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Abstract 
 

The research discussed in this thesis explores a new method for the detection of 

grinding burn temperature using a laser irradiation acoustic emission (AE) 

sensing technique. This method is applicable for the grinding process 

monitoring system, providing an early warning for burn detection on metal alloy 

based materials (specifically nickel alloy based materials: Inconel718 and 

MarM002). The novelty in this research is the laser irradiation induced thermal 

AE signal that represents the grinding thermal behaviour and can be used for 

grinding burn detection.  

A set of laser irradiation experiments were conducted to identify key process 

characteristics. By controlling the laser power, the required grinding 

temperatures were simulated on alloy test materials. The thermal features of the 

extracted AE signal were used to identify the high, medium and low 

temperature signatures in relation to the off-focal laser distances. Grinding 

experiments were also conducted to investigate burn conditions. The extracted 

AE data was used to identify grinding burn and no burn signatures in relation to 

the depth of cuts. A new approach using an artificial neural network (ANN) was 

chosen as the pattern recognition tool for classifying grinding burn detection 

and was used to classify grinding temperatures by extracting the mechanical-

thermal grinding AE signal. The results demonstrated that the classification 

accuracy achieved was 66 % for Inconel718 and 63 % for MarM002 materials. 

The research established that the wheel wear has a large influence on the 

creation of burn within the workpiece surface. The results demonstrated that the 

AE signals in each grinding trial presents different levels of high, medium and 

low temperature scales. This type of information provides a foundation for a 

new method for monitoring of grinding burn and wheel wear.  
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PXI PCI-extensions for instrumentation 
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Nomenclature 
 

Symbol 

 

Units 

 

Quantity 

g Integer Learning rate 

a୮ mm Depth of cut 

Ɂ mm Skin thickness (or 

penetration depth of 

laser) 

ɉ ݉ߤ Wavelength of the laser 

『  Absorption coefficient 

Ɋ୭ ܪ ݉ൗ  The permeability of 

vacuum 

Ɋ୰ ܪ ݉ൗ  The initial permeability 

of metal 

｠  Poisson’s ratio 

ぅ kg/m Material density 3 

ɐ כ 10 ȳ. m
ൗ  Electrical conductivity 

ɘଵ mm Initial radian of laser 

beam 

ɘଶ mm Laser spot radius 

c୮ J kg. KΤ  Special heat capacity 

E J Laser total energy 

fଵ mm Laser focal length 
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fଶ mm Laser off-focal length 

F(ɘ)  Fourier transform 

function 

G mm3/mm G-ratio 3 

I W
mmଶൗ  Laser energy flux 

K W m. KΤ  Thermal conductivity 

Ƚ mଶ sΤ  Thermal diffusivity 

K୰  Kurtosis 

P Watts Laser total power 

Q୵ mm3 Material removal rate /min 

Rୟ µm Roughness 

S୩  Skewness 

t s Time 

T(0, t) ל C Temperature of the 

material surface after 

time t (Laser) 

Uୖୗ  Root-mean-square 

(RMS) 

V ݉/݉݅݊ Feed Rate 

Vୱ ݉/ݏ Spindle speed (wheel 

speed) 

V୵ ݉݉/݉݅݊ Workpiece speed 
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Chapter 1:       Introduction  

1.1 Introduction 

Grinding is a widely used machining process, this thesis focuses on its 

application within the aviation industry. By using it’s bonded abrasive 

properties as a cutting media, high removal rates are achieved with a high 

quality surface finish. Grinding wheels are composed of two materials: tiny 

abrasive particles called grains or grits, which provide the cutting of material 

removal, and a softer bonding agent to hold the countless abrasive grains 

together in a solid structure. It has been reported that grinding is a major 

manufacturing process which accounts for around 20-25% of total expenditure 

on machining operations in industrialised countries (Malkin and Guo 2008).  

To ensure high quality, efficiency and reliability in modern manufacturing 

industries powerful instruments are needed. Modern process monitoring takes 

advantage of the power increasing instruments providing an increased capacity 

for manufacturing condition monitoring systems. There is an increased demand  

for intelligent monitoring systems within the manufacturing industry (Tönshoff, 

Karpuschewski et al. 1998) this is due to the recent developments and trends in 

machining technologies such as more automation and operations towards the 

high end removal rates and at the same time not compromising the machined 

surface finish. The examples are high speed and vitreous improved performance 

extreme removal (VIPER) grinding. High speed grinding gives both component 

quality and  high productivity (Jackson, Davis et al. 2001). 
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 Rolls Royce developed VIPER grinding in collaboration with the wheel 

manufacturer, Tyrolit to produce engine parts instead of the creep feed grinder 

because the creep feed grinder is slower. The VIPER grinding process uses a 

vitrified Aluminium Oxide (AlଶOଷ) wheel at high speed to remove hard-to-cut 

aerospace alloys. According to Rolls Royce, the process is capable of stock 

removal rates of 80  (mmଷ mm. s)Τ  of the chosen wheel width which is eight 

times the achievable rate  when compared to the plated CBN wheel technology 

for super abrasive machining of nickel based alloys (Capes 2010). 

Current real time monitoring techniques for manufacturing  do not yet provide 

satisfactory results, particularly in terms of high sensitivity and wide bandwidth 

responses (Erkki Jantunen 1996). It has since been realised that grinding 

processes contain different levels of mechanical, thermal and fluidic dynamical 

actions. AE monitoring for grinding is more challengeable than for other 

machining due to irregular distribution of grits. Effective grinding monitoring is 

necessary for ensuring grinding quality and improving grinding productivity 

(Griffin and Chen 2007).  

This research was carried out with the funding support of the Engineering and 

Physical Science Research Council (EPSRC) and through industrial 

collaboration with Rolls-Royce. The aerospace turbine engine is one of the key 

products manufactured by Rolls-Royce. A turbine is an assembly of discs, 

blades attached to turbine shafts, with nozzle guide vanes, and a casing 

structure. As an example, a section of a Rolls Royce gas turbine engine and the 

turbine blades are illustrated in Figure 1-1. 
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Turbine blades convert the energy of sucked in air via compression of various 

ratios to give output kinetic energy. The gas pressure and temperature both 

increase as they pass through the turbine. 

 

Figure 1-1: Rolls Royce gas turbine engine and a section of turbine blade which 

connects to the relevant disk (RollsRoyce 2007). 

In most cases, many geometric features of these turbine blades are formed by 

the grinding process. The major problems observed after the grinding process 

are grinding burn, chatter giving rise to surface roughness deterioration. The 

plastic deformation involved in all the grinding processes has an impact on the 

dissipated energy converted into heat which, in turn, raises the temperature in 

the grinding zone. Temperature rise is an important factor and its major effects 

can be categorised as the following: 

•  Adverse effects to the surface properties, including metallurgical 

changes that can be catastrophic to high speed rotatives  
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• Temperature rises cause an increase in residual stresses on the 

workpiece 

• Temperature gradients in the workpiece cause distortion which is due 

to thermal expansion and contraction of the workpiece surface, 

ultimately resulting in a change of dimensional accuracy. 

Thermal expansion along with material burn generates a thermal elastic wave 

which is the source of the AE signal (Inasaki 1999; Liu, Chen et al. 2006; 

Kalpakjian, Schmid et al. 2009). 

There are many sensing techniques used to detect material burn as it is the most 

common type of thermal damage in a material during the grinding process. The 

powerful technique of AE has become very popular in identifying grinding 

defects. The reason for this is that AE phenomenon is related to the elastic 

energy release at very high frequencies (Kwak and Song 2001).  A successful 

AE monitoring technique relies on a better understanding of the AE in relation 

to grinding behaviours and more advanced intelligent signal processing 

techniques. 

An AE sensor has a much higher sensitivity and is more responsive in terms of 

speed and capacity to record change when compared to other sensors such as 

force or power. By using just power or force sensors, it is not possible to detect 

signals with very high frequency ranges, The AE extracted signal can easily 

pick up those events that are related to grinding burn however the other 

mentioned sensors are less sensitive to change. 
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The commonly used AE extracted features can be translated in either the time or 

frequency domain. For example, the value of the RMS (Root Mean Squared), 

Kurtosis values, AE count number and the energy peak of fast Fourier transform 

(FFT). It is very difficult to use AE signals to target a particular grinding action 

with a single parameter. In order to tackle these difficulties the main tasks 

should be considered as follows: (a) elimination of irrelevant noise signals; (b) 

feature extraction in relation to the physical grinding behaviour. 

The features from the AE sensor are passed through an algorithm which could 

be classified as defects based on associated measurements. This stage is called 

pattern recognition which is implemented to identify grinding defects. Neural 

Networks (NN) are often used for pattern recognition but there are some 

limitations to neural networks which are structure selection, local minima and 

long training times for pattern classification. 

 

1.2 Aim and Objectives 

The aims of this research are to develop a grinding process monitoring system 

which provides an early warning for grinding burn and wheel wear using AE 

signals. 

In order to achieve these aims, the following objectives have been set:    

• The development of a wide frequency bandwidth AE monitoring 

system for grinding which covers the major AE feature frequency range 

of aerospace alloy  materials 
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• The identification of the AE signal features induced from different AE 

sources, particularly the difference between mechanical stress, thermal 

stress and fluid dynamic stress 

• The pattern recognition of AE signal features for grinding process 

monitoring and defect warning 

• The investigation of grinding wheel wear effects on AE signals 

• The investigation of the critical AE features of grinding (material) burn 

in relation to surface integrity 

 

1.2.1 Methodology  

The research employed the following methods in order to achieve the aims of 

developing a generic grinding process monitoring system. The research program 

involved the design of an AE sensor system for monitoring thermal, mechanical 

and fluidic dynamic stress behaviours extracted from the grinding process. 

A series of laser irradiation and grinding experiments were arranged in line with 

the research objectives. There are two AE sensors from Physical Acoustic 

Corporation (PAC) used to provide the extraction sources for AE signals to give 

the relationship of thermal, mechanical or fluid turbulence stress variables from 

laser irradiation and grinding tests. The integrated AE sensors from the 

respective experiments responded to a wide range of AE signals obtained from 

grinding the nickel based alloys of Inconel718 and MarM002 materials. The 

laser irradiation experiments consisted of simulating high temperature on 

Inconel718 and MarmM002 material workpieces without any grinding action. 
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The laser irradiation experiments were arranged in the Nd: YAG laser machine.  

An E-type thermocouple was placed at the centre of the laser beam spot on the 

front surface of the workpiece. In addition, an AE sensor was attached on the 

opposite side of the workpiece. By controlling the laser energy flux and 

irradiation time, the temperature on the workpieces could be controlled by the 

given off-focal distances to achieve similar thermal behaviour within the 

grinding process. The AE signal was able to detect thermo-elastic wave changes 

due to laser irradiation on these materials.  

AE signals data and temperatures are measured simultaneously in the further 

investigation.  

A series of grinding tests were arranged in a MakinoA55 machine centre to 

obtain both burn and no burn signatures on AE signals. The machine was used 

to grind workpiece materials seven times in a sequential manner using only one 

dressing this to provide the required burn phenomenon. The wheel wear was 

measured after seven passes using the razor blade technique. The surfaces’ 

roughness are measured and recorded after each of the seven grinding passes on 

the workpiece materials, this was carried out in five different sections. The AE 

signals with burn and no burn signatures are acquired at different depth of cuts 

(0.02 mm to 0.2 mm) for further processing.  

The Fast Fourier Transform (FFT) and the Short Time Fourier Transforms 

(STFT) are applied to extract features from AE signals. The FFT is suitable for 

extracting the frequency components at a particular finite time however the FFT 

does not have continuous time information when an event occurs such as when 
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material experiences deformation, fracture or, a combination of both. A STFT 

however, was developed to overcome this problem. The STFT addresses the 

issue of considering time as well as the frequency components and associated 

intensities. This technique is suitable for extracting features from non-stationary 

stochastic signals (James Griffin 2006). 

At the end of the test the ANN were employed to assist the grinding burn 

identification. The ultimate goal of this research is to predict burn and no burn 

within the grinding zone using laser irradiation. The hypothesis is that the 

thermal features of AE data from laser irradiation are similar to the thermal 

features of AE data experienced in grinding. To validate this hypothesis the 

ANN was employed to identify the thermal features within the AE signal 

extracted from laser irradiation and trained to classify high, medium and low 

temperatures. The thermal features of AE data from grinding were tested in the 

ANN for the verification of this technique. The output neurons from an ANN 

are presented in the results ranging from 1 to 3 which distinguished between 

high, medium and low temperatures due to severe burn, normal burn and no 

burn phenomena. 

The defects of the surface integrity were judged by surface measurement and 

metallurgical observation. The relationship between wheel wear and AE signals 

provide the foundation for AE process monitoring. 

1.3 Main Contributions 

Main contributions of the research are as follows:  
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• One of the most important contributions of this research is presented in 

Chapter 5. The surface temperatures on workpiece material were 

measured as a response of laser irradiation which was varied by 

changing laser off-focal distances. The measured values of surface 

temperatures were then compared with the surface temperatures 

calculated by the theoretical calculation of laser irradiation. The result 

showed that 34 mm, 40 mm and 46 mm produce high, medium and low 

temperatures. Using the STFT technique, the high, medium and low 

temperatures AE footprint signatures were identified through laser 

thermal AE signal extraction. There was no grinding in laser irradiation 

evaluations. Grinding burn occurs from the increased temperature of the 

abrasive materials coming into contact with workpiece materials. The 

burn was monitored using AE sensor extraction at different depth of cuts 

(0.02 mm to 0.2 mm) during grinding. These burn and no burn AE 

footprint signatures were identified through grinding producing thermal 

signatures identified from AE signal extraction. 

• The other major contribution of this research is presented in Chapter 6, 

where all laser thermal AE signals and all grinding thermal AE signals 

are processed into a  normalised format and then concatenated together 

to be trained and tested against the ANN network system. The method 

here employed a test of several cases based on laser thermal AE data 

seen and not seen by the ANN and several cases based on grinding 

thermal AE data seen and not seen by the ANN.  The trained ANN was 

then tested against the generalised difficult to distinguish burn and no 
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burn phenomena. This technique provided sufficient results for the 

prediction of grinding burn (Inconel718 and MarM002) and defect 

warning.  

1.4 Outlines of the thesis 

• Chapter 1 is an introduction to the thesis. The aim and objectives of this 

research are described in this chapter. The major work and research 

contributions are briefly discussed. An outline of the thesis is also given 

at the end of this chapter.  

• Chapter 2 describes the current knowledge of condition monitoring 

techniques, AE process monitoring for grinding and laser irradiation 

application in grinding and classification of the grinding conditions. This 

knowledge is obtained from relevant literature including books, 

conference papers, journals, dissertations, theses and technical reports. 

At the end of this chapter research gaps are outlined.  

• Chapter 3 describes the AE sensing system development as the 

experiment setup for both laser irradiation and grinding tests. The 

grindability of materials along with the properties of grinding wheels are 

also discussed. The measured surface roughnesses are also described at 

the end of this chapter.  

• Chapter 4 describes the feature extraction techniques in the time domain, 

frequency domain, and both time-frequency domain. The STFT (Griffin 

and Chen 2007) is discussed with a conclusion that it can be applied to 

the extraction of AE features. 
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• Chapter 5 investigates the thermal features extracted from laser 

irradiation and grinding experiments using energy spectrum analysis. 

The STFT signal processing technique was mainly used to extract sensor 

information. The comparison between the theoretical model and the 

measured models of the surface temperatures are based on laser 

irradiation experiments which are also discussed. The extracted laser 

thermal AE features are discussed where the data was obtained from 

three off-focal distances. The extracted grinding AE data were also 

discussed where the AE data was obtained from two different depths of 

cut. 

• Chapter 6 describes the intelligent diagnostic technique where the ANN 

was applied to classify the burn within the tested grinding zone. The 

ANN has been trained for distinguishing high, medium and low 

temperatures when laser thermal AE data was used as the input to the 

ANN. The grinding thermal AE data was used to test the network, the 

result predicts the grinding temperatures relation to burn within the 

grinding zone. 

• Chapter 7 draws conclusions of the research and provides suggestions 

and recommendations for future work.  
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter surveys the current knowledge of the grinding behaviour within the 

grinding process, process monitoring using acoustic emission for extracting 

grinding signals, laser irradiation application in grinding and clarification of 

grinding condition through the employment of different classification 

techniques.  

The chapter highlights the benefits and problems using current grinding process 

monitoring and different feature extraction techniques, feature selection and 

different classification techniques.    

There are two major methods available in the literature for condition monitoring 

which can be divided into direct (Kurada and Bradley 1997) and indirect based 

sensor monitoring.  

The indirect method for observing the condition of a cutting tool or grinding 

wheel are optical measurement of wear, such as the periodic observation of 

changes in tool/grinding wheel profile. The common reliable techniques are 

done by using a microscope. This requires stopping the machine for tool or  

grinding wheel observation.  

A direct method involves programming the tool to contact a sensor after every 

machining cycle, this allows for the detection of broken tools.  
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Another direct method of observing tool conditions involves the correlation of 

the tool condition  obtained from parameters such as cutting forces, power, 

temperature and accelerations  which can show vibration and chatter 

characteristics as well as burn (Griffin and Chen 2009). A powerful technique is 

AE which uses a piezoelectric transducer mounted on a tool holder with a 

sufficient medium to ensure little signal loss from sensor to source (Kalpakjian, 

Schmid et al. 2009). Different signal extraction techniques are chosen by 

different authors to extract the key features from the signals. These are 

discussed in the feature extraction section of this chapter.  

After extraction, key features are used to populate the classification system for 

the clarification of the recognised machining condition. There are different 

classification methods described and applied in the literature for the clarification 

of the various machining conditions.  

Finally, based on a recent study, the conclusive remarks are mentioned and 

research gaps outlined at the end of this chapter.    

2.2 Grinding behaviour 

Grinding behaviour can be defined as grinding wheel behaviour, thermal 

behaviour, mechanical behaviour and the coolant effect on the grinding process.  

The effect of thermal damage and wheel wear are discussed at the beginning of 

this chapter. The wheel life and ground workpiece quality assessment are also 

important issues of grinding operations. 
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2.2.1 Thermal effects in grinding 

Thermal damage on workpiece material is one of the major problems in 

grinding. It can directly affect the workpiece quality and it can limit the 

production rates especially in machine component production in the aerospace 

industry. The aerospace industry often uses creep feed grinding in which the 

depth of cut is increased and feed rate is decreased compared with normal 

grinding practice which is not as dynamic for roughing and finishing operations. 

The creep feed grinding is used for large amounts of material removal. The 

grinding process requires high input energy in order to remove material from 

the workpiece. This high input energy leads to an excessively high temperature 

in the grinding zone which can cause thermal damage to the workpiece. It is 

important to understand the underlying factors of thermal damage which affect 

the workpiece quality. There are various kinds of thermal damage which could 

be identified on the workpiece surface such as (Malkin and Guo 2007): 

• Burning 

• Phase transformation 

• Softening (tempering) of the surface layer with possible rehardening 

• Unfavourable residual and tensile stresses 

• Cracks and reduced fatigue strength 

A number of researchers have investigated burn and temperature in grinding 

(Mayer Jr, Purushothaman et al. 1999; Chen, Rowe et al. 2000; Morgan and 

Rowe 2000; Rowe and Jin 2001; Jin, Rowe et al. 2002). The grinding burn is a 

tempered colour which is a consequence of a thin oxide layer formation on the 
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ground surface. The maximum temperature on the grinding zone affects the 

thickness of oxide layers. These layers are ferrous materials which are mainly 

composed of Fe2O3, Fe3O4 and FeO. When the grinding burn occurs on the 

workpiece surface this can be attributed to an increase in grinding force which 

can sharply increase wheel wear and has a direct effect on the surface 

roughness. There is another phenomenon which often occurs namely metals 

adhering between voids within a grinding wheel block during the up machining 

action (this state is called wheel loading). With wheel loading, the grinding 

process will be in an abnormal state and the grinding temperature rises to a very 

high level (Kwak and Ha 2004). 

There are many models based on heat transfer in grinding which have been 

developed to study the grinding temperature. The heat transfers in grinding 

based on the sliding heat source model are developed by Jager and Carlshaw in 

1942 (Guo, Wu et al. 1999). This model describes a heat flux distribution 

uniformly across the grinding contact. This model is still used by many 

researchers. Most thermal analysis is based on moving heat source theory as 

shown in Figure 2-1. 
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Figure 2-1: illustration of grinding and thermal model (Guo, Wu et al. 1999). 

The total heat flux distribution in the grinding zone is usually modelled as being 

triangular, as shown in Figure 2-1, or uniform. In order to calculate the grinding 

temperature, it was necessary to specify the total heat flux distribution and 

energy partition to the workpiece at the grinding zone. The energy partitions to 

the workpiece and heat flux distribution within the grinding zone were 

estimated by matching the workpiece temperature to analytically calculated 

values (Kim, Guo et al. 1997; Guo, Wu et al. 1999; Rowe 2001).   

Xu and Malkin (Xu and Malkin 2001) presented a comparison of methods to 

measure grinding temperatures. There experiments consisted of thermocouple, 

optical fibre with two colour infrared detectors, and a foil/workpiece 

thermocouple. All three methods provided comparable results where 

temperature responses provided reliable results with the analytical predictions of 

moving heat source analysis. They argued that foil/workpiece thermocouple 

works better than other methods and could detect a periodic peak temperature at 

wheel rotational frequency.  
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The heat generation in the grinding zone is one of the critical problems in terms 

of workpiece quality. The coolant has a strong effect on the chip formation 

process. It is building up a lubricant film in the grinding zone. This lubricant 

film can lower the friction, forces, and cool the workpiece material and wheel 

surfaces. However, too much lubrication can have a negative thermal effect as 

the efficiency of the cutting process is reduced and relatively more energy is 

used in the shearing and deformation processes (Brinksmeier, Heinzel et al. 

1999). 

The temperature distribution in the contact arc between the grinding wheel and 

workpiece in creep-feed grinding was investigated by (Kuriyagawa, Syoji et al. 

2003). They realised that optimum conditions of wheel and workpiece speed 

could improve the cooling effect at the face. There are many investigations of 

temperature in the grinding arc carried out with thermocouples integrated into 

the workpiece (Guo and Malkin 1994). Boiling of the coolant film in the contact 

zone is partially responsible for thermal damage in grinding. During the film 

boiling, a vapour layer builds up between workpiece and coolant that strongly 

hinders the heat transfer. The boiling temperature of the coolant increases 

significantly if pressure is built up in the contact zone. This resulting delay of 

film boiling provides a longer period of lubrication and heat dissipation of the 

coolant, and helps avoid thermal damage (Brinksmeier, Heinzel et al. 1999). 

2.2.2 Grinding wheel wear 

Grinding is not a simple abrasion process. The grit penetrates the workpiece and 

ploughs the material away. To maintain a high material removal rate, the grain 
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needs to be constantly sharp. If a wheel is used for a long time during grinding 

then the wear occurs and acts like wear also seen from other tools in machining. 

Tonshoff et al (Tönshoff, Friemuth et al. 2002) reported that there is a thermal, 

mechanical and chemical effect on the contact zone in any abrasive process. 

When the abrasives are worn, the penetration depth is reduced and the material 

removal rate drops. It has a huge effect on the material removal rate, G ratio, the 

efficiency and, the cost of the process (Tawakoli, Westkamper et al. 2009). The 

G-ratio is a commonly used parameter to characterise wheel wear. It is the 

volume of material removed per unit divided by volume of wheel wear. The 

lowest wearing wheel, giving the biggest G-ratio, may not be the best as it 

requires larger forces and energies which leads to excessive temperatures. A 

better lubricating grinding fluid should increase the G-ratio, whilst also 

lowering the forces and temperature (Malkin and Guo 2008; Kalpakjian, 

Schmid et al. 2009).   

The grain shape is very important because it determines the tool geometry. 

Figure 2-2 shows  ɀ as the clearance angle, Ʌ as the wedge angle, and ߙ as the 

rake angle. A grinding wheel can present to the surface rake angles in the range 

of +45°C to 60 °C or greater. 
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Figure 2-2:  The rake angle of abrasive particles can be positive, zero or, 

negative(Black, DeGarmo et al. 2007). 

Grits with large negative rake angles or rounded cutting edges do not form chips 

but will rub or plough a groove in the surface. This abrasive machining is a 

mixture of cutting, ploughing and rubbing, with a percentage of each being 

highly dependent on the geometry of the grit. The grits are continuously 

abraded, fractured, or dislodged from the bond, new grits are exposed that have 

been cut, ploughed and rubbed and are continually changing. A high percentage 

of the energy used for rubbing and ploughing goes into the workpiece, but when 

chips are found, 95% to 98% of the energy (heat) goes into the chip (Black, 

DeGarmo et al. 2007).   

The grinding wheel wear caused by three different mechanisms were classified 

as:  attritious wear, grain fracture, and bond fracture. These three types of wear 

occur simultaneously during grinding on the grinding wheel. The mechanism of 

wheel wear is shown in Figure 2-3. 
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Figure 2-3: Illustration of wheel wear mechanisms: A-attritious, B-grain 

fracture and C-bond fracture (Malkin 1989; Lachance, Warkentin et al. 2003). 

In attritious wear the cutting edges of an originally sharp grain can become dull 

and develop wear flat. The wear flats on active grains lead to an increase in the 

area of contact and frictional interactions between abrasive grain and workpiece. 

At the point of dulling the abrasive grain experiences a very high temperature in 

the area of contact that greatly enhances adhesion and chemical reaction 

between the two surfaces. If the grain and bond fracture does not occur during 

grinding then the plateau area on the grain widens and the rate of wear 

increases. If fracture is delayed further, as with hard grinding wheels, then the 

wheel become glazed and the workpiece becomes thermally damaged (Jackson, 

Mills et al. 2003).   

Grain fracture occurs due to the removal of abrasive fragments by fracture 

within the grain. If the wear flat caused by attritious wear is excessive, the grain 

becomes dull and grinding becomes inefficient and produces undesirably high 

temperatures. Bond fracture, mainly for the vitrified wheels, occurs by 

dislodging the abrasive from the bond. This occurs due to the friction between 
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the chip and the wheel bond. If the bond is too strong, dull grain cannot be 

dislodged. This prevents other sharp grains along the circumference of the 

grinding wheel from contacting the workpiece to remove chips, and the grinding 

process becomes ineffective.   

If the bond is too weak, the grains are dislodged easily, and the wear of the 

wheel increases. In this case, maintaining dimensional accuracy becomes 

difficult. The attritious  wear plays a lesser part in contributing to the decrease 

of the wheel volume, but it could be reason for the end of the wheel life (Malkin 

and Guo 2008; Kalpakjian, Schmid et al. 2009). 

All these wear mechanisms of attritious wear, grain fracture and bond fractures 

contribute to changes in the grinding wheel topography. These changes of the 

grinding wheel topography affect the quality of the final component. Therefore 

it is important to maintain the required material removal rate, cutting ability and 

surface integrity of the workpiece, and in order to do so, the grinding wheel 

should be dressed frequently. 

2.2.3 The performance of grinding fluid 

A number of researchers have studied the important factors that affect the 

performance of the grinding fluid. The basic requirements of the fluid in the 

grinding zone are lubrication, direct cooling and transport of debris from the 

cutting zone (Gviniashvill, Webster et al. 2005). They presented a fluid flow 

model to calculate the coolant contact zone flow rate based on the coolant 

pressure in the contact zone. Klocke and Baus et al (Klocke, Baus et al. 2000) 

introduced coolant induced forces in CBN high speed grinding with shoe 
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nozzles. Ebbrell et al (Ebbrell, Woolley et al. 2000) investigated the effects of 

cutting fluid application methods on the grinding process. They were able to 

show that nozzle positions affect the volume of cutting fluid passing beneath the 

grinding wheel. They succeeded by raising the nozzle position above the area of 

reversed flow and increased flow rate beneath the wheel to improve surface 

quality. 

2.3 Acoustic emission technique for grinding monitoring  

In 1955 Josef Kaiser published his thesis where he reported that engineering 

materials in general emit low amplitude clicks of sound when they are stressed. 

His work produced a new non-destructive testing technology -Acoustic 

emission- which started to gain momentum in the 1960s (T.Holroyd 2000). This 

research was mainly concerned with the extraction of an AE signal which was 

used to monitor the grinding process. 

AE can be defined as the “transient elastic energy spontaneously released in 

materials undergoing deformation, fracture or combination of both” (Dornfeld 

and Kannateyasibu 1980).  

There are various applications of the AE technique reported in the literature for 

example contact detection between wheel and workpiece (Dornfeld and Cai 

1984; Inasaki and Okamura 1985), burn detection (Liu, Chen et al. 2006), 

surface integrity (Webster, Marinescu et al. 1994), metal cutting (Ravindra, 

Srinivasa et al. 1997), ductile/brittle (Bifano and Yi 1992) and tool wear (Pai 

and Rao 2002).  
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AE is a type of elastic energy which is released due to material particle 

displacement under stresses during grinding. This elastic energy generates 

elastic waves which can propagate through material media and are detected by 

acoustic emission sensors.  When different external forces act on the same 

material or the same external force acts on different materials, the elastic waves 

will have different characteristics which are a good indicator for the properties 

of material and a feature of a processing (Liu, Chen et al. 2006). 

The commonly used feature parameters for the AE are in the time domain, the 

frequency domain within condition monitoring or a combination of both such as 

the peaks of RMS values, crest factors analysis (i.e. the ratio of the peak to the 

RMS level of a signal), kurtosis analysis, and moving average windowing 

technique. 

In Table 2-1, summarised is the current status of the commonly used AE feature 

parameters related to grinding by different authors. 

Table 2-1: Current status of commonly used AE feature parameters. 

 

Author/Year Aim Signal & Method
Ravindra(1997) Tool condition monitoring Power of the dynamic and 

residual of AE signal, AR parameters

De Agure,(1999) Burn Burn

Wang(2001) Burn Band Power, kurtosis and skew, 

and AR coefficient of AE

Kwak(2001) grinding faults RMS of AE

Hwang et al.(2000) Wheel wear RMS of AE signals, magnitude of

peak frequency of AE power spectral density

Lezski(2001) Wheel wear AE Statisical and spectral features

Mokbel and Maksoud 

(2000) generated by using FFT,AE spectral amplitude

different/truing speed ratios 

Q.Liu (2005) Grinding burn AE, Wavelet packet transform

Liao et al. (2007) Wheel wear AE, discrete wavelets decomposition

James Griffin (2009) grinding burn and chatter AE, wavelet
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Frequency domain analysis produces frequency spectrum analysis such as FFT 

(Fast Fourier Transform) which is widely applied to signal processing 

techniques in everyday engineering. These parameters are commonly used as 

AE feature parameters however these parameters cannot be directly related to 

particular behaviour in grinding. Grinding acoustic emission is the transient 

elastic energy spontaneously released when materials are undergoing 

deformation or fracture or both. For these non-stationary signals, FFT will make 

the frequency composition average over the duration of the signals. As a result, 

FFT cannot adequately describe the characteristics of the transient signals in the 

frequency domain (Griffin and Chen 2007). The advantage of the AE sensor is 

that it is easy to mount and works at a relatively low cost. There is no negative 

influence on the stiffness of the machine tools and it is even capable of 

transmitting a signal from its rotating parts (Hundt, Leuenberger et al. 1994; 

H.K. Tonshoff 2001). 

Hundt et al, (Hundt, Leuenberger et al. 1994; Hassui, Diniz et al. 1998) states 

that the sources of AE signal in grinding are mainly the bond and grain fracture, 

grain cracks and friction between abrasive grain and workpiece. All of these 

attributes are directly connected to the chip formation and wheel wear. 
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Figure 2-4: Sensor application vs. level of precision and control parameters 

(Lee, Hwang et al. 2006). 

As shown in Figure 2-4, the  acoustic emission is highly desirable due to its 

relatively superior signal to noise ratio (SNR) which means it compares the 

level of a desired signal to the level of background noise and sensitivity at the 

ultra precision scale when compared to load cell (power sensor) for example, 

with different levels of AE detectable even at extremely low depth of cut (Lee, 

Hwang et al. 2006).    

The application of AE sensors has become very popular in many kinds of 

machining processes over the last three decades. Force, displacement, vibration 

and power sensors are commonly used to monitor the condition of the 

machining processes. AE has been reported to provide useful information about 

the condition of the operations (H.K. Tonshoff 2001). 

Huang and Yin (Huang and Yin 2007) present the grinding characteristics of 

engineering ceramics in a high speed regime. They compared the performance 
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of high speed grinding with conventional speed grinding. The grinding forces 

(normal and tangential) and AE energy are measured in order to characterise the 

material removal quality of five polycrystalline ceramics based on 

experimentation. 

The coolant supply in high speed grinding plays a more important role than 

conventional speed grinding. If the coolant failed to reach the grinding zone 

sufficiently, thermal damage would result in the workpiece. In their 

investigation, the flat type of nozzle was replaced by the shoe type of nozzle to 

bring the coolant closer to the grinding zone. The nozzle position plays an 

important role in high speed grinding. However, they did not show that the AE 

feature relates to coolant nozzle positions. They assumed that the appropriate 

arrangement of coolant nozzles and optimal supply of coolant flow, in terms of 

flow speed and rate, would avoid the thermal damage and improve the grinding 

quality. 

Gong and Li (Gong, Li et al. 2006) have presented a paper containing the 

analysis and application of acoustic emission signals in accurate grinding 

machining. The AE signals in the grinding process were affected by many 

factors such as workpiece velocity, table velocity, grinding fluid quantity, the 

sensor position, grinding depth and workpiece material. Their experiment 

showed that the sensor position and workpiece material were the most 

influential factors in monitoring the accurate grinding on-line.   

Lee et al (Lee, Hwang et al. 2006) introduced precision manufacturing process 

monitoring with acoustic emission. The research discusses the sensitivity of AE 
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at the three different manufacturing systems summarized as the Taniguchi 

curve; the normal/conventional, precision, and ultra-precision scales. The 

limitation they mentioned of the AE based monitoring solution is the oscillation 

of the RMS level and signal saturation.  

Jayakumar et al (Jayakumar, Mukhopadhyay et al. 2005) presents the AE 

techniques for the on-line monitoring of various metal forming processes. The 

acoustic emission process monitoring gives useful information to detect die 

wear and cracking, frictional properties, the state of lubrication, galling and 

stick-slip. Process monitoring uses the AE technique to ensure high quality 

finish and to minimize the total cost of production when compared with other 

techniques. 

Liao et al (Warren Liao, Ting et al. 2007) investigated the sensitivity of AE 

signals to the fatigue failure of ground steel samples. They determined fatigue 

failure in a rolling contact using the AE technique. The fatigue failure is of great 

concern in manufacturing machines, engines and various mechanical systems 

when rolling contact applications are applied. The research found that the 

parameters of the AE features such as amplitude, absolute energy and RMS 

values increase sharply when fatigue occurs and that threshold counts and 

average frequency components decrease sharply with the onset of fatigue. In 

addition, grinding induces surface integrity. The term surface integrity (finish, 

micro-hardness, micro-structure and residual stresses) is used to describe the 

quality and condition of the surface region of a machined component. The 
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research displays that the AE signal is the most suitable signal for monitoring 

fatigue. 

Inasaki (Inasaki 1998) presents an application for the AE  sensor for machining 

monitoring process. The AE signals are classified into two types of signals: 

continuous-type AE signals or, burst-type AE signals. The continuous-type AE 

signals are associated with plastic deformation in ductile materials, whilst the 

burst type signals are observed during crack growth in the material. The AE 

sensor is very sensitive to change when compared with the other sensor types 

mentioned previously (Lee, Hwang et al. 2006). When combined with other 

sensor types (for example force sensor) it could offer great advantages in the 

machining process if used in a sensor fusion type fashion (Griffin and Chen 

2009). 

Tonshoff et al (Tonshoff, Jung et al. 2000) used AE signals to monitor the 

production processes and describe the application of AE measurement and the 

monitoring method of hard turning and grinding. They focused on achieving 

workpiece quality during grinding and hard turning. In grinding, the researchers 

attempted to detect incorrect process states by using AE signals. The on-line 

data analysis was developed in a free configuration calculation unit. They 

correlated the measured values of parallel residual stresses with the RMS AE 

signals which are dependent on the speed ratio. This speed ratio is related to the 

material removal rate (MRR). They managed to improve the process and to 

assure the workpiece quality based on this analysis. 
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Hwang et al, (Hwang, Whitenton et al. 2000) presented a paper on the AE 

monitoring of the high speed grinding using silicon nitride. A grinding 

experiment was conducted at a wheel speed of 149 m/s and continued until the 

end of the wheel life. It is reported that the amplitude of the AE signal, collected 

in high speed grinding with silicon nitride using an electroplated single-layered 

diamond wheel. The wheel wear increased monotonically. 

Inasaki (Inasaki 1999) further introduced sensor fusion for monitoring and 

controlling grinding processes. The system uses AE and power sensors so that 

most problems in the grinding process such as grinding burn, chatter vibration 

and deterioration due to surface roughness can be detected. These problems 

determine the wheel life which is closely related to the change of the grinding 

wheel surface at the time of grinding advances. The wheel life criteria and the 

sensors for detecting them are shown in Table 2-2. 

Table 2-2: Wheel life criteria and sensors. 

 

 

To develop an intelligent grinding system, a sensor fusion technique was 

established and successfully used in this research and bolsters the use for the 

proposed research in this thesis. 

Akbari et al (Akbari, Saito et al. 1996) investigated the effect of grinding 

parameters on AE signals while grinding ceramic materials. This work uses a 

process to identify the changing AE resulting from increasing wheel depth of 

cut, wheel speed and table speed when used in conjunction with the workpiece. 

Changes of wheel surface Wheel life criteria Sensor
Changes in surface topography Grinding burn Power sensor
Changes in geometrical configurationDeterioration of surface roughnessAcoustic emission

Chatter vibration
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As shown from the results, the percentages of events of high amplitude, long 

duration and more oscillation indicate surface cracking grows with the 

increasing depths of cut and table speed but decrease as the wheel speed 

increases.   

Inasaki (Inasaki 1998) established the application for the AE sensor for 

monitoring machining processes. The AE signals are classified into two types of 

signals. These signals defined as either a continuous-type AE signal or, burst-

type AE signal. It has been shown that the continuous-type AE signals are 

associated with plastic deformations in ductile materials, whilst the burst type 

signal is observed during crack growth in the material. This again provides more 

evidence that the AE sensor is highly sensitive to change. It is combined with 

the other types of sensors (for example, the force sensor) which could be a great 

advantage in controlling the machining process. 

Dornfeld and Cai (Dornfeld and Cai 1984) investigated grinding and wheel 

loading using AE signals. Here they analysed the AE signals generated from the 

grinding zone measuring the wear-related loading of the grinding wheel and, the 

spark-out between wheel and work piece surface. In addition, they showed that 

AE energy increases with the combined effects of wheel wear and loading and 

the signal energy is a function of the unperformed chip thickness. The signal 

accuracy detects work piece/wheel contact and spark-out with a higher 

sensitivity than that of grinding force measurement. AE from surface grinding 

provided measurements relating to the loading of the grinding wheel and spark-
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out (or loss of contact). They showed that AE increases with the combined 

effects of wheel wear and loading.  

To summarise the above described methods, the applications of AE sensors are 

very popular compared to other types of sensors used in grinding process 

monitoring. The reason is that AE phenomenon is related to the elastic energy 

release at a very high frequency range. This rich information of the grinding 

process gives promotion and the choice of selection when faced with precision 

geometries AE can also provide information about the modes of wheel wear, 

wheel loading and grinding surface integrities. The AE sensor is easy to mount 

and is relatively low cost compared to other sensor types. There are no negative 

effects on the stiffness of the machine tools. The AE sensor is even capable of 

transmitting signals from rotating parts. However, successfully applying the AE 

signal into an easily understandable format is far from easy. AE signal 

transmission is significantly dependent on the elastic wave paths, medium and 

the relative location of the sources. A successful AE monitoring paradigm 

depends on a better understanding of the AE in relation to the grinding 

behaviours and a better representation based on the chosen signal processing 

technique.  

2.4 Pattern recognition and machine learning 

Pattern recognition techniques are an important component of intelligent 

systems and these techniques are used for both data pre-processing and decision 

making. Pattern recognition is the science that is concerned with the description 

or classification (recognition) of measurements (Schalkoff 1992). A condition 
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monitoring system is basically a knowledge learning system. The sensor and 

other physical inputs are converted into signal data in the knowledge learning 

system. Then, the features extracted measure the signal properties that are useful 

to the classification system. The task of the classifier is to use the feature vector 

provided by the feature extractor and assign the object to a category as useful 

information. Subsequently, the information is then refined as knowledge 

(condition identification and pattern recognition) (Duda, Hart et al. 2001). 

There have been many different types of classifiers as pattern recognition tools 

have reported in condition monitoring such as ANN (Griffin and Chen 2007), 

support vector machine (SVM) (Jack and Nandi 2002; Xun Chen 2006; Widodo 

and Yang 2007), genetic algorithm (GA) (Jack and Nandi 2002), genetic 

programming (GP) (Zhang, B. Jack et al. 2005; Griffin and Chen 2009), 

clustering (Hard and Soft clustering methods such as K–means and Fuzzy C 

clustering (James Griffin 2006), liquid state machines (LSM), particle swarm 

optimization (PSO) and chaos and maximum entropy (ME).  

The pattern recognition methods are widely used to identify the condition of the 

machining process and tool. This technique is based on a similarity of a sample 

to be identified and the pattern or classes that describe the target status (H.K. 

Tonshoff 2001). 

There are two methods commonly used in pattern recognition either supervised 

or unsupervised learning. In supervised learning, a teacher provides a category 

label or cost for each pattern in a training set, and seeks to reduce the sum of the 

costs for these patterns. In unsupervised learning there is no explicit teacher, 
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and the system forms clusters or “natural groupings” of the input patterns  

(Duda, Hart et al. 2001). The main tasks of pattern recognition are feature 

classification. First, pattern recognition can select those important features by 

some criterions among all features. Secondly, pattern recognition can build up a 

classifier to class or cluster these features and make a decision on which 

features represent which grinding status (Liu, Chen et al. 2005). More features 

and details will normally provide an explicit recognition of the event for any 

kind of condition monitoring. However, a huge number of features certainly 

contain mutual information of different events, which may create some 

misleading results. The question is: which features should be kept and which 

features should be discarded? In fact the AE features of a defect are similar to 

that of a normal state in some cases whilst also similar to other defects even 

though there are some moderate differences. Pattern recognition is widely used 

for these complex and uncertain issues (Fu, Hope et al. 1998). This gives rise to 

an intelligent clustering or classification.   

Neural computing has emerged from attempts to draw on the knowledge of how 

the biological neural systems store and manipulate information (Schalkoff 

1992). This leads to a class of artificial neural systems termed neural networks. 

Neural network is one of the most effective signal analysis tools for the pattern 

recognition during tool condition monitoring. It has been mentioned in the 

literature that there are various applications such as: function approximation and 

complex regression (Rangwala and Dornfeld 1989; Yerramareddy, Lu et al. 

1993) in learning and an optimization of machining operations, data reduction,  
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novelty detection (Markou and Singh 2003) for image sequence analysis using 

neural networks in grinding process control (Govindhasamy, McLoone et al. 

2005).   

The main advantage of a neural network is that it has the capability of parallel 

processing, especially with a large amount of data processing. The feed forward 

neural network, multilayer perception with the back propagation learning 

algorithm is the most commonly used neural network model for pattern 

recognition in the classification for machine fault diagnostics.  

The backpropagation  neural network (BPNN) however have some limitations 

(Jardine, Lin et al. 2006):  

• Difficulty in  determining the network structure and the number of nodes 

• Local minima 

• Slow convergence of the training process 

The support vector machine (SVM) is a statistical learning theory developed by 

Vapnik. This technique has become very popular in recent years for solving 

classification, regression and novelty detection this is due to its classification of 

mass input vectors. Vapnik initially developed SVM to solve the classification 

problem with separable data. Later, this was improved to handle non-separable 

data and also adapted to solve the regression problem (Vladimir Cherkassky 

1998). The SVM has been used successfully in various applications in process 

monitoring, to classify tool wear (Shi and Gindy 2007), to classify burn, chatter 

(Chen and Limchimchol 2006) and wheel wear or tool wear in grinding (Chiu 

and Guao 2008; Jiuhua Xu, Xipeng Xu et al. 2008), in milling 



Chapter 2                                       Literature Review 

 

 [50]  

(Kunnapapdeelert and Prakasvudhisarn 2006; Hsueh and Yang 2008; Hsueh and 

Yang 2009) and in drilling (De Castro, Von Zuben et al. 2007).  

In SVMs, the original input data was correlated using a mapping function in a 

higher dimensional classification space (which is called the feature space), in 

such a way as to make a problem linearly separable. 

The performance is hidden from the input to the output. In the feature space, an 

optimal separating hyper-plane is constructed in the high dimensional space. 

This basically involves solving a quadratic programming problem, whilst 

gradient based training methods of neural network architectures on the other 

hand, suffer from the existence of many local minima (Vladimir Cherkassky 

1998; Suykens and Vandewalle 1999). 

LS-SVM is a least squares modification for the Support Vector Machine 

(SVM). The major advantage to LS-SVM is that they are able to obtain an 

excellent generalisation performance and have low computational costs 

compared to traditional SVM (Suykens and Vandewalle 1999).  

2.4.1 Feature extraction and classification of AE signals in grinding 

Liao and Ting (Liao, Ting et al. 2007) presented a paper on grinding wheel 

condition monitoring based on AE signals. The experiments were conducted 

using a diamond wheel to grind aluminium type materials. The AE signals were 

analysed at intervals when the wheel was in “sharp” or “dull” condition 

respectively. The wavelet transform signal processing technique was chosen to 

extract features from the AE signals. They used the adaptive genetic clustering 

algorithm to classify the extracted features of the AE signals. The results 
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displayed a 97% clustering accuracy for high MRR condition, 86.7% for the 

low  MRR condition and, 76.7% for the combined grinding conditions (Liao, 

Ting et al. 2007).  

Liu and Chen (Liu, Chen et al. 2005) applied the fuzzy pattern recognition 

technique of AE signals to identify grinding burn. The wavelet packet transform 

is used to extract features from AE signals. The fuzzy pattern recognition 

technique is used to identify grinding burn. The accuracy of grinding burn 

recognition is more than 92%. 

Kwak and Ha (Kwak and Ha 2004) presented a neural network approach for the 

diagnosis of the grinding operation using AE and power signals. The AE and 

power sensors were used to detect grinding burn and chatter. The peak RMS 

and peak FFT are feature parameters extracted from the AE signal. These 

parameters were used as input to the NN. The NN classified the burn and chatter 

phenomena with a 95% classification rate. 

Kwak and Ha (Kwak and Ha 2004) presented the intelligent diagnostic 

technique of machining state for grinding. The NN based on the back 

propagation algorithm was used to classify the grinding burn and chatter 

vibration. The AE signal feature parameters RMS peak, standard deviation, FFT 

peak and count of over threshold were used as input to the NN. The result of 

classification was successful with an accuracy rate of 90%. 

Ge et al (Ge, Liu et al. 2002) presented fuzzy clustering analysis of the grinding 

burn damage level of a workpiece surface layer. In their research, a 

mathematical model of fuzzy clustering analysis as a pattern recognition 
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technique was developed. This model was suitable for the classification of a 

large number of samples. 

Wang et al (Wang Z, P. DeAguiar et al. 2001) investigated the NN detection of 

grinding burn from AE. The feature parameters include band power, kurtosis, 

skew and autoregressive coefficients and were extracted from the acoustic 

emission signal which appeared to be suitable for the input to ANN. They 

mentioned the frequency band power, the kurtosis and skew are informative 

features for AE signal representation. The kurtosis is a measure of the sharpness 

of the peak while skew measures the symmetry of the distribution of its mean.     

Mokbel and Maksoud (Mokbel and Maksoud 2000) reviewed their work 

regarding condition monitoring of diamond grinding wheels using AE sensors. 

The grinding condition was fixed when the wheel and the workpiece contact 

generated AE signals. These signals can be analysed using an FFT to give the 

frequency components of the signal. The experiments were carried out by taking 

the one grinding pass on the specimens for different grinding wheel grit sizes 

where the surface roughness was continually measured. The results were 

compared to the AE signals. The variation of both AE spectral amplitude and 

surface roughness were found to reflect the surface condition of the grinding 

wheel.  

Lezanski (Lezanski 2001) reviewed his work regarding an intelligent system for 

grinding wheel condition monitoring. The features were extracted in his work 

from AE, force and vibration signals. He then applied a feed forward BPNN to 

select eight features, which were grinding depth of cut, coolant volume rate, 
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standard deviation and mean of vibration, power spectrum, and range of RMS 

power spectrum. The eight selected features were used to train a neuro-fuzzy 

model for classification. The classification accuracy was reported to be 83.3% 

as a best performance.    

2.5  Application of laser technique in grinding 

The word laser stands for light amplification by stimulated emission of 

radiation. The source of laser is energy, which focuses optical energy on the 

surface of the workpiece. The highly focused, high density energy source melts 

and evaporates portions of the workpiece in a controlled manner. This process is 

used to machine a variety of metallic and non metallic materials. It is a high 

energy based tool used in many fields of modern manufacturing production. The 

advantages of laser assisted conditioning are based on the force free working 

principle and, the non-reliance on expensive conditioning tools (Westkämper 

1995; Kalpakjian, Schmid et al. 2009). The following applications are used in 

grinding: 

• Hardening of work surfaces before grinding 

• Condition (truing, dressing or cleaning) of grinding wheels as a 

substitution for conventional  means 

• Direct support for the grinding operation through ‘pre-heating’ of the 

work pieces in order to achieve higher stock removal rates. 

There are solid state (Nd: YAG) laser and gas (COଶ) lasers commonly used in 

industry that operate either in a continuous wave or pulse mode. Nd: YAG 

lasers are optically pumped using a flash lamp or laser diodes. This laser is a 
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solid state laser where the medium is a rod of Yttrium-Aluminium-Garnet 

doped with Neodymium. This laser emits light with a wavelength of 1064 nm, 

in the infrared electro-magnetic spectrum. The YAG laser is one of the most 

common high power lasers which is available up to 4 kW output power. Due to 

their wave length, which is 10 times shorter than that compared with the COଶ 

laser, the YAG laser has the advantage of a better focusing ability and the 

greater absorptive properties to materials. It is used as a heat source because the 

relation between heating and crack propagation can be investigated more 

precisely than with other lasers (Majumdar, Chen et al. 1995; Ramesh Babu and 

Radhakrishnan 1995; Westkämper 1995; Ueda, Yamada et al. 2002). 

Another investigation of grinding burn in terms of critical temperature on the 

nickel based alloy (CMSX4) was presented by (Liu, Chen et al. 2006). The Nd: 

YAG laser applied successfully to raise the temperature and obtain a pure 

thermal AE signal. An AE sensor and a thermocouple were used to monitor 

grinding burn experienced during the grinding of a nickel based alloy (CMSX4). 

Laser pulses focus on a given off-focal distance point on the surface of the 

material and are able to obtain an AE signal due to thermal expansion. This 

research used Wavelet Packet Transform (WPT) to convert the extracted AE 

signal into a time based signal, segmented into different frequency bands.  

2.6 The research gaps 

Grinding burn is a common phenomenon of thermal damage that has been one 

of the main constraints in grinding. Nickel-based alloys such as CMSX4, 

Inconel718 or MarM002 have very poor machinability, which can cause an 
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excessively high grinding temperature, and therefore, grinding burn becomes a 

crucial issue that hinders the improvement of surface quality, and also has an 

adverse effect on in-service strength and fatigue properties. To obtain the 

critical temperature on CMSX4 material, the features from laser irradiation and 

real grinding are compared. When an AlଶOଷ  wheel is used to grind CMSX4 

material, the critical temperature of grinding burn was determined to be around 

770°C (Liu, Chen et al. 2006). 

The detection of high, medium and low temperatures proposed in this thesis are 

due to severe, normal or no burn, by changing the laser irradiation off-focal 

distances. This has not yet been investigated in the grinding zone which is one 

of the main contributions of this research the grinding research community. The 

explicit features extracted from AE signals due to high, medium and low 

temperatures from laser irradiation, pattern recognition (classification) of 

grinding burn is significant justification for this research. 



Chapter 3           AE sensing development for the laser irradiation and grinding 

 

 [56]  

Chapter 3: AE sensing systems for the laser irradiation and grinding 

 

3.1 Introduction 

This aim of this chapter describes the experimental set-up for data acquisition of 

both laser irradiation and grinding burn experiments. A wide bandwidth AE 

monitoring system for laser and for grinding are presented separately to ensure 

the major AE feature extraction within the frequency range of the covered 

nickel based alloy materials (Inconel718 and MarM002).         

The objective includes: 

• A self made preamplifier construction for laser tests to amplify the 

output of the thermocouple signal for transfer to the acquisition card   

• Design experiment set-up for laser irradiation with an AE sensor and a 

thermocouple sensor to ensure the identification of high, medium and 

low temperatures in given off-focal distances 

• Temperature calibration through extracted data from thermocouple 

sensors   

• Design experiment set-up for grinding with AE sensor, force, power and 

vibration sensors to ensure grinding monitoring and to identify burn in 

given depth of cuts  

The laser irradiation experiment has been arranged to simulate the elevation of 

temperatures by changing different off-focal distances on the workpiece 



Chapter 3           AE sensing development for the laser irradiation and grinding 

 

 [57]  

materials. The grinding experiment has been arranged to acquire data of the 

burn signature by changing different depth of cuts on the workpiece materials. 

The workpieces were Inconel718 and MarM002 of nickel based alloys. The 

machinability of the workpiece materials and grinding wheel as a cutting tool 

are described at the beginning of this chapter. 

This chapter presents the experimental set up for both experiments with 

different conditions using AE, temperature, power, force and vibration sensors. 

The laser irradiation sensing system was constructed using an AE and 

thermocouple sensor. The grinding experiment obtained the following sensor 

fusion of AE, force, power and vibration. In laser irradiation, the AE and 

temperature data are acquired using AE and a thermocouple sensor on the 

workpiece materials. For the experiment, different AE signals were extracted 

based on different temperatures (high to low) by changing off-focal distances. 

The grinding experiment was arranged to acquire data from the emitted burn 

signature at various grinding intensities on the workpiece materials based 

ultimately on different depth of cuts. 

3.2 Grinding process  

3.2.1 Nickel and Nickel based alloys 

Nickel based super alloys are the most common of the super alloys, and they are 

available in a wide variety of compositions as shown in Appendix 1. The 

proportion of nickel is from 38% to 76%. They also contain up to 27% Cr and 

20% Co.   
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The primary use for these alloys are in (Choudhury and El-Baradie 1998):  

• Aircraft gas turbines, e.g. turbine disks, combustion chambers, bolts, 

casings, shaft exhaust systems, blades and vanes 

• Steam turbine power plants, e.g. bolts, blades, stack gas repeaters 

• Reciprocating engines, e.g. turbocharger, exhaust valves, hot plugs 

• Metal processing, e.g. hot work tool and dies, casting dies 

• Medical applications 

• Space vehicles 

• Heat–treating equipment 

• Nuclear power systems 

These super alloys can be classified as Nickel (Ni) based, Iron (Fe-Ni) based 

and cobalt (Co) based. Table 3-1 displays some properties with typical 

applications of Nickel based Super alloys (Kalpakjian, Schmid et al. 2009). 

Table 3-1: Properties and typical application of selected Nickel based Super 

alloys at 870°C. 

 

Nickel based super alloys such as Inconel718 and MarM002 are specially 

designed for high-temperature and high stress applications. The generic names 

for MarM002 are MarM002 DS (Direct solidification) and MarM002 EQ 

Alloy Condition Ultimate tensile 
strength (MPa)

Yield strength
(MPa)

Elong
ation in 50 mm

(%)

Typical 
applications

Inconel718 Wrought 340 330 88 Jet engine and 
rocket parts

MAR-M 200 cast 840 760 4 Jet engine blades

MAR-M 432 cast 730 605 8 Integrally cast 
turbinewheel
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(Equaiax). MarM002 DS forms a liquid at 1370°C and becomes solid at 

1300°C. It has a density of 8.55(g cc)Τ . During casting, the material is cooled 

under controlled temperature such that different layers have a different breakage 

resistance property upon solidification while MarM002 EQ turns to Liquid at 

1375°C and solidifies at 1284°C. It has the same density as MarM002 DS. The 

casting process is different for MarM002 DS as the material is allowed to cool 

down naturally. Therefore, it has an equal solidification with the same property 

in every direction of the material (Fisher, Datta et al. 1999). 

3.2.2 Grindability of nickel based alloys 

Grindability is a general indicator of how easy it is to grind a material. It 

includes the following considerations: the quality of the surface produced, the 

surface finish, the surface integrity, the wheel wear, the cycle time, and the 

overall economics of the operations. Machinability and grindability are very 

similar terms which define how easily a material can be turned, milled, drilled, 

reamed, slotted, or ground. The grindability is specifically applicable to the 

grinding of a material that can be improved  by the proper selection of process 

parameters (wheel speed, work speed and feed rate), grinding wheels, grinding 

fluid, as well as machine characteristics, fixturing methods, and work holding 

devices (Serope Kalpakjian and Schmid 2006).   

Machinability and grindability are dependent on the same physical, mechanical 

and chemical properties of a given workpiece. If a material has a low 

machinability then it will be difficult to grind and if a material has a high 

machinability than it will be easy to grind. This does not mean that the 
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difference between the machinability of two workpieces and their grindability  

will be exactly the same. There are differences in the chip forming process of 

metal removal. The chip forming process in machining is predictable, produces 

uniform thickness and width. On the other hand, the abrasive grains on the 

periphery of the grinding wheel produce very small chips of varying thickness, 

width and shape. The chip characteristic in grinding is due to the random 

arrangement of abrasive grains on the surface of the grinding wheel and how far 

they protrude above the wheel surface along with their negative rake 

characteristic (Krar and Ratterman 1990).           

Nickel based super alloys have some characteristics that are responsible for poor 

machinability. They have an austenitic matrix, like stainless steels. In addition, 

this material has a tendency to “work harden”. The major reason for the 

development of such alloys has generally been for use in aircraft engines. These 

alloys retain their strength at high temperatures when encountering grinding and 

machining in comparison to other alloys which makes them desirable for 

aerospace applications although not for machining. Work hardening is a 

characteristic which allows the strength and hardness of a metal to actually 

increase while it is being formed or machined. This further decreases the 

grindability of such alloys  (Krar and Ratterman 1990). Material properties are 

presented in Appendix 1. 
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3.2.3 Properties of grinding wheels 

The grinding wheel is the interface between the machine and the workpiece. 

Grinding wheels consist of a combination of abrasive grains and bonding 

agents. The most important characteristic of a wheel is its abrasive grain, bond 

types, grade, and hardness. A grinding wheel surface consists of abrasive grains 

that form the cutting edges, bond materials to retain the grains in position and 

surface pores that allow space for material removal from the workpiece surface 

(Rowe 2009).  

The grinding wheel must be harder than the workpiece and must be wear-

resistant due to the transferred energy from the machine into the workpiece. 

There are two abrasives used in grinding which could be described as 

conventional abrasive and super abrasives. The conventional abrasives consist 

of aluminium oxide (AlଶOଷ), silicon carbide (SiC) while the super abrasives 

consist of Cubic boron nitride (CBN) and diamond. The main components of a 

grinding wheel are the abrasive grains and the bond materials which hold them 

together. In this research, AlଶOଷ  wheels are used for the grinding process 

monitoring. This AlଶOଷ wheel is commonly used to grind high tensile strength 

materials such as steel, high speed steel annealed malleable iron and, tough 

bronze. 

There are a number of aluminium oxide grain types. Aluminium oxide was first 

made in 1893. It is produced by fusing bauxite, iron filling, and coke. Fused 

AlଶOଷ are categorized as dark (less friable), white (friable) and single crystal.  
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Hardness is the ability of a material to scratch or indent another material which 

occurs during the grinding operation. It is the most important physical property 

of an abrasive. Moh’s scale of hardness shows that the hardness of aluminium is 

9. 

In addition to hardness, an important characteristic of abrasives is the friability–

defined as the ability of abrasive grains to fracture. This is an important 

property and gives abrasives their self-sharpening characteristic, which is 

essential in maintaining their sharpness during use. The AlଶOଷ wheels have a 

good self-sharpening ability in nickel based alloy grinding, while the wheel 

helps to prevent wheel loading (Chen, Griffin et al. 2007). 

The Knoop hardness is a measure of the materials ability to indent other 

materials. A material with a large Knoop number is harder than a material with 

a small Knoop number. Aluminium (Al) has a Knoop number in the range of 

2000-3000 ቀ ేౝౣౣమቁ compared to a diamond which has a Knoop number in the 

range of 7000-8000 ቀ ేౝౣౣమቁ (Serope Kalpakjian and Schmid 2006). 

3.3 AE sensing system development for the laser irradiation 

3.3.1 Experiment set up for laser irradiation 

The laser irradiation experimental set-up consists of an AE sensor, 

thermocouple, USB card, preamplifier, PCI-2 based signal processor and 

specimens of different materials. All laser irradiation experiments were carried 

out in the Lumonics JK704 Nd: YAG laser machine. A schematic diagram of 

laser irradiation and sensor arrangements illustrated in Figure 3-1. An E-type 

thermocouple, located at the centre of the laser beam spot, was tightly fixed on 
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the front surface of the workpiece and an AE sensor and placed on the opposite 

side of the workpiece.      

 

      Figure 3-1:  Schematic diagram of laser irradiation optical arrangement. 

The E-type thermocouple consists of two dissimilar metals of Constantine (-) 

and Chromel (+) joined at one end so that the difference of voltage can be 

measured. Since voltage changes in proportion to temperature, the voltage 

difference indicates temperature differences. This E-type thermocouple covers a 

range of temperatures starting from -200̊ C to +900˚C.  

A self made preamplifier was constructed to amplify the output of the 

thermocouple signal and transfer to an acquisition card. The maximum input of 

the NI AT-MIO-64-3 acquisition card is ±10V. If the temperature is very high 

due to laser irradiation on the workpiece, material provisions need to be made to 

ensure the maximum output of this amplifier is less than the defined limit of 

10V. The temperature characteristic of type E  (Constantine-Chromel) 

thermocouple is similar to type J, and compared to type K, therefore the AD594 

is preferred for this calibration. The amplifier main circuit is AD594 which is an 
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amplifier and thermocouple cold junction compensator on a monolithic chip. 

The AD594 monolithic Integrated Circuit (IC) is shown in Figure 3-2.  

The circuit has been designed to produce a temperature output proportional to 

10 mV °CΤ . The AD594 is used to compensate the cold junction temperature 

with a pre-calibrated amplifier to produce an interval step level of 10 mV/ºC 

voltage output corresponding directly to the thermocouple output signal. Some 

important characteristics of the AD594 are the operation temperature range: -55 

to 125 °C, Stability Vs. temperature: ±0.05 °C °CΤ  and sensitivity 10 mV °CΤ . A 

type E thermocouple shows a Seebeck coefficient of approximately 62  ɊV/°C . 

This corresponds to a gain of 193.4 for the AD594 to realise 10  mV °CΤ  outputs.  

The AD594 is gain trimmed at the factory to match the transfer characteristic of 

the thermocouple at +25°C to produce a temperature proportional output of 

(10mV °CΤ ), and provide an accurate reference junction over the rated operating 

temperature range. 

 

Figure 3-2 : Thermocouple preamplifier circuit. 

The AD712 is a high speed, precision monolithic operational amplifier. The 

device has all the properties required for an ideal AC and DC amplifications and 
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therefore it is suitable for active filter applications. It has a slew rate of 16V ɊsΤ  

and it can follow the transient variance of grinding temperatures. The Integrated 

circuit of AD594 is connected to two, unity gain follower circuits of AD712 to 

maintain the signal voltage because of its isolation properties, as impedance or 

circuit isolation is more important than amplification while maintaining the 

signal voltage.    

The function of the unity gain follower is to invert the signal and invert the gain 

to give a positive read-out. The follower circuit is only used if the thermocouple 

voltage continually saturates above 10V which is above what the signal 

acquisition board does not support (constraint to -10V to 10V).  

Laser pulses focused on a point on the workpiece surface were considered as a 

point source to generate thermal expansion which can cause elastic AE waves. 

The laser pulse on a surface of a material generates elastic waves based on two 

mechanisms of power density: First if enough laser power is absorbed, the 

material surface may be ablated or even vaporized. Secondly, when power 

density of the light causes no ablation, a local thermal expansion dominates over 

radiation pressure. Under most circumstances, the thermal behaviour of grinding 

is similar to the second mechanism. The issue was to control the intensity of 

laser power equivalent to the temperature experienced during grinding. The 

following condition was applied according to Table 3-2 for the laser irradiation 

experiment. 
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Table 3-2 : Laser parameters 

Laser Parameter Conditions

Laser Lumonics JK704Nd:YAG

Wave length 1.06 µm

Pulse energy 1.5J

Maximum peak power 2.5 kW

Irradiation time 0.6 ms

Focal length 120 mm

Laser beam diameter 12 mm

off-focal length 34-46mm  

By changing the laser irradiation off-focal distances from 34 mm to 46 mm the 

data was acquired from both the Thermocouple and AE sensors. Two computers 

were synchronised by a switch driven Data Acquisition Card and all signals 

(temperature and AE) were triggered through self made thermocouple 

amplifiers and AE amplifiers between the sensors and computers. The 

temperature calibration obtained from the thermocouple sensor are presented in 

Table 3-3  where the laser is offset by a distance of 34 mm which produces high 

temperatures, 40 mm offset distance equates to medium temperatures and 46 

mm offset-distance, low temperatures are produced. 

Table 3-3: Temperature calibration results. 

Laser offset Inconel718 MarM002 Temperature 
(mm) (°C) (°C) scale
34 698 493 high
40 324 318 medium
46 239 235 low  

 The AE sensor was placed on the back side of the workpiece. The generated 

AE signals were detected and processed by the PCI-2 of two channels.  The 
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PCI-2 card consists of a signal processing unit, interface of AE data streaming 

storage, display and the accessories (sensor and pre-amplifier) to route a rich 

signal to the computer (the pre-amplifier can be selected to give the best SNR 

for a particular experiment based on a first test pass).   

When AE is emitted which is caused by the thermal stress in the workpiece, the 

AE wave converts into a voltage signal which is amplified by the preamplifier 

and sent to the amplifier in the main processor for post processing. 

3.4 The sensing system development for the grinding experiment 

3.4.1 Makino A55 machine centre  

The Makino A55-5XR is a horizontal 5 axes high efficiency machining centre 

with a Fanuc Professional 3 Computer Numerical Control (CNC) used to 

perform grinding amongst other machining methods. This machine affords 

excellent performance for milling, drilling and tapping operations when applied 

to aerospace manufacturing. These machines are widely used to provide 

different functionalities for example Rolls Royce Turbine Blade Facility in 

Derby use 6 to provide grinded blades for fixing to turbine disk.   

This machine has a maximum spindle speed of 14000minିଵ, power output of 

22 kW and uses a taper 7/24 No.40. The spindle vibration is less than 3 Ɋm 

peak to peak at 1400 minିଵ P

 and an AC motor is used to drive the spindle. There 

are two pallets in this machine with an Automatic Pallet Changer (APC) 

embedded in this machine. The pallet changing time is approximately seven 
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seconds. One of the pallets has been tailor configured for the grinding operation 

presented in Figure 3-3. 

3.4.2 Experiment set up for grinding  

The experiment set up aimed to provide a burn signature with various intensities 

on grinding aerospace materials by increasing the depth of cut. The research 

mainly looks at the grinding phenomena thorough the AE signal. The technique 

is based on other sensors also used to verify using the AE sensor as this is not a 

standardised sensor. Other sensors included force, power and vibration sensors 

which were used to monitor grinding phenomena. The grinding process 

monitoring experiment set up consisted of: a force sensor, a vibration sensor, a 

power sensor and an AE sensor housed in the Makino A55 machine. All these 

sensors were attached and situated next to the workpiece in a way that ensured 

maximal signal extraction. For monitoring the force, power and vibration 

signals an NI PXI system were connected to one computer and for monitoring 

AE signals a PCI2 AE system was connected to another computer. These two 

computers were synchronised by a switch driven Data Acquisition Card (DAC) 

and all signals were triggered (boosted) through a respective amplifier between 

the sensors and computers.  

The sensor arrangement and data logging system for the grinding experiment is 

shown in Figure 3-3.  
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Figure 3-3: The grinding experiment set up. 

There were two AE sensors of WD-AL05 and WD-AL04 supplied for the 

experiment however only one AE sensor was used to carry out the experiment 

and the other one remained on standby or was used to verify the 1st

This AE sensor carefully placed within the workpiece was used to detect the 

responses from the grinding wheel to the workpiece interface. Grinding on 

Inconel718 or MarM002 samples would be carried out in sequential manner 

seven times in each depth of cut.  The wheels would be dressed at the beginning 

 AE sensor 

when used in parallel for verification. 
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once just before the total seven pass (one set of cut).  In Table 3-4 dressing 

conditions for the grinding wheel are shown.  

Table 3-4 : Wheel dressing condition. 

Tool Dressing depth Dressing lead Dressing feed rate Dressing ratio

Wheel 0.25 mm 3600 rpm 3 mm/min 0.8  

 The grinding condition used in this investigation is shown in Table 3-5. 

Table 3-5: Grinding condition. 

Grinding parameter Condition

Workpiece material MarM002, Inconel718

FeedRate 1 m/min

Wheel speed 55 m/s

Depth of cut 0.2-0.02 mm

Wheel material AlЇOЈ

Coolant No  

The burn signature on the signal would then be recorded by an AE sensor, force 

dynamometer, accelerometer and Power (load) sensors. The burn signatures 

would also be recorded by a workpiece image. 

The sampling rate was set to 5MHz to ensure that there was no aliasing and a 

level of five times the maximum pickup frequency of the sensor giving a good 

resolution of material phenomenon. The main specification of these sensors is 

displayed in Table 3-6. 

. 
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Table 3-6: The AE sensors specification. 

 

The generated AE signals would then be recorded by model PCI-2 with two 

channels providing the AE system on a card for interface to the computer.    

In depth, the AE system uses the physical Acoustic, PCI-2 AE system. It has 

two channels, AE data acquisition and digital signal processing (DSP) system 

on the PCI card. It has a superior low noise and low threshold performance with 

18 bit  A DΤ  conversions unit, 40 MSample secondΤ  acquisitions with sample 

averaging and automatic offset control (PCI-2 Based AE System User’s manual, 

June 2003). This performance was achieved via pipelined, real time 

architecture, without any sacrifice in the AE performance. Through the high 

performance PCI (Peripheral Component Interconnect) bus and separate Direct 

Memory Access (DMA) architecture for each channel, significant AE data 

transfer speeds can be attained, assuring a wide bandwidth bus for multi channel 

AE data acquisition and waveform transfer. The card is built on wave mount 

Specification PAC WD 
Sensor(1)

PAC WD 
Sensor(2)

Sensor number/date AL04(17/11/04) AL05(17/11/04)

Construction Differential Differential

Sensor drive
Capability

Up to 100 m with 
w/RG-58 AU cable

Up to 100 m with 
w/RG-58 AU cable

Dimensions (dia.*ht) 17*16 mm 17*16 mm

Peak sensitivity -63.30 (dB ref 
1V/µbar)

-63.30 (dB ref 
1V/µbar)

Operating frequency 
range

100kHz-1000kHz 100kHz-1000kHz
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technology and high density ASIC (high density programmable Gate Arrays) 

devices; this ensures that this single AE system with the two onboard channels 

has a very fast acquisition capability for storing signals of interest.    

This AE system has a very fast acquisition capability for storing the signal of 

interest. The AE system consists of a signal processing unit, interface of AE 

data streaming storage, display and accessories (sensor and preamplifier) for the 

computer.  

The extracted AE signals contain both a continuous waveform and intermittent 

hit information. Signals are acquired based on a fixed AE threshold of 40 dB. 

When the grinding event occurs the AE signal exceeds the AE threshold and is 

called hit. These hit events would then be extracted and stored as 1024 point 

block information segments. These 1024 blocks would be concentrated together 

in order of event and with respect to time (Griffin 2008).  

A preamplifier is used to amplify very weak signal as a low–level signal to line-

level. The output signals from the AE sensor are very weak at high frequency 

(i.e. low level and high impedance). This kind of signal needs a preamplifier for 

transfer to an acquisition card. The preamplifiers are located very close to the 

sensor to make sure there is no unwanted signal and or, picks up 

electromagnetic interference. The output signals from the AE sensor were 

passed through the pre-amplifiers with a gain of 100 (40 dB). If the gain is set 

too high then the amplified signal will saturate. Another function of the 

preamplifier is to eliminate mechanical and acoustical background noises. The 

background noises are frequency components below 100 kHz. To control the 
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AE system sensitivity, the threshold set up was 30 dB (usually in a range of 10-

99 dB) to obtain higher sensitivity. A low threshold produces background noise 

in the system. 

The voltage supplying the PAC preamplifiers was 28 Vୢ ୡ  and is supplied 

internally via the coaxial cable from the acquisition board with no external 

power source present. 

3.4.3 Force, power and vibration measurement 

The experiment set up consisted of both the AE and other sensors being 

attached in a way to ensure maximal signal extraction. A kistler 3-axes 

Dynamometer 9272A with a 5017 amplifier selected for grinding force 

monitoring. Three axes force signal componentsF୶, F୷ and F in three directions 

were measured. The range of this type of dynamometer is between 5-20 kN 

which should be enough for grinding force monitoring. The measured signals 

are amplified by a dynamo amplifier. The signals are separated as separate 

channels and are connected to the data acquisition system based on a PXI 

system and LabVIEW package. 

Three Piezoelectric Accelerometers 8704B with a 4-channel Coupler 5134A1 

were used to monitor chatter. The measured signals were amplified by an 

acceleration coupler. The signals were also separated and connected to the data 

acquisition system based on PXI system and LabVIEW package. The sensitivity 

of the accelerometer devices is less than that of the AE sensors.  
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The Makino A55 machining centre has an inbuilt Hall-effect current sensor. The 

Hall-effect sensor operates as an analogue transducer that varies its output 

voltage in response to changes in the magnetic field. The power is estimated by 

vector multiplications between current and voltage samples sensed by Hall-

effect sensors. The sensor is suitable for measuring power consumption with the 

spindle of an A55 machine centre in the grinding process due to the 

consideration of power factor variation with a different load. The signals are 

then connected through the SCB-100 100–pin shielded connector to block the 

data acquisition system based on NI PXI-1031 and LabVIEW package.  

Power sensors (Load control) can be used for grinding gap elimination (contact 

detection between workpiece and tool) and used to detect dull wheel (worn 

grinding wheel) from decreasing power. This is due to the sharper recently 

dressed wheel requiring less spindle power. This is due to sharper grits 

providing a cutting action as opposed to a rubbing and ploughing action which 

inherently gives off more energy in the workpiece as opposed to the chip.  

3.4.3.1 Data acquisition system and LABVIEW application software 

The data acquisitions are controlled by a software program LabVIEW which is 

a graphical interface driver system setup for the acquisition of signals. This 

language uses the dataflow where the flow of data determines the execution. 

The user interface to LabVIEW is known as the front panel where all the 

recording parameters should be defined. 

In the front panel, the display range can be adjusted from -10 V to 10 V. The 

sampling rate has a maximum limit of 500 kHz and maximum number of 
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samples of 20000 for one channel only (this decreases the more channels that 

are used). A signal processing panel for play the back of the signals is also 

available, where the raw extracted signals can be converted to RMS values and 

output directly to the user. In addition, all of the extracted signals can be seen at 

any one time. 

The hardware for the grinding test consisted of the following: LabVIEW SCB-

100 shielded I OΤ  connector block and 100 screw terminals that connect a total 

of eight sensory input devices in differential reference mode. 

3.4.3.2 Hardware configuration 

The hardware for the grinding process monitoring consists mainly of a 

LabVIEW SCB-100 Shielded I OΤ  Connector and data logging card based on a 

National Instruments PXI (PCI extensions for Instrumentation) module. 

The SCB-100 provides the connection for non-referenced or floating signal 

sources, differential inputs and single-ended inputs. The SCB-100 100-pin 

shielded connector block is a shielded board with 100 screw terminals that 

connect a total of 8 sensory input devices in differential reference mode to the 

NI PXI-1031.  

PXI systems consists of NI PXI-1031 chassis, 3.0 GHz Pentium 4 Rack- 

mounted PXI controller and 16-Bit  NI PXI-6251 with 16 analogue inputs and 

24 digital I/Os.      

The PXI based data acquisition system offers excellent performance in terms of 

high speed compared to the industry-based PCI bus which was modelled on 
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older architecture. This system has advanced timing and synchronisation 

features. The main advantage is the PXI system which can provide a high-level 

of integration between different modules. 

3.5 Wheel wear measurement 

The razor blade method was employed to measure grinding wheel wear. In this 

method one half of a grinding wheel ground a workpiece, while the other half 

remained fresh. Immediately after the grinding experiments were performed, the 

razor blade lowered them into the grinding position with the grinding wheel 

touching the blade. The wheel had a step between the work half and the fresh 

half. Then, the wheel ground a razor blade and the topography (step) of the 

wheel was copied onto the razor blade. After grinding the blade, the wear of the 

grinding wheel was measured using a surface profilometer (Liu, Chen et al. 

2007). 

3.6 Summary 

This chapter has described the experimental set up for the laser irradiation and 

for the grinding. The laser irradiation experiment setup consisted of acoustic 

emission and thermocouple sensors to simulate high, medium and low 

temperature on the workpiece material under the given condition of laser 

irradiation (without grinding).  

The laser thermal data is acquired using an AE sensor and thermocouple sensor 

by changing the laser off-focal distance to simulate high, medium and low 

temperatures on the workpiece.    
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The grinding experiment set up consisted of AE, force, power and vibration 

sensors to monitor burn signature under the given grinding condition.  

The grinding thermal data is acquired using AE, force, power and vibration 

sensors by changing the depth of cut to monitor severe burn, normal burn or no 

burn signatures on the workpiece. 

The next step is to extract thermal features from the acquired data both from 

laser irradiation and grinding by using a digital signal processing techniques. 
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Chapter 4: Digital signal processing technique 

 

4.1 Introduction to signal processing 

There are many sensors used in this research to acquire data for measured 

signals, for example, AE, force, vibration, temperature and power. Most of the 

signals data acquired through sensors are time series data. This chapter 

describes the signal processing technique which must be used to process the 

acquired data to understand the more precise information of the machining 

condition.  

The source of noise in grinding is the rapid release of energy which is generated 

by grits, workpiece materials and high pressure coolant flow. There are two 

main tasks when considering how to tackle these difficulties in using the signal 

in condition monitoring: (a) the elimination of irrelevant noise signals and (b) 

the feature extraction in order to analyse the grinding conditions. 

Signal processing is data processing for waveform data or multi dimensional 

data which is acquired through extracting and formatting information from the 

emitted raw signal. Various signal processing techniques were developed in 

order to analyse and interpret waveform and multidimensional data to extract 

useful information for further diagnostic and prognostic purposes. This 

procedure of extracting useful information from raw signals is called feature 

extraction (Jardine, Lin et al. 2006). 
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This chapter describes the signal processing technique for waveform which 

describes how to extract features from different sensory signals which are 

acquired through the sensing instrument. The feature extractions from the raw 

signals are very sensitive to the machining condition. Thus, it requires a better 

signal processing technique to extract features. The Fast Fourier Transform 

(FFT) is widely applied as a signal processing technique in engineering. The 

limitation is its inability to handle high frequency and non-stationary stochastic 

signals which are very common when machining faults occur. The time 

frequency uses time-frequency distribution, which represents the energy or 

power of waveform signals in two dimensional functions of both time and 

frequency such as Short-time Fourier Transform (STFT), to better reveal faults 

and patterns for more accurate diagnostics. 

Primarily, in this research energy spectral distribution of AE signals is studied 

in relation to grinding burn in particular.   

4.1.1 Signal properties and representation 

Signals could be defined as a fundamental physical quantity, for example, 

voltage, pressure or electromagnetic field which changes over time. There are 

four main reasons for frequency analysis or spectral analysis mentioned in the 

Time-frequency analysis by Leon Cohen (Cohen 1995). 

• To learn the source of a signal by spectrally analyzing the wave form  

• To study the propagation through a frequency dependent medium, the 

signal is decomposed into its different frequency components. To 

analyse for each component and reconstruct the signal to obtain the 

resulting waveform 
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• To simplify our understanding of the waveform 

• To provide solutions for ordinary and partial differential equations  

The most important classification concerns deterministic and non-deterministic 

signals (Ruhm 2008). The deterministic signals and events can be described as 

analytical expressions for all times (past, present, future). They are also 

predictable for arbitrary times and these signals can be reproduced identically, 

arbitrarily and with frequency. These signals are not able to carry new 

information, since everything is already fixed (deterministic, predetermined). 

A hierarchical roadmap of common classifications of signals is presented in 

Figure 4-1. A deterministic signal can be divided into periodic and aperiodic.  

Periodic signals are ones which repeat themselves after a specific interval of 

time. These signals can be decomposed into a fundamental sine wave and a set 

(finite or infinite) of harmonically related sine waves in Fourier series analysis. 

Mostly periodic signals are ones composed of sine waves but which include 

components not harmonically related. Aperiodic signals are ones which do not 

have a repetitive form and are usually transient in nature, they are sometimes 

called transient signals.        

On the other hand, the non-deterministic signals functions cannot be determined 

explicitly using mathematical equations and in this case probabilistic and 

statistical descriptions will need to be used.   

It is frequently considered that non-deterministic, random events are disturbing. 

In order to make results of investigations (examination, observation, 

measurement analysis, diagnosis) representative, it is possible to reduce the 

random character by systematic procedures (design of experiments).       
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The future values of non-deterministic signals cannot be accurately predicted 

and can usually only be guessed based on the average sets of signals (Baraniuk 

2009). The signal can also be divided into continuous signals (analog signal) 

and discrete signals (digital signal) according to the time and the amplitude of 

the signal.  

Sporadic burst 
Random signal

Almost periodic

Transient

Ergodic

Non-ergodic

Non-stationary 
stochastic

 Periodic

Non- 
deterministic

Deterministic

Aperiodic

Stationary 
stochastic

Signals

 

Figure 4-1: Classification of the signal. 

This research mainly concentrates on the high frequency, non-stationary 

stochastic signal (AE signal) which is shown in Figure 4-1. 
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The analogue time series signal is generally used to convert digital values 

through the AD (analogue-to-digital) converter. The AD converter consists of 

three internal stages:   

• Sample-and-Hold circuit   

• Quantizer 

• Coder 

The sample-and-hold circuit consists of a switch and capacitor in its simple 

form. In the sample mode the switch is closed for an interval of (T െ ɒ) seconds 

thereby allowing the capacitor to charge up to the voltage value of the analogue 

input. In the hold mode the switch is opened, and the capacitor holds the 

instantaneous voltage values acquired at the end of the sample mode for an 

interval of  ɒ seconds, thereby allowing the A/D conversion to take place. The 

time interval between successive sample values,T, is called the sampling period.  

The important parameters of the analogue to digital conversion are the input 

range, the number of digits of conversion, the sampling time, and the total 

number of sampled data (Moriwaki 2008).   

The most important factor in sampling is the sampling time, which provides the 

time interval for the successful AD conversion. The AD converter equally 

divides the voltage of the input range into the given digits and gives the 

corresponding number to the input voltage at a given sampling interval. This 

requires more than 1 MHz sampling rate (5 MHz used in this research for AE) 

for acoustic emission signals. Other signals such as force, power and vibrations 

require less than 2kHz sampling rate (1kHz is used in this research). Another 

point is the accuracy of an A/D converter. 
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The sampling time οt is the time interval to give the successive AD conversion. 

A sampling time of 1 ms means that the signal is converted at a sampling rate of 

1000 samples per second, or a sampling frequency of 1 kHz. If the sampling 

time is shorter or the sampling frequency is higher, the original signal can be 

better represented as a digital form but the total number of digital data for a 

given time period becomes larger and may require a longer processing time.  

The sampling time οt gives the upper limit frequency  f୫ୟ୶  of the digitized 

signal to be analyzed, or 

f୫ୟ୶ =
ଵଶο୲                                        (4-1) 

This means that the frequency range of the digitalised signal is limited to below    ଵଶο୲  Hz. In addition, the original analogue signal beyond this frequency is 

included in the frequency components of the digitalised signal which is lower 

than f୫ୟ୶. This is called Shannon’s sampling theorem (Moriwaki 2008).  

If the quantity 
ଵଶο୲ is smaller than the frequency limit  f୫ୟ୶, then overlapping of 

the output periodic spectra will result. It means that if the analogue voltage 

signal is not sampled frequently enough the high frequency input signal will 

appear as a low frequency signal output. These phenomena are called aliasing 

and cause signal deformation. In order to avoid this problem, the sampling 

interval should be selected according to Shannon’s sampling theorem. This 

means that the signal must be sampled at least twice as fast as the highest 

frequency component.   

The quantiser performs an amplitude discretistion operation by converting the 

discrete-time continuous–amplitude signal to a discrete-time discrete amplitude 
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(digital) signal, by representing the continuous amplitude range with a finite 

number of quantization levels (discrete levels). 

 The coder assigns the binary numbers to normalise with respect to the full scale 

– voltage of the quantiser, where full scale voltage is referred to as the 

maximum amplitude of the analogue input voltage. When the grade difference 

or interval (difference between two consecutive quantization levels) between 

two neighbouring quantified voltages ȟx is ుమౘ, the maximum of the quantified 

error e is ±2ି(ୠାଵ)  (E is the input range). The quantified error is a random 

noise. Increasing the A/D bit will reduce the quantified error but increase the 

cost in terms of time and materials (Liu 2005; Griffin 2008). 

4.2 Features in time, frequency or time-frequency domains 

The aim of signal processing is to extract features from sensory signals which 

are carried out in the time domain, frequency domain or the combination of 

time-frequency domain. 

4.2.1 Features in time domain  

The signal analysis used extracts some of the useful/rich information of the 

signal via the mean value, root mean square, standard deviation, root mean 

square (rms) value, skewness, kurtosis and power. These features of the signal 

can be represented as mathematical functions in the time domain as follows in 

Table 4-1. 

.  
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Table 4-1: Partial feature presentations in the time domain 

 

4.2.2 Feature in the frequency domain 

The discrete-time or discrete-frequency Fourier transforms is usually known as 

Discrete Fourier Transform (DFT).  The Fourier Transform (FT) can be seen in 

the following equations: 

X(jɘ) =  x(n)eି୨ன୬ஶିஶ d(nɘT)               (4-2)
 

x(n) =  X(jɘ)e୨ன୬ஶିஶ d(ɘT)                    (4-3) 

Equation (4-2) the Fourier Transform of x(n) is multiplied with an exponential 

term, at some certain frequency f and then integrated over all times.  

There are two problems associated with the limit which extends  െλ to +λ  and the second problem which is associated with the frequency 
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variable ɘ which is continuous. It requires an infinite time in computation to 

produce the results. 

 

4.2.3  Frequency analysis 

Frequency domain analysis presents a transformed signal in a frequency 

domain. The advantage of frequency-domain analysis compared to time-domain 

analysis is its ability to identify and isolate certain frequency components of 

interest. The most widely used spectrum analysis is undertaken using FFT. The 

main idea of spectrum analysis is that it looks at certain frequency components 

of interest and extracts features from the signals.  

In the frequency spectrum analysis of acoustic emission signals, it takes the 

discrete Fourier transform (DFT) in the time domain and transforms the signal 

into the discrete frequency domain. The problem with DFT is that the 

computing time is very high because it involves a large number of 

multiplications, addition and trigonometric operations. To reduce the computing 

time in the frequency spectrum analysis the FFT was developed.  

FFT became popular after the publication of the Cooley-Tukey FFT algorithm 

in 1965 which reinvented the algorithm and described how to perform it on a 

computer. It opened a new area in digital signal processing by reducing the 

order of complexity of some computational tasks like Fourier Transform and 

convolution from Nଶ to N logଶN, where N  is the problem size  (Cooley, Lewis 

et al. 1967; Duhamel and Vetterli 1990).  
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FFT uses smart algorithms in computing by calculating the average of the 

duration of the extracted signal in less time compared to DFT. The FFT is used 

for condition monitoring. The disadvantage of FFT is that it does not have any 

time information which means at what times these frequency components occur 

when material undergoes deformation or fracture or a combination of both in 

the condition monitoring (Liu, Chen et al. 2006; Feng and Chen 2007).       

4.2.4 Time-frequency analysis 

The time-frequency analysis is able to investigate the waveform signals in both 

time and frequency domain. The time frequency uses time-frequency 

distribution, which represents the energy or power of waveform signals in two 

dimensional functions of both time and frequency to better reveal fault and 

patterns for a more accurate diagnostics. Short–time Fourier Transforms (STFT) 

and Wigner-Ville distributions are the most popular time frequency 

distributions (Cohen 1989; Wang and McFadden 1993; Andrade, Esat et al. 

1999).  Cohen (Cohen 1989) reviewed a class of time frequency distributions 

which includes the spectrogram, Wigner-Ville distributions and Choi-Willams. 

Most of this research uses AE signals for analysis of thermal features related to 

burn due to laser irradiation or grinding. The STFT is suitable to use for 

extracting non-stationary AE signals because it can break up the signal in small 

time segments and apply Fourier analysis for each time segment to determine 

the frequencies that existed in the segments.  

The short-time Fourier transform of a signal is obtained by sliding a window 

and taking the Fourier transform of the windowed signal. It is assumed that the 

signal is stationary during the duration of the window. The STFT of a signal 
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x(t) is obtained by calculating the spectrum of the modified signal  x(ɒ)h(ɒ െ
t) (more details about modified signal see equation (4-5)), where h(ɒ െ t) is the 

window function h(t)centred at t. It is defined by (Malik and Saniie 1993; 

Cohen 1995),   

STFT(t,ɘ) =  
ଵξଶ x(ɒ)h(ɒ െ t)eି୨னதdɒ             (4-4) 

Equation (4-4) is shown more detailed presenting both the time and frequency 

analysis. To analyse the properties of the signal at time t, the emphasis is made 

at that time and the signal is suppressed at other times. The signal is multiplied 

by a window function h(t), centred at t which produces the modified signal: 

x୲ (ɒ) = x(ɒ)h(ɒ െ t)                                            (4-5) 

The modified signal is a function of two times, the fixed time of interest t and 

the running time ɒ. The window function is chosen to leave the signal more or 

less unaltered around the time t and suppress these signals from other times to 

this time slice of interest.  

x୲ (ɒ)~ ൜x(ɒ)                      for ɒ near t 

0           for ɒ far away from t
�                    (4-6) 

The term “window” comes from the idea that we are seeking to look at only a 

small piece of the signal similar to when we look out a real window and see 

only a relatively small portion of the scenery.  In this case we want to see only a 

small portion at any one time. 

Since the modified signal emphasizes the signal around the timet, the Fourier 

transform will reflect the distribution of frequency around this time, 

x୲ (ɘ) =
ଵξଶ eି୨னதx୲(ɒ)dɒ                                      (4-7)  
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Since we are interested in analyzing the signal around the time t, we chose the 

window function that is peaked around t. Hence the modified signal is short and 

its Fourier transform is called the short-time Fourier transform.  

STFT(t,ɘ) =  x୲ (ɘ) =
ଵξଶ eି୨னதx(ɒ)h(ɒ െ t)dɒ      (4-8) 

The energy density spectrum at time t is therefore, 

Pୱ୮(t,ɘ) = ቚ ଵξଶ eି୨னத x(ɒ) h(ɒ െ t)dɒቚଶ                     (4-9) 

For each different time step, it is possible to get the different spectrum and the 

totality of these spectra is the time-frequency distribution, Pୱ୮. The spectrogram 

is used to see the frequency bands occurring at specific time intervals across the 

extracted time domain signal. A range of FFT from STFT would be used to 

signify burn and no burn phenomena. The FFT segments can then be used to 

describe phenomenon/event occurring at a specific time in space (Cohen 1995; 

Griffin 2008).  

Each new frame of the windowed sequence incorporates a percentage of 

samples from the previous frame. Typical overlaps could be found from 10% to 

25% or more (Terrell and Shark 1996). To smooth the overlap, a number of so 

called “window functions” have been developed. 

There are many popular window functions such as: Hamming, Hanning, 

Bartlett, or Kaiser window. A large window width provides good resolution in 

the frequency domain, but a poor resolution in the time domain, and vice versa 

(Kim, Lee et al. 2007). If a suitable window function is chosen to fully represent 

the non-stationary stochastic signal such as AE then STFT can provide quick 

and accurate results. The Kaiser Window function was chosen for its optimal 
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ability to compute the STFT. The Kaiser window has an additional ripple 

parameter Ⱦ compared to other fixed windows which enable the designer to 

trade off the transition and ripple. In more details the Kaiser Window function is 

presented in Appendix 2.  

The research in this thesis utilises the STFT as it is less computationally 

expensive than other time-frequency analysis techniques already discussed. In 

addition, STFT provides a good trade-off in terms of resolution in both 

frequency and time domains. The nature of the work carried out is not required 

to look into minuet phenomenon such as that described by Griffin (Griffin 

2008) who utilises WPTs for micro phenomena such as the classification of 

cutting, ploughing and rubbing however for more macro phenomena utilises 

STFT to distinguish burn/no burn/chatter/no chatter and therefore this technique 

is acceptable for distinguishing varying levels of burn (grinding and laser 

irradiation).   

4.3 Conclusion to signal processing 

This chapter has presented the signal processing techniques which will be 

employed for feature extraction from sensored signals. The signal and its 

representation and the common classifications of the signal that appear during 

the grinding process were discussed at the beginning of this chapter. Before 

feature extraction, the signal should be normalised so that there is a uniform 

standard for comparison of the different features. The research focused on AE 

signals which are non-stationary stochastic signals. In the frequency spectrum 

analysis the FFT is very important but the limitation of it is that it does not have 

any time information about when the event occurred which is very important in 
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understanding the released elastic energy when material undergo deformation or 

fracture or, both. 

The STFT technique is the most suitable tool to analyse non stationary 

stochastic AE signal in the time and frequency domains. The STFT uses the 

time-frequency distribution which represents the energy and power of waveform 

signals in two dimensional functions of both time and frequency which reveal 

the fault phenomenon and pattern for condition monitoring giving more 

accurate diagnostics. There is another signal processing technique conducted by 

using wavelet packets to extract features in time and frequency domains which 

has not been described in this chapter. By using wavelets, the original signal can 

be transformed into scale and wavelet coefficients. Such a series of coefficients 

represents almost all features of the original signal in terms of pattern 

recognition (Kiymik, Guler et al. 2005; James Griffin 2006). 
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Chapter 5: Investigation of thermal features of the AE signals 

 

5.1 Introduction 

This chapter aims to identify the thermal features of AE footprint signatures 

through laser thermal AE signal extraction and, grinding thermal AE signal 

extraction. 

 The objectives are as follows:  

• Calculate the surface temperature on the alloy materials (Inconel718 and 

MarM002) due to laser irradiation 

• Compare the surface temperature due to laser irradiation by both 

theoretical and experimental means    

• Identify the high, medium and low temperatures through thermocouple 

temperature signals and correlate with extracted AE signal 

•  Using the STFT technique, identify the high, medium and low 

temperatures AE footprint signatures through laser thermal AE signal 

extraction 

• Using the STFT technique, identify the burn and no burn AE footprint 

signatures through grinding thermal AE signal extraction 

The laser irradiation is an ideal heat source. In this research, laser irradiation 

was used to control the intensity of laser power to gain the required temperature 

which is similar to the grinding temperature. Laser irradiation experiments were 

merged with thermocouple and AE sensing data which was described in the last 
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chapter and gives the framework to follow in order to carry out this proposed 

research. A model of surface temperature is introduced by theoretical 

calculation which is based on the laser irradiation interaction in different off-

focal distances of the workpiece surface. This model should compare with the 

measured values of surface temperatures.  

This chapter however looks at the thermal features of AE signal extraction. The 

energy spectral analyses will first  examine the extracted AE signals in relation 

to laser elevated temperatures. Secondly, the AE signals obtained from grinding 

different depth of cut, examines the relation of grinding burn. The AE signals 

are high frequency and non-stationary stochastic signals. The STFT is the most 

suitable technique for feature extraction (Feng and Chen 2007). The STFT 

results will be presented in both the time and frequency domains.  

All acquired signals from laser and grinding experiments will be investigated 

and correlated to provide a richer summary for the classification system. 

5.2 Investigation of thermal features from laser irradiation 

5.2.1 Thermal properties of materials 

5.2.1.1 Heat capacity 

Heat capacity (C)  is a measurable physical quantity that characterises the 

amount of heat that is required to change a body’s temperature by a given 

amount. Heat capacity is expressed in units of Joules per Kelvin.  

The heat capacity indicates how much thermal energy a physical body can 

absorb for a change in temperature. 
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The specific heat capacity(c): The specific heat capacity is the amount of heat 

required to change a unit mass of a substance by one degree in temperature.  

 

5.2.1.2 Thermal conductivity  

The thermal conductivity k is the property of material that indicates its ability to 

conduct heat. The Fourier law states (Winterton 1999) that the rate of heat flow 

(Q) is proportional to the cross-sectional area (A)  available for heat transfer 

and to the temperature gradient ( 
οο ). 

Q = െkA 
οο   (W) 

The minus sign means that the heat must flow in the opposite direction to the 

temperature gradient. It is also regarded as a consequence of the second law of 

thermodynamics. The constant of proportionality,k, is the thermal conductivity. 

The unit of thermal conductivity is measured in Watts per meter 

Kelvin(W m. K)Τ . Thermal conductivity for Inconel718 varied from 11.4 to 

28.7 (W m. K)Τ . 

5.2.1.3 Thermal diffusivity  

In heat transfer analysis, thermal diffusivity is the thermal conductivity divided 

by volumetric heat capacity.  It has the SI unit of   (mଶ s)Τ . 

Ƚ =
ୡ౦  

Where: 

 k: thermal conductivity  (W m. K)Τ     
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ɏ22T : density (kg mଷ)Τ   

c୮: specific heat capacity  (J kg. K)Τ      

5.2.2 The model of surface temperature 

Thermal diffusivity measures the ability of a material to conduct thermal energy 

relative to its ability to store thermal energy. 

This research looks at the surface temperature based on the interaction of laser 

irradiation and workpiece surface to understand the thermal behaviour of 

materials. If the constant laser energy flux  is absorbed at the workpiece surface 

and there is no phase change in the material, the equation of the heat flow in one 

dimension could be written as follows (Steen 2003; Liu, Chen et al. 2006):  

          T(0, t) =
ଶ୍బ୩ Ʉ ቀ୲ቁభమ                                          (5-1) 

Where, T(0, t) = Temperature of the material surface after time t 

        I= the density of laser peak power 

        k= thermal conductivity 

       Ƚ= thermal diffusivity 

        Ʉ = absorption coefficient 

This could be determined through the following equations, 

Ʉ =
ସஔబ                                                                          (5-2) 

Where, ߣ= wave length of the laser 

             Ɂ = is the skin thickness (or penetration depth). 
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Ɂ = ቀ బஜ౨ ஜబቁଵ ଶΤ
                                                        (5-3)

 

Where,  ɐ= electrical conductivity ɓ= the speed of light Ɋ୰= the initial permeability of metal Ɋ=the permeability of a vacuum  

The absorption coefficient  Ʉ can be calculated approximately as 19.16 % for 

Nd: YAG laser for nickel based alloy (MarM002 and Inconel718). 

The laser peak power density, or peak intensity 

I, is a function of the off-focal distance fଶ then the equation could be written as 

follows(Steen 2003; Liu, Chen et al. 2006), 

    I =
ଶబனమమ =

ଶబቀனభమభቁమ =
ଶబ୲ቀனభ 

మభቁమ                              (5-4) 

    P=Laser Total Power 

    E= Laser Total energy 

    ɘଵ = Initial Radian of laser beam 

    ɘଶ = Laser spot radius 

     fଵ= Laser focal length 

    fଶ= Laser off focal length 
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5.2.3 The theoretical and measured models of surface temperature 

According to the theoretical equations (5-1) to (5-4), the temperature rise 

against the off-focal length can be calculated as shown in Figure 5-1. These 

models of the surface temperature derived by equations (5-1) to (5-4) are then 

compared with the measured temperature model obtained from experiments and 

shown in Figure 5-1.   

   

Figure 5-1: The surface temperature obtained from the experiment and 

theoretical calculations. 

The measured values of surface temperature differ from the theoretical 

calculated values and off-focal distances this is due to thermal conductivity and 

off-focal length playing an important role in this difference. The thermal 

conductivity (Inconel718 and MarM02) is the property of a material that 

indicates its ability to conduct heat in addition with more intense heat errors that 

can occur as the temperature gradient rises rapidly and is difficult to control.  

In addition, if the temperature of the material rises there will be an increase of 

electron energy exchanges through laser irradiation. The electrons are more 

likely to interact with the structure of those materials rather than oscillate and 

re-radiate (Steen 2003). 
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These materials (Inconel718 and MarM002) also have different absorption 

capacities for the radiation because they may require more energy to raise the 

temperature. 

 

5.2.4 Analysis of features of AE signals from laser irradiation 

The laser irradiation experiment provided a raw AE signal which was acquired 

in three different off-focal distances. The laser energy was 1.5 J and with a 

pulse width of 0.6 ms. In order to clearly observe the thermal energy 

distribution, the axis of the frequency is presented up to 1 MHz, which is the 

maximum response frequency of the AE sensor. The thermal features are 

extracted in terms of temperatures for analysis from the raw AE signal. Three 

off-focal distances are identified in laser irradiation in 34 mm, 40 mm and 46 

mm which should produce high, medium and low temperatures on the 

workpiece materials. The features are extracted in order to analyse the high, 

medium and low temperatures of the AE data. The raw forms of the AE signal 

are extracted from 34 mm, 40 mm and 46 mm off focal distances and converted 

in time domain as shown in Figure 5-2 with the results obtained from 

Inconel718 materials. The signals were sampled at 5 MHz sampling rate.   

  



Chapter 5                  Investigation of thermal features of the AE signals   

 [99]  

 

(a) Elevated temperature at 698°C (high) 

 

(b) Elevated temperature at 324°C (medium) 

 

(c) Elevated temperature at 239°C (low) 

Figure 5-2: Raw extracted AE signal (Materials: Inconel718). 

The STFT signal processing techniques are applied to extract thermal features 

of AE data. The STFT is a form of joint time frequency analysis but it has a 
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major drawback, the window width selected is critical in determining the time 

and frequency resolution. The Kaiser window function was used to optimise the 

resolution. These raw AE signals are converted both in time and frequency 

domains through a STFT signal processing technique which is shown in Figure 

5-3. Within the extracted AE signal from 34 mm off-focal distances to 40 mm 

and 46mm off-focal distances the properties were compared where both the 

higher and lower intensity frequency bands are much higher than others 

respectively from the smaller to the larger off-focal distance. 

 

(a)  Elevated temperature at 698°C (high)  

 

(b) Elevated temperature at 324°C (medium) 
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(c) Elevated temperature at 239°C (low)  

Figure 5-3: The STFT of extracted AE signals (Material: Inconel718). 

Figure 5-3 displays the STFT of raw extracted AE signals which have been 

obtained from the three off focal distances. The STFT computes the FFT peaks 

at periodic time intervals where varying frequency phenomenon intensities can 

be seen. Figure 5-3(a) displays the results of the STFT of the AE data extracted 

from 34mm off-focal distance whereby the intensity of frequencies are higher 

than in Figure 5-3 (b) and Figure 5-3 (c). High temperature changes cause the 

intensities in the AE signals to increase. In comparison to STFT, the FFT of 

extracted AE signals are presented in Figure 5-4 (a) high temperature (698°C), 

(b) medium temperature (324°C) and (c) low temperature (239°C). 
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(a) Elevated temperature at 698°C (278kHz) 

 

(b)  Elevated temperature at 324 °C (244 kHz) 

 

(c)  Elevated temperature at 239°C (278 kHz) 

Figure 5-4: The FFT of extracted AE signals (Materials: Inconel718). 
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Figure 5-4 shows the energy of the AE intensity of frequency component is 

higher due to higher temperature in (a) than in (b) and (b) is higher than (c). AE 

features at 34 mm laser off-focal distances presented in Figure 5-4(a). When the 

temperature was 698Ԩ, the major features appeared at 190, 234, 249, 278, 297, 

517 kHz and the highest peak was observed at 278 kHz.  

AE features under 40mm laser off-focal distances presented in Figure 5-4(b).  

When the elevated temperatures were 324°C, the major features appeared at 

244, 278, 351, 440, 517, 581 kHz and the highest peak was observed at 244 

kHz. 

AE features under laser irradiation of 46mm off-focal distances presented in 

Figure 5-4(c).  When the elevation temperature was 239°C, the major features 

appeared at 244, 278 kHz and were much lower in intensity.  

The laser irradiation on MarM002 materials: The raw forms of the AE signal 

are extracted from 34 mm, 40 mm and 46 mm off-focal distances as shown in 

Figure 5-5. 

 

(a) Elevated temperature at 493°C (high) 
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(b) Elevated medium temperature at 318°C(medium) 

 

(c) Elevated low temperature at 235°C k(low) 

Figure 5-5: The time series plots of raw extracted AE signals (Material: 

MarM002). 

 

These raw forms of AE signals for MarM002 are converted to time and 

frequency components using STFT and presented in Figure 5-6. In the AE 

signal extracted from 34 mm off-focal distances compare to AE signal 40 mm 
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and 46 mm off-focal distances both the higher and lower intensity frequency 

bands are much higher. 

The experiments using STFT clearly revealed the intensity that the AE signal, 

extracted from 34 mm off-focal distances compared to the AE signals of 40 mm 

and 46 mm for off-focal distances, both the higher and lower intensity 

frequency bands are much higher. The high temperature changes on the 

MarM002 materials caused the AE signals to have a different intensity.  

 

(a) Elevated temperature at 493°C (high) 

 

(b) Elevated temperature at 318°C (medium) 
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(c) Elevated temperature at 235°C (low) 

Figure 5-6: The STFT of extracted AE signals (MarM002). 

In comparison to STFT, the FFT of extracted AE signals in high, medium and 

low temperatures have been obtained from three off-focal distances are 

presented in Figure 5-7. 

 

(a) Elevated temperature at 493 °C (444 kHz) 
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(b) Elevated temperature at 318°C (273kHz) 

 

(c) Elevated temperature at 235 °C(420kHz) 

Figure 5-7: The FFT of extracted AE signals (Materials: MarM002). 

The FFT of AE features under 34 mm off-focal distances due to laser irradiation 

are presented in Figure 5-7.  When the elevation temperature was 493Ԩ for 

MarM002, the major features appeared at 273, 332, 420, 444, 527 kHz 

frequency bands and the highest peak was observed at 444 kHz due to the high 

temperature. 
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The FFT of AE features under 40 mm laser off-focal distances due to laser 

irradiation is presented in Figure 5-7(b). When the elevation temperature was 

318°C, the major features appeared for MarM002 at 229, 273, 502 kHz 

frequency bands and the highest peak was observed at 273 kHz due to the 

medium temperature. 

The FFT of AE features under laser irradiation of 46mm off-focal distances is 

presented in Figure 5-7(c). When the elevation temperature was 235°C for 

MarM002, the major feature appeared at 356 kHz and 420 kHz with much 

lower intensity. 

5.2.5 Discussion and analysis on laser thermal features of AE signal  

In order to distinguish the intensity of energy distribution, the axis of frequency 

for STFT and FFT are presented up to 1000kHz , which is the maximum 

response frequency of the AE sensor.  The intensity of the frequency component 

is higher due to the off-focal points of a laser beam closer to the workpiece. 

The results demonstrated that the spectra are separated in different frequency 

bands from high to low temperature changes. The experiments reveal that the 

energy distribution of the AE signal of thermal expansion under high 

temperatures have much higher intensities for both MarM002 and Inconel718.  

In the medium temperature, most of the features appeared with a lower intensity 

than the intensity under the high temperature conditions. In the low temperature, 

most of the features appear in the frequency range which has a much lower 

intensity than the intensity under high and medium temperature conditions.  
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These results of laser thermal feature should be similar to the grinding thermal 

feature. In order to verify this, the thermal features of the AE signal are 

investigated next.  

5.3 Investigation of thermal features in grinding  

This research looks at the investigation of extracted thermal features of AE 

signals from grinding. These features contain burn and no burn signatures in the 

form of AE signals relating to changing depth of cuts. The burn phenomenon 

consists of a compact burst of high amplitude which often concentrates at the 

end of each signal due to a deeper material change to the workpiece. According 

to Malkin thermal damage occurs at the end of the cut, as the wheel is about to 

break through, since no workpiece material remains to conduct heat downwards 

(Malkin 1989). In this piece of research, the workpiece materials are ground 

from 0.02 mm to 0.2 mm depth of cuts with the condition as shown in Table 3-5  

in order to identify burn and no burn AE footprint signatures.   
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5.3.1 Burn and No burn analysis on Inconel718 materials  

In order to analyse burn and no burn phenomena, a burn signal as an example at 

a 0.2 mm depth of cut and a no burn signal at 0.02 mm depth of cut for 

Inconel718 materials are presented in Figure 5-8. Both signals are displayed in 

the time domain as time series plots. Both of the signals are sampled with a 

sampling rate of 5 MHz. 

 

Figure 5-8: The time series plot of burn and no burn phenomena across the total 

extracted signal (Material: Inconel718). 

The thermal features of AE data were extracted from in their raw form in the 

time domain relating to the different burn or no burn phenomena.  The extracted 

AE data was then converted to both the time and frequency domains using 

STFT which is presented in Figure 5-9.      
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(a) With grinding burn 

 

(b) Without grinding burn 

Figure 5-9: The STFT of AE signal for burn and no burn phenomena (Material: 

Inconel718). 
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Looking at Figure 5-9 it is possible to see that the burn phenomena has intense 

amplitudes at 50 kHz to 100 kHz, 200 kHz to 300 kHz and 500 kHz to 600 kHz 

frequency bands. In comparison to STFT the thermal features of raw AE data 

were converted to frequency domain using FFT. The results obtained from FFT 

are presented in Figure 5-10.  

 

Figure 5-10: The FFT of AE signal in 0.2 mm and 0.02 mm depth of cuts. 

(Materials: Inconel718). 

When the depth of cut was 0.2 mm, the major features appeared at 83 kHz, 249 

kHz and 596 kHz. When the depth of cut was 0.02 mm, the major frequency 

appeared at 78 kHz, 556 kHz and 581 kHz. There was a higher energy peak at 

249 kHz when the grinding burn occurred in 0.2 mm depth of cut. It was 

observed that the peaks in the high frequency range were generally lower than 

those in the low frequency range. Under the grinding burn conditions the 

maximum peak values in the high frequency range were only 64% of the 

maximum peak of the total frequency spectrum. This revealed that the thermal 

expansion caused by the grinding burn temperature was intense when grinding 

burn occurred. Under normal grinding conditions the high energy peaks do not 

exist in the high frequency range (> 500 kHz).       
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Figure 5-11 presented the scanning electron microscope (SEM) images of 

Inconel718 (workpiece) material after grinding. An energy dispersive X-ray 

(EDX) facility attached to the SEM is used for analysing the workpieces. The 

images are obtained from grinding experiments in 0.02 mm and 0.2 mm depth 

of cuts where Al2O3 Figure 

5-11

 grinding wheels are used to grind the workpiece. 

(a) shows a SEM image of a no burn situation (0.02 mm depth of cut). 

Figure 5-11(b) shows a SEM image of a similar ground Inconel718 workpiece 

surface but also showing the burn case (0.2 mm depth of cut).  

 

Figure 5-11: SEM images of Inconel718. 

The grinding wheel abrasive (Al2O3

Figure 

5-11

) has a higher melting point (2072°C) than 

Inconel718 (1336°C). The microstructure of the workpiece surface changed due 

to the high temperature as a result of grinding burn. Some grit from the grinding 

wheel is fractured and leaves a portion of the grit in the surface. The fractured 

portion is pushed across the surface during grinding. The SEM image of 

(b) has a higher percentage (%) of grits embedment than Figure 5-11(a) 

which confirmed severe burn in the burn sample. 

(a) Depth of cut: 0.02 mm , wheel speed:55 mm/s, 
feed rate: 1m/min, coolant: No.  material:Inconel718

(b) Depth of cut: 0.2 mm , wheel speed:55 mm/s, 
feed rate: 1m/min, coolant: No.  material:Inconel718
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5.3.2 Burn and no burn analysis on MarM002 materials 

The thermal feature of AE data are extracted from the raw form of AE signals 

which are obtained during grinding MarM002 at different depth of cuts. Figure 

5-12 displays a raw form of AE signals for the 0.2 mm depth of cut and no burn 

signals for the 0.02 mm depth of cut. In order to analyse, burn and no burn 

signatures are displayed in time domains as time series plots with a 5 MHz 

sampling rate. 

 

Figure 5-12: The time series plots of burn and no burn signals (MarM002 

materials). 

These raw forms of AE signals are extracted from the end section of the signals 

displayed in Figure 5-12 in order to convert into both the time and frequency 

domains through the use of STFT. The STFT results are presented in Figure 

5-13. The STFT revealed that the AE signals from the 0.2 mm depth of cuts 

have higher intensity frequency bands than the intensity at the AE signals of 

0.02 mm depth of cut. 
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(a) With grinding burn 

 

(b) Without grinding burn 

Figure 5-13: The STFT of burn and no burn signatures on AE signal (MarM002 

materials). 
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In comparison to STFT, the FFT of the extracted AE signals are shown in 

Figure 5-14 obtained from 0.2 mm depth of cut and 0.02 mm depth of cut 

respectively. The results show the energy of the AE intensity of frequency 

components are higher due to severe burn at the 0.2 mm depth of cut sample 

compared with the 0.02 mm depth of cut sample.  

 

Figure 5-14: The FFT of AE signal on MarM002 materials. 

AE features under 0.2 mm depth of cut concentrated between 50 to 150 kHz, 

240 to 350 kHz and 550 to 650 kHz frequency range. The major features that 

appeared in the low frequency range were at 83 kHz, 244 kHz and in the high 

frequency range (> 500 kHz) were at 590 kHz. Under the grinding burn 

conditions, the maximum peak values in the high frequency range were 64% of 

the maximum peak in the total frequency spectrum. This provided evidence that 

thermal expansion due to grinding burn is intense in the sample of MarM002 

with 0.2 mm depth of cut. When the depth of cut was 0.02 mm, the major 

frequency feature appeared at 83 kHz. The peaks existing in the high frequency 

range (> 500 kHz) were much lower, which confirmed that there was no burn or 

may have had slight burn within the workpiece surface during grinding of the 

0.02 mm depth of cut.   
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In order to verify AE burn and no burn signature the SEM images of MarM002 

are presented in Figure 5-15. The images were obtained from the grinding 

experiments at the 0.02 mm and 0.2 mm depth of cuts where AlଶOଷ grinding 

wheels were used.  

 

Figure 5-15: SEM images of MarM002. 

Figure 5-15 (a) is the image of a no burn case (0.02 mm depth of cuts). The 

SEM micrograph of a ground surface presented in Figure 5-15 (b) shows that 

the microstructure of the surface changed (melted) due to very high temperature 

during grinding. It is also possible to see that the grit is fractured and a portion 

of the grit (as white spots) is left on the surface. The wear types are known as 

grain fracture which is displayed in the images.  

 

5.3.3  Discussion on grinding thermal features of burn and no burn   

 In the grinding burn condition, it is possible to see that the burn AE intensities 

were much greater than that of normal grinding AE intensities. Inconel718 and 

MarM008 are nickel based alloys which are very hard materials. Inconel718 

hardness is known to be HRC50. It is very difficult to burn these materials due 

(a) Depth of cut: 0.02 mm , wheel speed:55 mm/s, 
feed rate: 1m/min, coolant: No.  material:MarM002

(b) Depth of cut: 0.2 mm , wheel speed:55 mm/s,
feed rate: 1m/min, coolant: No.  material:MarM002
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to their hardness and heat capacity properties. The main reason for burn is the 

continuous high temperatures in the grinding zone due to too much material 

being removed at any one time. This is not the only reason for grinding burn. 

There may be other factors involved contributing to grinding burn. The AE 

waves are often mixed with other sources such as grain fracture, chatter 

vibration and white noise. The main challenge is how to extract thermal features 

of the AE signal and compare it to grinding burn for the various AE sources. 

The literature indicates at the onset of grinding burn, the grinding force and rate 

of wheel wear increases very sharply which has a direct effect on the 

deterioration of workpiece surface roughness (Kwak and Song 2001). The 

results demonstrated by using STFT from Figures 5-12 and 5-13 that when 

grinding burn occurred, the high frequency features of the AE signals were 

much stronger than those of the normal grinding condition. The FFT slice 

further verified the STFT signal analysis of the AE footprint burn signatures. 

5.4 Results, analysis and conclusion 

The main concern of this research was to control the intensity of laser power for 

the required temperature that is similar to the grinding zone temperature. The 

surface temperatures of both the calculated and measured values are 

demonstrated in Figure 5-1. The surface temperature obtained from 34 mm, 40 

mm and 46 mm off-focal distances laser experiments produced a reasonable 

agreement with that obtained from theoretical calculations.   

In this piece of work, the thermal features of AE signals in laser irradiation were 

compared with the thermal features of AE signals in grinding. The STFT was 

applied to extract features from the raw form of AE signals. The thermal 
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features of Inconel718 under 34 mm off-focal distances are concentrated due to 

high temperature (698°C) between 190 kHz and 600 kHz frequency bands. The 

thermal features of MarM002 are concentrated due to the high temperature 

(493°C) between 244 kHz to 581 kHz frequency band. The investigation 

revealed that the thermal expansions due to laser irradiation under high 

temperatures have the higher intensities. 

AE features at 40 mm off-focal distance produce 324°C temperature (medium), 

the major features appeared for Inconel718 at 244 to 581 kHz frequency bands 

and for MarM002 at 318°C gives 229 kHz to 502 kHz frequency bands. The 

energy in the high frequency region reduces compared to the energy under high 

temperature. 

AE features at 46 mm off-focal distances, the elevation temperature for 

Inconel718 was 239°C, the major features appeared at 244 to 278 kHz 

frequency bands. When the elevation temperature for MarM002 was 235°C, the 

major features appeared at 356 and 420 kHz. The investigation revealed that the 

thermal expansion due to laser irradiation under a low temperature have much 

lower intensities.  

This investigation demonstrated that STFT is a useful technique to distinguish 

the frequency bands occupied by burn and no burn phenomena through thermal 

features of AE grinding burn. The work demonstrated that 0.2 mm depth of cut 

for Inconel718 under the grinding burn condition, the major features appeared 

in the low frequency range at 83 kHz and 249 kHz and in the high frequency 

range at 596 kHz. In the normal grinding condition under 0.02 mm depth of cut, 
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the major features appeared at 78 kHz frequency band in the low frequency 

range. 

The work also demonstrated that with a 0.2 mm depth of cut for MarM002 

under grinding burn condition, the major features appeared in the low frequency 

range at 83 kHz to244 kHz and in the high frequency range at 590 kHz. In  

normal burn conditions, using an under 0.02 mm depth of cut, the major 

features appeared at 83 kHz frequency band in the low frequency range (< 500 

kHz).  

The result concluded that the thermal features of AE signals due to laser 

irradiation are similar to the thermal features of AE signals in grinding 

irrespective of heat sources. The result demonstrated in this chapter that laser 

irradiation is an ideal heat source for simulating grinding temperatures. This 

phenomenon may instill confidence for grinding temperature identification 

using laser irradiation sensing techniques.   

The next chapter describes the use of pattern recognition of AE signal features 

for grinding temperatures pattern classification through laser thermal AE 

features in terms of an intelligent diagnostic technique. 
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Chapter 6: Feature extraction using intelligent diagnostic technique 

 

6.1 Introduction  

This chapter aims to describe the use of pattern recognition of AE signal 

features for grinding temperature based on the pattern classification using laser 

thermal AE features and provide warning if burn or the onset of burn exists. The 

Multi -layer perceptron (MLP) neural networks with the back-propagation 

learning rule are chosen for classification. NN is chosen in this piece of research 

because it is easy to use as a pattern recognition tool and it can be confidentially 

used as a robust classifier with the highest correct classification rate compared 

with other non hybrid classifiers (Kwak and Ha 2004; Griffin and Chen 2007).      

The objectives are as follows:   

• Determine the neural network structure to best represent the problem 

space 

• Design the training data set based on high, medium and low temperature 

signals  through laser thermal AE signal extraction 

• Design the testing data set based on burn and no burn signals through 

grinding thermal AE signal extraction 

• Select the learning rate and momentum values 

• Train NN to classify high, medium and low temperatures due to the 

phenomena provided by laser thermal features of AE signal extraction 

• Test the NN results in a generalised manner to classify the grinding 

temperatures due to severe burn, normal burn and slight burn or no burn 

phenomena through grinding thermal features of AE signal extraction 

•  Analyse the wheel wear based on the classification results     

The thermal features of AE signals due to laser irradiation and the thermal 

features of AE signals due to grinding are discussed for both materials in 

chapter 5. More signal features and more details normally provide explicit 
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recognition of the event for any kind of process monitoring. However, a huge 

number of features contain mutual information of different events, which may 

cause some misleading results. The question is which features should be kept 

and which features should be discarded? Pattern recognition is mainly used for 

these complex and uncertainty issues (Fu, Hope et al. 1998). The artificial 

neural network (ANN) is a mature proven pattern recognition tool in terms of 

accurate classifications for a multi dimensional data space. NN can capture 

domain knowledge from examples, they do not archive knowledge in an explicit 

from such as rules or databases and can readily handle both continuous and 

discrete data giving a generalisation capability (Teti, Jemielniak et al. 2010). 

Every NN that is used to classify non-linear data consists of at least one hidden 

layer in addition to the input and output layers. These layers are inter-connected 

according to modifiable weights by links between the layers. The most popular 

methods for training such multilayer networks are based on gradient descent 

minimising the error, which is known as the back propagation algorithm or the 

generalistic delta rule (Duda, Hart et al. 2001).  

Back propagation is one of the common methods for supervised learning of a 

multilayer neural network. Supervised NN means the use of training data for 

classification on the converse, unsupervised is where no training data is used 

and distance measures are used instead such as that seen in clustering 

algorithms. In unsupervised learning, it doesn’t require external input. An 

unsupervised NN learns the data for itself using new information available. The 

network learns automatically to categorise them in groups of similar features 

(Jardine, Lin et al. 2006).  
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This chapter describes grinding temperature identification due to burn using 

pattern recognition based on a given set of parameters. A classifier model and 

its associated training algorithm are introduced, all are associated with pattern 

recognition. A NN model has been designed for the classification of high, 

medium and low temperatures due to burn during the grinding process. This NN 

model has been supervised and trained by the feed forward NN system with the 

back-propagation learning rule. Chapter 5 shows that the STFT of an AE signal 

can represent different phenomena due to high, medium and low level 

temperatures experienced during laser irradiation and this data is transferred 

into input parameters for the classification. The testing AE data consisted of the 

grinding thermal AE data which can represent different characteristics of burn 

and no burn phenomena and can be used for verification. An algorithm known 

as gradient descent algorithm was presented to ANN with the backpropagation 

learning rule to see the effect in convergence performance. Another algorithm 

resilient backpropgation was used to test a reasonable number of learning rules 

and attempt to establish an optimum network.   
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6.2 The basic structure of a MLP neural network 

The Multilayer perceptron is a feed-forward neural network. It consists of a 

number of neurons which are connected by modifiable weighted links in a 

hierarchical structure.  

 

Figure 6-1: The multilayer perceptron structure (Duda, Hart et al. 2001; 

Zaknich 2003). 

Each signal travelling along the link is multiplied by the connection weights as 

shown in Figure 6-1. The bias term  x  provides a balance to the origin of the 

activity function which could be regarded as an extra weight term with the input 

fixed at one (L.H.Chiang 2001). The basic approach to learning is to start with 

an untrained network as shown in Figure 6-1. A training pattern is presented to 

the input layer, the signal travels through the net and the output is determined 

from the output layer. This type of supervised learning consists of presenting an 

input pattern and changing the network parameters to bring the actual parameter 

closer to the given target values. Supervised learning is essentially the user 

supplying training data to the recognition system to base its hypotheses on. The 

converse is an unsupervised network that uses input measures to base its 
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hypotheses on. In NN learning, these errors are compared with the desired target 

values. This error or criterion function is some scalar function of the weights 

and is minimised as the network outputs tend towards the desired outputs.    

Thus the following equation is true for training, the training error of the weights 

E(w) linked to the input patterns is updated every gradient time step change 

with the sum squared difference between the desired output t୩ and the actual 

output y୩ see equation 6-1 below for mathematical representation:  

E(w) = భమσ (t୩ െ y୩)ଶୡ୩ୀଵ                 (6-1) 

Where the network output vectors of length c and w represents all the weights 

in the network.   

The backpropagation learning is based on gradient descent. The idea of gradient 

descent is to make a change in the weight proportional to the negative of the 

derivative of the error, as measured on the current pattern, with respect to each 

weight see equation 6-2  for more details (McClelland and Rumelhart 1989): 

οw = െɄ பப                               (6-2) 

Where Ʉ is the learning rate, and indicates the relative size of change in weights. 

Both equations above update in a step wise fashion that changes the weight 

space and lowers the criterion function. This iterative algorithm requires taking 

a weight vector at each iteration k  and updating it as, 

w(k + 1) = w(k) െ Ʉ பப୵         (6-3) 

Where k indicates a particular pattern presentation (Duda, Hart et al. 2001). 
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6.2.1 The training data set    

The training dataset should include all the data belonging to the problem space 

albeit some data removed and used as unforeseen cases to test the generalisation 

of the network. This data is used to update the weights during training of the 

network. The training dataset of the NN uses the laser thermal features of AE 

data to the neural network. The testing dataset to the NN uses the grinding 

thermal features of AE data. This input dataset consists of thermal features of 

AE signal samples extracted from 34 mm, 40 mm and 46 mm laser off-focal 

distances which are concatenated together in a matrix format. The input data 

with their respective features is realised in a matrix as P(m × n) presented in 

equation (6-4). This matrix is ready after normalization for input to the ANN 

system. 

P(m × n) =

ێێۏ
ۍێێ

pଵଵ pଵଶ ڮ
pଶଵ pଶଶ ڮڮ    

pଵ୨ ڮ pଵ୬
pଶ୨ ڮ pଶ୬

p p୧ଶ ڮڮ
p୫ଵ p୫ଶ    ڮ

p୧୨ ڮ p୧୬
p୫୨ ڮ p୫୬ۑۑے

 (4-6)           ېۑۑ

T(m) = [tଵ tଶ t୧ ڮ ڮ t୫]                                (6-5) 

Where T(m) is a target vector. The target is a desired output of the given input 

to the network. When the learning is supervised it is presenting the given input 

data and changing the network parameters to bring the actual outputs closer to 

the desired target values. The values for the target are chosen by setting T to 3, 

2 and 1 relating to high, medium and low temperatures. Each element (column) 

of the target vector is defined as a class which corresponds to an individual 

training sample case when the test samples are input into the network this will 



Chapter 6                   Feature extraction using intelligent diagnostic technique   

 [127]  

then relate to a target output case of ANN (if the desired output is the same as 

the actual then this is termed as a correct classification).   

AE data extracted in 34 mm off focal distances defined as the class of high 

temperatures and is associated with the target value of 3, AE data extracted in 

40 mm off-focal distance is defined as a class of medium temperatures and is 

associated with the target values of 2 and finally, the AE data extracted in 46 

mm off-focal distance is defined as a class of low temperatures and associated 

with the target value of 1. The AE data signals are extracted to signify the 

features from laser irradiation and grinding experiments. To signify the features 

and avoid misclassification in NN presentation, the AE data should be 

normalised. The MATLAB’s subroutines prestd is used before training 

ensuring all input values to the NN are normalised so

The normalization matrix (see equation 6-6) could be written after 

normalization using the following syntax which is ready for training the NN. 

 that the mean is 0 and the 

standard deviation is 1. 

X(m × n) =

ێێۏ
ۍێێ

xଵଵ xଵଶ ڮ
xଶଵ xଶଶ ڮڮ    

xଵ୨ ڮ xଵ୬
xଶ୨ ڮ xଶ୬

x୧ଵ x୧ଶ ڮڮ
x୫ଵ x୫ଶ    ڮ

x୧୨ ڮ x୧୬
x୫୨ ڮ x୫୬ۑۑے

 (6-6)                     ېۑۑ

6.3 Training with backpropagation 

The most popular method of training the feed forward neural network is to use 

the backpropagation learning rule. The objective of the training process is to 

minimise the mean sum-squared error using the backpropagation learning rule 

which tends towards correlating the training data and their output neuron values.  



Chapter 6                   Feature extraction using intelligent diagnostic technique   

 [128]  

Considerations of the MLP structure are shown as an example in Figure 6-1. To 

achieve this objective of the training process the two sets of network weights 

need to be minimised simultaneously: the output layer weights w୨୩ and hidden 

layer weights w୨୧.  
Equation (6-7) shows that each hidden unit computes its sigmoidal activation 

function based on its inputs. This can be written: 

h୨ = f୨(σ w୨୧୮୧ୀଵ . x୧) = f୨(net୨)                     for      j=1,2......M            (6-7) 

Each output unit computes its sigmoidal activation function based on the hidden 

unit signals as 

y୩ = f୩(σ w୨୩୨ୀଵ . h୨) = f୩(net୩)                  for        k=1,2......c           (6-8) 

Network outputs  y୩ are a function of hidden outputs h୨ and the weights w୩୨  
between the hidden layer and the output. The output h୨ are a function of the 

inputs x୧ and the weights between the inputs and the hidden layer.  

The summation of weights and bias values are multiplied by a log sigmoid 

transfer function in this research to give a neuron output. The log sigmoid and 

linear transfer functions used in the network are displayed in Figure 6-2. 

 

(a) Log-Sigmoid Transfer Function          (b) Linear Transfer Function 

Figure 6-2: Displays the transfer functions used in the multi-layer ANN 

classifier (Demuth, Beale et al. 1994). 
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When using gradient descent, the local gradient of the error function is 

computed and the weights are then adjusted in the opposite direction of the 

gradient. This is the direction of the total weight changes which inherently 

makes the overall network error smaller. The partial derivatives and chain rule 

are used to calculate the contribution of each of the weights. 

Change in error due to Output layer weights: Considering, first the hidden-

to-output weights of w୩୨ because the error of w୨୩  is not explicitly dependent 

upon (Duda, Hart et al. 2001). The gradient of the error function with respect to 

each weight in the network is computed first over the change in error due to 

output layer. To compute the partial derivative of  
ஔ౮ஔ୵ౡౠ , the chain rule is applied 

repeatedly to calculate the contribution for each weight in the network:  

  
ஔ౮ஔ୵ౡౠ =

ஔ౮ஔ୷ౡ ஔ୷ౡஔ୬ୣ୲ౡ ஔ୬ୣ୲ౡஔ୵ౡౠ                                       (6-9) 

The backpropagation error to the hidden layer can be calculated easily through 

partial derivatives and if the error functions equation is submitted into the 

equation (6-9). The partial derivative of the error function with respect to the 

output layer weights can be expressed as 

ஔ౮ஔ୵ౠౡ = െ(t୩ െ y୩)y୩(1 െ y୩)h୨                   (6-10) 

ஔ౮ஔ୵ౠౡ = Ɂy୩h୨                                                   (6-11) 

Where,            Ɂy୩ = െ(t୩ െ y୩)y୩(1 െ y୩)                       (6-12) 

Equation (6-12) represents the back propagating error related to the hidden 

layer. 
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Change in error due to hidden layer weights: The NN use the same 

procedure as propagating the error back through the network the weights 

between the input and the hidden layer are updated. The error pattern of the 

hidden layer weights when back propagated through to the input layer weights 

do not have “desired output” as the target for the hidden layer this is in order to 

correct the error. The partial derivative of the error index of input-to-hidden 

units to the weight vector using chain rule again can be written as follows: 

ஔ౮ஔ୵ౠ =
ஔ౮ஔ୦ౠ ஔ୦ౠஔ୬ୣ୲ౠ ஔ୬ୣ୲ౠஔ୵ౠ                                                    (6-13) 

The learning rule for the input-to-hidden weights can be written after working 

on each term explicitly as,  

ஔ౮ஔ୵ౠ = െσ (t୩ െ y୩)y୩(1െ y୩)w୨୩. h୨൫1 െ h୨൯. x୧ୡ୩ୀଵ    (6-14) 

ஔ౮
 ஔ୵ౠ = Ɂh୨.x୧                                                                  (6-15) 

Where 

  Ɂh୨ = െσ (t୩ െ y୩)y୩(1 െ y୩)w୨୩. h୨൫1 െ h୨൯. x୧ୡ୩ୀଵ     (6-16) 

This equation (6-16) represents the backpropagation of the error from the output 

layer to the hidden layer.    

This algorithm is called backpropagation because during training an error must 

be propagated from the output layer back to the hidden layer in order to perform 

the learning of the input-to-hidden weights by equation (6-16). In order to 

minimise the error, all the weights must be adjusted incrementally in the 

opposite direction to the error gradient each time a training input/output vector 
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pair is presented to the network. The weight update equation can be written as 

follows: 

οw୨୩୬ୣ୵ = οw୨୩୭୪ୢ െ ɄɁy୩. h୨                            (6-17) 

οw୧୨୬ୣ୵ = οw୧୨୭୪ୢ െ ɄɁh୨.x୧                                (6-18) 

Where Ʉ is the learning rate (0 < Ʉ < 1). The learning rate sets the step size 

during gradient descent which has a trade-off in value to ensure it is small 

enough to gain a true convergence but large enough to separate the data space in 

adequate time (James Griffin 2006). 

The problem with the gradient descent algorithm is that it can stop at a local 

minimum instead of a global minimum.  

When the network weights approach a minimum solution, the gradient becomes 

small and step size reduces, resulting in very slow convergence. In order to 

prevent this problem, a momentum factor is added to the weights update 

equations where the weights can be updated with some component of past 

updates. Adding the momentum factor to the gradient descent learning 

equations modifies them towards the global set of targets (Duda, Hart et al. 

2001).  

Gradient descent uses differentiation to tend towards the desired output for 

training data, if there is no momentum the local minima for the set of data may 

not be the global minima just the first minima it settles on. With momentum set 

to 0.9 this is a good compromise and most of the data space is explored giving 

no/less local minima results (if the problem data space is separable) and more 
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minimum results towards the global minima and if possible the exact required 

global minima. 

Another algorithm used ‘RProp’ which stands for ‘resilient backpropagation’ 

and is an efficient new learning system that is used to perform a direct adaption 

of the weight step based on local gradient information. The trainrp (see 

Appendix 5) is a network training function that updates weight and bias values 

according to the resilient backpropagation algorithm (RProp).

As a consequence, the size of the derivative considered indicates the direction of 

the weight update. The size of the weight change is exclusively determined by 

weight specific update values ο୧୨(୲). 

 The basic 

principle of RProp is to eliminate the harmful influence of the partial derivative 

size on the weight step (Riedmiller and Braun 1993). The partial derivatives are 

already implemented in the normal back-propagation algorithm (see in equation 

6-15).  

ο୧୨(୲)= ۔ە
െο୧୨(୲),     if ಌు(౪)ಌ౭ౠۓ > 0 

+ο୧୨(୲),      if ಌు(౪)ಌ౭ౠ < 0

0,               else 

�                                                (6-19) 

If the ο୧୨(୲) is too big, the algorithm could jump over a local minimum based on 

the partial derivative of the weight change οw୧୨୲ which changes sign and so the 

update value ο୧୨(୲) shifts according to the appropriate increase/decrease factor, Ʉ. 

If there is no change in the weights value, the derivative retains its sign and the 

update value is automatically increased to increase the speed of convergence in 

shallow regions. The new update value is shown as follows: 
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ο୧୨(୲)= ۔ە
Ʉାۓ ή ο୧୨(୲),          if ಌు(౪శభ)ಌ౭ౠ ή ಌు౪ಌ౭ౠ > 0 Ʉି ή ο୧୨(୲),           if ಌు(౪శభ)ಌ౭ౠ ή ಌు౪ಌ౭ౠ < 0

0,                     else 

�                            (6-20) 

Where: 0 < ିߟ < 1 < Ʉା  indicates the decrease and increase factor 

respectively.  

To summarise, the basic principal of ‘RProp’ is the direct adaptation of the 

weights update values. It modifies the size of the weight-step directly by 

introducing the concept of resilient update values. Using ‘RProp’, the size of the 

weight step is only dependent on the sequence of signs, not on the magnitude of 

the derivative. For this reason, learning is equally spread all over the entire 

network and the weight(s) near the input layer have an equal chance to grow 

and learn as weights for the output layer (Riedmiller and Braun 1993). 

6.3.1 The testing data set  

The testing input data set consists of grinding thermal AE data as extracted from 

the grinding experiment. There was one test set of AE signals consisting of 7 

tests at the 0.2 mm depth of cut and other test sets consisting of 7 tests at the 

0.02 mm depth of cut. Then, from the start to the end, a total of 30 features for 

the AE signal were extracted from each test signal. The STFT signal processing 

technique has been applied to extract the features from the total of 210 AE 

signals from each test set. The test set in 0.2 mm depth of cuts where thermal 

AE data and the test set in 0.02 mm depth of cuts of thermal AE data were 

concatenated together as a matrix format. To signify the features and avoid 

misclassification in NN presentation, the AE data of testing input are also 

normalised the same way as training input (see Equation (6-21) and (6-22)).  
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                X୲ୣୱ୲(m × n) =

ێێۏ
ۍێێ

x୲ଵଵ x୲ଵଶ ڮ
x୲ଶଵ x୲ଶଶ ڮڮ    

x୲ଵ୨ ڮ x୲ଵ୬
x୲ଶ୨ ڮ x୲ଶ୬

x୲୧ଵ x୲୧ଶ ڮڮ
x୲୫ଵ x୲୫ଶ    ڮ

x୲୧୨ ڮ x୲୧୬
x୲୫୨ ڮ x୲୫୬ۑۑے

 (21-6)      ېۑۑ

                    T୲ୣୱ୲(m) = [t୲ଵ t୲ଶ t୲୨ ڮ ڮ t୲୫]                      (6-22) 

Both X୲ୣୱ୲ and T୲ୣୱ୲ are presented to the ANN as test input vectors. 

The NNs size was based on two hidden layer structures with the input layer 

having 256 inputs (length of the STFT vector inputs) and the hidden layer 

having one and half times the input neuron amount (James Griffin 2006). The 

result for the two hidden layer structures are presented in Table 6-1 however the 

levels of confidence were very low for a successful monitoring system and 

therefore more experimentation based on increasing the hidden layers provided 

best network structure with the six hidden layers producing the most accurate 

classifier. Various hidden layers with different neurons are investigated to 

identify the most optimum architecture for the analysis and the performances 

are presented in Table 6-1. 

Table 6-1: Various ANN structure with performances. 

ANN Number of input 1st hidden 2nd hidden 3rd hidden 4th hidden 5th hidden Output Performance

Structures  layers layer  layer layer layer  layer  layer layer (mse)

1st 3 256 384 256 Bad

2nd 4 256 384 576 256 Bad

3rd 5 256 384 576 864 256 Bad

4th 6 256 384 576 864 1296 256 Bad

5th 7 256 384 576 864 1296 1944 256 Best  

The following parameters are used based on trial and error as shown in Table 

6-2  for training the network. 
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Table 6-2: Neural network parameters. 

The  NN Parameters  
Learning rule Backpropagation 
Hidden Layers 6 
Input size STFT: 256 neuron 
Transfer function for layer 1-7 Log sigmoid 
Transfer function for output 
layer 

pure-linear 

Epochs 600 
Learning rate 1e-9 
Momentum 0.9 
Training STFT:35 different high, medium & low 

temperatures cases 
 

The training process determines the best set of weight and biases for the given 

data set of AE data which can be classified according to given target values of 3 

associates to high temperatures, 2 associates to medium temperatures and 1 

associate to low temperatures. The result is displayed in Figure 6-3, with the 

straight line relating to the desired results passing through the points of circles. 

Where the straight line is defined as the predicted output and the points of 

circles are defined by the actual output. The high temperature must have a value 

of 3 while the medium temperature must have a value of 2 and the low 

temperature must have a value of 1 and is defined as the target vector to the 

network. The result shows after training the output in the following figure is 

concentrated at the values of 1, 2 or 3 giving 100% trained accurately classified 

data. 
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Figure 6-3: The learnt training set for a NN classification system (laser thermal 

AE data). 

The result shows that after training, high temperatures are concentrated at the 

value 3, medium temperatures at 2 and low temperatures at the value of 1. 

6.4 Performance evaluation 

6.4.1 NN classification results on Inconel718 material 

Once the training is complete, its generalisation performance needs to be 

evaluated in testing the data (unseen data) to estimate its true performance for 

the memorised data.  X୲ୣୱ୲ and T୲ୣୱ୲ are ‘mn’ dimensional matrix for grinding 

thermal AE data against learnt weights from laser thermal AE data of both P 

(input data) and T (output data). The testing part will understand whether the 

testing data obtains a good balance between accuracy and generalization of the 

network. When the network has been tested then the result displayed by Figure 

6-4 can be related to Figure 6-3 where thermal AE data extracted from grinding 

is used as the testing input. The result should predict burn and no burn 

phenomena within the grinding zone. 
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Figure 6-4: The testing output of NN. 

In looking at Figure 6-4 it is possible to see high temperature due to severe burn 

is concentrated at values tending towards 3 and low temperature due to no burn 

concentrated at values tending towards 1. The result also shows the normal burn 

between 1 and 3 are concentrated at values around 2. The NN Mean Squared 

Error (MSE) for the burn and no burn classification was 2.11eିଷଶ  and the 

number of training epochs was 600. This research gives a confident milestone 

for the classification between all severe burn, medium burn and no burn in 

grinding. The results are very encouraging and obtain 65.56% classification 

accuracy (Inconel718).  

6.4.2 NN classification results on MarM002  

To validate this research the experiment was carried out on MarM002 materials. 

The AE data extracted for the 34 mm, 40 mm and 46 mm off-focal distances 

from laser irradiation is used for training. The neural network has been applied 

to identify high, medium and low temperatures in relation to grinding burn. 

During the ANN training process, the STFT AE data were used as inputs and 
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outputs for high, medium and low temperatures. The structural parameters of 

the ANN are presented in Table 6-3. 

Table 6-3: NN Parameters for MarM002 Experiment. 

The  NN Parameters  
Learning rule Backpropagation 
Hidden Layer 6 
Input size STFT: 256 neuron 
Transfer function for layer 
1-7 

Log sigmoid 

Transfer function for output 
layer 

pure-linear 

Epochs 1200 
Learning rate 1e-9 
Momentum 0.9 
Training STFT:36 different high, medium & low 

temperatures cases 
 

When the network has been designed and trained by laser thermal AE data, the 

results, as shown in Figure 6-5, depict a straight line which relates to the passing 

through of the points of circles where the straight line defined is the predicted 

output and points circles are defined as the actual output.  

 

Figure 6-5:  The training result of MarM002 using neural network. 

When training is completed, the network can be tested with the AE data 

extracted from the grinding experiment. All feature extraction and pattern 

recognition methods on MarM002 materials were the same as on Inconel718 
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materials. The testing AE data consisted of grinding thermal AE data extracted 

from grinding MarM002 in 0.2 mm and 0.02 mm depth of cuts. The result from 

testing is displayed in Figure 6-6.  

 

Figure 6-6 :  The testing result from NN. 

The result should predict severe burn due to high temperatures and no burn due 

to low temperatures in the grinding zone. The results show that severe burn 

concentrated at values in 3 and no burn concentrated at values in 1 in a similar 

fashion to the test results from Inconel718 material. Again, this result was very 

encouraging with a classification accuracy of 63% for MarM002. The 

classification accuracy is based on correct classification against misclassification. 

The value in terms of correct classification obtained from MarM002 is very close 

to the value obtained from the research on Inconel718 material. Looking at the 

results of all NN outputs for both materials (Inconel718 and MarM002) a 

conclusion can be drawn that this research is successful even in terms of 

validation. 

From looking at the test results of MarM002 for the 0.02 mm depth of cut (no 

burn sample) using Figure 6-6, it is possible to classify high, medium and low 

grinding temperatures for each and every cut. For instance, 3 is associated with 
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high temperature, 2 with medium temperature, 1 with low temperature. These 

results are shown in Table 6-4. 

Table 6-4: Classification of burn on MarM002 in 0.02 mm depth of cut. 

Material :MarM002 1st cut 2nd cut 3rd cut 4th cut 5th cut 6th cut 7th cut
Depth of cut: 0.02 30 set 30 set 30 set 30 set 30 set 30 set 30 set

ANN output value = 3 0 x 0 0 3.33% 0 0
ANN output value = 2 53.33% x 10% 10% 40.00% 16.67% 63.33%
ANN output value = 1 46.67% x 90% 90% 56.67% 83.33% 36.67% 

ANN output value: 1 – low temperature; 2 – medium teperature; 3 – high temperature 

Grinding on this MarM002 sample in 0.02 mm was carried out in a sequential 

manner 7 times. The wheel was dressed only once just before being ground. 

Due to the random nature of grit positions on the wheel surface, the instant 

grinding temperature in relation to individual grit may vary significantly. 

Therefore the AE signals in each grinding trial may present different 

proportions of thermal features that represent different temperatures.  

Information of this type is particularly useful for grinding wheel wear 

monitoring. Looking at Table 6-4, it can be seen that 53.33% of the AE data are 

classified as medium temperature and 46.67% of data are classified as low 

temperature in the first cut. This proportion of the AE signals i.e 53.33% 

illustrated as medium temperature features. This may be due to some multi-edge 

grits that may act in a blunt manner right after wheel dressing. In the 2nd cut AE 

data was lost during data acquisition due to a computer problem (operator 

error). After initial wheel wear stage, these grits will dislodge and the wheel 

surface will become stable as it can be seen in the 3nd and 4th cuts. The newly 

dressed wheel wears quickly as the sharp edges of the grits are quickly worn 

away. As grinding continues, the wheel will keep its sharpness because of its 

self -sharpening ability. The mechanism of self-sharpening ability obviously 
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reduces grinding zone temperatures and even prevents wheel loading (Jackson, 

Mills et al. 2003; Liu, Chen et al. 2007). As grinding continues, the attritious 

wear of the grit tip will be accumulated leading to a higher temperature. In the 

5th cut, ANN has classified 40% medium temperature and a minute proportion 

(3.33%) of very high temperatures. The result revealed that there was increased 

wheel attritious wear in the 5th cut. In the 6th

In the 7

 cut, the grinding temperature 

decreased which may indicate the grain and bond fracture mechanism leading to 

self-dressing actions.  

th cut, ANN has classified 63.33% grinding temperatures are at medium 

level. The grinding temperature in the 7th

6.5 Conclusion 

 cut is higher than the previous cuts, 

which means the rate of wheel wear increased again in this cut. In general, the 

grinding temperature has a tendency of increase in a wheel redress life cycle as 

the result of wheel wear. 

This piece of research has successfully demonstrated the use of ANN the AE 

signal features for grinding temperature based on the pattern classification using 

laser thermal AE features and provides warning if burn or the onset of burn 

exists.  

The results demonstrated in Figure 6-3 and Figure 6-5 the trained neural 

network can distinguish between high, medium and low temperatures on 

Inconel718 and MarM002 materials due to laser irradiation in 34 mm, 40 mm 

and 46 mm off-focal distances. By using thermal AE data extracted from 

grinding 0.02 mm and 0.2 mm depth of cuts, the ANN can monitor grinding 

burn. The classification accuracy achieved with a rate of 66% for Inconel718 
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and 63% for MarM002. This result confirmed that thermal AE signal signature 

features in laser irradiation can be used for grinding burn monitoring. 

The wheel wear has a large influence on the creation of burn within the 

workpiece surface. In order to monitor wheel wear, a closer inspection of the 

sample on MarM002 at 0.02 mm depth of cut was undertaken and the wheel 

wear mechanisms were studied. 

As mentioned previously, the instant grinding temperature in relation to 

individual grit may vary significantly due to the random nature of grit positions 

on the wheel surface. The bond fracture results in a rapid loss of the grinding 

wheel while the grain fracture mechanism results in a comparable scale with the 

un-cut chip thickness which generates sharp cutting edges and is known as the 

‘self-dressing action’(Jackson, Mills et al. 2003). The Al2O3

Table 6-4

 has a good self-

sharpening ability in nickel based alloys grinding (Chen, Griffin et al. 2007). 

Therefore the AE signals in each grinding trial may present different 

proportions of thermal features that represent different temperatures. The result 

displayed in  confirmed that the AE signal in each grinding trial may 

present different proportions of thermal features that represent different 

temperatures. This provides a foundation for a new method that utilises an ANN 

trained from laser irradiation AE data for the monitoring of grinding burn and 

wheel wear. This may provide a reliable tool for industrial application. 

 



Chapter 7                                 Conclusion and Future work    

 [143]  

Chapter 7: Conclusion and Future work 

 

7.1 Conclusion 

Thermal damage to the workpiece in nickel based alloys is a significant problem 

during grinding. Grinding burn occurs from the increased temperature of the 

abrasive material coming into contact with workpiece material.  

The high temperature in the grinding zone produces different levels of thermal 

damage to the workpiece of nickel based alloy (Inconel718 and MarM002). The 

levels of thermal damage can be categorised as either severe, normal and slight 

or no burn. These alloys (Inconel718 and MarM002) are designed to maintain a 

high level of strength even at very high temperatures and are therefore difficult 

to grind (Krar and Ratterman 1990).  

The direct measurement of the grinding zone temperature is a very difficult task 

and it is also time consuming because the calibration of the (temperature) 

models need a large number of trials (in order to gauge the degree of accuracy 

achieved). This research has explored a new method of monitoring grinding 

burn using a laser irradiation with an AE sensing technique which provides 

early warning for grinding burn and wheel wear using AE signal extraction. 

This method using laser irradiation with an AE sensing technique can be 

applicable to the grinding process in terms of process monitoring.  

The laser irradiation experiments in this research are arranged mainly to 

simulate high temperatures by changing different off-focal distances on the 

workpiece materials. A schematic diagram of laser irradiation experiments and 
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optical arrangements are demonstrated in Figure 3-1 in chapter 3. Using AE and 

thermocouple sensors, it is possible to detect the thermo elastic wave changes 

due to laser irradiation on the alloys (Inconel718 and MarM002). The result of 

calibration temperatures due to laser irradiation on the materials are presented in 

Table 3-3 in chapter 3. It was noticed during the experimental phase that the 

variation of surface temperature with lower off focal length is larger than that 

with longer off-focal length. This could be due to the material property changes 

at high temperature.  

A model of surface temperature due to laser irradiation under high, medium and 

low temperatures is compared by theoretical and experimental means. The 

results of surface temperatures of both the calculated and measured values are 

demonstrated in Figure 5-1 in chapter 5. The surface temperature obtained from 

the following off-focal distances of 34 mm, 40 mm and 46 mm collated from 

the laser experimental results were in a reasonable agreement with that obtained 

from theoretical calculations. The result showed in Figure 5-1 in chapter 5, the 

measured values of surface temperature differ slightly from the theoretical 

values of surface temperature. This may be due to thermal conductivity (Steen 

2003).  

A hierarchical roadmap of common classification of signals is discussed in 

Figure 4-1 in chapter 4. The AE signals that appear in grinding or laser 

irradiation are non-stationary stochastic in nature. The signal processing 

technique STFT is less computationally expensive than other time-frequency 

analysis techniques, as discussed in chapter 4. In addition, STFT provides a 

good trade-off in terms of resolution in both frequency and time domains.  
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For more macro phenomena it is necessary to utilise STFT to distinguish either 

burn or no burn and therefore this technique is suitable for use in order to 

distinguish between varying levels of burn for grinding and temperature for 

laser irradiation.  

The research in this thesis uses both STFT and FFT for features extraction from 

the raw AE signals.  The thermal features of extracted AE for Inconel718 under 

34 mm off-focal distances are concentrated due to high temperature (698°C) 

between 190 kHz and 600 kHz frequency bands. The thermal features of 

MarM002 are concentrated due to the high temperature (493°C) between 273 

kHz to 527 kHz frequency band. The thermal expansion due to laser irradiation 

under high temperatures have a higher intensity than the extracted signals under 

medium and low temperatures. 

AE features at 40 mm off-focal distance produce 324°C temperature (medium), 

the major features appeared for Inconel718 at 244 to 581 kHz frequency bands 

and for MarM002 at 239°C gives 229 kHz to 502 kHz frequency bands. The 

energy in the high frequency region reduces compared to the energy under high 

temperature. 

AE features at 46 mm off-focal distances, the elevation temperature for 

Inconel718 was 239°C, the major features appeared at 244 to 278 kHz 

frequency bands. When the elevation temperature for MarM002 was 235°C, the 

major features appeared at 356 to 420 kHz.  

From the above discussions one can conclude that the AE frequency features are 

shifted to a higher frequency range when temperatures increase. 
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In order to compare grinding burn with the thermal expansion by laser 

irradiation, a series of grinding experiments were carried out.  

Figure 5-9 and Figure 5-13 in chapter 5 demonstrated that the STFT of AE 

features relation to grinding burn, where larger depths of cut present high AE 

amplitude (represents the higher temperature) at a higher frequency range. The 

result showed in Figure 5-9 under the grinding burn condition in 0.2 mm depth 

of cut for Inconel718, the major features appeared in the low frequency range at 

83 kHz to 249 kHz and in the high frequency range at 596 kHz. In the normal 

grinding condition under 0.02 mm depth of cut, the major features appeared at 

78 kHz frequency band. 

In Figure 5-13 in the same chapter for MarM002 in 0.2 mm depth of cut under 

grinding burn condition, the major features appeared in the low frequency range 

at 83 kHz to 244 kHz and the high frequency range at 590 kHz. The result 

presented in the normal burn condition under 0.02 mm depth of cut, the major 

features appeared at 83 kHz frequency band in the low frequency range (500 < 

kHz). 

From the above discussions about the feature extraction technique(s) one can 

conclude that thermal induced AE signals in a material have similar features 

irrespective of heat sources from the laser irradiation or grinding process. 

When looking at the classification results, it was possible to further understand 

the ANN classification after training to distinguish between high, medium and 

low temperatures on the materials due to laser irradiation through the extracted 

AE emitted signals. During the ANN training process, the STFT of AE data 
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from laser irradiation tests were used as inputs with the outputs being high, 

medium and low temperatures. 

The thermal AE data extracted from grinding in different depth of cuts (0.2 mm 

and 0.02 mm) were used for testing the network (ANN).  

The NN result presented in Figure 6-4 in chapter 6 for Inconel718 provides a 

confidence milestone for the classification of severe burn, normal burn and no 

burn in grinding. The results of NN on MarM002 are presented in Figure 6-5 to 

Figure 6-6 in the same chapter. The results showed that the classification 

accuracy achieved for Inconel718 was 66% while 63% was produced for 

MarM002 in terms of correct classification. From the above results one can 

conclude that grinding performance can be monitored by using the thermal AE 

feature identified from laser irradiation.  

The results of this research rely on a hypothesis that the extracted AE signals of 

laser irradiation are similar to the extracted AE signal in grinding under given 

conditions. The conditions are elaborated upon in Table 3-2 and Table 3-5 in 

chapter 3 for both grinding and laser irradiation. The results of this research can 

assist the manufacturing industry by understanding the AE signal features in 

relation to grinding performance. 

The AE monitoring system provides critical information of grinding zone 

temperatures to indicate the occurrence of grinding defects. Critical information 

concerning the grinding zone temperature can help engineers adjust to the 

grinding conditions to achieve the best coolant delivery and optimal grinding 

results. The research offers significant benefits to the broad industrial 
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community and partners who are expected to benefit through the application of 

knowledge in condition monitoring resulting from this research. 

Wheel wear is one of the principal causes of burn on the workpiece surface. The 

grinding temperatures for the material MarM002 were studied in section 6.4.2 in 

chapter 6 in order to monitor wheel wear. The instantaneous grinding 

temperature in relation to individual grit may vary significantly due to the 

random nature of the grit positions on the wheel surface. The feasibility of using 

thermal AE features learnt by NN to monitor grinding wheel wear has been 

demonstrated in Table 6-4 in chapter 6. The results in Table 6-4 show that the 

AE signal in each grinding trial present different proportions of thermal features 

that represent different levels of high, medium and low temperature scales. This 

type of information provides a foundation for a new method that utilises an 

ANN trained from laser irradiation AE data for the monitoring of grinding burn 

and wheel wear. 

Understanding wheel wear mechanisms can influence the development of new 

wheel structures which can benefit the wheel manufacturing industry. 

7.2 Future work 

The problems with the acoustic emission technique of thermal stress are merged 

with other AE signals of other sources such as mechanical stress and fluidic 

dynamic stress. The main challenge is how to distinguish these AE signal 

features from different AE sources, particularly the difference between 

mechanical stress, thermal stress, fluid dynamic stress and white noise. Future 

work should look at the identification of the AE signal features induced from 

different AE sources, particularly the difference between thermal, mechanical 
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and fluid turbulence stresses. In order to identify the different acoustic emission 

sources the fluid turbulence and mechanical stresses need to be investigated 

based on physical experiments with different grinding conditions. 

Different grinding conditions can be applied to enable the collection or AE data 

for setting up a data bank that can provide stress related AE information. 

Currently the temperature level is set as three (high, medium and low). If the 

temperature level is divided further the grinding process can be monitored more 

precisely. 

The coolant supply in high speed grinding plays a more important role than 

conventional speed grinding (Huang and Yin 2007). Huang and Yin noticed that 

if the coolant fails to reach the grinding zone sufficiently, thermal damage will 

result on the workpiece. They assumed that appropriate arrangement of coolant 

nozzle and optimal supply of coolant flow, in terms of flow speed and rate, 

could avoid thermal damage. Future work should investigate this based on the 

nozzle position in relation to the fluid features of AE signals. 

A review of more discussions and further references on the applications of 

wavelet transform for signal processing techniques in machine condition 

monitoring and fault diagnostics are given (Peng and Chu 2004). Future work 

should look at using wavelet packet transform (WPT) to process the signal to 

extract more distinguishing features which STFT or FFT may fail to provide. 

The limitation of STFT is in time-frequency resolution due to signal 

segmentation. It can provide good time resolution or good frequency resolution 

depending on the window function. The STFT can be used to process only non-
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stationary signals with slow change in their dynamics compared to the wavelet 

packet transform. 

The neural network has the capability of parallel processing, especially for a 

large amount of data processing. The backpropagation (bp) neural network has 

the following limitations:  

• difficulty in determining the network structure  

• difficulty in determining the number of nodes 

•  Slow convergence of the training process 

Therefore, further investigation is required to select new methods for pattern 

recognition. 

SVM is a statistical learning theory; it is one of the most powerful learning 

algorithms. It has been reported in the literature that the least square support 

vector machine (LS-SVM) is a very useful technique compared to neural 

network making it easy to overcome the problems of the neural network 

(Vladimir Cherkassky 1998; Suykens and Vandewalle 1999; Xun Chen 2006). 

The major advantage to LS-SVM is that it has an excellent generalization 

performance and low computing costs compared to the neural network (Suykens 

and Vandewalle 1999). 
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Appendices 

Appendix 1: 

Material properties: 

 

 

 

 

 

 

 

 

Appendix 2: 

Kaiser Window: The Kaiser window is a one-parameter family of window 

functions used for digital signal processing. The Kaiser window has an 

additional ripple parameter Ⱦ compared to other fixed windows which enable 

the designer to trade off the transition and ripple. The figure below illustrates 

the Kaiser window based on the Kaiser Window function. 

 

 The Kaiser window is defined by the following formula: 

Property Inconel718 MarM002 AISIB1112

Composition(WT%) Mo:3,Cr:19,Ti:0.9, Cr:9,W:10,Co:10,Al:5.7,Ti:1.5, C:0.08-0.13,Mn:0.6,

Nb:5.1,Fe:18.3,Ni:53.7 Ta:2.5,Hf:1.65%,Zr:0.06,C:0.15, S:0.08-0.13,P:0.04

B:0.01,bal Ni

Density (Kg/m3) 8193 8530 7800-8030

Hardness HRC 50 HB220

Tenislie Strength (MPa) 758-1407 840 HB220

Yield strength(Mpa=N/mm2) 150 760 279-516

Elastic Modules (Gpa) 31 190-210

Elongation in 50mm(%) 21-27 4 32.8

Melting Point (C) 1260-1336 1370-1375

Possion's Ratio 0.284 0.27-0.3

Thermal Conductivity (W/mK) 11.4~28.7 13 60.5

Specific heat capacity(K/KgK)c 430~700 427.2

Thermal diffusivity (x1e-6mm2/2) 2.01~8.24 21 17.74
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 W୬ = ቐ୍బ(ටଵିቀమషభቁమ୍బ()

 0,   otherwise

� , 0  n  M       

Where: 

• I is the zeroth order modified Bessel function of the first kind. 

•  Ƚ is an arbitrary real number that determines the shape of the window. In the 

frequency domain, it determines the trade-off between main-lobe width and 

side lobe level, which is a central decision in window design. 

•  M is an integer, and the length of the sequence is N = M + 1. 

• When N is an odd number, the peak value of the window is Wమ = 1 and 

when N is even, the peak values are  Wమొషభ = Wమొ < 1 . 

 

The figure above illustrates the Kaiser Window function for the argument 

M = 128 and ɎȽ = Ⱦ=1, 2, 4, 8, 16. 

 

Appendix 3: 

Matlab code: STFT of raw extracted time signal: 

% data= laser thermal acoustic emission (AE) data   

%or grinding thermal AE data 
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 signal= data;  

 s_stft = specgram(signal,1024,5000000,Kaiser(1024,50),875);  

  specgram(signal,1024,5000000,Kaiser(1024,50),875); 

% S_stft is the short time Fourier transform of the input signal     

% Matrix, block size 1024 

% Sampling rate 5MHz 

%  Kaiser window of length 50 is used; 

% Numoverlap = 875=length(window)/2 

%P is the number of samples the sections of an overlap. 

 

Appendix 4: 

prestd pre-processes the network training set by normalizing the inputs and 

targets so that they have means of zero and standard deviations of 1. 

prestd(p,t) takes these inputs, 

p - R x Q matrix of input (column) vectors. 

t - S x Q matrix of target vectors. 

and returns, 

pn    - R x Q matrix of normalized input vectors. 

meanp - R x 1 vector containing standard deviations for each P. 

stdp  - R x 1 vector containing standard deviations for each P. 

tn    - S x Q matrix of normalized target vectors. 
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meant - S x 1 vector containing standard deviations for each T. 

stdt  - S x 1 vector containing standard deviations for each T. 

 

Appendix 5: 

The matlab code for training and testing the neural network: 

clf reset;  

nntwarn off; 

pausetime = 0.1; 

% Example of training set. 

 P_train =laser thermal AE data[] ; 

% Example of target set. 

 T_train = [3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1]; 

 % Plot training vector 

plot(P_train,T_train,'+');   

title('Training Vectors'); 

xlabel('Input Vector P'); 

ylabel('Target Vector T'); 

 %The structure of the neural network  

% Set input vector size R, layer sizes from S1 to S7 and batch size Q. 

% Initialize weights and biases. 

 [R,Q] = size(P_train);  

S1=256; 

 S2=384; S3=576; 

 S4=864; S5=1296; S6=1944; S7= 256; 

[S8,Q]= size(T_train); 
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 % A feed-forward network is created. 

% The trainrp network training function is to be used. 

net = newff(minmax(P_train),[S1 S2 S3 S4 S5 S6 S7 S8],{'logsig' 'logsig' 

'logsig' 'logsig' 'logsig' 'logsig' 'logsig' 'purelin'},'TRAINRP','learngdm','mse'); 

net = init(net) ;     

% initialise NN with defined parameters 

net.trainParam.epochs =600;     

% maximum epoch stop condition 

net.trainParam.mem_reduc = 2; 

% if NN very difficult to train due to complexity  

%this function ensures quicker training with approximations 

net.trainParam.show = 50; 

% display NN output for every 50 iterations  

net.trainParam.mc = 0.95; 

% Momentum set 0.9-0.95 being least random to ensure bounce  

%from local minima 

net.trainParam.lr = 1e-9; 

% NN learning rate - lower more accurate steps 

net.trainParam.goal = 1e-35; 

% Mean Squared Error (MSE) goal 

net.trainParam.min_grad = 1e-35; 

% minimum gradient during learning 

net = train(net,P_train,T_train); 

[a,b]=size(P_train);     

    X = [1:b]; 

Y = sim(net,P_train);    

Y1 = Y; 
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figure 

plot(X,T_train,X,Y,'o') 

title('Traing Results'); 

xlabel('Input vector from laser thermal data'); 

ylabel('Target vector for training'); 

 

 % test the neural network  

P_test=grinding thermal AE data; 

 [a,b]=size(P_test);                      

X = [1:b]; 

Y = sim(net,P_test); 

figure 

plot(X,T_test,X,Y,'o') 

title('Testing Results'); 

xlabel('Input vector for testing(grinding data)'); 

ylabel('Target vector for testing'); 
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Appendix 6: 

An example of high, medium and low temperatures of raw extracted laser 

thermal AE signal are presented in this section. Each test sets of high, medium 

and low temperatures concatenate together to make one training input for the 

NN system. 

An example of laser thermal AE data (34 mm offset) 

Test1 Test2 Test3 Test4 Test5 Test6 

1.2137 0.9009 -0.838 -0.1404 0.5243 0.2783 

1.6211 0.5777 -0.2011 -0.4007 0.0293 0.2454 

1.5903 0.1807 0.4184 -0.394 -0.423 0.184 

1.2253 -0.2969 0.8161 -0.1953 -0.9262 0.1175 

0.7828 -0.817 1.0349 0.0909 -1.3544 0.0354 

0.5039 -1.2647 1.1335 0.3397 -1.5491 -0.0824 

0.4672 -1.5275 1.1628 0.4019 -1.4988 -0.2203 

0.556 -1.5259 1.1289 0.191 -1.3865 -0.3381 

0.5319 -1.3083 0.9977 -0.2042 -1.3257 -0.4367 

0.1944 -1.026 0.7392 -0.5472 -1.1634 -0.5588 

-0.4523 -0.7572 0.3674 -0.6256 -0.6467 -0.7035 

-1.1829 -0.4743 -0.0693 -0.3983 0.2954 -0.7675 

-1.6929 -0.0781 -0.5225 0.0238 1.4258 -0.6516 

-1.7808 0.4636 -0.9558 0.4941 2.3572 -0.3635 

-1.431 1.0416 -1.2561 0.9015 2.8898 -0.0198 

-0.8118 1.4496 -1.2803 1.1237 2.931 0.2527 

-0.1447 1.5439 -0.94 1.0404 2.4528 0.4135 
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0.5805 1.3105 -0.3653 0.5945 1.5143 0.5057 

1.1429 0.8329 0.1566 -0.1123 0.4016 0.575 

1.5525 0.2228 0.3793 -0.8466 -0.6787 0.6095 

1.7637 -0.4318 0.2963 -1.3434 -1.4563 0.5628 

1.7026 -1.0465 0.108 -1.4902 -1.865 0.4273 

1.3337 -1.5027 0.0345 -1.3031 -1.9456 0.2673 

0.7447 -1.6938 0.1602 -0.9503 -1.8314 0.1758 

0.1129 -1.5567 0.4251 -0.5939 -1.6376 0.1907 

-0.4328 -1.1744 0.6967 -0.3381 -1.3962 0.2457 

-0.8609 -0.7233 0.8316 -0.1947 -1.0825 0.2097 

-1.1933 -0.3607 0.7514 -0.1032 -0.6912 0.0107 

-1.489 -0.1651 0.4654 0.0162 -0.2832 -0.2762 

-1.9684 -0.1071 0.0775 0.2261 0.0528 -0.4862 

-1.9214 -0.0552 -0.264 0.5429 0.2872 -0.5121 

-1.5119 0.1355 -0.4605 0.9223 0.4334 -0.3836 

-0.8307 0.5197 -0.4959 1.2543 0.4846 -0.2106 

-0.1358 1.0144 -0.3937 1.4417 0.4004 -0.0739 

0.5383 1.4179 -0.1773 1.4222 0.1852 0.0195 

1.0254 1.5418 0.097 1.1682 -0.0275 0.09 

1.4096 1.3068 0.3076 0.6915 -0.0436 0.1239 

1.7063 0.7987 0.318 0.0534 0.2033 0.0845 

1.8641 0.217 0.0732 -0.6482 0.5417 -0.0168 

1.8345 -0.2792 -0.3604 -1.2714 0.6958 -0.0983 

1.6446 -0.6507 -0.8356 -1.7237 0.5231 -0.0748 

1.3593 -0.9156 -1.1597 -1.9327 0.1547 0.0613 
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0.9745 -1.0501 -1.1911 -1.8781 -0.1614 0.2368 

0.3821 -0.968 -0.8881 -1.5665 -0.3073 0.3449 

-0.5133 -0.604 -0.3583 -1.0327 -0.3952 0.3076 

-1.6306 -0.0055 0.1956 -0.3586 -0.6027 0.1267 

-2.6728 0.6543 0.5878 0.4498 -0.9311 -0.1068 

-3.2395 1.139 0.7459 1.189 -1.1383 -0.2728 

-3.1596 1.2961 0.6946 1.7322 -0.9717 -0.3278 

-2.4827 1.135 0.5075 1.9944 -0.383 -0.3418 

-1.4243 0.784 0.2667 1.9111 0.4251 -0.4114 

-0.3604 0.4093 0.0589 1.4356 1.1563 -0.5255 

0.5441 0.0925 -0.047 0.6055 1.6059 -0.5475 

1.2449 -0.1984 -0.0299 -0.3644 1.7508 -0.3485 

1.5534 -0.5573 0.0833 -1.1246 1.6266 0.0504 

1.6086 -1.0248 0.2429 -1.3718 1.2613 0.4755 

1.5467 -1.5171 0.3916 -1.1115 0.6903 0.7355 

1.4945 -1.8711 0.4538 -0.6308 0.0293 0.7553 

1.522 -1.9233 0.3571 -0.2036 -0.5658 0.6201 

1.6163 -1.6782 0.1038 -0.0061 -0.9439 0.466 

1.6828 -1.3001 -0.1926 0.0067 -1.0373 0.3473 

1.5592 -0.9891 -0.3787 -0.0711 -0.9055 0.2225 

1.0773 -0.7688 -0.3897 -0.1852 -0.6998 0.0659 

0.1593 -0.5106 -0.2918 -0.3113 -0.6076 -0.0464 

-1.1228 -0.0592 -0.2005 -0.3931 -0.759 -0.0208 

-2.5123 0.5988 -0.1648 -0.3232 -1.1158 0.0919 

-3.5768 1.2857 -0.1395 -0.0198 -1.4594 0.1041 
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-3.9848 1.793 -0.0708 0.4633 -1.4896 -0.1059 

-3.6167 2.0524 0.0177 0.911 -1.03 -0.4331 

-2.512 2.1186 0.0653 1.0569 -0.2274 -0.6226 

-0.9232 2.0634 0.0787 0.7965 0.8072 -0.5124 

0.622 1.8549 0.137 0.2808 1.6434 -0.1996 

1.9065 1.3895 0.2994 -0.1868 2.1683 0.0519 

2.6203 0.6018 0.5496 -0.3714 2.3328 0.0513 

2.7976 -0.4144 0.8292 -0.2728 2.1207 -0.1752 

2.4912 -1.4386 1.0541 -0.0806 1.514 -0.4782 

1.8546 -2.1992 1.1225 -0.0024 0.6027 -0.7608 

1.1509 -2.483 0.9195 -0.1126 -0.3784 -0.9861 

0.5502 -2.2993 0.3745 -0.3211 -1.1496 -1.1066 

0.17 -1.8198 -0.4816 -0.4627 -1.5339 -1.0065 

-0.0842 -1.2622 -1.4856 -0.4407 -1.5726 -0.5951 

-0.4346 -0.7678 -2.4125 -0.2915 -1.4277 0.0882 

-1.0169 -0.3009 -2.9902 -0.119 -1.2189 0.8463 

-1.7371 0.2484 -3.0689 0.0195 -0.9342 1.4014 

-2.3499 0.8136 -2.5791 0.1532 -0.5393 1.5952 

-2.6304 1.2683 -1.5476 0.3372 -0.1056 1.4628 

-2.5001 1.4978 -0.311 0.5591 0.1941 1.1762 

-1.9483 1.4811 0.8493 0.7102 0.2231 0.911 

-1.0218 1.2909 1.5754 0.6421 -0.0299 0.7245 

0.0436 1.0251 1.7872 0.3153 -0.4386 0.5737 

1.1643 0.7517 1.7167 -0.1312 -0.7913 0.4178 

1.9245 0.4746 1.6471 -0.4376 -0.8563 0.2533 
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2.2581 0.1379 1.7124 -0.4398 -0.5481 0.0519 

2.2044 -0.3119 1.8003 -0.2512 0.0201 -0.2631 

1.8815 -0.8451 1.7029 -0.206 0.6012 -0.7257 

1.4487 -1.3108 1.3382 -0.5722 0.9723 -1.2131 

1.0508 -1.5735 0.8264 -1.3016 1.0724 -1.5647 

0.7425 -1.5806 0.3528 -2.067 0.99 -1.6568 

0.4578 -1.4194 -0.0385 -2.4281 0.8875 -1.4841 

 

An example of laser thermal AE data (40 mm offset): 

Test11 Test12 Test13 Test14 Test15 Test16 

-0.1889 -0.3714 0.8493 0.3388 0.7807 -0.7746 

-0.6381 -0.6247 0.3122 0.0577 0.5161 -0.6882 

-0.9253 -0.8246 -0.2835 -0.314 0.4929 -0.5765 

-0.9946 -0.8429 -0.6952 -0.7474 0.5579 -0.4761 

-0.8707 -0.6073 -0.8234 -1.1344 0.4843 -0.4425 

-0.6415 -0.1447 -0.7245 -1.3727 0.1865 -0.5762 

-0.4114 0.4266 -0.5261 -1.4087 -0.2295 -0.8829 

-0.2387 0.9519 -0.351 -1.251 -0.5765 -1.1469 

-0.1306 1.2976 -0.2625 -0.9665 -0.7321 -1.0935 

-0.0595 1.4069 -0.2081 -0.6195 -0.6806 -0.6293 

0.0055 1.2571 -0.0601 -0.2652 -0.4944 0.0781 

0.0809 0.8521 0.2441 0.0674 -0.2643 0.766 

0.1709 0.2411 0.589 0.3781 -0.0702 1.2311 

0.2786 -0.4883 0.7401 0.6796 0.0278 1.4331 
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0.4053 -1.2076 0.5579 0.9491 0.0079 1.4396 

0.5414 -1.7966 0.1685 1.1231 -0.0995 1.3498 

0.6552 -2.1113 -0.1184 1.1307 -0.2286 1.2253 

0.6915 -2.0423 -0.0735 0.9705 -0.3265 1.0556 

0.6037 -1.5598 0.2368 0.7291 -0.3858 0.7685 

0.3842 -0.7666 0.5148 0.5194 -0.4254 0.2988 

0.0793 0.1157 0.4901 0.379 -0.4535 -0.3339 

-0.2213 1.0974 0.1364 0.2527 -0.4541 -0.9824 

-0.4291 1.7209 -0.3174 0.0693 -0.405 -1.4237 

-0.5017 1.9388 -0.5844 -0.1746 -0.2759 -1.5418 

-0.4587 1.7386 -0.5515 -0.4096 -0.0284 -1.3569 

-0.365 1.2152 -0.3278 -0.5576 0.3491 -1.0306 

-0.2994 0.549 -0.097 -0.5933 0.7981 -0.6769 

-0.315 -0.0687 0.0476 -0.5533 1.1786 -0.3467 

-0.4031 -0.4975 0.1227 -0.4953 1.3556 -0.0543 

-0.4935 -0.6928 0.1566 -0.4566 1.225 0.1862 

-0.4999 -0.705 0.1346 -0.4379 0.7477 0.3552 

-0.3815 -0.6455 0.0446 -0.4257 0.0122 0.4468 

-0.1639 -0.6027 -0.0583 -0.4212 -0.7797 0.4813 

0.0897 -0.6055 -0.0848 -0.4431 -1.3379 0.4837 

0.3262 -0.5972 -0.0119 -0.4978 -1.5201 0.4489 

0.5188 -0.4971 0.0696 -0.549 -1.3334 0.3287 

0.6494 -0.2683 0.0262 -0.5237 -0.9464 0.0711 

0.6803 0.0436 -0.1831 -0.3589 -0.5173 -0.282 

0.5802 0.3354 -0.4477 -0.0534 -0.1196 -0.5524 
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0.34 0.5206 -0.5835 0.3134 0.1547 -0.5445 

-0.0043 0.5902 -0.4886 0.614 0.3076 -0.2478 

-0.372 0.6009 -0.2344 0.7327 0.3803 0.1126 

-0.6681 0.6052 0.0125 0.6284 0.4431 0.2759 

-0.8069 0.5957 0.1569 0.3537 0.5484 0.184 

-0.7587 0.5164 0.2451 0.0388 0.6937 0.0204 

-0.5655 0.325 0.3714 -0.1624 0.8231 0.0223 

-0.3116 0.0378 0.546 -0.1526 0.8811 0.2399 

-0.0903 -0.2771 0.6873 0.0537 0.8332 0.4837 

0.0455 -0.546 0.7047 0.3458 0.6601 0.524 

0.0952 -0.7364 0.596 0.5832 0.3586 0.3378 

0.1001 -0.8536 0.4321 0.6687 -0.0674 0.123 

0.1154 -0.9326 0.2927 0.5716 -0.5673 0.0681 

0.1837 -0.9906 0.199 0.332 -1.037 0.1636 

0.3119 -1.0273 0.0821 0.032 -1.3358 0.2597 

0.4563 -1.0138 -0.163 -0.2255 -1.384 0.2521 

0.5307 -0.9214 -0.5509 -0.354 -1.1985 0.1602 

0.4489 -0.727 -0.9189 -0.325 -0.8728 0.0482 

0.1807 -0.4254 -1.0074 -0.191 -0.4886 -0.0674 

-0.2121 -0.0247 -0.7181 -0.0668 -0.0699 -0.1965 

-0.5933 0.4312 -0.2298 -0.076 0.3809 -0.3067 

-0.8078 0.8756 0.1526 -0.2832 0.8329 -0.3458 

-0.7532 1.2293 0.2521 -0.6568 1.1844 -0.3369 

-0.452 1.4643 0.1645 -1.0666 1.3315 -0.3717 

-0.0177 1.5781 0.1022 -1.3642 1.2253 -0.4773 
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0.3861 1.5629 0.1608 -1.4472 0.9153 -0.5435 

0.629 1.3721 0.2481 -1.2735 0.5142 -0.4355 

0.658 0.9503 0.2271 -0.8884 0.1074 -0.1425 

0.4968 0.3061 0.0809 -0.3623 -0.2628 0.2155 

0.2182 -0.4672 -0.0717 0.2643 -0.5686 0.4859 

-0.0989 -1.1991 -0.0992 0.8817 -0.781 0.5487 

-0.3787 -1.7118 0.0122 1.3999 -0.8924 0.3449 

-0.553 -1.8738 0.1328 1.728 -0.9549 -0.0772 

-0.5628 -1.6581 0.0906 1.8052 -1.015 -0.5313 

-0.3858 -1.164 -0.1657 1.6276 -1.044 -0.7813 

-0.0742 -0.567 -0.4889 1.2613 -0.9806 -0.687 

0.2457 0.0403 -0.6464 0.7901 -0.7953 -0.3146 

0.4282 0.5554 -0.5335 0.2875 -0.5155 0.1486 

0.3879 0.9482 -0.2795 -0.2219 -0.1944 0.5014 

0.1498 1.2214 -0.0937 -0.7007 0.1337 0.6449 

-0.1639 1.3678 -0.0558 -1.0691 0.4501 0.607 

-0.3934 1.3483 -0.0662 -1.2397 0.7462 0.5158 

-0.4212 1.1206 0.0073 -1.1704 0.9952 0.4471 

-0.2344 0.6699 0.17 -0.9186 1.1679 0.3696 

0.0623 0.0485 0.3079 -0.6229 1.2159 0.2075 

0.3012 -0.6369 0.3421 -0.4309 1.1075 -0.0394 

0.3476 -1.2302 0.333 -0.4022 0.8704 -0.2777 

0.1721 -1.6056 0.4062 -0.4678 0.5902 -0.4239 

-0.141 -1.6675 0.6024 -0.4837 0.3385 -0.5045 

-0.4447 -1.4139 0.8206 -0.3494 0.1248 -0.6186 
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-0.6107 -0.954 0.9189 -0.0806 -0.0955 -0.7892 

-0.5905 -0.4334 0.8667 0.2216 -0.3742 -0.8798 

-0.4175 0.0992 0.719 0.4529 -0.7202 -0.6983 

-0.1651 0.4859 0.5133 0.5582 -1.0446 -0.1984 

0.0922 0.7303 0.2039 0.5286 -1.222 0.452 

0.2933 0.8567 -0.2512 0.3803 -1.1417 0.9983 

0.3864 0.9116 -0.7529 0.1465 -0.824 1.2925 

0.3409 0.9049 -1.0782 -0.1224 -0.4013 1.381 

0.1724 0.8078 -1.1118 -0.3568 -0.0067 1.3611 

-0.0458 0.5875 -0.9616 -0.4678 0.2915 1.2397 

 

An example of laser thermal AE data (46 mm offset): 

test42 test43 test44 test45 test46 test47 

1.0327 0.1712 -0.231 0.3732 -0.2936 0.3211 

0.7086 -0.491 -0.6568 1.1994 -1.2803 0.3659 

0.3024 -1.0831 -0.8722 1.7756 -2.0408 0.3885 

0.1071 -1.4737 -0.8789 2.1198 -2.4073 0.3839 

0.2783 -1.6352 -0.7599 2.2489 -2.3414 0.304 

0.6922 -1.6208 -0.6006 2.1931 -1.915 0.0696 

1.0215 -1.5229 -0.4443 1.9639 -1.2769 -0.3613 

0.9885 -1.3916 -0.2832 1.5491 -0.6494 -0.9391 

0.5164 -1.2275 -0.0943 0.9604 -0.1334 -1.4957 

-0.2609 -0.9723 0.116 0.2478 0.2545 -1.8546 

-1.0978 -0.5683 0.2997 -0.5127 0.5316 -1.8564 
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-1.7338 0.0079 0.3995 -1.2256 0.82 -1.4832 

-1.9413 0.6973 0.4099 -1.8189 1.1789 -0.8676 

-1.5894 1.3269 0.3897 -2.2147 1.5799 -0.2152 

-0.7672 1.6953 0.4178 -2.3542 1.9108 0.4178 

0.1926 1.6721 0.5286 -2.2159 2.0356 0.7758 

1.1863 1.2766 0.6888 -1.8061 1.8604 0.8457 

1.6553 0.6873 0.8182 -1.1823 1.377 0.7144 

1.5857 0.1575 0.8371 -0.4798 0.6778 0.5594 

1.0334 -0.1267 0.6946 0.2499 -0.0787 0.542 

0.1608 -0.1263 0.38 0.911 -0.7682 0.7212 

-0.8087 0.0446 -0.0739 1.4023 -1.3361 1.0126 

-1.5708 0.195 -0.5765 1.7212 -1.8348 1.2702 

-1.8821 0.1627 -1.012 1.8754 -2.2861 1.3553 

-1.6193 -0.0992 -1.2833 1.872 -2.6624 1.1908 

-0.9577 -0.4984 -1.3599 1.7014 -2.8712 0.7862 

-0.235 -0.8741 -1.2714 1.3327 -2.7943 0.2387 

0.4099 -1.0849 -1.073 0.7663 -2.3484 -0.3037 

0.8362 -1.1054 -0.806 0.0751 -1.5421 -0.697 

1.0987 -0.9784 -0.4947 -0.6125 -0.5539 -0.8643 

1.2073 -0.7559 -0.1605 -1.1386 0.4456 -0.86 

1.0944 -0.4648 0.1617 -1.4145 1.4728 -0.7938 

0.7239 -0.1209 0.4273 -1.4493 2.1836 -0.752 

0.1999 0.249 0.6037 -1.3059 2.6124 -0.7285 

-0.286 0.6073 0.6888 -1.0749 2.7497 -0.6436 

-0.5924 0.9119 0.7089 -0.802 2.5904 -0.434 
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-0.7279 1.1167 0.7031 -0.5304 2.1741 -0.1263 

-0.777 1.1695 0.69 -0.3073 1.612 0.1672 

-0.766 1.0462 0.6558 -0.1639 0.9381 0.3211 

-0.6427 0.7746 0.5634 -0.0781 0.2268 0.2673 

-0.3629 0.4392 0.3784 0.0238 -0.5029 0.0183 

0.0052 0.1215 0.1117 0.2051 -1.2027 -0.3519 

0.3113 -0.1444 -0.177 0.448 -1.8174 -0.7456 

0.4584 -0.3974 -0.4117 0.6516 -2.2349 -1.0504 

0.4947 -0.7047 -0.5451 0.6986 -2.371 -1.1844 

0.5576 -1.0727 -0.5737 0.5524 -2.2001 -1.1106 

0.737 -1.438 -0.52 0.2887 -1.7438 -0.8408 

0.9824 -1.6858 -0.4154 0.0485 -1.0794 -0.4407 

1.1444 -1.713 -0.2994 -0.0497 -0.3394 -0.0012 

1.0581 -1.5308 -0.2118 0.015 0.47 0.3903 

0.6452 -1.2244 -0.1743 0.1617 1.1936 0.6882 

-0.0589 -0.8618 -0.1679 0.2646 1.7377 0.8982 

-0.9024 -0.4395 -0.1489 0.2231 2.0493 1.0596 

-1.6382 0.0751 -0.0916 0.007 2.0923 1.2052 

-2.0737 0.6693 -0.0177 -0.3351 1.8616 1.3242 

-2.1195 1.2891 0.0183 -0.6885 1.3794 1.352 

-1.8674 1.8476 -0.0247 -0.8884 0.7099 1.2037 

-1.4554 2.2303 -0.1352 -0.8292 -0.0467 0.8261 

-0.9772 2.313 -0.239 -0.5258 -0.7895 0.2356 

-0.4584 2.0029 -0.2283 -0.1199 -1.4118 -0.4657 

0.1761 1.3138 -0.0232 0.2045 -1.8647 -1.1252 
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0.7794 0.4532 0.3668 0.3348 -2.0872 -1.6007 

1.2473 -0.3021 0.8304 0.2704 -2.0695 -1.8198 

1.5189 -0.7327 1.1844 0.0873 -1.4103 -1.7704 

1.6263 -0.8127 1.2915 -0.1199 -0.9174 -1.5101 

1.6306 -0.6915 1.1124 -0.2728 -0.4425 -1.1353 

1.5336 -0.5499 0.7056 -0.318 -0.0128 -0.7358 

1.2748 -0.4865 0.1816 -0.238 0.2786 -0.3543 

0.8176 -0.4825 -0.3656 -0.0546 0.4538 0.0235 

0.2176 -0.4645 -0.8643 0.181 0.5744 0.4367 

-0.4077 -0.394 -1.2336 0.4089 0.7297 0.9153 

-0.9528 -0.3006 -1.4405 0.5811 0.9659 1.4209 

-1.3465 -0.246 -1.4502 0.6674 1.2433 1.8671 

-1.5625 -0.2658 -1.2671 0.6558 1.4411 2.1485 

-1.5421 -0.3409 -0.9516 0.5591 1.4362 2.1961 

-1.2702 -0.4053 -0.575 0.4065 1.182 1.9886 

-0.8484 -0.3949 -0.2142 0.2258 0.727 1.5516 

-0.4334 -0.3009 0.0818 0.0305 0.2078 0.9253 

-0.1428 -0.1868 0.322 -0.177 -0.2506 0.1514 

-0.0226 -0.1355 0.5451 -0.3854 -0.5884 -1.6608 

0.04 -0.1715 0.7773 -0.5557 -0.8325 -2.4964 

0.1697 -0.235 1.0007 -0.6272 -1.0285 -3.0799 

0.3964 -0.2286 1.1631 -0.5518 -1.1841 -3.3317 

0.6546 -0.0946 1.2006 -0.3482 -1.243 -3.2368 

0.8542 0.1395 1.0617 -0.1019 -1.1341 -2.7915 

0.9497 0.3735 0.7178 0.0723 -0.831 -2.0057 
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0.9369 0.4993 0.1914 0.098 -0.3711 -0.9723 

0.8408 0.4633 -0.448 -0.0201 0.1682 0.0922 

0.7083 0.2893 -1.088 -0.2057 0.6943 1.2043 

0.5872 0.0452 -1.5946 -0.3571 1.1057 2.064 

0.488 -0.2054 -1.8519 -0.398 1.3147 2.6261 

0.3604 -0.4218 -1.7576 -0.3021 1.2873 2.8556 

0.1312 -0.5716 -1.2989 -0.098 1.0385 2.7015 

-0.2393 -0.6259 -0.6052 0.1444 0.6427 2.1574 

-0.7199 -0.5734 0.1727 0.3354 0.1907 1.3526 

-1.2 -0.4395 0.9775 0.3958 -0.2448 0.4257 

-1.5781 -0.2533 1.5171 0.285 -0.6265 -0.4474 

-1.7768 -0.004 1.7557 0.0232 -0.9433 -1.1551 

-1.7795 0.3549 1.6651 -0.307 -1.1808 -1.698 

 

Appendix 7: 

An example of grinding thermal features of AE data in 0.2 mm depth of cut is 

presented (normalised). The thermal features are extracted using STFT from start, 

middle and end sections of an AE signal of data.  

AE example of burn phenomenon (0.2 mm depth cut): 

test7/part1 part2 part3 part4 part5 part6 
0.0419 0.0408 0.0468 0.0257 0.05 0.0452 
0.0379 0.0369 0.0427 0.0239 0.0451 0.0398 
0.0276 0.0269 0.0327 0.0196 0.033 0.0266 
0.0145 0.0148 0.0221 0.0156 0.0193 0.0126 
0.0021 0.0053 0.0147 0.0131 0.0094 0.0034 
0.0109 0.0055 0.0109 0.0109 0.0063 0.0024 
0.025 0.0105 0.0089 0.0065 0.0104 0.0095 
0.0431 0.0176 0.0076 0.0041 0.0208 0.0194 
0.0631 0.0267 0.008 0.0145 0.0355 0.0331 

27/04/2010 10:18:10 
27/04/2010 10:44:15 

27/04/2010 10:45:30 27/04/2010 11:50:18 27/04/2010 11:50:54 27/04/2010 11:51:48 27/04/2010 12:10:48 27/04/2010 12:11:28 27/04/2010 12:12:02 
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0.0783 0.0349 0.0129 0.0238 0.0489 0.0522 
0.0807 0.0399 0.0223 0.0267 0.055 0.0738 
0.0649 0.0456 0.0366 0.0248 0.0539 0.0882 
0.0344 0.0658 0.0566 0.0292 0.0545 0.0834 
0.0403 0.1096 0.0844 0.0544 0.0686 0.0541 
0.0912 0.1707 0.1214 0.1069 0.1073 0.0066 
0.1304 0.2318 0.1635 0.1753 0.1675 0.0442 
0.1343 0.2694 0.1973 0.2328 0.2266 0.0822 
0.1004 0.2654 0.2052 0.2525 0.2587 0.103 
0.0556 0.2198 0.1775 0.2242 0.2531 0.1113 
0.048 0.1525 0.1217 0.1593 0.2184 0.1101 
0.0609 0.0887 0.0614 0.0833 0.1716 0.0962 
0.0631 0.0427 0.0399 0.0254 0.1252 0.0679 
0.0539 0.0176 0.0586 0.0304 0.0866 0.0319 
0.0387 0.0211 0.0683 0.0426 0.065 0.0085 
0.0274 0.0346 0.0651 0.0405 0.0611 0.0299 
0.0222 0.0447 0.0548 0.032 0.0585 0.0449 
0.016 0.0476 0.0423 0.0234 0.049 0.0481 
0.0086 0.0422 0.0307 0.0177 0.0365 0.0391 
0.0082 0.0312 0.021 0.0154 0.0264 0.0218 
0.0144 0.0201 0.0146 0.0144 0.0197 0.0036 
0.0213 0.0155 0.0128 0.0127 0.0157 0.0105 
0.0276 0.0194 0.0136 0.0116 0.0154 0.0164 
0.0335 0.029 0.0146 0.0153 0.0182 0.0168 
0.0388 0.0427 0.0147 0.0232 0.0212 0.0167 
0.0415 0.0558 0.0132 0.0304 0.023 0.0187 
0.038 0.0623 0.0109 0.0323 0.0235 0.0206 
0.0274 0.0588 0.0111 0.0276 0.0228 0.02 
0.0135 0.0473 0.0137 0.0186 0.0214 0.0173 
0.003 0.0328 0.0154 0.0094 0.0192 0.0137 
0.007 0.0199 0.0151 0.0029 0.0165 0.0099 
0.0091 0.0092 0.0132 0.0048 0.0128 0.0073 
0.0083 0.0009 0.0105 0.0104 0.008 0.0072 
0.0061 0.0083 0.0073 0.0158 0.0028 0.0064 
0.0035 0.0136 0.0035 0.0188 0.0018 0.0024 
0.0031 0.0153 0.0014 0.0178 0.0042 0.0073 
0.0047 0.0136 0.0064 0.014 0.0051 0.0155 
0.0111 0.0086 0.0127 0.0142 0.0068 0.02 
0.0289 0.0009 0.0205 0.0252 0.0111 0.0187 
0.0576 0.0127 0.0294 0.0442 0.0171 0.0136 
0.0905 0.0265 0.0388 0.0651 0.023 0.0153 
0.1149 0.0373 0.0465 0.0799 0.0266 0.0255 
0.1195 0.0424 0.049 0.0819 0.0274 0.0342 
0.1021 0.0422 0.0444 0.0704 0.0265 0.0372 
0.0713 0.0377 0.0343 0.0506 0.0238 0.0339 
0.0397 0.0298 0.0234 0.0291 0.0187 0.0254 
0.0174 0.0203 0.016 0.011 0.0119 0.0158 
0.0158 0.0137 0.0127 0.0069 0.0051 0.0165 
0.0238 0.012 0.0111 0.0146 0.0012 0.0237 
0.0294 0.0122 0.0097 0.0171 0.0071 0.0267 
0.0327 0.0145 0.0082 0.0133 0.0142 0.0245 
0.0357 0.0193 0.0075 0.0045 0.0227 0.0204 
0.0393 0.0239 0.0095 0.0062 0.0299 0.017 
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0.0428 0.0261 0.0128 0.0149 0.0326 0.013 
0.0446 0.0255 0.0148 0.02 0.0302 0.0105 
0.0442 0.0223 0.0151 0.0223 0.0258 0.0161 
0.0419 0.0168 0.0137 0.0234 0.0221 0.0245 
0.0384 0.0094 0.0106 0.0245 0.0179 0.0316 
0.0334 0.0019 0.0061 0.0262 0.0118 0.0376 
0.0272 0.0065 0.0027 0.0275 0.0077 0.0431 
0.0213 0.0109 0.0066 0.0267 0.0093 0.0476 
0.0182 0.0107 0.0113 0.0241 0.0111 0.05 
0.0165 0.0065 0.0147 0.0235 0.0116 0.0498 
0.0126 0.0078 0.0157 0.0275 0.0121 0.0469 
0.0073 0.0161 0.0142 0.0322 0.0124 0.0418 
0.0079 0.0229 0.013 0.0337 0.0111 0.0352 
0.0115 0.0255 0.0157 0.0317 0.0076 0.0282 
0.0118 0.0228 0.0197 0.0278 0.0029 0.022 
0.0092 0.015 0.0206 0.023 0.0067 0.017 
0.0054 0.0095 0.0173 0.0176 0.0134 0.0122 
0.001 0.0194 0.0119 0.0121 0.0177 0.0088 
0.0084 0.0297 0.0084 0.008 0.019 0.0135 
0.0204 0.0319 0.0104 0.0092 0.0193 0.0246 
0.0325 0.0231 0.0141 0.0156 0.0225 0.0372 
0.0415 0.0071 0.0155 0.0235 0.0304 0.0476 
0.0483 0.0204 0.0135 0.0301 0.0405 0.0522 
0.0564 0.04 0.0125 0.0339 0.0474 0.0479 
0.0653 0.0531 0.0171 0.0358 0.047 0.0338 
0.0713 0.061 0.0218 0.0387 0.0398 0.0138 
0.0731 0.0686 0.023 0.0431 0.0291 0.0292 
0.0719 0.0783 0.0233 0.0455 0.0202 0.0648 
0.0655 0.0867 0.028 0.0432 0.0256 0.0954 

0.05 0.0892 0.0381 0.0352 0.0409 0.1085 
0.0386 0.0851 0.0501 0.0239 0.0522 0.0988 
0.068 0.0771 0.0616 0.0183 0.0539 0.0734 
0.1141 0.0661 0.0733 0.0196 0.0471 0.0473 
0.1495 0.0503 0.087 0.0166 0.0392 0.031 
0.1603 0.0312 0.1028 0.0156 0.0407 0.0257 
0.1432 0.0199 0.118 0.0349 0.053 0.031 
0.1064 0.026 0.1312 0.0717 0.0708 0.0509 
0.0648 0.0356 0.1419 0.1229 0.0926 0.0823 
0.0306 0.0491 0.1478 0.1796 0.1198 0.1159 
0.0077 0.0683 0.1443 0.2256 0.1506 0.1414 
0.0164 0.0832 0.1291 0.2461 0.1768 0.1505 
0.0349 0.0835 0.1066 0.2366 0.1875 0.1394 
0.0532 0.0693 0.0869 0.2057 0.177 0.1122 
0.067 0.0554 0.0763 0.1692 0.1489 0.0826 
0.0705 0.0537 0.0717 0.1408 0.1129 0.0683 
0.0629 0.0509 0.0687 0.1255 0.0785 0.0693 
0.0508 0.038 0.0666 0.1209 0.0521 0.0718 
0.0481 0.0186 0.0629 0.1209 0.0411 0.0721 
0.0712 0.0082 0.0529 0.1223 0.0526 0.0726 
0.1244 0.0366 0.0348 0.129 0.0792 0.0729 
0.2042 0.07 0.0158 0.1486 0.1113 0.0705 
0.3006 0.0994 0.0396 0.1795 0.141 0.0638 
0.393 0.1163 0.0944 0.2137 0.161 0.0506 
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0.4505 0.117 0.1708 0.2481 0.1693 0.0258 
0.4376 0.1078 0.2548 0.284 0.1719 0.0366 
0.3273 0.1084 0.3245 0.3311 0.1755 0.1285 
0.1291 0.1407 0.3686 0.4112 0.1794 0.2603 
0.2067 0.2114 0.3968 0.5299 0.1827 0.4048 
0.4859 0.3147 0.4285 0.6599 0.1881 0.5215 
0.6902 0.4293 0.4636 0.7606 0.1911 0.5799 

0.76 0.5181 0.4752 0.7969 0.1838 0.5771 
0.6993 0.5459 0.4399 0.7517 0.1676 0.5338 
0.5648 0.502 0.3631 0.6336 0.1486 0.4733 
0.4277 0.4074 0.2718 0.4752 0.1266 0.4043 
0.3296 0.2981 0.1906 0.3182 0.0995 0.3255 
0.2633 0.2023 0.1299 0.1953 0.0711 0.241 
0.2053 0.1292 0.0935 0.1198 0.048 0.1652 
0.1487 0.0787 0.077 0.0845 0.0338 0.1145 
0.0994 0.0562 0.066 0.07 0.028 0.0882 
0.0621 0.0593 0.0528 0.0605 0.0268 0.0681 
0.0348 0.0658 0.0396 0.0502 0.0267 0.0465 
0.0138 0.0651 0.0299 0.0389 0.0257 0.0303 
0.0123 0.0573 0.0241 0.0289 0.0235 0.0246 
0.0255 0.0448 0.0209 0.0218 0.0213 0.0214 
0.0355 0.0312 0.0191 0.0176 0.0198 0.0161 
0.0408 0.0199 0.0176 0.0162 0.0188 0.0137 
0.0404 0.0126 0.0152 0.0185 0.0173 0.0164 
0.0341 0.0084 0.0121 0.0226 0.0147 0.0174 
0.0244 0.006 0.0105 0.0246 0.0113 0.0143 
0.0175 0.0071 0.0121 0.0225 0.0084 0.0131 
0.0197 0.0129 0.0151 0.0172 0.0069 0.0195 
0.0267 0.0196 0.0168 0.011 0.0068 0.0256 
0.0314 0.0236 0.0158 0.0073 0.0064 0.0261 
0.0309 0.0227 0.0125 0.0078 0.005 0.0206 
0.0253 0.0174 0.0092 0.009 0.0029 0.0123 
0.0176 0.0103 0.0079 0.0097 0.001 0.0069 
0.0117 0.004 0.0084 0.0104 0.0012 0.009 
0.0094 0.001 0.0099 0.0114 0.001 0.0107 
0.0097 0.0027 0.0109 0.0121 0.0007 0.0089 
0.0106 0.0026 0.0109 0.0119 0.003 0.0046 
0.0108 0.0024 0.0095 0.0105 0.005 0.0051 
0.0096 0.0043 0.0073 0.0079 0.0057 0.0098 
0.0064 0.0072 0.005 0.0045 0.0049 0.0126 
0.0018 0.0101 0.0034 0.0017 0.0043 0.0122 
0.0032 0.0123 0.003 0.0034 0.0056 0.0091 
0.0066 0.013 0.0037 0.0047 0.0074 0.0041 
0.0068 0.012 0.0048 0.0038 0.009 0.0019 
0.0037 0.0105 0.0057 0.0015 0.0101 0.0079 
0.0026 0.0097 0.0056 0.0029 0.01 0.0126 
0.0072 0.0092 0.0044 0.0057 0.0084 0.0147 
0.0097 0.0076 0.0027 0.0072 0.0057 0.0136 
0.0088 0.0051 0.0012 0.0074 0.0031 0.0101 
0.0056 0.0026 0.0006 0.0066 0.0054 0.0057 
0.0022 0.0027 0.0011 0.0061 0.0097 0.0023 
0.003 0.0048 0.0016 0.0061 0.0128 0.0001 
0.0042 0.0069 0.0013 0.0057 0.0134 0.0012 
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0.0039 0.0083 0.0009 0.0047 0.0114 0.0017 
0.0033 0.009 0.0029 0.004 0.0077 0.0022 
0.0028 0.0089 0.0057 0.005 0.0045 0.0039 
0.0014 0.008 0.0081 0.0071 0.0058 0.0064 
0.0017 0.0059 0.0092 0.0087 0.0094 0.0095 
0.0053 0.0028 0.0088 0.009 0.0125 0.0132 
0.008 0.003 0.0069 0.0079 0.0139 0.0171 
0.009 0.0068 0.004 0.0059 0.0132 0.0198 
0.0087 0.0098 0.002 0.0037 0.0103 0.0203 
0.0082 0.0106 0.0033 0.0021 0.0062 0.0186 
0.0083 0.0093 0.0047 0.0023 0.0024 0.0152 
0.009 0.0065 0.005 0.0035 0.0014 0.011 
0.0101 0.0037 0.0044 0.0048 0.0015 0.0069 
0.0115 0.0018 0.0039 0.0062 0.0015 0.0041 
0.0131 0.0011 0.0046 0.0077 0.0033 0.0032 
0.0146 0.0017 0.0061 0.0092 0.005 0.0045 
0.0155 0.0025 0.0077 0.0111 0.0057 0.009 
0.0154 0.0034 0.0089 0.0132 0.005 0.0147 
0.0144 0.0043 0.0096 0.0147 0.0034 0.0195 
0.0131 0.005 0.0099 0.0145 0.0018 0.0219 
0.0121 0.0061 0.0104 0.0126 0.001 0.0215 
0.0114 0.0084 0.011 0.0096 0.0015 0.0185 
0.0104 0.0105 0.011 0.0067 0.0032 0.0134 
0.0087 0.0106 0.01 0.0043 0.0047 0.0076 
0.0062 0.008 0.0079 0.0024 0.0055 0.0077 
0.0038 0.0038 0.005 0.0021 0.0055 0.0139 
0.0037 0.0023 0.0029 0.0037 0.0048 0.0194 
0.0048 0.0073 0.0025 0.0049 0.0035 0.0225 
0.0054 0.012 0.0035 0.005 0.0023 0.0231 
0.0056 0.015 0.0057 0.0044 0.0031 0.0218 
0.0064 0.0153 0.0076 0.0042 0.0057 0.019 
0.0079 0.0138 0.0081 0.0048 0.0082 0.0155 
0.0097 0.0121 0.0073 0.0058 0.0098 0.0121 
0.011 0.0112 0.0055 0.0064 0.0099 0.0097 
0.0112 0.011 0.0034 0.006 0.0084 0.0081 
0.0102 0.0103 0.0014 0.0047 0.006 0.007 
0.0082 0.0086 0.0007 0.0029 0.0036 0.0063 
0.0057 0.0065 0.0018 0.0019 0.0025 0.0058 
0.0034 0.0054 0.003 0.003 0.0027 0.005 
0.0021 0.0061 0.0045 0.0044 0.0029 0.0039 
0.0024 0.0074 0.0059 0.0051 0.003 0.0026 
0.0038 0.0085 0.0065 0.0046 0.0033 0.0013 
0.0053 0.0095 0.0062 0.0038 0.0042 0.0008 
0.0062 0.0102 0.0053 0.0047 0.005 0.0024 
0.006 0.0101 0.0044 0.0063 0.0051 0.0039 
0.0048 0.0089 0.0042 0.0069 0.0045 0.005 
0.0032 0.0067 0.0046 0.0062 0.0034 0.0053 
0.0019 0.0045 0.005 0.0045 0.0024 0.0052 
0.0017 0.0039 0.005 0.0028 0.0018 0.0047 
0.0023 0.0043 0.0046 0.0021 0.0016 0.0038 
0.0028 0.0043 0.004 0.0022 0.0014 0.0024 
0.003 0.0038 0.0032 0.0021 0.0014 0.0013 
0.0028 0.0036 0.0024 0.0017 0.0016 0.0008 
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0.0025 0.0038 0.0023 0.0018 0.0019 0.0009 
0.0022 0.0041 0.0031 0.0026 0.002 0.0015 
0.0021 0.0041 0.0039 0.0036 0.0018 0.002 
0.0021 0.0039 0.0042 0.0043 0.0014 0.0019 
0.0021 0.0036 0.0041 0.0044 0.0008 0.0011 
0.002 0.0034 0.0035 0.0037 0.0003 0.0005 
0.0017 0.0032 0.0028 0.0023 0.0005 0.0017 
0.0012 0.0029 0.0024 0.001 0.001 0.0026 
0.0008 0.0024 0.0021 0.0001 0.0014 0.0028 
0.0005 0.0016 0.0017 0.0006 0.0017 0.0025 
0.0008 0.0009 0.0011 0.0009 0.0019 0.002 
0.0012 0.0008 0.0007 0.0008 0.0017 0.0015 
0.0015 0.0012 0.0008 0.0007 0.0012 0.0012 
0.0016 0.0016 0.0011 0.001 0.0005 0.001 
0.0016 0.0018 0.0014 0.0018 0.0014 0.0009 
0.0012 0.0021 0.0016 0.0022 0.0026 0.001 
0.0008 0.0024 0.0018 0.002 0.0034 0.0015 
0.001 0.0026 0.002 0.0014 0.0036 0.002 
0.0018 0.0028 0.0022 0.0011 0.0033 0.0023 
0.0025 0.0031 0.0023 0.0015 0.0029 0.0024 
0.0029 0.0032 0.0023 0.0022 0.0025 0.0027 
0.003 0.0029 0.0021 0.0026 0.0023 0.0029 
0.0027 0.0021 0.0018 0.0028 0.0021 0.003 
0.0023 0.0009 0.0014 0.0028 0.0019 0.0027 
0.0019 0.0004 0.001 0.0025 0.0019 0.0027 
0.0017 0.0012 0.0006 0.0021 0.0018 0.0035 
0.0015 0.0015 0.0006 0.0017 0.0018 0.0042 
0.0013 0.0018 0.0008 0.0014 0.0017 0.0041 
0.001 0.0023 0.001 0.0014 0.0016 0.0032 
0.0006 0.0032 0.0013 0.0015 0.0015 0.0019 
0.0006 0.0038 0.0014 0.0015 0.0014 0.0018 
0.001 0.0039 0.0015 0.0012 0.0013 0.0025 
0.0013 0.0034 0.0013 0.0008 0.0013 0.0027 
0.0012 0.0026 0.001 0.0005 0.0014 0.002 
0.0009 0.0016 0.0008 0.0004 0.0014 0.001 

       

AE example of no burn phenomenon (0.02 mm depth cut): 

Test6_0.02/part1 part2 part3 part4 part5 part6 
0.0473 0.04 0.0485 0.0185 0.0491 0.0496 
0.0421 0.0369 0.0436 0.0169 0.0444 0.0455 
0.0294 0.0292 0.0314 0.0131 0.0327 0.0357 
0.0153 0.0203 0.0176 0.0096 0.0194 0.0258 
0.0052 0.0123 0.0071 0.0084 0.0097 0.0211 
0.0019 0.0053 0.0019 0.0091 0.0062 0.0214 
0.0055 0.002 0.0014 0.0101 0.0059 0.0234 
0.0108 0.0091 0.0027 0.0111 0.0052 0.0271 
0.0151 0.0162 0.005 0.013 0.0046 0.034 
0.017 0.0222 0.0065 0.0172 0.0077 0.0432 
0.0169 0.0268 0.0056 0.0227 0.0143 0.0505 

27/04/2010 10:18:10 
27/04/2010 10:44:15 

27/04/2010 10:45:30 27/04/2010 11:50:18 27/04/2010 11:50:54 27/04/2010 11:51:48 27/04/2010 12:10:48 27/04/2010 12:11:28 27/04/2010 12:12:02 
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0.0163 0.0318 0.0091 0.0247 0.0236 0.051 
0.0192 0.041 0.0332 0.0171 0.0385 0.0485 
0.0339 0.0596 0.0827 0.028 0.0673 0.0658 
0.0594 0.0914 0.1604 0.0851 0.1152 0.1094 
0.0872 0.1338 0.254 0.1649 0.1747 0.1622 
0.1094 0.1754 0.3328 0.2462 0.2258 0.2139 
0.1225 0.2001 0.3617 0.3016 0.2472 0.2577 
0.1281 0.1977 0.3247 0.3103 0.2304 0.2825 
0.1265 0.1702 0.2379 0.2699 0.1837 0.2764 
0.1147 0.1295 0.1384 0.1968 0.1254 0.2391 
0.0922 0.0897 0.0599 0.1163 0.0739 0.1845 
0.064 0.0593 0.0167 0.0499 0.0453 0.1322 
0.0383 0.0393 0.0084 0.0163 0.0436 0.095 
0.0212 0.0266 0.0088 0.0254 0.047 0.0728 
0.0134 0.0178 0.0076 0.0294 0.0432 0.058 
0.0114 0.0108 0.0068 0.0252 0.0322 0.046 
0.0118 0.0067 0.0055 0.0193 0.0182 0.0362 
0.0146 0.0081 0.0042 0.0186 0.0095 0.0288 
0.0228 0.013 0.0062 0.0209 0.0123 0.0231 
0.0396 0.0209 0.0105 0.02 0.013 0.0181 
0.0688 0.0344 0.0156 0.0159 0.0075 0.0181 
0.1099 0.0546 0.0213 0.0149 0.0098 0.03 
0.1519 0.0781 0.0282 0.021 0.0247 0.0475 
0.1773 0.0962 0.0345 0.0277 0.0383 0.0604 
0.1748 0.1 0.0362 0.0306 0.0449 0.0608 
0.1471 0.0867 0.0314 0.028 0.0423 0.0483 
0.1076 0.0624 0.0221 0.0211 0.0326 0.0308 
0.0689 0.0371 0.0128 0.0123 0.0209 0.0198 
0.038 0.0179 0.0068 0.0038 0.0118 0.0162 
0.0188 0.0065 0.0045 0.0042 0.0067 0.0144 
0.0154 0.0014 0.0044 0.0107 0.0047 0.0178 
0.0168 0.0016 0.0049 0.016 0.0041 0.0237 
0.0134 0.0021 0.0057 0.0194 0.0036 0.0259 
0.0058 0.0027 0.0069 0.02 0.003 0.0235 
0.0056 0.003 0.0086 0.0169 0.0022 0.0195 
0.0114 0.0029 0.0106 0.0096 0.0012 0.0188 
0.0112 0.003 0.0147 0.003 0.0015 0.021 
0.0081 0.0037 0.0226 0.0148 0.0063 0.0226 
0.015 0.0064 0.0324 0.0267 0.0141 0.0231 
0.0252 0.0117 0.04 0.0358 0.0231 0.0238 
0.0306 0.0174 0.041 0.0404 0.0305 0.0242 
0.0292 0.0204 0.0343 0.0397 0.0329 0.0226 
0.0228 0.019 0.0228 0.0344 0.0298 0.0195 
0.0155 0.0139 0.013 0.027 0.0233 0.0173 
0.0102 0.0082 0.0122 0.0209 0.0168 0.0168 
0.0077 0.0067 0.0146 0.0183 0.0126 0.0164 
0.0079 0.0085 0.0146 0.0187 0.0118 0.0151 
0.0086 0.009 0.0122 0.0198 0.0133 0.0134 
0.0078 0.008 0.0084 0.0198 0.0149 0.0117 
0.0053 0.0068 0.0041 0.0183 0.0148 0.0101 
0.0054 0.0058 0.0026 0.0166 0.0126 0.0087 
0.0079 0.005 0.0061 0.016 0.0089 0.0081 
0.0086 0.0048 0.0091 0.0176 0.0058 0.0089 
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0.0065 0.0046 0.0103 0.0209 0.0044 0.0097 
0.0041 0.0038 0.0096 0.0247 0.0031 0.0092 
0.0071 0.0028 0.0084 0.0276 0.003 0.0086 
0.0115 0.0018 0.0084 0.0286 0.0088 0.0104 
0.014 0.0007 0.0086 0.027 0.015 0.0134 
0.0142 0.0011 0.0075 0.0226 0.0189 0.0155 
0.0119 0.0035 0.0051 0.0161 0.0195 0.0161 
0.0082 0.0063 0.0035 0.0096 0.0177 0.0158 
0.0056 0.0088 0.0034 0.0047 0.0153 0.0154 
0.0074 0.0102 0.0049 0.0021 0.0131 0.0153 
0.01 0.0099 0.0091 0.0012 0.0111 0.0153 

0.0104 0.0079 0.014 0.0021 0.0095 0.0154 
0.0084 0.0049 0.0172 0.0039 0.0115 0.0159 
0.0056 0.004 0.018 0.0057 0.0185 0.0167 
0.004 0.0083 0.0171 0.0078 0.0265 0.0173 
0.004 0.0145 0.0163 0.0111 0.0318 0.0165 
0.004 0.0211 0.0164 0.0156 0.0325 0.0131 
0.0035 0.0267 0.0164 0.0203 0.0292 0.0073 
0.0034 0.03 0.0151 0.0238 0.0243 0.0006 
0.0053 0.0307 0.0126 0.026 0.0194 0.0053 
0.0077 0.0292 0.0109 0.0277 0.0144 0.0084 
0.0101 0.0262 0.0121 0.029 0.0085 0.0103 
0.0127 0.0232 0.0159 0.0276 0.0071 0.0154 
0.0135 0.0236 0.0212 0.0209 0.0153 0.0252 
0.0114 0.0309 0.027 0.0103 0.0237 0.0381 
0.012 0.0426 0.0318 0.016 0.027 0.0513 
0.0218 0.0535 0.0339 0.0353 0.0228 0.0612 
0.0344 0.0597 0.0331 0.0528 0.0184 0.0645 
0.0437 0.0596 0.031 0.0608 0.0297 0.0615 
0.0457 0.0545 0.0291 0.0555 0.044 0.0583 
0.0386 0.0477 0.027 0.04 0.0492 0.0623 
0.0245 0.042 0.0238 0.024 0.045 0.07 
0.008 0.0357 0.0208 0.0171 0.0371 0.072 
0.0062 0.0247 0.0269 0.0205 0.0302 0.0649 
0.0157 0.0129 0.0467 0.03 0.0251 0.0549 
0.0212 0.0315 0.0725 0.0419 0.0212 0.0535 
0.0257 0.0602 0.0956 0.0524 0.0181 0.0605 
0.0322 0.0834 0.1081 0.0594 0.0155 0.0632 
0.0404 0.093 0.106 0.0619 0.0147 0.0545 
0.0465 0.0861 0.0909 0.0585 0.0158 0.037 
0.0478 0.0668 0.0694 0.0485 0.0184 0.0249 
0.0445 0.0443 0.0477 0.034 0.025 0.0281 
0.038 0.0271 0.0301 0.0223 0.0363 0.0296 
0.0295 0.0183 0.0196 0.019 0.0486 0.021 
0.0204 0.0155 0.0188 0.0155 0.0576 0.0051 
0.0158 0.0162 0.0263 0.007 0.061 0.0117 
0.0193 0.0197 0.0373 0.0098 0.0593 0.0241 
0.0252 0.0256 0.0485 0.0174 0.0545 0.0293 
0.0329 0.0333 0.057 0.0187 0.0496 0.0285 
0.0441 0.0408 0.062 0.0165 0.0474 0.0259 
0.0547 0.0457 0.0655 0.0161 0.0487 0.0269 
0.059 0.0473 0.0748 0.0158 0.0497 0.0339 
0.0541 0.048 0.0969 0.0161 0.0447 0.0479 
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0.0414 0.0508 0.1292 0.0228 0.0326 0.071 
0.0265 0.056 0.1606 0.029 0.0344 0.1004 
0.0199 0.0612 0.1774 0.0271 0.063 0.128 
0.0253 0.0637 0.1691 0.0236 0.0909 0.1458 
0.0333 0.0623 0.1341 0.0373 0.1018 0.1517 
0.041 0.0564 0.0825 0.0555 0.0905 0.1493 
0.0478 0.0456 0.0332 0.0614 0.0607 0.1432 
0.0527 0.0309 0.0201 0.05 0.0231 0.1353 
0.0547 0.015 0.0319 0.0267 0.0208 0.1251 
0.0529 0.0044 0.0328 0.0076 0.0438 0.1108 
0.0461 0.0116 0.0274 0.0194 0.0518 0.0918 
0.0345 0.0174 0.0209 0.0249 0.0467 0.0696 
0.0208 0.0193 0.0151 0.0213 0.0366 0.0469 
0.0092 0.0177 0.0109 0.0162 0.0283 0.0267 
0.0088 0.0137 0.0083 0.0162 0.0227 0.0114 
0.0141 0.0085 0.0068 0.0168 0.017 0.0083 
0.0165 0.0036 0.006 0.0139 0.0103 0.0133 
0.0156 0.003 0.0055 0.0089 0.0036 0.015 
0.0124 0.006 0.0044 0.0048 0.0023 0.0136 
0.0089 0.0082 0.004 0.0036 0.0074 0.0115 
0.0063 0.0092 0.0065 0.0052 0.0119 0.0096 
0.0045 0.0091 0.0095 0.008 0.0153 0.0068 
0.0029 0.0081 0.0112 0.0096 0.017 0.0031 
0.0023 0.0066 0.0112 0.0087 0.0171 0.0038 
0.0035 0.0049 0.01 0.0059 0.016 0.0073 
0.0042 0.0037 0.0081 0.0045 0.0141 0.0089 
0.0036 0.0035 0.0059 0.0067 0.0118 0.0081 
0.0021 0.0036 0.0039 0.0085 0.0092 0.0056 
0.001 0.003 0.0026 0.0083 0.0071 0.0031 
0.0019 0.0017 0.0022 0.0067 0.0058 0.0031 
0.0031 0.0017 0.002 0.0052 0.005 0.004 
0.0036 0.0033 0.002 0.0047 0.0041 0.0041 
0.0031 0.0047 0.0021 0.0047 0.003 0.0035 
0.0019 0.0053 0.0024 0.0039 0.0019 0.0027 
0.0016 0.005 0.0026 0.0023 0.0015 0.0028 
0.0028 0.0041 0.0027 0.0009 0.0017 0.0037 
0.004 0.0029 0.0028 0.0012 0.0019 0.0044 
0.0054 0.0015 0.0029 0.0022 0.0027 0.0044 
0.0073 0.0004 0.003 0.0034 0.0051 0.0035 
0.0094 0.0017 0.0031 0.0048 0.0077 0.002 
0.0108 0.0031 0.0034 0.0062 0.0093 0.0007 
0.0107 0.0039 0.0038 0.0072 0.0093 0.0015 
0.0092 0.0038 0.0042 0.0076 0.0082 0.0022 
0.0071 0.0027 0.0046 0.0071 0.0072 0.0025 
0.0056 0.0011 0.0051 0.0057 0.0069 0.003 
0.0051 0.0005 0.0057 0.0035 0.007 0.0036 
0.0042 0.0015 0.0063 0.0014 0.0063 0.0039 
0.0025 0.0019 0.0068 0.0017 0.0045 0.004 
0.0011 0.0019 0.0074 0.0034 0.0026 0.0042 
0.0034 0.0018 0.0079 0.0048 0.0026 0.0042 
0.0058 0.0017 0.0079 0.0054 0.0035 0.004 
0.0071 0.0016 0.0073 0.0053 0.0037 0.0032 
0.0071 0.0023 0.006 0.0046 0.0034 0.0017 
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0.006 0.0038 0.0047 0.0037 0.0038 0.0014 
0.0041 0.0051 0.004 0.0025 0.0048 0.0033 
0.002 0.0057 0.004 0.0015 0.0058 0.005 
0.0009 0.0054 0.0039 0.0018 0.0064 0.0058 
0.0023 0.0045 0.0031 0.0022 0.0063 0.0061 
0.0032 0.0036 0.0014 0.0016 0.0059 0.0064 
0.0032 0.0027 0.0007 0.0007 0.0054 0.0063 
0.0025 0.0016 0.0022 0.0009 0.005 0.0059 
0.0019 0.0005 0.0026 0.0007 0.0048 0.0049 
0.0018 0.0009 0.0024 0.0003 0.0045 0.0037 
0.0017 0.0018 0.0026 0.0014 0.0041 0.0025 
0.0012 0.0023 0.0034 0.0019 0.0034 0.0015 
0.0007 0.0024 0.0045 0.0017 0.0026 0.0016 
0.0017 0.0025 0.0058 0.0012 0.0026 0.0022 
0.0032 0.0027 0.0068 0.0013 0.0036 0.0028 
0.0045 0.0032 0.0073 0.0024 0.0047 0.0033 
0.0053 0.0036 0.0069 0.0035 0.0051 0.0038 
0.0057 0.0035 0.0056 0.0041 0.005 0.0047 
0.0058 0.0027 0.0045 0.0039 0.0046 0.0058 
0.0059 0.0014 0.0042 0.0031 0.0042 0.0065 
0.0058 0.0006 0.0046 0.0019 0.004 0.0065 
0.0051 0.0019 0.0046 0.0012 0.0037 0.0056 
0.0037 0.003 0.0042 0.0013 0.0034 0.0041 
0.0019 0.0038 0.0034 0.0022 0.003 0.0024 
0.0016 0.0041 0.0024 0.0033 0.0029 0.0013 
0.0029 0.0041 0.002 0.0034 0.003 0.0016 
0.0035 0.004 0.0031 0.0024 0.0032 0.002 
0.0031 0.004 0.0045 0.0007 0.0036 0.0017 
0.0022 0.004 0.0055 0.0008 0.004 0.0007 
0.0021 0.0039 0.0055 0.0014 0.0043 0.0009 
0.0025 0.0033 0.0049 0.001 0.0044 0.0027 
0.0021 0.0023 0.0039 0.0004 0.0041 0.0041 
0.0016 0.0014 0.0028 0.0015 0.0032 0.0047 
0.0025 0.0009 0.0018 0.0022 0.0022 0.0045 
0.0039 0.0006 0.0008 0.0022 0.0013 0.0039 
0.0047 0.0013 0.0002 0.0014 0.0006 0.0035 
0.0047 0.0022 0.0007 0.0003 0.0005 0.0033 
0.0041 0.0026 0.0009 0.0007 0.001 0.0031 
0.0036 0.0023 0.0007 0.0009 0.0015 0.0026 
0.0033 0.0017 0.0009 0.0012 0.0017 0.0018 
0.0035 0.0011 0.0018 0.0022 0.0016 0.0015 
0.0041 0.0009 0.0028 0.0033 0.0015 0.002 
0.0045 0.001 0.0035 0.004 0.0015 0.0022 
0.0042 0.0012 0.0039 0.0042 0.0016 0.0017 
0.0031 0.0011 0.0038 0.004 0.0018 0.0006 
0.0017 0.0008 0.0034 0.0035 0.0021 0.0014 
0.0009 0.0006 0.0025 0.0028 0.0022 0.0027 
0.002 0.001 0.0015 0.0021 0.0023 0.0037 
0.0028 0.0016 0.0008 0.0016 0.0022 0.0042 
0.003 0.0021 0.001 0.0015 0.0022 0.0043 
0.0025 0.0022 0.0012 0.0014 0.0023 0.0041 
0.0018 0.002 0.0011 0.0014 0.0024 0.0036 
0.0009 0.0016 0.0011 0.0013 0.0023 0.0029 
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0.0004 0.0012 0.0013 0.001 0.0022 0.002 
0.0007 0.0013 0.0015 0.0005 0.0024 0.0012 
0.0011 0.0015 0.0014 0.0004 0.0025 0.0007 
0.0012 0.0019 0.0012 0.0012 0.0023 0.001 
0.0011 0.0021 0.0011 0.0017 0.0018 0.0015 
0.0009 0.0022 0.0015 0.0017 0.0012 0.002 
0.001 0.0022 0.0017 0.0013 0.0009 0.0023 
0.0015 0.0021 0.0016 0.001 0.0013 0.0024 
0.0023 0.002 0.0012 0.0013 0.0018 0.002 
0.0032 0.002 0.0007 0.0014 0.0022 0.0014 
0.0036 0.002 0.0004 0.0012 0.0022 0.0013 
0.0034 0.0019 0.0004 0.001 0.002 0.0022 
0.0027 0.0018 0.0003 0.0012 0.0015 0.0031 
0.0018 0.0017 0.0004 0.0016 0.0008 0.0037 
0.001 0.0018 0.0004 0.0017 0.0003 0.0037 
0.0007 0.0019 0.0003 0.0013 0.0001 0.0035 
0.0011 0.002 0.0002 0.0009 0.0002 0.0032 
0.0017 0.002 0.0003 0.001 0.0005 0.0028 
0.0021 0.0019 0.0004 0.0011 0.0009 0.0023 
0.002 0.0016 0.0005 0.0009 0.0011 0.0017 
0.0014 0.0014 0.0004 0.0006 0.0011 0.0011 
0.0008 0.0011 0.0004 0.0007 0.0008 0.0011 
0.0007 0.0011 0.0005 0.001 0.0005 0.0015 
0.0012 0.0013 0.0006 0.0009 0.0004 0.0019 
0.0017 0.0016 0.0008 0.0007 0.0003 0.0021 
0.0019 0.0017 0.001 0.0003 0.0003 0.0024 
0.0015 0.0015 0.0012 0.0001 0.0008 0.0028 
0.0007 0.0011 0.0014 0.0004 0.0014 0.0035 
0.0009 0.0008 0.0014 0.0006 0.0016 0.004 
0.0018 0.0011 0.0013 0.0008 0.0016 0.0043 
0.0024 0.0016 0.0013 0.0007 0.0013 0.0044 
0.0025 0.0019 0.0012 0.0004 0.0009 0.0043 
0.0022 0.002 0.0011 0.0002 0.0004 0.0039 
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