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ABSTRACT  

ADHESION OF ASPHALT MIXTURES 

Adhesion is defined as the molecular force of attraction in the area of contact 

between unlike bodies of adhesive materials and substrates that acts to hold 

the bodies together. In the context of asphalt mixtures, adhesion is used to 

refer to the amount of energy required to break the adhesive bond between 

bitumen (bitumen-filler mastic) and aggregates. Thus, adhesive failure can be 

considered as displacement of bitumen (bitumen-filler) mastic from aggregates 

surface, which might indicates low magnitude of adhesive bond strength. 

Adhesion is considered as one of the main fundamental properties of asphalt 

mixtures, which can be correlated with quality, performance and serviceability. 

However, despite its significance, research on adhesion of asphalt mixtures is 

limited and yet there is no established testing technique and procedure that 

can be used to quantify the adhesive bond strength between bitumen 

(bitumen-filler mastic) and aggregates. Only in the past few years, some 

efforts have been conducted in developing testing techniques and procedures 

for measuring the adhesive bond strength of bitumen and aggregates. 

However, the developed testing techniques and procedures have not enjoyed 

universal success and acceptance, and not yet established. Hence, emphasis 

of this study is focused on the development of laboratory adhesion test 

method that can be used to directly measure the adhesive bond strength 

between bitumen (bitumen-filler mastic) and aggregates. Also, adhesive bond 

strength and failure characteristics of various combinations of asphalt mixture 

materials over wide ranges of testing conditions were evaluated in order to 

validate the reliability and efficiency of the developed laboratory adhesion test 

method. 
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This study was divided into three parts. In Part 1, a detailed review of literature 

on various testing techniques and procedures used to measure the adhesive 

bond strength in numerous areas of scientific literature and international 

standards was performed, in order to assess and thus to propose the most 

suitable and realistic approach for development of laboratory adhesion test 

method for asphalt mixtures. In Part 2, the proposed adhesion test method 

was subjected to evaluation, mainly based on trial and error experimental 

approach, in order to adapt and thus to develop the criteria and procedures for 

test setup and apparatus, specimen preparation, testing and data analysis. 

The established criteria and procedures were then used for detailed evaluation 

in Part 3, in order to quantify the test results of various combinations of asphalt 

mixture materials (i.e. bitumen (bitumen-filler mastic) and aggregates) over 

wide ranges of thicknesses of adhesive layer of bitumen, aspect ratio of 

specimens, testing conditions (i.e. deformation rates and test temperatures) 

and conditioning procedures (dry and wet conditionings). Results of the study 

were subjected to comparative analysis in order to determine the effect of 

various variables and parameters on the test results, to propose suitable 

testing conditions and to validate the reliability and efficiency of the laboratory 

adhesion test method. Upon completion of the study, a draft protocol was 

developed as guiding principles in conducting the laboratory adhesion test 

method. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Background 

Asphalt mixtures are a combination of aggregates, bituminous binder (or 

simply known as bitumen) and filler, mixed in a predetermined ratio in order to 

result in flexible pavements. Sometimes additives such as rubbers and fibres 

are used to improve the performance of the asphalt mixtures. Majority of roads 

in the Great Britain and also throughout the world are comprised of flexible 

pavements. Different ratios of aggregates, bitumen and filler (as well as the 

small proportion of air) give rise to different types of flexible pavements. 

Although different types of flexible pavements have different properties and 

serve different purposes based on the traffic level, climate, soil characteristics 

and other factors, all are designed and constructed to meet the demands for 

the following qualities; able to resist deformation, cracking and water or 

moisture damage, and be durable over time. However, despite the efficiency 

in designing and constructing to meet the demands for the aforementioned 

qualities, the combined effects of massive traffic growth and higher axle loads, 

together with environmental and ageing effects tend to lead to the rapid 

deterioration of the flexible pavements.  

Environmental factors related to water or moisture are seen to be one of the 

significant factors that adversely affect the quality, performance and 

serviceability of the asphalt mixtures. The presence of water or moisture in the 

pavement structure and the detrimental effects that water or moisture has on 

the properties of the asphalt mixtures, commonly known as moisture damage, 
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can contribute to variety of pavement distresses including stripping, ravelling, 

fatigue cracking and rutting. Moisture damage can be defined as the loss of 

strength and durability of the asphalt mixtures due to the presence of water or 

moisture in the pavement structure. Moisture damage is an extremely 

complicated mode of distress and can shows itself in various forms such as 

adhesive failure between bitumen (bitumen-filler mastic) and aggregates, 

cohesive failure within bitumen (bitumen-filler mastic), cohesive failure within 

aggregates and/or freezing of entrapped water or moisture in the pavement 

structure (Asphalt Institute 2007; Kim & Coree 2005). However, the most 

common forms of moisture damage are due to the adhesive failure (loss of 

adhesion) between bitumen (bitumen-filler mastic) and aggregates, which is 

the most prevalent form and the cohesive failure (loss of cohesion) within 

bitumen (bitumen-filler mastic) (Kanitpong & Bahia 2003; Kim & Coree 2005; 

Solaimanian et al. 2007).  

Adhesion can be defined as the molecular force of attraction in the area of 

contact between unlike bodies (i.e. adhesive and substrates) that acts to hold 

the bodies together (Copeland 2007). By contrast, cohesion is the 

intermolecular force developed within the same body (i.e. adhesive or 

substrates) that forms the body. Figure 1.1 illustrates the adhesion and 

cohesion present between adhesive and substrates, and within adhesive 

respectively. 
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Adhesive is a substance which when applied to surface of materials, capable 

of joining the materials and resists separation. The materials being joined are 

commonly known as adherends or substrates. The latter term (i.e. substrates) 

will be used throughout the thesis. In the thesis, adhesive and substrates are 

used to refer to bitumen (bitumen-filler mastic) and aggregates respectively. In 

the context of asphalt mixtures, adhesion may be used to refer to the amount 

of energy required to break the adhesive bond between bitumen (bitumen-filler 

mastic) and aggregates (Kanitpong & Bahia 2003).  

Based on the study conducted by Fromm (1974), moisture damage is mainly 

characterised by the adhesive failure between bitumen (bitumen-filler mastic) 

and aggregates. Adhesive failure is primarily a result when bitumen (bitumen-

filler mastic) coatings the aggregates is displaced by water or moisture, and a 

phenomenon referred to as stripping becomes visible in the asphalt mixtures. 

Water or moisture penetrates between the bitumen (bitumen-filler mastic) films 

and aggregates surface, breaks the adhesive bond and strips the bitumen 

(bitumen-filler mastic) from the aggregates surface due to higher affinity of 

some aggregates to water or moisture than to the bitumen (bitumen-filler 

Figure 1.1 Adhesion and cohesion present between adhesive and 
substrates, and within adhesive (Source: Adhesive.org 2010)  
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mastic). Stripping is a complex phenomenon involving physical and chemical 

properties of the asphalt mixtures such as chemical composition of bitumen 

(bitumen-filler mastic) and aggregates, aggregates mineralogy and surface 

characteristics, and compositional characteristics and quantity of filler.  

1.2 Problem Statement  

Over the years, moisture damage has been recognised as a primary cause for 

pavement distresses. Based on the literature review and analysis of the past 

studies, moisture damage is mainly characterised by the adhesive failure 

between bitumen (bitumen-filler mastic) and aggregates (Fromm 1974; 

Kennedy et al. 1982; Majidzadeh & Brovold 1968; Tunnicliff & Root 1982). 

Hence, adhesion between bitumen (bitumen-filler mastic) and aggregates can 

be considered as one of the main fundamental properties, which can be 

correlated with the quality, performance and serviceability of the flexible 

pavements. However, despite its significance, research on the adhesion of the 

asphalt mixtures especially in correlation with moisture damage, is limited.  

Attempts to place adhesion of the asphalt mixtures on a quantitative basis for 

measuring moisture damage performance have not been too successful. 

Currently available moisture damage performance tests such as Boiling Water 

test (ASTM D3625) and Modified Lottman test (AASHTO T283) only rely on 

the basis of comparative evaluation of mechanical properties (strength and/or 

modulus) of unconditioned and moisture conditioned specimens. Although this 

approach is helpful in terms of the comparative analysis of moisture 

susceptibility of various asphalt mixtures, the results cannot be used to 

distinguish the actual mechanisms that contribute to the moisture damage and 

none has been successfully correlated with the field performance data. Hence, 
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it remains a challenge to asphalt pavement industries to develop an improved 

method for moisture damage performance based on the fundamental 

assessment of moisture damage mechanisms, especially in terms of the 

adhesion of the asphalt mixtures. 

Adhesion and adhesive bond strength are the most important fundamental 

properties for surface coatings. The science and technology of adhesion and 

adhesive bond strength has formed a large amount of testing techniques and 

procedures used to measure the adhesive bond strength of coatings of 

composite materials such as plastic, metals and glasses. Among the most 

commonly used testing techniques and procedures are peel test, pull off test, 

double cantilever beam (DCB) test and tapered double cantilever beam 

(TDCB) test. However, in the pavement related areas, there are only few 

testing techniques and procedures known to be used for measuring the 

adhesive bond strength of coatings of asphalt mixtures and most of the testing 

techniques and procedures are used to measure the adhesive bond strength 

of tack coat, either in the laboratory or in the field. Tack coat is a thin 

bituminous layer applied between the existing pavements and the newly 

constructed pavements in order to promote bonding. The testing techniques 

and procedures used to measure the adhesive bond strength of tack coat is 

conducted by measuring the interaction between the thin bituminous layer and 

the asphalt mixtures of the existing pavement as a whole, rather than the 

interaction between components of the asphalt mixtures (i.e. bitumen 

(bitumen-filler mastic) and aggregates). Only in the past few years, have there 

been some efforts in developing testing techniques and procedures that can 

be used to directly measure the adhesive bond strength between components 

of the asphalt mixtures (i.e. bitumen and aggregates), such as published by 

Copeland (2007), Kanitpong and Bahia (2003), Kanitpong and Bahia (2004) 



CHAPTER 1                                                                                                                            INTRODUCTION 

 

 6

and Kanitpong and Bahia (2005). However, the developed testing techniques 

and procedures have not enjoyed universal success and acceptance, and not 

yet established due to poor repeatability of the test results and limitations in 

terms of the applicability to measure the adhesive bond strength for wide 

ranges of asphalt mixture materials under various testing conditions (various 

conditioning procedures (dry and wet conditionings), deformation rates and 

test temperatures). Studies conducted by Copeland (2007), Kanitpong and 

Bahia (2003), Kanitpong and Bahia (2004) and Kanitpong and Bahia (2005) 

are still being carried out in order to improve the method. 

Also, there is no published research in the pavement related areas that had 

determined the effect of different types of filler (i.e. bitumen-filler mastic) on 

the adhesive bond strength and failure characteristics of asphalt mixtures. 

Filler is a fine dust !∀##∃%#∀&%∋()∀∃&∗+,%∋(,%∋∋(&−∀.(/0(1234(5∋%6(&7(−∀∃6%.(&−%(

bitumen and improve the adhesion of the bitumen to the aggregates. Studies 

conducted by Copeland (2007), Kanitpong and Bahia (2003), Kanitpong and 

Bahia (2004), Kanitpong and Bahia (2005) and Marek and Herrin (1968) have 

only used pure bitumen (i.e. without filler) as adhesive materials for the 

purpose of simplification in the first step to gain basic knowledge of the 

adhesive bond strength and failure characteristics of asphalt mixtures. 

Since adhesion between bitumen (bitumen-filler mastic) and aggregates is 

considered as one of the main fundamental properties of the asphalt mixtures 

and yet there is no established testing techniques and procedures that can be 

used to quantify the adhesive bond strength between bitumen (bitumen-filler 

mastic) and aggregates, research in this area is crucial and evidently needed. 

The emphasis of this study is focused on the development of laboratory 

adhesion test method that can be used to directly measure the adhesive bond 



CHAPTER 1                                                                                                                            INTRODUCTION 

 

 7

strength between bitumen (bitumen-filler mastic) and aggregates. Previous 

studies on adhesion between bitumen and aggregates such as being 

conducted by Copeland (2007) and Kanitpong and Bahia (2005) will be 

referred throughout this study as guiding principle in developing criteria and 

procedures for the proposed adhesion test method. 

1.3 Objective of Study  

The main objective of this study was to develop and establish a simple, 

practical and reliable monotonically-loaded laboratory adhesion test method 

for direct measurement of the adhesive bond strength of bitumen (bitumen-

filler mastic) and aggregates, and thus to quantify the adhesive bond strength 

and failure characteristics of various combinations of asphalt mixture materials 

over wide ranges of testing conditions. The specific objectives that need to be 

undertaken to achieve the main objective are as follows. 

1. To conduct a comprehensive literature review on various testing 

techniques and procedures used to measure the adhesive bond strength 

in numerous areas of scientific literature and international standards. 

2. To propose the most suitable and realistic approach among the various 

testing techniques and procedures for development of laboratory 

adhesion test method. 

3. To adapt and establish the criteria and procedures for the proposed 

adhesion test method in order to suit the asphalt mixtures, in terms of 

test setup and apparatus, specimen preparation, testing and data 

analysis. 
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4. To evaluate the uniformity and repeatability of the test results in terms of 

thickness of adhesive layer of bitumen, total percentage area of 

adhesive failure, maximum tensile bond strength and tensile energy 

required to produce failure per unit volume, in order to validate the 

established criteria and procedures. 

5. To further evaluate the established criteria and procedures in quantifying 

the test results of various combinations of asphalt mixture materials (i.e. 

bitumen (bitumen-filler mastic) and aggregates) over wide ranges of 

thicknesses of adhesive layer of bitumen, aspect ratio of specimens, 

testing conditions (i.e. deformation rates and test temperatures) and 

conditioning procedures (dry and wet conditionings). 

6. To develop a draft protocol as guiding principles in conducting the 

laboratory adhesion test method. 

1.4 Scope of Study  

This study was divided into three parts based on the specific objectives and is 

outlined as follows. 

1. Part 1: Selection and Justification of the Proposed Adhesion Test 

Method 

A detailed review of literature on various testing techniques and 

procedures used to measure the adhesive bond strength in numerous 

areas of scientific literature and international standards was assessed in 

order to propose the most suitable and realistic approach for 
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development of laboratory adhesion test method for measuring the 

adhesive bond strength of bitumen (bitumen-filler mastic) and 

aggregates (i.e. Objectives 1 and 2). Among the testing techniques and 

procedures that have been taken into consideration are peel test, pull off 

test and double cantilever beam (DCB) test. The right selection of the 

approach is regarded as highly important as it will become the key 

success for this study. At the end of this part, a general concept for the 

proposed adhesion test method was developed. 

2. Part 2: Development of Criteria and Procedures for the Proposed 

Adhesion Test Method 

In this part, the general concept for the proposed adhesion test method 

from the previous part was subjected to evaluation, mainly based on the 

trial and error experimental approach, in order to adapt and thus to 

establish the criteria and procedures for test setup and apparatus, 

specimen preparation, testing and data analysis (i.e. Objective 3). In 

order to achieve the adhesive mode of failure, the procedures for 

specimen preparation were designed so that the thickness of adhesive 

layer of bitumen is uniform and as thin as possible. Development of the 

test setup and apparatus and testing were conducted in order to closely 

simulate the original adaptation of the proposed adhesion test method 

and at the same time being compatible with asphalt mixtures. At the end 

of this part, data analysis was conducted in order to evaluate the 

uniformity and repeatability of the test results in terms of thickness of 

adhesive layer of bitumen, total percentage area of adhesive failure, 

maximum tensile bond strength and tensile energy required to produce 

failure per unit volume (i.e. Objective 4). The final output for this part is 
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the development and validation of the established criteria and 

procedures for the proposed adhesion test method in terms of test setup 

and apparatus, specimen preparation, testing and data analysis. 

3. Part 3: Detailed Evaluation and Validation of the Proposed Adhesion 

Test Method 

This part is a continuation from the previous part where the established 

criteria and procedures for test setup and apparatus, specimen 

preparation, testing and data analysis were subjected to further 

evaluation in quantifying the test results (i.e. thickness of adhesive layer 

of bitumen, total percentage area of adhesive failure, maximum tensile 

bond strength and tensile energy required to produce failure per unit 

volume) of various combinations of asphalt mixture materials (i.e. 

bitumen (bitumen-filler mastic) and aggregates) over wide ranges of 

thicknesses of adhesive layer of bitumen, aspect ratio of specimens, 

testing conditions (i.e. deformation rates and test temperatures) and 

conditioning procedures (dry and wet conditionings) (i.e. Objective 5). In 

order to consider wide ranges of asphalt mixture materials, at least two 

types of aggregates and/or bitumen (bitumen-filler mastic) of distinct 

properties that will reflect the ranges of typically used asphalt mixtures 

need to be utilised. Results of the study were subjected to comparative 

analysis in order to determine the effect of various variables and 

parameters on the test results, to propose suitable testing conditions and 

to validate the reliability and efficiency of the proposed adhesion test 

method. Also, at the end of this part, a draft protocol was developed as 

guiding principles in conducting the laboratory adhesion test method (i.e. 

Objective 6).  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides background information necessary to understand the 

study. It defines asphalt mixtures and moisture damage in asphalt mixtures, 

and also discusses the two primary modes of failure for moisture damage, 

namely adhesive and cohesive failure. This chapter also defines adhesion and 

adhesive failure that occurs between bitumen (bitumen-filler mastic) and 

aggregates, and discusses the theory of adhesion of asphalt mixtures. A 

critical review on various testing techniques and procedures used to measure 

the adhesive bond strength in numerous areas of scientific literature and 

international standards is presented, in order to assess and propose a suitable 

and realistic approach in developing laboratory adhesion test method for 

measuring the adhesive bond strength of bitumen (bitumen-filler mastic) and 

aggregates. Also, at the end of the chapter, previous studies on tensile 

behaviour and failure characteristics of asphalt mixtures such as being 

conducted by Copeland (2007) and Marek and Herrin (1968) are reviewed, in 

order to provide some guidelines for development of criteria and procedures 

for the proposed adhesion test method. 

2.1 General Background 

Great Britain, which has a total land area of 227,469 km2, was linked by 

398,026 km of roads in 2008 (Department for Transport 2009; Infoplease 

2008). Roads account for about 93% of the passenger-kilometres travelled 

and about 73% of the tonne-kilometres of goods traffic. Basically, roads can 

be broken down into two broad categories, namely flexible and rigid 
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pavements. Majority of roads in the Great Britain and also throughout the 

world are comprised of flexible pavements. 

2.1.1 Asphalt Mixtures in General 

Flexible pavements are combination of predetermined ratio of asphalt mixture 

materials (i.e. aggregates, bitumen and filler), which must be able to resist 

deformation, cracking and water or moisture damage, be durable over time 

and yet be inexpensive and easy to construct. Sometime additives such as 

rubbers and fibres are used to improve the performance. Properties and 

interactions of the asphalt mixture materials will determine the quality, 

performance and serviceability of the resulting flexible pavements. 

Aggregates are crushed stone, sand and fines, mixed in a predetermined 

proportion to provide strong structural skeleton and mechanical strength for 

the asphalt mixtures. Aggregates constitute about 92% to 96% by mass of the 

asphalt mixtures, and hence play an important part in the quality and 

performance of the flexible pavements (Kandhal et al. 1997).  Physical 

properties of the aggregates are the most readily apparent properties and 

have the most direct effect on the aggregates performance as asphalt mixture 

materials. The commonly measured physical properties of the aggregates are 

resistance to crushing, impact, abrasion, polishing and stripping, specific 

gravity, water absorption, particle shape and texture, and gradation. Table 2.1 

provides general guidelines for the selection of the aggregates as asphalt 

mixture materials based on the types of the aggregates. Also, chemical 

properties of the aggregates play an equally important role in determining how 

well the interaction between components of the asphalt mixtures (i.e. bitumen 

(bitumen-filler mastic) and aggregates). Physical and chemical properties of 
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the aggregates can change over time, and hence make it difficult to accurately 

predict the aggregates performance. 

Table 2.1 General guidelines for the selection of the aggregates (Source: 
Cordon 1979) 

Types of 
Rocks 

Types of 
Aggregates 

Resistance to 
Crushing, 

Impact and 
Abrasion 

Resistance to 
Stripping

1,2
 

Particle 
Texture 

Particle 
Shape 

Igneous 

Granite Fair Fair Fair Fair 

Syenite Good Fair Fair Fair 

Diorite Good Fair Fair Good 

Basalt Good Good Good Good 

Diabase Good Good Good Good 

Gabbro Good Good Good Good 

Sedimentary 

Limestone Poor Good Good Fair 

Sandstone Fair Good Good Good 

Chert Good Fair Poor Good 

Shale Poor Poor Fair Fair 

Metamorphic 

Gneiss Fair Fair Good Good 

Schist Fair Fair Good Fair 

Slate Good Fair Fair Fair 

Quartzite Good Fair Good Good 

Marble Poor Good Fair Fair 

Serpentine Good Fair Fair Fair 

Notes: 
1
Hydrophilic (attract water) aggregates are more likely to strip; 

2
Freshly crushed aggregates with 

many broken ionic bonds are more likely to strip 

Bitumen is a complex hydrocarbon, found as natural deposit or residue from 

distilling crude oil. Bitumen acts as waterproof, thermoplastic and viscoelastic 

binder that acts to hold together the aggregates particles in the asphalt 

mixtures. Although the proportion of the bitumen in the asphalt mixtures is 

much less than that of the aggregates (i.e. up to a minimum of 4% by mass of 

the asphalt mixtures), the quantity and quality of the bitumen both have a 

marked effect on the performance of the flexible pavements (Wignall et al. 

1991). Physical properties of the bitumen can be measured using various 

testing techniques and procedures such as penetration test, softening point 

test and ductility test. In terms of the chemical properties of the bitumen, there 

is limited knowledge to adequately predict the performance.  
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bitumen and improve the adhesion of the bitumen to the aggregates. Although 

bitumen constitutes the binder part of the asphalt mixtures, it is the 

combination of bitumen and filler known as bitumen-filler mastic that coats the 

aggregates and can therefore be considered as the true binder.  

By weight, aggregates and filler generally account for between 92% and 96% 

of the asphalt mixtures, while bitumen accounts for about 4% to 8%. Different 

ratios of aggregates, bitumen and filler (as well as the small proportion of air) 

give rise to different types of asphalt mixtures of different properties and serve 

different purposes. However, of all types of the asphalt mixtures, there is one 

common problem influencing the performance and serviceability, namely as 

moisture damage. 

2.1.2 Definition of Moisture Damage and Moisture Damage 

Mechanisms 

Moisture damage is an extremely complicated mode of distress and 

represents a conditioning process due to the presence of water or moisture in 

the pavement structure. The interaction of water or moisture with bitumen 

(bitumen-filler mastic) and aggregates can result in loss of structural strength 

and stiffness of the asphalt mixtures. The consequences initially in the form of 

stripping, ravelling, surface wear, rutting and fatigue cracking, if unattended to, 

would lead to serious and irreparable damage, and will cause the pavements 

to lose serviceability earlier than expected. Although the occurrence of the 

pavement distresses is not necessarily initiated by the presence of water or 

moisture, multiple forms of pavement distress mechanisms could increase 
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their extent and severity due to the presence of water or moisture (Miller & 

Bellinger 2003). 

Moisture damage can show itself in various forms such as adhesive failure 

between bitumen (bitumen-filler mastic) and aggregates, cohesive failure 

within bitumen (bitumen-filler mastic), cohesive failure within aggregates 

and/or freezing of entrapped water or moisture in the pavement structure 

(Asphalt Institute 2007; Kim & Coree 2005). However, the most common 

forms of moisture damage are due to the adhesive failure (loss of adhesion) 

between bitumen (bitumen-filler mastic) and aggregates, which is the most 

prevalent form and the cohesive failure (loss of cohesion) within bitumen 

(bitumen-filler mastic) (Kanitpong & Bahia 2003; Kim & Coree 2005; 

Solaimanian et al. 2007).  

Adhesive failure (loss of adhesion) is primarily a result when bitumen 

(bitumen-filler mastic) coatings the aggregates is completely displaced by 

water or moistures. However, based on the study conducted by Hughes and 

Maupin (1989), stain or discoloration of the aggregates surface left by the 

separation of the bitumen (bitumen-filler mastic) films is still being considered 

as the adhesive failure. Water or moisture penetrates between the bitumen 

(bitumen-filler mastic) films and aggregates surface, breaks the adhesive bond 

and strips the bitumen (bitumen-filler mastic) from the aggregates surface due 

to higher affinity of some aggregates to water or moisture than to the bitumen 

(bitumen-filler mastic). Pavement distress mechanisms referred to as stripping 

will thus becomes visible in the asphalt mixtures, as shown in Figure 2.1 

(Kandhal & Rickards 2001). Kiggundu and Roberts (1988) has defined 

stripping as follows. 
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"The progressive functional deterioration of asphalt mixtures due to the 

loss of the adhesive bond between bitumen (bitumen-filler mastic) and 
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According to Kandhal and Rickards (2001), there are four main factors that 

encourage stripping; presence of water or moisture, high air voids content, 

high temperature and high stress. Also, based on the studies done by 

Kiggundu and Roberts (1988), Taylor and Khosla (1983) and Terrel and Al-

Swailmi (1994), there are several mechanisms for the bitumen (bitumen-filler 

mastic) films to be stripped from the aggregates surface, including 

detachment, displacement, spontaneous emulsification, pore pressure and 

hydraulic scouring.  

Figure 2.1 Stripping of bitumen (bitumen-filler mastic) from aggregates 
surface (Source: Kandhal & Rickards 2001) 
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1. Detachment is the microscopic separation of bitumen (bitumen-filler 

mastic) films from aggregates surface due to the presence of thin films 

of water or moisture without an obvious break in the bitumen (bitumen-

filler mastic) films. The thin films of water or moisture probably resulted 

from either aggregates that were not completely dry or interstitial pore 

water or moisture, which vaporised and condensed on the aggregates 

surface (Johnson & Freeman 2002).  

2. Displacement occurs when the bitumen (bitumen-filler mastic) films is 

removed from the aggregates surface by water or moisture. As 

compared to the detachment, displacement occurs due to the intrusion 

of water or moisture into the aggregates surface through breaks of the 

bitumen (bitumen-filler mastic) films. The breaks of the bitumen 

(bitumen-filler mastic) films may arise from incomplete coatings of the 

bitumen (bitumen-filler mastic) films on the aggregates surface or 

rupture of the bitumen (bitumen-filler mastic) films at the sharp corners 

or edges of the aggregates. 

3. Spontaneous emulsification can be defined as inverted emulsion of 

water or moisture in bitumen phase. Based on the study conducted by 

Fromm (1974), the inverted emulsion of water or moisture in bitumen 

phase will cause the bituminous particles to separate from each other 

(cohesive failure) and ultimately leads to the adhesive failure when the 

emulsion boundary propagates to the coated aggregates surface.  

4. Water or moisture entrapped within the asphalt mixtures can lead to the 

pore pressure build-up due to the repeated traffic loads, and freeze and 

thaw cycles. Continuation of the process for the pore pressure build-up 



CHAPTER 2                                                                                                                 LITERATURE REVIEW 

 18

will ultimately leads to the degradation of the adhesive bond strength of 

bitumen (bitumen-filler mastic) and aggregates and thus growth of the 

micro-cracks in the asphalt mixtures. 

5. Hydraulic scouring is caused by the occurrence of capillary tension and 

compression around a moving traffic on saturated pavement surface. 

Bitumen (bitumen-filler mastic) is stripped from the aggregates surface, 

producing defects known as ravelling. In addition, dust is reported to mix 

with water or moisture and, in the presence of traffic, can enhance the 

abrasion of bitumen (bitumen-filler mastic) films from the aggregates. 

Cohesive failure (loss of cohesion) refers to the failure within bitumen 

(bitumen-filler mastic) itself due to the interaction with water or moisture. 

Water or moisture enters the bitumen (bitumen-filler mastic) through 

absorption, reducing the cohesive strength via softening and causing the 

asphalt mixtures to lose stiffness and durability. Cohesive failure can be 

explained using the inverted emulsion of water or moisture in the bitumen 

phase. Water or moisture may behave like a solvent in the bitumen phase and 

result in reduced cohesive strength and increased permanent deformation.  

Based on the study conducted by Lytton et al. (2005), moisture damage could 

occur due to either adhesive or cohesive failure, depending on the nature and 

thickness of bitumen films coatings the aggregates. Marek and Herrin (1968) 

has conducted an experimental study on the behaviour and failure 

characteristics of thin films of bitumen, and a part of the study has correlated 

the tensile bond strength and the types of failure with the thickness of bitumen 

films. In the study, aluminium alloy has been used as substrates due to the 

>∀,5%( 79( ?75.#≅∋( Α765,5∋( 79( approximately 70 GPa, which is close to the 
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typical value of aggregates and also due to the corrosion resistance 

properties. Using the experimental data of Marek and Herrin (1968), Lytton et 

al. (2005) has used the micromechanics analysis in order to reproduce the 

relationship between these parameters (i.e. tensile bond strength, types of 

failure and thickness of bitumen films) as shown in Figure 2.2. For thinner 

films of less than 60 µm (0.060 mm), the adhesive bond tensile strength was 

found to be less than the cohesive bond tensile strength; hence adhesive 

failure is expected to occur, and vice versa for thicker films (between 60 µm 

(0.060 mm) and 150 µm (0.150 mm)). Based on the micromechanics analysis, 

transition of the mode of failure of either adhesive or cohesive was expected 

to occur at thickness of bitumen of about 60 µm (0.060 mm). 

 

Figure 2.2 Relationship between tensile strength and thickness of 
bitumen films (Source: Lytton et al. 2005) 

1. For thickness of bitumen films between 0 µm and 60 µm, adhesive bond tensile strength is less 
than the cohesive bond tensile strength; hence adhesive failure is expected to occur 

2. For thickness of bitumen films between 60 µm and 150 µm, cohesive bond tensile strength is 
less than the adhesive bond tensile strength; hence cohesive failure is expected to occur 

3. Substrates: Aluminium alloy 
4. Adhesive Materials: Asphalt cement K (Penetration at 25°C is 52) 
5. Conditioning Procedures: Dry conditioning at room temperature for 3 hours prior to testing 
6. Testing Conditions: Deformation rate and test temperature of 0.508 mm/minute and 25°C 

respectively 

Notes: 
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Since the thickness of bitumen (bitumen-filler mastic) across the actual 

pavement structure varies considerably, generally within the ranges of 15 µm 

(0.015 mm) and 40 µm (0.040 mm), both adhesive and cohesive failure could 

occur, with one of them perhaps being dominant. However, many studies have 

concluded that moisture damage of the asphalt mixtures is more the adhesive 

mode of failure than the cohesive mode of failure (Fromm 1974; Kennedy et 

al. 1982; Majidzadeh & Brovold 1968; Tunnicliff & Root 1982). The 

emulsification of water or moisture in the bitumen (bitumen-filler mastic) will 

cause the bituminous particles to separate from each other (cohesive failure) 

and ultimately leads to the adhesive failure when the emulsification boundary 

propagates to the coated aggregates surface. According to Terrel and Al-

Swailmi (1994), since mechanisms of the cohesive failure lead, ultimately to 

the adhesive failure, the final mechanisms of adhesive failure will be reported 

as the cause of moisture damage distress.  

2.2 Adhesion of Asphalt Mixtures 

In this section, definitions of the adhesion and adhesive failure in general and 

in the context of asphalt mixtures are presented, and theory of adhesion of 

asphalt mixtures is discussed. 

2.2.1 Definition of Adhesion and Adhesive Failure 

As has been stated before, adhesion can be defined as the molecular force of 

attraction in the area of contact between unlike bodies (i.e. adhesive and 

substrates) that acts to hold the bodies together (Copeland 2007). In the 

context of asphalt mixtures, adhesion may be used to refer to the amount of 

energy required to break the adhesive bond between bitumen (bitumen-filler 
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mastic) and aggregates (Kanitpong & Bahia 2003). By contrast, cohesion is 

the intermolecular force developed within the bitumen (bitumen-filler mastic) 

that holds the molecules of the bitumen (bitumen-filler mastic), and is 

influenced by viscosity. Figure 2.3 shows the adhesion and cohesion of the 

bitumen (bitumen-filler mastic) and aggregates respectively. 

 

Adhesive failure refers to the displacement of the bitumen (bitumen-filler 

mastic) from the aggregates surface, which indicates low magnitude of the 

adhesive bond strength. Adhesive bond strength between bitumen (bitumen-

filler mastic) and aggregates is mainly influenced by the physical and chemical 

properties of the asphalt mixture materials such as chemical composition of 

bitumen (bitumen-filler mastic) and aggregates, mineralogy and surface 

characteristics, and compositional characteristics and quantity of filler. 

Cohesive failure refers to the failure within bitumen (bitumen-filler mastic) itself 

due to the low magnitude of the cohesive bond strength as compared to the 

adhesive bond strength. Figure 2.4 illustrates the types of failure (i.e. adhesive 

failure, cohesive failure and mixed cohesive and adhesive failure) that might 

Figure 2.3 Adhesion and cohesion of bitumen (bitumen-filler mastic) and 
aggregates 

AGGREGATES 

AGGREGATES 

Aggregates 

Bitumen (Bitumen-filler Mastic) 

Adhesion 

Cohesion 
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possibly occur between bitumen (bitumen-filler mastic) and aggregates. 

Failure for moisture damage of asphalt mixtures is usually neither entirely 

adhesive nor entirely cohesive. The simplest and easiest method to identify 

the forms of failure is via visual observation and calculation based on the 

percentage area of adhesive and cohesive failure. 

 

Rand (2002) has tried to quantify the adhesion of various combinations of 

asphalt mixture materials (i.e. bitumen and aggregates) by performing 

submerged wheel tracking test. Data of the test results in terms of the 

percentage of adhesion remains on the asphalt mixtures after test is shown in 

Figure 2.5. The percentage of adhesion remains on the asphalt mixtures after 

test was calculated by identifying the forms of failure as either adhesive or 

cohesive via visual observation. Based on the study, Rand (2002) has 

concluded that the types of failure of either adhesive or cohesive were mainly 

influenced by the properties of the aggregates rather than the properties of the 

bitumen. Also, for hydrophobic (i.e. repulse water) aggregates such as 

limestone and basalt, the effect of different types of bitumen is almost 

Figure 2.4 Possible types of failure that might occur in asphalt mixtures  

Cohesive Failure Cohesive Failure Adhesive Failure 
1Adhesive Failure Mixed Cohesive & 

Adhesive Failure 

 

AGGREGATES AGGREGATES AGGREGATES AGGREGATES AGGREGATES 

AGGREGATES AGGREGATES AGGREGATES AGGREGATES AGGREGATES 

Aggregates 

Bitumen (Bitumen-filler Mastic) 

1
Note: Stain or discoloration of the aggregates 

surface left by the separation of the bitumen 
(bitumen-filler mastic) films is being considered 
as adhesive failure. 
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negligible. Based on Rand (2002), susceptibility of the asphalt mixtures to 

stripping can be improved by the addition of hydrated lime as filler or 

application of the modified bitumen as adhesive materials, depending on the 

combination of the asphalt mixture materials. 

 

2.2.2 Theory of Adhesion of Asphalt Mixtures 

Hicks (1991) has identified four broad theories that have been developed to 

explain the adhesion between bitumen and aggregates, namely as mechanical 

adhesion theory, chemical reaction theory, surface energy theory and 

molecular orientation theory. These theories each individually explain some 

aspects of the adhesion but do not completely capture the mechanisms. 
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Figure 2.5 Percentage of adhesion remains on the asphalt mixtures after 
test for various combinations of asphalt mixture materials (Source: Rand 
2002)  
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1. Mechanical Adhesion Theory 

Based on Terrel and Al-Swailmi (1994), mechanical adhesion theory has 

suggested that adhesion between bitumen and aggregates is affected by 

the physical properties of the aggregates such as particle size, surface 

texture, angularity, porosity or absorption and surface areas. Bitumen 

gets into the surface irregularities and pores of the aggregates, and 

hardens, causing a mechanical interlock. In general, stronger adhesive 

bond strength of bitumen and aggregates is created with rough, porous 

aggregates of large surface areas. However, according to Tarrar and 

Wagh (1992), aggregates having a relatively smooth surface texture are 

easier to coat as compared to the rough surface texture. The presence 

of water or moisture on the aggregates surface may decrease the 

mechanical interlock, thus increasing the susceptibility of the asphalt 

mixtures to stripping. According to Kandhal (1994), physicochemical 

surface properties of the aggregates are more important for moisture-

induced stripping as compared to the properties of the bitumen.  

2. Chemical Reaction Theory 

Chemical reaction theory has been generally accepted to explain the 

differences in the degree of adhesion between different types of bitumen 

and aggregates, in the presence of water or moisture. Aggregates may 

be classified as either hydrophilic (attract water) or hydrophobic (repulse 

water) as shown in Figure 2.6. The main properties of the aggregates 

that determine the characteristics of either hydrophilic or hydrophobic 

are surface chemistry, porosity and pore size. Hydrophilic aggregates 

such as siliceous aggregates (e.g. granite) tend to strip easier than 
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hydrophobic aggregates (e.g. limestone). Generally, a more acidic 

aggregates surface is less likely to form bonds as strongly with the 

bitumen and thus increase the susceptibility of the asphalt mixtures to 

stripping. In other words, the pH values of the aggregates surface and 

the bitumen affect the adhesive bond strength of the asphalt mixtures. 

The reason for this has been attributed to different polarities of the 

surface minerals in the aggregates and the bitumen.  

Also, past studies have shown that the pH values of water or moisture in 

the pavement structure are influenced by the aggregates surface (Huang 

et al. 2000; Labib 1992; Scott 1978; Yoon & Tarrer 1988). Figure 2.7 

shows the effect of different types of aggregates surface on pH values of 

water or moisture under different contacting time. In the conducted 

study, aggregates powders were added to the water or moisture. Based 

on Figure 2.7, most of the aggregates surface tends to increase the pH 

values of water or moisture as the contacting time is increased. The 

increment of the pH values of water or moisture is not restricted to the 

hydrophobic aggregates such as limestone, but also occurs with the 

hydrophilic aggregates such as granite. Hence, the classification of the 

aggregates as either hydrophilic or hydrophobic can only be used as 

rough assessment rather than absolute. 
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Viscosity of the bitumen (bitumen-filler mastic) may indicate the 

concentrations of the asphaltenes (polar molecules). Asphaltenes (polar 

molecules) can create greater adhesion between bitumen (bitumen-filler 

mastic) and aggregates due to the greater adhesion tension and 

Figure 2.7 Effect of different types of aggregates surface on pH values of 
water or moisture under different contacting time (Source: Yoon & Tarrer 
1988) 
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Figure 2.6 Classification of aggregates as hydrophilic and hydrophobic 
(Source: Huang 2004) 
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molecular orientation adhesion. Therefore, asphalt mixtures of lower 

viscosities, which may represent lower concentrations of asphaltenes 

(polar molecules), are generally susceptible to moisture damage. 

Individual components in the bitumen such as sulfoxides, carboxylic 

acids, phenols and nitrogen bases can also affect moisture susceptibility 

(Hicks 1991). 

3. Surface Energy Theory 

For an effective bond, bitumen (bitumen-filler mastic) should completely 

coat or wet the aggregates surface. The wetting ability of the bitumen 

(bitumen-filler mastic) can be explained using surface energy theory. 

Surface energy is defined as the energy needed to create a unit area of 

new surface between bitumen (bitumen-filler mastic) and aggregates in 

vacuum condition. Rice (1959) has suggested that when bitumen 

(bitumen-filler mastic) and aggregates are brought in contact, adhesion 

tension is established. However, the adhesion tension between bitumen 

(bitumen-filler mastic) and aggregates is generally less than the 

adhesion tension between water or moisture and aggregates. Therefore, 

in the presence of water or moisture, bitumen (bitumen-filler mastic) will 

tend to be displaced from the aggregates surface. This can result in poor 

wetting of the aggregates surface by the bitumen (bitumen-filler mastic) 

films and lead to stripping. Hicks (1991) has stated as follows.  

"Water or moisture will tend to displace bitumen (bitumen-filler 

mastic) at the interfaces of the bitumen (bitumen-filler mastic) and 

aggregates where there is contact between water or moisture, 

bitumen (bitumen-filler mastic) and aggregates." 
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The adhesion tension between bitumen (bitumen-filler mastic) and 

aggregates varies with the types of aggregates, roughness of the 

aggregates surface and types of bitumen. Researchers at Texas A & M 

University and Western Research Institute in Wyoming have conducted 

research in measuring the adhesive bond strength of bitumen and 

aggregates based on the thermodynamic surface free energy 

characteristics of aggregates, bitumen and water (moisture) (Bhasin et 

al. 2006; Cheng et al. 2002; Masad et al. 2006).  

New terms, adhesive bond energy related parameters, which consist of 

adhesive bond energy of aggregates and bitumen in dry condition and in 

the presence of water or moisture, have been introduced. A high 

magnitude of adhesive bond energy of aggregates and bitumen in dry 

condition is desirable in order for asphalt mixtures to perform as durable 

pavements. The adhesive bond energy of aggregates and bitumen in the 

presence of water or moisture is quantified based on the amount of 

reduction of surface free energy when bitumen debonds from the 

aggregates surface. A high magnitude of reduction of surface free 

energy of the aggregates and bitumen system would means higher 

propensity for water or moisture to debonds the bitumen from the 

aggregates surface and vice versa. Therefore, aggregates and bitumen 

system with high magnitude of adhesive bond energy in the dry 

condition and low magnitude of reduction of surface free energy in the 

presence of water or moisture should has reduced potential to debonds 

and therefore, will possess a greater resistance to moisture damage 

(Bhasin et al. 2006). Figure 2.8 summarises the procedures employed. 
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Figure 2.8 Procedures for measuring adhesive bond strength based on 
thermodynamic surface free energy (Source: Bhasin et al. 2006) 
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4. Molecular Orientation Theory 

Molecular orientation theory affirms that when bitumen (bitumen-filler 

mastic) is in contact with aggregates surface, molecules of bitumen tend 

to orient themselves in order to satisfy the energy demand of the 

aggregates surface. Bitumen consists of a combination of non-polar 

(Lifshitz-van der Waals) and polar (Lewis acid and Lewis base) 

molecules. Hicks (1991) has stated as follows. 

"Molecules of water are dipolar. Molecules of bitumen are 

generally non-polar, although some components are polar. 

Consequently, molecules of water, being more polar, may more 

readily satisfy the energy demand of the aggregates surface." 

Depending on the surface compositions of the aggregates, molecules of 

water or moisture may preferentially satisfy the energy demand of the 

aggregates surface, thus result in degradation of the adhesive bond 

between bitumen (bitumen-filler mastic) and aggregates, and increase 

the susceptibility of the asphalt mixtures to stripping. 

2.2.3 Summary of Adhesion of Asphalt Mixtures 

Adhesion and adhesive failure between bitumen (bitumen-filler mastic) and 

aggregates is a complex phenomenon involving numerous areas of study 

such as physical and chemical properties and interactions of the asphalt 

mixture materials, pavement mix design and construction methods, and 

diversified environmental and ageing conditions. Research on the adhesion of 

the asphalt mixtures especially in correlation with moisture damage, is limited 
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and there is no established testing techniques and procedures that can be 

used to quantify the adhesive bond strength between bitumen (bitumen-filler 

mastic) and aggregates. Only in the past few years, there have been some 

efforts in developing testing techniques and procedures that can be used to 

directly measure the adhesive bond strength between bitumen and 

aggregates, such as published by Copeland (2007), Kanitpong and Bahia 

(2003), Kanitpong and Bahia (2004) and Kanitpong and Bahia (2005). 

However, the developed testing techniques and procedures have not enjoyed 

universal success and acceptance, and not yet established due to poor 

repeatability of the test results and limitations in terms of the applicability to 

measure the adhesive bond strength for wide ranges of asphalt mixture 

materials under various testing conditions (various conditioning procedures 

(dry and wet conditionings), deformation rates and test temperatures). Since 

adhesion between bitumen (bitumen-filler mastic) and aggregates is 

considered as one of the main fundamental properties of the asphalt mixtures 

and there are no established testing techniques and procedures that can be 

used to quantify the adhesive bond strength between bitumen (bitumen-filler 

mastic) and aggregates, research in this area is crucial and evidently needed. 

2.3 A Review of Adhesion Test Methods 

Research on the adhesion and adhesive failure has been well established for 

composite materials such as plastic, metals and glasses, and a large amount 

of testing techniques and procedures used to measure the adhesive bond 

strength have been developed. In this section, a detailed review of literature 

on various testing techniques and procedures used to measure the adhesive 

bond strength which can be found in numerous areas of scientific literature 

and international standards is presented, in order to propose the most suitable 
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and realistic approach for development of laboratory adhesion test method for 

asphalt mixtures. In following sub-section, the reviewed testing techniques and 

procedures are divided into two; those performed on composite materials 

other than asphalt mixtures and those performed on asphalt mixtures. 

2.3.1 Adhesion Test Methods Performed on Composite Materials 

Other Than Asphalt Mixtures 

Adhesion is the most important property for surface coatings. The science and 

technology of adhesion has formed a large amount of testing techniques and 

procedures used to measure the adhesive bond strength of coatings of 

composite materials. Among the most commonly used testing techniques and 

procedures are peel test, pull off test, double cantilever beam (DCB) test, 

tapered double cantilever beam (TDCB) test, impact wedge peel (IWP) test 

and scratching of thin films test. These testing techniques and procedures 

have been successfully used in measuring the adhesive bond strength of 

coatings of composite materials such as plastic, metals and glasses. Adhesion 

and Adhesives Research Group from Imperial College London was found to 

provide a large number of references on these testing techniques and 

procedures. 

2.3.1.1 Peel Test 

Peel test is relatively easy, inexpensive and well developed adhesion test 

method, and is widely used in various engineering applications, especially in 

the aerospace and automotive industries in measuring the adhesive bond 

strength of bonded joints and laminates of various composite materials. The 

results from the peel test which is conducted based on the Elastic-Plastic-
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Fracture-Mechanics (EPFM) approach will usually give the experienced users 

a good first impression of the initial capability of new adhesive materials 

(Kinloch 1987). One of the examples of the application of the peel test is in the 

packaging and electronics industries where the peel test is used in assessing 

the failure of flexible laminates between polymeric films and also between 

polymeric films and thin metallic films (Kinloch 1997). Over the years, there 

are various standards that have been developed for peel test, and numerous 

modifications for the developed and established peel test have been reported 

(Moore 2008). The various peel tests differ in the way that the load is applied; 

however remain the same in the basic principles. Figure 2.9 shows the various 

peel tests available in various engineering applications and Figure 2.10 shows 

typical peel test that are commonly used. For the typical peel test that are 

commonly used (i.e. Fixed Arm and T Peel), a thin flexible adhesively bonded 

peel arm is pulled at a specified angle and rate from the rigid substrate as in 

the Fixed Arm or from another thin flexible adhesively bonded peel arm as in 

the T Peel.  

 

    1. Fixed Arm             2. T Peel                3. Wedge Peel         4. Floating Roller          5. Climbing Drum             6. Mandrel Peel 

Figure 2.9 Various peel test methods (Source: Moore 2008) 
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Generally, for the Fixed Arm, in order to pull the peel arm from the rigid 

substrates, energy in the form of external work is required. Kinloch (1987) 

shows the relationship between energy in the form of external work and 

adhesive fracture energy, GC in the following equation. 

Equation 2.1  !∀ # ∃% &∋()∗+∋, − ∋(.∋, − ∋(/+∋, − ∋(/0∋, 1 
where:    
 GC = Adhesive fracture energy 
 B = Width of the peel arm 
 a! = Crack length 
 Uext = Energy in the form of external work 
 Us = Strain energy stored in the peel arm 
 Udt = Energy dissipated during tensile deformation of the peel arm 
 Udb = Energy dissipated during bending of the peel arm 
 

In an ideal case, Kinloch (1987) has assumed that there is no tensile 

deformation of the peel arm and the bending of the peel arm is elastic. Hence, 

the adhesive fracture energy, GC can be correlated with the applied peel load 

and peel angle as in the Equation 2.2.  

 

Figure 2.10 Typical peel test commonly used in various engineering 
applications (Source: Hadavinia et al. 2006) 

                                            1. Fixed Arm                                                2. T Peel 
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Equation 2.2  !∀ # 2% 3∃ − 456 78 
where:    
 GC = Adhesive fracture energy 
 P = Applied peel load 
 B = Width of the peel arm 
 ! = Peel angle 

 

However, if there is elastic-plastic deformation occurred in the peel arm, it is 

necessary to quantify the tensile characteristics of the peel arm (i.e. tensile 

strain and tensile stress), and the adhesive fracture energy, GC can be 

calculated as follows. 

Equation 2.3  

!∀ # 2% 3∃ 9 : − 45678 − ;<=> ?∋:≅
Α Β 9 &∃% ∋(/0∋, 1 

where:    
 GC = Adhesive fracture energy 
 P = Applied peel load 
 B = Width of the peel arm 
 ∀ = Tensile strain 
 ! = Peel angle 
 hS = Thickness of peel arm 
 # = Tensile stress 
 a! = Crack length 
 Udb = Energy dissipated during bending of the peel arm 

 

For the T Peel, adhesive fracture energy, GC can be measured using the 

following equations (Lamut et al. 2008). 

Equation 2.4  !∀ # !∀3Χ))DΕΦΓΗΕΙ8 9 !∀3Χ))DΕΦΓΗΕϑ8 
Equation 2.5  !∀3Χ))DΕΦΓΗΕΙ8 # 2% 3∃ 9 456 78 − !Χ3Χ))DΕΦΓΗΕΙ8 
Equation 2.6  !∀3Χ))DΕΦΓΗΕϑ8 # 2% 3∃ − 456 78 − !Χ3Χ))DΕΦΓΗΕϑ8 
where:    
 GC = Adhesive fracture energy 
 GP = Plastic energy due to bending of the peel arm 
 P = Applied peel load 
 B = Width of the peel arm 
 ! = Peel angle 
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Generally, the peel test will reach steady state conditions only after a 

considerable amount of displacement has been reached, and the steady state 

applied load is often many times larger than the required load for propagation 

of initial crack. Figure 2.11 shows the example of typical peel force versus 

crosshead displacement for T Peel test, which had used aluminium alloy as 

substrates and Bondmaster ESP110 epoxy as adhesive materials. Based on 

Figure 2.11, peel force was found to fluctuate significantly during the first 40 

mm of crosshead displacement before reaches steady state conditions. 

However, based on Lamut et al. (2008), data of the test results of the same 

substrates and adhesive materials subjected to Fixed Arm test differs 

considerably from the data of the test results of T Peel test, as shown in 

Figure 2.12. Propagation values of peel force, P and calculated adhesive 

fracture energy, GC for T Peel test and Fixed Arm test were 7.43 N/mm and 

1370 J/m2, and 5.00 N/mm and 922 J/m2, respectively. 
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Figure 2.12 Typical peel force versus crosshead displacement for Fixed 
Arm test (Source: Lamut et al. 2008) 

Notes: 1. Load is expressed as peel force in N per millimetre width  
2. Substrates: Aluminium alloy 
3. Adhesive Materials: Bondmaster ESP110 epoxy 
4. Propagation Value of Peel Force, P is 5.00 N/mm 
5. Propagation Value of Adhesive Fracture Energy, GC is 922 J/m
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Figure 2.11 Typical peel force versus crosshead displacement for T Peel 
test (Source: Lamut et al. 2008) 

Notes: 1. Load is expressed as peel force in N per millimetre width  
2. Substrates: Aluminium alloy 
3. Adhesive Materials: Bondmaster ESP110 epoxy 
4. Propagation Value of Peel Force, P is 7.43 N/mm 
5. Propagation Value of Adhesive Fracture Energy, GC is 1370 J/m

2 
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Results of the peel test usually reflect the stress and strain conditions of the 

bonded joints or laminates failing under conditions of extensive yielding and 

involve a large degree of plastic deformation of the peel arms (Cui et al. 2003). 

Based on Kinloch (1987), due to the effect of the applied peel load that is tend 

to place a very high stress and strain concentrations on the boundary line of 

the crack front, crack will occur easily unless the bonded joints or laminates 

are wide or the applied peel load is low. According to Kinloch (1997), the peel 

test does not measure the fundamental aspect of adhesion (i.e. intrinsic 

adhesion) between adhesive layer and substrates, even when the failure 

occurs along the interfaces of the bonded joints or laminates. Nor does the 

peel test directly assess the adhesive strength or toughness of the adhesive 

materials. The reason for this is due to the complex deformation behaviour of 

the peel test even though the testing techniques and procedures of the peel 

test can be considered as one of the simplest.  

Several studies have shown that the measured peel load per unit width of the 

peel test does not only depends upon the degree of intrinsic adhesion and the 

type of adhesive materials, but also upon various factors such as peel angle, 

thickness and mechanical properties of the peel arms. Figure 2.13 shows the 

effect of the peel angle on the adhesive fracture energy, GC for the Fixed Arm 

based on the studies conducted by three different laboratories. If the peel test 

is going to be used in pavement related areas for measuring the adhesive 

bond strength between bitumen (bitumen-filler mastic) and aggregates, due to 

the viscoelastic properties of the bitumen (bitumen-filler mastic), the measured 

peel load per unit width of the peel test will also depend upon the deformation 

rates and test temperatures (Kinloch 1997). Fracture-mechanics method using 

energy balance approach has been used as replacement for the Elastic-
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Plastic-Fracture-Mechanics (EPFM) approach in analysing the failure of the 

bonded joints and laminates of composite materials. 

 

2.3.1.2 Pull Off Test 

Pull off test is widely used for measuring the mechanical tensile strength of 

paint films, varnishes, concretes and other coatings. ASTM D4541 Standard 

Test Method for Pull-Off Strength of Coatings Using Portable Adhesion 

Testers and BS EN ISO 4624:2003 Paints and Varnishes-Pull-Off Test for 

Adhesion define the testing techniques and procedures for carrying out the 

pull off test for paint films, varnishes and other coatings. BS EN 1542:1999 

Products and Systems for the Protection and Repair of Concrete Structures-

Test Methods-Measurement of Bond Strength by Pull-Off specifies a method 

for measuring the tensile strength of grouts, mortars, concretes and surface 

Figure 2.13 Effect of peel angle on adhesive fracture energy, GC for the 
Fixed Arm test (Source: Moore & Williams 2001) 
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protection system (SPS) used for the protection and repair of concretes using 

the pull off test.  

Generally, pull off test is conducted by measuring the minimum tensile stress 

necessary to detach or fracture the coatings of adhesive materials in a 

direction perpendicular to the substrate(s). However, based on DFD® 

Instruments (n.d.), the word perpendicular does not have a proper meaning 

when testing on a curved surface of the substrate(s) and is usually used to 

refer to the evenly distributed tensile stress. There are various testing 

techniques and procedures used to conduct the pull off test. The most 

commonly used pull off test is conducted by inserting or casting thin films of 

uniform thickness of adhesive materials between two plates of rigid substrates 

(infinite rigid plane and rigid disc), as shown in Figure 2.14. The bonded 

assemblies are then subjected to increasing tensile stress until failure or 

fracture occurs. The failure mechanisms could occur due to either adhesive 

failure along the interfaces or cohesive failure through the layer of the 

adhesive materials, or combination of both. 

 
Figure 2.14 Pull off test specimen 
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Based on the pull off test developed by DFD® Instruments (n.d.) which is 

based on the ASTM D4541 Standard Test Method for Pull-Off Strength of 

Coatings Using Portable Adhesion Testers, as shown in Figure 2.15, the 

applied tensile stress must be steadily increased within the specified rate 

intervals and also must be applied in the perpendicular direction to the 

adhesive materials so that the applied tensile stress will be evenly distributed 

throughout the coated surfaces. Otherwise, the area where the applied tensile 

stress is concentrated will fracture before the maximum tensile stress has 

been reached elsewhere (DFD® Instruments n.d.). 

 

According to the BS EN ISO 4624:2003 Paints and Varnishes-Pull-Off Test for 

Adhesion, the minimum tensile stress required to detach or fracture the 

coatings of the adhesive materials can be calculated as in Equation 2.7 and 

the types of the failure which is determined via visual observation can be 

tabulated as in Table 2.2. 

 
 
 
 

Figure 2.15 Pull off test developed by DFD® Instruments (Source: DFD® 

Instruments n.d.) 
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Equation 2.7  ? # ΚΛ 

where:    
 # = Minimum tensile stress (MPa) 
 F = Minimum tensile load (N) 
 A = Area of contact (mm2) 

 

Table 2.2 Template for calculating the types of failure via visual 
observation 

Abbreviation for Types of 
Failure 

Descriptions of Types of Failure 
Percentage Area of 

Failure (%)
1
 

A Cohesive failure within adhesive A% 

A/S1 
Adhesive failure between 
adhesive and substrates 1 

B% 

A/S2 
Adhesive failure between 
adhesive and substrates 2 

C% 

Total Sum of All Types of Failure A + B + C = 100% 

Notes: 
1
Percentage area of failure is estimated to the nearest 10% for each types of failure 

Results from the pull off test are influenced not only by the properties of the 

adhesive materials and substrate(s), but also by nature and preparation of the 

substrates, methods of application of the adhesive materials, temperature, 

humidity and types of the testing equipments being used (British Standard 

Institution 2003). Kendall (1971) has conducted a study in order to determine 

the effect of area of contact and thickness of adhesive materials on the 

adhesive bond strength based on the pull off test. Gelatine of thickness 

between 0.04 cm and 0.48 cm was used as elastic adhesive materials and 

Perspex was used as substrates. Figure 2.16 shows the relationship between 

adhesion force (measured in unit of Gram-Force) and disc diameter 

(measured in unit of cm2) over wide ranges of thicknesses of adhesive 

materials. Based on the Figure 2.16, disc diameter, which represents the area 

of contact, and thickness of adhesive materials were found to have a profound 

influence on the adhesion force. The value of the adhesion force tends to 

increase with the increasing value of disc diameter and decreasing thickness 
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of adhesive materials. However, by re-plotting the data of Kendall (1971) in 

the forms of adhesive bond strength against thickness of adhesive materials 

as shown in Figure 2.17, it was found that the effect of disc diameter and 

hence the effect of area of contact are almost negligible. Specimens of 

different disc diameter of 14.14 mm, 17.32 mm, 20.00 mm, 24.49 mm, 28.28 

mm and 31.62 mm have shown to result in approximately the same value of 

adhesive bond strength, provided having the same thickness of adhesive 

materials. Hence, it can be concluded that the adhesive bond strength is 

mainly influenced by the thickness of adhesive materials rather than the disc 

diameter or area of contact. 

 

 
(Disc Diameter)

2
 (cm

2
) 

Notes: 1. 1 Gram-Force = 9.80665 mN  
2. Substrates: Perspex 
3. Adhesive Materials: Gelatine 
4. Conditioning Procedures: Dry conditioning at room temperature 
5. Testing Conditions: Deformation rate of 0.6 mm/minute at room temperature 

Figure 2.16 Relationship between adhesion force, disc diameter and 
thickness of adhesive materials (Source: Kendall 1971) 
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One of the major problems in designing the adhesion test methods based on 

the pull off (tension) mode is that unless one of the substrates is highly 

compliance, then even a small misalignment of the substrates will result in 

cleavage stresses (Kendall 1971). However, based on the past studies, pull off 

test has been found useful in comparing the adhesive properties and also 

providing relative ratings of different types of adhesive materials. Pull off test 

may be applied using wide ranges of substrates including metals, plastics, 

woods, concretes and aggregates. 

2.3.1.3 Double Cantilever Beam (DCB) Test 

Double cantilever beam (DCB) test as shown in Figure 2.18 is based on the 

Linear-Elastic-Fracture-Mechanics (LEFM) approach and published as ASTM 

D3433-99 Standard Test Method for Fracture Strength in Cleavage of 

Notes: 1.   Substrates: Perspex 
2.   Adhesive Materials: Gelatine 
3.   Conditioning Procedures: Dry conditioning at room temperature 
4.   Testing Conditions: Deformation rate of 0.6 mm/minute at room temperature 

Figure 2.17 Relationship between average adhesive bond strength, 
thickness of adhesive materials and disc diameter  
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Adhesives in Bonded Metal Joints and BS 7991:2001 Determination of the 

Mode I Adhesive Fracture Energy GIC of Structure Adhesives Using the 

Double Cantilever Beam (DCB) and Tapered Double Cantilever Beam (TDCB) 

Specimens. DCB test is widely used for the determination of the fracture 

resistance of the adhesive and bonded joints of composite materials under 

mode I tensile loading conditions. Mode I is an opening of the fracture 

corresponding to the tensile loading, which is in the direction normal to the 

fracture plane, as shown in Figure 2.19. Other modes of failure (i.e. Mode II 

and Mode III) correspond to the sliding or in-plane shear mode where the 

fracture surfaces slide over one another in the direction normal to the crack 

front, and tearing or anti plane shear mode respectively. 

 

Figure 2.18 Double cantilever beam (DCB) specimen (Source: British 
Standards Institution 2001) 

Note: A     = Distance between the end of the specimen and the tip of the insert film 
a = Crack length distance between the load lone and the tip of the pre-crack  
aO    = Distance between the load line to the tip of the insert film 
aP    = Pre-crack length measured from the load line to the tip of the mode I pre-crack 
B = Width of specimen 
H = Thickness of the load-block 
h = Thickness of substrate beam at a crack length, a 
l = Total length of the specimen 
l1 = Distance from the centre of the loading pin to the mid-plane of the arm of the substrate beam 
l2 = Distance from the loading pin centre to the edge of the block 
l3 = Total length of the load-block 
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DCB test measures the mode I adhesive fracture energy, GC which can be 

described as the measure of the adhesive strength or toughness of the 

adhesive materials in the presence of flaws (British Standards Institution 

2001). DCB test is well suited for testing adhesive and bonded joints of thin 

adhesively bonded fibre composite materials, but may also be used when the 

metallic substrates, which possess a relatively high yield stress, are employed.  

DCB test is a testing geometry whereby adhesive materials are applied 

between two identical substrates, often steel. A crack is initiated first by 

inserting a wedge into the adhesive materials. This initiates a crack formation 

in a predefined position of the adhesive materials. The specimen of the DCB 

test is then loaded by pulling apart the two beams at a certain rate resulting in 

an increase in the deflection of the two beams as the load increases (Varun 

1999). At a certain critical load, the crack begins to propagate resulting in a 

slight drop in the applied load. At this point, the beams are stopped from 

moving apart, thus keeping the deflection constant. The slight drop in the 

applied load and the crack length are carefully followed. The DCB specimen is 

then consecutively unloaded and then loaded, and the overall procedures are 

repeated several times leading to the total cleavage of the DCB specimen. 

Results of the DCB test are collected at various times and consist of load, 

deflection, crack length and compliance. The obtained results can then be 

analysed using several different approaches such as Corrected Beam Theory 

Figure 2.19 Mode of failure (Mode I, Mode II and Mode III) 

  Mode I              Mode II                        Mode III 
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(CBT), Experimental Compliance Method (ECM) and ASTM Method (British 

Standard Institution 2001; Varun 1999). 

Figures 2.20 and 2.21 show the example of the results of the DCB test using 

titanium alloys as substrates and polyimide as adhesive materials, as being 

conducted by Varun (1999). Figure 2.20 shows the captured data of the load 

versus displacement, and Figure 2.21 shows the results, which have been 

analysed using different approaches (i.e. Experimental Compliance Method 

(ECM) and ASTM Method). The value of the maximum strain energy release 

rate, G was found to be approximately the same although was analysed using 

different approaches, and the value was in the range of 1610 J/m2 and 1700 

J/m2 for Sample A, and 1900 J/m2 and 2100 J/m2 for Sample B, respectively. 

 

Figure 2.20 Load versus displacement for DCB test using titanium alloys 
as substrates and polyimide as adhesive materials (Source: Varun 1999) 
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2.3.1.4 Tapered Double Cantilever Beam (TDCB) Test 

Tapered double cantilever beam (TDCB) test as shown in Figure 2.22 was 

developed by Mostovoy and Ripling (1966). BS 7991:2001 Determination of 

the Mode I Adhesive Fracture Energy GIC of Structure Adhesives Using the 

Double Cantilever Beam (DCB) and Tapered Double Cantilever Beam (TDCB) 

Specimens provides a method based upon Linear-Elastic-Fracture-Mechanics 

(LEFM) for the determination of the fracture resistance of the adhesive and 

bonded joints of composite materials under mode I tensile loading conditions, 

using the TDCB test. The TDCB test is similar to the DCB test, which consists 

of layer of adhesive materials in between two identical substrates. The two 

identical substrates however are tapered away from the point where the load 

is applied. The aim of tapering the substrates is to mitigate the errors in the 

testing procedures due to inelastic or plastic deformation of the substrates. 

TDCB test is designed so that, over a large range of crack length values, the 

Figure 2.21 Results (strain energy release rate) based on Experimental 
Compliance Method (ECM) and ASTM Method (Source: Varun 1999) 
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rate of change of compliance with the crack length is constant. Thus, this will 

result in value of adhesive fracture energy, GC that is independent of the crack 

length values at any given applied load. Here lies the main advantage of the 

TDCB test, namely the value of the adhesive fracture energy, GC may be 

readily calculated without the knowledge of the crack length and this is 

particularly useful since the crack tip is often difficult to be defined accurately 

in the adhesive and bonded joints of composite materials (Kinloch 1982). Also, 

relatively tough adhesive materials can be tested without the occurrence of 

plastic deformation of the arms, and the substrates can possess a relatively 

low yield stress, but again no plastic deformation of the arms is incurred during 

the test (British Standard Institution 2001). In contrast, DCB test is well suited 

for testing adhesive and bonded joints of thin adhesively bonded fibre 

composite materials. Table 2.3 shows the equations used to calculate the 

adhesive fracture energy, GC using several different approaches (i.e. Simple 

Beam Theory (SBT), Corrected Beam Theory (CBT) and Experimental 

Compliance Method (ECM)) for both DCB test and TDCB test (British 

Standard Institution 2001).  
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Table 2.3 Equation for adhesive fracture energy, GC based on Simple 
Beam Theory (SBT), Corrected Beam Theory (CBT) and Experimental 
Compliance Method (ECM) (Source: British Standard Institution 2001) 

 Types of Approaches 

 
Simple Beam Theory 

(SBT) 
Corrected Beam Theory 

(CBT) 
Experimental Compliance 

Method (ECM) 

Double Cantilever 
Beam (DCB) Test 

!Μ # Ν2ϑΟ.%ϑ Π Θ !Μ # Ρ2ΣΤ%3, 9 ΥςΥ8 Π Κ !Μ # W2ΣΤ%, Π Κ 

Tapered Double 
Cantilever Beam 

(TDCB) Test 
!Μ # Ν2ϑΟ.%ϑ Π Θ !Μ # Ν2ϑΘΟ.%ϑ Ξ∃ 9 ΨΖΝΡ & ΡΘ,1

Ι[∴ !Μ # 2ϑΘΤ% Π ∋]∋, 

 
where: 

   

 GC = Adhesive fracture energy 
 P = Measure Load 
 ES = Independently measured flexural or tensile modulus of substrates 
 B = Width of the peel arm 
 m = Specimen geometry factor and is given by 

[⊥_α 9 Ι 
 h = Thickness of substrates at crack length, a 
 ∃ = Displacement 
 a = Crack length 
 % = Crack length correction for a beam that is not perfectly built in 
 F = Large displacement correction 
 n = Slope of a plot of log10 C versus log10 a  
 C = Compliance and is given by Σ 2β  

Note: A     = Distance between the end of the specimen and the tip of the insert film 
a = Crack length distance between the load lone and the tip of the pre-crack  
aO    = Distance between the load line to the tip of the insert film 
aP    = Pre-crack length measured from the load line to the tip of the mode I pre-crack 
B = Width of specimen 
ha = Thickness of adhesive layer 
l = Total length of the specimen 
  

Figure 2.22 Tapered double cantilever beam (TDCB) specimen (Source: 
British Standard Institution 2001) 
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TDCB test can be used to determine the rate of crack growth under various 

cyclic loading and environmental conditions. Compared to the other adhesion 

test methods, TDCB test is relatively complex and expensive in terms of the 

specimen preparation. Thus, various engineering applications would far prefer 

to deduce the value of the adhesive fracture energy, GC from the most 

common and widely used peel test (Hadavinia et al. 2006). 

Cui et al. (2010) has conducted a study to determine the fracture resistance of 

the bitumen as adhesive materials and aluminium alloy as substrates using 

the TDCB test, as shown in Figure 2.23. Results of the study over various 

thicknesses of the adhesive layer of bitumen and wide ranges of deformation 

rates and test temperatures have shown promising potential for the TDCB test 

to be used in measuring the adhesive bond strength of asphalt mixtures 

(Figures 2.24 and 2.25). 

 

Figure 2.23 TDCB test using bitumen as adhesive materials and 
aluminium alloy as substrates (Source: Cui et al. 2010) 
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Figure 2.25 Effect of temperature on tensile load (Source: Cui et al. 
2010) 

Figure 2.24 Effect of deformation rate on tensile load (Source: Cui et al. 
2010) 
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2.3.1.5 Impact Wedge Peel (IWP) Test 

Impact wedge peel (IWP) test is a standard method for measuring the 

resistance of structural adhesives to cleavage fracture at a relatively high 

deformation rate and has been published as ISO 1143:2003 Adhesives-

Determination of Dynamic Resistance to Cleavage of High-Strength Adhesive 

Bonds Under Impact Conditions-Wedge Impact Method (Blackman et al. 

2000). Schematic drawing of the IWP test in accordance with the ISO 

1143:2003 is shown in Figure 2.26.  

 

The IWP test is a follow-up study and an improved method based on the most 

common and widely used peel test (Kinloch 1997). In the IWP test, two 

preformed metal substrates are bonded over a length of 30 mm only at one 

end to give a tuning fork joint. The free arms of the specimen are clamped and 

a wedge is driven through the bonded joints of the specimen, as illustrated in 

Figure 2.26. Based on the ISO 1143:2003, the IWP test specimen should be 

90 mm long and 20 mm wide, and made using sheet-metal substrates of 

between 0.6 mm and 1.7 mm of thickness. The velocity used to drive the 

wedge is 2 m/s for steel substrates and 3 m/s for aluminium-alloy substrates. 

Figure 2.26 Impact wedge peel (IWP) test specimen (Source: Blackman et 
al. 2000) 
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Based on the ISO 1143:2003, the average impact force is calculated from the 

plot of the measured impact force versus time, disregarding the first 25% and 

the last 10% of the curve, as shown in Figure 2.27 (Taylor 1996). The energy 

needed to rupture the IWP test specimen is calculated based on the 

integration over the same part of the curve (i.e. calculating the area under the 

curve), and multiply the results of the integration with velocity.  

 

The value of the average impact force depends on the types of adhesive and 

substrates. Same as the peel test, plastic deformation of the substrates of the 

IWP test specimen greatly contributes to the measured impact force and 

energy needed to cause rupture. Furthermore, in the IWP test the frictional 

energy losses may also be significant. Hence, the IWP test would not be 

expected to give a measure of the impact properties of the adhesive materials 

(Kinloch 1997). 

Kinloch et al. (1996) has proved the existence of direct correlations between 

the results obtained from the IWP test and the values of the adhesive fracture 

Figure 2.27 Plot to calculate average impact force and energy needed to 
rupture the IWP test specimen (Source: Taylor 1996) 
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energy, GC measured using the TDCB test, as shown in Figure 2.28. Based on 

the Figure 2.28, the correlations between the results obtained from the IWP 

test and the values of the adhesive fracture energy, GC measured using the 

TDCB test demonstrate that the degree of plastic deformation of the 

substrates increases as the values of the adhesive fracture energy, GC 

increases, and this is more pronounced when the mild steel substrates are 

employed. For the IWP test to be used in measuring the adhesive bond 

strength of bitumen (bitumen-filler mastic) and aggregates, the substitution of 

metal substrates used in the IWP test with the aggregates substrates may be 

very challenging due to the nature of the adhesive and bonded joints and 

failure mechanisms. Also, the application of the wedge in inducing crack 

initiation and propagation are not representative of the moisture damage 

mechanisms of adhesive or cohesive failure. 

 

Figure 2.28 Correlations between results obtained from IWP test and 
values of adhesive fracture energy, GC measured using TDCB test 
(Source: Kinloch 1997) 
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2.3.1.6 Scratching of Thin Films Test 

Scratching of thin films test is used by Heavens (1950) in the study related to 

the adhesion of evaporated coatings. Scratching of thin films test uses a 

spherically tipped stylus, which is loaded onto thin films and then dragged 

along the surface as shown in Figure 2.29. At normal loads, shearing occurs in 

the thin films. The value of load required to induce shearing is calculated 

based on Equation 2.8, and is expressed in terms of the traction force, F2. As 

the load is increased, a point is reached where the thin films are completely 

removed from the substrates. The load at which the removal of the thin films 

occurs is taken as the measure of the adhesive bond strength of the thin films 

and substrates, and can be calculated based on Equation 2.9. Figure 2.30 

shows the relationship between traction forces, F2 that are represented by 

Equations 2.8 and 2.9, and applied load. As applied load is increased, failure 

is expected to change from shearing to peeling. Based on Figure 2.30, in the 

area of shearing, the minimum traction force, F2 required to produce failure is 

based on Equation 2.8, and vice versa for the area of peeling. 
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Equation 2.8  

Κϑ χ δϑεϑ &ΡΝφγ! 1η[ 
where:    
 F2 = Traction force 
 S = Shear strength of thin films 
 R = Radius of spherically tipped stylus 
 W = Applied load 
 G = Modulus of spherically tipped stylus and substrate 

 

 
Equation 2.9  Κϑ χ ιδϕφγ 

where:    
 F2 = Traction force 
 ! = Interfacial surface energy (i.e. energy or amount of external work needed to create a 

unit area of new surface between the thin films and substrates) 
 R = Radius of spherically tipped stylus 
 W = Applied load 

 

Figure 2.29 Scratching of thin films test specimen (Source: Kendall 1971) 
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However, the behaviour of the scratching of the thin films test can only be 

explained qualitatively by using the following assumption; only elastic 

deformation takes place in the spherically tipped stylus and substrates, and 

the spherically tipped stylus and substrates are assumed as having equal 

elastic properties. Plastic and viscoelastic deformation in the spherically tipped 

stylus and the substrates have been neglected. 

2.3.2 Adhesion Test Methods Performed on Asphalt Mixtures 

In the pavement related areas, there are only a few testing techniques and 

procedures known to be used for measuring the adhesive bond strength of 

asphalt mixtures and most of the testing techniques and procedures are used 

to measure the adhesive bond strength of tack coat, either in the laboratory or 
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Equation 2.8 

Equation 2.9 

Figure 2.30 Relationship between traction forces, F2 represented by 
Equations 2.8 and 2.9, and applied load (Source: Kendall 1971) 
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in the field. Testing techniques and procedures used to measure the adhesive 

bond strength of tack coat that can be considered as one of the possible 

approaches for adoption and applications on the bitumen (bitumen-filler 

mastic) and aggregates is the University of Texas at El Paso (UTEP) pull off 

device. The blister test is one of the adhesion test methods that had been 

considered practical for quantitative evaluation of the adhesive bond strength 

of bitumen and aggregates (Anderson et al. 1994; Chang 1994). During the 

Strategic Highway Research Program (SHRP), the blister test that is widely 

used for determination of the adhesive strength of bonded joints and laminates 

of various composite materials has been modified for quantitative evaluation of 

the adhesive bond strength of bitumen and aggregates. However, the 

complexity of the modified adhesive blister test put a quick end to the 

development.  

In the past few years, there have been some efforts by researchers in 

developing testing techniques and procedures that can be used to directly 

measure the adhesive bond strength between bitumen and aggregates, such 

as published by Copeland (2007), Kanitpong and Bahia (2003), Kanitpong and 

Bahia (2004) and Kanitpong and Bahia (2005). However, the developed 

testing techniques and procedures have not enjoyed universal success and 

acceptance, and not yet established due to poor repeatability of the test 

results, and limitations in terms of the applicability to measure the adhesive 

bond strength for wide ranges of asphalt mixture materials under various 

testing conditions (various conditioning procedures (dry and wet 

conditionings), deformation rates and test temperatures). 
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2.3.2.1 University of Texas at El Paso (UTEP) Pull Off Device 

University of Texas at El Paso (UTEP) pull off device has been fabricated at 

the University of Texas at El Paso based on the pull off mechanisms and is 

used to measure the quality of tack coat in pull off (tension) mode. Tack coat 

is a thin bituminous layer applied between the existing pavements and the 

newly constructed pavements in order to promote bonding. Various laboratory 

testing techniques and procedures are available to identify the quality of tack 

coat in the laboratory such as published in the ASTM D244-00 Emulsified 

Asphalts (Viscosity, Sieve Test, Particle Charge Test, Cement Mixing Test, 5-

day Settlement Test, Residue). However, there is no testing techniques and 

procedures that are reliable for quantifying the quality of the applied tack coat 

in the field and for validation of whether the quality of the tack coat applied in 

the field met the required standard of the predetermined quality of the tack 

coat in the laboratory (Tandon & Puentes 2006).  

The UTEP pull off device is simple, economical, easy to use and able to 

determine the quality of tack coat either in the laboratory or in the field within a 

short duration (Tashman et al. 2006). The UTEP pull off device weighs about 

10.4 kg and can be easily levelled with the help of pivoting feet, as shown in 

Figure 2.31. The UTEP pull off device has a weight key on the top, which 

provides stability when loads are placed on the top. A 0 Nm to 18 Nm of 

torque wrench is used to pull the contact plate upward from the tack coated 

surface until the contact plate separates from the surface. The UTEP pull off 

device consists of 127 mm diameter of aluminium contact plate. With the 

UTEP pull off device firmly seated on the tack coated surface, loads of 18 kg 

are placed on the load rack for 10 minutes. After 10 minutes, the loads are 

removed and the torque wrench is rotated to detach the aluminium contact 
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plate from the tack coated surface. The torque required to detach the 

aluminium contact plate is recorded and then converted to stress using 

calibration factor. 

 

Typically the strength of the bitumen decreases with the increasing 

temperature due to its viscoelastic properties. However, based on the study 

conducted by Tandon and Puentes (2006), the results obtained from the 

UTEP pull off device indicated the opposite trends. Based on the results, it 

was found that the strength of the tack coated surface increases with 

increasing temperature, which can be considered as unusual. The reason for 

this is due to the area of coverage of the tack coated surface, which was less 

at lower temperature due to the lower flow ability (higher viscosity), as shown 

in Figure 2.32.  

Figure 2.31 UTEP pull off device (Source: Tandon & Puentes 2006) 
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Tandon and Puentes (2006) concluded that the UTEP pull off device has the 

potential of identifying the quality of tack coated surface. The pull off (tension) 

mode of the UTEP pull off device is independent of the surface tested and the 

test setup is handy, reliable and can measure the quality of tack coat in less 

than 45 minutes after the application of the tack coat in the field. However, the 

direct adoption and applications of the UTEP pull off device for measuring the 

adhesive bond strength of bitumen (bitumen-filler mastic) and aggregates are 

likely to be complicated due to the different testing materials (i.e. tack coated 

surface and asphalt mixtures as a whole, and bitumen (bitumen-filler mastic) 

and aggregates). However, some modifications of the UTEP pull off device 

can result in a promising potential for the development of the laboratory 

adhesion test method for measuring the adhesive bond strength of bitumen 

(bitumen-filler mastic) and aggregates. 

Figure 2.32 Area of coverage of tack coated surface at low temperature 
(Source: Tandon & Puentes 2006) 
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2.3.2.2 Blister Test 

Blister test comprises of a rigid substrate with a hole drilled in the centre and 

then coated with layer of adhesive materials as shown in Figure 2.33. When 

pressure is applied through the hole drilled in the centre of the substrate, a 

blister will be formed. Radius of the formed blister is constant until a critical 

pressure is reached. At this point, radius of the formed blister increases in 

size, thus signifying an adhesive failure along the interfaces (Chang 1994). 

The applied pressure for the blister test can be provided in the form of either 

dry gas (such as dry nitrogen gas) or water. However, the applied pressure in 

the form of water was found to be an effective accelerated ageing method for 

the assessment of the durability of the adhesive and bonded joints and also 

effectiveness of the adhesive materials (Kinloch 1997). Blister test is well 

suited for adhesion test method of thin layer materials of adhesive, coatings 

and paint, especially for the materials, which cannot be readily gripped or if 

successfully gripped may fail cohesively during the test (Kinloch 1997).  

 Figure 2.33 Blister test specimen (Source: Kinloch 1997) 

Rigid Substrate 

Layer of Adhesive Materials 
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In the pavement related areas, blister test has been identified as one of the 

possible approaches for quantitative evaluation of the adhesive bond strength 

of bitumen and aggregates in the presence of water or moisture (Anderson et 

al. 1994; Chang 1994). Based on the study conducted by Chang (1994), the 

modified adhesive blister test shown in Figure 2.34 was found to be the most 

appropriate testing technique and procedure for measuring the adhesive bond 

strength of bitumen and aggregates, either experimentally or analytically. The 

modified adhesive blister test provides a convenient way to study the effect of 

immersion of water or moisture, pH and salt concentration on the adhesive 

bond strength of the asphalt mixtures. The modified adhesive blister test, 

which has been developed by Chang (1994) uses aluminium, Teflon and 

aggregates as substrate materials in order to provide different surface 

characteristics, and also water as a medium for pressure. The modified 

adhesive blister test consists of coatings of bitumen over the flat substrate 

materials with a hole drilled though the substrate to permit the application of 

water pressure to the underside of the coatings. Adhesive bond strength is 

then measured by measuring the force required to displace the bitumen films 

from the surface of the substrate materials. Figure 2.35 shows the typical data 

for the blister test.  
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However, after a series of testing for validation, the modified adhesive blister 

test was found to be very cumbersome and time consuming, and serious 

concern has been raised with respect to the representative nature of the 

substrate materials used in the test. A freshly sawn surface of the substrate 

materials is necessary in order to conduct the test and such surface is not 

representative of the actual aggregates surface used for pavement 

construction. Also, the mode of failure for the blister test was found to be 

Figure 2.35 Typical data for the blister test (Source: Anderson et al. 1994) 

Blister Height (mm) 

Figure 2.34 Modified adhesive blister test specimen (Source: Chang 
1994) 
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cohesive regardless of the types of aggregates, as shown in Table 2.4 

(Anderson et al. 1994). Based on the Table 2.4, a series of tests involving two 

types of aggregates (limestone and Texas chert) and one type of bitumen 

which have been vacuum saturated, followed by immersion in water for 30 

minutes at 60°C (140°F) and then conditioned at either 0°C or 25°C for 18 

hours prior to testing, does not shown any evidence of stripping. In the second 

conditioning procedures (i.e. vacuum saturated, followed by immersion in 

water for 30 minutes at 60°C (140°F), 18 hours of freeze and then conditioned 

at 0°C for 4 hours), adhesive failure was produced. However, the adhesive 

failure occurred for both types of the aggregates; the limestone and the Texas 

chert aggregates. Thus, it can be concluded that there was no significant 

difference in the behaviour of the two types of aggregates. Texas chert 

aggregates are commonly known for the reputation as notorious stripper in the 

presence of water or moisture while limestone is vice versa. Therefore, the 

conclusion has been made that the blister test did not differentiate between 

the two types of aggregates, which have radically different susceptibility to 

water or moisture. As a consequence, the modified adhesive blister test was 

not pursued as a standard testing techniques and procedures for measuring 

the adhesive bond strength of bitumen and aggregates (Anderson et al. 1994). 

Table 2.4 Summary of the results of modified adhesive blister test 
(Source: Anderson et al. 1994)  

Conditioning Aggregates Bitumen Types of Failure 

Unconditioned Limestone Type A Cohesive 

Unconditioned Texas Chert Type A Cohesive 

Conditioning
1
 Texas Chert Type A Cohesive 

Conditioning
1
 Limestone Type A Cohesive 

Conditioning
2
 Texas Chert Type A Adhesive 

Conditioning
2
 Limestone Type A Adhesive 

Notes: Conditioning
1
: Vacuum saturation, 30 minutes immersion at 60°C (140°F), 18 hours condition at 

either 0°C or 25°C; Conditioning
2
: Vacuum saturation, 30 minutes immersion at 60°C (140°F), 18 hours of 

freeze, 4 hours condition at 0°C 
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2.3.2.3 Specially Designed Sliding Plate Viscometer 

Specially designed sliding plate viscometer was built to measure rheologically 

the interaction between aggregates and bitumen and also the contribution of 

the bitumen to the properties of the asphalt mixtures, in order to improve the 

prediction of the performance of the asphalt mixtures (Huang et al. 2005). 

Specially designed sliding plate viscometer is an accelerated test method 

used to measure the physical and rheological properties of bitumen with 

various types of aggregates plates, thus to simulate the real world interaction 

of aggregates and bitumen system. However, the specially designed sliding 

plate viscometer needs further study for further development as an improved 

method in predicting the performance of the asphalt mixtures. Figure 2.36 

shows the specially designed sliding plate viscometer, which utilised a 25 mm 

by 40 mm by 6.5 mm of aggregates plates as substrates. 

 

Figure 2.36 Specially designed sliding plate viscometer (Source: Huang 
2005) 

Specimen of Dimension 25 mm by 40 
mm by 6.5 mm 

Limestone Plate Granite Plate 
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2.3.2.4 Pneumatic Adhesion Tensile Testing Instrument (PATTI) Device 

Pneumatic Adhesion Tensile Testing Instrument (PATTI) device was initially 

developed by the National Institute of Standards and Technology (NIST) to 

evaluate the adhesive bond strength of aggregates and bitumen in the 

presence of water or moisture. The modified version of the PATTI device, 

known as PATTI 110 has been used by Kanitpong and Bahia (2003), 

Kanitpong and Bahia (2004) and Kanitpong and Bahia (2005) in measuring 

the moisture damage mechanisms based on the ASTM D4541 Standard Test 

Method for Pull-off Strength of Coating using Portable Adhesion Testers. The 

main features of the PATTI 110 include a portable pneumatic adhesion tester 

(PATTI 110), a pressure hose, a reaction plate, a piston and a pull stub as 

loading fixture, as shown in Figure 2.37. Figure 2.38 shows the schematic 

drawing of the PATTI 110. 

 

Figure 2.37 Modified Pneumatic Adhesion Tensile Testing Instrument 
(PATTI) device (Source: Kanitpong & Bahia 2003) 
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Based on the studies conducted by Kanitpong and Bahia (2003), Kanitpong 

and Bahia (2004) and Kanitpong and Bahia (2005), the role of bitumen in 

moisture damage resistance of asphalt mixtures could be separated into two 

mechanisms; adhesion and cohesion. In the conducted studies, the 

relationship of adhesion between aggregates and bitumen and cohesion within 

bitumen with respect to the moisture damage were evaluated, and two 

different but interrelated approaches for measuring moisture damage of 

asphalt mixtures have been proposed. A method known as Tackiness Test of 

Asphalt using Dynamic Shear Rheometer (DSR) has been employed to 

measure the cohesion within bitumen and PATTI 110 has been used to 

measure the adhesion between aggregates and bitumen. Details of the 

Tackiness Test of Asphalt using Dynamic Shear Rheometer (DSR) is 

presented in the following section of 2.4.1 Details of the Tackiness Test of 

Asphalt using Dynamic Shear Rheometer (DSR) and Continuation of the 

Study of PATTI 110. 

PATTI 110 has been used to measure the adhesion between aggregates and 

bitumen. Bitumen which has been heated to about 135°C was applied to the 

Figure 2.38 Schematic drawing of PATTI 110 (Source: Kanitpong & Bahia 
2003) 
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pull stub, and then pressed onto the surface of the substrate plate measuring 

an area of 51 mm by 51 mm and thickness of 6.25 mm. Various types of 

aggregates were used as substrate in order to evaluate the effect of the 

porosity on the adhesion. Thickness of the bitumen films is 200 µm (0.200 

mm). Specimens were then subjected to dry conditioning at room temperature 

for 24 hours before being further conditioned as follows; 0 hours (i.e. 

immediately tested) or immersed in distilled water at 25°C for 4, 8 24 or 48 

hours respectively.  

Testing was then conducted at room temperature by transmitting air pressure 

to the piston, which is placed over the pull stub at speed of 65.7 kPa/second. 

Reaction plate is then placed onto the piston and screwed to the pull stub. The 

air pressure induces an airtight seal and forces the gasket of the piston, and 

thus the reaction plate to move upwards. When the air pressure exceeds the 

adhesive bond strength of bitumen and substrate plate (in case for the 

adhesive failure), and/or the cohesive bond strength of bitumen (in case for 

the cohesive failure), the failure of the specimen occurs. Air pressure at the 

failure and the types of failure (adhesive and/or cohesive) were recorded and 

then converted into the pull off tensile strength in unit of kPa.  

Kanitpong and Bahia (2003) concluded that the pull off tensile strength of the 

unconditioned specimens correlates with the cohesion of the bitumen, and the 

pull off tensile strength of the conditioned specimens correlates with both the 

cohesion of the bitumen and the adhesion between aggregates and bitumen, 

as shown in Table 2.5. Time conditioning in water has shown to have a 

significant effect on the types of failure and the pull off tensile strength. The 

pull off tensile strength tends to decrease as the time conditioning in water 

increases. The reason for this is due to the assumption that the longer 
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conditioning time in water, the more ability for water to penetrate into the 

substrate plate of the aggregates, and hence the weaker the adhesive bond 

strength between aggregates and bitumen. The application of glass as 

substrate plate was found to result in negligible effect on additives (i.e. 

antistripping) and time conditioning in water as illustrated in Figure 2.39. 

Based on the data of the test results shown in Table 2.5 and Figure 2.39, 

Kanitpong and Bahia (2003) has concluded that the pull off tensile strength 

was mainly affected by the types of aggregates, additives and time 

conditioning in water. 

Table 2.5 Results of the pull off tensile strength based on time 
conditioning in water (Source: Kanitpong & Bahia 2003) 

Substrates Antistripping 

Pull Off Tensile Strength (kPa) 

Time Conditioning in Water of 25°C (Hours) 

0 24 48 

Sirulian 
No 1067 (C) 638 (A) 592 (A) 

Yes 1203 (C) 901 (A) 820 (A) 

Galena 
No 873 (C) 350 (A) 284 (A) 

Yes 810 (C) 378 (A) 460 (A) 

Platteville 
No 1095 (C) 603 (A) 652 (A) 

Yes 1140 (C) 880 (A) 645 (A) 

Prairie Du 
Chien 

No 1306 (C) 697 (A) 592 (A) 

Yes 1284 (C) 1126 (A) 817 (A) 

Glass 
No 1982 (C)

1 
2488 (A)

1 
2134 (C)

1 

Yes 1571 (C)
1 

1977 (A)
1 

1872 (C)
1 

Notes: C: Cohesive failure; A: Adhesive failure; 
1
Data is considered as outlier.  

1. Thickness of Adhesive Materials: 200 µm  
2. Adhesive Materials: PG 58-28  
3. Conditioning Procedures: Dry conditioning at room temperature for 24 hours before being immersed in 

distilled water at 25°C at specified duration 
4. Testing Conditions: Deformation rate of 65.7 kPa/second at room temperature 
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However, according to Kanitpong and Bahia (2003), the results of the 

adhesive bond strength conducted using the PATTI 110 yielded data with poor 

repeatability due to the uncontrolled variables, especially during specimen 

preparation. The observed variability of approximately 10% was found in the 

test results. Kanitpong and Bahia (2003) suggested that modification in 

controlling the thickness of bitumen films and thermal treatment could improve 

the repeatability. Also, based on Figure 2.39, the results of the pull off tensile 

Figure 2.39 Response of pull off strength with types of aggregates, 
additives and time conditioning in water (Source: Kanitpong & Bahia 
2003) 

Notes: 1. Thickness of adhesive layer of bitumen is 200 µm 
2. Adhesive Materials: PG 58-28  
3. Conditioning Procedures: Dry conditioning at room temperature for 24 hours before being 

immersed in distilled water at 25°C at 0 hours and 48 hours respectively  
4. Testing Conditions: Deformation rate of 65.7 kPa/second at room temperature 



CHAPTER 2                                                                                                                 LITERATURE REVIEW 

 73

strength of various types of aggregates subjected to dry conditioning (i.e. time 

conditioning in water of 0 hours) were found to differ significantly, although all 

specimens have the same adhesive materials (i.e. bitumen) and exhibited the 

same mode of failure (i.e. cohesive). Theoretically, specimens that exhibited 

the cohesive mode of failure should result in approximately the same value of 

the pull off tensile strength, regardless of the substrates. This is due to the fact 

that cohesion and cohesive failure are mainly influenced by viscosity of 

adhesive materials and independent of the types of aggregates. 

The advantages of the PATTI 110 is due to the ability for conditioning the 

specimen in water, application of various types of aggregates as substrates 

and observation of the failure surface in order to define the failure as either 

adhesive or cohesive. Figure 2.40 shows the types of failure (i.e. adhesive and 

cohesive failure), which were determined on the basis of visual observations. 

Based on the results of the adhesive bond strength conducted using the 

PATTI 110, most of the failures for the unconditioned specimens were 

cohesive, while most of the failures for the conditioned specimens were 

adhesive. 

 

Figure 2.40 Types of failure of tested specimens using PATTI 110 
(Source: Kanitpong & Bahia 2003) 

Cohesive Failure Adhesive Failure 
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2.4 A Review of Studies on Tensile Behaviour and Failure 

Characteristics of Asphalt Mixtures 

Based on the literature review (i.e. Kanitpong and Bahia (2003), Kanitpong 

and Bahia (2004), Kanitpong and Bahia (2005) and Tandon and Puentes 

(2006)), pull off (tension) mode was found to has a promising potential for 

development of the laboratory adhesion test method for measuring the 

adhesive bond strength of bitumen (bitumen-filler mastic) and aggregates. In 

this section, previous studies on tensile behaviour and failure characteristics of 

asphalt mixtures subjected to axial tensile load (i.e. pull off (tension) mode), 

such as being conducted by Copeland (2007) and Marek and Herrin (1968) 

are reviewed, in order to provide some guidelines for development of criteria 

and procedures for the proposed adhesion test method. Also, details of the 

Tackiness Test of Asphalt using Dynamic Shear Rheometer (DSR) based on 

the study conducted by Kanitpong and Bahia (2003), Kanitpong and Bahia 

(2004) and Kanitpong and Bahia (2005) are presented. 

2.4.1 Details of the Tackiness Test of Asphalt Using Dynamic Shear 

Rheometer (DSR) and Continuation of the Study of PATTI 110 

Tackiness Test of Asphalt using Dynamic Shear Rheometer (DSR) has been 

developed in order to measure the cohesion within bitumen as schematically 

illustrated in Figure 2.41. Based on Figure 2.41, the measuring system of 

Dynamic Shear Rheometer (DSR) can be moved upward with a defined speed 

of 0.01 mm/second and the applied force acting within bitumen is measured. 

The applied force and the time of separation between bitumen and measuring 

system of Dynamic Shear Rheometer (DSR) are recorded and plotted. The 

stickiness or tack factor, CT of bitumen was then calculated based on the area 
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under the curve of graph of applied force versus time of separation between 

bitumen and measuring system of Dynamic Shear Rheometer (DSR). 

Alternatively, the stickiness or tack factor, CT of bitumen can be calculated 

based on the following equation. 

Equation 2.10   ]κ # ∃Λ>3Κ λ m λ ∋ν8 
where:    
 CT = Stickiness or Tack Factor 
 A = Area of contact of the bitumen and substrates 
 F = Applied force 
 v = Speed of separation 
 t = Time 

 

For the Tackiness Test of Asphalt using Dynamic Shear Rheometer (DSR), 

the temperature significantly affects the stickiness or tack factor, CT of the 

bitumen. As the temperature increases, the stickiness or tack factor, CT 

decreases as shown in Figure 2.42. 

Figure 2.41 Schematic drawing of Tackiness Test of Asphalt using 
Dynamic Shear Rheometer (DSR) (Source: Kanitpong & Bahia 2003) 
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Copeland (2007) in the study to determine the influence of water or moisture 

on the adhesive bond strength of the asphalt mixtures has further evaluated 

the feasibility of the modified version of the Pneumatic Adhesion Tensile 

Testing Instruments (PATTI) device, known as PATTI 110, and tried to 

correlate the test results with the combined experimental-numerical model of 

the function of water or moisture content at the interfaces of the bitumen films 

and aggregates. Based on Copeland (2007), for the unconditioned specimens, 

cohesive failure within bitumen is expected; and for the moisture conditioned 

specimens, the mode of failure is expected to change from cohesive to mixed 

cohesive and adhesive or entirely adhesive. Hence, hypothesis has been 

developed proposing that the presence of water or moisture in the pavement 

structure will result in the reduction of the adhesive bond strength at the 

interfaces of the bitumen films and aggregates. 

In the study, due to the large amount of specimens required, reuse of the 

aggregates plates is necessary. Hence, the remaining layer of the bitumen on 
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Figure 2.42 Effect of temperature on stickiness or tack factor, CT of the 
bitumen (Source: Kanitpong & Bahia 2003) 
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the aggregates plates must be removed or cleaned after each test. It should 

be noted that the reuse of the aggregates plates will result in discrepancy and 

inaccuracy of the test results. However, the discrepancy and inaccuracy of the 

test results can be minimised by selecting the right method for removal of the 

remaining layer of the bitumen without significant change in the properties of 

the aggregates plates.  Based on the study, chemical cleaning procedures 

involving chemical solution such as white spirit solvent has been identified as 

the best method to remove or clean the remaining layer of the bitumen on the 

aggregates plates instead of heating cleaning procedures. Analysis of 

variance (ANOVA) has been used to determine the effect of various methods 

to remove or clean the remaining layer of the bitumen on the aggregates 

plates, and the results are tabulated in Table 2.6.  

Table 2.6 Analysis of variance (ANOVA) (Source: Copeland 2007) 

Adhesive 
Materials 

Soak 
Time 

(Hours) 

ANOVA  
(p-Value > 

F) 

Comparison of Data of Test Results between 
Various Cleaning Procedures 

Baseline & Chemical Baseline  & Heating 

p-Value 
Significant 
Difference 

p-Value 
Significant 
Difference 

AAD 
0 0.0287 

0.2972 NO 
0.04331 YES 

24 0.1899 0.1899 NO 

AAM 
0 0.3275 

0.7252 NO 
0.1708 NO 

24 0.0361 0.0361 YES 

SBS-LG 
6295 

0 0.2237 0.2237 NO - - 

PG70-22 
6298 

0 0.5725 0.5725 NO - - 

Notes: Baseline is the control specimens using new aggregates (i.e. aggregates that are not subjected to 
any cleaning procedures) 

In the previous study conducted by Kanitpong and Bahia (2003), Kanitpong 

and Bahia (2004) and Kanitpong and Bahia (2005), procedures for specimen 

preparation in terms of the controlling of the thickness of bitumen films are 

operator dependent, thus result in uneven thickness of bitumen films. 

Copeland (2007) has modified the procedures for specimen preparation by 
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introducing a device to allow for the compression of the specimens and thus 

enabled a better controlling of the thickness of bitumen films, as shown in 

Figure 2.43. 

 

Based on Copeland (2007), the mode of failure is hypothesised to occur along 

the interfaces of the bitumen films and aggregates (i.e. adhesively) after 

subjecting the specimens to conditioning process for certain period of time. 

However, based on the test results shown in Table 2.7, no definite conclusion 

can be made since the mode of failure was found to be more the cohesive 

rather than the mixed cohesive and adhesive or entirely adhesive. In Table 

2.7, two types of binder (i.e. binder AAD and AAM) were used as adhesive 

materials and diabase was used as substrates. Specimens were submerged 

in water at 25°C for different conditioning time. Types of failure were found to 

occur within bitumen (as denoted by B), between bitumen and ceramic frit (as 

denoted by B-C) or between ceramic frit and loading fixture (as denoted by C-

Z). None of the test results showed that the failure had occurred along the 

Figure 2.43 Device for controlling the thickness of bitumen films 
(Source: Copeland 2007) 
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interfaces of bitumen and aggregates (as denoted by A-B). Figure 2.44 shows 

the components for the tested specimens. 

Figure 2.44 Components for the tested specimens (Source: Copeland 
2007) 
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Table 2.7 Results of the pull off tensile strength based on different 
conditioning time (Source: Copeland 2007) 

Adhesive 
Materials 

Substrates 

Submerged 
in Water at 

25°C 
(Hours) 

Mean Pull 
Off Tensile 
Strength 

(kPa) 

Standard 
Deviation 

Coefficient 
of Variation 

(%) 
Failure 

AAD Diabase 0 

1069 11.90 7.70 

B 

AAD Diabase 0 B 

AAD Diabase 0 B 

AAD Diabase 0 B 

AAD Diabase 24 

386 12.76 22.62 

B 

AAD Diabase 24 B 

AAD Diabase 24 B 

AAD Diabase 24 B 

AAD Diabase 48 

331 2.95 6.10 

B 

AAD Diabase 48 B 

AAD
1 

Diabase 48 C-Z 

AAD Diabase 48 B 

AAD Diabase 72 

359 8.00 15.00 

B 

AAD Diabase 72 B 

AAD Diabase 72 B 

AAD Diabase 72 B 

AAM Diabase 0 

1910 13.23 4.78 

B 

AAM Diabase 0 B 

AAM Diabase 0 B 

AAM Diabase 0 B 

AAM Diabase 16 

1151 28.86 17.25 

B 

AAM
1 Diabase 16 B-C 

AAM Diabase 16 B 

AAM
1 Diabase 16 B-C 

AAM
1 Diabase 24 

1262 
Not 

Available 
Not 

Available 

B-C 

AAM
1 Diabase 24 B-C 

AAM Diabase 24 B 

AAM
1 Diabase 24 B-C 

AAM Diabase 48 

683 36.20 36.44 

B 

AAM Diabase 48 B 

AAM Diabase 48 B 

AAM
1 Diabase 48 C-Z 

AAM Diabase 72 

986 26.47 18.50 

B 

AAM Diabase 72 B 

AAM Diabase 72 B 

AAM Diabase 72 B 

AAM Diabase 99 

917 43.96 33.08 

B 

AAM Diabase 99 B 

AAM Diabase 99 B 

AAM Diabase 99 B 

Notes: 
1
Data is considered as outlier and not included in the calculation; B: Types of failure were found to 

occur within bitumen; B-C: Types of failure were found to occur between bitumen and ceramic frit; C-Z: 
Types of failure were found to occur between ceramic frit and loading fixture. 

1. Thickness of Adhesive Materials: 200 µm  
2. Conditioning Procedures: Dry conditioning at room temperature for 24 hours before being submerged 

in water at 25°C for the specified duration 
3. Testing Conditions: Deformation rate of 65.7 kPa/second at room temperature 
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Hence, further study on the conditioning process to result in the mode of 

failure of mixed cohesive and adhesive or entirely adhesive is suggested. 

Copeland (2007) has also recommended for the evaluation of the properties 

of the aggregates substrates in term of the porosity and interconnected voids. 

Although PATTI 110 has promising potential for measuring the moisture 

damage performance of the asphalt mixtures, the results of the adhesive bond 

strength yielded data with poor repeatability and a conclusion has been made 

that a single test method cannot satisfactorily and accurately determine the 

moisture damage performance. Also, PATTI 110 has limitations in terms of 

the applicability to measure the adhesive bond strength for wide ranges of 

asphalt mixture materials under various testing conditions (deformation rates 

and test temperatures). Test of the PATTI 110 can only be conducted at room 

temperature. Copeland (2007) has identified that deformation rate and test 

temperature are among the variables that would contribute to the types of 

failure (adhesive or cohesive). These were further verified by the study 

conducted by Marek and Herrin (1968) on the behaviour and failure 

characteristics of thin films of bitumen subjected to axial tensile load (i.e. pull 

off (tension) mode). Details of the study conducted by Marek and Herrin 

(1968) are presented in the following section. 

2.4.2 Details of the Study Conducted by Marek and Herrin 

Marek and Herrin (1968) conducted a study on the behaviour and failure 

characteristics of thin films of bitumen subjected to axial tensile load (i.e. pull 

off (tension) mode) via the tensile testing of 1-inch diameter pair of cylindrical 

test blocks as shown in Figure 2.45. In the conducted study, various 

combinations of variables including thickness of adhesive layer of bitumen, 

deformation rate, test temperature and penetration grade of bitumen have 
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been used, in order to enable for the generalisation of conclusions. The 

ranges of the selected variables are listed as follows. 

1. Thickness of adhesive layer of bitumen is between 20 µm (0.020 mm) 

and 600 µm (0.600 mm). 

2. Deformation rate is between 0.005 inch/minute (0.127 mm/minute) and 

1.000 inch/minute (25.400 mm/minute). 

3. Test temperature is between 0°C and 60°C. 

4. Penetration grade of bitumen is between 50 and 217. 

 

Figure 2.45 Apparatus for tensile testing of thin films of bitumen (Source: 
Marek & Herrin 1968) 
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According to Mack (1957) and Wood (1958), the ranges of the selected 

thickness of adhesive layer of bitumen (i.e. 20 µm (0.020 mm) and 600 µm 

(0.600 mm)) fall within the ranges of the average thickness of bitumen 

(bitumen-filler mastic) films in the field compacted mixtures. In the conducted 

study, bitumen was sandwiched between two 1-inch diameter pair of 

cylindrical test blocks, made from either aluminium or lucite as shown in 

Figure 2.46. Pressure was then applied onto the pair of the cylindrical test 

blocks in order to obtain the required uniform thickness of adhesive layer of 

bitumen. Excess bitumen at the edges was removed prior to the testing in 

order to prevent any discrepancy and inaccuracy of the test results. The 

average thickness of adhesive layer of bitumen was calculated based on the 

weight difference methods and volume-density calculations, as shown in the 

Equation 2.11. 

Equation 2.11  γοπθ<νΕρσΕ%πντΘοWΕ3θ8# υγοπθ<νΕρσΕϖοωνΕ%ξρψζωΕ{πν<Ε%πντΘοWΕ3θ8|− υγοπθ<νΕρσΕϖοωνΕ%ξρψζωΕ{πν<ρτνΕ%πντΘοWΕ3θ8| 
 %τξζΕ}οWωπν∼ΕρσΕ%πντΘοWΕ3θ ψΘ[� 8# 3ε�οψπσπψΕ!�,mπν∼ΕρσΕ%πντΘοW8λ υ%τξζΕ}οWωπν∼ΕρσΕγ,νο�Ε3θ ψΘ[� 8| 
ϖ<πψζWοωωΕρσΕ%πντΘοWΕ3ψΘ8
# 3γοπθ<νΕρσΕ%πντΘοWΕ3θ88υ%τξζΕ}οWωπν∼ΕρσΕ%πντΘοWΕ3θ ψΘ[� 8| λ υετ�σ,ψοΕΛ�ο,ΕρσΕϖοωνΕ%ξρψζωΕ3ψΘϑ8| 
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Based on the conducted study, thickness of adhesive layer of bitumen, 

deformation rate, test temperature and penetration grade of bitumen were 

found to have a profound influence on the maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact) and the types of failure 

(adhesive or cohesive). Based on Figure 2.47, the relationship between the 

maximum tensile bond strength (i.e. maximum tensile load per unit area of 

contact) and the thickness of adhesive layer of bitumen on semi logarithmic 

plot have resulted in three main regions. 

1. In the first region where the thickness of adhesive layer of bitumen is 

less than 20 µm (0.020 mm), the maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact) was found to increase 

Figure 2.46 Pair of cylindrical test blocks (Source: Marek & Herrin 1968)  
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with the increasing value of the thickness of adhesive layer of bitumen. 

However, no definite conclusion can be made regarding the relationship 

in the first region due to the limitations in producing thin films of bitumen 

of uniform thickness of less than 20 µm (0.020 mm). Hence the 

relationship between the thickness of adhesive layer of bitumen and the 

maximum tensile bond strength (i.e. maximum tensile load per unit area 

of contact) in the first region were meaningless. 

2. In the second region where the thickness of adhesive layer of bitumen is 

between 20 µm (0.020 mm) and 200 µm (0.200 mm), linear inverse 

relationship has been found which depicts a decrease in the maximum 

tensile bond strength (i.e. maximum tensile load per unit area of contact) 

as the thickness of adhesive layer of bitumen is increased. 

3. In the third region where the thickness of adhesive layer of bitumen is 

more than 200 µm (0.200 mm), a nearly horizontal line which indicates 

an almost constant value of the maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact) as the thickness of 

adhesive layer of bitumen is increased was found. This indicates that, 

under some combinations of the thickness of more than 200 µm (0.200 

mm) and other variables, the adhesive layer of bitumen has almost 

constant and low value of the maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact).  
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Also, based on the Figures 2.48 to 2.50, the value of the maximum tensile 

bond strength (i.e. maximum tensile load per unit area of contact) was found 

to increase with the increasing deformation rate, and decrease with the 

increasing temperature and the increasing value of the penetration grade of 

bitumen, respectively. Based on the results of the study, Marek and Herrin 

(1968) has concluded that the value of the maximum tensile bond strength 

(i.e. maximum tensile load per unit area of contact) was mainly characterised 

by the thickness of adhesive layer of bitumen, deformation rate, test 

temperature and penetration grade of bitumen.   

Region 1 Region 2 Region 3 
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Figure 2.47 Relationship between maximum tensile bond strength and 
thickness of adhesive layer of bitumen (Source: Marek & Herrin 1968) 
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Figure 2.49 Relationship between maximum tensile bond strength and 
test temperature (Source: Marek & Herrin 1968) 
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Figure 2.48 Relationship between maximum tensile bond strength and 
deformation rate (Source: Marek & Herrin 1968) 
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In terms of the aspect ratio of specimens, data of the study conducted by 

Marek and Herrin (1968) was used in order to develop a relationship between 

maximum tensile bond strength and aspect ratio of specimens. Aspect ratio of 

specimens is defined as the ratio of the longest dimension to the shortest 

dimension, which is referred to diameter of the discs and the thickness of 

adhesive layer of bitumen respectively. Based on the definition, aspect ratio of 

specimens can vary in two ways; due to variation of diameter of the discs and 

fixed thickness of adhesive layer of bitumen or due to variation of thickness of 

adhesive layer of bitumen and fixed diameter of the discs. Figure 2.51 shows 

the relationship between maximum tensile bond strength and aspect ratio of 

specimens based on the fixed diameter of the discs (i.e. 1-inch diameter pair 

of cylindrical test blocks). 

 

 

Figure 2.50 Relationship between maximum tensile bond strength and 
penetration grade of bitumen (Source: Marek & Herrin 1968) 
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Based on Figure 2.51, the maximum tensile bond strength was found to 

increase as the value of the aspect ratio of specimens was increased. 

However, the increment of the maximum tensile bond strength can also be 

correlated with the decreasing value of the thickness of adhesive layer of 

bitumen. As has been stated before, the value of the maximum tensile bond 

strength is mainly influenced by the thickness and is expected to decrease 

with the increasing thickness of adhesive layer of bitumen. Based on Harrison 

and Harrison (1972) in the study of adhesion using finite element analysis, 

tensile bond strength was found to be independent of aspect ratio under the 

97,,7;∗.#( +7.6∗&∗7.∋Ε( ∀∋)%+&( ∃∀&∗7( 79( 27∃%( &−∀.( ΦΓ( ∀.6( Η7∗∋∋7.≅∋( ∃∀tio of 

adhesive materials of less than 0.49. Kendall (1971) has proved the negligible 

Figure 2.51 Relationship between maximum tensile bond strength and 
aspect ratio of specimens (Fixed diameter of the discs) (Source: Marek & 
Herrin 1968) 

 

Notes: 

 
1. Diameter of Disc: 1 inch (25.4 mm) 
2. Substrates: Aluminium alloy 
3. Adhesive Materials: Asphalt cement K (Penetration at 25°C is 52) 
4. Conditioning Procedures: Dry conditioning at room temperature for 3 hours prior to testing 
5. Testing Conditions: Deformation rate and test temperature of 25.4 mm/minute and 25°C 

respectively 
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effect of the aspect ratio of specimens based on the following condition; 

aspect ratio of specimens is varied due to the variation of the diameter of discs 

while thickness of adhesive layer of bitumen is remained constant. In the 

conducted study, gelatine of thickness of 4800 µm (4.800 mm), 2000 µm 

(2.000 mm), 1000 µm (1.000 mm) and 400 µm (0.400 mm) were used as 

adhesive materials and Perspex was used as substrates. Figure 2.52 shows 

the plot of the test results. As long as the thickness of adhesive layer of 

bitumen is remained constant, the effect of aspect ratio on the maximum 

tensile bond strength was found to be negligible. 

 

Based on the conducted study, Marek and Herrin (1968) also classified the 

failure characteristics of the thin films of bitumen subjected to axial tensile load 

(i.e. pull off (tension) mode), into three groups, as illustrated in Figure 2.53 and 

Figure 2.52 Relationship between maximum tensile bond strength and 
aspect ratio of specimens (Fixed thickness of adhesive layer of bitumen) 
(Source: Kendall 1971) 

Notes: 

 
1. Substrates: Perspex 
2. Adhesive Materials: Gelatine 
3. Conditioning Procedures: Dry conditioning at room temperature 
4. Testing Conditions: Deformation rate of 0.6 mm/minute at room temperature 

 

Aspect Ratio of Specimens 

M
a
x
im

u
m

 T
e
n

s
il

e
 B

o
n

d
 S

tr
e
n

g
th

 (
k
P

a
) 



CHAPTER 2                                                                                                                 LITERATURE REVIEW 

 91

namely as follows; brittle fracture, intermediate failure and flow failure. Brittle 

fracture, which can be defined as the adhesive mode of failure was 

characterised by complete and instantaneous separation at the maximum 

tensile bond strength (i.e. maximum tensile load per unit area of contact). 

Intermediate failure was characterised by the occurrence of the cobwebbing 

(multiple strings or strands and limited necking of the thin films of bitumen) 

and a gradual drop off in the tensile bond strength after the attainment of the 

maximum (i.e. peak) value of the tensile bond strength. Cobwebbing is a 

common paint films and coatings term used to describe the spider web effect 

caused by the tendency of the premature drying of paint films and coatings to 

forms strings or strands on the substrates. Flow failure was characterised by 

the formation of single string or strand, and large deformation was observed 

as the tensile bond strength was gradually dropped off. Marek and Herrin 

(1968) classified the intermediate and flow failure as the cohesive mode of 

failure. Based on the test results, Marek and Herrin (1968) concluded that the 

types of failure for the thin films of bitumen subjected to axial tensile load (i.e. 

pull off (tension) mode) can generally be classified as cohesive failure rather 

than adhesive failure. In most instances, the occurrence of the failure was 

through the adhesive layer of bitumen with the presence of the remaining 

bitumen on both surfaces of the pair of the cylindrical test blocks. Marek and 

Herrin (1968) also suggested that for the occurrence of the adhesive mode of 

failure, high deformation rate and low test temperature must be utilised. 
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Thin films of bitumen subjected to axial tensile load (i.e. pull off (tension) 

mode), were found to exhibit cavitations regardless of the failure 

characteristics as shown in Figure 2.54. The occurrence of the cavitations has 

been related to the presence of the foreign particles such as dust or mineral 

matter on the surface of the pair of the cylindrical test blocks and also in the 

bitumen, entrapment of air voids during procedures for specimen preparation 

and also roughness of the surface of the pair of the cylindrical test blocks. 

 

Figure 2.54 Cavitations on thin films of bitumen (Source: Marek & Herrin 
1968) 

Figure 2.53 Failure characteristics of thin films of bitumen subjected to 
axial tensile load (Source: Marek & Herrin 1968) 
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2.5 Summary of Literature Review 

In this chapter, asphalt mixtures and moisture damage in asphalt mixtures 

were defined, and two primary modes of failure for moisture damage were 

discussed. Moisture damage is mainly characterised by adhesion between 

bitumen (bitumen-filler mastic) and aggregates and cohesion of bitumen 

(bitumen-filler mastic). However, many studies have concluded that the failure 

for the moisture damage of asphalt mixtures is more the adhesive mode of 

failure rather than the cohesive mode of failure.  

In the context of asphalt mixtures, adhesion can be defined as the amount of 

energy required to break the adhesive bond between bitumen (bitumen-filler 

mastic) and aggregates. Adhesion between bitumen (bitumen-filler mastic) 

and aggregates is considered as one of the main fundamental properties of 

the asphalt mixtures, which can be correlated with the quality, performance 

and serviceability of the flexible pavements. Adhesive failure between bitumen 

(bitumen-filler mastic) and aggregates can be identified via the occurrence of 

stripping in the asphalt mixtures. Four broad theories of adhesion between 

bitumen (bitumen-filler mastic) and aggregates have been discussed.  

Research on the adhesion of the asphalt mixtures is limited and there are no 

established testing techniques and procedures that can be used to quantify 

the adhesive bond strength between bitumen (bitumen-filler mastic) and 

aggregates. Hence, a detailed review of literature on various testing 

techniques and procedures used to measure the adhesive bond strength, 

which can be found in numerous areas of scientific literature and international 

standards were presented. Among the most commonly used testing 
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techniques and procedures are peel test, pull off test, double cantilever beam 

(DCB) test and tapered double cantilever beam (TDCB) test. 

Based on the studies conducted by Copeland (2007), Kanitpong and Bahia 

(2003), Kanitpong and Bahia (2004), Kanitpong and Bahia (2005) and Marek 

and Herrin (1968), mode of failure between bitumen and aggregates subjected 

to axial tensile load (i.e. pull off (tension) mode) was found to be more the 

cohesive rather than the mixed cohesive and adhesive or entirely adhesive. 

This is true for both unconditioned specimens and moisture conditioned 

specimens. Thickness of adhesive layer of bitumen, deformation rate, test 

temperature and penetration grade of bitumen were found to have a profound 

influence on the maximum tensile bond strength (i.e. maximum tensile load 

per unit area of contact) and the types of failure (adhesive or cohesive). Marek 

and Herrin (1968) suggested that for the occurrence of the adhesive mode of 

failure, high deformation rate and low test temperature must be utilised.  
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CHAPTER 3 

RESEARCH METHODOLOGY 

This chapter provides the background on research methodology and 

experimental procedures involved in the study. The whole concept of this 

study was designed in order to develop and establish a laboratory adhesion 

test method for direct measurement of the adhesive bond strength of bitumen 

(bitumen-filler mastic) and aggregates, and thus to quantify the adhesive bond 

strength and failure characteristics of various combinations of asphalt mixture 

materials over wide ranges of testing conditions. Since the adhesion between 

bitumen (bitumen-filler mastic) and aggregates is considered as one of the 

main fundamental properties of the asphalt mixtures and as there is no 

established testing techniques and procedures that can be used to quantify 

the adhesive bond strength between bitumen (bitumen-filler mastic) and 

aggregates, research in this area is crucial and evidently needed. Also, in 

order to determine the effect of various variables and parameters on the test 

results, to propose suitable testing conditions and to validate the reliability and 

efficiency of the proposed adhesion test method, adhesive bond strength and 

failure characteristics of various combinations of asphalt mixture materials 

over wide ranges of testing conditions need to be accessed. 

The general concept of this study is illustrated in Figure 3.1. This study was 

divided into three parts based on the specific objectives outlined in Chapter 1 

and is described in the following sections. 
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Adhesion of Asphalt Mixtures 

Part 1: Selection and Justification of the 

Proposed Adhesion Test Method 

Detailed Review of Literature on 
Various Adhesion Test Methods 

Propose and justify the selection of 
the most suitable and realistic 
approach among the various 

adhesion test methods 

Output: General Concept for the Proposed Adhesion 
Test Method for Measuring the Adhesive Bond 
Strength of Bitumen (Bitumen-filler Mastic) and 

Aggregates 

Selection of Asphalt Mixture 
Materials 

Part 3: Detailed Evaluation and Validation of 

the Proposed Adhesion Test Method 

Output: Validation and Completion of the Proposed 
Adhesion Test Method in Measuring the Adhesive 

Bond Strength of Various Combinations of Asphalt 
Mixture Materials Over Wide Ranges of Testing 

Conditions  

Develop a Draft Protocol as Guiding 
Principles in Conducting the 

Laboratory Adhesion Test Method 

Data Analysis 

Quantify the Adhesive Bond Strength 
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Wide Ranges of Testing Conditions 

Specimen Preparation of Various 
Combinations of Asphalt Mixture 

Materials 

Output: Development and Validation of the 
Established Criteria and Procedures for the Proposed 

Adhesion Test Method in Terms of Test Setup and 
Apparatus, Specimen Preparation, Testing and Data 

Analysis 

Evaluate the uniformity and 
repeatability of the test results 

Standard Procedures to Determine 
the Types of Failure 

Conditioning Procedures  
(Dry and Wet Conditionings) 

Testing 

Data Analysis 

Test Setup and Apparatus Specimen Preparation 

Part 2: Development of Criteria and 
Procedures for the Proposed Adhesion Test 

Method 

 

Figure 3.1 Flow chart for general concept of the study 
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3.1 Part 1: Selection and Justification of the Proposed Adhesion 

Test Method  

In this part, a detailed review of literature on various testing techniques and 

procedures used to measure the adhesive bond strength in numerous areas of 

scientific literature and international standards which has been presented in 

Chapter 2, was assessed in order to select and propose the most suitable and 

realistic approach for development of laboratory adhesion test method for 

measuring the adhesive bond strength of bitumen (bitumen-filler mastic) and 

aggregates. Among the testing techniques and procedures that have been 

taken into consideration are peel test, pull off test, double cantilever beam 

(DCB) test and tapered double cantilever beam (TDCB) test. Since there is no 

established testing techniques and procedures for direct measurement of the 

adhesive bond strength of bitumen (bitumen-filler mastic) and aggregates in 

the pavement related areas, this part is considered as crucial and evidently 

needed. The right selection of the approach is regarded as highly important as 

it will become the key success for this study.  

Justification for the selection of the most suitable and realistic approach was 

presented in order to support the decision making process. Several factors 

such as simplicity, practicality, ease of specimen preparation and cost 

effectiveness of the test setup and apparatus will be taken into account in 

making the selection. Since the proposed testing techniques and procedures 

were considered from the various fields of study, which are mostly related to 

the testing of the adhesive bond strength of coatings of composite materials 

such as plastic, metals and glasses, modifications of the proposed testing 

techniques and procedures were expected, in order to suit the asphalt 

mixtures. Therefore, other factors such as availability of suitable testing 
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equipment in the pavement related areas which is capable to conduct test 

similar to the proposed testing techniques and procedures and require only 

minimum modifications on the existing equipments and parts, and 

compatibility of the proposed testing techniques and procedures with asphalt 

mixtures need to be taken into consideration too. Also, ability to allow for 

various conditioning procedures (dry and wet conditionings) must be included 

as criteria for the selection. At the end of this part, a general concept for the 

proposed adhesion test method will be developed. 

Further details of the proposed adhesion test method, which has been 

selected and considered as the most suitable and realistic approach, and 

justification that has been taken into account for the selection will be 

discussed in Chapter 4. Details of the experimental design for this part are 

illustrated in Figure 3.2. 
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3.2 Part 2: Development of Criteria and Procedures for the Proposed 

Adhesion Test Method 

In this part, a general concept for the proposed adhesion test method from the 

previous part was subjected to evaluation, mainly based on the trial and error 

experimental approach, in order to adapt and thus to establish the criteria and 

procedures for test setup and apparatus, specimen preparation, testing and 

data analysis. Since the proposed adhesion test method was considered from 

the various fields of study, which are mainly related to the testing of the 

adhesive bond strength of coatings of composite materials for aerospace and 

automotive industries, modifications of the proposed adhesion test method 

were expected, in order to suit the asphalt mixtures. However, modifications 

Output: General Concept for the 
Proposed Adhesion Test Method for 

Measuring the Adhesive Bond Strength 
of Bitumen (Bitumen-filler Mastic) and 

Aggregates  

Part 1: Selection and Justification 
of the Proposed Adhesion Test 

Method 

Detailed Review of Literature 
on Various Adhesion Test 

Methods 

Propose and justify the 
selection of the most suitable 

and realistic approach 
among the various adhesion 

test methods 

Performed on Asphalt 
Mixtures 

Performed on Composite 
Materials Other Than Asphalt 

Mixtures 

Figure 3.2 Flow chart for Part 1: Selection and Justification of the 
Proposed Adhesion Test Method 
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should be conducted based on the following basis; development of the 

proposed adhesion test method should be as close as possible to the original 

adaptation of the general concept especially in terms of the fundamental 

approaches and principles, and at the same time being compatible with 

asphalt mixtures and existing testing equipments in the pavement related 

areas. Hence, factors such as availability of suitable testing equipment in the 

pavement related areas, which is capable to conduct test similar to the original 

adaptation of the general concept and require only minimum modifications 

need to be taken into account for the selection. The reasons for the inclusion 

of these factors are made in order to optimally utilise the existing equipments 

and parts without the need to introduce the new one (i.e. equipments and 

parts), and also to allow for the results of the proposed adhesion test method 

to be directly correlated with the existing data from the currently available 

tests. 

This part will focus on four main sections; test setup and apparatus, specimen 

preparation, testing and data analysis. In order to achieve the adhesive mode 

of failure, the procedures for specimen preparation were designed so that the 

thickness of adhesive layer of bitumen is uniform and as thin as possible. The 

initial value of the thickness of bitumen (bitumen-filler mastic) films is 

suggested to be 800 µm (0.800 mm) or less, although based on the results of 

the micromechanics analysis conducted by Lytton et al. (2005), the thickness 

of adhesive layer of bitumen of less than 60 µm (0.060 mm) is required to 

produce the adhesive mode of failure. The initial value of 800 µm (0.800 mm) 

has been set by taking into consideration the nature of bitumen (bitumen-filler 

mastic), inaccuracy of the measurements that will result due to the small value 

of thickness and the procedures involved in the specimen preparation. The 

value of the thickness of bitumen (bitumen-filler mastic) films will be reduced 
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accordingly in order to result in the adhesive mode of failure, and the final 

value will be determined at the end of this part. Hence, the ability of the 

specimen to cater for various thicknesses of the adhesive layer of bitumen 

(bitumen-filler mastic) should be taken into consideration. Although in the 

actual pavement structure the thickness of adhesive layer of bitumen 

(bitumen-filler mastic) coatings the aggregates vary considerably and both 

adhesive and cohesive failure could occur in the asphalt mixtures, this study 

focused only on the adhesive interaction between bitumen (bitumen-filler 

mastic) and aggregates. In this part, conventional 70/100 penetration grade of 

bitumen was used as adhesive materials and substrates were aluminium alloy, 

acts as control substrates. The emphasis on using aggregates as substrates is 

not regarded as highly important until established criteria and procedures for 

the proposed adhesion test method have been developed.  

Development of the test setup and apparatus and testing was conducted 

based on the following considerations; ability of the test setup and apparatus 

to uniformly distribute the applied loads throughout the coated surface of the 

specimen and thus to produce adhesive mode of failure and capability on 

conducting the adhesion test method over wide ranges of testing conditions 

(i.e. deformation rates and test temperatures). Based on the literature review 

and analysis of the past studies, deformation rate and test temperature are 

among the variables that would contribute to the types of failure (adhesive or 

cohesive) (Copeland 2007; Marek & Herrin 1968). Therefore, the proposed 

adhesion test method should be able to measure the adhesive bond strength 

of various combinations of asphalt mixture materials over wide ranges of 

testing conditions (i.e. deformation rates and test temperatures). Also, 

standard procedures to determine the types of failure of the specimen as 

either adhesive or cohesive were established. The simplest and easiest 
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method to differentiate between the adhesive and cohesive failure is via visual 

observation and calculation based on the percentage area of adhesive and 

cohesive failure, which is the most commonly used approach in various 

adhesion test methods.  

In the last section of Part 2: Development of Criteria and Procedures for the 

Proposed Adhesion Test Method, data analysis will be conducted in order to 

determine the uniformity and repeatability of the test results in terms of 

thickness of adhesive layer of bitumen, total percentage area of adhesive 

failure, maximum tensile bond strength and tensile energy required to produce 

failure per unit volume. At the end of this part, established criteria and 

procedures for the proposed adhesion test method in terms of test setup and 

apparatus, specimen preparation, testing and data analysis will be developed. 

Since the development of the criteria and procedures for the proposed 

adhesion test method is mainly based on the trial and error experimental 

approach, the possibility of not meeting the expected requirements in any of 

the four main sections as listed above is high. Therefore, modifications are 

highly expected and may even require for a total change to a new approach 

for the adhesion test method. Details of the experimental design for this part 

are illustrated in Figure 3.3. 
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Figure 3.3 Flow chart for Part 2: Development of Criteria and Procedures 
for the Proposed Adhesion Test Method 
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3.3 Part 3: Detailed Evaluation and Validation of the Proposed 

Adhesion Test Method 

This part is a continuation from the previous part where the established criteria 

and procedures for the proposed adhesion test method in terms of test setup 

and apparatus, specimen preparation, testing and data analysis will be 

subjected to further evaluation in quantifying the test results (i.e. thickness of 

adhesive layer of bitumen, total percentage area of adhesive failure, maximum 

tensile bond strength and tensile energy required to produce failure per unit 

volume) of various combinations of asphalt mixture materials (i.e. bitumen 

(bitumen-filler mastic) and aggregates) over wide ranges of thicknesses of 

adhesive layer of bitumen, aspect ratio of specimens, testing conditions (i.e. 

deformation rates and test temperatures) and conditioning procedures (dry 

and wet conditionings). 

In the previous part, the development of criteria and procedures for the 

proposed adhesion test method was conducted generally without emphasis on 

using various combinations of asphalt mixture materials (i.e. bitumen 

(bitumen-filler mastic) and aggregates) and various conditioning procedures 

(dry and wet conditionings). Therefore, in this part, various combinations of 

asphalt mixture materials (i.e. bitumen (bitumen-filler mastic) and aggregates) 

were used in order to determine the effect of various variables and parameters 

on the test results, to propose suitable testing conditions and to validate the 

reliability and efficiency of the laboratory adhesion test method. In order to 

consider wide ranges of asphalt mixture materials, at least two types of 

aggregates and/or bitumen (bitumen-filler mastic) of distinct properties that will 

reflect the ranges of typically used asphalt mixtures need to be utilised. 

Aluminium alloy (control substrates), granite and two types of limestone were 
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used as substrates, and conventional 70/100 penetration grade of bitumen 

was used as control adhesive materials. Various types of mineral filler (i.e. 

hydrated lime, limestone and gritstone filler) were used in the study in order to 

produce various types of bitumen-filler mastic. Aluminium alloy was selected 

as control !∀#!∃%&∃∋!()∀∋(∃∗(∃+∋(,&−∀∋(∗.(/∗∀012!(3∗)∀−∀!(∗.(approximately 70 

GPa, which is close to the typical value of aggregates and also due to the 

corrosion resistance properties (Harvey 2000). Aggregates (i.e. Dene 

Limestone, Ivonbrook Limestone and Mount Sorrel Granite) were selected due 

to availability and distinct properties in terms of the classification as acidic (i.e. 

hydrophilic) or basic (i.e. hydrophobic). 

Testing of the adhesive bond strength of various combinations of asphalt 

mixture materials (i.e. bitumen (bitumen-filler mastic) and aggregates) was 

conducted over wide ranges of thicknesses of adhesive layer of bitumen, 

aspect ratio of specimens, testing conditions (i.e. deformation rates and test 

temperatures) and conditioning procedures (dry and wet conditionings). Since 

the conditioning procedures are very subjective and there is no rule of thumb 

that can be reliably applied to simulate the conditioning process in the actual 

pavement structure, the following conditioning procedures were used; 

specimens were subjected to dry or wet conditionings at 25°C for 24 hours 

prior to testing. Total conditioning time of 24 hours was found to be the 

optimum time required for the development of the full adhesive bond strength 

between bitumen and aggregates, based on the study conducted in Chapter 5. 

Also, 25°C was selected as the test temperature for the conditioning 

procedures for the purpose of comparative analysis with the previous studies 

of Copeland (2007), Kanitpong and Bahia (2003) and Marek and Herrin 

(1968).  
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The selection of testing conditions (i.e. deformation rates and test 

temperatures) was conducted based on the following assumptions; 

deformation rate should not be too high in order to prevent any discrepancy 

and inaccuracy of the test results, and also should not be too low to result in 

cobwebbing (multiple strings or strands and limited necking of the thin films of 

bitumen), and the selection of test temperatures is suggested to be 

approximately within the ranges of the average pavement temperature (i.e. 

between 10°C and 60°C).  

Results of the study will be subjected to comparative analysis in order to 

determine the effect of various variables and parameters on the test results, to 

propose suitable testing conditions and to validate the reliability and efficiency 

of the proposed adhesion test method. Also, at the end of this part, a draft 

protocol will be developed as guiding principles in conducting the laboratory 

adhesion test method. The final output for this part, which is also the final 

output for the whole study, is the validation and completion of the proposed 

adhesion test method in measuring the adhesive bond strength of various 

combinations of asphalt mixture materials (i.e. bitumen (bitumen-filler mastic) 

and aggregates) over wide ranges of testing conditions. Details of the 

experimental design for this part are illustrated in Figure 3.4. 
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Figure 3.4 Flow chart for Part 3: Detailed Evaluation and Validation of 
the Proposed Adhesion Test Method 
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CHAPTER 4 

PART 1: SELECTION AND JUSTIFICATION OF THE PROPOSED 

ADHESION TEST METHOD 

4.1 General Background 

Various testing techniques and procedures used to measure the adhesive 

bond strength in numerous areas of scientific literature and international 

standards were reviewed in Chapter 2. Among the testing techniques and 

procedures that have been taken into consideration are peel test, pull off test, 

double cantilever beam (DCB) test and tapered double cantilever beam 

(TDCB) test. In this part, out of all the testing techniques and procedures that 

have been reviewed, the most suitable and realistic approach will be selected 

for development of laboratory adhesion test method in measuring the 

adhesive bond strength of bitumen (bitumen-filler mastic) and aggregates. 

Justification for the selection of the most suitable and realistic approach was 

presented at the end of this part, in order to support the decision making 

process. Since there is no established testing techniques and procedures for 

direct measurement of the adhesive bond strength of bitumen (bitumen-filler 

mastic) and aggregates in the pavement related areas, this part is considered 

as crucial and evidently needed. The right selection of the approach is 

regarded as highly important as it will become the key success for this study. 
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4.2 Selection of the Proposed Adhesion Test Method 

Based on the testing techniques and procedures that have been reviewed in 

Chapter 2, the approaches that seem to be suitable and promising for 

development of laboratory adhesion test method for asphalt mixtures were 

summarised in Table 4.1. Blister test was not included since a study 

conducted by Anderson et al. (1994) has shown the complexity and 

ineffectiveness of the blister test.  

Table 4.1 Summary of various adhesion test methods 

Adhesion test 
Methods 

Brief Descriptions Figures 

Peel Test 

! Simple adhesion test method conducted by 
peeling a thin flexible adhesively bonded peel 
arm at a specified angle and deformation rate. 

! Typically used to measure the adhesive bond 
strength of bonded joints and laminates of 
composite materials in aerospace and 
automotive industries. 

! Based upon Elastic-Plastic-Fracture-Mechanics 
(EPFM) approach. 

! Various standards have been developed (differ 
in the way that the load is applied but remain 
the same in the basic principles). 

! Useful for predicting the initial capability of 
adhesive materials. 

! Resulted in complex deformation behaviour of 
the tested specimens (i.e. cannot measure the 
fundamental aspect of adhesion between 
adhesive layer and substrates, and cannot 
directly assess the cohesive strength of 
adhesive materials). 

! Results are dependent on various factors such 
as peel angle, thickness and mechanical 
properties of peel arm, deformation rate and test 
temperature. 

! Results usually reflect the stress and strain of 
specimens failing under conditions of extensive 
yielding. 

! Include a large degree of plastic deformation of 
peel arm. 

 

 

 
 

 

 

 

Fixed Arm 

T Peel 
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Table 4.1 Summary of various adhesion test methods (continued) 

Adhesion test 
Methods 

Brief Descriptions Figures 

Pull Off Test 

! Conducted by measuring the tensile stress 
required to detach or fracture the coatings of 
adhesive materials in direction perpendicular to 
substrates. 

! Typically used to measure the mechanical 
tensile strength of paint films, varnishes, mortars 
and concretes. 

! Various testing techniques and procedures have 
been developed. 

! Useful in comparing properties and providing 
relative ratings of different types of adhesive 
materials. 

! Can be applied using wide ranges of substrates 
(i.e. metals, plastics, woods and aggregates). 

! Results are influenced by the procedures for 
specimen preparation, deformation rate and test 
temperature. 

! Possible problems are due to unevenly 
distributed tensile stress throughout the coated 
surfaces. 

 

 
 

Double 
Cantilever 

Beam (DCB) 
Test 

! Conducted by pulling apart two beams of 
identical substrates with layer of adhesive 
materials in between, at certain deformation 
rate. 

! A crack is initiated first by inserting a wedge into 
the adhesive materials (i.e. presence of flaws). 

! Typically used to measure the fracture 
resistance of adhesive and bonded joints of a 
thin adhesively bonded fibre composite 
materials under mode I tensile loading 
conditions. 

! Based upon Linear-Elastic-Fracture-Mechanics 
(LEFM) approach. 

! Results need to be analysed using several 
different approaches such as Corrected Beam 
Theory (CBT), Experimental Compliance 
Method (ECM) and ASTM Method. 

 
 
 
 

 
 

Tapered 
Double 

Cantilever 
Beam (TDCB) 

Test 

! TDCB test is similar to the DCB test in terms of 
basic principles and procedures for specimen 
preparation, except the two beams of identical 
substrates are tapered away from the point 
where the load is applied. 

! Results are independent of crack length values. 

! Useful for measuring tough adhesive materials 
without the occurrence of plastic deformation of 
the arms. 

! Can be used to determine the rate of crack 
growth under various cyclic loading and 
environmental conditions. 

! Based upon Linear-Elastic-Fracture-Mechanics 
(LEFM) approach. 

! Relatively complex and expensive in terms of 
specimen preparation. 
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Based on the summarised data in Table 4.1 and considerations of the factors 

such as ease of specimen preparation, cost effectiveness of test setup and 

apparatus, availability of suitable testing equipment and compatibility with 

asphalt mixtures, adhesion test method based on the pull off (tension) mode 

was found to be the most suitable and realistic approach for development of 

laboratory adhesion test method for asphalt mixtures. 

4.3 Justification for the Selection of the Proposed Adhesion Test 

Method 

Adhesion test method based on the pull off (tension) mode presents a simple, 

practical and reliable approach in determining the adhesive bond strength of 

bitumen (bitumen-filler mastic) and aggregates, especially in terms of the 

procedures for specimen preparation and testing. Also, the adhesion test 

method based on the pull off (tension) mode can be applied using wide ranges 

of substrates including metals, plastics, woods, concretes and aggregates. 

Hence, the application of the non aggregates materials as substrates can be 

applied during the preliminary study, before being replaced by aggregates 

once the established criteria and procedures for the proposed adhesion test 

method have been developed. The reason for this is due to the simplicity and 

cost effectiveness of the non aggregates materials compared to the 

aggregates. 

Availability of suitable testing equipment in pavement related areas such as 

INSTRON servo hydraulic frame and Ductilometer testing apparatus, which 

are capable of applying loads in tension and compression, and also capable of 

conducting tests over wide ranges of deformation rates and test temperatures 

is also one of the reasons for the selection of the pull off (tension) mode. 
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INSTRON servo hydraulic frame has been used before as standard testing 

equipment for measuring the adhesive bond strength of multi layer specimens 

of asphalt mixtures, as published in the in-house standard of LOP 9.28 Tensile 

Bond Testing (TBT) Laboratory Operations Procedures-Test Methods/Testing 

(NTEC 2007) (Appendix A). However, the measured adhesive bond strength 

is only based on the interaction between multi layer specimen, rather than the 

individual components of the asphalt mixture materials (i.e. bitumen (bitumen-

filler mastic) and aggregates).  

Ductilometer testing apparatus is generally used to measure the tensile 

properties of bitumen in a temperature controlled water bath. The following 

testing conditions are available for the Ductilometer testing apparatus. 

1. Ranges of deformation rates are 2.5 mm/minute and 140 mm/minute. 

2. Ranges of test temperatures of the temperature controlled water bath 

are -10°C and 60°C. 

3. Ranges of tensile load that can be recorded are 1 N and 300 N with an 

accuracy of ± 0.1 N. 

Figures 4.1 and 4.2 show the INSTRON servo hydraulic frame and 

Ductilometer testing apparatus respectively. 
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Pull off (tension) mode has been selected by Kanitpong and Bahia (2003) and 

Marek and Herrin (1968) as the preferred mode in measuring the adhesive 

bond strength of asphalt mixtures, and has been described in detail in Chapter 

2. Based on Kanitpong and Bahia (2003), the advantages of using pull off 

(tension) mode are due to the ability to condition the specimens in water and 

Figure 4.2 Ductilometer testing apparatus 

 

Figure 4.1 INSTRON servo hydraulic frame 
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applications of various types of aggregates as substrates. However, the 

developed adhesion test methods of Kanitpong and Bahia (2003) and Marek 

and Herrin (1968) are not yet established due to poor repeatability of the test 

results and limitations in terms of the applicability to measure the adhesive 

bond strength of wide ranges of asphalt mixture materials under various 

testing conditions. Study conducted by Kanitpong and Bahia (2003) is still 

being carried out.  

Based on Harvey (2000), combinations of traffic loads, which create shear 

stress on the pavement surface, and pavement cracks were found to result in 

mode I tensile loading conditions, as illustrated in Figure 4.3. Also, by 

considering two aggregates coated with thin films of bitumen and adhered to 

each other as shown in Figure 4.4 (a), the bond between bitumen and 

aggregates can thus be idealised as a butt joint (Figure 4.4 (b)). Failure for the 

bonded butt joint can occur adhesively between bitumen and aggregates, 

cohesively within bitumen, or mixed of adhesive and cohesive. The adhesive 

bond strength measured based on the pull off (tension) mode will be 

representative of the maximum tensile load that the bonded bitumen and 

aggregates can sustain until failure or fracture occurs.  
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4.4 Conclusions 

Based on the summarised data in Table 4.1 and the aforementioned 

justifications, the pull off (tension) mode has been identified and selected as 

Figure 4.4 Idealised butt joint of bitumen and aggregates (Source: 
Copeland 2007) 

Aggregate

Aggregate

Bitumen 

Figure 4.4 (a) Figure 4.4 (b) 

Figure 4.3 Mode I tensile loading conditions due to combinations of 
traffic loads and pavement cracks   
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the most suitable and realistic approach for the development of laboratory 

adhesion test method in measuring the adhesive bond strength of bitumen 

(bitumen-filler mastic) and aggregates. Pull off (tension) mode seems to be the 

best approach to describe the adhesive bond strength and failure 

characteristic of the asphalt mixtures. Although there were adhesion test 

methods based on the pull off (tension) mode that have been developed by 

Kanitpong and Bahia (2003) and Marek and Herrin (1968), the development of 

the proposed adhesion test method in this study will start from scratch, rather 

than continuing the work that had been done. One of the reasons is due to the 

in-house testing equipment of Kanitpong and Bahia (2003) and Marek and 

Herrin (1968) that are not widely available. 

In the next part, the general concept based on the pull off (tension) mode will 

be subjected to evaluation, mainly based on the trial and error experimental 

approach. Development of criteria and procedures for the proposed adhesion 

test method will be conducted based on the consideration of both INSTRON 

servo hydraulic frame and Ductilometer testing apparatus, and the most 

suitable and practical testing equipment will be selected upon completion of 

the next part. 
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CHAPTER 5 

PART 2: DEVELOPMENT OF CRITERIA AND PROCEDURES FOR THE 

PROPOSED ADHESION TEST METHOD 

5.1 General Background  

In this part, a general concept for the proposed adhesion test method based 

on the pull off (tension) mode, which has been identified as the most suitable 

and realistic approach in the previous part was subjected to evaluation, mainly 

based on the trial and error experimental approach. The main objective of this 

part was to establish the criteria and procedures for the proposed adhesion 

test method in terms of test setup and apparatus, specimen preparation, 

testing and data analysis, and then to evaluate the uniformity and repeatability 

of the test results in terms of thickness of adhesive layer of bitumen, total 

percentage area of adhesive failure, maximum tensile bond strength and 

tensile energy required to produce failure per unit volume, in order to validate 

the established criteria and procedures. Since there is no established 

adhesion test method based on the pull off (tension) mode for asphalt 

mixtures and the development of the criteria and procedures is mainly based 

on the trial and error experimental approach, modifications are highly 

expected. 

Based on the literature review and analysis of the past studies, there are 

various testing techniques and procedures that can be applied to conduct the 

adhesion test method based on the pull off (tension) mode, as have been 

described by British Standard Institution (1999), British Standard Institution 

(2003), Copeland (2007), DFD® Instruments (n.d.), Kanitpong and Bahia 
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(2003), Kanitpong and Bahia (2004), Kanitpong and Bahia (2005), Kendall 

(1971) and Marek and Herrin (1968). In this part, the INSTRON servo 

hydraulic frame and Ductilometer testing apparatus have been selected as 

possible testing equipments based on the consideration of the following 

factors; simplicity, practicality, availability, compatibility with asphalt mixtures 

and ability to conduct the adhesion test method based on the pull off (tension) 

mode over wide ranges of deformation rates and test temperatures. 

Throughout this part, development of criteria and procedures for the proposed 

adhesion test method was conducted based on the consideration of both the 

INSTRON servo hydraulic frame and Ductilometer testing apparatus, and the 

most suitable and practical testing equipment will be selected upon the 

completion of this part. Details of the INSTRON servo hydraulic frame and 

Ductilometer testing apparatus were given in the Chapter 4.  

In order to simplify the analysis until the established criteria and procedures 

have been developed, the following variables and parameters were fixed 

throughout this part. 

1. Conventional 70/100 penetration grade of bitumen was used as 

adhesive material. 

2. Aluminium alloy was used as control substrates. 

3. Specimens were subjected to dry conditioning for 24 hours prior to 

testing. 

In this part, both of the INSTRON servo hydraulic frame and Ductilometer 

testing apparatus were subjected to preliminary and subsequent study. 
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Preliminary study was conducted based on the trial and error experimental 

approach in order to achieve a general overview on the development of 

criteria and procedures for the proposed adhesion test method, by taking 

several possible assumptions into consideration. The emphasis of the 

preliminary study is focused on the uniformity and repeatability of the test 

results. The thickness of adhesive layer of bitumen of 800 µm (0.800 mm) or 

less has been set for the preliminary study.  

Results of the preliminary study were then used as a point of reference in the 

subsequent study in order to finalise the value of the thickness of adhesive 

layer of bitumen that will result in the adhesive mode of failure. Also, adhesion 

test method was conducted over wide ranges of testing conditions (i.e. 

deformation rates and test temperatures) in order to generally observe the 

effect on the test results. At the end of this part, the selection of the most 

suitable and practical testing equipment between the INSTRON servo 

hydraulic frame and Ductilometer testing apparatus was made before 

progressing into the next part. 

5.2 Preliminary Study Using INSTRON Servo Hydraulic Frame 

This section focuses on the initial development of criteria and procedures for 

the proposed adhesion test method based on the INSTRON servo hydraulic 

frame. Laboratory work was divided into two parts, which focused on 

specimen preparation and testing. However, design and fabrication of suitable 

moulds and testing rig (i.e. test setup and apparatus) were required in the first 

place, in order to suit the INSTRON servo hydraulic frame. At the end of this 

part, data analysis was conducted in order to evaluate the uniformity and 

repeatability of the test results. 
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5.2.1 Test Setup and Apparatus 

Pair of aluminium alloy plates measuring an area of 100 mm by 100 mm with 

thickness of 16 mm for each plate as shown in Figure 5.1, was used as control 

substrates. Each pair of plates was labelled in order to provide consistency in 

pairing and thus accuracy in determining the uniformity and repeatability of the 

test results. In order to determine the thickness of adhesive layer of bitumen, 

the combined thickness of the top and bottom of each pair of plates was 

measured and recorded. Prior to the specimen preparation, surface of the pair 

of plates needs to be cleaned in order to ensure the cleanliness and thus full 

adhesive bond strength between adhesive layer of bitumen and substrates. 

Chemical solution such as white spirit solvent can be used to clean the 

surface of the pair of plates. 

 

Design and fabrication of the testing rig was suggested to be rigid in order to 

ensure equal axial tensile load distribution onto the specimens and thus to 

result in failure of the tested specimens based on the pull off (tension) mode 

only (i.e. to exclude the effect of peel and shear mode). The rigid testing rig 

consisted of two parts; top plate with two vertical hollow rods and base plate 

Top Plate Bottom Plate 

Pair of Plates C 

Pair of Plates A 
Pair of Plates B 

Figure 5.1 Pair of aluminium alloy plates 
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with two vertical solid rods, which can be slide into each other as shown in 

Figure 5.2. The arrangement of the rigid testing rig will thus ensure equal axial 

tensile load distribution onto the specimens by preventing any lateral 

movement of either the tested specimens or the top and base plate of the rigid 

testing rig. Also, in order to ensure the evenly distributed axial tensile load, 

universal joint attachment has been used to attach the rigid testing rig to the 

upper part of the INSTRON servo hydraulic frame and thus to transfer the load 

in perpendicular direction onto the specimens. Carver clamps have been used 

to secure the rigid testing rig to the lower part of the INSTRON servo hydraulic 

frame. Two Linear Variable Differential Transducer (LVDT) have been used to 

measure the vertical pull off displacement of the specimens. The captured 

data of the vertical pull off displacement and tensile load was analysed via the 

built-in software of the INSTRON servo hydraulic frame. The test setup and 

apparatus using the rigid testing rig is shown in Figure 5.3. 

 
Figure 5.2 Rigid testing rig 
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5.2.2 Specimen Preparation  

Procedures for specimen preparation were designed with the emphasis on the 

uniformity and repeatability of the thickness of adhesive layer of bitumen. In 

this preliminary study, the thickness of adhesive layer of bitumen has been set 

to 800 µm (0.800 mm). In order to achieve the required thickness of adhesive 

layer of bitumen, approach using volume-density calculations was suggested 

in order to determine the amount of bitumen required for specimen 

preparation, as shown in Equation 5.1. However, after several trials of 

specimen preparation, this approach was found to be tedious, not practical 

and time consuming. The amount of the bitumen required needs to be 

carefully poured and weighed, and thus allows for the temperature of the 

bitumen to drop drastically to room temperature. Also, by pouring and 

measuring the correct amount of bitumen, there is no guarantee that fully 

coated area of contact between bitumen and substrates can be achieved. 

Figure 5.3 Test setup and apparatus  

UNIVERSAL JOINT ATTACHMENT 
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Equation 5.1  

!∀#∃%&∋()∗+,%−.%!∗+∀/∋(%01 2/34 5
6 078∋2∗.∗2%9:;<∗+,%−.%!∗+∀/∋(5
= >!∀#∃%&∋()∗+,%−.%?;+∋:%01 2/34 5≅ 

?∋∗1Α+%−.%!∗+∀/∋(%015
6 >!∀#∃%&∋()∗+,%−.%!∗+∀/∋(%01 2/34 5≅
= Β>Χ:∋;%−.%D−(+;2+%02/Ε5≅
= >Φ∋Γ∀∗:∋Η%ΙΑ∗2∃(∋))%−.%!∗+∀/∋(%02/5≅ϑ 

Therefore, it is suggested that the bitumen be poured until fully coated surface 

of the bottom plate is achieved, followed by the placement of the top plate, 

and the required thickness of adhesive layer of bitumen is then achieved via 

compression. Hence, a method to limit the downward vertical movement of the 

top plate up to the required thickness of adhesive layer of bitumen is required. 

Youtcheff and Aurilio (1997) had suggested that glass beads be used to 

control the thickness of adhesive layer of bitumen in the study of the 

evaluation and modelling of pneumatic adhesion test. However, in the follow-

up study conducted by Kanitpong and Bahia (2003) on the same pneumatic 

adhesion test which is later known as PATTI 110, two pieces of metal blocks 

have been used to control the thickness of adhesive layer of bitumen, as 

shown in Figure 5.4.  

 

Figure 5.4 Metal blocks for controlling thickness of adhesive layer of 
bitumen (Source: Kanitpong & Bahia 2003) 

Pull Stub 

Metal Blocks 

Asphalt 
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Based on the considerations of the factors such as simplicity, practicality and 

ease of specimen preparation, steel balls have been suggested to limit the 

downward vertical movement of the top plate. Steel balls of approximately 

0.794 mm (1/32 inch) diameter have been selected to provide thickness of 

adhesive layer of bitumen of 800 µm (0.800 mm). Selection of the 800 µm 

(0.800 mm) as the required thickness was made based on the accuracy of 

micrometer that can measure up to 10 µm (0.010 mm) only. 

Several methods have been suggested and implemented in order to place the 

steel balls on the bottom plate, which includes welding of the steel balls, 

distributing the steel balls randomly prior to pouring of the bitumen and 

attaching the steel balls either by glue or tape. The later method of attaching 

the steel balls has been selected due to the simplicity, consistency and 

flexibility. A set of four steel balls is required to be positioned at approximately 

20 mm from each corner of the bottom plate, as illustrated in Figure 5.5. 

Double-sided tape has been used to attach the steel balls onto the bottom 

plate. In case of any detachment of the steel balls from the double-sided tape 

despite careful measures that have been taken, a distance of 20 mm from 

each corner is assumed to be sufficient to keep the steel balls in between the 

pair of plates. Also, by positioning the steel balls at fixed positions, 

consistency and accuracy for comparative analysis between specimens can 

be achieved. The effect of the presence of the steel balls and double-sided 

tape in the adhesive layer of bitumen was found to be minimal based on an 

unreported X-ray analysis of the position of the steel balls and the data of test 

results, and can be neglected since the proportion of the occupied area is 

small. 



CHAPTER 5                                                  PART 2: DEVELOPMENT OF CRITERIA AND PROCEDURES  

 

 125

 

Square mould of approximately 105 mm by 105 mm with height of 30 mm was 

used to confine the pair of plates during the specimen preparation and thus 

prevent any lateral movement between the top and bottom plates (Figure 5.6). 

Grease needs to be applied on the inner surface of the mould in order to 

prevent sticking between the mould and the pair of plates.  

 

In order to achieve the required thickness of adhesive layer of bitumen and 

also the full adhesive bond strength between adhesive layer of bitumen and 

substrates, the pair of plates need to be compressed after bitumen has been 

poured. Several methods have been suggested which includes using hand 

Figure 5.6 Square mould to confine the pair of plates 

Figure 5.5 Set of four steel balls positioned at 20 mm from each corner  

 20 mm           

 20 mm                    60 mm                  20 mm 
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pump compressor and the INSTRON servo hydraulic frame. By taking into 

consideration the factors such as simplicity and practicality, hand pump 

compressor was found to be the most effective and less time consuming 

method. Although the downward vertical movement of the top plate has been 

limited due to the presence of the steel balls and thus maximum amount of 

load and total time required for the compression can be applied, there should 

be standard procedures for the compression in order to prevent any excessive 

loading which can result in the steel balls to be pushed out from the 

specimens or in the worse case, break. Standard procedures for the 

compression were suggested as follows; load of 6000 psi (41.37 MPa) is 

applied for 5 minutes before the thickness is measured using micrometer to 

ensure the required thickness of adhesive layer of bitumen of 800 µm (0.800 

mm) has been achieved. If the required thickness of adhesive layer of bitumen 

is not achieved, specimen is subjected to another compression of 6000 psi 

(41.37 MPa) for 1 minute before being measured, and this is continued until 

the required thickness of adhesive layer of bitumen is achieved. A tolerance of 

±50 µm (±0.050 mm) is allowed in the measurement. It is suggested that the 

compression can be applied up to a maximum number of four times. As the 

temperature of the adhesive layer of bitumen drops over time, there is an 

increased resistance to further compression. Further compression beyond this 

point is wasteful and can even be detrimental to the adhesive layer of bitumen 

and also to the steel balls, in some cases. Also, in order to ensure the evenly 

distributed load from the hand pump compressor, a steel ball has been used 

to transfer the load in a direction perpendicular to the specimen, as shown in 

Figure 5.7. The compressed pair of plates that have achieved the required 

thickness of adhesive layer of bitumen were then subjected to conditioning 

procedures prior to testing.  
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5.2.2.1 Standard Procedures for Specimen Preparation based on the 

INSTRON Servo Hydraulic Frame  

The whole procedure for the specimen preparation can be summarised as 

follows, and illustrated in Figure 5.8. 

1. Surface of the pair of plates is cleaned by hand with chemical solution 

(i.e. white spirit solvent) in order to ensure the cleanliness, and then 

followed by acetone (ethyl acetate) in order to remove the remaining 

chemical solution of the white spirit solvent. (Note: Minimum rubbing 

should be applied to the surface in order to ensure no significant change 

in the properties of the surface). 

2. Pair of plates is heated to approximately 80°C for at least 30 minutes in 

order to ensure no significant drop of temperature of bitumen during the 

specimen preparation. 

Steel Ball 

Figure 5.7 Hand pump compressor and a steel ball 
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3. A set of four steel balls of approximately 0.794 mm (1/32 inch) diameter 

is positioned at approximately 20 mm from each corner of the bottom 

plate using double-sided tape. 

4. Bottom plate is positioned into the square mould of approximately 105 

mm by 105 mm with height of 30 mm. Grease should be applied on the 

inner surface of the square mould before being introduced with the 

bottom plate.  

5. Bitumen which has been heated to approximately 160°C for at least two 

hours is then poured onto the bottom plate until fully coated surface is 

achieved. 

6. Top plate is then loaded onto the bottom plate, which has just been 

covered with the bitumen. 

7. The confined pair of plates is then subjected to compression of load of 

6000 psi (41.37 MPa) for 5 minutes via hand pump compressor. 

8. The confined pair of plates is measured using micrometer to ensure the 

required thickness of adhesive layer of bitumen has been achieved. A 

tolerance of ±50 µm (±0.050 mm) has been allowed in the 

measurement. 

9. If the required thickness of adhesive layer of bitumen is not achieved, 

the confined pair of plates is subjected to another compression of 6000 

psi (41.37 MPa) for 1 minute before being measured, and this is 

continued until the required thickness of adhesive layer of bitumen is 
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achieved. It is suggested that the compression can be applied up to a 

maximum number of four times. 

10. The confined pair of plates is removed from the square mould. Any 

excess bitumen at the edges needs to be removed before the pair of 

plates being introduced back into the square mould for conditioning 

procedures prior to testing. 

 

Figure 5.8 Procedures for specimen preparation for preliminary study 
using INSTRON servo hydraulic frame  

1. Surface of the pair of plates 
is cleaned by hand with 

chemical solution 

2. A set of four steel balls of 
0.794 mm (1/32 inch) diameter 

is positioned using double-
sided tape 

3. Square mould of 105 mm by 
105 mm with height of 30 mm 
is used to confine the pair of 

plates 

4. Bitumen is poured onto the 
bottom plate and the top plate 

is then loaded 

5. Confined pair of plates is 
subjected to compression via 

hand pump compressor 

6. Excess bitumen at the 
edges is removed before the 

pair of plates being 
introduced back into the 

square mould for conditioning 

procedures prior to testing 
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5.2.2.2 Conditioning Procedures for Preliminary Study Using INSTRON 

Servo Hydraulic Frame 

Throughout this study, specimens were subjected to dry conditioning at 25°C 

for 24 hours prior to testing. Total conditioning time of 24 hours was found to 

be the optimum time required for the development of the full adhesive bond 

strength between adhesive layer of bitumen and substrates of aluminium alloy 

plates, based on the test results presented in Table 5.1 and also tabulated in 

Figure 5.9. In Table 5.1 and Figure 5.9, the adhesive bond strength was 

represented by the value of the maximum tensile bond strength. The following 

assumptions were made in determining the optimum time required for the 

development of the full adhesive bond strength.  

Due to the application of non-porous material as substrates, and also due to 

the curing process of bitumen, adhesive bond strength is expected to increase 

with the increasing total conditioning time. This increase is expected to taper 

off once the completion of the curing process of bitumen has been achieved. 

Beyond this point, the adhesive bond strength is expected to reach steady 

state conditions, which can be related to the development of the full adhesive 

bond strength between adhesive layer of bitumen and substrates. However, in 

the application of aggregates as substrates, which are porous materials, and 

also in the presence of water or moisture in the conditioning procedures (i.e. 

wet conditioning), due to the curing process of bitumen, adhesive bond 

strength is expected to increase with the increasing total conditioning time. 

However, due to the effect of water or moisture, the increasing value of the 

adhesive bond strength is expected to taper off and thus experienced a 

decrease. The longer the total conditioning time, the more decrease of 

adhesive bond strength could be expected. 
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Table 5.1 Results of conditioning procedures for preliminary study using 
INSTRON servo hydraulic frame  

Deformation Rate 
(mm/minute) 

Test Temperature 
(°C) 

Conditioning 
Time at 25°C 

Prior to Testing 
(hours) 

Maximum 
Tensile Load 

(kN) 

Maximum 
Tensile Bond 

Strength (kPa) 

20 
(0.333 mm/s) 

25 

6 

3.60 360 

3.51 350 

4.09 410 

4.34 430 

3.96 400 

3.72 370 

4.00 400 

3.98 400 

4.10 410 

4.21 420 

12 

5.81 580 

6.08 610 

6.22 620 

7.04 700 

6.71 670 

5.92 590 

5.80 580 

6.11 610 

6.73 670 

6.94 690 

24 

8.01 800 

8.61 860 

8.19 820 

9.56 960 

9.99 1000 

8.72 870 

8.13 810 

7.32 730 

7.98 800 

8.60 860 

48 

7.61 760 

8.13 810 

8.02 800 

7.82 780 

8.81 880 

8.02 800 

7.77 780 

7.91 790 

8.16 820 

8.43 840 



CHAPTER 5                                                  PART 2: DEVELOPMENT OF CRITERIA AND PROCEDURES  

 

 132

 

Based on the results shown in Table 5.1 and Figure 5.9, the value of the 

maximum tensile bond strength (i.e. maximum tensile load per unit area of 

contact) was found to increase as the total conditioning time was increased. 

However, as expected, this increase tapered off when reaching the total 

conditioning time of 24 hours and reaches steady state conditions which can 

be related to the development of the full adhesive bond strength. Hence, total 

conditioning time of 24 hours has been selected as the standard conditioning 

procedures for the preliminary study using INSTRON servo hydraulic frame 

based on non-aggregates and non-porous material (i.e. aluminium alloy) as 

substrates.  

This is also supported by the study conducted by Copeland (2007). Based on 

the study, the optimum time required for the conditioning procedures is 

suggested to be greater than 8 hours but less than 24 hours. Discrepancy and 

Figure 5.9 Results of conditioning procedures for preliminary study 
using INSTRON servo hydraulic frame 
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inaccuracy of the test results especially in terms of the maximum tensile bond 

strength were found to be high as the total conditioning time exceeds 24 

hours. According to Copeland (2007), total conditioning time of more than 24 

hours is considered as too severe. Hence, total conditioning time of 24 hours 

has been concluded as the standard conditioning procedures throughout the 

study for both dry and wet conditionings, regardless of the substrates, and the 

temperature for the conditioning procedures was dependent on the test 

temperature. 

5.2.3 Testing Using INSTRON Servo Hydraulic Frame 

A total of 60 specimens was tested at a fixed deformation rate and test 

temperature of 20 mm/minute and 25°C respectively, in order to evaluate the 

uniformity and repeatability of the test results. Data of the test results in terms 

of thickness of adhesive layer of bitumen and total percentage area of 

adhesive failure, and also the calculated maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact) and tensile energy required to 

produce failure per unit volume was analysed and presented in the next 

section. Once the data analysis of the uniformity and repeatability of the test 

results has been completed, further evaluation was undertaken in the 

subsequent study. 

5.2.4 Data Analysis of Preliminary Study Using INSTRON Servo 

Hydraulic Frame 

In this section, data analysis was conducted in order to evaluate the uniformity 

and repeatability of the test results in terms of thickness of adhesive layer of 

bitumen, total percentage area of adhesive failure, maximum tensile bond 
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strength (i.e. maximum tensile load per unit area of contact) and tensile 

energy required to produce failure per unit volume. The general procedures for 

analysis basically consist of performing descriptive statistics to determine the 

average, standard deviation and coefficient of variation (COV). Microsoft Excel 

and CurveExpert 1.4 were used for performing the statistical analysis and 

calculating the area under the curve of the graph of tensile load versus pull off 

displacement, which represents the tensile energy required to produce failure, 

respectively. 

Coefficient of variation was used to evaluate and compare the variation 

between data sets and calculated as in Equation 5.2. A value for indicating too 

much variation seems to be subject dependent. Based on Math Central (n.d.), 

25% or less is acceptable for the cut-off value of coefficient of variation. Since 

there is no exact cut-off value, a predefined cut-off threshold value of 7% was 

used in this study to control the consistency level of the data sets. Based on 

the literature found in the pavement related areas, which had used the 

coefficient of variation as part of the data analysis, the selection of 7% as cut-

off value seems to be reasonable (Kandhal 1989; Wu & Hossain 2003; Zhang 

2005). 

Equation 5.2  

ΚΛΜΝΟΠΘΠΜΡΣ%ΛΝ%ΤΥςΠΥΣΠΛΡ%0ΚWΤ56
)
ΞΨ
= Ζ[[∴ 

where:    
  s = Standard deviation  
 %Ξ]  = Average  

 

Table 5.2 shows the data of the test results in terms of thickness of adhesive 

layer of bitumen, total percentage area of adhesive failure, maximum tensile 
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bond strength (i.e. maximum tensile load per unit area of contact) and tensile 

energy required to produce failure per unit volume.  

Table 5.2 Data of the test results (Preliminary study using INSTRON 
servo hydraulic frame) 

Pair of Plates Data Sets 
Thickness of 

Adhesive Layer 
of Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength  
(kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit Volume 

(kJ/m
3
) 

A 

1 810 15 800 871 

2 100
1
 50

1 
860

1
 8140

1
 

3 800 45 820 970 

4 900
1
 15

1
 960

1
 806

1
 

5 800 15 860 1056 

6 830 15 920 1055 

7 820 15 780 1152 

8 790 30 880 1073 

9 840 25 900 852 

10 810 15 1010 906 

11 800 25 1000 1422 

12 540
1 

15
1 

840
1 

1633
1 

13 910
1
 20

1
 520

1
 665

1
 

14 820 25 920 765 

15 830 20 740 990 

16 810 30 950 1065 

17 790 30 840 1024 

18 790 25 800 978 

19 810 20 690 742 

20 800 30 900 1168 

B 

1 1030
1
 15

1
 430

1
 783

1
 

2 1030
1
 20

1
 910

1
 926

1
 

3 820 5 870 1108 

4 810 35 810 634 

5 820 25 850 910 

6 830 30 930 952 

7 840 25 740 956 

8 800 35 750 972 

9 810 30 980 1149 

10 920
1
 35

1
 860

1
 981

1
 

11 840 10 730 1352 

12 830 15 800 914 

13 810 25 860 654 

14 820 15 800 904 

15 840 20 900 750 

16 800 25 830 690 

17 830 20 810 1254 

18 810 20 900 1193 

19 840 25 930 979 

20 810 15 840 1014 
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Table 5.2 Data of the test results (Preliminary study using INSTRON 
servo hydraulic frame) (continued) 

Pair of Plates Data Sets 
Thickness of 

Adhesive Layer 
of Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength  
(kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit Volume 

(kJ/m
3
) 

C 

1 790 35 910 1016 

2 1070
1
 35

1
 640

1
 927

1
 

3 800 15 830 946 

4 820 10 970 1052 

5 810 45 860 821 

6 820 25 850 800 

7 840 25 810 987 

8 820 25 780 960 

9 1020
1
 35

1
 900

1
 1000

1
 

10 830 15 960 772 

11 830 15 770 973 

12 830 20 820 1075 

13 820 25 840 1146 

14 820 25 950 1056 

15 830 15 880 870 

16 800 15 710 917 

17 810 15 870 1311 

18 950
1
 15

1
 940

1
 952

1
 

19 820 20 730 801 

20 820 25 850 1106 

Average 816 23 851 982 

Standard Deviation 15 8 77 171 

Coefficient of Variation (%) 2 37 9 17 

 

Thickness of adhesive layer of bitumen was measured using micrometer. 

However, there is limitation in the measurement since the micrometer being 

used can only measure to the nearest 10 µm (0.010 mm). Hence, data of the 

thickness of adhesive layer of bitumen in this study was rounded to nearest 10 

µm (0.010 mm). Standard procedures in determining the types of failure of the 

specimens as either adhesive or cohesive were developed based on the BS 

EN ISO 4624:2003 Paints and Varnishes-Pull-Off Test for Adhesion which had 

used the simplest, easiest and commonly used method; visual observation. 

Notes: 1. 
1
Data is considered as outlier and not included in the calculation 

2. Substrates: Aluminium alloy 
3. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
4. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
5. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 

respectively 
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Appendix B shows the procedures in determining the types of failure of 

specimens subjected to the laboratory adhesion test method using INSTRON 

servo hydraulic frame. 

Maximum tensile bond strength was calculated as follows; maximum tensile 

load divided by the unit area of contact. CurveExpert 1.4 has been used to 

calculate the area under the curve of graph of tensile load versus pull off 

displacement, which represents the tensile energy required to produce failure. 

Figure 5.10 shows the example of the graphs of tensile load versus pull off 

displacement of the original and corrected curve of the specimen tested using 

Ductilometer testing apparatus. The same graphs were plotted for the 

specimens tested using INSTRON servo hydraulic frame. The curvature of the 

initial part of the original curve was attributed to the initial seating and 

adjustment of the apparatus (i.e. moulds and testing rig) and also testing 

equipments. Hence, corrected curve is required in order to eliminate these 

effects. For the corrected curve, correction was determined by projecting the 

linear portion of the curve (i.e. positive slope) to the pull off displacement axis 

and horizontal shift based on the distance between the intersection and the 

origin was then applied. Based on Harvey and Cebon (2005), the value of the 

tensile energy required to produce failure can be best described by the area 

under the curve of graph of tensile load versus pull off displacement divided by 

the unit volume of the adhesive layer of bitumen (i.e. tensile energy required to 

produce failure per unit volume). Any variation in the thickness of adhesive 

layer of bitumen, which might affect the test results, will be taken into account 

when using the definition of the tensile energy required to produce failure per 

unit volume. 
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5.2.4.1 Analysis of Thickness of Adhesive Layer of Bitumen 

The pair of the compressed plates was designed to result in the thickness of 

adhesive layer of bitumen of 800 µm (0.800 mm) with a tolerance of ±50 µm 

(±0.050 mm). Analysis of thickness of adhesive layer of bitumen is basically a 

sensitivity study to determine the uniformity and repeatability between data 

sets and also to determine if significant difference exists between the 

measured and the theoretical thickness of 800 µm (0.800 mm). Based on 

Table 5.2, thickness of adhesive layer of bitumen that lies outside the 

tolerance of ±50 µm (±0.050 mm) was considered as outlier and thus not 

included in the analysis. The average, standard deviation and coefficient of 

variation of the data sets were 816 µm (0.816 mm), 15 and 2% respectively. 

Small percentage of coefficient of variation of 2% as compared to the 

Horizontal Shift 

Figure 5.10 Graphs of tensile load versus pull off displacement  
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predefined cut-off value of 7% indicates the excellent uniformity and 

repeatability of the thickness of adhesive layer of bitumen between data sets.  

The average, standard deviation and coefficient of variation of the thickness of 

adhesive layer of bitumen within the individual pair of plates (i.e. pair of plates 

A, B and C) were as follows; 809 µm (0.809 mm), 15 and 2% for pair of plates 

A, 821 µm (0.821 mm), 14 and 2% for pair of plates B and 818 µm (0.818 

mm), 13 and 2% for pair of plates C. Also, in terms of the uniformity of the 

average thickness of adhesive layer of bitumen between the individual pair of 

plates (i.e. pair of plates A, B and C), the standard deviation of 6 and the small 

percentage of coefficient of variation of 1% indicated the excellent uniformity. 

Therefore, it can be concluded that there is no significant difference in the 

thickness of adhesive layer of bitumen within and between the individual pair 

of plates (i.e. pair of plates A, B and C). 

Analysis was then required to determine whether there is evidence of 

significant difference in the average measured thickness of adhesive layer of 

bitumen from the theoretical value of 800 µm (0.800 mm). A hypothesis test 

involving One-Sample t-!∀#∃%&∋()∀∗+∋∀,%−∃%.∀/∀.%(0%#123101)−3)∀,%4%(0%5657,%8−#%

conducted based on the data of the measured thickness of adhesive layer of 

bitumen in Table 5.2. Data of the measured thickness of adhesive layer of 

bitumen was assumed to be normally distributed.  
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The following hypotheses were then established. 

1. The null hypothesis, H0  

H0: %Ξ]  = 800 µm (0.800 mm)   

The average measured thickness of adhesive layer of bitumen is 800 µm 

(0.800 mm). 

2. The alternative hypothesis, H1 

H1: %Ξ]  9%800 µm (0.800 mm)   

The average measured thickness of adhesive layer of bitumen is not 800 

µm (0.800 mm). 

The alternative hypothesis, H1 is a non-directional or two-tailed which answers 

the question of interest; whether there is evidence of significant difference in 

the average measured thickness of adhesive layer of bitumen from the 

theoretical value of 800 µm (0.800 mm). For a given sample size, n of 50, the 

test statistic follows a t-distribution with (50-1) degrees of freedom. Based on 

MINITAB statistical analysis, the t-statistic, T was found to be 7.90 (Figure 

5.11). The decision rule for rejecting H0 based on the p-value approach is as 

follows. 

Reject H0 if p-!∀#∃%&∋(&()∀##%∗&+,∀−&#%!%#&./&(∋0−∋/∋1∀−1%2&34 

Otherwise, fail to reject H0. 
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Therefore, based on the value of t-statistic, T of 7.90 and also p-value of 

0.000, the null hypothesis, H0 1#%∋∀:∀)∃∀∗%−∃%∃;∀%.∀/∀.%(0%#123101)−3)∀,%4%(0%56576%

The analysis shows that significant statistical difference exists in the average 

measured thickness of adhesive layer of bitumen from the theoretical value of 

800 µm (0.800 mm). The average measured thickness of adhesive layer of 

bitumen was 816 µm (0.816 mm), in contrast to the theoretical value of 800 

µm (0.800 mm). Hence, improved procedures for specimen preparation is 

required in order to achieve the thickness as close as possible to the required 

thickness of adhesive layer of bitumen (i.e. theoretical value). The problem 

can be attributed to the high resistance of the adhesive layer of bitumen to 

compression. As the thickness of adhesive layer of bitumen is relatively high, 

the rate of the temperature drops over time is increased; hence the increased 

resistance to compression.  

5.2.4.2 Analysis of Total Percentage Area of Adhesive Failure 

Types of failure (adhesive or cohesive failure) were determined via visual 

observation of the top and bottom of each pair of plates, and then calculated 

based on the percentage area of adhesive failure, as shown in Appendix B.  

Figure 5.11 MINITAB statistical analysis 
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Figure 5.12 shows the top and bottom of a pair of plates after being subjected 

to testing. 

 

Based on Table 5.2, the mode of failure can be classified as cohesive due to 

small value of the average total percentage area of adhesive failure of 23%. 

The total percentage area of adhesive failure was in the range of 5% and 

45%, which is too low to be considered as sufficient for the occurrence of the 

adhesive mode of failure. In this study, adhesive mode of failure was 

characterised by the value of the total percentage area of adhesive failure of 

more than 90%.  

Large percentage of coefficient of variation of 37% as compared to the 

predefined cut-off value of 7% indicated the high variability or distribution of 

the total percentage area of adhesive failure, which can be attributed to the 

large area of contact between bitumen and substrates. Also, the average, 

standard deviation and coefficient of variation of the total percentage area of 

adhesive failure within the individual pair of plates (i.e. pair of plates A, B and 

C) were as follows; 24%, 8 and 35% for pair of plates A, 22%, 8 and 38% for 

Top Plate Bottom Plate 

Figure 5.12 Top and bottom of pair of plates after being subjected to 
testing 
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pair of plates B and 22%, 9 and 40% for pair of plates C. Based on Harrison 

and Harrison (1972) in the study of adhesion using finite element analysis, 

axial tensile load distribution was found to be uniform up to a radius of five 

times the thickness of bitumen films from edges of the specimen. Holownia 

<=>?≅Α% ;−#% #;(83% ∃;−∃% 0(∋% #&∀)1Β∀3% 81∃;% .(8∀∋% /−.+∀% (0% Χ(1##(3D#% ∋−∃1(% (0%

adhesive materials (i.e. 0.49 or less), the axial tensile load distribution at the 

centre was less parabolic and more uniform. However, since the area of 

contact between bitumen and substrates in this study is too large (i.e. 10,000 

mm2), the axial tensile load distribution was assumed to be non-uniform and 

hence resulted in high variability or distribution of the total percentage area of 

adhesive failure. Also, large area of contact between bitumen and substrates 

was found to exhibit cavitations as shown in Figure 5.13. The occurrence of 

the cavitations has been related to the presence of the foreign particles such 

as dust or mineral matter on the surface of the pair of plates and also in the 

bitumen, and entrapment of air voids during specimen preparation. Hence, 

large area of contact will increase the probability for the occurrence of the 

cavitations. 

 
Figure 5.13 Cavitations   

Cavitations 

Cavitations 

Cavitations 
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Results of the total percentage area of adhesive failure have been grouped as 

in Table 5.3, and a plot has been deduced as shown in Figure 5.14. Based on 

Figure 5.14, data of the total percentage area of adhesive failure was found to 

be skewed to the right, which indicates the cohesive mode of failure. Based on 

the study conducted by Kanitpong and Bahia (2003), most of the failures for 

the unconditioned specimens (i.e. dry conditioning) were cohesive. Also, 

based on the study conducted by Lytton et al. (2005), cohesive failure is 

expected to occur for the thickness of adhesive layer of bitumen of more than 

60 µm (0.060 mm). In this section, both of the assumptions made by 

Kanitpong and Bahia (2003) and Lytton et al. (2005) for the occurrence of the 

cohesive mode of failure were applied. 

Table 5.3 Results based on grouped total percentage area of adhesive 
failure  

Total Percentage Area of 
Adhesive Failure (%) 

Number of Specimens, n Percentage (%) 

0 0 0 

5 1 2 

10 2 4 

15 14 28 

20 7 14 

25 15 30 

30 6 12 

35 3 6 

40 2 4 

45 0 0 

50 0 0 

55 0 0 

60 0 0 

65 0 0 

70 0 0 

75 0 0 

80 0 0 

85 0 0 

90 0 0 

95 0 0 

100 0 0 
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Cobwebbing (multiple strings or strands and limited necking of the thin films of 

bitumen) was found to occur during the testing, as shown in Figure 5.15. 

Cobwebbing is a common paint films and coatings term used to describe the 

spider web effect caused by the tendency of the premature drying of paint 

films and coatings to forms strings or strands on the substrates. The 

occurrence of the cobwebbing can be related to the high thickness of adhesive 

layer of bitumen, as compared to the suggested value of 60 µm (0.060 mm) by 

Lytton et al. (2005). 

Figure 5.14 Histogram of total percentage area of adhesive failure   
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5.2.4.3 Analysis of Maximum Tensile Bond Strength 

Based on Table 5.2, the value of the maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact) for each pair of plates was in 

the range of 690 kPa and 1010 kPa, with values for average, standard 

deviation and coefficient of variation of 851 kPa, 77 and 9% respectively. Also, 

the average, standard deviation and coefficient of variation of the maximum 

tensile bond strength within the individual pair of plates (i.e. pair of plates A, B 

and C) were as follows; 863 kPa, 89 and 10% for pair of plates A, 843 kPa, 71 

and 8% for pair of plates B and 846 kPa, 75 and 9% for pair of plates C. A 

slightly large percentage of coefficient of variation as compared to the 

predefined cut-off value of 7%, indicates the high variability or distribution of 

the measured maximum tensile bond strength. This was further verified based 

on the spread of the distribution of the data sets for the measured maximum 

tensile bond strength (i.e. within the range of approximately 650 kPa and 1050 

kPa), as shown in Figure 5.16. High variability or distribution of the measured 

maximum tensile bond strength was attributed to the large area of contact 

between bitumen and substrates, and hence to the non-uniform of the axial 

tensile load distribution, and also the occurrence of cavitations. 

Figure 5.15 Cobwebbing    
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The average value of the maximum tensile bond strength (i.e. 851 kPa) was in 

the range of the expected value, based on the test results of the adhesion test 

method conducted using PATTI 110, as shown in Table 2.5 (Kanitpong & 

Bahia 2003). Based on the study conducted by Kanitpong and Bahia (2003), 

the average value of 1982 kPa was obtained under the following conditions; 

glass was used as substrates, bitumen grade PG 58-28 was used as adhesive 

materials and specimens were subjected to dry conditioning at 25°C for 24 

hours prior to testing. However, it should be noted that the thickness of 

adhesive layer of bitumen in the study conducted by Kanitpong and Bahia 

(2003) was 200 µm (0.200 mm), thus justify the differences. For the 

conventional 70/100 penetration grade of bitumen with thickness of 800 µm 

(0.800 mm), a lower value of maximum tensile bond strength compared to the 

1982 kPa is expected. 

Figure 5.16 Distribution of maximum tensile bond strength    
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5.2.4.4 Analysis of Tensile Energy Required to Produce Failure Per Unit 

Volume 

As has been stated before, tensile energy required to produce failure per unit 

volume was calculated based on the area under the curve of graph of tensile 

load versus pull off displacement divided by the unit volume of the adhesive 

layer of bitumen. CurveExpert 1.4 has been used for computation of the area 

under the curve of graph of tensile load versus pull off displacement. Hence, 

the values of the tensile energy required to produce failure per unit volume is 

subjected to estimation errors due to the curve fitting procedures (i.e. 

uncertainty that presents in a curve that is fitted to the data sets). Also, since 

the tensile energy required to produce failure per unit volume is governed by 

the tensile load and pull off displacement, and also indirectly by the thickness 

of adhesive layer of bitumen and total percentage area of adhesive failure, the 

variation between data sets is expected to be high. Even a small in the value 

of the governed parameters can lead to significant variation of the tensile 

energy required to produce failure per unit volume between data sets. 

Based on Table 5.2, the average, standard deviation and coefficient of 

variation of the data sets for the tensile energy required to produce failure per 

unit volume were 982 kJ/m3, 171 and 17% respectively. The average, 

standard deviation and coefficient of variation within the individual pair of 

plates (i.e. pair of plates A, B and C) were as follows; 1006 kJ/m3, 167 and 

17% for pair of plates A, 964 kJ/m3, 206 and 21% for pair of plates B and 977 

kJ/m3, 142 and 15% for pair of plates C. Large percentage of coefficient of 

variation as compared to the predefined cut-off value of 7% indicates the high 

variability or distribution of the measured tensile energy required to produce 
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failure per unit volume. Also, based on Figure 5.17, the values of the data sets 

tend to be flatter and more spread out.  

 

5.2.5 Summary of Preliminary Study Using INSTRON Servo Hydraulic 

Frame 

In this section, initial development of criteria and procedures for the proposed 

adhesion test method based on the INSTRON servo hydraulic frame was 

conducted. Total conditioning time of 24 hours was found to be the optimum 

time required for the conditioning procedures, and this is also supported by the 

study conducted by Copeland (2007). Although data of the thickness of 

adhesive layer of bitumen was found to result in excellent uniformity and 

repeatability between data sets, the average measured thickness of 816 µm 

(0.816 mm) has shown significant statistical difference from the theoretical 

Figure 5.17 Distribution of tensile energy required to produce failure per 
unit volume    
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value of 800 µm (0.800 mm). Mode of failure for the tested specimens can be 

classified as cohesive due to the small value of the average total percentage 

area of adhesive failure of 23%. The occurrence of the cohesive mode of 

failure can be attributed to the conditioning procedures (i.e. dry conditioning) 

and the high thickness of adhesive layer of bitumen. Also, high variability or 

distribution of the measured parameters can be attributed to the large area of 

contact between bitumen and substrates (i.e. 10,000 mm2) and the occurrence 

of the cobwebbing. However, the average value of the maximum tensile bond 

strength (i.e. 851 kPa) was in the range of the expected value, based on the 

study conducted by Kanitpong & Bahia (2003). 

5.3 Subsequent Study Using INSTRON Servo Hydraulic Frame  

In this section, results of the preliminary study were used as point of reference 

in order to refine the criteria and procedures for the proposed adhesion test 

method based on the INSTRON servo hydraulic frame. The following 

recommendations were suggested in order to finalise the value of the 

thickness of adhesive layer of bitumen that will result in the adhesive mode of 

failure and at the same time maintaining the uniformity and repeatability of the 

test results. 

1. Reduce the thickness of adhesive layer of bitumen 

In the preliminary study, high thickness of adhesive layer of bitumen of 

800 µm (0.800 mm) was found to result in high resistance to 

compression during the specimen preparation and hence, result in the 

significant statistical difference between the average measured 

thickness of adhesive layer of bitumen and the theoretical value of 800 
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µm (0.800 mm). Also the mode of failure was found to be cohesive with 

the occurrence of cobwebbing. Hence, several values of thickness of 

adhesive layer of bitumen have been randomly prepared and tested in 

order to find the optimum value that can result in the adhesive mode of 

failure and at the same time maintaining the uniformity and repeatability 

of the test results. Based on Marek and Herrin (1968), too low thickness 

of adhesive layer of bitumen could compromise the precision in the 

measurements, and even a very small difference of thickness of 

adhesive layer of bitumen between data sets could result in significant 

difference in the test results. Conclusion has been made that the 

optimum thickness of adhesive layer of bitumen that can result in the 

adhesive mode of failure and at the same time maintaining the uniformity 

and repeatability of the test results was 50 µm (0.050 mm). 

2. Reduce the area of contact between bitumen and substrates  

Large area of contact between bitumen and substrates was found to 

exhibit cavitations and the occurrence of cobwebbing during testing, and 

the most importantly the non-uniform distribution of the axial tensile load. 

Area of contact between bitumen and substrates was found to result in 

negligible effect on the test results, as shown in the next part (i.e. Part 3: 

Detailed Evaluation and Validation of the Proposed Adhesion Test 

Method). Specimens of different area of contact between bitumen and 

substrates have shown to result in approximately the same value of the 

test results, provided having the same thickness of adhesive layer of 

bitumen. Hence, pair of plates used in the preliminary study was 

modified as illustrated in Figures 5.18 and 5.19. The modification of the 

pair of plates was made in order to allow for the insertion of the 25 mm 
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diameter (i.e. 490.87 mm2 area of contact) of the aluminium alloy discs 

into top and bottom plates. Circle (i.e. discs) has been selected as the 

preferred geometry for the area of contact between bitumen and 

substrates in order to eliminate the edge effect. Also, modification has 

been made to prevent any lateral movement between top and bottom 

plates by introducing four rods inserted at each corner of the pair of 

plates. Although considered as simple and practical, the previous setup 

of the pair of plates which required the positioning of the steel balls was 

found to be time consuming and the risk of the steel balls being pushed 

out from the specimens is still present. 

 

Note: All units are in millimetre (mm) 

Top View of Pair of Plates Bottom View of Pair of Plates 

Bolts 

Side View of Pair of Plates 

Figure 5.18 Schematic drawing of modified pair of plates     
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Spacers have been used to control the thickness of adhesive layer of bitumen 

of 50 µm (0.050 mm). Instead of using hand pump compressor as in the 

preliminary study, a compression device as shown in Figure 5.20, has been 

developed and used in order to achieve the required thickness of adhesive 

layer of bitumen and also the full adhesive bond strength between adhesive 

layer of bitumen and substrates. The compression device consists of a 

micrometer, which can be used to compress the pair of plates up to the 

required thickness of adhesive layer of bitumen. Modified procedures for 

specimen preparation are presented in Appendix C. The same rigid testing rig 

and hence the same setup for the testing using the INSTRON servo hydraulic 

frame as in the preliminary study, were applied.  

Rods 

Aluminium Alloy 

Discs 

Figure 5.19 Modified pair of plates and aluminium alloy discs     
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In this section, data analysis was conducted in order to validate the value of 

the thickness of adhesive layer of bitumen that will result in the adhesive mode 

of failure and also to evaluate the uniformity and repeatability of the test 

results. Also, limited number of specimens was subjected to various testing 

conditions (i.e. deformation rates and test temperatures) in order to generally 

observe the effect on the test results and also to validate the capability of the 

proposed adhesion test method, before progressing into the next part. Table 

5.4 shows the experimental matrix for the subsequent study. Specimens were 

subjected to dry conditioning at specified test temperature for 24 hours prior to 

testing. The selection of testing conditions (i.e. deformation rates and test 

temperatures) was made based on the literature review and analysis of the 

past studies. The selection of test temperatures was suggested to be 

approximately within the ranges of the average pavement temperature (i.e. 

between 10°C and 60°C). 

Figure 5.20 Compression device      
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Table 5.4 Experimental matrix for subsequent study 

  Test Temperature (°C) 

  10 15 20 25 30 
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Specimens 
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Specimens 
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Specimens 
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20 
5 

Specimens 
5 

Specimens 
5 

Specimens 
60 

Specimens 
5 

Specimens 

30 
5 

Specimens 
5 

Specimens 
5 

Specimens 
5 

Specimens 
5 

Specimens 

 

5.3.1 Data Analysis of Subsequent Study Using INSTRON Servo 

Hydraulic Frame 

Data analysis of the subsequent study was conducted in the same way as that 

for the preliminary study, in which evaluation of the uniformity and repeatability 

of the test results was performed. In addition to that, analysis was also 

conducted in order to observe the effect of various testing conditions (i.e. 

deformation rates and test temperatures) on the test results. Table 5.5 shows 

the data of the test results of the subsequent study, in which a total of 60 

specimens was subjected to testing at fixed deformation rate and test 

temperature of 20 mm/minute and 25°C respectively. 
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Table 5.5 Data of the test results (Subsequent study using INSTRON 
servo hydraulic frame) 

Pair of Plates Data Sets 
Thickness of 

Adhesive Layer 
of Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength  
(kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit Volume 

(kJ/m
3
) 

A 

1 50 100 1310 2190 

2 50 100 1280 1835 

3 60 100 1340 2004 

4 50 100 1240 2011 

5 50 100 1320 1794 

6 50 90 1250 1949 

7 50 100 1350 1986 

8 50 100 1320 1838 

9 50 100 1320 2462 

10 50 100 1330 2219 

11 50 100 1310 1882 

12 50 95 1260 1602 

13 50 100 1210 1968 

14 50 100 1330 1841 

15 50 100 1340 2188 

16 50 90 1270 2135 

17 50 100 1330 1846 

18 50 100 1370 1854 

19 50 95 1320 1913 

20 50 100 1280 2347 

B 

1 50 100 1310 2653 

2 50 100 1280 1954 

3 50 100 1300 1626 

4 60 100 1420 2132 

5 50 100 1280 2294 

6 50 100 1290 1854 

7 50 100 1360 1721 

8 50 100 1310 2945 

9 50 100 1240 3075 

10 50 100 1360 2381 

11 50 100 1300 1827 

12 50 100 1230 1922 

13 50 100 1230 2449 

14 50 100 1350 2082 

15 50 100 1280 2842 

16 50 95 1230 2237 

17 50 100 1410 1773 

18 50 100 1390 2231 

19 50 100 1400 2949 

20 60 100 1420 2402 
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Table 5.5 Data of the test results (Subsequent study using INSTRON 
servo hydraulic frame) (continued) 

Pair of Plates Data Sets 
Thickness of 

Adhesive Layer 
of Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength  
(kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit Volume 

(kJ/m
3
) 

C 

1 50 100 1300 2599 

2 50 100 1250 2079 

3 50 100 1260 2471 

4 50 100 1270 1699 

5 50 100 1530 2682 

6 50 100 1210 2681 

7 50 100 1270 2838 

8 50 100 1150 2115 

9 50 100 1220 1824 

10 50 100 1370 2289 

11 50 100 1280 1891 

12 50 100 1390 2024 

13 50 100 1180 1883 

14 50 100 1350 2008 

15 50 100 1160 2307 

16 50 100 1380 2350 

17 50 100 1390 2432 

18 50 100 1380 3063 

19 50 100 1320 1860 

20 50 100 1230 2360 

Average 51 99 1306 2178 

Standard Deviation 2 2 70 373 

Coefficient of Variation (%) 4 2 5 17 

 

5.3.1.1 Analysis of Thickness of Adhesive Layer of Bitumen 

In the subsequent study, the pair of plates was designed to result in the 

thickness of adhesive layer of bitumen of 50 µm (0.050 mm). Spacers and 

compression device have been used to control the thickness of adhesive layer 

of bitumen. Based on Table 5.5, the average measured thickness of adhesive 

layer of bitumen was 51 µm (0.051 mm) with the value of standard deviation 

and coefficient of variation of 2 and 4% respectively. The average, standard 

deviation and coefficient of variation of the measured thickness of adhesive 

Notes: 1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
3. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
4. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 

respectively 
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layer of bitumen within the individual pair of plates (i.e. pair of plates A, B and 

C) were as follows; 51 µm (0.051 mm), 2 and 4% for pair of plates A, 51 µm 

(0.051 mm), 3 and 6% for pair of plates B and 50 µm (0.050 mm), 0 and 0% 

for pair of plates C. Small percentage of coefficient of variation indicates the 

excellent uniformity and repeatability of the thickness of adhesive layer of 

bitumen between data sets. Also, in terms of the uniformity of the average 

thickness of adhesive layer of bitumen between the individual pair of plates 

(i.e. pair of plates A, B and C), the standard deviation of 1 and the small 

percentage of coefficient of variation of 1% justified the excellent uniformity. 

Analysis was then conducted in order to determine if significant difference 

exists between the average measured thickness of adhesive layer of bitumen 

of 51 µm (0.051 mm) and the theoretical value of 50 µm (0.050 mm). A 

hypothesis test involving One-Sample t-Test procedure, at level of 

#123101)−3)∀,% 4% (0% 5657,% 8−#% )(3∗+)∃∀∗. Data of the measured thickness of 

adhesive layer of bitumen was assumed to be normally distributed.  

The following hypotheses were then established. 

1. The null hypothesis, H0  

H0: %Ξ]  = 50 µm (0.050 mm)   

The average measured thickness of adhesive layer of bitumen is 50 µm 

(0.050 mm). 

2. The alternative hypothesis, H1 

H1: %Ξ]  9%75 µm (0.050 mm)   

The average measured thickness of adhesive layer of bitumen is not 50 

µm (0.050 mm). 
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Based on MINITAB statistical analysis, the t-statistic, T was found to be 1.76 

(Figure 5.21). The decision rule for rejecting H0 based on the p-value 

approach is as follows. 

Reject H0 if p-!∀#∃%&∋(&()∀##%∗&+,∀−&#%!%#&./&(∋0−∋/∋1∀−1%2&34 

Otherwise, fail to reject H0. 

 

Therefore, based on the value of t-statistic, T of 1.76 and also p-value of 

0.083, the null hypothesis, H0 failed to be rejected at the level of significance, 

4%(0%56576%!;∀∋∀0(∋∀,%1∃%)−3%Ε∀%)(3).+∗∀∗%∃;−∃%∃;∀∋∀%1s sufficient evidence of no 

significant statistical difference in the average measured thickness of adhesive 

layer of bitumen from the theoretical value of 50 µm (0.050 mm). Based on the 

test results, the modified test setup and apparatus and also the procedures for 

specimen preparation have been proven capable of producing specimen as 

close as possible to the required thickness of adhesive layer of bitumen (i.e. 

theoretical value). The problem attributed to the high resistance of adhesive 

layer of bitumen to compression due to the increased rate of the temperature 

drops over time, was then eliminated. 

Figure 5.21 MINITAB statistical analysis 
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5.3.1.2 Analysis of Total Percentage Area of Adhesive Failure 

Figure 5.22 shows the aluminium alloy discs with respect to the top and 

bottom plates after being subjected to testing. Again, the adhesive mode of 

failure was characterised by the value of the total percentage area of adhesive 

failure of more than 90%.  

 

Based on Table 5.5, the average, standard deviation and coefficient of 

variation of the data sets for the total percentage area of adhesive failure were 

99%, 2 and 2% respectively. The total percentage area of adhesive failure 

was in the range of 90% and 100%, which is considered as sufficient to 

indicate the occurrence of the adhesive mode of failure. Also, the average, 

standard deviation and coefficient of variation of the total percentage area of 

adhesive failure within the individual pair of plates (i.e. pair of plates A, B and 

C) were as follows; 99%, 3 and 3% for pair of plates A, 100%, 1 and 1% for 

pair of plates B and 100%, 0 and 0% for pair of plates C.  

Figure 5.22 Aluminium alloy discs after being subjected to testing 

Bottom Plate Top Plate 
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Data of the test results in terms of total percentage area of adhesive failure 

seems to disagree with the statement of Kanitpong and Bahia (2003), which 

indicated that most of the failures for the unconditioned specimens (i.e. dry 

conditioning) were cohesive. Marek and Herrin (1968) has concluded that the 

types of failure (i.e. adhesive or cohesive) can be influenced by various factors 

such as thickness of adhesive layer of bitumen, deformation rate, test 

temperature, conditioning procedures and penetration grade of bitumen. 

Hence, based on the test results of this section, it can be concluded that for 

the unconditioned specimens (i.e. dry conditioning), the occurrence of the 

adhesive mode of failure can still be achieved provided that the thickness of 

adhesive layer of bitumen is thin enough. 

Small percentage of coefficient of variation indicated the excellent uniformity 

and repeatability of the data sets for the total percentage area of adhesive 

failure. The occurrence of cavitations and cobwebbing was minimised due to 

the reduction of the thickness of adhesive layer of bitumen and the area of 

contact between bitumen and substrates. Small area of contact between 

bitumen and substrates (i.e. 490.87 mm2) will thus allow for the evenly 

distributed axial tensile load.  

Results of the total percentage area of adhesive failure have been grouped as 

in Table 5.6, and a plot has been deduced as shown in Figure 5.23. Based on 

Figure 5.23, data of the total percentage area of adhesive failure was found to 

be skewed to the left, which indicates the mode of failure to be adhesive. 
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Table 5.6 Results based on grouped total percentage area of adhesive 
failure  

Total Percentage Area of 
Adhesive Failure (%) 

Number of Specimens, n Percentage (%) 

0 0 0 

5 0 0 

10 0 0 

15 0 0 

20 0 0 

25 0 0 

30 0 0 

35 0 0 

40 0 0 

45 0 0 

50 0 0 

55 0 0 

60 0 0 

65 0 0 

70 0 0 

75 0 0 

80 0 0 

85 0 0 

90 2 3 

95 3 5 

100 55 92 

 

 
Figure 5.23 Histogram of total percentage area of adhesive failure  
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5.3.1.3 Analysis of Maximum Tensile Bond Strength 

Based on Table 5.5, the value of the maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact) for each pair of plates was in 

the range of 1150 kPa and 1530 kPa, with values for average, standard 

deviation and coefficient of variation of 1306 kPa, 70 and 5% respectively. The 

average, standard deviation and coefficient of variation within the individual 

pair of plates (i.e. pair of plates A, B and C) were as follows; 1304 kPa, 41 and 

3% for pair of plates A, 1320 kPa, 65 and 5% for pair of plates B and 1295 

kPa, 95 and 7% for pair of plates C. The average value of the maximum 

tensile bond strength (i.e. 1306 kPa) was higher compared to the average 

value of the maximum tensile bond strength of the preliminary study, which 

was attributed to the reduction of the thickness of adhesive layer of bitumen. 

Also, the small percentage of coefficient of variation indicated the excellent 

uniformity and repeatability of the data sets, as shown in Figure 5.24. Based 

on the Figure 5.24, data of the maximum tensile bond strength was 

concentrated within small ranges of the one-standard deviation above and 

below the average maximum tensile bond strength. 
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5.3.1.4 Analysis of Tensile Energy Required to Produce Failure Per Unit 

Volume 

Based on Table 5.5, the average, standard deviation and coefficient of 

variation of the data sets for the tensile energy required to produce failure per 

unit volume were 2178 kJ/m3, 373 and 17% respectively. Also, the average, 

standard deviation and coefficient of variation within the individual pair of 

plates (i.e. pair of plates A, B and C) were as follows; 1993 kJ/m3, 208 and 

10% for pair of plates A, 2267 kJ/m3, 442 and 19% for pair of plates B and 

2273 kJ/m3, 374 and 16% for pair of plates C. Based on Figure 5.25, the 

values of the tensile energy required to produce failure per unit volume tend to 

be flatter and more spread out. Again, the high variability of the data sets can 

be attributed to the estimation errors due to the curve fitting procedures (i.e. 

uncertainty that presents in a curve that is fitted to the data sets) and the 

parameters that governed the values of the tensile energy required to produce 

Figure 5.24 Distribution of maximum tensile bond strength  
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failure per unit volumes such as tensile load, pull off displacement, thickness 

of adhesive layer of bitumen and total percentage area of adhesive failure. 

 

5.3.1.5 Analysis to Determine the Effect of Various Testing Conditions 

on the Test Results 

Basically, the main objective of this section was to determine whether the 

established criteria and procedures of the proposed adhesion test method 

capable of testing the asphalt mixture materials over wide ranges of 

deformation rates and test temperatures, before going into a more detailed 

study in the next part (i.e. Part 3: Detailed Evaluation and Validation of the 

Proposed Adhesion Test Method). Also, in this section, data of the test results 

was useful and vital in predicting the ranges of suitable testing conditions. 

Since this section was supposed to be a pilot study prior to the next part, a 

limited number of specimens was prepared and tested, based on the 

Figure 5.25 Distribution of tensile energy required to produce failure per 
unit volume  
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experimental matrix shown in the Table 5.4. A total of 5 specimens, which 

have been conditioned based on the established standard conditioning 

procedures were tested at each combination of deformation rate and test 

temperature.  

Theoretically, the value of the maximum tensile bond strength is expected to 

increase with the increasing deformation rate and decreasing test 

temperature. Also, the mode of failure is expected to change from cohesive to 

adhesive with the increasing deformation rate and decreasing test 

temperature. Table 5.7 shows the data of the test results. Tensile energy 

required to produce failure per unit volume was not included in order to 

simplify the analysis. Based on the test results, the following plots have been 

deduced; Figures 5.26 to 5.28. The error bar represents the one-standard 

deviation above and below the average maximum tensile bond strength for 

Figures 5.26 and 5.27, and the one-standard deviation above and below the 

average total percentage area of adhesive failure for Figure 5.28, respectively. 

Coefficient of determination, R2 is a measure of the global fit of the linear 

relationship between variables, in which coefficient of determination, R2 of 1 

indicates that the fitted linear relationship explains all the variability and 

coefficient of determination, R2 of 0 indicates no linear relationship exists 

between variables (i.e. the higher the value of coefficient of determination, R2, 

the stronger the linear relationship between variables). Generally, coefficient 

of determination, R! greater than 0.8 are considered to show a reasonable fits 

for the data sets. 
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Table 5.7 Data of the test results over wide ranges of deformation rates 
and test temperatures (Subsequent study using INSTRON servo 
hydraulic frame)  

Deformation 
Rate 

(mm/minute) 

Test 
Temperature 

(°C) 
Data Sets 

Thickness of 
Adhesive 
Layer of 

Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength 
(kPa) 

10 
(0.167 mm/s) 

10 

1 50 100 1410 

2 50 100 1490 

3 50 100 1410 

4 50 100 1380 

5 50 100 1440 

15 

1 50 100 1330 

2 50 100 1340 

3 50 100 1410 

4 50 100 1380 

5 50 100 1360 

20 

1 50 100 1310 

2 50 95 1250 

3 50 100 1280 

4 50 100 1240 

5 50 100 1260 

25 

1 50 100 1130 

2 50 90 1160 

3 50 100 1190 

4 50 90 1200 

5 50 100 1170 

30 

1 50 90 1140 

2 50 80 1120 

3 50 85 1110 

4 50 85 1120 

5 50 90 1110 

20 
(0.333 mm/s) 

10 

1 50 100 1590 

2 50 100 1580 

3 50 100 1530 

4 50 100 1490 

5 50 100 1530 

15 

1 50 100 1460 

2 50 100 1450 

3 50 100 1440 

4 50 100 1500 

5 50 100 1430 

20 

1 50 100 1390 

2 50 100 1420 

3 50 100 1370 

4 50 100 1400 

5 50 100 1360 

25 

1 50 100 1330 

2 50 100 1320 

3 50 100 1300 

4 50 95 1290 

5 50 100 1330 

30 

1 50 90 1180 

2 50 90 1170 

3 50 100 1150 

4 50 95 1190 

5 50 95 1180 
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Table 5.7 Data of the test results over wide ranges of deformation rates 
and test temperatures (Subsequent study using INSTRON servo 
hydraulic frame) (continued) 

Deformation 
Rate 

(mm/minute) 

Test 
Temperature 

(°C) 
Data Sets 

Thickness of 
Adhesive 
Layer of 

Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength 
(kPa) 

30 
(0.500 mm/s) 

10 

1 50 100 1610 

2 50 100 1630 

3 50 100 1630 

4 50 100 1630 

5 50 100 1610 

15 

1 50 100 1550 

2 50 100 1530 

3 50 100 1520 

4 50 100 1490 

5 50 100 1500 

20 

1 50 100 1500 

2 50 100 1480 

3 50 100 1450 

4 50 100 1510 

5 50 100 1460 

25 

1 50 100 1400 

2 50 100 1350 

3 50 100 1330 

4 50 100 1350 

5 50 100 1360 

30 

1 50 100 1190 

2 50 100 1210 

3 50 90 1150 

4 50 100 1140 

5 50 100 1200 

 

 

 

 

 

 

Notes: 1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen  
3. Conditioning Procedures: Dry conditioning at specified test temperature for 24 hours prior to 

testing 
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Figure 5.27 Relationship between maximum tensile bond strength and 
test temperature over wide ranges of deformation rates 

Figure 5.26 Relationship between maximum tensile bond strength and 
deformation rate over wide ranges of test temperatures 



CHAPTER 5                                                  PART 2: DEVELOPMENT OF CRITERIA AND PROCEDURES  

 

 170

 

Based on Figure 5.26, the maximum tensile bond strength was found to 

increase with the increasing deformation rate for all specified test 

temperatures. At a certain value of deformation rate, the maximum tensile 

bond strength of low-test temperature was higher compared to the maximum 

tensile bond strength of high-test temperature. However, the maximum tensile 

bond strength of specimens tested at the combined deformation rate and test 

temperature of 30 mm/minute and 30°C, did not follow the expected trend, and 

thus can be considered as outlier. 

Also, based on Figure 5.27, the maximum tensile bond strength was found to 

decrease with the increasing test temperature. As the test temperature was 

increased, there was a decrease in the bitumen stiffness (i.e. bitumen 

becomes soft and starts to flow), and thus justified the reduction of the 

maximum tensile bond strength. Also, as the test temperature was increased, 

Figure 5.28 Relationship between total percentage area of adhesive 
failure and test temperature over wide ranges of deformation rates 



CHAPTER 5                                                  PART 2: DEVELOPMENT OF CRITERIA AND PROCEDURES  

 

 171

the value of the maximum tensile bond strength over wide ranges of 

deformation rates was found to converge to a constant value. The value of the 

maximum tensile bond strength was assumed to be independent of 

deformation rate at high test temperature. 

Based on Figure 5.28, deformation rate and test temperature were found to 

have a profound influence on the types of failure of specimens of either 

adhesive or cohesive, apart from the thickness of adhesive layer of bitumen. 

Mode of failure was found to be more the adhesive as the value of the 

deformation rate was increased and the value of the test temperature was 

decreased respectively. Also, at high test temperature of more than 25°C, high 

variability or distribution of the data sets was observed, as represented by the 

error bar of one-standard deviation above and below the average total 

percentage area of adhesive failure. 

5.3.2 Summary of Subsequent Study Using INSTRON Servo Hydraulic 

Frame  

In this section, pair of plates was modified by allowing two 25 mm diameter 

(i.e. 490.87 mm2 area of contact) of aluminium alloy discs as substrates to be 

inserted into top and bottom plates. The modification of the pair of plates was 

made in order to allow for the reduction of the thickness of adhesive layer of 

bitumen and also the reduction of the area of contact between bitumen and 

substrates. Thickness of adhesive layer of bitumen of 50 µm (0.050 mm) was 

found to be the optimum value that can result in the adhesive mode of failure 

and at the same time maintaining the uniformity and repeatability of the test 

results. Based on the study, a conclusion has been made that for the 

unconditioned specimens (i.e. dry conditioning), the occurrence of the 
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adhesive mode of failure can still be achieved provided that the thickness of 

adhesive layer of bitumen is thin enough. Due to the reduction of the area of 

contact between bitumen and substrates, the occurrence of cavitations and 

cobwebbing was minimised. Modified test setup and apparatus and also the 

procedures for specimen preparation have been proven capable of producing 

specimen as close as possible to the required thickness of adhesive layer of 

bitumen (i.e. theoretical value). The ranges of suitable testing conditions in 

terms of deformation rate and test temperature for the proposed adhesion test 

method were suggested to be 10 mm/minute and 20 mm/minute, and 15°C 

and 25°C respectively. However, no definite conclusions can be made yet 

regarding the ranges of suitable testing conditions, due to the limited number 

of the tested specimens. Data of the test results in this section was used as 

guiding principles and point of reference in the next part. 

5.4 Preliminary Study Using Ductilometer Testing Apparatus 

This section focuses on the initial development of criteria and procedures for 

the proposed adhesion test method based on the Ductilometer testing 

apparatus. Details of the Ductilometer testing apparatus were given in the 

Chapter 4.  Laboratory works were conducted in the same way as that for the 

INSTRON servo hydraulic frame, which include the design and fabrication of 

suitable moulds (i.e. test setup and apparatus), and development of 

procedures for specimen preparation and testing. Since there is a limitation in 

the range of the tensile load that can be recorded using the Ductilometer 

testing apparatus (i.e. up to 300 N), design and fabrication of suitable moulds 

need to cater for this limitation.  At the end of this section, data analysis was 

conducted in order to evaluate the uniformity and repeatability of the test 

results. 
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5.4.1 Test Setup and Apparatus 

Pair of aluminium alloy plates as shown in Figure 5.29 was used as control 

substrates, providing area of contact between bitumen and substrates of 20 

mm by 10 mm. Schematic drawing of the pair of plates is shown in Figure 

5.30. During the specimen preparation, the pair of plates was held together by 

bolt mounted on the base plate. The base plate is made of non-corrosive 

metal sheet. Each pair of plates was labelled in order to provide consistency in 

pairing and thus accuracy in determining the uniformity and repeatability of the 

test results. In order to determine the thickness of adhesive layer of bitumen, 

the combined length of the left-side and right-side of each pair of plates was 

measured and recorded. Prior to the specimen preparation, surface of the 

area of contact between bitumen and substrates needs to be cleaned in order 

to ensure the cleanliness and thus full adhesive bond strength between 

adhesive layer of bitumen and substrates. 

 

Figure 5.29 Pair of aluminium alloy plates held together by bolt mounted 
on base plate 
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5.4.2 Specimen Preparation 

Procedures for specimen preparation were designed with the same emphasis 

as for the INSTRON servo hydraulic frame (i.e. uniformity and repeatability of 

the thickness of adhesive layer of bitumen). In this preliminary study, the 

thickness of adhesive layer of bitumen has been set to 520 µm (0.520 mm). 

Steel balls of 0.520 mm diameter have been used to control the thickness of 

adhesive layer of bitumen. Development of the procedures for specimen 

preparation was mainly based on the BS EN 13398:2003 Methods of Test for 

Petroleum and Its Products-BS 2000-516:Bitumen and Bituminous Binders-

Determination of the Elastic Recovery of Modified Bitumen.  

Figure 5.30 Schematic drawing of pair of plates 
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During the procedure for specimen preparation, thin coat of release agent 

(mixture of one part of glycerine and one part of dextrine) was applied to the 

base plate and the sides of the lateral walls of the pair of plates, in order to 

ensure that no other adhesive bond strength except on the area of contact 

between bitumen and substrates was developed. It is suggested that the 

amount of bitumen to be poured is about two-third filled of the gap, in order to 

minimise the amount of excess bitumen. In order to achieve the required 

thickness of adhesive layer of bitumen and also the full adhesive bond 

strength between adhesive layer of bitumen and substrates, the bolt mounted 

on the base plate was tightened to clamp the specimen. In this case, since no 

excessive loading was observed and the horizontal movement of the 

specimen was limited due to the presence of the steel balls, the specimen can 

be left in the clamped position for any amount of time. Excess bitumen was 

removed and the specimen was then subjected to conditioning procedures 

prior to testing. Throughout this section, specimens were subjected to dry 

conditioning at 25°C for 24 hours prior to testing. However, testing was 

conducted in wet conditioning in a temperature-controlled water bath at test 

temperature of 25°C. Reason for the selection of the wet conditioning instead 

of the dry conditioning as in the previous section was due to the inability of the 

Ductilometer testing apparatus in conducting test in dry conditioning over wide 

ranges of test temperatures. 

The whole procedure for the specimen preparation can be summarised as 

follows, and illustrated in Figure 5.31.  

1. Pair of plates is cleaned by hand with chemical solution (i.e. white spirit 

solvent) in order to ensure the cleanliness, and then followed by acetone 

(ethyl acetate) in order to remove the remaining chemical solution of the 



CHAPTER 5                                                  PART 2: DEVELOPMENT OF CRITERIA AND PROCEDURES  

 

 176

white spirit solvent. (Note: Minimum rubbing should be applied to the 

surface in order to ensure no significant change in the properties of the 

surface). 

2. Pair of plates is heated to approximately 80°C for at least 30 minutes in 

order to ensure no significant drop of temperature of bitumen during the 

specimen preparation. 

3. Base plate and the sides of the lateral walls of the pair of plates are 

applied with a thin coat of release agent (mixture of one part of glycerine 

and one part of dextrine). 

4. Pair of plates is held loosely on the base plate. Ensure that the distance 

between the pair of plates is sufficient for the bitumen to be poured into 

the gap. 

5. Steel balls of 0.520 mm diameter are positioned at both sides between 

the pair of plates. 

6. Bitumen which has been heated to approximately 160°C for at least two 

hours is then poured into the gap of the pair of plates, up to about two-

third filled. 

7. Pair of plates is then subjected to compression by tightening the bolt 

mounted on the base plate and left in the clamped position for 30 

minutes. 
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8. The clamped pair of plates is measured using micrometer to ensure the 

required thickness of adhesive layer of bitumen has been achieved.  

9. The pair of plates is removed from the base plate. Any excess bitumen 

needs to be removed using heated knife, before the pair of plates being 

introduced back to the clamped position for conditioning procedures 

prior to testing. 

 

5.4.3 Testing Using Ductilometer Testing Apparatus 

Development of the criteria and procedures for the testing was mainly based 

on the BS EN 13398:2003 Methods of Test for Petroleum and Its Products-BS 

2000-516:Bitumen and Bituminous Binders-Determination of the Elastic 

1. Thin coat of release agent is 
applied on the base plate and the 

sides of the lateral walls of the pair 
of plates 

 

2. Pair of plates is held loosely on 
the base plate. Steel balls are 

positioned at both sides between the 
pair of plates 

 

3. Bitumen is poured into the gap of 
the pair of plates 

 

4. Pair of plates is subjected to 
compression by tightening the bolt 

mounted on the base plate and left in 
the clamped position for 30 minutes 

 

6. Excess bitumen is removed using 
heated knife prior to conditioning 

procedures 

 

5. The clamped pair of plates is 
measured 

 

Figure 5.31 Procedures for specimen preparation for preliminary study 
using Ductilometer testing apparatus 

Position of Steel Balls 
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Recovery of Modified Bitumen. However, several testing variables and 

parameters were adjusted in order to suit the proposed adhesion test method. 

In order to evaluate the uniformity and repeatability of the test results, a total 

of 60 specimens was tested at a fixed deformation rate and test temperature 

of 20 mm/minute and 25°C respectively. Data of the test results was analysed 

and presented in the next section. 

5.4.4 Data Analysis of Preliminary Study Using Ductilometer Testing 

Apparatus 

Data analysis of preliminary study using Ductilometer testing apparatus was 

conducted in the same way as that for the INSTRON servo hydraulic frame, in 

which evaluation of the uniformity and repeatability of the test results was 

performed. Table 5.8 shows the data of the test results in terms of thickness of 

adhesive layer of bitumen, total percentage area of adhesive failure, maximum 

tensile bond strength (i.e. maximum tensile load per unit area of contact) and 

tensile energy required to produce failure per unit volume. A standard 

procedure in determining the types of failure of the specimens as either 

adhesive or cohesive was given in Appendix B. 
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Table 5.8 Data of the test results (Preliminary study using Ductilometer 
testing apparatus) 

Pair of Plates Data Sets 

Thickness of 
Adhesive Layer 

of Bitumen 
(µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength  
(kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit 

Volume (kJ/m
3
) 

A 

1 560 40 1080 1526 

2 560 60 1030 968 

3 560 100 1090 994 

4 540 80 1150 1254 

5 520 55 1010 1359 

6 540 70 1020 1499 

7 580 45 960 1125 

8 560 90 960 1163 

9 600 50 840 1011 

10 640 65 840 871 

11 580 70 940 931 

12 580 95 1060 1500 

13 500 100 1210 1461 

14 660 20 890 647 

15 560 60 870 940 

16 540 65 980 1042 

17 560 60 750 801 

18 560 70 1080 1193 

19 580 45 980 928 

20 580 50 940 996 

B 

1 580 90 1040 1521 

2 560 70 1060 1092 

3 600 30 950 1135 

4 560 50 1050 1182 

5 620 40 980 1084 

6 560 70 1040 1395 

7 620 40 840 835 

8 580 90 880 1126 

9 580 35 890 1064 

10 600 25 790 1123 

11 580 40 820 1042 

12 520 70 1100 1554 

13 540 90 1110 1325 

14 580 50 990 1091 

15 580 60 890 982 

16 580 45 770 971 

17 580 40 680 649 

18 560 40 1030 1169 

19 540 30 1040 1423 

20 560 40 960 1169 
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Table 5.8 Data of the test results (Preliminary study using Ductilometer 
testing apparatus) (continued) 

Pair of Plates Data Sets 

Thickness of 
Adhesive Layer 

of Bitumen 
(µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength 
(kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit 

Volume (kJ/m
3
) 

C 

1 520 75 1160 1703 

2 580 70 1040 1115 

3 560 70 1030 1244 

4 540 50 1120 1444 

5 620 20 940 1231 

6 640 45 950 1223 

7 580 100 970 1273 

8 620 60 880 1024 

9 620 75 920 997 

10 680 40 790 1064 

11 540 70 1020 1567 

12 540 90 1200 1362 

13 560 85 1150 1143 

14 580 50 920 1011 

15 560 40 880 1225 

16 580 55 770 863 

17 540 50 750 949 

18 600 40 970 1023 

19 580 45 970 1005 

20 540 40 1090 1316 

Average 574 58 969 1149 

Standard Deviation 34 21 120 228 

Coefficient of Variation (%) 6 36 12 20 

5.4.4.1 Analysis of Thickness of Adhesive Layer of Bitumen 

The pair of plates was designed to result in the thickness of adhesive layer of 

bitumen of approximately 520 µm (0.520 mm). Analysis of the thickness of 

adhesive layer of bitumen was conducted in the same way as that for the 

INSTRON servo hydraulic frame, in order to determine the uniformity and 

repeatability between data sets and also to determine if significant difference 

Notes: 1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
3. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
4. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively  
5. Testing was conducted in wet conditioning in a temperature-controlled water bath at specified test 

temperature 
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exists between the measured and the theoretical thickness of 520 µm (0.520 

mm). 

The average, standard deviation and coefficient of variation of the data sets 

were 574 µm (0.574 mm), 34 and 6% respectively. The average, standard 

deviation and coefficient of variation of the thickness of adhesive layer of 

bitumen within the individual pair of plates (i.e. pair of plates A, B and C) were 

as follows; 568 µm (0.568 mm), 36 and 6% for pair of plates A, 574 µm (0.574 

mm), 25 and 4% for pair of plates B and 579 µm (0.579 mm), 41 and 7% for 

pair of plates C. Also, in terms of the uniformity of the average thickness of 

adhesive layer of bitumen between the individual pair of plates (i.e. pair of 

plates A, B and C), the standard deviation of 6 and the small percentage of 

coefficient of variation of 6% indicated the excellent uniformity. Therefore, it 

can be concluded that there is no significant difference in the thickness of 

adhesive layer of bitumen within and between the individual pair of plates (i.e. 

pair of plates A, B and C). 

Analysis was then conducted in order to determine if significant difference 

exists between the average measured thickness of adhesive layer of bitumen 

of 574 µm (0.574 mm) and the theoretical value of 520 µm (0.520 mm). A 

hypothesis test involving One-Sample t-Test procedure, at level of 

#123101)−3)∀,%4%(0%5657,%8−#%)(3∗+)∃∀∗.  
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The following hypotheses were then established. 

1. The null hypothesis, H0  

H0: %Ξ]  = 520 µm (0.520 mm)   

The average measured thickness of adhesive layer of bitumen is 520 µm 

(0.520 mm). 

2. The alternative hypothesis, H1 

H1: %Ξ]  9%520 µm (0.520 mm)    

The average measured thickness of adhesive layer of bitumen is not 520 

µm (0.520 mm). 

Based on MINITAB statistical analysis, the t-statistic, T was found to be 12.07 

(Figure 5.32). The decision rule for rejecting H0 based on the p-value 

approach is as follows. 

Reject H0 if p-!∀#∃%&∋(&()∀##%∗&+,∀−&#%!%#&./&(∋0−∋/∋1∀−1%2&34 

Otherwise, fail to reject H0 

 
 

Figure 5.32 MINITAB statistical analysis 
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Therefore, based on the value of t-statistic, T of 12.07 and also p-value of 

0.000, the null hypothesis, H0 1#%∋∀:∀)∃∀∗%−∃%∃;∀%.∀/∀.%(0%#123101)−3)∀,%4%(0%56576%

The analysis shows that significant statistical difference exists in the average 

measured thickness of adhesive layer of bitumen from the theoretical value of 

520 µm (0.520 mm). Hence, improved procedures for specimen preparation 

are required in order to achieve the thickness as close as possible to the 

required thickness of adhesive layer of bitumen (i.e. theoretical value). Again, 

the problem can be attributed to the high thickness of adhesive layer of 

bitumen, which has resulted in high resistance to compression. 

5.4.4.2 Analysis of Total Percentage Area of Adhesive Failure 

Figure 5.33 shows the left-side and right-side of a pair of plates after being 

subjected to testing. Based on Table 5.8, the average, standard deviation and 

coefficient of variation of the data sets were 58%, 21 and 36% respectively. 

The total percentage area of adhesive failure was in the range of 20% and 

100%, which justified the large percentage of coefficient of variation, and thus 

indicated the high variability or distribution of the data sets. Also, the average, 

standard deviation and coefficient of variation of the total percentage area of 

adhesive failure within the individual pair of plates (i.e. pair of plates A, B and 

C) were as follows; 65%, 21 and 32% for pair of plates A, 52%, 21 and 40% 

for pair of plates B and 59%, 20 and 35% for pair of plates C. 

Since the area of contact between bitumen and substrates is small (i.e. 200 

mm2), the high variability or distribution of the data sets was attributed to the 

thickness of adhesive layer of bitumen. High thickness of adhesive layer of 

bitumen was found to result in cobwebbing, as shown in Figure 5.34. Due to 

the occurrence of cobwebbing and also the testing that was conducted in wet 



CHAPTER 5                                                  PART 2: DEVELOPMENT OF CRITERIA AND PROCEDURES  

 

 184

conditioning in a temperature-controlled water bath, determination of the types 

of failure of the specimens becomes more complicated. The presence of water 

has resulted in some of the strings or strands of the cobwebbing re-adhering 

to the surface of the area of contact between bitumen and substrates, and 

thus influenced the observation of the types of failure. Results of the total 

percentage area of adhesive failure have been grouped as in Table 5.9, and a 

plot has been deduced as shown in Figure 5.35. Based on Figure 5.35, the 

mode of failure can be classified as mixed cohesive and adhesive.  

 

 Figure 5.34 Cobwebbing 

Left-side Right-side 

Figure 5.33 Left-side and right-side of a pair of plates after being 
subjected to testing 
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Table 5.9 Results based on grouped total percentage area of adhesive 
failure  

Total Percentage Area of 
Adhesive Failure (%) 

Number of Specimens, n Percentage (%) 

0 0 0 

5 0 0 

10 0 0 

15 0 0 

20 2 3 

25 1 2 

30 2 3 

35 1 2 

40 11 18 

45 5 8 

50 7 12 

55 2 3 

60 5 8 

65 2 3 

70 9 15 

75 2 3 

80 1 2 

85 1 2 

90 5 8 

95 1 2 

100 3 5 

 

 
Figure 5.35 Histogram of total percentage area of adhesive failure 
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5.4.4.3 Analysis of Maximum Tensile Bond Strength 

Based on Table 5.8, the value of the maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact) for each pair of plates was in 

the range of 680 kPa and 1210 kPa, with values for average, standard 

deviation and coefficient of variation of 969 kPa, 120 and 12% respectively. 

The average, standard deviation and coefficient of variation of the measured 

maximum tensile bond strength within the individual pair of plates (i.e. pair of 

plates A, B and C) were as follows; 981 kPa, 113 and 11% for pair of plates A, 

946 kPa, 120 and 13% for pair of plates B and 976 kPa, 128 and 13% for pair 

of plates C. Large percentage of coefficient of variation as compared to the 

predefined cut-off value of 7% indicates the high variability or distribution of 

the measured maximum tensile bond strength. This was further verified based 

on the spread of the distribution of the data sets for the measured maximum 

tensile bond strength (i.e. within the range of approximately 650 kPa and 1350 

kPa), as shown in Figure 5.36. Based on Figure 5.36, the values of the 

measured maximum tensile bond strength tend to be flatter and more spread 

out. Again, high variability or distribution of the measured maximum tensile 

bond strength was attributed to the thickness of adhesive layer of bitumen and 

the occurrence of cobwebbing. The average value of the maximum tensile 

bond strength (i.e. 969 kPa) was in the range of the expected value, as 

compared to the data of the test results of the preliminary study using 

INSTRON servo hydraulic frame (i.e. 851 kPa with the average thickness of 

adhesive layer of bitumen of 816 µm). 
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5.4.4.4 Analysis of Tensile Energy Required to Produce Failure Per Unit 

Volume 

As has been stated before, tensile energy required to produce failure per unit 

volume was calculated based on the area under the curve of graph of tensile 

load versus pull off displacement per unit volume of the adhesive layer of 

bitumen. Based on Table 5.8, the average, standard deviation and coefficient 

of variation of the data sets for the tensile energy required to produce failure 

per unit volume were 1149 kJ/m3, 228 and 20% respectively. Also, the 

average, standard deviation and coefficient of variation of the tensile energy 

required to produce failure per unit volume within the individual pair of plates 

(i.e. pair of plates A, B and C) were as follows; 1110 kJ/m3, 253 and 23% for 

pair of plates A, 1147 kJ/m3, 219 and 19% for pair of plates B and 1189 kJ/m3, 

215 and 18% for pair of plates C. Also, based on the Figure 5.37, the data of 

Figure 5.36 Distribution of maximum tensile bond strength 
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the tensile energy required to produce failure per unit volume tend to be flatter 

and more spread out. 

 

5.4.5 Summary of Preliminary Study Using Ductilometer Testing 

Apparatus 

In this section, initial development of criteria and procedures for the proposed 

adhesion test method based on the Ductilometer testing apparatus was 

conducted, mainly based on the BS EN 13398:2003 Methods of Test for 

Petroleum and Its Products-BS 2000-516: Bitumen and Bituminous Binders-

Determination of the Elastic Recovery of Modified Bitumen. Design and 

fabrication of moulds, which consist of pair of aluminium alloy plates providing 

area of contact between bitumen and substrates of 20 mm by 10 mm were 

established. However, it should be noted that there is limitation in the range of 

Figure 5.37 Distribution of tensile energy required to produce failure per 
unit volume 



CHAPTER 5                                                  PART 2: DEVELOPMENT OF CRITERIA AND PROCEDURES  

 

 189

the tensile load that can be recorded using the Ductilometer testing apparatus 

(i.e. up to 300 N) and also inability of the Ductilometer testing apparatus in 

conducting test in dry conditioning over wide ranges of test temperatures. 

Data of the test results was found to be highly variable and mode of failure for 

the tested specimens can be classified as mixed cohesive and adhesive. 

However, the average value of the maximum tensile bond strength (i.e. 969 

kPa) was in the range of the expected value, as compared to the data of the 

test results of preliminary study using INSTRON servo hydraulic frame.  

5.5 Subsequent Study Using Ductilometer Testing Apparatus 

Results of the preliminary study in the previous section were used as point of 

reference in order to refine the criteria and procedures for the proposed 

adhesion test method based on the Ductilometer testing apparatus. Reduction 

of the thickness of adhesive layer of bitumen of 520 µm (0.520 mm) was 

suggested in order to allow for the occurrence of the adhesive mode of failure 

and at the same time maintaining the uniformity and repeatability of the test 

results. However, it should be noted that as the thickness of adhesive layer of 

bitumen is reduced, the value of the maximum tensile bond strength is 

expected to increase. Since there is limitation in the range of the tensile load 

that can be measured using the Ductilometer testing apparatus (i.e. up to 300 

N), modification of the pair of plates was required in the first place. The 

modification of the pair of plates was made by reducing the area of contact 

between bitumen and substrates to 10 mm by 10 mm (i.e. 100 mm2), as 

shown in Figure 5.38. The optimum thickness of adhesive layer of bitumen 

that can result in the adhesive mode of failure and at the same time 

maintaining the uniformity and repeatability of the test results was selected to 
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be 50 µm (0.050 mm). The selection was made by referring to the data of the 

test results of the subsequent study using INSTRON servo hydraulic frame. 

 

Procedures for specimen preparation were still based on the procedures that 

have been developed in the previous section, and the only modification was 

the reduction of the area of contact between bitumen and substrates of the 

pair of plates. In this section, data analysis was conducted in order to validate 

the value of the selected thickness of adhesive layer of bitumen in resulting 

the adhesive mode of failure and also to evaluate the uniformity and 

repeatability of the test results. Also, further evaluation was undertaken in 

order to generally observe the effect of various testing conditions (i.e. 

deformation rates and test temperatures) on the test results and to validate the 

capability of the Ductilometer testing apparatus in conducting adhesion test 

method. Table 5.10 shows the experimental matrix for the subsequent study. 

Specimens were subjected to dry conditioning at specified test temperature for 

24 hours prior to testing. Again, testing was conducted in wet conditioning in a 

temperature-controlled water bath at specified test temperature. 

  

Figure 5.38 Modified pair of plates 
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Table 5.10 Experimental matrix for subsequent study 

  Test Temperature (°C) 

  10 15 20 25 30 
D

e
fo

rm
a
ti
o

n
 

R
a
te

 

(m
m

/m
in

u
te

) 10 
5 

Specimens 
5 

Specimens 
5 

Specimens 
5 

Specimens 
5 

Specimens 

20 
5 

Specimens 
5 

Specimens 
5 

Specimens 
60 

Specimens 
5 

Specimens 

30 
5 

Specimens 
5 

Specimens 
5 

Specimens 
5 

Specimens 
5 

Specimens 

 

5.5.1 Data Analysis of Subsequent Study using Ductilometer Testing 

Apparatus 

Table 5.11 shows the data of the test results of the subsequent study, in which 

a total of 60 specimens was subjected to testing at fixed deformation rate and 

test temperature of 20 mm/minute and 25°C respectively. 
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Table 5.11 Data of the test results (Subsequent study using Ductilometer 
testing apparatus) 

Pair of Plates Data Sets 

Thickness of 
Adhesive Layer 

of Bitumen 
(µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength 
(kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit 

Volume (kJ/m
3
) 

A 

1 50 90 1310 2185 

2 50 100 1410 2865 

3 50 100 1250 2835 

4 50 100 1300 1681 

5 60 95 1260 1835 

6 50 100 1320 2068 

7 50 100 1460 2058 

8 50 100 1190 2140 

9 50 95 1250 2665 

10 60 90 1310 2077 

11 50 100 1320 1508 

12 50 100 1380 1706 

13 50 100 1200 1618 

14 50 100 1410 1703 

15 50 100 1440 2123 

16 50 100 1380 2140 

17 50 100 1240 1683 

18 60 90 1340 1912 

19 50 100 1280 1872 

20 50 100 1340 1945 

B 

1 60 90 1380 1578 

2 50 100 1380 2203 

3 50 90 1370 2863 

4 50 100 1350 2078 

5 50 100 1330 2583 

6 50 95 1310 1848 

7 50 100 1290 1660 

8 50 100 1250 1990 

9 50 100 1330 2072 

10 50 95 1350 2058 

11 60 100 1240 1882 

12 50 100 1320 1553 

13 50 95 1370 1404 

14 50 100 1340 1575 

15 50 100 1260 1547 

16 60 100 1310 1680 

17 60 95 1280 1537 

18 50 100 1340 2598 

19 50 95 1380 2458 

20 50 100 1250 1628 
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Table 5.11 Data of the test results (Subsequent study using Ductilometer 
testing apparatus) (continued) 

Pair of Plates Data Sets 

Thickness of 
Adhesive Layer 

of Bitumen 
(µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength 
(kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit 

Volume (kJ/m
3
) 

C 

1 50 100 1330 1355 

2 60 100 1310 1372 

3 50 100 1380 1690 

4 60 95 1320 1720 

5 50 100 1180 2028 

6 50 100 1250 1872 

7 50 100 1410 1718 

8 50 95 1260 1279 

9 50 100 1430 1410 

10 50 100 1460 1518 

11 50 95 1230 1973 

12 50 100 1300 1665 

13 50 85 1350 2545 

14 50 100 1400 2045 

15 50 100 1260 1893 

16 50 100 1230 1762 

17 60 95 1320 1820 

18 50 100 1280 1525 

19 50 100 1330 1352 

20 50 100 1360 1855 

Average 52 98 1320 1897 

Standard Deviation 4 4 66 390 

Coefficient of Variation (%) 7 4 5 21 

 
5.5.1.1 Analysis of Thickness of Adhesive Layer of Bitumen 

Pair of plates was designed to result in the thickness of adhesive layer of 

bitumen of 50 µm (0.050 mm). Based on the data of the test results in Table 

5.11, the average measured thickness of adhesive layer of bitumen was 52 

µm (0.052 mm) with the value of standard deviation and coefficient of variation 

were 4 and 7% respectively.  

Notes: 1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
3. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
4. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively  
5. Testing was conducted in wet conditioning in a temperature-controlled water bath at specified test 

temperature 
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The average, standard deviation and coefficient of variation of the thickness of 

adhesive layer of bitumen within the individual pair of plates (i.e. pair of plates 

A, B and C) were as follows; 52 µm (0.052 mm), 4 and 7% for pair of plates A, 

52 µm (0.052 mm), 4 and 8% for pair of plates B and 52 µm (0.052 mm), 4 

and 7% for pair of plates C. Also, in terms of the uniformity of the average 

thickness of adhesive layer of bitumen between the individual pair of plates 

(i.e. pair of plates A, B and C), the standard deviation of 0 and the small 

percentage of coefficient of variation of 0% indicated the excellent uniformity 

and repeatability. 

Analysis was then conducted in order to determine if significant difference 

exists between the average measured thickness of adhesive layer of bitumen 

of 52 µm (0.052 mm) and the theoretical value of 50 µm (0.050 mm). A 

hypothesis test involving One-Sample t-Test procedure, at level of 

#123101)−3)∀,%4%(0%5657,%8−#%∃;∀3%)(3∗+)∃∀∗6%Φ−∃−%(0%∃;∀%measured thickness 

of adhesive layer of bitumen was assumed to be normally distributed. 

The following hypotheses were then established.  

1. The null hypothesis, H0  

H0: %Ξ]  = 50 µm (0.050 mm)    

The average measured thickness of adhesive layer of bitumen is 50 µm 

(0.050 mm). 

2. The alternative hypothesis, H1 

H1: %Ξ]  9%75 µm (0.050 mm)      

The average measured thickness of adhesive layer of bitumen is not 50 

µm (0.050 mm). 
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Based on MINITAB statistical analysis, the t-statistic, T was found to be 3.44 

(Figure 5.39). The decision rule for rejecting H0 based on the p-value 

approach is as follows. 

Reject H0 if p-!∀#∃%&∋(&()∀##%∗&+,∀−&#%!%#&./&(∋0−∋/∋1∀−1%2&34 

Otherwise, fail to reject H0. 

 

Based on the value of t-statistic, T of 3.44 and also p-value of 0.001, the null 

hypothesis, H0 1#% ∋∀:∀)∃∀∗%−∃% ∃;∀% .∀/∀.%(0%#123101)−3)∀,%4%(0%56576%!;∀∋∀0(∋∀,% 1∃%

can be concluded that there is sufficient evidence of significant statistical 

difference in the average measured thickness of adhesive layer of bitumen 

from the theoretical value of 50 µm (0.050 mm). Although the procedures for 

specimen preparation had been improved by reducing the thickness of 

adhesive layer of bitumen and also the area of contact between bitumen and 

substrates, it is still insufficient in achieving the thickness as close as possible 

to the required thickness (i.e. theoretical value). The problem can be attributed 

to the insufficient pressure being applied to clamp the specimen. During the 

specimen preparation, pair of plates was clamped by manually tightening (i.e. 

by hand) the bolt mounted on the base plate, in order to achieve the required 

Figure 5.39 MINITAB statistical analysis 
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thickness of adhesive layer of bitumen and also the full adhesive bond 

strength between adhesive layer of bitumen and substrates.  

5.5.1.2 Analysis of Total Percentage Area of Adhesive Failure 

Based on Table 5.11, the average, standard deviation and coefficient of 

variation of the data sets for the total percentage area of adhesive failure were 

98%, 4 and 4% respectively. The total percentage area of adhesive failure 

was in the range of 85% and 100%, which is considered as sufficient to 

indicate the occurrence of the adhesive mode of failure. Also, the average, 

standard deviation and coefficient of variation of the total percentage area of 

adhesive failure within the individual pair of plates (i.e. pair of plates A, B and 

C) were as follows; 98%, 4 and 4% for pair of plates A, 98%, 3 and 4% for pair 

of plates B and 98%, 4 and 4% for pair of plates C. Small percentage of 

coefficient of variation indicated the excellent uniformity and repeatability of 

the data sets for the total percentage area of adhesive failure. The occurrence 

of cobwebbing was minimised due to the reduction of thickness of adhesive 

layer of bitumen, and hence the problem related to the strings or strands of the 

cobwebbing that re-adhere to the surface of the area of contact between 

bitumen and substrates during the testing was solved. Results of the total 

percentage area of adhesive failure have been grouped as in Table 5.12, and 

a plot has been deduced as shown in Figure 5.40. Based on Figure 5.40, data 

of the total percentage area of adhesive failure was found to be skewed to the 

left, which indicates the mode of failure to be adhesive. 
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Table 5.12 Results based on grouped total percentage area of adhesive 
failure  

Total Percentage Area of 
Adhesive Failure (%) 

Number of Specimens, n Percentage (%) 

0 0 0 

5 0 0 

10 0 0 

15 0 0 

20 0 0 

25 0 0 

30 0 0 

35 0 0 

40 0 0 

45 0 0 

50 0 0 

55 0 0 

60 0 0 

65 0 0 

70 0 0 

75 0 0 

80 0 0 

85 1 2 

90 5 8 

95 11 18 

100 43 72 

 

 
Figure 5.40 Histogram of total percentage area of adhesive failure 
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5.5.1.3 Analysis of Maximum Tensile Bond Strength 

Based on Table 5.11, the value of the maximum tensile bond strength (i.e. 

maximum tensile load per unit area of contact) for each pair of plates was in 

the range of 1180 kPa and 1460 kPa, with values for average, standard 

deviation and coefficient of variation of 1320 kPa, 66 and 5% respectively. The 

average value of the maximum tensile bond strength (i.e. 1320 kPa) was 

higher compared to the average value of the maximum tensile bond strength 

of the preliminary study, which was attributed to the reduction of the thickness 

of adhesive layer of bitumen. Also, the average, standard deviation and 

coefficient of variation of the measured maximum tensile bond strength within 

the individual pair of plates (i.e. pair of plates A, B and C) were as follows; 

1320 kPa, 77 and 6% for pair of plates A, 1322 kPa, 46 and 4% for pair of 

plates B and 1320 kPa, 73 and 6% for pair of plates C. The small percentage 

of coefficient of variation indicated the excellent uniformity and repeatability of 

the data sets, as verified in Figure 5.41. 
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5.5.1.4 Analysis of Tensile Energy Required to Produce Failure Per Unit 

Volume 

Based on Table 5.11, the average, standard deviation and coefficient of 

variation of the data sets for the tensile energy required to produce failure per 

unit volume were 1897 kJ/m3, 390 and 21% respectively. The average, 

standard deviation and coefficient of variation of the tensile energy required to 

produce failure per unit volume within the individual pair of plates (i.e. pair of 

plates A, B and C) were as follows; 2031 kJ/m3, 383 and 19% for pair of plates 

A, 1940 kJ/m3, 421 and 22% for pair of plates B and 1720 kJ/m3, 307 and 18% 

for pair of plates C. As has been stated before, the high variability of the data 

sets can be attributed to the estimation errors due to the curve fitting 

procedures (i.e. uncertainty that presents in a curve that is fitted to the data 

sets) and the parameters that governed the values of the tensile energy 

required to produce failure per unit volumes. Based on Figure 5.42, the values 

Figure 5.41 Distribution of maximum tensile bond strength 
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of the data sets tend to be flatter and spread out within the large range of 1250 

kJ/m3 and 3050 kJ/m3. 

 

5.5.1.5 Analysis to Determine the Effect of Various Testing Conditions 

on the Test Results  

Table 5.13 shows the data of the test results over wide ranges of deformation 

rates and test temperatures. Tensile energy required to produce failure per 

unit volume was not included in order to simplify the analysis. Based on the 

data of the test results, the following plots have been deduced, as shown in 

Figures 5.43 to 5.45. Again, the error bar represents the one-standard 

deviation above and below the average maximum tensile bond strength for 

Figures 5.43 and 5.44, and the one-standard deviation above and below the 

average total percentage area of adhesive failure for Figure 5.45, respectively.  

Figure 5.42 Distribution of tensile energy required to produce failure per 
unit volume  
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Table 5.13 Data of the test results over wide ranges of deformation rates 
and test temperatures (Subsequent study using Ductilometer testing 
apparatus) 

Deformation 
Rate 

(mm/minute) 

Test 
Temperature 

(°C) 
Data Sets 

Thickness of 
Adhesive 
Layer of 

Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength 
(kPa) 

10 
(0.167 mm/s) 

10 

1 50 100 1550 

2 50 100 1530 

3 60 100 1590 

4 50 100 1470 

5 50 100 1690 

15 

1 50 100 1440 

2 50 100 1430 

3 50 100 1480 

4 50 100 1380 

5 60 100 1490 

20 

1 50 100 1330 

2 50 100 1390 

3 50 100 1320 

4 60 100 1400 

5 50 100 1470 

25 

1 50 100 1270 

2 50 90 1280 

3 50 100 1290 

4 60 95 1300 

5 60 90 1310 

30 

1 60 80 1180 

2 50 95 1150 

3 50 85 1130 

4 50 90 1180 

5 60 100 1190 

20 
(0.333 mm/s) 

10 

1 50 100 1620 

2 50 100 1690 

3 50 100 1610 

4 50 100 1740 

5 50 100 1700 

15 

1 50 100 1510 

2 60 100 1520 

3 50 100 1550 

4 60 100 1610 

5 50 100 1490 

20 

1 50 100 1450 

2 60 100 1440 

3 50 100 1420 

4 50 100 1340 

5 50 100 1380 

25 

1 50 100 1350 

2 50 100 1340 

3 50 90 1290 

4 50 100 1340 

5 60 100 1310 

30 

1 50 100 1230 

2 60 90 1280 

3 50 100 1290 

4 50 95 1270 

5 60 90 1110 
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Table 5.13 Data of the test results over wide ranges of deformation rates 
and test temperatures (Subsequent study using Ductilometer testing 
apparatus) (continued) 

Deformation 
Rate 

(mm/minute) 

Test 
Temperature 

(°C) 
Data Sets 

Thickness of 
Adhesive 
Layer of 

Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength 
(kPa) 

30 
(0.500 mm/s) 

10 

1 50 100 1770 

2 50 100 1730 

3 50 100 1680 

4 60 100 1720 

5 50 100 1890 

15 

1 50 100 1620 

2 50 100 1730 

3 50 100 1520 

4 60 100 1680 

5 50 100 1620 

20 

1 50 100 1520 

2 60 100 1550 

3 50 100 1519 

4 50 100 1490 

5 50 100 1470 

25 

1 50 100 1340 

2 50 100 1450 

3 50 95 1420 

4 50 100 1410 

5 50 100 1320 

30 

1 50 90 1380 

2 50 100 1330 

3 60 95 1280 

4 50 100 1320 

5 50 100 1320 

 

 

 

 
 
 
 
 
 

Notes: 1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen  
3. Conditioning Procedures: Dry conditioning at specified test temperature for 24 hours prior to 

testing 
4. Testing was conducted in wet conditioning in a temperature-controlled water bath at specified 

test temperature 
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Figure 5.44 Relationship between maximum tensile bond strength and 
test temperature over wide ranges of deformation rates 

 

Figure 5.43 Relationship between maximum tensile bond strength and 
deformation rate over wide ranges of test temperatures  
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Based on Figure 5.43, as expected, the maximum tensile bond strength was 

found to increase with the increasing deformation rate for all specified test 

temperatures. At a certain value of deformation rate, the maximum tensile 

bond strength of low-test temperature was higher compared to the maximum 

tensile bond strength of high-test temperature. A directly proportional 

relationship exists between maximum tensile bond strength and deformation 

rate with constant shift due to the increasing or decreasing of the test 

temperature. The values of the coefficient of determination, R! greater than 

0.80 indicate a reasonable fits for the data sets. 

Also, based on Figure 5.44, an inversely proportional relationship was 

observed, which indicated that as the test temperature is increased, the 

maximum tensile bond strength will decrease. Again, constant shift due to the 

increasing or decreasing deformation rate was found with the value of 

Figure 5.45 Relationship between total percentage area of adhesive 
failure and test temperature over wide ranges of deformation rates 
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coefficient of determination, R! of more than 0.95. Based on Figure 5.45, 

deformation rate and test temperature were found to have a profound 

influence on the types of failure of specimens of either adhesive or cohesive, 

apart from the thickness of adhesive layer of bitumen. As the test temperature 

was increased or the deformation rate was decreased, mode of failure was 

expected to change from adhesive to cohesive. Again, at high test 

temperature of more than 25°C, high variability or distribution of the data sets 

was observed, as represented by the error bar of one-standard deviation 

above and below the average total percentage area of adhesive failure. 

5.5.2 Summary of Subsequent Study using Ductilometer Testing 

Apparatus  

In this section, the modifications that have been conducted following the 

completion of the preliminary study were the reduction of the thickness of 

adhesive layer of bitumen to 50 µm (0.050 mm) and the area of contact 

between bitumen and substrates to 100 mm2. Procedures for specimen 

preparation were still based on the previously developed procedures. 

However, data of the thickness of adhesive layer of bitumen was found to 

result in significant statistical difference from the theoretical value of 50 µm 

(0.050 mm), which indicated the need for further improvements in terms of the 

procedures for specimen preparation. Due to the reduction of thickness of 

adhesive layer of bitumen, the occurrence of cobwebbing was minimised and 

the problem related to the strings or strands of the cobwebbing that re-adhere 

to the surface of the area of contact between bitumen and substrates during 

the testing, was solved. The ranges of suitable testing conditions in terms of 

deformation rate and test temperature was found to be the same as the 
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subsequent study using INSTRON servo hydraulic frame (i.e. within 10 

mm/minute and 20 mm/minute, and 15°C and 25°C, respectively) 

5.6 Conclusions 

In this chapter, two testing equipments (i.e. INSTRON servo hydraulic frame 

and Ductilometer testing apparatus), which have been identified as capable to 

conduct the adhesion test method based on the pull off (tension) mode, were 

subjected to evaluation. Development of criteria and procedures in terms of 

test setup and apparatus, specimen preparation, testing and data analysis for 

both of the INSTRON servo hydraulic frame and Ductilometer testing 

apparatus were established. Based on the preliminary and subsequent study, 

data of the test results was summarised and presented in Table 5.14. 
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Table 5.14 Summary of data of the test results of Part 2: Development of 
Criteria and Procedures for the Proposed Adhesion Test Method 

 

Area of 
Contact 
between 

Bitumen and 
Substrates 

(mm
2
) 

Thickness of Adhesive 
Layer of Bitumen Average 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Average 
Maximum 
Tensile 
Bond 

Strength 
(kPa) 

Average 
Tensile 
Energy 

Required to 
Produce 

Failure Per 
Unit Volume 

(kJ/m
3
) 

Average 
(µm) 

Evidence of 
Significant 
Statistical 
Difference  

Preliminary 
Study -

INSTRON 
Servo 

Hydraulic 
Frame 

10,000 
816  

(COV = 2%) 
YES 

23  
(COV = 
37%) 

Cohesive 
Failure 

851  
(COV = 9%) 

982  
(COV = 
17%) 

Subsequent 
Study - 

INSTRON 
Servo 

Hydraulic 
Frame 

490.87 
51 

(COV = 4%) 
NO 

99  
(COV =  

2%) 
Adhesive 
Failure 

1306  
(COV = 5%) 

2159  
(COV = 
20%) 

Preliminary 
Study - 

Ductilometer 
Testing 

Apparatus
1 

200 
574 

(COV = 6%) 
YES 

58  
(COV = 
36%) 
Mixed 
Failure 

969 
(COV = 
12%) 

1149 
(COV = 
20%) 

Subsequent 
Study - 

Ductilometer 
Testing 

Apparatus
1 

100 
52  

(COV = 7%) 
YES 

98 
(COV =  

4%) 
Adhesive 
Failure 

1320  
(COV = 5%) 

1897  
(COV = 
21%) 

Notes: 
1. 

1
Testing was conducted in wet conditioning in a temperature-controlled water bath at specified 

test temperature  
2. COV: Coefficient of Variation 
3. Substrates: Aluminium alloy 
4. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
5. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
6. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 

respectively   

 

The optimum thickness of adhesive layer of bitumen that can result in the 

adhesive mode of failure and at the same time maintaining the uniformity and 

repeatability of the test results was selected to be 50 µm (0.050 mm). Based 

on Marek and Herrin (1968), too low thickness of adhesive layer of bitumen 

could compromise the precision in the measurement and even a very small 

difference of thickness between data sets could result in significant difference 

in the test results. Hence, 50 µm (0.050 mm) was considered as sufficient to 

result in adhesive mode of failure with excellent uniformity and repeatability of 
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the test results. However, there is limitation in the measurement since the 

micrometer being used can only measure to the nearest 10 µm (0.010 mm). It 

is suggested that the measurement of the thickness of adhesive layer of 

bitumen be improved via a more precise measurement tools. 

Also, total conditioning time of 24 hours has been considered as the standard 

conditioning procedures for both dry and wet conditionings, regardless of the 

substrates. Temperature for the conditioning procedures was dependent on 

the test temperature. Based on Copeland (2007), the optimum time required 

for the conditioning procedures is suggested to be within 8 hours to 24 hours. 

A standard procedure in determining the types of failure of the specimens was 

developed, as presented in Appendix B. Adhesive mode of failure was 

characterised by the value of the total percentage area of adhesive failure of 

more than 90%.  

Based on the data of the test results in Table 5.14, INSTRON servo hydraulic 

frame was found to be the most suitable and practical testing equipment 

compared to the Ductilometer testing apparatus. Test setup and apparatus 

and procedures for specimen preparation based on the subsequent study 

using INSTRON servo hydraulic frame were proven capable of producing 

specimen as close as possible to the required thickness of adhesive layer of 

bitumen (i.e. theoretical value). In terms of the uniformity and repeatability of 

the test results, except for the tensile energy required to produce failure per 

unit volume, all parameters have resulted in coefficient of variation of less than 

7%. High variability of the data sets for tensile energy required to produce 

failure per unit volume can be correlated with the estimation errors due to the 

curve fitting procedures (i.e. uncertainty that presents in a curve that is fitted to 

the data sets) and also the various parameters that governed the values of the 
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tensile energy required to produce failure per unit volumes such as tensile 

load, pull off displacement, thickness of adhesive layer of bitumen and total 

percentage area of adhesive failure. 

Other factors favouring INSTRON servo hydraulic frame as testing equipment 

were the limitation in the tensile load that can be measured using Ductilometer 

testing apparatus and inability of the Ductilometer testing apparatus in 

conducting test in dry conditioning over wide ranges of test temperatures. 

Also, design of the test setup and apparatus based on the subsequent study 

using INSTRON servo hydraulic frame was found practical, as outlined below.  

1. Ability to allow for the insertion of various types of aggregates as 

substrates in the form of 25 mm diameter discs. 

2. Ability to condition the specimen in water. 

3. Ability to cater for various thicknesses of adhesive layer of bitumen. 

4. Ability to uniformly distribute axial tensile load throughout the coated 

surface of specimen. 

5. Eliminate edge effect due to the selection of circle (i.e. disc) as geometry 

for area of contact between bitumen and substrates. 

Based on the comparison of the data of the test results with the data of the 

literature review and analysis of the past studies conducted by Copeland 

(2007), Kanitpong and Bahia (2003) and Marek and Herrin (1968), as 

summarised in Table 5.15, it can be concluded that the value of the average 
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maximum tensile bond strength of 1306 kPa was comparable to the other 

studies. Difference in the testing variables and parameters such as 

penetration grade of bitumen, testing conditions (i.e. deformation rates and 

test temperatures) and thickness of adhesive layer of bitumen justified the 

differences in the maximum tensile bond strength. Adhesion test method 

conducted by Marek and Herrin (1968) using a 1-inch diameter pair of 

cylindrical test blocks was found to be the closely matched to the proposed 

adhesion test method, in terms of the area of contact between bitumen and 

substrates, thickness of adhesive layer bitumen, deformation rate and test 

temperature. However, average maximum tensile bond strength of 4075 kPa 

of Marek and Herrin (1968) was higher compared to the 1306 kPa of the 

conducted study, which can be attributed to the difference in the penetration 

grade of bitumen. It should be noted that the asphalt cement K used by Marek 

and Herrin (1968) has lower penetration grade of bitumen (i.e. 52) and thus 

justify the high value of the tensile bond strength. Hence, criteria and 

procedures for the proposed adhesion test method were established based on 

the subsequent study using INSTRON servo hydraulic frame. Draft of 

standard criteria and procedures for laboratory adhesion test method using 

INSTRON servo hydraulic frame is presented in Appendix C. Also, based on 

the study of the adhesion test method conducted over wide ranges of testing 

conditions, the ranges of suitable deformation rate and test temperature were 

suggested to be 10 mm/minute and 20 mm/minute, and 15°C and 25°C 

respectively. However, no definite conclusion can be made yet due to the 

limited number of tested specimens.  
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Table 5.15 Comparison of data of test results with data of literature 
review and analysis of past studies 

 Brief Descriptions 

Area of 
Contact 
between 

Bitumen and 
Substrates 

(mm
2
) 

Average 
Thickness of 

Adhesive 
Layer of 

Bitumen (µm) 

Average 
Maximum 

Tensile Bond 
Strength 

(kPa) 

Data of 
Conducted 

Study Γ 
Subsequent 
Study Using 
INSTRON 

Servo 
Hydraulic 

Frame 

Substrates Aluminium alloy 

490.87 50 1306 
Adhesive 
Materials 

Conventional 70/100 
penetration grade of bitumen 
(Penetration at 25°C is 68) 

Testing 
Conditions 

Deformation rate and test 
temperature of 20 

mm/minute and 25°C 

Source: 
Marek and 

Herrin (1968) 

Substrates Aluminium alloy 

506.71 60 4075 
Adhesive 
Materials 

Asphalt cement K 
(Penetration at 25°C is 52) 

Testing 
Conditions 

Deformation rate and test 
temperature of 25.4 

mm/minute and 25°C 

Source: 
Kanitpong 
and Bahia 

(2003) 

Substrates Glass 

126.68 200 1982 
Adhesive 
Materials 

PG 58-28 

Testing 
Conditions 

Deformation rate of 65.7 
kPa/second at room 

temperature 

Source: 
Copeland 

(2007) 

Substrates Diabase 

1520.53 200 1910 
Adhesive 
Materials 

AAM (PG64-16) 

Testing 
Conditions 

Deformation rate of 65.7 
kPa/second at room 

temperature 

Notes: All data of the test results were obtained from specimens subjected to dry conditioning 
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CHAPTER 6 

PART 3: DETAILED EVALUATION AND VALIDATION OF THE PROPOSED 

ADHESION TEST METHOD 

6.1 General Background  

This part is a continuation from the previous part (i.e. Part 2: Development of 

Criteria and Procedures for the Proposed Adhesion Test Method) where the 

established criteria and procedures in terms of test setup and apparatus, 

specimen preparation, testing and data analysis will be subjected to further 

evaluation. The main objective of this part was to further evaluate the 

established criteria and procedures in quantifying the adhesive bond strength 

and failure characteristics of various combinations of asphalt mixture materials 

(i.e. bitumen (bitumen-filler mastic) and aggregates) over wide ranges of 

thicknesses of adhesive layer of bitumen, aspect ratio of specimens, testing 

conditions (i.e. deformation rates and test temperatures) and conditioning 

procedures (i.e. dry and wet conditionings). Results of the study will be 

subjected to comparative analysis in order to determine the effect of various 

variables and parameters on the test results, to propose suitable testing 

conditions and to validate the reliability and efficiency of the proposed 

adhesion test method.  

In the previous part, the development of criteria and procedures for the 

proposed adhesion test method was conducted generally without emphasis on 

using various combinations of asphalt mixture materials and various 

conditioning procedures. Aluminium alloy, conventional 70/100 penetration 

grade of bitumen and dry conditioning for 24 hours prior to testing were the 
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selected asphalt mixture materials (i.e. substrates and adhesive materials) 

and conditioning procedures for the previous part, respectively. Hence, in 

order to achieve the main objective of this part and also to enable for the 

generalisation of conclusions for the whole study, various combinations of 

asphalt mixture materials over wide ranges of testing conditions were 

evaluated. 

Based on the conclusions of the previous part, INSTRON servo hydraulic 

frame was selected as standard testing equipment, and the draft of standard 

criteria and procedures for the laboratory adhesion test method are presented 

in Appendix C. However, the pair of plates which allow for the insertion of 

various types of aggregates as substrates in the forms of 25 mm diameter 

discs, had drawbacks due to difficulty in removing the excess bitumen (i.e. 

overfilling) at the edges of the specimens, as shown in Figure 6.1. Based on 

Marek and Herrin (1968), excess bitumen at the edges of the specimens 

should be removed prior to testing in order to prevent any discrepancy and 

inaccuracy. However, different conclusions have been drawn regarding the 

effect of the amount of poured bitumen (i.e. under filling, sufficiently filled or 

overfilling) on the test results. Hence, a simple analysis regarding this issue 

was conducted.   

 
Figure 6.1 Excess bitumen (i.e. overfilling) at the edges of specimen 

Excess Bitumen 
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6.1.1 Analysis of Treatment Effect in Terms of the Amount of Poured 

Bitumen  

Analysis was required to determine whether there is a treatment effect in 

terms of the amount of poured bitumen on the test results. The following 

treatments based on the different amount of poured bitumen were considered 

in the analysis; under filling, sufficiently filled and overfilling. The terms of 

under filling and overfilling referred to the amount of poured bitumen that has 

been reasonably filled below and beyond the sufficiently filled, respectively. 

One-way analysis of variance (ANOVA) was conducted with level of 

signi01)−3)∀,%4%(0%5657%in order to analyse and compare the average maximum 

tensile bond strength (i.e. maximum tensile load per unit area of contact) of 

the considered treatments. 

Maximum tensile bond strength was calculated as follows; maximum tensile 

load divided by the unit area of contact. Since the actual area of contact 

between bitumen and substrates is realistically difficult to be measured, the 

following assumptions were made; area of contact between bitumen and 

substrates is considered constant, regardless of the considered treatments 

(i.e. under filling, sufficiently filled or overfilling), and the discrepancy and 

inaccuracy due to the area of contact between bitumen and substrates 

subjected to the under filling and overfilling can be minimised by pouring the 

bitumen to reasonably fill below and beyond the sufficiently filled, respectively. 

Data of the test results based on the considered treatments were presented in 

Tables 6.1 to 6.3. The average maximum tensile bond strength for the 

considered treatments of under filling, sufficiently filled and overfilling were 
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1273 kPa, 1305 kPa and 1314 kPa respectively. The following hypotheses 

were then established. 

1. The null hypothesis, H0  

H0: %Ξ]⊥_αβ%χδεεδ_φ = %Ξ]γηιΟδϕδα_κελ%χδεεα = %Ξ]mναβΟδεεδ_φ  

There is no difference in terms of the average maximum tensile bond 

strength among the considered treatments. 

2. The alternative hypothesis, H1 

H1: Not all the average maximum tensile bond strength are equal.  

Microsoft Excel statistical analysis has been used to perform ANOVA test of 

∀Η+−.1∃Ι%(0%&(&+.−∃1(3%Β∀−3#%81∃;% .∀/∀.%(0% #123101)−3)∀,%4%(0%5657%−3∗%Figure 

6.2 summarises the output of the analysis. 

Table 6.1 Data of the test results (Under filling) 

A B C D E F = (E/(490.87)) X 1000 

Pair of Plates Data Sets 
Thickness of 

Adhesive Layer of 
Bitumen (µm) 

Total Percentage 
Area of Adhesive 

Failure (%) 

Maximum Tensile 
Load (N) 

Maximum Tensile 
Bond Strength 

(kPa) 

A 

1 50 100 648 1320 

2 50 100 623 1270 

3 50 100 584 1190 

4 50 100 629 1281 

B 

1 50 100 619 1260 

2 50 100 623 1270 

3 50 100 611 1245 

4 50 100 639 1302 

C 

1 50 100 633 1290 

2 50 100 637 1297 

3 50 100 625 1274 

4 50 100 628 1280 

Average 50 100 625 1273 

Standard Deviation 0 0 16 33 

Coefficient of Variation (%) 0 0 3 3 

 

Notes: 1. Area of Contact between Bitumen and Substrates: 490.87 mm
2
 

2. Substrates: Aluminium alloy 
3. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
4. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
5. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively 
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Table 6.2 Data of the test results (Sufficiently filled) 

A B C D E F = (E/(490.87)) X 1000 

Pair of Plates Data Sets 
Thickness of 

Adhesive Layer of 
Bitumen (µm) 

Total Percentage 
Area of Adhesive 

Failure (%) 

Maximum Tensile 
Load (N) 

Maximum Tensile 
Bond Strength 

(kPa) 

A 

1 50 100 655 1334 

2 50 100 631 1285 

3 50 100 657 1339 

4 50 100 588 1198 

B 

1 50 100 628 1279 

2 50 100 616 1254 

3 50 100 638 1300 

4 50 100 674 1374 

C 

1 50 100 638 1299 

2 50 100 683 1392 

3 50 100 634 1292 

4 50 100 643 1309 

Average 50 100 640 1305 

Standard Deviation 0 0 26 52 

Coefficient of Variation (%) 0 0 4 4 

 

Table 6.3 Data of the test results (Overfilling) 

A B C D E F = (E/(490.87)) X 1000 

Pair of Plates Data Sets 
Thickness of 

Adhesive Layer of 
Bitumen (µm) 

Total Percentage 
Area of Adhesive 

Failure (%) 

Maximum Tensile 
Load (N) 

Maximum Tensile 
Bond Strength 

(kPa) 

A 

1 50 100 647 1318 

2 50 100 676 1377 

3 50 100 665 1355 

4 50 100 652 1329 

B 

1 50 80 628 1280 

2 50 95 637 1297 

3 50 100 652 1329 

4 50 100 638 1300 

C 

1 50 100 652 1329 

2 50 100 632 1287 

3 50 100 612 1247 

4 50 100 646 1316 

Average 50 98 645 1314 

Standard Deviation 0 6 17 35 

Coefficient of Variation (%) 0 6 3 3 

 

Notes: 1. Area of Contact between Bitumen and Substrates: 490.87 mm
2
 

2. Substrates: Aluminium alloy 
3. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
4. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
5. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively 

Notes: 1. Area of Contact between Bitumen and Substrates: 490.87 mm
2
 

2. Substrates: Aluminium alloy 
3. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
4. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
5. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively 
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The p-value approach was used in making direct conclusion about the null 

hypothesis, H0. The p-value is the probability of obtaining an F distribution as 

large as or larger than the one obtained, given that the null hypothesis, H0 is 

true. The decision rule for rejecting H0 based on the p-value approach is as 

follows. 

Reject H0 if p-!∀#∃%&∋(&()∀##%∗&+,∀−&#%!%#&./&(∋0−∋/∋1∀−1%2&34 

Otherwise, fail to reject H0. 

Therefore, based on Figure 6.2 the p-value or probability of obtaining an F 

distribution of 3.2499 or larger, when the null hypothesis, H0 is true is 0.0515. 

Since the p-value is larger than the specified level of significance, 4%(0%5657, 

the null hypothesis, H0 failed to be rejected. However, since the p-value of 

0.0515 is only slightly larger than the specified level of significance, 4%(0%5657, 

further analysis was required.  

Figure 6.2 One-way analysis of variance (ANOVA) for treatment effect in 
terms of the amount of poured bitumen  
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Unpaired (i.e. Independent) Two-Samples t-Test procedure, at level of 

significance, 4% (0% 5657,%8−#% )(3∗+)∃∀∗% Ε−#∀∗ on the following three pair of 

data sets of the considered treatments; under filling and sufficiently filled, 

under filling and overfilling, and sufficiently filled and overfilling. Table 6.4 

summarises the output of the analysis of the Unpaired (i.e. Independent) Two-

Samples t-Test procedure. The decision rule in determining the existence of 

significant statistical difference in the pair of data sets of the considered 

treatments is as follows. 

If two-tailed p-!∀#∃%&∋(&()∀##%∗&+,∀−&#%!%#&./&(∋0−∋/∋1∀−1%2&32&significant 

statistical difference exists in the pair of data sets. 

Otherwise, there is no significant statistical difference in the pair of data 

sets. 

Based on the summary of statistical analysis of Unpaired (i.e. Independent) 

Two-Samples t-Test procedure shown in Table 6.4, it can be concluded that 

there is sufficient evidence of significant statistical difference in the pair of data 

sets of under filling and overfilling. However, the pair of data sets for the 

following considered treatments; under filling and sufficiently filled, and 

sufficiently filled and overfilling has shown no significant statistical difference in 

the average measured maximum tensile bond strength. Hence, improved 

procedures for specimen preparation are required in order to ensure the 

uniformity and consistency of the amount of poured bitumen. It is suggested 

that a reasonable amount of bitumen be poured until fully coated surface of 

the bottom plate is achieved, in order to result in overfilling. Since the two-

tailed p-value for the pair of data sets of sufficiently filled and overfilling is 

larger than the .∀/∀.% (0% #123101)−3)∀,% 4, which indicated high level of no 

significant statistical difference, the amount of poured bitumen is suggested to 



CHAPTER 6                                                              PART 3: DETAILED EVALUATION AND VALIDATION  

 

 219

be within this range (i.e. the amount of poured bitumen is the sufficiently filled 

and overfilling). 

Table 6.4 Summary of statistical analysis of Unpaired (i.e. Independent) 
Two-Samples t-Test procedure 

 Pair of Data Sets of Considered Treatments 

 Pair 1 Pair 2 Pair 3 

 
Under 
Filling 

Sufficiently 
Filled 

Under 
Filling 

Overfilling 
Sufficiently 

Filled 
Overfilling 

Mean 1273 kPa 1305 kPa 1273 kPa 1314 kPa 1305 kPa 1314 kPa 

Standard 
Deviation 

33 52 33 35 52 35 

SE Mean 9.49 15.00 9.49 10.00 15.00 10.00 

95.0% CI (-68.14, 5.48) (-69.01, -11.82) (-46.47, 28.30) 

t-statistic, t 1.7653 2.9315 0.5039 

Two-tailed p-
value 

0.0914 0.0077 0.6194 

Significant 
Difference 

NO YES NO 

 

6.1.2 Selection of Asphalt Mixture Materials 

In order to consider wide ranges of asphalt mixture materials, at least two 

types of aggregates and/or bitumen (bitumen-filler mastic) of distinct 

properties that will reflect the ranges of typically used asphalt mixtures need to 

be utilised. In this study, aluminium alloy, granite and two types of limestone 

were used as substrates, and conventional 70/100 penetration grade of 

bitumen was used as control adhesive materials. Three types of mineral filler 

(i.e. Hydrated Lime, Limestone and Gritstone) were selected in order to 

produce various types of bitumen-filler mastic. Aluminium alloy was selected 

−#%)(3∃∋(.%#+Ε#∃∋−∃∀#%∗+∀%∃(%∃;∀%/−.+∀%(0%ϑ(+32D#%Κ(∗+.+#%(0%approximately 70 

GPa, which is close to the typical value of aggregates and also due to the 

corrosion resistance properties (Harvey 2000). Aggregates (i.e. Dene 

Limestone, Ivonbrook Limestone and Mount Sorrel Granite) were selected due 
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to availability and distinct properties in terms of the classification as acidic (i.e. 

hydrophilic) or basic (i.e. hydrophobic). Aggregates were prepared into discs 

of 25 mm diameter (i.e. 490.87 mm2 area of contact) and 8 mm thickness via 

the cutting of the 25 mm diameter cylindrical core specimens extracted from a 

boulder, as shown in Figure 6.3. In order to minimise the discrepancy and 

inaccuracy of the test results especially in terms of the uniformity of the 

thickness of adhesive layer of bitumen, aggregates discs should be precisely 

cut to 8 mm thickness. 

 

Surface of area of contact of aggregates discs (i.e. Dene Limestone, 

Ivonbrook Limestone and Mount Sorrel Granite) was not treated or modified in 

any way, and the aggregates discs were used as they were cut. However, 

surface of area of contact of aluminium alloy discs was polished in order to 

closely match the roughness, Ra of the surface of area of contact of 

aggregates discs, which lies in the range of 2.43 µm and 2.54 µm. The reason 

for this is to minimise the differences in properties among the substrates since 

Figure 6.3 Cylindrical core specimens and aggregates discs 

25 mm diameter 
cylindrical core 

specimens 

Aluminium  
Alloy 

Mount Sorrel 
Granite 

Dene  
Limestone 

Ivonbrook 
Limestone 
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adhesive bond strength can vary with roughness of the aggregates surface. 

Analysis of the surface profile using Mitutoyo-Surftest SV-600 was conducted 

in order to verify the roughness, Ra of each substrate, and Figure 6.4 shows 

the result of the roughness, Ra of the surface of Ivonbrook Limestone. Also, 

each substrate in the forms of discs was subjected to water absorption test 

based on the BS EN 1097-6:2000 Tests for Mechanical and Physical 

Properties of Aggregates Determination of Particle Density and Water 

Absorption. Based on the literature review and analysis of the past studies, 

large percentage of water absorption could be an indicator of possible 

moisture susceptibility of the substrates. However, since the results of water 

absorption is very subjective, it is only used as a rough evaluation in 

determining the adhesive bond strength and failure characteristics of the 

asphalt mixtures. Table 6.5 shows the properties of the aggregates discs. 

 

  

Figure 6.4 Result of the roughness, Ra of the surface of Ivonbrook 
Limestone 
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Table 6.5 Properties of aggregates discs 

Substrates 
Roughness of Surface 
of Area of Contact, Ra 

(µm) 
Water Absorption (%)

1 
Classification of 

Aggregates  
(Acidic or Basic) 

Aluminium Alloy 2.41 0.05 -  

Dene Limestone 2.43 0.15 Basic 

Ivonbrook Limestone 2.54 0.40 Basic 

Mount Sorrel Granite 2.46 0.30 Acidic 

 

Empirical rheological tests were performed on the bitumen (bitumen-filler 

mastic), which includes penetration test (BS EN 1426:2007 Bitumen and 

Bituminous Binders. Determination of Needle Penetration) and Ring and Ball 

Method Softening Point Test (BS EN 1427:2007 Bitumen and Bituminous 

Binders. Determination of the Softening Point. Ring and Ball Method). Mineral 

filler used in this study satisfied the requirement of 70% to 100% of particles 

passing a 63-µm sieve based on BS EN 13043:2002 Aggregates for 

Bituminous Mixtures and Surface Treatments for Roads, Airfields and Other 

Trafficked Areas. In order to achieve the thickness of adhesive layer of 

bitumen of 50 µm (0.050 mm), mineral filler was further sieved through a 45-

µm sieve (British Standard Sieve Series Mesh No. 350) before being 

homogenously distributed within bitumen in order to produce various types of 

bitumen-filler mastic. Procedures for mixing the bitumen-filler mastic are based 

on the in-house standard of LOP 11.24 Blending Bitumen and Filler 

Laboratory Operation Procedures Γ Equipment Usage, as presented in 

Appendix D. Tables 6.6 shows the properties of the bitumen (bitumen-filler 

mastic). 

 

 

 

Notes: 
1
Based on BS EN 1097-6:2000 Tests for Mechanical and Physical Properties of Aggregates. 

Determination of Particle Density and Water Absorption 
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Table 6.6 Properties of bitumen (bitumen-filler mastic) 

Adhesive 
Materials 

Filler 
Penetration at 
25°C (d.mm)

1 
Softening Point 

(°C)
2 

Classification of 
Filler  

(Acidic or Basic) 

Conventional 
70/100 

Penetration 
Grade of 
Bitumen 

- 68 49.8 - 

20% by Volume of 
Hydrated Lime 

38 61.7 Basic 

20% by Volume of 
Limestone 

45 58.4 Basic 

20% by Volume of 
Gritstone 

48 56.7 Acidic 

 

6.2 Analysis to Determine the Effect of Thickness of Adhesive Layer 

of Bitumen on the Test Results 

In the previous chapter (i.e. Chapter 5), the optimum thickness of adhesive 

layer of bitumen for the proposed adhesion test method was suggested to be 

50 µm (0.050 mm), in order to result in the adhesive mode of failure and also 

to achieve the uniformity and repeatability of the test results. However, in this 

section, various thicknesses of adhesive layer of bitumen were prepared and 

tested in order to study the effect on the test results. In order to cater for the 

various thicknesses of adhesive layer of bitumen, spacers of different 

thicknesses were fabricated. Based on the literature review and analysis of the 

past studies, thickness of adhesive layer of bitumen was found to have a 

profound influence on the adhesive bond strength and failure characteristics 

(i.e. tensile bond strength and types of failure of specimens).  

In this section, aluminium alloy and conventional 70/100 penetration grade of 

bitumen were used as control substrates and adhesive materials respectively. 

A total of 100 specimens of various thicknesses in the range of 50 µm (0.050 

mm) and 990 µm (0.990 mm) were subjected to dry conditioning at 25°C for 

Note: 
1
Based on BS EN 1426:2007 Bitumen and Bituminous Binders. Determination of Needle Penetration; 

2
Based on BS EN 1427:2007 Bitumen and Bituminous Binders. Determination of the Softening Point. Ring 

and Ball Method 
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24 hours before being tested at fixed deformation rate and test temperature of 

20 mm/minute and 25°C respectively. Table 6.7 shows the data of the test 

results. 
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Table 6.7 Results based on different thickness of adhesive layer of 
bitumen 

Thickness of 
Adhesive Layer of 

Bitumen (µm) 

Total Percentage 
Area of Adhesive 

Failure (%) 

Maximum Tensile 
Bond Strength (kPa) 

Tensile Energy 
Required to Produce 

Failure Per Unit 
Volume (kJ/m

3
) 

990 15 660 806 

980 25 780 654 

970 35 720 972 

960 25 810 765 

940 20 760 750 

930 30 730 952 

920 20 520 990 

900 45 860 821 

890 15 840 946 

880 15 750 1152 

860 15 830 1055 

850 30 810 1149 

840 15 720 871 

830 15 800 904 

830 10 690 1052 

810 30 820 1065 

790 30 800 1024 

690 35 910 1016 

680 40 730 764 

660 40 990 1352 

660 20 1000 847 

640 45 840 1422 

640 40 840 923 

620 20 860 931 

620 40 740 535 

600 30 860 835 

600 50 780 711 

580 70 840 631 

580 40 880 671 

580 30 830 764 

580 40 890 671 

560 40 860 1226 

560 60 970 501 

560 50 850 882 

560 40 880 869 

540 50 950 649 

540 40 920 1016 

540 40 980 1016 

530 50 810 1059 

530 60 1010 1161 

360 80 880 1467 

350 100 890 870 

350 80 851 1516 

350 100 820 1927 

320 85 870 1873 

320 90 820 1304 

320 100 790 1135 

320 90 810 2156 

320 100 920 1400 

320 100 860 1627 

280 100 870 1522 

280 90 910 1704 
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Table 6.7 Results based on different thickness of adhesive layer of 
bitumen (continued) 

Thickness of 
Adhesive Layer of 

Bitumen (µm) 

Total Percentage 
Area of Adhesive 

Failure (%) 

Maximum Tensile 
Bond Strength (kPa) 

Tensile Energy 
Required to Produce 

Failure Per Unit 
Volume (kJ/m

3
) 

250 100 990 1321 

250 100 890 2035 

250 100 1020 2819 

240 100 970 1713 

240 100 1000 2057 

240 90 940 1798 

230 100 1020 1674 

230 100 980 1240 

130 100 1170 1253 

130 100 1140 1100 

130 100 1150 1550 

120 90 1160 2107 

120 100 1180 1917 

120 100 1210 1610 

120 95 1150 1711 

120 100 1220 1646 

120 100 1190 2097 

120 100 1170 1913 

120 100 1100 1858 

120 100 1170 1763 

120 85 1140 1925 

120 100 1150 2173 

100 90 1170 1746 

100 100 1180 1880 

100 100 1210 1815 

100 100 1190 1759 

100 100 1230 2139 

100 85 1170 1705 

100 100 1200 1861 

100 100 1180 2117 

100 100 1220 1960 

90 100 1230 1784 

90 100 1220 2039 

90 100 1280 1845 

90 95 1210 1504 

90 100 1250 1823 

60 100 1290 2306 

60 100 1330 2342 

60 100 1300 2004 

60 100 1240 1963 

60 90 1290 2149 

50 100 1300 2096 

50 100 1310 2108 

50 90 1250 2325 

50 100 1270 1824 

50 95 1330 2173 

50 100 1290 2526 

50 100 1340 3165 

Notes: 1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen 
3. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
4. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 

respectively 
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6.2.1 Relationship between Total Percentage Area of Failure and 

Thickness of Adhesive Layer of Bitumen 

Based on the data of the test results in Table 6.7, best-fit curve has been 

plotted to determine the relationship between total percentage area of 

adhesive failure and various thicknesses of adhesive layer of bitumen, as 

illustrated in Figure 6.5. Curve of the cohesive failure was then derived by 

reflecting the curve of the adhesive failure through the horizontal axis of 

symmetry at the value of the total percentage area of failure of 50% (i.e. x-axis 

at total percentage area of failure of 50%). The equation for the best-fit curve 

and the value of the coefficient of determination, R2 were included. Based on 

GraphPad Software (n.d.), the value of the coefficient of determination, R2 can 

be used to quantify the goodness of fit of nonlinear regression. Higher value of 

the coefficient of determination, R2 is considered to show a reasonable fits for 

the data sets.  

Based on Figure 6.5, the types of failure of either adhesive or cohesive can be 

modelled as a S-shaped curve with respect to the thickness of adhesive layer 

of bitumen. As has been stated before, adhesive mode of failure was 

characterised by the value of the total percentage area of adhesive failure of 

more than 90%. Hence, based on the specified asphalt mixture materials and 

testing conditions, transition of the mode of failure of either adhesive or mixed 

cohesive and adhesive is expected to occur at the thickness of 200 µm (0.200 

mm) (i.e. with respect to the value of the total percentage area of adhesive 

failure of 90%). Mode of failure was found to change from adhesive to mixed 

cohesive and adhesive, and then expected to become entirely cohesive as the 

thickness of adhesive layer of bitumen is continuously increased.  
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Based on the micromechanics analysis conducted by Lytton et al. (2005), 

transition of the mode of failure was expected to occur at a lower thickness of 

about 60 µm (0.060 mm). Hence, in order to generalise the conclusion over 

wide ranges of asphalt mixture materials and testing conditions, and also to 

take into account the worst-case scenario that might possibly occur, factor of 

safety of 2.0 has been applied to the thickness of 200 µm (0.200 mm). Hence, 

by considering the factor of safety of 2.0, thickness of 100 µm (0.100 mm) was 

deduced as point of transition of the mode of failure of either adhesive or 

mixed cohesive and adhesive for this study. Difference in the penetration 

grade of bitumen and also difference in the testing conditions (i.e. deformation 

rate and test temperature) from the study conducted by Lytton et al. (2005) 

were the possible factors that contribute to the difference in the point of 

transition of the mode of failure. 

 

Notes: 
1. 200 µm is the thickness of adhesive layer of bitumen related to the total percentage area of adhesive 

failure of 90% 
2. 560 µm is the thickness of adhesive layer of bitumen related to the total percentage area of failure of 

50% adhesive and 50% cohesive 
 

Figure 6.5 Relationship between total percentage area of failure and 
thickness of adhesive layer of bitumen 
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6.2.2 Relationship between Maximum Tensile Bond Strength and 

Thickness of Adhesive Layer of Bitumen 

Figure 6.6 shows the relationship between maximum tensile bond strength 

and thickness of adhesive layer of bitumen, based on the data of the test 

results in Table 6.7 and also based on the data of the study conducted by 

Marek and Herrin (1968). Data of the test results in Table 6.7 has been 

grouped according to the thickness of adhesive layer of bitumen, and the 

values of the average maximum tensile bond strength have been tabulated in 

Figure 6.6. Curve with the value of coefficient of determination, R2 of 

approximately 0.83 was found to be the best to correlate the maximum tensile 

bond strength and thickness of adhesive layer of bitumen. Generally, 

coefficient of determination, R2 greater than 0.8 is considered to show a 

reasonable fits for the data sets (GraphPad Software n.d.). Data of the study 

of Marek and Herrin (1968) has been found useful for the purpose of 

comparative analysis. Curve for the data of the study of Marek and Herrin 

(1968) has been plotted based on the estimated average values of the 

maximum tensile bond strength over various thicknesses of the adhesive layer 

of bitumen, based on Figures 2.47 and 2.48. In Figure 6.6, the error bar 

represents the one-standard deviation above and below the average 

maximum tensile bond strength. 

Generally, maximum tensile bond strength is expected to decrease with the 

increasing thickness of adhesive layer of bitumen. This is also supported by 

the study conducted by Harvey and Cebon (2005), which had evaluated the 

adhesive behaviour of bitumen using butt joint test. Based on the data of 

Marek and Herrin (1968), for thickness between 50 µm (0.050 mm) and 300 

µm (0.300 mm), a linear inverse relationship has been found which depicts a 
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decrease in the maximum tensile bond strength as the thickness is increased. 

However, beyond the thickness of 300 µm (0.300 mm), an almost constant 

value of maximum tensile bond strength of approximately 880 kPa was 

observed. Data of the test results in Table 6.7 also shows the same curve 

shape for thickness of more than 600 µm (0.600 mm), in which a nearly 

horizontal line has been plotted. However, the constant value of approximately 

750 kPa was lower compared to the constant value of approximately 880 kPa 

of Marek and Herrin (1968), which can be attributed to the differences in the 

penetration grade of bitumen and deformation rate. As expected, hard bitumen 

grade (i.e. low penetration grade of bitumen) of Marek and Herrin (1968) was 

found to result in higher value of tensile bond strength as compared to the soft 

bitumen grade (i.e. high penetration grade of bitumen) of the conducted study. 

These constant values of tensile bond strength can be correlated with the 

cohesive bond strength of bitumen (bitumen-filler mastic). Thus, a separate 

study, which is out of scope of this study, is required in order to evaluate the 

relationship between the constant value of tensile bond strength within this 

region and the cohesive bond strength of bitumen (bitumen-filler mastic). 

Dynamic Shear Rheometer (DSR) and ductility test are suggested for 

accessing the cohesive bond strength of bitumen (bitumen-filler mastic). 

Kanitpong and Bahia (2003) has developed a method known as Tackiness 

Test of Asphalt using Dynamic Shear Rheometer (DSR) in order to measure 

the cohesive bond strength of bitumen. Details of the developed method are 

presented in Chapter 2 (Section 2.4.1).  
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As has been stated before, adhesive mode of failure was characterised by the 

value of the total percentage area of adhesive failure of more than 90%. 

Based on Figure 6.5, transition of the mode of failure of either adhesive or 

mixed cohesive and adhesive is expected to occur at the thickness of 200 µm 

(0.200 mm). Thus, the relationship between maximum tensile bond strength 

and thickness of adhesive layer of bitumen as shown in Figure 6.6 can be 

Notes: 
1. 200 µm is the thickness of adhesive layer of bitumen related to the total percentage area of adhesive 

failure of 90% (i.e. based on Figure 6.5) 
2. 100 µm is considered as a point of transition of the mode of failure and is derived as follows: Factor of 

safety of 2.0 is applied to thickness of adhesive layer of bitumen related to the total percentage area of 
adhesive failure of 90% (i.e. 200 µm). Hence, (200 µm)/(Factor of safety of 2.0) = 100 µm. 

 
Based on Conducted Study 
1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen (Penetration at 25°C is 68) 
3. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
4. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively 
 
Based on Marek and Herrin (1968) 
1. Substrates: Aluminium alloy 
2. Adhesive Materials: Asphalt cement K (Penetration at 25°C is 52) 
3. Conditioning Procedures: Dry conditioning at room temperature for 3 hours prior to testing 
4. Testing Conditions: Deformation rate and test temperature of 25.4 mm/minute and 25°C respectively 

 

Figure 6.6 Relationship between maximum tensile bond strength and 
thickness of adhesive layer of bitumen 
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divided into two main regions (i.e. adhesive failure and mixed cohesive and 

adhesive failure), and is described as follows. 

1. In the first region where the thickness is less than 200 µm (0.200 mm), a 

linear inverse relationship can be used to correlate maximum tensile 

bond strength and thickness of adhesive layer of bitumen. The value of 

the maximum tensile bond strength within this region can be used to 

represent the adhesive bond strength between adhesive layer of 

bitumen and substrates.  

2. In the second region where the thickness is more than 200 µm (0.200 

mm), a fitted line with a slope of almost zero can be used to represent 

the relationship between maximum tensile bond strength and thickness 

of adhesive layer of bitumen. As has been stated before, an almost 

constant value of the maximum tensile bond strength within this region 

can be correlated with the cohesive bond strength of bitumen (bitumen-

filler mastic). However, further study is required for validation since the 

mode of failure within this region also consists of mixed cohesive and 

adhesive, apart from entirely cohesive. 

3. In order to ensure the occurrence of the adhesive mode of failure (i.e. 

total percentage area of adhesive failure of more than 90%) and also to 

take into account the worst-case scenario that might possibly occur 

during specimen preparation and testing, factor of safety of 2.0 was 

applied to the thickness of 200 µm (0.200 mm). Hence, thickness of 100 

µm (0.100 mm) was deduced as the final thickness for the occurrence of 

the adhesive mode of failure in this study. 
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Based on the data of Marek and Herrin (1968), which also had been described 

in details in Chapter 2, as the thickness of adhesive layer of bitumen is 

decreased beyond 20 µm (0.020 mm), there is a sharp decrease in the 

maximum tensile bond strength. It should be noted that as the thickness of 

adhesive layer of bitumen becomes too low, precision and accuracy in the 

procedures for specimen preparation become very significant, as the small 

errors and differences in the value of the thickness of adhesive layer of 

bitumen could vary markedly the value of the tensile bond strength. Selection 

of the thickness of adhesive layer of bitumen was suggested to be more than 

40 µm (0.040 mm) in order to prevent any discrepancy and inaccuracy of the 

test results.  

6.2.3 Relationship between Average Maximum Tensile Bond Strength 

and Total Percentage Area of Adhesive Failure 

Based on the data of the test results in Table 6.7, total percentage area of 

adhesive failure have been grouped as in Table 6.8, and a plot has been 

deduced as shown in Figure 6.7. As expected, the value of the maximum 

tensile bond strength was found to increase with the increasing value of the 

total percentage area of adhesive failure. The increment of the maximum 

tensile bond strength is expected to begin at an initial value of 745 kPa and 

increases at a continuously increasing slope. In the range of 0% and 50% of 

the total percentage area of adhesive failure, the maximum tensile bond 

strength experienced a slow rate of increasing. However, beyond the total 

percentage area of adhesive failure of 70%, a significant increase was 

observed. 
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Table 6.8 Results of average maximum tensile bond strength based on 
grouped total percentage area of adhesive failure 

Total Percentage Area of Adhesive 
Failure (%) 

Average Maximum Tensile Bond 
Strength (kPa) 

100 1135 

95 1230 

90 1044 

85 1060 

80 866 

70 840 

60 990 

50 848 

45 850 

40 871 

35 815 

30 808 

25 795 

20 785 

15 767 

10 690 

 

 

Figure 6.7 Relationship between average maximum tensile bond strength 
and total percentage area of adhesive failure 



CHAPTER 6                                                              PART 3: DETAILED EVALUATION AND VALIDATION  

 

 235

The value of the maximum tensile bond strength at 0% of the total percentage 

area of adhesive failure (i.e. mode of failure of entirely cohesive) of 745 kPa 

can be assumed as the cohesive bond strength of bitumen (bitumen-filler 

mastic). This was further verified by comparing with the constant value of 

approximately 750 kPa obtained in Figure 6.6, which can also be correlated 

with the cohesive bond strength of bitumen (bitumen-filler mastic). Based on 

the previously defined occurrence of the adhesive mode of failure (i.e. total 

percentage area of adhesive failure of more than 90%), the average maximum 

tensile bond strength of approximately 1070 kPa was found. The value of the 

maximum tensile bond strength of 1070 kPa can be used to represent the 

adhesive bond strength between adhesive layer of bitumen and substrates. 

Again, this was further verified by comparing with the plot in Figure 6.6.  

Also, based on Figure 6.7, the value of the maximum tensile bond strength in 

the range of 0% and 50% of the total percentage area of adhesive failure were 

found to result in an almost constant value (i.e. average of 800 kPa and 

coefficient of variation of 7%). Hence, it can be concluded that the cohesive 

mode of failure is characterised by the value of the total percentage area of 

adhesive failure of less than 50%. For the range of 50% and 90% of the total 

percentage area of adhesive failure, mode of failure can be classified as 

mixed cohesive and adhesive. 

6.2.4 Relationship between Tensile Energy Required to Produce 

Failure Per Unit Volume and Thickness of Adhesive Layer of 

Bitumen 

As has been described in Chapter 5, CurveExpert 1.4 was used to calculate 

the area under the curve of the graph of tensile load versus pull off 
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displacement, which represents the tensile energy required to produce failure. 

The curve for graph of tensile load versus pull off displacement was found to 

behave differently over wide ranges of thicknesses of adhesive layer of 

bitumen, which was assumed to depend on the mode of failure (i.e. entirely 

cohesive, mixed cohesive and adhesive or entirely adhesive) and also the 

occurrence of cobwebbing and cavitations. Figure 6.8 shows the typical 

graphs of tensile load versus pull off displacement for thickness of adhesive 

layer of bitumen of 50 µm (0.050 mm), 200 µm (0.200 mm) and 500 µm (0.500 

mm) respectively. As the thickness of adhesive layer of bitumen is increased, 

there is a decrease in the value of the maximum tensile load, and also the 

attainment of the maximum value of the tensile load occurs at a larger value of 

the pull off displacement. 

 

Tensile energy required to produce failure per unit volume was found to result 

in the same curve shape as the maximum tensile bond strength, with respect 

to the various thicknesses of adhesive layer of bitumen, as shown in Figure 

6.9. However, the values of the tensile energy required to produce failure per 

Figure 6.8 Typical graphs of tensile load versus pull off displacement for 
various thicknesses of adhesive layer of bitumen  
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unit volume tend to be scattered considerably, which can be attributed to the 

estimation errors due to the curve fitting procedures (i.e. uncertainty that 

presents in a curve that is fitted to the data sets) and the parameters that 

governed the values of the tensile energy required to produce failure per unit 

volumes such as tensile load, pull off displacement and thickness of adhesive 

layer of bitumen. Low value of coefficient of determination, R2 of approximately 

0.70 as indicated in Figure 6.9, justified the high variability or distribution of the 

measured tensile energy required to produce failure per unit volume.  

 

Relationship between tensile energy required to produce failure per unit 

volume and thickness of adhesive layer of bitumen can be described as 

follows, and thickness of 200 µm (0.200 mm) was again chosen as point of 

transition of the mode of failure.  

Figure 6.9 Relationship between tensile energy required to produce 
failure per unit volume and thickness of adhesive layer of bitumen 
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1. For thickness less than 200 µm (0.200 mm), a linear inverse relationship 

has been found which depicts a decrease in the tensile energy required 

to produce failure per unit volume as the thickness is increased. The 

value of the parameter within this region can be correlated with the 

amount of energy required to break the adhesive bond between 

adhesive layer of bitumen and substrates. 

2. As the thickness is increased beyond 200 µm (0.200 mm), the value of 

the tensile energy required to produce failure per unit volume 

experienced a slow rate of decreasing before reaches steady state 

conditions of approximately 860 kJ/m3, which can be correlated to the 

intermolecular force developed within adhesive layer of bitumen (i.e. 

cohesion). Cohesion is mainly influenced by viscosity, and hence a test 

method such as developed by Kanitpong and Bahia (2003) (i.e. 

Tackiness Test of Asphalt using Dynamic Shear Rheometer (DSR)) as 

described in details in Chapter 2 (Section 2.4.1) is suggested for further 

study. Tackiness Test of Asphalt using Dynamic Shear Rheometer 

(DSR) and also ductility test can be used to measure the cohesive bond 

strength of bitumen. 

Also, a plot has been deduced as shown in Figure 6.10, in order to observe 

the relationship between various definitions of tensile energy required to 

produce failure (i.e. tensile energy required to produce failure per unit area of 

contact and tensile energy required to produce failure per unit volume) and 

thickness of adhesive layer of bitumen. As the area of contact between 

bitumen and substrates is constant throughout the study, the curve of the 

tensile energy required to produce failure per unit area of contact can be used 
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to represent the area under the curve of graph of tensile load versus pull off 

displacement. 

 

Based on Figure 6.10, the curve of the tensile energy required to produce 

failure per unit area of contact and the curve of the tensile energy required to 

produce failure per unit volume were found to response differently with respect 

to the thickness of adhesive layer of bitumen. As the thickness of adhesive 

layer of bitumen is increased, the value of the tensile energy required to 

produce failure per unit area of contact increases. However, based on Harvey 

and Cebon (2005), the value of the tensile energy required to produce failure 

was best described by the area under the curve of graph of tensile load versus 

pull off displacement divided by the unit volume of the adhesive layer of 

bitumen (i.e. tensile energy required to produce failure per unit volume). Any 

variation in the thickness of adhesive layer of bitumen, which might affect the 

Figure 6.10 Relationship between various definitions of tensile energy 
required to produce failure and thickness of adhesive layer of bitumen  
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test results, will be taken into account when using the definition of the tensile 

energy required to produce failure per unit volume. Also, as the volume of the 

adhesive layer of bitumen deforms during the testing and there is no clearly 

defined mode of failure for the tested specimen (i.e. failure mechanisms could 

occur due to adhesive failure along the interfaces, cohesive failure through the 

adhesive layer of bitumen, or combination of both), energy per unit volume 

describes the fracture or failure mechanisms better than energy per unit area 

(Harvey & Cebon 2005). 

6.3 Analysis to Determine the Effect of Aspect Ratio of Specimens 

on the Test Results 

Aspect ratio of specimens is defined as the ratio of the longest dimension to 

the shortest dimension. In this study, the longest and the shortest dimension 

are represented by the diameter of the discs and the thickness of adhesive 

layer of bitumen respectively. Some studies have suggested the importance of 

aspect ratio of specimens on the test results. However, based on Harrison and 

Harrison (1972) in the study of adhesion using finite element analysis, tensile 

bond strength was found to be independent of aspect ratio under the following 

)(3∗1∃1(3#Λ% −#&∀)∃% ∋−∃1(% (0% Β(∋∀% ∃;−3% =5% −3∗% Χ(1##(3D#% ∋−∃1(% (0% −∗;∀#1/∀%

materials of less than 0.49.  

Some studies have shown that the test results in terms of the types of failure 

of specimens and tensile bond strength were mainly influenced by the 

thickness of adhesive layer of bitumen rather than the area of contact between 

bitumen and substrates, which in this study can be correlated with the 

diameter of the discs. Based on the following conditions; constant thickness of 

adhesive layer of bitumen and other testing conditions, as the diameter of the 
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discs is increased, there is an increase in the aspect ratio of specimens. 

Hence, aspect ratio of specimens is expected to result in negligible effect on 

the test results as long as the thickness of adhesive layer of bitumen remained 

approximately constant. 

In this section, a study was conducted in order to determine the effect of 

aspect ratio of specimens in terms of the diameter of the discs and the 

thickness of adhesive layer of bitumen on the test results. A total of 60 

specimens of various combinations of diameter of the discs and thickness of 

adhesive layer of bitumen were tested at fixed deformation rate and test 

temperature of 20 mm/minute and 25°C respectively. In order to cater for 

various diameter of the discs, modification and fabrication of the pair of plates 

were specially made for this study. Aluminium alloy, conventional 70/100 

penetration grade of bitumen and dry conditioning for 24 hours prior to testing 

were the selected asphalt mixture materials (i.e. substrates and adhesive 

materials) and conditioning procedures respectively. Table 6.9 shows the 

summarised data of the test results. 

A total of 3 specimens at each combination of diameter of the discs (i.e. 10 

mm, 25 mm, 50 mm and 100 mm) and thickness of adhesive layer of bitumen 

(i.e. 50 µm, 100 µm, 250 µm, 500 µm and 800 µm) have resulted in the ranges 

of aspect ratio of specimens between 12.50 and 2000. Based on the 

summarised data of the test results, a plot has been deduced in order to 

determine the relationship between average maximum tensile bond strength 

and aspect ratio of specimens, as presented in Figure 6.11. The error bar 

represents the one-standard deviation above and below the average 

maximum tensile bond strength. Generally, without considering the thickness 

of adhesive layer of bitumen, no specific conclusion can be made regarding 
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the relationship of the two parameters. Based on the plot, no particular trend 

could be observed. However, by taking into account the thickness of adhesive 

layer of bitumen, in the region where the thickness is less than 500 µm (0.500 

mm), the value of the average maximum tensile bond strength of specimens 

having approximately the same thickness, was found to be approximately 

constant. Hence, within this region (i.e. thickness less than 500 µm (0.500 

mm), maximum tensile bond strength was concluded to be independent of the 

aspect ratio of specimens. 

Table 6.9 Results based on different aspect ratio of specimens 

A B C=(A*1000)/B D E 

Diameter of 
Discs (mm) 

Average 
Thickness of 

Adhesive Layer 
of Bitumen (µm) 

Aspect Ratio of 
Specimens 

Average Total 
Percentage Area 

of Adhesive 
Failure (%) 

Average 
Maximum 

Tensile Bond 
Strength (kPa) 

10 

50 200.00 100 1311 

100 100.00 96 1205 

250 40.00 94 985 

500 20.00 55 886 

800 12.50 33 804 

25 

50 500.00 100 1297 

100 250.00 98 1217 

250 100.00 96 992 

500 50.00 60 885 

800 31.25 35 803 

50 

50 1000.00 99 1306 

100 500.00 96 1201 

250 200.00 94 983 

500 100.00 51 891 

800 62.50 29 822 

100 

50 2000.00 99 1281 

100 1000.00 95 1197 

250 400.00 91 1003 

500 200.00 48 902 

800 125.00 25 852 

 

 

Notes: 1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen  
3. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
4. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 

respectively 
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Also, based on the Figure 6.12, which shows the relationship between total 

percentage area of adhesive failure and aspect ratio of specimens within the 

ranges of 0 and 500, without considering the thickness of adhesive layer of 

bitumen, no specific conclusion can be deduced. The types of failure of either 

adhesive or cohesive were found to be independent of the aspect ratio of 

specimens. However, by taking into account the thickness of adhesive layer of 

bitumen, the total percentage area of adhesive failure was found to be in the 

ranges of 90% and 100% for thickness of adhesive layer of bitumen of less 

than 250 µm (0.250 mm). Data of the test results has thus shown that the 

types of failure of either adhesive or cohesive was mainly influenced by the 

thickness of adhesive layer of bitumen rather than the aspect ratio of 

specimens, which in this case was correlated with the diameter of the discs. 

Figure 6.11 Relationship between average maximum tensile bond 
strength and aspect ratio of specimens 
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A plot has been deduced in order to further verify the dependency of the 

maximum tensile bond strength on the thickness of adhesive layer of bitumen, 

as illustrated in Figure 6.13. Based on the plot, for thickness of less than 500 

µm (0.500 mm), as the diameter of the discs was increased which indicated 

the increment of the aspect ratio of specimens, the value of the average 

maximum tensile bond strength was found to be approximately constant. 

However, for thickness of 800 µm (0.800 mm), the value of the average 

maximum tensile bond strength was found to slightly increase with the 

increasing diameter of the discs (i.e. aspect ratio of specimens). High 

thickness of adhesive layer of bitumen of more than 800 µm (0.800 mm) was 

expected to behave differently (i.e. tensile bond strength increase with the 

increasing diameter of the discs) as a result of cohesive mode of failure and 

also the occurrence of cobwebbing and cavitations. 

Figure 6.12 Relationship between total percentage area of adhesive 
failure and aspect ratio of specimens 
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Hence, for thickness of less than 500 µm (0.500 mm), a conclusion can be 

made that aspect ratio of specimens has negligible effect on the tensile bond 

strength as long as the thickness of adhesive layer of bitumen remained 

constant. This supports the study conducted by Harrison and Harrison (1972), 

which indicated that the tensile bond strength was independent of aspect ratio 

of specimens for the value of more than 10 −3∗%Χ(1##(3D#% ∋−∃1(%(0%adhesive 

materials of less than 0.49. For thickness of more than 800 µm (0.800 mm), no 

definite conclusion can be made due to the limited number of the tested 

specimens. Further study is suggested for assessing the effect of aspect ratio 

of specimens beyond the thickness of 800 µm (0.800 mm) (i.e. in the extreme 

region of cohesive mode of failure), which is out of the scope of this study. 

Kendall (1971) has proved the negligible effect of the diameter of the discs on 

the tensile bond strength based on gelatine of thickness between 1000 µm 

(1.000 mm) and 4800 µm (4.800 mm) as adhesive materials and Perspex as 

Figure 6.13 Relationship between average maximum tensile bond 
strength and diameter of discs 
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substrates. Figure 6.14 shows the plot of the test results. It can be concluded 

that the adhesive bond strength is mainly influenced by the thickness of 

adhesive materials rather than the aspect ratio of specimens, which in this 

case was correlated with the diameter of the discs. 

 

Figure 6.15 shows the relationship between average total percentage area of 

adhesive failure and diameter of discs. Based on Figure 6.15, for thickness of 

less than 250 µm (0.250 mm), the total percentage area of adhesive failure 

was found to be constant regardless of the diameter of the discs. However, for 

thickness of more than 500 µm (0.500 mm), the total percentage area of 

adhesive failure was found to decrease with increasing diameter of the discs, 

which indicated the dependency of the specimens on the aspect ratio. Based 

on the previous section, for total percentage area of adhesive failure of less 

Figure 6.14 Relationship between maximum tensile bond strength and 
diameter of discs (Source: Kendall 1971) 

Notes: 1. Substrates: Perspex 
2. Adhesive Materials: Gelatine 
3. Conditioning Procedures: Dry condition at room temperature 
4. Testing Conditions: Deformation rate of 0.6 mm/minute at room temperature 
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than 50%, cohesive mode of failure and also the occurrence of cobwebbing 

and cavitations are expected. Hence, it can be concluded that the adhesive 

bond strength and failure characteristics behave differently with respect to the 

aspect ratio of specimens, depending on the mode of failure and thus 

thickness of adhesive layer of bitumen. 

 

6.4 Analysis to Determine the Effect of Various Testing Conditions 

on the Test Results 

This section is a continuation of part of the analysis from the previous chapter 

(i.e. Chapter 5) in which limited number of specimens had been subjected to 

various testing conditions in terms of deformation rates and test temperatures, 

in order to generally observe the effect on the test results and also to propose 

suitable testing conditions. Based on the data of the previous chapter, the 

ranges of suitable testing conditions in terms of deformation rate and test 

Figure 6.15 Relationship between average total percentage area of 
adhesive failure and diameter of discs 
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temperature were suggested to be 10 mm/minute and 20 mm/minute, and 

15°C and 25°C respectively. In this section, further evaluation was conducted 

in order to verify the ranges of suitable testing conditions and thus to validate 

the reliability and efficiency of the proposed adhesion test method. A total of 

72 specimens were prepared and tested based on the following combinations 

of asphalt mixture materials and testing conditions. 

1. Conventional 70/100 penetration grade of bitumen was used as 

adhesive materials. 

2. Aluminium alloy and Ivonbrook Limestone were used as substrates. 

3. Specimens were subjected to either dry or wet conditionings at specified 

test temperature for 24 hours prior to testing (Note: For wet conditioning, 

specimens were immersed in container filled with water as shown in 

Figure 6.16 before being placed in the conditioning cabinet). 

4. Testing conditions in terms of deformation rate and test temperature 

were 10 mm/minute or 20 mm/minute, and 15°C, 20°C or 25°C 

respectively. 

Table 6.10 shows the summarised data of the test results. Figures 6.17 and 

6.18 show the relationship between average maximum tensile bond strength 

and test temperature over wide ranges of deformation rates and conditioning 

procedures, based on aluminium alloy and Ivonbrook Limestone as 

substrates, respectively. 
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Table 6.10 Summarised data of the test results based on various 
combinations of asphalt mixture materials and testing conditions 

Substrates 
Conditioning 
Procedures 

Average 
Thickness of 

Adhesive 
Layer of 
Bitumen 

(µm) 

Deformation 
Rate 

(mm/minute) 

Test 
Temperature 

(°C) 

Average 
Total 

Percentage 
Area of 

Adhesive 
Failure (%) 

Average 
Maximum 

Tensile Bond 
Strength 

(kPa) 

Aluminium 
Alloy 

Dry 
Conditioning 
at Specified 

Test 
Temperature 
for 24 Hours  

50 

10 

15 100 1361 

20 100 1255 

25 100 1193 

20 

15 100 1462 

20 100 1397 

25 100 1314 

Wet 
Conditioning 
at Specified 

Test 
Temperature 
for 24 Hours  

50 

10 

15 100 1281 

20 100 1187 

25 100 1096 

20 

15 100 1391 

20 100 1316 

25 100 1225 

Ivonbrook 
Limestone 

Dry 
Conditioning 
at Specified 

Test 
Temperature 
for 24 Hours  

50 

10 

15 100 1244 

20 100 1173 

25 100 1061 

20 

15 100 1398 

20 100 1312 

25 100 1238 

Wet 
Conditioning 
at Specified 

Test 
Temperature 
for 24 Hours  

50 

10 

15 100 1106 

20 100 1011 

25 100 942 

20 

15 100 1194 

20 100 1107 

25 100 1016 

Notes: 1. Adhesive Materials: Conventional 70/100 penetration grade of bitumen  

Figure 6.16 Specimen immersed in container filled with water 
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Figure 6.18 Relationship between average maximum tensile bond 
strength and test temperature over wide range of deformation rates and 
conditioning procedures (Ivonbrook Limestone as substrates) 

 

Figure 6.17 Relationship between average maximum tensile bond 
strength and test temperature over wide range of deformation rates and 
conditioning procedures (Aluminium alloy as substrates) 
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Based on the Figures 6.17 and 6.18, the ranges of suitable testing conditions 

in terms of deformation rate and test temperature were verified as within 10 

mm/minute and 20 mm/minute, and 15°C and 25°C respectively, regardless of 

the substrates and conditioning procedures. An inversely proportional 

relationship exists between maximum tensile bond strength and test 

temperature with constant shift due to the variation of deformation rate and 

conditioning procedures (i.e. dry and wet conditionings). Based on the study 

conducted in the previous chapter (i.e. Chapter 5), beyond the test 

temperature of 25°C, the maximum tensile bond strength was expected to 

converge to a constant value, regardless of the testing conditions (i.e. 

deformation rate and test temperature). It can be concluded that within the 

ranges of suitable testing conditions, the value of the maximum tensile bond 

strength is expected to increase with the increasing deformation rate and 

decreasing test temperature, regardless of the substrates and conditioning 

procedures. 

Conditioning procedures (i.e. dry and wet conditionings) were found to have a 

profound influence on the test results, especially when using aggregates as 

substrates. Maximum tensile bond strength of specimens subjected to dry 

conditioning was higher compared to the specimens subjected to wet 

conditionings. Aluminium alloy, which is a non porous material and provides 

low ability for water to penetrate into, has the least effect of conditioning 

procedures (i.e. dry and wet conditionings) on the maximum tensile bond 

strength as compared to the Ivonbrook Limestone. Differences in terms of the 

average maximum tensile bond strength between dry and wet conditionings 

over wide ranges of deformation rates and test temperatures based on the 

aluminium alloy and Ivonbrook Limestone as substrates were 81 kPa and 175 

kPa respectively.  
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A simple study was conducted in order to analyse and compare the variation 

of the maximum tensile bond strength over wide ranges of deformation rates 

with the data of the study conducted by Marek and Herrin (1968). Aluminium 

alloy, conventional 70/100 penetration grade of bitumen, dry conditioning for 

24 hours prior to testing and 25°C were the selected asphalt mixture materials 

(i.e. substrates and adhesive materials), conditioning procedures and test 

temperature respectively. A total of 15 specimens of thickness of 50 µm (0.050 

mm) were tested at the following deformation rate; 5 mm/minute, 10 

mm/minute, 15 mm/minute, 20 mm/minute and 30 mm/minute.  

Figure 6.19 shows the summarised data of the test results and also the data of 

the study conducted by Marek and Herrin (1968). The error bar for the data of 

the test results represents the one-standard deviation above and below the 

average maximum tensile bond strength. Data of the study conducted by 

Marek and Herrin (1968) has been plotted based on the estimated average 

values of the maximum tensile bond strength, according to Figure 2.48. It 

should be noted that the asphalt cement K used by Marek and Herrin (1968) 

has lower penetration grade of bitumen (i.e. 52) and thus justify the high value 

of the average maximum tensile bond strength. Based on Figure 6.19, it can 

be concluded that as the deformation rate is increased beyond 20 mm/minute, 

the maximum tensile bond strength is expected to reach steady state 

conditions. Further increment of the deformation rate beyond this point is 

wasteful. 
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6.5 Analysis to Determine the Effect of Substrates and Conditioning 

Procedures on the Test Results 

In this section, data analysis was conducted in order to determine the effect of 

different types of substrates and conditioning procedures (i.e. dry and wet 

conditionings) on the test results. Based on the study conducted by 

Poulikakos and Partl (2010), the effect of different types of substrates was 

minimum in the absence of water or moisture in the conditioning procedures 

(i.e. dry conditioning). Thus, regardless of the substrates, specimens 

subjected to dry conditioning were expected to exhibit approximately the same 

Figure 6.19 Average maximum tensile bond strength over wide ranges of 
deformation rates 

Notes: 
Based on Conducted Study 
1. Substrates: Aluminium alloy 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen (Penetration at 25°C is 68) 
3. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
4. Testing Conditions: Test temperature of 25°C 
 
Based on Marek and Herrin (1968) 
1. Substrates: Aluminium alloy 
2. Adhesive Materials: Asphalt cement K (Penetration at 25°C is 52) 
3. Conditioning Procedures: Dry conditioning at room temperature for 3 hours prior to testing 
4. Testing Conditions: Test temperature of 25°C 
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value of the test results, provided other testing variables and parameters are 

held constant. This is also supported by the study conducted by Kanitpong 

and Bahia (2003), as illustrated in Figure 6.20.  Based on Figure 6.20, the 

tensile bond strength of different types of substrates (i.e. Sirulian, Galena, 

Platteville and Prairie Du Chien) was in the range of 873 kPa and 1306 kPa, 

except for glass of 1982 kPa. 

 

In the presence of water or moisture, significant difference in the test results 

between dry and wet conditionings, and also among the different types of 

substrates was expected. As stated in the literature review, adhesive bond 

strength between adhesive layer of bitumen and substrates can be influenced 

by physical properties of the substrates such as roughness of the surface and 

porosity, and also classification of the aggregates as either hydrophilic (i.e. 

Figure 6.20 Tensile bond strength of different types of substrates 
(Source: Kanitpong & Bahia 2003) 

Notes: 1. Thickness of Adhesive Materials: 200 µm  
2. Adhesive Materials: PG 58-28  
3. Conditioning Procedures: Dry conditioning at room temperature for 24 hours prior to testing 
4. Testing Conditions: Deformation rate of 65.7 kPa/second at room temperature 
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attract water) or hydrophobic (i.e. repulse water). Based on the properties of 

the aggregates discs listed in Table 6.5, Mount Sorrel Granite, which has high 

porosity (i.e. percentage of water absorption of 0.30%) and is classified as 

acidic (i.e. hydrophilic), was expected to result in significant difference in the 

test results between dry and wet conditionings. Also, based on Table 6.5, 

tensile bond strength of different types of substrates subjected to wet 

conditioning was expected to be ranked from high to low as follows; aluminium 

alloy, Dene Limestone, Ivonbrook Limestone and Mount Sorrel Granite. 

A total of 80 specimens of various combinations of substrates and conditioning 

procedures were prepared and tested at fixed deformation rate and test 

temperature of 20 mm/minute and 25°C respectively. Substrates were 

prepared into discs of 25 mm diameter (i.e. 490.87 mm2 area of contact), and 

thickness of 50 µm (0.050 mm) was selected for the adhesive layer of 

bitumen. Table 6.11 and Figure 6.21 present the data of the test results. 
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Table 6.11 Results based on combinations of different types of 
substrates and conditioning procedures 

Substrates 
Conditioning 
Procedures 

Data 
Sets 

Average 
Thickness of 

Adhesive 
Layer of 

Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength (kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit Volume 

(kJ/m
3
) 

Aluminium 
Alloy 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 

50 

100 1300 2599 

2 100 1450 2079 

3 100 1260 2471 

4 100 1270 1399 

5 95 1530 2682 

6 100 1500 2481 

7 100 1270 2038 

8 90 1150 2115 

9 100 1220 1824 

10 100 1370 2289 

Aluminium 
Alloy 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 

50 

100 1350 1717 

2 100 1210 1569 

3 95 1160 2420 

4 100 1420 1975 

5 100 1240 1701 

6 100 1020 1908 

7 100 1270 2436 

8 100 1200 1048 

9 100 1240 1771 

10 100 1330 2415 

Dene 
Limestone 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 

50 

95 1390 2144 

2 95 1490 2805 

3 100 1260 1513 

4 100 1350 1814 

5 100 1210 2358 

6 100 1190 2702 

7 100 1270 2663 

8 90 1200 1356 

9 100 1320 3125 

10 100 1250 2933 

Dene 
Limestone 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 

50 

100 1120 1243 

2 100 1080 1436 

3 100 1140 1446 

4 90 950 1567 

5 100 920 1080 

6 100 1210 2072 

7 90 1070 1255 

8 100 1000 988 

9 100 1030 1106 

10 100 940 1047 
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Table 6.11 Results based on combinations of different types of 
substrates and conditioning procedures (continued) 

Substrates 
Conditioning 
Procedures 

Data 
Sets 

Average 
Thickness of 

Adhesive 
Layer of 

Bitumen (µm) 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength (kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit Volume 

(kJ/m
3
) 

Ivonbrook 
Limestone 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 

50 

100 1210 2151 

2 100 1160 1702 

3 100 1280 1146 

4 95 1170 3952 

5 100 1320 1910 

6 90 1100 2330 

7 100 1250 3057 

8 100 1410 2954 

9 100 1090 2360 

10 100 1330 2065 

Ivonbrook  
Limestone  

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 

50 

100 1140 1105 

2 100 980 978 

3 100 1030 2087 

4 100 1020 1142 

5 100 880 1264 

6 100 910 1210 

7 95 990 1175 

8 100 950 929 

9 100 1020 1597 

10 100 950 1153 

Mount 
Sorrel 

Granite 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 

50 

100 1300 2009 

2 90 1380 1964 

3 100 1200 2305 

4 95 1160 1886 

5 100 1270 2309 

6 100 1320 1370 

7 100 1400 3067 

8 100 1290 2931 

9 95 1430 2289 

10 100 1210 2782 

Mount 
Sorrel 

Granite 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 

50 

100 860 770 

2 95 610 1093 

3 100 650 1110 

4 100 1140 828 

5 90 770 787 

6 100 970 900 

7 100 1230 1546 

8 90 610 889 

9 100 560 758 

10 100 910 1037 

Notes: 1. Adhesive Materials: Conventional 70/100 penetration grade of bitumen  
2. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively 
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Based on Table 6.11, the mode of failure for all specimens can be classified 

as adhesive due to the large value of the total percentage area of adhesive 

failure of more than 90%, regardless of the conditioning procedures (i.e. dry 

and wet conditionings). As has been stated in the previous part, the 

occurrence of the adhesive mode of failure can still be achieved in the 

absence of water or moisture in the conditioning procedures (i.e. dry 

conditioning), provided that the thickness of adhesive layer of bitumen is thin 

enough.  

Based on Figure 6.21, the average maximum tensile bond strength for all 

substrates subjected to dry conditioning was in the range of 1232 kPa and 

1332 kPa. The error bar represents the one-standard deviation above and 

below the average maximum tensile bond strength. As expected, the 

maximum tensile bond strength of aluminium alloy was highest due to uniform 

Figure 6.21 Average maximum tensile bond strength over wide ranges of 
substrates and conditioning procedures 
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surface characteristics and strong structural properties as compared to the 

aggregates. Chipping due to cutting and brittleness, and also dusty surface 

are the common problems of the aggregates, which affect the tensile bond 

strength. Ivonbrook Limestone has the lowest value of the average tensile 

bond strength in the dry conditioning due to the aforementioned problems. For 

specimens subjected to wet conditioning, the average maximum tensile bond 

strength can be ranked from high to low as follows; aluminium alloy, Dene 

Limestone, Ivonbrook Limestone and Mount Sorrel Granite. Data of the test 

results has thus validated the theoretically expected performance of the 

different types of substrates. 

Unpaired (i.e. Independent) Two-Samples t-Test procedure, at level of 

significance, 4%(0%5657,%8−#%)(3∗+)∃∀∗ in order to determine the existence of 

significant statistical difference in the average maximum tensile bond strength 

among different types of substrates. Theoretically, the effect of different types 

of substrates was minimum in the absence of water or moisture in the 

conditioning procedures (i.e. dry conditioning), and vice versa. Table 6.12 

summarises the output of the analysis of the Unpaired (i.e. Independent) Two-

Samples t-Test procedure. The decision rule in determining the existence of 

significant statistical difference in the pair of data sets is as follows. 

If two-tailed p-!∀#∃%&∋(&()∀##%∗&+,∀−&#%!%#&./&(∋0−∋/∋1∀−1%2&32&significant 

statistical difference exists in the pair of data sets. 

Otherwise, there is no significant statistical difference in the pair of data 

sets. 
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Table 6.12 Statistical analysis of Unpaired (i.e. Independent) Two-
Samples t-Test procedure (Effect of different types of substrates) 

 Pair of Data Sets for Average Maximum Tensile Bond Strength 

 
Aluminium Alloy &  
Dene Limestone 

Aluminium Alloy & 
Ivonbrook Limestone 

Aluminium Alloy &  
Mount Sorrel Granite 

 Dry Wet Dry Wet Dry Wet 

95.0% CI 
(-65.85, 
143.85) 

(100.89, 
295.11) 

(-8.74, 
208.74) 

(168.90, 
345.10) 

(-66.59, 
138.59) 

(241.56, 
584.44) 

t-statistic, t 0.7814 4.2837 1.9320 6.1289 0.7372 5.0610 

Two-tailed p-
value 

0.4447 0.0004 0.0693 0.0001 0.4705 0.0001 

Significant 
Difference 

NO YES NO YES NO YES 

 

 Pair of Data Sets for Average Maximum Tensile Bond Strength 

 
Dene Limestone & 

Ivonbrook Limestone  
Dene Limestone &  

Mount Sorrel Granite 
Ivonbrook Limestone & 
Mount Sorrel Granite 

 Dry Wet Dry Wet Dry Wet 

95.0% CI 
(-33.10, 
155.10) 

(-20.62, 
138.62) 

(-89.92, 
83.92) 

(47.76, 
382.24) 

(-155.58, 
27.58) 

(-6.18, 
318.18) 

t-statistic, t 1.3618 1.5569 0.0725 2.7008 1.4683 2.0209 

Two-tailed p-
value 

0.1900 0.1369 0.9430 0.0146 0.1593 0.0584 

Significant 
Difference 

NO NO NO YES NO NO 

 

Based on Table 6.12, it can be concluded that there is sufficient evidence of 

no significant difference in the average maximum tensile bond strength among 

different types of substrates, in the absence of water or moisture in the 

conditioning procedures (i.e. dry conditioning). Data of the tensile bond 

strength of specimens subjected to dry conditioning was found to be 

approximately the same, regardless of the substrates. In the presence of 

water or moisture (i.e. wet conditioning), significant difference in the test 

results was found in all pair of data sets except for Dene Limestone and 

Ivonbrook Limestone, and Ivonbrook Limestone and Mount Sorrel Granite. 

Hence, data of the statistical analysis has justified the theoretically predicted 

performance of average maximum tensile bond strength among different types 
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of substrates due to the effect of water or moisture in the conditioning 

procedures. Further analysis to observe the effect of different types of 

substrates on the test results was then conducted, as shown in Table 6.13. 

Aluminium alloy was selected as control substrates. 

Table 6.13 Effect of different types of substrates on the test results 

Properties 

Dry Conditioning at 25°C for 24 Hours  Wet Conditioning at 25°C for 24 Hours  

        

Maximum Tensile 
Bond Strength (kPa) 

0.97 0.92 0.97 0.88 0.79 0.67 

Tensile Energy 
Required to Produce 

Failure Per Unit 
Volume (kJ/m

3
) 

1.07 1.08 1.04 0.70 0.67 0.51 

 

As has been stated before, in the dry conditioning, the effect of different types 

of substrates on the test results of maximum tensile bond strength and tensile 

energy required to produce failure per unit volume was minimum. Data of the 

test results of specimens subjected to dry conditioning can be concluded to be 

approximately the same, regardless of the substrates. However, for 

specimens subjected to wet conditioning, data of the test results was found to 

decrease in comparison to the control substrates of aluminium alloy. Ratio of 

the maximum tensile bond strength and tensile energy required to produce 

failure per unit volume between different types of aggregates (i.e. Dene 

Limestone, Ivonbrook Limestone and Mount Sorrel Granite) and aluminium 

alloy were 0.88, 0.79 and 0.67; and 0.70, 0.67 and 0.51 respectively. Mount 

Sorrel Granite has the lowest values of the maximum tensile bond strength 

and tensile energy required to produce failure per unit volume in the wet 

  

DL

AA   

IL

AA   

MSG

AA   

DL

AA   

IL

AA   

MSG

AA

Notes: 1. AA: Aluminium Alloy; DL: Dene Limestone; IL: Ivonbrook Limestone; MSG: Mount Sorrel Granite 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen  
3. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 

respectively 
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conditioning, in comparison to the control substrates of aluminium alloy. The 

reason for this can be attributed to the properties of the aggregates (i.e. high 

porosity and acidic). The effect of water or moisture in the conditioning 

procedures was more noticeable in the presence of mineral aggregates as 

substrates than aluminium alloy as substrates, as shown in Tables 6.14 and 

6.15.  

Table 6.14 Statistical analysis of Unpaired (i.e. Independent) Two-
Samples t-Test procedure (Effect of conditioning procedures) 

 
Pair of Data Sets of Dry Conditioning & Wet Conditioning for Average 

Maximum Tensile Bond Strength 

 
Aluminium  

Alloy 
Dene  

Limestone 
Ivonbrook 
Limestone 

Mount Sorrel 
Granite 

95.0% CI (-23.39, 199.39) (157.47, 336.53) (160.27, 329.73) (299.14, 630.86) 

t-statistic, t 1.6598 5.7960 6.0752 5.8901 

Two-tailed p-value 0.1143 0.0001 0.0001 0.0001 

Significant Difference NO YES YES YES 

 

Table 6.15 Effect of conditioning procedures on the test results 

Properties      

Maximum Tensile 
Bond Strength (kPa) 

0.93 0.81 0.80 0.64 

Tensile Energy 
Required to Produce 

Failure Per Unit 
Volume (kJ/m

3
) 

0.86 0.57 0.53 0.42 

 

Based on Table 6.14, as expected, aluminium alloy has shown no significant 

statistical difference in the average maximum tensile bond strength between 

dry and wet conditionings. Aluminium alloy has the lowest difference of 

  

AAWET

AADRY   

DLWET

DLDRY   

ILWET

ILDRY   

MSGWET

MSGDRY

Notes: 1. AA: Aluminium Alloy; DL: Dene Limestone; IL: Ivonbrook Limestone; MSG: Mount Sorrel Granite 
2. Adhesive Materials: Conventional 70/100 penetration grade of bitumen  
3. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 

respectively 
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approximately 7% for maximum tensile bond strength and 14% for tensile 

energy required to produce failure per unit volume, as shown in Table 6.15, 

which can be attributed to the small percentage of water absorption of 0.05%. 

Low ability for water to penetrate into (i.e. non porous material) was found to 

result in minimum effect of water or moisture on the test results.  

By comparing with the properties of the aggregates discs as listed in Table 

6.5, it can be concluded that porosity and classification of the aggregates as 

either hydrophilic or hydrophobic have a profound influence on the test results, 

especially in the presence of water or moisture in the conditioning procedures 

(i.e. wet conditioning). Mount Sorrel Granite, which has high porosity and is 

classified as acidic was found to result in the most significant difference in the 

average maximum tensile bond strength between dry and wet conditionings, 

of approximately 36%. As shown in Table 6.15, reduction of the values of the 

test results between dry and wet conditionings of Dene Limestone and 

Ivonbrook Limestone was found to be approximately the same, which can be 

attributed to the same classification of the aggregates (i.e. basic).  

6.6 Analysis to Determine the Effect of Adhesive Materials and 

Conditioning Procedures on the Test Results 

In this section, data analysis was conducted in order to determine the effect of 

different types of bitumen (bitumen-filler mastic) of different penetration grade, 

and conditioning procedures (i.e. dry and wet conditionings) on the test 

results. Based on the study conducted by Marek and Herrin (1968), 

penetration grade of bitumen was found to have a profound influence on the 

test results, especially in terms of the types of failure and tensile bond 

strength. The values of the percentage area of adhesive failure and tensile 
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bond strength were found to decrease with the increasing value of the 

penetration grade of bitumen (i.e. from hard to soft bitumen grade). Hence, 

based on the properties of the bitumen (bitumen-filler mastic) listed in Table 

6.6, the values of the percentage area of adhesive failure and tensile bond 

strength of conventional 70/100 penetration grade of bitumen with different 

types of filler were expected to be ranked from high to low as follows; 20% by 

volume of Hydrated Lime filler, 20% by volume of Limestone filler, 20% by 

volume of Gritstone filler and without filler.  

A total of 80 specimens of various combinations of asphalt mixture materials 

and conditioning procedures were prepared and tested at fixed deformation 

rate and test temperature of 20 mm/minute and 25°C respectively. Aluminium 

alloy and Ivonbrook Limestone were selected as substrates in order to study 

the behaviour of different types of bitumen (bitumen-filler mastic) without and 

with the influence of the mineral aggregates, respectively. Specimens of 

average thickness of adhesive layer of bitumen of 50 µm (0.050 mm) were 

subjected to either dry or wet conditionings at 25°C for 24 hours prior to 

testing. Table 6.16 and Figure 6.22 present the data of the test results. 
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Table 6.16 Results based on various combinations of asphalt mixture 
materials and conditioning procedures 

Adhesive 
Materials 

Substrates 
Conditioning 
Procedures 

Data 
Sets 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength (kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit Volume 

(kJ/m
3
) 

Conventional 
70/100 

Penetration 
Grade of 
Bitumen 

Aluminium 
Alloy 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1300 2599 

2 100 1350 2079 

3 100 1330 2471 

4 100 1270 1399 

5 95 1430 2682 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1250 1717 

2 100 1210 1569 

3 95 1220 2420 

4 100 1320 1975 

5 100 1240 1701 

Ivonbrook 
Limestone 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1210 2151 

2 100 1260 1702 

3 100 1280 1146 

4 95 1170 3952 

5 100 1220 1910 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1040 1105 

2 100 980 978 

3 100 1030 2087 

4 100 1020 1142 

5 100 980 1264 

Conventional 
70/100 

Penetration 
Grade of 

Bitumen and 
20% by 

Volume of 
Hydrated 
Lime Filler 

Aluminium 
Alloy 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1620 3241 

2 100 1530 2788 

3 100 1490 2945 

4 100 1410 2674 

5 95 1540 2803 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1480 2314 

2 100 1430 2687 

3 95 1480 2796 

4 100 1400 1985 

5 100 1510 2964 

Ivonbrook 
Limestone 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1370 3042 

2 100 1290 2498 

3 95 1350 2677 

4 100 1330 2303 

5 100 1380 2609 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1180 1986 

2 100 1190 2063 

3 100 1220 2012 

4 100 1250 2771 

5 100 1270 2154 
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Table 6.16 Results based on various combinations of asphalt mixture 
materials and conditioning procedures (continued) 

Adhesive 
Materials 

Substrates 
Conditioning 
Procedures 

Data 
Sets 

Total 
Percentage 

Area of 
Adhesive 

Failure (%) 

Maximum 
Tensile Bond 

Strength (kPa) 

Tensile Energy 
Required to 

Produce Failure 
Per Unit Volume 

(kJ/m
3
) 

Conventional 
70/100 

Penetration 
Grade of 

Bitumen and 
20% by 

Volume of 
Limestone 

Filler 

Aluminium 
Alloy 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1380 2642 

2 95 1480 2849 

3 100 1460 3105 

4 100 1530 2457 

5 100 1320 2055 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1380 1887 

2 100 1360 2546 

3 100 1310 2251 

4 100 1290 2409 

5 100 1370 2311 

Ivonbrook 
Limestone 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1280 2973 

2 90 1290 2610 

3 100 1330 2294 

4 100 1350 2101 

5 100 1340 1976 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1110 2154 

2 100 1130 1965 

3 100 1190 1841 

4 100 1080 1569 

5 100 1200 2001 

Conventional 
70/100 

Penetration 
Grade of 

Bitumen and 
20% by 

Volume of 
Gritstone 

Filler 

Aluminium 
Alloy 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1410 2882 

2 100 1500 2495 

3 100 1330 1980 

4 100 1370 2537 

5 95 1420 2687 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1310 1836 

2 100 1250 1944 

3 95 1310 1673 

4 100 1260 2030 

5 100 1320 2174 

Ivonbrook 
Limestone 

Dry 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1330 2348 

2 100 1250 2219 

3 100 1320 1952 

4 100 1260 1801 

5 100 1270 2649 

Wet 
Conditioning 

at 25°C for 24 
Hours Prior to 

Testing 

1 100 1110 1811 

2 100 920 1154 

3 100 1060 1349 

4 100 1010 1788 

5 100 1060 1551 

Notes: 1. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively 
2. Average Thickness of Adhesive Layer of Bitumen: 50 µm 
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Based on Table 6.16, the mode of failure for all specimens can be classified 

as adhesive due to the large value of the total percentage area of adhesive 

failure of more than 90%. The occurrence of the adhesive mode of failure can 

be correlated with the thickness of adhesive layer of bitumen. Based on Figure 

6.22, addition of basic filler (i.e. Hydrated Lime and Limestone) to bitumen was 

found to increase the value of the maximum tensile bond strength, regardless 

of the substrates and conditioning procedures. Addition of Hydrated Lime and 

Limestone has resulted in increase in the value of the maximum tensile bond 

strength of approximately 11.54% and 7.35% for specimens subjected to dry 

conditioning, and 18.99% and 10.30% for specimens subjected to wet 

conditioning respectively, regardless of the substrates. While addition of 

Gritstone as mineral filler only increased the maximum tensile bond strength 

by 4.98% and 2.78% for specimens subjected to dry and wet conditionings 

Figure 6.22 Average maximum tensile bond strength over wide ranges of 
asphalt mixture materials and conditioning procedures 



CHAPTER 6                                                              PART 3: DETAILED EVALUATION AND VALIDATION  

 

 268

respectively. Mineral filler, which is classified as basic was found to 

significantly improve the value of the tensile bond strength in the presence of 

water or moisture. In Figure 6.22, the error bar represents the one-standard 

deviation above and below the average maximum tensile bond strength. 

Based on Table 6.16 and Figure 6.22, the average maximum tensile bond 

strength of conventional 70/100 penetration grade of bitumen with different 

types of filler can be ranked as follows; 20% by volume of Hydrated Lime filler, 

20% by volume of Limestone filler, 20% by volume of Gritstone filler and 

without filler. As expected, data of the test results has justified the theoretically 

predicted performance of the different types of bitumen (bitumen-filler mastic), 

which was based on the properties listed in Table 6.6. The values of the 

maximum tensile bond strength were found to decrease with the increasing 

value of the penetration grade of bitumen (bitumen-filler mastic). Figure 6.23 

shows the relationship between average maximum tensile bond strength and 

penetration grade of bitumen (bitumen-filler mastic), based on the data of the 

test results of specimens consisting of aluminium alloy as substrates and 

subjected to dry conditioning. 
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Unpaired (i.e. Independent) Two-Samples t-Test procedure, at level of 

significance, 4%(0%5657,%8−#%)(3∗+)∃∀∗ in order to determine the existence of 

significant statistical difference in the average maximum tensile bond strength 

of conventional 70/100 penetration grade of bitumen due to the addition of 

different types of mineral filler. Table 6.17 summarises the output of the 

analysis. Again, the same decision rule in determining the existence of 

significant statistical difference in the pair of data sets was applied. 

If two-tailed p-!∀#∃%&∋(&()∀##%∗&+,∀−&#%!%#&./&(∋0−∋/∋1∀−1%2&32&significant 

statistical difference exists in the pair of data sets. 

Otherwise, there is no significant statistical difference in the pair of data 

sets. 

Notes: 
1. Substrates: Aluminium alloy 
2. Conditioning Procedures: Dry conditioning at 25°C for 24 hours prior to testing 
3. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C respectively 
4. Thickness of Adhesive Layer of Bitumen: 50 µm 
 

Figure 6.23 Relationship between average maximum tensile bond 
strength and penetration grade of bitumen  
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Table 6.17 Statistical analysis of Unpaired (i.e. Independent) Two-
Samples t-Test procedure (Effect of addition of mineral filler) 

 Pair of Data Sets for Average Maximum Tensile Bond Strength 

 Aluminium Alloy as Substrates 

 
Addition of 20% by Volume 

of Hydrated Lime Filler 
Addition of 20% by Volume 

of Limestone Filler 
Addition of 20% by Volume 

of Gritstone Filler 

 Dry Wet Dry Wet Dry Wet 

95.0% CI 
(-282.78, -

81.22) 
(-275.74, -

148.26) 
(-204.48, 

8.48) 
(-154.49, -

33.51) 
(-160.55, 

20.55) 
(-97.73, 
13.73) 

t-statistic, t 4.1644 7.6699 2.1224 3.5837 1.7826 1.7380 

Two-tailed p-
value 

0.0031 0.0001 0.0666 0.0071 0.1125 0.1204 

Significant 
Difference 

YES YES NO YES NO NO 

 

 Pair of Data Sets for Average Maximum Tensile Bond Strength 

 Ivonbrook Limestone as Substrates 

 
Addition of 20% by Volume 

of Hydrated Lime Filler 
Addition of 20% by Volume 

of Limestone Filler 
Addition of 20% by Volume 

of Gritstone Filler 

 Dry Wet Dry Wet Dry Wet 

95.0% CI 
(-173.88, -

58.12) 
(-261.13, -

162.87) 
(-144.96, -

35.04) 
(-192.75, -

71.25) 
(-116.34, 

0.34) 
(-101.68, 

57.68) 

t-statistic, t 4.6216 9.9497 3.7763 5.0107 2.2927 0.6367 

Two-tailed p-
value 

0.0017 0.0001 0.0054 0.0010 0.0511 0.5421 

Significant 
Difference 

YES YES YES YES NO NO 

Note: Conventional 70/100 penetration grade of bitumen without any addition of mineral filler was selected 
as control adhesive materials. 

Based on Table 6.17, it can be concluded that there is sufficient evidence of 

significant statistical difference in the average maximum tensile bond strength 

of conventional 70/100 penetration grade of bitumen due to the addition of 

basic filler (i.e. Hydrated Lime and Limestone), regardless of the substrates 

and conditioning procedures, except for combination of aluminium alloy as 

substrates, Limestone filler and dry conditioning. Hence, a conclusion can be 

made that mineral filler, which is classified as basic could significantly improve 

the tensile bond strength. Addition of Gritstone as mineral filler to bitumen was 

found to result in minimum effect on the test results due to the classification as 
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acidic (i.e. hydrophilic) (i.e. no significant difference in the average maximum 

tensile bond strength of conventional 70/100 penetration grade of bitumen due 

to the addition of Gritstone).  

Additional analysis to observe the effect on the test results due to the addition 

of different types of mineral filler to bitumen was conducted, as shown in Table 

6.18. Based on Table 6.18, in terms of the data of the test results of maximum 

tensile bond strength and tensile energy required to produce failure per unit 

volume, addition of Hydrated Lime as mineral filler was found to result in the 

highest increase of the properties, followed by Limestone and Gritstone, and 

thus justified the theoretically expected performance. 

Table 6.18 Effect of different types of adhesive materials on the test 
results 

Properties  

Dry Conditioning at 25°C for 24 Hours  Wet Conditioning at 25°C for 24 Hours  

Alum. Alloy Ivonbrook Lime. Alum. Alloy Ivonbrook Lime. 

            

Maximum Tensile 
Bond Strength (kPa) 

1.14 1.07 1.05 1.09 1.07 1.05 1.17 1.08 1.03 1.21 1.13 1.02 

Tensile Energy 
Required to Produce 

Failure Per Unit 
Volume (kJ/m

3
) 

1.29 1.17 1.12 1.21 1.10 1.01 1.36 1.22 1.03 1.67 1.45 1.16 

 

The effect of water or moisture in the conditioning procedures was more 

noticeable in the presence of mineral aggregates as substrates (i.e. Ivonbrook 

Limestone), regardless of the adhesive materials, as shown in Tables 6.19 

and 6.20. Specimens consist of mineral aggregates as substrates are 

expected to result in differences in the test results between dry and wet 

  

HF

NF   

LF

NF   

GF

NF   

HF

NF   

LF

NF   

GF

NF   

HF

NF   

LF

NF   

GF

NF   

HF

NF   

LF

NF   

GF

NF

Notes: 1. NF: Conventional 70/100; HF: Conventional 70/100 & Hydrated Lime Filler; LF: Conventional 
70/100 & Limestone Filler; GF: Conventional 70/100 & Gritstone Filler 

2. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 
respectively 
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conditionings, which can be attributed to the porosity and classification of the 

aggregates as either hydrophilic (i.e. attract water) or hydrophobic (i.e. repulse 

water). For aluminium alloy as substrates, theoretically, no significant 

statistical difference in the test results between dry and wet conditionings 

should be observed due to the properties as non porous material, which 

provides low ability for water to penetrate into. However, based on Table 6.19, 

conventional 70/100 penetration grade of bitumen without filler and with 

addition of 20% by volume of Gritstone filler have shown significant statistical 

difference in the average maximum tensile bond strength between dry and wet 

conditionings. The reason for this can be attributed to the small sample size of 

5, in which a small error and differences could affect the test results. Based on 

the previous data of the test results shown in Table 6.14 using a sample size 

of 10, aluminium alloy has shown no significant statistical difference in the 

average maximum tensile bond strength between dry and wet conditionings.  
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Table 6.19 Statistical analysis of Unpaired (i.e. Independent) Two-
Samples t-Test procedure (Effect of conditioning procedures) 

 
Pair of Data Sets of Dry Conditioning & Wet Conditioning for Average 

Maximum Tensile Bond Strength 

 Aluminium Alloy as Substrates 

 Without Filler 
20% by Volume 

of Hydrated Lime 
Filler 

20% by Volume 
of Limestone 

Filler 

20% by Volume 
of Gritstone Filler 

95.0% CI (11.17, 164.83) (-33.20, 149.20) (-3.36, 187.36) (42.50, 189.50) 

t-statistic, t 2.6413 1.4666 2.2248 3.6392 

Two-tailed p-value 0.0297 0.1807 0.0568 0.0066 

Significant Difference YES NO NO YES 

 

 
Pair of Data Sets of Dry Conditioning & Wet Conditioning for Average 

Maximum Tensile Bond Strength 

 Ivonbrook Limestone as Substrates 

 Without Filler 
20% by Volume 

of Hydrated Lime 
Filler 

20% by Volume 
of Limestone 

Filler 

20% by Volume 
of Gritstone Filler 

95.0% CI (164.71, 271.29) (67.92, 176.08) (113.78, 238.22) (170.86, 337.14) 

t-statistic, t 9.4338 5.2021 6.5230 7.0447 

Two-tailed p-value 0.0001 0.0008 0.0002 0.0001 

Significant Difference YES YES YES YES 

 

 

Table 6.20 Effect of conditioning procedures on the test results 

Properties  

Aluminium Alloy Ivonbrook Limestone 

        

Maximum Tensile 
Bond Strength (kPa) 

0.93 0.96 0.94 0.92 0.82 0.91 0.87 0.80 

Tensile Energy 
Required to Produce 

Failure Per Unit 
Volume (kJ/m

3
) 

0.84 0.88 0.87 0.77 0.61 0.84 0.80 0.70 

 

  

NFWET

NFDRY   

HFWET

HFDRY   

LFWET

LFDRY   

GFWET

GFDRY   

NFWET

NFDRY   

HFWET

HFDRY   

LFWET

LFDRY   

GFWET

GFDRY

Notes: 1. NF: Conventional 70/100; HF: Conventional 70/100 & Hydrated Lime Filler; LF: Conventional 
70/100 & Limestone Filler; GF: Conventional 70/100 & Gritstone Filler 

2. Testing Conditions: Deformation rate and test temperature of 20 mm/minute and 25°C 
respectively 
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Also, based on Table 6.20, in terms of the tensile energy required to produce 

failure per unit volume, for aluminium alloy as substrates, the ratio between 

dry and wet conditionings has shown a reduction as follows; 16%, 12%, 13% 

and 23% for conventional 70/100 penetration grade of bitumen without filler 

and with addition of 20% by volume of Hydrated Lime, Limestone and 

Gritstone respectively. While for Ivonbrook Limestone as substrates, the ratio 

between dry and wet conditionings for conventional 70/100 penetration grade 

of bitumen without filler and with addition of 20% by volume of Hydrated Lime, 

Limestone and Gritstone were 39%, 16%, 20% and 30% respectively. 

Generally, it can be concluded that penetration grade of bitumen, types of 

substrates and mineral filler, and conditioning procedures have a profound 

influence on the test results. Hard bitumen grade (i.e. low penetration grade of 

bitumen), low porosity of substrates and classification of mineral filler as basic 

were expected to improve the performance of the asphalt mixtures, especially 

in terms of the adhesive bond strength. 

6.7 Conclusions 

In this chapter, the established criteria and procedures for the proposed 

adhesion test method were subjected to detailed evaluation in order to 

quantify the adhesive bond strength and failure characteristics of various 

combinations of asphalt mixture materials over wide ranges of testing 

conditions. A simple study was conducted in order to determine the effect of 

the amount of poured bitumen (i.e. under filling and overfilling) on the test 

results. Data of the test results has shown that the amount of poured bitumen 

has no or little effect, based on assumptions that a reasonable amount of 
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bitumen has been poured (i.e. under filling and overfilling are not too extreme 

relative to the sufficiently filled). 

Thickness of adhesive layer of bitumen was found to have a profound 

influence on the test results. The types of failure of specimens of either 

adhesive or cohesive can be modelled as a S-shaped curve due to the 

increasing or decreasing value of the thickness of adhesive layer of bitumen. 

Based on the following assumption; adhesive mode of failure is characterised 

by the value of the total percentage area of adhesive failure of more than 90%, 

thickness of 200 µm (0.200 mm) was deduced as point of transition of the 

mode of failure of either adhesive or mixed cohesive and adhesive. The value 

of the tensile bond strength within the region of thickness of less than 200 µm 

(0.200 mm) can be used to represent the adhesive bond strength between 

adhesive layer of bitumen and substrates. However, in order to generalise the 

conclusion over wide ranges of asphalt mixture materials and testing 

conditions, and also to take into account the worst-case scenario that might 

possibly occur, factor of safety of 2.0 has been applied. Hence, thickness of 

100 µm (0.100 mm) has been deduced as the final thickness for the 

occurrence of the adhesive mode of failure in this study. Based on the data of 

the test results and also data of Marek and Herrin (1968), suitable thickness of 

adhesive layer of bitumen was suggested to be within 40 µm (0.040 mm) and 

100 µm (0.100 mm), in order to allow for the occurrence of adhesive mode of 

failure and at the same time maintaining the uniformity and accuracy of the 

test results. Also, the mode of failure of entirely cohesive, mixed cohesive and 

adhesive and entirely adhesive can be characterised by the value of the total 

percentage area of adhesive failure as follows; less than 50%, between 50% 

and 90% and more than 90% respectively. 
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For thickness less than 500 µm (0.500 mm), aspect ratio of specimens was 

expected to result in negligible effect on the test results as long as the 

thickness of adhesive layer of bitumen remained constant. Hence, for the 

purpose of comparative analysis, it is important to prepare the specimen to 

uniform thickness of adhesive layer of bitumen despite the various area of 

contact between bitumen and substrates. However, beyond the thickness of 

800 µm (0.800 mm) (i.e. in the extreme region of cohesive mode of failure), 

further study is suggested. 

Based on the data of the previous chapter and also the continuation of the 

study in this part, the ranges of suitable testing conditions in terms of 

deformation rate and test temperature were verified as within 10 mm/minute 

and 20 mm/minute, and 15°C and 25°C respectively, regardless of the 

substrates and conditioning procedures. Also, based on the conducted study 

and comparison with the data of Marek and Herrin (1968), tensile bond 

strength was found to reach steady state conditions as deformation rate is 

increased beyond 20 mm/minute. Hence, application of higher deformation 

rate of more than 20 mm/minute for the laboratory adhesion test method 

seems to be wasteful.  

Regardless of the substrates, specimens subjected to dry conditioning were 

found to exhibit approximately the same adhesive bond strength and failure 

characteristics, provided other testing variables and parameters were held 

constant. In the presence of water or moisture in the conditioning procedures 

(i.e. wet conditioning), significant difference in the test results among different 

types of substrates and also between dry and wet conditionings was expected, 

which mainly influenced by the physical properties of the substrates such as 

roughness of the surface and porosity, and also classification of the substrates 
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as either hydrophilic (i.e. attract water) or hydrophobic (i.e. repulse water). 

Also, in the presence of water or moisture in the conditioning procedures (i.e. 

wet conditioning), different types of bitumen (bitumen-filler mastic) of different 

penetration grade were found to have a profound influence on the test results. 

Hard bitumen grade (i.e. low penetration grade of bitumen) and addition of 

mineral filler, especially basic (i.e. hydrophobic) filler was expected to improve 

the adhesive bond strength and failure characteristics of the asphalt mixtures.  

Within the ranges of suitable testing conditions, tensile bond strength of 

specimens subjected to dry conditioning was higher compared to the 

specimens subjected to wet conditioning. However, the types of failure of 

specimens of either adhesive or cohesive are mainly influenced by the 

thickness of adhesive layer of bitumen rather than the presence of water or 

moisture. Data of the test results has shown that the occurrence of the 

adhesive mode of failure can still be achieved in the absence of water or 

moisture provided that the thickness of adhesive layer of bitumen is thin 

enough. 

Generally, the values of the tensile bond strength and tensile energy required 

to produce failure per unit volume were expected to increase with the 

increasing deformation rate, and decrease with the increasing test 

temperature and the increasing value of the penetration grade of bitumen 

(bitumen-filler mastic) (i.e. from hard to soft bitumen grade). Based on the data 

of the test results of the whole study, the established criteria and procedures 

for the proposed adhesion test method were verified as capable in quantifying 

the adhesive bond strength and failure characteristics of various combinations 

of asphalt mixture materials (i.e. bitumen (bitumen-filler mastic) and 

aggregates) over wide ranges of thicknesses of adhesive layer of bitumen, 
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aspect ratio of specimens, testing conditions (i.e. deformation rates and test 

temperatures) and conditioning procedures (i.e. dry and wet conditionings). 

Limitations of the testing variables and parameters were described in detail in 

this chapter. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

DEVELOPMENT 

The overall objective of this study was to develop and establish a simple, 

practical and reliable monotonically-loaded laboratory adhesion test method 

for direct measurement of the adhesive bond strength of bitumen (bitumen-

filler mastic) and aggregates. The established criteria and procedures for the 

laboratory adhesion test method were then subjected to detailed evaluation in 

order to quantify the adhesive bond strength and failure characteristics of 

various combinations of asphalt mixture materials over wide ranges of testing 

conditions, to propose suitable testing conditions and to validate the reliability 

and efficiency. Adhesion between bitumen (bitumen-filler mastic) and 

aggregates is considered as one of the main fundamental properties of the 

asphalt mixtures, which can be correlated with the quality, performance and 

serviceability. However, there are no established testing techniques and 

procedures that can be used to quantify the adhesive bond strength of 

bitumen (bitumen-filler mastic) and aggregates, and therefore research in this 

area is crucial and evidently needed. There have been some efforts in 

developing the testing techniques and procedures such as published by 

Copeland (2007), Kanitpong and Bahia (2003), Kanitpong and Bahia (2004) 

and Kanitpong and Bahia (2005). However, the developed testing techniques 

and procedures have not enjoyed universal success and acceptance, and not 

yet established. Also, there is no published research in the pavement related 

areas that had determined the effect of different types of filler (i.e. bitumen-

filler mastic) on the adhesive bond strength and failure characteristics of 

asphalt mixtures. 
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7.1 Conclusions 

Based upon the data of the test results and analysis of the three parts of the 

study, the following conclusions were made. 

1. Part 1: Selection and Justification of the Proposed Adhesion Test 

Method 

Based on the comprehensive literature review on various testing 

techniques and procedures used to measure the adhesive bond 

strength, adhesion test method based on the pull off (tension) mode was 

concluded as the most suitable and realistic approach for development 

of laboratory adhesion test method for asphalt mixtures. Pull off (tension) 

mode was found to be the best approach to describe the adhesive bond 

strength and failure characteristics of asphalt mixtures, and this was also 

supported by the study conducted by Harvey (2000), Kanitpong and 

Bahia (2003) and Marek and Herrin (1968). Also, several factors such as 

ease of specimen preparation, cost effectiveness of test setup and 

apparatus, availability of suitable testing equipment (i.e. INSTRON servo 

hydraulic frame and Ductilometer testing apparatus) and compatibility 

with asphalt mixtures were taken into account in making the selection. 

2. Part 2: Development of Criteria and Procedures for the Proposed 

Adhesion Test Method 

A general concept based on the pull off (tension) mode was subjected to 

trial and error experimental approach, in order to establish the criteria 

and procedures for the laboratory adhesion test method. Throughout this 
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part, the development of criteria and procedures in terms of test setup 

and apparatus, specimen preparation, testing and data analysis was 

conducted based on the consideration of the INSTRON servo hydraulic 

frame and Ductilometer testing apparatus as testing equipments. Both of 

the testing equipments were subjected to preliminary and subsequent 

study. 

Based on the preliminary and subsequent study, the INSTRON servo 

hydraulic frame was found to be the most suitable and practical testing 

equipment compared to the Ductilometer testing apparatus. Draft of 

standard criteria and procedures for the laboratory adhesion test method 

based on the INSTRON servo hydraulic frame as testing equipment was 

developed and presented in Appendix C. Based on the conducted 

analysis, the established criteria and procedures were found capable to 

measure the adhesive bond strength with excellent uniformity and 

repeatability. Total conditioning time of 24 hours has been considered as 

the standard conditioning procedures for both dry and wet conditionings, 

regardless of the substrates. Temperature for the conditioning 

procedures was dependent on the test temperature. Also, a standard 

procedure in determining the types of failure of specimens as either 

adhesive or cohesive was established, as presented in Appendix B. 

3. Part 3: Detailed Evaluation and Validation of the Proposed Adhesion 

Test Method 

In this part, the established criteria and procedures for the laboratory 

adhesion test method were subjected to further evaluation in quantifying 

the adhesive bond strength and failure characteristics of various 
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combinations of asphalt mixture materials (i.e. bitumen (bitumen-filler 

mastic) and aggregates) over wide ranges of thicknesses of adhesive 

layer of bitumen, aspect ratio of specimens, testing conditions (i.e. 

deformation rates and test temperatures) and conditioning procedures 

(i.e. dry and wet conditionings). Results of the study were then used for 

comparative analysis in order to determine the effect of various variables 

and parameters on the test results, to propose suitable testing conditions 

and to validate the reliability and efficiency of the laboratory adhesion 

test method. In order to consider wide ranges of asphalt mixture 

materials, various types of substrates and adhesive materials of distinct 

properties were utilised, and details of the asphalt mixture materials 

were summarised in Tables 6.5 and 6.6. 

Initial study was conducted in order to determine the effect of the 

amount of poured bitumen (i.e. under filling, sufficiently filled or 

overfilling) on the test results. Results of the study have shown that the 

amount of poured bitumen has no or little effect on the test results, as 

long as a reasonable amount of bitumen is poured (i.e. excessive or 

insufficient amount is not too extreme). Also, in this part, thickness of 

adhesive layer of bitumen was found to have a profound influence on the 

types of failure of specimens, regardless of conditioning procedures (i.e. 

dry and wet conditionings).  

Based on the data of the test results and data of Marek and Herrin 

(1968), suitable thickness of adhesive layer of bitumen for the laboratory 

adhesion test method was suggested to be within 40 µm (0.040 mm) 

and 100 µm (0.100 mm), in order to allow for the occurrence of adhesive 

mode of failure and at the same time maintaining the uniformity and 
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accuracy of the test results. Aspect ratio of specimens was expected to 

result in negligible effect on the test results as long as the thickness of 

adhesive layer of bitumen remained constant. Ranges of suitable testing 

conditions in terms of deformation rate and test temperature for the 

laboratory adhesion test method were suggested as within 10 

mm/minute and 20 mm/minute, and 15°C and 25°C respectively, 

regardless of the substrates and conditioning procedures. It can be 

concluded that within the ranges of suitable testing conditions, the value 

of the tensile bond strength and tensile energy required to produce 

failure per unit volume were expected to increase with the increasing 

deformation rate, and decrease with the increasing test temperature and 

the increasing value of the penetration grade of bitumen (bitumen-filler 

mastic) (i.e. from hard to soft bitumen grade). 

Based on the data of the test results of the whole study, the established 

criteria and procedures for the laboratory adhesion test method were verified 

as capable in quantifying the adhesive bond strength and failure 

characteristics of various combinations of asphalt mixture materials (i.e. 

bitumen (bitumen-filler mastic) and aggregates) over wide ranges of testing 

conditions. In terms of the uniformity and repeatability of the test results, 

except for the tensile energy required to produce failure per unit volume, all 

parameters (i.e. thickness of adhesive layer of bitumen, total percentage area 

of adhesive failure and maximum tensile bond strength) have resulted in 

coefficient of variation of less than 7%. High variability of the tensile energy 

required to produce failure per unit volume can be correlated with the curve 

fitting procedures and the various parameters that governed the values of the 

tensile energy required to produce failure per unit volume such as tensile load, 

pull off displacement and thickness of adhesive layer of bitumen. However, 
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this can be considered as the first step to gain basic knowledge and 

understanding of the tensile energy required to produce failure per unit volume 

of asphalt mixture materials. Draft of standard criteria and procedures for the 

laboratory adhesion test method that can be used as guiding principles in 

conducting the test can be referred in Appendix C. 

7.2 Recommendations for Future Research Development 

Considering the overall work that have been done in this study and based on 

the data of the test results and analysis, the following recommendations are 

suggested for future research development. 

1. Round robin test is suggested in order to validate the reproducibility of 

the developed laboratory adhesion test method. Reproducibility can be 

defined as the ability of the developed laboratory adhesion test method 

to be used independently by different operators at different laboratories 

in obtaining consistent data of the test results as compared to the 

replicate specimens under the same testing conditions. In order to 

perform the round robin test, different operators at different laboratories 

are suggested to conduct the laboratory adhesion test method using 

INSTRON servo hydraulic frame on the same asphalt mixture materials 

under the same testing conditions, based on the developed draft of 

standard criteria and procedures, as presented in Appendix C. Hence, 

the degree of agreements of the data of the test results between 

different operators at different laboratories can be observed and 

verification on how well the operators dealing with the criteria and 

procedures of the laboratory adhesion test method based on the 

instructions given in Appendix C can be determined. 
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2. Round robin test is also recommended in order to evaluate the 

consistency and accuracy of the procedures in determining the types of 

failure of specimens, which were based on visual observations, as 

presented in Appendix B. Several different operators can be used to 

evaluate the types of failure of the same specimens subjected to 

laboratory adhesion test method, and the variability of the data of the 

test results in terms of the percentage area of failure based on different 

operators can be used to verify the degree of reliability of the 

procedures. Alternatively, image analysis that is capable to differentiate 

and measure the types of failure of specimens as either adhesive or 

cohesive is suggested. 

3. Draft of standard criteria and procedures for the laboratory adhesion test 

method in terms of the test setup and apparatus, specimen preparation, 

testing and data analysis are presented in Appendix C. However, for the 

laboratory adhesion test method to become a standardised method, 

improved setup of the moulds (i.e. pair of plates) is suggested, as 

illustrated in Figure 7.1. Details of the suggested improved test setup 

and apparatus are given in Appendix E. Based on the improved setup of 

the moulds (i.e. pair of plates), better precision and accuracy for the 

thickness of adhesive layer of bitumen can be achieved without the need 

of spacers. Also, limitation in the measurement of the thickness of 

adhesive layer of bitumen can be improved by implementing a more 

precise measurement tool. 

4. Based on the analysis of the effect of the amount of poured bitumen (i.e. 

under filling, sufficiently filled or overfilling) on the test results, which had 

been conducted in Section 6.1.1, improved procedures for specimen 
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preparation are required in order to ensure the uniformity and 

consistency of the amount of poured bitumen. It is suggested that a 

reasonable amount of bitumen be poured until fully coated surface of the 

bottom plate is achieved in order to result in overfilling, followed by the 

placement of the top plate, and the required thickness of adhesive layer 

of bitumen is then achieved via compression. The amount of poured 

bitumen is suggested to be within the range of sufficiently filled and 

overfilling in order to minimise the discrepancy and inaccuracy of the test 

results. 

5. Laboratory adhesion test method has been shown to be an effective 

method for quantifying the adhesive bond strength and failure 

characteristics of various combinations of asphalt mixture materials over 

wide ranges of testing conditions, which include deformation rates, test 

temperatures and conditioning procedures (i.e. dry and wet 

conditionings). Currently, there is limitation in terms of the applicability in 

conducting test in a temperature controlled water bath (i.e. conducting 

test under water), as per Ductilometer testing apparatus. However, 

measurement of the adhesive bond strength via test conducted in a 

temperature controlled water bath (i.e. conducting test under water) is 

assumed to be of little significance due to the relatively short duration of 

the test. 

6. Based on Bhasin et al. (2006), Cheng et al. (2002) and Masad et al. 

(2006), thermodynamic surface free energy characteristics of 

aggregates, bitumen and water (moisture) can be used in calculating the 

intrinsic (theoretical) adhesion and thus the adhesive bond strength of 

asphalt mixtures. This approach has allowed the adhesive bond energy 
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related parameters to be calculated for various combinations of bitumen 

and aggregates. Adhesive bond energy related parameters consist of 

adhesive bond energy of aggregates and bitumen in dry conditioning 

and reduction of surface free energy when bitumen debonds from 

aggregates surface in the presence of water or moisture. Hence, data of 

the test result from the established laboratory adhesion test method in 

this study which is based on the direct measurement of the adhesive 

bond strength can be used to correlate with the adhesive bond energy 

related parameters based on the thermodynamic surface free energy 

concept. Combination of these two approaches will thus pave the way 

for further development and refinement of the assessment of the 

adhesive bond strength of asphalt mixtures. 

7. Based on the relationship between tensile bond strength and thickness 

of adhesive layer of bitumen analysed in Chapter 6, beyond the 

thickness of more than 600 µm (0.600 mm), constant value of tensile 

bond strength was observed. These constant values of tensile bond 

strength can be directly correlated with the cohesive bond strength of 

bitumen (bitumen-filler mastic) (i.e. intermolecular force developed within 

adhesive layer of bitumen). Cohesive bond strength of bitumen 

(bitumen-filler mastic) is mainly influence by viscosity, and hence 

Dynamic Shear Rheometer (DSR) and ductility test are suggested for 

validation of the assumptions. Kanitpong and Bahia (2003) has 

developed a method known as Tackiness Test of Asphalt using Dynamic 

Shear Rheometer (DSR) in order to measure the cohesive bond strength 

of bitumen. Details of the developed method are presented in Chapter 2 

(Section 2.4.1). 
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Isometric View of Moulds 

Figure 7.1 Improved setup of the moulds (i.e. pair of plates) 

Side View of Bottom Plate Side View of Top Plate 

Note: All units are in millimeter (mm) 
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9.28 Tensile Bond Testing (TBT) 
Laboratory Operation Procedures – Test Methods/Testing  

Facility: Pavement Research Building NTEC 

Last Modified by Mick Winfield on 20/08/2008 

Status: Approved by Jon Watson 

PAPER COPIES ARE UNCONTROLLED  

Summary: This procedure explains how to conduct tensile bond testing of asphalt samples using 
the INSTRON servo hydraulic loading frame for in-house test PT 0127, following guidance 

provided in DMRB HD 47/99 Appendix B. 

Changes to previous version: Includes section on data retrieval 9.28.5 
  
 
9.28.1 General 

 

This document outlines the procedure, which will be followed by the laboratory staff for testing 
multi-layer specimens to measure the adhesion strength between layers in tension, according to in-

house procedure PT 0127. The tensile bond test (TBT) uses worksheet WS-PT0127.  

 

Samples for this test are normally provided with 100 mm x 100 mm cross-section and are located 
on the central line of a 305 mm x 305 mm. The samples generally consist of a number of layers of 

materials e.g. asphalt/asphalt or asphalt/concrete. Steel end plates of 100 mm x 100 mm cross-

section with a threaded hole are glued to the top of the specimen. Once bonded, threaded “eye” 
hooks are then screwed into the end plates and other fixtures are then used to connect to the 

INSTRON servo-hydraulic frame. The test is conducted within a temperature-controlled cabinet 

and the sample is loaded at a controlled rate until bond failure is observed and maximum bond 
strength recorded.  

 

9.28.2 Health and Safety 

 
Read Risk Assessment and COSHH assessment information associated with the instruments and 

adhesives used. 

 

When using the hydraulic load frames ensure that items of clothing and fingers etc. do not get 

trapped between the loading rams.  

 
9.28.3 Sample Preparation 

 

The 305 mm x 305 mm slabs need to be trimmed as per the diagram below (see LOP for safe use 

of the clipper saw). Once the slab has dried, the two steel plates can be glued with araldite to the 
two test specimens (shaded area on the drawing). The steel plates can be held in place with two 

steel box sections (located in A10). Weights can then be added to the top of the steel plates. Silver 

foil will be needed to close up the saw cuts, to avoid glue dripping down the sides of the specimen. 
 

When the glue has cured, place the specimens in a conditioning cabinet at the required 

temperature for a minimum of 4 hours and a maximum of 24 hours. 
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9.28.4 Procedure for “TBT” testing using the Instron 

 

1) Set the test cabinet to the test temperature, where able (cabinets range -5 to +60°C). Also 
place the testing apparatus into the cabinet and record the time. Standard test temperature is 

23 ± 2°C. 

2) Samples must be in the conditioning cabinet for at least 4 hours. 

3) Turn on the hydraulic pump as stated in LOP 11.13. 

4) Turn on the computer situated next to the INSTRON. 

5) Click on the Rubicon Icon on the computer screen. 

6) Click Run. 

7) Click start manual. Check stroke and click OK. 

8) Press ! on the controller attached to the INSTRON. This gives manual control and allows the 
ram to be raised or lowered, to enable the TBT block to be fitted into place using the up and 

down arrows on the controller.  

(Using the up and down arrows allows for small movement of the hydraulic ramp. For greater 

travel the knobs on the front of the machine can be used. First by using the unlocking knob, 
and then using the up and down knobs)  

9) Check that the hydraulic ramp (when the block is in position) has plenty of travel (at least 10 

mm) to allow the test to be conducted. 

Plan View of a 305mm x 305mm slab 
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10) Click Command on the computer  

11) Select Ramps 1. Input the following: 

• Control mode  : Stroke 

• End point   : +10mm (1st sample) there on based on 1st sample. 

• Relative or Absolute :  Relative 

• Rate/Time  :  20mm/minutes 

• Next   :  Manual 

• Profile   :  Linear 

• Update   :  Check Maxima and Minima 

• Targets    1: If REL STROKE >= +10.0 (as required) then FREEZE 
2: If ABS LOAD      >= +20Kn (as required) then FREEZE 

 

Depending on the material being used and the test temperature, a higher load 
than 20 kN may be required. If this is the case go into the global trips and adjust 

the max load accordingly!!!  

 

• Check overview (to ensure all parameters are set correctly) 
 

Select Ramp (check box at bottom right hand side of the overview screen) 
 

• Check trips 

• Click Run (TAB) 

• Pre-release x-y plot (ICON) 

• Finish Logging  : Yes 

• Select axis  :  Y= Load   X= Stroke   

• Then OK 

• Save data into a file: OK (Save into G:NCPE DATA\SHATS-TATS\Tensile 

adhesion\Job number\Test order number) 

• Write in file name: OK (Ensure sample numbers have an underscore instead of a 
dash or the data will not save) 

• Start new test 

• Threshold  v  change to load (50 N or as required) 
 v  other sensor: change to stroke (50 um or as required) 

(This is the interval at which the computer saves the information) 

• Click on GO 

• Are you ready to start new test: Yes  

• Once the sample has failed click the Finish Logging button 

• Convert to ASCII FORMAT  

• Re-write file name 

• Click on the bottom right corner arrow on the screen 

• Regain control of the RAM by selecting the Stroke mode. 

 
The testing is now complete. Repeat the above steps to carry out any subsequent tests. 

 

9.28.5 Procedure Data retrieval 
 

• Open the .asc version of the file needed e.g. G:\Ncpe data\ITS data\jn950\07-

3243.asc 

• If the file doesn’t open in Notepad, right click, click on Open With and select Notepad 
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• To find the Peak Load, scroll down the Load column until you get to the largest 

number. In the case of ITS and SAT the load is recorded as negative and Roofing 

adhesion, TAT and TBT the load is positive.  

• The letter E means x 10 and the positive or negative to the right is the power the 10 is 
timed by. So E+3 = x10! = x1000, E+2 =x10" = x100, E+1 = 10# = x10 

• From the above example the Peak Load is 5165.7 N  (-5.1657E+3) or 5.1657 kN. 
 

 
9.28.6 Report 

 

Report according to HD 47/99 Appendix B, or raw data, as requested by client. 

!

<<End Document>>>  
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APPENDIX B 

PROCEDURES FOR DETERMINATION OF TYPES OF FAILURE OF 

SPECIMENS 

B.1 General Background 

Procedures in determining the types of failure of specimens subjected to the 

laboratory adhesion test method were developed based on the BS EN ISO 

4624:2003 Paints and Varnishes-Pull-Off Test for Adhesion, which had used 

the simplest, easiest and commonly used method; visual observation. 

Example of the determination of the types of failure of specimens as either 

adhesive or cohesive is presented in the following section. 

Types of failure (adhesive or cohesive failure) were determined via visual 

observation of the top and bottom of each pair of plates, and then calculated 

based on the percentage area of adhesive failure. Figure B.1 shows the top 

and bottom of a pair of plates after being subjected to testing. 
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B.2 Procedures   

1. Divide the area of contact of adhesive materials and substrates for each 

plate (i.e. Plates A and B) into 16 squares of equal area as shown in the 

Figure B.1. 

2. Analyse each square via visual observation and estimate to the nearest 

10% the value of percentage area of adhesive failure. (Note: 

Approximate estimation is made in determining the percentage area of 

adhesive failure for square that is not fully covered by the area of contact 

of adhesive materials and substrates (i.e. Square 1, 2, 3, 4, 13, 14, 15 

and 16)). 

3. Tabulate the value of the percentage area of adhesive failure for each 

square as in Table B.1.  

4. Calculate the average of percentage area of adhesive failure for each 

plate (i.e. Plates A and B) and then calculate the combined total 

percentage area of adhesive failure for pair of plates, respectively. 

Plate A Plate B 

Figure B.1 Area of contact of adhesive materials and substrates of Plates 
A and B 

    1           2         3          4 

    5           6         7          8 

    9         10        11        12 

    13       14        15        16 

    1           2         3          4 

    5           6         7          8 

    9         10        11        12 

    13       14        15        16 
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Round the value of combined total percentage area of adhesive failure 

for pair of plates to the highest 5%. 

5. A value of 100% has been set as the maximum total percentage area of 

adhesive failure for pair of plates. 

Table B.1 Example of determination of types of failure via visual 
observation 

Square 
Percentage Area of Adhesive Failure (%)

1
 

Plate A Plate B 

(1 & 2)
2 

60 10 

(3 & 4)
2 

90 20 

5 50 30 

6 40 0 

7 100 70 

8 90 30 

9 10 0 

10 10 50 

11 40 80 

12 90 70 

(13 & 14)
2 

0 50 

(15 & 16)
2 

10 90 

Average of Percentage Area of Adhesive 
Failure (%) 

49.20 41.70 

Combined Total Percentage Area of 
Adhesive Failure for Pair of Plates (%)

3
 

49.20 + 41.70 = 90.90  
(i.e. 95% Adhesive Failure)

4
 

Notes:  
1
Percentage area of adhesive failure is estimated to the nearest 10%;  

2
Squares are combined in order to allow for a more accurate estimation;  

3
Combined total percentage area of adhesive failure for pair of plates is rounded to the highest 5%;  

4
If combined total percentage area of adhesive failure for pair of plates is more than 80%, considered as 

adhesive failure, otherwise cohesive failure. 
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APPENDIX C 

DRAFT OF STANDARD CRITERIA AND PROCEDURES FOR THE 

LABORATORY ADHESION TEST METHOD USING INSTRON SERVO 

HYDRAULIC FRAME 

C.1 Scope 

This draft sets out recommended criteria and procedures in terms of test setup 

and apparatus, specimen preparation, testing and data analysis for conducting 

laboratory adhesion test method using INSTRON servo hydraulic frame. 

Laboratory adhesion test method using INSTRON servo hydraulic frame is 

intended to quantify the adhesive bond strength and failure characteristics of 

various combinations of asphalt mixture materials (i.e. bitumen (bitumen-filler 

mastic) and aggregates) over wide ranges of testing conditions (i.e. 

deformation rates and test temperatures) and conditioning procedures (i.e. dry 

and wet conditionings). Results in terms of the percentage area of failure, 

tensile bond strength and tensile energy required to produce failure can be 

assessed upon completion of the test.  

Parts of the criteria and procedures for the laboratory adhesion test method 

are developed in accordance with the referenced documents as listed below. 

However, several contents are changed for adaptation purposes. 

(Note: Ranges of suitable testing conditions for the laboratory adhesion 

test method in terms of deformation rate and test temperature are 10 

mm/minute and 20 mm/minute, and 15°C and 25°C, respectively) 
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C.2 Referenced Documents 

1. BS EN ISO 4624:2003 Paints and Varnishes-Pull-Off Test for Adhesion.  

2. LOP 9.28 Tensile Bond Testing (TBT) Laboratory Operation Procedures 

- Test Methods/Testing. 

3. LOP 11.24 Blending Bitumen and Filler Laboratory Operation 

Procedures ! Equipment Usage. 

C.3 Test Setup and Apparatus 

1. Oven  

! For heating bitumen (bitumen-filler mastic) and aggregates discs. 

! Capable of maintaining temperature ranges up to 200°C ± 5°C. 

2. Pair of plates (i.e. top and bottom plates) (Figure C.1) 

! Measuring an area of 100 mm by 100 mm and thickness of 10 mm 

for each plate.  

! Capable for the insertion of various types of aggregates as 

substrates in the forms of 25 mm diameter discs. 

! Four rods to be inserted at each corner of the pair of plates in 

order to prevent any lateral movement. 

3. Compression device (Figure C.2) 

! Consists of micrometer of accuracy up to 10 µm.  

! Capable of distributing compressive load onto pair of plates up to 

the required thickness of adhesive layer of bitumen. 

4. Conditioning cabinet 

! Capable of maintaining temperature ranges between 0°C and 

60°C. 
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5. Rigid testing rig (Figure C.3) 

! Consists of two parts; top plate with two vertical hollow rods and 

base plate with two vertical solid rods, which can be slide into each 

other. 

! Capable of distributing axial tensile load onto pair of plates. 

! Capable of resulting failure based on the pull off (tension) mode 

only (i.e. excludes the effects of peel and shear mode).  

6. Universal joint attachment (Figure C.4) 

! Capable of attaching and thus transferring tensile load in 

perpendicular direction from upper part of the INSTRON servo 

hydraulic frame to the rigid testing rig. 

7. Two carver clamps (Figure C.5) 

! Capable of securing rigid testing rig to hydraulic ramp (i.e. lower 

part) of the INSTRON servo hydraulic frame.  

8. Linear Variable Differential Transducer (LVDT)  

! Capable of measuring vertical pull off displacement of tested pair 

of plates. Captured data of the vertical pull of displacement is then 

analysed via built-in software of the INSTRON servo hydraulic 

frame. 

9. INSTRON servo hydraulic frame  

! Capable in applying loads in tension and compression. 

! Capable in conducting test over wide ranges of deformation rates 

and test temperatures within the ranges of 10 mm/minute and 20 

mm/minute, and 15°C and 25°C respectively. 
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Figure C.2 Compression device  

Figure C.1 Pair of plates (i.e. top and bottom plates) and four rods 

Top plate Bottom plate 

Rods 
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Figure C.5 Carver clamp 

Figure C.4 Universal joint attachment 

Top Plate 

Base Plate 

Figure C.3 Rigid testing rig and bolts to secure pair of plates 

Bolts for 
top plate 

Bolts for 
bottom 
plate 

Spacers for 
rigid 

testing rig 
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C.4 Materials 

1. Preparation of aggregates discs 

a. Aggregates are prepared into 25 mm diameter discs (i.e. 490.87 

mm2 area of contact) and 8 mm thickness via the cutting of 25 mm 

diameter cylindrical core specimens extracted from boulder. 

(Figure C.6) 

b. Prior to specimen preparation, aggregates discs are dried at 80ºC 

for 30 minutes in oven, and surface of area of contact must be 

clean, dry and free from dust. 

2. Preparation of bitumen (bitumen-filler mastic) 

a. For bitumen-filler mastic, mineral filler should be satisfactory to the 

requirement of 70% to 100% of particles passing a 63-µm sieve.  

b. Also, in order to achieve the thickness of adhesive layer of 

bitumen (bitumen-filler mastic) of 50 µm, mineral filler is further 

sieved through a 45-µm sieve (British Standard Sieve Series Mesh 

No. 350). 

c. Procedures for mixing bitumen-filler mastic as presented in 

Appendix D (i.e. LOP 11.24 Blending Bitumen and Filler 

Laboratory Operation Procedures ! Equipment Usage) can be 

used as guidelines. 

d. Bitumen (bitumen-filler mastic) is then filled separately in small 

containers prior to storage for ease of pouring during specimen 

preparation. 

e. Prior to specimen preparation, bitumen (bitumen-filler mastic) is 

heated to approximately 160°C for at least two hours in oven, and 

is stirred thoroughly to ensure uniformity and homogeneity.  
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C.5 Procedures for Specimen Preparation 

1. Clean pair of plates using chemical solution (i.e. white spirit solvent) in 

order to ensure cleanliness and then followed by acetone (ethyl acetate) 

in order to remove the remaining chemical solution of the white spirit 

solvent. 

2. Insert aggregates discs, which have been dried at 80ºC for 30 minutes 

into top and bottom plates respectively, and secure the position of the 

aggregates discs by tightening four screws (at 90º to each other) using 

Hex (Allen) key. (Note: Ensure surface of area of contact of the 

aggregates discs of top and bottom plates are levelled to each other). 

3. Measure initial thickness of pair of plates (i.e. without adhesive layer of 

bitumen (bitumen-filler mastic)) using micrometer attached to the 

compression device and record the reading as T0. 

4. Pour bitumen (bitumen-filler mastic) which has been heated to 

approximately 160°C for at least two hours onto aggregates discs of the 

Figure C.6 Aggregates discs and cylindrical core specimens 

25 mm diameter 
cylindrical core 

specimens 

Aluminium  
Alloy 

Mount Sorrel 
Granite 

Dene  
Limestone 

Ivonbrook 
Limestone 
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bottom plate, starting from centre of the aggregates discs up to about 

two-third filled in order to minimise the amount of excess bitumen 

(bitumen-filler mastic). 

5. Place the top plate onto the bottom plate and insert four rods at each 

corner of the pair of plates in order to prevent any lateral movement. 

6. Optional Procedures: Insert spacers in between the pair of plates in 

order to control the thickness of adhesive layer of bitumen. 

7. Place the pair of plates into compression device and rotate the attached 

micrometer in order to compress up to the required thickness of 

adhesive layer of bitumen. (Note: Use the value of the initial thickness of 

pair of plates (i.e. without adhesive layer of bitumen (bitumen-filler 

mastic)) and the required thickness of adhesive layer of bitumen to 

determine the amount of rotation required). 

 

Equation C.1 

!∀#∃%&∋()#∗+∃,−−∋./∋0%#1∋./∋0&%2,−3∋(45∋

6∋!7∃#2#%&∋()#∗+∃,−−∋./∋0%#1∋./∋0&%2,−3∋(85∋∋

!∋!9,:;#1,<∋()#∗+∃,−−∋./∋=<),−#>,∋?%≅,1∋./∋Α#2;Β,∃5∋

8. Leave the pair of plates in the compressed position for about 15 minutes 

prior to conditioning procedures. 
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C.6 Conditioning Procedures 

Pair of plates is subjected to either dry or wet conditionings at specified test 

temperature for 24 hours prior to testing in the conditioning cabinet. (Note: For 

wet conditioning, immerse the pair of plates in container filled with water and 

place the container in the conditioning cabinet). 

Figure C.7 Summary of the procedures for specimen preparation 

Tighten four screws to secure the 
position of aggregates discs 

Clean pair of plates using chemical 
solution (i.e. white spirit solvent) and 

acetone (ethyl acetate) 

Insert aggregates discs into top and 
bottom plates respectively 

Pour bitumen (bitumen-filler mastic) 
onto aggregates discs of bottom plate 

Place top plate onto the bottom plate 
and insert four rods at each corner 

Place the pair of plates into 
compression device and rotate the 

attached micrometer for compression 
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C.7 Procedures for Testing 

1. Take out the pair of plates from conditioning cabinet and carefully 

remove the four rods at each corner of the pair of plates. 

2. Place the pair of plates in between the top and base plate of the rigid 

testing rig and secure the test setup by inserting and tightening the bolts. 

3. Attach the universal joint attachment to the test setup by fastening to the 

top plate of the rigid testing rig. 

4. Turn on the hydraulic pump and INSTRON servo hydraulic frame. 

5. Set the test cabinet of the INSTRON servo hydraulic frame to the 

required test temperature. 

6. Place the test setup (i.e. pair of plates, rigid testing rig and universal joint 

attachment) on hydraulic ramp (i.e. lower part) of the INSTRON servo 

hydraulic frame and secure the position using two carver clamps. 

7. Follow the following procedures for operating the built-in software of the 

INSTRON servo hydraulic frame. (Note: To be used as guidelines only 

and might vary depending on the version and types of the built-in 

software). 

a. Select Icon Rubicon. 

b. Click Run > Click Start Manual > Select Stroke > Click OK. 

c. !∀#∃∃% &∋()% ∗% ()% +,#% ∋()+∀(−−#∀% .++.∋,#/% +(% +,#% &012340% ∃#∀5(%

hydraulic frame (Note: Enable manual control for the movement of 

up and down of hydraulic ramp (i.e. lower part) of the INSTRON 

servo hydraulic frame). 

d. Adjust the position of the hydraulic ramp to enable the universal 

joint attachment to be fastened to the upper part of the INSTRON 

servo hydraulic frame. 
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e. Ensure that hydraulic ramp (i.e. lower part) of the INSTRON servo 

hydraulic frame has sufficient space (i.e. at least 10 mm) to allow 

movement during testing. 

 

(Note: Condition the test setup (i.e. pair of plates, rigid testing rig and 

universal joint attachment) in the test cabinet of the INSTRON servo 

hydraulic frame for at least 15 minutes prior to testing) 

 

 

f. Click Command > Click Ramp > Click 1 

g. Input as follows: 

! Control Mode: Stroke 

! End point: +10.000 mm  

! Checkbox Relative 

! Rate/Time: (Insert the required deformation rate) 

! Next: Manual 

Figure C.8 Test setup (i.e. pair of plates, rigid testing rig and universal 
joint attachment) is positioned in the INSTRON servo hydraulic frame 
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! Profile: Linear 

! Checkbox Maxima > Checkbox Minima  

! Targets 1: If REL STROKE >= +10.000 then FREEZE 

! Targets 2: If ABS LOAD >= +20.000 kN then FREEZE 

h. Click Overview (Note: Ensure that all parameters are correctly 

inserted) > Checkbox Select Ramps (i.e. at the right hand bottom) 

i. Click Run > Click X-Y Plot 

! Click Finish Logging > YES 

! Click Select Axis > (Select Y= Load) > (Select X=Stroke) > OK 

! Click Save Data Into File > OK (Select destination to save the 

file)  

j. Click Start New Test > Click Test Setup > Checkbox Threshold  

! Checkbox Load > Load = 500 N  

! Checkbox Other Sensor > Stroke = 50 µm 

! Click GO > (Are You Ready to Start New Test: YES) 

k. Once completed, click Finish Logging 

l. Convert file to ASCII Format 

m. Re-write file name 

n. Exit X-Y Plot 

o. Regain control of the hydraulic ramp  

Click Start Manual > Click Stroke 

8. Testing is now completed. Carefully remove the test setup (i.e. pair of 

plates, rigid testing rig and universal joint attachment) from the 

INSTRON servo hydraulic frame. 

9. Carefully remove the separated pair of plates from the top and base 

plate of the rigid testing rig. 
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Select Icon Rubicon Click Run > Click Start Manual > Select Stroke >  

Click OK 

Click Command > Click Ramp > Click 1 
Input as follows 

Click Overview > Checkbox Select Ramps (i.e. at the 
right hand bottom) 

 

Click Select Axis > (Select Y= Load) >  
(Select X=Stroke) > OK 

Click Start New Test > Click Test Setup >  
Checkbox Threshold 

Input as follows 

Figure C.9 Summary of the procedures for testing 
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C.8 Data Analysis 

1. Percentage area of failure 

Observe and record the percentage area of failure via visual 

observation. Refer Appendix B for detailed procedures in determining 

the types of failure of specimens subjected to laboratory adhesion test 

method using INSTRON servo hydraulic frame. 

2. Tensile bond strength 

Built-in software of the INSTRON servo hydraulic frame records the 

value of tensile load and pull off displacement at specified intervals. 

Determine the maximum tensile load from data of the test results. In 

order to determine the maximum tensile bond strength, divide the value 

of the maximum tensile load with the area of contact of adhesive 

materials and substrates (i.e. area of circle of 25 mm diameter = 490.87 

mm2). 

3. Tensile energy required to produce failure 

Use CurveExpert 1.4 or any graphical software to calculate the area 

under the curve for graph of tensile load versus pull off displacement. 

Figure C.10 shows the example of the graphs of tensile load versus pull 

off displacement of the original and corrected curve for the tested 

specimen. The curvature of initial part of the original curve is attributed 

to the initial seating and adjustment of the apparatus and also testing 

equipments. Hence, corrected curve is required in order to eliminate 

these effects. For the corrected curve, correction is determined by 

projecting the linear portion of the curve to the pull off displacement axis 

and horizontal shift based on the distance between the intersection and 

the origin is then applied.  
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<End of Document> 

Horizontal Shift 

Figure C.10 Plots of tensile load versus pull off displacement  

Original Curve Corrected Curve 
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11.24 Blending Bitumen and Filler 
Laboratory Operation Procedures ! Equipment Usage 
 

Facility: Pavement Research Building NTEC 
Last Modified by Mick Winfield on 31/03/2009 

Status: Approved by Mick Winfield 

PAPER COPIES ARE UNCONTROLLED  

Summary: This document outlines the procedures that shall be followed by laboratory staff 
when blending filler into base bitumen. 

Changes to previous version: Alter fonts to bring LOP in line with template. 
  
 
11.24.1 Scope 

 
Filler is blended into base bitumen to produce a product with new properties. 
 

11.24.2 Health & Safety 
 
The appropriate risk assessment located in the laboratory shall be read and adhered to by 
staff when carrying out the procedures detailed below. 
 

11.24.3 Equipment 
 
1) Oven 
2) Hot plate 
3) Digital thermometer and dedicated probe 
4) Balance with a resolution of at least 1 gram 
5) Large pallet knife 
6) E1520 variable speed stirrer and paddle 

 

11.24.4 Procedures 
 
Before proceeding with the procedures detailed below, the technician shall ensure that the 
35#∀∃)Χ2&0..∗(D05&(7&)he blend has been obtained and recorded on the worksheet. 
 
1) Place the bulk sample of bitumen in an oven until it is molten enough to pour. 

2) Whilst the bitumen is heating up, weigh out the required amount of filler into a clean 
glass beaker and record the mass on the appropriate worksheet and also switch on a 
hot plate to warm up before blending. 

3) Weigh out the required mass of bitumen into a clean tin and record the mass. 

4) When the required mass of bitumen has been weighed, remove the tin from the 
balance and place on the hot plate in the fume cupboard. 

If the blend is relatively small and/or the filler content is low or the filler content 
is very high (i.e. above 75%): Use a large pallet knife (strongly heated for very high 

filler contents) and slowly add the filler stirring continuously until all the filler is added to 
the binder. Continue stirring until no filler can be seen and the sample appears totally 

homogenous. 
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If the blend is relatively large and/or the filler content is high but not very high: 
Lower the (pre heated) stirrer paddle down into the bitumen and switch on. Gradually 

build the speed up to minimise splattering and slowly add the filler stirring continuously 
until all the filler is added to the binder. Continue stirring until no filler can be seen and 

the sample appears totally homogenous. 

5) If during blending the bitumen cools too much or the filler starts to coagulate stop 
adding the filler and return the tin into the oven allowing it to get back to temperature, 
before proceeding with blending. 

6) When the blend is complete, re-label the tin with its new NTEC sample number and 
ensure the stirrer paddles and/or pallet knife are cleaned ready for the next user. 

7) It is usual practice to sub-sample a small amount of the blend whilst it is still hot in 
ord∀∗&)(&+∀)∀∗∋#∃∀&)1∀&∃∀Ε&!#∃+∀∗Χ2&#∃#)#05&.∗(.∀∗)#∀2, 

8) Place the freshly made binder into the oven and keep warm until the new properties 
have been established. 

9) Once the properties are established and deemed to be correct by the client, the binder 
can now either be re-canned or used in further blending. 

 

<<<END DOCUMENT>>> 
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APPENDIX E 

 

 

 

 

 

 

 

 

Details of Suggested Improved Test Setup and Apparatus for Laboratory 
Adhesion Test Method 
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APPENDIX E 

DETAILS OF SUGGESTED IMPROVED TEST SETUP AND APPARATUS 

FOR LABORATORY ADHESION TEST METHOD 

Design and fabrication of pair of plates (i.e. top and bottom plates) for 

laboratory adhesion test method are suggested as follows. 

1. Top plate (Note: Top plate remains the same as in Appendix C) 

! Measuring an area of 100 mm by 100 mm and thickness of 10 mm. 

! Capable for the insertion of various types of aggregates in the forms 

of 25 mm diameter discs. 

! !∀#∃%&∋∃()&%∗+%,−.% +∀%(∗∋/%∀+/(∃%∗∃(%#&(0% +∀%&(∋#∃(% +/(%1∀&2+2∀3%∀4%

aggregates discs.  

! Consists of four holes of 10 mm diameter at each corner. 

 

 

Figure E.1 Top plate 

Insertion of 25 mm diameter 
of aggregates discs 

Hole of 10 mm 
diameter 

Screw 
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2. Bottom plate 

! Measuring an area of 100 mm by 100 mm and thickness of 10 mm. 

! Capable for the insertion of various types of aggregates in the forms 

of 25 mm diameter discs. 

! !∀#∃%&∋∃()&%∗+%,−.% +∀%(∗∋/%∀+/(∃%∗∃(%#&(d to secure the position of 

aggregates discs.  

! Instead of using four removable rods as before, four threaded rods of 

approximately 10 mm diameter and 30 mm height are fixed at each 

corner of the bottom plate in order to prevent any lateral movement 

between the pair of plates. Also, by implementing the fixed threaded 

rods, nuts can be used to cater for various thicknesses of adhesive 

layer of bitumen. Hence, spacers are no longer required. (Note: 

Diameter of the fixed threaded rods is suggested to be slightly less 

than the diameter of the hole of the top plate (i.e. 10 mm) in order to 

prevent any friction due to sliding between the pair of plates during 

testing). 
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Note: All units are in millimeter (mm) 

Figure E.2 Side view of top plate 

Note: All units are in millimeter (mm) 

Figure E.3 Side view of bottom plate 
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Figure E.4 Top view of top plate 

 

Note: All units are in millimeter (mm) 

Figure E.5 Bottom view of top plate 
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Figure E.6 Top view of bottom plate 

 

Note: All units are in millimeter (mm) 

Figure E.7 Bottom view of bottom plate 
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Top  
Plate 

Bottom  
Plate 

Figure E.8 Improved pair of plates (i.e. Top and bottom plates) 

 

Figure E.9 Improved pair of plates 

 

Figure E.10 Pair of plates assembled in compression device 


