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ABSTRACT 

Investigations have been made into the genetic control of immunity to 

the nematode Trichuris muris. Both background genes and genes within the 

mouse major histocompatibility complex (MHC), H-2, were shown to 

influence the expulsion of T. muris with the former having the stronger 

influence. At least two genes within the H-2 complex determined response 

phenotypes, the effects of "resistance" or "susceptibility" alleles at I-A being 

modulated by resistance or susceptibility alleles at aD end locus/loci. 

Differential responsiveness within slowly responding mouse strains suggested 

that parasite-dependent effects were also important. 

The primary antibody response to T. muris excretory/secretory (E/S) 

antigen, predominantly an IgG response, was also shown to be controlled by 

background and H-2-linked genes. In general, mouse strains less resistant to 

infection developed higher levels of IgG than- more resistant strains of mice. 

However strains of mice possessing the H-2q haplotype, irrespective of their 

genetic background, rapidly developed higher levels of IgG1 antibodies than 

strains of other haplotypes, H-2q haplotype mice tending to be more 

resistant to infection. Recognition of two high molecular weight (MW) E/S 

antigens by IgG as revealed by immunoprecipitation was also found to be 

almost exclusively H-2q restricted. This restriction may be partly quantitative 

but as such would operate in vivo due to the restriction on the ability to 

produce high levels of specific IgG. Both H-2q restricted phenomena may 

be part of, but not absolute requirements for, protective immunity. 

Parasite-induced effects on host immunity were also studied. Later 

larval and adult stages of T. muris were shown to be immunosuppressive, 

immunosuppression being long lasting and preventing the expulsion of 

subsequent infections. 

Vaccination with E/S antigen was shown to protect strains of mice 
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which are slow to expel worms (poor-responder) or totally unable to expel 

worms (non-responder) from a primary infection with T. muris. However 

protection was slow to be expressed. Antigen recognition profiles of 

vaccinated strains of mice differed from their primary infection recognition 

profiles and included the recognition of the two high MW antigens shown to 

be H-2q restricted in a primary infection. Thus altering the mode or route 

of E/S antigen presentation may lead to shifts in responsiveness of H-2 

genotypes to specific determinants and/or boost specific antibody levels 

sufficiently to reveal recognition of these antigens. Prior experience of a 

patent primary infection prevented vaccination protecting non-responder mice 

against subsequent infections. This inability was correlated with suppressed 

IgG1 antibody levels and failure to recognise three high MW antigens 

including the IL-2q restricted antigens. 

Using a panel of monoclonal antibodies raised against E/S antigen it 

was shown that E/S antigens, apparently including both immunogenic and 

immunosuppressive molecules, were localised to granules within the stichocyte 

cytoplasm of the adult T. muris stichosome. 
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There are four things that make this world go round: love, energy, 

materials and information. We see about us a critical shortage of the first 

commodity, a near-critical shortage of the second, increasing shortage of 

the third, but an absolute glut of the fourth. 

Robert A. Day 
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INTRODUCTION 
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Despite considerable advances in the fields of immmunology and 

molecular biology parasites remain a continued and unacceptable threat to 

man and his domestic animals, contributing to the mortality and chronic 

diseases suffered by millions of people in the tropics and subtropics and 

causing significant economic loss. In 1947 Stoll reported that, out of all 

human infectious diseases, gastro-intestinal helminthiases were amongst the 

most prevalent and today the global picture remains very similar. Although 

needs are great there is still no readily available vaccine against any human 

parasite (reviewed by McLaren and Terry, 1989) and despite the availability 

of cheap, safe, effective chemotherapeutic agents for most of the major 

human helminth infections (Van den Bossche, 1978) the estimated . 1,000 

million cases of Ascaris lumbricoides, 500-800 million cases of Trichuris 

trichiura, over 600 million cases of hookworm (Necator americanus and 

Ancylostoma duodenale) and 300 million cases of filarial infections (mainly 

Wuchereria bancrofti and Onchocerca volvulus) (Anderson and May, 1982; 

Cooper and Bundy, 1988) testify to their ineffectiveness. Clearly attention 

needs to be paid to ways of targeting the available therapeutic agents to the 

most heavily infected individuals in order to benefit the community as a 

whole. However such approaches, even if successful, will solve only part of 

a much more complex problem; many parasites have evolved strategies by 

which they exist in nutritionally rich yet paradoxically immunologically 

hostile host enviroments. A greater understanding of protective immune 

responses and host-parasite interactions is required before the elimination of 

disease symptoms and/or the eradication of the infection can become a 

serious proposition. 

1.1 TRICHURIS TRICHIURA IN MAN 

The nematode Trickuris trichiura is one of the most ubiquitous of 
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human parasites, its prevalence exceeded probably only by that of Ascaris 

lumbricoides with which it is often coextensive (for recent reviews on 

human trichuriasis see Cooper and Bundy, 1987,1988; Bundy 1988). The 

global incidence of trichuriasis, predominantly a disease of children, is wide, 

prevalence being over 70% in parts of Asia and Africa, and nearly 60% in 

the Carribean (Cooper and Bundy, 1988). Despite its prevalence, trichuriasis 

is often considered a harmless infection. Most T. trichiura infections are 

light (less than 100 worms) and thus often asymptomatic, infections reach 

clinical significance only when worm burdens are large. Although severe 

trichuriasis syndrome, characterised by the production ý of profuse ý mucus, 

bloody diarrhoea, tenesmus and rectal prolapse, with associated ° anaemia, 

finger clubbing and growth stunting (Fernän-Nüflez, 1927; Jung and Beaver; 

1951; Gilman et at., 1983) is associated only with burdens exceeding 500 

worms (Bundy, 1986), infections with fewer worms can still cause severe 

disease. Less severe forms of trichuriasis, associated with milder chronic 

dysentry and growth stunting are largely under-recognised and 

under-reported yet can have a considerable impact on public health; the 

harmfulness of trichuriasis lies in the chronic insidious nature of the disease 

(Cooper and Bundy, 1988). 
, 
Community-based ° chemotherapeutic control 

programmes have indicated that T. trichiura is intrinsically ° more difficult to 

control - than, for instance, Ascaris, worm populations , recovering to 

pre-control levels. after chemotherapy in approximately seven months. Such 

resistance to control is probably related to the high basic reproductive rate 

of T. trichiura populations (Bundy et at., 1985a). Epidemiological aspects of 

trichuriasis in the Caribbean have been studied in detail by Bundy, et , al. 

(reviewed by Bundy, 1986; Cooper and Bundy, 1988; Bundy, 1988). 

Prevalence of T. trichiura in a St. Lucian community was found to rise 

rapidly with age, plateauing at 80-100% after the age of two to four years 

(Bundy et at., 1987a), with distributions being typically overdispersed -within 
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each age class (Bundy et al., 1985b; 1987a). Although similar proportions of 

adults and children were infected the age-intensity population profile 

revealed that young children had larger worm burdens than adults. Studies 

of reinfection rates demonstrated that the rate of re-acquisition of, infection 

also exhibited age-dependency (Bundy et al., 1988) child age classes being 

reinfected faster than adults. Such age-dependency of infection, intensity and 

re-infection rate may reflect a reduced exposure to infection in adults 

and/or their development , of a partially effective acquired immunity 

(Anderson and May, 1985).. Although the degree of exposure to T. trichiura 

is difficult to quantify, one potentially major route of- childhood infection is 

provided by the ubiquitous habit of geophagia in endemic regions (Cooper 

and Bundy, 1987), infection occuring through the ingestion of embryonated 

eggs. Gilman et al., 1983 showed a relationship between intense infection 

with Trichuris and deliberate soil eating, and Bundy (1988) also reported an 

increase in intensity of T. trichiura infection with increasing frequency of 

geophagia. Thus the peak in infection within - the child age, classes may - be 

related to increased exposure. 

Individuals have been shown to be predisposed to heavy or light 

infections with T. trichiura, there being a significant correlation between 

initial infection intensity and the intensity acquired by the same individual 

after drug treatment (Bundy et al., 19876). This again may reflect individual 

differences in exposure or susceptibility. Studies on the clustering of T. 

trichiura and Ascaris lumbricoides infections within households (Forrester et 

al., 1988) revealed that heavily infected individuals were clustered in 

particular households. Such clustering could arise from members of the same 

household being exposed to similar concentrations of eggs and/or genetic 

similarities between family members influencing their ability to express a 

protective " immune response. ' Indeed preliminary evidence, ý which correlates 

HLA-class II antigens with infection intensity, does suggest a role for - host 
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genetics in susceptibility (Bundy, 1988). Characterisation of the human 

immune response to T. trichiura is currently under investigation (D. A. P. 

Bundy, pers. comm. ), initial studies indicating a marked age-dependency in 

antibody levels, with antigen-specific IgG levels rising in childhood, as does 

intensity of infection, then declining (Bundy, 1988). Thus although infected 

children have the ability to mount a humoral immune response to T. 

trichiura it is apparently of little value in protection. Immunoprecipitation 

studies currently in progress using 35S-methionine labelled T. trichiura 

excretory/secretory antigen and T. trichiura human infection sera may reveal 

correlations between antigen recognition and resistance, or susceptibility, to 

infection. Such studies are obviously restricted by the availability of both 

human and parasite material. Indeed most of the information available on 

the interactions which occur between trichuroid nematodes and their hosts 

has come from the T. muris-mouse model. This model is not only 

convenient, enabling the analysis of immune responses to infection under 

controlled laboratory conditions, it is also a relevant model for human 

trichuriasis, T. muris and T. trichiura exhibiting considerable cross-reactivity 

(Roach et at., 1988). Thus there is reason for optimism that elucidation of 

the intricate host-parasite interactions in the T. muris-mouse model will 

contribute towards an understanding of the chronicity of, and predisposition 

to, trichuriasis in man. 

1.2 TRICHURIS MURIS IN THE LABORATORY MOUSE 

The simple direct lifecycle of T. muris is shown in figure I. I. Adult 

worms are attached to their host by the anterior part of their body which 

is embedded in a "tunnel" in the mucosa of the host's large intestine, the 

posterior regions protruding free into the lumen. The tunnel is a syncytium 

of enterocyte origin, occurring in the epithelial sheet only. The worm is 



Figure 1.1 Life cycle of Trichuris muris 

(adapted from Roach, 1986) 

Mice ingest Li hatch mainly 
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4eggs 
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females 
Infecti 

mature and mate, 
release eggs. 

on becomes patent 
day 32 

L1 migrate to 
the caecum and 

colon 

L1 penetrate the 
mucosal epithelium 
at the base of the 

crypts of Lieberkuhn* 

L1 moult to L2 
day 9-11 post- 

infection 

L2 moult to L3 
day 17 post- 

infection 

1 I 
L4 moults to 

L3 moult to L4_ 

adult day 29 post- 
day 22 post- 

infection 
infection 

* Larvae migrate up the crypts of Lieberkuhn during their 
development. At approximately day 10-15 post-infection 
they are found on the surface of the caecum and colon still 
completely embedded in the epithelial sheet. It is here 

that further growth and development occurs. At around 
day 15-20 post-infection the posterior end of the worm 
breaks free from the epithelium. 



5 

thought to induce a syncytium about its head, probably through the 

secretion of digestive enzymes, feeding on the syncytial cytoplasm, , then 

moving forward thus extending the syncytium (Lee and Wright, 1978). 

The T. muris-mouse system provides a unique model in which to 

analyse immunological parameters involved in the development of both acute 

and chronic intestinal infections in the same host species and indeed within 

the same host strain. Strain variation in the outcome of infection is well 

documented and ranges from expulsion of the parasite well before maturity 

in some strains, to the development of patency in others (Worley et , al, 

1962; Campbell and Collette, 1962; Wakelin, 1967; 1970b; 1975b; 

TomaýoviLovd et al., 1988). Variation in resistance to infection within an 

inbred strain has also been demonstrated; a proportion of DBA/2 mice 

failing to expel T. muris before the infection reached patency (Worley et 

al., 1962; Lee and Wakelin, 1982b). Toma?: ovieovä et, al. (1988) recently 

described a DBA/2 strain of mouse uniformally non-responsive to infection. 

Mice used in these experiments were only 4" weeks old when infected thus 

providing an explanation for the apparent discrepancy in results compared to 

those of earlier workers; as pointed out by Worley et al. (1962) weanling 

DBA/2 mice are distinctly more susceptible to infection than adult mice. 

Wakelin (1970b; 1975b) suggested that the between strain variation in 

patterns of worm' expulsion reflected genetically determined variation in the 

immunological capacity - to respond to infection. The curious phenomenon of 

differential responsiveness within a genetically uniform strain of mouse was 

not explained. 

The mechanisms by which - T. muris is expelled from the mouse ' large 

intestine have been analysed in several studies (Selby and Wakelin, 1973; 

Wakelin and Selby, 1974b; 1976; Wakelin, 1975a, Lee et al., 1983). 

Lymphoid cells or serum from immunised mice were shown by Selby and 

Wakelin (1973) to transfer immunity passively to T. muris, with immunity 
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being transferred most reliably with mesenteric lymph node cells and most 

effectively with serum. Lymphoid cells from the spleen did not transfer 

immunity. The immune expulsion of T. muris is thought to involve both 

antibody- and cell-mediated phases (Wakelin, 1975a) with a mesenteric 

lymph node T cell population implicated as the primary mediator of 

expulsion (Lee et al., 1983). T cell mediated expulsion via local 

inflammatory changes, as suggested for the nematode Trichinella spiralis in 

the mouse (Larsh and Race, 1975; Wakelin and Wilson, 1979) appears not 

to apply to the expulsion of T. muris. No signs of gross inflammation have 

been reported and -no correlations between the presence of mediators of 

inflammation, such as mast cells, and expulsion have been made (Lee and 

Wakelin, 1982b). Furthermore, Wakelin and Selby (1976) demonstrated that 

bone marrow-derived cells, other than lymphoid cells, were not apparently 

involved in the expulsion of T. muris and concluded that delayed 

hypersensitivity reactions were not of major importance in this system. Lee 

et al. (1983) postulated that effector T cells and worms interact more 

directly in the T. muris system than seen for Trichinella spiralis, the 

epithelial attachment and feeding site of this parasite making it potentially 

particularly vulnerable to the effects of intraepithelial lymphocytes thought to 

be derived from rapidly dividing T cell populations in the mesenteric lymph 

nodes and Peyer's patches. However, more sensitive and biologically more 

meaningful assays of mast cell activity, including quantifying serum levels of 

a protease released from mast cells may yet reveal a role for mast cells in 

the expulsion of T. marls. 

The administration of cortisone acetate, an immunosuppressive agent, 

during early larval development is known to enable a primary infection to 

survive to patency in a normally resistant host (Wakelin, 1970a). This state 

of chemically induced tolerance has been shown to extend into subsequent 

infections after the removal of the primary infection by chemotherapy 
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(Wakelin and Selby, 1974a; Lee and Wakelin, 1982a) and as such provides 

a model for chronic trichuriasis in humans. Lee and Wakelin (1982a) have 

shown that serum from mice rendered tolerant to infection ý could ý passively 

transfer immunity to naive mice but mesenteric lymph node cells from such 

donors were ineffective. In addition immune mesenteric lymph node cells 

could not confer immunity to mice with an established- adult infection but 

were effective against challenge infections, given on the day of cell transfer, 

after removal of the primary infection by chemotherapy. Control mesenteric 

lymph node cells in this experiment failed to restore immunocompetence to 

tolerant mice. On the basis of this work Lee and Wakelin suggested that 

chemically induced tolerance to infection involved a defect in an effector T 

cell population, perhaps operating at the level of antigen presentation. 

Chronic infections with T. muris have been shown to be associated with 

decreased humoral responsiveness to T dependent and T independent 

antigens and to render the host less able to respond to a primary infection 

with Trichinella spiralls (Lee and Wakelin, 1983). T cells from the 

mesenteric lymph nodes showed no reduction in responsiveness to , the 

polyclonal activator phytohaemagglutinin and homing of activated lymph 

node cells from T. spiralis infected donors was not impaired. 

The marked strain variation in the ability of mice to expel T. muris 

observed by Wakelin (1975b) indicates that the initiation and expression of 

resistance to infection is influenced by genetic factors. The availability of 

genetically defined strains of mice has led to much study of the genetic 

control of immunity to infection in a system which allows considerable scope 

for genetic manipulation and in which the immune mechanisms involved can 

be readily dissected. 
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1.3 IMMUNOGENETICS 

Immunogenetics is a powerful tool by which to analyse the mechanisms 

of immunity at a molecular level. An understanding of the processes 

involved in B and T cell activation together with a knowledge of the nature 

and function of genes in the major histocompatibility complex (MHC) 

enable hypotheses to be made as to how a particular response status arises 

in terms of both resistance to infection and ability to generate T and/or B 

cell responses to particular antigenic determinants. 

1.3.1 THE MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) 

The ability to discriminate between self and non-self resides in the 

recognition of cell surface structures (histocompatibility antigens) coded for 

by genes which form the so called major histocompatibility complex (MHC) 

found on chromosome 17 in the mouse. Only a brief description of the 

mouse MHC, together with its human counterpart, the human leucocyte 

antigen (HLA) system located on chromosome 6, is given here. For a more 

detailed description see Male et al., 1987 Chapter S. The organisation of 

the murine and human MHC is shown in figure 1.2. The mouse MHC 

consists of the H-2 complex and the TI a complex. A human equivalent of 

the latter complex is not known but may exist. Genes within the K and D 

regions of the H-2, the H-2K, H-2D and H-2L loci, code for class I 

MHC molecules found on nearly all nucleated cells. T cells expressing the 

CD8 cell surface marker, e. g. most cytotoxic T cells, mainly recognise 

antigen fragments in association with class I molecules. HLA-A, -B and -C 

loci code for class I molecules in man. Class I genes are also found in the 

mouse Tla complex, their products differing in tissue distribution and 

probably function from those within the H-2. The I region of the H-2 



Figure 1.2 The murine and human MHC (adapted from Male et aI, 1987) 
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complex (the HLA-D region in man) contains the class II (or Ir genes) 

encoded in the I-A and I-E subregions (HLA-DQ, HLA-DR and HLA-DP 

in man). The I-A subregion contains the ý Aß, Aa and the A. (Eu) loci 

with the Ea locus lying in the I-E subregion. Products of the class II genes 

(Ia antigens) are expressed predominantly on B lymphocytes and other 

antigen presenting cells such, as macrophages. T cells which recognise 

antigen in the context of class II molecules generally express the CD4 

marker (e. g. T cells of the helper phenotype). The I-A region product is 

an ApAc, dimer, the I-E region, product being an EpEcj dimer. Whilst all 

inbred mouse strains express I-A, molecules, mice of the b, s, f and 7a 

haplotypes (see below) fail to express I-E molecules. The b ands haplotype 

strains fail to make Ea chains due to a deletion in the promoter region of 

the Ea gene but do express cytoplasmic Ep chains which are hence 

available for use in hybrid I-E molecules in F1 hybrids between b or s 

haplotype mice and strains expressing EC,. ' Mice of the f and g haplotypes 

fail to make both Ea and Eß chains. The Ea defect in f haplotype, mice 

resides in the synthesis of an Ea mRNA of aberrant size whilst g haplotype 

mice have defects in RNA processing and mRNA stability (Jones et al., 

1981; Mathis et al., 1983). The class III products of the ° mouse and human 

MHC are components of the complement system and bear little functional 

or structural similarities to the class I and class II molecules. , 

The major feature of the MHC is the extreme polymorphism of many 

of the class I and class II genes, excluding the Ea gene. The set of alleles 

expressed by an inbred mouse strain within the MHC defines its haplotype. 

Inbred strains which are more than 99% homozygous and that express only 

one allele of each histocompatibility antigen can be obtained by twenty or 

more brother-sister matings. Thus mice of, for instance, the H-2b haplotype 

express b. -alleles at all H-2 loci. H-2 congenic strains of mice differ from 

each other only at- the H-2, whilst H-2 recombinant mouse strains are 
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identical except for a small number of genes within the - H-2. The 

availability of such strains enables the influence of background genes, H-2 

genes, and genes within the H-2, on the ability to mount a protective 

immune response to be studied in isolation. 

1.3.2 ANTIGEN PRESENTATION 

The recognition of antigen by B cells and T cells is markedly 

different. Whilst B cells bind free antigen, T cells only bind antigen which 

has been processed and presented to them in association with MHC 

molecules. In addition, as outlined in 1.3.1, cytotoxic T cells, usually only 

recognise antigen in association with class I MHC molecules and are thus 

targeted against tumour cells and virally infected cells (Male et al., ý 1987 

Chapter 7). Helper T cells (TH) are, in most cases, MHC-class II 

restricted, only recognising antigen which has been processed and presented 

to them by so called antigen presenting cells (e. g. macrophages, dendritic 

cells and B cells) in association with class II molecules (reviewed by 

Schwartz, 1985; Janeway et al., 1988). Activated TH cells subsequently 

interact with B cells (most B cell responses are T cell, dependent, reviewed 

by Abbas, " 1988), inflammatory cell precursors and other., effector cell types, 

through the production of lymphokines, resulting in immune responses 

typical of those believed to be important in the control of ý many helminth 

infections (see Rothwell, 1989; Wakelin, 1988b). Current models of antigen 

presentation suggest that a single structure, a processed antigen-la complex, 

is recognised by the T cell receptor (Kappler et al., 1981; Heber-Katz et 

al., 1983; Babbitt et al., 1985; reviewed by Marrack and Kappler, 1987). 

The three dimensional structure of the binding site of -the class II molecule 

has not been described although it may well have features similar to those 

described by Bjorkman et al., 1987 for the MHC class I molecule. r These 
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workers described a single potential binding site envisaged as a groove with 

13-strands at the base and a-helices at the sides of a size allowing binding 

of peptides 8-20 amino acids long. This binding site has the capacity to 

bind many different peptides (Buus et at., 1987b) with peptides competing 

for antigen presentation (Babbitt et at., 1985; Guillet et at., 1987). 

Immunodominant peptides presumably bind to the class II site with the 

greatest affinity. Thus MHC-restricted B and T cell responses to particular 

antigens in mice (Del Guidice et at., 1986; Good et at.,. 1986) and 

correlations between histocompatibility antigens and susceptibility to particular 

human diseases (Sasazuki et at., 1977; Osoba et at., 1979; Lamoureux et 

at., 1985; Sterkers et at., 1988) and parasite infections in mice (Blackwell 

et at., 1980; -Blackwell, 1983; Wassom et at., 1979) may reflect limitations 

on the ability of a particular MHC molecule to bind certain antigens. 

Non-responsiveness to parasite antigens can arise at the level of the antigen 

presenting cell through the expression of inappropriate (non-responder) 

alleles at the MHC, non-responder MHC-encoded molecules failing to bind 

the antigen fragment in an immunologically relevant way, (Rosenthal, 1978; 

Heber-Katz et at., 1983; Buus et at., 1987a). Alternatively the immunogenic 

complex generated might induce suppressor rather than helper T cells (Kapp 

et at., 1974; Nagy, et at., 1981). Failure to synthesise one or both of the 

two chains of a, class 11 molecule (Jones et at., 1981) may also be 

associated with non-responsiveness. Quantitative defects in la molecule 

expression at the cell surface may dictate responder status (Matis et at., 

1982; . Janeway et al., 1984) as may the affinity of the interaction between la 

and the peptide (Babbitt et al., - 
1985). Binding of an immunodominant 

peptide to a class II molecule is a necessary but not the only prerequisite 

for 'an immune response to take place. The absence of T cells bearing 

receptors able to recognise a particular combination of antigenic peptide plus 

MHC class II molecule (i. e. a "hole" in the antigen-specific, T cell 
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repertoire) can also account for functional non-responsiveness (Ishii et 

al., 1981; Thomas and Hoffman, 1982), "holes" arising, at least in part, 

through the deletion of T cells able to react with self in the thymus during 

T cell ontogeny (Marrack and Kappler, 1987; 1988; Blackman et al., 1988). 

1.3.3 T HELPER CELL SUBSETS 

The above discussion has considered TH cells as a single population of 

lymphocytes. Recently TH cell clones have been separated into two distinct 

sets in vitro on the basis of the lymphokine profiles: TH1 cells, also 

referred to as inflammatory CD4+ T cells, produce interleukin - (11-2) ' and 

gamma interferon (IFN-y) whilst TH2 cells (helper CD4+ T cells) produce 

11-4 and 11-5. I1-3 and granulocyte-macrophage colony stimulating factor 

(GM-CSF) are apparently produced by both cell types (reviewed by 

Mosmann and Coffman, 1987; Bottomly, 1988; Coffman et al., 1988). The 

lymphokines produced by TH1 cells are required to stimulate IgG2a antibody 

production (Snapper and Paul, 1987) and the involvement of THI cells in 

delayed type hypersensitivity responses has been demonstrated (Cher and 

Mosmann, 1987). The lymphokines defining TH2 cells (11-4 and I1-5) are 

thought to be involved in the production of IgGi and IgE (Vitetta et al., 

1985; Coffman and Carty, 1986), and in the generation of eosinophils and 

IgA production (Harriman and Strober 1987; Murray et al., 1987; Coffman 

et al., 1987) respectively. However at present it is uncertain as to - whether 

the two distinct TH cell lineages exist in vivo or whether they represent 

long term in vitro selection. Reports of short term T cell clones secreting 

both 11-2 and 11-4 (Glasebrook et al., 1988) and the demonstration of the 

random coexpression of GM-CSF, IFN-y, Il-3 and 11-4 (Kelso and Gough, 

1988) -would suggest- that at least initially TH cells are pluripotential with 

respect to lymphokine production but preferentially secrete, a more restricted 
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panel of lymphokines according to their local enviroment. In subsequent 

chapters the THI and TH2 subsets are referred to. It should be borne in 

mind that their existence as separate lineages is still open to debate. 

1.4 OBJECTIVES OF THIS STUDY 

In the preceding subsection (1.3) the importance. of genetically 

determined factors in the control of immunity was emphasised. Such - factors 

represent one of several components which can affect a host's ability to 

respond to infection. Section One of this thesis was designed to analyse the 

effects of both H-2 and non-H-2 genes on the expulsion of Trichuris 

muris from the mouse, their role in the control of humoral immune 

responses to T. muris excretory/secretory (E/S) antigen and their overall 

contribution in the determination of responder/non-responder status of the 

host (for the purpose of this thesis "responder" mice are defined as those 

individuals able to expel T. muris before the primary infection reaches 

patency, "non-responder" mice harbouring mature adult worms). The 

decision to use E/S antigen as the target antigen in the serological studies 

was based on the fact that, although still consisting of a relatively 

heterogeneous mixture of antigens, it represents a more restricted set of 

potentially functional relevant antigens compared to worm homogenate 

(Roach, 1986; Pritchard, 1987). 

Host determined parameters are clearly important in determining the 

outcome of infection, but they are not the only factors. Equally important 

are the constraints the parasite imposes on the host's ability to respond to 

infection. One of the paradoxes of chronic infections such as T. muris in 

certain strains of mice, and T. trichiura in man, is the long term survival 

of the parasite despite host immune responses. The evasion of host 

immunity by parasites is well documented (for reviews see Bloom, 1979; 
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Parkhouse, 1984; Wakelin, 1986; Mitchell, 1989b) and is achieved via 

numerous elaborate mechanisms. The work presented in Section Two was 

aimed at analysing the factors involved in the immunological predisposition 

of certain strains of mice to infection with T. muris and in the curious 

phenomenon of differential responsiveness within inbred mouse strains. 

Finally the studies described in Section Three addressed the problem of 

the likely source of the E/S antigens of T. muris, components of which are 

known to be highly immunogenic (Wakelin and Selby, 1973; Jenkins and 

Wakelin, 1977; 1983). 



CHAPTER 2 

MATERIALS AND METHODS 
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2.1 GENERAL TECHNIQUES 

2.1.1 MICE 

Six to eight-week old inbred male mice were obtained from Harlan 

Olac Ltd., except C57BU10, BALB/c, NIH and BIO. G, and the outbred 

strains MF1 and CFLP, which were bred at the University of Nottingham 

(unless otherwise stated). All the animals were maintained under 

conventional animal house conditions receiving food and water ad libitum. 

Naturally acquired oxyurid infections were removed from homebred mice by 

the administration of 0.2mis piperazine citrate (tripiperazine dicitrate, Sigma) 

(12.5% w/v solution in water) on two occasions seven days apart. All' the 

mice " were given piperazine citrate in their drinking water (1 g/1) until used. 

2.1.2 CROSS BREEDING 

Parental strains were obtained from Harlan Olac Ltd. Groups of two to 

three eight to ten-week old female mice were housed with one male mouse. 

Females were removed once pregnant and caged separately, with bedding 

material. F1 hybrid mice were weaned at four weeks of age and used when 

six to ten-weeks old. 

2.1.3 PARASITE 

a) Maintenance of Trichuris muris and infection protocol 

Stock infections were maintained in CFLP mice. Infective egg cultures 

were stirred on magnetic stirrers and embryonated eggs in four 501l aliquots 
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were counted under low magnification and averaged. The desired 
i 

concentration was obtained by adjusting the total volume of the egg culture 

to give the required number of viable eggs in 0.2m1. Stock mice were 

infected orally with approximately 400 embryonated eggs and received 

corticosteroid treatment (see 2.1.4) to enable the infection to reach patency. 

Cortisone-treated mice were given oxytetracycline hydrochloride (Terramycin, 

Pfizer Ltd. ) in their drinking water at a concentration of 165mg/l. 

On day 42 p. i. mice were killed by an overdose of chloroform (May 

and Baker) and the worms removed, washed in PBS (Appendix 2.6.2) and 

placed in sterile RPMI 1640 plus supplements (Appendix 2.6.1) with 

500µg/ml of penicillin/streptomycin (Gibco) and fungizone (Gibco) at 

2.51tg/ml for O/N collection of E/S products (see 2.2.1). Eggs released O/N 

by female worms were collected, washed and re-suspended in 0.25% 

formaldehyde (Eagle Scientific Ltd. ) in distilled water. Gravid females were 

ground in a glass tissue homogenizer with a loose fitting plunger so as not 

to rupture the eggs, and the resulting suspension filtered through fine nylon 

mesh. The eggs were washed once and resuspended as described above. 

Eggs were incubated in tissue culture flasks (Nunc) in the dark at room 

temperature for at least 45 days, cultures being examined regularly for both 

egg development and contamination. Once eggs had embryonated, cultures 

were stored at 4'C. 

b) Worm Counts 

Mice were killed by an overdose of chloroform. The caecum and first 

4 cms of the colon were removed from each mouse, placed in a petri dish 

and frozen at -20, C for at least 24 hours. Guts were thawed for counting 

in PBS in a petri dish, slit open and flushed through with PBS. 

For early larval stage counts each gut was placed in fresh PBS in a 
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second petri dish and the caecum and colon scraped with curved forceps. 

The gut was then re-scraped in a third petri dish. Larvae were removed 

from the petri dishes as they were counted and each dish was scanned 

three times. The gut contents were also scanned for larvae, although few 

were usually present. 

L4 and adult T. muris were counted as they were removed individually 

from the gut mucosa using fine forceps. Incomplete worms were only 

counted if an entire posterior end was present. 

2.1.4 CORTICOSTEROID TREATMENT 

Mice were injected subcutaneously (s. c. ) with 0.05m1 of hydrocortisone 

21-acetate (C/A) (25mg/ml, Sigma) on days 7,9,11,13 and 15 p. i. This 

regime prevents worm expulsion and allows the long-term survival of adult 

L7 (Wakelin, 1967). 

2.1.5 ANTHELMINTIC TREATMENT 

The anthelmintic methyridine (Promintic, LC. I) was injected s. c. at, a 

dose ý of 500mg/kg body weight, mice being given three such treatments; at 3 

hour intervals. Mice sacrificed the day after treatment showed the drug to 

be effective in removing all larval and adult worms on the day ý of 

treatment. 

2.1.6 IMMUNISATION 

The test antigen preparation was added dropwise to, and emulsified 

with, an equal volume of Freund's Complete Adjuvant (FCA) (Sigma). Mice 

were immunised s. c. on day-10 and infected on day 0, along with controls 
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injected with PBS emulsified with FCA (Jenkins, 1977). 

2.1.7 SERUM 

Mice sacrificed for worm burden determination were bled by cardiac 

puncture. In all other cases mice were bled from the tail vein. Whole blood 

was centrifuged at 11,500g for 10 minutes and the sera obtained stored in 

100Ed aliquots at -40 *C. 

2.2 ANTIGEN PREPARATIONS 

2.2.1 EXCRETORY/SECRETORY (E/S) ANTIGEN 

Mice with patent T. muris infections were killed and the caeca' and 

colons removed. After opening the guts and flushing out the gut contents 

with PBS, adult male and female T. muris were removed individually, 

washed in PBS and placed in sterile RPM1 ' 1640 medium plus supplements, 

excluding FCS and L-glutamine, (Appendix 2.6.1) with 500µg/ml 

penicillin/streptomycin (Gibco) and fungizone (Gibco) at 2.5µg/ml. After 4 

hours in this medium at 37 *C worms were put into fresh medium and left 

O/N for the collection of EIS products. The 4 hour supernatant (SIN) was 

retained, containing considerable amounts of E/S products, centrifuged at 

200g for 5 minutes to remove eggs, and filtered (0.22µm filter, Millipore). 

The culture S/N from the O/N incubation was treated as above. Both 

4 hour and O/N E/S samples were freeze-dried, reconstituted to no more 

than one quarter of the original volume with distilled water, and dialysed 

O/N using dialysis tubing with a 2kDa cut-off point (Sigma). Samples were 
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analysed for protein (see 2.3.7), aliquoted, and stored at -40*C. 

2.2.2 35S-METHIONINE LABELLED E/S ANTIGEN 

Metabolically labelled E/S antigen was prepared by incubating worms 

O/N, as above, in the presence of 35S-methionine (Amersham) at 250ACi/ml 

(9.25 MBq/ml) in methionine-free medium. 25 worms were incubated per 

I ml of medium. At the end of the culture period S/Ns were removed, 

centrifuged (11,500g for 5 min. ), aliquoted and frozen directly at -40'C, 

without sterile filtering. E/S products were analysed for labelled protein (see 

2.3.6) prior to use. 

2.2.3 ADULT MALE ANTIGEN (AMA) 

Adult male and female worms were incubated O/N at 37 *C as in 

2.2.1. Male worms were then removed, washed in PBS, homogenised on ice 

in a minimal volume of PBS using a glass tissue homogeniser and allowed 

to extract O/N at 4'C. The resulting suspension was centrifuged at 11,500g 

for 30 minutes. The S/N was removed, filtered (0.22µm filter, Millipore), 

analysed for protein (2.3.7) and stored at -40 *C. 

2.2.4 ANTERIOR END ANTIGEN (AA), STICHOCYTE E/S (CE/S) AND 

STICHOCYTE ANTIGEN (CA) 

Adult T. muris were washed in PBS and the anterior portion of each 

worm severed from the posterior portion at the oesophageal-intestinal 

junction using fine forceps. 

a) Anterior end antigen (AA)-anterior ends were homogenised on ice in a 

minimal volume of PBS using a glass tissue homogeniser and left to extract 
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O/N at 4*C. The suspension was then centrifuged at 11,500g for 30 minutes 

and the resulting S/N filtered using a 0.22µm Millipore filter, analysed for 

protein, aliquoted and stored at -40 
'C. 

b) Stichocyte E/S (CE/S) - stichocytes were dissected out into PBS from 

the anterior ends of the worms using blunt ended glass rods. Individual cells 

were collected and placed in RPMI-1640 medium plus supplements, 

excluding FCS and L-glutamine, for O/N culture at 37 *C. The resulting S/N 

was removed, centrifuged at 11,500g for 30 minutes, filtered (0.22µm 

Millipore paper), aliquoted and stored at -40 
'C. 

c) Stichocyte antigen (CA) - Stichocytes were boiled for 5 minutes in 

reducing sample buffer prior to SDS-PAGE (see 2.3.2) 

2.2.5 PSEUDOCOELOMIC FLUID (PCF) 

Individual adult T. muris were placed in PBS in a Watchman's glass 

and the anterior end severed from the posterior end at the 

oesophageal-intestinal junction, thus releasing a dense fluid into the PBS. 

Approximately 200 worms were dissected in this manner before the PBS 

plus fluid was collected, centrifuged, at 11,500g for 15 minutes and filtered 

(0.2214m Millipore filter). The resulting solution was analysed for protein, 

aliquoted and stored at -40*C prior to use. 

2.2.6 UNEMBRYONATED EGG ANTIGEN (UEEA) 

Unembryonated T. muris eggs (approximately 11x106), obtained by 

maceration of female worms, were placed in 20% bleach for, approximately 

20 minutes to dissolve the egg capsule leaving the lipid membrane ý intact. 

Eggs were washed thoroughly to remove all bleach and sonicated -for 5 

minutes at 1.5 Amperes. The resulting suspension was centrifuged (11,500g 
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for 15 minutes) and the S/N filtered (0.22µm Millipore filter), analysed for 

protein, aliquoted and stored at -40*C. 

2.2.7 EMBRYONATED EGG ANTIGEN (EEA) 

Eggs obtained from an infective egg culture were treated as above. 

The approximate ratio of embryonated to unembryonated eggs in such a 

culture was 2: 1 

2.2.8 125I-LABELLED SURFACE PROTEIN 

125I-surface labelling was carried out using the Iodogen reagent 

(1,3,4,6-tetrachloro-3a, 6ci-diphenylglycoluril, Pierce Chemical Co. ) (Fraker 

and Speck, 1978) which promotes labelling of tyrosine residues (Zingales, 

1984). lodogen was dissolved in methylene chloride to give a working 

dilution of 1 mg/ml. 50µl of this solution , were dispensed into a series of 

small glass tubes and the solvent allowed to evaporate at RT, leaving a thin 

film of iodogen at the bottom of the tube. lodogen coated tubes were 

rinsed with PBS to remove loose flakes of reagent prior to use. 

One male and one female worm in PBS were added to each tube 

and the volume reduced to approximately 50µl. l0µ1 of potassium iodide 

solution (BDH, 11 µg/ml in PBS) were added, to each tube followed by 2µl 

(271zCi; 1MBq) of 1251 (Amersham). The reaction was allowed to proceed 

for 10 minutes at RT, rotating the tubes every 2 -minutes. Samples were 

then diluted with PBS, tipped into universals and washed 6 times with large 

volumes of PBS. Worms were either homogenised in PBS, the homogenate 

being centrifuged at 11,500g for 10 minutes and the S/N removed, analysed 

for protein by trichloroacetic acid (TCA) precipitation (2.3.6), aliquoted and 

stored at 4C, - or, cultured O/N in RPMI-1640 - medium, the E/S being 
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collected, centrifuged at 11,500g for 10 minutes and the S/N analysed for 

protein and stored as above. Worms from the O/N incubation were 

homogenised as above. 

2.3 BIOCHEMICAL/IMMUNOLOGICAL TECHNIQUES 

2.3.1 ENZYME-LINKED IMMUNOSORBANT ASSAY (ELISA) 

Alkaline phosphatase method 

The protocol for the ELISA is outlined below, and is essentially as 

described by Voller et al. (1979). 

Assay plates were wrapped in foil during incubation periods to limit 

evaporation from sample wells and to allow the enzymic reaction to proceed 

in the dark once the photosensitive substrate was added. Optimal antigen 

concentrations and serum dilutions were as determined by Roach (1986). For 

all buffer recipes see 'Appendix (2.6.6). 

Ninety-six-well flat-bottomed flexible assay plates (Falcon) were coated 

with E/S antigen (51tg/ml; 50µl/well) in 0.05M carbonate/bicarbonate buffer, 

pH 9.6, and left O/N at 4 *C. Antigen was tipped off and the plate washed 

five times (three rapid washes followed by two three minute washes) with 

PBS containing 0.05% Tween 20 (Sigma). Plates were blocked - with 3% 

bovine serum albumin (BSA, Sigma) in PBS/Tween, 100pl/well, for 1 hour 

at RT. After tipping off the blocking solution and washing - twice in 

PBS/Tween, 50µ1 of test serum at a dilution of 10-2 in PBS/Tween were 

added to each well and incubated at RT for 1.5 hours. After three rapid 

and two three minute washes, alkaline phosphatase-conjugated , sheep 
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anti-mouse IgG (whole molecule, Sigma), sheep anti-mouse IgGi (Serotec), 

goat anti-mouse IgA (a chain specific, Sigma), goat anti-mouse IgM (µ 

chain- specific) (Sigma), all diluted 1/1000 in PBS/Tween, or goat 

anti-mouse polyvalent IgGAM (Sigma) diluted 1/350 in PBS/Tween, was 

added (50µl/well) and incubated for another 1.5 hours at RT. Plates were 

washed five times, as described above, with PBS/Tween and the substrate 

p-Nitrophenyl phosphate, disodium hexahydrate tablets (Sigma) dissolved in 

diethanolamine buffer, pH 9.8 (Fisons) (1 mg/ml; 1 tablet/5mls) added to the 

plates at 100µ1/well. Plates were left for 0.5-1 hour at RT until a control 

positive serum sample, included on all plates, had reached a selected 

reference O. D. value. The enzymic reaction was read at 410nm on a 

Dynatech MR 700 Microplate reader. 

Horse radish peroxidase method 

Levels of specific IgG2a in serum samples were determined using the 

enzyme horse radish peroxidase conjugated to streptavidin. The method used 

was as outlined for the alkaline phosphatase-conjugated anti-immunoglobulin 

reagents except for the stages mentioned below. All stages were performed 

at RT except the initial antigen binding step, as before. 

After incubation of the test sera for 1.5 hours and the subsequent 

washing steps, goat anti-mouse IgG2a (Southern Biotech), diluted 1/500 in 

1% skimmed milk in PBS' was added, 50µl/well, and left for 2 hours. Plates 

were washed five times, as before, prior to the addition of a biotinylated 

rabbit anti-goat IgG reagent (Kirkegaard and Perry), diluted 1/1000 in 1% 

skimmed milk in PBS and added at 50µ1/well. Plates were left for 1 hour, 

then washed as above, followed by the addition of horse radish 

peroxidase-streptavidin diluted 11500 in 1% skimmed milk in PBS 

(50µ1/well). After a1 hour incubation, and 5 washes in PBS/Tween (0.05%) 
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the peroxidase substrate 2.2'-azino-di-[3-ethyl]-benzthiazoline sulfonate 

(Kirkegaard and Perry) mixed 1: 1 with - hydrogen peroxide (H202) 

(Kirkegaard and Perry) was added at 100µ1/well. The reaction was stopped 

after 4 minutes with 0.3M H2S04,501t1/well, and read at 410nm as before. 

2.3.2 SDS POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 

The protocol for the preparation, pouring and running of 10-20% 

SDS-polyacrylamide gradient gels using the method of Laemmli (1970), is 

outlined below. Recipes for stock acrylamide solutions, buffers, staining and 

destaining solutions are given in the Appendix (2.6.3). 

a) Preparation of resolving and stacking gels. 

Resolving gradient gel 

10% acrylamide 20% acrylamide 
solution solution 

"Dense" acrylamide - 11.0ml 

solution 
"Light" acrylamide 16.7m1 - 
solution 
Lower gel buffer 12.5m1 5.5m1 

pH 8.8 
Distilled water 20.8m1 - 
10% ammonium 50. Oµ1 15.0µ1 

persulfate (APS) 
TEMED (N, N, N', N', - 5O. 0111 15.0µ1 

tetramethylethylenediamine, 
Sigma) 

The 10% and 20% acrylamide solutions were mixed as above without 

TEMED and degassed under a vacuum. TEMED was added to both 

solutions immediately before pouring into the gradient gel mixer, in which 

the 20% solution was gradually diluted by the 10% solution as the gel was 

poured between the gel plates. To exclude air during the polymerisation 
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process the gel was overlaid with 2-methyl-propan-1 -o1 (BDH), the gel 

surface being washed with distilled water after polymerization was complete. 

Stacking gel 

The stacking gel was made by mixing the following reagents: - 

Light acrylamide solution 3. Oml 
Upper gel buffer pH 6.8 5. Oml 
Distilled Water 12. Oml 
10% APS 90.0µ1 
TEMED 3O. 0µ1 

The solutions were mixed and degassed before TEMED was added. 

The stacking comb was placed between the two glass plates and the empty 

space filled with the stacking gel solution. After polymerization was 

complete the comb was carefully removed and the gel washed thoroughly 

with electrode buffer before overlaying with electrode buffer. 

b) Sample preparation 

The volume of sample containing 50-100µg of protein was boiled with an 

equal, or excess, volume of reducing sample buffer for 5 minutes in a 

water bath. Samples were centrifuged for 1 minute at 11,500g prior to 

loading on the gel. Samples were loaded into the wells using a 

micropipette. Gels were run at 10*C O/N at a constant voltage of 100V on 

an LKB 2001 vertical electrophoresis kit (LKB Instruments, Sweden). The 

voltage was increased to 400V the next morning until the dye front had 

migrated to the bottom of the gel. 
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c) Gel staining and destaining 

Gels were removed from the glass plates and placed in 0.1% Coomassie 

Brilliant Blue stain (Sigma) O/N on a rocker. Gels were transferred to 

destain until protein bands were visible and background staining was low, 

and then dried down onto filter paper using a BioRad 443 Slab Dryer. 

d) Elution of antigen from SDS-polyacrylamide gels 

For temporary visualisation of protein bands, gels were placed in ice 

cold 0.25% potassium chloride solution (Fisons) for 1-S hours. Opaque 

colourless protein bands were thus rendered visible. The required band was 

cut out from gels, equilibrated with equilibrating buffer (elution buffer plus 

5mM dithiothreitol (Sigma) for 30 minutes, and the protein eluted by 

homogenisation of the band in elution buffer and extraction O/N at 4'C. 

e) Autoradiography 

125I-labelled proteins were run at 50,000 cpm per lane following boiling 

in reducing sample buffer as previously described. Gels were stained O/N 

with Coomassie Brilliant Blue stain (Sigma), destained, and dried on to filter 

paper. After drying, gels were exposed to X-ray film (Fuji) in combination 

with an intensifying screen at -80*C until the film was suitably exposed. 

2.3.3 WESTERN BLOTTING 

Western blotting was carried out basically as described by Burnette 

(1981). T. muris E/S antigen was run on gradient gels as previously 

described. Nitrocellulose membrane (Schleicher and Schuell) was cut to fit 
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the gel and pre-soaked in distilled water followed by blotting buffer 

(Appendix 2.6.4). A Scotch-brite pad, soaked in blotting buffer, was placed 

on an open blotting cassette, followed by two sheets of 3mm filter paper 

wetted with blotting buffer. The gel was placed on the filter paper, and the 

nitrocellulose laid on top, avoiding entrapment of air bubbles. Lanes on the 

gel were marked on the nitrocellulose and a second wet filter paper and 

pad added. Finally the cassette was closed and the unit placed in blotting 

buffer in a blotting tank, with the nitrocellulose facing the anode. Blotting 

was performed for 2 hours at 10'C at 100-300mA. Once transfer of 

proteins to the nitrocellulose was complete, the marker lane and one sample 

lane were cut off and stained for two minutes in amido black stain (Sigma) 

(Appendix 2.6.4) and then destained to reveal the protein bands. After 

saturating any remaining protein-reactive sites by incubating the remaining 

nitrocellulose in 10% skimmed milk in PBS/Tween (0.05%) for one hour at 

RT on a rocker, the membrane was cut into strips and incubated with test 

sera (11500 dilution in 10% skimmed milk in PBS/Tween) O/N at 4'C. 

Blots were washed three times prior to incubation with 125I-rabbit 

anti-mouse polyvalent immunoglobulins (0.51tCi/strip, Amersham) for 2 

hours. Blots were washed again, air dried and exposed to X-ray film (Fuji) 

at -80'C in combination with an intensifying screen. 

2.3.4 IMMUNOPRECIPITATION 

35S-methionine labelled EIS antigen (2.2.2) was added to a series of 

eppendorf tubes to give 100,000cpm. A volume of 25µ1 of test serum was 

added and made up to a volume of 0.5m1 with immunoprecipitation buffer 

pH7.4 (Appendix 2.6.5). The solutions were vortexed and left O/N at 4*C. 

15µl of sheep anti-mouse IgGFc (Serotec), sheep anti-mouse IgGi (Serotec) 

or sheep anti-mouse IgGAM and L chains (Serotec), were added to each 
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sample and left for 3 hours at RT. Immunoprecipitates were spun down at 

11,500g and washed four times in immunoprecipitation buffer before boiling 

in 251 of reducing sample buffer. Solubilised antigens were analysed by 

SDS-PAGE (10-20% gradient gels). Gels were fixed, fluorographed, dried 

down and exposed to X-ray film (Fuji) at -80'C. 

2.3.5 FLUOROGRAPHY OF 35S-METHIONINE GELS 

Gels were fixed in destain for 30 minutes, then soaked in 20 times 

their volume of dimethylsulphoxide (DMSO) (Sigma) for 1 hour, followed by 

a second 4 hour immersion in fresh DMSO to ensure the removal of all 

water from the gels. Gels were then soaked in 22% 2'5 diphenyl oxazole 

(PPO) (Sigma) in DMSO O/N, and placed in water for 5 hours before 

drying down at 60*C and exposing to X-ray film (Fuji) at -80'C. 

2.3.6 TRICHLOROACETIC ACID (TCA) PRECIPITATION FOR 

LABELLED PROTEIN 

The amount of labelled protein obtained from both the 35S-methionine 

and 125I-labelling procedures was estimated using trichloroacetic acid (TCA) 

(BDH) precipitation. 

a) 35S-methionine labelled protein 

IOµ1 of the sample to be counted were placed in an eppendorf with 

100µl ice cold 25% TCA. 50µl of foetal calf serum (FCS) (Gibco) were 

added and, after vortexing, the solution was left on ice for 10 minutes 

before filtering using a buchner funnel and flask onto a 4.25cm glass 

microfibre filter (Whatman) pre-wetted with ice-cold 8% TCA. The filter 

I 
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was washed four times with ice-cold 8% TCA before airdrying. Once dry 

the filter was placed in a scintillation vial containing 5mls of scintillation 

fluid (Optiphase 'X') (Fisons) for counting on an Intertechnique SL 30 

liquid scintillation spectrometer. 

b) 125I-labelled protein 

100µ1 of 25% TCA was added to 10µ1 of sample followed by 30µl of 

FCS. After 20 minutes this mixture was spun at 11,500g for 1 minute and 

the resulting S/N removed. The cpm of the precipitate, S/N and 1Oµ1 of 

the original protein solution were determined using a gamma counter 

(Packard A 500c) and the percentage of labelled TCA precipitable protein 

calculated. Labelled antigens were stored at 4 *C and used within 3 days of 

being prepared (half life of 1251 = 60 days). 

2.3.7 LOWRY METHOD 

Protein concentrations were estimated using a method modified from 

Lowry et al. (1951). A -set of protein standards, ranging from 16 to 

200µg/ml, were prepared using BSA (Sigma) in a total volume of 25O141 of 

distilled water. Dilutions of test samples were made in the same total 

volume. 1.25ml of working reagent (Appendix 2.6.7) were added to each 

dilution and the dilutions incubated at 37 *C for 5 minutes. 125µd of Folin 

and Ciocalteu's phenol reagent (Folin's reagent) (BDH), diluted 1: 1 in 

distilled water, were added to each dilution and the samples vortexed and 

incubated--at 37 *C for a further 15 minutes. 100µ1 aliquots of each dilution 

were read in triplicate on a Dynatech MR 700 Microplate Reader at 630nm 

and the mean optical densities (O. D. ) - calculated. A calibration graph was 

constructed of O. D. versus total protein content, using the BSA standards, 
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and thus the total protein content of - the test samples determined. Protein 

concentrations in mg/ml were then calculated. 

2.3.8 SURFACE IMMUNOFLUORESCENCE 

Adult ý male and female worms 'were isolated " from the large intestines 

of mice and washed five times in PBS. 2-4 worms were placed in 

eppendorfs with the test solutions (infection sera, tolerant - sera, - (TS) 'from 

mice with patent' infections, or ascites) at an appropriate dilution. Controls 

(PBS plus 1% BSA) (Sigma) and naive serum (NS) were also included. 

After 1 hour at 37 *C in the test solution worms were washed three times 

in PBS and 0.75mis fluorescein-conjugated affinity-purified goat anti-mouse 

immunoglobulins (IgGAM, heavy and light chains specific) (Cappel), at a 

1/20 dilution in PBS, added to each eppendorf and-left at 4'C in the dark 

for 30 minutes. Worms were washed, mounted in 50% glycerol (C. P. 

Pharmaceuticals) in PBS and examined under ultra violet illumination. 

2.4 CELLULAR TECHNIQUES 

2.4.1 PREPARATION OF CELL SUPSPENSIONS 

Aseptic technique was used throughout, using sterile media, sterile 

filtered antigen preparations, sterile instruments and sterile disposables. 

Spleens and mesenteric lymph nodes (MLN) were removed from mice, 

stripped of excess fat and placed in RPM1 1640 medium plus supplements 

(Appendix 2.6.1). All materials were kept at RT throughout. Cell 

suspensions were made by pressing the tissue through a gauze into a petri 
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dish using a 5ml syringe plunger. The dish was inclined and left for 5 

minutes to allow debris and cell clumps to settle, the cell suspension in the 

S/N then being removed and" spun down at 1000rpm for 5 minutes. The 

cell pellet 'was loosened and 5mls ammonium chloride (Appendix 2.6.2) 

added to lyse red blood cells. After 30-45 seconds 15mis of medium were 

added, the cells transferred to clean universals and washed twice by 

centrifuging at 1000rpm for 5 minutes and resuspending in fresh medium. 

After the final wash cells were resuspended in Smis of medium and cell 

viability assessed ' (2.4.2). 

2.4.2 CELL VIABILITY 

All cells take in fluorescein diacetate (FDA) (Sigma) but only' living 

cells can hydrolyse FDA to give free fluorescein. Such cells fluoresce green 

when viewed under ultra violet illumination, 

A stock solution of FDA (5mg/ml in acetone (May and Baker)) was 

prepared and stored at -20'C. Just prior to ý use this stock solution was 

diluted 1/50 in PBS and one volume added to 'nine volumes -of the cell 

suspension (at an appropriate dilution). The average number of fluorescing 

cells was determined using a Neubauer haemocytometer and hence the 

number of cells/ml calculated. 

2.4.3 LYMPHOCYTE PROLIFERATION ASSAY 

The ability of spleen and MLN cells to respond to T. muris E/S 

antigen, and to mitogens, was determined by culturing cells in vitro in the 

presence of the test substance, followed by the addition of tritiated 

thymidine (3H-TdR, Amersham International). Lymphocyte proliferation was 

thus assessed by the incorporation of 3H-TdR into the DNA of dividing 
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cells. 

Cells were recovered from mice and the cell suspension adjusted to 

5x106cells/ml (see 2.4.1 and 2.4.2). l00µ1 of medium were placed in each 

well of flat bottomed microtitre plates (Nunc) -followed by 50µ1 of sterile 

filtered antigen - at final concentrations of 1,10,50,100 or 200µg/ml, 50µ1 

of mitogen (sterile type IV-s Concanavalin A (Con A) (Sigma) at 1,5, or 

I0/cg/ml, or sterile-filtered lipopolysaccharide (LPS) from Escherichia coil 

serotype 055: B5 (Sigma) at 5,10 or 25icg/ml), or 50µ1 of medium (in 

control wells). 50µl of the cell suspension (2.5x105 cells) were added to 

every well and the covered plate incubated at 37 *C for 48 hours in a 5% 

CO2 humidified incubator. 

1.0. uCi (0.037 MBq) 3H-TdR in S0µ1 of medium was added to each 

well and the plate incubated O/N (18 hours). Cells were harvested onto 

glass fibre filter paper (Dynatech) using a Dynatech Multimash 2000 cell 

harvester. Filter paper discs were dried thoroughly before being placed in 

Smis of scintillation fluid (Optiphase 'X', Fisons) in capped scintillation vials 

(Hughes and Hughes). Radioactivity per disc was. determined by counting for 

1 minute on an Intertechnique SL 30 liquid scintillation spectrometer. 

2.4.4 CELL SEPARATION 

a) Panning 

To obtain B cell and T cell populations' from spleen and MLN 

preparations cells were panned under sterile conditions using 90mm petri 

dishes coated O/N at 4 *C with either-rat anti-mouse thy-1 monoclonal 

antibody (Clone YTS 154.7) (Sera-lab) at 50µg/ml, or sheep anti-mouse 

IgGAM and L chains (Serotec) at 100µg/ml, 5mis/petri dish. 

The anti-thy-1 and anti-IgGAM and L chain preparations were made 
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up in PBS, sterile filtered before use (0.22/tm filter, Millipore), and retained 

after the O/N incubation for re-use. Coated dishes were washed for 3 

minutes with warm sterile PBS and blocked with sterile 1% BSA in PBS at 

4 *C for 1 hour. After washing three times in sterile PBS, mixed lymphocyte 

suspensions, obtained as in 2.4.1, were pipetted onto the dishes at a 

concentration of 5x106 cells/ml in RPM1 1640 medium plus supplements, 

3mls per dish, and left for 2 hours at 4'C. Non-adherent cells were then- 

collected and resuspended in medium followed by the adherent cells, 

recovered by vigorous pipetting with cold PBS. Viable B and T cells were 

counted (2.4.2) and resuspended at the required concentration in RPM1 

1640 medium plus supplements. B cell, T cell and mixed B and T 

lymphocyte preparations were plated out at equal cell concentrations with T. 

muris E/S antigen as previously described (2.4.3). Up to 1x106 cells per 

sample were reserved for Fluorescence Activated Cell Sorting (FACS) 

analysis to check the efficiency of the cell separation technique. 

b) Separation of B and T lymphocytes using Immunomagnetic beads 

Dynabeads M-450 (Dynal) coated with affinity purified sheep 

anti-mouse IgG were used to negatively select for T lymphocytes by 

removal of B cells. The protocol used is outlined below. 

Beads were washed 3 times in sterile, cold RPMI medium (containing 

no FCS) and resuspended to approximately 7.5m1 in RPMI. Cells, prepared 

as in section 2.4.1 were added, 108 cells per 4x108 beads, i. e. a ratio of 

four beads to every one cell, up to a volume of 10-12mis in sterile 

universals. FCS was added to approximately 0.5-1%. Cells were rocked for 

30 minutes at 4'C and then the volume of the mixture increased to 20m1 

with RPMI. A cobalt-samarium magnet (Dynal) was placed on the outside 

wall of the universal for 30 seconds to collect rosetted cells and free 
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Dynabeads on the inside wall of the vessel. The S/N, containing 

non-rosetted cells, was decanted into a fresh universal, and the cells washed 

3 times in RPMI plus 10% FCS, counted, resuspended at 5x106 cells/ml and 

plated out, all as outlined in section 2.4.3. Mixed lymphocyte populations 

were also plated out and cells from fractionated and unfractionated samples 

were prepared for FACS analysis (section 2.4.5) to determine the efficiency 

of the negative selection procedure. 

Immunomagnetic beads were recovered by resuspending the rosetted 

cells to Smis in RPMI and incubating at 37 *C for 24 hours. Detached beads 

were then washed three times in sterile 0.1% BSA in PBS, resuspended to 

4x108/ml in 0.1% BSA/PBS plus 0.02% sodium azide, and stored at 4 'C. 

2.4.5 IMMUNOFLUORESCENT STAINING OF T-CELL SUBSETS PRIOR 

TO FLUORESCENCE , ACTIVATED CELL SORTING (FACS) ANALYSIS 

B, T and mixed lymphocyte suspensions were prepared as described 

(2.4.1,2.4.4). Up to 1x106 cells per sample were removed, placed in an 

eppendorf and pelleted by spinning for 10 seconds at. 11,500g in a 

microcentrifuge. 5011 of rat anti-mouse monoclonal antibodies (rat 

anti-thy-1 monoclonal antibody (clone YTS 154.7, Sera-lab), anti-L3T4 

monoclonal antibody, anti-Lyt 2-monoclonal antibody or a pooled anti L3T4 

plus anti Lyt 2- monoclonal antibody preparation) or washing medium 

(RPMI 1640 medium (Gibco) containing 0.1% sodium azide, 0.5% BSA 

(Sigma), and 5% heat inactivated normal rabbit serum) were added to the 

cell pellet and the sample vortexed to resuspend the cells. After a 30 

minute incubation on ice, cells were washed three times in washing medium, 

pelleted and 50µl of fluorescein isothiocyanate (FITC)-conjugated mouse 

anti-rat IgG2b (Sera-lab; clone NORIG 7.16.2), diluted 1/20 in washing 

medium, were added. Cells were resuspended and incubated for a further 30 
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minutes on ice. After three more washes in washing medium the final pellet 

was resuspended in 2O0µ1 of washing solution. 200µl of buffered 1% 

paraformaldehyde (Eagle Scientific Ltd. ) were added to fix the cells, and 

the samples were left at 4 *C prior to FACS analysis. 

2.5 HISTOLOGICAL AND IMMUNOHISTOCHEMICAL TECHNIQUES 

2.5.1 WAX SECTIONS 

Caeca and colons were removed from mice with adult T. muris 

infections, the guts opened and washed with PBS. Pieces of gut 

(approximately 1cm long) with adult male and female worms in situ were 

laid on filter paper to prevent curling, and placed in Carnoys fixative 

(Appendix 2.6.8) for 6 hours. The tissue was then transferred to 70% 

ethanol and stored. 

Fixed tissues were placed in wire baskets and dehydrated using a 

HistoKinette (Hendrey, wax bath type c. 6250) which passed the tissues 

through a graded alcohol series, two changes of xylene (Sigma) and finally 

into a wax bath. Tissues were embedded in the paraffin polymer Polywax 

(Difco Ltd. ), mounted on blocks and sectioned at 5µm. Prior to staining, 

sections were rehydrated by passing through xylene and a graded series of 

alcohols. 

2.5.2 FROZEN SECTIONS 

Specimens of adult T. muris in situ and isolated worms, removed from 

the gut using fine forceps, were dried on tissue then orientated in an 
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embedding compound (Tissue-Tek II OCT compound, Miles Laboratories) 

within a plastic mould. A beaker of isopentane was cooled down by placing 

in liquid nitrogen, and the specimens added when the isopentane started to 

solidify, resulting in the immediate freezing of the samples. Samples were 

stored in covered universals at -80*C until required. 

Prior to sectioning the plastic mould was cut, away, the frozen sample 

mounted on a cork ring and the cork attached to 'the cryostat chuck using 

the embedding compound. Sections were cut using a Reichert-Jung Cryocut 

E at 4µm and left to dry O/N before fixing and staining. 

2.5.3 JB4 SECTIONS 

Fixation 

Plastic pipettes were used throughout for all manipulations. e The 

fixative, 2% paraformaldehyde in 0.05M sodium cacodylate buffer pH7.4, 

and wash buffer, 0.05M sodium cacodylate buffer, were placed on ice 1 

hour before use. Adult male and female T. muris were extracted from the 

mouse caecum, placed on a slide in a drop of ice cold fixative and cut at 

the oesophageal-intestinal junction into anterior and posterior segments using 

a fresh razor blade. The two segments were transferred into tubes of ice 

cold fixative and held in an ice bath for 15-20 minutes only. Segments of 

the posterior regions of male and female worms were prepared separately, 

anterior ends were pooled. Worm segments were washed twice in wash 

buffer and stored in fresh buffer at 4'C until further processing (performed 

as soon as possible as the samples were only lightly fixed). . 



40 

Processing, embedding and sectioning 

Fixed worm segments were dehydrated through a graded alcohol series 

(70% alcohol for 1 hour, 90% alcohol for 1 hour, 4 changes in absolute 

alcohol over the next 6 hours) prior to placing in catalysed solution A 

(Appendix 2.6.8) 0/N. Segments were transferred to fresh catalysed solution 

A the next morning. After 2 hours solution B (Appendix 2.6.8) was 

prepared, added to solution A in a ratio of 42mls TA' to 1 ml B in a plastic 

beaker and the mixture agitated. Specimens were placed within a capsule, 

orientated, the, resin, JB4 glycol methacrylate (Polaron Ltd., Watford) added 

and left for 1 hour. 

Semi-thin (2µm) sections prepared with a Reichert Ultracut and 

diamond knife were collected on acid-cleaned glass slides and allowed to 

dry O/N before labelling. Immunoperoxidase staining was carried out as 

described in section 2.5.5 starting at the blocking of the endogenous 

peroxidases stage. No counterstain was used. Immunofluorescent staining of 

JB4 sections is described in section 2.5.4. 

2.5.4 IMMUNOFLUORESCENCE 

Wax sections 

Wax sections were rehydrated and-placed in a humidified chamber. 

Monoclonal antibody S/Ns or ascites diluted from 1/50 to 1/100 in PBS plus 

0.1% w/v , BSA (Sigma) were pippetted onto the sections " along with 

appropriate controls (PBS/BSA, P3NS1 S/N). Sections were incubated for 30 

minutes at RT, washed in PBS/BSA (0.1%) and fluorescein-conjugated 

affinity-purified goat anti-mouse immunoglobulins (IgGAM, heavy and light 

chain specific, Cappel) added at 0.1 mg/mi. Sections in the humidified 
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chamber were placed at 4'C in the dark for 45 minutes before washing in 

PBS/BSA (0.1%) (Sigma) and mounting in 50% glycerol (CP 

Pharmaceuticals) in PBS. Sections were examined immediately under ultra 

violet illumination. 

JB4 sections 

JB4 sections were blocked for 1 hour using 0.02M glycine in PBS 

prior to incubation with the primary antibody (monoclonal antibody S/Ns 

used neat, test sera diluted 1150 and 1/100, an anti-phosphorylcholine 

monoclonal antibody diluted 1/100 and 1/500, or appropriate control 

reagents) in a humidified chamber for 2 hours at RT. After thorough 

washing in PBS a fluorescein-conjugated rabbit anti-mouse IgG(H+L) 

(Miles-Yeda Ltd. ), diluted 1/25 in PBS, was added and left for 1 hour at 

4*C in the dark. Sections were washed thoroughly in PBS, air dried, and 

mounted as before prior to viewing under ultra violet illumination. 

2.5.5 IMMUNOPEROXIDASE STAINING OF FROZEN SECTIONS 

Air dried cryostat sections were fixed by incubating with filtered sodium 

sulphate-dried acetone (May and Baker) for 10 minutes. After the acetone 

had evaporated, tissue peroxidases were blocked with 0.7% 100 volume 

hydrogen peroxide (H202) (Fisons) in methanol (May and Baker) for 30 

minutes in a humidified chamber. Slides were washed in distilled water, 

then TBS (Appendix 2.6.2) for 5 minutes. Sections were blocked with 5% 

normal rabbit serum or 1% BSA in PBS for 15 minutes. Slides were 

drained of the blocking agent and monoclonal antibody SINs applied neat, 

and in dilutions in TBS from 1/10 to 1150. Test sera were used at a 1150 

dilution. Slides were incubated for 1-2 hours along with control slides 
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incubated with TBS, P3NS1 SIN, and irrelevant ascites. After 3,5 minute 

washes in TBS, peroxidase-conjugated rabbit anti-mouse immunoglobulins 

(DAKO) diluted 1150 was added to the sections and left for 1-2 hours. 

Slides were again washed using 3,5 minute washes in TBS. To develop the 

reaction, sections were incubated with peroxidase substrate solution 

(Appendix 2.6.8). After a5 minute incubation slides were washed in 

distilled water, counterstained using Harris' haemotoxylin, blued under tap 

water, dehydrated and mounted using DePeX (DPX) mounting medium 

(BDH Chemicals Ltd. ). 

2.5.6 ALKALINE PHOSPHOTASE STAINING OF FROZEN SECTIONS 

The same method was used as for peroxidase staining (2.5.4) except 

the alkaline phosphatase-conjugated rabbit anti-mouse immunoglobulins 

reagent (DAKO) was diluted 1/30 before use, and tissue phosphatases were 

blocked by adding levamisole (Sigma) to the alkaline phosphatase substrate 

(Appendix 2.6.8). Sections were mounted using Loctite UV adhesive 357. 
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2.6 APPENDIX 

2.6.1 CULTURE MEDIA 

RPMI 1640 Medium (for cell culture) 

RPMI 1640 powdered medium 10.42g/l (Gibco) 
Sodium bicarbonate 2g/l (Sigma) 
L-glutamine 2mM (Gibco) 
Sodium Pyruvate 0.1 mm (Gibco) 
HEPES 10mM (Sigma) 
Monothioglycerol 7.5x10-5M (Sigma) 
Penicillin 100units/ml (Gibco) 
Streptomycin 100µg/ml (Gibco) 
Foetal Calf Serum 100m1/1 (Seratec) 

Medium made up in double distilled deionised water, filter sterilised 

and stored at 4 'C. 

RPMI 1640 Medium (for worms) 

RPMI 1640 powdered medium 10.42g/l (Gibco) plus supplements as 

above but without L-glutamine and FCS and with 5 times the above 

concentration of penicillin/streptomycin plus 2.5 zg/ml of fungizone (Gibco) 

2.6.2 GENERAL BUFFERS AND SOLUTIONS 

Phosphate buffered saline (PBS' pH7.4 

NaCl 
-r9. Og (Sigma) 

Na2HPO4 2.84g (BDH) 
NaH2PO4.2H20 2.76g (BDH) 

Adjust pH and make up to 1 litre with distilled water. 
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Tris buffered saline (TBS) pH7.6 

Tris 60.75g/1 (Sigma) 
NaCl 90.0g/1 (Sigma) 

Make up to 1 litre with distilled water and dilute 1 in 10 with distilled 

water before use. 

Ammonium chloride/potassium reagent 

NH4CI 8.29g (BDH) 
KHCO3 1. Og (Sigma) 
EDTA 32.2mg (BDH AnalaR) 

Add distilled water up to 1 litre, filter sterilise (0.221tm filter, Millipore), 

aliquot and store at 4'C. 

2.6.3 PAGE BUFFERS AND SOLUTIONS 

Tris-glycine electrode buffer 

Tris 15.15g (Sigma) 
Glycine 72. Og (Sigma) 
SDS (Sodium 5. Og (Sigma) 
dodecyl sulphate) 

Make up to 5 litres with distilled water. 

Dense acrylamide solution 

Acrylamide 29.2g (Sigma) 
NN'-Methylenebis 0.8g (Sigma) 
acrylamide 

75% glycerol to 100m1. Store in dark at 4'C. 
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Light acrylamide solution 

Acrylamide 29.2g (Sigma) 
NN'-Methylenebis 0.8g (Sigma) 
acrylamide 

Make up to 100m1 with distilled water. Store in dark at 4'C. 

Lower gel buffer yH8.8 

Tris 118.2g (Sigma) 
SDS 2. Og (Sigma) 

Dissolve in 200m1 distilled water, adjust pH to 8.8. Make up to 500ml with 

distilled water. 

Upper gel buffer pH6.8 

Tris 30.2g (Sigma) 
SDS 2. Og (Sigma) 

Dissolve in 200m1 distilled water, adjust pH to 6.8. Make up to 500mi with 

distilled water. 

loo Ammonium persulphate (APS) 

Ammonium persulphate O. lg (Sigma) 

Make up to 1 ml with distilled water. Make up fresh on day of use. 
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Reducing sample buffer 

Upper gel buffer 12.5m1 
SDS 2.3g 
Glycerol B. P. 10. Oml 
2-Mercaptoethanol 5. Oml 
1% Bromophenol blue O. lml 

Distilled water to 100ml. 

(Sigma) 
(CP Pharmaceuticals) 
(Sigma) 
(Sigma) 

Coomassie Brilliant Blue (Coomassie) 

Coomassie brilliant blue 0.5g (Sigma) 
Methanol 125m1s (Fisons) 
Glacial acetic acid 50mis (BDH) 

Distilled water to 500mls, filter before use. 

Coomassie destain (also used as fixer) 

Methanol 
Glacial acetic acid 

200m1 (May and Baker) 
50m1 (BDH) 

Distilled water to 500 mis. 

0.25% KCl solution 

KC1 2.5g 

Distilled water to 1 litre. 

Eguilibratin buffer 

NH4HCO3 0.45g 
SDS 0.05g 
Dithiothreitol 0.08g 

(Fisons) 

(Fisons) 
(Sigma) 
(Sigma) 

Distilled water to 100ml. 
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Elution buffer 

NH4HC03 0.45g (Fisons) 
SDS 0.05g (Sigma) 

Distilled water to 100ml. 

2.6.4 WESTERN BLOT BUFFERS AND SOLUTIONS 

Blotting buffer 

Glycine 57.6g (Sigma) 
Tris 12. Og (Sigma) 
Methanol 1. Olitre (May and Baker) 
SDS 5. Og (Sigma) 

Distilled water to 5 litres. 

PBS/Tween (0.05%) 

Tween 20 0.25m1 (BDH) 
Polyoxyethylene sorbitan monolaurate 

PBS (2.6.2) to 500mls. 

Blocking buffer 

Skimmed milk lOg 

PBS/Tween as above to 100m1 

Amido black stain 

Amido black 
Methanol 
Glacial acetic acid 

O. lg 
45. Oml 
10.0ml 

(Marvel) 

(Sigma) 
(May and Baker) 
(BDH) 

Distilled water to 100ml. 
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Amido black destain 

Methanol 
Glacial acetic acid 

Distilled water to 100ml. 

90. Oml (May and Baker) 
2. Oml (BDH) 

2.6.5 IMMUNOPRECIPITATION BUFFERS AND SOLUTIONS 

Immunoprecipitation buffer 12H7.4 

Tris 0.605g (Sigma) 
NaCl 0.87g (Sigma) 
EDTA 0.372g (BDH AnalaR) 
Triton X-100 50µ1 (Sigma) 

Distilled water to 50mis, pH with 1M HCI, increase volume to 100mis with 

distilled water. 

22% PPO in DMSO 

2'5 diphenyloxazole (PPO) 88g (Sigma) 

Dimethylsulphoxide (DMSO) (Sigma) to 400 mis. 

2.6.6 ELISA BUFFERS AND SOLUTIONS 

0.05M Carbonate/bicarbonate buffer yH9.6 

Na2CO3 1.59g (BDH AnalaR) 
NaHCO3 2.93g (BDH AnalaR) 
NaN3 (optional) 0.2g (Sigma) 

Distilled water to 200mls, adjust pH with 1M HCI, distilled water to 1 litre. 
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Diethanolamine buffer yH9.8 

Diethanolamine 97mis (Sigma) 

Adjust pH with 1M HCI. Distilled water to 1 litre. 

3% Bovine Serum Albumin 

Bovine Serum Albumin (BSA) 0.3g (Sigma) 

PBS/Tween (0.05%) to 10 mis. 

2.6.7 LOWRY SOLUTIONS 

2% Na3CO3 in O. 1 M NaOH 

Na2CO3 5g (BDH AnalaR) 
NaOH Ig (BDH AnalaR) 

Distilled water to 250 mis 

0.5% CuSO 4.5H30 

CuSO4.5H20 1.25g (BDH) 

Distilled water to 250m1 

1% Potassium sodium tartrate 

KNaC4H4O6.4H20 2.5g (Fisons) 

Distilled water to 250ml. 
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Working reagent 

50m1 2% Na2CO3 in 0.1M NaOH (fresh on day of use) 
I ml 0.5% CuSO4.5H20 
lml 1% KNaC4H4O6.4H20 

2.6.8 HISTOLOGICAL AND IMMUNOHISTOCHEMICAL REAGENTS 

Carnoy's Fixative 

Absolute ethanol 60m1 (Fisons) 
Chloroform 30m1 (May and Baker) 
Glacial acetic acid IOml (BDH) 

Peroxidase substrate 

3,3, Diaminobenzidine tetrahydrochloride (DAB) 150mg (Sigma) 

TBS to 300mls, filter (Whatman No. 4 filter), then add 0.015% of 100 

volume H202. 

Alkaline phosphatase substrate 
(make up in a glass vessel) 

N, N dimethyl formamide (DMF) 2-4mls (Sigma) 
Naphthol AS-TR phosphate 100mg (Sigma) 
1M Levamisole 2-5mis (Sigma) 
0.1M Tris pH8.2 S00mis (Sigma) 

Store at 4'C. Add 100mg Fast Red TR salt (Sigma) to 100mis of above 
solution before use. 
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JB4 processing solutions 

Solution A 

2 hydroxyethyl methacrylate 
2 butoxyethanol 
Benzoyl peroxide 

80mIs (Polaron) 
8m1 (Polaron) 
l gm (Polaron) 

Store at 4. C for no more than 2 weeks. Bring to RT before use. 

Solution B 
Polyethylene glycol 400 15mis (Polaron) 

N, N-dimethylamiline 1 MI (Polaron) 

Mix together just prior to use. 
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3.1 THE EFFECTS OF H-2 AND NON-H-2 GENES ON THE 

EXPULSION OF THE NEMATODE TRICHURIS MURIS FROM INBRED 

AND CONGENIC MICE. 

3.1.1 SUMMARY 

Two groups of H-2 congenic mice were compared for their 

susceptibility to a primary infection with the nematode Trichuris muris. 

Mice of the BALB genetic background were markedly more resistant than 

mice of the B10 genetic background, as reflected by the rate of expulsion 

of T. muris from the large intestine. Within each of the two groups of 

H-2 congenic strains mice possessing the H-2k haplotype (BALB/k, B10. BR) 

were more susceptible to infection than mice expressing other haplotypes; 

B10 background strains expressing H-2b (B10) or H-2q (BlO. G) alleles were 

the most resistant of the four congenic strains studied. Differential resistance 

was observed within three of the four B10 congenic strains and this is 

discussed in terms of the rate of development of the protective immune 

response in relation to worm development. The results support the 

conclusion that both H-2-linked and non-H-2 genes play important roles in 

controlling the immune response which expels worms from the gut. 

3.1.2 INTRODUCTION 

Immune responses to infections with parasitic helminths show 

well-defined genetic control. For example genes within the mouse major 

histocompatibility complex (MHC), H-2, have been shown to play an 

important role in controlling levels of resistance to Trichinella spiralis 

(Wassom, David and Gleich, 1979) and it has been suggested that their 
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effects are exerted upon the T lymphocyte populations which mediate worm 

expulsion. Genes outside the MHC have also been shown to influence the 

relative degree of susceptibility or resistance to T. spiralis expressed by a 

given mouse strain (Wakelin, 1980; Wakelin and Donachie, 1980,1981, 

1983; Bell, McGregor and Adams, 1982a, b; Wassom, Brooks and Cypess, 

1983a). These background genes may influence the development of the 

intestinal inflammatory responses which are the immediate effectors of 

protective immunity. 

Studies on a parasite closely related to T. spiralis, Trichuris muris, a 

parasite of the mouse large intestine, have shown differences in the outcome 

of infection in a variety of mouse strains, ranging from total failure of T. 

muris to mature in certain strains, to the development of patency in others 

(Worley et at., 1962; Campbell and Collette, 1962; Wakelin, 1975b; 

Tomaoviýova et al., 1988). These differences in susceptibility are known to 

be genetically determined differences in the ability of mice to bring about 

immune expulsion of the parasite (Wakelin, 1975b) but the relative 

contribution of background and MHC-linked genes have not been evaluated. 

This present study was undertaken in order to investigate the effects of 

both H-2-linked and non-H-2-genes on the expulsion of T. muris. 

3.1.3 MATERIALS AND METHODS 

Animals 

Six to eight-week-Old inbred male mice obtained from Harlan Olac 

Ltd were used. The strains concerned and their haplotypes are listed in 

Table 3.1.1. NIH mice were used to provide baseline data, as the kinetics 

of T. muris infections in this strain are well established (Wakelin, 1975b). 
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Table 3.1.1 List of mouse strains with their H-2 haplotype and the 

abbreviations used in this paper 

Strain H-2 haplotype Abbreviation used 

BALB/c/O1a d BALB/c 
BALB/B/Ola b BALB/B 
BALB/K/Ola k BALB/K 
C57BL/lOScSn/Ola b B10 
BIO. D2/n/Ola d BIO. D2/n 
B10. BR/O1a k B10. BR 
B10. G/Ola q B10. G 
NIH/Ola q NIH 

Parasite 

The maintenance of T. muris and the methods used for infection and 

examination of the experimental animals were as described by Wakelin 

(1967). 

Statistical analysis 

The significance of differences between mean worm recoveries from 

experimental groups was calculated using the Students t test. A value 

greater than P=0.05 was considered non-significant. 

3.1.4 RESULTS 

Establishment and expulsion of infections in inbred and congenic strains 

Mice were infected with 400 T. muris eggs on day 0, killed in groups 

of at least 5 mice at various intervals post-infection (p. i. ) and their worms 

recovered. 
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Table 3.1.2 Establishment of Trickuris muris in inbred strains of mice 

No. of worms recovered after infection 
(day 10-NIH; day 13 all other strains) 

Exp. Strain Mean S. D. 

1 B10. G 71.2 5.1 
BlO. BR 72.2 4.8 

2 B10 133.3 41.8 
B10. D2/n 122.2 25.9 
BALB/B 109.0 36.2 
BALB/c 83.0 22.3 
BALG/K 116.0 13.5 
NIH 132.0 31.6 

The mean number of larvae established in each strain is given in 

Table 3.1.2; no significant difference in establishment was recorded between 

any of the strains studied in any one experiment. The time-courses of 

expulsion of T. muris from the strains studied are shown in figure 3.1.1. In 

terms of kinetics of worm expulsion the strains of mice formed three 

distinct groups. Expulsion was fastest in NIH mice and slowest in the B10 

congenics, with the BALG congenics occupying an intermediate position. 

NIH mice had expelled 90% of their worm burdens by day 15 of infection. 

This value was not reached until day 20-25 in BALG background mice and 

day 35 in B10 background mice. 

The influence of H-2 genes on the rate of expulsion was more readily 

discernible within the slowly responding B10 congenics than amongst the 

BALB congenic mouse strains. BALB/B (IL--2b) and BALB/c (IL-2d) mice 

initiated expulsion earlier (between days 13 and 15 p. i. ) than mice of the 

BALB/K strain (H-2k), where no decrease in worm burden from the day 13 

mean was seen until after day 15 p. i. Indeed, the difference between the 

observed worm burdens of BALB/K and BALB/c mice on day 15 was 

significant at the 0.01% level. Worm expulsion was complete in all BALB 

congenic strains by day 26 p. i. 



Figure 3.1.1 Time course of expulsion of Trichuris muris from 

NIH (o -a), BALB/c BALB/B (0 0), BALB/K (o -o), 
B10 (v-v ), B10. G (U-$ ), B10. D2/n (A-A) and B1O. BR (e-*) mice 

infected with 400 T. muris eggs. Mean worm burdens are expressed as 

percentages of the day 10 (NIH) or day 13 (all other strains) mean burden: 

these, times were chosen because it is known that worm burdens are stable 

up until that time (Wakelin, 1975b). Non-responder (NR) individuals 

harboured patent infections on day 35 p. i. the proportion of NR mice 

within each strain being B10. D2/n NR (4/7); B10. G NR (1/5); B10. BR NR 

(5/5); B10 NR (1/5). For inbred strains exhibiting differential responsiveness 

worm burdens on day 35 p. i. for the NR individuals are indicated by single 

points. 
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B10 mice (IL-2b) responded more rapidly than the other B10 congenic 

strains; worm expulsion began around day 21 p. i. and a significant reduction 

in worm numbers was seen by day 23 p. i. (P<0.05). B10. G mice (H-29) 

initiated expulsion between days 23 and 26 p. i., the first significant decrease 

in worm numbers being observed on day 26 p. i. (P<0.05). Mice of the 

strain B10. D2/n (H-2d) showed no evidence of a protective immune 

response reflected by a reduced worm burden until after day 26 p. i., whilst 

B10. BR mice (H-2k) appeared totally unable to expel T. muris, the patent 

worm burdens recovered on day 35 p. i. being equivalent to those recorded 

on day 13 p. i. 

Within each of the B10 congenic strains studied, excluding B10. BR 

mice, a proportion of individuals was found to be unable to expel T. muris 

before the parasite reached patency. The proportion of non-responder 

individuals within each strain on day 35 p. i. varied from 1/5 (B10 and 

B10. G) to 4/7 (B10. D2/n). 

The reliability of the congenic strain expulsion data was confirmed in 

repeat experiments. 

Survival of worms from low-level infections 

Although from earlier data (Wakelin, 1973) it was not considered 

likely, it was thought necessary to investigate the possibility that the 

occurence of non-responsiveness in certain individual mice might reflect 

exposure to a level of infection inadequate to elicit a protective response. 

Differential infections were established in B10 mice in an attempt to identify 

whether a threshold level of infection existed. 

Three groups, each of at least 8 mice, were infected on day 0 with 

the appropriate number of eggs to establish day 14 larval burdens of 25,10 

and 5 worms. Mice were killed on days 14 and 35 p. i. and the worms 



Figure 3.1.2 Survival of different levels of infection with Trichuris muris in 

B10 mice. Mean worm burdens on day 14 and day 35 p. i. are shown ± 

standard deviations. Non-responder mice (NR) harboured patent infections 

on day 35 p. i. The proportions of NR and responder (R) mice within the 

population at each infection level on day 35 p. i. are given in parentheses. 
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recovered. The results are shown in figure 3.1.2 from which it can be seen 

that it is not until burdens of fewer than 10 T. muris are established that 

the infection becomes subthreshold in all mice, allowing worms to reach 

patency. The percentage of non-responder mice within each group increased 

as the mean worm burden decreased, and all mice were non-responsive at 

a mean burden of 5 worms. Establishment of a burden of 10 worms 

resulted in 4/5 of the mice being unable to expel the parasite. At burdens 

of 25 worms all the mice initiated expulsion but 1 /5 of the mice showed 

only a partial response, reducing, but not eliminating the infection. 

3.1.5 DISCUSSION 

The establishment and survival of helminth parasites in potential hosts 

is influenced by many factors. In natural host-parasite relationships, where 

there is physiological compatibility between the two species, one of the most 

important influences arises from the host's capacity to mount effective 

anti-parasite responses. In genetically heterogeneous host populations the 

expression of this capacity is variable between hosts. This effect is seen 

most clearly in experimental systems' where uniform infections can be 

administered to genetically distinct strains of the same host species. Under 

these conditions variations in the outcome of infection reflect genetically 

determined variations in the host ' immune response. 

The data' presented here confirm the existence of marked host strain 

variation in susceptibility in mice infected with the large intestinal nematode 

T. muris, and additionally show that both H-2-linked and non-H-2 genes 

are involved in' determining host response phenotype. Thus mice of the BIO 

genetic background responded comparatively poorly to infection in contrast 

to mice of the BALB background, and very much more slowly than NIH 

mice. In addition, distinctly different patterns of worm expulsion were 
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observed when H-2 congenic strains of the B10 and BALB backgrounds 

were used. 

The influence of H-2-linked genes on the rate of worm expulsion was 

seen more clearly within the more slowly responding B10 congenics. Indeed, 

a gradation in responsiveness was seen from the relatively responsive B10 

mice (IL-2_b) through B10. G(H-29) and B10. D2/n(H-2d) to the 100% 

non-responsive B10. BR (IL-2_k) mice. In both B10 and BALB mice the 

H-2k haplotype was associated with the lowest degree of responsiveness, and 

it appears that in circumstances where the B10 genetic background 

predisposes mice to a certain degree of susceptibility to T. muris, the 

presence of the H-2k haplotype renders mice totally unable to expel T. 

muris. 

It is striking that similar H-2 and non-H-2 effects upon worm 

expulsion have also been reported for the related nematode Trichinella 

spiralis. B10 background strains of mice were markedly more susceptible to 

this parasite than NIH, SWR and DBA/1 strains, retaining the intestinal 

worms for a comparatively long period' and therefore acquiring heavier 

muscle larval burdens (Wakelin, 1980). Using the latter criterion, Wassom et 

al. (1979) showed that strains- of mice sharing the H-2k haplotype were 

much more susceptible to infection than strains expressing H-23 and H-24, 

with other haplotypes occupying intermediate positions. In later work 

Wassom et al. (1984b) additionally showed that the greater susceptibility of 

H-2k haplotype mice extended to their ability to expel the intestinal stages 

of T. spiralis as well as to regulate worm fecundity. 

The relative importance of H-2-linked and non-H-2-linked genes in 

controlling immunity to the intestinal phase of T. spiraiis has been the 

subject of controversy. Wakelin (1980), Wakelin and Donachie (1980,1981), 

Bell and McGregor (1980) and Bell " et at. (1982a, b) concluded that 

background genes were the primary regulating factors, whereas Wassom et 
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al. (1984b) placed greater emphasis upon the role of H-2 genes in 

controlling the immune response. A current consensus is that H-2-linked 

genes effect a 'fine-tuning' of anti-worm immunity within limits defined by 

the influence of the background genome, a view which is consistent with 

the data described here for infection with T. muris. 

One hypothesis to explain the operation of H-2-linked and background 

genes in controlling immunity, put forward by Wassom, Krco and David 

(1987), was based on the fact that the H-2 congenic strains most resistant 

to T. spiralis (those that express b, a, f or g haplotypes) do not express 

I-E products at the surface of their antigen presenting `cells. It was 

suggested that presentation of worm antigen in the context of I-A-coded 

molecules primed for effective immune responses whereas presentation in the 

context of I-E products (as would occur in susceptible k, r or p H-2 

haplotype mice) preferentially induced suppressor T cells. As the genetically 

controlled differences in susceptibility that exist among strains of mice 

infected with, T. muris appear to bear a striking resemblance to those, that 

exist among strains of mice infected with the closely related parasite T. 

spiralis, it is conceivable that the above hypothesis is also applicable to the 

T. muris-mouse system. However, it is difficult to interpret within this 

framework the curious phenomenon of differential immune responsiveness to 

T. muris within the B10 congenic strains. As all members of a given inbred 

strain are genetically identical they should behave uniformly in their 

response to T. muris. The existence of differential responsiveness within 

inbred strains strongly suggests that parasite-induced effects may be 

responsible. For example, it may be that, after reaching a certain size, 

worms cease to be susceptible to effector mechanisms, variation in the rate 

of parasite growth may mean that individuals reach this size at different 

times; alternatively it may be that worms reach a stage at, which they are 

capable of actively suppressing host immunity before a protective immune 
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response can be expressed. Differential responsiveness was 'seen only in the 

more slowly responding r B10 congenic strains, there being 100% 

responsiveness within each of the BALB congenics. In addition - the 

proportion of non-responders within any one strain was seen to increase as 

the time taken to mount an effective worm expulsion increased until 100% 

non-responsiveness was seen within the B10. BR strain. This correspondence 

between expulsion time and proportion of non-responders 'reinforces the 

view that a parasite-dependent influence is responsible. 

Differential responsiveness to T. muris has previously been described in 

DBA/2 (H-2d) mice (Worley et al. 1962; Lee and Wakelin, 1982b), a more 

or less fixed proportion of mice being unable to expel the worm during 

larval development. Roach (1986) showed that individual 
. DBA/2 which failed 

to expel the parasite during a primary infection remained susceptible to a 

secondary infection after the primary infection had been cleared using an 

anthelmintic. Preliminary experiments suggest that the same is true in BIO 

congenic mice. If differential responsiveness was to be explained only in 

terms of rate of response it would be expected that mice unable to expel a 

primary infection should be resistant to a secondary infection when larval 

worms would be more susceptible to effector mechanisms. The inability of 

non-responder mice to expel a secondary infection must result from some 

continuing 'defect' in the host-protective response, although this clearly 

would have to be long-term to explain the results obtained by Roach 

(1986). 

It is unlikely that the observed non-responsiveness reported here in 

B10 congenic strains resulted from a subthreshold infection being given to a 

proportion of mice, as high worm burdens of over a 100 worms were 

recovered from non-responders on day 35 p. i. Indeed the threshold 

experiment conducted in B10 mice showed that very small worm burdens 

(>10) are all that are necessary to stimulate a protective immune response, 
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a result compatible with data from other strains (Wakelin, 1973). 

It is-clear from this report that the H-2 complex plays a significant 

role in controlling the host immune response to T. muris as is known to 

be the case in other helminth infections (Wakelin, 1985). However, 

background genes clearly also influence the response, mouse strains sharing 

common H-2 alleles differing markedly in susceptibility. 

The clear demonstration of background and H-2-linked genetic 

influences upon T. muris provide the basis for a more detailed investigation 

of variations in the humoral and cellular immune responses to T. muris 

which may produce a functional explanation for strain dependent variation. 

The close parallels between infection with Trickuris in mice and man 

provides some optimism that elucidation of this variation in the former will 

contribute towards an understanding of predisposition to infection in the 

latter (Bundy, 1986). 1 

IY 

3.2 THE INFLUENCE OF GENES MAPPING WITHIN THE MAJOR 

HISTOCOMPATIBILITY COMPLEX ON RESISTANCE TO TRICHURIS 

MURIS INFECTIONS IN MICE 

The experiments described above demonstrate the occurence of 

genetically determined variation in immune responsiveness to T. muris. Both 

MHC-linked and background genes contributed to this variation although the 

stronger influences were associated with the latter. 

The natural extension of this work is to attempt to map genes which 

influence the expulsive response within the H-2 complex using H-2 

recombinant strains of mice. This approach has been used extensively by a 

number of workers, notably Wassom and his colleagues, working with 
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Trichinella spiralis (Wassom et al. 1979; 1983b; 1984a, b; Wassom, 1985) 

and more recently Heligmosomoides polygyrus (Nematospiroides dubius) 

(Enriquez et al. 1988b, c), and Blackwell working on genetic control of 

host resistance to leishmaniasis (Blackwell et al. 1980; Blackwell, 1983; 

1988). 1 

Any correlations between particular alleles/loci and response status 

which emerge from such studies may be explicable at a molecular level in 

the light of a knowledge of the mechanisms involved in the development of 

immune responses to parasitic infection, in conjunction with an 

understanding of the way these mechanisms are genetically controlled (see 

Introduction 1.3). 

Non-responsiveness to particular parasite antigens and hence potentially 

to parasite infection can arise by many mechanisms, including qualitative 

and quantitative variation in the expression of MHC class II gene products 

(Jones et al. 1981; Janeway et al. 1984), and the antigen specific repertoire 

expressed by the host's T cells (Guillet et al., 1987). Mechanisms which 

may account for functional non-responsiveness are discussed in detail in the 

Introduction (1.3.2). Whilst the qualitative difference between responder and 

non-responder individuals, in terms of an expulsive response, in the T. 

muris-mouse model is clearly genetically determined, the precise components 

of the protective response that are deficient in non-responder "mice are not 

known. The following experiment attempts to map H-2 genes involved in 

controlling resistance/susceptibility within the H-2 complex. The results are 

discussed in relation to those of Wassom working with the T. 

spiralis-mouse system. 

3.2.1 EXPERIMENTAL DESIGN 

A panel of H-2 recombinant and congenic strains of mice were 
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selected on the basis of alleles expressed at the K, D and I region loci of 

the H-2 complex. An F1 mouse strain resulting from a B10. BRxB10. G 

cross was also included in the experiment (see Table 3.2.1). 

Table 3.2.1 Map of the H-2 complex showing the haplotype compositions 
for the congenic. recombinant and Fl strains of mice infected with T. 
muris 

Strain K I S D 
Aß Aa Ae(Eß) Ea 

B10. A(2R) k k k k k d b 
B10. A(4R) k k k k (b) b b 
B10. T(6R) q q q (q) (q) q d 
B10. A(3R) b b b b k d d 
B10. A(5R) b b b b k d d 
B10. AQR q k k k k d d 
B10 b b b b (b) b b 
BlO. BR k k k k k k k 
(B10. BRxB10. G)F1 kq kq kq k(q) k(q) kq kq 

Six male mice were used per strain and were infected at six to eight 

weeks old with 400 embryonated T. muris eggs. Mice were bled individually 

from the tail vein on days 14,21 and 28 p. i. and from the heart on day 

35 p. i. when mice were sacrificed for adult worm burden determination. 

The serum obtained was subsequently used in a study of the genetic control 

of the humoral immune responses to T. muris E/S antigen (Chapter 4). 

Adult worm burdens for each strain were compared, using the 

non-parametric Mann Whitney U test, with burdens recovered from B10. BR 

mice, a strain of mouse shown previously to be non-responsive to infection 

(Else and Wakelin, 1988). P>0.05 was considered non-significant. 

3.2.2 RESULTS 

Figure 3.2.1 shows the adult worm burdens recovered from individual 

mice on day 35 p. i. The data presents a rather complex picture, any 



Figure 3.2.1 Adult worm burdens recovered from H-2 recombinant, 

congenic and, Fl strains of mice on day 35 p. i. following infection with 400 

T. muris eggs on day 
. 
0. Bar. graphs represent the mean worm recovery for 

each strain. The B10. BR strain of mouse has previously been shown to be 

unable - to expel a primary infection with T. muris (Else and Wakelin, 

1988). The presence of stunted worms in individual mice is indicated by 

+= patent infection (see text). 
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patterns, being somewhat obscured by the existence of differential 

responsiveness, typical of the slowly responding B10 genetic background 

mice, within some of the H-2 recombinant strains. Individual mice were 

classified as responders to infection only if they exhibited both a significant 

decrease in worm burdens from the burdens seen for BlO. BR individuals on 

day 35 p. i. and stunting of worm growth such that infertile pre-adult stages 

of the parasite were present in the caecum/colon. Using this definition, only 

B10 and the (B10. BRxB10. G)F1 strains of mice were uniformally resistant to 

infection, showing significant reductions in worm burdens from B10. BR 

levels (P=0.001) and stunting of worm growth in individuals where a few 

worms remained. Two of the F1 mice harboured normal adult worms as 

well as stunted worms. In both cases, as has been observed before (Else 

and Wakelin, unpublished), the normal parasites were found in the first part 

of the colon, stunted worms being confined to the caecum. The only other 

mouse strain to show evidence of a protective immune response using the 

above definition was the BIO. T(6R) strain, 4/6 mice harbouring stunted 

worms at levels significantly lower than the worm burdens recovered from 

B10. BR mice (P<0.01). B10. AQR mice had significantly reduced levels of 

adult T. muris compared to B10. BR mice (P<0.01) although these worms 

were not stunted. Worm burdens in BlO. A(2R), BlO. A(4R), B10. A(3R) and 

B10. A(5R) were - not significantly different from B10. BR levels (P>0.05), 

although one B10. A(5R) individual did harbour some stunted parasites and 

showed a reduced worm burden. 

3.2.3 DISCUSSION 

The ability to resist primary infections with Trichuris muris is 

genetically controlled with both background (non-H-2) genes and genes 

within the- mouse MHC influencing the outcome of infection (Else and 
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Wakelin, 1988). Within B10 congenic strains, mice expressing a and b 

alleles ("resistance" alleles) tended to be more resistant to infection than 

those expressing k or d alleles ("susceptibility" alleles). The data presented 

here confirms " the involvment of H-2-linked genes in determining host 

response phenotype and enables hypotheses to be constructed as to how 

genes within the H-2 interact ' with each other. 

B10. T(6R) mice were less resistant to infection than seen previously for 

B10. G mice (figure 3.1.1; Else and Wakelin 1988) where worm burdens 

were almost completely cleared except in one individual. Both these strains 

of mice possess q alleles at K and I-A loci and do not express I-E 

molecules. They differ at the D end of the H-2 however, B10. T(6R) 

possessing d alleles as opposed to g alleles (Table 3.2.1). It would seem 

therefore that the relative resistance to infection of - mice expressing 

"resistance" g alleles at I-A, or that do not express I-E molecules, is 

subject to modulation by particular alleles- at the D end of the H-2, 

especially d alleles ("susceptibility" alleles). The modulating effect of d in 

the D region was also seen in B10. A(3R) and B10. A(5R) strains of mice, 

both of which possess resistance b alleles at K and I-A but d alleles in the 

D region resulting in a non-responder phenotype. However, expression of 

the resistance allele b at the D end of the H-2 apparently cannot modulate 

the influence of susceptibility k alleles at K and I-A. For instance 

B10. A(2R) and B10. A(4R) strains of mice were both unable to expel T. 

muris. The possibility that lack of I-E expression correlates with resistance 

to infection, although suggested by the resistant B10 phenotype, was not 

borne out when other response phenotypes were examined. For instance 

B10. A(4R) do not, express functional - surface I-E molecules yet were unable 

to resist infection and the (B10. BRxB10. G)F1, although expressing L-=EE 

molecules, were very resistant to infection. 

- The' results suggest that response phenotypes may be determined by the 
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presence of resistance (g, ) or susceptibility (k, d)alleles at I-A, but that 

the influence of resistance alleles can be ý modulated by alleles at aD end 

locus/loci, especially susceptibility d alleles. A lack of appropriate 

recombinant haplotype strains with a crossover between K and I-A make it 

impossible to rule out the possibility that the H-2 K locus may influence 

response phenotype. Indeed B1O. AQR mice, possessing susceptibility, k and d 

alleles at I-A and D end loci respectively and resistance g alleles at K, had 

significantly lower worm burdens than B10. BR mice. However it is difficult 

to envisage how class I gene products might be involved as antigen is 

recognised in the context of class I molecules primarily by cytotoxic T cells 

(see Introduction 1.3.1). Cytotoxic T cells represent a Subpopulation of T 

lymphocytes important in the killing of, for instance, virally infected cells, 

parasitised cells and tumour cells (Male et at., 1987 Chapter 7) rather than 

in the development of immune responses against intestinal helminths. 

The possible interaction between an I region gene and a gene at the 

D end of the H-2 complex described here bears many similarities to results 

obtained by Wassom and his colleagues working with Trichinella -spiralls 

(Wassom et al. 1979; 1983b) and Heligmosomoides polygyrus 

(Nematospiroides dubius) (Enriquez et al. 1988b, c). However Wassom et al 

found that in both their model systems there was a correlation between 

strains of mice which did not express cell surface I-E molecules and 

resistance. The presentation of antigen to T cells in association with the 

L-=EE molecule has been shown to induce a response which suppresses the 

ability of I-A-restricted T cells to proliferate in vitro (Baxevanis et al., 

1981) thus providing a mechanistic explanation for the observed relationship 

between 1=Ek expression and susceptibility to infection. As mentioned 

(3.1.5), Wassom et al. (1987) suggested that parasite antigens presented in 

the 'context of I=Ek molecules activated `T suppressor cells which 

preferentially suppressed an otherwise effective I-A mediated response. 
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Alternative hypotheses were also put forward for the association between the 

expression of I=Ek molecules and susceptibility to parasite infection including 

the induction of autoreactive T cells which could down regulate the I-A 

restricted response (Wassom et al., 1987; Wassom and Kelly, 1989). 

Autoreactive T cells, which recognise class II-like molecules on other T 

cells, possess multipotent immunoregulatory capabilities and have been shown 

to augment, suppress or contrasuppress antigen-specific B cell responses 

according to the types and proportions of other cells present in the culture 

(Quintäns et at., 1986; - Suzuki et at., 1986; Suzuki and Quintäns, 1986). 

Thus the involvement of autoreactive T cells in the Trichinella system is an 

attractive hypothesis, providing an explanation for the , dose dependent 

suppression of the anti-Trichinella response (Wassom et al., 1984a). Thus 

at high infective doses the suppressive influence would dominate, down 

regulating the otherwise strong T helper cell response. 

In the light of recent findings on the existence , of two major functional 

helper T cell phenotypes, helper CD4+ T cells (TH2) and inflammatory 

CD4+ T cells (TH1) (Mossman et at. 1986; Mossman and Coffman, 1987; 

reviewed by Bottomly, 1988; see Introduction 1.3.3) the possibility is also 

raised that different TH cell subsets are induced,, according to the allelic 

form of the class II molecule with which parasite antigen is presented. T 

cell mediated inflammation is believed to be important in resistance to T. 

spiralis therefore it is possible that antigen presented in the context of I=Ek 

fails to activate inflammatory TH1 cells, preferentially inducing the T12 cell 

type. 

The concept of I-E regulated suppressor activity is supported by the 

work of Blackwell with Leishmania donovani in mice. She found that 

administration of a specific ' anti-I=Ad monoclonal antibody to non curing 

B1O. D2/n (H-2d) mice during infection resulted in the maintenance of high 

parasite loads whilst mice given anti-I=Ed monoclonal antibodies 'exhibited 
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some resolution of the parasite load (Blackwell and Roberts, 1987). However 

she also found that some non cure haplotypes did not express the I-E class 

II molecule (Blackwell, 1983). The work presented in this chapter likewise 

suggests that, although in some experimental systems the presence of I-E 

molecules certainly seems to be important in determining susceptibility, it is 

not a phenomenon which can be extended fully to all systems. In contrast 

to the findings of Wassom et al. (1987) with- T. spiralis, crossing 

susceptible B10. BR mice (H-2k, L-=EE) with resistant B10. G mice (H-24, 

I-E-) produced F1 mice which were resistant rather than susceptible to T. 

muris infection. I-E and I-A products are codominantly expressed in Fl 

animals hence antigen presenting cells of the above F1 mice will express 

four types of I-A molecules and cell surface I=Ek molecules. Clearly 

therefore the presence of I=Ek in the T. muris-mouse system is not an 

overriding factor in the determination of non-responsiveness. whereas the 

presence of some surface I=Aq molecules on antigen presenting cells of the 

Fl strain may contribute to the resistant phenotype observed. 

The identification of genes involved in the control of anti-parasite 

responses is an important step in attempts to elucidate the immune 

mechanisms which operate in protective immunity to parasitic infections. 

Through correlations between haplotype, response status and expression, or 

lack of expression, of MHC class II molecules it is possible to speculate at 

a molecular level as to how the phenotypically expressed response is 

effected. Although such approaches are mainly restricted to experimental 

models they point the way towards -a more fundamental analysis of 

genetically determined variation in responsiveness in man (Wakelin, 1986). 

For instance Bundy (1988) in a preliminary study on the association between 

human MHC (HLA) antigen frequencies and intensity of infection with 

Ascaris lumbricoides and Trichuris trichiura in a Caribbean population, 

revealed higher frequencies of a class II product DQW2 in the uninfected 
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population. As HLA-DQ antigens in general seem to be associated with 

restriction of cytotoxic T cells (Navarrete et al. 1985), Bundy suggested that 

this finding was of potential relevance to susceptibility to gut parasites. 

Hirayama et at. (1987), studying the control of the immune response 

to Schistosoma japonicum antigen in humans, reported that HLA-DR and 

DO molecules (comparable to the murine class II I-E and I-A molecules 

respectively) had distinct functions in immune regulation. They showed that 

the HLA-DR2 molecule from a non-responder haplotype 

(HLA-Dw12-DR2-DQw1) was required for the proliferative T cell response 

to S. japonicum antigen, but that this response was suppressed by 

suppressor T cells controlled by the DOwl molecule in the non-responder 

haplotype. 

It is clear that through the study of genetic control of immunity in 

experimental models, and in man, insights may be gained into the 

underlying mechanisms involved in protective immune responses to parasite 

infections. 

3.3 SUMMARY POINTS 

1. Background genes and genes within the mouse MHC were shown to 

influence the host primary immune response to T. muris as reflected by 

rate of expulsion of the parasite from the large intestine, the strongest 

effects being associated with the former. 

2. Mice of the BALB genetic background were markedly more resistant to 

infection with T. muris than mice of the BiO genetic background. Within 

B10 congenic strains of mice, mice possessing k or d alleles ("susceptibility" 
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alleles) throughout the H-2 complex responded less well to infection than 

mice expressing other haplotypes. The presence of g or b alleles 

("resistance" alleles) was associated with a relatively rapid expulsion of the 

parasite. 

3. Differential resistance to infection within an inbred strain of mouse was 

observed in three of the four slowly responding B10 congenic mouse strains, 

strongly suggesting that later stages of the parasite were modulating the host 

immune response. 

4. A panel of H-2 recombinant strains of mice was used in an attempt 

to map control of resistance to infection with T. muris within the H-2. 

Response phenotypes could be related to the presence of "resistance" (g, ) 

alleles or "susceptibility" (k, d) alleles at I-A under the modulating influence 

of "resistance" or "susceptibility" alleles, particularly d alleles, at aD end 

locus/loci. 

5. Absence of I-E molecules correlated with resistance in some, but not 

all, strains studied. A (B10. BRxB10. G)F1 strain, which expressed I=Ek gene 

products, was resistant to infection. Hence the expression of I=Ek molecules 

is not an overriding factor in the determination of non-responsiveness to T. 

muris infection. 



CHAPTER 4 

GENETIC VARIATION IN THE HUMORAL IMMUNE 

RESPONSES OF INBRED, CONGENIC AND H-2 

RECOMBINANT MICE TO TRICHURIS MURIS 



Section 4.1 has been published in Parasite Immunology (1989), 11,77-90 
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4.1 GENETIC VARIATION IN THE HUMORAL IMMUNE RESPONSES 

OF MICE TO THE NEMATODE TRICHURIS MURIS 

4.1.1 SUMMARY 

Genetically based differences in the antibody responses to the large 

intestinal nematode Trichuris muris were studied in two groups of H-2 

congenic strains of mice that differed in their relative resistance to infection 

with this parasite. The primary response to parasite excretory/secretory (E/S) 

antigen was predominantly an IgG response with the, strains forming two 

distinct groups, defined by their genetic background. The susceptible B10 

genetic background mice had strikingly higher antibody levels than mice of 

the BALB background. Superimposed upon these background effects were 

clearly defined, influences attributable to H-2-linked genes, strains which 

differed genetically only at H-2 loci exhibiting differences in the kinetics of 

the antibody response. Only B10. G and B10. BR mice showed any real 

increase in IgM levels post-infection. No IgA specific to E/S antigen was 

detected in the peripheral circulation of any strain at any . time 

post-infection. Antibody responses to a 40-43kDa antigen revealed clear 

H-2-linked gene effects, with mice sharing the H-2k haplotype (B10. BR, 

BALB/K) exhibiting considerably higher total antibody levels than mice 

expressing other haplotypes; mice of the , H-2d haplotype (BALB/c, 

B10. D2/n) responded very weakly to this antigen. Aý Western blot analysis 

of antigen recognition by antibody revealed similarities between the mouse 

strains in their total antibody responses to T. muris E/S antigen. However, 

immunoprecipitation studies showed that in general the more susceptible B10 

congenic strains had wider spectra of antigen recognition than the SALB 

congenics. Strains sharing the same H-2 haplotype had dissimilar antigen 
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recognition profiles, but strains sharing the H-2b haplotype (B10, BALB/B) 

recognised a low MW antigen (20-23kDa) not recognised by any other 

strain, suggesting an exclusively H-2b restriction on the recognition of this 

antigen. These results support the conclusion that both H-2-linked and 

background genes play important roles in controlling the humoral immune 

response to T. muris infection. 

4.1.2 INTRODUCTION 

Genetically based differences in resistance to parasitic infections have 

been demonstrated in a wide range of host-parasite systems (Wakelin 1978). 

Relative resistance may be determined both by genes within the major 

histocompatibility complex (MHC) and by background genes. In the case of 

the large intestinal nematode Trichuris muris in the mouse, it is thought 

that genes linked to the mouse MHC (H-2) effect a fine tuning of 

anti-worm immunity within limits defined by the influence of the 

background genome (Else and Wakelin, 1988). 

Expulsion of T. muris is known to involve at least two immunologically 

mediated components, an initial antibody-mediated phase and a subsequent 

lymphoid cell mediated phase (Wakelin 1975a), either or both of which 

could involve genetically controlled antigen recognition and be rate limiting. 

Alternatively, control may be exerted via the level and timing of antibody 

production during the first phase. Thus the range, of variation in time of 

expulsion seen in inbred and congenic strains of mice (Wakelin 1975b) 

could reflect a variation in ability to produce the required level of antibody. 

In this study the kinetics and specificity of the antibody response to T. 

muris antigens were studied in congenic strains of mice, to determine 

whether the ability of mice to make antibody responses to T. muris showed 

genetically determined variation and whether this ability could be correlated 
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with relative resistance or susceptibility. 

4.1.3 MATERIALS AND METHODS 

Animals 

Congenic male mice, six to - eight weeks old, obtained s from Harlan 

Olac Ltd, were used. The strains concerned, their H-2 haplotypes, and 

their relative times of expulsion of T. muris are shown in Table 4.1.1. 

Table 4.1 
.1 

List of mouse strains with their H-2 haplotype. the 
abbreviations used in this paper and the time of worm expulsion in 
responder mice 

Time of worm exp- 
Strain Abbreviation H-2 haplotype ulsion (days p. i. ) 

BALB/c/Ol a BALB/c d 13-26 
BALB/B/Ola BALG/B b 13-26 
BALB/K/Ola BALB/K k 15-26 
C57BU1OScSnOla B10 b 21-35 
B10. D2/n/Ola B10. D2/n d 26-35 
B10. BR/Ola B10. BR k No expulsion observed 
BlO. G/Ola B10. G q 23-35 

Parasite 

The maintenance of T. muris and the methods used for infection and 

examination of the experimental animals were as described by Wakelin 

(1967). Mice were killed at various times post-infection (p. i) to establish the 

infection level and duration in each strain. 

Serum 

Groups of eight to ten mice were infected with - 400 T. muris eggs on 

day 0 and subsequently bled from the tail vein weekly for a period of 9 
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weeks p. i. The sera obtained from the blood samples were stored at -20*C. 

Antigen 

Excretory/secretory (E/S) antigen 

Adult male and female T. muris were removed individually from the 

large intestines of mice and placed in sterile RPMI-1 640 medium 

supplemented with 500µg/ml of penicillin/streptomycin, and fungizone 

(GIBCO) at 2.5µg/ml. After washing for 2-3 hours in this medium at 37'C, 

worms were put into fresh medium and left O/N at 37 'C for the collection 

of E/S products. The culture S/N was removed, centrifuged at 200g for 5 

min. to remove eggs, and filtered (0.22µm filter, Millipore). After 

freeze-drying and reconstituting to one-quarter the original volume with 

distilled water, samples were dialysed O/N at 4'C before being analysed for 

protein, aliquoted, and stored at -20'C. Metabolically labelled E/S antigen 

was prepared by incubating worms as above in the presence of 

35S-methionine at 250, uCi/ml of medium. 

Adult male antigen (AMA) 

Adult male and female worms were incubated O/N at 37*C as above. 

Male worms were then removed, washed in phosphate-buffered saline (PBS), 

homogenised in a minimal volume of PBS using a glass tissue homogeniser 

and allowed to extract O/N at 4*C. The resulting suspension was centrifuged 

at 1500g for 30 min. to remove particulate matter followed by 

ultracentrifugation of the S/N at 100,000g for 1 hour to remove insoluble 

material. The S/N was filtered (0.22zm filter, Millipore), analysed for 

protein, and stored at -20 *C. 
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Protein estimation 

Total protein concentrations were determined using a method modified 

from Lowry et at. (1951). 

Enzyme-linked immunosorbent assay (ELISA) 

Ninety-six-well-flat-bottomed plates (Falcon) were coated with E/S 

antigen (5µg/m1) in 0.05M carbonate/bicarbonate buffer, pH 9.6, and left 

O/N at 4'C. These antigen-coated plates were used in the ELISA essentially 

as described by Voller, Bidwell and Bartlett (1979). Briefly, plates were 

washed five times with PBS containing 0.05% Tween 20 (Sigma) and 

blocked with 3% bovine serum albumin (BSA, Sigma) in PBS/Tween for 1 

hour. After two washes in PBS/Tween, 50µl of test serum at a dilution of 

10-2 in PBS/Tween were added to each well and incubated at RT for 1.5 

hours. After five further washes, alkaline phosphatase-conjugated sheep 

anti-mouse' IgG (whole molecule)(Sigma), goat anti-mouse IgM (µ chain 

specific)(Sigma), goat ` anti-mouse IgA (a chain specific) (Sigma), all diluted 

1/1000 in PBS/Tween, or goat anti-mouse IgGAM (Sigma) diluted 1/350 in 

PBS/Tween was added (50µl/well) and incubated for another 1.5 hours at 

RT. Plates were washed five times with PBS/Tween and the substrate 

p-nitro-phenylphosphate tablets (Sigma) dissolved in diethanolamine buffer, 

pH 9.8 (Fisons), added to the plates at 100µ1/well. The enzymatic reaction 

was read at 410nm on a Dynatech MR700 Microplate Reader. 

Elution of antigen from sodium dodecyl sulphate polyacrylamide gels 

Proteins of adult male T. muris homogenate were separated by 
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SDS-PAGE. A 40-43kDa antigen band was cut out of gels after staining, 

homogenised in ammonium carbonate elution buffer (100mM NH4HCO3 

(Fisons), 0.05% SDS (BDH Electron)) and left to extract O/N at 4'C. The 

resulting extract was used as antigen in ELISA. 

Western blotting 

Western blotting was carried out according to Burnette (1981). T. 

muris E/S antigen was boiled in the presence of SDS (BDH Electron) and 

2-beta-mercaptoethanol (2-ME), and separated on 10-20% gradient 

SDS-polyacrylamide gels using the method of Laemmli (1970). Proteins were 

transferred from gels to nitrocellulose membrane (Schleicher and Schuell) 

electrophoretically. After saturating any remaining protein-reactive sites on 

the nitrocellulose with 10% skimmed milk in PBS/Tween (0.05%) the 

membrane was cut into strips and incubated with test sera (1/500 dilution in 

10% skimmed milk' in PBS/Tween) O/N at 4 *C. ' After washing in 

PBS/Tween the strips were incubated with 125I-rabbit anti-mouse polyvalent 

immunoglobulins (0.5, uCi/strip, Amersham) for 2 hours. Strips were washed 

again, air dried, fixed to a support and exposed at -80'C to an X-ray film 

(Fuji) in combination with an intensifying screen. 

Immunoprecipitation 

Metabolically labelled E/S antigen was ý added to a series of Eppendorf 

tubes to give 100,000ct/min per tube. A volume of 251Ll of test serum was 

added and made up to 0.5m1 with immunoprecipitation buffer, pH 7.4. The 

solutions were vortexed and left O/N at 4'C. 15µ1 of sheep anti-mouse IgG 

Fc (Serotec) were added to each sample and left for 3 hours at RT. 

Immunoprecipitates were spun down at 11,500g and washed four times in 
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immunoprecipitation buffer before redissolving in reducing sample buffer for 

SDS-PAGE (10-20% gradient gels). Gels were fixed, fluorographed and 

dried down for exposure on X-ray film (Fuji) at -80'C. 

4.1.4 RESULTS 

Antibody responses to EIS antigen 

All ELISAs were performed using pooled sera for each strain at each 

time-point p. i. The decision to use pooled sera was based on the 

knowledge that the range of individual variation within pools is relatively 

small even when using strains of mice which split into individuals which 

expel T. muris before day 35 p. i. and those which do not, such as the 

DBA/2 strain (Worley et al. 1962, Lee and Wakelin 1982b). For instance, 

in five samples from B10. BR individuals (day 35 p. i. ) the mean optical 

density (OD) was 0.27±0.05, and the mean OD for 26 DBA/2 individuals 

(day 52 p. i. ) was 1.27±0.18. 

IgG and IgM levels to E/S antigen, as reflected by OD in ELISA, 

were followed from day 15 to day 61 p. i. for all strains except B10. D2/n 

mice, where the serological response was followed only to day 35 p. i. Each 

ELISA was performed at least three times using sera taken from mice in 

two separate experiments. Antibody response patterns for the strains of mice 

studied were found to be highly repeatable, typical results being shown in 

figures 4.1.1 (IgM) and 4.1.2 (IgG). Specific IgM levels (figure 4.1.1) 

showed little variation p. i. for all strains except B10. G, where the IgM 

response reached high levels well above the day 15 p. i. value by day 61 

p. i., and to a lesser extent B10. BR. 

In contrast, IgG levels (figure 4.1.2) rose sharply after infection in all 

strains studied except BALB/c mice, which were remarkably unresponsive to 



Figure 4.1.1 Time course of the IgM-specific antibody response to T. muris 

E/S antigen in serum samples from infected B10. BR (*-e), B10 (f y ), 

B10. D2/n (f A ), B10. G ( -s ), BALB/B (v v ), BALB/K C--O) and 

BALG/c (, &-A) mice. NS, mean naive serum OD for all strains. 
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Figure 4.1.2 Time course of the IgG-specific antibody response to T. muris 

E/S antigen in serum samples from infected B10. BR ("--* ), B10 (v -v ), 

B10. D2/n (A A ), B10. G (H ), BALB/B (v-. v ), BALG/K (O-0) and 

BALB/c mice. NS, mean naive serum OD for all strains. 
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parasite E/S antigen in terms of their humoral immune response, and 

continued to rise irrespective of whether the parasite had been expelled 

from the gut. The strains of mice studied formed two distinct groups 

according to genetic background, with mice of the B10 genetic background 

exhibiting considerably higher IgG levels than mice possessing BALB 

background genes. Within both BALB and B10 congenic strains the 

influence of H-2-linked genes was evident, with strains which differed only 

at the H-2 having different levels of antibody response to T. muris E/S 

antigen. For instance B10. G mice (H-2a) showed a more rapid IgG 

response, which reached a higher level than any other of the B10 congenic 

strains. Likewise BALB/B mice (IL-_2b) exhibited higher IgG levels than 

BALB/K mice (H-2k), and considerably higher levels than BALB/c (H-2d) 

mice. 

Specific IgA antibody was not detected in the peripheral blood of any 

strain at any time p. i. 

Total specific antibody response to the 40-43kD antigen 

The major constituent of AMA and E/S products is a single protein 

band of apparent MW 40-43kDa when reduced, 35-38kDa when 

non-reduced, as seen by one-dimensional SDS-PAGE (Roach, 1986). This 

protein also appears as a single major component of the surface antigens 

removed when worms are treated with cetyltrimethyl-ammonium bromide 

(CTAB), a cationic detergent (Roach, 1986). Thus it was deemed 

appropriate to study host strain variations in the humoral immune response 

to this specific antigen, it being considered likely that H-2-linked control of 

the antibody response would be more clearly discerned when a more 

restricted target antigen preparation than E/S antigen was used. The total 

antibody response to the 40-43kDa antigen was followed from day 13 p. i. 
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to day 47 p. i. in all strains except B10. D2/n, where the response was 

followed only to day 35 p. i. The results are shown in figure 4.1.3. 

Mice sharing the H-2k haplotype (BALB/K, B10. BR) exhibited 

considerably higher antibody levels than all other strains except B10. G mice 

(H--2q) which showed equivalent antibody levels. B10. D2/n and BALB/c mice 

(both H-2d) responded very weakly to the 43kDa antigen whilst H-2b 

haplotype strains (BALB/B, B10) occupied an intermediate position between 

these two extremes, their antibody levels being far higher than those of the 

H-2d haplotype strains. 

Differential recognition of EIS antigen in congenic mouse strains 

Western blotting 

Recognition of E/S antigen by antibodies in sera collected on day 35 

p. i. from all strains was analysed using the Western blotting technique. The 

results are shown in figure 4.1.4. 

Patterns of antigen recognition were similar in all strains with three 

antigens of MW 50.7kDa, 43kDa and 23.4kDa being recognised by 

antibodies in the serum from every strain. Of these three antigens, serum 

from naive mice (lane 8) recognised the 50.7kDa antigen, but only weakly. 

Additional experiments, using sera collected on day 47 p. i., day 54 p. i. 

and day 61 p. i. confirmed the apparent similarity between strains in their 

antigen recognition profiles as revealed by this technique. 

Immunoprecipitation 

Metabolic labelling and immunoprecipitation before electrophoretic 

analysis revealed qualitative differences between congenic mouse strains in 



Figure 4.1.3 Time couse of the total specific antibody response to the 

40-43kDa antigen of T. muris in serum samples from infected B10. BR 

(H ), B10 (v v ), 
_ 
B10. D2/n (A A ), B10. G (H ), BALB/B 

BALB/K (0--0) and BALB/c (o o) mice. NS, mean naive serum OD for 

all strains. 





Figure 4.1.4 Autoradiograph of Western blot showing the antigen/antibody 

reactions detected when nitrocellulose-bound T. muris E/S antigen was 

incubated with sera taken day 35 p. i. from B10. G, B10, BALB/B, BIO. BR, 

BALB/K, BALB/c and BIO. D2/n mice (lanes 1-7 respectively) or naive 

serum from B10 mice (lane 8) and developed with 1251-labelled anti-mouse 

IgGAM. Arrows indicate the three antigens of mol. wts. 50.7,43 and 23.4 

kDa recognised by antibodies in the sera from all strains. 
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Figure 4.1.5 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. 

muris EIS antigen after immunoprecipitation with sera taken day 61 p. i. 

from B10. G, BALB/K, B1O. BR, BALB/c, BALB/B and B10 mice (lanes 1-4, 

6 and 7) and day 35 p. i. from B10. D2/n mice (lane 5). No antigens were 

immunoprecipitated with naive serum from B1O. BR mice (lane 8). The 

arrow indicates the 20-23kDa antigen referred to in the text. 

Figure 4.1.6 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. 

muris E/S antigen after immunoprecipitation with sera taken day 26 p. i. 

from BIO. G, BALB/K, B10. BR, BALB/c, B10. D21n, BALB/B and B10 mice 

(lanes 1-7). No antigens were immunoprecipitated with naive serum from 

B10. BR mice (lane 8). 
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their IgG response to T. muris E/S antigen. The results are shown in 

figures 4.1.5 (day 61 p. i. ) and 4.1.6 (day 26 p. i. ). 

Figure 4.1.5 shows the antigen recognition profiles using sera taken day 

61 p. i. In general, mice of the B10 genetic background, particularly B10. G, 

B1O. BR and B10. D2/n, recognised a wider range of antigens than mice of 

the BALB genetic background, the MW of antigens recognised varying from 

30 to 136kDa. B10 mice, however, recognised fewer antigens than both 

BALB/B and BALB/K mice. The BALB/c recognition profile was little 

different from naive serum. 

Mouse strains sharing the H-2b haplotype (BIO, BALB/B - lanes 6 and 

7) recognised a low MW antigen (20-23kDa) which was not recognised by 

any other strain studied. 

Immunoprecipitations using sera taken day 26 p. i. showed similar, 

though less intense antigen recognition profiles for most strains, with two 

notable exceptions - the BALG/K profile lacked a 79kDa antigen band 

present at day 61 p. i., and the BALB/B profile for day 26 p. i. did not 

reveal the 20-23kDa antigen band. Both the less intensive banding patterns 

and the apparent lack of antibodies against these two antigens are probably 

due to the immunoprecipitation technique being less sensitive in detecting 

the low specific JgG levels in the peripheral blood seen on day 26 p. i. by 

ELISA (figure 4.1.2). 

Antigen recognition profiles for, total, specific antibody on day 61 p. i. 

and day 26 p. i. were identical to those seen for IgG. 

4.1.5 DISCUSSION 

Genetic variation in the host immune response to infection with 

parasitic helminths is a well-documented phenomenon (Wakelin 1978). This 

variation can manifest itself in a number of host parameters, one of the 
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easiest of which to measure is the antibody response to infection. Although 

there are many papers concerned with the analysis of genetic variation in 

antibody responses per se (Rivera-Ortiz and Nussenzweig 1976; Jungery and 

Ogilvie 1982; Storey, Behnke and Wakelin 1987), the genetic control of the 

specific antibody response to infection is poorly understood. Progress has 

been made possible in this field by the recent development of procedures 

such as immunoprecipitation of antigen-antibody complexes, the reaction of 

antibodies with nitrocellulose-bound antigens, and the ELISA. In this study 

the combined use of these three techniques has provided evidence for the 

involvement of both H-2-linked and background genes in the control of the 

humoral immune responses of mice to the nematode T. muris. 

Analysis of the kinetics of the antibody response in congenic -mice 

revealed that the primary antibody response to T. 'muris E/S antigen is 

predominantly an IgG response, although B10. G mice, and to a lesser 

extent B10. BR, also showed elevated IgM levels. No JgA was detected in 

any strain of mouse p. i., This does not necessarily mean that ' IgA is 

unimportant in the protective immune response to T. muris, but rather may 

merely reflect low levels of IgA in the peripheral circulation. A study of 

intestinal IgA levels may reveal a role of IgA in the expulsion of T. muris. 

Indeed, IgA monoclonal antibodies have been shown to passively transfer 

immunity to this parasite (Roach 1986). 

Mice of the B10 genetic background exhibited much higher levels of 

IgG antibodies to E/S antigen than mice possessing BALG background genes, 

the pattern of responses in mice of-. these backgrounds being highly 

reproducible. Striking differences in antibody levels between mice of identical 

genetic backgrounds suggested that, in addition to these background genetic 

effects, H-2-linked genes ý may also play a role in the control of the 

antibody response to T. muris, superimposed upon the background effects. 

B10 congenic strains of mice are known to be significantly more 
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susceptible to T. muris (Else and Wakelin 1988) than the BALB congenics 

under study, therefore the higher specific antibody levels observed in the 

former may in part reflect the longer retention of the parasite within the 

large intestine. However, the differences, in the antibody levels observed 

cannot totally be explained by differences in rate of expulsion of T. muris, 

as they ` do not account for the differences in antibody levels seen between 

BALB/B and BALB/c mice, which exhibit similar kinetics of expulsion of T. 

muris; neither do they explain the fact that when sera from NIH mice, 

which expel T. muris very rapidly (before day 15 p. i. ), were tested in a 

similar experiment, antibody levels were similar to those of B10. G mice 

even though the parasite was retained within the gut for a significantly 

shorter period. Equally it is' unlikely that the observed differences in 

antibody levels between the strains studied resulted from the establishment 

of different levels of infection. A threshold experiment conducted previously 

in MF1 mice showed there to be no significant difference in specific 

antibody levels in mice infected with 50 or 400 T. muris eggs (Else and 

Wakelin, unpublished observations). There is no simple correlation between 

antibody levels in a host strain and the time course of infection. That is 

not to say, however, that no causal correlation exists in any host-parasite 

combination; such correlations 'may only be evident when responses to 

defined epitopes can be determined. 

H-2-linked genes were shown to have a marked influence on the 

humoral immune response to the 40-43kDa antigen. Although this band may 

prove to have multiple components when analysed by two-dimensional 

electrophoresis, it is a single entity as seen by one-dimensional SDS-PAGE 

and forms the major constituent protein of E/S. Mice sharing the H-2k 

haplotype (B10. BR, BALB/K) responded considerably better to this antigen 

in terms of total antibody levels than all other strains studied, with BALB/c 

and B10. D2/n mice (both 11-2d) responding only very weakly. The 
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differences in antibody levels observed between strains of identical haplotypes 

(k-k, d-d, b-) were insignificant in comparison with the very considerable 

differences in antibody levels seen between strains of mice possessing 

different haplotypes. The greater antibody response 'seen in mice of the 

H-2k haplotype may suggest that the 40-43kDa antigen is presented more 

efficiently to helper T cells than in mice of other haplotypes, thus allowing 

a greater response by the B cells which effect the functional anti-40-43kDa 

response. Since the IL-2k haplotype has been shown to be associated with 

relative susceptibility to T. muris (Else and Wakelin 1988) the importance 

of the anti-40-43kDa response in terms of protective immunity remains to 

be determined. 

Deelder, Claas and de Vries (1978) studied the influence of two 

different H-2 haplotypes (H-2b and H-2k) on an experimental infection 

with Schistosoma mansoni. Their results suggested that different H-2-linked 

immune response genes had a considerable influence on the immune 

response against S. mansoni, the more susceptible C3H. B10 (IL-2b) mice 

exhibiting higher antibody titres than C3H/Sn (fl-2k) mice. The high 

mortality observed in C3H. B10 mice was interpreted as the consequence of 

a less effective cellular immune response. It is therefore conceivable that 

the high susceptibility of mice sharing the H-2k haplotype to T. mums, and 

the high anti-40-43kDa antibody levels they exhibit, may similarly reflect 

poor anti-40-43kDa cellular immune responses. 

A Western blot analysis of antigen recognition failed to reveal any 

evidence to suggest that H-2-linked genes exercised significant control of 

the antibody repertoire in response to T. muris infection, the same three 

antigens being recognised by the sera from all strains, regardless of H-2 

haplotype. However, a complementary study, involving immunoprecipitation, 

possibly a more realistic way of analysing antigen recognition, as the 

antigen-antibody reaction occurs with the antigen in its native state, 
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revealed differences between strains in their. antigen recognition profiles. 

Three of the four B10 background strains studied exhibited wider antigen 

recognition profiles than strains of the BALB genetic background. - BALB/c 

mice, which expel a primary infection with T. muris relatively rapidly 

compared to the B10 congenics, had recognition profiles similar to those for 

naive serum. Mouse strains sharing the ! L--2b haplotype (B10, BALB/B) 

recognised a low MW antigen (20-23kDa) which was not recognised by any 

other strain. A more exhaustive study involving other strains of the H-2b 

haplotype would have to be performed to confirm this apparent H-2b 

restriction in the recognition of the 20-23kDa antigen, a finding which 

implicates H-2-linked genetic control of the antibody repertoire to T. muris 

antigens. However, pairs of mice sharing the same H-2 haplotype showed 

dissimilar total recognition profiles. 

It therefore appears that antibody recognition of T. muris antigen is 

H-2-linked but that additional factors are also involved in determining the 

recognition profile. In this respect the control of antibody responses to T. 

muris is similar to that of many other species (Rivera-Ortiz and 

Nussenzweig 1976; Kee et at. 1986). Although there- are some instances 

where H-2-linked control appears to play a dominant role, e. g. in the 

response of mice to infection with' Ascaris suum (Kennedy et at. 1986), 

such a clear discrimination between strains in the specificity of antibody 

responses to nematode antigens is rare (Wakelin 1985). 

Many - studies which have shown marked H-2-linked and background 

genetic influences of antigen recognition (e. g. those of Deelder 
, et al. (1978) 

with Schistosorna mansoni; Pond, Wassom and Hayes (1988) with Trichinella 

splralis; , and Gibbens, Harrison and Parkhouse (1986) with Taenia 

taeniaeformis) have also, as described here for T. muris, found a 

correlation between greater responsiveness (titre and/or profile) and greater 

susceptibility to infection. There may of course be many explanations for 
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such a correlation, including diversion of immune responses and production 

of blocking antibodies, but it is a phenomenon which may have considerable 

relevance to the development of infections in man. If the correlation 

between high antibody levels, wide antigen recognition profiles and 

susceptibility demonstrated with T. muris can be extended to infections with 

T. trichiura in man it may provide useful serological markers for studying 

the epidemiology of trichuriasis and aid the identification of susceptible 

individuals in control programmes. 

4.2 THE INFLUENCE OF GENES WITHIN THE H-2 COMPLEX ON 

THE HUMORAL IMMUNE RESPONSE TO T. MURIS 

EXCRETORY/SECRETORY (EIS) ANTIGEN 

The outcome of a parasitic Infection may be critically determined by 

the level and specificity of the immunoglobulin response and the pattern of 

isotype expression elicited in the host. The level of response may determine 

either resistance or susceptibility, and the isotype dictate the range of 

effector function available. The results presented In section 4.1 demonstrate 

that the primary antibody response to T. muris E/S antigen is 

predominantly an IgG response, and that both background and H-2-linked 

genes influence this response in a qualitative and quantitative manner. In 

order to analyse further the role of the H-2-linked genes concerned, and 

to identify the contribution of the IgGI isotype to the total T. 

muris-specific antibody response, a panel of H-2 recombinant mouse strains 

were used for a detailed serological study. The choice of the IgGi isotype 

was determined by the fact that many metazoan parasites induce high levels 

of serum IgG1 during the course of infection (Chapman et al., 1979a, b; 
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Pritchard et at 1983; Pond et at. 1988). IgG1 has been shown to be 

capable of mediating antibody-dependent cellular cytotoxicity by eosinophils 

resulting in parasite damage (Ramalho-Pinto et al. 1979). 

4.2.1 EXPERIMENTAL DESIGN 

The panel of H-2 recombinant strains of mice was as used in Chapter 

3.2 (Table 3.2.1). The sera obtained from these mice was used in the 

ELISA and immunoprecipitation studies described in this section of Chapter 

4. IgG and IgG1 antibody responses to E/S antigen were determined by 

ELISA. Immunoprecipitation studies were performed using a sheep 

anti-mouse IgGFc antibody and 10-20% gradient gels. Significant differences 

in antibody levels between strains were determined using Analysis of 

Variance. 

4.2.2 RESULTS 

IgG and IgGI antibody response to EIS antigen 

The IgG and IgGi antibody levels (reflected by optical density (OD) in 

ELISA) for the strains studied are shown in figures 4.2.1 and 4.2.2 

respectively. As can be seen, the specific JgG1 response resembled the 

pattern of response for total specific IgG antibody except that the majority 

of the H-2 recombinant strains studied showed a smaller increase, if any, 

in IgGi antibody post-infection. Strains of mice formed two distinct groups 

as determined by their IgG and IgGI response patterns, B10. T(6R) and 

(B10. BRxB10. G)F1 mice having significantly higher levels (P<0.05) of both 

antibodies than any other strain studied. Within each of the two groups, 

antibody levels did not differ significantly between strains. The division into 



Figure 4.2.1 Time course of the IgG-specific antibody response to T. muris 

E/S antigen in serum samples from infected congenic and H-2 recombinant 

strains of mice. The shaded area represents the range of standard deviations 

from the mean optical densities calculated from six individual values for 

each strain at each time point post infection. Antibody levels in serum from 

B10. G and NIH mice were determined using pooled sera (at least five 

individuals per strain). N. S., naive mouse serum. O. D., optical density. 
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Figure 4.2.2 Time course of the IgGI-specific antibody response to T. 

muris E/S antigen in serum samples from infected congenic and H-2 

recombinant strains of mice. The shaded area represents the range of 

standard deviations from the mean optical densities calculated from six 

individual values for each strain at each time point post infection. Antibody 

levels in serum from BIO. G and NIH mice were determined using pooled 

sera (at least five individuals per strain). N. S., naive mouse serum. O. D., 

optical density. 
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high and low responder strains with respect to IgG and IgG1 production 

was apparent early on during the course of the primary infection, a clear 

separation being evident by day 21 p. i. Pooled post-infection sera from 

B10. G and NIH strains of mice followed the pattern of response seen for 

B10. T(6R) and (B10. BRxB10. G)Fl mice. Individual variation in OD within a 

strain was relatively small in most cases except for the day 35 p. i. B10 

values where a large standard deviation from the mean value was observed. 

Differential recognition of 35S-methionine labelled EIS antigen by H-2 

recombinant strains of mice 

The profile of antigens recognised by IgG antibodies in sera from H-2 

recombinant mouse strains and (B10. BRxB10. G)F1 mice, as determined by 

immunoprecipitation, are shown in figures 4.2.3 and 4.2.4 respectively. Most 

strains recognised a number of antigens within the 30-5OkDa region. 

Heterogeneity in the antibody responses to specific antigens between strains 

suggested the existence of H-2-linked control. For instance two high MW 

antigens (90-95kDa and 105-110kDa ) were only recognised by B10. T(6R) 

and (B10. BRxB10. G)Fl strains of mice (figure 4.2.3 lane 3, figure 4.2.4 

lanes 1-5), although in the example shown there is some evidence of the 

presence of antibodies against the latter antigen in the B10 serum sample. 

However sera from five other B10 Individuals did not reveal recognition of 

antigens in this MW range. B10. A(3R), B10. A(5R), B10. AQR and B10. BR 

recognised an antigen resolving at approximately 97kDa and a doublet 

resolving around 92kDa (fig. 4.2.3 lanes 4,5,6 and 8). Although clearly 

resolving within a similar MW range to the 90-95kDa and 105-110kDa 

antigens, these antigens were judged to be distinct from the two high MW 

antigens (see Chapter 7). A 20-23kDa antigen was only recognised by sera 

from B10 mice (figure 4.2.3 lane 7), although one individual from each of 



Figure 4.2.3 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. 

marls E/S antigen after Immunoprecipitation with sera taken day 35 p. i. 

from individual B10. A(2R), B10. A(4R), B10. T(6R), B10. A(3R), BI0. A(5R), 

B10. AQR, B10 and B10. BR mice (lanes 1-8). Lane 9,1310. BR naive serum. 

Arrows Indicate the 90-9SkDa, 105-110kDa and 20-23kDa antigens referred 

to in the text. Worm burdens are also given, where known, beneath the 

lane numbers. s= stunted; += patent infection 

Figure 4.2.4 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. 

muris E/S antigen after Immunoprecipitation with sera taken day 35 p. 1. 

from individual (B10. BRxll0. G)F1 mice (lanes 1-5). Antigen recognition 

profiles for B10. G, B10 and 1310.13R mice are shown in lanes 6-8. Lane 9, 

naive serum from (B10. BRxB10. G)F1 mice. Arrows indicate the 90-95kDa 

and 105-110kDa antigens referred to in the text. Worm burdens are also 

given, where known, beneath the lane numbers. s= stunted; += patent 

infection. 
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the B10. A(5R) and B10. A(3R) strains of mice also recognised this antigen 

(data not shown), perhaps suggesting the involvement of =Ab. Marked 

quantitative differences, reflected in the intensity of bands on the 

autoradiographs, and in some cases qualitative differences in antibody 

response to individual antigens occurred within inbred strains. For instance 

figure 4.2.3 shows very strong recognition of a 20-23kDa antigen by an 

individual of the B10 strain of mouse (lane 7), whereas recognition of this 

antigen is barely detectable in a different individual of the same strain 

(figure 4.2.4, lane 7), although visible on the original autoradiograph. 

Considerable quantitative variation was also seen with respect to IgG 

antibodies produced against the two high MW antigens (90-95kDa, 

105-110kDa) by individuals of the (B10. BRxB10. G)F1 strain (figure 4.2.4, 

lanes 1-5). Qualitative variation in antigen recognition was illustrated by the 

B10. A(4R) mouse strain where four of the five individuals displayed antigen 

recognition profiles similar to those seen for naive serum (e. g. figure 4.2.3, 

lane 2), however one individual showed considerable antigen recognition, 

particularly within the 30-5OkDa MW range (data not shown). Also, as 

mentioned, only one out of five individuals of both the B10. A(5R) and 

BlO. A(3R) strains of mice appeared to recognise a 20-23kDa antigen (data 

not shown). 

Antigens recognised by individuals of the (B10. BRxBIO. G)F1 mouse 

strain (figure 4.2.4 lanes 1-5) were identical to those recognised by one of 

the parental strains, B10. G (lane 6), but dissimilar to the profile seen for 

the other parent, BlO. BR (lane 8), except within the 30-5OkDa range. 

4.2.3 DISCUSSION 

The results presented here confirm the influence of MHC-linked factors 

on the antibody responses to T. muris E/S antigen. Through the use of a 
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panel of H-2 recombinant mouse strains, significant differences between 

certain strains of mice in their qualitative and quantitative responses to T. 

muris E/S antigen were apparent. 

There has been a considerable amount of work on the genetic control 

of antibody responses to a variety of purified proteins and hapten-protein 

conjugates (Vaz and Levine 1970; Rathbun and Hildemann 1970; Urba and 

Hildemann 1978; The et at. 1987). Studies concerned with the genetic 

control of antibody responses to parasite antigens have focused ' on protozoal 

antigens and include the work of Del Giudice et al. (1986) on the control 

of antibody responses in mice to the immundominant repetitive epitope of 

the main Plasmodium falciparum sporozoite surface antigen, the 

circumsporozoite protein, and the work of Taylor et al. (1988) who studied 

the influence of MHC-linked factors on immunity to P. yoelii and isotype 

expression. In comparison only a limited number of studies have considered 

how antibody responses to helminth antigens are regulated. Kaji et al. 

(1983) suggested that the gene(s) regulating the IgE antibody response to 

Schistosoma japonicum mapped In the I-E subregion of the mouse MHC, 

and Kee et al (1986), using mRNA in vitro translation products of adult 

worms as target antigens in immunoprecipitation experiments, provided 

evidence for the genetic control of the antibody response to S. mansoni. 

Kennedy et al. (1986) tentatively ascribed the control of the, antibody 

repertoire in response to Ascaris infection to the H-2 complex. 

The involvement of MHC-linked Ir genes in the control of antibody 

responses to parasite antigens revealed by the studies of Kaji et al. (1983), 

Kee et at. (1986) and Kennedy et at. (1986) is consistent with the work 

presented here. MHC-linked Ir gene control of antibody responses is exerted 

at the level of, the T cell -B cell interaction, helper T cells having an 

obligatory - role in antibody responses to most antigens (Abbas, 1988). These 

cells only recognise' processed antigen fragments presented to them by 
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antigen presenting cells, such as macrophages and dendritic cells, or B cells, 

in association with MHC class II gene products present at the antigen 

presenting cell or B cell surface (Benacerraf, 1978; reviewed by Unanue, 

1984; Blackman et al., 1988; Janeway et al., 1988). Thus in order for an 

antigen to stimulate helper T cells which then enable B cells to produce 

antibody, it must give rise to peptides able to bind to the MHC class II 

gene products of that individual, and the host must have T cells bearing 

receptors able to recognise that combination of antigenic peptide plus MHC 

(Marrack and Kappler, 1987; Introduction 1.3.2). Thus the phenomenon of 

MHC-restricted antibody responses arises. Although, as mentioned, B cell 

responses to many, antigens are known to be under MHC-linked Ir gene 

control, it is unusual to see clear differences between mouse strains in the 

specicifity of the antibody response to complex nematode antigens (Wakelin, 

1985). However, through the use of a panel of H-2 recombinant strains of 

mice an apparent H-2q restriction on rapid, high level IgG and IgG1 

antibody responses to T. muris E/S antigen and the recognition of two high 

MW E/S antigens (90-95kDa, 105-110kDa) by IgG antibody was revealed, 

only B10. T(6R) and (B10. BRxB10. G)F1 mice exhibiting these antibody 

response patterns. It is likely that the relevant MHC product is I_Aq, as 

B10. T(6R) mice lack cell surface I-E molecules, as do the NIH and B10. G 

mouse strains (both H-29) which showed similar antibody response patterns 

to those seen for the B10. T(6R) and (B10. BRxBIO. G)F1 `strains of mice, as 

revealed by ELISA (figs. 4.2.1 and 4.2.2) and immunoprecipitation (figs. 

4.1.5,4.1.6,4.2.3 and 4.2.4 - data for ' NIH 
- not shown)., A more detailed 

discussion of the apparent MHC restricted antibody responses to T. murts 

E/S antigen and their possible relevance with respect to resistance to 

infection is given in Chapter S. 

A number of ' inbred strains of mice ' have previously been described 

where individuals belonging to the same strain did not behave uniformly 
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with respect to their ability to expel the infection (Worley et al., 1962; Lee 

and Wakelin, 1982b; Else and Wakelin, 1988). The term "differential 

responsiveness" has been used to describe this phenomenon which provides ,a 

unique opportunity to investigate the factor(s) involved in determining the 

different states of responsiveness. Differential responsiveness in the ability to 

expel T. muris was observed within certain of the H-2 recombinant mouse 

strains used in this, and the preceding chapter (see figure 3.2.1, e. g. 

B10. T(6R)). However no correlation was found between individual antigen 

recognition . profiles and/or antibody levels and resistance to infection. Roach 

(1986) reported similar findings when analysing the humoral immune 

responses of responder and non-responder DBA/2 mice. Indeed, as 

mentioned in section 4.1.5, a number of workers studying different 

host-parasite systems have shown that, if anything, poor responder strains 

tend to have higher levels of specific antibody than more resistant strains of 

mice (Pond et al., 1988; Else and Wakelin, 1989). 

Immunoprecipitation studies revealed qualitative and quantitative 

differences in antibody responses between, and in some cases within strains. 

Between strain variation presumably reflected the influence of different 

alleles at H-2 loci, however the reason for variation in antigen recognition 

between individuals of the same strain is not known although a similar 

phenomenon has been reported by other workers. For example heterogeneity 

in the antibody response of mice belonging to the - same inbred strain to 

certain antigens has previously been reported by Kee et al. (1986). 

Immunoprecipitations of in vitro translation products of mRNA from adult 

Schistosoma ' mansoni using sera from individual mice showed that antibody 

responses to particular antigens varied considerably within a strain. The 

reasons for the inconsistency in response could not be explained. Similarly, 

Davern et al. (1987) reported considerable variation between individuals 

within a strain in their antibody responses to a Schistosoma japonicum 
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protein, (S j. 26). 

In order to determine whether the ability to produce high levels of 

IgG antibody to T. muris E/S antigen early on during the course of 

infection was inherited as a dominant or recessive trait, the antibody 

responses of an F1 hybrid mouse strain resulting from crossing a low level 

antibody producing strain B10. BR (H-2k) with the rapid, high level antibody 

producing B10. G (H-24) strain were analysed. Results suggested dominant 

inheritance of high responsiveness, the antibody responses of F1 mice being 

indistinguishable from those of the high responder parental strain with 

respect to both kinetics and level of the IgG and IgG1 responses and the 

antigen recognition profiles. I-E and I-A gene products are codominantly 

expressed in F1 animals, hence the ability of these Fl mice to produce 

rapid high level specific antibody responses and to recognise the 90-95kDa 

and 105-110kDa antigens may be explained by the presence of Aß9Aaq 

molecules at the cell surface in addition to AkAa and the two hybrid 

molecules A0kAa9 and AßgAci . 
The antibody responses of hybrid mouse 

strains from high x low-responder crosses have been studied in other 

systems. High responsiveness to 2,4,6-trinitrophenyl conjugated to autogenous 

mouse serum albumin was found to be Inherited as a recessive trait (Urba 

and Hildemann, 1978) whilst Tite et at. (1987), analysing antibody responses 

to human basement membrane collagen, found F1 (high x low-responder) 

hybrids to be far lower responders than the high responder parent, although 

they were significantly more responsive, than the low-responder parental 

strain. Kee et at. (1986) reported both dominant and recessive responses 

towards individual antigens in F1 animals chronically infected with 

Schistosoma mansoni. 

Although MHC-linked Ir gene control of antibody responses to antigens 

is most readily assayed in experimental models, work done in the field also 

suggests that MHC-linked control occurs. For instance Osoba et at. (1979) 
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suggested that antibody production to Plasmodium falciparum antigens was 

controlled by Ir genes within the HLA complex. The restricted ability of 

circumsporozoite (CS)-derived vaccines against P. falciparum to protect 

human volunteers (Ballou et al., 1987; Herrington et al., 1987) and the 

failure of synthetic peptides from the CS protein to stimulate T cell 

proliferation in up to 40% of adult Gambians living in a region endemic 

for P. falciparum (Good et at., 1988c) would also seem to testify to the 

existence of MHC-restricted T cell -responsiveness in the field. The 

demonstration that the human whipworm, Trichuris trichiura and the mouse 

trichuroid T. muris possess shared or related antigens (Roach et at., 1988) 

suggests that T. muris in the mouse will prove to be a realistic model in 

which to study the genetic control of humoral and cellular immune 

responses to T. trichiura in man. 

4.3 SUMMARY POINTS 

1. The primary antibody response to T. muris E/S antigen was shown to 

be predominantly an IgG antibody response under the control of both 

background and H-2-linked genes. 

2. A comparison of the antibody responses of congenic strains of mice 

revealed that, in general, strains of mice less resistant to infection developed 

higher level IgG responses than strains of mice which expelled T. muris 

more rapidly. 

3. Analysis of the levels of specific IgGI antibody in H-2 recombinant 

strains of mice showed the response pattern for this isotype to be similar to 
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that seen for total specific IgG. 

4. Immunoprecipitation analyses revealed that both background and 

H-2-linked genes influenced the recognition of 35S-methionine labelled E/S 

antigen by IgG antibodies. 

5. An apparent H-2q (?? I=A4) restriction on the development of a rapid 

high level IgG (IgGl) antibody response and 'the recognition of two high 

MW antigens (90-95kDa, 105-110kDa) was demonstrated by analysing the 

humoral immune responses of a panel of H-2 recombinant strains of mice. 



CHAPTER 5 

MHC-RESTRICTED ANTIBODY RESPONSES TO TRICHURIS 

MURIS EXCRETORY/SECRETORY (E/S) ANTIGEN 
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5.1 INTRODUCTION 

It is now generally recognised that helper T cells regulate virtually 

every aspect of the specific B cell response to the majority of antigens 

(reviewed by Coffman et al., 1988; Abbas, 1988). B cell responsiveness, to 

most T cell dependent antigens is controlled by Ir genes linked to the MHC 

loci which encode the class II histocompatibility$ molecules (Ia molecules) 

necessary for antigen presentation to T helper cells (reviewed by Unanue, 

1984). 

The existence of Ir genes was discovered through the stimulation of the 

host, immune system with, relatively simple antigens, such as - synthetic 

polypeptides, or antigens administered in low doses , (Benacerraf and 

McDevitt, 1972). In both cases the antigen confronts the responding T cells 

with only a few determinants. When more complex antigens, or higher 

antigen doses are used, it is likely that strains not responding to some 

determinants will respond to others such that the overall phenotype is one 

of responsiveness. Thus, non-responsiveness to individual antigenic 

determinants is lost in the general heterogeneity 'of the response (Marusic et 

at., 1982). Most parasite derived molecules are complex entities, therefore it 

is not surprising that there have been few reports of H-2 restricted 

responses to these antigens. The work of Kennedy et al., (1986) is one 

exception to this. Analysis of the antibody repertoire to Ascaris suum 

infective (L2) larval E/S antigen revealed that mouse strains sharing MHC 

haplotypes had identical antigen recognition profiles. However in this study 

only two strains of each haplotype (H-2q and H-2d) were used. 

The results presented in Chapter 4 provide evidence for the existence 

of H-24 (L-=A9? ) restricted antibody responses to T. - muris E/S antigen, ý but 

this correlation was based on the antibody response patterns of just four 
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strains of mice possessing g alleles at the H-2 complex, three of which had 

identical background genes (B10. T(6R), ý BiO. G and a (BiO. BRxB10. G)F1 

hybrid strain). In order to confirm or refute the apparent H-2q restriction 

on the antibody responses to T. muris E/S antigen a more exhaustive study 

of the - humoral responses of mouse strains of the H-2q haplotype was 

undertaken. Strains of mice possessing the H-24 haplotype on four different 

genetic backgrounds (NIH, DBA, B10 and SWR) were t studied. In addition 

to analysing antibody response patterns, expulsion phenotypes (where not 

previously described) were established. The functional significance of the 

rapid high level IgG (IgGl) antibody response and antibody specificities seen 

in H-2q mouse strains was also investigated by examining the capacity of 

immune serum from (B10. BRxBIO. G)Fl hybrid mice (H-2q/k) to transfer 

resistance to infection to normally non-responsive B10. BR (H-2k) mice. 

5.2 EXPERIMENTAL DESIGN 

5.2.1 DETERMINATION OF EXPULSION PHENOTYPE AND 

SEROLOGICAL ANALYSIS 

Six to eight week old mice of the DBA/1, SWR (both H-2q) and 

B1O. BR (H-2k) strains of mice were purchased from Harlan Olac Ltd. 

B10. G (H-29) and (B10. BRxB10. G)F1 (H-24n) were bred locally at 

Nottingham. Serum from the NIH mouse strain (H-2q) was obtained from 

mice used in Chapter 3, section 3.1, the expulsion phenotype for this strain 

being well-established (Wakelin 1975b; Else and Wakelin, 1988). BiO. T(6R), 

B10. AQR, BIO. A(2R) and C57BU10 (B10) serum samples were also used in 

section 4.2 and are included here for comparative purposes. 
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At least five mice per strain were killed on days 11,18,21,23,28 

and 35 p. i., their worm burdens determined and individual' serum samples 

collected. Only two mean worm burden ý determinations were made for the 

B10. BR mouse strains, on d11 and d35 p. i., this strain being unable to 

expel a primary T. muris infection (Else and Wakelin, 1988). Serum 

samples for days 21 and 28 p. i. were obtained by tail bleeding in this case. 

Specific IgG, IgGi and IgM antibody levels in the sera were examined by 

ELISA. Antigen recognition profiles for IgG antibody were determined by 

immunoprecipitation. 10-20% gradient gels were used throughout. 

5.2.2 PASSIVE TRANSFER OF IMMUNITY 

60 female (B10. BRxB10. G)F1 mice were infected with 400 T. muris 

eggs from which 114.25±15.4 larvae established as seen on d13 p. i. Mice 

were killed on d33 p. i. and their sera collected and pooled. All individuals 

harboured either no or a few stunted worms, i. e. they were resistant to 

infection. Antibody levels in the F1 pooled serum, as determined by ELISA, 

are shown in table 5.1. 

Table 5.1 Antibody levels in the pooled (B10. BRxB10. G)F1 hybrid mouse 
strain immune serum assessed for its capacity to protect the normally 
non-responder B10. BR mouse strain against a primary infection of 400 T. 
muris eggs 

O. D. (410nm) 
IgG IgGi IgM IgA 

Pooled (B1O. BRx 1.223 1.383 0.519 0.068 
B10. G)F1 serum d33 p. i 

(B10. BRxB10. G)F1 0.085 0.101 0.055 0.136 
naive serum 

The antibody recognition profile for the pooled Fl serum was identical 

to that seen before for individual male Fl sera (figure 4.2.4). --Recipient 
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male B10. BR mice were infected with 400 T. muris eggs and injected with 

0.25,0.5 and 0.5 mis of pooled Fl immune serum i. p. on days 0,1 and 3 

p. i. respectively. Control mice were injected with PBS. Mice were killed, 

bled individually, and their worm burdens determined on days 15 and 35 

p. i. 

5.2.3 STATISTICS 

The significance of differences between worm burdens recovered from 

experimental groups was calculated using the Mann-Whitney U test. A value 

greater than P=0.05 was considered non-significant. 

The significance of differences in antibody levels between strains post 

infection was determined using Analysis of Variance. P>0.05 was considered 

non-significant. 

5.3 RESULTS 

5.3.1 TIME COURSE OF EXPULSION OF T. MURIS FROM H-24 

HAPLOTYPE STRAINS OF MICE 

The time course of expulsion of T. muris from each of the five 

strains studied is shown in figure 5.1. Only mean worm burdens are shown 

(for at least five individuals per strain per time point), standard deviations 

being omitted for clarity. The degree of variation between individual worm 

burdens within a group is shown in Table 5.2 where all mean worm 

burdens and their standard deviations are given. No significant differences in 

the number of larvae recovered on dll p. i. were observed between any of 



Figure 5.1 Time course of expulsion of T. muris from (B10. BRxB10. G)F1, 

SWR, DBA/1, B10. G and B10. BR strains of mice. Only mean worm 

burdens (for at least five individuals per strain per time point) are shown, 

standard deviations being omitted for clarity. Mean worm burdens plus 

standard deviations are given in Table 5.2. No significant differences in 

establishment of larvae in any strain was seen on d11 p. i. The DBAI1 

mouse strain exhibited differential responsiveness and was divided into 

responder and non-responder populations from d28 p. i. onwards. Responders 

were identified on the basis of harbouring a reduced worm burden (less 

than the d11 mean minus two standard deviations) and showing evidence of 

worm stunting. 4/6 DBA/1 individuals harboured patent infections on d35 

p. i. += patent infection. 
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the strains studied (P>0.05). 

Table 5.2 Mean worm burdens plus/minus standard deviations (for at least 
five individuals per strain per time point) for H-2q haplotype strains of 
mice and the B10. BR mouse strain. The time course of expulsion of T. 
muris from these strains is illustrated in figure 5.1. Individuals of the 
DBA/1 strain of mouse were divided into responders (R) and 
non-responders (NR) from d28 p. i. onwards, responders harbouring reduced 
worm burdens and showing evidence of worm stunting (see text). 

Day post-infection 

11 18 21 23 28 35 

Fl 93.0 ±15.3 119.7124.2 81.5t42.9 50.5150.6 17.3 ±14.7 12.7 ±15.3 
B10. G 94.8±13.4 113.4±32.6 15.4±15.6 43.6±38.0 3.0± 4.5 0.4± 0.55 
B10. BR 114.0±25.6 --- - 84.0±50.5 
SWR 94.2±12.9 25.6±38.0 6.0±10.2 3.6± 8.0 0.0±0.0 0.0±0.0 
DBA/1(R) 

93 8±28 8 90.8 ±33.3 72.0±46.7 50.4±50.7 
8.5±12.0 1.0_1.4 

DBA/1(NR) . . 90.0±44.4 120.8 *_55.1 

The SWR strain expelled worms the fastest, a significant decrease in worm 

burdens being seen on d18 p. i. (P<0.025). B10. G mice showed a significant 

decrease in worm numbers on d21 p. i. (P<0.01). Although 316 

(B10. BRxBIO. G)FI mice had lost nearly all their worms by d23 p. i., a 

significant decrease in worm burdens was not observed until d28 p. i. 

because of the large standard deviation seen on d23 p. i. Unlike SWR, 

B10. G and (B10. BRxBIO. G)F1 mice which all became uniformally resistant 

to infection, few if any worms remaining by d28 p. i., the DBA/1 strain of 

mouse displayed differential responsiveness, 4/6 individuals being unable to 

expel the parasite before the infection reached patency. Individuals were 

divided into responders and non-responders from d28 p. i. onwards, 

responders being identified on the basis of harbouring worm burdens less 

than the d11 mean minus two standard deviations and displaying evidence of 

worm stunting. Although it is clear from the standard deviations that the 

two response phenotypes became apparent before day 28 (see d23 values), 

no separation was possible before this time as similar wide variation occured 

in B10. G and (B10. BRxB10. G)F1 mice. However these latter strains were 

uniformly resistant on day 28.6/6 BlO. BR mice harboured patent infections 
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on d35 p. i. and so were classified as non-responders. However 2/6 

individuals showed a reduction in worm burdens from the dl l mean 

resulting in a large standard deviation on d35 p. i. 

5.3.2 ANTIBODY RESPONSES OF H-2q AND NON-H-2q MOUSE 

STRAINS TO E/S ANTIGEN AS DETERMINED BY ELISA 

Figure 5.2 shows the specific IgG antibody responses to T. muris E/S 

antigen of the five strains of mouse under study. NIH, B1O. T(6R) and B10 

response patterns are included for comparison. Mean optical densities, 

reflecting specific antibody levels, represent values for at least five 

individuals at each time point. In most cases standard deviations were small 

in comparison to the mean, although as noted before (Chapter 4.2.2) 

individuals of the B10 strain of mouse showed considerable variation in 

levels of specific antibody, especially later on in infection. Two distinct 

groups of mice could be identified by d21 p. i. on the basis of levels of IgG 

antibody to E/S antigen. Strains of mice possessing g alleles throughout the 

H-2 (DBA/1, (B10. BRxB10. G)Fi, NIH, B10. G and SWR) and B10. T(6R) 

mice (q alleles at K and I-A) rapidly developed levels of specific IgG 

antibody very significantly higher than non-H-2q mouse strains (B10, 

B10. BR). There was no significant difference between levels of specific IgG 

antibody produced by the H-24 haplotype strains as a group, although there 

was some suggestion that the highest specific IgG producing strain, DBA/1, 

may have had IgG levels significantly higher than the lowest specific IgG 

producer, SWR. Antibody levels continued to rise, or were maintained at 

these high levels, after the parasite had been expelled from resistant 

strains/individuals. Although antibody levels of the B10 and B10. BR mouse 

strains also continued to rise during the course of infection, and 

post-infection with respect to the B10 individuals, the levels never 



Figure 5.2 Time course of the specific IgG antibody response to Trichuris 

muris E/S antigen in serum samples from DBA/1, (B10. BRxB10. G)Fl, 

BIO. G, SWR and B10. BR mice. Serum samples from B10. T(6R), B10 and 

NIH mice are included for comparative purposes. The shaded area 

represents the range of standard deviations from the mean optical densities 

calculated from at least five individual values for each strain at each time 

point post infection. N. S., naive mouse serum. O. D., optical density. 
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Figure 5.3 Time course of the specific IgG1 antibody respose to Trichuris 

muris EIS antigen in serum samples from DBA11, (B10. BRxB10. G)F1, 

B10. G, SWR and B10. BR mice. B10. T(6R), B10 and NIH serum samples 

are included for 'comparative purposes. The shaded area represents the 

range of standard deviations from the mean optical densities calculated from 

at least five individual values for each strain at each time point post 

infection. N. S., naive serum. O. D., optical density. 



2.0 

E 
c 
O 

Z. 

O 

Z 

W 

1.0 

NS 

.... ...... 

.......... 

DBA/1 

B1O. T(6R) 
Fl(B10. BRxB1O. G) 

NIH 

'WR 810. G 

BiO 

BIO. BR 

10 '20 30 40 

DAYS P 



Figure 5.4 Time course of the specific IgM antibody response to Trichuris 

muris EIS antigen in serum samples from DBA/1, (B10. BRxB10. G)FL, 

B10. G, SWR and B10. BR mice. B10. T(6R), B10 and NIH serum samples 

are included for comparative purposes. The shaded area represents the 

range of standard deviations from the mean optical densities calculated from 

at least five individual values for each strain at each time point post 

infection. N. S., naive serum. O. D., optical density. 
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approached those of the H-2q strains as seen on day 35 p. i. 

The IgGi antibody responses to T. muris E/S antigen of DBA/1, 

(B10. BRxB10. G)Fl, SWR, B10. G and B10. BR mice are shown in figure 5.3, 

with the IgGi response patterns of B10. T(6R), B10 and NIH mice included 

for comparison. Again two distinct groups of mice were apparent by d21 

p. i., the H-2q haplotype strains of mice developing a rapid high-level IgGi 

response unlike the non-H-2q strains (B10, B10. BR) where specific IgGI 

levels rose only gradually post-infection. Figure 5.4 shows the specific IgM 

responses to T. muris E/S antigen of the H-2q and non-H-2q strains of 

mice under study. Response patterns were quite distinct from those seen for 

IgG and IgGl. SWR and BIO mice showed little variation in IgM levels 

post-infection, whilst individuals of the BlO. BR strain showed a small and 

gradual increase. Circulating specific IgM rose slightly up until d21 p. i. and 

then declined in NIH mice, whilst the DBA/1 mouse strain showed a slight 

peak in 1gM levels on d21 p. i. IgM levels also peaked markedly on d21 p. i. 

in B10. G mice. Levels of IgM rose slightly and then plateaued in 

B10. T(6R) mice whilst individuals of the (B10. BRxB10. G)F1 hybrid strain 

developed high levels of IgM by d21 p. i. Although the d35 mean optical 

density value for this strain was greater than the d21 value, considerable 

variation between individuals was seen at this time point. 

5.3.3 ANTIGEN RECOGNITION PROFILES OF H-2q AND NON-H-2q 

STRAINS OF MICE 

Figures 5. S and 5.6 show the capacity of IgG antibody in sera, taken 

on d35 p. i. for all strains except SWR, where serum samples were taken on 

d28 p. i., to precipitate 35S-methionine labelled T. muris E/S antigen. 

Antigen recognition profiles are for individual serum samples. Individuals of 

most strains possessed IgG antibodies which recognised a number of antigens 



Figure 5.5 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. muris 

E/S antigen after immunoprecipitation with IgG antibodies in sera taken d35 

p. i. from DBA/1 (lanes 1 and 6), B10. BR (lanes 2 and 7), B10. G (lanes 3 

and 8), and (B10. BRxB10. G)F1 (lane 4) individuals and d28 p. i. from an 

SWR individual (lane 5). No antigens were precipitated with naive serum 

from (B10. BRxB10. G)F1 mice (lane 9). Worm burdens are also given 

beneath the lane numbers; += patent infection, s= stunted worms present. 

Arrows indicate the 90-95kDa and 105-110kDa antigens referred, to in the 

test. 

Figure 5.6 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. muris 

E/S antigen after immunoprecipitation with IgG antibodies in sera taken d35 

p. i. from B10. G, (B10. BRxB10. G)Fl, DBA/1 and B10. BR individuals (lanes 

1,2,4 and 5 respectively) and d28 p. i. from an SWR individual (lane 3). 

B10. T(6R) and, B10. AQR d35 p. i. antigen recognition profiles are shown in 

lanes 6 and 8 (see chapter 3.2). Lane 7 shows recognition of antigen by 

IgG antibodies in serum taken d26 p. i. from NIH mice (see chapter 3.1). 

Lane 9, (B10. BRxB10. G)F1 NS. Worm burdens are also given beneath the 

lane numbers; += patent infection, s= stunted worms. Arrows indicate the 

90-95kDa and 105-110kDa antigens referred to in the text. 
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Figure 5.7 Fluorogaph of SDS-PAGE of 35S-metabolically labelled T. muris 

E/S antigen after immunoprecipitation with IgG antibodies in sera taken d21 

p. i. from B10. G, (B10. BRxB10. G)F1, SWR, DBA/1 and B10. BR individuals 

(lanes 1-5 respectively). Antigen recognition profiles for B10. T(6R), 

B10. AQR and B10. A(2R) (see chapter 3.2) on d21 p. i. are shown in lanes 

6-8 respectively. Lane 9, (B10. BRxB10. G)F1 N. S. Worm burdens, where 

known, are also given beneath the lane numbers. Arrows indicate the 

90-95kDa and 105-110kDa " antigens referred to in the text. 
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within the 30-5OkDa region, although the antigen recognition profile for one 

B10. BR individual, shown in figure 5.5 (lane 7), was little different from 

naive serum (lane 9). Such a limited recognition profile for B10. BR mice 

was unexpected based on previous experience (Chapter 4, figures 4.1.5, 

4.1.6,4.2.3 and 4.2.4) and illustrates further the existence of individual 

variation in antigen recognition within inbred strains discussed in Chapter 4. 

More antigens were precipitated by the B10. BR sera used in figure 5.5 

(lane 2) and figure 5.6 (lane 5) but even here the banding pattern was far 

less intense than previously seen. The most striking feature revealed by the 

immunoprecipitation studies performed using individual serum samples from 

H-2q (I=Aq) (DBA/1, B10. G, (B10. BRxB10. G)Fl, SWR, NIH and 

B10. T(6R)) and non-IL-2q (B10, B10. BR, B10. AQR) strains of mice was 

that two high MW antigens (90-95kDa, 105-110kDa), were recognised by 

IgG antibodies only in serum from individuals of H-2q haplotype strains or 

strains possessing q alleles at I-A (antigen recognition profiles for individuals 

of non-H-2q strains are represented in lanes 2 and 7 in figure 5.5, and 

lanes 5 and 8 in figure 5.6). Immunoprecipitations using sera from all 

individuals within each mouse strain were subsequently performed (data not 

shown) and revealed the uniform ability of individuals possessing g alleles at 

I-A to recognise the two high MW antigens. Although only three strains of 

mice expressing haplotypes other than H-2q were studied here, previous 

work (Chapter 4, figures 4.1.5,4.1.6, - 4.2.3 and 4.2.4) has shown that 

recognition of the x the 90-95kDa and 105-110kDa antigens by IgG antibody 

is apparently restricted to strains of mice possessing q alleles at I-A. 

Figures 5.5 and 5.6 show the antigen recognition profiles for strains of 

mice using sera taken late (d28 or d35 p. i. ) during the ý course of the 

infection. However the ELISA data presented here revealed that high levels 

of IgG (and IgGl) antibodies were present in the peripheral circulation of 

mouse strains expressing g alleles at I-A by d21 p. i. The antigens 
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recognised by IgG antibodies in serum samples taken at this time are shown 

in figure 5.7. As can be seen, B10. G, (B10. BRxB10. G)F1, SWR, DBAl1 

and B10. T(6R) individuals (all I_A4, lanes 1-4 and 6) already possessed IgG 

antibodies against the 90-95kDa and 105-110kDa antigens by d21 p. i., 

strains of mice not expressing g alleles at I-A (B10. BR, B10. AQR and 

B10. A(2R), lanes 5,7 and 8) again being negative. 

It is possible that the apparent I`Aq restriction on the recognition of 

the two high MW antigens is a quantitative artefact. Thus the I`Aq 

restriction on the development of a high level IgG response as seen by 

ELISA would mean that only these strains of mice would possess adequate 

levels of specific IgG to reveal precipitation of the two high MW antigens. 

However, when immunoprecipitations were performed - using B10 (H-2b) and 

BALB/c (H-2d) sera in volumes from two to four times that used for H-2q 

mouse strains in an attempt to equalise serum samples for specific antibody, 

no additional antigens were precipitated than when a standard volume of 

25µl was used. Also the antigen recognition profiles for the B10. BR and 

B10 mouse strains (both non-IL-2q), using sera taken on d61 p. i. (Chapter 

4, figure 4.1.5) when specific IgG levels were similar to seen for B1O. G 

mice (H-2q) as seen by ELISA (figure 4.1.2), did not reveal recognition of 

the two high MW antigens. From these results it would seem unlikely that 

the I`Aq restricted antibody responses were reflections of antibody titre. 

However evidence presented in the Appendix to this chapter suggests that 

there is a quantitative component involved in the observed I`A'l restriction, 

at least for some mouse strains. 

Apart from the consistent recognition of the " two high MW antigens by 

all strains of mice of the H-2q haplotype, the other striking feature 

revealed by immunoprecipitation was the recognition of an antigen ' of 

approximately 65kDa by certain individuals, in particular two 

(B10. BRxB10. G)Fi mice, where the banding pattern was very intense 
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(figures 5.5 and 5.6). However, subsequent immunoprecipitations revealed 

that this antigen was also recognised by naive serum, implying that the 

response was infact non-specific. 

No differences in antibody levels or antigen recognition profiles were 

observed between responder and non-responder DBA/1 individuals. For 

instance, figure 5.5 shows antigen recognition profiles for a resistant 

individual (lane 6) and an individual harbouring a patent infection (lane 1). 

A non-responder DBA/1 antigen recognition profile is also shown in figure 

5.6 (lane 4). Although the banding pattern was more intense for the 

resistant individual, qualitatively the recognition profiles were identical. 

5.3.4 CAPACITY OF IMMUNE SERUM CONTAINING HIGH LEVELS OF 

SPECIFIC IgG (IgG1) FROM (B10. BRxB10. G)Fl MICE (H-24/k) TO 

TRANSFER RESISTANCE TO THE NON-RESPONDER PARENTAL 

STRAIN B10. BR (H-2k) 

Figure 5.8 shows the effect of transferring immune serum from the 

resistant, high IgG (IgGi) producing (B10. BRxBIO. G)F1 mouse strain to the 

normally non-responder, low level IgG (IgGI) producing, parental mouse 

strain BIO. BR. No significant difference in worm burdens was observed 

between experimental and control groups on d15 p. i. (P>0.05). However, 

by d35 p. i. mice receiving (B10. BRxBIO. G)Fl immune serum had 

significantly fewer worms (P<0.01) than control mice on day 35 p. i., mice 

harbouring less than ten worms all of which were stunted in appearance. 

Control mice on d35 p. i. showed a significant reduction in worm burdens 

(P<0.025) from d15 control values, reflecting the existence of a degree of 

resistance to the primary infection. However, although some stunted worms 

were present in control mice all infections were patent, in contrast to the 

infections of mice injected with immune serum where no mature adult 



Figure 5.8 The fate of a primary infection (400 eggs) in non-responder 

B10. BR mice which had received serum from resistant (B10. BRxB10. G)F1 

mice containing high levels of specific IgG (IgGl) antibodies. This serum 

also contained IgG antibodies which recognised the 90-95kDa and 

105-110kDa antigens referred to in the text. B1O. BR mice were injected 

intra-peritoneally with 0.25mis, 0.5mis and 0.5mis of serum on days 0,1 

and 3 p. i. respectively. Control mice received identical injections of PBS. 

At least 5 mice per group were killed on days 15 and 35 p. i. and their 

worm burdens assessed. + patent infection, +Ab = B10. BR mice receiving 

(B10. BRxB10. G)F1 serum, C= control mice. 
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females were found. The increase in resistance to a primary infection 

described here for the B10. BR strain of mouse compared to that previously 

reported (Else and Wakelin, 1988) may reflect the fact that the mice used 

in this experiment were eight weeks older than the standard 6-8 weeks 

when infected. This phenomenon is discussed in more detail in Chapter 6.2 

where a similar effect of B10. BR age on the ability to express some 

resistance to infection is described. 

5.4 DISCUSSION 

The results presented in this chapter support the correlation between 

the expression of g alleles at the H-2 and resistance to infection (Else and 

Wakelin, 1988) and confirm the influence of background genes on the 

ability to express protective immunity, SWR, DBA/1 and B10. G mouse 

strains (all H-2q) exhibiting differences in the kinetics of worm expulsion. 

The significant decrease (P<0.01) in worm burdens on d21 p. i. observed 

for B10. G mice represents a slightly faster rate of expulsion than previously 

reported for this strain (Else and Wakelin, 1988) and may reflect the 

difference in the origin of the B10. G mice used in the two studies, mice in 

the earlier study being purchased from Harlan Olac Ltd., whereas mice in 

the present study were bred locally at Nottingham. The importance of 

background genes in defining the limits within which the H-2 genes operate 

is illustrated by the differential responsiveness seen within the DBA/1 mouse 

strain, 4/6 mice harbouring mature parasites on d35 p. i. This phenomenon, 

first described for the related DBA/2 strain (Worley et at., 1962; Lee and 

Wakelin, 1982b), suggests that the DBA background genome imposes limits 

such that expulsion is not initiated before the immunomodulatory stages of 
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the parasite have developed (Else et at.,, 1989) even though resistant g 

alleles are present throughout the H-2. 

The results presented in this chapter also support the suggestion of an 

apparent H-24 (I=Aq) restriction on the development of rapid high level 

IgG (IgGl) antibody responses to T. muris E/S antigen and the recognition 

of two high MW antigens (90-95kDa, - 105-110kDa) first indicated during the 

analysis of the humoral Immune, responses of H-2 recombinant mouse 

strains in Chapter 4. MHC restricted responses are rarely observed for 

complex foreign antigens as such antigens have many epitopes each of 

which may be restricted by different MHC alleles. Thus it is unlikely that 

any one mouse strain is unable to respond to any of these epitopes. Most 

previous demonstrations of MHC-restricted antibody responses to foreign 

molecules have involved simple antigens such as the Plasmodium falciparum 

circumsporozoite repetitive epitope, the antibody response to which has been 

shown by Del Giudice ý et at. (1986) to be exclusively L-=AA restricted. 

Rathbun and Hildemann (1970) reported a similar phenomenon studying 

antibody responses to the 2,4,6-trinitrophenyl hapten (TNP) conjugated to 

mouse serum albumin, the 1-2b haplotype being associated with high 

antibody responsiveness even on diverse strain backgrounds. It was surprising 

therefore to see a clear division into high and low antibody producing 

strains to as complicated an-antigenic mixture as parasite E/S products, high 

responsiveness being correlated with a particular haplotype (IL-2q), with an 

H-24 (I-Aq) restriction on the recognition of -two high MW E/S antigens 

(90-95kDa, 105-110kDa). This phenomenon is explicable in a number of 

ways. For instance if recognition by IgG antibody of the two high MW 

antigens in E/S by H-2q mice is related to the development of the rapid 

high level IgG (IgGl) antibody response to E/S antigen seen in H-2q 

strains, rather than just being coincidental, then it may be ' that only a 

limited ° number, of epitopes expressed by the 90-95kDa and 105-11 OkDa 



107 

antigens (immunodominant sites) are recognised by T cells so that failure to 

respond to one or two immunodominant sites- leads to low responsiveness. 

Alternatively negative signals may be generated, "suppressor" epitopes 

turning off the response to the rest of the molecule. Such hypotheses have 

been considered by Berzofsky et at., (1987) in relation to vaccine design. 

More simply, the two high MW antigens may possess highly repetitive 

structures thus confronting T cells with only a few determinants. 

IgGI was the only subclass of IgG antibody analysed in this study. 

Although levels of the other IgG subclasses to, T. murts E/S antigen should 

also be determined (see Appendix to this chapter), a knowledge of the IgGi 

regulatory mechanism by interleukin 4 (11-4) (reviewed by Snapper et at., 

1988) leads to the prediction that levels of the other IgG subclasses would 

be low. 

11-4 has potent effects on cells " of most haematopoietic lineages, in 

particular promoting the selective secretion of murine ° IgG1 and IgE (Vitetta 

et at., 1985; Coffman and Carty, 1986) and inhibiting the - production of 

IgG2a, IgG2b, IgG3 and IgM by LPS-stimulated B cells (Snapper and Paul, 

1987; Snapper et at., 1988). Another lymphokine, gamma interferon (IFN-y) 

is associated with the selective stimulation of IgG2a production and 

inhibition of IgG1 secretion by LPS-stimulated B cells (Snapper and Paul, 

1987; Snapper et at., 1988). Thus 11-4 and - IFN-y reciprocally regulate 

immunoglobulin isotype secretion. If regulation of the IgG1 antibody 

response by 11-4 can be extended to the T. muris-mouse system, the high 

IgGI antibody levels observed here for H-2' strains of mice would imply 

that I1-4 levels are also high, and hence levels of other IgG subclasses low. 

Interestingly the two major subsets of TH cells designated TH1, and Tti2 

(Mosmann et at., 1986; Mosmann and Coffman, 1987; see Introduction 

1.3.3), identified and defined on the basis of,, their lymphokine expression 

patterns, can be distinguished on the basis of whether they secrete 11-4 or 
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IFN-y, TH1 producing IFN-y (and 11-2) whilst TH2 produce 11-4 (and 

11-5). This implies that there are two distinct pathways of B cell activation; 

the TH2 pathway utilising 11-4 and 11-5 and the THl pathway utilising 11-2 

and IFN-y (reviewed by Coffman et at., 1988). Coffman et at., 1988, 

suggested that the TH2 pathway stimulated the optimum combination of 

responses for dealing with multicellular parasites whilst the set of responses 

invoked by the TH1 pathway was important for dealing with viral or tumour 

antigens. The high IgG1 levels of the H-2q haplotype strains of mice 

infected with T. muris raises the possibility that the TH2 pathway is more 

efficiently induced when E/S antigen is presented in combination with I^Aq 

cell surface molecules than when other alleles are present at I-A, the in 

vivo production of IgG1 depending perhaps on the relative activities of the 

two TH cell populations during parasitic infection. 

The H-2q (L-A4) restricted antibody responses reported in this chapter 

have immunogenetic interest but may also be important in the determination 

of resistance. Strains of mice expressing the H-24 haplotype tend to be 

resistant to infection with T. muris (figure 5.1) suggesting that the rapid 

development of high levels of IgG (IgGl) and/or the recognition of the 

90-95kDa and 105-110kDa antigens may be involved in protective immunity. 

However some members of the DBA/1 strain were unable to expel the 

parasite before the infection reached patency yet all DBA/1 individuals had 

identical IgG (IgGi) antibody responses. 'Therefore if antibody is important 

in resistance, it cannot be the sole component in the protective' immune 

response. Similar conclusions were made by Davern et at. --(1987) studying 

antibody responses to Sj26, a glutathione-S-transferase (GST) enzyme of 

Schistosoma japonicum 'worms, data suggesting that antibodies to Sj26 alone 

were not responsible for resistance. Likewise Butterworth et al. (1985) 

concluded that if antibodies were relevant to the expression of immunity by 

humans to Schistosoma mansoni they were not a limiting factor. 
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The capacity of serum from (B10. BRxB10. G)F1 mice to transfer 

immunity to the B10. BR mouse strain reported here suggests that high level 

IgG (IgGl) antibody responses and/or recognition of the 90-95kDa and 

105-110kDa antigens do have some role in determining resistance to T. 

muris, although the F1 serum also contained moderate levels of IgM 

antibodies. To conclusively demonstrate a role for IgG1 antibodies in 

transferring protective immunity it would be necessary to immunochemically 

purify this IgG isotype from the serum and inject it into BiO. BR mice. ' 

Expulsion of T. muris is known to involve both an antibody-mediated 

and a cell-mediated phase (Wakelin, 1975a). It may be that 

antibody-mediated parasite damage renders the worm susceptible to cellular 

effector mechanisms. IgG1 purified from immune serum to Heligmosomoides 

polygyrus (Nematospiroides dubius) has been shown to be anti-parasitic 

when administered in vivo, leading to a significant reduction in worm 

numbers (Pritchard et at., 1983). The mechanisms of action of IgG1 

suggested included mediation of cellular adhesion to H. polygyrus akin to 

that described by Ramalho-Pinto el-, al., (1979), studying murine 

Schistosomiasis mansoni and/or the neutralisation. of vital metabolic antigens 

present in parasite E/S products. It is possible to envisage how such 

mechanisms could also operate in the T. muris-mouse system, the 

90-95kDa and 105-110kDa antigens perhaps representing enzymes vital for 

parasite survival. Indeed the existence of casein proteases in T. muris E/S 

products within the 90-121kDa MW range has been demonstrated by Roach 

(1986). Thus transferring immune serum from a resistant to a 

non-responder strain of mouse, as reported here, might enable the recipient 

to mount an effective immune response, antibodies ý in the transferred serum 

neutralising important parasite metabolic products and/or potentially 

immunosuppressive molecules. Similarly Behnke and Parish (1979) suggested 

that immune serum raised against H. polygyrus contained factors which 
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facilitated the expression of a second component in worm expulsion not 

normally effective in a primary infection. 

In order to explain the fact that some resistant mouse strains (e. g. 

BALB congenics, Chapter 3.1; Else and Wakelin, 1988) do not exhibit high 

IgG levels to T. muris E/S antigen (Chapter 4.1; Else and Wakelin, 1989) 

it is necessary to hypothesise that the cellular immune responses to T. 

muris may be potent enough in some strains to result in expulsion of the 

parasite without prior antibody attack. Likewise the fact that all DBA/1 

individuals have high level antibody responses to E/S antigen even though 

some are unable to expel the worm suggests that the defect in the 

protective immune response lies in the cellular arm of the two stage attack. 

This defect presumably must be induced by the parasite in inbred strains of 

mice exhibiting differential responsiveness in order to explain the observed 

differences in response status within genetically uniform strains. 

In order to determine the importance of the anti-90-95kDa and 

anti-105-110kDa IgG responses in protective immunity it would be 

interesting to vaccinate mice with those two high MW antigens. Butterworth 

et al., 1985, suggested that two Schistosoma mansoni adult worm in vitro 

translation products recognised more extensively by resistant than susceptible 

children would be suitable candidates for testing as "protective" antigens 

following cloning and expression in Escherichia coli. 

The MHC restricted antibody responses, demonstrated to T. muris E/S 

antigens are potentially important in the context of man. It is not known if 

genetic factors are involved in regulating the specificity of the antibody 

response to T. trichiura in man although recent studies have suggested that 

susceptibility to infection is partly under genetic control (Bundy, 1988). It is 

possible that an MHC restriction, as demonstrated in the T. muris-mouse 

model, could limit the capacity of certain vaccinated individuals (should a 

vaccine be developed) to develop an effective antibody and/or cell mediated 
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response. It may be possible to overcome MHC-linked non-responsiveness 

by modifying the antigen but, in animals unresponsive to synthetic peptides, 

secondary responses to these peptides, using peptide-carrier conjugates 

require the same conjugate as that used to induce the primary response 

(Green et al., 1968). Therefore individuals vaccinated with antigen plus 

carrier molecule may not gain from the boosting effect after a natural 

infection with T. trichiura. 

5.5 SUMMARY POINTS 

1. An apparent H-24 (L-=AA) restriction on the development of a rapid, 

high level IgG (IgGi) antibody response to T. muris E/S antigen has been 

demonstrated. 

2 Recognition of two high MW antigens (90-95kDa, 105-110kDa) by IgG 

antibodies was also found to be an H-2q (I`A l) restricted phenomenon. 

3. Serum from resistant (B10. BRxB10. G)F1 hybrid mice (H-2qß) 

containing high levels of IgG (IgGl) antibodies specific for T. muris E/S, 

and IgG antibodies which recognised the 90-95kDa and 105-110kDa E/S 

antigens was effective in transferring protection to the normally 

non-responsive B10. BR mouse strain as seen on d35 p. i. 

4. It is suggested that the IgG responses described for H-2q strains may 

be part of, but not an absolute requirement for, protective immunity, 

antibody-mediated parasite damage facilitating a subsequent cellular attack in 

some strains of mice. 



APPENDIX - CHAPTER 5 



The following experiments were carried out in collaboration with Dr. D. L. 

Wassom at the University of Wisconsin-Madison, U. S. A. 
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A5.1 INTRODUCTION 

Chapters 3,4 and 5 have described experiments indicating the apparent 

importance of particular alleles at certain H-2 loci both in determining the 

overall response phenotype to T. muris infection and in the control of the 

kinetics, level and specificity of the antibody response to T. muris E/S 

antigen. The work described in this appendix was performed in an attempt 

to support and extend the earlier observations through the use of a wider 

selection of H-2 recombinant mouse strains and additional serological 

analysis. 

A5.2 EXPERIMENTAL DESIGN 

The H-2 recombinant mouse strains studied are shown in Table A5.1 

together with their haplotypes. Of particular interest were B10. K, B10. BR, 

B10. MBR and B10. RKQ1, whose response phenotypes would perhaps indicate 

whether resistance "g" alleles at the D end of the H-2 were capable of 

up-regulating the effects of susceptibility k alleles at I-A, and B10. T(6R) 

and B10. Q, where an increase in susceptibility of B10. T(6R) over B10. Q 

would suggest that d alleles at D end loci could down regulate the effects 

of d' alleles at I-A. Such a situation was suggested by the' results 

summarised in Chapter 3.2 but the appropriate g haplotype control strain 

could not be obtained at the time of the experiment and so conclusions 

were drawn by comparing response phenotypes of strains used in other 

experiments. As far as possible strains of mice were age matched although 

due to the large numbers of strains used in some cases mice were" slightly 
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older than the standard age of 6-8 weeks when infected. 

Table A5.1 Map of the H-2 complex showing the haplotype composition for 
the congenic and H-2 recombinant strains of mice infected with T. muris. 
Brackets indicate that the allele is not expressed; ", undefined. B10 = 
C57BU10 strain of mouse. 

Strain K I S D 
Aß Aa Ae(Eß) Ea 

B10. K k k k k k k k 
B10. BR k k k k k k k 
B10. Q q q q q q q q 
BIO b b b b b b b 
B10. D2 d d d d d d d 
B10. MBR b k k k k k q 
B10. RKQ1 k k k k (b) " q 
B10. T(6R) q q q (q) (q) q d 

AKR/J k k k k k k k 
AKR-Fv-lb k k k k k k k 

However B1O. MBR, B10. RKQ1, B10. T(6R) and B1O. Q were almost identical 

in age (9-11 weeks on day 0). Mice were infected with approximately 400 

embryonated T. muris eggs on day 0 from which 203.7±43.7 larvae 

established, as seen on day 14 p. i. in B10. BR mice. Mice were killed in 

groups of 6 wherever possible, on days 21,28 and 35 p. i. Because of 

restricted numbers of mice in certain strains fewer individuals were sacrificed 

at the earlier time points and no day 21 p. i. kill was made for B10. RKQ1 

and B10. MBR mice. Worm burden determinations for AKR/J and 

Aiüt-Fv-lb were made on day 35 p. i. only. The day 21 p. i. time point 

was selected to control for any differences in infectivity between strains, it 

being known that mice of the B10 genetic background, with the exception 

of the B10 strain, do not initiate expulsion until after this time point (Else 

and Wakelin, 1988). Blood samples were taken individually from mice in 

groups of 6 in most cases, on days 14,21,28 and 35 p. i., by tail 

bleeding, or at autopsy, as appropriate. Levels of IgG and IgGi in the sera 

were determined by ELISA (alkaline phosphatase method). Levels of IgG2a 
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were also analysed by ELISA (peroxidase method). In addition the antigen 

recognition profiles for IgG in a random selection of serum samples from 

all strains on days 21 and 35 p. i. were examined by immunoprecipitation 

using 35S-methionine labelled E/S antigen and 10-20% gradient gels. 

Statistics 

The significance of differences between worm burdens recovered from 

experimental groups was calculated using the Mann-Whitney U test. A value 

greater than P=0.05 was considered non-significant. 

A5.3 RESULTS 

Establishment and expulsion of infections in H-2 recombinant and 

congenic strains of mice. 

Figure A5.1 shows the worm burdens recovered from mice on days 21, 

28 and 35 p. i. in relation to the day 14 p. i. mean for the B10. BR mouse 

strain. The presence of mature worms and/or stunted worms on day 35 p. i. 

is indicated by '+' and 's' respectively. The number of day 21 larvae 

recovered from all strains assessed except B10 mice did not differ 

significantly from B10. BR day 14 p. i. levels although two B10. T(6R) 

individuals showed reduced worm burdens. A very significant reduction from 

B10. BR day 14 levels was seen in B10 mice (P=0.001). The day 28 p. i. 

worm burdens recovered from B10. RKQ1, B10. K and B10. BR individuals 

were not significantly different from the establishing day 14 p. i. levels seen 

in B10. BR mice. However significant decreases were observed in B10. D2 



Figure A5.1 Worm burdens recovered from H-2 recombinant and congenic 

strains of mice on day 21 p. i., day 28 p. i. and day 35 p. i. (K, B10. K; Q, 

B10. Q; D2, B10. D2; T(6R), B10. T(6R); BR, B10. BR; BIO, C57B1J10; 

RKQ1, B10. RKQ1; MBR, B10. MBR. Bar graphs represent the mean worm 

recovery with individual worm burdens indicated by dots. The horizontal line 

shows the mean number of larvae established in B10. BR mice on day 14 

p. i. The presence of mature adult worms on day 35 p. i. is indicated by +; 

s indicates the presence of at least some stunted worms. B10. K. B1O. Q and 

B10. MBR individuals all harboured either no worms or stunted worms on 

day 35 p. i. Day 21 p. i. worm burdens were not determined for B10. RKQI 

and B10. MBR. The number of worms harboured by AKR/J and AKR-Fv-1 b 

was determined on day 35 p. i. only. 
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(P<0.05), B10. MBR, B10. T(6R), B10. Q and B10 mice (all Pß. 001) with 

individuals of the latter two strains having almost totally eliminated the 

infection by day 28 p. i. At day 35 p. i. all strains except B10. RKQ1 and 

AKR/J exhibited a significant reduction in worm burdens compared with day 

14 p. i. B10. BR levels, although the decrease seen in AKR-Fv-1 b mice was 

only just significant and all individuals harboured some mature adult worms. 

AKR/J and AKR-Fv-1 b day 35 p. i. burdens were not significantly different 

(P>0.05). The reduction in day 35 p. i. worm burdens in B10. BR mice 

from the day 14 p. i. levels was significant at the 5% level, in B10. D2 at 

the 1% level and in all other strains at the 0.1% level. B10. T(6R) 

individuals had significantly higher numbers of adult worms on day 35 p. i. 

than B1O. Q mice as did B10. RKQ1 mice compared to mice of the 

B10. MBR strain (both P=0.001). B10. MBR mice were significantly more 

resistant than B10. BR individuals on day 35 p. i. (P=0.001). B10. K 

individuals, most harbouring over 200 worms on day 28 p. i., had almost 

completely expelled the infection by day 35 p. i. 

Antibody responses to EIS antigen 

The specific IgG, IgGl and IgG2a antibody responses to E/S antigen 

for the strains studied, from day 14 to day 35 p. i., are shown in figure 

A5.2. 

B10. T(6R) and B10. Q mice developed a rapid high level IgG response 

which reached levels considerably higher than all other strains except 

individuals of the B10 strain where a good IgG response was also seen. The 

IgG1 response patterns revealed a dramatic rise in this isotype in B10. T(6R) 

and B10. Q individuals unequalled by any other strain. B10 mice possessed 

higher levels of specific IgG1 than all other strains except B10. T(6R) and 

B10. Q. High levels of IgG2a were reached in several strains other than 



Figure A5.2 Time courses of the specific IgG, Igel and IgG2a antibody 

responses to Trichuris muris EIS antigen in serum samples taken from 

B10. K, B10. MBR, BIO. BR, B10. D2, BIO. RKQI, BIO. Q, B10. T(6R) and B10 

" mice. Antibody levels in AKR/J and AKR-Fv-lb mice on day 35 p. i. are 

" also shown. The shaded area represents the range of standard deviations 

from the mean optical densities calculated from at least five individual 

values for each strain at each time point p. i. except for B1O. BR on days 

21 and 28 p. i. where only four serum samples were taken. N. S., naive 

serum; O. D., optical density. 
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B10. T(6R) and 1310.0 by day 35 p. i. Interestingly mice of the AKR genetic 

background (AKR/J and AKR-Fv-1b) showed a high level IgG2a response 

but had negligible IgG1. A similar phenomenon was also seen for 

B10. RKQ1 individuals. All three strains were poor or non-responders to 

infection. 

Differential recognition of EIS antigen 

Incubation of sera with metabolically labelled EIS antigens prior to 

SDS-PAGE was used to study the IgG antigen recognition profiles of the 

H-2 recombinant strains of mice (data not shown). All strains recognised a 

number of antigens in the 30-5OkDa MW range with antigen recognition 

profiles being otherwise fairly restricted. The dominant feature revealed by 

the immunoprecipitation studies was the recognition by five individuals of 

both the B10. Q and B10. T(6R) strains of the two high MW antigens 

(90-95kDa and 105-110kDa) referred to in Chapter 5. However profiles for 

six B10 individuals revealed that, in addition to uniformally recognising a 

20-23kDa antigen referred to in Chapter 4,3/6 mice also recognised the 

two high MW antigens and of the remaining three mice, two possessed 

antibodies against the 105-110kDa antigen. 1/6 individuals of the B10. RKQ1 

strain also showed weak recognition of the two high MW antigens. 

A5.4 DISCUSSION 

The data reported here both support and extend earlier observations on 

the effect of H-2 genes on the expulsion of T. muris from mice. In 

general, strains of mice used previously (Chapter 3) behaved as before 
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although the B10 strain expelled worms more rapidly, a considerable 

reduction in worm burdens being seen on day 21 p. i. whereas earlier work 

reported the first significant decrease to occur after day 21 p. i. (Else and 

Wakelin, 1988). B10. T(6R) individuals were slightly more resistant than 

indicated earlier, where 2 individuals failed to show any reduction in worm 

burdens (Chapter 3.2) and the B10. BR mouse strain also showed a greater 

resistance to infection than reported in Chapter 3. This is a phenomenon 

that has arisen in a number of experiments and is discussed in Chapter 6.2. 

Mice of the BlO. K strain, like, B10. BR, possess k alleles throughout the 

H-2. Both strains have identical genetic backgrounds and differ only in the 

origin of their k alleles, the donor strains being CBA/J and C57BR/cd 

respectively (Klein et al., 1983). On day 28 p. i. neither strain showed a 

significant decrease in worm burden but by day 35 p. i. an almost 100% 

reduction in worm r burdens was seen in the B10. K mice, this strain being 

significantly more resistant than B10. BR mice (P=0.001). It is difficult to 

explain this difference in responsiveness, although the fact that the B10. K 

individuals killed on day 35 p. i. were about 2 weeks older than the B10. BR 

mice may perhaps be important. The massive expulsion seen in, the B10. K 

strain ' between day 28 p. i. and day 35 p. i. is also hard to explain in " the 

context of the work presented in Chapter 6, (Else et at., 1989), where it is 

suggested that if expulsion is not initiated by around day 21 p. i. --worms 

cannot be expelled later due to the production of parasite-derived 

immunomodulatory factors. However it is possible to envisage the existence 

of strain variation in susceptibility to immunomodulation and thus the time 

point beyond which no - expulsion can occur due to suppression of host 

immunity also becomes genetically determined. ' 

The identical behaviour of AKR/J and AKR-Fv-1 b, two strains which 

differ only in I-J expression (AKR-Fv-1b being IhJk positive, Hayes et at., 

1984), suggests that I`Jk expression is not important in the induction of 
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non-responsiveness to T. muris infection. A similar situation was reported in 

Chapter 3.2 where B10. A(3R) and B10. A(5R) behaved identically -despite 

differing in I-J expression. The functional significance of I-J molecules 

expressed on ' subpopulations of T cells interacting within the suppressor 

circuit (Moller, 1985), is unclear. However a correlation between I=Ek 

expression, ILJk expression and susceptibility to Trichinella spiralis infection 

(Wassom et at., 1987) has been demonstrated giving rise to speculation that 

susceptible I=Ek positive mice are actively immunosuppressed during infection 

by a mechanism involving the induction of I=Jk positive suppressor cells. 

The significantly greater susceptibility of B10. RKQ1 compared to 

B10. MBR, evident on days 28 and 35 p. i., was particularly interesting in 

the light of their H-2 compositions (Table A5.1). Both strains ° possess k 

alleles at I-A and q alleles at D. They differ at K, at I-E, B10. RKQ1 

being unable to express I-E molecules, and perhaps also at the S locus 

(B10. RKQ1 being undefined). If it is assumed tht the K locus is not 

important in the determination of resistance (it is difficult to envisage how 

class I molecules might be involved as discussed in Chapter 3.2.3) and that 

I-E molecules play a minor role (as indicated in Chapter 3.2) then one has 

to postulate that the two strains differ at some important locus (or loci) 

lying between S and D, the possession of q alleles at this D end locus/loci 

in B10. MBR significantly up-regulating the effects of k alleles at I-A. 

Likewise the disparate response phenotypes of B10. T(6R) and B10. Q suggest 

that the presence of d alleles at the hypothetical D end locus/loci can 

greatly down-regulate the effects of q alleles at I-A (see Chapter 3.2). 

Interestingly the genes for tumour necrosis factor (TNF-a) and lymphotoxin 

(LT; TNF-ß) map close to the H-2 D in the mouse MHC (Müller, et al., 

1987). TNF-a and TNF-(3, produced by macrophages and T lymphocytes 

respectively, have a variety of effects on cells of the immune system 

including activation of neutrophils, macrophages and T lymphocytes (see 
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Beutler and Cerami, 1986; Playfair, 1988). Thus their genes are perhaps 

candidates for both the Ts-2 gene, important in the Trichinella system and 

mapped to the right of S in the S-D interval of the H-2 (Wassom et al., 

1983b) and the hypothetical gene(s) involved in the T. muris system. Indeed 

such hypotheses have been put forward (Wassom and Kelly, 1989) and are 

being tested (D. L. Wassom, pers. comm.; R. K. Grencis, pers. comm. ). 

B10. T(6R) and 1310.0 developed early high levels of specific IgG and 

IgG1 antibodies as seen before for IL-2q strains (Chapter 5). However 

individuals of the B10 strain were also good IgG producers, possessing levels 

of IgG similar to the two IL-2q haplotype mouse strains. This high level 

IgG response was not reflected in the IgGl response of B10 mice, B10. Q 

and BiO. T(6R) having dramatically more specific IgG1 than, any other 

strain, thus supporting the hypothesis of an H-24 restriction on the ability 

to rapidly develop high levels of specific IgG1 (Chapter 5). No such 

restriction was apparent when the IgG2a antibody response to E/S antigen 

was analysed. Although B10. T(6R) and B10. Q were both good IgG2a 

producers so were other non-H-24 strains including B10, B10. RKQ1, 

AKR-Fv-l b and AKRIJ. The prediction made in Chapter 
.5 that there 

would be a reciprocal relationship between IgGI and IgG2a antibody levels 

because of the regulatory mechanisms involving 11-4- and IFN-y-producing 

TH2 and THi cell subsets is partly supported by the ELISA data presented 

here. For instance AI(R/J and AKR-Fv-1 b possessed negligible specific IgGl 

but exhibited high levels of IgG2a on day 35 p. i. However, both BlO. T(6R) 

and B10. Q produced high levels of both isotypes indicating that both THI 

and TH2 cell subsets had been activated in these - strains and that the 

inhibitory effects of 11-4 on IgG2a secretion and IFN-y on IgG1 secretion 

by LPS-stimulated B cells observed in vitro (Snapper et al., 1988) are not 

absolute. Interestingly, in general, slow/non-responder strains of mice 

(expressing k alleles at I-A 
. and I-E), including the three strains which 



120 

harboured the highest mean worm burdens on day 35 p. i. (AKR/J, 

AKR-Fv-lb, B10. RKQ1) produced very little IgG1 compared to the more 

resistant (H-2q, H-2b) mouse strains. In contrast AKR/J, AKR-FV-1 b and 

B10. RKQ1 developed relatively high levels of IgG2a, as did the H-2q and 

H-2b strains of mice. Zakroff et at., (1989) reported that four different 

helminth infections all induced increases in serum IgG1 (and IgE), and 

usually a decrease in IgG2a. However alterations in the presentation of 

parasite antigens induced higher IgG2a than IgGI serum levels suggesting 

that both THI and TH2 cells had receptors for parasite antigens but that 

the anatomical location of the parasite infections favoured the induction of 

11-4 secreting T helper cells. Rather than preferentially activating one or 

the other T helper cell subset via the type of antigen presenting cell 

available at the site of antigen introduction it is equally conceivable that 

presentation of antigen in combination with aparticular allelic form of a 

class II molecule favours the induction of THl or TH2. A more efficient 

induction of the TH2 pathway by E/S antigen in combination with I_Aq was 

suggested in Chapter 5. This hypothesis can now be extended in the light 

of the IgG2a data presented here. In the T. muris-mouse system E/S 

antigen presented in combination with I-Ak and/or I=Ek may activate TO 

cells leading to IgG2a production by B cells whilst presentation of antigen 

in the context of I=As may stimulate both types of T helper cell, though 

perhaps favouring the expansion of Ttt2 cells. Exceptions inevitably arise. 

For instance the B10. BR strain (H-2k) produces little IgG2a (or IgGl) and 

levels of IgG2a in B10. MBR (L-=AA, I=Ek) are also low. 

The non-responder status of the three high IgG2a producing strains 

raises the question of the relevance of this isotype in resistance. It may be 

that the development of high levels of an isotype irrelevant to protective 

immunity (here IgG2a), through the activation of the "wrong" subset of 

helper T cell and in the absence of a relevant isotype (IgGi ), contributes 
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to the poor/non-responder phenotype observed. IgG2 antibodies are the 

major complement fixing antibodies in the mouse (Klaus et al., 1979) and 

IgG2a is also a potent mediator of antibody dependent cell-mediated 

cytotoxicity (ADCC) by macrophages (Johnson et al., 1985). Complement 

fixation, opsonization, and macrophage-mediated ADCC are thought to be 

primarily involved in host defense mechanisms against, for instance, viruses 

(Coffman et al., 1988) rather than parasitic nematodes where IgG1 mediated 

ADCC by eosinophils (Ramalho-Pinto et al.,, 1979) and immune responses 

involving IgE are believed to play a critical role in many, cases (reviewed 

by Rothwell, 1989). Exceptions to the correlations between a good IgGI 

response and resistance to infection (e. g. B10. MBR, a resistant strain which 

produces very little IgGl or IgG2a) and between high IgG2a production and 

poor-responsiveness (e. g. B10. BR, only weakly responsive to, infection yet 

producing little IgG2a or IgGI) serve to underline the complexity of the 

system, there being no one overriding mechanism in the development of 

resistance to infection. 

The work presented in Chapter 5 suggested that the recognition of the 

two high MW antigens (90-95kDa, 105-110kDa) was an exclusively H-24 

restricted phenomenon. Experiments performed to control for the possibility 

that the apparent restriction was really a reflection of the associated fl-_2q 

restriction on the production of high levels of specific IgG (IgGl) antibody 

suggested that this was not the case. Analysis by immunoprecipitation of 

sera from the present experiment revealed that, as before, individuals 

expressing g alleles at I-A recognised the two high MW antigens. However, 

in addition, a number of individuals of the B10 mouse strain and one 

BlO. RKQI individual possessed antibodies against one or both of these 

antigens, immediately suggesting that the unusually high specific IgG 

response seen for B10 mice in this experiment was being reflected in the 

visualisation of the high MW antigens on the autoradiographs. Although 
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levels of antibody to E/S antigen as seen by ELISA may not necessarily 

reflect levels of antibody to the two high MW antigens they may give some 

indication as to the importance of antibody titre in the H-2q restricted 

phenomenon. The B10. RKQ1 individual which recognised the 90-95kDa and 

105-110kDa antigens did have the, highest O. D. in ELISA 'on day 35 p. i. 

However the B10 individual which failed to recognise either antigen did not 

have the lowest of the BIO O. D. values and day 21 p. i. sera from' B10. Q 

and B10. T(6R) mice contained adequate levels of specific antibodies to 

reveal recognition of the two high MW antigens even though O. D. s in 

ELISA were lower than the day 35 p. i. values for all B10, and all but one 

B10. RKQ1 individuals. Clearly any correlation between antibody levels to 

E/S antigen and recognition of the two high MW antigens is not absolute. 

These results do imply however that some component of the apparent H-2q 

restriction is titre-based, at least for certain mouse strains. The IgG 

antibodies produced by BIO mice to the two high MW antigens may well be 

directed against different epitopes from those recognised by mouse strains of 

the H-2q haplotype. Thus the H-24 restriction reported in Chapter 5 would 

still be valid at the epitopic level, and, if antibody titre is important, would 

probably operate in vivo due to the almost exclusive H-24 restriction on the 

ability to produce high levels of specific IgG early on post-infection. 

-y w 
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A5.5 SUMMARY 

1. Results from the expulsion experiments presented in Chapter 3 and in 

this appendix suggest that certain alleles ' present at a locus/loci mapping to 

the D-end of the H-2 complex are able to strongly modulate the effects of 

alleles expressed at I-A in the determination of response phenotypes. In 

particular: 

a) the expression of g alleles in this region can dramatically 

up-regulate the effects of k alleles at I-A (e. g. B10. MBR) 

b) the presence of b alleles in this region cannot up-regulate the 

effects of I=AA (e. g. B10. A(4R)) 

c) d alleles are capable of down-regulating the effects of q alleles 

at I-A (e. g. B10. T(6R)) 

d) d alleles can also down-regulate the effects of expressing 

alleles at I-A (e. g. B10. A(3R), B10. A(5R)). 

2. The H-29 restriction on the early development of high levels of IgG1 

to E/S antigen was again apparent in this study. No such restriction was 

demonstrated for specific IgG2a and was not reflected as clearly as seen 

previously in the total specific IgG response patterns. 

3. High levels of specific IgG2a, in the absence of a good IgG1 response 

to E/S antigen, may contribute to the poor/non-responder status of certain 

strains and arise through the preferential activation of T helper cells 

secreting IFN- y as opposed to 11-4. Such preferential activation may, in 

some cases, be related to the allelic form of the class II MHC molecules 

with which parasite antigens are presented. 
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4. Sera from five individual BlO. Q and BIO. T(6R) mice (both strains 

possessing q alleles at I-A) contained antibodies against two high MW 

antigens, the recognition of which was felt to be H-2q restricted and 

unrelated to antibody titre (Chapter 5). However a proportion of individuals 

of the BIO mouse strain also recognised these two antigens, probably 

reflecting their unusually high specific IgG response. This suggests that at 

least some component of the H-2q restriction is in fact quantitative, 

although the restriction is probably still valid at the epitopic level and 

would operate in vivo due to the almost exclusive H-2q restriction on the 

ability to produce high levels of specific IgG early on during the course of 

infection. 



SECTION TWO 

MODULATION OF HOST IMMUNITY BY LATER LARVAL 

AND ADULT STAGES OF TRICHURIS MURIS 



CHAPTER 6 

STUDIES ON THE IMMUNOLOGICAL PREDISPOSITION TO 

TRICHURIASIS IN MICE 



Section 6.1 has been published in Parasitology (1989), 98,275-282. 

The results presented in section 6.1.4 for the DBA/2 strain of mouse were 

taken from Roach (1986). 
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6.1 HOST PREDISPOSITION TO TRICHURIASIS: THE 

MOUSE-T. MURIS MODEL 

6.1.1 SUMMARY 

Predisposition to trichuriasis in mice is reflected in the inability of 

certain strains, or certain individuals within strains, to express protective 

immunity. Poor responders fail to expel worms and harbour chronic patent 

infections. The mechanisms underlying this phenomenon were studied in 

poor responder mice challenged after abbreviated or prolonged primary 

infections. Mice exposed to a complete primary infection were fully 

susceptible when challenged after the removal of the primary infection by 

anthelmintic. Failure to expel either infection suggests (a) that 

non-responsiveness to a primary infection does not reflect an inability to 

expel worms of a certain size, i. e. is not a consequence of the speed of 

the immune response in relation to parasite growth and (b) that 

non-responsiveness is long-lasting. Challenge after abbreviation of primary 

infections at different stages of worm development showed that persistence 

of larvae beyond day 21 was critical in determining poor response to 

infection. By inference the same conclusion can be drawn about the inability 

of such mice to expel primary infections. Serological analysis suggested a 

relationship between low antibody levels, restricted antigen recognition 

profiles and resistance to infection. It is suggested that the later stages of 

parasite development are immunosuppressive; the implications for -human 

trichuriasis are discussed. 
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6.1.2 INTRODUCTION 

The nematode Trichuris trichiura is one of the most ubiquitous of 

gastro-intestinal helminths of man (Peters, 1978; Warren and Mahmoud, 

1984), chronic trichuriasis being associated with considerable pathology 

(Bundy, 1986). The distribution of worms in the human population is 

typically overdispersed (Bundy et at., 1985b), individuals apparently being 

predisposed to high or low intensity of infection and to a correspondingly 

high or low rate of acquisition of infection (Bundy, 1986). Such 

predisposition may have a nutritional, behavioural and/or immunological basis 

but the relative contributions of each' component are hard to determine. 

Predisposition to trichuriasis also occurs in mice infected with Trichuris 

muris. Under experimental conditions, in which nutritional and behavioural 

factors are controlled, the importance of genetically determined variation in 

immune responsiveness can easily be demonstrated (Else and Wakelin, 1988). 

In the majority of mouse strains expulsion of a primary infection is 

complete by the fourth week of . the infection and the mice are thereafter 

resistant to challenge. Some strains, e. g. DBA/2, show an intermediate 

condition in which a proportion of mice fail to expel the worm of a 

primary infection (Worley et at., 1962; Wakelin, 1975b) 
, and other strains 

are completely unresponsive (Else and Wakelin, 1988). Both major 

histocompatibility complex (MHC-)-linked and background genes contribute 

to this variation, but the strongest influences upon protective immunity are 

associated with the latter. Thus, all mice of the B10 genetic background 

show weak protective immunity, assessed by the time of worm expulsion, 

but distinct effects of different MHC (H-2) haplotypes are evident, certain 

haplotypes being associated with slower expulsion times than others. As the 

time taken to initiate expulsion increases, there is a corresponding increase 

in the proportion of individual mice within a strain that fail to respond at 
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all; in B10. BR (H-2k) no expulsion occurs and all mice develop patent 

infections. Indeed burdens in excess of 200 adult worms have been 

recovered on day 84 after infection with 400 eggs (Else and Wakelin, 

unpublished observations) suggesting that mice of this strain are unable to 

mount a protective response to T. muris at any point during the natural 

life-span of the parasite (12-14 weeks). The phenomenon of differential 

responsiveness between and within congenic strains of the B10 background 

implicates H-2-linked genes but does not explain what determines whether 

an individual can or cannot expel a primary infection. It is clear, however, 

that the phenomenon must arise from some aspect of " the individual 

host-parasite interaction and may therefore be parasite-induced or reflect 

some characteristic property of T. muris itself. For example it has been 

suggested (Else and Wakelin, 1988) that when worms reach a certain stage 

of development they become capable of suppressing host immunity, or 

alternatively, that at a certain size they become insusceptible to host 

immunity. Resolution of this point is important because it may help to 

explain the generation of the conditions which lead to the chronic infection 

and persistent susceptibility to reinfection characteristic of trichuriasis 'in 

predisposed humans. 

6.1.3 MATERIALS AND METHODS 

Animals 

Six- to eight-week-old inbred male C57BLIIOScSn/Ola (1310), 

B10. BR/Ola, DBA/2/Ola and BALB/c/Ola mice, obtained from Harlan Olac 

Ltd. were used. 
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Parasite 

The maintenance of T. muris and the methods used for infection and 

examination of the experimental animals were as described by Wakelin 

(1967). 

Anthelmintic 

The anthelmintic methyridine (Promintic, ICI) was injected 

subcutaneously (s. c. ) at a dose level of 500mg/kg body weight. This drug is 

known to result in the expulsion of all worms within a few hours of 

administration (Wakelin, I970a). 

Cortisone treatment 

Mice were injected s. c. with 1.25mg hydrocortisone 21-acetate (Sigma) 

on days 7,9,11,13 and 15 post-infection. This regime prevents worm 

expulsion and allows the long-term survival of adult worms (Wakelin, 1967). 

Serum 

Groups of at least 7 mice were infected with 400 T. muris eggs on 

day 0 and subsequently bled from the tail vein weekly during the course of 

chemically abbreviated primary and challenge infections. The sera obtained 

from the blood samples were pooled for each experimental group and stored 

at -20*C, 
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Antigen 

Excretory/secretory (EIS) antigen. Adult male and female T. muris 

were removed individually from the large intestines of mice and placed in 

sterile RPMI 1640 medium supplemented with 5001tg/ml penicillin/ 

streptomycin and fungizone (Gibco) at 2.5pg/ml. After washing for 2-3 

hours in this medium at 37 *C, worms were put into fresh medium and left 

O/N at 37 *C for the collection of E/S products. The culture S/N was 

removed, centrifuged at 200g for 5 min to remove eggs and filtered 

(0.22µm filter, Millipore). After freeze drying and reconstituting to one 

quarter the original volume with distilled water, samples were dialysed at 

4 *C before being analysed for protein, aliquoted and stored at -20 'C. 

Metabolically labelled E/S antigen was prepared by incubating worms as 

above in the presence of 35S-methionine at 2501ACi/ml medium. 

Protein estimation 

Total protein concentrations in - samples were determined using a 

method modified from Lowry et al., (1951). 

Enzyme-linked immunosorbent assay (ELISA) 

96-well flat-bottomed plates (Falcon) were coated with E/S antigen 

(5ttg/ml, 50pl/well) in 0.05M carbonate/bicarbonate buffer, pH9.6, and left 

O/N at 4 *C. These antigen coated plates were used in ELISA essentially as 

described by Voller, Bidwell and Bartlett (1979). Test serum was used ' at a 

dilution of 10-2 in PBS containing 0.05% Tween 20 (Sigma). The conjugate 

used was alkaline phosphatase-conjugated goat anti-mouse IgGAM (Sigma) 

diluted I in 350 in PBS/Tween, and the subtrate, p-nitro-phenylphosphate 



130 

tablets (Sigma) dissolved in diethanolamine buffer, pH 9.8 (Fisons). 

Immunopreci pitation 

Metabolically labelled E/S antigen was added to a series of eppendorf 

tubes to give 100,000 cpm/tube. A volume of 25pl of test serum was added 

and made up to 0.5m1 with immunoprecipitation ' buffer, pH 7.4. The 

solutions were vortexed and left O/N at 4'C. The following day l5µ1 of 

sheep anti-mouse IgGi (Serotec) was added to each sample and left for 3 

hours at RT. Immunoprecipitates were spun down at 11,500g and washed 4 

time in immunoprecipitation buffer before redissolving in reducing sample 

buffer for SDS-PAGE (10-20% gradient gels). Gels were fixed, 

fluorographed and dried down for exposure on X-ray film (Fuji) at -80'C. 

Statistical analysis 

The significance of differences between the mean worm recoveries from 

experimental groups was calculated using the Student's t test. A value 

greater than Pß. 05 was considered non-significant. - 

6.1.4 RESULTS 

The fate of challenge infections in B10. BR, DBAI2 and BALBIc mice 

Two experiments were carried out to investigate the fate of challenge 

infections in (a) non-responsive individuals of the DBA/2 strain and (b) in 

the non-responder B10. BR strain after a primary infection had been 

removed using - an anthelmintic. In the first experiment the response of these 

animals was compared with that of responder DBA/2 mice - and, in the 
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second, with that of BALB/c mice, a strain in which expulsion of a primary 

infection is completed in all individuals by day 26 p. i. 

Mice were infected with 400 T. muris eggs on day 0. Individuals which 

failed to expel the parasite before patency was reached (non-responders) 

were identified by the presence of parasite eggs in the faeces on day 41 

p. i. Primary infections were removed from non-responders using Promintic 

and the faeces re-examined the following day to confirm anthelmintic 

efficacy. All mice were challenged at least 7 days after anthelmintic 

treatment, along with the appropriate challenge control, killed 12 days 

post-challenge for B10. BR and BALB/c mice and 14 days post-challenge for 

DBA/2 mice, and their larvae recovered. The results are shown in fig. 

6.1.1 (DBA/2 mice) and fig. 6.1.2 (B10. BR and BALB/c mice). 

On the basis of the faecal egg counts on day 41 the DBA/2 mice 

were divided into individuals which had expelled the primary infection 

(13/28) and those that had not (15/28). The mice which had failed to 

respond to the primary infection were also unable to expel the developing 

larvae of the secondary infection, whilst responder individuals were all 

resistant to challenge. 

All the B10. BR mice (9/9) were egg positive on day 41 p. i. and after 

anthelmintic treatment and challenge, developed larval burdens equivalent to 

those in the challenge controls. All the BALB/c mice (8/8) were egg 

negative on day 41 p. i. and were completely resistant to challenge. 

Factors influencing susceptibility to challenge infection 

The above experiments show that the failure of certain mice (DBA/2 

non-responders and B10. BR) to respond protectively to T. muris is 

expressed in both primary and challenge infections, thus eliminating parasite 

size, and insusceptibility to immunity, as a factor. Three experiments were 



Figure 6.1.1 The fate of challenge infections (400 eggs) in responder (-) 

and non-responder (+) DBA12 mice. All mice were given a primary 

infection of 400 eggs, challenged on day 55 p. i. and killed 14 days later. 

Adult worms were removed from non-responder individuals by chemotherapy 

7 days before challenge. Non-responder mice were identified by the 

presence of eggs in the faeces after the parasite had reached patency 

(approximately 35 days p. i. ) 
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Figure 6.1.2 The fate of challenge infections (400 eggs) in responder 

(BALB/c), non-responder (BIO. BR) and cortisone-treated B10 mice 

(B10+C/A). BALB/c and B10. BR mice were given a primary infection of 

400 eggs, challenged on day 54 p. i. and killed 12 days later. B10. BR do 

not expel a primary infection and the adult worms were removed by 

chemotherapy 12 days before challenge. BALB/c mice expel the primary 

infection within 26 days. Survival of the primary infection (400 eggs) in B10 

mice was extended by treatment with cortisone given on days 7,9,11,13 

and 15 p. i.; the adult worms were removed by chemotherapy 7 days before 

challenge on day 48 p. i. Mice were killed 13 days post-challenge. 
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then carried out to investigate whether ý such non-responsiveness might 

therefore be a consequence of parasite-induced changes in host competence. 

The design of these experiments was based upon the knowledge that strains 

in which parasites are expelled before day 26 p. i. express strong immunity 

to challenge. Two experiments were carried out with C57BU10 (B10) mice 

in which primary expulsion is complete in the majority (80%) of individuals 

by day 26 and the third was carried out in B10. BR in which no individuals 

expel worms. In B10 mice the aim of the experiments was to assess 

immunity to challenge after prolongation of a primary infection to extend 

host-parasite contact; in B10. BR mice the aim was to assess immunity to 

challenge after curtailment of the primary infection, to reduce the period of 

host-parasite contact. Curtailment of infection is easily achieved by 

chemotherapy; two approaches were taken to achieve prolonged infection in 

B10 mice, namely corticosteroid treatment (Exp. 1) and subthreshold 

infection (Exp. 2). 

Experiment 1. Nine male B10 mice were infected with 400 T. muris eggs 

on day 0 and injected with cortisone on days 7,9,11,13 and 15 p. i. The 

faeces of all mice contained parasite eggs on day 39 p. i. Promintic was 

administered on day 40 p. i. and 3 mice were killed the following day to 

confirm that all the worms had been removed. A challenge infection of 400 

eggs was given 7 days later, mice killed 13 days post-challenge and their 

worms recovered. The results are as shown in fig. 6.1.2. As can be seen, 

challenge larval burdens recovered from mice which had had patent primary 

infections were equal to those of the challenge controls. 

Experiment 2. Primary infections of approximately 10 worms were 

established in 4 groups, each of at least 6 male B10 mice. This infection 

was terminated using Promintic on various days p. i. as shown in Table 
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6.1.1, to expose the mice to different stages of parasite development. One 

mouse/group was killed 1 day after treatment to confirm anthelmintic 

efficacy. The remaining mice were challenged together with controls on day 

56 p. 1., killed 14 days later and the number of challenge larvae counted. 

The results are shown in fig. 6.1.3. 

Table 6.1.1 Protocol for the abbreviation of low level infections in B10 
mice, showing the number of larval stages experienced by each group. 

Group Duration of immunising Larval stages 
infection (days) experienced 

18 L1 
2 15 L1, L2 
3 21 L1, L2, L3 
4 54 Ll, L2, L3, IA, adult 
5 naive-challenge control - 

Group 1 (primary infection terminated on day 8 p. i. ) showed a 33% 

reduction in challenge larval burdens from control values (P<0.05) and 

group 2 (terminated on day 15 p. i. ) a 45% reduction (P<0.05). However, 

mice in group 3 (terminated on day 21 p. i. ) showed a division into 

responder and non-responder individuals as reflected by the fate of the 

secondary infection, the responder individual being over 99% immune to 

challenge whilst the non-responder challenge infection levels were not 

significantly different from control values (P>0.05). As expected 4/5 mice in 

group 4 (terminated on day 54 p. i. ) harboured patent infections on day 53 

p. i., as assessed by the presence of eggs in the faeces, and these individuals 

had challenge worm burdens similar to control values. The single individual 

in this group which eliminated the primary infection showed over 98% 

immunity to challenge. 

Experiment 3. The previous experiment in BIO mice suggests that either the 

level of antigenic stimulation or exposure to stage-specific antigens, 



Figure 6.1.3 The fate of challenge infections in B10 mice which had 

experienced low level primary infections (10 worms) terminated at different 

stages post-infection, as shown in parentheses for each group. In group 4, 

mice were divided into those which were positive for eggs on day 53 p. i. 

(indicated by +) and an individual which was egg negative (-), i. e. that had 

expelled the primary infection. All mice were challenged with 400 eggs on 

day 56 p. i. and killed after 14 days. 
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Figure 6.1.4 The fate of challenge infections in B10. BR after chemical 

abbreviation of the primary infection established by infection with 400 eggs. 

The duration of the primary infection is given in brackets for each group. 

All mice were challenged with 400 eggs (day 43 p. i) and killed after 14 

days. 
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associated with the persistence of the parasite beyond 21 days is critical in 

determining whether the host can or cannot expel primary and challenge 

infections. In an attempt to discriminate between these two possibilities the 

abbreviation of a primary infection experiment was conducted in the 

non-responsive B10. BR strain using a higher infection level, 400 eggs being 

administered from which approximately 150 larvae established as seen on 

day 14 p. i. The protocol outlined in Table 6.1.1 was followed except that 

the group 4 primary infection was ended on day 36 p. i. All groups were 

challenged on day 43 p. i., killed on day 14 post-secondary infection and 

the number of challenge larvae present counted. As shown in fig 6.1.4, 

group 1 (terminated on day 8 p. i. ) exhibited a 21% decrease in challenge 

larvae from control values (P<0.002) and group 2 (terminated on day 15 

p. i. ) a 59% decrease (P<0.001). However, group 3 in which the primary 

infection was terminated on day 21 p. i., showed a division into individuals 

which were nearly 100% immune or which had challenge larval burdens not 

significantly different from control values (P>0.05). Group 4, in which the 

primary infection was terminated on day 36 p. i. had challenge infection 

levels equivalent to those of the challenge controls (P>0.05). 

Analysis of immune responses to prolonged or abbreviated infections in BIO 

and B10. BR mice. 

To provide information concerning the level and specificity of antigen 

recognition during the induction of non-responsiveness, sera from the B10 

and B10. BR mice used in the above experiments were analysed by ELISA 

and immunoprecipitation using adult E/S antigen as the target antigen 

preparation. 

The results of a typical ELISA performed with sera from the B10. BR 

experiment are shown in fig. 6.1.5. As can be seen, groups 1 and 2, both 



Figure 6.1.5 Time-course of the total specific antibody response to 

Trichuris muris excretory-secretory antigen in serum samples from B10. BR 

mice which had experienced chemically abbreviated primary infections of 400 

eggs. The duration of the primary infection for each group is given in 

parentheses below-0-0, Group I (8);.. -&, group 2 (15); D-p, group 3 

(21); H, group 4 (36); ", group 5 (naive/challenge control). 
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Figure 6.1.6 Fluorograph of SDS-PAGE of 35S metabolically labelled 

Trichuris muris excretory-secretory (ES) antigen after immunoprecipitation 

with sera taken on days 14 and 2 post-challenge (2) from B10. BR mice 

which had experienced chemically abbreviated primary infections of 400 

eggs. All mice were challenged with 400 eggs on day 43 p. i. The duration 

of the primary infection for each group is given in parentheses: group I 

(8), group 2 (15), group 3 (21), group 4 (36). NS, naive serum. 

Figure 6.1.7 Fluorograph of SDS-PAGE of 35S metabolically labelled 

Trichuris rnuris excretory-secretory (ES) antigen after immunoprecipitation 

with sera taken on days 24 and 38 post-primary infection (1 ) from B10. BR 

mice which had experienced chemically abbreviated infections of 400 eggs. 

The duration of the primary infection for each group is given in 

parentheses: group 1 (8), group 2 (15), group 3 (21), group 4 (36). NS, 

naive serum. 
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of which showed a degree of immunity to challenge, had total specific 

antibody levels no different from naive levels. Very similar results were 

achieved using sera from the B10 experiment. 

Fig. 6.1.6 shows the antigen recognition profiles of antibodies in the 

sera from B10. BR groups 1-4. Tested sera was taken on days 2 and 14 

post-challenge. As can be seen, only sera from group 4 mice (primary 

infection terminated on day 36 p. i. ) exhibited wide antigen recognition, the 

sera from the other groups recognising antigens only within the restricted 

molecular weight range of 30-5OkDa. 

Fig. 6.1.7 shows the antigen recognition profiles for sera taken on days 

24 and 38 post-primary infection. Profiles for groups 3 (terminated on day 

21 p. i) and 4 (terminated on day 36 p. i. ) are virtually identical on day 24, 

but by day 38 p. i. the group 4 recognition profile is as wide as seen post 

challenge. Sera from group 3 showed markedly less antigen recognition on 

day 38 p. i. than on day 24 p. i. This may reflect a decrease in specific 

antibody circulating in the peripheral blood following the removal of worms 

using Promintic 17 days earlier. 

6.1.5 DISCUSSION 

Predisposition to infection with parasitic nematodes may reflect 

individual variation in a number of host-determined parameters, for example 

nutritional status, behaviour or immune responsiveness, but can also arise 

from the effects that the parasite itself may have on the host-parasite 

relationship. In a study of host genetic influences upon immunity to 

Trickuris muris in the mouse, it was observed that there was differential 

responsiveness within certain slowly-responding inbred strains of mice (Else 

and Wakelin, 1988). Thus, whereas some individuals expelled the primary 

infection, others failed to do so and harboured populations of mature worms 
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at patency. The correspondence between time taken to expel worms and the 

proportion of non-responsive individuals strongly suggested that 

parasite-induced effects might be responsible for the phenomenon and two 

possibilities were proposed. The first was that, after reaching a certain size, 

worms cease to be susceptible to effector mechanisms. Variation in the rate 

of parasite growth would result in individual worms reaching this size at 

different times in different individuals, thus resulting in mouse-mouse 

variation. If this was the case it would be expected that mice unable to 

expel a primary infection would be resistant to a challenge infection after 

the primary infection had been removed using an anthelmintic. However, 

this was found not to be the case in the first experiment described here. 

Non-responsive DBA/2 mice, the strain in which differential responsiveness 

was first described (Worley et al., 1962; Wakelin, 1975b, Lee and Wakelin, 

1982b), not only failed to expel a primary infection, but also remained fully 

susceptible to challenge despite the removal of the primary infection. Those 

individuals which did respond to the primary infection also expressed 

immunity to the challenge. Similarly, B10. BR mice, which were uniformly 

non-responsive to the primary infection, remained, non-reponsive to 

challenge. These results imply that the inability of non-responsive individuals 

to expel T. muris is not a consequence of worm size. 

The second explanation proposed for differential responsiveness was 

that, after a certain period of infection, the host response becomes 

suppressed by the parasite, either as a consequence of increasing antigenic 

exposure, or of exposure to stage-specific antigens. This possibility was 

studied in three experiments in which the normal infection patterns of 1310 

and B10. BR were manipulated to increase or decrease worm survival. In the 

former, normally a responsive strain, establishment of an adult infection, by 

restricted immune suppression or by the use of subthreshold infection levels, 

induced unresponsiveness to a subsequent challenge. There is little evidence 



137 

that the effects of interfering with the host primary immune response by 

short-term use of immunosuppressive drugs' such as cortisone extends into a 

secondary infection except for T. muris, where this phenomenon has been 

demonstrated previously (Wakelin, 1970a; Wakelin and Selby, 1974a). Lee 

and , 
Wakelin (1982a) suggested that the inability of cortisone treated 

CBA/Ca mice to expel a challenge infection after removal of the primary 

infection resulted from some continuing defect in a. T-cell population. It is 

tempting to speculate that this defect could be induced by the -later stages 

of the parasite normally not seen by the host unless the host is 

immunosuppressed or the infection is subthreshold. The abbreviation of 

subthreshold infections -in B10 mice followed by challenge gave results 

suggesting that either the level of antigenic stimulation or the ý survival of 

the parasite beyond 21- days is critical in determining whether or not the 

host is unable to expel both primary and challenge infections. However, a 

similar experiment using BIO. BR mice demonstrated that it is the persistence 

of the parasite. beyond day 21 p. i. which is critical. If suppression of host 

immunity does " not occur one would expect = the degree of immunity to 

challenge stimulated by the primary infection to increase, as the duration of 

the primary infection increased. This was indeed the case for groups 1: and 

2, terminated on days 8 and 15 p. i. respectively. However, if the infection 

was terminated on day 21, some individuals were susceptible to challenge, 

and mice which had experienced adult infections were all susceptible to the 

secondary infection. These results suggest that the observed differential 

responsiveness within inbred strains (Else and Wakelin, 1988) is due to 

suppression of host immunity by larval stages which persist beyond day 21. 

Hence, strains of mice which express protective immunity before day 21 

(for instance BALB congenics and NIH mice) do not exhibit differential 

responsiveness (Else and Wakelin, 1988). 

The hypothetical immunomodulatory factors produced by the later larval 
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stages of T. muris have not been identified, nor is the mechanism through 

which ` they act known. A number of possibilities can be proposed. It may 

be that there is a stage specific antigen which elicits cell populations with 

suppressor activities, capable of down-regulating protective immunity. If such 

an antigen exists then its activity is clearly one that causes a long-term 

change in responsiveness, akin to tolerance, and dose-dependent effects may 

therefore also be involved. Alternatively, the parasite may release mitogenic 

factors in a stage restricted manner, which produce a- polyclonal activation 

and exhaustion of lymphocyte populations. Certainly. adult" T. muris E/S 

antigen preparations are mitogenic (Roach, - 1986; - Else and Wakelin, 

unpublished observations) and the ELISA and immunoprecipitation data 

presented here support the idea that there isa correlation between low 

specific antibody levels and resistance to infection, although the high 

antibody levels to E/S antigen and wide antigen recognition profiles seen for 

groups susceptible to challenge may merely reflect a prolonged exposure to 

parasite antigens rather than representing responses to irrelevant antigen. 

Implications for human trichuriasis are far-reaching. Any delay in the 

initiation of a protective immune response, whether determined by genetic 

variation in immunity or by behavioural factors, through the acquisition of 

low-level infections, may leave the host exposed to immunosuppressive 

stages of 'the parasite 'resulting in the build up of heavy, debilitating, 

chronic infections. 
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6.2 THE SURVIVAL OF CHALLENGE INFECTIONS TO DAY 35 IN 

B10. BR MICE 

In section 6.1 the ability to express acquired immunity to challenge 

infections was assessed on the basis of larval worm burdens. Challenge 

infections in good responder strains are known to be expelled from the host 

within a few days (Wakelin, 1973) therefore the presence of challenge larval 

burdens equivalent to control levels on or around day 13 p. c. was felt to 

be indicative of an inability to express acquired immunity. On this basis 

B10. BR mice were shown to be unable to expel both primary and 

secondary infections. Although it has been shown that in mice which have 

had patent primary infections, established through the administration of 

cortisone, challenge infections do survive until patency is reached 35 days 

later (Wakelin and Selby, 1974a), it was felt necessary to confirm the 

inability of non-responder B10. BR mice to expel secondary infections by 

following the fate of a challenge infection to day 35 p. c. It is theoretically 

possible that there is acquired immunity to reinfection in non-responder 

strains but that this immunity is slow to be expressed. 

6.2.1 EXPERIMENTAL DESIGN 

25 male B10. BR and 11 male NIH mice - were given a primary 

infection of 400 T. muris eggs. Worm burdens of 119.8±28.8 and 

109.8±45.1 were present in B10. BR and NIH mice on day 15 p. i. and day 

10 p. i. respectively. Faecal samples were examined for the presence or 

absence of eggs on day 42 p. i. Individuals harbouring patent infections were 

treated with Promintic on day 43 p. i. and their faeces rechecked for eggs 

on day 48 ' p. i. to confirm the efficacy of the anthelmintic. All mice were 
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challenged with 400 T. muris eggs on day 50 p. i. along with appropriate 

challenge controls. Mice were killed on day 10 p. c. for NIH and on days 

15,25 and 35 p. c. for B10. BR mice, serum samples were taken and worm 

burdens determined. The specific IgG and IgGi antibody responses to E/S 

antigen of B10. BR and NIH mice were analysed by ELISA. E/S antigen 

recognition profiles for total specific antibody were studied by 

immunoprecipitation using 10-20% gradient gels. The significance of 

differences between worm burdens recovered from the experimental groups 

was calculated using the Mann-Whitney U test. P>0.05 was considered 

non-significant. 

6.2.2 RESULTS 

The survival to day 35 of challenge infections in B10. BR mice 

Examination of faecal samples on day 42 post primary infection 

revealed that a proportion of the B10. BR mouse strain (6/20) had expelled 

the primary infection, a situation not observed before for the normally 

uniformally non-responsive B10. BR strain of mouse. One mouse was 

sacrificed to determine whether the primary infection had really been 

expelled or whether adult female worms were simply not producing eggs. 

No worms were recovered. The remaining 14 individuals, harbouring patent 

infections, were treated with anthelmintic before challenge. All (6/6) 

individuals of the NIH strain of mouse were egg negative on day 42 p. i. 

Fig. 6.2.1 shows the challenge worm recoveries for NIH mice, B10. BR 

individuals which were negative for parasite eggs in the primary infection 

(1'-), B10. BR individuals which had harboured patent primary infections 

(1 *+) and worm burdens for challenge control mice. NIH mice, which had 

all expelled the primary infection were uniformally resistant to challenge 



Figure 6.2.1 The fate of challenge infections in the responder NIH strain 

and responder and non-responder individuals of the B10. BR strain of 

mouse. All NIH individuals expelled the primary infection, being 

egg-negative (indicated by I*-) on day 42 p. i. 6/20 B10. BR individuals also 

expelled the primary infection (1'-), all other B10. BR individuals harbouring 

patent primary infections (1 *+) on day 42 p. i. Mice harbouring adult worms 

from the primary infection were treated with an anthelmintic prior to 

challenge (400 eggs) on day 50 p. i. Mice were killed day 10 post-challenge 

for NIH and day 15, day 25 and day 35 post-challenge for B10. BR mice. 

+, individuals harbouring patent infections on day 35 post-challenge. 
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when examined on day 10 p. c. B10. BR individuals resistant to the primary 

infection were also relatively resistant to challenge, as seen on day 15 p. c., 

whilst individuals unable to expel a primary infection harboured worm 

burdens not significantly different to control levels on days 15,25 and 35 

p. c. (P>0.05). Individual B10. BR mice were found to be more variable in 

their ability to expel T. muris than previously seen (Else and Wakelin, 

1988). For instance, one challenge control individual had substantially 

reduced its worm burden by day 25 p. c. and two individuals had only a 

few stunted, immature worms left on day 35 p. c. In addition, one individual 

non-responsive to the primary infection was able to expel most worms from 

the challenge infection by day 35 p. c. and the other individuals in the 

1'+/challenge group on day 35 p. c. were found to harbour some stunted 

worms as well as fully mature adult parasites. Although the variability within 

control B1O. BR mice made interpretation of results less easy, it was clear 

that individuals unable to expel a primary infection were at least as likely 

to harbour patent secondary infections as challenge control mice. Fig. 6.2.2 

shows the IgG antibody levels to T. muris E/S antigen in NIH and BO. BR 

mice post challenge. Mice which had expelled the primary infection and 

resisted reinfection, 1'-/2' (all NIH individuals and a subpopulation of 

B10. BR mice), had considerably higher levels of specific IgG compared to 

challenge control mice on day 10 p. c. (NIH) or day 15 p. c. (B10. BR). 

Likewise B10. BR individuals which had not expelled the primary infection 

and had remained non-responsive to challenge, (1+/2'), had IgG antibody 

levels elevated over control values, even on day 35 p. c. when levels of 

antibodies in control mice had risen as the primary infection proceeded. 

Where variation in the ability to expel the challenge infection occured 

within B10.13R individuals no significant correlation could be made with 

specific IgG antibody levels. Although individual B10. BR mice which 

expelled the primary infection (1 '-/2') had slightly higher IgG levels on day 
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Figure 6.2.2 Time course of the specific IgG antibody response to Trichuris 

muris E/S antigen in serum samples from NIH mice challenged after 

expelling a primary infection (', 1 *-/2*) and B10. BR mice which either 

resisted the primary infection (A 
, 

1'-/2) or which harboured patent 

primary infections ( ", 1'+/2'). 0 
, 

B1O. BR challenge control; E. NIH 

challenge control; N. S., naive serum. 

Figure 6.2.3 Time course of the specific IgGI antibody response to 

Trickuris muris E/S antigen in serum samples from NIH mice challenged 

after expelling a primary infection (ý 
.1 

*-/2 *) and B1 O. BR mice which 

either resisted the primary infection (A. 1'-/2') or which harboured patent 

primary infections (0,1'+/2*). 0, B10. BR challenge control; &, NIH 

challenge control; N. S., naive serum. 
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Figure 6.2.4 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. 

muris E/S antigen after immunoprecipitation with individual mouse sera 

taken day 10 post-challenge (NIH) or day 15 post-challenge (B10. BR). 

Lanes 1-3, NIH individuals resistant to primary infection and challenge 

(1'-/2'); lanes 4-6, NIH challenge controls (2'c); lane 7, B10. BR individual 

egg-positive in primary infection and challenged (1'+/2'); lane 8, B10. BR 

challenge control (2'c); lane 9, naive NIH serum. Worm burdens are also 

given beneath the lane numbers. 

Figure 6.2.5 Fluorograph 
, 
of SDS-PAGE of 35S-metabolically labelled T. 

muri EIS antigen after immunoprecipitation with individual mouse sera taken 

day 15 post-challenge from B10. BR mice. Lanes 1-3, individuals 

non-responsive to primary infection and challenged (1'+/2'); lanes 4-6, 

challenge control mice (2'c); lanes 7-8, individuals resistant to primary 

infection and challenged (1'-/2'); lane 9, naive mouse serum. Worm 

burdens are also given beneath the lane numbers. 
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15 p. c. than B10. BR individuals non-responsive to the primary infection, 

small sample sizes (n=5, n=4) prevented the significance of this elevation 

being determined. Specific IgG1 levels after challenge in individual B10. BR 

mice resistant to primary infection were considerably higher on day 15 p. c. 

than in individuals unable to expel the primary infection. Individuals 

non-responsive to the primary infection had higher levels of IgG1 than 

challenge control mice, although day 35 values were very variable (fig. 

6.2.3). 

The antigen recognition profiles for individual mice resistant to a 

primary infection (NIH and a group of B10. BR mice), non-responsive to a 

primary infection (B10. BR mice) and challenge control mice, using sera 

taken day 10 p. c. (NIH) or day 15 p. c. (B10. BR), are shown in figures 

6.2.4 and 6.2.5. Profiles are for total specific antibody. As expected, sera 

from mice which had experienced a primary infection precipitated more E/S 

antigens than sera from control mice for both NIH (day 10 p. c. ) and 

B10. BR (day 15 p. c. ) strains of mice (fig. 6.2.4), although one NIH 

individual (lane 3) showed only very weak recognition of the 90-95kDa and 

105-110kDa antigens (not visible on photograph, but evident on original 

autoradiograph). The day 35 p. c. profiles for B10. BR individuals could only 

be distinguished from day 35 challenge control profiles by the intensity of 

the banding patterns (data not shown). Individual B10. BR mice unable to 

expel the primary infection had identical antigen recognition profiles on day 

15 p. c. to individuals which had become resistant to the primary infection 

(figure 6.2.5, lanes 1,2,3 (1 '+/2') and 7,8. (1 *-/2')). 

6.2.3 DISCUSSION 

The results presented in section 6.2.2 demonstrate that B10. BR mice 

which have experienced a patent primary infection are at least as likely to 
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develop patent secondary infections, following the removal of the primary 

infection using an anthelmintic, as challenge control mice. Differential 

responsiveness was observed within the B10. BR strain of mice, a 

phenomenon reported previously for other B10 congenics (Else and Wakelin, 

1988), but not observed before for the normally uniformally non-responsive 

BiO. BR strain. Mice used in this experiment were slightly older when they 

received the primary infection than routinely used, being 9-10 weeks old 

rather than 6-8 weeks old. Challenge control mice, which also exhibited 

variability in responsiveness were 16-17 weeks old when infected. Although 

mice are assumed to be immunologically mature by 6-8 weeks old it may 

be that older mice are able to mount a protective response slightly earlier 

than their younger counterparts resulting in some individuals expelling the 

parasite before the later larval and adult stages of the parasite are able to 

induce suppression of host immunity. Alternatively, continual inbreeding of 

the B10. BR strain may have led to a slight change in response kinetics such 

that immunity is expressed in some individuals before the parasite has 

developed to its later immunosuppressive stages. Certainly a change in 

response status of the B10. BR mouse strain has been observed recently in 

parasite systems other than the T. muris-mouse model (D. L. Wassom, pers. 

comm. ). 

After a primary infection both responder and non-responder B10. BR 

populations exhibited specific IgG antibody levels to challenge infections far 

higher than those seen for challenge control mice and recognised a wider 

range of antigens early on post challenge. No correlations between antibody 

levels or antigen recognition patterns and responder/non-responder status 

were established, as reported in Chapters 4 and 5, although there was some 

suggestion that the non-responder population of BlO. BR mice on day 15 

p. c. might have had significantly' depressed IgGI antibody levels to E/S 

antigen. This finding is discussed in more detail in Chapter 7. 



144 

The results presented in this chapter demonstrate that certain mice 

with non-responder phenotypes do possess the ability to mount effective 

anti-parasite responses in the absence of immunomodulation by later larval 

and adult stages of T. muris. Similar findings have been reported by 

Enriquez et at. (1988a) working with Heligmosomoides polygyrus 

(Nematospiroides dubius) where it was demonstrated that the stages in the 

parasite's life history to which the host was exposed, as well as the 

numbers of parasites present in each of these stages, were particularly 

important in influencing the ability of the host to resist challenge infections. 

Using a six-day abbreviated immunising infection susceptible strains were 

shown to possess the ability to mount effective anti-parasite responses in the 

absence of immunomodulation by adult worms. The association between the 

presence of adult H. polygyrus in the small intestine and suppression of 

host immunity reported by Enriquez et al., 1988a, and others (Jacobson et 

al., 1982; Behnke et al., 1983) is consistent with the work presented here 

for T. muris which demonstrates a relationship between the presence of 

later larval and adult parasite stages in the gut and an inability to expel a 

challenge infection. 

6.3 SUMMARY POINTS 

1. Mice exposed to a patent primary infection were fully susceptible when 

challenged after the removal of the primary infection using an anthelmintic 

and the challenge infection reached patency in B10. BR mice. 

2. Challenge after abbreviation of primary infections at different stages of 

worm development showed that poor response to infection was associated 
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with the persistence of primary infection larvae beyond day 21. 

3. It is suggested that host immunity is suppressed by the later stages of 

the parasite (L3, IA, adult), this immunosuppression being long lasting and 

leading to long term interference with the ability of the host to mount a 

protective immune response. 

4. After a primary infection both responder and non-responder B1O. BR 

populations and the responder NIH mouse strain exhibited specific IgG 

antibodies to challenge infections far higher than seen for challenge control 

mice and recognised a wider range of antigens early on post challenge. 

Analysis of the specific IgGI antibody response to EIS antigen indicated that 

the population of B1O. BR mice unable to expel both primary and challenge 

infections might have had significantly depressed IgGI antibody levels on day 

15 p. c. compared to individuals of the same strain resistant to primary and 

challenge infections. 



CHAPTER 7 

GENETICALLY-DETERMINED INFLUENCES ON THE 

ABILITY OF POOR-RESPONDER MICE TO RESPOND TO 

VACCINATION AGAINST TRICHURIS MURIS 
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7.1 INTRODUCTION 

An ideal vaccine should mimic the immunological stimulus associated 

with the natural infection. Side-effects evoked should be minimal and the 

vaccine cheap, stable and easy 'to administer (Steward and Howard, 1987). 

At present there is no vaccine against any human parasitic disease (reviewed 

by McClaren and Terry, 1989) yet vaccines against other pathogens -are 

available and have had a considerable impact on public health. Laboratory 

animals can be successfully vaccinated with crude parasite antigens but for 

obvious reasons such an approach, is not feasible for humans. Likewise, the 

immunopotentiating chemicals, or adjuvants, with which many parasite 

antigens are formulated in order to selectively boost the -immune response 

cannot be used in, man because of their inflammatory side effects. For 

instance the classical Freund's complete ý ad juvant (FCA) routinely used in 

laboratory models, is so toxic that it cannot even be used for veterinary 

vaccines. - Adjuvants currently being examined for use in vaccines against 

parasitic infections have been reviewed -by Bomford (1989). The rapid 

advances made recently in the fields of 'molecular biology and biochemistry 

suggest that anti-parasite vaccines suitable for human use will most probably 

come - from recombinant DNA or synthetic peptide technology. Indeed, 

candidate recombinant (Ballou et al., 1987) and synthetic (Herrington et al., 

1987) malaria vaccines have already been tested in human and non-human 

primates, albeit with limited success. Such vaccines have many advantages 

over the use of crude parasite antigens, including the potential to present 

only those antigens that elicit protective immunity. This , is , particularly 

important when , considering parasites which appear to produce 

immunosuppressive molecules -- such as Heligmosomoides palygyrus 

(Nematospiroides dubios) (Pritchard . and Behnke, 1985; Monroy et al., 
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1989). As already indicated, research into the development of anti-parasite 

vaccines for use in humans is most advanced with respect to protozoal 

diseases, in particular malaria (Ballou et al., 1987; Herrington et al., 1987; 

Good et al., 1987; Kabilan et al., 1988; reviewed by Good et al., 1988a, 

b; Bomford, 1989). In contrast the development of vaccines against human 

helminth infections lags far behind, although potential components of 

anti-schistosome vaccines have been suggested (Mitchell, 1989a) and 

purified antigens from the nematode Trichinella spiralls have been shown to 

induce strong protective immunity in mice '(Silberstein and Despommier, 

1984). 

Mice vaccinated with T. muris adult male homogenate, stichosome 

extract and E/S' antigen show high levels of immunity to challenge (Wakelin 

and Selby, 1973; Jenkins and Wakelin, 1977,1983). These studies were 

carried out using the NIH strain of mouse, a strain known to be highly 

resistant to a primary T. muris infection, (Wakelin, I975b). Although most 

studies concerned with the immunogenicity of different parasite preparations 

are carried out in genetically resistant host strains, a clear-cut vaccinating 

effect in genetically susceptible hosts would be of much greater significance, 

providing a more stringent test for vaccine efficacy. For instance, Mitchell 

and Munoz (1983) succeeded in vaccinating genetically susceptible, mice 

against a chronic primary infection with H. polygyrus by injecting adult 

worms intraperitoneally using pertussigen as adjuvant, and Mitchell and 

Handman (1983) vaccinated mice of high genetic susceptibility against 

cutaneous leishmaniasis using intraperitoneal injections of frozen and thawed 

Leishmania tropica major-infected macrophages with Corynebacterium 

parvum as adjuvant. Mice of the B10 genetic background are known to be 

considerably less resistant to T. muris infection than mice of the BALB or 

NIH background (Else and Wakelin, 1988) with the B10. BR mouse strain 

being completely unable to expel a primary infection. The inability of these 



148 

mice to express an effective immunity to infection has been attributed to 

stage-specific parasite suppression of the host response (Else et at., 1989). 

This chapter describes experiments designed to determine the influence of 

the host's genetically determined response status on the ability to express 

resistance after vaccination. Good (NIH or SALB/c), poor (B10) and 

non-responder (B10. BR) strains of mice were immunised with E/S antigen 

at a dose ten times greater than the minimum dose required to reduce 

worm burdens by 80-90% in resistant NIH mice (Jenkins, 1977). In view of 

the evidence that the later larval and adult stages of T. muris are 

immunosuppressive (Chapter 6; Else et al., 1989), mice exposed to adult 

worm infections being unable to expel challenge infections before they reach 

patency, the ability of good and non-responder strains to respond to 

vaccination after exposure to a primary infection was also assessed. These 

experiments were designed to monitor the potency of presumptive 

immunomodulatory parasite-derived factors in the face of a potentially 

protective crude parasite-derived vaccine. 

In all experiments the IgG' and IgG1 antibody responses of mice to 

E/S antigen were analysed by ELISA and the total antibody antigen 

recognition profiles assessed by immunoprecipitation in an attempt to 

correlate the ability of mice to respond to vaccination with specific 

immunological parameters. 
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7.2 EXPERIMENTAL DESIGN 

Experiments 1 and 2: the ability of good (NIH), poor (BIO) and 

non-responder (B10. BR) strains of mice to express resistance after 

vaccination. 

Strains of mice which -respond well, (NIH), poorly (B10) or not at all 

(B10. BR) to a primary infection were injected subcutaneously (s. c. ) with 

100µg E/S antigen in FCA ten days before challenge with 400 T. muris 

eggs. Control mice received PBS in FCA s. c. prior to infection. Mice were 

killed in groups of at least 5 individuals at suitable time points post 

challenge (p. c. ), according to the primary infection response phenotype of 

each mouse strain. Serum samples were collected from individual mice and 

worm burdens were assessed. 

Experiment 3: the ability of good and non-responder - strains to respond to 

vaccination after exposure to a primary infection. 

Good responder (BALB/c) and non-responder (B10. BR) strains of mice 

were divided into three groups of at least 5 individuals. One group received 

a primary infection of 400 T. muris eggs before being injected with 100µg 

E/S in FCA s. c. and challenged ten days later (day '58 p. i. ) with -400 'eggs 

(1 *v. 2 *). A second group was vaccinated as above then challenged (v. 2 *) 

and the third group received PBS in FCA s. c. before infecting with 400 

eggs (PBS 1). The faeces of mice receiving a primary infection prior to 

vaccination were examined for the presence of eggs on day 42 p. i. and all 

groups of mice were treated with an anthelmintic on day 44 p. i. to remove 

adult worms from Bl0. BR mice in the (I *v. 2') group and to act as a drug 
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control in the other groups of mice. Faeces were examined on day 47 p. i. 

and two mice were sacrificed to ensure that the absence of eggs reflected 

the removal of all worms and not merely suppression of egg production or 

the survival of a residual male population. ' The appropriate groups of mice 

were vaccinated on day 48 p. i., challenged on day 58 p. i. and killed in 

groups of at least 5 individuals at various times post challenge for worm 

burden determination and serum collection. In addition a group of BIO. BR 

individuals were vaccinated with E/S or PBS in FCA and bled 25 days later 

in order to assess the antibody response to vaccination in the absence of 

infection. 

ELISAs and Immunoprecipitation studies 

The antigen recognition profiles for total specific antibody were 

revealed by incubating sera with 35S-methionine labelled - E/S antigen 

followed by the addition of sheep anti-mouse IgGAM. 10-20% gradient gels 

were used throughout. ELISAs were performed for various antibody isotypes 

namely IgG, IgGi and, in some experiments, IgM. 

Statistical Analysis 

Significant differences in worm burdens, between groups were 

determined using the Mann-Whitney U test. P>0.05 was considered 

non-significant. 
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7.3 RESULTS 

The ability of good (NIH), poor (BIO) and non-responder (BIO. BR) 

strains of mice to express resistance after vaccination. 

Experiment 1 

Figure 7.1 shows the worm burdens recovered from vaccinated (v) and 

control (c) mice on day 9 p. c. for NIH, day 35 p. c. for B10. BR and day 

19 p. c. and day 35 p. c. for B10 mice. Worm burdens for control groups 

on day 9 p. c. (NIH), day 35 p. c. (B10. BR) and day 19 p. c. (B10) did not 

differ significantly from each other (P>0.05). Vaccinated NIH mice had 

significantly lower worm burdens on day 9 p. c. (P=0.001) than control mice. 

Immunised B10. BR individuals harboured no or a few stunted worms on day 

35 p. c. in contrast to control mice which had patent infections (indicated by 

+). Immunised B10 mice on day 19 p. c. showed great heterogeneity in their 

response to infection, 5/12 individuals having worm burdens significantly 

reduced (P<0.01) from control values, but 7/12 mice still harbouring more 

than 100 worms. By day 35 p. c. all immunised B10 mice (10/10) had 

reduced their worm burdens to less than 10 worms. As expected from 

previous work (Else and Wakelin, 1988), differential responsiveness was 

observed in B10 control mice; 4/6 mice had almost totally eliminated the 

primary infection whilst one individual harboured a considerable number of 

stunted immature worms, and one mouse a patent infection, although 

stunted worms (within the caecum) were also present. 

Figures 7.2 and 7.3 show the antigen recognition profiles (total specific 

antibody) for vaccinated and control BIO mice using sera taken on day 19 

p. c. and day 35 p. c. respectively. Vaccinated mice are represented by lanes 



Figure 7.1 The ability of good (NIH), poor (BIO) and non-responder 

(B10. BR) strains of mice to eliminate an infection of 400 T. muris eggs 

following immunisation with 100µg EIS antigen in FCA, s. c. Worm burdens 

were assessed on day 9 p. c. for NIH mice, day 35 p. c. for BIO. BR mice 

and days 19 and 35 p. c. for BIO mice. v= mice immunised with EIS; c= 

control mice injected with PBS; += patent infection. 
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Figure 7.2 Fluorograph of SDS-PAGE of 3S-metabolically labelled T. muris 

E/S antigen after immunoprecipitation with sera taken day 19 p. c. from 

vaccinated (1001tg E/S in FCA) B10 individuals (BlOv) (lanes 1-4) and 

control mice (BlOc) (PBS in FCA) (lanes 5-8). The naive serum (NS) 

profile is shown in lane 9. Arrows indicate the 80-85kDa, 90-95kDa and 

105-110kDa antigens and the 20-23kDa antigen mentioned in the text. 

Figure 7.3 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. muris 

E/S antigen after immunoprecipitation with sera taken day 35 p. c. from 

vaccinated (100µg E/S in FCA) BIO mice (BlOv) (lanes 1-7). An example 

of a day 35 p. i. control mouse profile (BlOc) (controls Injected with PBS in 

FCA) is given in lane 8. No antigens were immunoprecipitated with naive 

serum (NS) (lane 9). 
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1-4 in figure 7.2 with control mice profiles shown in lanes 5-8 and the 

naive serum profile in lane 9. Lanes 1-7 in figure 7.3 represent antigen 

recognition profiles for vaccinated mice on day 35 p. c. with a control 

profile in lane 8 and naive serum in lane 9. Although there was some 

quantitative variation in antigen recognition between individuals receiving 

identical treatments, e. g. the profile shown in -figure 7.3 lane 3 is rather 

weak, recognition profiles were infact identical. Sera from vaccinated mice 

recognised in particular a triplet of antigens resolving at ` approximately 

80-85kDa, 90-95kDa and 105-110kDa and a low molecular weight antigen 

of 20-23kDa referred to previously in Chapter 4. Profiles for sera from 

infected control mice showed little antigen recognition on - day 19 p. c. 

(figure 7.2 lanes 5-8) although by day 35 p. c. the presence' of antibodies 

against the 20-23kDa antigen was evident and there was some recognition 

of antigens in the 43kDa region (figure 7.3 lane 8). ' No antigens were 

recognised by naive serum (lane 9 in both figures). The antigen recognition 

profiles recorded for NIH and B10. BR mice were similar to those presented 

for experiment 2 of this chapter. 

In ELISA IgG and IgG1 antibody levels to EIS antigen in vaccinated 

NIH, B10 and B10. BR individuals were seen to be elevated over control 

values although by day 35 p. c. in BIO and B10. BR mice there had been an 

appreciable rise in both isotypes in control individuals (data not shown). 

IgM levels were also elevated in vaccinated mice, but only very slightly. 

Representative ELISA results are presented in experiment 2 for NIH and 

B10. BR mice. - 

Experiment 2 

Successful vaccination of non-responder B10. BR mice is clearly 

demonstrated by the results from experiment 1, worms from the challenge 
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infection being lost by day 35 p. c. It was considered important to determine 

how rapidly the protection conferred by vaccination was expressed and 

therefore a repeat experiment was performed with the worm burdens of 

vaccinated B10. BR mice being assessed on days 15,25 and 35 p. c. Mice of 

the NIH strain were also included to control for the loss of worms from a 

good responder strain, worm burdens being assessed on day 10 p. c. for 

vaccinated and control mice. 

Figure 7.4 shows the time course of expulsion of Trichuris muris from 

B10. BR mice which had been immunised with 100µg E/S in FCA s. c. ten 

days before infection with 400 T. muris eggs. The worm burdens for 

vaccinated and control B10. BR mice on day 15 p. c. were not significantly 

different (P>0.05) although the larvae recovered from vaccinated mice were 

considerably stunted. However, by day 25 p. c. the mean worm burden for 

vaccinated B10. BR mice had fallen to approximately 21% of the day 15 

p. c. levels and by day 35 p. c. very few, if any, worms remained in 

vaccinated B10. BR individuals, none of these worms being mature. In 

contrast, on day 35 p. c. all control B10. BR mice harboured numbers of 

mature adult worms not significantly different (P>0.05) from the numbers 

present on day 15 p. c. Although the day 15 p. c. and day 35 p. c. B10. BR 

control worm burdens were not significantly different from each other, five 

control mice killed on day 25 p. c. harboured significantly fewer worms 

(P<0.01) than seen on day 15 p. c. (data not shown). The existence of 

subpopulations of resistant BIO. BR mice makes interpretation of the 

vaccination data less easy, but for reasons outlined in the discussion the 

protection seen to be conferred to B10. BR mice by vaccination is believed 

to be real. Vaccinated individuals of the NIH mouse strain, used as a 

positive control, exhibited a significant reduction in worm burdens (P<0.01) 

on day 10 p. c. 

Analysis of the antigen recognition profiles for vaccinated and control 



Figure 7.4 Time course of expulsion of Trichuris muris from B1O. BR mice 

which had been immunised with 100pg EIS in FCA s. c. 10 days before 

infection with 400 T. muris eggs. ", vaccinated B10. BR mice (BIO. BRv); 

0, control B10. BR mice (BI0. BRc) injected with PBS in FCA ten days 

prior to infection; 'T, NIH mice injected s. c. with E/S in FCA (NIHv); 

7, control NIH mice (NIHc) injected with PBS in FCA. 
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Figure 7.5 Fluorograph of SDS-PAGE of 3S-metabolically labelled T. rauris 

EIS antigen after immunoprecipitation with sera taken days 15,25 and 35 

p. c. from vaccinated (100pg EIS in FCA) B10. BR individuals (BRv) (lanes 

1-3), days 15 and 35 p. i. from control B10. BR mice (BRc) (PBS in FCA) 

(lanes 4 and 5), day 10 p. c. from vaccinated NIH mice (NIHv) (lanes 6 

and 7) and day 10 p. i. from a control NIH individual (NIHc) (lane 8). No 

antigens were precipitated with naive serum (NS) (lane 9). Arrows indicate 

the 80-85kDa, 90-95kDa and 105-110kDa antigens referred to in the text. 
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Figure 7.6 IgGi antibody responses to T. muris EIS antigen in serum 

samples from individual BlO. BR and NIH mice vaccinated s. c. with 100µg 

EIS in FCA (BIO. BRv, NIHv) and from control individuals injected with 

PBS in FCA (NIHc, B10. BRc). N. S. = naive mouse serum; O. D. = optical 

density. 

Figure 7.7 IgG antibody responses to T. muris EIS antigen in serum 

samples from individual BIO. BR and NIH mice vaccinated s. c. with 100µg 

E/S in FCA (B10. BRv, NIHv) and from control individuals injected with 

PBS in FCA (NIHc, B10. BRc). N. S. = naive mouse serum; O. D. = optical 

density. 
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B10. BR and NIH mice (figure 7.5) revealed that vaccinated mice of both 

strains recognised the three high MW antigens (80-85kDa, 90-95kDa, 

105-110kDa) (lanes 2 and 3 B10. BR, lanes 6 and 7 NIH) recognised by 

vaccinated B10 mice (figures 7.2 and 7.3) although here the 80-85kDa 

antigen was only weakly visualised. Other individuals of the B10. BR strain 

recognised this antigen more strongly (data not shown). Although none of 

the three high MW antigens were apparently immunoprecipitated by sera 

taken day 15 p. c. from vaccinated B10. BR individuals as shown in lane 1 

of figure 7.5 (these antigens were apparent by days 25 and 35 p. c, figure 

7.5 lanes 2 and 3), analysis of the day 15 p. c. recognition profiles for sera 

taken from other vaccinated B10. BR individuals did reveal the presence of 

antibodies against " these antigens. Such individual - variation in the 

development of the antibody response to particular antigens has been 

demonstrated previously (see Chapter 4). Sera from control infected mice 

for both strains -did not recognise the three high MW antigens and showed 

more limited recognition profiles, especially early on during the course of 

infection (day 10 p. c. NIH, lane 8; day 15 p. c B10. BR, lane 4). The levels 

and kinetics of the IgG and IgGI antibody responses to EIS antigen 

expressed- by vaccinated and control NIH and B10. BR individuals were 

examined by ELISA. The ý results are shown in figures 7.6 (IgGi) and 7.7 

(IgG). As can be seen, vaccinated mice of both strains had significantly 

higher levels of specific IgG and 'IgGi than did control mice. Levels of 

IgGl, and particularly IgG, rose in control individuals as the infection 

proceeded, but even on day 35 p. c. when mature adult worms were 

present, antibody levels were still well below those seen for vaccinated mice. 
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The ability of good and non-responder strains of mice to respond to 

vaccination after exposure to a primary infection 

Experiment 3 

Figure 7.8 shows the mean worm burdens recovered from vaccinated 

good (BALB/c) and non-responder (B10. BR) mouse strains after prior 

exposure to a primary infection. Mice from each strain were divided into 

three groups; one group received a primary infection of 400 eggs (from 

which 149.8±46.0 worms established in BALB/c mice, and 167.3±33.4 worms 

in B10 BR mice on days 11 and 15 p. i. respectively) prior to vaccination 

and challenge (1'v. 2*), a second group was vaccinated before infecting with 

400 eggs (v. 2 *), and the third group served as a vaccination control group 

being injected with PBS in FCA prior to infection (PBS1 '). As can be 

seen, both vaccinated groups of BALB/c mice, irrespective of prior exposure 

to infection, had significantly lower worm burdens on day 11 p. c. than the 

vaccination control mice (P<0.01), with mice receiving a primary infection 

before vaccination harbouring significantly fewer worms than mice only 

vaccinated before infection (P <0.01). In contrast B10. BR individuals 

experiencing a patent primary infection before vaccination were unable to 

expel the challenge infection, 6/6 mice harbouring mature adult worms on 

day 35 p. c. at levels very significantly higher (P<0.01) than in the other 

two groups. Establishment of worms at day 15 p. c. in the challenge 

infection was also significantly higher (P<0.05) in the (1 'v. 2 *) group. As 

reported earlier in this chapter (expt. 2, figure 7.4), B10. BR mice which 

had been vaccinated but given no initial infection showed no significant 

decrease in worm burdens from control levels on day 15 p. c. (P>0.05). 

However by day 25 p. c. a significant decrease (P<0.01) from the day 15 

p. c. larval burdens was evident, and by day 35 p. c. all worms had been 
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Figure 7.8 Time course of expulsion in immunised (100pg EIS in FCA) 

B10. BR mice. Mice were divided into three groups; group 1 experienced a 

full primary infection for 43 days. Adult worms were removed using an 

anthelmintic before mice were immunised s. c. ten days before challenge on 

day 58 p. i. (0; 1'v. 2'); group 2 were immunised then given a primary 

infection ( (n ; v. 2'); group 3 served as vaccination controls, being 

injected with PBS in FCA prior to infection ( .&. PBS. 1 ). Good 

responder BALB/c mice were likewise divided into 3 groups; group 1= 

1*v. 2' (" ), group 2=v. 2* (7), group 3= PBS. 1 Worm burdens 

were assessed on day 11 p. c. for BALBIc mice and on days 15,25 and 35 

p. c. for B10. BR mice. += patent infection. 



---I 

ýb 

MEAN WORM BURDEN ! SD 



Figure 7.9 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. muris 

EIS antigen after immunoprecipitation with sera taken day 11 p. c. from a 

BALB/c individual receiving a primary infection prior to vaccination with 

E/S in FCA and challenge (1 *v. 2`, lane 1), an individual vaccinated then 

infected (v. 2*, lane 2) and an individual injected with PBS in FCA prior to 

infection (P. 1% lane, 3). Lanes 4 and 5 show the antigen recognition 

profiles of uninfected individual B10. BR mice using serum taken day 25 post 

injection with EIS in FCA (v) and PBS (P) in FCA respectively. Lanes 6. 

7 and 8 represent the antigen recognition profiles for B10. BR individuals 

using day 15 p. c. serum samples from mice given a primary infection 

before vaccination and challenge (lane 6), mice vaccinated then infected 

(lane 7) and mice injected with PBS in FCA before infection (lane 8). 

" Lane 9 shows the naive serum profile (NS). Arrows indicate the 80-85kDa, 

90-95kDa and 105-110kDa antigens (e. g. lane 4), and the 107kDa antigen 

and the 92kDa antigen doublet (lane 6) referred to in the text. 

Figure 7.10 Fluorograph of SDS-PAGE of 35S-metabolically labelled T. 

muris EIS antigen after immunoprecipitation with sera taken day 15 p. c. 

(lanes 1-3), day 25 p. c. (lanes 4 and 5) and day 35 p. c. (lanes 6 and 7) 

from individual B10. BR mice. Lanes 1,4 and 6 represent profiles of 

individuals from the (1 *v. 2*) group, lanes 2,5 and 7 represent profiles of 

individuals from the (v. 2') group and lane 3 shows the antigens precipitated 

using serum from a mouse in the (P. 1 ) group. No antigens were 

precipitated using naive B10. BR serum (NS) (lane 9). Arrows indicate the 

80-85kDa, 90-95kDa and 105-110kDa antigens (e. g. lane 6), and the 

107kDa antigen and the 92kDa antigen doublet (e. g. lane 4) referred to in 

the text. 
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lost except in one individual where three stunted worms remained. As seen 

in experiment 2 five control mice (injected with PBS in FCA prior to 

infection) killed on day 25 p. c. were apparently resistant to infection (data 

not shown). However the- six control mice killed on day 35 p. c. all 

harboured mature adult worms. These day 35 control mice had significantly 

lower worm burdens (P<0.025) than on day 15 p. c. therefore also showing 

some immunity to a primary infection, although as mentioned, ' mature adults 

as well as stunted immature parasites were present. The ability of -these 

non-responder B10. BR , mice to expel a significant proportion of -the primary 

worm burden in this experiment may reflect their, greater age at infection 

than the standard 6-8 weeks (see Chapter 6.2). -Even with the significant 

reduction in worm burdens in the vaccination control group by day 35 p. c., 

worm burdens were still significantly higher (P<0.01) than for the 

vaccinated group of mice which had not experienced a primary infection 

before vaccination. 

Figures 7.9 and 7.10 show examples of antigen recognition profiles for 

the BALB/c and B10. BR mice used in this experiment . 
BALB/c mice of 

the (1'v. 2') and (v. 2) groups (figure 7.9 lanes 1 and 2) had identical 

antigen recognition profiles, antibodies in serum samples taken day 11 p. c. 

recognising 2 high MW antigens (90-95kDa, 105-110kDa) also recognised by 

vaccinated 1310 mice (figs 7.2 and 7.3), vaccinated - B10. BR -(fig ° 7.5) and 

NIH mice (fig. 7.5). BALB/c individuals injected with PBS before infection 

did not recognise these antigens . (lane 3). Identical BALB/c antigen 

recognition profiles were seen using sera from three other individuals for 

each of the three treatment groups. Vaccinated, uninfected B10. BR 

individuals (figure 7.9 lane 4) recognised the - three high MW antigens also 

seen by vaccinated BlO mice in expt. 1, whilst individuals given PBS in 

FCA but no infection did not (lane 5), although there was strong 

recognition of a 65kDa antigen also recognised by some naive serum 
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samples e. g. figure 7.10 (lane 8) and hence judged to be non-specific. The 

most striking feature revealed by the immunoprecipitation studies for B10. BR 

mice was that individuals in the (v. 2') group all recognised the 80-85kDa, 

90-95kDa and 105-110kDa ' antigens whereas individuals in the (1 'v. 2') 

group did not, and recognition profiles for individuals in the (PBS1 ') group 

were very limited, especially early on post-challenge. For example, figure 

7.9 lanes 6,7 and 8 show the antigen recognition profiles for a (1'v. 2') 

individual, " a (v. 2) individual and a (PBS1') individual all on -day 15 p. c. 

Although the (1 'v. 2') profile revealed the presence of an antigen at 107kDa 

and a doublet resolving around 92kDa, these antigens appeared to lie 

between the three high MW antigens recognised by (v. 2 *) individuals. These 

(1 'v. 2') antigens were only weakly recognised and no antigen corresponding 

to the 80-85kDa antigen of (v. 2') 'individuals was ever immunoprecipitated. 

Subsequent immunoprecipitations using day 15 p. c. sera from 4 other 

B10. BR individuals from all 3 groups (1'v. 2', v. 2', PBS1) revealed similar 

profiles although those of (v. 2') mice for the three high MW antigens were 

far weaker in most cases than that shown in figure 7.9 (lane 7), e. g. figure 

7.10 (lane 2). - Clearly quantitative variation between individuals receiving 

identical treatments exists in the antibody response to the three high-MW 

antigens, something supported by the profiles shown in figure 7.5 (expt. 2) 

where the three antigens were only apparent on days 25 and 35 p. c. in 

vaccinated B10. BR mice and the 80-85kDa antigen was only weakly 

recognised. Typical antigen recognition profiles for sera taken on day 25 

p. c. for (1 *v. 2') and (v. 2*) B10. BR mice are shown in figure 7.10 lanes 4 

and 5, with day 35 p. c. serum profiles for (1 *v. 2') and (v. 2') individuals in 

lanes 6 and 7 and the naive serum profile in lane 8. ° Again,, (1 *v. 2*) 

individuals failed to recognise the 80-85kDa, 90-95kDa and 105-110kDa 

antigens seen by (v. 2') mice. Subsequent analysis of two more day 25 p. c. 

individuals and four more day 35 p. c. individuals for all three experimental 
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groups confirmed the apparent failure of (1 'v. 2') mice to recognise the 

three high MW antigens. The day 25 and day 35 p. c. profiles also showed 

more clearly than the day 15 p. c profiles that the antigens recognised by 

(1 *v. 2*) individuals did not appear to resolve at the same MWs as the high 

MW antigens recognised by antibodies in serum from (v. 2*) mice. 

Figures 7.11 and 7.12 show the kinetics and levels of the IgG and 

IgGi antibody responses to E/S antigen for the three treatment groups for 

both B10. BR and BALB/c mice. IgG and IgGl antibody levels stimulated by 

vaccination and by injection of PBS in FCA in the absence of infection are 

also shown for B1O. BR mice. The IgG response (figure 7.11) for BALB/c 

and B10. BR mice was elevated in both (1 'v. 2') and (v. 2') groups to values 

well above those seen in the (PBS1') group. Vaccinated uninfected B10. BR 

mice also had high IgG levels, comparable to those in both (1'v. 2') and 

(v. 2') groups on day 15 p. c. Levels of specific IgG in (1'v. 2') and (v. 2') 

B10. BR mice remained considerably higher than in the (PBS1 ) group, even 

though levels had risen slightly by day 35 p. c. in this latter group. Figure 

7,12 shows the IgG1 antibody response patterns to E/S antigen. The 

BALB/c IgG1 response was identical to that seen for JgG with (1'v. 2') and 

(v. 2') mice having antibody levels elevated well above those of mice in the 

(PBSI) group. In contrast the IgG1 responses of B10. BR mice, in 

particular those of (1 'v. 2') individuals, were very different from those seen 

for total IgG. IgGI levels were elevated, as were IgG, in the (v. 2') and 

vaccinated uninfected groups to levels considerably higher than the (PBSI ) 

group, even on day 35 p. c. However mice in the (1 'v. 2') group had IgG1 

levels markedly lower than (v. 2') values on both day 15 and day 25 p. c. 

(IgG levels expressed by mice in these 2 groups were very similar, figure 

7.11). Even on day 35 p. c., when the IgGI levels of mice In the (1 'v. 2') 

group had started to recover, the mean level was still well below that seen 

for the (v. 2') group. 



Figure 7.11 IgG-specific antibody 'responses to T. muris E/S antigen in 

serum samples from BALB/c and B10. BR individuals in 3 treatment groups. 

The (1' v. 2') group received a primary infection of 400 T. muris eggs prior 

to vaccination with 1001cg EIS in FCA s. c. followed by challenge 

(Q BALB/c,   B10. BR); the (v, Y) group was vaccinated as above 

then infected with 400 eggs (p BALB/c, " B10. BR) and mice in the 

(PBS. V) group were injected with PBS in FCA prior to infection 

(-p HALB/c, A B10. BR). Antibody levels in serum from vaccinated 

uninfected B10. BR mice (') and BlO. BR individuals injected with PBS 

in FCA (0) are also shown. N. S. = naive serum; O. D. = optical 

density. 

Figure 7.12 IgGI-specific antibody responses to T. muris E/S antigen in 

serum samples from BALB/c and B10. BR individuals in 3 treatment groups. 

The (1' v. 2') group received a primary infection of 400 T. muris eggs prior 

to vaccination with 100µg E/S in FCA s. c. followed by challenge 

(0 SALB/c,  . B10. BR); the (v. 2`) group was vaccinated as above 

then infected with 400 eggs (p BALB/c, " B10. BR) and mice in the 

(PBS. 1') group were injected with PBS in FCA prior to infection 

(0 BALB/c, A B10. BR). Antibody levels in serum from vaccinated 

uninfected B10.13R mice ( ý' ) and B1O. BR individuals injected with PBS 

in FCA (0) are also shown. N. S. = naive serum; O. D. = optical 

density. 



Figure Iii 

Figure 7.12 

10 

E 
C 
O 
v 

O 
N 
M 
O 
O 

a 
0 
Y 

a 
N 
M 
a 
O 

Z 

W 

ro 

fvecc. 

Pes 

rv r e1o. BR 
. v2' 
J ryes r 

p V2- 
13 Pes 1' 

NS 

IgG 

i 

1-9 
10 

7 vecc 
Q PBS 

Iv 2! 
B10-BR 

V2, 
PBS 1' 

1-v2' 
pvr BALB/c 

0 PISP 

20 30 
DAYS PC 

I'S 

10 20 30 
DAYS PC 



159 

Antibody response patterns were highly repeatable, ELISAs carried out 

on three separate occasions producing similar results. 

7.4 DISCUSSION 

Later larval and adult stages of Trichuris muris are believed to be 

immunosuppressive (Else et al., 1989), an ability common to many 

protozoan and metazoan parasites including Trypanosoma cruzi 

(Kierszenbaum et a1., 1989), Ostertagia ostertagi (Cross and Klesius, 1989), 

Brugia malayi (Piessens et al., 1980; Wadee and Piessens, 1986), Taenia 

taeniaeformis (Leid et al., 1986) and the well-documented Heligmosomoides 

polygyrus (Nematospiroides dubius) (Behnke et al., 1983; Pritchard et al., 

1984; Pritchard and Behnke, 1985; Monroy et al., 1989), immunosuppression 

being achieved through a variety of mechanisms. In the case of T. muris, 

mice which have experienced an -adult primary infection are unable to expel 

a challenge infection (Chapter 6) raising the possibility that adult, stages may 

release immunomodulatory factors; something which has been suggested for 

H. polygyrus (Pritchard et al., 1984; Pritchard and Behnke, 1985). 

Paradoxically 
, whilst factors associated with adult T. muris are apparently 

immunosuppressive; crude antigen preparations including whole-worm antigen 

(Wakelin and Selby, 1973) and E/S antigen (Jenkins and Wakelin, 1977; 

1983) are very immunogenic. Clearly the fact that antigens may be both 

immunosuppressive and immunogenic should 'be borne in mind in -, the 

development of vaccines: Previous . studies on the ability of adult T. muris 

antigen preparations to stimulate protective immunity were performed in 

responder strains of mice. A more stringent test of the ability of any 

parasite product to protect against infection -or disease is its use in 
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susceptible hosts (Mitchell, 1985). Experiments 1 and 2 of this chapter 

demonstrate that EIS antigen can protect strains of mice which usually 

respond only poorly (B10), or not at all (BI O. BR) to °a primary infection. 

However, in contrast to responder NIH mice, which showed significant 

reductions in worm burdens in vaccinated individuals on days 9 or 10 p. c., 

protection was slow to be expressed in B10 and B10. BR mice, 7/12 B10 

individuals still harbouring more than 100 worms on day 19 p. c. and the 

first significant decrease in the worm burdens of vaccinated B10. BR mice 

not being seen until day 25 p. c. In both experiments 2 and 3 day 25 p. c. 

control B10. BR mice harboured significantly lower worm burdens (P<0.01) 

than seen on both day 15 p. c. and day 35 p. c., thus representing 

subpopulations of B10. BR mice naturally resistant to infection. The existence 

of such differential responsiveness within B10. BR mice, thought to be 

related to the age of the host (see Chapter 6.2), makes interpretation of 

the vaccination data less easy, any reductions in worm burdens in vaccinated 

mice perhaps reflecting, natural resistance to infection rather than a direct 

result of vaccination. However previous experience (Chapter 6.2) -has 

suggested that the proportion of resistant BIO. BR individuals within any one 

population is small (6/20). The results of experiments 1,2 and 3 presented 

in- this chapter all revealed a significant reduction (P<0.01) in the day 35 

p. c. worm burdens of vaccinated B10. BR mice relative to control values. 

This -suggests that B10. BR -mice can be protected against infection by 

vaccination; it is highly unlikely that in all three experiments the vaccinated 

individuals killed on day 35 p. c. '` were all members , of- resistant 

subpopulations of B10. BR mice. IgG and IgGI levels to E/S antigen were 

considerably elevated over control values in all vaccinated' mice. The 

injection of E/S antigen in FCA resulted in an apparent change in the 

antigen recognition profiles of -1310 and B1O. BR mice (experiments 1 and 2) 

and BALB/c mice (experiment 3) compared to mice experiencing only a 
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primary infection. In particular, two high MW antigens (90-95kDa and 

105-110kDa), recognised by H-2q haplotype strains of mice in a primary 

infection (Chapter 5), were recognised by all vaccinated strains of mice, 

including these three non-H-2q strains. Three antigens, resolving at 

approximate MWs 74,92 and 97kDa are known to be recognised by IgG 

antibodies in pooled primary infection serum from B10. BR mice on day 26 

and day 61 , p. i. (Else and Wakelin, 1989; Chapter 4; figures 4.1.5 and 

4.1.6). Although these three antigens clearly resolve- within a similar region 

to the two high MW antigens recognised by IL-2q haplotype - mouse strains 

and the vaccinated B10, B10. BR, NIH and BALB/c mice making 

differentiation between the antigens difficult, the two sets of antigens were 

judged to be distinct. This was determined both by calculation of MWs and 

direct comparison of bands on the autoradiographs (e. g. Chapter 4 figure 

4.1.5 lanes 1 (B10. G-H-2q) and 3 (B10. BR-H-2k)) and through the use of 

5-20% rather than 10-20% gradient gels to give a clearer separation of 

antigens in the high molecular weight regions. Thus altering the mode 

and/or route of presentation of . E/S antigen seems to lead to a change in 

reponsiveness of H-2 genotypes to specific determinants. A similar 

phenomenon has been reported by Cohen et al. (1979) in the proliferative 

response of mouse T cells to determinants on ungulate insulin. - The 

immunopotency of defined determinants on these molecules was found to be 

regulated by a number of factors including the immune response genes of 

the immunised mice and the mode of. presentation of insulin, on cells or in 

Freund's complete adjuvant (FCA). In the present case it may be that the 

increase in immunoglobulin levels provoked by the addition, of FCA to the 

antigen, a phenomenon reported previously by Barth et al. (1965), allows 

the visualisation of the high MW antigens, i. e. a quantitative defect during 

the primary - infection has been overcome by vaccination (see Chapter ý 5) 

rather than the presentation of E/S in FCA leading to a qualitative change 
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in the antigens recognised by antibody. Another possibility is that the route 

by which the host is exposed to antigen may be critical in determining 

antigen recognition profiles and in obtaining protective immunity. The 

principle that the same antigen administered via different routes can provoke 

distinctive, and in some cases antagonistic, immune responses is well 

documented, and may reflect differential antigen presentation by cells 

residing at the sites of antigen introduction, e. g. Mitchell et at. (1984) and 

Liew et at. (1985a) both working with Leishmania major and Jenkins (1977) 

with T. muris. Liew et al. (1985a) showed that the responsiveness of 

BALB/c mice to i. v. immunisation with 150,000-rad irradiated or heat killed 

L. major promastigotes could be completely suppressed by prior s. c. 

injection of the same vaccine. The sequence of events after s. c. immunisation 

which lead to the inhibitory effect was unclear but appeared to involve a 

population of splenic T cells (Liew et al., 1985b). ' 

Thus the paradoxical situation whereby adult T. muris E/S antigen is 

immunosuppressive when presented to the host at the gut level - but highly 

immunogenic (even though presumably containing immunomodulatory factors) 

when injected s. c. in FCA may - be explained by the involvement of antigen 

presenting cells residing at the site of antigen introduction, the display of 

antigen on inappropriate antigen presenting cells resulting in inactivation 

rather-, than activation of specific T cells (Jenkins and Schwartz, 1987) or 

indeed the activation of aT helper cell subset irrelevant to, or detrimental 

to, the expression of protective immunity. The apparent ability of vaccinated 

non-H-2q mouse strains to recognise antigens recognised only by IL-2q 

strains in a' primary infection is in accordance , with other " work 

demonstrating that through the appropriate use of adjuvants or carrier 

proteins it is possible to overcome genetic restrictions on the recognition " of 

specific, antigens. For instance Del Giudice ; et at. (1986) showed that the 

strict H-2b restriction observed when mice were immunised with a 



163 

carrier-free synthetic polymer of the Plasmodium falciparum 

circumsporozoite repetitive epitope could be overcome through the use of a 

carrier protein. 

The boosted IgGi levels and recognition of the 80-85,90-95 and 

105-110kDa antigens seen for poor (B10) and non-responder (B10. BR) 

strains may be related to the protection conferred. For instance there may 

be a critical window of time early in infection during which the presence of 

antibodies to these antigens is required to render the parasite susceptible to 

subsequent cellular attack before the immunomodulatory stages of the 

parasite develop. The results of experiment 3 demonstrated that the ability 

to protect B1O. BR mice by vaccinating with E/S in FCA prior to infection 

could be abrogated by experience of a patent T. muris infection before 

vaccination. B1O. BR mice which had experienced mature adult worms prior 

to vaccination and challenge were completely unable to eliminate a challenge 

infection in contrast to BALG/c mice given a primary infection (which was 

expelled before patency) then vaccinated and challenged. There was also 

some evidence that experience of a patent primary infection before 

vaccination and challenge enabled more larvae to establish. The inability of 

vaccination to protect mice with previous experience of mature adult worms 

was correlated with suppressed IgGI levels, particularly on days 15 and 25 

p. c., and lack of recognition of the three high MW antigens. As mentioned 

earlier, there are obvious difficulties in distinguishing between antigens of 

similar MWs, particularly when comparing between separate experiments, 

and the restricted antigen recognition profiles revealed for individual serum 

samples from control infected B1O. BR mice on day 35 p. i. (e. g. figure 7.5 

lane 5) compared to those seen previously for B1O. BR infection sera as 

early as day 26 p. i. (Chapter 4, figures 4.1.5 and 4.1.6, lane 3) did not 

help interpretation. The more restricted antigen recognition profiles reported 

in this chapter may reflect the use of individual as opposed to pooled 
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serum and/or quantitative differences between individuals in antibody levels 

produced against these antigens. Whatever the problems with identifying 

differences between antigens lying within a restricted MW range, the results 

from this experiment show clearly that mice in the (1 'v. 2') group had 

recognition profiles on days 25 and 35 p. c. different from mice vaccinated 

and infected without prior exposure to adult worms, only the latter being 

protected by vaccination. The importance in resistance of the early 

development of high levels of IgGi antibody to E/S antigens has been 

indicated previously by the high levels of IgG1 produced by the relatively 

resistant H-2q strains of mice (Chapter 5, figure 5.3) and by the 

considerably higher IgGi levels seen in BI0. BR mice resistant to both 

primary and challenge infections on day 15 p. c. compared to those 

individuals susceptible to both primary and challenge infections (Chapter 6, 

figure 6.2.3). Thus adult stages of T. muris may exert their 

immunomodulatory effects in B10. BR mice by suppressing the specific IgGi 

response to E/S antigen and/or blocking the recognition of the 80-85,90-95 

and 105-110kDa antigens. The mechanisms by which IgGi antibodies could 

contribute to protective immunity are discussed in Chapter 5. Total specific 

IgG antibody levels to E/S antigen in (1 'v. 2') and (v. 2') mice were similar, 

even though IgGi levels were depressed in the former group. This suggests 

that levels of a different IgG isotype were increased in (1 'v. 2') mice 

compared to (v. 2') mice, this isotype (IgG2a? ) perhaps being irrelevant to 

the development of protective immunity (see Appendix to Chapter 5) and so 

also contributing to the non-responder status of (1 'v. 2') mice. 

Although many parasites are known , to be immunosuppressive, most 

mechanisms of immunosuppression have not been fully elucidated. 

Trypanosoma cruzi has been shown to release soluble mediators which 

suppress 11-2 receptor expression by human lymphocytes leading to 

suppressed lymphocyte proliferation and hence inhibition of an effective 
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immune response (Kierszenbaum et at, 1989). Also, schistosome-derived 

inhibitory factors of mast cell degranulation (Mazingue et at., 1980) and 

cytotoxic T cell activity (Mazingue et at., 1983; 1986) have been identified. 

Enhancement of the number and function of suppressor T cells has been 

indirectly implicated in the modulation of host immunity by a number of 

parasitic nematodes including H. polygyrus (Pritchard et at., 1984) and 

Brugia malayi ( Piessens et at., 1980). A partially pure larval antigen of 

Ostertagia ostertagi has been shown to suppress antibody production, 

although whether this suppression was via the inductive phase of antibody 

production e. g. macrophage processing of antigens, or the productive phase, 

including T and B cell activity, was not determined (Cross and Klesius, 

1989). Low molecular weight immunosuppressors secreted by adult H. 

polygyrus are known to inhibit the proliferation of mitogen and E/S 

stimulated mouse spleen lymphocytes from normal and infected mice 

(Monroy et at., 1989), and a proteinase inhibitor isolated from the larval 

stage of the cestode Taenia taeniaeformis has been shown to inhibit 

endogenous 11-2 generation in murine lymphocytes and I1-1 induced 

proliferation of murine thymocytes (Leid et al., 1986). In the light of these 

documented immunosuppressive mechanisms it is possible to speculate as to 

how adult T. muris worms suppress the IgGi antibody response to 

vaccination and challenge and block the recognition of the three high MW 

antigens in B10. BR mice. For instance IgG1 antibody production is believed 

to be under the control of 11-4 (Vitetta et al., 1985; Snapper et at., 1988), 

therefore suppressed IgGi levels could result from depressed 11-4 secretion 

or suppressed 11-4 receptor expression. Alternatively, a defect may arise at 

the level of antigen processing by antigen presenting cells,, or suppressor T 

cells may be induced by the adult parasite antigens which suppress the 

potential B cell response. It is also possible that adult parasite antigens are 

recognised by cytolytic T cells in a class-Il-restricted fashion resulting in 
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the selective killing of antigen-specific B cells and hence specific suppression 

of the antibody response (Shinohara et al., 1988; Lanzavecchia, 1989). In 

contrast to the down regulation of the protective immunity" induced by s. c 

injection by prior exposure to adult stages of T. muris involving suppressed 

IgGI production, evidence from the L. major vaccination model (Liew et 

al., 1985b) suggested that the inhibitory effects conferred by s. c. rather than 

i. v. immunisation involved Lyt 1+2-, L3T4+ T cells that mediated cutaneous 

DTH and actually helped antibody synthesis yet prevented the induction and 

expression of protective T cells. 

Whatever the mechanism by which T. muris adults modulate the host 

immune response it is evident that protection of poor responder strains of 

mice by vaccination is possible, but only if mice have not experienced the 

immunomodulatory stages of the parasite in a previous infection. If the 

mouse model can be extended to the human situation implications for 

immunisation strategies, should they become possible, in regions where the 

human parasite T. trichiura is endemic are obvious; vaccination programmes 

should be targetted at the younger age classes, , before individuals become 

heavily infected, in order to elicit appropriate immune responses in the 

relative absence of adult worm immunomodulatory factors. 

7.5 SUMMARY 

I., Poor (B10) and non-responder (BI O. BR) strains, of mice were protected 

against 
_ 

infection by vaccination with 100µg E/S in FCA s. c. 

Protection was slow to be expressed compared - to vaccinated good responder 

strains of mice. 
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2. Vaccination of B10 and BlO. BR mice with E/S in FCA s. c. boosted 

their IgG and IgGi antibody, responses to E/S antigen and altered their 

antigen recognition profiles, three high MW antigens (80-85kDa, 90-95kDa 

and 105-110kDa) being recognised by antibodies in sera from vaccinated 

mice which were not recognised by antibodies in sera from mice receiving 

just a primary infection. 

3. The mechanisms by which adult T. muris E/S antigen is on the one 

hand immunosuppressive, when presented at the gut level, and immunogenic 

when presented s. c. in FCA, may involve different populations of antigen 

presenting cells residing at the site of antigen introduction which 

preferentially stimulate effector or suppressor T cell subsets. 

4. As the recognition of the 90-95 and 105-110kDa antigens was 

previously shown to be IL-2q restricted during a primary infection (Chapter 

5), altering the mode or route of presentation of E/S antigen can 

apparently lead to shifts in responsiveness of H-2 genotypes to specific 

determinants and/or boost specific antibody levels sufficiently to reveal the 

recognition of these antigens. 

S. B10. BR individuals which had experienced a patent primary infection 

could not be protected against challenge infections by vaccination and this 

inability was correlated with suppressed levels of IgG1, but not total IgG, 

antibodies to E/S antigen early on post-challenge compared to vaccinated 

infected individuals which had not seen an adult primary infection, and lack 

of recognition of three high MW antigens (80-85kDa, 90-95kDa and 

105-110kDa) recognised by antibodies in sera from vaccinated infected mice. 

6. It is suggested that the rapid development of high levels of IgGI 
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antibodies and the recognition of the three high MW antigens may be 

important in protective immunity and that immunomodulation of host 

immunity by T. muris is achieved, at least in part, by the suppression of 

specific IgGi levels, possibly the production of an irrelevant IgG isotype 

(? IgG2a), and prevention of the recognition of the three high MW antigens, 

the former and latter perhaps being related phenomena. 



SECTION THREE 

ANTIGENS OF TRICKURIS MURIS 



CHAPTER 8 

ANTIGENS OF T. MURIS: IMMUNOHISTOCHEMICAL 

LOCALISATION USING MONOCLONAL ANTIBODY PROBES 

AND ABILITY TO CONFER PROTECTION IN VIVO. 

J, 
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8.1 INTRODUCTION 

Monoclonal antibodies (McAbs) have proved to be powerful tools in the 

analysis, characterisation, isolation and purification of nematode antigens. 

This is exemplified by studies on the antigens of Trichinella spiralis where 

panels of McAbs have been raised against different life stages of T. spiralis 

(Ortega-Pierres et al., 1984b; Silberstein and Despommier, 1984; Gamble 

and Graham, 1984). These monoclonals have been used to isolate and 

purify Trichinella antigens which have then been examined for their ability 

to confer protection in vivo (Silberstein and Despommier, 1984; Gamble, 

1985), to passively transfer protective immunity (Ortega-Pierres et al., 

1984a) and to localise antigens on the surface and within parasite tissues 

(Silberstein and Despommier, 1984; Gamble and Graham, 1984; Cap6 et 

al., 1986; Ortega-Pierres et al., 1984b; 1986; McLaren et al., 1987). Of 

particular interest was the work of Silberstein and Despommier (1984) who 

identified two highly protective polypeptides of MW 48kDa and 50-55kDa in 

muscle larvae and localised them to the ß- and cx-stichocytes respectively as 

well as on the cuticle surface and gut lining. This work thus supported the 

earlier work of Despommier and Muller (1970a, 1976) suggesting that 

protective muscle larvae antigens were derived primarily from the secretary 

granules of the stichosome., In contrast to the extensive studies on T. 

spiralis antigens work is limited on the antigens of Trichuris muris, a 

closely related trichuroid nematode. Crude vaccination experiments using 

antigens derived from the anterior (oesophageal) region of adult worms have 

suggested that the stichosome is, as in T. spiralis, a source of protective 

antigens (Wakelin and Selby, 1973; Jenkins and Wakelin, -1977). However 

the informative antigen localisation studies (loc. cit. ) performed for T. 

spiralis have not been applied to the T. muris-mouse system. 
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A panel of McAbs to T. muris E/S has been produced and 

characterised with respect to isotype and antigen specificity (Roach, 1986). 

One of these McAbs, of the IgA isotype, was capable of passively 

transferring immunity to infection, and an affinity isolated antigen 

preparation, using this McAb was used successfully in active immunisation 

experiments (Roach, 1986). 

The logical progression from this work was to characterise the McAbs' 

target antigens, 
- 
within the tissues of the nematode and thus identify the 

source(s) of protective antigens. This has been attempted at the light 

microscope level using a variety of immunohistochemical techniques on three 

types of tissue sections; wax, frozen and JB4 sections, retention of tissue 

morphology being perhaps greatest in the latter type of tissue section. The 

protein composition of parasite components localised within the worm, were 

investigated and their ability to confer protection in vivo analysed in a 

series of vaccination experiments. 

8.2 EXPERIMENTAL DESIGN 

8.2.1 IMMUNOHISTOCHEMISTRY 

3 

Preliminary studies on the localisation of antigens within the tissues of 

adult T. muris recovered on day 42 p. i. were performed using wax sections. 

The presence of surface antigens was also investigated using live adult 

worms recovered from mice with patent infections. In both cases McAbs 

bound to the parasite were visualised using a fluorescein-conjugated goat 

anti-mouse-immunoglobulins reagent (Cappel). Subsequent studies were 

carried out using frozen sections in collaboration with Dr. R. K. Grencis at 
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Manchester University and JB4 sections in collaboration with Dr. D. J. 

McLaren at Mill Hill, London. In both cases bound antibody was visualised 

by immunoperoxidase labelling using peroxidase-conjugated rabbit anti-mouse 

immunoglobulins (DAKO), by alkaline phosphatase labelling using 

phosphatase-conjugated rabbit anti-mouse immunoglobulins (DAKO), or by 

immunofluorescence using a fluorescein-conjugated rabbit anti-mouse IgG 

(H+L) (Miles-Yeda Ltd. ). 

McAbs were used in the form of tissue culture S/Ns. Naive (NS) and 

tolerant serum (TS) (from mice with patent infections) were used throughout 

as negative and positive controls. An anti-phosphorylcholine McAb diluted 

1/100 and 1/500 was included in some experiments to control for the 

recognition of phosphorylcholine determinants by the anti-T. muris E/S 

McAbs. Other control slides, included routinely, were treated with PBS, an 

irrelevant McAb, or tissue culture S/N from the myeloma line P3NS1 used 

for production of the McAbs. Initially a range of dilutions was tested, for 

both S/Ns and sera. Subsequently S/Ns were applied neat to all sections and 

sera diluted 1150 in PBS before use. 

A brief summary of the biochemical specificities of the probes tested 

on sections of the parasite is given in Table 8.1. The F11 McAb was found 

to successfully passively transfer immunity to infection and F11 affinity 

isolated antigens were effective in actively immunising mice against T. 

muris. 

Table 8.1 Isotype and antigen specificities of the three McAbs used in the 
immunohistochemical studies presented in this chapter. Antigen specificities 
were determined by immunoprecipitation using 35S-methionine labelled adult 
E/S antigen (Roach, 1986). MWs are in kDa. 

McAb Isotype Antigen Specificity 
E12 IgGi 111,88,65,50,45,40,36,18 
A16 IgA 111,45,40 
Fl l IgA 34,20,18 
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Results of the immunohistochemical studies presented are from several 

replicate experiments carried out on separate occasions. Staining patterns 

are illustrated by results obtained using JB4 sections where retention of 

tissue morphology was high. Descriptions of antigen localisation patterns for 

all experiments, using wax, frozen and JB4 sections, are also given. 

8.2.2 VACCINATION EXPERIMENTS 

Certain worm components localised by the McAbs were isolated as 

described in Chapter 2.2. The vaccination protocol was as outlined in 

Chapter 2.1.6. 

8.2.3 STATISTICS 

The significance of differences in worm burdens between vaccinated and 

control groups of mice were determined using the Mann-Whitney U test. A 

value greater than P=0.05 was considered non-significant. 

8.2.4 ANTIGENS OF T. MURIS 

The protein compositions of various antigen preparations were 

investigated using 10-20% SDS polyacrylamide gradient gels and Coomassie 

blue staining (Chapter 2.3.2). 125I-surface labelling of proteins was carried 

out as in Chapter 2.2.8. 
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8.3 RESULTS 

8.3.1 IMMUNOFLUORESCENT LABELLING OF LIVE WORMS AND 

IMMUNOFLUORESCENCE USING WAX SECTIONS 

Intense fluorescence of the adult male and female worm cuticle was 

observed after worms were incubated with TS and the McAbs E12 and A16, 

bound antibody being visualised using a fluorescein-conjugated 

affinity-purified goat anti-mouse immunoglobulins reagent. However control 

worms, treated with NS. or PBS showed similar fluorescence suggesting that 

the adult worms may have already been coated with antibody on' removal 

from the gut or perhaps that the cuticle was autofluorescing. 

Staining of wax sections using E12 and A16 revealed recognition of the 

external cuticle, ,a region within the eggs of adult female worms, the gut 

lining and the stichosome. Control sections showed negligible fluorescence. 

However retention of tissue morphology was not good and it was impossible 

to determine which layer of the egg was being recognised by the McAbs or 

whether the fluorescence of the stichosome was due to recognition -of 

stichocyte contents. 

8.3.2 IMMUNOPEROXIDASE AND IMMUNOFLUORESCENT LABELLING 

OF JB4 SECTIONS., 

Sections of the anterior stichosomal region of male and female worms, 

the posterior region of females (severed from the anterior end at the 

oesophageal-intestinal junction) and the posterior ends of males were 

incubated with McAb SINs, positive and negative sera and other control 

reagents. 
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Examples of the results obtained by immunoperoxidase labelling are 

shown in figures 8.1 (A, B and C), 8.2 (A, B and C) and 8.3 (A, B, C 

and D). 

Figure 8.1 shows staining patterns for anterior ends of worms. 8. MA 

represents the staining obtained with E12,8.113 with N. S. and 8.1C with 

TS. All three McAbs, E12, A16 and F11 showed reactivity with the 

stichocytes, the granular appearance illustrated in 8.1 C being typical of the 

staining pattern. Flt reacted less strongly with the stichocyte granules than 

the other two McAbs but was none the less clearly positive. Incubation of 

sections with A16, E12 and TS produced a layer of reactivity on the 

outside of the cuticle suggesting the recognition of an epitope expressed by 

surface antigens. The non-contractile regions of the body wall muscle 

stained intensely with the three McAbs and TS, but low level reactivity was 

also seen with NS implying that this recognition was non-specific. 

Interestingly, sections through the more anterior, smaller stichocytes, which 

had a more vacuolated appearance than the larger posteriorly situated 

stichocytes, were stained less intensely by E12, A16, F11 and TS than the 

larger stichocytes, perhaps suggesting some sort of regional localisation of 

antigens within the stichosome. No staining of the bacillary cells was 

observed. 

Staining of sections through the posterior regions of female worms 

showed the major site of reactivity for A16, E12 and TS to be the inner 

lipid layer of the egg (fig. 8.2A - A16, B- NS and C- E12). The 

unembryonated egg material also stained positive, particularly with E12 and 

TS, but the egg shell was negative in all cases. No staining was detected 

with F11 or NS. Other tissues within the posterior regions of adult female 

worms also showed reactivity with E12, A16 and TS as illustrated in fig. 

8.3A-D. Figure 8.3A reveals the localisation of antigens by A16 (also seen 

by E12 and TS) to the developing oocytes and the outer cuticle. Strikingly 



Figure 8.1 JB4 sections of the stichosome of Trichuris muris. 8.1 A (x700) 

was incubated with McAb E12 followed by peroxidase - conjugated rabbit 

anti-mouse immunoglobulins (Ig). The section was developed using the 

substrate 3,3 diaminobenzidine tetrahydrochloride. Section 8.1 B (x700) was 

incubated with naive serum (NS) and 8.1 C (x3500) with tolerant serum 

(TS) then treated as in 8.1 A. Granules within the stichocytes stained 

densely with E12 and TS and a fine layer of reactivity on the cuticle 

suggested that there was recognition of surface antigens also. The dense 

staining of the body wall inner muscle seen with E12 and TS was judged to 

be nonspecific, NS also recognising this region, albeit less strongly. 
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Figure 2 A, B and C. JB4 sections through the posterior region of a 

female worm showing unembryonated T. muris eggs within the oviduct. 

Section 8.2 A (x700) was treated with McAb A16,8.2 B (x700) with NS 

and 8.2 C (x3500) with McAb E12. The McAbs showed reactivity with the 

lipid layer of the egg and with the unembryonated egg material. The egg 

shell was unstained. 
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Figure 8.3 A, B, C and D. JB4 sections through the posterior region of 

adult female worms. Section 8.3 A (x700) was Incubated with McAb A16, 

8.3 B (x700) with NS and 8.3 C (x3500) and 8.3 D (x700) with E12. 

8.3 A reveals recognition by A16 of the oocyte cytoplasm, the oviduct 

wall being relatively unstained. There was again evidence of reactivity with 

the outer cuticle and material within a 'duct'-like structure was also densely 

stained. This structure is shown at a higher magnification in 8.3 C, reacted 

this time with E12. Only the inner muscle layer stained with NS (8.3 B). 

8.3 D shows positive staining by E12 of the gut lining and the 

pseudocoelomic fluid. 
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Figure 8.4 A, B. C and D. JB4 sections through the stichosome of adult 

T. muris worms. 8.4 A (x1230) was treated with TS followed by fluorescein- 

conjugated rabbit anti-mouse IgG (H+L) as was 8.4 B (x1250). In both 

examples intense fluorescence of granules within the stichocytes was 

observed. Cuticular fluorescence was also observed as was non-specific 

fluorescence of the inner muscle layer. This muscle layer was the only 

region to fluoresce in sections treated with NS (8.4 C x700). 8.4 D (x1250) 

shows the recognition by the F11 McAb of granules within the stichocytes. 

Although the fluorescence was less intense than seen for TS (and E12 and 

A16) there was a distinct reaction. No cuticular fluorescence was seen with 

F11. 
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Figure 8.4 



Figure 8.5 A, B and C. JB4 sections through the posterior regions of 

female worms showing strikingly bright fluorescence of the egg lipid layer 

following treatment with E12 (8.5 A x700; 8.5 B x1230). Unembryonated 

egg material also fluoresced. No fluorescence was detected in the negative 

controls, e. g. 8.5 C (treated with PBS) (x1250). 
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Figure 8.6 A and B. JB4 sections through the posterior regions of adult 

female worms. 8.6 A (x700), labelled with E12, shows evidence of reactivity 

with the gut lining, the outer cuticle and the cytoplasm of developing 

oocytes. 8.6 B (x1250) reveals the intense cuticular fluorescence seen after 

incubation of the section with A16 followed by fluorescein- conjugated rabbit 

anti-mouse IgG (H+L). 
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strong staining of material within a discrete duct-like structure was also 

observed with both A16 (8.3A) and E12 (8.3C). Figure 8.3D shows positive 

staining by E12 of the gut lining and the pseudocoelomic fluid. Similar 

staining was seen for A16 and TS. The inner muscle layer was the only 

region of posterior female worms to stain positively with NS (8.3B). No 

structures were stained with Fll (data not shown). 

No specific staining was apparent when the 3 McAbs or TS were 

incubated with sections through the posterior regions of male worms, there 

being recognition by A16, TS, E12 but also NS of the inner muscle layer 

and sperm cells (data not shown). 

Localisation of antigens within - T. muris by immunofluorescence 

supported the results obtained by the immunoperoxidase studies. Examples of 

the staining patterns are shown in figures 8.4 (A, B, C and D), 8.5 (A, B 

and C) and 8.6 (A and B). 

The stichocyte granules fluoresced intensely with TS (8.4 A, - B), E12 

and A16. Less intense, but still positive fluorescence was seen with F11 (8.4 

D). Granules within the stichocytes were not recognised by NS (8.4C) and 

the cuticle was negative with both NS and F11. The lack of cuticular 

fluorescence with all negative controls, and F11, demonstrated that the 

strong- fluorescence seen with- A16, E12 and TS did not represent 

autofluorescence and also indicated that the dark staining of the cuticle seen 

by immunoperoxidase labelling did not merely represent refraction. Intense, 

non-specific fluorescence of the inner muscle layer was seen with all T. 

muris McAbs, TS, NS and an anti-phosphorylcholine monoclonal antibody 

(anti-PC McAb). The anti-PC McAb did not recognise the stichocyte 

granules although there was some indication of very weak cuticular 

fluorescence (data not shown). 

Figure 8.5 A, B and C illustrate the localisation of antigens recognised 

by E12 (figure 8.5 A and B) and by A16 and TS to the lipid layer of the 
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egg. No fluorescence was -detected using NS or F11, but there was some 

suggestion that the anti-PC McAb showed very low level reactivity with 

unembryonated egg material. The lipid layer was completely negative. A 

negative control section, to which PBS had been added rather than an 

antibody, is shown in figure 8.5 C. E12, A16 and TS also showed reactivity 

with the unembryonated egg material e. g. figure 8.5 A and B (E12), the 

gut epithelium and developing oocytes e. g., figure 8.6 A (E12), and the 

outer cuticle e. g. figure 8.6 B (A16). The anti-PC McAb showed low-level 

reactivity with the gut epithelium (not shown). The duct-like structure 

containing densely stained material as seen by immunoperoxidase labelling 

was only represented on one section. As before the material was recognised 

strongly by the McAb A16 (data not shown). The reactivity of E12, A16 

and TS with tissues in the posterior regions of female worms was lost when 

the McAbs were preabsorbed with E/S antigen. Preabsorption of the A16 

McAb with E/S antigen also removed all reactivity with the stichocytes. 

8.3.3 IMMUNOPEROXIDASE AND ALKALINE PHOSPHATASE 

LABELLING OF FROZEN SECTIONS. 

Sections of adult male and female worms removed from the mouse 

large intestine; and sections of worm in situ within the gut tissue, were 

incubated with a number of T. muris McAbs and the control reagents listed 

in 8.2.1 excluding the anti-PC-McAb. 

Posterior regions of the worms produced identical staining patterns to 

those described for JB4 sections after staining with E12, A16 and TS. 

However the Fl1 McAb also showed some reactivity with tissues within the 

posterior regions,, of female worms using frozen sections, although 

background staining was also high. Attempts to repeat this apparent 

demonstration of immunoreactivity, using JB4 sections, failed even though 
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the experiment was repeated five times. In all cases no staining of tissues 

within the posterior regions of female worms was observed whilst the 

stichocytes consistently stained positive demonstrating that the lack of 

reactivity was not due to low McAb concentrations in the SINs. Sections of 

worms in situ within the mouse gut stained as seen for sections of isolated 

worms but the surrounding tissue also stained positive, presumably a 

problem of using anti-mouse Ig reagents on mouse tissue. However, 

although mouse tissue showed reactivity on control slides, worm tissue was 

consistently unstained. 

Frozen sections of stichosomal tissue failed to preserve the stichocyte 

structure as well as JB4 sections making it difficult to localise antigens 

recognised by the McAb probes, although there was some indication of a 

granular staining pattern within the cells of the stichosome as seen before. 

8.3.4 Phosphorylcholine ELISAs 

Although no strongly positive labelling of T. muris tissues was observed 

using an anti-phosphorylcholine (PC) McAb on JB4 sections the possibility 

that the anti-T. muris E/S McAbs were recognising PC determinants was 

investigated in two ways: 

1. Various T. muris antigen preparations were used as target antigens for 

the anti-PC McAb in ELISA. 

2. McAb S/Ns were tested for reactivity to PC by ELISA using PC-BSA 

as the target antigen. 

The results are shown in figure 8.7. In experiment 1 antigen 

preparations were used at a concentration of 5pg/ml, 5O d/well and the 

anti-PC McAb diluted 1/1000. As can be seen all the antigen preparations 

showed some reactivity with the anti-PC McAb with adult female antigen 

(AFA), pseudocoelomic fluid (PCF), the 43kDa entity and unembryonated 
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Exp. 1 Recognition of phosphorylcholine (PC) determinants expressed by T. 

muris antigen preparations by an anti-PC McAb. All target antigens in 

ELISA were used at 5pg/ml and the anti-PC McAb was diluted 1/1000. 

AFA, adult female antigen; AMA, adult male antigen; UEEA, 

unembryonated egg antigen; EEA, embryonated egg antigen; PCF, 

pseudocoelomic fluid; 4hr and O/N excretory/secretory (E/S) antigen; d14 

LH, day 14 larval homogenate; 43kDa, dominant protein band of AMA and 

EIS antigen of MW 43kDa (reduced) eluted from a polyacrylamide gel. 

Exp. 2 Screening of anti-T. muris McAbs against PC determinants using 

PC-BSA at 10pg/ml as the target antigen in ELISA. 

McAbs SINs were used neat and diluted from 1/10 to 1/1000. The 

anti-PC McAb was diluted from 1/100 to 1/5000. Results are given for neat 

T. nzurls McAb S/Ns and the anti-PC McAb at 1/1000. 
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egg antigen (UEEA) exhibiting the highest reactivity. 

In experiment 2 the T. muris McAbs were tested for their ability to 

recognise PC-BSA (10/Cg/ml, 50µl/well) in ELISA. Results, using neat McAb 

S/Ns and dilutions from 1/10 to 1/1000, suggested that the McAbs did not 

recognise PC determinants. Antibody concentrations in the S/Ns were not 

determined therefore it is possible that the lack of recognition seen by 

ELISA reflected very low antibody levels in the S/Ns. However the ELISA 

is a very sensitive technique and would be expected to reveal some 

reactivity to PC determinants if the intense reactivity of the S/Ns observed 

in the immunohistochemical studies represented anti-PC activity. Screening 

of the S/Ns against PCF and E/S by ELISA showed high level reactivity of 

A16 and E12 S/Ns with the former and strong recognition by A16, E12 and 

F11 S/Ns of the latter. 

8.3.5 PROTEIN COMPOSITION OF WORM TISSUES RECOGNISED BY 

ANTI-T. MURIS McAbs 

Where possible worm components with which the test McAbs showed 

reactivity were extracted, isolated and analysed by SDS-PAGE. A 

preliminary investigation into the contribution of surface shed material to 

the contents of EIS was also made by 1251-surface labelling using the 

lodogen reagent. The results are shown in figures 8.8 A and B and 8.9 A 

and B. 

Figures 8.8 A and B show the protein compositions of PCF, stichocyte 

E/S, solubilised whole stichocytes and embryonated egg antigen (EEA) as 

revealed by Coomassie blue staining of 10-20% SDS-polyacrylamide gels, 

samples being run under reducing conditions. AMA and adult E/S were also 

run for comparison. Figure 8.8B lane 2 shows the protein profile for the 

posterior ends of male worms. 



Fiizure 8.8 

A. Coomassie - stained 10-20% gradient SDS-polyacrylamide gel of T. 

muris antigen preparations run under reducing conditions. 

Lane 
1 MW markers: 94,67.43,30,20.1 and 14.4kDa 
2 Pseudocoelomic fluid 1 
3 Pseudocoelomic fluid 2 
4 Stichocyte EIS 
5 Ernbryonated egg antigen 
6 Adult male antigen 
7 Adult worm E/S antigen 

Amounts of protein run were only determined for AMA (100µg) and 

EIS (100µg). In all other cases the maximum volume that could be loaded 

on a gel was run as protein concentrations were expected to be low. In 

fact PCF was protein rich. typical protein concentrations from two further 

extractions being 1.6mg/ml and 1.0mg/ml. 

B. Coomassie - stained 10-20% gradient SDS-polyacrylarnide get of T. 

muris antigen preparations run under reducing contitions. 

Lane 
1 MW markers: 94,67,43,30,20.1 and 14.4kDa 
2 Posterior end of male worms 
3 Stichocyte E/S 
4 Solubilised whole stichocytes 
5 Adult male antigen (100µg protein) 
6 Adult worm E/S (601tg protein) 

Protein concentrations were not determined for samples run in lanes 2, 

3 and 4. Maximum volumes which could be loaded on gels were run in all 

three cases. 
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Figure 

A. Coomassie-stained 10-20% gradient SDS-polyacrytamide get of T. 

rnuris antigen preparations run under reducing conditions. 

Lane 
1 MW markers: 94,67,43,30,20.1 and 14.4kDa 
2 43kDa band cluted from gel 
3 Adult male antigen 
4 Embryonated egg antigen (10µ1) 
S Embryonated egg antigen (40µ1) 
6 Embryonated egg antigen (80µl) 

The protein concentration of the embryonated egg antigen preparation was 

not determined. Increasing volumes (10µl, 40µ1,8Oµ1) of the preparation 

were run, plus sample buffer, in lanes 4,5 and 6. 

B. Autoradiograph of 1251-surface labelled adult male and female worms 

and their EIS profiles. (10-20% gradient gel; all samples run under 

reducing conditions). 

Lane 
1 MW markers: 94,67,43,30,20.1 and 14.4kDa 
2 Profile of EIS products obtained by culturing 125I-surface labelled 

male and female adult T. muris O/N in RPMI and collecting the 
S/N the following day (12,810 cpm) 

3 1251-surface labelled male and female adult T. muris homogenate 
prior to O/N culture (12,810 cpm) 

4 125I-surface labelled male and female adult T. mums 
homogenate after O/N culture (12,810 cpm) 

5 as in lane 3 (30,000 cpm) 
6 as in lane 4 (50,000 cpm) 
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The protein composition of PCF (fig. 8.8A, lanes 2 and 3) was 

remarkably restricted in its protein profile, one broad band resolving around 

43kDa (2D gel electrophoresis might reveal that this single band has 

multiple components) and a triplet of low MW proteins resolving around 

15-17kDa. The faint band observed around 67kDa in the first PCF 

extraction (lane 2) was felt to be a contaminant, no similar band being 

apparent in 3 other PCF preparations. Stichocyte E/S, obtained by dissecting 

out stichocytes and culturing them O/N at 37 *C in RPMI followed by 

removal of the S/N, also had a fairly restricted protein profile, ten clear 

bands being visible on Coomassie stained gels (figs. 8.8 A lane 4 and 8.8 B 

lane 3). MWs ranged from 21 kDa to 110kDa with one band resolving in 

the 43kDa region. Comparison of the protein profiles seen for stichocyte 

E/S and solubilised whole stichocytes (fig. 8.8 B lanes 3 and 4 respectively) 

revealed some common bands although solubilised whole stichocytes, as 

expected, had a far more heterogeneous protein profile. The protein 

composition of EEA shown in figure 8.8 A lane 5 is more clearly 

represented in figure 8.9 A lanes 4,5 and 6. Many bands were visualised, 

including three low MW proteins (approximately 13,15 and 17kDa), a 

strong band at 37kDa and bands around 43kDa. The AMA profile is shown 

in figure 8.9 A lane 3 for direct comparison. Figure 8.9A lane 2 represents 

an eluted 43kDa protein band rerun on a gel to test the efficacy of the 

elution procedure. The band is seen to resolve at a slightly higher MW 

than the 43kDa band in AMA (lane 3) perhaps due to a more complete 

unfolding of the protein structure following reboiling in reducing sample 

buffer. A second protein band, resolving just beneath the major band, has 

also been eluted in this example. 

Figure 8.9 B represents a preliminary study on the contribution of 

surface shed proteins to the composition of E/S antigen. Surface protein 

iodination was carried out by the lodogen method, iodogen catalysing the 
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radioiodination of tyrosine residues. Although iodination biases labelling 

towards proteins containing tyrosine residues it is still a valuable technique 

in the study of surface proteins. Six WI-surface labelled components of 

adult worms, resolving at MWs 89,65,48,40,30 and l8kDa were released 

into the culture medium during in vitro O/N incubation, although this could 

reflect breakdown rather than surface turnover (fig. 8.9 B lane 2). 

Homogenates of 1251-surface labelled worms both before (lanes 3 and 5) and 

after (lanes 4 and 6) O/N culture in RPMI revealed similar banding patterns 

to the E/S profile with additional bands in the higher MW regions (above 

48kDa). This is most clearly seen by referring to lanes 5 and 6, insufficient 

cpms being present in the volumes loaded in lanes 3 and 4 to clearly 

reveal all the bands. 

8.3.6 CAPACITY OF T. MURIS ANTIGEN PREPARATIONS TO INDUCE 

PROTECTION IN VIVO 

Immunohistochemical studies revealed recognition by certain McAbs and 

TS of particular parasite components which were then isolated and tested 

for their ability to protect in vivo. 

Pseudocoelomic fluid (PCF) 

Two experiments were carried out in BALG/c mice using 6 individuals 

in vaccinated and control groups. In experiment I 135µg PCF in FCA was 

injected s. c. into mice. Control individuals received PBS in FCA. In 

experiment 2 1001tg PCF in FCA was used as vaccine. Worm burdens were 

assessed on day 11 p. c. in both experiments. The results are shown in 

figure 8.10. In both experiments vaccination with PCF led to a significant 

reduction (P=0.001) in the larval worm burden recovered on day 11 p. c. 



Figure 8.10 Vaccination of IAL. B/c mice with PCF In FCA Injected s. c. 

Vaccinated mice were Injected with PCF 10 days prior to Infection and 

killed day 11 p. c. for worm burden determination. In exp. I vaccinated 

mice (V) received 135µg PCF In FCA and in exp. 2 100µg PCF In FCA. 

Control mice (C) were Injected with PBS in FCA. In both experiments 

vaccinated mice harboured worm burdens very significantly lower (P=0.001) 

than control mice. 



6 

10 



Figure 8.11 IgG antibody response of mice vaccinated with PCF to PCF, 

E/S and a 43kDa protein eluted from a polyacrylamide gel, as seen by 

ELISA. All target antigen preparations were used at Spg/ml. Vaccinated 

mice (V) showed slightly elevated antibody responses to all three antigen 

preparations, especially PCF and the 43kDa protein. C= control sera from 

mice Injected with PBS in FCA; NS = naive serum. 
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Vaccinated mice showed a 67% and a 29% decrease from control values in 

experiments 1 and 2 respectively, the difference in efficacy of the vaccine 

perhaps reflecting the different amounts of protein injected. Interestingly, 

when sera from vaccinated and control mice were tested against PCF, E/S 

and an eluted 43kDa band in ELISA (fig 8.11, all target antigens used at 

5µg/ml), mice injected with PCF showed raised IgG antibody levels to both 

PCF and the 43kDa extract, presumably reflecting the predominance of the 

43kDa entity in PCF as revealed by SDS-PAGE (fig. 8.8 A). Antibody 

levels to E/S in vaccinated mice were only slightly elevated, probably 

reflecting the greater heterogeneity of proteins in this antigen preparation 

(including a 43kDa entity) compared to both PCF and the 43kDa extract. 

Embryonated and Unembryonated egg antigen (EEA and UEEA) 

Figure 8.12 shows the effect on worm burden recovery of injecting 

EEA or UEEA in FCA into BALB/c mice. "EEA" contained approximately 

a 2: 1 ratio of embryonated to unembryonated eggs. In experiment 1 10µg 

of EEA or UEEA in FCA was injected into experimental mice, control 

mice receiving PBS in FCA (at least 5 mice per group). Although 

establishment was low in the control group (54.2±9.2) both vaccinated 

groups showed significantly lower day 11 worm burdens, mice given EEA 

exhibiting a 74% reduction from control values (P<0.01) and the UEEA 

group showing a 43% decrease (P<0.01). In experiment 2 EEA in FCA 

was injected into BALB/c mice at a higher dose (67µg protein) resulting in 

an almost 100% reduction in worm burdens from control values (P<0.01). 

43kDa antigen 

The major component of AMA and adult E/S antigen is a protein of 



Figure 8.12 Vaccination of BALB/c mice with embryonated or 

unembryonated egg antigen (EEA or UEEA). In exp. I experimental groups 

received 10µg EEA or UEEA in FCA 10 days prior to infection. Control 

mice (C) were injected with PBS In FCA. Both egg preparations caused a 

significant reduction in the day 11 worm burdens compared to control mice 

(both P<0.01 ). In exp. 2 an almost 100% reduction from control values 

was seen in mice injected with 67µg EEA in FCA on day 11 p. c. 
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Figure 8,13 BALB/c mice were injected with 10µg of the 43kDa protein in 

FCA on three separate occasions (V). In all experiments control mice (C) 

received PBS In FCA, all mice were infected 10 days after vaccination, and 

worm burdens were determined on day 11 p. c. Results were variable, 

particularly In experiment 2, but In all cases vaccinated mice harboured 

significantly fewer worms than the control mice (P <0.025, exp. 1; 

P<0.025, exp. 2; P 0.001,. exp. 3). 
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approximate MW 43kDa appearing as a single broad band on Coomassie 

stained 1D gels. This protein was eluted from the gel matrix after 

separation of adult male homogenate by SDS-PAGE and used in a series of 

vaccination experiments in BALB/c mice. The results of 3 experiments are 

shown in figure 8.13. At least 5 mice per group were used in experiments 

1,2 and 3. In all experiments mice received 10µg protein in FCA, control 

mice being given PBS in FCA. Results were - variable, particularly in 

experiment 2 where 3/S mice harboured day 11 larval burdens similar to 

control values. However in all experiments a significant reduction in worm 

burdens from control values was seen. In experiment I the decrease was 

40% (P<0.025), in experiment 2 39% (P<0.025) and in experiment 3 79% 

(P=0.001). The greater efficacy as a vaccine of the same amount of the 

43kDa protein in experiment 3 compared to experiments I and 2 may be 

related to the lower number of worms establishing in control mice. 

8.4 DISCUSSION 

Trichuroid nematodes are characterised , by the possession of a 

stichosome consisting of a row of large glandular cells, or stichocytes which 

partially or completely enclose the oesophagus. The fine structure of the 

oesophagus, described by a number of authors (Chitwood and Chitwood, 

1937; Sheffield, 1963; Jenkins, 1970; Wright, 1972), suggests that the 

stichocytes may be secretory in function, intracellular collecting ducts leading 

to the oesophagus being described in some cases (Chitwood and Chitwood, 

1937; Wright, 1972). Perhaps the most detailed studies of the trichuroid 

stichosome have been performed for Trichinella spiralis muscle larvae 

(Despommier and Muller, 1970b; 1976). Here 45-55 stichocytes were 
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described, each being connected to the lumen of the oesophagus by a duct 

and containing one of two types of secretory granule. The posterior 10-13 

stichocytes contained cx-granules (a-stichocytes) whilst the more anterior 

fl-cells contained 0-granules. Complete cross reactivity between the E/S 

products released by muscle larvae and antigens of the n- and fl-granules 

suggested that at least some of the components released by the larvae 

originated from the stichocytes. A 50-55kDa antigen and a 48kDa antigen, 

located in the a- and (3-stichocytes respectively, have been shown to be 

highly protective in vivo (Silberstein and Despommier, 1984). Gamble and 

Graham (1984) isolated antigens of slightly different MWs - from the E/S 

products of T. spiralis muscle larvae which were none the less also 

protective in vivo (Gamble, 1985). These two studies indicate the 

importance of the stichocyte secretions in the search for candidate molecules 

to be used as vaccines (see Pritchard, 1986; 1987). 

The stichosome of Trichuris muris has long been thought to be the 

source of protective E/S antigens although the evidence is only 

circumstantial, obtained through the vaccination studies of Wakelin and' Selby 

(1973) and Jenkins and Wakelin (1977) using antigens from the anterior 

(oesophageal) region of adult worms, and by direct comparison with work 

done on the closely related trichuroid nematode T. spiralis with which T. 

muris shows specific cross immunity (Lee et at., 1982; Roach et at., 1988). 

The immunohistochemical investigations reported in this chapter 

demonstrate clearly that McAbs raised against adult T. muris E/S antigen 

recognise granules within the stichocytes of the stichosome. One of these 

McAbs (F11) has been shown to passively transfer immunity, to infection 

and protection has also been conferred using Flt affinity isolated antigen 

(Roach, 1986). Interestingly the Fll McAb failed to recognise tissues within 

the posterior regions of both male and female worms and showed no 

evidence of reactivity with the cuticle using JB4 sections. In contrast some 
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reactivity of the F11 McAb with tissues within the posterior regions of 

female worms was observed using frozen sections. The reason for these 

disparate results is not known - despite many attempts to demonstrate 

reactivity of F11 with tissues within the posterior regions of female worms 

using JB4 sections, no staining was ever observed. Lack of specific 

recognition of posterior male tissues was common to all McAbs tested and 

sera from mice tolerised to infection (TS), but both E12, A16 and TS 

showed considerable reactivity with certain structures within the posterior of 

female worms as well as the stichocytes and cuticle. E12 and A16 failed to 

reliably transfer passive immunity and displayed distinct antigen specificities 

to the F11 McAb as seen by immunoprecipitation, E12 and A16 recognising 

the same major antigen of around 43kDa whilst F11 immunoprecipitated 3 

lower MW antigens (34,20 and 18kDa) (Roach, 1986). Staining of the 

stichocyte granules was strongest with E12 and A16, F11 showing weaker 

but still quite distinct reactivity. This is probably a reflection of different 

antibody concentrations in the S/Ns, antibody titres not being determined. 

The potency of the F11 McAb in conferring relative resistance to infection 

may be related to its restricted specificity, recognition of only the stichocyte 

contents and/or recognition of different types of stichocyte granules to E12 

and A16. Reassuringly the antigen specificities of the 3 McAbs 'coincided 

with the MWs of proteins detected in stichocyte E/S by SDS-PAGE. 

Interestingly all McAbs tested and TS showed a lower level of reactivity 

with the contents of the smaller more anteriorly situated stichocytes, which 

were of a more vacuolated appearance, than with the larger more posterior 

cells perhaps indicating a regional localisation of antigens to particular 

stichocytes within the stichosome. The somewhat enigmatic bacillary band, 

an anterior area of cuticular plugs each' with an underlying pore chamber 

and columnar bacillary cell, has been described by several workers (Wright, 

1963; Sheffield, 1963; Jenkins, 1969). Its function remains a mystery, 
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Wright (1963) suggesting an osmoregulatory role, Sheffield (1963) an 

excretory function and Jenkins (1969) proposing that the bacillary band 

might be concerned with the synthesis of secretory material. Disappointingly 

the McAb probes used in this study failed to localise antigens to the 

bacillary cells. Preston et al. (1986) have previously reported an increased 

affinity of host anti-parasite antibodies for the surface plugs of the bacillary 

cells, these plugs being lost around the time of parasite expulsion (day 60 

onwards). The functional significance of these observations is not fully 

understood. In her studies of the surface properties of the developing stages 

of T. muris, Preston reported a considerable degree of stage specificity with 

no major changes in surface antigenicity occuring after the final moult (day 

25-30 p. i. ). The generalised fluorescence recorded over the entire cuticle of 

day 20 and older nematodes following incubation in antiserum taken later in 

the infection supports the results obtained in this study where TS (taken day 

42 p. i. ) and two of - the McAbs showed reactivity with the outside of the 

cuticle of day 42 p. i. adult worms. The dark staining pattern on the outer 

cuticle revealed - 
by immunoperoxidase ° labelling could potentially represent 

refraction. However immunofluorescence studies also revealed that E12, A16 

and TS displayed reactivity with cuticular antigens. Although at the light 

microscope level it was impossible to localise surface antigens further, it is 

tempting to speculate that the antigens recognised were located in the 

epicuticle, as was demonstrated by McLaren et al. (1987) for Trichinella 

spiralis. Using a characterised panel of McAbs raised against stage specific 

surface antigens of the three life cycle stages of T. spiralis (Ortega-Pierres 

et al., 1984b) and electron microscopy they localised surface antigens to the 

epicuticle of muscle larvae. In addition they demonstrated that antigens 

present in the epicuticle of muscle-stage larvae were also present in the 

stichosome and intestinal brush border microvilli and . that muscle larval 

antigens " also existed in the stichosome of adult parasites. Silberstein and 
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Despommier (1984) have also shown that the surface antigens of muscle 

larvae include stichocyte-derived proteins, both the 48kDa and the 50-55kDa 

stichocyte polypeptides being present on the surface of the worm. A similar 

phenomenon is reported here with the McAbs E12 and A16, both raised 

against T. muris E/S, which of course may contain surface shed moietes, 

recognising epitopes expressed by both stichocyte and cuticular antigens, as 

well as antigens found in the posterior regions of female worms including 

the gut lining. If the stichocyte and surface antigens recognised by the 

McAbs do not merely share determinants, but have a common 'origin 

(presumably the metabolically - active stichocytes) it is necessary to 

hypothesise as to how the, stichocyte antigens are transferred and inserted 

into the outer cuticle. It is perhaps easier to envisage the adsorption of 

antigens contained in stichocyte secretions onto the cuticle after their release 

into the exterior via the mouth and anus. Certainly the reactivity of E12 

and A16 with the gut lining of T. ' muris could easily reflect the release of 

stichocyte secretions into the gut lumen. 

The importance of . nematode surface antigens in the stimulation of 

protective immune responses is illustrated by the work of Grencis et at. 

(1986) where it was demonstrated that relatively pure surface antigens of 

Trichinella spiralls, obtained by cetyltrimethyl-ammonium bromide (CTAB) 

stripping, were capable- of generating protective host responses in vivo, 

reflected by a reduction in -intestinal worm burdens, fecundity, worm length 

and muscle larval burdens. The active shedding of surface antigens (Vetter 

and Klaver-Wesseling; 1978; Philipp et at., 1980; Smith et at., 1981; 

Maizels et al., - 1984; Pritchard et at., 1985) raises the question as to 

whether surface antigens or surface shed antigens are responsible for the 

generation of protective immunity in vivo, cuticular antigens making a 

substantial contribution to ° the contents of E/S products (Philipp and 

Rumjaneck, 1984; Pritchard, 1986; Lightowlers and Rickard, 1988). It should 
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also be borne An mind that the shedding of surface antigens could be 

parasite-protective rather than stimulating host protective responses, 

representing a mechanism by which bound antibody and/or adherent host 

cells could be removed from the parasite surface before exerting a damaging 

effect. Shed surface antigens may also divert the host protective response 

away from the parasite surface by stimulating immune responses at sites 

away from the parasite (Smith et at., 1981; Philipp and Rumjaneck, 1984; 

Pritchard, 1987; Lightowlers and Rickard, 1988). The presence of a 43kDa 

entity on the surface of T. muris has been demonstrated by ý CTAB stripping 

(Roach, 1986). Preliminary studies on the shedding of T. ý muris cuticular 

molecules suggested that a restricted number of surface proteins were 

present in the adult (as seen by 125I-surface labelling - Iodogen method), as 

has been reported for T. spiralis (Philipp et at., '1980). These molecules 

included a protein of approximate MW 43kDa and most were released into 

the medium during in vitro culture. Of course this does not necessarily 

reflect turnover in vivo, release of surface components during in vitro 

culture perhaps representing some form of degradation rather than active 

shedding. The 43kDa protein of T. muris is assumed to be of stichocyte 

origin however its dominant presence in E/S could reflect surface ° shedding 

of a cuticular protein. The two of course are not incompatible due to the 

uncertain origin of surface released antigens '- E/S antigens from the 

stichocytes may be ý deposited on the cuticle prior to being shed. The 

importance of the 43kDa protein in protecting the host against T. muris 

infection is indicated by the vaccination experiments carried out using 43kDa 

antigen preparations eluted from polyacrylamide gels after separation of 

AMA proteins by SDS-PAGE. A significant degree of ý protection was 

conferred in all experiments. Thus the 43kDa antigen is a potential target 

for gene cloning and synthetic peptide synthesis. 

The localisation, of antigens by McAb probes within worm tissues 
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posterior to the oesophageal-intestinal junction revealed that unlike male 

worm tissues, which showed little specific reactivity with the McAbs or TS, 

regions within the posterior ý of female worms showed considerable 

immunoreactivity. In particular a layer within the egg shell of mature 

females, ` identified as the lipid layer by comparison with electron 

micrographs of the egg shell - of T. muris (Preston and Jenkins, 1984), 

stained intensely after incubating with, E12, A16 'and TS. As discussed 

earlier, F11 failed to react with any tissue other than the stichocytes. 

Although both embryonated and unembryonated egg antigen preparations 

were shown to be 'protective in vaccination experiments, it is difficult to see 

how, egg-specific antigens could contribute to the development of a 

protective immune response. The reactivity of E12, A16 and TS with the 

lipid layer of the egg shell, and the potency of egg material in protecting 

mice against challenge infections almost certainly reflects the presence of 

epitopes also expressed by stichocyte and/or cuticular antigens. Thus if any 

anti-stichocyte activity was ' absorbed out from the McAb S/Ns prior, to use 

the lipid layer may no longer fluoresce. Indeed preabsorption of the McAb 

S/Ns and TS with E/S antigen did remove all specific reactivity with all 

worm tissues. ' Interestingly' a preliminary study F using sera from T. 

trichiura-infected individuals" revealed recognition of the T. muris egg lipid 

layer by T. trichiura positive serum samples. Control sera including high 

titre"-anti-hookworm serum (donated- by -D. I. Pritchard) showed no 

reactivity. Such cross reactivity, already demonstrated by Roach et al. (1988) 

may suggest a role, for immunohistochemistry in immunodiagnosis 'of 

infection. 

E12, A16 and TS displayed reactivity with - pseudocoelomic fluid (PCF) 

within the body cavity of female worms. ' The lack of labelling of male 

worm sections -may merely reflect less fortuitous sectioning. PCF was found 

to be protective when administered as a vaccine although aprotective role 
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for PCF-specific antigens in vivo, as for egg-specific antigens is hard to 

envisage. Even if damaged worms leak PCF which thus gains access to the 

host immune system; immune responses directed against PCF-specific 

antigens would be- unable to gain access to the interior of undamaged 

worms due to the resilient nematode outer cortex. 1D SDS-PAGE of PCF 

revealed a very restricted protein composition, consisting of one broad band 

resolving at approximately 43kDa, plus a triplet of low MW proteins. Mice 

immunised with PCF produced IgG antibodies to the 43kDa protein as seen 

by ELISA. Thus the recognition of PCF by E12, A16 and TS, and the 

capacity of PCF to protect, may reside in the dominancy of the 43kDa 

antigen in this protein-rich fluid, ID SDS-PAGE already demonstrating the 

presence of a 43kDa protein in stichocyte secretions and at ' the cuticle 

surface (Roach, 1986). Silberstein and Despommier (1984) localised a 37kDa 

antigen of T. spiralis to the pseudocoelom but this antigen was only 

protective at doses fifty times greater than ' used for the highly protective 

48kDa and 50-55kDa antigens. Perhaps the best documented study of 

nematode body fluid antigens involves Ascaris suum where a number of 

antigens, including potent allergens, have been identified (Kuo and Yoo, 

1977; O'Donnell and Mitchell, 1980). The recognition by E12, A16 and TS 

of the contents of a duct-like structure within female worms, is puzzling. In 

appearance the' structure resembled 'an excretory duct but only one such 

'duct' was revealed in transverse sections and sections through male worms 

showed no such structure, although this could reflect a sampling problem. 

There is no recognised ' conventional excretory system , recorded for 

trichuroids (Jenkins, 1973) therefore the apparent excretory duct visualised 

here, and containing antigenic material, perhaps warrents further study. 

The prominent sites of non-specific reactivity with the inner muscle 

regions of the body wall exhibited by ' test and control reagents 'may be 

related to the fact that this part of the somatic, musculature is the main site 
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of glycogen storage in nematodes. Certainly histochemical tests for glycogen 

produce similar staining patterns to the non-specific antibody reactivity 

revealed by immunohistochemistry (T. Jenkins, pers. comm. ). 

The staining patterns produced by E12, A16 and TS on sections of 

adult females were reminiscent of those revealed -by the immunoperoxidase 

studies on the filarial nematode Brugia malayi by Wenger et at., (1988). In 

this study phosphorylcholine-containing antigens were localised in female and 

male worms in egg-bearing regions (especially the egg membranes and inner 

uterine lining) and the intestinal lining respectively. The presence of 

phosphorylcholine determinants on intestinal membraneous structures and the 

lining of the intestinal tract but not the cuticle has been shown for Ascaris 

suum (Gutman and Mitchell, 1977) and D. viteae (Gualzata et al., 1986; 

1988). In the latter study immunolabelling also revealed intense staining of 

the pseudocoelomic cavity due mainly to anti-PC antibodies, labelling being 

reduced after the absorption of, PC-specific antibodies from test sera. 

Phosphorylcholine-containing antigens are present in a variety of, organisms 

including nematodes. The presence of phosphorylcholine determinants has 

been demonstrated for Ascaris suum (Crandall and Crandall, 1971; 
. 
Gutman 

and Mitchell, 1977), Nippostrongylus brasiliensis (P6ry et , al., 1974), 

Toxocara cans (Sugane and Oshima, 1983), Brugia malayi and Brugia 

pahangi (Maizels et al., 1987) and D. viteae (Gualzata et al., 1986; 1988). 

In order to control for the possibility that the anti-T. muris E/S McAbs 

had reactivity against PC they were tested against PC-BSA in ELISA. No 

reactivity was observed. In addition immunofluorescence on JB4 sections 

using an anti-PC McAb as primary antibody revealed only low level 

reactivity with the gut lining, the inner muscle region, and perhaps the 

cuticle and unembryonated egg material, the stichocytes and egg lipid layer 

being unlabelled. Thus the immunolabelling of structures within T. muris by 

E12, A16 and F11 does not apparently represent an anti-PC response even 
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though a number of T. muris antigen preparations, including egg antigen, 

PCF and the 43kDa antigen where shown to express PC determinants by 

ELISA. The presence of PC determinants on the 43kDa antigen may 

explain the weak bands revealed around this MW following 

immunoprecipitation of metabolically labelled E/S antigen with NS. The 

apparent contradiction in results whereby the use of an anti-PC McAb as 

primary antibody in immunolabelling studies failed to produce any strong 

labelling even though internal structures of T. muris clearly do express PC 

determinants as seen by ELISA, may reflect a greater accessibility to PC 

determinants in worm homogenates and tissue extracts as opposed to in situ 

as is the case for tissue sections, and/or the greater sensitivity of ELISA 

over immunohistochemistry. 

Specific cross immunity between T. spiralls and T. muris is well 

documented (Lee et al., 1982; Roach et al., 1988) and it has long been 

speculated that the stichocytes are the source of any shared antigens. 

Stichocyte antigens of T. spiralis muscle larvae have been shown to be 

highly protective in vivo (Silberstein - and Despommier, 1984) and the 

recognition by anti T. muris E/S McAbs, one of which is protective, of 

granules within the stichocytes of T. muris adults suggests that in parallel 

with T. spiralis, the stichosomal cells of T. muris contain functional 

antigens. Little is known about the function of stichocyte antigens (reviewed 

by Pritchard, 1987) although the stichosome is generally thought to be 

involved in feeding 'and localised tissue digestion through the secretion of 

enzymes (Jenkins, 1970). Nimmo-Smith and Keeling (1960) identified 

proteolytic activity in extracts of T. muris but felt that the enzymes were 

probably involved in turnover of cellular constituents and metabolites rather 

than representing secreted enzymes. Jenkins (1970) demonstrated the 

presence of esterase activity in the stichocytes of T. Buis using histochemical 

techniques and Wright (1963) detected a phosphatase enzyme in the 



192 

bacillary cells of Capillaria hepatica. Roach (1986) identified proteases in T. 

muris E/S antigen by incorporating enzyme substrates into gels and 

electrophoresing E/S antigen samples 0/N. It is relatively easy to envisage 

the stichosome acting as a source of antigenic material capable of eliciting 

protective immunity if indeed it is the origin of enzymes required for 

burrowing and/or feeding. Equally it seems likely that the membrane-bound 

secretory granules within the stichocytes of T. spiralis muscle larvae 

(Despommier and Muller. 1970b; 1976) are similar to the membrane bound 

secretory granules described by Wright (1972) in the stichocyte cytoplasm of 

two species of Trichuris, and that are apparently recognised strongly by 

McAbs raised against T. muris E/S as demonstrated by the 

immunohistochemical studies presented here. The basis of the specific cross 

immunity between T. muris and T. spiralis demonstrated by Lee et al. 

(1982), and between T. muris, T. trichiura and T. spiralis (Roach et al., 

1988) may well lie in the possession of common functional antigens derived 

from the stichocyte granules and if so may provide a target for immune 

attack against both T. spiralls and T. trichiura in man. 

8.5 SUMMARY POINTS 

1. Three McAbs, E12, A16 and Fll, raised against T. muris E/S antigen 

have been shown to recognise granules within the stichocyte cytoplasm of 

adult T. muris. 

2. E12 and A16 also showed reactivity with cuticular antigens and tissues 

within the female worm, in particular the lipid layer of the egg. 
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3. The F11 McAb, shown previously to transfer passive immunity and to 

display antigenic specificity distinct from E12 and A16, showed reactivity 

only with the stichocyte granules (JB4 sections). It is suggested that the 

specificity of F11 may be related to its ability to protect in vivo, neither 

E12 nor A16 reliably transferring immunity. 

4. E12, A16 and F11 did not recognise PC determinants as seen by 

ELISA. 

5. The presence of epitopes expressed by both stichocyte and cuticular 

antigens may reflect a common origin (the metabolically active stichocytes? ) 

or merely shared determinants. 

6. A major 43kDa protein of E/S, and AMA, also known to be on the 

surface of worms, may be shed during in vitro culture thus making a 

substantial contribution to the E/S products. A protein band at MW 43kDa 

has been demonstrated in stichocyte E/S perhaps suggesting a common 

origin for cuticular and stichocyte antigens, and a 43kDa protein eluted 

from polyacrylamide gels after the separation of adult male T. muris 

proteins by SDS-PAGE, has been shown to be protective in vivo. 
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In any intricate host-parasite relationship many factors may influence 

the outcome of infection, the basis for an ability to resist infection perhaps 

residing in, for instance, behavioural factors, the nutritional status and/or 

the immunological status of the host. Equally important in the development 

of host-parasite relationships are the constraints the parasite imposes on the 

host through the modulation of immunity. In this thesis investigations have 

been made into two aspects of the interactions between the nematode 

parasite Trichuris muris and its host, the mouse. 

Section One is concerned with the effects of host genes on the 

expulsion of T. muris and their role in the control of the humoral immune 

responses to this parasite. 

Section Two attempts to dissect the mechanisms by which T. muris 

modulates the host's ability to express protective immunity and to assess the 

influence of the host's genetically determined response status on the ability 

to express resistance after vaccination. 

The final section addresses the problem of the likely source of the 

immunogenic and immunosuppressive components of T. muris 

excretory/secretory (E/S) antigen using a panel of monoclonal antibodies 

raised against E/S antigen (Roach, 1986). 

Wakelin (1975b) demonstrated the importance of genetically determined 

differences in the ability of mice to expel T. muris although an evaluation 

of the relative contributions of major histocompatibility, complex (MHC), or 

H-2-linked genes, and background (non-H-2) genes was not made. The 

importance of both these sets of genes in the control of host immunity is 

well documented for the related parasite Trichinella spiralfs (reviewed by 

Wassom, 1985; Wakelin, 1988a; Wassom and Kelly, 1989). In close parallel 

with the T. spiralis system the work presented in Section One demonstrates 

that both H-2 ý and non-H-2 genes influence the expression of protective 

immunity to T. muris infection, with H-2 linked genes effecting a fine 
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tuning of anti-worm immunity within the, limits defined by the genetic 

background. For example, all strains of mice possessing BALB background 

genes were markedly more resistant to infection than mice of the BIO 

genetic background. However, within both these groups of H-2 congenic 

mice expression of q orb alleles at the H-2 was associated with stronger 

protective immune responses than the expression of "susceptibility" d or k 

alleles. Through the use of a panel of H-2 recombinant strains of mice 

control of resistance to T. muris infection was mapped to loci within the 

H-2. Response phenotypes were found to be related to the presence of 

"resistance" (g, b) or "susceptibility" (k, d) alleles at I-A, under the strong 

modulatory influence of certain alleles at a locus/loci lying between the S 

and D loci of the H-2 complex. In particular resistance g and susceptibility 

d alleles were associated with marked up- and down- regulation of the 

effects associated with the expression of I_Ak and I=AA gene products 

respectively. These results bear a striking resemblance to those reported for 

the T. spiralis-mouse system. 

Analysis of the humoral immune responses to T. muris E/S antigen by 

ELISA and immunoprecipitation revealed the influence of both background 

and H-2-linked genes with the more resistant BALB congenics expressing 

lower level antibody, responses than the more slowly responding B10 

congenics. The antibody response to EIS antigen was, predominantly an IgG 

response. An exclusive H-29 restriction on the ability to rapidly develop 

high levels of specific IgGi antibodies was revealed by studying the 

responses of inbred, congenic and H-2 recombinant strains of mice including 

seven strains ' expressing g alleles at I-A on four different genetic 

backgrounds. There was also an 1 almost ° exclusive H-2q restriction on the 

ability of mice to recognise two high MW antigens (90-95kDa, 105-110kDa) 

this latter phenomenon, at least in part, probably reflecting the restriction 

on the ability to produce high levels of specific IgG antibody. As such, this 
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restriction would operate in vivo and may contribute to the generally good 

responder status of H-2q haplotype mice perhaps by mediating parasite 

damage prior to cellular attack. However within the DBA/1 strain of mouse 

a differential ability to expel T. muris was observed yet all individuals 

expressed antibody responses typical of H-2q strains of mice, " therefore 

clearly a good IgG1 response ; is not the only requirement in protective 

immunity and the defect in non-responder DBA/1 individuals, genetically 

identical to their responder counterparts, may lie in modulation by ' the 

parasite at the T cell subset level. Interestingly, several non-responder 

mouse strains, all expressing k alleles in the I region of the H-2 complex 

produced strong specific IgG2a responses and negligible IgG1 in contrast to 

the more resistant I=A4 expressing strains which produced high levels of 

both isotypes, especially IgG1. This suggests that IgG2a is perhaps irrelevant 

to protection and the production of IgG2a in the absence of a strong IgG1 

response may be a contributory factor in the non-responder status of 

certain mouse strains. It is possible to speculate at the molecular level as to 

how the preferential production of IgG2a or IgGl might arise through the 

reciprocal regulation of IgG2a and IgG1 by IFN-y and 11-4, produced by 

TH1 and TH2 cells respectively, discussed in the Appendix to Chapter S. 

Thus, presentation of antigen in association with I=Ak molecules might 

activate TH1 cells resulting - in responses irrelevant to and possibly 

detrimental to protective immunity, whilst antigen presented in the context 

of, I=AA may stimulate both T helper subsets though possibly favouring the 

expansion of TH2 cells. This would lead to the secretion by B cells of 

specific IgG1 which may contribute positively to resistance to infection. 

Genetically slow- (B10) and non-responder 1 (B10. BR) strains of mice 

can be protected against infection by vaccination with EIS 

antigen in Freund's complete adjuvant as demonstrated in Section ý Two. 

However protection was slow " to be- expressed compared to vaccinated 
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good-responder mouse strains (BALB/c, NIH). Analysis of the antibody 

responses of vaccinated B10 and B10. BR mice revealed boosted IgG and 

IgG1 antibody levels compared to control mice and a change in their 

antigen recognition profiles, three high MW antigens (80-85kDa and the two 

H-2q restricted molecules, the 90-95kDa and 105-110kDa antigens) being 

recognised by antibodies in sera from vaccinated but not control mice. The 

ability to overcome genetic restrictions on antigen recognition by altering the 

mode and/or route of antigen presentation, thus perhaps shifting 

responsiveness of MHC genotypes to particular determinants or= boosting 

specific antibody levels sufficiently to reveal recognition of critical antigens 

is clearly important with respect to vaccine design. The polymorphism 

displayed at MHC class I and II loci within the human population makes 

single peptide vaccines undesirable. Some members of the population would 

almost certainly possess MHC molecules unable to bind the antigen prior to 

presentation to T cells or MHC molecules that could bind antigen but in 

such a way that presentation of antigen would stimulate T cells that 

generate responses irrelevant to protective immunity. As pointed out by 

Blackwell (1989) a successful vaccine should contain a battery of peptide 

epitopes to compensate for the genetically diverse MHC class I and class II 

molecules with which they are presented to T cells. The problems of 

genetic restrictions on the recognition of specific antigens can also be 

overcome by the appropriate use of adjuvants' or carrier proteins as 

suggested by the results presented in Chapter 7 in accordance with those of 

other workers (e. g. Del Giudice et al., 1986). 

Differential responsiveness to infection was observed within the slowly 

responding B10 congenic strains of mice and is a phenomenon described 

earlier for DBA/2 mice- (Worley et al. , 
1962; Lee and Wakelin, 1982b; 

Roach, 1986). Uniform behaviour within a group of genetically identical 

individuals is expected unless factors such = as parasite-induced effects are 
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also present. The series of experiments described in Section Two involving 

the extension or abbreviation of exposure to the parasite in poor- and 

non-responder strains indicated that the later larval and adult stages of T. 

muris were indeed apparently immunosuppressive, suppression of host 

immunity during primary infection also affecting the fate of subsequent 

infections. The mechanisms by which T. muris modulates host immunity are 

not known. However the ability to protect the non-responder B10. BR mouse 

strain against infection by vaccination was abrogated by prior exposure of 

mice to adult stages of T. mums. This was correlated with depressed IgGi 

levels, possibly the production of an irrelevant Ig isotype (IgG2a? ) and 

failure to recognise the three high MW antigens recognised when B10. BR 

mice were vaccinated and challenged without previous experience of the 

parasite. Thus one way in which T. muris may interfere with the 

development of protective immunity is by suppressing IgG1 production, 

although whether suppression is exerted at the level of the B cell, T cell or 

antigen presenting cell is open to speculation. Other mechanisms of 

immunomodulation may also operate. For instance Roach (1986) reported 

that adult T. muris E/S antigen was mitogenic. Investigations into the 

mitogenicity of this antigen preparation have been made and the results are 

presented in the appendix to this chapter. Experiments performed using 

naive mixed lymphocyte populations from the spleen and mesenteric lymph 

nodes, and cell populations fractionated into B and T lymphocytes suggested 

that adult E/S antigen probably' contained both B and T cell mitogens with 

lymphocytes from the non-responder B10. BR mouse strain perhaps being 

more susceptible to the mitogenic effects than cells from more resistant 

mouse strains. Similar findings have been reported by Roach (1986) for the 

poor responder B10 strain of mouse and suggest that the polyclonal 

activation and exhaustion of lymphocyte populations by mitogens, implicated 

as a parasite evasion strategy by many workers (e. g. Greenwood, 1974; 
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Hudson et al., 1976), may represent a mechanism by which T. muris 

suppresses host immunity. 

The protective components of adult EIS antigen, and indeed the 

parasite-derived immunomodulatory factors, have long been felt to originate 

in the stichocyte cells of the stichosome, in parallel with observations made 

for the related parasite Trichinella spiralis (Silberstein and Despommier, 

1984; Gamble and Graham, 1984). The immunohistochemical studies 

described in the final section of this thesis, using a panel of monclonal 

antibodies (McAb) raised against adult T. muris E/S antigen (Roach, 1986) 

demonstrated the clear recognition by the McAb probes of granules within 

the stichocyte cytoplasm. One of these McAb probes, shown to transfer 

passive immunity in vivo (Roach, 1986) was specific for the stichocyte 

granules only whilst the other McAbs also recognised antigens present in the 

lipid layer of the egg and cuticular antigens, presumably reflecting common 

epitopes, or, in the latter case, a common origin, This would suggest that 

at least some of the host-protective antigens contained within adult E/S 

products are stichocyte-derived with the specific cross immunity between the 

three trichuroid nematodes T. muris, T. trichiura and T. spirails (Lee et 

at., 1982; Roach et at., 1988) residing in the possession of common 

stichocyte antigens. 

To gain a complete understanding of the intricate interactions which 

occur between host and parasite it is necessary to consider all aspects of 

the host-parasite relationship. Two aspects have been addressed in this 

thesis, namely the influence of host genetics on the outcome of infection 

and in controlling the humoral immune responses to E/S antigen, and the 

modulatory effects the parasite may have on the development of host 

immunity. Little attention has been paid to the cellular mechanisms 

governing the development of host immunity to T. muris although T cells 

are known to play a central role in resistance to infection (Lee et al., 
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1983). Future studies should be aimed at examining the mechanisms by 

which T lymphocytes regulate an acute intestinal infection through the 

generation of protective immune responses and their involvment in the 

suppression of host immunity observed during chronic intestinal infection. 



APPENDIX - CHAPTER 9 
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A9.1 INTRODUCTION 

The data in this appendix are from a series of experiments performed 

to investigate the reported mitogenicity of T. muris E/S antigen (Roach, 

1986). Results are presented from experiments in which naive mesenteric 

lymph node (MLN) and spleen (SPL) cell preparations, and cell populations 

fractionated into T and B lymphocytes (by panning techniques and 

immunomagnetic separation - see Mason et al., 1987; Funderud et at., 

1987) were incubated with antigen and the degree of proliferation measured. 
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A9.2 RESULTS 

Table A9.1 Proliferative responses of spleen (SPL) and mesenteric lymph 

node (MLN) cells 

Pooled cells (2 mice/group) from naive and immune (day 74 p. i. ) BALB/c 

mice, at 5x106 cells/ml, 50p1/well, were incubated for 48 hours with 2 hour 

or O/N E/S antigen, pulsed for 6 hours with 3H-TdR, then harvested (see 
Chapter 2.4.3). Absolute values are given for the control values, the other 
results are expressed as a ratio of experimental cpm/control cpm. 

Cell population 

Naive 
SPL 

cells 

Antigen concentration 
(µg/ml) 

0 
1 
10 
50 
100 
200 

2 hour E/S O/N E/S 

2660 2660 
1.4 1.1 
1.8 1.4 
6.4 3.7 
9.8* 5.9* 
12.9 5.4 

0 2002 2002 
1 1.4 1.3 

Naive 10 2.4 1.6 
MLN 50 5.1 2.6 

cells 100 7.7* 2.9* 
200 7.9 1.7 

0 3575 3575 
1 1.1 1.6 

Immune 10 2.4 2.1 
SPL 50 9.9 9.7 
cells 100 18.1 17.6 

200 23.9 16.2 

0 2506 2506 
1 1.4 1.3 

Immune 10 2.2 2.3 
MLN 50 6.6 4.5 

cells 100 11.1 6.7 
200 12.8 5.1 

*see A9.3 
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Table A9.2 Proliferative responses of naive spleen cells after removal of T 

cells by panning 

Pooled spleen cells from 3 naive BALB/c mice were incubated on anti-Thyl 
coated plates at 4 *C (see Chapter 2.4.4). The cell S/N was removed and 
the T-cell depleted population (BsPL) incubated with a pooled 4 hour and 
O/N E/S preparation at 5x106 cells/ml, 50/cl/well. An unpanned mixed 

splenic lymphocyte population was treated similarly (BTsPL). After 48 hours 

the cells were pulsed O/N with 3H-TdR before harvesting. The percentage 
of T cells remaining in the T cell-depleted population was determined by 

FACS analysis using an anti-L3T4 plus anti-Lyt2-monoclonal antibody 
(McAb) preparation. Control cell samples, to which no anti-T cell marker 
McAbs were added, indicated the level of background fluorescence. 

FACS analysis 

%T cells Control 
BsPL 12.9 7.6 

Cell proliferations. Absolute values are given for the control values, the 

other results being expressed as a ratio of experimental cpm/control cpm. 

Antigen concentration (µg/ml) BSPL BTSPL 

0 51 52 
10 8.8 11.3 
50 11.5' 20.9 
100 5.9 16.7 

* see A9.3 
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Table A9.3 Immunomagnetic depletion of B cells from naive MLN 

preparations prior to incubation with antigen 

Pooled MLN cells from 5 naive BALB/c and 6 naive B10. BR mice were 
incubated with Dynabeads M-450 (Dynal) coated with sheep anti-mouse IgG 
(see Chapter 2.4.4). The cell SIN was removed and the B cell-depleted 
population (TMN) incubated with a pooled 4 hour plus O/N E/S 

preparation, AMA, ConA or LPS, at 5x106 cells/ml, 5O d/well. A mixed 
MLN lymphocyte preparation (BTMLN) was treated similarly. After 48 hours 
the cells were pulsed OIN with 3H-TdR prior to harvesting. The percentage 
of T cells in the B cell-depleted populations were determined by FACS 

analysis using an anti-thyl McAb (for BALB/c only). Control samples, to 
which no anti-thyl McAb was added indicated the level of background 
fluorescence. 

FACS analysis 

%T cells control 
BALB/c Tr&i 70.9 2.6 
BALB/c BTMLN 50.4 1.1 

Cell proliferations. Absolute values are given for the control values, the 
other results being expressed as a ratio of experimental cpm/control cpm. 

Antigen Antigen MEN TM N BTsPL 
Concentration B10. BR BALB/c B10. BR BALB/c B10. BR 

(tg/m1) 

0 7306 4076 600 105 6657 
1 1.5 1.2 0.9 0.9 1.5 

E/S 10 5.5" 2.8** 5.1 3.3 5.8 
50 12.2 9.4 14.2* 12.4* 13.6 
100 12.2 12.8 14.8 13.0 13.6 

1 13.0 34.2 139.5 1164.0 10.4 
ConA 5 17.0 38.7 125.9 - 16.7 

10 12.3 26.8 190.4 75.0 10.1 

0.5 1.3 1.2 0.9 0.9 1.0 
AMA 5.0 1.3 1.3 0.8 0.8 0.9 

50.0 1.7 1.7 1.8 0.9 1.1 

5 16.2 7.4 7.3 2.7 16.1 
LPS 10 15.3 9.2 6.2 3.5 17.0 

25 17.1 9.0 4.4 2.2 16.9 

**, * see A9.3 
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A9.3 DISCUSSION 

The results presented in Table A9.1 indirectly indicate that adult E/S 

antigen might contain B cell mitogens (see * values for E/S at 100/Lg/ml). 

Naive, mixed lymphocyte populations from both the spleen and mesenteric 

lymph nodes (MLN) were stimulated by E/S. However spleen cells 

proliferated to a greater extent in the presense of E/S antigen than MLN 

cells, the spleen containing a higher percentage of B cells than the MLNs. 

It is possible that the mitogenicity of E/S antigen resides in bacterial 

contamination of the E/S products. However E/S products collected after 

incubating worms for just 2 hours in medium stimulated naive cells to a 

greater extent than E/S collected after O/N culture yet presumably would be 

less likely to contain bacterial contaminants. Naive T cell-depleted spleen 

cell populations (BSPL) proliferated in response to E/S antigen (Table A9.2, 

e. g. * values for E/S at 50pg/ml) as did naive B cell-depleted MLN cell 

populations (T ) (Table A9.3, e. g. * values for E/S at 50µg/ml). However 

cell depletions were never 100% making a clear interpretation of the results 

difficult. Also the efficiency of the depletion methods was monitored by 

staining for T cells only. Ideally percentages of both B and T cells in the 

fractionated cell populations should have been determined. Thus the B 

cell-depleted MLN cell population from BALB/c mice (Table A9.3) 

contained 70.9% T cells but the number of B cells remaining in the other 

29.1% of cells was not estimated. Even though the limited proliferation of 

the B cell-depleted MLN cells observed after culturing with LPS would 

suggest that the depletion process had in fact removed most of the B cell 

activity, until purer B and T cell lymphocyte populations can be obtained it 

is only possible to speculate as to the identity of the parasite-derived 

mitogens' target lymphocyte population. Interestingly the proliferation of 
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unfractionated naive B10. BR MLN cells in the presence of E/S antigen was 

greater than that seen in unfractionated naive BALG/c cells, particularly at 

lower antigen concentrations (Table A9.3, e. g. "- values for E/S at 

10, ag/ml). This suggests that a contributory factor to the non-responder 

status of B10.13R mice may be a greater susceptibility of their lymphocytes 

to the mitogenic effects of adult E/S antigen. Roach (1986) reported similar 

findings with the poor responder BIO strain of mouse. It is possible that 

BIO background genes influence lymphocyte sensitivity to mitogenic factors 

in E/S. Gao et at., 1988, reported that the action of a substance produced 

by splenic T cells from mice with chronic Trypanosoma cruzi infection, 

which inhibited the induction of delayed-type - hypersensitivity to a range of 

antigens, was genetically highly restricted. Although all three inbred strains 

of mice tested produced the suppressor substance (SS) after T. cruzi 

infection only one was sensitive to its suppressive action. The genetic 

restriction of the SS activity was apparently not related to the H-2 gene 

complex nor susceptibility to infection. In contrast, the sensitivity of 

lymphocytes from mice of the B10 genetic background to the mitogenic 

effects of adult T. muris E/S may contribute to their poor responder status. 

Parasite-derived factors, mitogenic for B and T cells have been identified 

for a number of parasites including Trypanosoma rhodesiense (Campbell et 

al., 1982), T. brucei (Esuruoso, 1976) and Brugia malayi (Wadee and 

Piessens, 1986). Parasite mitogens are thought to result in the polyclonal 

hypergammaglobulinaemia observed in such parasite infections, the elevated 

serum immunoglobulins including anti-parasite antibodies and a large 

proportion of antibodies directed against irrelevant or non-parasite antigenic 

determinants (see Mitchell, 1979). 

The polyclonal activation of B cells by, for instance, malaria and 

trypanosome parasites may act as a parasite evasion mechanism causing 

generalised immunodepression (Greenwood, 1974; Hudson et at., 1976). 
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Diamantstein et al., 1976, suggested that mitogenic stimulation of B cells in 

the absence of a particular antigen leads to a temporary loss in their ability 

to respond to that antigen. Thus, as was suggested by Hudson et al. (loc. 

cit. ), the polyclonal activation of B cells in the presence of a continuous 

trypanosome infection could result in the depletion of antigen-reactive B 

cells and hence immunodepression. Although hypergammaglobulinaemia 

during chronic T. muris infection has not been described, humoral responses 

to T-dependent and T-independent antigens are depressed in mice with 

chronic worm burdens (Lee and Wakelin, 1983). Thus the polyclonal 

activation and exhaustion of lymphocyte populations by mitogenic factors 

may be a mechanism by which T. muris suppresses host immunity. 

A9.4 SUMMARY POINTS 

I. Adult T. muris E/S antigen was found to contain mitogenic 

components. 

2. E/S antigen stimulated proliferation of naive B cell-depleted and T 

cell-depleted cell populations suggesting that both B and T cell mitogens 

were present. 

3. The production of mitogenic factors may represent a mechanism by 

which T. muris suppresses host immunity, via polyclonal activation and 

exhaustion of lymphocyte populations. 
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