation. We also noted that the amplitude A in the ansatz (4.4.4) de-

creases as ε decreases and vanishes at a threshold point of ε. It is not yet clear whether

or not there is embedded soliton close to the anti-continuum limit.

4.5.2 Embedded solitons

For the sake of comparisons, let us first plot the measure ∆r as a function of 1/ε for

the parameter values (Λ, c, ∆z, L) used in Figs. 4.10(a) and 4.10(b), which are shown,

respectively, in Figs. 4.14(a) and 4.15(a). One should notice that the former figure is

basically similar to Fig. 4.5(a) but with a longer computational domain and a shorter

interval of 1/ε, whereas the latter is replotted from the top panel of Fig. 4.6(b) by cutting

the domain of 1/ε.

Next, to predict the location of ESs in the framework of the VA, as explained in the

previous section, we substitute the solution of Eqs. (4.4.8)–(4.4.10) and the root(s) λ

of Eq. (4.2.3) into Eqs. (4.4.30) to find E as a function of ε, c and Λ. Therefore, the

existence of ESs can be predicted by seeking for the values of parameters at which

E = 0. For the parameter values used in Figs. 4.14(a) and 4.15(a), curves for E are

displayed, respectively, in Figs. 4.14(b) and 4.15(b). It is seen that E 6= 0 in both figures,

i.e., genuinely localised solitons cannot be directly predicted by the VA.

However, we can propose a conjecture, based on a “phenomenological” consideration

of the figures, that there are two zeros of ∆r on the left and right of a maximum of

E. For example, in Fig. 4.14 we have the maximum of E at ε ≈ 0.853 (i.e., at 1/ε ≈
1.172), which is located between two adjacent numerically found zeros of ∆r. The same

phenomenon also takes place in Fig. 4.15, where two zero-crossing points lie between a

maximum of E, i.e., at ε ≈ 1.020 (i.e., at 1/ε ≈ 0.980). We have also computed the signed

measure ∆r and E for other combinations of parameter values, where we observed

the same pattern (see, e.g., Fig. 4.16). Thus, we conclude that, with the addition of a
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Figure 4.14: (a) The signed measure ∆r (cf. Eq. (4.3.10)) as a function of 1/ε for c = 0.7,

Λ = 0.5, ∆z = 0.2 and L = 50, where ∆r is zero at ε ≈ 0.737, 0.988, 1.306

(or at 1/ε ≈ 1.357, 1.012, 0.766), as shown by empty circles. (b) E ver-

sus 1/ε (cf. Eq. (4.4.30)), for the same parameter values (Λ, c) as in

panel (a) and for the corresponding (A, a, p) and root(s) λ obtained from

Eqs. (4.4.8)-(4.4.10) and Eq. (4.2.3), respectively. It is clearly seen that

E 6= 0 in the observed domain of 1/ε. However, we can conjecture

that ESs are located near the maximum of E, i.e., at ε ≈ 0.853 (or at

1/ε ≈ 1.172), as indicated by the star.
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Figure 4.15: The same as Fig. 4.14, but for Λ = 0.7. Zeros of ∆r are found at

ε ≈ 0.828, 1.158 (or at 1/ε ≈ 1.208, 0.864), which are the same as those in

Fig. 4.6(b), and the maximum of E occurs at ε ≈ 1.020 (or at 1/ε ≈ 0.980).
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constant, function E may be able to predict the location of ESs. We suspect that the

missing constant, which amounts to the shift of the plot for E vertically, is related to

the choice of the ansatz (see, e.g., Boyd [132] for different ansatz accounting for the

oscillating tails).
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Figure 4.16: As Fig. 4.14, but with the signed measure ∆r being a function of Λ (for

fixed c = 0.7, ε = 1, ∆z = 0.2 and L = 50). Zeros of ∆r are found at

Λ ≈ 0.515, 0.772 and curve E is maximum at Λ ≈ 0.714.

To support further our conjecture, we also plot the same quantities as those presented

in the previous figures, but now for the polynomial DNLS (4.4.11). These plots are

shown in Fig. 4.17 by using parameter values as in Fig. 4.11(b). From the top panel of

the figure, we can see clearly that ∆r 6= 0 along the observed domain of 1/ε, which

indicates that the polynomial DNLS (4.4.11) does not support the travelling lattice soli-

tons with vanishing tails. Most interestingly, as shown in the bottom panel, the curve

E′ does not have any local maximum, which is in accordance with the contraposition

statement of our conjecture for the saturable DNLS.

4.5.3 Stability

To determine the stability of the soliton based on the VA, we have solved the eigenvalue

problem (4.4.38). For the soliton shown in Fig. 4.10(a), i.e., with x0 ≈ [1.228, 0.554, 0.377,
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(a)

(b)

Figure 4.17: As Fig. 4.14 but for the polynomial DNLS (4.4.11) where ln (|E′|) (see ex-

pression (4.4.31)) is plotted. The parameter values used are the same as in

Fig. 4.11(b). The number of roots λ, which is indicated by the white (one

root), light shaded (three roots) and dark shaded (five roots) regions (see

cf. Fig. 4.2(b)), are the same as the number of curves E′ in the correspond-

ing regions.
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0, 0, 0]T , we obtain the corresponding eigenvalues Ω ≈ 0, 0, 0, 0, 0.436i,−0.436i. For the

soliton in Fig. 4.10(b), i.e., x0 ≈ [0.685, 0.414, 0.368, 0, 0, 0]T, the corresponding eigenval-

ues are Ω ≈ 0, 0, 0, 0, 0.225i,−0.225i. As the real part of all the eigenvalues is zero, we

conclude that both solitons are stable. These results are in agreement with the numerical

findings of Melvin et al. [66].

4.6 A failure of the finite-difference method: numerical stabil-

ity

To examine the stability of the numerically obtained solutions to Eq. (4.1.1), recall the

time-dependent model (4.1.4). Introducing the linearisation ansatz ψ(z, τ) = ψ́(z) +

δ(r(z)eiµτ + s∗(z)e−iµ∗τ), with |δ| ≪ 1 being a small perturbation amplitude and with

the asterisk indicating complex conjugation, into Eq. (4.1.4), we thereby obtain the lin-

ear eigenvalue problem (EVP) for the stability of ψ́(z), given by

− µ

(

r

s

)

=











L+ − ψ́2

(1 + |ψ́|2)2

ψ́∗2

(1 + |ψ́|2)2
L−











(

r

s

)

= H
(

r

s

)

, (4.6.1)

where we have introduced the operators

L± ≡ ic
d

dz
±
[

(2ε − Λ)− ε∆1 +
1

(1 + |ψ́|2)2

]

, (4.6.2)

with ∆1x(z) = x(z+ 1) + x(z− 1). The stability of the solution ψ́(z) is then determined

by the eigenvalues of Eq. (4.6.1). It is clear that the solution is unstable if and only

if there is at least one eigenvalue µ with a negative imaginary part. Here, we then

solve Eq. (4.6.1) numerically by means of the finite-difference method, as previously

discussed in Section 4.3.

For a soliton that corresponds to one of the zero crossings in Fig. 4.15(a), i.e., ε = 1.158,

we present in Fig. 4.18(a) the EVP spectra in the complex plane. As there are eigen-

values with negative imaginary parts, the soliton is unstable. We show in Fig. 4.18(b)

combination of the eigenfunction (r + s∗) corresponding to the most unstable eigen-

value, which demonstrate that the eigenfunction is indeed localised. These results are

in contrast to our VA stability and the numerical results of Melvin et al. [66] obtained

by calculating the corresponding Floquet multipliers, where the solitons were shown

to be linearly stable.

To understand the discrepancy, we investigate the effect of the grid spacing ∆z on the

EVP (4.6.1). By using the same parameter values, we show in Fig. 4.18(a) the distribu-
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Figure 4.18: (a) The eigenvalues structure in the complex plane of an embedded soli-

ton in Fig. 4.15(a). The effect of different grid spacings on the distribution

of the eigenvalues are also shown, i.e., ∆z = 0.2 (circle), ∆z = 0.1 (cross)

and ∆z = 0.05 (star). (b) Eigenfunction v = r + s∗ obtained from the nu-

merical solution of the linear eigenvalue problem (4.6.1), corresponding

to the most unstable eigenvalue shown in panel (a) with ∆z = 0.2.
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Figure 4.19: Numerical evolution of the soliton confirming the ‘instability’ shown in

Fig. 4.18(a) with ∆z = 0.2. The dashed line is the initial condition and the

solid line is the solution at τ = 200.
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tion of the eigenstructures for ∆z = 0.2, ∆z = 0.1 and ∆z = 0.05, where we obtain that

the smaller the ∆z, the more unstable eigenvalues one will gain. This contradicts the

common intuition that a discrete approximation will converge to the continuous limit

for a small enough ∆z. We believe that the spurious instability is caused by the numer-

ical approximation of the advance–delay terms. The instability can indeed be observed

in the time-dynamics of the advance–delay-differential equation (4.1.4) as shown in Fig.

4.19, where we have used the same spatial discretization and a Runge-Kutta method for

the time integration. One can see that the soliton suffers from high-frequency unstable

modes, as predicted by the unstable eigenfunctions in Fig. 4.18(b).

One possible solution to resolve the discrepancy is to use the pseudo-spectral method

as suggested and successfully applied in a Fermi-Pasta-Ulam equation by Flytzanis et

al. [130]. This issue will be studied further.

4.7 Conclusion

The aim of this work was to revisit the general problem of the existence and stability

of travelling localised pulses in discrete models based on the one-dimensional discrete

nonlinear Schrödinger (DNLS) equation with saturable nonlinearity. After analysing

the linear spectrum of the model, carried out through numerical calculations and per-

turbation analyses, we obtained the bifurcation diagram of the spectral bands. Ac-

cording to Melvin et al. [66, 67], finding genuinely localised solutions by varying one

parameter only becomes possible within parameter regions of the spectral bands in

which there is a single resonance with linear waves.

In the aforementioned references, it was demonstrated that the DNLS equation with

saturable onsite nonlinearity admits isolated genuine travelling-soliton states. In this

work, we have used a numerical scheme to solve the saturable DNLS equation in a

moving coordinate frame, which is an advance–delay-differential equation. By us-

ing a Newton–Raphson method, together with a measure for the tails (either the one

modified from that proposed by Melvin et al. [66, 67] or our alternative measure), we

confirmed the existence of genuinely travelling discrete solitons, which are embedded

solitons (ESs). We showed that the outputs from our numerical scheme, for a grid spac-

ing small enough and a computational domain large enough, are identical with those

reported in [66].

In addition to the numerical work, we have developed a semi-analytical approach for

seeking travelling solitons, based on the application of the variational approximation

(VA) to the advance–delay-differential form of the saturable DNLS equation in the
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moving coordinate frame. The approximated (core) solitons are in good agreement

with the corresponding numerical findings. The VA was also derived to examine the

stability of the travelling solitons which shows that they are stable, i.e., in agreement

with [66]. Moreover, the VA was also developed to predict the locations of travelling

lattice solitons with strictly vanishing tails and the relevance of the results was dis-

cussed.

Although we obtained the solutions reported in [66] through our numerical scheme, we

showed that the corresponding scheme for the eigenvalue problem did not produce the

correct results. This discrepancy is left for future investigation.
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CHAPTER 5

Conclusion

In this thesis, we have examined the existence and stability of discrete solitons in two

main lattice models, i.e., cubic and saturable discrete nonlinear Schrödinger (DNLS)

equations. In the cubic-type model, we considered stationary discrete solitons under

the effect of parametric driving and/or damping. In the saturable-type model, we

studied travelling lattice solitons. Let us now summarise the work and the main results

obtained in the abovementioned studies as well as point out several problems that

would be interesting to consider in the future.

5.1 Summary

We began our discussion in Chapter 1 by providing background information about

solitons and the considered lattice equations. These include a definition and historical

development of (discrete) solitons, and a general review of the DNLS equations. In par-

ticular, we outlined the development of theoretical and experimental studies of discrete

solitons in the context of two applications, i.e., optical waveguide arrays and systems

of micro- and nanoelectromechanical (MEMS and NEMS) resonators. Moreover, in

the same chapter, we presented preliminary analyses of stationary and travelling dis-

crete solitons in the cubic and saturable DNLS models. Some analytical methods used

throughout this thesis were also reviewed briefly in this chapter.

In Chapter 2 we investigated a parametrically driven discrete nonlinear Schrödinger

(PDNLS) equation, i.e., a cubic DNLS model with the inclusion of parametric driving

with strength γ. The existence and stability of fundamental (onsite and intersite) bright

and dark discrete solitons were discussed both analytically and numerically. Our anal-

yses relied on the anticontinuum (AC) limit approach from which we can employ a

perturbation expansion to approximate the fundamental soliton solutions for the case
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of small coupling constant ε. In carrying out the examination of the stability of soli-

tons, we solved numerically a corresponding eigenvalue problem (EVP) from which

we obtained the stability region in the (ε, γ)-plane. Analytical calculations of the EVP

based on a perturbation method were also derived to predict the onset of instability

for each soliton. Moreover, to confirm the typical dynamics of solitons in the stable

and unstable parameter regions, we performed numerical integrations of the PDNLS

equation. All of the aforementioned analyses were presented in Sections 2.2 and 2.3 for,

respectively, bright and dark solitons.

From our studies above, we obtained that our analytical calculations, for small ε, are

generally consistent with the numerics. Regarding the effect of parametric driving on

the stability results, we found that undriven onsite bright solitons, which are stable for

any coupling constant, and onsite dark solitons, which are stable for small coupling

constant, can be destabilised by a parametric driving; for the onsite bright soliton, this

result has been reported earlier by Susanto et al. [91]. By contrast, intersite bright and

dark solitons, which were shown to be always unstable in the undriven case, can be

stabilised by the driving. Interestingly, we also found a range of values of γ in which a

discrete dark soliton is stable for all ε.

Additional work in Chapter 2, discussed in Section 2.4, was on the application of a

PDNLS model in arrays of parametrically-driven MEMS and NEMS resonators. By

using a multiscale expansion method, we showed that our DNLS equation can be de-

rived from a governing equation of MEMS and NEMS resonators, i.e., a particular type

of parametrically driven discrete Klein–Gordon equation. The numerical integrations

of the Klein–Gordon system were then demonstrated to confirm the relevance of our

stability findings in the PDNLS model. From the results of the latter work, we con-

cluded that the parametrically driven DNLS equation can be used to describe, under

certain conditions, the behaviour of MEMS and NEMS resonators.

Next, in Chapter 3, we extended the ideas of Chapter 2 by introducing a damping term

with strength α in the PDNLS system. A study for such a model, called a paramet-

rically driven damped discrete nonlinear Schrödinger (PDDNLS) equation, was per-

formed for onsite and intersite bright solitons (in focusing PDDNLS). We identified

that there exist two and four types of onsite and intersite discrete solitons, respectively.

We called those solutions onsite type I and II, and intersite type I, II, III and IV, where

the last two types are essentially the same, due to symmetry. We observed that the

type I solution for onsite and intersite solitons, which can be unstable in the case of no

dissipation, can be stabilised by the damping, whereas the other types of solution are

always unstable. We also found an interval of values of α in which the onsite type I is
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stable for all ε. Our further analysis demonstrated that the onsite type I and II expe-

rience a saddle-node bifurcation where the limit point is achieved when the damping

and driving strengths are equal (for any coupling constant). The same bifurcation was

also shown to be undergone by the intersite type I and II. Furthermore, we observed a

pitchfork bifurcation occurring in intersite type I, III and IV. The corresponding branch

points for such a bifurcation in the (ε, α)-plane have been calculated analytically, for

small ε, and numerically.

The most interesting result in the study of PDDNLS equation is the existence of peri-

odic solitons (limit cycles) which emerge from Hopf bifurcations experienced by onsite

type I, intersite type I and intersite type III-IV. By using the numerical continuation soft-

ware Matcont, we performed continuations of the corresponding limit cycles as well as

the stability of the periodic solitons; this was discussed in Section 3.5. We found subcrit-

ical Hopf bifurcations along the existence curve of the onsite type I and intersite type

III-IV. In addition, we observed three Hopf bifurcations for intersite type I, of which

two were shown to be supercritical.

Next, in Chapter 4 we discussed the existence and stability of travelling solitary waves

in the DNLS model with saturable nonlinearity. This study basically followed the idea

of Melvin et al. [66, 67] who initially investigated the problem using a pseudo-spectral

numerical scheme.

As noted in the abovementioned references, a travelling solitary wave of the saturable

DNLS equation would be easy to seek by varying one parameter only. This becomes

possible if one can identify the parameter regions of the spectral bands where a single

resonance of the travelling solitons with plane waves occurs. To do this, we examined

the linear spectrum of the model in the travelling wave frame, i.e., an advance–delay-

differential equation, carried out numerically, as done by Melvin et al. [66, 67], and

analytically through a perturbation expansion. This analysis was presented in Section

4.2.

To solve numerically the travelling solutions in the saturable model, i.e., via the advance-

delay-differential equation, we applied a finite difference discretization. From this

scheme, we had a system of difference equations which was then solved using a Newton-

Raphson method. Since the obtained solutions were generally accompanied by nonzero

oscillatory tails, as suggested in the latter references, we need to add an extra tail con-

dition to find solutions with vanishing tails, i.e., embedded solitons (ESs). For this

condition, we used the measure which was modified from that proposed by Melvin et

al. [66, 67], corroborated by our alternative measure. For a grid spacing small enough

and a computational domain large enough, we showed that the results produced from
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our numerical scheme are consistent with those in [66, 67]. The numerical works above

were given in Section 4.3.

For the analytical part of our study in Chapter 4, presented in Section 4.4, we employed

a variational approximation (VA). We observed that the approximated (core) solitons

are in good agreement with the corresponding numerical results. The VA-based sta-

bility analysis was also performed, showing that the solutions are stable, i.e., in accor-

dance with that reported by Melvin et al. [66]. In addition, we also derived the VA to

predict the locations of the ESs. In the latter work, our analytical prediction could not

be verified numerically and we argued that this is related to the choice of the ansatz

for the tails as discussed in the chapter. The condition when there are two waves in

the linear spectrum is indeed another case that our tail will fail, even though it is still a

big question whether embedded solitons exist at all in such a case, as explained in the

chapter.

5.2 Future work

In this section, we note several problems that could be interestingly proposed as future

work. Some of them arise from the extension of the ideas in the present work, while the

others emerge from the questions raised in the course of our study which need further

investigations.

One possible problem is to expand the work of Chapter 2 to, e.g., a twisted localised

mode. In the absence of parametric driving, such a solution has been considered, e.g.,

by Kevrekidis et al. [114] where it was shown that it is stable for small coupling con-

stant. Unlike the case of an undriven intersite soliton with in-phase oscillation where

the bifurcating unstable eigenvalues lie along the imaginary axis of the spectral plane,

the instability of the out-of-phase intersite mode occurs because of the presence of a

quartet of complex eigenvalues. Thus, its typical dynamics is in the form of an unsta-

ble breather. Moreover, it was also shown that an undriven twisted soliton experiences

a saddle-node bifurcation, and this must be also the case in the driven mode.

Another interesting problem that could be pursued in the future is the study of dark

solitons in the defocusing PDDNLS equation. For the case of bright solitons in the

focusing PDDNLS model, it was already shown in this thesis that these solutions have

rich dynamical localisation effects, including the existence of periodic solitons. Thus,

one could immediately predict that dark solitons in the driven and damped DNLS

equation will also permit such interesting properties. In addition, the existence and

stability of a twisted discrete soliton in the PDDNLS system would be also interesting
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to investigate.

The interaction of stable standing waves and perturbations in the PDDNLS system is

also interesting. From equation (3.1.1), we note the balance equation

i
d

dt
|φn|2 = ε(Jn − Jn−1)− 2iα|φn|2 + γ(φ

2
n − φ2

n), (5.2.1)

where Jn = φn+1φn − φn+1φn. For simplicity, consider the case ε = 0. Perturbing the

solitary waves will cause the right hand side of (5.2.1) to be nonzero, which may lead to

instability. Hence, the instability of solitary waves in this case is rather not surprising.

Nevertheless, we reported that stable solitary waves exist, which indicate that there

should be a delicate balance on the right-hand side of (5.2.1). It is interesting to study

whether perturbations applied initially to a stable standing wave will persist or radiate

and later vanish due to the damping. Note that such a study has been presented by

Johansson and Aubry [133] for the conservative limit when γ = α = 0.

Next, as it has been pointed out in Chapter 4, our study of travelling solitons of the

saturable DNLS model left an unanswered question regarding the discrepancies of the

numerical stability results due to the presence of spurious unstable eigenvalues. The

failure of a finite difference numerical scheme in calculating the eigenvalue problems

has been also noted, e.g., by Yang [134] and Boyd [135]. These references recommend

a pseudo-spectral method which is arguably more accurate and reliable to solve the

stability problem numerically. This method has been successfully applied in a Fermi-

Pasta-Ulam equation by Flytzanis et al. [130].

The most interesting problem that we also would like to address is the study of travel-

ling lattice solitary waves in the PDDNLS equation. The existence and stability of trav-

elling solitons in the continuous version of the PDDNLS equation has been considered

by Barashenkov & Zemlyanaya [136] where it was shown that a single-hump travelling

soliton does not exist, while a multi-hump travelling soliton exists but is unstable. Trav-

elling solitons in an undamped parametrically driven nonlinear Schrödinger equation

were also studied previously by Barashenkov et al. [95], showing that a stable travelling

soliton solution exists for a small driving constant, whereas a strongly driven soliton

can only be stable when it travels with high velocity.

As a preliminary analysis to the problem above, we force a discrete soliton to move

across the lattice by introducing a phase variation, i.e., by setting the initial condition

φn(0) = eiKnun, where un is a localised standing wave of the PDDNLS equation and

K is the phase ‘kick’ controlling the initial velocity of the soliton, and then follow the

evolution of the soliton through numerically integrating the PDDNLS equation. A cou-

ple of simulations for different parameter values is presented in Fig. 5.1. Here we set
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ε = 5, which corresponds to relatively strong coupled lattices so that the obtained re-

sults are comparable with the continuous counterparts, and frequency Λ = 1. In the

case of no dissipation and for relatively small and large driving strengths, our simula-

tion seemingly agrees with that reported by Barashenkov et al. [95]; see the top panels

of the figure. For relatively small damping and driving strengths (see the middle pan-

els of the figure), the soliton can move across the lattice but it loses energy to radiation

or dissipation. The loss is more pronounced for larger phase ‘kick’. Moreover, in the

case of a relatively strong driving and damping, as shown in the bottom panels of the

figure, the soliton propagates across a few lattice before it quickly vanishes. From the

above observations, we may argue that travelling lattice solitons in the PDDNLS equa-

tion either exist but are unstable or do not exist. It is of particular interest to study the

problem.
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Figure 5.1: Numerical evolution of discrete solitons in the PDDNLS equation with the

introduction of initial phase ‘kick’ K, for different values of damping and

driving strengths, α and γ, as indicated in the caption in each panel. In all

the figures, we take the coupling constant ε = 5 and frequency Λ = 1.
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