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Abstrat
Algebrai equations on omplex numbers and funtional equations on generating fun-tions are often used to solve ombinatorial problems. But the introdution of ommonarithmeti operators suh as subtration and division always auses pani in the world ofobjets whih are generated from onstants by applying produts and oproduts. Overthe years, researhers have been endeavoring to interpretate some absurd alulations onobjets whih lead to meaningful ombinatorial results.This thesis investigates onnetions between algebrai equations on omplex numbersand isomorphisms of reursively de�ned objets. We are attempting to work out ondi-tions under whih isomorphisms between reursively de�ned objets an be deided byequalities between polynomials on multi-variables with integers as oe�ients.As instanes of reursively de�ned objets in omputer siene, espeially in funtionalprogramming languages, algebrai data types are adopted as objetives of our researh.By studying the algebrai struture of the quotient set of non-trivial1 polynomial typesunder the least ongruene relation that is generated from a given system of reursivetype isomorphisms, we develop a su�ient and neessary ondition under whih thisquotient set forms a ring. This is an extension of Fiore and Leinster's work that fora given single reursive type isomorphism, they gave a su�ient ondition under whihthe set of non-trivial polynomial types forms a ring. Further, the polynomial division1We onsider all type expressions that are generated from 0 (empty type) and 1 (unit type) byapplying produts and oproduts as trivial polynomial types.ii



algorithm on multi-variables an be used to deide isomorphisms between non-trivialpolynomial types.On the other hand, ombinatorial proesses an be extrated from fatorizations of poly-nomials. As an illustration, we invent and study an in�nite lass of one-person boardgames, so-alled replaement-set games. There is a one-dimensional unbounded boardwhih is divided into squares. The aim of these games is to move a heker from theinitial square to the �nal square by using rules that are de�ned by a multiset of inte-gers. It turns out that every solvable replaement-set game orresponds to a produt ofylotomi polynomials with at most one negative oe�ient. An algorithm is derivedto solve these games. That is, it restores ombinatorial proesses behind polynomialfatorizations on one variable.This researh is interesting beause it builds a bridge between applied mathematis andtheoretial omputer siene. We believe that onnetions between algebrai equationson omplex numbers and isomorphisms of reursively de�ned objets will introdue ma-ture methods in applied mathematis, e.g. Gaussian elimination and Gröbner Basis,into theoretial omputer siene as bases of desriptions and analysis of reursively de-�ned objets, e.g. data strutures, languages, and algorithms. Spei�ally, some wordproblems an be deided by polynomial division algorithm on multi-variables. On theother hand, ombinatorial explanations of algebrai equations on omplex numbers anbe extrated from proofs of isomorphisms between reursively de�ned objets.However, when primitive reursions are introdued to produe isomorphisms betweennon-trivial polynomial indutive2 types, the algebrai properties of the quotient setof non-trivial polynomial indutive types are still unlear. As for two-dimensionalreplaement-set games, whether there is an algorithm that an produe proesses tosolve these games is still unknown. Also, the onnetions between algebrai equationson omplex numbers and funtional equations on generating funtions are obsure. Allof these need more investigation in future.2The type expressions are de�ned by least �xed points.iii
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Chapter 1
Introdution

Reursively de�ned objets permeate all of omputer siene. Researh into isomor-phisms of reursively de�ned objets usually results in deeper understanding of theirunderlying omputational and ombinatorial models. For very di�erent reasons, iso-morphisms of reursively de�ned objets have been studied. Isomorphi objets areusually ardinality preserving. Hene, generating funtions [Niv69, Hen74, SS78, GJ83,JBR88, GKP94, Sta97, Sta99℄ and funtional equations [Fla85, BLL88, BLL98, FS08℄are useful mathematial models to formalize reursively de�ned objets. The relevantliterature is sattered in di�erent branhes of omputer siene. For instane, Shützen-berger's Methodology [CS63, BLFR01℄ whih determines generating funtions of unam-biguous ontext-free languages, Combinatorial Speies [BLL88, BLL98℄ whih is usefulfor formalizing data strutures in funtional equations, and Flajolet's Symboli Method[Fla85, FS08℄ whih translates spei�ations into funtional equations for asymptotianalysis [VF90, Odl95℄. These methods are reviewed in setion 1.5 as related work.Another interesting researh line was developed by Blass [Bla95℄ and Fiore and Leinster[Fio04, FL05℄ from Shanuel's Problem [Sh91℄ and Lawvere's Remark [Law91℄ whihis also known as seven-trees-in-one [Bla95℄. The idea is to build onnetions betweenreursively de�ned objets and algebrai equations on omplex numbers. Fiore and Le-1



Chapter 1: Introdutioninster gave a ondition on single reursive type isomorphisms under whih the quotientset of non-trivial polynomial types forms a ring. It implies that the polynomial divi-sion algorithm on one variable an be used to deide isomorphisms between non-trivialpolynomial types. More details are given in setions 1.1 and 1.2.Following Fiore and Leinster's researh, by taking algebrai data types [Mal90, Hoo96,BM96℄ as objetives of our investigation, we extend their results from a single reursivetype isomorphism to a system of reursive type isomorphisms. This investigation buildsonnetions between algebrai equation systems on omplex numbers and reursive typeisomorphism systems. It follows that the problem of deiding isomorphisms between non-trivial polynomial types given by reursive type isomorphism systems an be reduedto the problem of deiding equivalenes between polynomials on multi-variables withintegers as oe�ients. The latter problem is e�etively the ideal membership problemin omputational algebra whih an be solved by the polynomial division algorithm onmulti-variables [BW98, CLS07℄. This ontribution is disussed in setion 1.3.Seven-trees-in-one has been turned into a one-person board game, namely the nulearpennies game [Yor07, Pip07a, Pip07b℄. As an illustration of the theory we have devel-oped, we invent an in�nite lass of one-person board games whih has the nulear penniesgame as an instane, so-alled replaement-set games [BCF10, BCF11℄. The aim of thesegames is to move a heker on a board n squares right using replaement rules givenby some multiset of integers whih represent relative positions. The interesting thingabout these games is that they build onnetions between types and ylotomi polyno-mials [Isa94, Lan02℄. That is, every solvable non-trivial replaement-set orresponds toa produt of ylotomi polynomials with at most one negative oe�ient. We also giveseveral ad-ho methods to onstrut subsets of all solvable non-trivial replaement-sets.As another ontribution, a brief explanation about this is given in setion 1.4.
2



Chapter 1: Introdution1.1 Seven-Trees-In-OneThe story started from a remark given by Lawvere [Law91℄:I was surprised to note that an isomorphism x � 1� x2 (leading to omplexnumbers as Euler harateristis if they don't ollapse) always indues anisomorphism x7 � x.An appropriate explanation of Lawvere's Remark is:A binary tree is an empty tree (1) or a pair of binary trees (x2); there is anisomorphism between the set of seven-tuples of binary trees (x7) and the setof binary trees (x).This is also known as seven-trees-in-one as named by Blass. He gave an expliit odingbetween the set of seven-tuples of binary trees and the set of binary trees in [Bla95℄.Notie that x in the above disussion is onsidered as an objet not a number. However,it is interesting that if we take x � 1�x2 as an algebrai equation on omplex numbers,by solving this equation, we have:
x � cos

π

3
� sin

π

3
i .Further,

x7 � x� x6 � x� pcos π
3
� sin

π

3
iq6 � x� pcos 2π � sin 2πiq � x .It seems that there is a short ut to prove seven-trees-in-one by taking objets as omplexnumbers. But, anyone who wants to do this must at least explain the following strangephenomenon:

x6 � pcos π
3
� sin

π

3
iq6 � cos 2π � sin 2πi � 1is true in terms of omplex numbers while the set of six-tuples of binary trees is notisomorphi to the set of the empty tree beause ardinalities of both sides are di�erent.3



Chapter 1: IntrodutionThe ardinality of the set of six-tuples of binary trees is ountable in�nity while that ofthe set of the empty tree is one.
1.2 Rings from Quotient SemiringsFor larity, let us use apital letters, e.g. R, S and T , to denote objets and lowerase letters, e.g. x, y and z, to denote omplex numbers. We use the symbol �for equalities between omplex numbers and the symbol � for isomorphisms betweenobjets in a distributive ategory (see setion 2.2) respetively. Operators � and �are overloaded to denote respetively addition and multipliation of omplex numbersor oprodut and produt of objets. Their meanings will be lear from ontext.In order to understand seven-trees-in-one and, more generally, onnetions between om-plex numbers and reursively de�ned objets, it is neessary to investigate the underlyingalgebrai struture of all objets whih are generated from a �nite set of reursivelyde�ned objets and the terminal objet 1 by applying produts and oproduts. Thisstruture is e�etively a quotient semiring with the terminal objet 1 and the initialobjet 0 as unit and zero respetively.As for seven-trees-in-one, for instane, the olletion of all objets generated from T and
1 by applying produts and oproduts is a quotient semiring under the least ongruenerelation generated from the isomorphism T � 1� T 2. By the ongruene relation, wemean an equivalene relation preserving produts and oproduts.In [Gat98℄, Gates showed that when polynomial P pT q has at least one onstant term andat least one nononstant term, isomorphisms between objets in distributive ategorysubjet to T � P pT q are deided by equalities in any semiring subjet to T � P pT q.By using this result, in order to study seven-trees-in-one, we an fous on the semiring
NrT s of all polynomials on T with natural numbers as oe�ients with respet to theongruene relation �1�T 2 whih is generated from the identity T � 1� T 2.4



Chapter 1: IntrodutionIn [Bla95℄, Blass studied the semiring NrT s with respet to the identity T � 1 � T 2and observed that 1 � T 3 plays the role of zero for all polynomials in the quotientset pNrT s � Nq{�1�T 2 . Following Blass's researh, Fiore and Leinster investigated thesemiring NrT s with respet to the identity T � 1 � T � T 2 in [FL04℄. They showedthat 1� T 2 plays the role of zero in the quotient set pNrT s �Nq{�1�T�T 2 .Fiore and Leinster generalised from these examples. Let α be a type whih is generatedfrom T and 1 by applying produts and oproduts and suppose α has a term T n for nat least 2. With respet to the isomorphism T � 1�α, based on the theory of maximalsubgroups within semigroups [Gre51℄, Fiore and Leinster showed that the quotient setof non-trivial polynomial types forms a ring [Fio04, FL05℄. That is, subtration is validin the quotient semiring of non-trivial polynomial types.Returning to the seven-trees-in-one. The above investigation shows a way to deide theisomorphism T 7 � T without bothering to expliitly onstrut a oding between them.Reall that 1�T 3 is a zero of polynomials in pNrT s�Nq{�1�T 2 . This leads to the resultthat T 3 is a negative unit. Further, we have that the quotient set pNrT s�Nq{�1�T 2 hasthe same algebrai properties as the quotient ring Zrxs{px � 1� x2q. It is the quotientset of all polynomials with integers as oe�ients under the equivalene relation whihis given by the prinipal ideal generated from x2 � x � 1. This quotient ring an beonsidered as the ring extension Zrcos π
3
� sin π

3
is on the roots cos π

3
� sin π

3
i of theequation x � 1� x2 as well. For instane, the equation:

x6 � 1 � pcos π
3
� sin

π

3
iq6 � 1 � cos 2π � sin 2πi� 1 � 0orresponds to the identity:

T 6 � T 3 �1�T 2 T 3 � p1� T 3q �1�T 2 1� T 3 .That is, 0 , 1, and �1 orrespond to 1 � T 3, 2 � T 3, and T 3 respetively. Then,seven-trees-in-one an be deided by the following fatorization on Zrxs:
x7�x � x�px6�1q � x�px3�1q�px3�1q � x�px3�1q�px�1q�px2�x�1q .This fatorization shows that x6�1 and x7�x are in the prinipal ideal generated from

x2 � x� 1. We have equations x6 � 1 and x7 � x . Aordingly, we get isomorphisms5



Chapter 1: Introdution
T 6 � 1 � T 3 and T 7 � T . Generally, Fiore and Leinster showed that the polynomialdivision algorithm on Zrxs an be used to deide isomorphisms between non-trivialpolynomial types if subtration is valid [Fio04, FL05℄.From the ategorial view, Fiore and Leinster's researh gives an answer to the followingproblem posed by Shanuel [Sh91℄:Though ill-posed, the question is suggestive: a good answer should ompletethe diagram

S
�

� //

��

E

��
N

�

� // Zwhere S is the ategory of �nite sets; we seek an enlargement E, the iso-morphism lasses of whih should give rise to all integers, rather than justnatural numbers.That is, subtration is valid on E, whih oinides with Fiore and Leinster's result ontypes that onstruts rings from quotient semirings.
1.3 Rings of Reursive Type Isomorphism SystemsWithout loss of generality, as onrete representations of reursively de�ned objets, wehoose algebrai data types [Mal90, Hoo96, BM96℄ as objetives of our investigation.Fiore and Leinster's investigation is on the algebrai struture of the quotient set ofnon-trivial polynomial types whih are generated from one reursively de�ned type Tand the unit type 1 with respet to the least ongruene relation generated from onetype isomorphism T � 1�α. Moreover, when α has a term T n for n at least 2, thereis a ring isomorphism between the above quotient set and the polynomial quotient ringwhih is based on the prinipal ideal generated from the polynomial pT � p1� αqq.6



Chapter 1: IntrodutionInspired by Fiore and Leinster's researh, it is natural to ask the following question:Under what kind of ondition does the quotient set of non-trivial polynomialtypes whih are generated from a �nite set T of reursively de�ned types forma ring, with respet to the least ongruene relation whih is generated froma system S of reursive type isomorphisms on T ?Let �S be isomorphisms in the free distributive ategory (see setion 2.2) on T whihis equipped with the system S. Let NrTs�{�S be the quotient set of the NrTs � Nunder the least ongruene relation �S whih is generated from the system S. Sineall semiring properties an be derived from this ategory, a straightforward onsequeneis that for all polynomials p and q in NrTs�, p �S q implies that p �S q, written as�S � �S
1. Thus, in order to answer the above question, we an fous on the algebraistruture of the quotient set NrTs�{�S.As an example, given the following system of reursively de�ned types:

S � $&% S � 1� T 2 ;

T � 1� S � T ,we are interested in the algebrai struture of the quotient set NrS, T s�{�S. If thequotient set NrS, T s�{�S forms a ring, then there is a ring isomorphism2 between thisquotient set and the polynomial quotient ring Zrx, ys{�S where �S is the equivalenerelation given by the ideal IS whih is generated from the algebrai equation system onomplex numbers:
S � $&% x � 1� y2 ;

y � 1� x� y .That is, they have the same algebrai properties with regard to equalities and operators1We still don't know whether �S � �S is true or not. Its proof an be a generalization of Gates'result in [Gat98℄.2By theorem 2.1.1, there is a ring epimorphism from Zrx, ys{�S to NrS, T s�{�S. By the de�nitionof �S, we have �S � �S . This ensures the ring epimorphism is injetive as well.7



Chapter 1: Introdutionde�ned on them, denoted as:pZrx, ys{�S , �, �, IS , 1�IS , �1�ISq �Ñ pNrS, T s�{�S, �, �, ΛS, 1� ΛS, ηSqwhere ΛS and ηS are respetively equivalene lasses of zero ΛS and negative unit ηSwith respet to the least ongruene relation �S. By this ring isomorphism, we havethat for all polynomials p and q in NrS, T s�, p� q P IS implies that p �S q.To answer the above question is the �rst motivation of our researh. The signi�aneof this investigation is that it builds onnetions between systems of reursive typeisomorphisms and systems of equations on omplex numbers. That is, with respetto de�ned equalities and operators, problems on types an be solved by taking them asomplex numbers.Notie that the unit 1 and the zero 0 in NrTs are not in NrTs�. Hene, the quotientset NrTs�{�S inherits all properties of the semiring NrTs exept for zero and unit. Inorder to answer the question we propose above, the ruial step is to onstrut a zero
ΛS for NrTs� with respet to the least ongruene relation �S. By doing this, wehave that NrTs�{�S is a semiring with zero ΛS and unit 1� ΛS. Further, ΛS is soonstruted that it is isomorphi to 1� ηS for some type ηS in NrTs�. It follows that
NrTs�{�S forms a quotient ring with ηS as negative unit.We reprodue Fiore and Leinster's result in setions 3.1 and 3.2 to illustrate the aboveidea with the assumption on isomorphisms given by Fiore and Leinster in [Fio04, FL05℄.That is, if the type α has a term T n for n at least 2, then the quotient set NrT s�{�1�αwith �1�α the least ongruene relation generated from the isomorphism T � 1 � αforms a ring. To prove that the quotient set NrT s�{�1�α is a ring through onstrutinga zero Λ1�α simpli�es the proof given by Fiore in [Fio04℄ whih is based on Green'sRelations [Gre51℄ within semigroups.As a areful extension, in setion 3.3, we investigate mutually reursive type isomor-phisms G on two types S and T . We show that if types S and T both generate 1, andthey generate eah other and one of their reursive de�nitions has a term with degree at8



Chapter 1: Introdutionleast 2, then the quotient set NrS, T s�{�G forms a ring. Here, for all types p and q,
p generates q if and only if p �G q � r for some type r. For instane, returning to theprevious example:

G � $&% S � 1� T 2 ;

T � 1� S � T .We have:
S �G 1� T 2 �G 1� T � p1� S � T q �G 1� T � T � S � T ;

T �G 1� S � T �G 1� S � p1� T 2q �G 1� S � S � T 2 .It follows that G satis�es the above ondition. Further, the quotient set NrS, T s�{�Gis a ring. The key step of the proof is the onstrution of the zero ΛG whih is analogouswith the onstrution of Λ1�α.By generalising the above ondition on mutually reursive type isomorphisms G of tworeursively de�ned types to a ondition on systems of reursive type isomorphisms Son a �nite set T of reursively de�ned types, we develop an algorithm to deide whetherthe quotient set NrTs�{�S forms a ring with respet to the least ongruene relationgenerated from S in setion 3.4. The main results are given in theorem 3.4.1 whih isan answer to the question we propose at the beginning of this setion.Notie that if NrTs�{�S forms a ring, then the subtration is valid on this quotient set.As a reasonable extension, we may ask the following question:How does one onstrut an extension of NrTs�{�S suh that division isvalid?In ategorial view, we want to �nish the following diagram:
S

�

� //

��

E

��

�

� //

��

F

��
N

�

� // Z
�

� // Q 9



Chapter 1: Introdutionwhih is an extension of Shanuel's Problem [Sh91℄. That is, we are looking for anenlargement F of ategory of �nite sets whih gives rise to all rational numbers.The exploration starts from a onrete example. Return to the isomorphism T � 1�T 2.Fiore [private ommuniation, 2010℄ identi�ed an interesting isomorphism:
List T �ind

1�T 2 T .In words, the set of all �nite lists of binary trees is isomorphi to the set of all binary trees.Here, we use �ind
1�T 2 to emphasize that the type T is the least �xed point µX . p1�X�

Xq and primitive reursions (on T and on List T ) are allowed in the free distributiveategory on T . In our investigation into this isomorphism, we �nd that the followingisomorphism:
List T �ind

1�T 2 1� T 3is true as well. Combining the above two isomorphisms, sine 1 � T 3 plays the role ofzero in NrT s�{�1�T 2 , the isomorphism:
T �ind

1�T 2 List T �ind
1�T 2 1� T 3we all trees-in-zero. By onstruting expliitly funtions behind this isomorphism, anappropriate proof of this isomorphism is given in setion 3.5.The interesting thing is that by introduing the List type, we an onstrut multi-pliative inverses for non-trivial polynomial indutive types. For instane, onsider-ing the type isomorphism T � 1 � T 2, we have that 1 � T 3, 3 � T 3, and T 3 playroles of zero, two, and negative one respetively. The produtive inverse of 3 � T 3 is

List p1� T 3 � p3� T 3qq whih is veri�ed by the following alulation:pList p1� T 3 � p3� T 3qqq � p3� T 3q�ind
1�T 2 pList p1� T 3 � 2T 3 � T 6qq � p3� T 3q�ind
1�T 2 pList p2T 3 � T 6qq � p3� T 3q�ind
1�T 2 pList pT 3 � T 3 � p1� T 3qqq � p3� T 3q�ind
1�T 2 pList pT 3qq � p3� T 3q 10



Chapter 1: Introdution�ind
1�T 2 pList pT 3qq � pList pT 3qq � pList pT 3qq � pList pT 3qq � T 3�ind
1�T 2 1� pList pT 3qq � T 3 � pList pT 3qq � pList pT 3qq � p1� T 3q�ind
1�T 2 1� pList pT 3qq � p1� T 3q � pList pT 3qq � p1� T 3q�ind
1�T 2 1� p1� T 3q .However, when the List type and primitive reursions are introdued into the freedistributive ategory on the �nite set T of polynomial indutive types (whih are de�nedas least �xed points) equipped with the system S of reursive type isomorphisms, thealgebrai struture of this ategory is still unlear. This needs more investigation.

1.4 Replaement-Set GamesThe seond motivation of our researh is to generalize the isomorphism seven-trees-in-one. Notie that T � 1 � T 2 is not the only type isomorphism whih generates theisomorphism T n �1�T 2 T for some positive natural number n. For instane, the typeisomorphism T � 1 � T � T 2 generates the isomorphism T 5 �1�T�T 2 T , whih wasstudied in [FL04, FL05, Fio04℄. The question is:How does one haraterize the omplete set of identities T k � β whih gen-erate T k � T n�k for natural numbers k and n?In order to answer this question, we introdue an in�nite lass of one-person board games,so-alled replaement-set games, in setion 4.2. The aim of these games is to move aheker on a board n squares right aording to replaement rules given by some multiset
R of integers whih orresponds to the identity T k � β. For instane, the isomorphismseven-trees-in-one has been turned into the nulear pennies game [Yor07, Pip07a, Pip07b℄whih is onsidered as a replaement-set game with replaement-set R � t| �1, 1 |u anddisplaement n � 6. 11



Chapter 1: IntrodutionNotie that to onstrut the identity T k � β whih generates T k �β T n�k is equiv-alent to onstruting a solvable replaement-set game pR, nq where R orrespondsto the identity T k � β. In setion 4.3, we study trivial replaement-set games where
min.R ¥ 0 or max.R ¤ 0. In setion 4.4, an algorithm is onstruted to solve non-trivial replaement-set games where min.R   0   max.R. Through these investigations,a neessary and su�ient ondition on the identity T k � β is given.It turns out that the solvable non-trivial replaement-sets orrespond to produts of y-lotomi polynomials [Isa94, Lan02℄ with at most one negative oe�ient. This is an an-swer to the problem we propose. Further, by using properties of ylotomi polynomials,several in�nite lasses of solvable non-trivial replaement-sets are expliitly onstrutedin setion 4.5. As far as we are aware, it is still an open problem to expliitly onstrutthe omplete set of solvable non-trivial replaement-sets.
1.5 Related WorkNotie that our researh is to formalise reursively de�ned objets as algebrai equationsystems on omplex numbers. In this setion, let us review three relevant methods:Shützenberger's Methodology, Combinatorial Speies, and Flajolet's Symboli Method.They are based on funtional equation systems over generating funtions. And theytranslate reursively de�ned objets to generating funtions for di�erent purposes.1.5.1 Shützenberger's Methodology for Formal LanguagesThe generating funtion for formal languages is the formal power series:xΣn : 0 ¤ n : fnx

n ywith oe�ients fn as numbers of words of length n. Here, we use the notationx` i : R : P y 12



Chapter 1: Introdutionfor quanti�ers (see setion 2.5). For instane, the generating funtion of a� is:
1

1� x
� xΣn : 0 ¤ n : xn y .That is, the number of words of length n is 1 for all natural numbers n.Chomsky and Shützenberger disovered the method whih translates unambiguousontext-free languages into their generating funtions [CS63℄. It is well known that gen-erating funtions for unambiguous regular expressions are rational generating funtions[Sta97, FS08℄. However, not all rational generating funtions are generating funtionsfor unambiguous regular expressions. Given a rational generating funtion, whether itis a generating funtion for some unambiguous regular expression was investigated in[BLFR01℄.Let us fous on Shützenberger's Methodology. The idea is: an unambiguous ontext-freegrammar is translated into a system of funtional equations over generating funtions;by solving this algebrai system, one an get the orresponding generating funtion. Andif the given grammar is regular, then its orresponding algebrai system degenerates intoa linear system. For example, given the unambiguous regular expression paa� bq�a, itsorresponding state transition system is as following:$&% L0 � bL0 � aL1 ;

L1 � aL0 � 1 .By replaing a and b by x, we get the following linear system:$&% L0 � xL0 � xL1 ;

L1 � xL0 � 1 .By solving this linear system, we get the generating funtion for paa� bq�a. That is,
F pxq � L0 � x

1� x� x2
.Notie that F pxq de�nes a linear reurrene relation. Expanding F pxq by using powerseries [Zor04℄, we have:$'''&'''% f0 � 0, ;

f1 � 1, ;

fn � fn�1 � fn�2, n ¥ 2 . 13



Chapter 1: IntrodutionThat is, as for the language de�ned by the regular expression paa� bq�a, the FibonaiNumbers are numbers of words of length n for all natural numbers n.1.5.2 Combinatorial Speies for Data StruturesA speies of strutures is a onstrution F , for eah �nite set U , to produe a �niteset F rU s whih is independent of the nature of elements of U . In ategorial terms, aspeies is a funtor between ategories of �nite sets and bijetions [BLL98℄. Speies withoperators de�ned on them, e.g. addition, multipliation, substitution, and di�erentiation,onstrut speies algebra. For every operator between speies, there is a orrespondingoperator between their generating funtions. Thus, spei�ations of ombinatorial stru-tures in speies algebra an be translated into their generating funtions diretly.For instane, onsidering the following de�nition of binary trees: a binary tree is an emptytree or an element followed by a pair of binary trees. The empty tree is interpreted asthe empty set speies, de�ned as:
1rU s � $&% tU u, if U � H ;H, if U � H .The element is haraterized as the singleton speies, de�ned as:
XrU s � $&% tU u, if |U | � 1 ;H, if |U | � 1 .Disjoint union and artesian produt are onsidered as speies addition and multiplia-tion respetively. Now, the binary tree an be represented by the funtional equation:
B � 1�X �B2 .By solving this equation as a quadrati equation on omplex numbers, we have:
Bpxq � 1�?

1� 4x

2
.Sine oe�ients of the power series of 1�?1�4x

2
ontain negative natural numbers,

1�?1�4x
2

is not the generating funtion of binary trees. Expanding 1�?1�4x
2

by using14



Chapter 1: Introdutionpower series, we have:
Bpxq � xΣn : 0 ¤ n :

1

n� 1

�
2n

n



xn y .The oe�ients of the above series are numbers of binary trees with n nodes for allnatural numbers n.The signi�ane of this generalisation is that it enables us to fous on algebrai operatorsand strutures of speies, without getting too involved in the details of operators betweengenerating funtions. Bergeron et al formalized tree-like data strutures in speies al-gebra, suh as AVL trees and 2-3 Trees in [BLL98℄. However, it is hard to solve thefuntional equations in a ombinatorial sense.1.5.3 Flajolet's Symboli Method for Asymptoti AnalysisAnalysis of data strutures and algorithms involves spei�ations and asymptoti anal-ysis of ombinatorial strutures. The Symboli Method was developed by Flajolet totranslate spei�ations into funtional equations diretly. These funtional equationsare over generating funtions. Through analyzing generating funtions, one an hara-terize statistial properties of data strutures and algorithms.Flajolet observed the relation between strutural de�nitions of ombinatorial struturesand their funtional equations [Fla85℄. In his researh, ombinatorial onstrutors areadmissible if they preserve ardinalities. And a ombinatorial lass is a losure setonstruted from initial sets by admissible onstrutors whih an be translated intofuntional equations expliitly. Further, omplex analysis methods, for instane, singu-larity analysis and saddle point analysis, are applied to evaluate statistial propertiesof ombinatorial strutures [VF90, Odl95℄. In [FS08℄, Flajolet and Sedgewik de�neda set of elementary operators, e.g. disjoint union, artesian produt, sequene, yle,multiset, and powerset, as onstrutors of admissible ombinatorial lasses. For everyelementary operator, there is a orresponding operator on generating funtions. Thismakes automated asymptoti analysis possible.15



Chapter 1: Introdution1.6 AppliationsData strutures are in the enter of omputer siene. Analysis and reasoning of datastrutures are vital in all aspets of omputer siene, e.g. program optimization, algo-rithm design and omplexity analysis, and software testing and veri�ation. In order toanalyze and reason about data strutures, we need to hoose appropriate mathemati-al models to formalize them and to design suitable algebrai operators to manipulatethem. Sine we usually are about shapes of data strutures rather than ontents storedin them, funtional equations on generating funtions, as we have seen in setion 1.5,are useful models to speify and manipulate data strutures. Our researh shows thatmany reursively de�ned data strutures whih are generated from onstants by apply-ing artesian produts and disjoint unions an be onsidered as algebrai equations onomplex numbers and an be manipulated as polynomials on multi-variable with integersas oe�ients. It follows that methods in applied mathematis an be used to analyzedata strutures.To de�ne and deide strutural equalites between data strutures is a fundamental prob-lem in analysis and reasoning of data strutures. Strutural equalities are aptured byisomorphisms in our researh. Our setting for isomorphisms is free distributive ategory.This generalization ensures that dedued properties are true not only for data struturesbut also for funtions and algorithms whih are generated from onstants by applyingproduts and oproduts. More interestingly, isomorphisms between them an be auto-matially extrated from proofs of their orresponding algebrai equations. This is usefulfor program and data strutures transformations that are usually required to preservesome strutural properties. The �rst interesting appliation of the theory we have devel-oped is that it predits that there is an algorithm to deide whether a replaement-setgame is solvable.On the other hand, onnetions we have built between reursive polynomial type isomor-phisms and algebrai equations show that it is possible to represent omplex numbersand polynomials with integers as oe�ients as reursive polynomial types. This gives16



Chapter 1: Introdutiona lue to prove properties in omputable algebra by using automated theorem provers.
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Chapter 2
Mathematial Preliminaries

In this hapter, we give a brief introdution to mathematis and notations used in thisthesis. The onepts of algebrai strutures, e.g. semirings, rings, and ideals, are neededto understand hapter 3. We give their de�nitions and some theorems without proofsin setion 2.1. More information an be found in any textbook of algebra, for instane,[MB99℄ and [Lan02℄. Very small part of knowledge on ategories and initial algebra isused to haraterize algebrai data types and de�ne funtions between types. We listrelevant information in setions 2.2 and 2.3. More details an be found in [BM96, Hoo96℄.Basi properties of ylotomi polynomials [Isa94, Lan02℄ are given in setion 2.4 whihare used for the onstrution of solvable replaement-sets. Finally, in setion 2.5, someexamples are given to explain notations we use in this thesis. Similar notations are usedin [Gri98, Kal90, GS94, Ba03℄.
2.1 Algebrai StruturesLet S be a set whih is losed for the binary operator `. The struture pS, `q is asemigroup if ` is assoiative. That is, for all a, b, and c in S,pa ` bq ` c � a ` pb ` cq . 18



Chapter 2: Mathematial PreliminariesIf there is an element 1` in S satisfying that for all a in S,
a ` 1` � a � 1` ` a ,then the struture pS, `, 1`q is a monoid. The element 1` is said to be the unit of thismonoid. For instane, the set of all natural numbers equipped with the arithmeti addi-tion forms a monoid with 0 as the unit. A monoid is ommutative if ` is ommutative.That is, for all a and b in S,
a ` b � b ` a .A group pS, `, 1`q is a monoid satisfying that for every element a in S, there is anelement b in S suh that
a ` b � 1` � b ` a .We say that b is an inverse of a. A group is an abelian group if ` is ommutative.For example, the set of all integers equipped with arithmeti addition forms an abeliangroup.A semiring pS, `, b, 1`, 1bq is a set S equipped with two binary operators ` andb whih satis�es the following lauses:a. pS, `, 1`q is a ommutative monoid ;b. pS, b, 1bq is a monoid ;. b distributes through `, that is, for all a , b , and c in S,

a b pb ` cq � pa b bq ` pa b cq ;pb ` cq b a � pb b aq ` pc b aq ;d. 1` is the zero of b, that is, for all a in S,
a b 1` � 1` � 1` b a .19



Chapter 2: Mathematial PreliminariesFor instane, the set of all natural numbers equipped with arithmeti addition andmultipliation forms a semiring, written as pN, �, �, 0, 1q. The power set of the set
Σ� of all words generated from an alphabet Σ equipped with set union operator Yand onatenation operator � forms a semiring with the empty set H and the set ofthe empty string ǫ as units of set union and onatenation respetively, denoted byp℘pΣ�q, Y, �, H, t ǫ uq. As another example, the struture pNrxs, �, �, 0, 1q ofall polynomials on the indeterminate x with natural numbers as oe�ients whih isequipped with polynomial addition and multipliation is a semiring as well. Generally,given a �nite set I of indeterminates, we use NrIs for the set of all polynomials whih aregenerated from indeterminates in I with natural numbers as oe�ients. The struturepNrIs, �, �, 0, 1q forms a semiring. For instane, taking I to be tx, y u , thepolynomial x2 � 3xy is an element in NrIs. A semiring is ommutative if the binaryoperator b is ommutative.A ring is a semiring satisfying that the struture pS, `, 1`q forms an abelian group.The struture pZ, �, �, 0, 1q of all integers with arithmeti addition and multipli-ation is a ring whih has 0, 1, and �1 as zero, unit, and negative unit respetively.Given a ommutative ring K, the struture pKrIs, �, �, 0, 1q of all polynomials onindeterminates in I with oe�ients in K is a polynomial ring.Given a ommutative ring K, an ideal I is a subgroup of K satisfying that

K b I � Iwhere b is extended to sets. An ideal is said to be prinipal if it is generated from a�xed element. That is,
I � K b t a ufor some element a in K. For instane, given a polynomial p in Zrxs,
Ip � Zrxs b t p uis a prinipal ideal of Zrxs. Generally, given a �nite set P of polynomials in KrIs for20



Chapter 2: Mathematial Preliminariessome ommutative ring K and some �nite set I of indeterminates,
IP � KrIs b Pis an ideal of KrIs. Notie that an ideal I of a ommutative ring K de�nes an equiv-alene relation �I on K. That is, for all a and b in K,
a �I b � a� b P I .Further, the quotient set K{�I is a quotient ring. We use the notation KrIs{�P for thepolynomial quotient ring under the equivalene relation de�ned by the ideal IP. Notiethat K itself is an ideal as well. The ideal t0u and the ideal K are alled improperideals.A ring morphism is a funtion between two rings whih preserves ` and b and unit.The kernel of a ring morphism is the set of elements whih are mapped into zero.Theorem 2.1.1 (Main Theorem on Quotient Ring). For all ring morphisms f : S Ñ Rwith an ideal I a subset of the kernel of f , there is a unique ring morphism f 1 : S{�I Ñ

R satisfying that f � f 1 � ρ with ρ : S Ñ S{�I . In partiular, if I is equal to thekernel of f , then f 1 is a monomorphism.
2.2 CategoriesA ategory C is a olletion of objets and arrows equipped with the omposite operator�. Eah arrow f onnets two objets A and B whih are domain and odomain of frespetively, written as f : A Ñ B. For all arrows f : A Ñ B and g : B Ñ C, there isan arrow g � f : A Ñ C. For eah objet A, there is an identity arrow idA : A Ñ A.The omposite operator � is assoiative and has identity arrows as units.A funtor F is a homomorphism between two ategories. Given two ategories C and
D, the funtor F : C Ñ D maps objets and arrows in C to objets and arrows in Drespetively and preserves identities and the omposite operator. Spei�ally, for all f :21



Chapter 2: Mathematial Preliminaries
AÑ B, there is an arrow Ff : FAÑ FB. And F satis�es that F pf � gq � Ff � Fgand F pidAq � idFA. We write Id for the identity funtor. We use the notation KAfor the onstant funtor whose odomain is a ategory onsisted of only one objet Aand its identity arrow idA.A terminal objet, written as 1, is an objet satisfying that for eah objet A in C, thereis a unique arrow from A to 1. By duality, an initial objet, denoted by 0, is an objetsatisfying that for eah objet A, there is a unique arrow from 0 to A.A produt of two objets A and B onsists of an objet A�B and two arrows outl :

A � B Ñ A and outr : A � B Ñ B satisfying the universal property: given arrows
f : C Ñ A and g : C Ñ B, there is a unique arrow f � g : C Ñ A�B suh that

h � f � g � outl � h � f ^ outr � h � g .Given a ategory C having produts for eah pair of objets, the produt funtor C� C Ñ
C is de�ned by its mapping on arrows as: for all arrows f : AÑ C and g : B Ñ D,

f � g � pf � outlq � pg � outrq : A�B Ñ C �D .A oprodut of two objets A and B onsists of an objet A � B and two arrows
inl : AÑ A� B and inr : B Ñ A�B satisfying the universal property: given arrows
f : AÑ C and g : B Ñ C, there is a unique arrow f � g : A�B Ñ C suh that

h � f � g � h � inl � f ^ h � inr � g .Given a ategory C having oproduts for eah pair of objets, the oprodut funtor
C � C Ñ C is de�ned as: for all arrows f : AÑ C and g : B Ñ D,

f � g � pinl � f q � pinr � gq : A�B Ñ C �D .An arrow f : AÑ B is an isomorphism if there is an arrow g : B Ñ A satisfying that
f � g � idB ^ g � f � idA . 22



Chapter 2: Mathematial PreliminariesA distributive ategory is a ategory whih has initial and terminal objets, binary prod-uts and oproduts, and satis�es that for all objets A, B, and C, arrows 0Ñ A� 0and A�B �A� C Ñ A� pB � Cq are isomorphisms.A free distributive ategory is a distributive ategory whose olletion of objets is gen-erated from a olletion of objets, initial and terminal objets by binary produts andoproduts. The olletion of arrows in a free distributive ategory on a �nite set ofobjets is generated from the following arrows by applying omposite:
idA : AÑ A pidentityq
!A : AÑ 1 pterminalq½A : 0Ñ A pinitialq
outl : A�B Ñ A pprojectionq
outr : A�B Ñ B pprojectionq
inl : AÑ A�B pinjectionq
inr : B Ñ A�B pinjectionq
δ : A� pB � Cq Ñ A�B �A�C pdistributionq
ζ : A� 0Ñ 0 pzeroq
f � g : C Ñ A�B pproductq
h � i : A�B Ñ C pcoproductqwith
f : C Ñ A, g : C Ñ B, h : AÑ C, i : AÑ B .

2.3 Initial AlgebraLet F : C Ñ C be an endofuntor on the ategory C. Given an objet A in C, an
F -algebra on A is an arrow f : FA Ñ A. An F -homomorphism from the F -algebra23



Chapter 2: Mathematial Preliminaries
f : FAÑ A to the F -algebra g : FB Ñ B is an arrow h : AÑ B satisfying that

h � f � g � Fh .Let AlgpF q be the ategory with objets F -algebras and arrows F -homomorphisms.An initial F -algebra α is an initial objet in AlgpF q. For all F -algebras f , the arrowfrom α to f is alled the atamorphism, denoted by LfM, whih satis�es the universalproperty:
h � LfM � h � α � f � Fh .Let F be a polynomial endofuntor whih is onstruted from identity and onstantfuntors by �nite produts and oproduts. For instane, the type B of booleans is theinitial pK1 �K1q-algebra and the type N of natural numbers is the initial pK1 � Idq-algebra.

2.4 Cylotomi PolynomialsThe m-th ylotomi polynomial is de�ned as:
Φ.m � xΠ k : 0 ¤ k   m ^ k K m : x� e

2kπ
m

iywhere k K m denotes that natural numbers k and m are oprime. The �rst severalylotomi polynomials are as following:
Φ.0 � 1 ;

Φ.1 � x� 1 ;

Φ.2 � x� 1 ;

Φ.3 � x2 � x� 1 ;

Φ.4 � x2 � 1 ;

Φ.5 � x4 � x3 � x2 � x� 1 ;

Φ.6 � x2 � x� 1 . 24



Chapter 2: Mathematial PreliminariesFrom this de�nition, we have that for all positive natural numbers a,
xa � 1 � xΠ k : 1 ¤ k ¤ a ^ k z a : Φ.kywhere k z a denotes that k divides a. With the aid of the Möbius funtion whih isde�ned as:
µ.n � $'''&'''% 0, if p2 z n for some prime p ;p�1qr, if n is a produt of r distint primes ;

1, if n � 1 ,ylotomi polynomials an be alulated by the following formula:
Φ.m � xΠ k : 1 ¤ k ¤ m ^ k z m : pxk � 1qµ.pmk qy .For instane,
Φ.6 � x6 � 1

x3 � 1
� x� 1

x2 � 1
� x2 � x� 1 .For all prime numbers p,

Φ.p � xΣ k : 0 ¤ k   p : xk y .And for natural numbers m and a,
Φ.pm� a2q � rxa{xsΦ.pm� aq .

2.5 NotationsWe use the following proof notation:
P� t Why P � Q ? u
Qwhere P and Q are prediates and the hint is given in the middle whih is surroundedby urly braes. 25



Chapter 2: Mathematial PreliminariesWe use the following notation:x` i : R : P yfor the quanti�er ` where i is a dummy, R is the range of i, and P is the term whihdepends on the dummy.The Dijkstra's guarded ommand language is used to formalize algorithms. As an exam-ple, in the following program:{ P }do � x   y ÝÑ y :� x� yrs y   �x ÝÑ x :� x� yod{ Q }the prediates P and Q are pre-ondition and post-ondition respetively, and �x  
y Ñ y :� x � y and y   �x Ñ x :� x � y are non-deterministi guardedommands within a loop. Notie that non-deterministi guarded ommand is di�erentfrom if-statement. Given a list of non-deterministi guarded ommands, if more thanone of them is true, then one of them is non-deterministially hosen to be exeuted. Ifnone of them is true, the result is unde�ned.We use the symbol � to emphasize that its right-hand side is the de�nition of its left-hand side. The notation fY is for the inverse funtion of f . We use apital letters todenote objets, types, algebrai strutures, and funtors. Lower ase letters are usuallyused for variables and funtions. Greek letters are often used to denote polynomials,morphisms, and spei� funtions.
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Chapter 3
Rings of Reursive TypeIsomorphism Systems

Starting from the interesting isomorphism seven-trees-in-one, Fiore and Leinster gave aondition on single reursive types under whih the set of non-trivial polynomial typesforms a ring. In setion 3.2, we reprodue Fiore and Leinster's result by onstruting azero for the quotient set of non-trivial polynomial types. The same idea is extended toreursive type isomorphism systems. In setion 3.4, we give a su�ient and neessaryondition on a given reursive type isomorphism system under whih the set of non-trivialtypes forms a ring. The signi�ane of this investigation is not only that its underlyingalgebrai struture is interesting, but also that it reveals onnetions between algebraiequation systems and reursive type isomorphism systems. This theory predits thatisomorphisms between types an be deided by the polynomial division algorithm onmulti-variables. In setion 3.5, we investigate another interesting isomorphism, so-alledtrees-in-zero.
27



Chapter 3: Rings of Reursive Type Isomorphism Systems3.1 Seven-Trees-In-OneLet us onsider the type T of binary trees :
T � leaf | node pT, T q .That is, a binary tree is a leaf or a pair of binary trees. Given onstrutors leaf : 1Ñ Tand node : T � T Ñ T , by using oprodut, this type de�nition delares the followingfuntion:
in � leaf � node : 1� T � T Ñ T .This funtion is bijetive. Its inverse funtion inY : T Ñ 1� T � T an be de�ned as:
inY � pleaf � nodeq � inl � inr .To get rid of unneessary details, we write:(3.1) T � 1� T � T .It is a surprise that there is an isomorphism between the type of binary trees and thetype of seven-tuples of binary trees. That is,
T � T 7 .This is known as Lawvere's Remark [Law91℄ or seven-trees-in-one [Bla95℄.In order to understand seven-trees-in-one better, let us look at its proof. An importantand useful fat was given by Gates in [Gat98℄. That is,Theorem 3.1.1 ([Gat98℄). Given a polynomial P having at least one onstant termand at least one nononstant term, then for two polynomials Q and R, the followingare equivalent:

• QpT q � RpT q in any semiring suh that P pT q � T ;
• QpT q � RpT q in any distributive ategory suh that P pT q � T .28



Chapter 3: Rings of Reursive Type Isomorphism SystemsOur setting for type isomorphisms is the free distributive ategory CrT s on T . Objetsin CrT s are generated from T , 0 (initial objet), and 1 (terminal objet) by applyingbinary produts and oproduts. Arrows in CrT s are generated from the following arrowsby applying omposite:
idA : AÑ A pidentityq
!A : A Ñ 1 pterminalq½A : 0Ñ A pinitialq
outl : A�B Ñ A pprojectionq
outr : A�B Ñ B pprojectionq
inl : AÑ A�B pinjectionq
inr : B Ñ A�B pinjectionq
δ : A� pB � Cq Ñ A�B �A�C pdistributionq
ζ : A� 0Ñ 0 pzeroq
f � g : C Ñ A�B pproductq
h � i : A�B Ñ C pcoproductqwith
f : C Ñ A, g : C Ñ B, h : AÑ C, i : AÑ B .Let P be an objet in CrT s. For all objets A and B in CrT s, we say A is isomorphito B subjet to T � P , written as A �P B, if there is an isomorphism between A and

B in the ategory CrT s equipped with the axiom isomorphism T � P . That is, let inand inY be arrows between T and P , A �P B denotes that there is an isomorphismbetween A and B whih is generated from the above arrows and in and inY.In order to use theorem 3.1.1, we introdue the following semiring. Let NrT s bethe set of all polynomials in T with natural numbers as oe�ients. The struturepNrT s, �, �, 0, 1q forms a semiring. Let �β be the least ongruene relation on NrT sgenerated from the identity T � β where β is a polynomial in NrT s � N and satis�esthat its onstant term is not zero. That is, the relation �β is the least relation that29



Chapter 3: Rings of Reursive Type Isomorphism Systemsinludes the pair pT, βq and is an equivalene relation whih is preserved by polynomialproduts and additions.With the above de�nitions, a straightforward onsequene of theorem 3.1.1 is:Corollary 3.1.2. Given β in NrT s � N with onstant term nonzero,�β � �β .Spei�ally, we have:
T �1�T 2 T 7 � T �1�T 2 T 7 .By using semiring properties and the identity T � 1� T 2, we have:(3.2) T � p1� T 3q �1�T 2 T ^ T � p1� T 3q �1�T 2 1� T 3whih follow respetively from
T � p1� T 3q �1�T 2 1� T � p1� T 2q�1�T 2 1� T 2�1�T 2 Tand
T � p1� T 3q �1�T 2 T � T 4�1�T 2 1� T 2 � T 4�1�T 2 1� T 2 � p1� T 2q�1�T 2 1� T 3 .Let the notation NrT s� denote the set NrT s�N. From the property (3.2), by indutionon the struture of polynomials, we have that the polynomial 1 � T 3 is a zero of thequotient set NrT s�{�1�T 2 whih is the set of equivalene lasses of NrT s� under therelation �1�T 2 . That is,(3.3) x� p : p P NrT s� : p� p1� T 3q �1�T 2 p ^ p� p1� T 3q �1�T 2 1� T 3y .30



Chapter 3: Rings of Reursive Type Isomorphism SystemsAs an example, the idempotene of 1� T 3 an be proven as follows:p1� T 3q � p1� T 3q� t (3.2), partiularly, T � p1� T 3q �1�T 2 1� T 3, twie up1� T 3q � T 2 � p1� T 3q� t semiring u
1� T 2 � pT � p1� T 3qq� t (3.2), partiularly, T � p1� T 3q �1�T 2 T u
1� T 3 .By using the property (3.3), we prove seven-trees-in-one as follows:
T �1�T 2 T 7� t orollary 3.1.2 u
T �1�T 2 T 7� t Aiming to equalise both sides, we use (3.3) to add T 4 � p1� T 3qon the left side and T � p1� T 3q on the right side. u
T � T 4 � p1� T 3q �1�T 2 T 7 � T � p1� T 3q� t semiring and re�exivity u
true .More interesting, from the property (3.3), we have:x� p : p P NrT s� : p� T 3 � p �1�T 2 1� T 3y .That is, for all polynomials p in NrT s�, there is an additive inverse T 3 � p. Thus, thequotient set NrT s�{�1�T 2 forms a ring. The zero and unit of this ring are respetivelyequivalene lasses of 1�T 3 and 1�p1�T 3q under the least ongruene relation �1�T 2 .

31



Chapter 3: Rings of Reursive Type Isomorphism Systems3.2 Reursive Type IsomorphismsGenerally, let us onsider the following reursive type isomorphism:(3.4) T � 1� αwhere α is a polynomial in NrT s with degree at least 2. Following Fiore and Leinster'slead [FL04, Fio04, FL05℄, in this setion, let us show that the quotient set NrT s�{�1�αforms a ring. The idea is to onstrut a zero Λ1�α for NrT s�{�1�α . And Λ1�αis so onstruted that it is isomorphi to 1 � η1�α for a polynomial η1�α in NrT s�.Sine η1�α is e�etively an additive inverse of the unit of NrT s�{�1�α, the quotientset NrT s�{�1�α is a ring.Lemma 3.2.1. There is a polynomial γ in NrT s suh that
α �1�α 1� 2α � α2 � γ .Proof. Notie that α has degree at least 2. Let us rewrite α as T k � r for k at least

2 and r in NrT s .
T k � r�1�α t (3.4) up1� αqk � r�1�α t 2 ¤ k, by the Binomial Theorem,p1� αqk � 1� 2α � α2 � δ, for some δ in NrT s. u
1� 2α� α2 � δ � r�1�α t renaming, γ :� δ � r u
1� 2α� α2 � γ .

De�ne(3.5) Λ1�α � 1� α� α2 � γ . 32



Chapter 3: Rings of Reursive Type Isomorphism SystemsWe get a ruial lemma.Lemma 3.2.2. α� Λ1�α �1�α α .Proof. It diretly follows from the de�nition of Λ1�α and lemma 3.2.1.By using this lemma, it is easy to prove the following properties:(3.6) T � Λ1�α �1�α T ^ T � Λ1�α �1�α Λ1�α .That is,
T � Λ1�α�1�α t (3.4) up1� αq � Λ1�α�1�α t semiring and lemma 3.2.2 u
1� α�1�α t (3.4) u
Tand
T � Λ1�α�1�α t (3.4) and semiring u
Λ1�α � α� Λ1�α�1�α t de�nition (3.5) of Λ1�α u
1� α� α2 � γ � α� Λ1�α�1�α t semiring u
1� α� γ � α� pα� Λ1�αq�1�α t lemma 3.2.2 and semiring u
1� α� α2 � γ 33



Chapter 3: Rings of Reursive Type Isomorphism Systems�1�α t de�nition (3.5) of Λ1�α u
Λ1�α .Notie that the quotient set NrT s�{�1�α inherits all properties from the semiring NrT sexept for the unit and zero. Using the property (3.6), by indution on the struture ofpolynomials, we have that Λ1�α is a zero of NrT s�{�1�α. That is,x� p : p P NrT s� : p� Λ1�α �1�α p ^ p� Λ1�α �1�α Λ1�αy .And 1�Λ1�α is a unit of NrT s�{�1�α. A straightforward onsequene is that NrT s�{�1�αis a semiring. Realling the de�nition (3.5) of Λ1�α , let us de�ne

η1�α � α� α2 � γ .That is, 1 � η1�α �1�α Λ1�α. Sine Λ1�α is a zero of NrT s�{�1�α , it is easy to seethat x� p : p P NrT s� : p� η1�α � p �1�α Λ1�αy .It follows thatTheorem 3.2.3. Given the identity T � 1 � α with α in NrT s having degree atleast 2, the quotient semiring NrT s�{�1�α forms a ring. The inverse of the unit is theequivalene lass of η1�α under the least ongruene relation �1�α.Return to the identity T � 1 � T 2. Reall that 1 � T 3 and T 3 play the roles of zeroand negative unit respetively in NrT s�{�1�T 2 . We an use polynomials 1 � T 3 � i( i ¥ 0 ) and T 3 � p�iq ( i   0 ) in NrT s�{�1�T 2 to represent integers i. Formally, let
1� T 3 and 2� T 3 be equivalene lasses of 1� T 3 and 2� T 3 under the ongruenerelation �1�T 2 respetively. We have the following ring monomorphism from the ring
Z to the ring NrT s�{�1�T 2 :

Θ : pZ, �, �, 0, 1q ãÑ pNrT s�{�1�T 2 , �, �, 1� T 3, 2� T 3qwhih is de�ned as: for all integers i in Z,
Θ . i � $&% 1� T 3 � i, i ¥ 0 ;

T 3 � p�iq, i   0 . 34



Chapter 3: Rings of Reursive Type Isomorphism SystemsMore interesting, we an speify a monomorphism from a polynomial quotient ring tothe ring NrT s�{�1�T 2 . Spei�ally, let �x�p1�x2q be the equivalene relation de�nedby the prinipal ideal Ix�p1�x2q whih is generated from the polynomial x � p1 � x2q,that is,
Ix�p1�x2q � t p� px� p1� x2qq | p P Zrxs u .We have that the quotient set Zrxs{�x�p1�x2q forms a polynomial quotient ring. Thekernel of this quotient ring is the prinipal ideal Ix�p1�x2q. By solving the equation:
x� p1� x2q � 0 ,we have that x � cos π

3
� sin π

3
i. Further, the above quotient ring an be onsidered asthe ring extension:

Zrcos π
3
� sin

π

3
isof omplex numbers cos π

3
� sin π

3
i.Now, elements in the polynomial quotient ring Zrxs{�x�p1�x2q (or the ring extension

Zrcos π
3
� sin π

3
is ) an be represented by elements in the ring NrT s�{�1�T 2 by thefollowing ring isomorphism:

Θ : pZrxs{�x�p1�x2q, �, �, x� p1� x2q, 1� x� p1� x2qqØ pNrT s�{�1�T 2 , �, �, 1� T 3, 2� T 3qwhih is de�ned as: for all polynomials p and q with natural numbers as oe�ients,
Θ . pp� qq � rT {xs p1� x3 � p� x3 � qq .From the de�nition of �β, we have that for all polynomials p and q in NrT s�,
p �β q ñ pβ � T q z pp� qq .By theorem 2.1.1, Θ is an isomorphism. Hene, the range of Θ has the same alge-brai properties as the polynomial quotient ring Zrxs{�x�p1�x2q or the ring extension

Zrcos π
3
� sin π

3
is with respet to de�ned operators and equalities.35



Chapter 3: Rings of Reursive Type Isomorphism SystemsFrom this property, for instane, we have:px� p1� x2qq z px6 � 1q� t de�nition of �x�p1�x2q u
x6 �x�p1�x2q 1� t ring isomorphism u
Θ . x6 �1�T 2 Θ . 1� t de�nition of Θ u
1� T 3 � T 6 �1�T 2 1� T 3 � 1� t 1� T 3 is a zero in NrT s�{�1�T 2 . u
T 6 �1�T 2 2� T 3� t orollary 3.1.2 u
T 6 �1�T 2 2� T 3 ,and px� p1� x2qq z px7 � xq� t de�nition of �x�p1�x2q u
x7 �x�p1�x2q x� t ring isomorphism u
Θ . x7 �1�T 2 Θ . x� t de�nition of Θ u
1� T 3 � T 7 �1�T 2 1� T 3 � T� t 1� T 3 is a zero in NrT s�{�1�T 2 . u
T 7 �1�T 2 T� t orollary 3.1.2 u
T 7 �1�T 2 T .Generally, given an isomorphism T � 1 � α with the degree of α at least 2, bytheorems 3.2.3 and 2.1.1 and the de�nition of �1�α, we an de�ne the following ring36



Chapter 3: Rings of Reursive Type Isomorphism Systemsisomorphism:
Θ : pZrT s{�T�p1�αq, �, �, T � p1� αq, 1� T � p1� αqqØ pNrT s�{�1�α, �, �, Λ1�α, η1�αq .Combining with orollary 3.1.2, isomorphisms between non-trivial objets in CrT s whihis equipped with the axiom isomorphism T � 1�α an be deided by polynomial divisionalgorithm on Zrxs. That is, for all non-trivial objets A and B in CrT s,
A �1�α B � pT � p1� αqq z pA�Bq .This oinides with Fiore and Leinster's result [Fio04, FL05℄.

3.3 Reursive Type Isomorphisms on Two TypesNotie that the onstrution of the zero Λ1�α is a ruial step to the proof that
NrT s�{�1�α is a ring. Can we onstrut a zero for the quotient set of multi-variable poly-nomials under the least ongruene relation generated from identities on two variables?Spei�ally, we use the notation NrS, T s for the set of all multi-variable polynomials in
S and T with natural numbers as oe�ients. Let α and β be polynomials in NrS, T ssatisfying that α has a term Tm and β has a term Sn with m and n at least 2.Let the symbol �G denote the least ongruene relation generated from the followingidentities:

G � $&% S � 1� α ;

T � 1� β .That is, the relation �G is the least ongruene relation that inludes pairs pS, 1� αqand pT, 1�βq , and is preserved by polynomial produts and additions. Let the notation
NrS, T s� denote the set NrS, T s �N. We are interested in the struture of the quotientset NrS, T s�{�G .Analogous with the onstrution of Λ1�α , we have:37



Chapter 3: Rings of Reursive Type Isomorphism SystemsLemma 3.3.1. There is a polynomial γ in NrS, T s suh that
α �G 1� 2α� α2 � β � β2 � γ .Proof.

α�G t α has a term Tm with m at least 2.Rewrite α as Tm � p with p in NrS, T s . u
Tm � p�G t T � 1� β up1� βqm � p�G t 2 ¤ m, by the Binomial Theorem,p1� βqm � 1� 2β � β2 � q for some q in NrS, T s . u
1� 2β � β2 � p� q�G t β has a term Sn with n at least 2.Rewrite β as Sn � r with r in NrS, T s . u
1� β � β2 � Sn � p� q � r�G t S � 1� α u
1� β � β2 � p1� αqn � p� q � r�G t 2 ¤ n, by the Binomial Theorem,p1� αqn � 2α� α2 � s for some s in NrS, T s . u
1� 2α� α2 � β � β2 � p� q � r � s�G t renaming, γ :� p� q � r � s u
1� 2α� α2 � β � β2 � γ .

De�ne(3.7) ΛG � 1� α� α2 � β � β2 � γ .38



Chapter 3: Rings of Reursive Type Isomorphism SystemsFrom lemma 3.3.1, we have that(3.8) α� ΛG �G α .Symmetrially, we an onstrut
Λ1
G � 1� α� α2 � β � β2 � γ1 .with γ1 in NrS, T s satisfying that(3.9) β � Λ1

G �G β .Notie that ΛG �G Λ1
G. That is,

ΛG�G t ΛG has a term β and (3.9). u
ΛG � Λ1

G�G t Λ1
G has a term α and (3.8). u

Λ1
G .It follows thatLemma 3.3.2. α� ΛG �G α ^ β � ΛG �G β .By using this lemma and the de�nition (3.7) of ΛG, we have:

S�ΛG �G S ^ T �ΛG �G T ^ S�ΛG �G ΛG ^ T �ΛG �G ΛG .Let us prove S � ΛG �G S and S � ΛG �G ΛG as follows:
S � ΛG�G t S � 1� α and semiring u
1� pα� ΛGq�G t lemma 3.3.2 u
1� α�G t S � 1� α u
S 39



Chapter 3: Rings of Reursive Type Isomorphism Systemsand
S � ΛG�G t S � 1� α and semiring u
ΛG � α� ΛG�G t de�nition (3.7) of ΛG u
1� α� α2 � β � β2 � γ � α� ΛG�G t semiring u
1� α� β � β2 � γ � α� pα� ΛGq�G t lemma 3.3.2 and semiring u
1� α� α2 � β � β2 � γ�G t de�nition (3.7) of ΛG u
ΛG .Similar arguments apply to the proofs of T � ΛG �G T and T � ΛG �G ΛG .Theorem 3.3.3. Let α and β be polynomials in NrS, T s. Given the following identities:

G � $&% S � 1� α ;

T � 1� β .whih satis�es that α has a term Tm and β has a term Sn with m and n at least 2,the quotient set NrS, T s�{�G forms a ring. The inverse of the unit is the equivalenelass of ηG under the ongruene relation �G where ηG is de�ned as:
ηG � α� α2 � β � β2 � γ .That is, ΛG �G 1� ηG. Moreover,x� p : p P NrS, T s� : p�ΛG �G p ^ p�ΛG �G ΛG ^ p� ηG � p �G ΛGy .Generally, onsidering the following identities:
G � $&% S � pS ;

T � pT , 40



Chapter 3: Rings of Reursive Type Isomorphism Systemswith pS and pT in NrS, T s�. (Note that if pS or pT has degree 0, then G degeneratesto an identity on one variable or onstants.) We are interested in the problem of underwhat ondition the quotient set NrS, T s�{�G forms a ring sine the ondition on Ggiven in theorem 3.3.3 seems too strong. For example, onsider the following identities:
G � $&% S � T 2 ;

T � 1� S .Notie that
S �G T 2�G p1� Sq2�G 1� 2S � S2�G 1� S � S2 � T 2and
T �G 1� S�G 1� T 2�G 1� p1� Sq2�G 1� 1� 2S � S2 .Taking α and β to be S � S2 � T 2 and 1� 2S � S2 respetively, the polynomials αand β satisfy that α has a term Tm and β has a term Sn with m and n at least 2.From theorem 3.3.3, we have that the quotient set NrS, T s�{�G forms a ring under theleast ongruene relation �G generated from G.We are going to relax the ondition in theorem 3.3.3. For our purposes, let us de�ne thebinary relation �G on NrS, T s as: for all p and q in NrS, T s,
p �G q � xD r : r P NrS, T s : p �G q � ry .We say that p generates q with respet to G. From this de�nition and properties ofthe relation �G, we have that the relation �G is re�exive, transitive, and ompatible41



Chapter 3: Rings of Reursive Type Isomorphism Systemswith produts and additions. Spei�ally, for all p, q, r, and s in NrS, T s,
p �G p ;

p �G q ^ q �G r ñ p �G r ;

p �G q ^ r �G s ñ p� r �G q � s ^ p� r �G q � s .Motivated by our investigation into the system G in the above example, the onditiongiven in theorem 3.3.3 an be generalized to(3.10) S �G 1 ^ T �G 1 ^ xDm, n : 2 ¤ m, n : S �G Tm ^ T �G Sny .Further, we want to show that the ondition (3.10) is equivalent to the ondition that
S and T both generate the term 1 , S and T generate eah other, and at least one of
pS and pT has degree at least 2. Spei�ally, let us use deg for the degree of a givenpolynomial. For instane, deg . p1� S2T q � 3. This ondition is formalized as:(3.11) pS �G 1 ^ T �G 1q ^ pS �G T ^ T �G Sq ^ p2 ¤ deg . pS _ 2 ¤ deg . pT q .That is, our goal is to show that(3.10) � (3.11) .Notie thatLemma 3.3.4.pS �G T ^ T �G Sq ^ p2 ¤ deg . pS _ 2 ¤ deg . pT qñ xDm, n : 2 ¤ m, n : S �G Tm ^ T �G Sny .Proof. Suppose that 2 ¤ deg . pS . Sine S � pS , by the de�nition of �G , we havexD a, b : 2 ¤ a� b ^ 0 ¤ a, b : S �G T aSby .

42



Chapter 3: Rings of Reursive Type Isomorphism SystemsFurther,
S �G T ^ T �G S ^ S �G T aSbñ t �G is transitive and ompatible with produts. Spei�ally,

T �G S ñ T a �G Sa ñ T aSb �G Sa�b . u
S �G T ^ T �G S ^ S �G Sa�bñ t �G is transitive and ompatible with produts. Spei�ally,

S �G T ñ Sa�b �G T a�b . u
T �G S ^ S �G Sa�b ^ Sa�b �G T a�bñ t transitivity and weakening u
S �G T a�b ^ T �G Sa�b .By symmetry, we have that

S �G T ^ T �G S ^ T �G T aSb ñ S �G T a�b ^ T �G Sa�b .Reall that 2 ¤ a� b . We prove the lemma.From lemma 3.3.4,(3.10) ð (3.11) .Notie thatpS �G 1 ^ T �G 1q ^ xDm, n : 2 ¤ m, n : S �G Tm ^ T �G Snyñ t �G is transitive and ompatible with produts. Spei�ally,
T �G 1 ^ 2 ¤ m ñ Tm�1 �G 1 ñ Tm �G T ;
S �G 1 ^ 2 ¤ n ñ Sn�1 �G 1 ñ Sn �G S . upS �G 1 ^ T �G 1q ^ pS �G T ^ T �G Sq .Sine degrees of pS and pT are at least 1, pdeg . pS ¥ 2 _ deg . pT ¥ 2q ñ  xDm, n : 2 ¤ m, n : S �G Tm ^ T �G Sny .43



Chapter 3: Rings of Reursive Type Isomorphism SystemsIn words, if degrees of pS and pT are 1, then it is impossible to generate S �G Tmor T �G Sn for m and n at least 2. Combining the above disussions, we have that(3.10) ñ (3.11) .Therefore, (3.10) is equivalent to (3.11).The advantage of (3.11) over (3.10) is that the funtion deg is easier to alulate thanthe relation �G. How does one derive an algorithm to deide whether the onjuntionpS �G 1 ^ T �G 1q ^ pS �G T ^ T �G Sq is true or not? Before we studythis problem, let us generalize the ondition (3.11) on identities on two variables to theondition on identity systems.
3.4 Reursive Type Isomorphism SystemsGiven a �nite set T of variables, let us onsider the least ongruene relation generatedfrom the following system S of identities:

S � xT : T P T ^ pT P NrTs� : T � pT ywhere we use the notation NrTs for the set of all multi-variable polynomials in variablesfrom T with natural numbers as oe�ients. By generalizing the ondition (3.11) insetion 3.3, we have the ondition that for all types T in T , T generates the term 1,variables in T generate eah other, and at least one of pT has degree at least 2, writtenas:(3.12) x�T P T : : T �S 1y ^ x�T, R P T : : T �S Ry ^ x DT P T : : 2 ¤ deg . pT y .Generalizing the proof of that (3.10) is equivalent to (3.11), we have that the ondition(3.12) is equivalent to(3.13) x�T P T : : T �S 1y ^ x�T, R P T : : xDm : 2 ¤ m : T �S Rmyy .44



Chapter 3: Rings of Reursive Type Isomorphism SystemsIt follows that for all variables T in T,
T �S 1� xΣ R, m : R P T ^ 2 ¤ m : Rmy .By generalizing the onstrution of ΛG in lemma 3.3.1 and the properties of ΛG inlemma 3.3.2, we an onstrut a zero ΛS for the quotient set NrTs�{�S. The polynomial

ΛS is so onstruted that it is isomorphi to 1 � ηS for a polynomial ηS in NrTs�.Further,x� p : p P NrTs� : p� ΛS �S p ^ p� ΛS �S ΛS ^ p� ηS � p �S ΛSy .Therefore, under the ondition (3.12), the quotient set NrTs�{�S forms a ring.Atually, the ondition (3.12) is also a neessary ondition as for that NrTs�{�S formsa ring with respet to polynomial addition and produt. Suppose that NrTs�{�S is aring. We an �nd polynomials ΛS and ηS in NrTs� whih play the roles of zero andnegative unit of NrTs�{�S respetively. Beause for all T in T,
T �S T � ΛS �S T � 1� ηS ,by the de�nition of �S, we have:x �T P T : : T �S 1 y .Notie that the struture pNrT s�{�S, �, ΛS, ηSq is an additive group. We have thatfor all T and R in T,
T �S R� ηS �R� T ^ R �S T � ηS � T �R .By the de�nition of �S, we have:x�T, R P T : : T �S Ry .If the degree of pT is 1 for all pT in S, then for all p and q in NrTs�,
p �S q ñ deg . p � deg . q . 45



Chapter 3: Rings of Reursive Type Isomorphism SystemsHowever, sine for all T in T,
ΛS � T �S ΛS ,we have:
deg . pΛS � T q � deg .ΛS � 1 � deg .ΛS .By ontradition,x DT P T : : 2 ¤ deg . pT y .Combining the above disussions,Theorem 3.4.1. Given a system
S � xT : T P T ^ pT P NrTs� : T � pT yon the �nite set T of variables, the quotient set NrTs�{�S forms a ring if and only ifx�T P T : : T �S 1y ^ x�T, R P T : : T �S Ry ^ x DT P T : : 2 ¤ deg . pT y .Now, we are going to derive an algorithm to deide the ondition (3.12). In order to getbetter understanding of the ondition (3.12), let us onsider the following example:
H � $'''&'''% X � Y Z ;

Y � 1� Z ;

Z � X � Y .We use t ¤ p to denote that the monomial t is a term of the polynomial p. For instane,
1 ¤ 2� 1� 2� Y Z and Y Z ¤ 2� 1� 2� Y Z. Let symb . t be the set of all onstantsand indeterminates appearing in the monomial t. For example, symb . p1q � t1u and
symb . pY Zq � tY, Zu. We have the following property: for all variables T ,(3.14) T �S 1 � xD t : t ¤ pT : x� s : s P symb . t : s �S 1yy .That is, T generates 1 if and only if there is a monomial t in pT satisfying that allvariables appearing in t generate 1. 46



Chapter 3: Rings of Reursive Type Isomorphism SystemsBy using this property, we have that
Y �H 1� t (3.14) and Y � 1� Z u
1 �H 1 _ Z �H 1� t �H is re�exive u
true .Further, let us prove X �H 1 and Z �H 1 as following:
X �H 1� t (3.14) and X � Y Z u
Y �H 1 ^ Z �H 1� t Y �H 1 (from the above proof) u
Z �H 1� t (3.14) and Z � X � Y u
X �H 1 _ Y �H 1� t Y �H 1 (from the above proof) u
true .Motivated by the property (3.14), let us de�ne the algorithm E .S as:Algorithm 3.4.2.

A :� Hdo
B :� Afor eah type T in T�Afor eah monomial t ¤ pTif symb . t � A _ symb . t � t1u

A :� AY tT u; breakwhile A ! � B . 47



Chapter 3: Rings of Reursive Type Isomorphism SystemsWe have:(3.15) x�T P T : : T �S 1y � E .S � T .Further, let G .S be the graph pV, Eq whih is de�ned as:
V � T ^ pT, Rq P E � xD t : t ¤ pT : R P symb . ty .We have:Lemma 3.4.3. That all variables in T generate 1 implies thatx�T, R P T : : T �S Ry � G .S is strongly onneted .Proof. For all variables T and R in T, we have that
T �S R� t T � pT uxD t : t ¤ pT : t �S Ry� t the struture of monomials uxD t : t ¤ pT : xDS, p, q : S P symb . t ^ p, q P NrTs : pSq �S Ryy� t x�T P T : : T �S 1y ñ p �S 1 ^ q �S 1 uxD t : t ¤ pT : xD S : S P symb . t : S �S Ryy� t the de�nition of G .S upT, Sq P E ^ S �S R .That is, T �S R is equivalent to that there is a path from T to R in the graph G .S.By the de�nition of strongly onneted direted graphs, we prove the lemma.Combining (3.15) and lemma 3.4.3, the ondition (3.12) is equivalent to(3.16) E .S � T ^ G .S is strongly onneted ^ x DT P T : : 2 ¤ deg . pT y .48



Chapter 3: Rings of Reursive Type Isomorphism SystemsReturning to our example system H. It is easy to show that the graph
G .H � ptX, Y, Zu, tpX, Y q, pX, Zq, pY, Zq, pZ, Xq, pZ, Y quqis strongly onneted. Notie that E .S � tX, Y, Zu and deg . pY Zq � 2. That is, Hsatis�es the ondition (3.16). Let us show that the quotient set NrX, Y, Zs�{�H is aring through onstruting the zero ΛH . We have that
Z �H X � Y�H Y Z � Y�H p1� ZqZ � Y�H Z � Z2 � Y�H Z � pX � Y q2 � Y�H Z � pX � Y q2 � 1� Z�H 1� 2Z � 2XY �X2 � Y 2 .By using this derived identity, we get
X �H Y Z�H p1� ZqZ�H Z � Z2�H 1� 2Z � 2XY �X2 � Y 2 � Z2and
Y �H 1� Z�H 1� 1� 2Z � 2XY �X2 � Y 2�H 1� 1� 2Z � 2XY �X2 � p1� Zq2�H 1� 2� 4Z � 2XY �X2 � Z2 .Taking α, β , and γ to be polynomials 2Z�2XY �X2�Y 2�Z2, 2�4Z�2XY �X2�Z2,and 2Z � 2XY �X2 � Y 2 respetively. That is, the derived identities$'''&'''% X �H 1� α ;

Y �H 1� β ;

Z �H 1� γ . 49



Chapter 3: Rings of Reursive Type Isomorphism Systemssatisfy that α, β , and γ have terms Y 2 and Z2 , X2 and Z2 , and X2 and Y 2respetively. By generalizing lemmas 3.3.1 and 3.3.2, we have that there is a polynomial
p in NrX,Y,Zs satisfying that

ΛH � 1� α� β � γ � α2 � β2 � γ2 � pis a zero of the quotient set NrX, Y, Zs�{�H . Further, the quotient set NrX, Y, Zs�{�Hforms a ring. The inverse of the unit is the equivalene lass of
ηH � α� β � γ � α2 � β2 � γ2 � punder the least ongruene relation �H .In summary, we derive an algorithm to deide the ondition (3.12). That is,Corollary 3.4.4. Given a system S of identities on the �nite set T of variables, thequotient set NrTs�{�S forms a ring if and only if
E .S � T ^ G .S is strongly onneted ^ x DT P T : : 2 ¤ deg . pT y .We now suppose that S satis�es the above ondition in orollary 3.4.4. Let IS and�IS be respetively an ideal in ZrTs generated from S and the equivalene relationde�ned by IS. Let �S be the least ongruene relation generated from S. Notie thatfor all p and q in NrTs�:
p �S q ñ p� q P IS .By theorem 2.1.1, we an de�ne the following ring isomorphism:
Θ : pZrTs{�IS , �, �, IS, 1� ISq Ø pNrTs�{�S, �, �, ΛS, ΛS � 1q .That is, for all polynomials p and q in NrTs,
Θ . pp� qq � ΛS � p� ηS � q .Further, polynomial division algorithm on ZrTs an be used to deide identities in

NrTs�{�S. 50



Chapter 3: Rings of Reursive Type Isomorphism SystemsWe would like to use polynomial division algorithm to deide isomorphisms �S in thefree distributive ategory CrTs on T whih is equipped with axiom isomorphisms:
S � xT : T P T ^ pT P CrTs : T � pT y .Notie that for all objets A, B, and C in CrTs, the following semiring properties arederivable from arrows in CrTs.
A� pB � Cq � pA�Bq � C (assoiativity of oprodut)
A�B � B �A (symmetry of oprodut)
A� 0 � A � 0�A (unit of oprodut)
A� pB � Cq � pA�Bq � C (assoiativity of produt)
A�B � B �A (symmetry of produt)
A� 1 � A � 1�A (unit of produt)
A� 0 � 0 � 0�A (zero of produt)
A� pB � Cq � A�B �A� C (distribution)A straightforward onsequene of these properties is:Corollary 3.4.5 (Soundness). �S � �S .Combining with the above ring isomorphism Θ, we have that for all polynomials p and

q in NrTs�,
p� q P IS ñ p �S qwhen S satis�es the ondition in orollary 3.4.4. That is, polynomial division algorithmon ZrTs an be used to deide isomorphisms �S.However, we don't know whether the ompleteness:�S � �Sis true or not when S is not a single isomorphism T � P pT q suh that P satis�es theondition in theorem 3.1.1. Its proof an be a generalization of Gates' result in [Gat98℄.Until now, we don't know how to prove it.51



Chapter 3: Rings of Reursive Type Isomorphism SystemsOn the other hand, when S doesn't satisfy the ondition in orollary 3.4.4, whether�S an be deided is not lear. In [Fio04℄, Fiore disussed linear ases with respet tosingle reursive types. As for reursive type systems, more investigations are needed.
3.5 Trees-In-ZeroReturn to the type T of binary trees, i.e., the least �xed point µX . p1 �X �Xq. Let
List T be the type of all �nite lists of T , i.e., the least �xed point µX . p1 � T � Xq.In this setion, we are going to show that T is isomorphi to List T and List T isisomorphi to 1�T 3. Here, isomorphisms denote that there are inverse funtions whihare generated from arrows in the free distributive ategory CrT s on T equipped withthe axiom isomorphism T � 1�T 2 by applying funtional ompositions and primitivereursions (on T or on List T ). We write:

T �ind
1�T 2 List T �ind

1�T 2 1� T 3 .Sine 1� T 3 is a zero of NrT s�{�1�T 2 , we refer to this isomorphism as trees-in-zero.A ruial property used in our proof of trees-in-zero is:(3.17) pList pT 6qq � p1� T 3q �ind
1�T 2 1� T 3 .For larity, we give its proof in setion 3.5.1. De�ne Σn as:

Σn � xΣ i : 0 ¤ i   n : T i y .Another useful property is:
List T �ind

1�T 2 Σn � pList pT nqqwhih follows from:
List T�ind

1�T 2 t de�nition of List T u
µX . p1 � T �Xq�ind

1�T 2 t generalization of square rule (spei�ally, µf � µpfnq) u52



Chapter 3: Rings of Reursive Type Isomorphism Systems
µX . pΣn � T n �Xq�ind

1�T 2 t f :� pΣn�q, g :� p1�q � pT n�q, h :� pΣn�q � pT n�q,Sine f is a lower adjoint and f � g � h � f ,we have that f � µg � µh. u
Σn � µX . p1� T n �Xq�ind

1�T 2 t de�nition of List pT nq u
Σn � pList pT nqq .Further, sine
Σn�ind

1�T 2 t de�nition of Σn u
1� T � T 2 � T 3 � T 4 � T 5�ind

1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . u
T � T 2 � T 4 � T 5�ind

1�T 2 t semiring u
T � T 4 � p1� T 3q � T 2�ind

1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . u
T � T 4 ,we get

List T �ind
1�T 2 pList pT 6qq � pT � T 4q .Then, by using the property (3.17), we have:pList pT 6qq � pT � T 4q�ind

1�T 2 t semiring upList pT 6qq � p1� T 3q � T�ind
1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . upList pT 6qq � p1� T 3q 53



Chapter 3: Rings of Reursive Type Isomorphism Systems�ind
1�T 2 t (3.17) u

1� T 3and pList pT 6qq � pT � T 4q�ind
1�T 2 t semiring and List T �ind

1�T 2 1� T � List T u
T � pList pT 6qq � T 7 � pList pT 6qq � T 4�ind

1�T 2 t semiring u
T � pList pT 6qq � p1� T 3q � T 4�ind

1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . u
T � pList pT 6qq � p1� T 3q�ind

1�T 2 t (3.17) u
T � p1� T 3q�ind

1�T 2 t 1� T 3 is a zero of NrT s�{�1�T 2 . u
T .Combining the above results, we get a proof of trees-in-zero.3.5.1 CatamorphismsNow, let us prove the property (3.17) by expliitly onstruting mutually inverse fun-tions L fT 6 M and L fT 6 MY whih are shown in the following diagram:pList pT 6qq � p1� T 3q inY //

L f
T6 M

��

p1� T 3q � T 6 � ppList pT 6qq � p1� T 3qq
in

oo

id
1�T3�idT6�L f

T6 M

��

1� T 3

fY
T6 //

L f
T6 MY OO

p1� T 3q � T 6 � p1� T 3q
f
T6

oo

id
1�T3�idT6�L f

T6 MY OO

54



Chapter 3: Rings of Reursive Type Isomorphism SystemsHere, funtions in, inY, fT 6 , and fY
T 6 are so onstruted that they satisfy:

in � inY � id � inY � in ;

fT 6 � fYT 6 � id � fYT 6 � fT 6 .By using these funtions, we an de�ne L fT 6 M and L fT 6 MY respetively as the followingatamorphism and its inverse:
L fT 6 M � fT 6 � pid1�T 3 � idT 6 � L fT 6 Mq � inY ;

L fT 6 MY � in � pid1�T 3 � idT 6 � L fT 6 MYq � fYT 6 .Sine L fT 6 M and L fT 6 MY are reursively de�ned, we need to show that they all termi-nate. The terminations of L fT 6 M and L fT 6 MY are deided by the de�nitions of inY and
fY
T 6 respetively.Spei�ally, from the de�nition of the star operator, by expliitly de�ning onstrutors

one : 1� T 3 Ñ pList pT 6qq � p1� T 3qand
pcons : T 6 � ppList pT 6qq � p1� T 3qq Ñ pList pT 6qq � p1� T 3q ,funtions in and inY an be de�ned as:
in � one � pcons ;

inY � pone � pconsq � inl � inr .They satisfy:
in � inY � id � inY � in .De�ne the bound funtion
length : pList pT 6qq � p1� T 3q Ñ Nas:
length pone aq � zero

length ppcons pp, psqq � succ plength psq .55



Chapter 3: Rings of Reursive Type Isomorphism SystemsBeause the funtion inY dereases the length of its input, we have that the length ofthe input of L fT 6 M is dereasing after eah unfolding. Further, L fT 6 M terminates whenthe length of its input is zero.Sine 1� T 3 is a zero of NrT s�{�1�T 2 , we have that
1� T 3 �1�T 2 p1� T 3q � T 6 � p1� T 3q .Funtions fT 6 and fY

T 6 an be onstruted from one of proofs of this isomorphism. Forinstane, suppose that we have the following funtions:
tn_prod : pn : N�q Ñ T n � p1� T 3q Ñ 1� T 3 ;

tn_prodY : pn : N�q Ñ 1� T 3 Ñ T n � p1� T 3q ;
idem_n : pn : N�q Ñ n� p1� T 3q Ñ 1� T 3 ;

idem_nY : pn : N�q Ñ 1� T 3 Ñ n� p1� T 3q .And they satisfy that for all n in N�,ptn_prod nq � ptn_prodY nq � id � ptn_prodY nq � ptn_prod nq ;pidem_n nq � pidem_nY nq � id � pidem_nY nq � pidem_n nq .From the following proof:p1� T 3q � T 6 � p1� T 3q�1�T 2 t pid1�T 3 � ptn_prod 6qq and pid1�T 3 � ptn_prodY 6qq up1� T 3q � p1� T 3q�1�T 2 t pidem_n 2q and pidem_nY 2q u
1� T 3 ,funtions fT 6 and fY

T 6 an be onstruted as:
fT 6 � pidem_n 2q � pid1�T 3 � ptn_prod 6qq ;
fYT 6 � pid1�T 3 � ptn_prodY 6qq � pidem_nY 2q .Funtions appearing in hints of the above proof work as witnesses. Details about themare given in the following setions. 56



Chapter 3: Rings of Reursive Type Isomorphism Systems3.5.2 Produt-Zero FuntionsFirstly, from the following proof:
T � p1� T 3q�1�T 2 t semiring u
T � T 4�1�T 2 t T � 1� T 2 up1� T 2q � T 4�1�T 2 t semiring u
1� T 2 � p1� T 2q�1�T 2 t T � 1� T 2 u
1� T 3 ,we an onstrut the funtion

t_prod : T � p1� T 3q Ñ 1� T 3and its inverse
t_prodY : 1� T 3 Ñ T � p1� T 3qas
t_prod pleaf, inl q � inl 
t_prod pnode pa, bq, inl q � inr pa, b, leaf q
t_prod pa, inr pb, c, dqq � inr pa, b, node pc, dqqand
t_prodY pinl q � pleaf, inl q
t_prodY pinr pa, b, leaf qq � pnode pa, bq, inl q
t_prodY pinr pa, b, node pc, dqqq � pa, inr pb, c, dqq57



Chapter 3: Rings of Reursive Type Isomorphism Systemsrespetively. Notie that these funtions are e�etively omposite funtions whih aregenerated from the identity funtion, funtions orresponding to semiring properties,and given funtions behind the isomorphism T � 1 � T 2 by applying �nite funtionompositions, produts, and oproduts. For example, let
s1 : T � p1� T 3q Ñ T � T 4

s1Y : T � T 4 Ñ T � p1� T 3qand
s2 : p1� T 2q � T 4 Ñ 1� T 2 � p1� T 2q
s2Y : 1� T 2 � p1� T 2q Ñ p1� T 2q � T 4be respetively funtions orresponding to steps in the above proof whih have �semiring�as hints. Let
f : 1� T 2 Ñ Tand
fY : T Ñ 1� T 2be given funtions behind the isomorphism T � 1 � T 2. Funtions t_prod and

t_prodY an be de�ned as the following funtion ompositions:
t_prod � pid1 � idT 2 � f q � s2 � pfY � idT 4q � s1 ;

t_prodY � s1Y � pf � idT 4q � s2Y � pid1 � idT 2 � fYq .Name the onstrutors of T after
leaf � f � inland
node � f � inrrespetively. Then, simplify the above de�nitions. The resulting funtions are as sameas we have shown before. For the onveniene of the termination proof of L fT 6 MY, weprefer to use their expliit de�nitions. 58



Chapter 3: Rings of Reursive Type Isomorphism SystemsFurther, by using t_prod and t_prodY as bases, we an reursively de�ne funtions
tn_prod : pn : N�q Ñ T n � p1� T 3q Ñ 1� T 3and
tn_prodY : pn : N�q Ñ 1� T 3 Ñ T n � p1� T 3qas
tn_prod psucc zeroq � t_prod

tn_prod psucc nq � t_prod � pidT � ptn_prod nqqand
tn_prodY psucc zeroq � t_prodY
tn_prodY psucc nq � pidTn � t_prodYq � ptn_prodY nqrespetively. By mathematial indution on n in the above de�nitions, we have that forall n in N�,ptn_prod nq � ptn_prodY nq � id � ptn_prodY nq � ptn_prod nq .3.5.3 Idempotene FuntionsSimilarly, from the following proof:p1� T 3q � p1� T 3q�1�T 2 t semiring and T � 1� T 2 up1� T 3q � p1� T 2 � T 4q�1�T 2 t semiring and T � 1� T 2 u

1� T 3 � T � T 4�1�T 2 t semiring and T � 1� T 2 u
1� T 2 � T 4�1�T 2 t semiring and T � 1� T 2 u
1� T 3 , 59



Chapter 3: Rings of Reursive Type Isomorphism Systemswe an onstrut the funtion
idem : p1� T 3q � p1� T 3q Ñ 1� T 3and its inverse
idemY : 1� T 3 Ñ p1� T 3q � p1� T 3qas
idem pinl pinl qq � inl 
idem pinl pinr pa, b, cqqq � inr pa, nodepb, cq, leaf q
idem pinr pinl qq � inr pleaf, leaf, leaf q
idem pinr pinr pa, b, leaf qqq � inr pnode pa, bq, leaf, leaf q
idem pinr pinr pa, b, node pc, dqqqq � inr pa, b, node pc, dqqand
idemY pinl q � inl pinl q
idemY pinr pa, nodepb, cq, leaf qq � inl pinr pa, b, cqq
idemY pinr pleaf, leaf, leaf qq � inr pinl q
idemY pinr pnode pa, bq, leaf, leaf qq � inr pinr pa, b, leaf qq
idemY pinr pa, b, node pc, dqqq � inr pinr pa, b, node pc, dqqqrespetively. Using the identity funtion, idem, and idemY as bases, we have funtions
idem_n : pn : N�q Ñ n� p1� T 3q Ñ 1� T 3and
idem_nY : pn : N�q Ñ 1� T 3 Ñ n� p1� T 3q ,de�ned reursively as:
idem_n psucc zeroq � id1�T 3

idem_n psucc nq � idem � pid1�T 3 � pidem_n nqq60



Chapter 3: Rings of Reursive Type Isomorphism Systemsand
idem_nY psucc zeroq � id1�T 3

idem_nY psucc nq � pid1�T 3 � pidem_nY nqq � idemY .By mathematial indution on n, we have that for all n in N�,pidem_n nq � pidem_nY nq � id � pidem_nY nq � pidem_n nq .3.5.4 TerminationIn order to �nish our proof of trees-in-zero, we still need to show that L fT 6 MY terminates.For reader's onveniene, we repeat the de�nitions of L fT 6 MY and fY
T 6 as following:

L fT 6 MY � in � pid1�T 3 � idT 6 � L fT 6 MYq � fYT 6 ;

fYT 6 � pid1�T 3 � ptn_prodY 6qq � pidem_nY 2q .The termination of L fT 6 MY is deided by fY
T 6 . Spei�ally, if the output of fYT 6 matheswith the pattern � inl _�, then L fT 6 MY always terminates. This is the base ase. Sup-pose that the output of fY

T 6 mathes with the pattern � inr p_, aq �. If there is a boundfuntion
size : 1� T 3 Ñ Nsatisfying that the size of a is less than the size of the input to fY

T 6 , and for the basease, the size of the input to fY
T 6 is zero, then the termination of L fT 6 MY is established.Before de�ning the bound funtion size, in order to get better understanding of theproblem, let us do ase analysis on inputs to fY

T 6 . From the de�nition of idem_nY,we have that pidem_nY 2q is e�etively same as idemY. Thus, by using patternsappearing in the de�nition of idemY, we an write fY
T 6 expliitly as:

fYT 6 pinl q � inl pinl q
fYT 6 pinr pa, node pb, cq, leaf qq � inl pinr pa, b, cqq
fYT 6 pinr pleaf, leaf, leaf qq � inr pleaf6, inl q61
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fYT 6 pinr pa, leaf, leaf qq � inr ppa, leaf5q, inl q
fYT 6 pinr pa, b, node pc, dqqq � inr pptn_prodY 6q pinr pa, b, node pc, dqqqq .For the �rst and the seond patterns in the above de�nition, we have:
L fT 6 MY pinl q � one pinl q
L fT 6 MY pinr pa, node pb, cq, leaf qq � one pinr pa, b, cqq .The third and fourth patterns will be redued to the �rst pattern after unfolding. Thatis,
L fT 6 MY pinr pleaf, leaf, leaf qq � pcons pleaf6, pL fT 6 MY pinl qqq
L fT 6 MY pinr pa, leaf, leaf qq � pcons ppa, leaf5q, pL fT 6 MY pinl qqq .Let us onsider the last pattern. Reall the de�nition of t_prodY, repeated as following:
t_prodY pinl q � pleaf, inl q
t_prodY pinr pa, b, leaf qq � pnode pa, bq, inl q
t_prodY pinr pa, b, node pc, dqqq � pa, inr pb, c, dqq .Notie that when the input of t_prodY is not � inl  �, the depth of the third tree dereasesafter eah unfolding of t_prodY. Sine ptn_prodY 6q is reursively de�ned on t_prodY,as for the last pattern, fY

T 6 dereases the depth of the third tree as well.Based on above disussions, with the aid of the funtion
depth : T Ñ N�whih is de�ned as:
depth leaf � succ zero

depth pnode pa, bqq � succ pmax pdepth aq pdepth bqq ,we an de�ne the bound funtion size as:
size pinl q � zero

size pinr p_, node p_, _q, leaf qq � zero

size pinr pa, b, cqq � depth c .62



Chapter 3: Rings of Reursive Type Isomorphism SystemsHere, the �rst and seond patterns in the above de�nition orrespond to the �rst andseond patterns in the expliit de�nition of fY
T 6 respetively. The third pattern is usedto apture the property that fY

T 6 dereases the depth of the third tree. Notie that whenthe third tree mathes the pattern � leaf �, the size of the input is one. This orrespondsto the third and fourth patterns in the expliit de�nition of fY
T 6 whih terminate afterunfolding one.The size funtion meets our requirement: when the output of fY

T 6 mathes with thepattern � inl _ �, its value on the input to fY
T 6 is zero; and if the output of fY

T 6 matheswith the pattern � inr p_, aq�, then the size of a is less than the size of the input to
fY
T 6 . Hene, L fT 6 MY terminates.In summary, we prove the isomorphism trees-in-zero by using List T as a bridge. Theruial step is the expliit onstrution of the isomorphism between pList pT 6qq�p1�T 3qand 1� T 3. Tehnially, we onstrut them as a atamorphism and its inverse followedby their termination proofs.
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Chapter 4
Replaement-Set Games

It is interesting to notie that the isomorphism seven-trees-in-one an be illustratedby a one-person board game, so-alled �the nulear pennies game�. In this hapter, weintrodue an in�nite lass of one-person board games whih has the nulear pennies gameas an instane. This lass of games we all replaement-set games. Through developingan algorithm to solve these games, we onstrut a neessary and su�ient ondition onthe polynomial β under whih identities T k � β generate T k �β T k�n for naturalnumbers k and n. It is a surprise that this ondition builds onnetions between typeisomorphisms and produts of ylotomi polynomials. Further, by using properties ofylotomi polynomials, we onstrut several in�nite lasses of solvable replaement-setgames. However, it is still an open problem to onstrut the omplete set of solvablereplaement-sets.
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Chapter 4: Replaement-Set Games4.1 The Nulear Pennies GameThe seven-trees-in-one isomorphism has been turned into a game alled the �nulearpennies game� [Pip07a, Pip07b℄. There is an unbounded one-dimensional board whih isdivided into squares. Initially there is only one heker on one of squares. The goal is tomove this heker six squares to the right leaving all other squares empty. Index thesesquares by integers. There are two types of atomi moves: expansions and ontrations.An expansion on square i is to replae a heker on square i by adding one heker oneah of the two squares i� 1 and i� 1 . A ontration to square i is that two hekers,one on square i � 1 and one on square i � 1 , are replaed by adding one heker onsquare i. This game an be illustrated by the following �gures:
i+ 6

i

(a) Goal
i

i− 1 i+ 1(b) Expansion i

i− 1 i+ 1

() ContrationFigure 4.1: The Nulear Pennies GameThe onnetion between seven-trees-in-one and the nulear pennies game is easy to seeif one onsiders an atomi move as replaing T i�1�T by T i�1�p1�T 2q or vie-versa.Notie that expansions are reversed proedures of ontrations. There is a symmetrisolution to the nulear pennies game. The solution an be deomposed into two stages:the �rst stage is to ensure that there is a heker on the square six squares right to thestarting square and, symmetrially, there is a heker on the square six squares left to the�nishing square; and the seond stage is to onnet the above two intermediate states.Ahieving the �rst stage is easy. It is shown in the following �gure. In �g 4.2a, sixexpansions are used to ensure that a heker is added on the square six squares to theright of the starting square. Symmetrially, in �g 4.2b, working from bottom to top, sixexpansions ensure that a heker is added on the square six squares to the left of the65



Chapter 4: Replaement-Set Games�nishing square.
i+ 6

i

(a) Initial Phase i+ 6

i

(b) Final PhaseFigure 4.2: The Nulear Pennies Game � The First StageThe seond stage is to onnet two intermediate states: the bottom state in �g 4.2a andthe top state in �g 4.2b. A possible solution is shown in the following �gure:
i+ 6

i

Figure 4.3: The Nulear Pennies Game � The Seond StageIn �g 4.3, two intermediate states are repeated. The �rst and last moves ( expansion onsquare i�6 and, symmetrially, expansion on square i ) are used to ensure that there isa heker on square i� 5 and a heker on square i� 1 respetively . Then, expansionson squares i � 5 and i � 4 are used to produe the middle state and, symmetrially,expansions on squares i � 1 and i � 2 are used to produe the middle state as well.These expansions are from powers appearing in the following polynomial fatorization:
T 6 � 1 � pT 4 � T 3 � T � 1q � pT 2 � T � 1q .66



Chapter 4: Replaement-Set GamesMore explanations about the onnetion between the above expansions and this fator-ization will be given in later setions.
4.2 Replaement-Set GamesThe seven-trees-in-one isomorphism is not an isolated example. For instane, the isomor-phism T �1�T�T 2 T 5 appearing in [Fio04℄ and several lasses of isomorphisms whihare similar with the seven-trees-in-one isomorphism given in [FL05℄. We propose to on-strut identities T k � β whih generate T k �β T n�k for polynomials β in NrT s fornatural numbers k and n. This is equivalent to solving the following games: there isan unbounded one-dimensional board divided into squares with only a heker on one ofsquares; the goal is to move this heker to the square whih is n squares to the right ofthe starting square leaving all other square empty; and atomi moves of this game areidenti�ed by a multiset R . Spei�ally, an expansion on square i is to replae a hekeron square i by adding one heker into eah square in the multiset t| i� a | a P R |u anda ontration is the reversed proedure.The onnetion between T k � β and the multiset R is straightforward. Let A be themultiset of powers appearing in the polynomial β. We have:

R � t| a� k | a P A |u .That is, the multiset R aptures the relative replaement squares to the square k. Asan example, given an identity T 5 � T 2 � T 5 � T 8, the orresponding multiset R ist| � 3, 0, 3 |u.We all this lass of games the replaement-set games. And the multiset R is alledthe replaement-set and n is alled the displaement. The nulear pennies game, forinstane, is orresponding to the replaement-set game with replaement-set t| � 1, 1 |uand displaement 6. 67



Chapter 4: Replaement-Set GamesIn this hapter, we fous on the following problems: (a) given a replaement-set game, todeide whether there is a valid sequene of expansions and ontrations whih solves thisgame; (b) to onstrut suh a sequene if the game is solvable; () given a displaement
n, to onstrut all solvable replaement-sets.For questions (a) and (b), we will give omplete answers in setions 4.3 and 4.4. Insetion 4.5, we will give partial answers to question (). By partial answers, we meanthat some interesting subsets of the set of all solvable replaement-sets are onstrutedby using properties of produts of ylotomi polynomials.
4.3 Trivial Replaement-Set GamesLet min.R and max.R be the least and the greatest element of R respetively. Areplaement-set game pR, nq is trivial if min.R ¥ 0 or max.R ¤ 0. Beause eitherthere is no solution or there are trivial solutions to these games. More details are givenas follows.Suppose that min.R is 0. There is a solution to the game pR, nq if and only if n is 0.When n is 0, the solution to the game is trivial � doing nothing or a valid sequene ofexpansions and ontrations satisfying that the number of expansions is the same as thenumber of ontrations, and for all pre�xes of this sequene, the number of ontrationsis at most the number of expansions. For instane, write Ei and Ci for expansion onsquare i and ontration to square i respetively, the sequenerE0, E1, C0, E2, E0, C2, C1, C0 sis a solution to the replaement-set game pt| 0, 1 |u, 0q with the initial heker on square
0. If n is not zero, sine the initial heker is always on the board, there is no solutionto the game. The similar argument applies to the ase: max.R is 0.Suppose that min.R is greater than 0. Without loss of generality, assume that the68



Chapter 4: Replaement-Set Gamesinitial heker is plaed on square 0. We want to show that there is a solution to thereplaement-set game pR, nq if and only if R � t| a |u and a divides n. The if-part iseasy to prove. When n is zero, the only solution is an empty sequene. If n is not zero,an appropriate solution is the following sequene of expansions:rE0, Ea, E2a, . . . , Epn
a
� 1qa s .In order to prove the only-if-part, we need some formalization. Chekers on the boardat some stage of a game, alled a state, an be modelled by a polynomial with naturalnumbers as oe�ients. For instane, the state with two hekers on square 2 and oneheker on square 3 an be haraterized by the polynomial 2T 2 � T 3. For all states

p, an expansion on square i is valid if the oe�ient of T i in p is not zero and i ¥ 0.A valid ontration is a reversed proedure of a valid expansion. De�ne the polynomial
βR as:

βR � β � T�k � xΣ i : i P R : T iywhere T k � β. A valid expansion on square i an be formalized as the following statetransition:
p Ñ p� T i � T i � βR .Symmetrially, a valid ontration to square i is formalized as the state transition:
p Ñ p� T i � T i � βR .A solution to the game is a �nite sequene of valid expansions and ontrations from thestarting state 1 to the �nishing state T n. Given a state p, after a valid expansion onsquare i, a polynomial T i � pβR � 1q is added to p and, symmetrially, after a validontration, a polynomial �T i � pβR � 1q is added to p. Thus, that a game is solvableimplies that there is a polynomial z in ZrT s satisfying that 1 � z � pβR � 1q � T n.That is, βR � 1 divides T n � 1 on ZrT s, written as:pβR � 1q z pT n � 1q . 69



Chapter 4: Replaement-Set GamesFrom the polynomial long division algorithm, if βR � 1 divides T n � 1, then βR � 1an be rewritten as T a � r � 1 for a positive natural number a and a polynomial r in
NrT s. And the polynomial r satis�es that r is 0 or its degree is less than a and itsonstant term is zero. We have:Lemma 4.3.1. pT a � r � 1q z pT n � 1q � r � 0 ^ a z n .Proof. The if-part is established by the following fat:

T n � 1 � pT a � 1q � xΣ i : 0 ¤ i   n

a
: T iay .Let us show the only-if-part. If T a�r�1 divides T n�1, then T a�r�1 is a produt ofylotomi polynomials. Sine the only ylotomi polynomial having negative onstantterm is T � 1 and the onstant term of T a � r � 1 is negative, T � 1 is a fator of

T a�r�1. Reall that a is a positive natural number. If a is 1 or 2, it is straightforwardthat r � 0 and a z n. When a is greater than 2, we have that there is a polynomial pin ZrT s with degree less than a� 1 and onstant term zero suh thatpT � 1q � pT a�1 � p� 1q � T a � r � 1 .By simplifying the above equation, we have:
T � p� T � T a�1 � p � r� t r is in NrT s with degree less than a and onstant term zero. ux� i : 1 ¤ i ¤ a� 1 : rT ispT � p� T � T a�1 � pq ¥ 0y� t The degree of p is less than a� 1 and its onstant term is zero. u
1 ¥ rT sp ^ x� i : 2 ¤ i ¤ a� 2 : rT i�1sp ¥ rT ispy ^ rT a�2sp ¥ 1� t transitivity and rx ¤ y ¤ x � x � ys ux� i : 1 ¤ i ¤ a� 2 : rT isp � 1y .Further, T � p � T � T a�1 � p � 0 � r. Also, from the polynomial long divisionalgorithm,pT a � 1q z pT n � 1q � a z n .We prove the lemma. 70



Chapter 4: Replaement-Set GamesBy using lemma 4.3.1, we have that βR must be T a with a divides n if the gameis solvable. This ompletes the proof of: when min.R is greater than 0, there is asolution to the replaement-set game pR, nq if and only if R � t| a |u and a divides n.Symmetrially, a similar argument applies to the ase: max.R is less than 0.In summary, for trivial replaement-set games pR, nq: (a) if min.R or max.R is 0,then the game is solvable if and only if n is 0; (b) if min.R is greater than 0 or max.Ris less than 0, then the game is solvable if and only if R � t| i |u and i divides n with ian integer.
4.4 Non-trivial Replaement-Set GamesNow, let us onsider non-trivial replaement-set games. That is, the replaement set Rsatis�es that min.R   0   max.R.4.4.1 PolynomialsWithout loss of generality, we assume that only squares indexed by natural numbers areused and the initial heker is plaed on the square m where �m is the smallest elementin R. With this assumption, hekers on the board an be modelled by a polynomial in
NrT s. For all states p, we say that there is a valid expansion on square i if the oe�ientof T i in p is not zero and i ¥ m. Notie that a valid expansion on square i is to replaea heker on square i and to add one heker to eah square in t| i� a | a P R |u. De�nethe polynomial βR as:(4.1) βR � xΣ i : i P R : T i�my .By using this polynomial, a valid expansion on square i an be haraterized by thefollowing state transition:

p Ñ p� T i � T i�m � βR . 71



Chapter 4: Replaement-Set GamesSymmetrially, a valid ontration to square i is orresponding to the state transition:
p Ñ p� T i � T i�m � βR .Notie that β � βR � T k�m. For instane, given an isomorphism T 5 � T 2 � T 5 � T 8,the orresponding multiset is t| � 3, 0, 3 |u and βR is 1 � T 3 � T 6. We have that

T 2 � T 5 � T 8 � p1 � T 3 � T 6q � T 5�3. The onstant term of βR is not zero. Thisproperty is useful later. Thus, in this subsetion, we prefer βR to β.Reall that we assume the initial heker is plaed on square m with �m the smallestnumber in R. A solution to the game is a �nite sequene of valid expansions andontrations from the starting state Tm to the �nishing state Tm�n. Given a state p,after a valid expansion on square i, a polynomial T i�m�pβR�Tmq is added to p and,symmetrially, after a valid ontration, a polynomial �T i�m � pβR � Tmq is added to
p. Thus, that a game is solvable implies that there is a polynomial z in ZrT s satisfyingthat Tm � z � pβR � Tmq � T n�m. That is, βR � Tm divides pT n � 1q � Tm. Letus do ase analysis on m. If m is zero, we have that βR � Tm divides T n � 1. When
m is not zero, sine the onstant term of βR is not zero, we have that the ommonfator of βR � Tm and Tm is 1. Further, βR � Tm divides T n � 1. Therefore, weestablish a neessary ondition for the problem that a given non-trivial replaement-setgame pR, nq has a solution. That is,pβR � Tmq z pT n � 1qwhere the bakslash symbol denotes divisibility on ZrT s.4.4.2 An Algorithmi SolutionWe want to show that the above ondition is a su�ient ondition as well, by onstrutingan algorithm to produe a sequene of valid expansions and ontrations from the startingstate Tm to the �nishing state T n�m provided that βR � Tm is a fator of T n � 1.Notie that the game pR, nq with the initial heker on square m is solvable if and only72



Chapter 4: Replaement-Set Gamesif the game pt| i
gcd.R

| i P R |u, n
gcd.R

q with the initial heker on square m
gcd.R

is solvable.Here, gcd.R is the greatest ommon divisor of elements in R.The if-part is established diretly through replaing all expansions on squares i byexpansions on squares i � gcd.R and all ontrations to squares i by ontrations tosquares i � gcd.R. Reall that a valid expansion on square i is to replae a hekeron square i by adding one heker to eah square in t| i � a | a P R |u and a validontration is a reversed proedure of a valid expansion. Also, �m is in R sine �mis the least element in R. We have that the set of all squares i on whih a hekeran be plaed during a game pR, nq with the initial heker on square m is the set oflinear ombinations of elements in R. More preisely, they are multiples of the greatestommon divisor of R. Thus, given a solution to game pR, nq with the initial hekeron square m, it is valid to replae all expansions on squares i by expansions on squares
i

gcd.R
and all ontrations to squares i by ontrations to squares i

gcd.R
. This ompletesthe proof of the only-if-part.It follows that a solution to a game pR, nq with gcd.R � 1 an be onstruted froma solution to the game pt| i

gcd.R
| i P R |u, n

gcd.R
q through replaing square indexes iby i � gcd.R. Without loss of generality, let us onsider the problem of onstruting asequene of valid expansions and ontrations from the starting state Tm to the �nishingstate T n�m provided that βR � Tm is a fator of T n � 1 and gcd.R � 1.Reviewing The Nulear Pennies GameThe idea is embodied in the solution to the nulear pennies game. The orrespondingreplaement-set game is identi�ed by the pair pt| � 1, 1 |u, 6q. Sine the least elementin the replaement-set t| � 1, 1 |u is �1, the starting square m is 1 and βt| �1, 1 |u is

1�T 2. By using polynomials to haraterize states of a game, the solution to the nulear
73



Chapter 4: Replaement-Set Gamespennies game is formalized as follows:t p � T uexpansions on squares from 1 to 7 ;t p � T � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy uexpansions on squares 6 and 5 ;t p � T � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy� pT 6�1 � T 5�1q � p1� T 2 � T q ut p � T 7 � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy� pT 3�1 � T 2�1q � p1� T 2 � T q uontrations to squares 3 and 2 ;t p � T 7 � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy uontrations to squares from 1 to 7 .t p � T 7 uBeause 1� T 2 � T is a fator of T 6 � 1 , from the following fatorization:
T 6 � 1 � pT 4 � T 3 � T � 1q � pT 2 � T � 1q ,we have that for all polynomial γ in NrT s,
T � pγ � T 2 � T q � p1� T 2 � T q � T 7 � pγ � T 5 � T 4q � p1� T 2 � T q .It follows that the two middle states are equal. Here, we take γ to bexΣ j : 1 ¤ j ¤ 7 : T j�1y .Further, the solution to the nulear pennies game an be onsidered as the onstrutionof two valid expansion sequenes starting from states T and T 7 respetively satisfying:(a) their orresponding polynomial haraterizations are equal;74



Chapter 4: Replaement-Set Games(b) the resulting states ensure respetively that expansions on squares T 6 and T 5,and expansions on squares T 3 and T 2 are valid.Spei�ally, the two valid expansion sequenes arerE1, E2, E3, E4, E5, E6, E7 sand rE7, E6, E5, E4, E3, E2, E1 s .Notie that an expansion on square i adds one heker on eah of squares i � 1 and
i� 1. Hene, expansions on i� 1 and i� 1 following an expansion on i are valid. Thisproperty ensures the validity of the above expansion sequenes. Further, they have thesame polynomial haraterization:xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy .And the resulting states after the above expansions starting respetively from states Tand T 7 are as follows:

S1 � T � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy� xΣ j : 0 ¤ j ¤ 6 : T jy � T 8 ;

S2 � T 7 � xΣ j : 1 ¤ j ¤ 7 : T j�1 � p1� T 2 � T qy� 1� xΣ j : 2 ¤ j ¤ 8 : T jy .Let the notation rT ksp denote the oe�ient of T k in state p. We have:rT 6sS1 ¡ 0 ^ rT 5sS1 ¡ 0and rT 3sS2 ¡ 0 ^ rT 2sS2 ¡ 0 .That is, the above ondition (b) is satis�ed.Then, we an do expansions on squares 6 and 5 , and expansions on squares 3 and 2respetively to get the middle state. Reall that ontration is the reversed proedure of75



Chapter 4: Replaement-Set Gamesexpansion. The solution to the nulear pennies game an be aptured by an expansionsequene followed by a ontration sequene, shown as:rE1, E2, E3, E4, E5, E6, E7, E6, E5, C3, C2, C1, C2, C3, C4, C5, C6, C7 s .The Algorithm OutlineGenerally, suppose that the given non-trivial replaement-set game pR, nq satis�es that
βR � Tm divides T n � 1 and the initial heker is on square m with �m the leastelement in R. De�ne the partial order � on NrT s as: for all polynomials p and q,

p � q � x� i P N : 1 ¤ rT isp : rT isp ¤ rT isqy .One an onstrut least polynomials δ and ρ in the poset pNrT s, �q satisfying thatfor all polynomials γ in NrT s,(4.2) Tm � pγ � δq � pβR � Tmq � Tm�n � pγ � ρq � pβR � Tmqby using the polynomial long division algorithm on ZrT s.Inspired by the symmetri solution to the nulear pennies game, if we have two validexpansion sequenes γm and γm�n starting from Tm and Tm�n respetively whihsatisfy:(a) they have the same polynomial haraterization γ � pβR � Tmq ;(b) δ � Tm � Tm � γ � pβR � Tmq ^ ρ� Tm � Tm�n � γ � pβR � Tmq ,the algorithm to solve the non-trivial replaement-set game pR, nq with the initialheker on square m an be onstruted as:
76



Chapter 4: Replaement-Set GamesAlgorithm 4.4.1.t p � Tm uexpansions on squares in γm ;t p � Tm � γ � pβR � Tmq uexpansions on squares in the set of powers appearing in δ � Tm ;t p � Tm � pγ � δq � pβR � Tmq ut p � Tm�n � pγ � ρq � pβR � Tmq uontrations to squares in the set of powers appearing in ρ� Tm ;t p � Tm�n � γ � pβR � Tmq uontrations to squares in γm�n .t p � Tm�n uThe equation (4.2) and the above ondition (a) ensure that two intermediate states areequal. The above ondition (b) ensures that expansions aording to δ and ontrationsaording to ρ are valid.Construting Valid Expansion SequenesAssuming that gcd.R � 1, we now onsider the problem of onstruting valid expansionsequenes γm and γm�n satisfying the above onditions. Notie that the equation (4.2)an be rewritten as:
Tm�n � Tm � pδ � ρq � pβR � Tmq .And degrees and odegrees (the least powers) of polynomials on both sides of this equa-tion are respetively same. Reall that min.R   0   max.R. Aording to the de�nition(4.1) of βR, the degree of βR � Tm is greater than m and the odegree is 0. Thus, the
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Chapter 4: Replaement-Set Gamesdegree of δ � ρ is less than n and its odegree is m. Further, we have:
δ � Tm � K � xΣ i : 2m ¤ i   m� n : T iy
ρ� Tm � K � xΣ i : 2m ¤ i   m� n : T iywhere K is the greatest oe�ient of δ and ρ. By using these properties, the aboveonditions (a) and (b) whih the valid expansion sequenes γm and γm�n should satisfyan be re�ned to:(a) they have the same polynomial haraterization γ � pβR � Tmq ;(b) K � xΣ i : 2m ¤ i   m� n : T iy � Tm � γ � pβR � Tmq ^
K � xΣ i : 2m ¤ i   m� n : T iy � Tm�n � γ � pβR � Tmq .Reall that the set of all squares on whih one heker an be plaed during a gamepR, nq with the initial heker on square m is the set of all multiples of the greatestommon divisor of R. With assumptions gcd.R � 1 and min.R   0   max.R, byextending the Eulidean Algorithm, it is possible to produe a ompound expansion Liwhih satis�es the following property: given a state p with rT isp ¡ 0, one an get astate p1 by the following transition:(4.3) p

Li�ÝÑ p1satisfying that(4.4) rT i�1sp1 ¡ 0 ^ rT i�1sp1 ¡ 0 .For larity, we will give the algorithm whih produes Li later. Now, by using Li, weonstrut the following ompound expansion sequenes:(4.5) rLm, Lm�1, � � � , Lm�n sand(4.6) rLm�n, Lm�n�1, � � � , Lm s . 78



Chapter 4: Replaement-Set GamesThe property (4.4) ensures that the above sequenes are valid expansion sequenes fromthe starting state Tm and the �nishing state Tm�n respetively. Let li�pβR�Tmq bethe polynomial haraterization of the transition (4.3). The orresponding polynomialharaterizations of sequenes (4.5) and (4.6) are equal to:
γ1 � pβR � Tmq � xΣ i : m ¤ i ¤ m� n : liy � pβR � Tmq .Further, from the property (4.4), we have:xΣ i : m ¤ i   m� n : T iy � Tm � γ1 � pβR � Tmq ;xΣ i : m   i ¤ m� n : T iy � Tm�n � γ1 � pβR � Tmq .BeauserTmspTm � γ1 � pβR � Tmqq ¡ 0 ^ rTm�nspTm�n � γ1 � pβR � Tmqq ¡ 0 ,sequenes (4.5) and (4.6) an be repeated K times respetively. We now take γm and

γm�n to be:(4.7) rLm, Lm�1, � � � , Lm�n sKand(4.8) rLm�n, Lm�n�1, � � � , Lm sKrespetively. Let γ be K � γ1. Based on the above disussion, γ � pβR � Tmq is thepolynomial haraterization of γm and γm�n, and
K � xΣ i : m ¤ i   m� n : T iy � Tm � γ � pβR � Tmq ;
K � xΣ i : m   i ¤ m� n : T iy � Tm�n � γ � pβR � Tmq .Sine m is greater than 0 (�m is the least element of R and min.R   0   max.R ),we have:xΣ i : 2m ¤ i   m� n : T iy � xΣ i : m ¤ i   m� n : T iy ;xΣ i : 2m ¤ i   m� n : T iy � xΣ i : m   i ¤ m� n : T iy .Combining the above results, the re�ned onditions (a) and (b) are satis�ed. Thisompletes the onstrution of γm and γm�n.79



Chapter 4: Replaement-Set GamesConstruting Compound ExpansionsWe now fous on the onstrution of the ompound expansion Li whih is a validexpansion sequene satisfying that given a state with at least one heker on square i,the resulting state after the sequene of expansions has at least one heker on eah ofsquares i� 1 and i� 1.Reall that all squares on whih a heker an be plaed during a game pR, nq withthe initial heker on square m are linear ombinations of elements in R as well asmultiples of the greatest ommon divisor of R. In partiular, sine min.R   0   max.Rand gcd.R � 1, by extending the Eulidean Algorithm, we an onstrut multisets Aand B whose elements are from R satisfying:
i� xΣ a : a P A : ay � i� gcd.R � i� 1 ;

i� xΣ b : b P B : by � i� gcd.R � i� 1 .Further, the ompound expansion Li is onstruted by serializing A and B. Let usillustrate the above idea by a simple example. For instane, taking R to be the multisett|�3, 5 |u. Following the proedure of the Eulidean Algorithm, multisets A and B anbe onstruted as follows:
x y A B�3 5 t| � 3 |u t| 5 |u�3 2 t| � 3 |u t| � 3, 5 |u�1 2 t| � 3, �3, 5 |u t| � 3, 5 |u�1 1 t| � 3, �3, 5 |u t| � 3, �3, �3, 5, 5 |uBy serializing multisets A and B, we get the following valid expansion sequene:r i, i� 3, i� 3� 3, i� 5, i� 5� 5, i� 5� 5� 3, i� 5� 5� 3� 3 s .It is omposed of a single expansion on square i followed by two subsequenes:r i� 3, i� 3� 3 sand r i� 5, i� 5� 5, i� 5� 5� 3, i� 5� 5� 3� 3 s .80



Chapter 4: Replaement-Set GamesThese two subsequenes are onstruted from multisets A and B respetively. Notethat after the expansion on square i, there is at least one heker on eah of squares
i�3 and i�5. And after expansions on squares i�3�3 and i�5�5�3�3, there is atleast one heker on eah of squares i�1 � i�3�3�5 and i�1 � i�5�5�3�3�3.Hene, the above sequene satis�es the requirement on the ompound expansion Li withregard to R � t| � 3, 5 |u.Generally, we give the algorithm to onstrut multisets A and B as follows:Algorithm 4.4.2.{ min.R   0   max.R }

x, y :� min.R, max.R ;

Q, A, B :� set.R� tx, 0, y u, t|x |u, t| y |u ;{ Invariant: xΣ a : a P A : ay � x ^ xΣ b : b P B : by � y^ gcd.pQ Y tx, y uq � gcd.R }do x � �gcd.R _ y � gcd.R ÝÑdo � x   y ÝÑ y, B :� x� y, A Z Brs y   �x ÝÑ x, A :� x� y, A Z Bod ;{ �x � y ^ xΣ a : a P A : ay � x ^ xΣ b : b P B : by � y }if Q � H ^ min.Q   0 ÝÑ x :� min.Q ;

Q, A :� Q� t|x |u, t|x |urs Q � H ^ max.Q ¡ 0 ÝÑ y :� max.Q ;

Q, B :� Q� t| y |u, t| y |urs Q � H ÝÑ skip�od{ xΣ a : a P A : ay � �gcd.R ^ xΣ b : b P B : by � gcd.R }81



Chapter 4: Replaement-Set GamesThis algorithm e�etively alulates gcd.R and �gcd.R by extending the EulideanAlgorithm. We use the orresponding set set.R of the multiset R to avoid unneessaryomputation. It is worth to mentioning that 0 is removed from R to get rid of possiblemeaningless omputation.The serializations of A and B are respetively done by ordering elements in i � Aand i�B ( addition is extended to sets ) then forming sequenes of their partial sums.Further, by arbitrarily interleaving these two sequenes with an expansion on square iheaded, we get the needed ompound expansion. In partiular, by using the property:xΣ a : a P A : ay   0   xΣ b : b P B : bywhih is maintained through the above algorithm, we give a spei� algorithm to on-strut the ompound expansion Li from multisets A and B as follows:Algorithm 4.4.3.{ xΣ a : a P A : ay � �gcd.R ^ xΣ b : b P B : by � gcd.R^ rT isp ¡ 0 ^ i ¥ m }
j, k :� min.A, max.B ;

A, B :� A� t|min.A |u, B � t|max.B |u ;
Li, p :� ris, p� T i�m � pβR � Tmq ;{ Invariant: rT j�isp ¡ 0 ^ rT k�isp ¡ 0 ^ j ¤ �gcd.R   0   gcd.R ¤ k^ j � xΣ a : a P A : ay � �gcd.R ^ k � xΣ b : b P B : by � gcd.R }do A � H ÝÑ Li :� Li �� rj � is ;

p :� p� T j�i�m � pβR � Tmq ;
j :� j �min.A ;

A :� A� t|min.A |urs B � H ÝÑ Li :� Li �� rk � is ;
p :� p� T k�i�m � pβR � Tmq ;
k :� k �max.B ;

B :� B � t|max.B |u82



Chapter 4: Replaement-Set Gamesod{ rT i�gcd.Rsp ¡ 0 ^ rT i�gcd.Rsp ¡ 0 }Here, the initial heker is supposed to be on square m. We assume that i is at least
m. This ensures that the running state p is a polynomial with natural numbers asoe�ients. Variables j and k are used to reord partial sums. We always hoose theminimum of A and the maximum of B for inreases on j and k respetively. Thismaintains the property:

j ¤ �gcd.R   0   gcd.R ¤ kwhih avoids arguments on the ase j � k. At the end of the algorithm, the property:rT i�gcd.Rsp ¡ 0 ^ rT i�gcd.Rsp ¡ 0ensures that the resulting sequene Li satis�es our requirement (4.4) on the ompoundexpansion.Until now, we have �nished the onstrution of the algorithm to solve non-trivial replaement-set games. Combining our arguments in setion 4.4.1, we have:Theorem 4.4.4. A given non-trivial replaement-set game pR, nq with the initialheker on square m is solvable if and only ifpβR � Tmq z pT n � 1qwhere βR is de�ned by equation (4.1). And, when the game is solvable, an appropriatesolution is given by algorithm 4.4.1 where γm and γm�n are equations (4.7) and (4.8)respetively with the ompound expansion Li produed by algorithms 4.4.2 and 4.4.3.Combining results we get for trivial replaement-set games, we give omplete answers toquestions (a) and (b) proposed in setion 4.2.
83



Chapter 4: Replaement-Set Games4.4.3 The NormalizationWe all a sequene of expansions and ontrations whih solves a non-trivial replaement-set game a valid sequene. And a valid sequene onsisting of a sequene of expansionsfollowed by a sequene of ontrations we all a normal sequene. The areful readermay notie that we always onstrut normal sequenes to solve non-trivial replaement-set games. It is natural to ask whether for all valid sequenes L, there is a normalsequene whih solves the same game as L does. The answer to this question is yes. Inthis subsetion, let us show that there is a valid sequene if and only if there is a normalsequene.For our purposes, we de�ne the binary relation E on NrT s as: for all states p and q,
p E q � x D i : i ¥ m ^ rT isp ¡ 0 : p� T i�m � pβR � Tmq � q y .That is, there is a valid expansion from states p to q. Let F be the onverse relationof E and I be the identity relation. We have:Lemma 4.4.5. FE � EF Y I .Proof. For all states p and q,
p FE q� t de�nitions of E and F and relation omposition ux D r, i, j : r P NrT s ^ i ¥ m ^ j ¥ m ^ rT isr ¡ 0 ^ rT jsr ¡ 0 :

p � r � T i�m � pβR � Tmq ^ r � T j�m � pβR � Tmq � q y .If i � j, we have that p � q. That is, FE � I . Suppose that i � j. Notie that
i � j ^ rT isr ¡ 0 ^ rT jsr ¡ 0ñ t An expansion on square i ( j )does not remove any heker on square j ( i ). urT jspr � T i�m � pβR � Tmqq ¡ 0 ^ rT ispr � T j�m � pβR � Tmqq ¡ 084



Chapter 4: Replaement-Set Games� t p � r � T i�m � pβR � Tmq ^ r � T j�m � pβR � Tmq � q urT jsp ¡ 0 ^ rT isq ¡ 0� t expansions on squares j and i in p and q respetivelyand p � r � T i�m � pβR � Tmq ^ r � T j�m � pβR � Tmq � q urT jsp ¡ 0 ^ rT isq ¡ 0^ p� T j�m � pβR � Tmq � r � pT i�m � T j�mq � pβR � Tmq^ r � pT i�m � T j�mq � pβR � Tmq � q � T i�m � pβR � Tmq� t wittness : r � pT i�m � T j�mq � pβR � Tmq ux D r, i, j : r P NrT s ^ i ¥ m ^ j ¥ m ^ rT jsp ¡ 0 ^ rT isq ¡ 0 :

p� T j�m � pβR � Tmq � r � q � T i�m � pβR � Tmq y� t de�nitions of E and F and relation omposition u
p EF q .This ompletes the proof.Reall that ontration is the reverse proedure of expansion. The set of all sequenesof expansions and ontrations an be identi�ed by the regular expression pE Y Fq�where onatenation is replaed by relation omposition. Likely, the set of all sequenesonsisted of a sequene of expansions followed by a sequene of ontrations is spei�edby E�F�. Then, the statement that there is a valid sequene if and only if a normalsequene an be generalized to:Theorem 4.4.6. For all states p and q,x DL : L P pE Y Fq� : p L q y � x DL : L P E

�
F
� : p L q y .Proof. Let us show pE Y Fq� � E�F� as follows:pE Y Fq� � E

�
F
�� t E�F� � pE Y Fq� and anti-symmetry upE Y Fq� � E

�
F
� 85



Chapter 4: Replaement-Set Gamesð t pE Y Fq� � xµX : : I Y XpE Y Fq y u
I Y E

�
F
�pE Y Fq � E

�
F
�� t I � E�F� and E�F�F � E�F� u

E
�
F
�
E � E

�
F
�ð t monotoniity and E�E� � E� u

F
�
E � E

�
F
�ð t EF� Y F� � E�F� and transitivity u

F
�
E � EF

� Y F
�ð t F�E � xµX : : E Y FX y u

E Y FpEF� Y F
�q � EF

� Y F
�� t E � EF� and FF� � F� u

FEF
� � EF

� Y F
�ð t lemma 4.4.5, monotoniity, and transitivity upEF Y IqF� � EF
� Y F

�� t EFF� � EF� and IF� � F� u
true .

4.5 Construting Solvable Replaement-SetsIn this setion, we fous on the question () proposed in setion 4.2: given a displaement
n, to onstrut all solvable replaement-sets R. By solvable replaement-set, we meanthat the replaement-set game pR, nq is solvable.As for trivial replaement-sets (min.R ¥ 0 or max .R ¤ 0 ), answers to the abovequestion are trivial: (a) if min.R or max.R is 0, the replaement-set R is solvable ifand only if n is 0; (b) if min.R ¡ 0 or max.R   0, then the replaement-set R is86



Chapter 4: Replaement-Set Gamessolvable if and only if R � t| i |u satisfying that i divides n with i an integer. This hasbeen shown in setion 4.3.Considering non-trivial replaement-sets (min.R   0   max.R ). Theorem 4.4.4 tellsus that the replaement-set R is solvable if and only ifpβR � Tmq z pT n � 1qwhere �m is the least element of R and
βR � xΣ i : i P R : T i�my .That is, there is a orresponding between fators βR � Tm of T n � 1 and non-trivialsolvable replaement-sets R. Reall that βR is a polynomial with natural numbersas oe�ients. The polynomial βR � Tm is a polynomial with natural numbers asoe�ients (Tm � βR ) or a polynomial with only one negative oe�ient (Tm � βR ).The �rst lass of replaement-sets we all monotoni solvable replaement-sets. Beausein an expansion on square i, the number of hekers on square i will not hange and thenumber of hekers on board inreases stritly. We all the seond lass of replaement-sets true solvable replaement-sets. Beause in an expansion on square i, a heker onsquare i is always truly replaed (the number of hekers on square i dereases by one)and the number of hekers on board does not hange or inreases stritly.It is well-known that fators of T n�1 are produts of ylotomi polynomials (irreduiblefators of T n�1 on ZrT s ). By using properties of ylotomi polynomials, we onstruttwo in�nite lasses of monotoni solvable replaement-sets in subsetion 4.5.1 and onein�nite lass of true solvable replament-sets in subsetion 4.5.2. Unfortunately, as far aswe know, it is still an open problem to ompletely haraterize the set of all non-trivialsolvable replaement-sets.For our purposes, we introdue a spei� lass of produts of ylotomi polynomials.Given positive natural numbers a and b, we de�ne Γ.pa, bq as:
Γ.pa, bq � xΣ k : 0 ¤ k   a : T k�b y .87



Chapter 4: Replaement-Set GamesFrom the geometri series and the following property of ylotomi polynomials:(4.9) T n � 1 � xΠ k : 1 ¤ k ¤ n ^ k z n : Φ.k y ,we have:(4.10) Γ.pa, bq � T a�b � 1

T b � 1
� xΠ k : 1 ¤ k ¤ a�b ^ k z pa�bq ^  pk z bq : Φ.k y .4.5.1 Monotoni Solvable Replaement-SetsNotie that oe�ients of Γ.pa, bq are natural numbers. Given a �nite set A of pairs ofpositive natural numbers, from the property (4.10), we have that the following produt:(4.11) xΠ pa, bq : pa, bq P A : Γ.pa, bq yis a produt of ylotomi polynomials with natural numbers as oe�ients.However, not all suh produts are fators of T n � 1 for some positive natural number

n. From the property (4.9), we have that a fator of T n�1 is a produt of non-repeatedylotomi polynomials. For instane,
Φ2 �Φ3 � pT � 1q � pT 2 � T � 1qis a fator of T 6 � 1, while
Φ2 �Φ2 � pT � 1q � pT � 1qis not a fator of any T n � 1. Also, Γ.pa, bq is a produt of ylotomi polynomialsindexed by elements in the set a� b� b whih follows from the property (4.10). Here,we use a� b and b for sets of positive divisors of a� b and b respetively and symbol� for set di�erene. We have that if the set A satis�es:(4.12) x � pa, bq, pc, dq P A : : pa� b� bq X pc� d� dq � Hy ,then the produt (4.11) is a fator of T n � 1 for some positive natural number n withnatural numbers as oe�ients. 88



Chapter 4: Replaement-Set GamesFurther, let p be a produt in form (4.11) with the set A satisfying the ondition(4.12). Let m be a positive natural number less than the degree of p. (Choosing
m in this way ensures that the resulting replaement-set R is non-trivial. That is,
min.R   0   max.R .) We de�ne βR as:

βR � p� Tm .The orresponding multiset R of βR is a monotoni solvable replaement-set with thedisplaement n positive multiples of the least ommon multiple of all elements inxY pa, bq P A : : a� b� b y .Let us look at an in�nite lass of examples. Take n to be a positive square-free naturalnumber. We de�ne A as:
A � t pp, 1q | p is a prime fator of n. u .Sine for all primes p and q with p � q,pp� 1� 1q X pq � 1� 1q � tpu X tqu � H ,we have that A satis�es the ondition (4.12). Further, βR is onstruted from A as:
βR � xΠ pp, 1q P A : : Γ.pp, 1q y � Tmwhere m satis�es that
0   m   xΣ pp, 1q P A : : pp� 1q y .The orresponding multiset R of βR is a monotoni solvable replaement-set. As aninstane of this lass, by taking n to be 6 and m to be 2, we have:
βR � Γ.p3, 1q � Γ.p2, 1q � T 2� pT 2 � T � 1q � pT � 1q � T 2� T 3 � 3T 2 � 2T � 1 .The orresponding multiset R is:t| � 2, 2 � p�1q, 3 � 0, 1 |u 89



Chapter 4: Replaement-Set Gameswhere �2, �1, 0, and 1 are relative positions to the position m � 2. Further, thegame pR, nq is solvable whih follows from:
βR � Tm � Γ.p3, 1q � Γ.p2, 1q � Φ3 �Φ2 � T 6 � 1

Φ1 � Φ6and theorem 4.4.4.Lots of other examples an be onstruted as above by using the produt (4.11) with Asatisfying the ondition (4.12). We list some of them in the following table:
A βR � Tm nt pk, 1q u T k�1

T�1 � xΣ i : 0 ¤ i   k : T i y kt p2, 2kq u T 4k�1
T 2k�1 � T 2k � 1 4kt pa, ak�1q u Tak�1
Tak�1�1 � xΣ i : 0 ¤ i   a : T i�ak�1 y akt p3, 1q, p2, 8q u T 3�1
T�1 � T 16�1

T 8�1 � pT 2 � T � 1q � pT 8 � 1q 48The seond lass in the above table was previously identi�ed by Marelo Fiore [privateommuniation, 2010℄. The third lass was studied in [BCF10℄.Notie that the ondition (4.12) on the set A is equivalent to:(4.13) x � pa, bq, pc, dq P A : : ppa� bq ∇ pc� dqq z b _ ppa� bq ∇ pc� dqq z d ywhere the symbol ∇ denotes the greatest ommon divisor. The advantage of (4.13)over (4.12) is that the omputation of the greatest ommon divisor is heaper than theonstrution of the set of positive divisors. Now, let us show they are equivalent asfollows. By duality between propositional operators and set operators, we have that forall sets A, B, C, and D:pA�Bq X pC �Dq � H � pA X Cq � B _ pA X Cq � Dwhih follows from that for all propositions p, q, r, and s: ppp ^  qq ^ pr ^  sqq� t De Morgan rule u p _ q _  r _ s 90



Chapter 4: Replaement-Set Games� t idempoteny and ommutativity u p _  r _ q _  p _  r _ s� t De Morgan rule u pp ^ rq _ q _  pp ^ rq _ s� t de�ntion of ñ uppp ^ rq ñ qq _ ppp ^ rq ñ sq .Instantiating A, B, C, and D by a� b, b, c� d, and d, we have thatpa� b�bq X pc� d�dq � H � pa� b X c� dq � b _ pa� b X c� dq � d .Further, sine for all positive natural numbers a and b, a X b � a ∇ b and a z b �
a � b. We get:pa� b�bq X pc� d�dq � H � ppa�bq ∇ pc�dqq z b _ ppa�bq ∇ pc�dqq z d .This ompletes the proof.In summary, we have:Theorem 4.5.1. Given a �nite set A of pairs of positive natural numbers whih satis�es:x � pa, bq, pc, dq P A : : ppa� bq ∇ pc� dqq z b _ ppa� bq ∇ pc� dqq z d y ,the orresponding multiset R of

βR � xΠ pa, bq P A : : Γ.pa, bq y � Tmwith 0   m   deg.βR is a monotoni solvable replaement-set with displaement npositive multiples of the least ommon multiple of elements inxY pa, bq P A : : a� b� b y .Is theorem 4.5.1 the only way to de�ne monotoni solvable replaement-sets? The answeris no. In our investigation, we notie an interesting example:
T 15 � 1

T 5 � 1
� T 8 � 1

T 3 � 1
� Γ.p3, 5q � Γ.p8, 1q

Γ.p3, 1q � Φ15 � Φ8 �Φ4 � Φ2 .91



Chapter 4: Replaement-Set GamesAlthough
Φ15 � T 8 � T 7 � T 5 � T 4 � T 3 � T � 1is not a ylotomi polynomial with natural numbers as oe�ients,
Φ15 � Φ8 � Φ4 � Φ2 � T 15 � T 12 � T 10 � T 9 � T 6 � T 5 � T 3 � 1is a produt of ylotomi polynomials with natural numbers as oe�ients.Generally, we are interested in the problem of �nding a natural number c whih satis�esthat(4.14) T a�b � 1

T b � 1
� T c � 1

T a � 1
� Γ.pa, bq � Γ.pc, 1q

Γ.pa, 1qis a produt of ylotomi polynomials with natural numbers as oe�ients providedthat positive natural numbers a and b are oprime, written as a K b.Notie that by using the geometri series, we have:
1

1� T a
� xΣ i : 0 ¤ i : T a�i y .Further, the formula (4.14) an be rewritten as:xΣ i : 0 ¤ i   a : T b�i y � xΣ i : 0 ¤ i : T a�i y � p1� T cq� t polynomial arithmeti uxΣ k, j : 0 ¤ k ^ 0 ¤ j   a : T a�k�b�j y �xΣ k, i : 0 ¤ k ^ 0 ¤ i   a : T a�k�b�i�c y� t fatorization on powers uxΣ k, j : 0 ¤ k ^ 0 ¤ j   a : T a�pk�t b�j

a
uq�pb�jq mod a y �xΣ k, i : 0 ¤ k ^ 0 ¤ i   a : T a�pk�t b�i�c

a
uq�pb�i�cq mod a y� t renaming: k :� k � t b�j

a
u and k :� k � t b�i�c

a
u respetively uxΣ k, j : tb� j

a
u ¤ k ^ 0 ¤ j   a : T a�k�pb�jq mod a y �xΣ k, i : tb� i� c

a
u ¤ k ^ 0 ¤ i   a : T a�k�pb�i�cq mod a y .92



Chapter 4: Replaement-Set GamesConsidering the last line in the above alulation. By omparing terms on both sides ofthe minus operator, we have that the formula (4.14) is a produt of ylotomi polyno-mials with natural numbers as oe�ients if and only if there is an injetive funtion
f : r0, aq Ñ r0, aqsatisfying that(4.15) x � i : 0 ¤ i   a : pb� i� cq mod a � pb� f.iq mod a ^ b� f.i ¤ b� i� c y .Our goal is to onstrut a funtion f satisfying the above property.A useful property is:Lemma 4.5.2. For all positive natural numbers a, b, i, and j,
a K b ñ pppb � iq mod a � pb� jq mod aq � pi mod a � j mod aqq .Proof. pb� iq mod a � pb� jq mod a� t de�nition of modulo u
a z ppi� jq � bq� t a K b u
a z pi� jq� t de�nition of modulo u
i mod a � j mod a .

This property implies that numbers from 0 to a � 1 appear one and only time inremainders pb� iq mod a for 0 ¤ i   a provided a K b.
93



Chapter 4: Replaement-Set GamesFurther, let r be a number satisfying that pb� rq mod a � 1. We have:pb� i� cq mod a � pb� f.iq mod a� t pb� rq mod a � 1 upb� i� c� ppb� rq mod aqq mod a � pb� f.iq mod a� t r pi� jq mod a � pi mod a� j mod aq mod a s andr pi � jq mod a � ppi mod aq � jq mod a s upb� pi� c� rqq mod a � pb� f.iq mod a� t lemma 4.5.2 and a K b upi� c� rq mod a � f.i mod a� t f.i P r0, aq upi� c� rq mod a � f.i .Let us de�ne f as: for all i in r0, aq,
f.i � pi� c� rq mod a .Notie that for all i0 and i1 in r0, aq,
f.i0 � f.i1� t de�nition of f upi0 � c� rq mod a � pi1 � c� rq mod a� t de�nition of modulo u
a z pi0 � c� r � i1 � c� rq� t arithmeti and de�nition of modulo u
i0 mod a � i1 mod a� t 0 ¤ i0, i1   a u
i0 � i1 .That is, f is bijetive. 94



Chapter 4: Replaement-Set GamesIt follows that the ondition (4.15) is equivalent to:x � i : 0 ¤ i   a : b� ppi� c� rq mod aq ¤ b� i� c y .Also, x � i : 0 ¤ i   a : b� ppi � c� rq mod aq ¤ b� i� c y� t arithmeti ux � i : 0 ¤ i   a : b� ppi � c� rq mod a� iq ¤ c y� t �a   pi� c� rq mod a� i   a ux � i : 0 ¤ i   a : b� pppi � c� rq mod a� iq mod aq ¤ c y� t 0 ¤ i   a ux � i : 0 ¤ i   a : b� pppi � c� rq mod a� i mod aq mod aq ¤ c y� t r pi� jq mod a � pi mod a� j mod aq mod a s ux � i : 0 ¤ i   a : b� ppc � rq mod aq ¤ c y� t distribution and unit of � u
b� ppc� rq mod aq ¤ c .We have that the formula (4.14) is a produt of ylotomi polynomials with naturalnumbers as oe�ients if and only if(4.16) b� ppc� rq mod aq ¤ cwhere r satis�es that pb� rq mod a � 1.Of ourse, we need to make sure that the formula (4.14) is a fator of T n � 1 for somepositive natural number n. By applying similar arguments whih are used in the proofof theorem 4.5.1, we get the following ondition:pa� b� bq X pc� aq � H ,that is,ppa� bq ∇ cq z a _ ppa� bq ∇ cq z b ,95



Chapter 4: Replaement-Set Gamesunder whih the formula (4.14) is a fator of T n � 1. Notie thatppa� bq ∇ cq z a� t de�nition of the greatest ommon divisor upa� bq ∇ c � pa� bq ∇ c ∇ a� t pa� bq ∇ a � a upa� bq ∇ c � a ∇ c� t de�nition of the greatest ommon divisor ux � k : 1   k : k z pa� bq ^ k z c � k z a ^ k z c y� t r p ^ q � p ^ r � pp ñ pq � rqq s ux � k : 1   k : k z c ñ pk z pa� bq � k z aq y� t a K b ^ pk z pa� bq � k z aq implies  pk z bq and transitivity ux � k : 1   k : k z c ñ  pk z bq y� t de�nition of the oprime u
c K b .Similarly,ppa� bq ∇ cq z b � c K a .Combining with the ondition (4.16), we get:Theorem 4.5.3. For all positive natural numbers a, b, and c with a K b, the produt
T a�b � 1

T b � 1
� T c � 1

T a � 1
� Γ.pa, bq � Γ.pc, 1q

Γ.pa, 1qis a fator of T n � 1 with natural numbers as oe�ients for some positive naturalnumber n if and only if
b� ppc � rq mod aq ¤ c ^ ppc K aq _ pc K bqqwith r satisfying that pb� rq mod a � 1. 96



Chapter 4: Replaement-Set GamesLet us give an example to �nish this subsetion. Taking a and b to be 5 and 6respetively. We have p6� 1q mod 5 � 1. Thus, we an hoose r to be 1. Notie that
c � 11 satis�es that

6� pp11 � 1q mod 5q ¤ 11 ^ 11 K 6 .By theorem 4.5.3, the following produt
T 5�6 � 1

T 6 � 1
� T 11 � 1

T 5 � 1
� Γ.pa, bq � Γ.pc, 1q

Γ.pa, 1q� Φ30 � Φ15 � Φ10 � Φ11� T 30 � T 25 � T 24 � T 20 � T 18 � T 15 � T 12 � T 10 � T 6 � T 5 � 1is a fator of T 330 � 1 with natural numbers as oe�ients.4.5.2 True Solvable Replaement-SetsReall that a true solvable replaement-set is based on a polynomial βR�Tm with onlyone negative oe�ient whih divides T n � 1 for some positive natural number n. Forinstane, the nulear pennies game pt| � 1, 1 |u, 6q is a true solvable replaement-setgame based on the polynomial T 2 � 1 � T . We are wondering whether this is the onlyinstane of true solvable replaement-set games. The answer to this question is no. Inthis subsetion, we give an in�nite lass of true solvable replaement-sets, although itsonstrution is in an ad-ho way.Lemma 4.5.4. For all distint primes p and q, the produt
Φp�q � Γ.pp� q � p� q, 1qis a fator of T n�1 with only one negative oe�ient. Moreover, n is a positive multipleof the greatest ommon multiple of p� q and p� q � p� q.Proof. By de�nitions of Φ and Γ, the above produt an be rewritten as:xΠ k : k � p� q _ pk z pp� q � p� qq ^ k � 1q : Φk y .97



Chapter 4: Replaement-Set GamesSine p�q is greater than p�q�p�q, we have that p�q is not a divisor of p�q�p�q.Further, there is no repeated ylotomi polynomials in the above produt. Thus, it isa fator of T n� 1 with n positive multiples of the least ommon multiple of p� q and
p� q � p� q.We now show that the above produt has only one negative oe�ient. Notie that

Φp�q � Γ.pp� q � p� q, 1q � T p�q�p�q� t de�nitions of Φ and Γ u
T p�q � 1

T p � 1
� T � 1

T q � 1
� T p�q�p�q � 1

T � 1
� T p�q�p�q� t polynomial arithmeti u

T 2�p�q�p�q � T p�q � T p�q�p�q � 1pT p � 1q � pT q � 1q � T p�q � T p�q�q � T p�q�p � T p�q�p�qpT p � 1q � pT q � 1q� t polynomial arithmeti u
T pp�1q�q�pq�1q�p � T pp�1q�q � T pq�1q�p � 1pT p � 1q � pT q � 1q� t fatorization u
T pq�1q�p � 1

T p � 1
� T pp�1q�q � 1

T q � 1� t de�nition of Γ u
Γ.pq � 1, pq � Γ.pp� 1, qq .That is,

Φp�q � Γ.pp� q � p� q, 1q � T p�q�p�qhas no negative oe�ients. Thus, if the ( p� q � p� q )-th oe�ient of
Γ.pq � 1, pq � Γ.pp� 1, qqis 0, then Φp�q�Γ.pp�q�p�q, 1q has only one negative oe�ient. By the de�nitionof Γ and polynomial multipliation, powers of monomials in Γ.pq� 1, pq �Γ.pp� 1, qqare i� p� j � q for 0 ¤ i   q � 1 and 0 ¤ j   p� 1. But,
i� p� j � q � p� q � p� q� t arithmeti u 98



Chapter 4: Replaement-Set Gamespi� 1q � p� pj � 1q � q � p� q� t p and q are primes upi� 1 � q ^ j � 1 � 0q _ pi� 1 � 0 ^ j � 1 � pq� t 0 ¤ i   q � 1 and 0 ¤ j   p� 1 u
false .That is, the ( p� q� p� q )-th oe�ient of Γ.pq� 1, pq�Γ.pp� 1, qq is indeed 0. Thisompletes the proof.As an example, by taking p and q to be 2 and 5 respetively, we get:

Φ2�5 � Γ.p2� 5� 2� 5, 1q� Φ10 � Γ.p3, 1q� T 10 � 1

T 5 � 1
� T � 1

T 2 � 1
� T 3 � 1

T � 1� pT 5 � 1q � pT 2 � T � 1q
T � 1� T 6 � T 4 � T 3 � T 2 � 1is a fator of T 30�1. Further, pt| �3, �1, 1, 3 |u, 30q is a true solvable replaement-setgame.
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Chapter 5
Conlusion

Lawvere's Remark is the origin of this thesis. So far as we are aware, Blass gave the �rstexplanation of Lawvere's Remark. As a milestone, Fiore and Leinster's result generalizesLawvere's Remark with respet to single reursive type isomorphims.Inspired by Fiore and Leinster's researh, we extend their results to reursive type iso-morphism systems on a �nite set of types. We give a su�ient and neessary onditionunder whih a given reursive type isomorphism system forms a ring. This theory showsthat some isomorphisms between objets an be deided by using polynomial divisionalgorithm on multi-variables.Another interesting aspet of Lawvere's Remark is that it an be illustrated by a one-person board game � the nulear pennies game. Fiore and Leinster's results predit thatthere is a solution to the nulear pennies game. However, how one derives an algorithmto produe suh a solution is not lear. We introdue an in�nite lass of one-personboard games, so-alled replaement-set games, whih has the nulear pennies game asan instane. An algorithm is onstruted to give solutions to these games when they aresolvable.Until now, our theory has built a lear onnetion between algebrai equations on om-100



Chapter 5: Conlusionplex numbers and reursive type isomorphism systems. The signi�ane of this on-netion is that methods in omputational algebra an be introdued as short uts tosolve some problems on reursively de�ned objets whih are in every orner of om-puter siene. Conversely, we an give algorithmi explanations to some alulations inomputational algebra.
5.1 Further Work5.1.1 Primitive Reursions on Indutive TypesAs we have shown in setion 3.5, some interesting isomorphisms an be onstruted whenthe List type and primitive reursions are introdued to the free distributive ategory
CrT s on the indutive type T of binary trees. Generally, we are interested in the al-gebrai struture of the free distributive ategory CrTs on the �nite set T of indutivetypes equipped with the system S of indutive type isomorphisms and primitive reur-sions. It seems that multipliative inverses of non-trivial polynomial indutive types anbe onstruted. This needs more investigation.5.1.2 Constrution of Solvable Replaement-SetsThe set of all solvable replaement-set games an be haraterized by the set of all prod-uts of ylotomi polynomials with at most one negative oe�ient. By using propertiesof ylotomi polynomials, several ad-ho methods are developed to onstrut some sub-sets of the set of all solvable replaement-sets. However, the problem of onstruting theomplete set of all solvable replaement-set games is still open.
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Chapter 5: Conlusion5.1.3 Two-Dimensional Replaement-Set GamesLet us onsider two-dimensional replaement-set games. For instane, the followingsystem of reursive type isomorphisms:$&% S � 1� S2 � T ;

T � 1� S � T 2 .an be onsidered as the two-dimensional replaement-set game:t p1, 0q u Ø t p0, 0q, p2, 1qut p0, 1q u Ø t p0, 0q, p1, 2quwhere terms Sm � T n are haraterized by vetors pm, nq for all natural numbers mand n.Our theory predits that to move an initial heker from square p1, 0q to square p0, 1qby using the above replaement rules is possible. This an be proved by the fatorization:(5.1) x� y � x� px� y2 � y � 1q � y � px2 � y � x� 1q .Also, we an verify it using the following alulation on types:
S � 1� S2 � T� 1� S � T � S3 � T 2� 1� T � S2 � T 2 � S3 � T 2� 2� S � T 2 � S2 � T 2 � S3 � T 2� 2� S � T 2 � S2 � T 2 � S2 � T 3 � S3 � T 2� 2� S2 � T � S2 � T 2 � S2 � T 3� 1� S � S2 � T 2 � S2 � T 3� 1� S � T � S2 � T 3� 1� S � T 2� T . 102



Chapter 5: ConlusionHow to derive an algorithm to give a solution to a solvable two-dimensional replaement-set game ould be a further researh topi. On the other hand, in order to get fatoriza-tions suh as (5.1), we need a polynomial division algorithm on Zrx, ys. Whether thisidea works for general ase needs more investigation.
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Appendix A
One-Dimensional Replaement-SetGames

The algorithm to solve one-dimensional replaement-set games is implemented in Haskellas following:-- Create : 06{02{2010-- Last Modifiation : 03{09{2011-- Author : Wei Chen-- Faility : University of Nottingham-- Desription: One-Dimensional Replaement-Set Gamesimport Prelude hiding (min, max, drop, repeat, pred, seq)-- A. Polynomial Arithmeti with Integer as Coeffiients-- A polynomial is represented by a list of integer pairs.-- For every pair, the first oordinate is the oeffiient-- and the seond oordinate is the power.type Poly � [(Int, Int)℄ 104



Appendix A: One-Dimensional Replaement-Set Games-- polynomial additionplus :: Poly Ñ Poly Ñ Polyplus p [℄ � pplus [℄ q � qplus (x:p) (y:q)| (snd x)   (snd y) � x : plus p (y:q)| (snd x) ¡ (snd y) � y : plus (x:p) q| (snd x) �� (snd y)�if n �� 0 then plus p qelse (n, snd x) : plus p qwhere n � fst x � fst y-- polynomial subtrationminus :: Poly Ñ Poly Ñ Polyminus p q � plus p (zip (map (((-1)�) � fst) q) (map snd q))-- polynomial multipliationmult :: Poly Ñ Poly Ñ Polymult p [℄ � [℄mult [℄ q � [℄mult (x:p) q �plus (time x q) (mult p q)wheretime x [℄ � [℄time x (y:q) � ((fst x) � (fst y), (snd x) � (snd y)) : time x q-- the degree of a polynomialdeg :: Poly Ñ Intdeg � snd � last 105



Appendix A: One-Dimensional Replaement-Set Games-- the odegree of a polynomialod :: Poly Ñ Intod � snd � head-- the oeffiient of the highest term of a polynomialhof :: Poly Ñ Inthof � fst � last-- polynomial divisionquotient :: Poly Ñ Poly Ñ Polyquotient [℄ q � [℄quotient p [℄ � [℄quotient p q �if (deg p)   (deg q)| | (hof p `mod` hof q � 0) then [℄else plus r (quotient (minus p (mult r q)) q)where r � [(hof p `div` hof q, deg p - deg q)℄remainder :: Poly Ñ Poly Ñ Polyremainder p q � minus p (mult (quotient p q) q)-- B. Cylotomi Polynomials-- prime number testprime :: Int Ñ Boolprime 1 � Falseprime n � least_divisor_from 2 �� nwhere { least_divisor_from d �if d �� n | | n `mod` d �� 0 then delse least_divisor_from (d � 1) } 106



Appendix A: One-Dimensional Replaement-Set Games-- the number of prime divisors of a given natural numberprime_divisor :: Int Ñ Intprime_divisor 0 � 0prime_divisor 1 � 0prime_divisor n �if prime n then 1else iter 2 0where { iter d | d �� n � | n `mod` d �� 0 && prime d � iter (d � 1) ( � 1)| otherwise � iter (d � 1)  }-- square-free test-- e.g. 12 is not square-free, sine 2^2 is a fator of 12.square_free :: Int Ñ Boolsquare_free 0 � Truesquare_free 1 � Truesquare_free n �if prime n then Trueelse iter 0 1 2 nwhere { iter pre ur d m| pre �� ur � False| m �� 1 � True| m `mod` d �� 0 && prime d � iter ur d d (m `div` d)| otherwise � iter pre ur (d � 1) m }-- the Möbius Funtionmu :: Int Ñ Intmu n| n �� 1 � 1| square_free n � (-1) ^ (prime_divisor n)| otherwise � 0 107



Appendix A: One-Dimensional Replaement-Set Games-- ylotomi polynomials by using the Möbius Funtionphi :: Int Ñ Polyphi n � iter 1 [(1,0)℄ [(1,0)℄where { iter d p q| d ¡ n � quotient p q| n `mod` d �� 0&& mu (n `div` d) �� 1 � iter (d � 1) (mult p r) q| n `mod` d �� 0&& mu (n `div` d) �� -1 � iter (d � 1) p (mult q r)| otherwise � iter (d � 1) p qwhere r � [(-1,0), (1,d)℄ }-- C. Construting Compound Expansions-- the least element of a listmin :: [Int℄ Ñ Intmin [x℄ � xmin (x:y:p) � if x   y then min (x:p)else min (y:p)-- the greatest element of a listmax :: [Int℄ Ñ Intmax [x℄ � xmax (x:y:p) � if x ¡ y then max (x:p)else max (y:p)-- membership testmember :: Int Ñ [Int℄ Ñ Boolmember x [℄ � Falsemember x (y:p) � if x �� y then True 108



Appendix A: One-Dimensional Replaement-Set Gameselse member x p-- set differenediff :: [Int℄ Ñ [Int℄ Ñ [Int℄diff [℄ b � [℄diff (x:p) b � if member x b then diff p belse x:(diff p b)-- the base set of a multisetset :: [Int℄ Ñ [Int℄set [℄ � [℄set (x:p) � if member x p then set pelse x:(set p)-- Eulidean Algorithm for lists of integersggd :: [Int℄ Ñ Intggd [x℄ � xggd (x:p) � gd x (ggd p)where { gd m n| m �� n � m| m �� 0 � n| n �� 0 � m| m   n � gd m (n - m)| m ¡ n � gd (m - n) n }-- multisets for ompound expansions-- The input is the replaement-set R-- satisfying that min.R   0   max.R.-- The outputs are two multisets A and B.-- satisfying that the sum of A is -1 and the sum of B is 1.109



Appendix A: One-Dimensional Replaement-Set Gameseggd :: [Int℄ Ñ ([Int℄, [Int℄)eggd r � iter (diff (set r) [min r, max r℄)[min r℄ [max r℄ (min r) (max r)where { iter q a b x y| x �� -g && y �� g � (a,b)| -x   y � iter q a (a��b) x (x�y)| -x ¡ y � iter q (a��b) b (x�y) y| q � [℄&& (min q)   0 � iter (diff q [min q℄)[min q℄ b (min q) y| q � [℄&& (max q) ¡ 0 � iter (diff q [max q℄)a [max q℄ x (max q)| q �� [℄ � iter q a b x ywhere g � ggd (map abs (set r)) }-- remove an element from a listdrop :: Int Ñ [Int℄ Ñ [Int℄drop x (y:p) � if x �� y then pelse y:(drop x p)-- serializationserial :: ([Int℄, [Int℄) Ñ [Int℄serial (a,b) � iter [0℄ (drop (min a) a) (drop (max b) b)(min a) (max b)where { iter l a b i j| a �� [℄ && b �� [℄ � l| a � [℄ � iter (l��[i℄) (drop (min a) a) b(i�(min a)) j| b � [℄ � iter (l��[j℄) a (drop (max b) b)i (j�(max b)) }-- the greatest oeffiient of a polynomial110



Appendix A: One-Dimensional Replaement-Set Gamesmax_oef :: Poly Ñ Intmax_oef [x℄ � fst xmax_oef (x:y:p) � if fst x   fst y then max_oef (y:p)else max_oef (x:p)-- repeat a list for n timesrepeat :: [Int℄ Ñ Int Ñ [Int℄repeat l 0 � [℄repeat l 1 � lrepeat l n � l �� (repeat l (n-1))-- onstruting a polynomial from a multiset of powerspol :: [Int℄ Ñ Polypol [℄ � [℄pol (x:p) � plus [(1,x)℄ (pol p)-- the multiset of all powers of a listpow :: Poly Ñ [Int℄pow [℄ � [℄pow (x:p) � (iter (abs (fst x)) [snd x℄) �� (pow p)whereiter 1 p � piter n (x:p) � iter (n-1) (x:(x:p))-- D. Expansion and Contration Sequenes-- The inputs are a replaement-set and a displaement-- whih is supposed to be greater than 0.-- The output is a solution sequene when the game is solvable.seq :: [Int℄ Ñ Int Ñ ([Int℄, [Int℄) 111



Appendix A: One-Dimensional Replaement-Set Gamesseq [℄ m � error "There is no valid seq!\n"seq [x℄ m � if x ¡ 0 && m `mod` x �� 0then ([ i | i � [0..m-1℄, i `mod` x �� 0℄, [℄)else if x   0 && m `mod` x �� 0then ([℄, [ i | i � [1..m℄, i `mod` x �� 0℄)else error "There is no valid seq!\n"seq r m �if min r   0 && max r ¡ 0&& remainder [(-1,0),(1,m)℄ (minus (pol r) [(1,0)℄) �� [℄then iter 0 (serial (eggd r)) (serial (eggd r))else error "There is no valid seq!\n"where {iter k a b| k   m � iter (k�g) (a��h) (h��b)| otherwise �((repeat a ) �� la, reverse ((repeat b ) �� lb))wherel � (serial (eggd r))g � ggd (map abs (set r))h � (map (�(k�g)) l)u � (quotient [(-1,0),(1,m)℄ (minus (pol r) [(1,0)℄))la � pow (filter ((¡0).fst) u)lb � pow (filter (( 0).fst) u) � max_oef u }-- E. Interfaeshow_poly [℄ � "0"show_poly (x:p)| fst x �� 1&& snd x � 0 � "T^" �� show (snd x) �� iter p| fst x �� 1&& snd x �� 0 � "1" �� iter p| fst x �� -1&& snd x � 0 � " - " 112



Appendix A: One-Dimensional Replaement-Set Games�� "T^" �� show (snd x) �� iter p| fst x �� -1&& snd x �� 0 � " - 1" �� iter p| snd x � 0 �show (fst x) �� "T^" �� show (snd x) �� iter p| snd x �� 0 � show (fst x) �� iter pwhereiter [℄ � ""iter (x:p)| fst x �� 1&& snd x � 0 � " � "�� "T^" �� show (snd x) �� iter p| fst x �� 1&& snd x �� 0 � " � 1" �� iter p| fst x �� -1&& snd x � 0 � " - "�� "T^" �� show (snd x) �� iter p| fst x �� -1&& snd x �� 0 � " - 1" �� iter p| fst x ¡ 1&& snd x � 0 � " � " �� show (fst x)�� "T^" �� show (snd x) �� iter p| fst x ¡ 1&& snd x �� 0 � " � " �� show (fst x) �� iter p| fst x   -1&& snd x � 0 � " - " �� show (abs (fst x))�� "T^" �� show (snd x) �� iter p| fst x   -1&& snd x �� 0 � " - "�� show (abs (fst x)) �� iter pout :: [([Int℄,Poly)℄ Ñ IO()out [℄ � putStr ""out [x℄ � putStr (show (fst x))� putStr "\t" � putStrLn (show_poly (snd x))113



Appendix A: One-Dimensional Replaement-Set Gamesout (x:p) � putStr (show (fst x))� putStr "\t" � putStrLn (show_poly (snd x))� (out p)-- F. Main Funtionmove :: [Int℄ Ñ Int Ñ IO()move ms n � out (iter (seq ms n) [([℄, pol [0℄)℄)whereiter ([℄, [℄) ps � reverse psiter ([℄, (x:s)) (p:ps) �iter ([℄, s)(([x℄,(plus (minus (snd p)(pol (map (�x) ms)))(pol [x℄))) : (p : ps))iter ((x:es), s) (p:ps) �iter (es, s)(([x℄,(minus (plus (snd p)(pol (map (�x) ms)))(pol [x℄))) : (p : ps))
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Appendix B
Trees-In-Zero

Following the idea in setion 3.5, a proof of trees-in-zero is given by the following pro-grams implemented in Haskell.-- Create : 21{04{2011-- Last Modifiation : 05{09{2011-- Author : Wei Chen-- Faility : University of Nottingham-- Desription: Trees-In-Zeroimport Prelude hiding (id)-- A. Components-- unit typedata I � Unit deriving (Show, Eq, Ord)-- binary treedata T � Leaf | Node T T deriving (Show, Eq, Ord)
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Appendix B: Trees-In-Zero-- oprodutdata Sum a b � Inl a | Inr b deriving (Show, Eq, Ord)type 1 � T 3 � Sum I (T, (T, T))type 1 � T � T 2 � T 3 � T 4 � T 5 � Sum I(Sum T(Sum (T,T)(Sum (T,(T,T))(Sum (T,(T,(T,T)))(T,(T,(T,(T,T))))))))type T � T 4 � Sum T (T,(T,(T,T)))-- B. Semiring Funtionss5to1_4 :: 1 � T � T 2 � T 3 � T 4 � T 5 Ñ T � T 4s5to1_4 (Inl Unit) � Inl Leafs5to1_4 (Inr (Inl a)) � Inr (a,(Leaf, (Leaf, Leaf)))s5to1_4 (Inr (Inr (Inl (a,b)))) � Inl (Node a b)s5to1_4 (Inr (Inr (Inr (Inl (a,(b,))))))� Inr (a,(Node b , (Leaf, Leaf)))s5to1_4 (Inr (Inr (Inr (Inr (Inl (a,(b,(,d))))))))� Inr (a,(b,(Node  d, Leaf)))s5to1_4 (Inr (Inr (Inr (Inr (Inr (a,(b,(,(d,e)))))))))� Inr (a,(b,(, Node d e)))s5to1_4_i :: 1 � T � T 2 � T 3 � T 4 � T 5 Ñ T � T 4s5to1_4_i (Inl Leaf) � Inl Units5to1_4_i (Inr (a,(Leaf, (Leaf, Leaf)))) � Inr (Inl a)s5to1_4_i (Inl (Node a b)) � Inr (Inr (Inl (a,b)))s5to1_4_i (Inr (a,(Node b , (Leaf, Leaf))))� (Inr (Inr (Inr (Inl (a, (b, ))))))s5to1_4_i (Inr (a,(b,(Node  d, Leaf))))116
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