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Abstract

When �uid droplets coalesce, the �ow is initially controlled by a balance between surface

tension and viscosity. For low viscosity �uids such as water, the viscous lengthscale is

quickly reached, yielding a new balance between surface tension and inertia. Numerical

and asymptotic calculations have shown that there is no simply connected solution for

the coalescence of inviscid �uid drops surrounded by a void, as large amplitude capillary

waves cause the free surface to pinch o�. We analyse in detail a linearised version of this

free boundary problem.

For zero density surrounding �uid, we �nd asymptotic solutions to the leading order

linear problem for small and large contact point displacement. In both cases, this requires

the solution of a mixed type boundary value problem via complex variable methods. For

the large displacement solution, we match this to a WKB analysis for capillary waves

away from the contact point. �e composite solution shows that the interface position

becomes self intersecting for su�ciently large contact point displacement.

We identify a distinguished density ratio for which �ows in the coalescing drops and

surrounding �uid are equally important in determining the interface shape. We �nd a

large displacement solution to the leading order two-�uid problem with a multiple-scales

analysis, using a spectral method to solve the leading order periodic oscillator problem

for capillary waves. �is is matched to a single-parameter inner problem, which we

solve numerically to obtain the correct boundary conditions for the secularity equations.

We �nd that the composite solution for the two-�uid problem is simply connected for

arbitrarily large contact-point displacement, and so zero density surrounding �uid is a

singular limit.
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Chapter 1

Introduction

1.1 Coalescence

Coalescence and pinch-o� problems represent a class of �uid �ows where separate bodies

of �uid merge or split. At the moment of coalescence, the bodies touch only at a single

point. In the earliest stages of coalescence, surface tension forces due to the highly curved

meniscus between the two bodies are balanced by viscosity. However, for low viscosity

�uids, viscous forces soon become negligible compared to the inertia of this rapid recoiling

�ow, and so examining the surface tension driven coalescence of an inviscid �uid has

physical relevance. Near the contact point, the far �eld geometry is perceived as a wedge

or cone, and the �ow can be self similar.

Experiments and time dependent simulations of the coalescence of �uid droplets show

qualitatively di�erent behaviour depending on the density and viscosity ratios between

the �uid drop and any surrounding �uid. In particular, there is no simply connected time

dependent solution for the inviscid coalescence of drops surrounded by a vacuum, in

contrast to the converse con�guration where two bubbles coalesce surrounded by a much

denser �uid, for which the solution is simply connected.

In agreement with the non-existence of simply connected time dependent solutions

for inviscid coalescence, it can be shown that no self similar solutions exist for dense

drops surrounded by a vacuum, though they do exist for bubbles merging. However,

for an intermediate density ratio, as perhaps for water drops coalescing surrounded by

air, the surrounding �uid may prevent the excited capillary waves from self intersecting

or pinching o�, so that a valid similarity solution and corresponding time dependent

solution may be obtained.

1



Chapter 1: Introduction

�e two main problems investigated in this thesis consider self similar solutions to

recoil of ‘very fat’ two dimensional �uid wedges, which allows certain approximations

to be made to the self similar equations. Under the contact angle conditions imposed in

these two problems, the �ow domain for the coalescing �uid can be approximated by a

half plane, with an e�ectively one dimensional �ow driven in the slender gap between

the coalescing drops. �ese two simpli�cations make the �ow analysis signi�cantly more

tractable, and we derive various asymptotic solutions to the resulting system, for the case

of ‘large’ and ‘small’ free surface displacement within appropriate limits. �e two problems

considered correspond to recoil of an inviscid �uid surrounded by a vacuum, and by a

low density �uid. For these linearised problems, we �nd that zero density surrounding

�uid is a singular limit.

1.2 Literature review

Coalescence and pinch o� problems have been the subject of investigation in some form

since the 19th century [�omson andNewall, 1885]. As well as their intrinsicmathematical

appeal, such processes have important applications to multiphase �ow, micro�uidics,

printing processes, control of emulsions, sintering and even the size distribution of

raindrops [Aarts et al., 2005].

�e coalescence of two spherical drops into a single drop of the same total volume

reduces the total surface energy of the system, and so should be energetically favourable.

However, drops can sometimes spend considerable time in near contact before coalescence

is initiated [Yao et al., 2005], even for periods of up to several hours. �e phenomenon of

non-coalescence is a �eld of study in its own right. For the purposes of this discussion,

we will assume that coalescence has already been initiated by the formation of a meniscus

between the two droplets. Possible mechanisms for the formation of such a meniscus

include molecular forces, surface di�usion, and intrinsic dynamic roughness.

Once a neck ormeniscus has formed between the bodies, the evolution of the interface

shape and �ow within the drops is determined by viscous, inertial and surface tension

forces. At very early times, the dominant balance is always between viscosity and surface

2



Chapter 1: Introduction

µ, ρ2µ, ρ2

µ~k, ρ1
rm

∆

R

Figure 1.1: Coalescence of two identical spherical �uid drops. �e drops both have viscosity µ,
density ρ2 = ρ and initial radius R. �e external �uid has viscosity µ/k and density

ρ1. A meniscus forms between the drops of radius rm(t) and width ∆(t). A�er Eggers
et al. [1999].

tension. �e Reynolds number of the �ow can be estimated as

Re = γrm
ρν2

, (1.1)

where γ is the coe�cient of surface tension, ρ is the �uid density and ν = µ/ρ is the

kinematic viscosity of the �uid. �e �ow velocity is proportional to the capillary speed,

and the �ow lengthscale is based on themeniscus radius rm(t) (�gure 1.1). �us regardless

of the physical properties of the �uid, the Reynolds number will be small during the

earliest stages of coalescence. �e �rst regime a�er initial meniscus formation is therefore

Stokes �ow, and the meniscus radius rm is proportional to t. However, once the radius of

the meniscus reaches the viscous lengthscale, given by

lv = ρν2

γ
, (1.2)

then Re = O(1) and inertia can no longer be neglected. For low viscosity �uids with

strong surface tension, the viscous lengthscale can be much smaller than typical drop

sizes, with lv ≈ 10−9 m for water. If rm is much greater than the viscous lengthscale, the

Reynolds number is very large, and so inertia dominates viscosity in resisting the recoil

of the drop. We therefore �nd that inviscid surface tension driven coalescence is relevant

to the later stages of water droplet coalescence.

�e subsequent sections of this literature review describe a variety of analytical, ex-

perimental and numerical investigations of droplet coalescence, for viscous and inviscid

�uid, with an emphasis on how results for the interface shape and speed vary with the

density and viscosity ratios between the drop and surrounding �uid.

3



Chapter 1: Introduction

In section 1.2.1, we summarise theoretical and numerical results for the coalescence of

spherical droplets, for �ows with surface tension and viscosity only [Hopper, 1990, Eggers

et al., 1999] and for �ows with surface tension and inertia only [Duchemin et al., 2003].

We discuss experimental observations of coalescence in section 1.2.2.

If the meniscus radius rm is much smaller than the drop radius R, the interface shape

is related to that for a recoiling semi in�nite �uid wedge due to a sudden change of

wedge angle (�gure 1.7). �is recoiling wedge has no imposed lengthscales, and on

dimensional grounds, solutions must be self similar for �ows with surface tension and

viscosity only [Miksis and Vanden-Broeck, 1999], and for �ows with surface tension and

inertia only [Keller andMiksis, 1983]. In section 1.2.3, we discuss numerical and analytical

investigations of the self similar equations for inviscid wedge recoil, for wedge angles

appropriate for the coalescence of droplets and bubbles. In section 1.2.4, we discuss self

similar and time dependent solutions for the surface tension driven recoil of a wedge of

viscous �uid.

Self similar �ow in wedge and cone based geometries also has applications to the

pinch-o� of �uid droplets, which we discuss in section 1.2.5, and as an inviscid model of

contact line motion, which we discuss in section 1.2.6.

1.2.1 �eoretical analysis of coalescence

Hopper [1990] used complex variable techniques to obtain an exact solution for the zero

Reynolds number coalescence of cylinders, for viscous drops with an inviscid or absent

surrounding �uid. �e exact solution shows that the interface evolves smoothly away

from its singular initial condition, with no accumulation of �uid at the meniscus or waves

on the free surface. A selection of interface positions for this solution are shown in �gure

1.2(a). �e meniscus radius for this solution is O(t log t) for early times.

Eggers et al. [1999] conducted a numerical and asymptotic investigation of the time

dependent evolution of spherical drops coalescing in Stokes �ow, in the presence of a

surrounding �uid with comparable viscosity. In their analysis, molecular forces were

assumed to be responsible for the formation of a meniscus between the drops, which

was taken as an initial condition. �e initial focus of their study was the coalescence of

three-dimensional spheres, but they showed that the meniscus width ∆ is much smaller
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(a) Exact result from Hopper [1990] for zero vis-

cosity surrounding �uid.
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(b) Numerical result from Eggers et al. for equal

viscosity surrounding �uid.

Figure 1.2: From Eggers et al. [1999]. Interface shapes for coalescence of two cylinders in Stokes

�ow. For both plots, interface pro�les are shown for rm = 10−3, 10−2.5, 10−2, 10−1.5.

Note the di�erent scales in the x and y directions.

than the meniscus radius rm, so that the two-dimensional curvature is much larger than

that arising from the rotational symmetry of the surface, and hence coalescence of spheres

and cylinders are equivalent at leading order.

�e numerical solutions were concentrated on the case where the two �uids have equal

dynamic viscosity, as in this case the boundary integral equation is signi�cantly simpler.

Numerically calculated interface positions for the equal viscosity case are shown in �gure

1.2(b). �eir analysis showed that for this two-�uid problem, the capillary pressure at the

meniscus is insu�cient to force the surrounding �uid out of the narrow gap between the

drops, so that a widening bubble accumulates at the meniscus, connected to the exterior

�uid by a long neck region, shown here in �gure 1.3.

Eggers et al. used scaling methods to examine the structure of this bubble and neck

region. �ey argued that near the meniscus, the interfaces of the two drops are nearly

parallel. �e leading order force at the meniscus is surface tension on each interface

pulling radially outwards, forming a ring force with constant nondimensional strength

‘2’, applied at a radius rm and spread over a distance ∆. �e leading order velocity �eld is

then obtained by integrating over the force distribution. �e integral is dominated by the

region ∆≪ ∣x − x′∣ ≪ rm, and hence

u(rm) = ṙm(t)er = − 1

2π
log( ∆

rm
) er . (1.3)
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x1=(0, y1)

Figure 1.3: From Eggers et al. [1999]. A sketch of the structure of the local solution close to the

meniscus, which resembles a bubble connected to a thin neck. �e radius of the bubble

is rb and the minimum radius of the neck is rn. �e distance from the origin to the

front of the bubble is rm, which is not drawn to scale here.

If the lengthscale ∆ is known, then this equation can be integrated to give the meniscus

radius rm(t).
If a �nite proportion of the �uid initially occupying the slender gap between the

spherical drops is accumulated at the meniscus as the meniscus moves outwards, we can

determine the toroidal bubble height ∆ as a function of rm. �e area of the viscous �uid

contained between the two spheres in r < rm is O(r3m). Eggers et al. proposed that a �nite

proportion of this �uid forms a bubble of radius rb, as shown in �gure 1.3; by considering

the area of this bubble they found that rb = O(r3/2m ). �e bubble has approximately

constant pressure, and gives an annulus height ∆ ≈ rb = O(r3/2m ). For su�ciently small

time, Eggers et al. found from (1.3) that

rm(t) ∼ − 1

4π
t log t as t → 0. (1.4)

�e system is non-dimensionalised on the viscosity and radius of the drop, with capillary

speeds calculated from the two-�uid surface tension. �e surrounding �uid has viscosity

µ/k.
�e leading order result (1.4) is independent of the viscosity ratio k, provided that k

is �nite. �is is because the force is transmitted by the spherical drops, rather than the

thin layer of surrounding �uid. However, in the case k = ∞, where surrounding �uid is

inviscid, Hopper’s solution gives

rm(t) ∼ − 1
π
t log t as t → 0. (1.5)

�is meniscus velocity is four times faster than that predicted by Eggers et al. [1999] if a
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viscous outer �uid is present. Comparing (1.5) to (1.3), we note that the meniscus width

∆ should scale as O(r3m), which is much smaller than both the gap width w = O(r2m) and
the width rb = O(r3/2m ) of the toroidal bubble, which forms only when the surrounding

�uid is viscous.

It is important to note that the ring-force scaling analysis only predicts the leading

order meniscus position (1.4). It does not predict the coe�cient of theO(t) term, which is

expected to vary with the viscosity ratio. To date, no experimental studies have observed

logarithmic behaviour for small time.

When the radius of the meniscus has grown beyond the viscous lengthscale given by

(1.2), a new balance occurs between surface tension and inertia, with viscous forces now

negligible. We assume that the initial velocity pro�le for the inviscid regime is irrotational,

so we now solve for a velocity potential, with u = ∇ϕ. �e Bernoulli equation then gives

ϕt + 1

2
∣∇ϕ∣2 = γκ

ρ
. (1.6)

By assuming that velocities are of order rm/t, and that the height of the meniscus is

proportional to the original gap height w = r2m/R, Eggers et al. [1999] proposed

rm(t) ∝ (γR
ρ
)1/4 t1/2, (1.7)

as the scaling for meniscus evolution determined by surface tension and inertia.

Duchemin et al. [2003] investigated the inviscid coalescence problem for spherical

drops surrounded by a vacuum. Starting from an imposed initial meniscus shape, their

numerical solutions show that capillary waves are excited on the free surface. �e ampli-

tude of the capillary waves grows with time, until they take up the width of the meniscus

and pinch o�. �us there is no simply connected solution for inviscid coalescence of

spheres with a zero density external �uid.

In order to allow the numerical solutions of Duchemin et al. to proceed beyond

the pinch o� of the toroidal bubble, the bubble was extracted from the pro�le, and the

simulation restarted with initial conditions given by the interface position at pinch o�

and zero velocity everywhere. �e numerical solutions show that the velocity �eld quickly

resumes its value from before the pinch o�. �e time dependent solution consists of a

sequence of collapses of the interface, with the contact point moving a short distance
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0.002

0

–0.002

Figure 1.4: From Duchemin et al. [2003]. A sequence of successive entrapment of voids during the

coalescence for an initial liquid bridge radius of rm = 0.008. A�er every reconnection,
the void is extracted from the pro�le and a new computation begins, with a null initial

velocity �eld.

outwards between each event. A sequence of pinching events is shown in �gure 1.4. By

averaging over these pinching events, they recovered the scaling (1.7) and determined the

prefactor numerically to be 1.62.

1.2.2 Experimental Results

Experimental studies of droplet coalescence must contend with a number of di�culties.

�e most obvious is that the coalescence process is typically very fast, and has interesting

features on a very small scale. �e development of cameras with high frame-rate has

enabled more detailed study of early-time phenomena for low viscosity �uids (Anilkumar

et al. [1991], Menchaca-Rocha et al. [2001], Biance et al. [2004], Wu et al. [2004], Yao

et al. [2005],�oroddsen et al. [2005], Aarts et al. [2005] and�oroddsen et al. [2007]).

Another approach was taken by Aarts et al. [2005] and Yao et al. [2005], who used high

viscosity silicon oil, or polymer-colloid mixtures with ultralow surface tension, in order

to signi�cantly increase the viscous lengthscale given by

lv = ρν2

γ
. (1.8)

As a result, Aarts et al. and Yao et al. were able to obtain viscous lengthscales of up to a

few centimetres, in contrast to 10 nm for water.

�eoretical analyses of coalescence problems typically assume droplets are initially

spherical, at rest, and free from the in�uence of gravity. However, each of these as-

sumptions poses di�culties for the experimental setup. A common experimental setup

(Menchaca-Rocha et al. [2001], Yao et al. [2005], Biance et al. [2004]) uses planar surfaces

to hold almost-spherical drops or spherical caps in place. Another surface or a second

drop can then be slowly manoeuvred into position.
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In order to make valid comparisons with the various scaling laws for small time, it

is important to accurately identify the time at which coalescence begins. �e simplest

method is to �t images of the bridge radius to some assumed pro�le, and extrapolate

backwards to identify the ‘moment’ of coalescence. An alternative approach was taken by

Menchaca-Rocha et al. [2001] who investigated coalescence of drops of mercury, gently

pushed together on a planar surface. A small current was passed through the pushing

devices, so that the initiation of coalescence completed a low-current circuit. �e current

then triggered the photographic sequence. One of the disadvantages of using mercury

is that, like water, the viscous lengthscale lv is very small, and so the viscous-dominated

stages of coalescence are too quick and too small to resolve well. However, Menchaca-

Rocha et al. [2001] were able to obtain useful images of the coalescence process on the scale

of the drop, shown in �gure 1.5. �ese show considerable deformations from spherical

shapes.

For low viscosity �uids, experimental results for drop coalescence (Menchaca-Rocha

et al. [2001], Wu et al. [2004], Aarts et al. [2005]) agree with the t1/2 scalings for meniscus

radius predicted by the inviscid coalescence analysis of Duchemin et al. [2003], which

found

rm ∼ (γR0

ρ
)1/4√t. (1.9)

By averaging over a sequence of pinching events, Duchemin et al. found that the pref-

actor for this relationship should be 1.62. �e experimental investigations found lower

prefactors, in the range 1.0–1.2, with some variation for di�erent �uids. �e coalescence

experiments did not show the free surface pinching o�, although capillary waves were

observed on the free surface. �oroddsen et al. [2005] investigated the coalescence of

bubbles. �eir analysis was consistent with the scaling relationship (1.9) for r/R0 < 0.45;
they calculated a prefactor of 1.39 which is higher than those observed experimentally

for coalescing drops.

Experimental observations of coalescence in the viscous-dominated regime [Aarts

et al., 2005, Yao et al., 2005] typically involve high viscosity, low surface tension �uids.

�ese studies do �nd support for the scaling

rm ∼ γ

µ
t, (1.10)
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Figure 1.5: From Menchaca-Rocha et al. [2001]. Experimentally observed surface shape evolution

of two 1.0-g mercury drops, using the apparatus shown on the le�. In the photographs,

time runs from le� to right, and from top to bottom. �e time lapsed between images

is ∆t = 3.5 ms. �e sequence stops near the maximum horizontal stretching.

with prefactors of 0.55 for silicon oil and 0.3–0.4 for various colloid-polymer mixtures.

�e experimental investigations have not found evidence of the logarithmic behaviour

predicted by the calculations of Hopper [1990] and Eggers et al. [1999] and so the experi-

mentally calculated prefactors cannot be directly compared to the theoretical predictions.

�e inviscid drop coalescence simulations of Duchemin et al. [2003] predict repeated

pinch o� processes, leading to the formation of zero-density toroidal bubbles. Toroidal

bubbles have not yet been observed in the droplet coalescence. However, isolated bubbles

of the surrounding �uid have been observed in some experiments, such as the investiga-

tions by Aarts and Lekkerkerker [2008] of coalescence in colloid-polymer mixtures with

ultralow surface tension.

1.2.3 Similarity solutions for inviscid coalescence

Self similar scalings for �ows with surface tension and inertia alone were �rst identi-

�ed by Keller and Miksis [1983]. �ey considered surface tension driven �ow in an

initially stationary semi in�nite wedge of �uid, so that there are no geometrically imposed

lengthscales. At time t = 0 the boundary conditions at the tip of the wedge are altered

discontinuously and the �uid is released from rest. �e only dimensional quantities in the

problem are the �uid density ρ, coe�cient of surface tension γ and time since release t.

On dimensional grounds, only one lengthscale can be constructed from these quantities,

giving a self similar solution where all lengths are proportional to

Linviscid ≡ (γ
ρ
)1/3 t2/3. (1.11)
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Figure 1.6: �e wedge geometries proposed by Keller and Miksis [1983]. (a) Inviscid �uid with

density ρ1 initially lies at rest within a wedge of semi-angle α and �uid of density ρ2
lies outside this wedge. When t > 0 the interface is allowed to recoil under the action

of surface tension. �e �ow is symmetric about the x-axis and the tip of the interface is
perpendicular to the x-axis. �is con�guration describes the merging and splitting of

�uid wedges. (b) Inviscid �uid occupies the region y > 0, with a rigid wall along y = 0.
Initially the two �uids are at rest, with �uid 1 �lling a wedge of angle α. When t = 0
the contact angle at the tip of the wedge is suddenly changed to β. �is con�guration

corresponds to an inviscid model of contact line motion, discussed in section 1.2.6.

Miksis and Vanden-Broeck [1999] considered Stokes �ow in an initially wedge shaped

domain. Here inertia is negligible and the lengthscale must be constructed from the

dynamic viscosity µ and coe�cient of surface tension γ. It is again necessary to make use

of time since release t in order to construct a lengthscale, which is given by

LStokes ≡ γ

µ
t. (1.12)

�e similarity solutions implied by (1.11) and (1.12) simplify the corresponding free

boundary problems signi�cantly by removing the time dependence. �e problem must

be solved in self similar variables at one instant only and then the solution is known for

all time.

Keller and Miksis [1983] suggested two applications for self similar �ow in wedges

and cones. �e �rst is to �uid pinch o� or coalescence. At the moment of pinch o� or

coalescence, two �uid bodies are in contact only at a single point. Su�ciently near this

contact point, the �ow is independent of the drop-size geometry, with the macroscale con-

tributing only angles to the �ow near the contact point. Just a�er pinch o� or coalescence,

the �ow interfaces must avoid cusps or other curvature singularities. Instead, the contact

angles become β = π/2, as shown in �gure 1.6(a). �is is consistent with photographic

studies of drop pinch o� by Peregrine et al. [1990], which show that just before pinch o�,

the local shape of the drop resembles a cone. A sequence of photographs of drop pinch
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Fluid 1

Fluid 1
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After:

є

π/2 = λє

Fluid 2

Fluid 2

Figure 1.7: Symmetric recoil has λє = π/2, with the limit є → 0 being the coalescence of spherical

drops. In chapters 3 and 4 we consider solutions for 1≪ λ≪ є−1 so that the domain

for �uid 2 can be approximated by a half plane. �roughout this thesis we refer to this

con�guration, in which �uid 1 surrounds drops of �uid 2 which coalesce.

o� is shown here in �gure 1.10. Similarly, �ow from initially wedge-shaped conditions is

relevant to the breaking apart of sheets of �uid.

�e second proposed application is as an inviscid model of contact line motion,

illustrated in �gure 1.6(b), with the axis of symmetry shown by the dash-dotted line in

�gure 1.6(b) becoming a rigid wall. A wedge of �uid is initially in contact with the rigid

wall, with the wedge angle equal to the contact angle, and the system in equilibrium. A

second inviscid �uid, or a void, occupies the complementary region between the �rst

�uid and the wall. When time t = 0, the contact angle at the tip of the wedge is suddenly

changed and the �uid recoils. For this moving contact line problem, the initial wedge

angle α and the subsequent contact angle β may lie anywhere in the range (0, π).
�e coalescence of spherical drops corresponds to a restricted range of initial wedge

angle. As sketched in �gure 1.7, we �nd that the appropriate angles for recoil due to

coalescence of spherical drops are α = є, β = π/2, with the �uid in the drop (�uid 2)

occupying the fat wedge with initial angle π−є, and the surrounding �uid (�uid 1) initially
occupying the complementary wedge with angle є. �e limit є → 0 corresponds tomoving

towards the initial rupture location, with є = O(rm/R). �e evolution of �uid bodies

towards and a�er pinch o� involve a di�erent selection of wedge angles, and conical
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(a) From Billingham [2006]. Self similar recoil of a slender wedge of inviscid �uid. �e initial wedge angle is є = 2○,
and β = 90○. �e solid line shows the numerical solution to the free-boundary problem. �e dashed line shows the

asymptotic solution for �ow inside a slender wedge for є≪ 1 and λє = O(1).
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(b) From Billingham and King [2005]. Self similar recoil of inviscid �uid outside a slender void, with β = 90○ and α = 4○.
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(c) From Billingham and King [2005]. Self similar recoil of inviscid �uid outside a slender void, with β = 90○ and

α = 2.87○. �ere is no solution for α < 2.87○ for �ow outside a slender wedge.

Figure 1.8: Interface positions for inviscid recoil inside and outside a slender wedge.

curvature can become signi�cant.

For general angles α and β, Keller & Miksis showed that the two-dimensional system

for the recoil of a �uid wedge could be written as a nonlinear integro-di�erential equation

involving only properties of the free surface. �is integral equation system is then discre-

tised and solved numerically. Keller and Miksis noted the presence of capillary waves on

the interface; they use a linearised analysis to calculate these waves, and showed that the

waves decay in amplitude and grow in frequency as they propagate away from the contact

point. Capillary waves have been observed experimentally for coalescence and pinch-o�

problems. �ey are predicted by inviscid surface tension driven models, but do not arise

in Stokes �ow [Miksis and Vanden-Broeck, 1999].

One of the �rst analytical investigations of the system posed by Keller & Miksis came

from Lawrie [1990], who solved the linearised system that arises when ∣α − β∣ ≪ 1. �e
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Figure 1.9: From Billingham and King [2005]. Interface position for self similar inviscid �ow

outside a slender void for a range of α ≥ 5○, β = π/2. As α decreases, the capillary wave

amplitude increases, and at α = 2.87○, the two sides of the interface make contact.

domain of solution here is a wedge of angle α, and an analytic solution is available by

means of Mellin transforms (see also Lawrie and King [1994]). As is common using

such methods, the resulting solution was explicit only for rational wedge angles of the

form α = pπ/2q where p and q have no common factors and p is odd. However, the

linearisation assumption fails near the contact point, and so other approximations must

be used; Lawrie assumed that the free surface takes the shape of a circular arc in this

region.

King [1991] considered the recoil of a slender �uid wedge due to a small change in

contact angle, and showed that in contrast to Lawrie’s analysis, the leading order system

is nonlinear. He examined the case where α = є, β = λє and λ = O(1) as є → 0 so that
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the �uid always occupies a slender domain. He showed that as є → 0, the �ow near the

wedge tip is predominantly unidirectional, and was able to reduce the system to a pair of

coupled nonlinear ODEs for the velocity potential along the free surface and the linearised

interface displacement. At larger distances, the wedge is no longer narrow, and so there is

a weakly two dimensional �ow in the far �eld. Another di�erence with Lawrie’s analysis

is that King’s equations allow the contact point to move freely along the rigid wall.

Billingham [2006] extended the analysis of King’s nonlinear ODE system by using

Kuzmak’s method to �nd an asymptotic solution for 1≪ λ≪ є−1. �e solution takes the

form of a rapid oscillation with slowly varying amplitude and phase. Kuzmak’s method is a

version of the method of multiple scales which allows for the capillary wave period to vary

with amplitude. Billingham derived and solved equations for the leading order periodic

oscillator and secularity equations for the slow variation of oscillator parameters. �e

nonlinear periodic oscillator equations for this analysis have an exact solution in terms of

elliptic integrals. �e secularity equations can then be written in terms of complete elliptic

integrals, and the boundary value problem for the secularity equation system solved

numerically to obtain the correct solution. �is asymptotic solution is simply connected

for λ → ∞, although the derivation of the ODE system requires 1 ≪ λ ≪ є−1. �is

asymptotic calculation forms the basis for the two-�uid asymptotic solution discussed

here in chapter 4.

Billingham also considered the recoil of a slender wedge for O(1) contact angles. He
found valid solutions for all λ, є with λє < 90○ and obtained an asymptotic solution for

є → 0. �e asymptotic solution again consists of a sequence of modulated oscillations;

however the underlying nonlinear oscillator becomes a nonlinear free boundary problem

which has an exact solution. �e numerical solution for β = π/2 is shown in �gure 1.8(a)

for є = 2○ and resembles a sequence of circular ‘beads’ connected by narrow necks. Decent

and King [2008] considered the related problem of recoil of a slender cone of inviscid

�uid for β = π/2, which is an inviscid model of the retraction of the ‘liquid bridge’ just

a�er drop pinch o� (�gure 1.10). �e asymptotic solution found by Decent and King also

resembles a string of spherical beads connected by thin neck regions, which are matched

to the original cone shape in the far �eld.

Keller et al. [2000, 2002] discussed various con�gurations of the inviscid self similar

15



Chapter 1: Introduction

problem in relation to breaking and merging of �uid bodies, and coalescence with solid

surfaces. �ey found numerical solutions to the nonlinear free boundary problem and

explored the relationship between contact-point displacement and the angles governing

the problem. �ey showed that for the coalescence of fat two-dimensional �uid wedges,

the free surface pinches o� once the wedge semi-angle reaches 87.5○.

Motivated by the prediction by Keller et al. [2002] of a self-intersecting free surface,

Billingham and King [2005] calculated interface positions for self similar inviscid �ow

outside a slender wedge, with α = є, β = π/2 and ρ1 = 0 in �gure 1.6(b). Some typical

interface positions calculated by Billingham and King [2005] are shown in �gure 1.9. We

note that the problems considered by Billingham and King and by Keller et al. [2002]

are not completely equivalent; the �ow analysed by Keller et al. has two distinct free

surfaces, while that examined by Billingham and King has only one. �e signi�cance of

the re�ected interface diminishes as the contact point position xc increases. We further

discuss the relationship between these two problems in chapter 5.

Billingham and King showed that for inviscid recoil outside a single slender wedge,

there is no solution for є < 2.87○, as the amplitude of the capillary waves causes the

interface to self-intersect (�gures 1.8(a), 1.8(b)). �e shape taken by the interface for small

є resembles the interface obtained by Duchemin et al. [2003] for successive reconnections,

shown here in �gure 1.4. For an external �uid with non-zero density, mass conservation

is violated for self similar solutions if the interface pinches o�. However, Billingham

and King showed that the presence of an external �uid with non-zero density slightly

decreases the range of є for which a solution exists, as the narrowing interface drives a fast

�ow towards the contact point in the slender wedge which sucks the sides of the interface

together.

1.2.4 Viscous �ow in wedges

Self similar solutions are also available for viscous coalescence [Miksis and Vanden-

Broeck, 1999]. In this case the lengthscales grow as O(t). Miksis and Vanden-Broeck

found suitable solutions for coalescence with �nite density ratio between drops and

surrounding �uid, but could not obtain a self similar solution for the coalescence of

bubbles surrounded by a viscous �uid. Billingham [2005] investigated the recoil of an

16



Chapter 1: Introduction

isolated �uid wedge in more detail, and showed that the solution is not self similar, but

consists of an inner region with a balance between viscosity and surface tension, and an

outer region where viscosity and inertia balance, and surface tension is negligible. �is

non-self similar solution has wedge tip position O(t log t), which is consistent with the

time dependent analyses from Hopper [1990] and Eggers et al. [1999], in contrast to the

self similar Stokes �ow solutions which by construction have rm = O(t).
Billingham [1999] considered the recoil of fat wedges and cones under the action of

surface tension, viscosity and inertia, with wedge angles α = π/2 − є and β = π/2. If the
�uid is viscous, there is no longer a self similar solution. Billingham showed that viscosity

reduces the initial velocity singularity from O(t−1/3) to O(log(1/t)). At long times, the

solution tends towards the inviscid similarity solution found by Keller and Miksis so long

as r ≪ t3/4. Beyond this distance viscosity damps the high frequency capillary waves –

this would be expected as capillary wave curvature grows unbounded for the inviscid

solution. Billingham found a very similar asymptotic structure in the case of a recoiling

fat wedge and a recoiling fat cone. However, the surface deformations are much smaller

in the case of the cone, partly due to the geometrical spreading factor, and partly due to

the non-zero curvature of the cone itself.

1.2.5 Pinch-o� problems

Self similar �ow in wedges and cones also has applications to pinch o� problems. Various

experimental studies have shown that the pinch o� of a droplet from a dripping tap, for

example, occurs by formation of a thin liquid bridge connected to the main body of the

droplet [Peregrine et al., 1990]. At the moment of pinch o�, the liquid bridge and the main

droplet body touch at a single point, and form a double-cone structure, with di�erent

cone angles for the bridge and the drop. �e curvature at the tip of each cone is singular,

and so the each �uid cone recoils a�er pinch o�. A sequence of images of a dripping tap

is shown in �gure 1.10. �is shows the formation and recoil of the liquid bridge.

Using similar arguments to that for coalescence, we �nd that at times very close to

pinch o�, surface tension and viscous forces form the dominant balance. However, further

from the time of pinch-o�, whether earlier or later, the inviscid surface tension driven

�ow is useful for �ow of low viscosity �uids.
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Figure 1.10: Neck formation and pinch o� from a dripping tap. �is image sequence is �lmed at

850 frames per second, and the width of each image is approximately 8 mm. Photo:

C.G. Johnson.

Day et al. [1998] conducted a numerical analysis which showed that deformed droplets

of inviscid �uid could tend towards a singular double cone structure under the action

of surface tension. Starting from drops shaped like a dumbbell, they calculated the time

dependent evolution of drops under the action of surface tension and inertia. For those

drops which led to �nite time singularities, the interface tended towards a self-similar

double-cone shape, with lengths proportional to (t− t∗)2/3, where t∗ is the pinch-o� time.

�is time dependence is also the self similar scaling for surface tension driven, inviscid

�ow.

Day et al. found that the cone angles at pinch-o� were largely independent of the

initial con�guration of the drop. For the case of a single �uid pinching in a vacuum,

the cone angles tended towards 18.1○ and 112.8○. An earlier analysis by Chen and Steen

[1997] showed computationally that an axisymmetric soap-�lm sleeve tends towards a

double cone structure with angles 12○ and 127○. Leppinen and Lister [2003] investigated

the variation of evolution towards pinch-o� for di�erent density ratios between the drop

and the surrounding �uid and showed that the cone angles vary with the density ratio. In

all cases, the two cone angles di�er, with liquid bridge corresponding to a slender cone,

and the pinching drop corresponding to a much fatter cone. �e �ow in the slender cone
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can be predominantly one-dimensional, but �ow in the fatter cone will have comparable

axial and radial velocities and so requires an analysis in two spatial dimensions. �e recoil

of the slender liquid bridge has been examined in more detail by Decent and King [2001,

2008], Schulkes [1994], Keller et al. [1995].

A constant-angle cone has non-zero curvature, and so a static cone of �uid cannot be

in equilibrium, unlike a two-dimensional wedge of �uid. �erefore, self similar solutions

starting from a conical interface must have a non trivial initial velocity. Simulations of

�ow towards pinch-o� can calculate the far �eld �ow as part of the solution. Solutions for

�ow a�er pinch-o� should take a suitable far �eld velocity potential as an initial condition.

Sierou and Lister [2004] examined �ow a�er pinch-o� from these double cone shape

structures. �ey took as initial conditions the cone angles and velocity pro�les calculated

by Leppinen and Lister [2003]. �e �ow is again self similar, with all lengths proportional

to t2/3. �ey showed that the self similar recoiling interface position depends strongly on

the initial velocity pro�le. Sierou and Lister found good agreement between recoil of the

narrower cones and the asymptotic solution for slender cones found by Decent and King

[2001].

1.2.6 Moving contact line models

Moving contact lines in viscous �ow have long been a contentious issue. At a contact line

between two �uids and a solid, applying the no slip boundary condition along the solid

surface together with the full Navier–Stokes equations implies that an in�nite force is

required to move the contact line [Huh and Scriven, 1971]. A number of theories have

been proposed to remove this apparent paradox, but none have been universally accepted.

It is well known that the introduction of viscosity is a singular perturbation, and so an

inviscid model of contact line motion cannot fully describe the motion of the �uid close

to the contact point even for a low viscosity �uid. In justi�cation of our simple inviscid

contact line model, we hope that su�ciently far from the contact line itself that we can

neglect the detail of the �ow in the viscous inner region, and so we are interested in a

macroscopic description of contact line motion.

A review of experimental and theoretical results for contact line motion was provided

by Dussan V. [1979], who showed that for a given �uid, the contact angle θ is a monotonic
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function of the contact line speed U . When the contact line is at rest, the contact angle θ

lies within some interval (θR , θA). When the contact angle, as measured within the �uid,

is increased above θA, the contact line advances, and when the contact angle is decreased

below θR, the contact line recedes. Once the contact line is in motion, the contact angle

increases as U increases, but tends towards some �nite angle.

For inviscid �ow the similarity scaling obtained by Keller and Miksis implies that

all velocities scale as t−1/3, and so the velocity of the contact point is very fast for small

times. We therefore assume that the contact angle immediately adopts the limiting value

appropriate to in�nitely fast contact line motion, and remains at this value for all times.

Self similar scalings for surface tension driven inviscid �ow can be applied to �ows

with a change of contact angle, whether due to coalescence, pinch o�, coming into contact

with a solid or a sudden change in surface chemistry. Keller et al. [2000, 2002] showed

that similarity solutions could be found for the coalescence of a wedge of �uid into a

corner, or the coalescence of wedges of �uid along a solid surface. In both cases, the initial

geometry is speci�ed entirely by angles. Billingham and King [1995] and King et al. [1999]

considered the case of a �uid/�uid interface dragged onto a solid plate, thus creating a

contact point where the interface meets the plate. �e �ow in the far �eld continues with

its original velocity, giving a further dimensional quantity, and so the solution is not self

similar. �ey assumed an explicit dependence of the contact angle θ on the contact point

velocity U . �e initial formation of the contact line was found to depend strongly on the

pro�le of θ(U). However, for large times, the contact line moves at the same speed as the

far �eld �ow, so the contact angle becomes constant and a similarity solution is obtained.

1.2.7 Conclusion

�e initial force balance for coalescing drops is always between surface tension and

viscosity. However, the Reynolds number grows as the meniscus widens. For low viscosity

�uids such as water, the viscous lengthscale is very small; once the meniscus radius is

beyond this lengthscale, inertial e�ects become important, and a new balance is formed

between surface tension forces and inertia.

�e merging of two cylinders in Stokes �ow with no surrounding �uid has been

solved exactly by Hopper [1990]. Eggers et al. [1999] investigated the coalescence of
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cylinders with a viscous surrounding �uid and found that a bubble of the surrounding

�uid accumulates at the meniscus as it moves outwards, although the drops remain simply

connected. �ese theoretical solutions for viscous coalescence predict that the meniscus

radius rm = O(t log t) for early time. Experimental observations of coalescence in the

Stokes �ow regime support the scaling rm = O(t) but have not yet veri�ed the logarithmic

behaviour.

�e inviscid surface tension driven coalescence of spheres has been studied numeri-

cally by Duchemin et al. [2003]. �ey found that there is no simply connected solution

for the coalescence of spheres with zero density surrounding �uid, as large amplitude

capillary waves cause the free surface to pinch o� a toroidal bubble. Averaging over a

sequence of pinching events gives a solution with rm = O(t1/2) which is in accordance

with experimental observations of coalescence of low viscosity �uids, but there is a dis-

crepancy in the prefactor between experimental observations and the calculations of

Duchemin et al.

A related problem to coalescence of spheres is the recoil of fat �uid wedges due to a

sudden change in wedge tip angle. If there are no geometrically imposed lengthscales,

the subsequent �uid �ow must be self similar, for �ows with surface tension and viscosity

alone [Miksis and Vanden-Broeck, 1999] and for �ows with surface tension and inertia

alone [Keller and Miksis, 1983]. Self similar scalings remove the time dependence of the

problem. A number of studies have beenmade of the viscous and inviscid recoil of wedges

and cones, which are also useful for pinch o� problems. For coalescence, Billingham and

King [2005] showed that there is no simply connected self similar solution for inviscid

recoil around a slender void, which is consistent with the collapsing interfaces found in

the time dependent coalescence of spheres studied by Duchemin et al. However, analysis

of the recoil of a slender wedge [King, 1991, Billingham, 2006] suggests that the inviscid

coalescence of bubbles is simply connected.

For two-�uid problems, viscous and inertial e�ects in the surrounding �uid may have

a signi�cant e�ect on the coalescence �ow, particularly in regions where the free surface

narrows.
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1.3 �esis outline

�e aim of this thesis is to examine the e�ect of a low density surrounding �uid on the

existence and behaviour of self-similar solutions for inviscid coalescence. In order to

make the analysis more tractable, we make several simpli�cations to this time-dependent,

nonlinear, free-boundary problem. We consider the coalescence of two-dimensional

�uid wedges, rather than spherical �uid drops, so that the �ow becomes self-similar,

thus removing the time dependence. Symmetric coalescence then corresponds to the

coalescence of very fat �uid wedges, with initial wedge angle π − є, where є ≪ 1, and

subsequent wedge angle π/2. We simplify the problem further by considering the recoil

of the system due to a small change in wedge angle, so that the wedge angle changes from

π − є to π − λє during coalescence, where λ = O(1), as illustrated in �gure 1.6(b). In

the limit λ = O(1) and є ≪ 1, the leading order problem is no longer a free-boundary

problem; instead the �ow in �uid 1 is described by nonlinear ODEs, while the �ow in

�uid 2 is described by a half-plane problem.

Although this leading order problem does not replicate all the nonlinearities of the

full free-boundary problem, we �nd that the existence of simply-connected solutions

corresponds to the known results for the nonlinear problem for single �uid problems.

King [1991] and Billingham [2006] have studied the recoil of a slender �uid wedge, which

is applicable to the coalescence of bubbles, and showed that in both the λ = O(1) and
λє = O(1) cases, solutions remain simply connected as є → 0. For the coalescence of

drops, Billingham and King [2005] have shown that there is no simply connected solution

for є≪ 1 with λє = O(1), with solutions pinching o� at a �nite value of є for λє = π/2. In
chapter 3, we consider the linearised version of the problem studied by Billingham and

King, for λ = O(1) and є≪ 1, and show that pinch-o� occurs at a �nite value of λ. �is

linearised half-plane problem for coalescence of �uid drops with no surrounding �uid

has not been investigated previously.

In chapter 4, we investigate the behaviour of the two-�uid problem in this linearised

limit. We �nd that a distinguished limit for є ≪ 1 occurs when ρ1/ρ2 = O(є), and
the problem is further distinguished when ρ1/ρ2 = O(λє). We investigate the solution

behaviour for these density ratios, both numerically and asymptotically, and �nd evidence

that the solutions remain simply connected as λ → ∞ with λє ≪ 1 for both density
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regimes. �ese novel asymptotic results for two-�uid coalescence give support to the

theory that a low density surrounding �uid may allow self-similar solutions for the fully

nonlinear free-boundary problem to remain simply connected as є → 0 with λє = π/2.
�roughout the thesis, we use a variety of numerical, asymptotic and analytical meth-

ods to analyse the half-plane problems, both for single-�uid and two-�uid coalescence.

We now give a more detailed description of the work undertaken.

In chapter 3, we consider the behaviour of the ‘half plane problem’ for є ≪ 1 when

ρ1 = 0. We use a boundary integral discretisation to �nd numerical solutions for the free

surface displacement and velocity potential. We then �nd an asymptotic solution for large

λ, with 1 ≪ λ ≪ є−1. �is asymptotic solution takes the form of large amplitude, high

frequency, capillary waves on the free surface, which are matched to an inner region near

the contact point. �e equations in this inner region can be reduced to those for a special

case of the ‘dock problem’, which is a classical problem in wave scattering, and its solution,

�rstly by the Wiener–Hopf method and secondly by Mellin transforms, is discussed in

chapter 2. �e dock problem solution completes the asymptotic solution for large λ. We

also investigate the small displacement limit of the half plane problem, with ∣λ − 1∣ ≪ 1,

and solve the resulting leading order problem exactly using Mellin transforms.

Both the numerical solution and the asymptotic solution for large λ found in chapter 3

show that the amplitude of the capillary waves on the free surface increases as λ increases.

In fact we �nd that for λ ⪆ 30, the free surface intersects with the position of the rigid

wall. As the leading order equations are linear, this is mathematically but not physically

valid. �is behaviour is analogous to the nonexistence of self similar solutions for β = π/2
and α < 2.87○ when ρ1 = 0 and ρ2 = 1 as found by Billingham and King [2005].

In chapter 4, we consider a two-�uid problem with the same contact angle limits as in

chapter 3. We �nd that ρ1/ρ2 = O(є) is a distinguished limit for є≪ 1 and λ = O(1). �e

leading order system now features a linear half plane problem for the velocity potential

in �uid 2 coupled to nonlinear ODEs for the �ow in �uid 1. We use a boundary-integral

method to reduce the kinematic equations for �uid 2 to a one-dimensional integral

equation, and combine this with a relaxation method to �nd numerical solutions to the

two-�uid system. Valid numerical solutions appear to be available for all �nite λ with

density ratio ρ1/ρ2 = O(є).
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In the second half of chapter 4, we pursue a large-displacement asymptotic solution

to the two-�uid problem, and �nd that the strongest coupling between the �ows in

the two �uids occurs when ρ1/ρ2 = O(λє). For this problem, the governing equations

are nonlinear PDEs, so �nding the shape and evolution of the capillary waves on the

free surface, even away from the contact point, requires multiple scales analysis. We

use Kuzmak’s method to �nd nonlinear, nonlocal, periodic oscillator equations for the

capillary waves, with oscillator parameters determined by secularity equations. As in

the analysis for the large-displacement solution in chapter 3, we �nd that the solution is

critically controlled by an inner region near the contact point, where free surface capillary

waves are matched to a two-dimensional �ow. For this problem we �nd that the inner

problem is discontinuous, and involves a gradual transition from the periodic capillary

waves along the free surface to a half plane problem near the contact point. �e inner

problem does not seem to be amenable to analytical approaches; its numerical solution is

discussed in appendix A.

For the doubly-distinguished density ratio ρ1/ρ2 = O(λє), the large-λ asymptotic

solution is valid for λ → ∞. We consider the behaviour of this asymptotic solution

as ρ1/ρ2 → 0, and show that this is a singular limit, with the rapid �ow in the slender

wedge preventing pinch o� in this linearised problem, subject to the existence of suitable

solutions to the inner problem.
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�e dock problem

In chapter 3, we will study the self-similar, surface-tension-driven recoil of a fat wedge

of �uid, bounded along one side by a rigid wall, and on the other edge by a free surface,

as shown in �gure 3.1. �e �ow recoils due to a sudden change in wedge angle, from

π − є to π − λє. We consider the behaviour of this system in the limit є ≪ 1 with

λ = O(1), and �nd that at leading order in є, the �ow domain for the �uid in the fat

wedge can be approximated by the half-plane y > 0. �e rigid wall becomes a no-net-�ux

boundary condition on the negative x-axis, while the free-surface gives linear boundary

conditions on the positive x-axis, and so at leading order, we solve a linear half-plane

problem with boundary conditions of mixed type on the x-axis. �e equations for this

half-plane problem are given by the system (3.4). We investigate solutions to this system

for di�erent values of λ, and �nd asymptotic solutions for large λ, described in section 3.4

and for ∣λ − 1∣ ≪ 1, described in section 3.5. We �nd that in both cases, the asymptotic

analysis requires the solution of a two-dimensional problem for the velocity potential,

with boundary conditions of mixed type. For the large-λ analysis, this two-dimensional

problem arises in an inner region, in which the equations reduce to a special case of

the dock problem, while for the ∣λ − 1∣ ≪ 1 analysis, the leading order problem is a

parameter-free half-plane problem which is solvable using Mellin transforms.

In the �rst half of this chapter, we use the Wiener-Hopf method to derive the unique

solution for the dock problem that meets the requirements of the large-λ problem in

chapter 3. In the second half of this chapter, we rederive this dock problem solution using

Mellin transforms. We do not use the Mellin transform solution found here directly, but

the calculation serves as a useful prototype for the asymptotic calculations for ∣λ − 1∣ ≪ 1

25



Chapter 2: The dock problem

in chapter 3.

2.1 Introduction

�e dock problem is a classical problem in wave scattering. Gravity-inertia waves of the

form exp(ik ⋅ x − ωt) along the surface of a body of water occupying the half-space y < 0
are incident on a rigid dock located at y = 0, x < 0. �e wave vector k has component

kx perpendicular and kz parallel to the dock edge. �e line x = 0, y = 0 represents a

sudden jump between the free-surface boundary conditions on x > 0, y = 0, and rigid

wall boundary conditions on x < 0, y = 0. �e problem for a semi-in�nite dock has been

solved for kz = 0 by Friedrichs and Lewy [1948] and for kz ≠ 0 by Heins [1956]. A number

of other problems, such as scattering by a �nite-length dock, have also been studied.

�e inner problem for the large-λ analysis in discussed in section 3.4.2. We �nd

that the equations reduce to those for the dock problem with kz = 0. As the problem
considered in chapter 3 is self-similar, the velocity potential itself, as well as its spatial

derivatives, appears in the Bernoulli equation (3.4b). However, this term does not appear

at leading order in the Bernoulli equation for the inner region; instead we require the

velocity potential to be bounded at the contact point in order to yield a �nite contact

angle. �e time-dependent dock problem has bounded velocity potential ϕ only once per

cycle, so we can replace the time dependence with a normalisation constraint on ϕ; we

�nd that there is a unique solution to the normalised problem.

In this chapter we derive solutions to this special case of the dock problem using

two complex variable methods: the Wiener-Hopf technique, and Mellin transforms. We

�nd that the Wiener-Hopf technique gives a solution in terms of integrals of elementary

functions. �e Mellin transform method leads to a functional di�erence equation that

we solve in terms of Barnes double Gamma functions. We must then invert the Mellin

transform solution.

2.2 Problem statement

�e dock problem is a half-plane problem, with boundary conditions of mixed type. �e

problem has no parameters and all the equations and boundary conditions take simple

forms. �roughout this chapter we will use the con�guration shown in �gure 2.1, in which
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ϕy(x , 0) = 0 ϕy(x , 0) = −ϕ(x , 0)

ϕ(x , y)→ 0 as x2 + y2 →∞

except along free surface

ϕ(0, 0) = 1

∇2ϕ = 0 in y ≥ 0

RigidWall Linearised Free Surface

Figure 2.1: Equations and boundary conditions for the dock problem as considered in this chapter.

the �uid occupies the half-plane y ≥ 0.
�e �uid is irrotational and incompressible, so we solve for the velocity potential

ϕ(x , y) where u = ∇ϕ, with ϕ(x , y) satisfying
∇2ϕ(x , y) = 0 when y ≥ 0. (2.1)

�e conditions on the boundary of this half plane take three di�erent forms. We have a

linearised free surface along the half-line y = 0 and x > 0, with the boundary condition

ϕy(x , 0) = −ϕ(x , 0) when x > 0. (2.2)

A rigid wall is placed along the half-line y = 0 and x < 0. Here we enforce no normal �ow

through the wall, so that

ϕy(x , 0) = 0 when x < 0. (2.3)

For convenience we also de�ne polar coordinates (r, θ) so that x = r cos θ and y = r sin θ.
On the remaining part of the boundary, we require

ϕ(r, θ)→ 0 as r →∞ (2.4)

when θ > 0. We do not apply this condition on the line θ = 0 because waves of the form
ϕ(x , y) ∝ e ix−y (2.5)
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satisfy the local boundary condition (2.2) but do not decay with x. Instead we require

that ϕ(x , 0) be bounded as x → +∞.

So far the system is homogeneous, and ϕ(x , y) = 0 is a valid solution. To obtain a

non-trivial solution, we choose to impose the normalisation constraint

ϕ(0, 0) = 1, (2.6)

which immediately implies a discontinuity in boundary condition at x = y = 0. If there
is a solution of the system that meets the far �eld boundary conditions and also has

ϕ(0, 0) = 0, then we should expect an arbitary multiple of this eigensolution to appear in

the general solution to the system. We seek solutions that are bounded everywhere, so

discard solutions that are singular at the origin.

In this chapter we will use two methods to �nd an exact solution for ϕ(x , y). �e �rst

is based around the Wiener-Hopf technique. Here we take half-range Fourier transforms

with respect to a complex variable k to obtain a Wiener-Hopf equation valid in a strip of

the complex k-plane. We factorise the equation and use analytic continuation to extend

both the Wiener-Hopf equation and its factors to the whole of the complex plane. We

de�ne an entire function out of the half-range transforms and the factors we have found.

We use Liouville’s theorem, together with information about the behaviour of the half-

range transforms for large k, to determine that this entire function is a polynomial (in

this case a constant). We can then recover the half-range transforms and use Fourier

inversion to �nd ϕ(x , y).
We �nd that the Wiener-Hopf technique requires some modi�cation of our problem

in order to obtain a �nite-width strip of analyticity. However, it does eventually provide a

solution to the original problem in terms of integrals of elementary functions and the

amplitude and phase of the wave part ϕ(x , y) that propagates along the line θ = 0 emerges

easily.

�e second method makes use of Mellin transforms, which are o�en used to solve

problems in wedge geometries [Lawrie, 1990]. We convert the problem to polar coordi-

nates and then take Mellin transforms with respect to r. �e Mellin transform variable

p is again complex. �e Mellin transforms of (2.1) and (2.3) take simple forms, and we

can solve for the θ dependence of the Mellin transform of ϕ in terms of p. With this

θ dependence known, the remaining condition (2.2) leads to a functional di�erence
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equation in the complex p-plane. We can solve this functional di�erence equation in

terms of Gamma functions and Barnes double Gamma functions, up to a multiple of

a periodic function. We use our knowledge of the singularities and far-�eld behaviour

of the Mellin transform of ϕ, together with Liouville’s theorem, to eventually pin this

periodic function down to a constant. We can then use Mellin inversion to �nd ϕ(r, θ).
Although the Mellin transform method needs no modi�cation to work for this prob-

lem, its application su�ers from our unfamiliarity with Mellin transforms, functional

di�erence equations and double Gamma functions. It is relatively easy to �nd an asymp-

totic expansion for small r, by summing residues from poles. However, it is more di�cult

to understand the behaviour of ϕ for large r as the wave part of ϕ(x , y) is hidden inside

the inversion integral.

2.3 Expected behaviour of ϕ

Both of the methods we use require some knowledge of the behaviour of ϕ for small and

large r, in order to determine for which k the half-range Fourier transforms

ϕ̃+(k, y) = ∫ ∞
0

e ikxϕ(x , y)dx , ϕ̃−(k, y) = ∫ 0

−∞
e ikxϕ(x , y)dx (2.7)

exist and are analytic, and for which p the Mellin transform

Φ∗(p, θ) = ∫ ∞
0

rp−1Φ(r, θ)dr (2.8)

exists and is analytic. �e validity of the Fourier transforms depend on the exponential

behaviour of ϕ(x , y), while the Mellin transform is concerned with algebraic behaviour.

We require ϕ(0, 0) = 1. �is forces a discontinuity in ϕy(x , 0) at x = 0. For small r,

we want

1

r

∂ϕ

∂θ
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1, θ = 0,
0, θ = π,

(2.9)

which is solved by the harmonic function

ϕ(x , y) ∼ 1 − x log r

π
+ y (θ

π
− 1) + ax (2.10)

where a is an arbitrary constant. We therefore have ϕx(x , 0) = O(log r) as r → 0.
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�e structure for large r is not forced directly by the boundary conditions. Instead we

look for separable modes that satisfy (2.1), (2.2) and (2.3) while decaying as r →∞. In

polar coordinates (2.2) takes the form

ϕθ(r, 0) = −rϕ(r, 0), θ = 0 (2.11)

and so on θ = 0, ϕ decays more rapidly with r than ϕ does. For the leading order mode,

we have ϕ(r, 0) = 0, and the largest separable mode that satis�es this, as well as (2.1) and

(2.3), is

ϕ(r, θ) ∝ r−1/2 sin (θ/2) . (2.12)

�us we see for large r that ϕ(r, θ) = O(r−1/2) when θ > 0 but ϕ = O(r−3/2) when θ = 0.
As mentioned brie�y in section 2.1, we also expect waves of the form

ϕ ∝ e ix−y . (2.13)

�ese are harmonic, so satisfy (2.1) and are solutions to the free surface equation (2.2),

but do not meet the condition on the rigid wall (2.3). We therefore expect these waves

only in x > 0, with the solution near x = 0, y = 0 stitching together the oscillatory and
smooth parts of ϕ(x , y).

From this information, we expect that the Mellin transform

Φ∗(p, θ) = ∫ ∞
0

r−pϕ(r, θ)dr (2.14)

will be analytic for 0 < Re p < 1/2 when 0 < θ ≤ π, and for 0 < Re p < 3/2 when θ = 0.
For the problem as stated above, with (2.1), (2.2) and (2.3), there is no complex k for

which both half-range Fourier transforms de�ned by (2.7) exist when y = 0. In order to

provide a common strip of analyticity with �nite width for the Wiener-Hopf method, we

replace (2.1) with

∇2ϕ(x , y) = δ2ϕ(x , y), when y ≥ 0, (2.15)

where δ is small, positive and real, and consider the limit δ → 0. We leave the boundary

conditions as they are. We still expect constant amplitude oscillations along y = 0, x > 0
and require ϕ(0, 0) = 1. However, we now expect ϕ(x , 0) = O(exp(δx)) as x → −∞.

�is gives ϕ̃+(k, y) analytic when Im k > 0 and ϕ̃−(k, y) analytic when Im k < δ. Both
are analytic in the common strip 0 < Im k < δ. We will use the Wiener-Hopf technique to

�nd a solution for δ > 0 and then consider the limit of this solution as δ → 0.
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2.4 Wiener-Hopf approach

2.4.1 An outline of the Wiener-Hopf technique

AWiener-Hopf equation for complex variable k takes the form

A(k)Φ+(k) + B(k)Ψ−(k) + C(k) = 0, for τ− < Im(τ) < τ+. (2.16)

�roughout this chapter we will refer to the real and imaginary parts of k as σ and τ

respectively. Here k ≡ σ + iτ is a complex variable, for example the Fourier transform

variable. In (2.16), A(k), B(k) and C(k) are known functions of k and are analytic in the

strip of analyticity given by τ− < τ < τ+. �e functions to be found, Φ+(k) and Ψ−(k) are
known to be analytic for τ > τ− and τ < τ+ respectively. We refer to the region τ > τ− as
the upper half-plane and the region τ < τ+ as the lower half-plane.

We now divide (2.16) by B(k) to obtain the standardWiener-Hopf form [Noble, 1958]:

K(k)Φ+(k) +Ψ−(k) + C(k)/B(k) = 0 (2.17)

where K(k) = A(k)/B(k) is the multiplicative kernel. We suppose that we can �nd

functions K+(k) and K−(k) such that K(k) = K+(k)/K−(k) for all k in the strip τ− < τ <
τ+, with K+(k) analytic for τ > τ− and K−(k) analytic for τ < τ+. �en multiplying (2.17)

through by K−(k) gives
K+(k)Φ+(k) + K−(k)Ψ−(k) + C(k)K−(k)/B(k) = 0. (2.18)

Now suppose that we are also able to �nd functions C+(k) and C−(k), analytic in the

upper and lower half planes respectively, so that the equality

C(k)K−(k)/B(k) = C+(k) + C−(k) (2.19)

holds for all k in the strip of analyticity, then we can rearrange (2.18) to give

K+(k)Φ+(k) + C+(k) = −K−(k)Ψ−(k) − C−(k). (2.20)

By construction the le� hand side of (2.20) is analytic for τ > τ−, and the right hand side

is analytic for τ < τ+. Both sides of (2.20) are equal and analytic across the common strip

τ− < τ < τ+. We can now de�ne an entire function by

E(k) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K+(k)Φ+(k) + C+(k), τ > τ−,
−K−(k)Ψ−(k) − C−(k), τ < τ+.

(2.21)
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To proceed beyond this stage we need to determine the entire function E(k). Here
Liouville’s theorem and its extension are very useful. K±(k) and C±(k) are functions we
have determined, and we know how they behave as k →∞ in their respective half-planes.

We also need to know the behaviours of Φ+(k) and Ψ−(k) as k →∞ in the appropriate

half planes (the Abelian theorem on page 39 can be very useful in determining the large-k

behaviour of transform functions), so suppose that we know

∣K+(k)∣ < P+∣k∣α+ , ∣C+(k)∣ < Q+∣k∣β+ , ∣Φ+(k)∣ < R+∣k∣γ+ (2.22)

as k →∞ in the upper half plane, and

∣K−(k)∣ < P−∣k∣α− , ∣C+(k)∣ < Q−∣k∣β− , ∣Ψ−(k)∣ < R−∣k∣γ− (2.23)

as k →∞ in the lower half plane. �en the function E(k) is bounded as k →∞ by

∣E(k)∣ <
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P+R+∣k∣α++γ+ +Q+∣k∣β+ , τ > τ−
P−R−∣k∣α−+γ− +Q−∣k∣β− , τ < τ+. (2.24)

�en by Liouville’s theorem and its extension, E(k) is a polynomial of degree at most N ,

where N is the integer part of max{α++γ+, β+, α−+γ−, β−}. We shall write E(k) = PN(k).
We can now use the de�nition of E(k) from (2.21) to write

Φ+(k) = PN(k) − C+(k)
K+(k) , τ > τ− (2.25)

Ψ−(k) = −PN(k) + C−(k)
K−(k) , τ < τ+. (2.26)

�e N + 1 coe�cients of PN(k) are le� undetermined by the Wiener-Hopf method.

However, in many cases K±(k), C±(k), Φ+(k) and Ψ−(k) all decay to zero as k → ∞
in their respective half planes. �en E(k) tends to zero as k → 0, so PN = 0, and the

Wiener-Hopf method gives a unique solution.

2.4.2 Formulation of Wiener-Hopf equation for Dock problem

We would like to apply the Wiener-Hopf technique to �nd the harmonic function ϕ that

satis�es the system

∇2ϕ = 0 for y > 0, (2.27a)
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∂ϕ

∂y
= −ϕ, for y = 0, x > 0, (2.27b)

∂ϕ

∂y
= −ϕ, for y = 0, x < 0, (2.27c)

is bounded in y > 0, and decays to zero as r →∞ on 0 < θ ≤ π.
We de�ne half-range Fourier transforms by

ϕ̃+(k, y) = ∫ ∞
0

e ikxϕ(x , y)dx , ϕ̃−(k, y) = ∫ 0

−∞
e ikxϕ(x , y)dx . (2.28)

�e Fourier inversion theorem gives

ϕ(x , y) = 1

2π ∫
∞

−∞
e−ikx (ϕ̃+(k, y) + ϕ̃−(k, y)) dk, (2.29)

and for notational convenience we also de�ne the full range transform

ϕ̃(k, y) = ϕ̃+(k, y) + ϕ̃−(k, y). (2.30)

However, the Fourier transform of (2.27a) gives a non-analytic kernel in k-space and

so we consider the system (2.27) as the limit as δ → 0 of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2ϕ = δ2ϕ for y > 0,
∂ϕ

∂y
= −ϕ for y = 0, x > 0,

∂ϕ

∂y
= 0 for y = 0, x < 0.

(2.31)

�e system (2.31) transforms to give

∂2ϕ̃

∂y2
= (δ2 + k2)1/2ϕ̃, for y > 0 (2.32a)

∂ϕ̃+

∂y
= −ϕ̃+, on y = 0 (2.32b)

∂ϕ̃−

∂y
= 0, on y = 0. (2.32c)

�e complex Fourier transform variable k has real and imaginary parts k = σ + iτ. �e

far �eld behaviour for ϕ implies that ϕ̃+ is analytic for τ > 0 and that ϕ̃− is analytic for

τ < δ. Both are analytic in the common strip of analyticity given by 0 < τ < δ.
We de�ne γ(k) = (k2 + δ2)1/2. �is has branch points at k = ±iδ. We position the

branch cuts along the imaginary axis, extending to ±i∞ respectively, so that they do
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not intersect the strip of analyticity. �e branch cuts are shown in bold and the strip of

analyticity is shaded in �gure 2.2. We choose the branch of γ(k) so that the real part of γ
is positive in the strip of analyticity. �e real part of γ(k) is only zero along the branch
cuts on the imaginary axis, and so γ(k) has positive real part over all the complex plane,

excluding the branch cuts. �en (2.32a) has general solution

ϕ̃ = A(k)e−γ(k)y + B(k)eγ(k)y . (2.33)

However, we seek ϕ that decays as y → ∞ and so we put B(k) = 0. Eliminating A(k)
from (2.33), we �nd

∂ϕ̃

∂y
= −γϕ̃, (2.34)

which is equivalent to the statement

∂ϕ̃+

∂y
+ ∂ϕ̃−

∂y
= −γ (ϕ̃+ + ϕ̃−) . (2.35)

We now evaluate (2.33) at y = 0 and substitute the remaining boundary conditions from

(2.32b) and (2.32c) to obtain the Wiener-Hopf equation:

ϕ̃+ (1 − 1

γ
) + ϕ̃− = 0. (2.36)

�isWiener-Hopf equation relates the twohalf range transforms ϕ̃+(k, 0) and ϕ̃−(k, 0).
�e equation (2.36) itself is valid only in 0 < τ < δ, but we know that ϕ̃+(k, y) is analytic
in τ > 0 and ϕ̃−(k, y) is analytic in τ < δ. By factorising this equation, we will be able
to use analytic continuation to determine ϕ̃+(k, 0) and ϕ̃−(k, 0) for the whole complex

k-plane.

2.4.3 Factorisation using the Cauchy integral formula

�e next stage in the application of the Wiener-Hopf method is to �nd functions K±(k),
with K+(k) analytic in the upper half plane τ > 0 and K−(k) analytic in the lower half

plane τ < δ, such that the equation

K(k) ≡ 1 − 1(k2 + δ2)1/2 = 1 − 1

γ(k) = K+(k)
K−(k) (2.37)

is satis�ed for all k in the common strip of analyticity 0 < τ < δ. In the absence of an

obvious factorisation by inspection, we proceed with an analysis based around Cauchy’s
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σ

τ

iδ

−iδ

√

1 − δ2−

√

1 − δ2

Figure 2.2: �e strip of analyticity (shaded), branch cuts (bold) and the location of the zeroes of

K(k) (crosses), for the factorisation of K(k). �e branch cuts also apply to γ(k) =
(k2 + δ2)1/2.

integral formula. �is is a standard method for �nding Wiener-Hopf decompositions,

and is discussed further by Noble [1958].

We begin by considering the singularities of K. Firstly, K(k) has both branch cuts

associated with γ(k). K(k) also has two zeroes, occurring at k = ±(1 − δ2)1/2. �ese

branch cuts, zeroes and the strip of analyticity for K(k) are illustrated in �gure 2.2. �e

zeroes of K(k) are on the real axis, and hence K has no singularities or zeroes within the

strip of analyticity. We can therefore write

logK(k) = logK+(k) − logK−(k) (2.38)

for all k in the strip. �is converts the problem from multiplicative to additive decom-

position. However, consideration of logK introduces branch points at the zeroes of K.

Rather than deal with the extra branch cut explicitly, we di�erentiate (2.38) with respect

to k, to obtain
K′(k)
K(k) = K′+(k)

K+(k) − K′−(k)
K−(k) . (2.39)

�e branch points associated with logK(k) in (2.38) become simple poles in (2.39), which

are easier to deal with. �e le� hand side of (2.39) is known, and so we now seek f+(k)
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analytic in τ > 0 and f−(k) analytic in τ < δ, which satisfy

f (k) ≡ K′(k)
K(k) = f+(k) − f−(k). (2.40)

Once f±(k) are known, we can set

f+(k) = K′+(k)
K+(k) , f−(k) = K′−(k)

K−(k) (2.41)

and integrate to �nd K±(k).
For K(k) given by (2.37), by di�erentiating and rearranging we have

f (k) = k√
k2 + δ2(k2 + δ2 − 1) + k(k2 + δ2)(k2 + δ2 − 1) . (2.42)

Both terms in (2.42) have simple poles at k = ±(1 − δ2)1/2. �e �rst term on the right

hand side of (2.42) is unbounded at the branch points at k = ±iδ, but these branch points

have zero residue. �e second term on the right hand side of (2.42) has no branch points

but does have simple poles at k = ±iδ. We can decompose the second term by using

partial fractions, to obtain

f (k) = k√
k2 + δ2(k2 + δ2 − 1) − 1

2(k − iδ) − 1

2(k + iδ) + k

k2 + δ2 − 1 , (2.43)

leaving the term

g(k) ≡ k√
k2 + δ2(k2 + δ2 − 1) (2.44)

to additively decompose.

From Cauchy’s integral formula, we know that

g(k) = 1

2πi ∫∮Γ

g(w)
w − k dw (2.45)

where g(w) is analytic inside and on the closed curve Γ, which encloses the point w = k
in an anticlockwise sense. We initially take Γ to be the long thin rectangle in the strip

of analyticity, given by Γ = Γ1 − Γ2 as shown in �gure 2.3(a). Here Γ1 is the path along

the lower side of the rectangle, and Γ2 is the path along the upper side of the rectangle,

both taken in the direction of Re(w) increasing. Given a particular k within the strip of

analyticity, we place the sides of the rectangle so that Γ1 passes below w = k and Γ2 passes

above w = k, and then we have

g(k) = 1

2πi ∫∮Γ1

g(w)
w − k dw − 1

2πi ∫∮Γ2

g(w)
w − k dw . (2.46)
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√

1 − δ2−

√

1 − δ2

iδ

−iδ

k

Γ1

Γ2

(a)

√

1 − δ2−

√

1 − δ2

k

Γ1

Γ2

(b)

Figure 2.3: Contours in the complex w-plane for decomposition of g(k) using Cauchy’s integral
formula. �e strip of analyticity is shaded, branch cuts are shown in bold, and crosses

indicate poles in the integrand of (2.45) . We initially take Γ1 and Γ2 to be the top and

bottom of a rectangle inside the strip of analyticity, enclosing k, as shown in (a). We

then deform Γ1 and Γ2 to the paths shown in (b). Now every k, except on the branch

cuts, is enclosed by Γ1 and Γ2. �e deformation for Γ1 passes the poles at w =
√
1 − δ2

and w = −√1 − δ2, so the residues from these poles must be included.

We now deform the contours Γ1 and Γ2, to take the paths shown in 2.3(b), so that Γ1

becomes a keyhole contour in the lower half plane, and Γ2 becomes a keyhole contour in

the upper half plane. �e deformation for Γ1 passes the two poles at w = ±(1 − δ2), so
the residues from these must be included. Now, every k that is not on the branch cuts is

enclosed by Γ = Γ1 − Γ2. �e �rst term in (2.46) is analytic for all k in the upper half plane,

and the second term is analytic for all k in the lower half plane. We therefore de�ne a

decomposition by

g+(k) = 1

2πi ∫∮Γ1

g(w)
w − k dw (2.47)

and

g−(k) = 1

2πi ∫∮Γ2

g(w)
w − k dw . (2.48)

�is decomposition satis�es g(k) = g+(k) − g−(k) for all k in the strip of analyticity.

�is decomposition is not unique as we know that any entire function can be added to

both f+(k) and f−(k) without changing their analyticity properties. Evaluating (2.47)
and (2.48) for g(k) given by (2.44), we �nd

g+(k) = − 1
π ∫

∞

δ

t√
t2 − δ2(t2 − δ2 + 1)(it + k)dt + 1

2(k +√1 − δ2) + 1

2(k −√1 − δ2)
(2.49)
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and

g−(k) = − 1
π ∫

∞

δ

t√
t2 − δ2(t2 − δ2 + 1)(it − k)dt. (2.50)

�e computer algebra package Mathematica can be used to con�rm that this decomposi-

tion satis�es g(k) = g+(k) − g−(k).
Now, up to an undetermined entire function E1(k), we have
f+(k) = − 1

π ∫
∞

δ

t√
t2 − δ2(t2 − δ2 + 1)(it + k)dt − 1

2(k + iδ) + 2k

k2 + δ2 − 1 + E1(k)
(2.51)

and

f−(k) = − 1
π ∫

∞

δ

t√
t2 − δ2(t2 − δ2 + 1)(it − k)dt + 1

2(k − iδ) + E1(k). (2.52)

We want to choose the function E1(k) so that K±(k) have known algebraic behaviour as

k →∞. To �nd K±(k) we use the relationship
logK±(k) = ∫ k

0
f±(w)dw . (2.53)

�e terms not involving integrals or E1 in (2.51) and (2.52) all integrate to give logarithms

on the right hand side of (2.53), and hence algebraic behaviour in K±(k). For large k,
− 1
π ∫

∞

δ

t√
t2 − δ2(t2 − δ2 + 1)(it + k)dt ≈ − 1

kπ ∫
∞

δ

t√
t2 − δ2(t2 − δ2 + 1)dt

= − 1

2k
,

(2.54)

so we have from (2.51) and (2.52) that

f+(k) ∼ − 1

2k
− 1

2(k + iδ) + 2k

k2 + δ2 − 1 + E1(k) (2.55)

and

f−(k) ∼ 1

2k
+ 1

2(k − iδ) + E1(k). (2.56)

Substituting (2.55) and (2.56) into (2.53), we �nd that all the terms in (2.55) and (2.56)

except for E1(k) correspond to algebraic behaviour in K±(k), so we can set E1(k) = 0.
Any additive constants arising from the integration or the branches of the logarithms do

not a�ect the qualitative behaviour of K±(k).
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We therefore let

K+(k) = exp( ∫ k

0
f+(w)dw) , K−(k) = exp( ∫ k

0
f−(w)dw) (2.57)

where

f+(k) = − 1
π ∫

∞

δ

t√
t2 − δ2(t2 − δ2 + 1)(it + k)dt − 1

2(k + iδ) + 2k

k2 + δ2 − 1 (2.58)

and

f−(k) = − 1
π ∫

∞

δ

t√
t2 − δ2(t2 − δ2 + 1)(it − k)dt + 1

2(k − iδ) . (2.59)

By construction this decomposition satis�es K(k) = K+(k)/K−(k) for all k in the strip of

analyticity, K+(k) is analytic for all k in the upper half plane, and K−(k) is analytic for all
k in the lower half plane. K+(k) and K−(k) have algebraic behaviour as k →∞ in their

respective half planes.

Returning to the Wiener-Hopf equation (2.36), we can now write

ϕ̃+(k)K+(k) + ϕ̃−(k)K−(k) = 0 (2.60)

where the factors K±(k) have been determined. We can now de�ne an entire function

from the Wiener-Hopf equation by writing

E(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ̃+(k)K+(k), τ > 0
−ϕ̃−(k)K−(k), τ < δ.

(2.61)

According to our Wiener-Hopf equation, the two piecewise de�nitions are equal in the

common strip of analyticity, and we know that each part of (2.61) is analytic in its half

plane of applicability.

To determine the behaviour of E(k) for large k, we now turn to a theorem which

relates the behaviour of ϕ(x , 0) for small x to the behaviour of ϕ̃+(k) and ϕ̃−(k) for large
k:

�eorem 1 (An Abelian theorem [Crighton et al., 1992]) Suppose f (x) = 0 for x < 0,

∣ f ∣ < Aeαx as x → ∞, f is in�nitely di�erentiable for x > 0 and f ∼ xλ as x → 0+ with
λ > −1. �en

F+(k) ≡ ∫ ∞
0

f (x)e ikxdx ∼ ∫ ∞
0

xλe ikxdx = λ!(−ik)λ+1 (2.62)
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as ∣k∣→∞ in the half-plane of analyticity τ > α. �us the behaviour of F+(k) for large ∣k∣
in the upper half plane corresponds to the behaviour of f (x) for small positive x.

Similarly if f (x) = 0 for x > 0, ∣ f ∣ < Beβx as x → −∞ and f ∼ (−x)µ as x → 0− with
µ > −1 then

F−(k) ≡ ∫ 0

−∞
f (x)e ikxdx ∼ ∫ 0

−∞
(−x)µe ikxdx = µ!(ik)µ+1 (2.63)

as ∣k∣→∞ in the half-plane of analyticity τ < β. �e behaviour of F−(k) for large ∣k∣ in the

lower half plane corresponds to the behaviour of f (x) for small negative x.

We want ϕ to be bounded as x , y → 0. By theorem 1, this corresponds to ϕ+(k) =
O(k−1) as k → ∞ in the upper half plane, and ϕ−(k) = O(k−1) as k → ∞ in the lower

half plane. As k → ∞ in the respective half planes, the decomposition given by (2.57),

(2.58) and (2.59) has

K+(k) ∼ k2 + δ2 − 1
k1/2(k + iδ)1/2 = O(k), K−(k) ∼ k1/2(k + iδ)1/2 = O(k). (2.64)

According to the de�nition (2.61), E(k) is an entire function, bounded as k →∞ in all

directions, and hence by Liouville’s theorem, E(k) is a constant, say α. �en

ϕ̃+(k) = α

K+(k) , ϕ̃−(k) = − α

K−(k) . (2.65)

To invert, we have

ϕ(x , y) = α

2π ∫
∞

−∞
exp (−ikx − (k2 + δ2)1/2y)( 1

K+(k) − 1

K−(k)) dk (2.66)

where the path of integration is taken along the strip of analyticity. �e factors K+(k)
and K−(k) are de�ned by (2.57), (2.58) and (2.59).

2.4.4 Fourier inversion to �nd ϕ

We have used the Wiener-Hopf technique to identify, for δ > 0, a suitably bounded

solution to the system (2.31). �is solution is unique up to a multiplicative constant α,

which we expect as the system is linear. �is solution is given by (2.57), (2.58), (2.59) and

(2.66).

However, we are particularly interested in the solution to the system (2.27), which

is the limit of (2.31) as δ → 0. We therefore want to consider the limit as δ → 0 of the

solution given by (2.57), (2.58), (2.59) and (2.66)�is requires us to consider both the

contour of integration and the integrand itself as δ → 0.
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Inversion contours for δ = 0

Wewant to close the inversion contour in the half plane where the real part of −ikx−(k2+
δ2)1/2y is negative. As the branch for (k2 + δ2)1/2 is de�ned so that its real part is always

positive, we can always close the integral in the half plane where Re ikx > 0. �erefore, for

x < 0 we close in the upper half plane, and for x > 0 we close in the lower half plane. �e

deformed inversion contours are shown in �gure 2.4(b). Closing in the lower half plane

encloses the singularities at
√
1 − δ2. �e residues from these singularities of 1/K+(k)

will give us the oscillatory part of ϕ(x , y) for x > 0.
For δ > 0, the contours for x > 0 and x < 0 each ‘see’ only one branch cut. As we let

δ → 0, the two branch points at ±iδ converge to 0. For δ → 0, the contours take the path

shown in �gure 2.4(c). �e singularities at ±√1 − δ2 move to ±1, and are still enclosed by
the contour for x > 0.
Factorisation for δ = 0

�e next step is to calculate K±(k) as δ → 0. In some ways it is easier to calculate K±(k)
for δ = 0 than for δ > 0 because we can do some of the integrals analytically. It will be

useful to check that our decomposition satis�es the requirement K(k) = K+(k)/K−(k),
so we begin by considering the meaning of this factorisation for δ = 0. As δ → 0 in the

de�nition of K in (2.37), we �nd

K(k)→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 1

k
, σ > 0

1 + 1

k
, σ < 0.

(2.67)

where k = σ + iτ. To proceed with the decomposition, we took logarithms of the relation-

ship
K+(k)
K−(k) = K(k). (2.68)

and then di�erentiated to obtain

f (k) = (logK(k))′ = (logK+(k))′ − (logK−(k))′ = f+(k) − f−(k). (2.69)

Using (2.67) to de�ne K(k) for δ = 0, we expect to �nd
f (k)→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

k(k − 1) , σ > 0
− 1

k(k + 1) , σ < 0
(2.70)
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σ

τ

iδ

−iδ

√

1 − δ2−

√

1 − δ2

Inversion contour

(a) For δ > 0, the Fourier inversion gives ϕ in terms of

an integral along the strip of analyticity.

σ

τ

iδ

−iδ
√
1 − δ2−

√
1 − δ2

x < 0 ∶

Inversion contour

σ

τ

iδ

−iδ
√
1 − δ2−

√
1 − δ2

x > 0 ∶

Inversion contour

(b) Deformed contours for δ > 0. We use the branch of (k2 + δ2)1/2 that has positive real part everywhere
except the branch cuts on the imaginary axis, and so can close the inversion contour in the half-plane where

Re ikx > 0. For x > 0 this deformation encloses simple poles at k = ±
√
1 − δ2 .

σ

τx < 0 ∶

σ

τx > 0 ∶

(c) Deformed contours for δ = 0. As δ → 0, the branch points shown in (b) converge, and we integrate

around the positive and negative imaginary axes for x < 0 and x > 0 respectively.

Figure 2.4: Inversion contours for the Wiener-Hopf dock problem.
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as δ → 0.

With these targets in mind, we shall calculate f±(k). Cauchy’s integral formula gave a

decomposition for f (k) with δ > 0, and the result is given in (2.58) and (2.59). Taking δ

to zero in these expressions, we obtain

f+(k) = − 1
π ∫

∞

0

1(t2 + 1)(it + k)dt − 1

2k
+ 2k

k2 − 1 , (2.71)

and

f−(k) = − 1
π ∫

∞

0

1(t2 + 1)(it − k)dt + 1

2k
. (2.72)

�ese can also be written as

f+(k) = − 1
π

1

1 − k2 ∫
∞

0
(k − it)( 1

t2 + k2 − 1

t2 + 1) dt − 1

2k
+ 2k

k2 − 1 , (2.73)

and

f−(k) = − 1
π

1

1 − k2 ∫
∞

0
(−k − it)( 1

t2 + k2 − 1

t2 + 1) dt + 1

2k
. (2.74)

To evaluate the integrals in (2.73) and (2.74) we use the fact that

∫
∞

0

dt

t2 +w2
= π

2w
csgn(w) (2.75)

where csgn(w) is de�ned as the sign of the real part of w. �en (2.73) and (2.74) become

f+(k) = −1
2

csgn(k)
1 − k2 − 3k

2(1 − k2) − i

2π

log k2

1 − k2 − 1

2k
(2.76)

and

f−(k) = 1

2

csgn(k)
1 − k2 − k

2(1 − k2) − i

2π

log k2

1 − k2 + 1

2k
. (2.77)

However, the branch cuts for log k2 and the de�nition of csgn(k) interact in such a way

that (2.76) and (2.77) simplify to become

f+(k) = − i
π

log+(k)
1 − k2 − 1

2(1 − k2) − 3k

2(1 − k2) − 1

2k
(2.78)

and

f−(k) = − i
π

log−(k)
1 − k2 + 1

2(1 − k2) − k

2(1 − k2) + 1

2k
. (2.79)

Here we have introduced two new logarithms, log+(k) and log−(k). �e branch cut for

log+(k) lies along the negative imaginary axis while the branch cut for log−(k) lies along
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the positive imaginary axis. �e branches are chosen so that log+(k) = log−(k) = ln(k)
for real positive k.

At this point we can check that f+(k) and f−(k) satisfy f (k) = f+(k) − f−(k). For k
in the right half plane, the two logarithms are equal, so

f (k) = f+(k) − f−(k) = 1

k(k − 1) . (2.80)

However, for k in the le� half plane, the de�nitions of log±(k) are such that log+(k) −
log−(k) = 2πi, and so

f (k) = f+(k) − f−(k) = − 1

k(k + 1) . (2.81)

Equations (2.80) and (2.81) both agree with (2.70).

To �nd K±(k) from f±(k), we use the relationship (2.69) to give

K±(k) = exp ∫ k

f±(w)dw .
We are free to choose the lower limits of these integrals, but theymust satisfy the constraint

(2.68). �e most general way of satisfying this constraint is to have

K+(k) = exp( ∫ k

a
f+(w)dw)K(a), K−(k) = exp( ∫ k

a
f−(w)dw) . (2.82)

We now integrate (2.78) and (2.79) to obtain

K+(k) = exp(− i
π ∫

k

a

log+(w)
1 −w2

dw)(1 + k
1 − k)

−1/4 (1 + a
1 − a)

1/4

×(1 − k2
1 − a2)

3/4 (k
a
)−1/2
+

K(a)
(2.83)

and

K−(k) = exp(− i
π ∫

k

a

log−(w)
1 −w2

dw)(1 + k
1 − k)

1/4 (1 + a
1 − a)

−1/4

×(1 − k2
1 − a2)

1/4 (k
a
)1/2
−

.

(2.84)

�e subscript ‘+’ again indicates that the function is analytic in the upper half plane,

so branch cuts are taken in the lower half plane, along the negative imaginary axis.

Correspondingly, functions with subscripts ‘−’ are analytic in the lower half plane and

hence have branch cuts along the positive imaginary axis.
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It is helpful to collect together the terms involving a by de�ning

A(a) = exp( i
π ∫

a

0

log+(w)
1 −w2

dw) a−1/2(1 + a)−1/2 (2.85)

so that

K+(k) = − exp(− i
π ∫

k

0

log+(w)
1 −w2

dw) (1 + k)1/2(1 − k)
k
1/2
+

A(a) (2.86)

and

K−(k) = exp(− i
π ∫

k

0

log−(w)
1 −w2

dw)(1 + k)1/2k1/2− A(a). (2.87)

We can now regard A(a) as an arbitrary constant.

Calculation of ϕ(x , y) for δ = 0
We are now able to begin evaluation of ϕ(x , y). In the limit δ → 0, (2.66) becomes

ϕ(x , y) = α

2π ∫
∞

−∞
exp (−ikx − kcsgn(k)y)( 1

K+(k) − 1

K−(k)) dk. (2.88)

For convenience, we split this into two parts. We must calculate

ϕ+(x , y) = ∫ ∞
−∞

exp (−ikx − kcsgn(k)y) 1

K+(k)dk (2.89)

and

ϕ−(x , y) = ∫ ∞
−∞

exp (−ikx − kcsgn(k)y) 1

K−(k)dk. (2.90)

�e closure of the integrals as illustrated in �gure 2.4(c) depends on the sign of x. For

x < 0 we close in the upper half plane, which encloses no poles. However, for x > 0 we
must close in the lower half plane and this encloses simple poles of 1/K+(k) at k = ±1.

We will begin by analysing the integral for x < 0. We close in the upper half plane.

�ere are no zeroes of K±(k) within the contour, so no residues to concern us. K+(k) is
analytic in the upper half plane, and the integrand for ϕ+(x , y) vanishes along the large
semi-circular part of the contour. However, csgn(k)y changes sign across the positive

imaginary axis, and so we get still get a contribution from ϕ+(x , y) when x < 0 unless
y = 0. K−(k) has a branch cut along the positive imaginary axis, so we expect to get a

contribution from ϕ−(x , y) when x < 0 regardless of the value of y.
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K+(it) −A(a)
i1/2
(1 + t2)3/4

t1/2
exp( 1

π ∫
t

0

log s

1 + s2 ds)

K−(it+) i1/2A(a)(1 + it)3/4(1 − it)−1/4t1/2 exp( 1
π ∫

t

0

log s

1 + s2 ds)

K−(it−) −i1/2A(a)(1 − it)3/4(1 + it)−1/4t1/2 exp( 1
π ∫

t

0

log s

1 + s2 ds)

K+(−it−) A(a)
(−i)1/2

(1 + it)1/4(1 − it)5/4
t1/2

exp(− 1
π ∫

t

0

log s

1 + s2 ds)

K+(−it+) − A(a)
(−i)1/2

(1 − it)1/4(1 + it)5/4
t1/2

exp(− 1
π ∫

t

0

log s

1 + s2 ds)

K−(−it) A(a)(−i)1/2t1/2(1 + t2)1/4 exp(− 1
π ∫

t

0

log s

1 + s2 ds)

Table 2.1: Explicit values of K±(k) along the branch cuts. Here t is real and positive.

�e contribution from ϕ+(x , y) is given, for x < 0, by
ϕ+(x , y) = 2 ∫ ∞

0

ext sin yt

K+(it) dt, (2.91)

where K+(it) is de�ned in table 2.1, and so we �nd

ϕ+(x , y) = − 2i1/2
A(a) ∫

∞

0

t1/2ext sin yt(1 + t2)3/4 exp(− 1
π ∫

t

0

log s

1 + s2ds) dt, (2.92)

which vanishes when y = 0, as expected.
�e contribution from ϕ−(x , y) for x < 0 is slightly more complicated because K−(k)

has a branch cut along the positive imaginary axis. We �nd

ϕ−(x , y) = i ∫ ∞
0

ext ( e−it y

K−(it+) − e it y

K−(it−)) dt. (2.93)

Using table 2.1 to �nd K−(it+) and K−(it−) we obtain
ϕ−(x , y) = 2i1/2

A(a) ∫
∞

0

ext(cos yt − t sin yt)
t1/2(1 + t2)3/4 exp(− 1

π ∫
t

0

log s

1 + s2ds) dt. (2.94)
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for x < 0.
Adding the contributions from (2.92) and (2.94), for x < 0 we have

ϕ(x , y) = − i1/2α

A(a)π ∫
∞

0

ext cos yt

t1/2(1 + t2)3/4 exp(− 1π ∫
t

0

log s

1 + s2ds) dt. (2.95)

We can easily check that this satis�es ∇2ϕ(x , y) = 0 and ϕy(x , 0) = 0.
�e calculation of ϕ(x , y) for x > 0 is complicated by the presence of singularities at

k = ±1. We again have contributions from both ϕ+(x , y) and ϕ−(x , y). Deforming onto

the contours shown in �gure 2.4(c), we have

ϕ+(x , y) = i ∫ ∞
0

e−xt [ e−it y

K+(−it−) − e it y

K+(−it+)] dt
−2πi {lim

k→1

(k − 1)e−ikxe−ky
K+(k) + lim

k→−1

(k + 1)e−ikxeky
K+(k) } (2.96)

and

ϕ−(x , y) = 2 ∫ ∞
0

e−xt sin yt

K−(−it) dt. (2.97)

We are now ready to assemble ϕ+(x , y) and ϕ−(x , y) for x > 0, using (2.96) and (2.97).
�is gives us

ϕ+(x , y) = 2i1/2

A(a) ∫
∞

0

e−xt t1/2(1 + t2)5/4 (cos yt + t sin yt) exp( 1
π ∫

t

0

log s

1 + s2ds) dt
−2√2i1/2π

A(a) e−y sin(x + 3π

8
) (2.98)

and

ϕ−(x , y) = 2i1/2

A(a) ∫
∞

0

e−xt sin yt

t1/2(1 + t2)1/4 exp( 1π ∫
t

0

log s

1 + s2ds) dt. (2.99)

To calculate ϕ(x , y) for x > 0, we again combine ϕ+(x , y) and ϕ−(x , y) using the
relationship

ϕ(x , y) = α

2π
ϕ+(x , y) − α

2π
ϕ−(x , y) (2.100)

and so we �nd

ϕ(x , y) = αi1/2

πA(a) ∫
∞

0

e−xt(t cos yt − sin yt)
t1/2(1 + t2)5/4 exp( 1

π ∫
t

0

log s

1 + s2ds) dt
−α√2i1/2

A(a) e−y sin(x + 3π

8
) . (2.101)

Again, this is harmonic, and we can again verify that ϕy = −ϕ on y = 0.
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In summary we have, for x > 0:
ϕ(x , y) = − i1/2α

A(a)
√
2e−y sin(x + 3π

8
)

+ i1/2α
A(a) 1π ∫

∞

0

e−xt(t cos yt − sin yt)
t1/2(1 + t2)5/4 exp( 1

π ∫
t

0

log s

1 + s2ds) dt
(2.102)

and for x < 0:
ϕ−(x , y) = − αi1/2

πA(a) ∫
∞

0

ext cos yt

t1/2(1 + t2)3/4 exp(− 1π ∫
t

0

log s

1 + s2ds) dt. (2.103)

We can check that these have the required properties. Both are harmonic, with the integral

parts decaying as x2 + y2 →∞. �e oscillatory part of ϕ−(x , y) is bounded as x →∞ and

decays as y →∞. �e boundary conditions are also met: along y = 0 we have ϕy = −ϕ on

x > 0 while ϕy = 0 on x < 0. We cannot easily show that ϕ is continuous along the line

x = 0. �is should be the case as the piecewise de�nitions (2.102) and (2.103) were both

calculated from the same de�nition (2.88).

2.4.5 Normalisation

We can also use the Abelian theorem (page 39) to �nd the value of the normalisation

ratio α/A(a). According to the Abelian theorem, if ϕ(x , 0)→ 1 as x → 0, then as k →∞
in the upper half plane we have

ϕ+(k, 0)→ i

k
(2.104)

and as k →∞ in the lower half plane we have

ϕ−(k, 0)→ −i
k
. (2.105)

We also know from (2.65) that

ϕ̃+(k) = α

K+(k) , ϕ̃−(k) = − α

K−(k) .
where the factors K±(k) are de�ned by (2.86) and (2.87) as

K+(k) = − exp(− i
π ∫

k

0

log+(w)
1 −w2

dw) (1 + k)1/2(1 − k)
k
1/2
+

A(a) (2.106)

and

K−(k) = exp(− i
π ∫

k

0

log−(w)
1 −w2

dw)(1 + k)1/2k1/2− A(a), (2.107)
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where α and A(a)may be treated as arbitrary constants.

As we let k →∞ in the upper half plane we �nd that

K+(k)→ kA(a) exp(− i
π ∫

k

0

log+(w)
1 −w2

dw) . (2.108)

If k = re iθ , we have, as r →∞,

K+(k) → kA(a) exp(− ie iθ
π ∫

∞

0

logu + iθ
1 − u2e2iθ

du) . (2.109)

We can evaluate this integral and we �nd, independently of the value of θ, that

e iθ ∫
∞

0

logu + iθ
1 − u2e2iθ

due iθ = −π2

4
(2.110)

�us we obtain

ϕ̃+(k, 0) = α

K+(k) → α

A(a)i1/2k → 1−ik (2.111)

which gives α/A(a) = −(−i)1/2.
In a similar manner, we �nd that as k →∞ in the lower half plane

∫
k

0

log−w

1 −w2
dw → −π2

4
,

so that K−(k) → kA(a)i1/2 in the same limit. �e Abelian theorem now gives

ϕ̃−(k, 0) = − α

K−(k) → − α

kA(a)i1/2 → 1

ik
(2.112)

so that we again have α/A(a) = −(−i)1/2.
We can verify numerically that this normalisation gives ϕ(0, 0) = 1. However, we

have been unable to analytically evaluate the integrals in (2.102) and (2.103) even for this

simple case of x = y = 0.
2.4.6 Large distance behaviour of ϕ

Normalised so that ϕ(0, 0) = 1, we know that for x > 0 we have
ϕ(x , y) =√2e−y sin(x + 3π

8
)

− 1

π ∫
∞

0

e−xt(t cos yt − sin yt)
t1/2(1 + t2)5/4 exp( 1

π ∫
t

0

log s

1 + s2ds) dt,
(2.113)
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and for x < 0 we have
ϕ(x , y) = 1

π ∫
∞

0

ext cos yt

t1/2(1 + t2)3/4 exp(− 1π ∫
t

0

log s

1 + s2ds) dt. (2.114)

As x2 + y2 →∞, the integrals in (2.113) and (2.114) are dominated by the contribution

from near t = 0, and so at leading order we �nd

ϕ(r, θ) ∼
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r−1/2√
π

sin
θ

2
+√2e−y sin(x + 3π

8
) for x > 0.

r−1/2√
π

sin
θ

2
for x < 0.

(2.115)

Extracting information beyond leading order is di�cult because the factor

exp(− 1
π ∫

t

0

log s

1 + s2ds) (2.116)

is not di�erentiable at t = 0, and the logarithm in the integrand gives terms such as t−t

and tt for small t, which cannot be scaled with r in the usual way.

However, we do know that along the half line x > 0, ϕ(x , 0) is given by

ϕ(x , y) =√2 sin(x + 3π

8
)

− 1
π ∫

∞

0

e−xt t1/2(1 + t2)5/4 exp( 1π ∫
t

0

log s

1 + s2ds) dt,
(2.117)

As x → ∞, the oscillatory term is dominant, but we can also �nd the leading order

behaviour of the algebraic part from a small-t analysis of (2.117). �is gives us

ϕ(x , y) ∼√2 sin(x + 3π

8
) − 1

2
√
π

1

x3/2
. (2.118)

�is leading order algebraic part of ϕ(x , 0) on x > 0,
− 1

2
√
π

1

x3/2
, (2.119)

corresponds exactly to the requirement ϕy(x , 0) = −ϕ(x , 0) on x = 0, where the algebraic
part of ϕ is given at leading order by

1√
π

1

r1/2
sin(θ

2
) . (2.120)
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2.4.7 Numerical evaluation of the Wiener-Hopf solution

�eWiener-Hopf method gives the solution ϕ(x , y) as the expressions (2.113) and (2.114).
Each of these expressions has a nested integral. We can rewrite the inner integral as

∫
t

0

log s

1 + s2ds = i

2
(Li2(is) − Li2(−is) + log s log(1 − is

1 + is)) (2.121)

where Li2 is the complex dilogarithm. �is special function can be calculated using other

algorithms, and so its numerical evaluation can be quicker than using (2.113) and (2.114)

directly.

Figure 2.5 show the solution ϕ(x , y) evaluated with (2.121) substituted into (2.113)

and (2.114). We can observe that ϕ(x , y) as calculated numerically is continuous at x = 0,
is bounded at x = y = 0 and tends to zero as r →∞ except on the positive x-axis, where

there is a constant-amplitude wave. �e contour plot also demonstrates that ϕy = 0 on
the negative x-axis.
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x

ϕ
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−1
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(a) ϕ(x , y) for y = 0 (blue), y = 1 (green), y = 2 (red) and y = 3 (cyan).

x

y

−1 −0.5 0 0.5 1

−15 −10 −5 0 5 10 15
0

5

10

(b) Contour plot of ϕ(x , y)

Figure 2.5: We can use the expressions (2.113) and (2.114) to calculate ϕ(x , y). �e plots of ϕ for

constant y in (a) show that the solution is continuous at x = 0, and that the wave

amplitude is constant as x →∞. Note that although ϕ is continuous at x = y = 0, ϕy is

discontinuous there and ϕx has a logarithmic singularity. �e contour plot (b) shows

that the contour lines are perpendicular to the boundary y = 0 for x < 0 and so ϕy = 0
there. We see that ϕ(x , y) is dominated by surface waves near y = 0 for x > 0.
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2.5 Mellin Transforms

In polar coordinates (r, θ), we wish to �nd the function Φ that satis�es

1

r

∂

∂r
(r ∂Φ

∂r
) + 1

r2
∂2Φ

∂θ2
= 0 for 0 ≤ θ ≤ π (2.122)

1

r

∂Φ

∂θ
= −Φ on θ = 0 (2.123)

1

r

∂Φ

∂θ
= 0 θ = π. (2.124)

Our normalisation condition is that Φ(0, θ) = 1, and we also require that Φ(r, θ) is
bounded as r →∞.

�e Mellin transform Φ∗(p, θ) of the function Φ(r, θ) with respect to r is de�ned as

Φ∗(p, θ) = ∫ ∞
0

rp−1Φ(r, θ)dr. (2.125)

Here p is a complex variable. �e function Φ∗(p, θ) is typically analytic for some strip of

the complex plane, with the restrictions applying to the real part of p according to the

behaviour of Φ(r, θ) for both small and large r.

�e behaviour of Φ(r, θ) for small r is determined by the normalisation condition

we have imposed, which implies that the Mellin transform Φ∗(p, θ) can exist only for

Re p > 0. A consequence of this behaviour of Φ for small r is that Φy must have a �nite

discontinuity at x = 0 along the line y = 0. �is necessitates a logarithmic term in the

small r expansion of Φ(r, θ), the largest of which is O(r log r).
We expect surface waves along the free-surface θ = 0, of the form Φ(x , y) ∝ e ix−y.

�e Mellin transform of the wave component on the free surface is

Φ∗w(p, 0) ≡ ∫ ∞
0

rp−1 cos(r + φ)dr = Γ(p) cos(πp
2
+ φ) (2.126)

for 0 < Re p < 1, where Γ(p) is the Gamma function.

We also expect an algebraic part of Φ(r, θ) for large r, that decays explicitly as r →∞
on each �xed θ. �e largest separable mode in this algebraic part is O(r−1/2 sin θ

2
). Hence

the Mellin transform of the algebraic part exists and is analytic for 0 < Re p < 1/2.
In summary, the Mellin transform Φ∗(p, θ) should be analytic for 0 < Re p < 1/2.

�e function Φ∗(p, θ) will be de�ned by analytic continuation in the remainder of the

complex p plane.
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2.5.1 Mellin transform of equations

Taking the Mellin transform of the equations (2.122) to (2.124) we �nd

∂2Φ∗(p, θ)
∂θ2

+ p2Φ∗(p, θ) = 0 for 0 ≤ θ ≤ π (2.127)

∂Φ∗(p − 1, θ)
∂θ

= −Φ∗(p, θ) on θ = 0 (2.128)

∂Φ∗(p − 1, θ)
∂θ

= 0 on θ = π. (2.129)

We see from (2.127) that the Mellin transform of Laplace’s equation in polar coordi-

nates takes a simple form. We can therefore write the general solution to (2.127) that also

satis�es (2.129) as

Φ∗(p, θ) = A(p) cos p(θ − π), (2.130)

where A(p) is an arbitrary function of p to be determined. Substituting (2.130) into

(2.128) we �nd that A(p) satis�es the functional di�erence equation
A(p + 1)
A(p) = p tan pπ. (2.131)

2.5.2 Reduction of functional di�erence equation

A familiar functional di�erence equation de�nes the Gamma function:

Γ(z + 1)
Γ(z) = z, (2.132)

together with the normalisation condition Γ(1) = 1. �e Gamma function and related

functions will be critical to solving the dock problem using Mellin transforms. We begin

by recalling the identity [NIST, 2011]

sin πz = π

Γ(z)Γ(1 − z) (2.133)

which allows us to rewrite (2.131) as

A(p + 1)
A(p) = pΓ( 12 + p)Γ( 12 − p)

Γ(p)Γ(1 − p) . (2.134)
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We next introduce the Barnes double Gamma function G(z, δ) [Barnes, 1899] which
by de�nition satis�es the functional di�erence equation

G(z + 1, δ)
G(z, δ) = Γ ( z

δ
) (2.135)

together with the normalisation condition Γ(1, δ) = 1. Each appearance of p within the

Gamma functions on the right hand side of (2.134) has coe�cient 1, and so we take δ = 1.
If we now let

A(p) = Γ(p)G( 12 + p, 1)G(2 − p, 1)
G( 3

2
− p, 1)G(p, 1) B(p) (2.136)

and substitute (2.136) into (2.134), we �nd that B(p) satis�es the much simpler functional

di�erence equation

B(p + 1) = B(p). (2.137)

2.5.3 Singularities and large p behaviour of Φ∗(p, θ)
If Φ∗(p, θ) is known, then Φ(r, θ)may be found using

Φ(r, θ) = 1

2πi ∫
c+i∞

c−i∞
r−pΦ∗(p, θ)dp. (2.138)

�e positive constant c is chosen to lie in the strip of analyticity so in this case we require

0 < c < 1/2. �is inversion theorem can be derived from the Fourier inversion theorem

[Sneddon, 1972].

For the inversion integral to exist, the integrand must be bounded as t →∞ where

p = c + it. If we consider the di�erence equation for Φ∗(r, θ), we have
A(p + 1)
A(p) = p tan pπ. (2.139)

where

Φ∗(p, θ) = A(p) cos p(θ − π). (2.140)

If we take p = c + it where t is large and �xed, and let c → −∞, Φ∗(r, θ) decays expo-
nentially so long as r < 1. �us when r < 1 we can close the inversion contour in the le�

half plane Re p < 1/2, and replace Φ(r, θ) with the sum of residues from any poles in the

le� half plane. In terms of r-dependence, a simple pole at p = −n gives an O(rn) residue.
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A double pole at p = −n gives an O(rn log r) residue. A triple pole at p = −n gives an

O(rn(log r)2) residue, and so on. For small r we expect to �nd that

Φ(r, θ) ∼ 1 + a(θ)r log r + b(θ)r + o(r), (2.141)

where a(θ) and b(θ) are functions of θ alone.�is pole structure corresponds toΦ∗(p, θ)
having a simple pole at p = 0 and a double pole at p = −1. No other poles are allowed in

0 ≤ Re p < 1.
�e large-p behaviour we require from Φ∗(p, θ) is that the integrand

r−pΦ∗(p, θ) (2.142)

is bounded as Im p →∞.

2.5.4 Singularities and large z behaviour of Γ(z) and G(z, δ)
In order to continue, we need to understand the pole structure and large z behaviour of

Γ(z) and G(z, δ).
�e relevant properties of Γ(z) arewell known. Γ(z)has simple poles at z = 0,−1,−2, ...

but is analytic everywhere else in the complex z-plane. Γ(z) is never zero. �e behaviour

of Γ(z) for large z is given by Stirling’s formula [NIST, 2011]:

log Γ(z) = z log z − z − 1

2
log z + 1

2
log(2π) +O (1

z
) . (2.143)

�e large-p behaviour of the Barnes double Gamma function is rather more obscure,

but we can make analogous statements (e.g. [Lawrie and King, 1994], [Billingham and

King, 1997]). G(z, δ) has no poles, but does have zeroes at z = −(mδ + n), where
m, n = 0, 1, 2.... �us 1/G(z, δ) has poles at z = −(mδ + n) where m, n = 0, 1, 2....

However, these are not all simple poles. For example, applying the di�erence relation

G(z + 1, δ) = Γ ( z
δ
)G(z, 1), (2.144)

we �nd that 1/G(z, 1) has a simple pole at z = 0, a double pole at z = −1, a triple pole
at z = −2 and so on. If δ = 1/3, as we will use for a Mellin transform calculation in

chapter 3, we �nd that 1/G(z, 1/3) has simple poles at z = 0,−1/3,−2/3, double poles at
z = −1,−4/3,−5/3, triple poles at z = −2,−7/3,−8/3 and so on.
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�e behaviour of G(z, δ) for large z was investigated by Billingham and King [1997],

who showed that for ∣z∣ ≫ 1 and ∣arg(z/δ)∣ < π,
logG(z, δ) = 1

2δ
z2 log z − 1

δ
(3
4
+ 1

2
log δ) z2 − 1

2
(1
δ
+ 1) z log z

+ 1

2
( log δ

δ
+ 1

δ
+ log δ + 1 + log(2π)) z + ( δ

12
+ 1

4
+ 1

12δ
) log z

+ C(δ) +O (1
z
) ,

(2.145)

where C(δ) is an O(1) function of δ alone.

Finally we note that if z has positive real part and δ > 0, then Γ(z) and G(z, δ) can be

evaluated using the integral de�nitions

Γ(z) = ∫ ∞
0

tz−1e−tdt (2.146)

and

G(z, δ) = exp( ∫ ∞
0
{ e−δx − e−zx(1 − e−x)(1 − e−δx) − z e−δx

1 − e−δx
+(z − 1)( z

2δ
− 1) e−δx + e−x

1 − e−x } dxx ) .
(2.147)

2.5.5 Matching pole structure

We currently have

Φ∗(p, θ) = cos p(π − θ)Γ(p)G( 12 + p, 1)
G(p, 1) G(2 − p, 1)

G( 3
2
− p, 1)B(p) (2.148)

where the B(p) function to be found satis�es B(p + 1) = B(p). We require that Φ∗(p, θ)
has a simple pole at p = 0 and a double pole at p = −1, with no other singularities in

−1 < Re p < 0. Using the results of the previous section, we �nd that B(p) must have

simple zeroes at p = 0 and p = −1. B(p)may have a pole at p = −1/2, but must be regular

elsewhere in −1 < Re p < 0.
We set

B(p) = tan pπC(p), (2.149)

so that C(p+ 1) = C(p) and C(p) has no poles in −1 ≤ Re p ≤ 0. By repeated application
of the functional di�erence equation for C(p), we �nd that C(p) is an entire function.
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2.5.6 Far �eld behaviour

We have now arrived at the situation where

Φ∗(p, θ) = C(p)Γ(p)G( 12 + p, 1)G(2 − p, 1)
G(p, 1)G( 3

2
− p, 1) tan(πp) cos p(θ − π). (2.150)

We know that C(p) is an entire function that satis�es C(p + 1) = C(p). We need to

determine the behaviour of C(p) as ∣ Im(p)∣→∞.

If Φ∗(p, θ) is known, the inverse function Φ(r, θ) is given by

Φ(r, θ) = 1

2πi ∫
c+i∞

c−i∞
r−pΦ∗(p, θ)dp (2.151)

where the real constant c is chosen to satisfy 0 < c < 1/2, so that the inversion contour

is within the strip of analyticity of Φ∗(p, θ), and passes to the right of the singularity at

p = 0.
For this inversion integral to exist, the integrandmust be bounded as Im(p)→∞with

0 < Re p < 1/2. We are concerned with the asymptotic behaviour of this decay. If we can

show Φ∗(p, θ)/C(p) decays no faster than algebraically, then C(p)must grow no faster

than a polynomial for the integrand to remain bounded. By Liouville’s theorem, C(p)
would then be a polynomial. However, since the only periodic polynomial is constant,

we would have C(p) = const. Although determining the speed of algebraic decay of

Φ∗(p, θ) is not necessary to �x C(p), it will be useful in considering inversion contours.

We therefore consider terms up to O(log(p)) in log(Φ∗(p, θ)/C(p)).
We now use the asymptotic expansions from section 2.5.4 and let p = c + it with

0 < c < 1/2. As t →∞ we �nd that

Φ∗(p, θ) = O (C(p) exp [−tθ + (c − 1

2
) log t]) . (2.152)

We require that the integrand

r−pΦ∗(p, θ) (2.153)

is bounded as t →∞ for 0 ≤ θ ≤ π and r > 0. �us, regardless of the value of c, C(p)must

grow no faster than O(t1/2) as t →∞. Outside the strip of analyticity, C(p) is de�ned by

C(p + 1) = C(p), so C(p)must grow no faster than O(p1/2) in the whole complex plane.

We know that C(p) is entire and is bounded by a polynomial (in this case p1/2). Now by
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Liouville’s theorem, we know that C(p) is identically equal to some polynomial, but as

C(p) is also periodic, we must have C(p) constant, C(p) ≡ β, say. �e solution Φ∗(p, θ),
and equivalently Φ(r, θ), is now determined except for the value of the normalisation

constant β.

2.5.7 Expansion for small r

�e inversion integral is

Φ(r, θ) = 1

2πi ∫
c+i∞

c−i∞
r−pΦ∗(p, θ)dp, (2.154)

while the Mellin transform Φ∗(p, θ) decays as
Φ∗(p, θ) = O (exp [−tθ + (c − 1

2
) log t]) . (2.155)

For small r, we have log r < 0, and so r−c decays as c → −∞. �us the inversion integrand

decays exponentially as c → −∞, and the integral can be closed in the le� half plane. For

small r, Φ(r, θ) can be written as a sum of residues from the poles in the le� half plane.

Along the negative real axis, the only poles are at p = 0,−1,−2, ..., of order 1, 2, 3...
respectively. We can write the sum of these contributions as

Φ(r, θ) = ∞∑
n=0

1

n!

dn

dpn
[(p + n)n+1r−pΦ∗(p, θ)]

p=−n
, (2.156)

or more explicitly

Φ(r, θ) =
β
∞

∑
n=0

1

n!

dn

dpn
[(p + n)n+1r−pΓ(p)G( 12 + p, 1)G(2 − p, 1)

G(p, 1)G( 3
2
− p, 1) tan(πp) cos p(θ − π)]

p=−n

.

(2.157)

�e task of evaluating the general term of this sum is unappealing. However, we can

calculate the �rst few terms.

�e normalisation constant β can be determined from the �rst term in (2.157)

Φ(0, θ) = 1 = βG( 12 , 1)G(2, 1)
G( 3

2
, 1) lim

p→0
( pΓ(p) tan πp

G(p, 1) ) = βπ

Γ( 1
2
) . (2.158)

As Γ(1/2) =√π, we choose β = 1/√π to obtain Φ(0, θ) = 1.
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�e n = 1 contribution from the sum (2.157) can be split into two parts, according to

r dependence. We have

Φ(r, θ) ∼ 1 − r log r 1√
π

G(− 1
2
, 1)G(3, 1)

G( 5
2
, 1) cos(π − θ) lim

p→−1
[(p + 1)2Γ(p) tan πp

G(p, 1) ]
+ r 1√

π
lim
p→−1

d

dp
[(p + 1)2Γ(p) tan πp

G(p, 1) G( 1
2
+ p, 1)G(2 − p, 1)
G( 3

2
− p, 1) cos p(θ − π)]

+O(r2(log r)2)
(2.159)

which simpli�es to become

Φ(r, θ) ∼ 1 − r log r cos θ

π

+ r 1√
π
lim
p→−1

d

dp
[(p + 1)2Γ(p) tan πp

G(p, 1) G( 1
2
+ p, 1)G(2 − p, 1)
G( 3

2
− p, 1) cos p(θ − π)]

+O(r2(log r)2).
(2.160)

We can also split o� the θ dependence from the last term. �is gives

Φ(r, θ) ∼ 1 − r log r cos θ

π
+ r(θ − π) sin θ

π

− r 1√
π
cos θ lim

p→−1

d

dp
[(p + 1)2Γ(p) tan πp

G(p, 1) G( 1
2
+ p, 1)G(2 − p, 1)
G( 3

2
− p, 1) ]

+O(r2(log r)2).
(2.161)

�us we have an expansion for small r,

Φ(r, θ) ∼ 1 − r log r cos θ

π
+ r(θ − π) sin θ

π
+ Ar cos θ +O(r2(log r)2), (2.162)

where the constant A is de�ned by

A = − 1√
π
lim
p→−1

d

dp
[(p + 1)2Γ(p) tan πp

G(p, 1) G( 1
2
+ p, 1)G(2 − p, 1)
G( 3

2
− p, 1) ] . (2.163)

Regardless of the value of A, we �nd that this expansion satis�es our requirements so

far. It is harmonic. It meets the normalisation condition Φ(0, θ) = 1. Each term satis�es

Φθ = 0 on θ = π. �e condition Φθ = −rΦ on θ = 0 is met up to O(r).
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2.5.8 Expansion for large r

Ignoring whether the contour can validly be deformed in this way, let us consider, for

large r, the contribution from the poles in the right half plane. �ere are poles at p =
1/2, 3/2, 5/2, ..., of order 1, 2, 3, ... respectively. If there is no contribution from the

contour at p =∞, then

Φ(r, θ) = − ∞∑
n=0

1

n!

dn

dpn
[(p − n − 1

2
)n+1 r−pΦ∗(p, θ)]

p=n+
1
2

, (2.164)

where

Φ∗(p, θ) = − 1√
π
Γ(p)G( 12 + p, 1)G(2 − p, 1)

G(p, 1)G( 3
2
− p, 1) tan(πp) cos p(θ − π). (2.165)

�e n = 0 term refers to a simple pole at p = 1/2, which contributes

1√
π
r−1/2 sin(θ

2
) , (2.166)

which is the leading order part of the ‘algebraic’ far �eld, as predicted by the Wiener-Hopf

method in equation (2.115).

�e n = 1 term again refers to a double pole, this time at p = 3/2. �is again leads to

three types of behaviour with r and θ. We have

Φ(r, θ) ∼ 1√
π
r−1/2 sin(θ

2
) − r−3/2 log r√

π
sin(3θ

2
) 1

2π

− π − θ√
π

r−3/2 cos(3θ
2
) 1

2π

+ 1√
π
r−3/2 sin(3θ

2
) d

dp
[(p − 3

2
)2 Γ(p)G( 12 + p, 1)G(2 − p, 1)

G(p, 1)G( 3
2
− p, 1) tan(πp)]

p=3/2

+O(r−5/2(log(r))2).
(2.167)

�is function is analytic and satis�es Φθ = 0 on θ = π. We expect constant-amplitude

waves to arise on the free surface at θ = 0, which will not arise from this sum-of-residues

expansion. �e waves on θ = 0 must arise from a contribution from the contour at in�nity

preventing deformation onto this contour. We will not investigate this further here.
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2.5.9 Numerical evaluation of the Mellin transform solution

With the normalisation constant β known we have

Φ(r, θ) = 1

2πi ∫
c+i∞

c−i∞
r−pΦ∗(p, θ)dp, (2.168)

where

Φ∗(p, θ) = 1√
π
Γ(p)G( 12 + p, 1)G(2 − p, 1)

G(p, 1)G( 3
2
− p, 1) tan(πp) cos p(θ − π). (2.169)

We can use symmetry to write the inversion integral as

Φ(r, θ) = 1

π ∫
∞

0
Re{r−(c+it)Φ∗(c + it, θ)}dt (2.170)

�e integrand decays exponentially as t →∞ if 0 < θ ≤ π, but on θ = 0 we have as t →∞
r−(c+it)Φ∗(c + it, θ) = O (tc−1/2) ,

where we take c �xed and 0 < c < 1/2. �e integrand is oscillatory, so Φ(r, θ) as de�ned
by (2.170) exists even for θ = 0, but the convergence is very slow. Figure 2.6 shows plots
of Φ(r, θ) calculated from (2.170) with c = 1/4 for various values of θ > 0.

For θ = 0 it is helpful to deform the contour so that the amplitude of the integrand

decays faster with t. Taking c = 1/4 we have
Φ(r, θ) = 1

2πi ∫
1/4+i∞

1/4−i∞
r−pΦ∗(p, θ)dp. (2.171)

We can move the path of integration to c = −3/4, but must take into account the pole at

p = 0. �is gives

Φ(r, θ) = 1 + 1

2πi ∫
−3/4+i∞

−3/4−i∞
r−pΦ∗(p, θ)dp

= 1 + r3/4

π ∫
∞

0
Re{r−itΦ∗(− 3

4
+ it, θ)}dt. (2.172)

We have

Φ∗(− 3
4
+ it, θ) = A(− 3

4
+ it) cos [(− 3

4
+ it)(θ − π)] (2.173)

and

A(− 3
4
+ it) = A( 1

4
+ it)(− 3

4
+ it) tan π( 1

4
+ it) . (2.174)
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�is gives us

Φ(r, θ) = 1 − r3/4

π ∫
∞

0
Re{r−itA( 14 + it) cos π( 14 + it)(− 3

4
+ it) tan π( 1

4
+ it) } dt (2.175)

�is expression is useful as the integrand now decays as O(t−5/4) rather than O(t−1/4).
Figure 2.7 shows Φ(r, 0) calculated using (2.175).

2.6 Conclusion

We have found an exact solution to the dock problem described in section 2.1 using two

di�erent methods, the �rst based on the Wiener-Hopf technique with Fourier transforms,

and the second using Mellin transforms. �e methods that we used have a number of

essential similarities. We take a transform of the problem, to obtain an equation that

is valid in some strip of the complex transform space. We use analytic continuation to

extend the equation beyond this strip to the entire complex plane. We use information

about the behaviour of Φ(r, θ) for small and large r to determine certain boundedness

properties of the transformed functions. Eventually, we use Liouville’s theorem to replace

an unknown entire function with a constant. We write down the transformed functions

in terms of these constants, and invert the transforms to obtain Φ.

�e Wiener-Hopf method required us to modify our problem to obtain a strip of

analyticity of �nite width, by introducing δ. We had to solve the problem for δ > 0 before
considering what happened when δ → 0. However, we did eventually obtain a solution in

compact form. We found for x > 0 that
ϕ(x , y) =√2e−y sin(x + 3π

8
)

− 1

π ∫
∞

0

e−xt(t cos yt − sin yt)
t1/2(1 + t2)5/4 exp( 1

π ∫
t

0

log s

1 + s2ds) dt,
(2.176)

and for x < 0 that
ϕ(x , y) = 1

π ∫
∞

0

ext cos yt

t1/2(1 + t2)3/4 exp(− 1π ∫
t

0

log s

1 + s2ds) dt. (2.177)

�e calculation using the Mellin transform method was in some ways more straight-

forward – we simply followed the standard routine for such problems. However, the form

of solution we were able to obtain is more di�cult to understand. We found that

Φ(r, θ) = 1

π ∫
∞

0
Re{r−(c+it)Φ∗(c + it, θ)}dt (2.178)
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r

Φ
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1.5

Figure 2.6: �e dock problem solution Φ(r, θ) for θ = π/4 (blue), θ = π/2 (green), θ = 3π/4
(red), θ = π (cyan) calculated by evaluating (2.170) numerically. �e integrand decays

exponentially for θ > 0, and so we obtain smooth results for these integrals. We see

that Φ(r, θ) → 1 as r → 0 for θ > 0. We cannot calculate Φ(0, θ) directly from (2.170).

r

Φ

0 5 10 15 20
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Figure 2.7: �e dock problem solution Φ on the free-surface θ = 0. Φ(r, 0) is calculated by

evaluating (2.175) numerically, with c = −3/4 so that the integrand decays as t−5/4.
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where 0 < c < 1/2 and
Φ∗(p, θ) = 1√

π
Γ(p)G( 12 + p, 1)G(2 − p, 1)

G(p, 1)G( 3
2
− p, 1) tan(πp) cos p(θ − π), (2.179)

and so our solution is given in terms of integrals of Gamma functions and double Gamma

functions. �e Mellin transform method does allow us to determine an asymptotic

expansion for Φ(r, θ) for small and large r, though obtaining subsequent terms in the

expansion requires di�erentiation of double Gamma functions. However, it is di�cult to

distinguish the oscillatory part of Φ(r, θ) in the Mellin transform solution, which would

be required, for example, to obtain the amplitude and phase of the free-surface wave.
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Surface-tension-driven �ow in a

half-plane

We study the motion of a fat wedge of inviscid �uid, of angle π − є with є≪ 1, in contact

with a rigid wall along one edge. Initially the �uid is at rest. When t = 0, the contact
angle at the tip of the wedge is changed to π − λє. �e resulting �ow and motion of the

contact point are determined by a balance of surface tension and inertia. As there are no

geometric lengthscales imposed, we obtain a similarity solution, with lengths scalings as

t2/3. When λ = O(1), we can linearise the domain to a half plane, with the free surface

displacement coupled to the velocity potential via linear boundary conditions. We solve

the leading order BVP numerically, with the aid of the boundary integral method, and

also present asymptotic solutions for λ≫ 1 and ∣λ − 1∣ ≪ 1. For λ≫ 1, the asymptotic

solution can be constructed in terms of an inner and an outer region, with the phase and

amplitude of the capillary wave on the free surface set in the inner region via the solution

to the dock problem. �e decay of the mean free surface displacement matches into the

outer region to determine the relationship between λ and the contact point position xc.

For ∣λ − 1∣ ≪ 1, the leading order problem can be solved exactly using Mellin transforms.

3.1 Introduction

Keller and Miksis [1983] �rst drew attention to inviscid, surface-tension driven �ow in

wedges. In their model problem, a �uid wedge of angle 2α is at rest until time t = 0,

when the angle at the tip is suddenly changed to 2β and then remains constant. �is

disruption drives a recoiling �ow in the �uid, with the free surface and contact point
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λεε

y

ys�x , t�
x

xc�t� Void

Fluid

Rigid Wall

Figure 3.1: Initially the free surface is given by the dashed line, and the �uid occupies a fat wedge.

When t = 0, the contact angle at the tip of the wedge is suddenly changed from π − є to
π − λє, and the �uid recoils. �e position of the free surface is given by y = ys(x , t)
and position of the contact point is x = xc(t).

also displaced. With the �ow determined by a balance of surface tension and inertia, and

problem geometry speci�ed by angles, a self-similar solution is obtained with lengths

scaling as t2/3.

For arbitrary α and β, the equations derived by Keller & Miksis yield nonlinear PDEs

with the �ow domain to be determined as part of the solution. Lawrie [1990] considered

a linear system for ∣α − β∣ ≪ 1 on a wedge shaped domain, and showed that an analytic

solution based on Mellin transforms exists when α = pπ/2q with p odd. However, the

linearisation fails near the contact point, and so the displacement of the contact point

cannot be incorporated into the leading order equations. King [1991] subsequently showed

that the leading order �ow for the slender wedge case, α = є, β = λє, is nonlinear, and can

be described by a pair of coupled ODEs for the potential in the wedge and the free surface

position. Billingham [2006] used Kuzmak’s method to solve this sytemwhen 1≪ λ≪ є−1

and found that the displacement of the contact point scales as xc = O(є1/3λ2/3).
Billingham and King [2005] considered the inverted problem with α = π − є and

β = π/2, so that �uid surrounds a slender void. �is corresponds to a large change in

contact angle. �ey found that no solution exists for α < 2.87○ because large amplitude

capillary waves on the free surface cause it to touch the rigid wall. If the void is replaced

by a low density inviscid �uid, the �ow pinches o� for a slightly larger range of α, as the

fast �ow in the slender wedge sucks the interface down.
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In this chapter, we consider the case α = π − є, β = π − λє, as shown in �gure 3.1. �is

is equivalent to a fat wedge of �uid coalescing with a rigid wall, with the new contact

angle given by π − λє. In the limit є → 0 with λ = O(1), we obtain a linear half plane

problem, which we solve numerically using a boundary integral method in section 3.3

�e simpli�ed �ow domain also allows us to �nd asymptotic solutions for ∣λ − 1∣≪ 1 and

for 1≪ λ≪ є−1.

For ∣λ − 1∣ ≪ 1 we obtain a linear parameter-free system similar to those obtained

by Lawrie [1990], which we solve exactly using Mellin transforms. For 1≪ λ≪ є−1, the

displacement of the contact point xc becomes important at leading order, and leads to a

matched asymptotic structure, with a dock problem in the inner region. For large λ, the

contact point displacement is related to λ by xc = O(λ2/9).
�e amplitude of the capillary waves in our problem grows with λ. We �nd that the

free surface touches the wall when λ = λc ≈ 31.9, and no solution exists for λ > λc.

3.2 Problem formulation

3.2.1 Governing equations

�e �ow is at rest when t = 0 and so is initially irrotational. As the �uid is inviscid, the

�ow remains irrotational for all time. We may therefore make use of a velocity potential

ϕ to write the �uid velocity as u = ∇ϕ. �e mass conservation condition can then be

expressed as

∇2ϕ = 0 (3.1a)

within the �uid.

For t > 0 the conditions at the contact point are
ys = 0 and

dys
dx
= tan λє at x = xc(t), (3.1b)

where ys(x , t) is the position of the free surface. Away from the contact point the �ow

must match onto its initial state of rest, so

ys ∼ x tan є as x →∞ (3.1c)

and

ϕ → 0 as r →∞. (3.1d)
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Along the interface we have dynamic and kinematic boundary conditions. �e inter-

face itself is a streamline so the Bernoulli condition gives

∂ϕ

∂t
+ 1

2
∣∇ϕ∣2 + σ

ρ
κ = 0 on y = ys(x , t) for x > xc(t). (3.1e)

Here κ is the curvature of the interface, given by

κ = y′′s(1 + y′2s )3/2 ,
where y′s = ∂ys/∂x. �e kinematic condition is

∂ϕ

∂y
= ∂ys

∂t
+ ∂ϕ

∂x

∂ys
∂x

on y = ys(x , t) for x > xc(t). (3.1f)

Finally, at all times there must be no normal �ow through the rigid wall so that

∂ϕ

∂y
= 0 on y = 0 for x < xc(t). (3.1g)

3.2.2 Similarity solution

�ere is no lengthscale imposed by the geometry of this problem. �e only dimensional

physical parameters on which our solution may depend are the density ρ and the coe�-

cient of surface tension σ . To form a lengthscale, we must introduce the time t since the

change in contact angle, and so we obtain a typical lengthscale

L ≡ (σ
ρ
)1/3 t2/3.

We are now able to remove the time dependence from the problem by using the

similarity variables de�ned by

ys = Lȳs , xc = Lx̄c , x = Lx̄ , y = Lȳ, ϕ = L2

t
ϕ̄.

Equations (3.1a) to (3.1d) and (3.1g) are unchanged under the transformation to the new

variables, except that x̄c = xc(t)/L is now a constant to be determined. However, the

interface conditions (3.1e) and (3.1f) become

1

3
ϕ̄ − 2

3
(x̄ ∂ϕ̄

∂x̄
+ ȳ ∂ϕ̄

∂ȳ
) + 1

2
∣∇ϕ̄∣2 + ȳ′′s(1 + ȳ′2s )3/2 = 0 on ȳ = ȳs(x) for x̄ > x̄c

(3.2)

and
∂ϕ̄

∂ȳ
+ 2

3
x̄ ȳ′s − 2

3
ȳs − ∂ϕ̄

∂x̄
ȳ′s = 0 on ȳ = ȳs(x) for x̄ > x̄c . (3.3)
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3.2.3 Linearisation for є≪ 1 with λ = O(1)
We now consider the behaviour of our system as є → 0, where the initial wedge angle is

given by π − є. A corresponding problem for the slender wedge of angle є was considered

by King [1991]. While King was able to take advantage of the restriction of scale in the

y direction and thus reduce the leading order problem to a pair of coupled nonlinear

ordinary di�erential equations, we have no geometrically imposed lengthscale in the x

or y direction. Instead we have from (3.1a) that the scales for variation in the x and y

directions must balance, and with the only other scale for variation given by x̄c, we put

∂x̄ , ∂ ȳ = O(є−a) and x̄c = O(єa). From (3.1b) we have ( ȳs)x̄ = O(єa+1), while evaluating
(3.3) at the contact point gives ϕ̄ = O(є2a+1). Finally, considering the balance in (3.2) at

the contact point gives a = 0, and so we obtain ȳs = O(є), ϕ̄ = O(є) and x̄ , ȳ, x̄c = O(1)
as є → 0.

We de�ne rescaled variables for ȳs and ϕ̄ and also �nd it convenient to shi� the origin

to x̄ = x̄c, thus we shall put
ȳs = єH, ϕ̄ = єΦ, (x , y, xc) = (x̄ − x̄c , ȳ, x̄c).

As we let є → 0 with λ = O(1), at leading order we obtain a linear system for H, Φ and xc ,

given by

∇2Φ = 0 for y > 0, (3.4a)

1

3
Φ − 2

3
(x + xc)∂Φ

∂x
+Hxx = 0 on y = 0 for x > 0, (3.4b)

∂Φ

∂y
+ 2

3
(x + xc)Hx − 2

3
H = 0 on y = 0 for x > 0, (3.4c)

∂Φ

∂y
= 0 on y = 0 for x < 0, (3.4d)

H = 0 and Hx = λ at x = 0, (3.4e)

H ∼ x + xc as x →∞, (3.4f)

Φ → 0 as x2 + y2 →∞. (3.4g)

�ese equations are linear, with the only inhomogeneity coming from the boundary

condition (3.4f). We are now solving for Φ on a known domain, the half plane y > 0,
although we still need to determine the linearised free surface displacement H as part of

the solution.
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3.3 Numerical solution

�e equations derived in the previous section give a partial di�erential equation for

Φ(x , y) in y ≥ 0, with conditions on Φ or its normal derivatives on the boundary of the

half plane. We could solve this system numerically by truncating the half plane y ≥ 0 at
some distance R from the origin, discretising this two dimensional domain and explicitly

solving for H and Φ. However, we are most interested in the solution near y = 0 for x ≥ 0.
We can use a Green’s function method to reduce the system to an ordinary di�erential

equation and an integral equation along the half-line y = 0, x ≥ 0.
3.3.1 Derivation of integral equation

In two dimensions the Green’s function G(x, x′) = ln ∣x − x′∣/2π has the property

∇2G(x, x′) = δ(x − x′),
where δ is the Dirac delta function. We can use the Green’s function to write the solution

to (3.4a) and (3.4g) as a boundary integral equation, given by

Φ(x , 0) = 1

π ∫
∞

−∞
ln ∣x − x′∣∂Φ

∂y
(x′, 0)dx′.

Upon substituting the form of Φy from (3.4c) and (3.4d) we obtain

Φ(x , 0) = 2

3π ∫
∞

0
ln ∣x − x′∣(H(x′) − (x′ + xc)Hx(x′))dx′. (3.5a)

�is integral equation, together with the ODE

1

3
Φ − 2

3
(x + xc)Φx +Hxx = 0, (3.5b)

the boundary conditions at x = 0
H(0) = 0, Hx(0) = λ, (3.5c)

and the condition that

Φ → 0 and H = x + xc + o(1) as x →∞, (3.5d)

gives us a set of equations for Φ(x , 0) and H(x) in x ≥ 0.

71



Chapter 3: Surface-tension-driven flow in a half-plane

x

H

x

Φ

0 2 4 6 8 10

0 1 2 3 4 5 6 7 8 9 10

�100
10

20

0

5

10

Figure 3.2: Numerically calculated boundary integral solutions for H and Φ for xc = 1, 2, 3 (blue,
green, red). �e corresponding values of λ are 2.89, 9.35 and 34.1.
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Figure 3.3: Boundary integral solutions for H and Φ at xc = −1,−2,−3 (blue, green, red). �e

corresponding values of λ are 0.27,−0.079,−0.047.
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3.3.2 Discretisation of the boundary integral system

We can discretise equations (3.5a) to (3.5d) to give a numerical solution for H and Φ.

Treating λ as an unknown function of xc allows the equations (3.5a) to (3.5d) to be

considered as a linear system in H, Φ and λ, with coe�cients depending nonlinearly on

xc. We discretise the derivatives in (3.5a) and (3.5b) using four point �nite di�erence

schemes to avoid grid sized oscillations that emerge using central di�erencing. To evaluate

the integral in (3.5a), we assume that H(x) − (x + xc)Hx(x) varies linearly between grid

points. �is linear system gives a dense matrix equation of size 2N + 1 that we invert to
�nd H, Φ and λ.

3.3.3 Numerical results

�e boundary integral solutions shown in �gures 3.2 and 3.3 display quite di�erent

behaviour for positive and negative xc. In �gure 3.2, as xc is increased, the solution is

dominated by capillary waves whose amplitude and frequency grows with xc. We �nd

numerically that the free surface touches the rigid wall when λ = λmax = 37.8, which
corresponds to xc = 3.09. We can �nd a solution to the system (3.4) for λ > λmax , but the

free surface intersects the rigid wall and so the solution is unphysical. Similarly, there is

no physical solution for λ < 0, which corresponds to xc ≈ −1.7.
Figure 3.4 is a logarithmic plot of λ against xc, which suggests a scaling relationship

between λ and xc for large positive xc . In section 3.4 we construct an asymptotic solution

to the system (3.4) for large xc, and hence λ≫ 1.

For xc = 0, we know that an exact solution is given by H = x, λ = 1 and Φ = 0. In
section 3.5 we �nd an asymptotic solution to (3.4) for small xc by linearising about this

exact solution. Figure 3.4 also shows λ as calculated by the boundary integral method for

−2 < xc < 2.
3.4 Solution for large xc

3.4.1 Scaling

As λ increases, we observe from the numerical results that the wavelength of the capillary

waves decreases. We look for a scaling where H and Φ vary on a lengthscale that is much

shorter than xc. From (3.4a), the lengthscales in the x and y directions must balance,
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Figure 3.4: Comparison of numerical results from boundary integral calculations (solid line) with

asymptotic results (dashed) for λ as a function of xc for small and large xc given by

(3.34) and (3.69) respectively.
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and so we obtain from (3.4b), (3.4c) and (3.4e) that ∂x , ∂y = O(x2c ), H = O(λx−2c ) and
Φ = O(λx−1c ).

We rescale by letting

H = λ

x2c
Ĥ, Φ = λ

xc
Φ̂, (x , y) = ( x̂

x2c
,
ŷ

x2c
) .

For convenience we de�ne є̃ = x−3c and λ = λ∗x3c . We require Ĥ, Φ̂ to be O(1) as є̃ → 0.

Note that we have not yet determined how λ∗ scales with xc.

In terms of these rescaled variables we now wish to solve

∇̂2Φ̂ = 0 for ŷ > 0, (3.6a)

1

3
є̃Φ̂ − 2

3
(1 + є̃x̂)∂Φ̂

∂x̂
+ d2Ĥ

dx̂2
= 0 on ŷ = 0 when x̂ > 0, (3.6b)

∂Φ̂

∂ŷ
+ 2

3
(1 + є̃x̂)dĤ

dx̂
− 2

3
є̃Ĥ = 0 on ŷ = 0 when x̂ > 0, (3.6c)

∂Φ̂

∂ŷ
= 0 on ŷ = 0 when x̂ < 0, (3.6d)

Ĥ = 0 and
dĤ

dx̂
= 1 at x̂ = 0, (3.6e)

Ĥ ∼ 1 + є̃x̂
λ∗

as x̂ →∞, (3.6f)

Φ̂ → 0 as x̂2 + ŷ2 →∞. (3.6g)

3.4.2 Inner problem

We consider a matched asymptotic expansion to the system (3.6) in the limit є̃ ≡ x−3c → 0.

�ere is clearly a non-uniformity in the equations (3.6b), (3.6c) and (3.6f) when x̂ =
O(є̃−1) and this outer region will be discussed in section 3.4.3. However, in the inner

region, we take x̂ = O(1) and expand Ĥ and Φ̂ as

Ĥ = Ĥ0 + є̃Ĥ1 +O(є̃2), Φ̂ = Φ̂0 + є̃Φ̂1 +O(є̃2).
At leading order when x̂ = O(1), we �nd that Ĥ0 and Φ̂0 satisfy

∇̂2Φ̂0 = 0 for ŷ > 0, (3.7a)
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−2
3

∂Φ̂0

∂x̂
+ d2Ĥ0

dx̂2
= 0 on ŷ = 0 when x̂ > 0, (3.7b)

∂Φ̂0

∂ŷ
+ 2

3

dĤ0

dx̂
= 0 on ŷ = 0 when x̂ > 0, (3.7c)

∂Φ̂0

∂ŷ
= 0 on ŷ = 0 when x̂ < 0, (3.7d)

Ĥ0 = 0 and
dĤ0

dx̂
= 1 at x̂ = 0, (3.7e)

We integrate (3.7b) to give

2

3
Φ̂0 = dĤ0

dx̂
+M0 on ŷ = 0 when x̂ > 0, (3.8)

where M0 is an O(1) constant of integration. �is can then be substituted into (3.7c) to

give

∂Φ̂0

∂ŷ
+ 4

9
Φ̂0 = 2

3
M0 on ŷ = 0 when x̂ > 0. (3.9)

We now write the general solution to (3.7a), (3.9) and (3.7d) as

Φ̂0(x̂ , ŷ) = 3

2
ϕ (4

9
x̂ ,

4

9
ŷ) + 3

2
M0 (3.10)

where ϕ(x , y) satis�es the following:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2ϕ = 0 for y > 0,
∂ϕ

∂y
= −ϕ on y = 0 for x > 0,

∂ϕ

∂y
= 0 on y = 0 for x < 0,

ϕ(0, 0) = 1.

(3.11)

Comparing (3.10) to (3.8), (3.7e) and the normalisation condition ϕ(0, 0) = 1, we see that
Ĥ is given in terms of ϕ by

Ĥ0(x̂) = ∫ x̂

0
ϕ (4

9
x̂′, 0) dx̂′. (3.12)

�e system of equations (3.11) are exactly those for the dock problem with normal

incidence, which was �rst solved by Friedrichs and Lewy [1948]. Solution of the system

(3.11) by use of theWiener-Hopfmethod, and byMellin transforms, is discussed in chapter
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2. �e solution is plotted in �gures 2.5(a) and 2.5(b). For x > 0, ϕ(x , y) is given by

ϕ(x , y) =√2e−y sin(x + 3π

8
)

− 1

π ∫
∞

0

e−xu(u cos yu − sin yu)
u1/2(1 + u2)5/4 exp( 1

π ∫
u

0

log s

1 + s2ds) du,
(3.13)

while ϕ(x , y) is given for x < 0 by
ϕ(x , y) = 1

π ∫
∞

0

exu cos yu

u1/2(1 + u2)3/4 exp(− 1π ∫
u

0

log s

1 + s2ds) du. (3.14)

�e function ϕ(x , y) is continuous along the line x = 0. �e surface wave is exponentially

small as y →∞, and contributes to ϕ(x , y) only for x > 0, and so the line x = 0 is a Stokes
line for the surface wave.

�e solution to the inner problem is given in terms of ϕ by (3.10) and (3.12). �us we

integrate the expression for ϕ(x , y) to �nd Ĥ0. �is gives us

Ĥ0 = 9

4
(−√2 cos(4x̂

9
+ 3π

8
) + 1

π ∫
∞

0

e−4x̂u/9

u1/2(1 + u2)5/4 exp( 1π ∫
u

0

log s

1 + s2ds) du) .
(3.15)

�ere is no constant term in this expression because the constant of integration exactly

cancels, using

1

π ∫
∞

0

1

u1/2(1 + u2)5/4 exp( 1π ∫
u

0

log s

1 + s2ds) du =
√
2 cos(3π

8
) . (3.16)

�is is a direct consequence of the no-net-�ux condition on ϕ(x , y), and can be veri�ed

numerically.

Now that ϕ(x , y) is known explicitly, we can �nd the leading order behaviour of Φ̂0

and Ĥ0 as r̂ →∞. As x2 + y2 →∞, the integrals in both (3.13) and (3.14) are dominated

by the contribution from near u = 0, and at leading order we obtain

Φ̂0(r̂, θ) ∼ 3

2
M0 + 9

4

r̂−1/2√
π

sin
θ

2
+
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3
2

√
2e−4 ŷ/9 sin ( 4x̂

9
+ 3π

8
) for x̂ > 0,

0 for x̂ < 0.
(3.17)

At leading order for large x̂, the corresponding expression for Ĥ0 is

Ĥ0(x̂) ∼ 9

4
(−√2 cos(4x̂

9
+ 3π

8
) + 3

2
√
π

1

x̂1/2
) . (3.18)

�is outer limit of the inner problem gives the leading order matching condition.
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3.4.3 Outer problem

A non-uniformity occurs in the sytem (3.6a) to (3.6f) when x̂ = O(є̃−1). We therefore

rescale to an outer region with new O(1) variables X and Y where X = є̃x̂ and Y = є̃ ŷ.
Retaining only the outer boundary conditions this time, we �nd

∇2Φ̂ = 0 for Y > 0, (3.19a)

1

3
Φ̂ − 2

3
(1 + X)∂Φ̂

∂X
+ є̃ d2Ĥ

dX2
= 0 on Y = 0 when X > 0, (3.19b)

∂Φ̂

∂Y
+ 2

3
(1 + X)dĤ

dX
− 2

3
Ĥ = 0 on Y = 0 when X > 0, (3.19c)

∂Φ̂

∂Y
= 0 on Y = 0 when X < 0, (3.19d)

Ĥ ∼ 1 + X
λ∗

as X →∞, (3.19e)

Φ̂ → 0 as R →∞. (3.19f)

As X → 0 we must match the outer solution with the outer limit of the inner solution,

which is given by

Φ̂0(R, θ) ∼ 3

2
M0 + 9

4

є̃1/2

R1/2
√
π
sin

θ

2
+
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3
2

√
2e−4Y/9є̃ sin ( 4X

9є̃ + 3π
8
) , X > 0,

0, X < 0,
(3.20)

and

Ĥ0(X) ∼ 9

4
(−√2 cos(4X

9є̃
+ 3π

8
) + 3

2
√
π

є̃1/2

X1/2
) . (3.21)

�ese include the O(1) constant termM0 in Φ̂, O(1) oscillatory terms in both Ĥ and

Φ̂ and also O(є̃1/2) algebraic terms. Based on our understanding of the outer limit of the

inner problem, we expand Φ̂ and Ĥ in the outer �eld as

Φ̂ = Φ̄osc + Φ̄0 + є̃1/2Φ̄1 + o(є̃1/2), Ĥ = H̄osc + H̄0 + є̃1/2H̄1 + o(є̃1/2). (3.22)

�e �rst term in each expansion is oscillatory in X, while Φ̄0, H̄0, Φ̄1 and H̄1 are all O(1)
algebraic functions of X and Y . As the equations are linear, we can consider algebraic

and oscillatory terms separately. We begin with the algebraic terms.
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At O(1), (3.19b) gives
1

3
Φ̄0 − 2

3
(1 + X)∂Φ̄0

∂X
= 0 on Y = 0 when X > 0. (3.23)

If Φ̄0 is non-zero along the half line X > 0, Y = 0, then to satisfy this boundary condition

we must have

Φ̄0 ∝ (1 + X)1/2.
However, this grows as X →∞, thus violating (3.19f), and so Φ̄0 must vanish along the

line X > 0, Y = 0. Φ̄0 must also decay as R →∞ but be bounded as R → 0 to meet the

matching condition (3.20) at O(1), and so we conclude that Φ̄0 = 0 and hence M0 = 0.
With Φ̄0 = 0, taking (3.19c) at O(1) now yields

2

3
(1 + X)dH̄0

dX
− 2

3
H̄0 = 0, (3.24)

which has general solution

H̄0 = N0(1 + X).
�en as X → 0, we have H̄0 → N0, but there are no O(1) constant terms in the outer limit

of the inner expansion for Ĥ, and so we must have N0 = 0 and H̄0 = 0.
With both Φ̄0 and H̄0 now zero, the remaining terms in our outer expansions are

Φ̂ = Φ̄osc + є̃1/2Φ̄1 + o(є̃1/2), Ĥ = H̄osc + є̃1/2H̄1 + o(є̃1/2). (3.25)

�ese should match the oscillatory and algebraic components of the inner �eld.

We now consider the algebraic part of (3.19b) at O(є̃1/2). �is yields

1

3
Φ̄1 − 2

3
(1 + X)∂Φ̄1

∂X
= 0 on Y = 0 when X > 0. (3.26)

and following the same argument as before, to avoid growth as X → ∞ we must have

Φ̄1(X , 0) = 0 for X > 0. �en Φ̄1 satis�es, in terms of polar coordinates (R, θ),
∇2Φ̄1 = 0 in 0 ≤ θ ≤ π,

Φ̄1 = 0 on θ = 0
and

∂Φ̄1

∂θ
= 0 on θ = π,

80



Chapter 3: Surface-tension-driven flow in a half-plane

while the matching condition is

Φ̄1 ∼ 9

4

1

R1/2
√
π
sin

θ

2
as R → 0.

We can solve this system exactly by putting

Φ̄1 = 9

4

1

R1/2
√
π
sin

θ

2
. (3.27)

We next consider (3.19c) at O(є̃1/2), which gives

∂Φ̄1

∂Y
+ 2

3
(1 + X)dH̄1

dX
− 2

3
H̄1 = 0, X > 0, Y = 0. (3.28)

With Φ̄1 given by (3.27), we now have an ordinary di�erential equation for H̄1. �at is,

9

8
√
π

1

X3/2
+ 2

3
(1 + X)dH̄1

dX
− 2

3
H̄1 = 0 on Y = 0 when X > 0. (3.29)

�e solution of this equation is

H̄1 = A1(1 + X) + 81

16
√
π
(√X + (1 + X) arctan√X) + 27

8
√
π

1√
X
, (3.30)

where A1 is an arbitrary constant. �e matching condition on H̄1 is given from (3.21) by

H̄1(X) ∼ 27

8
√
π

1

X1/2
as X → 0.

and so we must have A1 = 0.
We can determine λ∗ at leading order by considering the large X behaviour of (3.30)

with A1 = 0. As X →∞ we have

H̄1 = 81
√
π

32
(1 + X) +O(X−3/2). (3.31)

and so at leading order as є̃ → 0 and X →∞, we have

Ĥ ∼ є̃1/281
√
π

32
(1 + X). (3.32)

Comparing with (3.19e) we �nd

λ∗ ∼ є̃−1/2 32

81
√
π

as є̃ → 0 (3.33)

and so at leading order for large xc we �nd

λ ∼ x9/2c

32

81
√
π

as xc →∞. (3.34)

�is asymptotic result is compared to the boundary integral solution for λ in �gure 3.4.
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Chapter 3: Surface-tension-driven flow in a half-plane

3.4.4 Capillary waves

Although λ∗ is determined at leading order by the behaviour of the algebraic part of Ĥ

and Φ̂, the capillary waves make a distinctive contribution to Ĥ and Φ̂ along the half line

Y = 0, X > 0. We therefore wish to determine the amplitude and phase of these waves.

Self-similar capillary waves on the surface of inviscid �uid wedges were initially

studied by Keller and Miksis [1983]. �ey used a WKB method to �nd solutions to the

linearised system, and found that at large distance from the contact point, the phase of

the interface displacement grows as 4x3/27 and the amplitude decays as x−7/2. For our

large-λ analysis, we will �nd that the capillary waves in the outer region display exactly

this behaviour of amplitude and phase. For general wedge angles, the movement of the

contact line cannot be described by a linear perturbation of the geometry. However, our

half-plane problem allows the contact point to move freely without disturbing the leading

order �ow domain, and so we are able to determine the initial amplitude and phase of the

wave by matching to the inner region solution.

We are looking for oscillatory terms in Φ̃ and H̃, which we will denote by

Φ̄osc = e f (X ,Y)/є̃ , H̄osc = e g(X)/є̃ .
�e boundary conditions are that Φ̄osc and H̄osc both vanish as R →∞, and that to leading

order in є̃ each also matches the oscillatory part of the inner expansion as X → 0. In

terms of f (X ,Y), the Laplace equation (3.19a) becomes

f 2X
є̃2
+ f 2Y
є̃2
+ 1

є̃
∇2 f = 0. (3.35)

For small є̃ we expand f as

f = f0 + є̃ f1 + є̃2 f2 +O(є̃3) (3.36)

and so we have from (3.35) at leading order

f 20X + f 20Y = 0,
which has solution f0X = ±i f0Y . If f0 satis�es this equation, then f0 also identically satis�es∇2 f0 = 0, and so at next order from (3.35) we have

f0X f1X + f0Y f1Y = 0,
82



Chapter 3: Surface-tension-driven flow in a half-plane

and so f1 satis�es f1X = ±i f1Y with the same choice of sign as for f0. We �nd that at every

order ∇2 f = 0, and so (3.35) is replaced by

f 2X + f 2Y = 0,
which has exact solution

fY = ±i fX .
�is holds at every order, and the same choice of sign must be taken at each order. We

conclude that in this WKB analysis we must have

(Φ̄osc)Y = ±i(Φ̄osc)X .
As a consequence of this relationship, the boundary conditions (3.19b) and (3.19c)

become two coupled ordinary di�erential equations for Φ̄osc(X , 0) and H̄osc along the

half line X > 0. We have:

є̃(H̄osc)XX − 2

3
(1 + X)(Φ̄osc)X + 1

3
Φ̄osc = 0 (3.37)

and

±i(̄Φosc)X + 2

3
(1 + X)(H̄osc)X − 2

3
H̄osc = 0. (3.38)

We can eliminate H̄osc between these (3.37) and (3.38) to obtain

±iє̃(Φ̄osc)XX + 4

9
(1 + X)2(Φ̄osc)X − 2

9
(1 + X)Φ̄osc = 0.

Now letting Φ̄osc = e f /є̃, we have

±iє̃ ( f 2X
є̃2
+ fXX

є̃
) + 4

9
(1 + X)2 fX

є̃
− 2

9
(1 + X) = 0. (3.39)

Using the expansion (3.36), we �nd at leading order in (3.39) that

±i f 20X + 4

9
(1 + X)2 f0X = 0,

which has solution

f0 = ±i 4
27
(1 + X)3.

We neglect additive constants in f as these correspond to multiplying Φosc by a constant

amplitude.
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At next order in (3.39), we have that

±i(2 f0X f1X + f0XX) + 4

9
(1 + X)2 f1X − 2

9
(1 + X) = 0,

from which we �nd

f1 = −5
2
log(1 + X).

�ese two terms in the expansion of f are enough to determine the behaviour of this

oscillatory term in Φ̂. Subsequent terms in f give small corrections to the phase and

amplitude of the oscillatory term. Each choice of sign gives a valid solution to the equations

for Φ̄osc. We can write the general solution for Φ̄osc as

Φ̄osc = A
exp(i 4

27

(1+X+iY)3

є̃ )
(1 + X + iY)5/2 + B

exp(−i 4
27

(1+X−iY)3

є̃ )
(1 + X − iY)5/2

where A and B are arbitrary complex constants.

To match the outer limit of the inner solution, we require that

Φ̄osc → 3

2

√
2 sin(4X

9є̃
+ 3π

8
) as X → 0.

�us we can now write the solution for Φ̄osc as

Φ̄osc = Re
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3

i
√
2

exp( 4i
27

(1+X+iY)3−1
є̃ + 3πi

8
)

(1 + X + iY)5/2
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.40)

�e oscillation vanishes along the Stokes linewhere the imaginary part of the argument

of the exponential vanishes. At leading order in є̃, the Stokes line is given by

YStokes = ((1 + X)3 − 1
3(1 + X) )

1/2

. (3.41)

For large X this line is given approximately by Y = (1 + X)/√3, and so in the far �eld

the wave vanishes along the line θ = π/6. As X → 0, the outer Stokes line given by (3.41)

matches the inner Stokes line on θ = π/2 as given by (3.17).

To �nd the oscillatory part of Ĥ we integrate along the line Y = 0 using the boundary
condition (3.19c). A�er integration by parts we �nd

H̄osc = −9
√
2

4

cos( 4
27

(1+X)3−1
є̃ + 3π

8
)

(1 + X)7/2 +O(є̃). (3.42)

As X → 0 this matches the oscillatory part of outer limit of the inner solution, which is

Ĥ0(X) ∼ −9
4

√
2 cos(4X

9є̃
+ 3π

8
) .
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3.4.5 Composite solution

We can now assemble a composite solution for Ĥ and Φ̂ from the inner, outer and

oscillatory components (3.15), (3.10), (3.25), (3.30), (3.27), (3.42) and (3.40). Note that

the oscillatory term in Φ is only included when X > 0 and Y < YStokes, where YStokes is the

Stokes line given by (3.41).

Figure 3.5 compares the composite solution to the boundary integral solution for

xc = 3.0124. �is is the critical value of xc at which the composite solution �rst touches

the rigid wall, and corresponds to an asymptotic value of λ = 31.9.

3.5 Solution for small xc

For small xc we linearise about the state of rest given by λ = 1, xc = 0, H = x and Φ = 0.
We write

H = x + xc(1 + H̄0) +O(x2c ), Φ = xcΦ̄0 +O(x2c ), λ = 1 + xc λ̄0 +O(x2c ).
We �nd that H̄0, Φ̄0 and λ̄0 satisfy

∇2Φ̄0 = 0 for y > 0, (3.43a)

1

3
Φ̄0 − 2

3
x
∂Φ̄0

∂x
+ H̄0xx = 0 on y = 0 when x > 0, (3.43b)

∂Φ̄0

∂y
+ 2

3
xH̄0x − 2

3
H̄0 = 0 on y = 0 when x > 0, (3.43c)

∂Φ̄0

∂y
= 0 on y = 0 when x < 0, (3.43d)

H̄0 = −1 and H̄0x = λ̄0 at x = 0, (3.43e)

H̄0 → 0 as x →∞, (3.43f)

Φ̄0 → 0 as x2 + y2 →∞, (3.43g)

which is a parameter free system. �is problem for H̄0, Φ̄0 and λ̄0 can be solved nu-

merically using a version of the boundary integral method discussed in section 3.3, or

analytically, using Mellin transforms.
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Figure 3.5: Comparison of composite (solid lines) and numerical solutions (dashed lines) for

xc = 3.0124, which is the value of xc for which the composite solution for H �rst

touches the rigid wall at Y = 0. �e leading order asymptotic solution gives λ = 31.9
for xc = 3.0124, while the boundary integral method gives λ = 32.4 for this value of xc .
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In chapter 2, we solved the dock problem �rstly by using the Wiener-Hopf technique

with Fourier transforms, and secondly by using Mellin transforms. �e Fourier transform

version of (3.43) has derivatives with respect to both k and y due to the appearance of

the x-factors in (3.43b) and (3.43c), which makes solution by the Wiener-Hopf technique

unfeasible. However, we �nd that the Mellin transform solution of (3.43) is no more

complicated than that for the dock problem.

Mellin transforms are o�en useful in wedge geometries (see Sneddon [1972]), and

have been used to solve linearised surface tension problems very similar to the one here,

see Lawrie [1990] in particular. Lawrie considers our linearised surface equations on a

wedge of angle α, and �nds solutions for α = pπ/2q where p and q have no common

factors and p is odd. For our problem we have wedge angle α = π, and so must construct

the solution ourselves.

We use polar coordinates to take advantage of the symmetries of Mellin transforms.

We de�ne Mellin transforms of Φ̄0 and H̄0 by

Φ̄∗0(p, θ) = ∫ ∞
0

rp−1Φ̄0(r, θ)dr, H̄∗0 (p) = ∫ ∞
0

rp−1H̄0(r)dr. (3.44)

Here p is a complex transform variable. With H̄∗0 (p) and Φ̄∗0(p, θ) de�ned as in (3.44),

the Mellin inversion theorem (see Sneddon [1972]) gives

H̄0(r) = 1

2πi ∫
c+i∞

c−i∞
H̄∗0 (p)r−pdp, (3.45)

and

Φ̄0(r, θ) = 1

2πi ∫
d+i∞

d−i∞
Φ̄∗0(p, θ)r−pdp. (3.46)

Here the constants c and d are chosen so that the integration contours lie within the strip

of analyticity for H̄∗0 (p) and Φ̄∗0(p) respectively. �e strips of analyticity are de�ned as

the complex p for which the Mellin transforms (3.44) are analytic and depend on the

small and large r behaviour of H̄0(r) and Φ̄0(r, θ).
To determine for which p the transforms Φ̄∗0(p, θ) and H̄∗0 (p) exist and are analytic,

we must consider the behaviour for small and large r of Φ̄0(r, θ) and H̄0(r).
3.5.1 Expected solution behaviour

For small r we have from the boundary conditions that H̄0(0) = −1 and H̄0r(0) = λ̄0

where λ̄0 is �nite. To avoid a source in the �ow, we also require Φ̄0(r, θ) = O(1) as
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Figure 3.6: Contour plot of small-xc asymptotic solution for Φ̄0, which satis�es the system (3.43),

calculated using Mellin transforms.

r → 0. It is useful to note that if there is no source in the �ow, the no-net-�ux condition

gives, via (3.43c), that H̄∗0 (1) = 0. For large r, we �nd that H̄0(r) = O(r−3/2), Φ(r, θ) =
O(r−1/2 sin θ

2
) for 0 < θ ≤ π and Φ̄0(r, 0) = O(r−7/2). Combining these descriptions, we

�nd H̄∗0 (p) is analytic for 0 < Re p < 3/2, Φ̄∗0(p, θ) is analytic for 0 < Re p < 1/2 and that

Φ̄∗0(p, 0) is analytic for 0 < Re p < 7/2.
We once again expect capillary waves near the surface θ = 0. �ese grow in phase as

O(r3) for large r but have decaying amplitudes, of O(r−7/2) in H(r) and of O(r−5/2) in
Φ(r, θ). �e capillary wave contributions to H(r) and Φ(r, θ) do not alter the strips of
analyticity for H∗(p) and Φ∗(p, θ).
3.5.2 Mellin transform of equations

To solve this system using Mellin transforms, we �rst rewrite the problem using polar

coordinates. We obtain

1

r

∂

∂r
(r ∂Φ̄0

∂r
) + 1

r2
∂2Φ̄0

∂θ2
= 0 in 0 ≤ θ ≤ π, (3.47a)

1

3
Φ̄0 − 2

3
r
∂Φ̄0

∂r
+ H̄0rr = 0 on θ = 0, (3.47b)

1

r

∂Φ̄0

∂θ
+ 2

3
rH̄0r − 2

3
H̄0 = 0 on θ = 0, (3.47c)
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1

r

∂Φ̄0

∂θ
= 0 on θ = π, (3.47d)

H̄0 = −1 and H̄0r = λ̄0 at r = 0, (3.47e)

H̄0(r)→ 0 as r →∞, (3.47f)

Φ̄0 → 0 as r →∞ for 0 < θ ≤ π. (3.47g)

Taking Mellin transforms of the equations (3.47a) to (3.47d) gives

∂2

∂θ2
(Φ̄∗0(p, θ)) + p2Φ̄∗0(p, θ) + [rp+1 ∂Φ̄0

∂r
− prpΦ̄0]∞

0

= 0 (3.48a)

for 0 ≤ θ ≤ π,
1

3
(1 + 2p)Φ̄∗0(p, 0) + (p − 1)(p − 2)H̄∗0 (p − 2)

+ [−2
3
rpΦ̄ + rp−1H̄0r − (p − 1)rp−2H̄0]∞

0

= 0
(3.48b)

and
∂

∂θ
Φ̄∗0(p − 1, θ) − 2

3
(1 + p)H̄∗0 (p) + [23 rpH̄0]∞

0

= 0 (3.48c)

on θ = 0, and
∂

∂θ
Φ̄∗0(p − 1, θ) = 0 (3.48d)

on θ = π.
�e end point contributions in the �rst three equations vanish for 0 < Re p < 1/2,

for 2 < Re p < 7/2 and for 0 < Re p < 3/2 respectively, and it is for these p only that the

Mellin transforms H̄∗0 (p) and Φ̄∗0(p, θ) are de�ned by the integrals in (3.44). However,

we may extend the equations outside of these strips by analytic continuation. �us we

have, for all p, that

∂2

∂θ2
(Φ̄∗0(p, θ)) + p2Φ̄∗0(p, θ) = 0 for 0 ≤ θ ≤ π, (3.49a)

1

3
(1 + 2p)Φ̄∗0(p, 0) + (p − 1)(p − 2)H̄∗0 (p − 2) = 0 on θ = 0, (3.49b)

∂

∂θ
Φ̄∗0(p − 1, θ) − 2

3
(1 + p)H̄∗0 (p) = 0 on θ = 0, (3.49c)
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and

∂

∂θ
Φ̄∗0(p − 1, θ) = 0 on θ = π. (3.49d)

�e general solution to (3.49a) that also satis�es (3.49d) is

Φ̄∗0(p, θ) = Q0(p) cos(p(θ − π)). (3.50)

We may write (3.49b) and (3.49c) in terms of Q0(p) and H̄∗0 (p) to give
1

3
(1 + 2p)Q0(p) cos pπ + (p − 1)(p − 2)H̄∗0 (p − 2) = 0 (3.51)

and

−(p − 1)Q0(p − 1) sin pπ − 2

3
(1 + p)H̄∗0 (p) = 0. (3.52)

We eliminate Q0(p) between these two equations to give a single functional di�erence

equation for H̄∗0 (p). �us we �nd that

H̄∗0 (p + 3) + 9

2

p(p + 1)(p + 2)(p + 4)(2p + 5) tan pπH̄∗0 (p) = 0, (3.53)

where Q0 is given in terms of H̄∗0 by

Q0(p) = −3(p − 1)(p − 2)
1 + 2p H∗(p − 2)

cos pπ
. (3.54)

3.5.3 Simpli�cation of functional di�erence equations

We begin by recalling the identity

tan πz = Γ( 1
2
− z)Γ( 1

2
+ z)

Γ(z)Γ(1 − z) , (3.55)

so that we may write (3.53) as

H̄∗0 (p + 3) + 9

2

p(p + 1)(p + 2)(p + 4)(2p + 5) Γ(
1
2
− p)Γ( 1

2
+ p)

Γ(p)Γ(1 − p) H̄∗0 (p) = 0. (3.56)

To make progress with these functional di�erence equations we will make use of

Gamma functions, which satisfy

Γ(z + 1) = zΓ(z),
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and Barnes double Gamma functions, G(z, δ), which are de�ned so that

G(z + 1, δ) = Γ ( z
δ
)G(z, δ),

along with the normalisation condition G(1, δ) = 1. �is allows us to solve the equation

for H̄∗0 (p) by putting
H̄∗0 (p) = (274 )

p/3 Γ( p
3
)Γ( p+1

3
)Γ( p+2

3
)

Γ( p+4
3
)Γ( p

3
+ 5

6
)

G( p
3
+ 1

6
, 1
3
)G( 4

3
− p

3
, 1
3
)

G( p
3
, 1
3
)G( 7

6
− p

3
, 1
3
) W(p) (3.57)

whereupon we �ndW(p) satis�es the far simpler di�erence equationW(p+3)+W(p) =
0.

3.5.4 Mellin inversion and pole structure

�e Mellin inversion theorem states that

H̄0(r) = 1

2πi ∫
c+i∞

c−i∞
H̄∗0 (p)r−pdp, (3.58)

where the constant c satis�es 0 < c < 3/2; the path of integration passes to the right of the

singularity at p = 0 and lies entirely within the strip of analyticity 0 < Re p < 3/2. For this
inversion integral to be valid, the integrand must be bounded as p →∞ within the strip

of analyticity.

We currently have H̄∗0 (p) given by (3.57), withW(p+3)+W(p) = 0. Using asymptotic

results from Billingham and King [1997] we �nd that H̄∗0 (c + iτ) decays exponentially as
c → −∞ with τ large and �xed. �us for small r, the integrand

H̄∗0 (p)r−p
decays exponentially in the le� half plane, and so we can replace the integral in (3.58)

with a suitable sum of residues from poles in the le� half plane.

A pole of order m at p = −n gives a residue with r-dependence O(rn(log r)m−1), and
so the behaviour of H̄0(r) for small r given in section 3.5.1 is equivalent to requiring that

H̄∗0 (p) has simple poles at −2,−1, 0, but no other singularities in the strip −2 < Re p < 0.
We also know that H̄∗0 (p) is analytic in the strip 0 < Re p < 3/2. �us we need H̄∗0 (p) to
be �nite at every p in the strip −2 < Re p < 3/2, except for simple poles at p = 0,−1,−2.

�e double Gamma function G(z, δ) has no singularities but does have zeros at

z = −(mδ + n), where m, n = 0, 1, 2... (see Lawrie and King [1994]). In particular, by
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applying the functional di�erence equation for G(z, 1/3), we �nd that 1/G(z, 1/3) has
simple poles at z = 0,−1/3,−2/3, double poles at z = −1,−4/3,−5/3, triple poles at
z = −2,−7/3,−8/3 and so on.

Using this information about the zeros of G(z, 1/3) together with standard properties
of Γ(z), we �nd that the expression

H̄∗0 (p)
W(p) = (274 )

p/3 Γ( p
3
)Γ( p+1

3
)Γ( p+2

3
)

Γ( p+4
3
)Γ( p

3
+ 5

6
)

G( p
3
+ 1

6
, 1
3
)G( 4

3
− p

3
, 1
3
)

G( p
3
, 1
3
)G( 7

6
− p

3
, 1
3
) (3.59)

has double poles at p = 0, p = −1 and p = −2, has simple zeros at p = −1/2 and p = −3/2,
and is �nite and non-zero at every other p in the strip −3/2 < Re p < 3/2.

To meet our requirements for H̄∗0 (p), we set
W(p) = tan pπ sin( π

3
(p − 1

2
))V(p), (3.60)

where V(p)must have no singularities in −2 < Re p < 3/2, and satis�es V(p+3) = V(p).
�us V(p) is an entire function. We now use Liouville’s theorem to determine V(p).

For the inversion integral (3.58) to exist, the integrand must be bounded as t →∞
where p = c + it, for each c such that 0 < c < 3/2 and for each r > 0. Now, as t →∞, we

�nd

H̄∗0 (c + it)r−(c+it) = O (V(p)tc/3−5/3) (3.61)

and this must be bounded as for 0 < c < 3/2. Setting c = 3/2, we �nd V(p) grows no
faster that O(t7/6) as t →∞, and so by Liouville’s theorem we can write

V(p) ≡ αp + β.
However, we know that V(p) is periodic, and so α = 0 and V(p) ≡ β. We have

H̄∗0 (p) = β (274 )
p/3 Γ( p

3
)Γ( p+1

3
)Γ( p+2

3
)

Γ( p+4
3
)Γ( p

3
+ 5

6
)

G( p
3
+ 1

6
, 1
3
)G( 4

3
− p

3
, 1
3
)

G( p
3
, 1
3
)G( 7

6
− p

3
, 1
3
)

× tan pπ sin( π
3
(p − 1

2
))

(3.62)

�is gives us a unique solution for H̄0, up to themultiplicative constant β to be determined

by the normalisation condition H̄0(0) = −1. We can check that H̄∗0 (p) as de�ned by (3.62)
has simple poles at p = 0,−1,−2 and at p = 3/2, has a simple zero at p = 1 and is �nite

and non-zero elsewhere in −3/2 ≤ Re p ≤ 3/2.
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Figure 3.7: �e real part of H̄∗0 (1 + it) from (3.62) with normalisation constant β given by (3.67).

�e �rst plot shows t from 0 to 100, and we can see that H̄∗0 (1 + it) is oscillatory, with
slowly decaying amplitude. �e second graph shows t from 0 to 5, and demonstrates

that the condition H̄∗0 (1) = 0 is met.
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Chapter 3: Surface-tension-driven flow in a half-plane

3.5.5 Expansion for small r and normalisation

For r < 1 we can close the inversion contour in the le� half plane, and thus obtain a sum

of residues from p = 0,−1,−2, .... We �nd

H̄0(r) = ∞∑
n=0

Res{H̄∗0 (p)r−p, p = −n}. (3.63)

Evaluating the residues from the �rst three poles, we �nd

H̄0(r) ∼ − 9β
√
π

2

Γ( 2
3
)

Γ( 5
6
)G( 13 , 13) + 6β

√
3π (27

4
)−1/3 G( 56 , 13)

G( 1
2
, 1
3
)r

− 9β
√
3

4
(27
4
)−2/3 Γ( 56)

Γ( 2
3
) G( 1

2
, 1
3
)

G( 1
3
, 1
3
)G( 5

6
, 1
3
)r2 +O(r3 log(r)),

(3.64)

as r → 0. �e resulting expressions can be simpli�ed greatly by the use of two formulae

given by Barnes [1899]:

G(δ, δ) = (2π)(δ−1)/2δ−1/2, (3.65)

and

G(z + δ, δ) = (2π)(δ−1)/2δ−z+1/2Γ(z)G(z, δ). (3.66)

To satisfy the normalisation condition H(0) = −1, we set
β = 24/3

33/2π1/6

Γ( 5
6
)

Γ( 2
3
) . (3.67)

Comparing (3.64) with (3.47e) we then �nd

λ̄0 = 8π

9Γ( 1
3
) ≈ 1.0424, (3.68)

so that

λ ∼ 1 + 8π

9Γ( 1
3
)xc (3.69)

as xc → 0. �is is compared to the boundary integral calculations for λ(xc) in �gure 3.4.

3.5.6 Inversion for general r

For general r we calculate H̄0(r) and Φ̄0(r, θ) by evaluating the inversion integral numer-

ically. As Re{H̄∗0 (c + it)} = Re{H̄∗0 (c − it)}, we can rewrite (3.45) as

H̄0(r) = 1

π ∫
∞

0
Re{H̄∗0 (c + it)r−c−it}dt, (3.70)
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Figure 3.8: �e analytical solution for H̄0(r) and Φ̄0(r, 0) (blue line in second plot). �e analytical

result is calculated by numerical evaluation of (3.70) with c = 1, with the upper limit

of integration taken to be 500. �e analytical solution has λ̄0 = 1.04241. �e plot for

Φ̄0 also shows Φ̄0 at θ = π/12, π/6, ..., π, which correspond to Φ̄0(10, θ) increasing.
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which should be independent of c so long as 0 < c < 3/2. �e equivalent expression for

Φ̄0(r, θ) is
Φ̄0(r, θ) = 1

π ∫
∞

0
Re{Φ̄∗0(d + it, θ)r−d−it}dt. (3.71)

We know that

Φ̄∗0(p, θ) = Q0(p) cos p(θ − π) = 2

3

p + 2
p

H̄∗0 (p + 1)
sin pπ

cos p(θ − π). (3.72)

From the de�nition of H̄∗0 (p) given by (3.62), we know that H̄∗0 (p) has a simple pole at

p = 3/2 and a simple zero at p = 1, but is �nite and non-zero for all other p in the strip

1 ≤ Re p ≤ 3/2. �en by (3.72), Φ̄∗0(p, θ) has simple poles at p = 0 and p = 1/2, so we

must take 0 < d < 1/2 in (3.71).

To evaluate the double Gamma functions in (3.62) we use the integral expression from

Billingham and King [1997], which converges for δ > 0 and Re z > 0.

G(z, δ) = exp( ∫ ∞
0
{ e−δu − e−zu(1 − e−u)(1 − e−δu) − z e−δu

1 − e−δu
+(z − 1)( z

2δ
− 1) e−δu + e−u

1 − e−u} duu ) .
(3.73)

�e range of integration in both (3.70) and (3.73) must be truncated in order to

calculate the integrals numerically. �e integrand in (3.73) decays exponentially as x →∞
if δ > 0 and Re z > 0. However, the integrand in (3.70) decays only algebraically as t →∞,

as given by (3.61) and shown in �gure 3.7. To improve the numerical convergence of this

integral, it is helpful to deform the inversion contour in (3.45) to reduce the real part of p.

Such a deformation must take into account the poles in H̄∗0 (p).
Figure 3.8 compares H̄0 and Φ̄0 calculated via a boundary integral discretisation of

(3.43a) to the exact solution given by (3.45). Figure 3.8 also shows Φ̄0(r, θ) for various θ.
�is shows that the capillary waves are only noticeable very near the surface θ = 0.

3.6 Conclusion

�is chapter has been concerned with �nding asymptotic solutions to the linear system

(3.4) for large λ and for ∣λ − 1∣ ≪ 1, and numerical solutions when λ = O(1). In both

cases we obtained good agreement between numerical and asymptotic results. For large λ

we obtained a solution using matched asymptotic expansions, with the main detail of the
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Figure 3.9: Comparison of numerical solutions to the linear problem (3.4) to solutions to the full

nonlinear problem given by (3.1a) to (3.1d), (3.1g), (3.2) and (3.3) for є = 0.1○, є = 0.3○

and є = 0.5○. Each line stops when the free surface touches the rigid wall.

�ow determined by the dock problem in the inner region, and the relationship between λ

and xc found by matching to the outer region. For small ∣λ−1∣, the solution of the leading

order problem was found using Mellin transforms.

�e linear equations (3.4c) and (3.4d) imply that Φy is discontinuous at the origin

if λxc ≠ 0, and so the �rst derivative of Φ has a logarithmic singularity at the origin.

As a result, the linearisation given in section 3.2.3 fails when є log r = O(1). �e same

singularity is seen in the leading order approximation of �ow past a thin sharp aerofoil

(see Van Dyke [1975], pp 68-70). �e size of the nonuniform region is exponentially small,

and so unlikely to have any serious e�ect on the solution.

We can use the numericalmethod given by Billingham andKing [2005] to compare the

solution to the linear system (3.4) to the full problem given by (3.1a) to (3.1d), (3.1g), (3.2)

and (3.3). Figure 3.9 shows good agreement with λ(xc) resulting from such a comparison.

As λ increases, the amplitude of the capillary waves in our solution grows. For su�-

ciently large λ, as shown in �gure 3.5, the amplitude becomes so large that the capillary

waves intersect with the position of the rigid wall, thus invalidating the solution. If the
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Chapter 3: Surface-tension-driven flow in a half-plane

‘void’ in �gure 3.1 was replaced by a low density inviscid �uid, then mass conservation

would be violated if the free surface touched the wall. Furthermore, if the free surface was

close to the rigid wall, there would be a very fast �ow in the slender low density region,

which would in�uence the �ow in the fat wedge.

King [1991] and Billingham [2006] considered the complementary problem to �gure

3.1, with �uid occupying only the slender wedge. As є → 0, they obtained a system that

could be described by coupled nonlinear ODEs. For large λ, Billingham [2006] solved

this system using Kuzmak’s method for a nonlinear oscillator.

For the two �uid problem, with �uid of density ρ1 inside the slender wedge and density

ρ2 in the fat wedge, a balance is obtained between the nonlinear system studied by King

[1991], and the linear 2D problem in this chapter, when ρ1/ρ2 = O(є). At leading order,
this gives another half plane problem, but with the free surface equations (3.4b) and (3.4c)

replaced by three coupled nonlinear ODEs for the free surface positionH and the velocity

potentials in the two �uids, which we will study in the next chapter.
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Figure 3.10: For xc > 3.01, or λ > 30, the large-λ asymptotic solution for H for ρ1 = 0

becomes non-physical, with the linearised interface height intersecting the rigid

wall. �e solutions shown here are for λ = 10, 20, 30, 40, 50, which correspond to

xc = 2.1050, 2.6508, 2.9686, 3.1878, 3.3791 respectively. In chapter 4 we consider the

e�ect of allowing �uid 1 to have �nite but low density. We �nd that this prevents

pinch-o� for �nite λ.
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Chapter 4

Two-�uid half-plane problem

For a fat wedge of inviscid �uid recoiling around a slender void, self-similar solutions are

only available for a limited range of contact angle and wedge angle, due to large-amplitude

capillary waves which causes the free surface to touch itself, pinching o� immediately in

the self-similar case. If the slender void is �lled with a low density inviscid �uid, a rapid

�ow is driven in ‘neck’ regions as the free surface approaches pinch-o�. In this chapter,

we consider the same contact and wedge angle limits as in chapter 3, so that the �ow

domain for the �uid in the fat wedge can again be approximated by a half-plane, but seek

solutions for a distinguished density ratio which maximises the interaction between �ows

in the slender and fat wedge. We �nd a rapidly-varying solution to this two-�uid problem

by use of the method of multiple scales. On a fast scale, free surface deformations are

determined by solutions to a nonlinear, nonlocal set of periodic oscillator equations. We

also calculate secularity equations to determine how the oscillator equation parameters

vary on the slow scale. �ese secularity equations are coupled to a non-homogenisable

region near the contact point, where the non-periodic e�ects of the rigid wall must be

taken fully into account.

4.1 Introduction

In chapter 3, we considered the case of a single inviscid �uid recoiling around a slender

void. �e initial contact angle π − є was suddenly changed to π − λє, and the �uid

recoils accordingly. We found an asymptotic solution to this problem for the double

limit 1≪ λ≪ є−1. However, we found that these asymptotic solutions for the interface

position would intersect with the position of the rigid wall for λ larger than about 30.
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ρ1

ρ2

є λє

Rigid Wall

Fluid 1

Fluid 2

Figure 4.1: We consider the case є ≪ 1, so that �uid 1 occupies a slender wedge, and �uid 2

occupies a fat wedge. We choose a distinguished density ratio, so that the �ow in both

�uids features in the leading order problem for є → 0. We �nd that this corresponds to

�uid 1 having a much smaller density than �uid 2, with ρ1/ρ2 = O(є). We limit our

analysis to moderate λ, so that λє≪ 1.

We now consider �lling the slender void with a low density inviscid �uid. As the

interface starts to form necks near the rigid wall, then a �ow occurs between the interface

and the wall to satisfy mass conservation and self-similarity. �e �ow through these

narrow necks is much faster than the two-dimensional �ow in the fat wedge, and so the

�uid in the slender wedge can have a signi�cant e�ect on the interface with a much lower

density than the �uid in the fat wedge.

For the case where the �uid in the fat wedge has zero density, Billingham [2006] has

shown that solutions exist for all λ in 1≪ λ≪ є−1. In the previous chapter, we showed

that if the �uid in the slender wedge has zero density, pincho� occurs at �nite λ. In this

chapter, we identify a distinguished density ratio, where ρ1/ρ2 = O(λє), in which the

velocity potential in each �uid has a leading order e�ect on the interface position, and

�nd that the highly oscillatory large-λ asymptotic solutions are valid for λ →∞ for this

distinguished density ratio.

�e two-�uid recoiling inviscid wedge problem can be uniquely described by the

contact angle β ≡ λє, the wedge angle є and the density ratio ρ1/ρ2. Here we are interested
in the case with є≪ 1, ρ1/ρ2 = O(є) and λ = O(1). Fluid 1 occupies an initially slender

wedge of angle є and has density ρ1 (see �gure 4.1). Fluid 2 occupies an initially fat wedge

of angle π − є and has density ρ2. As є → 0, we �nd on kinematic grounds that u1 = O(1)
and u2 = O(є), so that a distinguished limit is obtained in the Bernoulli equation when
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Chapter 4: Two-fluid half-plane problem

ρ1/ρ2 = O(є).
In section 4.2, we derive self-similar equations for the nonlinear two-�uid problem.

In section 4.3, we examine this system of equations in the limit є → 0 with λ = O(1)
and derive a leading order system for the distinguished density ratio ρ1/ρ2 = O(є). �e

leading order system consists of two nonlinear ODEs coupled to a linear PDE for the �ow

in the fat wedge, rather than a fully nonlinear free boundary problem. �is system can be

solved numerically, with the PDE reduced to an integral equation which can be solved

numerically using a similar method to the previous chapter. We discuss the numerical

solutions in section 4.4. �e nonlinear ODEs are solved using a relaxation method, with

parameter continuation used to obtain solutions to themore nonlinear parameter regimes.

For large λ, necks appear in the solutions, which correspond to large gradients in the

potential in the slender wedge.

We next consider the double limit є → 0, λ →∞with λє≪ 1, in section 4.5. A scaling

analysis of the leading order system for small є, looking for a balance for large λ, suggested

that the distinguished density ratio is ρ1/ρ2 = O(λє) in this double limit, i.e. when the

density ratio is of the same order as the contact angle.

We use Kuzmak’s method to �nd a solution to the leading order system arising from

this double-distinguished density ratio. In section 4.5 we derive equations for the leading-

order nonlinear nonlocal oscillator and secularity equations that describe the slow vari-

ation of the oscillator parameters. In section 4.6 we explore various properties of the

oscillator equation solutions. In section 4.7 we �nd solutions to the secularity equations

for di�erent values of the distinguished density ratio η. We �nd that Kuzmak’s method

fails in an inner region near the contact point, where the free surface takes several wave-

lengths to adjust to the discontinuous imposition of the rigid wall boundary conditions.

As the contact angle condition is given at the contact point, we �nd that we must solve a

PDE to interpret the contact angle conditions as boundary conditions for the secularity

equations. �e numerical solution of this PDE is discussed in appendix A.
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4.2 Full governing equations

4.2.1 Nonlinear interface equations

Surface tension provides a pressure di�erence across the interface proportional to curva-

ture. By integrating the Euler equations, we obtain the Bernoulli equation, which holds

along the interface y = Y(x , t):
ρ1 (∂ϕ1

∂t
+ 1

2
∣∇ϕ1∣2) − ρ2 (∂ϕ2

∂t
+ 1

2
∣∇ϕ2∣2) = σκ = σ Yxx(1 + Y2

x )3/2 . (4.1)

Here ϕ1 and ϕ2 are the velocity potentials in the two �uids. Fluid 1 occupies the slender

wedge and �uid 2 occupies the fat wedge, as shown in �gure 4.1. In the bulk of the �uid,

mass conservation gives ∇2ϕ1,2 = 0 in �uids 1 and 2 respectively.

�e kinematic condition is that the normal velocity of a point R = (x ,Y(x , t)) on the

boundary is equal to the normal velocity of the �uid on either side of the boundary. �e

unit normal directed into �uid 2 is

n = (−Yx , 1)(1 + Y2
x )1/2 (4.2)

so the kinematic condition can be written as

n ⋅Rt = Yt(1 + Y2
x )1/2 = n ⋅ ∇ϕ1 = n ⋅ ∇ϕ2, (4.3)

or
∂Y

∂t
= ∂ϕ

∂y
− ∂ϕ

∂x

∂Y

∂x
. (4.4)

At the contact point, we have

Y = 0, Yx = tan(λє), (4.5)

while

Y ∼ x tan є as x →∞. (4.6)

�ere is no normal �ow through the rigid wall, so

∂ϕ1

∂y
(x , 0) = 0, for x > xc , (4.7)

and

∂ϕ2

∂y
(x , 0) = 0, for x < xc . (4.8)

�e far �eld conditions on ϕ1,2 are that ϕ1 → 0 as ∣x∣→∞ for x in �uid 1, and ϕ2 → 0 as

∣x∣→∞ for x in �uid 2.
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4.2.2 Similarity solution

�e only dimensional parameters in the problem are the surface tension coe�cient σ

and the �uid densities ρ1 and ρ2. We cannot construct a lengthscale from these two

parameters alone. Instead, we must invoke time t since coalescence in order to obtain a

lengthscale, hence the only solutions are similarity solutions.

We de�ne

L = (σ
ρ
)1/3 t2/3,

where ρ is some reference density to be chosen later. We nondimensionalise all lengths

according to L, and so de�ne the barred variables:

x̄ = x/L, ȳ = y/L, Ȳ = Y/L, x̄c = xc/L. (4.9)

�e velocity potential ϕ has dimensions L2/t, so we de�ne
ϕ̄1,2 = ρ2/3

t1/3σ2/3
ϕ1,2. (4.10)

We choose axes so that the contact point is at x = 0, y = 0, so that the contact point

equations (4.5) become

Ȳ(0) = 0, Ȳx̄(0) = tan(λє), (4.11)

while the far-�eld equation (4.6) becomes

Ȳ ∼ (x̄ + x̄c) tan є as x̄ →∞ (4.12)

and the rigid wall conditions (4.7) and (4.8) become

∂ϕ̄1

∂ȳ
(x̄ , 0) = 0, for x̄ > 0 (4.13)

and

∂ϕ̄2

∂ȳ
(x̄ , 0) = 0, for x̄ < 0 (4.14)

respectively.
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In similarity variables, the Bernoulli equation becomes

ρ1
ρ

⎡⎢⎢⎢⎢⎣
1

3
ϕ̄1 − 2

3
((x̄ + x̄c)∂ϕ̄1

∂x̄
+ ȳ ∂ϕ̄1

∂ȳ
) + 1

2
(∂ϕ̄1

∂x̄
)2 + 1

2
(∂ϕ̄1

∂ȳ
)2⎤⎥⎥⎥⎥⎦

−ρ2
ρ

⎡⎢⎢⎢⎢⎣
1

3
ϕ̄2 − 2

3
((x̄ + x̄c)∂ϕ̄2

∂x̄
+ ȳ ∂ϕ̄2

∂ȳ
) + 1

2
(∂ϕ̄2

∂x̄
)2 + 1

2
(∂ϕ̄2

∂ȳ
)2⎤⎥⎥⎥⎥⎦

= Yx̄ x̄(1 + Y2
x̄ )3/2

(4.15)

and the kinematic boundary conditions become

2

3
(x̄ + x̄c)Ȳx̄ − 2

3
Ȳ = Ȳx̄

∂ϕ̄1

∂x̄
− ∂ϕ̄1

∂ȳ
= Ȳx̄

∂ϕ̄2

∂x̄
− ∂ϕ̄2

∂ȳ
, (4.16)

which both hold on the free surface, so (x̄ , ȳ) = (x̄ , Ȳ(x̄)).
4.3 Leading order half-plane problem for є≪ 1

4.3.1 Distinguished density ratio

�e �ows in the two �uids behave di�erently as є → 0. �is can be observed in the

interpretation of the kinematic condition in the two �uids at the contact point itself. In

the slender wedge, the angle between the wall and the free surface is very small, so the

�ow is predominantly in the x̄-direction, and we require

∂ϕ̄1

∂ȳ
(0, 0) = 0, ∂ϕ̄1

∂x̄
(0, 0) = 2

3
x̄c . (4.17)

In the fat wedge, ϕ̄2x̄ and ϕ̄2 ȳ are of strictly comparable size, while Ȳx̄ = O(є) at the contact
point, thus

∂ϕ̄2

∂ȳ
(0, 0) = −2

3
x̄c tan λє = O(x̄cє), ∂ϕ̄2

∂x̄
(0, 0) = O(x̄cє). (4.18)

Regardless of the scalings for xc and the lengthscale for variations in x, we �nd the

horizontal velocities in the slender wedge are O(є−1) times larger than in the fat wedge as

є → 0 with λ �xed.

�e relative contributions to the Bernoulli equation (4.15) at the contact point x̄ = 0
from ϕ̄1 and ϕ̄2 respectively have magnitude

ρ1ϕ̄1 = O(ρ1x̄2c ), ρ2ϕ̄2 = O(ρ2єx̄2c ). (4.19)

and so the distinguished density ratio as є → 0 with λ = O(1) is ρ1/ρ2 = O(є).
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4.3.2 Derivation of leading order problem

We now de�ne

ρ1 = єkρ, ρ2 = ρ, (4.20)

where ρ is the reference density used in nondimensionalisation. �en the Bernoulli and

kinematic conditions become

єk
⎡⎢⎢⎢⎢⎣
1

3
ϕ̄1 − 2

3
((x̄ + x̄c)∂ϕ̄1

∂x̄
+ ȳ ∂ϕ̄1

∂ȳ
) + 1

2
(∂ϕ̄1

∂x̄
)2 + 1

2
(∂ϕ̄1

∂ȳ
)2⎤⎥⎥⎥⎥⎦

−⎡⎢⎢⎢⎢⎣
1

3
ϕ̄2 − 2

3
((x̄ + x̄c)∂ϕ̄2

∂x̄
+ ȳ ∂ϕ̄2

∂ȳ
) + 1

2
(∂ϕ̄2

∂x̄
)2 + 1

2
(∂ϕ̄2

∂ȳ
)2⎤⎥⎥⎥⎥⎦

= Yx̄ x̄(1 + Y2
x̄ )3/2

(4.21)

and
2

3
(x̄ + x̄c)Ȳx̄ − 2

3
Ȳ = Ȳx̄

∂ϕ̄1

∂x̄
− ∂ϕ̄1

∂ȳ
= Ȳx̄

∂ϕ̄2

∂x̄
− ∂ϕ̄2

∂ȳ
, (4.22)

both of which apply on ȳ = Ȳ(x̄).
�e condition Ȳx̄(0) = tan λє gives Ȳ = O(єx̄c). �en (4.22), evaluated at the contact

point, gives ϕ̄1 = O(x̄2c ) and ϕ̄2 = O(єx̄2c ). Finally, (4.21) evaluated at the contact point

gives x̄c = O(1) as є → 0.

We therefore rescale Ȳ and ϕ̄1 and ϕ̄2 according to

Ȳ = єH, ϕ̄1 = ϕ1, ϕ̄2 = єΦ. (4.23)

�e scales for x̄ and ȳ variation are unchanged as є → 0, so we let x̄ = x, ȳ = y and x̄c = xc .
At leading order we can reduce the equations on ϕ1(x , y) to ODEs. We currently have

∇2ϕ1 = 0 in 0 < y < єH(x) for x > 0,
∂ϕ1

∂y
= 0 on y = 0 for x > 0. (4.24)

We now rescale to the height of the wedge by writing y = єŷ. �en ϕ1 satis�es

∂2ϕ1

∂x2
+ 1

є2
∂2ϕ1

∂ŷ2
= 0 in 0 < ŷ < H(x) for x > 0,

∂ϕ1

∂ŷ
= 0 on ŷ = 0 for x > 0.

(4.25)

106



Chapter 4: Two-fluid half-plane problem

Expanding ϕ1 in powers of є, we �nd that

ϕ1 = P(x) + єB(x) + є2 [C(x) − ŷ2

2
P′′(x)] +O(є3), (4.26)

so that at leading order,

ϕ1(x , єH(x)) = P(x), ∂ϕ1

∂y
(x , єH(x)) = −єH(x)P′′(x). (4.27)

Substituting (4.27) and (4.23) into (4.21) and (4.22), we obtain the leading order

equations

k [1
3
P − 2

3
(x + xc)Px + 1

2
P2
x] − [13Φ − 2

3
(x + xc)Φx] = Hxx (4.28)

and
2

3
(x + xc)Hx − 2

3
H = (HPx)x = −Φy , (4.29)

to be applied on the half line x > 0, y = 0.
4.3.3 Summary of two-�uid half-plane problem

At leading order in є we have a half plane problem, with the equations (4.28) and (4.29) to

be applied on the half line x > 0, y = 0. We want to �nd solutions for given values of the

contact angle parameter λ and the density ratio k. �e functions to be determined are the

velocity potential in the fat wedge, Φ(x , y), for −∞ ≤ x ≤∞, y > 0, the interface height
H(x) for x > 0, and the leading-order velocity potential in the slender wedge P(x) for
x > 0. We must also solve for the eigenvalue xc , which is the contact point displacement.

�is problem can be summarised as follows:

∇2Φ = 0 for y > 0, (4.30)

Φy(x , 0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2
3
H − 2

3
(x + xc)Hx on x > 0,

0 on x < 0,
(4.31)

with

k [1
3
P − 2

3
(x + xc)Px + 1

2
P2
x] − [13Φ(x , 0) − 2

3
(x + xc)Φx(x , 0)] = Hxx (4.32)

and
2

3
(x + xc)Hx − 2

3
H = (HPx)x . (4.33)
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Equations (4.32) and (4.33) each hold on x > 0, y = 0.
�e boundary conditions at the contact point are that

H(0) = 0, and Hx(0) = λ (4.34)

while in the far �eld,

H → x + xc , P → 0, Φ → 0 as x →∞. (4.35)

As shown in section 3.3.1, equations (4.30) and (4.31) are equivalent to

Φ(x , 0) = 2

3π ∫
∞

0
log ∣x − x′∣{H(x′) − (x′ + xc)Hx(x′)}dx′. (4.36)

We can also derive the kinematic equation for P(x) (4.33) and the integral equation (4.36)
from the integral equations for the nonlinear free-boundary problem. �is derivation is

discussed in appendix B.

4.4 Numerical solution to half-plane problem

We need to solve for H(x), P(x) and Φ(x) for x > 0, and for the eigenvalue xc. �ese

are related by two ODEs:

k [1
3
P − 2

3
(x + xc)Px + 1

2
P2
x] − [13Φ − 2

3
(x + xc)Φx] = Hxx (4.37)

and
2

3
(x + xc)Hx − 2

3
H = (HPx)x , (4.38)

and the integral equation

Φ(x) = 2

3π ∫
∞

0
log ∣x − x′∣{H(x′) − (x′ + xc)Hx(x′)}dx′. (4.39)

�ese are subject to the boundary conditions (4.34) and (4.35).

�is is a nonlinear system with two independent parameters: the density parameter k

and the contact angle parameter λ. In chapter 3, we had k = 0, and found that by �xing

xc and allowing λ to vary, we obtained a linear system that could be solved using one

Newton iteration. However, if k ≠ 0, the system is always nonlinear, and so there is no

advantage in �xing xc rather than λ. In the next section, we �nd that a distinguished

density ratio occurs if k = O(λ) as λ → ∞, and so we obtain solutions comparable to
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the asymptotic solutions by continuation in the independent parameters µ and λ, where

k = µλ. Equation (4.39), which describes Φ, is nonlocal. Since (4.37) depends on Φ, this

nonlocal coupling means we cannot solve the ODE boundary value problem in (4.37)

and (4.38) by shooting forward from x = 0. Instead we use �nite di�erence formulae to

rewrite the ODEs and integral equation as nonlinear algebraic equations involving H, P

and Φ at �xed grid points. We then solve this using Newton iteration.

To obtain a numerically tractable BVP, we truncate the upper limit of the integral

in (4.39) to x′ = xT , and also apply the boundary conditions (4.35) at x = xT . Use of

non-uniform grid spacing allows us to obtain good resolution in regions of high curvature,

while also reaching a reasonable truncation point given constraints on the total number

of grid points.

We use three-point centered �nite di�erence formulae to discretise (4.37) and (4.38),

and so the discretisation error for these ODEs is O(h2). �e integral equation (4.39) is

discretised by assuming that the termH−(x+xc)Hx in (4.39) varies linearly between grid

points and then calculating the logarithmic integrals analytically, thus avoiding numerical

errors due to the logarithmic singularity in kernel of the integral. We note that (4.39)

gives Φ as a linear function of H and xc, and so we can reduce the size of the matrix

equation by replacing Φ in (4.37) by M ⋅H, where M is a dense matrix that depends on

the grid for x and varies linearly on xc , but is independent of H. We must recalculate M

whenever a new grid is chosen.

Once we have formulated the discretised boundary value problem, we obtain solutions

by continuation in λ, starting from the con�guration with λ = 1 and xc = 0, where H = x
and P = Φ = 0 is a solution. We note (e.g. in �gure 4.2(a)) that as λ increases, the

solutions for H start to form neck regions in which the curvature Hxx is large. We

therefore concentrate grid points in these neck regions, but the need to recalculate the

dense matrix M represents a signi�cant penalty for grid redistribution.

�ere are two main sources of error for this numerical solution; the use of �nite grid

spacing h in formulating the discretised version of the ODEs and integral equation, and

the use of a �nite truncation point xT . We can check the rate of solution convergence

with respect to these discretisation parameters. For both uniform and non-uniform grids,

we �nd that the eigenvalue xc and the scalar solution measures P(0) and Φ(0) converge
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as O(N−α) as the total number of points N is varied, where α ≈ 1.9, which is consistent

with the prediction of O(h2) accuracy for a �xed value of xT .

In order to test the solution sensitivity to the truncation value xT , we can add extra

points to the end of an existing grid. Solutions to the two versions of the single �uid

problem feature capillary waves which grow in frequency and decay in amplitude as x

increases. We expect similar behaviour here, and so cannot resolve waves out to in�nity.

If waves are resolved to our truncation point, the position of the truncation point within

a wavelength will have a signi�cant e�ect on our results. Instead we suppress the e�ect

of the capillary waves for large x by taking increasing grid spacing as x increases. �is

forces the numerical calculated waves to decay more rapidly in amplitude for large x, as

shown in �gure 3.5 for the single-�uid problem studied in chapter 3. For the two-�uid

problem, we �nd numerically that when k = 5 and λ = 5, the solution eigenvalue xc

converges as O(x−2.2T ). �e velocity potential values P(0) and Φ(0) are found to converge
as O(x−0.96T ). �e Bernoulli equation is una�ected by adding a constant to P and Φ if

the linear combination kP − Φ is preserved. As the values of P and Φ otherwise only

occur in the boundary conditions (4.35), the convergence rate of P(0) and Φ(0)may be

slower than other solution measures. �e solutions shown in the following �gures are for

xT = 50.
Figures 4.2(a) and 4.2(b) show solutions for the interface position H(x) for k = 1 and

k = λ respectively. Both these solutions and the solutions for k = 0, shown in �gure 3.10,

feature large amplitude capillary waves. As λ increases, the amplitude of these capillary

waves increases. However, the solutions for k = 0 become negative and intersect with the

rigid wall for large λ, while the solutions for k = 1 and k = µλ never make contact with

the wall, but instead approach the wall in a number of neck regions, where the interface

is highly curved. Figure 4.3(a) shows the height of the �rst neck region as a function of λ

for a selection of density ratios. We see that k = 0 is the only density ratio for which the

interface intersects the rigid wall. Figure 4.3(b) shows the magnitude of H as a function

of λ.

Figure 4.4 shows the velocity potential functions P(x) and Φ(x , 0) corresponding
to the solution for λ = 50 shown in �gure 4.2(b). We observe that Φ(x , 0) shows large
amplitude capillary waves, as do the solutions for k = 0 shown in �gure 3.3. �ere is an
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upward shi� in themean of Φ near x = 0, which will also emerge in the composite solution

for Φ for large λ. �e numerical solution for P(x) shows small amplitude oscillations

about a slowly varying mean. We �nd that Px becomes large and negative as the interface

height H(x) approaches zero.
Figure 4.5 shows the contact point position xc as a function of λ for various density

ratios. We �nd that solutions for k = O(1) and k = O(λ) exhibit a di�erent scaling for
λ → ∞ than the solution for k = 0 does. We found in chapter 3 that xc = O(λ2/9) for
large λ when k = 0. In section 4.5 we analyse the two-�uid problem for large-λ and �nd

xc = O(λ1/3) for �nite density ratio.
Finally, �gure 4.6 shows λ/x3c and P(0)/x2c for various λ as a function of the parameter

η, de�ned by λ/η = ρ1/ρ2. �e values λ/x3c and P(0)/x2c are eigenvalues for the large
λ asymptotic analysis, and should tend to a constant, which depends on η, as λ → ∞.

Figure 4.6 also shows these eigenvalues as predicted by the large λ solution.
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(a) Interface positions H(x) for λ = 10, 20, 30, 40, 50, with k = 1.
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(b) Interface positions H(x) for λ = 10, 20, 30, 40, 50, with k = µλ, µ = 1.

Figure 4.2: Solutions to the two-�uid half-plane-problem. In both cases, xc is a strictly increasing
function of λ. Comparing these plots to �gure 3.10, we see that for both cases the low

density �uid in the slender wedge prevents the free surface position pinching-o� for

�nite λ. �e contact-point position and the height of the �rst maximum of H in (a) is

similar to �gure 3.10 for k = 0, but the solution for k = λ shown in (b) appears to have

a di�erent scaling.
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(a) Height of �rst minimum of H
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(b) Height of �rst maximum of H

Figure 4.3: �e heights of the �rst local maxima and minima for H as a function of λ. �e density

ratios shown are: k = 0 (black dashed line), k = 1 (black solid line), and k = µλ with
µ = 0.1 (blue), µ = 1 (green) and µ = 2 (red). Speci�c interface shapes can be seen for

k = 0 in �gure 3.10, for k = 1 in �gure 4.2(a) and for µ = 1 in �gure 4.2(b).
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x

P

x

Φ

0 2 4 6 8 10

0 2 4 6 8 10

−10

−5

0

5

10

15

−1.5

−1

−0.5

0

Figure 4.4: �e velocity potential in �uid 1 is P(x) and in �uid 2 is єΦ(x , 0), where P and Φ are

found by solving the system (4.37) to (4.39). �e solutions shown are for k = λ, λ = 50,
which corresponds to the magenta plot of H in �gure 4.2(b).
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Figure 4.5: �e contact point position xc as a function of λ for various density ratios in the two-

�uid problem. �e density ratios shown are: k = 0 (black dashed line), k = 1 (black
solid line), and k = µλ with µ = 0.1 (blue), µ = 1 (green) and µ = 2 (red).
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Figure 4.6: �e eigenvalues λ∗ and P̄(0) are shown with black crosses for secularity solutions,

using the ‘gold’ function from �gure 4.13 for ω̃(σ)�e sequence blue to gold shows

solutions to the two-�uid half-plane problem for λ = 10, 20, 30, 40, 50, 60. �e asymp-

totic solution for large λ in section 4.5 predicts that λ = O(x3c ) and P(0) = O(x2c )
as λ → ∞. �e expansion is in whole powers of the small parameter є ≡ x−3c , so we

expect λ/x3c → λ∗(η) + O(λ−1), and P(0)/x3c → P̄(0, η) + O(λ−1), both as λ → ∞.

Richardson extrapolation con�rms the error of these quantities as O(λ−1). �e black

line shows the extrapolation for λ =∞ based on the half-plane-problem calculations

for λ = 50 and λ = 60.
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4.5 Asymptotic solution for large xc using Kuzmak’s method

4.5.1 Scaling and trial expansions

We would like to �nd an asymptotic solution to the system described in section 4.3.3, for

large λ and for general density ratio k. We already have asymptotic solutions for k = 0
(chapter 3) and for k = ∞ [Billingham, 2006]. In this chapter, we seek an asymptotic

solution for a distinguished ratio k which maximises the interaction between the two

�uids in the limit 1≪ λ≪ є−1.

�e numerical solutions to the half-plane-problem indicate that as λ increases, H,

P and Φ exhibit large-amplitude, high-frequency oscillations on the free surface, with

a slowly varying mean and amplitude of these waves. We therefore look for a multiple-

scales solution, with variation over a slow and fast lengthscale. �is is consistent with

the analysis of Billingham [2006] and also of chapter 3, where we found wavelength

x = O(x−2c ) and slow variation on the lengthscale x = O(xc).
From the kinematic condition (4.33) evaluated at x = 0, we know Px = O(xc) and

Φx = O(xcλ). In order for Px and Φx to balance in (4.32) at the contact point, we need

k = O(λ). We therefore rede�ne the density ratio:

k = µλ, (4.40)

and consider solutions with µ = O(1) as λ →∞.

As in the analysis for k = 0, we choose є̂ = x−3c as our small parameter. We rescale the

system given in section 4.3.3 by writing

H = λ

x2c
Ĥ, Φ = λ

xc
Φ̂, P = x2c P̂. (4.41)

�is scaling corresponds to oscillations in H, P and Φ having wavelength O(x−2c ) near
x = 0. �is gives the short lengthscale for the solution. �e leading order equations are

nonlinear, so the wavelength of each capillary wave may depend on its amplitude. We

therefore use an analysis based on Kuzmak’s method, which is a variation of the method

of multiple scales for nonlinear oscillators, where the wavelength is scaled to 1 by use of a

free parameter. We also expect variation on a slower lengthscale, where x = O(xc). To
use Kuzmak’s method, we de�ne two lengthscales in the x direction,

X = x/xc , x̂ = є̂−1θ1(X ,Y) + p(X ,Y), (4.42)
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and corresponding lengthscales in the y direction,

Y = y/xc , ŷ = є̂−1θ2(X ,Y) + q(X ,Y). (4.43)

�e functions θ1 and θ2 should be chosen so that the wavelength of the oscillations in x̂

and ŷ is exactly 1.

We now consider how the functions θ1 and θ2 are related. In chapter 3, the equations

were linear, so we could consider capillary waves in Φ as the real part of a function of

X + iY , with analytic continuation used to determine Φ away from the positive X-axis

where it was initially calculated. �e equations here are nonlinear, so we cannot simply

take real parts, but would like to take advantage of the algebraic simpli�cations o�ered by

considering Φ as a function of a single variable X + iY .
For this large-λ analysis, we will assume that the map (X ,Y)→ (x̂ , ŷ) is conformal.

�en there are no cross derivative terms between x and y in the expansion of Laplace’s

equation in x̂, ŷ, X and Y . Under the assumption of conformal mapping, the functions

θ1 + iθ2 and p + iq are both analytic functions of X + iY , and hence obey the Cauchy-

Riemann equations:

θ1X = θ2Y = ω(X ,Y), θ2X = −θ1Y = Ω(X ,Y), (4.44)

pX = qY , pY = −qX . (4.45)

We gain a further constraint by requiring that Y = 0 coincides with ŷ = 0, so that the free
surface occupies the positive x̂-axis and positive X-axis. We therefore have θ2(X , 0) = 0
and q(X , 0) = 0, and so on the free surface, where x̂ > 0 and ŷ = 0, we �nd that Ω = 0
and pY = −qX = 0.

We treat Φ̂ as a function of the four independent variables X ,Y , x̂ , ŷ, and Ĥ and P̂ as

functions of x̂ and X, though we will shortly �nd that P̂ is independent of x̂ at leading

order. �e term x + xc which appears in (4.31), (4.32), (4.33) and (4.35) is written in terms

of the slow variable X, so x + xc = (1 + X)xc. We expand in integer powers of є̂, writing

Ĥ = Ĥ0(x̂ , X) + є̂Ĥ1(x̂ , X) +O(є̂2), (4.46)

P̂ = P̄(X , x̂) + є̂P̂0(x̂ , X) + є̂2P̂1(x̂ , X) +O(є̂3), (4.47)

Φ̂ = ˆ̂Φ0(x̂ , ŷ, X ,Y) + є̂Φ̂1(x̂ , ŷ, X ,Y) +O(є̂2). (4.48)
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Derivatives with respect to x and y become

∂

∂x
= 1

xc
[ ∂

∂X
+ (є̂−1ω + pX) ∂

∂x̂
+ (є̂−1Ω + qX) ∂

∂ŷ
] (4.49)

and
∂

∂y
= 1

xc
[ ∂

∂Y
+ (−є̂−1Ω + pY) ∂

∂x̂
+ (є̂−1ω + qY) ∂

∂ŷ
] (4.50)

respectively. On the free surface, we have Ω = 0 and pY = qX = 0, so the derivatives (4.49)
and (4.50) become:

∂

∂x
= 1

xc
[ ∂

∂X
+ (є̂−1ω + pX) ∂

∂x̂
] (4.51)

and
∂

∂y
= 1

xc
[ ∂

∂Y
+ (є̂−1ω + qY) ∂

∂ŷ
] . (4.52)

4.5.2 Kinematic conditions

Slender wedge

We begin with the rescaled kinematic equation for P:

2

3
(1 + X)(Ĥx̂+(є̂−1ω + pX)Ĥx̂) − 2

3
Ĥ

= (∂X + (є̂−1ω + pX)∂x̂) (P̂x̂ + (є̂−1ω + pX)P̂x̂) (4.53)

We expand Ĥ and P̂ using (4.46) and (4.47). At O(є̂−2), (4.53) gives
ω2P̄x̂ x̂ = 0. (4.54)

However, each term in the expansions (4.46), (4.47) and (4.48) is required to be periodic

in x̂ with period 1, and so P̄ must be independent of x̂. We henceforth consider P̄ to be a

function of the slow variable X only.

At O(є̂−1), we �nd from (4.53) that

2

3
ω(1 + X)Ĥ0x̂ = ω2Ĥ0P̂0x̂ x̂ + ωĤ0x̂ [P̄X + ωP̂0x̂] . (4.55)

�is can be integrated once in x̂ to give:

P̄X + ωP̂0x̂ = 2

3
(1 + X) − A(X)

Ĥ0

. (4.56)
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Here A(X) is a constant of integration. We require that P̂0 is strictly periodic, so integrat-

ing (4.56) over one period gives our �rst secularity condition:

P̄X = 2

3
(1 + X) − A(X) ∫ 1

0

1

Ĥ0

dx̂ . (4.57)

Equation (4.53) at O(1) gives:
2

3
(1 + X) [ωĤ1x̂ + pXĤ0x̂ + Ĥ0X] − 2

3
Ĥ0

= Ĥ0 [ω2P̂1x̂ x̂ + 2pXωP̂0x̂ x̂ + 2ωP̂0x̂X + ωX P̂0x̂ + P̄XX] + ω2Ĥ1P̂0x̂ x̂

+ ωĤ0x̂ [ωP̂1x̂ + pX P̂0x̂ + P̂0X] + [ωĤ1x̂ + pXĤ0x̂ + Ĥ0X] [P̄X + ωP̂0x̂] .
(4.58)

Rearranging and integrating, with the aid of (4.56), gives

ωP̂1x̂ + pX P̂0x̂ + P̂0X = A(X)Ĥ1

Ĥ2
0

+ 1

ωĤ0

(x̂AX(X) − 4

3 ∫
x̂

0
Ĥ0dx̂) + B(X)

Ĥ0

, (4.59)

where B(X) is another constant of integration. We know that P̂0, Ĥ0, P̂1x̂ and Ĥ1 are

periodic, so by comparing (4.59) evaluated at x̂ = 0 and x̂ = 1we obtain a second secularity
condition:

AX = 4

3 ∫
1

0
Ĥ0dx̂ . (4.60)

Fat wedge

Along the free surface, the kinematic equation on the fat wedge can be written as

Φ̂Y + (є̂−1ω + qY)Φ̂ ŷ = 2

3
Ĥ − 2

3
(1 + X)(Ĥx̂ + (є̂−1ω + pX)Ĥx̂). (4.61)

We expand Ĥ and Φ̂ using (4.46) and (4.48). At O(є̂−1), (4.61) gives
Φ̂0 ŷ = −2

3
(1 + X)Ĥ0x̂ (4.62)

and at O(1), a�er applying (4.62), we obtain
Φ̂1 ŷ = −2

3
(1 + X)Ĥ1x̂ + 1

ω
(2
3
Ĥ0 − 2

3
(1 + X)Ĥ0X − Φ̂0Y) , (4.63)

as pX = qY on the free surface X > 0, Y = 0.
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4.5.3 Laplace’s equation

In the bulk of the �uid, we have Laplace’s equation:

0 = [∂X + (є̂−1ω + pX)∂x̂ + (є̂−1Ω + qX)∂ ŷ]2 Φ̂
+ [∂Y + (−є̂−1Ω + pY)∂x̂ + (є̂−1ω + qY)∂ ŷ]2 Φ̂.

(4.64)

A�er expansion using (4.48) and some algebra, making use of the relations pX = qY and

pY = −qX , we �nd
0 =(ω2 +Ω2)(Φ̂0x̂ x̂ + Φ̂0 ŷ ŷ)
+ є̂(ω2 +Ω2)(Φ̂1x̂ x̂ + Φ̂1 ŷ ŷ)
+ 2є̂(ωΦ̂0x̂X +ΩΦ̂0 ŷX −ΩΦ̂0x̂Y + ωΦ̂0 ŷY)
+ є̂(ωpX −ΩpY)(Φ̂0x̂ x̂ + Φ̂0 ŷ ŷ)
+O(є̂2).

(4.65)

At leading order, (4.65) gives

(ω2 +Ω2)(Φ̂0x̂ x̂ + Φ̂0 ŷ ŷ) = 0, (4.66)

and so at next order we have

(ω2 +Ω2)(Φ̂1x̂ x̂ + Φ̂1 ŷ ŷ) = −2ω(Φ̂0x̂X + Φ̂0 ŷY) + 2Ω(Φ̂0x̂Y − Φ̂0 ŷX). (4.67)

We want to use (4.67) as the basis for a secularity condition on Φ̂0 and its derivatives.

To do so we use the divergence theorem and a form of Green’s theorem on the semi-

in�nite rectangle R in (x̂ , ŷ) space given by 0 < x̂ < 1, 0 < ŷ <∞. We know that Φ̂1 and

Φ̂0 are periodic in x̂ with period 1.

We use a Fourier series expansion to determine the ŷ dependence of Φ̂0, and write

Φ̂0(x̂ , ŷ, X ,Y) =W0(X ,Y) + ∞∑
n=1

bn(X ,Y) sin(2πnx̂)e−2πnŷ . (4.68)

�e corresponding Fourier series for Ĥ0 is

Ĥ0 = H̄0 − 3

2(1 + X)
∞

∑
n=1

bn cos(2πnx̂). (4.69)

�e Fourier series expansions for Ĥ0 and Φ̂0 satisfy the leading order kinematic and mass

conservation equations on Φ.
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From the divergence theorem and the periodicity conditions, we can write

∫
∞

0
∫

1

0
(Φ̂1x̂ x̂ + Φ̂1 ŷ ŷ)dx̂d ŷ = − ∫ 1

0
Φ̂1 ŷ(x̂ , 0)dx̂ . (4.70)

Substituting (4.68) into (4.70), we �nd that the right-hand-side of (4.70) is zero and so

0 = ∫
1

0
Φ̂1 ŷdx̂ . (4.71)

We have a kinematic equation involving Φ̂1 ŷ from (4.63), so as Ĥ1 is periodic in x̂, we

obtain

W0Y(X , 0) = 2

3 ∫
1

0
Ĥ0dx̂ − 2

3
(1 + X) ∫ 1

0
Ĥ0Xdx̂ , (4.72)

which gives a third secularity condition. We know that

AX = 4

3 ∫
1

0
Ĥ0dx̂ , (4.73)

so we can rewrite (4.72) as

W0Y(X , 0) = 1

2
AX − 1

2
(1 + X)AXX . (4.74)

�is gives us a condition onW0, but does not provide any information about the leading

order oscillator asW0 does not appear in the oscillator equations. However,W0(X ,Y)
will turn out to be important in assembling the composite solution for Φ̂.

We still need another secularity condition. We observe that, according to the diver-

gence theorem and periodicity,

∫
∞

0
∫

1

0
Φ̂0x̂(Φ̂1x̂ x̂ + Φ̂1 ŷ ŷ)dx̂d ŷ = ∫ 1

0
Φ̂1Φ̂0x̂ ŷ − Φ̂0x̂Φ̂1 ŷdx̂ . (4.75)

We can use (4.67) to write

(ω2 +Ω2) ∫ ∞
0
∫

1

0
Φ̂0x̂(Φ̂1x̂ x̂ + Φ̂1 ŷ ŷ)dx̂d ŷ = − 2ω ∫ ∞

0
∫

1

0
Φ̂0x̂(Φ̂0x̂X + Φ̂0 ŷY)dx̂d ŷ

+ 2Ω ∫ ∞
0
∫

1

0
Φ̂0x̂(Φ̂0x̂Y − Φ̂0 ŷX)dx̂d ŷ.

(4.76)

From the Fourier series expansion (4.68), it follows that

∫
∞

0
Φ̂0x̂Φ̂0 ŷYdx̂d ŷ = 0. (4.77)
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On Y = 0, we have Ω = 0, and (4.76) becomes

ω2 ∫
∞

0
∫

1

0
Φ̂0x̂(Φ̂1x̂ x̂ + Φ̂1 ŷ ŷ)dx̂d ŷ = −ω d

dX ∫
∞

0
∫

1

0
Φ̂2

0x̂dx̂d ŷ, (4.78)

which we substitute into (4.75) to yield

1

ω(X , 0) d

dX
( ∫ ∞

0
∫

1

0
Φ̂2

0x̂dx̂d ŷ) = ∫ 1

0
Φ̂1x̂Φ̂0 ŷ + Φ̂0x̂Φ̂1 ŷdx̂ . (4.79)

We can eliminate the ŷ derivatives in (4.79) using the kinematic boundary conditions

on the fat wedge, given by (4.62) and (4.63), so that (4.79) can be rewritten as

1

ω

d

dX
( ∫ ∞

0
∫

1

0
Φ̂2

0x̂dx̂d ŷ) = − 2

3
(1 + X) ∫ 1

0
Φ̂1x̂Ĥ0x̂ + Φ̂0x̂Ĥ1x̂dx̂

+ 1

ω ∫
1

0
Φ̂0x̂ (2

3
Ĥ0 − 2

3
(1 + X)Ĥ0X − Φ̂0Y) dx̂ . (4.80)

On parity grounds we �nd that from the Fourier series (4.68) that

∫
1

0
Φ̂0x̂Ĥ0x̂dx̂ = 0 and ∫

1

0
Φ̂0x̂Φ̂0Ydx̂ = 0, (4.81)

so we can simplify (4.80) to

d

dX
( ∫ ∞

0
∫

1

0
Φ̂2

0x̂dx̂d ŷ) = − 2

3
ω(1 + X) ∫ 1

0
Φ̂1x̂Ĥ0x̂ + Φ̂0x̂Ĥ1x̂dx̂

+ ∫ 1

0
Φ̂0x̂ (2

3
Ĥ0 − 2

3
(1 + X)Ĥ0X) dx̂ . (4.82)

Equation (4.82) is the main result from the analysis of Laplace’s equation, and will

lead to an important secularity condition. We will need to use the Bernoulli equation to

evaluate the term

∫
1

0
(Φ̂1x̂Ĥ0x̂ + Φ̂0x̂Ĥ1x̂)dx̂ ,

and to provide another equation to complete the set of oscillator equations.

4.5.4 Bernoulli’s equation

�e rescaled Bernoulli equation is

є̂2 [∂X + (є̂−1ω + pX)∂x̂]2 Ĥ
= µ [1

3
P̂ − 2

3
(1 + X)(P̂X + (є̂−1ω + pX)P̂x̂) + 1

2
(P̂X + (є̂−1ω + pX)P̂x̂)2]

− ηє̂ [1
3
Φ̂ − 2

3
(1 + X)(Φ̂X + (є̂−1ω + pX)Φ̂x̂)] .

(4.83)
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We have added a second density parameter η, which is the density of the �uid in the

fat wedge relative to the density used for nondimensionalisation. If we put η = 0 we

recover a scaled version of the problem of recoil of a slender wedge of �uid considered by

Billingham [2006].

We expand Ĥ, P̂ and Φ̂ using (4.46), (4.47) and (4.48). We recall that as a result of

(4.54), P̄ in (4.47) is now a function of the slow variable X only, so P̂x̂ = O(є̂). At leading
order, (4.83) gives

ω2Ĥ0x̂ x̂ =µ [1
3
P̄ − 2

3
(1 + X)(P̄X + ωP̂0x̂) + 1

2
(P̄X + ωP̂0x̂)2]

+ 2

3
η(1 + X)ωΦ̂0x̂

(4.84)

However, we know from the kinematic equation on the slender wedge (4.56) that

P̄X + ωP̂0x̂ = 2

3
(1 + X) − A(X)

Ĥ0

. (4.85)

Substituting (4.85) into (4.84) gives

ω2Ĥ0x̂ x̂ = µ [1
3
P̄(X) − 2

9
(1 + X)2 + 1

2

A(X)2
Ĥ2

0

] + 2

3
η(1 + X)ωΦ̂0x̂ , (4.86)

which is a further equation involving the leading order nonlinear oscillator. We also have

(4.56) and (4.62). However, we need a further condition in order to specify the amplitude

of oscillations in Ĥ0.

Examining (4.83) at O(є̂), we obtain
ω2Ĥ1x̂ x̂ + 2pXωĤ0x̂ x̂ + 2ωĤ0x̂X + ωXĤ0x̂

=µ [1
3
P̂0 − A

Ĥ0

(ωP̂1x̂ + pX P̂0x̂ + P̂0X)]
− η [1

3
Φ̂0 − 2

3
(1 + X) (ωΦ̂1x̂ + pXΦ̂0x̂ + Φ̂0X)] .

(4.87)

We substitute for P̂1 from (4.59), so that we may rewrite (4.87) as

−µA2(X)H1

H3
0

+ 2

3
η(1 + X)ωΦ̂1x̂ − ω2Ĥ1x̂ x̂ = F0(x̂ , X) (4.88)

where

F0(x̂ , X) ≡2pXωĤ0x̂ x̂ + 2ωĤ0x̂X + ωXĤ0x̂

− µ [1
3
P̂0 − A(X)

ωĤ2
0

(x̂AX − 4

3 ∫
x̂

0
Ĥ0dx̂) − A(X)B(X)

Ĥ2
0

]
+ η [1

3
Φ̂0 − 2

3
(1 + X) (pXΦ̂0x̂ + Φ̂0X)] .

(4.89)
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Now, using (4.86) and (4.88), we �nd

2

3
ηω(1 + X) ∫ 1

0
(Φ̂1x̂Ĥ0x̂ + Φ̂0x̂Ĥ1x̂)dx̂ = ∫ 1

0
Ĥ0x̂F0(x̂ , X)dx̂ . (4.90)

�e secularity condition (4.82) from the analysis of Laplace’s equation now becomes

d

dX
( ∫ ∞

0
∫

1

0
Φ̂2

0x̂dx̂d ŷ) = − 1

η ∫
1

0
Ĥ0x̂F0(x̂ , X)dx̂

+ ∫ 1

0
Φ̂0x̂ (2

3
Ĥ0 − 2

3
(1 + X)Ĥ0X) dx̂ , (4.91)

which involves only properties of the leading order oscillator. Using the de�nition of F0

from (4.89), we have

∫
1

0
Ĥ0x̂F0(x̂ , X)dx̂ = d

dX
(ω ∫ 1

0
Ĥ2

0x̂dx̂)
+ η [1

3 ∫
1

0
Φ̂0Ĥ0x̂dx̂ − 2

3
(1 + X) ∫ 1

0
Φ̂0XĤ0x̂dx̂]

− 5

3

Aµ

ω
(1 − ∫ 1

0
Ĥ0dx̂ ∫

1

0
Ĥ−10 dx̂) .

(4.92)

We can use the Fourier series expansion of Φ̂0 and Ĥ0 from (4.68) and (4.69) to write

2

3
(1 + X) ∫ 1

0
Ĥ0Φ̂0x̂dx̂ = − ∞∑

n=1

b2nπn = −2 ∫ ∞
0
∫

1

0
Φ̂2

0x̂dx̂d ŷ (4.93)

and so (4.91) becomes

d

dX
(ω ∫ 1

0
Ĥ2

0x̂dx̂ + 1

3
(1 + X)η ∫ 1

0
Ĥ0Φ̂0x̂dx̂)

= 5

3

Aµ

ω
(1 − ∫ 1

0
Ĥ0dx̂ ∫

1

0
Ĥ−10 dx̂) + 5

3
η ∫

1

0
Ĥ0Φ̂0x̂dx̂ .

(4.94)

For ease of notation, we de�ne an ‘energy’ by

E(X) ∶= ω ∫ 1

0
Ĥ2

0x̂dx̂ + 1

3
(1 + X)η ∫ 1

0
Ĥ0Φ̂0x̂dx̂ (4.95)

so that the secularity condition (4.94) becomes

dE

dX
= 5

3

Aµ

ω
(1 − ∫ 1

0
Ĥ0dx̂ ∫

1

0
Ĥ−10 dx̂) + 5

3
η ∫

1

0
Ĥ0Φ̂0x̂dx̂ . (4.96)

Finally, we can show that E is always positive. Integrating the oscillator Bernoulli

equation (4.86) over one period gives

[1
3
P̄(X) − 2

9
(1 + X)2] + A2

2 ∫
1

0

1

Ĥ2
0

dx̂ = 0 (4.97)
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and multiplying (4.86) by Ĥ0 and integrating gives

µ [1
3
P̄(X) − 2

9
(1 + X)2] ∫ 1

0
Ĥ0dx̂ + µA2

2 ∫
1

0

1

Ĥ0

dx̂

+2
3
η(1 + X)ω ∫ 1

0
Ĥ0Φ̂0x̂dx̂ = −ω2 ∫

1

0
Ĥ2

0x̂dx̂ .

(4.98)

We can therefore rewrite E as

E(X) = ω

2 ∫
1

0
Ĥ2

0x̂dx̂ + µA2

4ω
[ ∫ 1

0
Ĥ0dx̂ ∫

1

0

1

Ĥ2
0

dx̂ − ∫ 1

0

1

Ĥ0

dx̂] . (4.99)

As Ĥ0 is positive, the term in square brackets is greater than or equal to zero by the

Cauchy-Schwarz inequality, and we want ω > 0, so E(X) ≥ 0 for all X. E(X) is zero if
and only if Ĥ0 is constant.

4.5.5 Summary: Oscillator equation and secularity conditions

Oscillator equations

�e nonlinear oscillator can be described by the leading order equations:

µ [1
3
P̄ − 2

9
(1 + X)2 + 1

2

A2

Ĥ2
0

] + 2

3
η(1 + X)ωΦ̂0x̂ = ω2Ĥ0x̂ x̂ , (4.100)

Φ̂0 ŷ = −2
3
(1 + X)Ĥ0x̂ , (4.101)

Φ̂0x̂ x̂ + Φ̂0 ŷ ŷ = 0 for ŷ > 0 (4.102)

and

E(X) = ω ∫ 1

0
Ĥ2

0x̂dx̂ + 1

3
(1 + X)η ∫ 1

0
Ĥ0Φ̂0x̂dx̂ . (4.103)

with Φ̂0 bounded as ŷ →∞. �e slowly varying parameters A(X), P̄(X) and E(X) are
�xed for each oscillation. ω(X) is a free parameter to ensure periodicity with period 1. A

selection of numerical solutions to these oscillator equations are shown in �gure 4.7.

Secularity conditions

We need three secularity conditions to determine how A, P̄ and E vary with X. Two come

from the kinematic condition on the thin wedge:

dP̄

dX
= 2

3
(1 + X) − A(X) ∫ 1

0

1

Ĥ0

dx̂ (4.104)
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and
dA

dX
= 4

3 ∫
1

0
Ĥ0dx̂ . (4.105)

�e third secularity condition incorporates terms from all the equations:

dE

dX
= 5

3

Aµ

ω
(1 − ∫ 1

0
Ĥ0dx̂ ∫

1

0
Ĥ−10 dx̂) + 5

3
η ∫

1

0
Ĥ0Φ̂0x̂dx̂ . (4.106)

�is analysis has also uncovered the further secularity condition (4.72), which gives

usW0Y on the free surface. �e functionW0 describes the two-dimensional variation of

the mean of Φ̂. �is is uncoupled from the oscillator equations and the other secularity

conditions. Although we do not need to knowW0 to solve the secularity equations, we

�nd that W0 is important in determining the correct composite solution for Φ̂. �e

equations forW0 are discussed further in section 4.7.5.

4.6 Oscillator solution properties

For a given set of parameters A, P, E and X, and the density parameters µ and η, we want

to �nd a solution Ĥ0(x̂), Φ̂0(x̂ , ŷ) to the system of oscillator equations (4.100) to (4.103).

We must also determine ω, which is a free parameter to ensure periodicity with period 1.

For notational convenience, we de�ne two new parameters:

Q(X) ∶= 4

9
(1 + X)2 − 2

3
P̄(X), B(X) ∶= 4

9
η(1 + X)2, (4.107)

and rescale Φ̂0:

Φ̂0 = 2

3
(1 + X)Ψ, (4.108)

and drop all hats and subscripts for this section.

Given positive values for the parameters A, Q, B and E, we seek a solution ω, H(x),
Ψ(x , y) to

µ

2
[A(X)2

H2
−Q(X)] + ωB(X)Ψx = ω2Hxx on y = 0, (4.109)

Ψy = −Hx on y = 0, (4.110)

Ψxx +Ψyy = 0 for y > 0 (4.111)
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and

E(X) = ω ∫ 1

0
H2

xdx + B

2 ∫
1

0
HΨxdx . (4.112)

To make use of the secularity conditions, we need to calculate three integrals of H(x):
∫

1

0
H(x)dx , ∫ 1

0

1

H(x)dx , ∫
1

0
H(x)Ψx(x , 0)dx , (4.113)

as well as the eigenvalue ω.

�e system (4.109) to (4.112) is translationally invariant in x. If E > 0, we know that

H(x) is non-constant, and so we can specify that H(x) has a local maximum at x = 0.
We have been unable to �nd any solutions to the oscillator equations that have a local

maximum at x = 0 but that do not have H even in x and Ψ odd in x. Suitable solutions

with these symmetries appear to be available for all positive values of A, Q, B and E. In

the rest of this chapter, we will assume that all oscillator solutions have H(x) symmetric

and Ψ(x , y) antisymmetric in x, which simpli�es the analysis of these equations.

4.6.1 Numerical solution with spectral derivatives

Given an even periodic trial solution H(x), we can �nd Fourier coe�cients an so that

H(x) can be written as

H(x) = a0 + ∞∑
n=1

an cos(2πnx). (4.114)

�en by solving (4.110) and (4.111), we �nd

Ψ(x , y) = − ∞∑
n=1

an sin(2πnx)e−2πny (4.115)

with

Ψx(x , 0) = − ∞∑
n=1

(2πn)an cos(2πnx) (4.116)

and

Hxx = − ∞∑
n=1

(2πn)2an cos(2πnx). (4.117)

We truncate these sums at n = N/2. We can �nd matrices M1 and M2, such that

M1 ⋅H = Ψx , M2 ⋅H = Hxx . (4.118)
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�ematricesM1 andM2 depend only on the discretisation of x, and are dense if calculated

using spectral derivatives. Both M1 and M2 will be symmetric if we assume H(x) is even
and periodic. As Ψx has been expressed as a Fourier series above, it seems natural to

also use spectral derivatives for Hxx for this problem. Alternatively, we could use a �nite

di�erence scheme to determine Hxx , in which caseM2 would be sparse. We use N evenly-

spaced points in discretising this system, with xn = (n − 1/2)/N . We seek a solution that

is even in x, so there are N/2 independent values of H to be found.

�e residual vector is composed of the following function evaluated at xi , i = 1, ..,N/2:
Fi = ω2(M2)i jH j − ωB(M1)i jH j + µ

2
[Q − A2

H2
i

] . (4.119)

�e �nal equation comes from E, which �xes the free parameter ω:

FN/2+1 = E + ω ∫ 1

0
HHxxdx − B

2 ∫
1

0
HΨxdx

= E − 1

N
HiH j (−ω(M2)i j + B

2
(M1)i j) . (4.120)

�e N/2 independent values of H and the eigenvalue ω are to be determined in order

to ensure F = 0. We use Newton iteration to �nd numerical solutions to the nonlinear

system, coupled to continuation in A, Q, B and E to provide the initial guesses. �e code

uses an exact Jacobian, which can be expressed concisely in terms of the matrices M1 and

M2. As the points xn are uniformly spaced, we calculate the integrals in (4.113) simply by

taking the mean of the relevant quantities across the independent values of H.

�e oscillator solutions shown in �gure 4.7 were calculated numerically, with N = 200,
using �nite di�erence derivatives for Hxx and spectral derivatives for Ψx . Convergence

testing shows that for moderate values of A, Q, B and E and Hxx calculated using second

order centred �nite di�erence formulae, the eigenvalue ω and the integral solution mea-

sures given in (4.113) converge as O(N−2) as N →∞. If Hxx is calculated using a spectral

scheme, the convergence of these solution measures is much faster. However, as A→ 0,

we �nd that the minimum of H approaches zero, with rapid variation in Hx in a region

of width O(A2) near this minimum. As a result, the solution becomes increasingly less

smooth as A→ 0, and O(A−2) uniformly-spaced grid points are needed in order that the

neck region is su�ciently resolved. For general η, we �nd that A = O(X) as X → 0, and

so direct numerical solution of the oscillator equations becomes infeasible for small X.
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When η = 0, the oscillator equations reduce to ODEs that can be solved exactly in

terms of elliptic integrals. We discuss this exact oscillator solution and the solution to the

resulting secularity equations, in section 4.6.2. For �nite values of η, there is no analytical

solution to the oscillator equations. In section 4.6.3, we derive asymptotic solutions to the

oscillator equations for small A that are valid for �nite η. We expect to �nd that E → 0 as

X →∞, and so derive asymptotic solutions for small E in section 4.6.4.

4.6.2 Solution in terms of elliptic integrals for η = 0
For η = 0, µ = 1, we need to solve the ODE:

1

2
[A2

H2
−Q] = ω2Hxx , (4.121)

with the eigenvalue ω chosen so that the solution has period 1. �e value of E is �xed,

giving the integral constraint

E(X) = ω ∫ 1

0
H2

xdx . (4.122)

Following Billingham [2006], we �nd that we can solve these equations exactly for

general values of the parameters A, Q and E in terms of elliptic integrals (B is zero here).

We then rewrite the secularity equations in terms of complete elliptic integrals; we �nd

that one of the secularity equations decouples from the other two. By rede�ning our

independent variable, we canwrite the two coupled secularity equations as an autonomous

system, and so we reduce the system to a single �rst-order ODE. We choose suitable

boundary conditions, and integrate in X to �nd P̄(0) and λ∗, and �nd the resulting

envelope of oscillations. However, for �nite non-zero η and µ, the three equations do not

decouple and there is no autonomous system. We must instead �nd P̄(0), and hence λ∗

by explicit shooting in X.

For η = 0, we begin by integrating (4.121) a�er multiplying by Hx to obtain

−1
2
[A2

H
+QH] = ω2H2

x

2
+ const. (4.123)

Hx is zero at the maximum and minimum values of H, which we denote HM and H0

respectively, so we can write (4.123) as

ω2H2
x = [A2 ( 1

HM
− 1

H
) +Q(HM −H)] . (4.124)
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Figure 4.7: Solutions to the oscillator equations can be found using a spectral method to calculate

Φ̂0x̂ from Ĥ0 coupled to a Newton solver to deal with the nonlinearities. �e upper

plot shows solutions for B = 1, Q = 1, E = 1 and A = 0.1, 0.2, .., 1, with the height of H
increasing with A. �e lower plot shows solutions for A = 0.5, Q = 1, E = 1 and B = 0
(blue), B = 1 (green) and B = 10 (red).
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We de�ne an aspect ratio α = H0/HM which by (4.124) also satis�es

α = A2

QH2
M

. (4.125)

We can now write (4.124) as

ω2H2
x = QHM [1 − H

HM
+ α (1 − HM

H
)] . (4.126)

We can integrate (4.126) to �nd the energy E as a function of α, A and Q:

E = 2 A3/2

α3/4Q1/4 ∫
1

α

¿ÁÁÀ1 − y + α (1 − 1

y
)dy. (4.127)

Here the integration variable y = H/HM . Equation (4.127) allows us to determine α as a

function of E. Having chosen α, we can calculate the other solution properties by direct

integration:

ω = 1

2

√
Q

HM

⎛⎝ ∫
1

α
(1 − y + α (1 − 1

y
))−1/2 dy⎞⎠

−1

, (4.128)

∫
1

0
Hdx = 2H3/2

M ω√
Q ∫

1

α
y (1 − y + α (1 − 1

y
))−1/2 dy (4.129)

and

∫
1

0
H−1dx = 2ω√

HMQ
∫

1

α
y−1 (1 − y + α (1 − 1

y
))−1/2 dy. (4.130)

�e integrals in (4.127) to (4.130) can be rewritten in terms of complete elliptic integrals

of the �rst and second kind, denoted K and E respectively. We use the de�nition from

Matlab, for which

K(m) = ∫ 1

0
(1 − t2)−1/2(1 −mt2)−1/2dt (4.131)

and

E(m) = ∫ 1

0
(1 − t2)−1/2(1 −mt2)1/2dt. (4.132)

�ese functions can be evaluated in Matlab using the command [K , E] = ellipke(m).
Using Maple to perform the algebraic manipulation, we �nd

∫
1

α

¿ÁÁÀ1 − y + α (1 − 1

y
)dy = 2

3
(1 + α)E(1 − α) − 4

3
αK(1 − α), (4.133)
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∫
1

α
(1 − y + α (1 − 1

y
))−1/2 dy = 2E(1 − α), (4.134)

∫
1

α
y (1 − y + α (1 − 1

y
))−1/2 dy = 4

3
(1 + α)E(1 − α) − 2

3
αK(1 − α) (4.135)

and

∫
1

α
y−1 (1 − y + α (1 − 1

y
))−1/2 dy = 2K(1 − α). (4.136)

In terms of these elliptic integrals, the secularity equations become

dA

dX
= 4

9

A√
αQ
[2(1 + α) − ακ], (4.137)

dP̄

dX
= 2

3
(1 + X) − α1/2Q1/2κ (4.138)

and
dE

dX
= 20

3

A3/2E(1 − α)
α1/2Q3/4

[1 − κ

3
(2(1 + α) − ακ)] (4.139)

where κ ≡ κ(α) = K(1 − α)/E(1 − α).
We can now make the system autonomous by letting S = log(1 + X) and writing

Q = 4

9
(1 + X)2 − 2

3
P̄ ≡ (1 + X)2Q̃ , P̃ = P̄(1 + X)2 (4.140)

so Q̃ is de�ned as

Q̃ = 4

9
− 2

3
P̃. (4.141)

�e �rst two secularity equations, (4.137) and (4.138), become

dA

dS
= 4

9

A

α1/2Q̃1/2
[2(1 + α) − ακ] (4.142)

and
dP̃

dS
= −2P̃ + 2

3
− α1/2Q̃1/2κ. (4.143)

�e �nal secularity condition, (4.139) can be used together with the de�nition of E:

E = 2A3/2

α1/4Q1/4
[2
3
(1 + α)E(1 − α) − 4

3
αK(1 − α)] (4.144)

and the observation that

d

dα
[2
3
(1 + α)E(1 − α) − 4

3
αK(1 − α)] = E(1 − α) −K(1 − α), (4.145)
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to derive an ODE for α:

dα

dX
= −20

3

α3/2

(1 − α)Q1/2
(1 − κ

3
(2(1 + α) − ακ))

+ 8

9

1

1 − α
√

α

Q
(1 + α − 2ακ)(2(1 + α) − ακ)

− 2

9

α

Q(1 − α)(1 + α − 2ακ)(23(1 + X) +
√
αQκ) ,

(4.146)

and its autonomous counterpart:

dα

dS
= − 4

27

α(1 − α)Q̃ {1 + α − 2ακ}
− 2

9

α1/2

(1 − α)Q̃1/2
{α(1 + α)κ − 2(4α2 − 7α + 4)} , (4.147)

which is consistent with Billingham [2006].

�e two equations (4.143) and (4.147) decouple from (4.142) to give an autonomous

system with two variables (recall that κ is a function of α only and Q̃ is a function of P̃

only). Rather than integrate these equations with respect to S, we can consider P̃ as a

function of α by using (4.143) and (4.147) to write

dP̃

dα
= dP̃

ds
(dα
ds
)−1 = f (α, P̃). (4.148)

We now consider boundary conditions on α and P̄. At X = 0, we want to apply the
boundary condition Ĥ0(0, X) = 0, while Ĥ0 remains bounded, so the aspect ratio α → 0.

�e amplitude of oscillations in Ĥ0 tends to zero as X → ∞, so α → 1 as X → ∞. �e

leading order velocity potential P̄ is bounded as X → 0 and tends to zero as X →∞. We

integrate from α = 0 to α = 1, seeking a solution P̃(α) that is bounded as α → 0 and that

has P̄ = (1 + X)2P̃ → 0 as α → 1.

�e limit α → 0 is an integrable singularity for P̃(α). We can expand κ for small α to

�nd

κ(α) ≡ K(1 − α)
E(1 − α) ∼ log(4) − log α

2
+O(α log2 α). (4.149)

If P̃(0) < 0, as suggested by our numerical solutions, then Q̃ tends to a non-zero constant

as S → 0, and we �nd from (4.143) that

d̃P

dS
= O(1) as S → 0 (4.150)
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At leading order for small α, (4.147) gives

dα

dS
∼ 16

9

α1/2

Q̃1/2
+O(α) (4.151)

which has solution

α1/2 ∼ 8

9

S

Q̃1/2
, (4.152)

so α = O(S2) for small S. Combining (4.150) and (4.151) we see that

dP̃

dα
∝ α−1/2 for α ≪ 1, (4.153)

which is consistent with P̃ tending to a �nite value as α → 0.

To �nd the initial value P̃(0), we must link to the far-�eld behaviour of P̄. As X →∞,

we seek a solution with α → 1 and P̄ → 0. �e equivalent condition on P̃ is P̃ = o((1 +
X)−2) as X → ∞, or P̃ = o(e−2S) as S → ∞. As discussed by Billingham [2006], this

means we have to approach the stable node at P̃ = 0, α = 1 in the direction parallel to

the α axis in the (α, P̃) plane. �is is because, for 1 − α ≪ 1 and P̃ ≪ 1, the linearised

version of (4.143) is
dP̃

dS
≈ −3

2
P̃, (4.154)

which has solution P̃ = O(e−3S/2), which decays too slowly for P̄ → 0. �e linearisation

holds for (1− α) and P̃ being of the same order. To achieve faster decay, P̃ must approach

0 much faster than α approaches 1, which means the correct trajectory should reach the

node while travelling parallel to the α-axis.

�e derivative dP̃/dS is not �nite at α = 0, and the functions (4.143) and (4.147) are

not de�ned at α = 0, so we integrate from (α, P̃) = (1 − b, 0) to α = b, where b ≪ 1. We

integrate the ODE (4.148) using the ‘ode45’ routine in Matlab, with small tolerances

and evaluate the elliptic integrals using the ‘ellipke’ function in Matlab. We can also

perform this numerical calculation in Maple. Both Maple and Matlab show convincing

convergence towards the value P̄(0) = −0.2031 as b → 0. �is is in disagreement with the

value P̄(0) = −0.1939 obtained by Billingham [2006]; Billingham does not have details of

his calculation.

We should also solve the equation for A. If α and Q̃ are known functions of S, then

(4.142) gives a separable equation for A(s), which we solve to �nd

log(A(S1)
A(S2)) = 4

9 ∫
S2

S1

1

α1/2Q̃1/2
[2(1 + α) − ακ]dS . (4.155)
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For large X, we expect to �nd

A ∼ 1

λ∗
2

3
(1 + X)2, (4.156)

so it is helpful to rescale by de�ning Ã = A/(1 + X)2, which satis�es

dÃ

dS
= Ã{4

9

1

α1/2Q̃1/2
[2(1 + α) − ακ] − 2} . (4.157)

�e term in braces in this equation is �nite for all α, and tends to zero as α → 1.

In order to apply the boundary condition Ĥ0 = 0 at x̂ = 0, X = 0, we must have

A(0) = 0 for consistency with the leading order Bernoulli equation (4.100). For small X,

we want A→ AX(0) ⋅ X. For α ≪ 1:

dÃ

dS
≈ Ã{8

9

1

α1/2Q̃1/2
− 2} , (4.158)

so now we have
dÃ

dS
= Ã{1

S
− 2} (4.159)

which is consistent with Ã = O(S) as S → 0.

We �nd

λ∗ = lim
α1→0

2

3
( Q̃(0)

α1

)1/2 exp
⎛⎜⎜⎜⎜⎝
− ∫ 1

α1

{4
9

1

α1/2Q̃1/2
[2(1 + α) − ακ] − 2}
dα

dS
(α, Q̃) dα

⎞⎟⎟⎟⎟⎠
. (4.160)

As this calculation requires the path Q̃(α), it can be combined with the integration of

dP̃/dα to �nd P̃(0). We �nd λ∗ = 1.8071 for b = 1e − 7 in comparison to the value

0.8231−3 = 1.7993 obtained by Billingham [2006]. Figure 4.8 shows the solution P̃(α),
Ã(α) for the correctly bounded solution, and also the solution envelope for Ĥ0 in terms

of X.

4.6.3 Asymptotic solution for A≪ 1

An important limit of the oscillator solutions is the case A → 0, which we will �nd is

applicable to the limit X → 0, where A = O(X). Figure 4.7 shows a sequence of numerical

oscillator solutions for various A with Q, B and E �xed. As A → 0 we �nd that the

solution H approaches 0 in a highly curved neck region near x = 1/2, which requires a

large number of uniformly-spaced points in the spectral solution to resolve accurately.
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Figure 4.8: �e solution to the secularity equations for η = 0 that has P̄ → 0 as X →∞. For this

density ratio, the oscillator equations can be solved exactly in terms of elliptic integrals.

�e top two plots show the solution P̃(α) and Ã(α) that satisfy P̄(X) → 0 as X →∞.

�e lower plot shows the envelope for Ĥ0 (solid black lines) and the mean value of Ĥ0

(dashed blue line). �is solution is calculated by integrating from α = 10−7 to 1− 10−7.
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We therefore want to �nd an asymptotic solution to the system (4.109) to (4.112) in

the limit A → 0. We choose a coordinate system so that the minimum of H occurs at

x = 0. �e solution is symmetric about x = 1/2, so we can focus our attention on the

interval 0 < x < 1/2. We �nd an outer region where x ≫ A2, in which H tends towards a

constant, parabola-like shape as A→ 0. �is outer solution satis�es a linear PDE, and is

dependent on the density in both �uids. We then rescale to an inner region of size A2,

where the linearisation fails. Here the leading order equation is a nonlinear ODE, which

we solve exactly and match to the outer solution.

We then calculate the integrals necessary for the secularity conditions. In particular,

the integral of H−1 requires both the inner and outer solutions, and is shown to depend

logarithmically on A at leading order.

Outer solution

In the outer region, we can write H ∼ H0 + o(1) and Ψ ∼ Ψ0 + o(1), where H0 and Ψ0

satisfy the Bernoulli equation

ω2H0xx = ωBΨ0x − µQ

2
. (4.161)

We integrate this once to reach

ω2H0x = ωBΨ0 − µQ

2
(x − 1

2
) (4.162)

for 0 < x < 1, and by periodicity elsewhere. �e constant of integration in (4.162) has

been chosen so that H0(0) = H0(1) if Ψ0 is antisymmetric about the line x = 1/2.
If B = 0, we can integrate (4.162) again to reach

H0 = kx(1 − x) (4.163)

for 0 < x < 1 and by periodicity elsewhere, where

k = µQ

4ω2
. (4.164)

�us H0 has a discontinuous �rst derivative at x = 0. Assuming that H is symmetric and

Ψ antisymmetric, we �nd from (4.162) that for any value of B, H0x is discontinuous at

x = 0, withH0x(0±) = ±k, with k given by (4.164). Wemust use Fourier series to calculate
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Ψ0 from H0 to satisfy the condition Ψ0y = −H0x . We write

H0(x) = kx(1 − x) + ∞∑
n=1

cn(cos(2πnx) − 1) (4.165)

and

Ψ0 = − ∞∑
n=1

an sin(2πnx). (4.166)

Given that Ψ0y = −H0x , we �nd from (4.162) that

an = − µQ(2πnω)2 + BµQ(2πnω)2(B − 2πnω) for n ≥ 1 (4.167)

and

cn = BµQ(2πnω)2(B − 2πnω) for n ≥ 1. (4.168)

We �nd from (4.168) that the Fourier series component of (4.165) converges su�ciently

rapidly to have a continuous �rst derivative everywhere, and so the discontinuities are

contained in the term kx(1 − x).
Figure 4.9 shows two outer solutions Ĥ0 calculated using (4.165) for di�erent values

of B. �e leading order expansion for small x is H ∼ kx, which we will use as a matching

condition for the neck region analysis.

Solution in neck region

�e repeated outer solution shown in �gure 4.9 is ‘V’ shaped near x = 0 and touchesH = 0.
�e neglected term A2/H2 in the nonlinear Bernoulli equation (4.109) can be balanced

by curvature at leading order in a region of width x = O(A2) in which H = O(A2).
We rescale into this region by letting x = A2x̃, y = A2 ỹ, H = A2H̃, Ψ = A2Ψ̃. �en the

Bernoulli equation becomes

ω2H̃x̃ x̃ = A2ωBΨ̃x̃ + µ

2
[ 1

H̃2
− A2Q] . (4.169)

Now let H̃ = H̃0 +O(A2). At leading order in A2 we have:

ω2H̃0x̃ x̃ = µ

2

1

H̃2
0

. (4.170)

We can integrate this once to get

H̃2
0x̃ = k2 − µ

H̃0ω2
, (4.171)
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Figure 4.9: �e interface position Ĥ0 for the outer solution for A≪ 1, de�ned by (4.165). Here

P̄ = −0.2029, which is the value of P̄(0) that satis�es P̄(X) → 0 as X → 0 for the

elliptic integral solution for η = 0 in section 4.6.2. �e value of ω is chosen for this

calculation so that ωk = 1 at x̂ = 0, which is the correct boundary condition at X = 0
for η = 0. �e black line shows Ĥ0 for µ = 1, η = 0. �e blue line shows Ĥ0 de�ned by

(4.165) for µ = 1, η = 1, so B = 4/9.

where the constant of integration has been chosen so that H̃0x̃ → k as H̃0 →∞, to match

the inner limit of the outer solution. At x̃ = 0, we have H̃0x̃ = 0, so
H̃0(0) = µ

ω2k2
. (4.172)

We de�ne a rescaled variable Y = H̃0/H̃0(0). We can rewrite (4.171) in terms of Y to give

Yx̃ = k

H̃0(0)
√

1 − 1

Y
. (4.173)

�is separable equation can be integrated to give x̃ as a function of Y , yielding

k

H̃0(0) x̃ =
√
Y(Y − 1) + 1

2
log(2Y − 1 + 2√Y(Y − 1)) . (4.174)

We expand (4.174) for large Y to reach

k

H̃0(0) x̃ = Y +
1

2
logY − 1

2
+ log 2 +O(Y−1), (4.175)
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Figure 4.10: �e leading order solution for H in the inner (neck) region, given by (4.174), and the

matching conditions with the outer region.

and so the outer limit of the inner solution is

H̃0 ∼ kx̃ + H̃0(0) [−1
2
log( H̃0

H̃0(0)) +
1

2
− log 2] +O(H̃0(0)2/H̃0). (4.176)

Matching

Wematch the inner and outer solutions by the value of Hx . We know H0x → k as x → 0,

where

k = µQ

4ω2
. (4.177)

By choosing the same k in the inner solution, we can match the solution in the inner and

outer regions, with the matching term given by H ∼ kx.
�e current matching condition only involves the �rst term: we choose k to be the

same as derived from the inner limit of the outer solution. For �xed A, the unmatched

term in square brackets in (4.176) grows as x̃ → ∞. However, the error caused by this

unmatched term goes to zero as A→ 0. �e inner solution and its outer limit are plotted

in �gure 4.10.
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�e leading order composite solution is given by

H(x) ∼ H0(x) + A2H̃0 ( x
A2
) − kx , (4.178)

in the interval 0 < x < 1/2, by re�ection in 1/2 < x < 1, and periodicity elsewhere.

Calculation of integrals

To implement the secularity conditions, we need to calculate a number of integral func-

tions of the composite solution. �e analysis so far has assumed that ω is �xed. In fact, ω

is determined by the value of E, and so must satisfy the equation

E = ω ∫
1

0
H2

xdx + B

2 ∫
1

0
HΨxdx . (4.179)

As A→ 0 with ω �xed, we �nd

E ∼ ω ∫
1

0
H2

0xdx + B

2 ∫
1

0
H0Ψ0xdx

= ∞∑
n=1

πna2n
2
(4nπω − B)

= (µQ)2
48ω3

− B(µQ)2
8π2ω3

∞∑
n=1

B − 3πnω
n2(B − 2πnω)2 .

(4.180)

�is leading order expression for E(ω) is independent of A, so at leading order in Awe

take ω = ω0(E) by solving (4.180) for ω.
To �nd AX and EX , we also need to evaluate

∫
1

0
H(x)dx ∼ ∫ 1

0
H0(x)dx +O(A2)

= µQ

24ω2
− ∞∑

n=1

BµQ(2πnω)2(B − 2πnω)
(4.181)

and

∫
1

0
H(x)Ψx(x)dx ∼ ∫ 1

0
H0(x)Ψ0x(x)dx +O(A2)

= −π ∞∑
n=1

na2n .
(4.182)

�e remaining integral that we require for the secularity equations is

∫
1

0

1

H(x)dx . (4.183)
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�e calculation of this integral is more interesting, because it hasO(1) contributions from
the inner and outer regions. Neither the inner nor outer integral converges separately,

as H → kx in the matching region and the integral of x−1 does not converge as x → 0 or

x →∞. However, for a given value of A, the composite solution is smooth, bounded below

by a non-zero constant and is only integrated over a �nite x interval, so the composite

integral should converge. We can write

∫
1

0
H−1dx = 2 ∫

1/2

0
H−1dx

∼ 2 ∫
1/2

δ

1

H0(x)dx + 2 ∫
δ

0

1

A2H̃0(x/A2)dx
= 2 ∫

1/2

δ

1

H0(x)dx + 2 ∫
δ/A2

0

1

H̃0(x̃)dx̃ .
(4.184)

We choose the intermediate lengthscale δ to satisfy A2 ≪ δ ≪ 1. We can explicitly

subtract the singularity from the outer integral by writing

∫
1/2

δ

1

H0(x)dx = ∫
1/2

δ
( 1

H0(x) − 1

kx
) dx + ∫ 1/2

δ

1

kx
dx

= ∫
1/2

0
( 1

H0(x) − 1

kx
) dx + 1

k
(log 1

2
− log δ) +O(δ), (4.185)

where we have replaced the limit of integration as δ → 0 by 0. We can do the integral

involving H̃0 in (4.185) exactly, and then expand for A2 ≪ δ ≪ 1:

∫
δ/A2

0

1

H̃0(x̃)dx̃ =
1

k ∫
H̃0(δ/A2)/H̃0(0)

1

dY

Y
√
1 − 1/Y

= 2

k
[log(√Y − 1 +√Y)]H̃0(δ/A2)/H̃0(0)

1

∼ 2 log 2

k
+ 1

k
log( kδ

A2H̃0(0)) .
(4.186)

Combining the expression for the outer integral from (4.185) and the expression for the

inner integral from (4.186), we obtain

∫
1

0
H−1dx ∼ 2 ∫

1/2

0
( 1

H0(x) − 1

kx
) dx + 2

k
log( 2k

A2H̃0(0)) , (4.187)

which is independent of δ, as it should be, but does have a logarithmic dependence on A.

We can calculate these integrals exactly for B = 0. We know that H0 = kx(1 − x), so
2 ∫

1/2

0
( 1

H0(x) − 1

kx
) dx = 1

k
log 2, (4.188)
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For any density ratio, the constants k and H̃0(0) which appear in (4.187) are given by

k = µQ

4ω2
, H̃0(0) = µ

ω2k2
, (4.189)

and so when B = 0 we �nd

∫
1

0
H−1dx ∼ 8ω2

µQ
log( µ2Q3

24ω4A2
) . (4.190)

For η > 0, we have B > 0 and must resort to the Fourier series expression for H0(x) in
(4.165) to evaluate the outer integral in (4.187). �e integral

∫
1/2

0
( 1

H0(x) − 1

kx
) dx (4.191)

should converge for any truncation of the sum in (4.165).

Figures 4.11 compares various properties, including these integrals, for oscillator

solutions with A < 1, for the numerical solutions, the small-A asymptotic solution, and

the exact solution for B = 0. We �nd that there is good agreement between the exact

solution and the small-A asymptotic solution when A < 0.1, and between the exact

solution and numerical solution for N = 200 when A > 0.1. Figure 4.12 shows solution
properties for B = 1, where there is no exact solution, but the asymptotic and numerical

solutions again agree when A ≈ 0.1.
4.6.4 Asymptotic solution for E ≪ 1

For large X, we expect the amplitude of oscillation in Ĥ0 and Φ̂0 to tend to zero, with

the mean of Ĥ0 given by Ĥ0 = O(1 + X). �e parameter E is always positive and strictly

decreasing, so for large X we expect solutions with small E.

If E ≪ 1, we can obtain an approximate solution by linearising about constant H. We

let

H(x) = H̄0 + K cos(2πx), Ψ = −K sin(2πx)e−2πy , (4.192)

where H̄0 and K are constants. �en by linearising the Bernoulli equation, we �nd that

H̄0 = A√
Q
, 4πω = B +

¿ÁÁÀB2 + 4µA2

H̄3
0

. (4.193)
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Figure 4.11: Solution outputs for Q = 3, E = 1.3 and B = 0 for A < 1. Here the equations are ODEs
that can be solved exactly. Exact solutions are plotted with red plusses, numerical

solutions with black crosses, and the small A asymptotic results with solid blue lines.

�e numerical solutions have N = 200, and Hxx calculated using two-point centred

�nite di�erence formulae. �e exact solution tracks the numerical solution for A > 0.1.
For A < 0.1, the small-A asymptotic solution is much closer to the exact solution than

the numerical solution is. �e quantity G is de�ned as ∫
1
0 HΨxdx.
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Figure 4.12: Solution outputs for Q = 3, E = 1.3 and B = 1 for A < 1. Numerical solutions are

plotted with black crosses, and asymptotic results with solid blue lines. �e numerical

solutions have N = 200, and Hxx calculated using two-point centred �nite di�erence

formulae. We no longer have an exact solution for comparison. �e asymptotic and

numerical solutions are in rough agreement at A = 0.1. Above this, we expect the
numerical solution to be more accurate, while the asymptotic solution should be more

accurate for A < 0.1. �e deviation at A = 0.1 is consistent with the comparison to

the exact result in �gure 4.11
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�e amplitude of the oscillation, K, is determined by the value of E. We can evaluate E

using (4.112) to reach

E = 2πK2 (πω − B/4) = πK2

2

¿ÁÁÀB2 + 4µA2

H̄3
0

. (4.194)

Recall B = 4η(1 + X)2/9, while
H̄0 → 1 + X

λ∗
, A→ 2(1 + X)2

3λ∗
as X →∞. (4.195)

According to (4.193), the �ow in the slender wedge has negligible in�uence on the deter-

mination of ω once

(1 + X)3 ≫ 9µ

η2
λ∗. (4.196)

With Ĥ0 given by (4.192), the derivative EX from (4.106) becomes

dE

dX
= 5

3

Aµ

ω
(1 − ∫ 1

0

1

1 + α cos(2πx)dx) − 10

9
πη(1 + X)K2, (4.197)

where the small parameter α = K/H̄0. We therefore require the expansion for small α of

the function

f (α) ∶= ∫ 1

0

1

1 + α cos(2πx)dx̂ = (1 − α2)1/2. (4.198)

Expanding this for small α, we �nd

f (α) ∼ 1 + α2/2 +O(α4) as α → 0. (4.199)

So now we have
dE

dX
= −K2 [5

6

Aµ

ωH̄2
0

+ 10

9
η(1 + X)π] , (4.200)

which is always negative. For large X, or for all X if µ = 0, we �nd that ω ∝ (1 + X)2,
K ∝ (1 + X)−7/2 and E ∝ (1 + X)−5. If η = 0, we �nd ω ∝ (1 + X)1/2, E ∝ (1 + X)−5/2
and K ∝ (1 + X)−3/2.

For large X, we expect to �nd A = O((1 + X)2), P → 0 and E → 0. In this limit,

the secularity equations are not particularly sensitive to small changes in A or P̄, but

for small E, an integration error might mean a negative value of E is requested by a

numerical BVP or ODE solver. We can reduce the sensitivity of the numerical integration

of the secularity equations to small errors by solving for R(X) rather than E(X), where
R(X) = − log(E(X)). By considering R instead, we can ensure solution parameters

are only requested for positive values of E. Under this change of variables, we have

RX = −EX/E.
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4.7 Solution of secularity equations

4.7.1 Boundary conditions as X → 0: An inner problem

In section 4.5 we derived an asymptotically homogenised description for capillary waves

along the free surface on the positive X-axis. Here ‘asymptotically homogenised’ or

‘method of multiple scales’ means that for any given value of X, the free surface displace-

ment tends to a strictly periodic function as the small parameter є̂ → 0, which is the limit

in which the short wavelength of individual oscillations separate from slow variation of

the oscillator parameters.

In our system, the point (x̂ , ŷ) = (0, 0) corresponds to a discontinuous change in

boundary condition along the line ŷ = 0. We have a free surface along ŷ = 0, x̂ > 0, in
which the oscillator equations can support oscillations inde�nitely, but a rigid wall on

ŷ = 0, x̂ < 0where Φ̂ must decaymonotonically as x̂ → −∞. �e free surface displacement

and velocity potential take an O(1) number of oscillations to adjust to the imposition of

the rigid wall conditions. On the x̂-scale, the adjustment length L depends on the density

ratio between the two �uids, but is independent of the small parameter є̂, so does not

vanish even in the limit є̂ → 0.

�e result is that the inner region, a region of size a few wavelengths centred around

the contact point, is non-homogenisable, and we must explicitly solve a non-periodic

half-plane-problem in order to interpret the contact angle condition

ωĤ0x̂(x̂ = 0, X = 0) = 1 (4.201)

as a boundary condition for the multiple scales analysis. We now consider the form this

inner problem should take.

�e original, non-multiple scale, kinematic equation (4.33) for P(x) is
2

3
(x + xc)Hx − 2

3
H = (HPx)x (4.202)

which can be integrated once to give

Px = 2

3
(x + xc) − 4

3

∫
x
0 H(x′)dx′

H(x) , (4.203)

where we have used the boundary conditionH(0) = 0. Now compare this to the secularity
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equations for P̄ and A:

dP̄

dX
= 2

3
(1 + X) − A(X) ∫ 1

0

1

Ĥ0

dx̂ (4.204)

and
dA

dX
= 4

3 ∫
1

0
Ĥ0dx̂ , (4.205)

and we can see that A(X) measures the area slowly accumulated between the contact

point and X. In particular, we must have A(0) = 0 for consistency with the boundary

condition Ĥ0(0, 0) = 0.
With A(0) = 0, at X = 0, the leading order kinematic condition for the thin wedge

(4.56) gives

P̄X(0) + ωP̂0x̂(x̂ , 0) = 2

3
. (4.206)

At X = 0 the leading order Bernoulli equation (4.100) is

µ [1
3
P̄ − 2

3
(P̄X + ωP̂0x̂) + 1

2
(P̄X + ωP̂0x̂)2] + 2

3
ηωΦ̂0x̂ = ω2Ĥ0x̂ x̂ . (4.207)

Substituting for P̂0 from (4.206), this becomes

µ [1
3
P̄(0) − 2

9
] + 2

3
ηωΦ̂0x̂ = ω2Ĥ0x̂ x̂ . (4.208)

�e kinematic condition on the fat wedge gives

Φ̂0 ŷ = −2
3
Ĥ0x̂ , (4.209)

on ŷ = 0 for x̂ > 0. �is must be considered along with the rigid wall condition

Φ̂0 ŷ = 0, (4.210)

on ŷ = 0 for x̂ < 0, and that requirement that Φ̂0 must be harmonic in ŷ > 0.
�ere are three unknown parameters in the oscillator equations: A(X), P̄(X) and

E(X), with ω(X) determined as an eigenvalue from the leading order oscillator equations.

If A(0) = 0 and Ĥ0 is �nite as X → 0, we have A = O(X). �e initial value P̄(0) is
unknown, but P̄X = O(1) as A→ 0, so P̄ = O(1) as X → 0. �e initial value of E(X) is
also unknown, with E(X) strictly decreasing and EX(0) = O(A logA+ η). We therefore

expect E(0) = O(1). �is indicates that the inner limit of the secularity equations is

A = O(X), P̄ = O(1) and E = O(1) as X → 0.
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We discussed solutions to the oscillator equations for A≪ 1, P̄ = O(1) and E = O(1)
in section 4.6.3. We found that for small A, the solution Ĥ0(x̂) tends towards a constant
parabola-like shape in an outer region, shown in �gure 4.9. For A > 0, these parabola-like
shapes are connected by thin neck regions, of width and height O(A2). Ĥ0x̂ changes

sign but not magnitude as it passes through a neck region. We therefore expect that the

limit of the oscillator solutions as X → 0 should consist of a sequence of these parabola-

like regions, with Ĥ0x̂ discontinuous, changing sign but not magnitude, at points where

Ĥ0 = 0.
When η = 0, Billingham [2006] showed that the solution at X = 0 is Ĥ0 ∝ x̂(1 − x̂)

in 0 < x̂ < 1, repeated periodically for x̂ > 1, so that Ĥ0x̂ is discontinuous whenever

Ĥ0 = 0. However if η > 0, a strictly periodic solution of this form, where Ĥ0 is periodic

with period 1 for all x̂ > 0, cannot satisfy the equations derived above for X = 0. �is is

because any non-constant periodic function Ĥ0(x̂) fed into the half-plane-problem for

Φ̂0(x̂ , ŷ) gives a solution that is non-periodic along x̂ > 0, ŷ = 0, providing an unbalanced
non-periodic term in (4.208).

For η ≠ 0, we must instead look for a solution in which Ĥ0(x̂) and Φ̂0(x̂ , 0) are not
periodic but tend towards a periodic solution as x̂ →∞. Inspired by Billingham [2006]

and the small A (hence small X) two-�uid oscillator results from section 4.6.3, we seek a

solution that has Ĥ0(x̂) continuous and always non-negative, with Ĥ0x̂(x̂) changing sign
discontinuously whenever Ĥ0 = 0.

For integration of the secularity conditions, we are interested in the limit as X → 0 of

AX , P̄ and E. �is limit as X → 0 should be equivalent to the limit as x̂ →∞ of the new

inner problem solution. �e outer limit of the inner solution is periodic with period 1,

and can be expressed in terms of Fourier coe�cients:

Ĥ0x̂ =
∞∑
n=1

an(cos(2πn(x̂ + φ)) − 1),
Φ̂0(x̂ , ŷ) = −2

3

∞∑
n=1

an sin(2πn(x̂ + φ)) exp(−2πnŷ) (4.211)

where

an = − µQ0(2πnω)2 + B0µQ0(2πnω)2(B0 − 2πnω) . (4.212)

Here Q0 = 4/9 − 2P̄(0)/3, B0 = 4η/9 and φ is a constant phase shi� that must be deter-

mined as part of the inner problem solution.
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�e Fourier coe�cients given by (4.212) still contain two unknown parameters: the

eigenvalue ω and the secularity variable Q0 which is a function of P̄(0). We expect that

P̄(0) will eventually be determined by the condition P̄ → 0 as X → ∞. However, the

calculation of ω as a function of P̄(0), η and µ requires the solution of the full inner

half-plane problem in order to make use of the boundary condition ωĤ0x̂(0, 0) = 1.
We can rescale the inner problem so that the resulting half-plane problem has only

one independent variable. We do so by letting

ω = ω0ω̃, ω0 = µQ0

2
, σ = 8η

9µQ0

, (4.213)

and then we �nd that ω̃ depends only on σ , and is independent of Q0. We discuss the

resulting single-parameter inner problem in more detail in appendix A.

In terms of these variables, the Fourier coe�cients (4.212) become

an = 1

µQ0

1

π2n2ω̃2
( σ

σ − 2πnω̃ − 1) . (4.214)

We can use this Fourier series to write the initial conditions for the other two secularity

variables given by

AX(0) = −4
3

∞∑
n=1

an , E(0) = ∞∑
n=1

πna2n
2
(4πnω − B0), (4.215)

as

AX(0) = 1

µQ0

Ã(σ), E(0) = 1

µQ0

Ẽ(σ) (4.216)

where

Ã(σ) = 1

ω̃2
(2
9
− 4σ

3π2

∞∑
n=1

1

n2(σ − 2πnω̃)) (4.217)

and

Ẽ(σ) = 1

πω̃2

∞∑
n=1

4πnω̃ − σ
n(σ − 2πnω̃)2 . (4.218)

If ω̃(σ) is known, it is straightforward to evaluate Ã(σ) and Ẽ(σ) using (4.217) and

(4.218).

In appendix A, we discuss the numerical calculation of ω̃(σ). �ere is some un-

certainty as to whether the resulting function ω̃(σ) is correct, especially as there is a
discretisation-related branch structure for this function. However, we do have two con-

straints on ω̃(σ). Firstly, we know that ω̃(0) = 1/2. Secondly, we expect that ω̃(σ) should
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Figure 4.13: �e boundary conditions at X = 0 can be written in terms of the functions Ã(σ) and
Ẽ(σ) de�ned by (4.217) and (4.218). However, these function de�nitions also involve

the eigenvalue ω̃(σ), which is calculated by solving the inner problem discussed in

appendix A. �is �gure shows Ã(σ) and Ẽ(σ) for some candidates for the function

ω̃(σ). �e blue line shows a numerical solution to the inner half-plane-problem, and

corresponds to the red line (complete with kink) in �gure A.4. �e gold line here is

identical to the blue line for σ < 6 and σ > 8, but uses a cubic spline for 6 < σ < 8,
thus smoothing over the kink. �e other functions shown are ω̃ − σ/2π = 1/2
(green), ω̃ − σ/2π = (1 + σ)−1/4/2 (magenta), ω̃ − σ/2π = (1 + σ)−1/2/2 (cyan) and
ω̃ − σ/2π = (1 + σ)−1/2 (red).
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be continuous, and ω̃(σ) > σ/2π for all σ to avoid the singularity in the denominator of

(4.217) and (4.218). Figure 4.13 shows Ã(σ) and Ẽ(σ) calculated for various candidate

functions ω̃(σ) that meet these conditions.

4.7.2 Boundary conditions as X →∞
�e boundary conditions for X →∞ are much simpler than those at X = 0. As X →∞
we require:

Ĥ0(x̂ , X)→ 1 + X
λ∗

, P̄ → 0, Φ̂ → 0, (4.219)

where λ∗ = є̂λ0. In terms of A, P̄ and E, these are equivalent to

A(X) ∼ 1

λ∗
2

3
(1 + X)2, P̄(X)→ 0, E(X)→ 0 (4.220)

as X →∞. We �nd that solutions to the secularity equations starting from reasonable

values of A, P̄ and E at X = 0 nearly always satisfy E → 0 as X → ∞. If E = 0, Ĥ0 is a

constant with respect to X, and we also obtain A = O(1 + X)2. However, the boundary
condition P̄ → 0 is non-trivial, and closes the system by providing a third boundary

condition, in addition to knowing A/X and E at X = 0 in terms of σ . We must use

shooting or a relaxation scheme to relate σ at X = 0 to P̄ as X →∞.

4.7.3 Secularity solutions for �nite density ratio

We integrate the secularity equations given in section 4.5.5 with boundary conditions

from sections 4.7.1 and 4.7.2, using values for ω̃(σ) calculated by the numerical method

discussed in appendix A, and shown by the gold line in �gure 4.13. For very small X, we

use the asymptotic oscillator solutions for small A discussed in section 4.6.3, and then

use the spectral method discussed in section 4.6.1 to �nd numerical oscillator solutions

for larger X. We use the solution for E ≪ 1 derived in section 4.6.4 as an initial guess for

the nonlinear oscillator solver when X is large. We use a shooting scheme to choose P̄(0)
so that P̄(XEND) = 0, where XEND is the truncation point of our integration.

For η = 0, µ = 1, we found an exact solution to the oscillator equations using elliptic

integrals, and used this to obtain a numerical solution to the secularity equations. �is

solution is discussed in section 4.6.2 and plotted in �gure 4.8. �e unique solution to the

secularity equations and boundary conditions has P̄(0) = −0.2031. We use a continuation
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Figure 4.14: �e eigenvalue λ∗ = λ/x3c resulting from the large-λ asymptotic analysis with η = 1
and µ varying. �is is a rescaling of the result for η varying and µ = 1 shown by the

black crosses in �gure 4.6.

scheme starting from this solution for η = 0 to obtain solutions to the secularity BVP for

η > 0. �e values of λ∗ and P̄(0) obtained from the numerical integration of this BVP,

with shooting for P̄(0), are shown in �gure 4.6 for µ = 1 and η varying.

We can rescale these results to give solutions for η = 1 and µ varying, so that the

density of the �uid in the fat wedge is �xed. We denote the eigenvalue λ∗ corresponding

to density parameters η and µ by λ∗(η, µ). By rescaling the half-plane problem given in

section 4.3.3, we �nd

λ∗(1, η−1) = λ∗(η, 1)
η

. (4.221)

�e function λ∗(1, µ) obtained by rescaling the solution shown in �gure 4.6 is plotted in

�gure 4.14. �ese numerical solutions suggest that λ∗(1, µ)→ λ∗0 as µ → 0, where λ∗0 is a

constant. If this is true, then we should also �nd that x3c ∼ λ∗0 λ for solutions with k = O(1),
where ρ1/ρ2 = kє. Our analysis in chapter 3 showed that xc = O(λ2/9) as λ →∞ when

k = 0. �e numerical solutions to the two-�uid half-plane problem discussed in section

4.4 showed qualitatively di�erent behaviour for k = 0 and k = O(1), with H pinching o�

for large λ when k = 0, but forming narrow necks which do not pinch o� when k = O(1).
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We now investigate the behaviour of the secularity equations for large η, which is

applicable to the limit µ → 0. In this limit, we �nd a simpler relationship between the

eigenvalue λ∗ and the inner problem solution ω̃(σ), which does not require the explicit

solution of the secularity equations for individual values of η.

4.7.4 Large η solution behaviour

In section 4.6.4, we discussed oscillator solution behaviour as E → 0. We found that the

solution was primarily determined by the linear terms corresponding to the �uid in the

fat wedge, once (1+ X)3 ≫ 9µλ∗/η2. As η increases, the range of X for which �ow in the

slender wedge has a signi�cant e�ect on the oscillator solution diminishes. However, a

signi�cant e�ect due to the nonlinear terms remains, which is the requirement that by

averaging the oscillator Bernoulli equation (4.109) over one period, the solution H(x)
must satisfy

∫
1

0

1

Ĥ2
0

dx = Q

A2
, (4.222)

independently of the value of µ, provided that µ > 0.
We can write an approximate solution to the oscillator equations de�ned in section

4.6 as

Ĥ0 ∼ H̄ + K cos(2πx), ω = B

2π
, E = πK2B

2
, (4.223)

where H̄ is a constant to be determined. �is is similar to the analysis for small E discussed

in section 4.6.4. However, here we allow the amplitude K to be of the same order as H̄.

�e value of H̄ is determined by the constraint (4.222). If H is given by (4.223), we can

calculate the le�-hand-side of (4.222) as

∫
1

0

1

Ĥ2
0

dx = 1

H̄2 ∫
1

0
(1 + (K/H̄) cos(2πx))−2 dx = 1

H̄2
(1 − (K

H̄
)2)−3/2 , (4.224)

so H̄ can be found by solution of

( H̄2

K2
− 1)3/2 K2

H̄2
= A2

QK2
. (4.225)

�is cubic equation has a unique solution with H̄/K > 1 if A2/QK2 > 0.
As found in section 4.6.4, if µ = 0, the equation for EX gives

dE

dX
= − 5E(1 + X) , (4.226)
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so we can replace E and K by

E = E0(1 + X)−5, K = K0(1 + X)−7/2. (4.227)

�e secularity equations for A and P̄ can be written as

AX = 4

3
H̄ (4.228)

and

P̄X =2
3
(1 + X) − A ∫ 1

0

1

Ĥ0

dx

=2
3
(1 + X) − A

H̄
(1 − K2

H̄2
)−1/2

=2
3
(1 + X) − (AQ

H̄
)1/3 .

(4.229)

In order to be able to meet the boundary condition Ĥ0 at x̂ = X = 0, we must have

min(Ĥ0)→ 0 as X → 0, then H̄(0) = K0, so the initial condition for A is

AX = 4

3
H̄ ∼ 4

3
K0 as X → 0. (4.230)

For large X, we expect

H̄ → 1 + X
λ∗(η, 1) , A = O(1 + X)2. (4.231)

We can rescale to remove most of the dependence on K0 by de�ning A = K0a and

H̄ = K0h̄, so that the equations become

aX = 4

3
h̄ (4.232)

and

P̄X = 2

3
(1 + X) − (aQ

h̄
)1/3 , Q = 4

9
(1 + X)2 − 2

3
P̄, (4.233)

where h̄ is the unique solution with h̄ > (1 + X)−7/2 of
( h̄2(1 + X)7 − 1)

3/2 (1 + X)7/2
h̄

= a2

Q(1 + X)7 . (4.234)

�e boundary conditions become

a = 4

3
X as X → 0 (4.235)
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and

h̄ → 1 + X
K0λ∗(η, 1) . (4.236)

Once again, P̄(0) is found by shooting so that P̄ → 0 as X → ∞. We �nd that P̄(0) =
−0.1090 and K0λ∗(η, 1) = 3.3535. Figure 4.15 shows the solution envelope for the a, h̄, P̄

system.

�e value of the constant K0 varies with σ and η, and is related to AX(0) by
AX(0) = 4

3
K0. (4.237)

We know that AX(0) = Ã(σ)/µQ0, where Ã is de�ned by the in�nite sum (4.217). We can

estimate the leading order behaviour ofK0 as η →∞ by assuming that we can approximate

Ã(σ) by the �rst term in the sum in (4.217), so that

Ã(σ) ∼ 16

3

1

σ

1

2πω̃ − σ as σ →∞. (4.238)

�en recalling the de�nition of σ from (4.213), we �nd

K0 ∼ 9

2η

1

2πω̃ − σ as η →∞ (4.239)

so we predict that

λ∗(η, 1) ∼ 3.3535 × 2η

9
(2πω̃ − σ) as η →∞. (4.240)

We can rescale this result to give λ∗(µ, 1) as µ → 0. We �nd that λ∗(µ, 1) tends to a
non-zero constant as µ → 0 if 2πω̃ − σ tends to a constant as σ →∞. Figure 4.16 shows

the behaviour of λ∗ and P̄(0) as µ → 0 with η = 1. Figure 4.17 shows the behaviour of ω̃
as σ →∞.

157



Chapter 4: Two-fluid half-plane problem

α
1/2

P̃

α
1/2

ã
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Figure 4.15: �e large-η asymptotic solution envelope. �is �gure should be compared to �gure

4.8 on page 137, which shows a similar plot for the η = 0 secularity solution. For

comparisonwith �gure 4.8, we plot P̃ = P̄/(1+X)2 and ã = a/(1+X)2 = A/K0(1+X)2
against the aspect ratio α = (H̄ − K)/(H̄ + K). �e lower plot shows the maximum,

minimum and mean of H̄/K0 ≡ H against X. Note that the solution envelope here

decays much more quickly with respect to X than the solution shown in �gure 4.8.
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Figure 4.16: Comparison of secularity solution eigenvalues for η = 1 as a function of µ (solid blue

line) and large η asymptotic solution (dashed black line) from section 4.7.4. Both are

calculated using ω̃(σ) from the ‘gold’ curve in �gure 4.13.
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Figure 4.17: �e behaviour of the eigenvalue λ∗(1, µ) for small µ is related to the value of ω̃−σ/2π
as σ →∞ by (4.240). We �nd that λ∗(1, µ) tends to a non-zero constant as µ → 0 if

ω̃ − σ/2π tends to a non-zero constant as σ →∞.

159



Chapter 4: Two-fluid half-plane problem

4.7.5 Composite solutions

Once appropriate boundary conditions have been determined, integration of the secularity

equations readily gives the secularity variables A, P̄ and E as functions of the slow variable

X. To �nd a composite solution for a particular value of є̂ = x−3c , wemust refer to particular

values of the oscillator solution Ĥ0(x̂ , X). We know that x̂ and X are related by

dx̂

dX
= є̂−1ω(X). (4.241)

We therefore need to integrate ω(X) to �nd x̂ as a function of X and є̂. �is can be

calculated as a further secularity equation, where we integrate ω to �nd θ1(X , 0), where
x̂ = є̂−1θ1(X , 0) +O(1).

�e oscillator solutions plotted so far in this chapter all have minima for H at x̂ = 1/2.
�is is an arbitrary choice of phase, as the periodic oscillator equations are invariant

under translation in x̂. �e inner problem solutions calculated in appendix A for η > 0
have a phase shi� z̄ between the application of the contact point at x̂ = 0 and the contact

points for the periodic far-�eld solution for H. �ere is therefore a constant phase shi�

at X = 0 to be determined. In addition, we also have an undetermined O(1) phase shi�
p(X ,Y) which allows a slow dri� in phase for X > 0.

Once we have chosen a phase for X = 0, we can calculate x̂ at leading order in є̂

and obtain Ĥ0(x̂ , X) by interpolating against the periodic solution. �e leading order

composite solution for Ĥ becomes

Ĥ ∼ Ĥ0 (θ1(X , 0)
є̂

+ z̄ − 1

2
, X)−Ĥ0 (θ1(X , 0)

є̂
+ z̄ − 1

2
, 0)+ 2

µQ0

h (θ1(X , 0)
є̂

) , (4.242)
where the calculation of Ĥ0 is discussed in section 4.6 and the inner solution function h

is discussed in appendix A. Figure 4.18 shows an outer composite solution for Ĥ, which

uses only the �rst term in (4.242). �is inherits a phase shi� from the inner problem, and

should be correct for X ≫ є. However, this outer composite solution does not satisfy the

condition Ĥ = 0 at x̂ = X = 0, as the adjustment of phase necessary for this condition

occurs in the inner region.

Figure 4.19 shows the interface shape Ĥ for a numerical solution to the half-plane

problem (4.3.3) for µ = 1 and η = 1 with λ = 50 and є̂ = 0.535. We �nd that the shape

of this �nite-λ solution agrees reasonably well with the large-λ envelope, but the two

160



Chapter 4: Two-fluid half-plane problem

X

Ĥ
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Figure 4.18: A composite outer solution and solution envelope for Ĥ with η = 1, µ = 1. Here

є̂ = x−3c = 0.05. �e ‘outer’ composite solution has a phase such that Ĥ does not

reach 0 at X = 0. �e inner problem should cause an adjustment on the lengthscale

X = O(є) such that Ĥ does touch down at x̂ = X = 0. However, it is di�cult to

match these components together numerically to calculate composite solutions, as

the phase of inner and outer solutions are not entirely in synch, and subtracting

slightly out-of-phase oscillatory solutions gives a resulting solution with erroneous

discontinuities.
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Figure 4.19: Rescaled interface position Ĥ for the same numerical solution as shown in �gures

4.2(b) and 4.24, with λ = 50, µ = 1, η = 1. �ere is a discrepancy between values of

λ∗ for the numerical and asymptotic solutions which causes the deviation shown in

the upper �gure. �e lower �gure scales both solutions by plotting λ∗Ĥ so that they

must coincide for large X.
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Figure 4.20: A composite solution for P̂ (blue), with η = 1, µ = 1, є̂ = x−3c = 0.05. As є̂ → 0, we �nd

P̂(x̂ , X) → P̄(X), with oscillations about the slow mean (red) P̄ of amplitude O(є).
�e solution envelope (black) here is for є̂ = 0.05. Note that the wave amplitude for

P̂0 tends to zero as X → 0.

solutions have di�erent values of λ∗ = λ/x3c , and so we obtain much better agreement by

rescaling the two solutions so that they coincide for X →∞.

�e velocity potential in the slender wedge is given by P̂ = P̄(X) + є̂P̂0(x̂ , X), where
P̂0 satis�es

P̂0x̂ = A(X)
ω(X) ( ∫

1

0

1

Ĥ0

dx̂ − 1

Ĥ0

) (4.243)

and

P̂ ∼ P̄(X) + є̂P̂0 (θ1(X , 0)
є̂

+ z̄ − 1

2
, X) . (4.244)

Figure 4.20 shows a composite solution for P̂(X) and the solution envelope, which

depends on є̂.

Along the free surface X > 0, Y = 0, the velocity potential in the fat wedge, Φ̂, is given

at leading order by

Φ̂ ∼ Φ̂osc (θ1(X , 0)
є̂

+ z̄ − 1

2
, X) − Φ̂osc (θ1(X , 0)

є̂
+ z̄ − 1

2
, 0)

+W0(X , 0) + 4

3µQ0

ϕ (θ1(X , 0)
є̂

, 0) + C1,

(4.245)
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where C1 is a constant. Here Φ̂osc is Φ̂0 from section 4.6 and ϕ is the velocity potential

for the rescaled inner problem discussed in appendix A. �e �rst two components of this

composite expression areW0(X ,Y = 0), which contains the slow variation of the mean of

Φ̂ that is independent of x̂ and the purely oscillatory term Φ̂osc(x̂ , X) which is obtained

by solving the oscillator equations. We subtract the term Φ̂osc(x̂ , 0), as this is the outer
limit of the inner solution and also the inner limit of Φ̂osc(x̂ , X). �e inner solution itself

is given by 4ϕ(x̂ , ŷ)/3µQ0. All the secularity and oscillator equations derived so far are

independent of an additive constant in Φ̂ orW0, and so we can choose C1 so that Φ̂ → 0

as ∣X∣ →∞. For X > 0, we can calculate Φ̂osc by interpolating against known solutions

to the oscillator equations. �e calculation of the inner solution ϕ(x̂ , ŷ) is discussed in

appendix A.

Along the rigid wall given by X < 0, Y = 0, we can write

Φ̂ ∼W0(X , 0) + 4

3µQ0

ϕ(x̂ , 0) + C1. (4.246)

Here the relationship between X and x̂ is less clear, as there are no periodic oscillations to

use to determine ω. If X ≪ 1, we can say x̂ = θ1(X ,Y)/є̂ ∼ ω(0)X/є̂, which will su�ce

for matching purposes, so we reach

Φ̂ ∼W0(X , 0) + 4

3µQ0

ϕ (ω(0)X
є̂

, 0) + C1. (4.247)

In order to construct the composite solution for Φ̂, we must de�ne the function

W0(X ,Y). On the free surface, we know from equation (4.74) that

∂W0

∂Y
= d

dX
(A− 1

2
(1 + X)AX) ≡ VX on X > 0, Y = 0. (4.248)

Although we have not analysed Laplace’s equation to su�cient order, it seems likely that

as the lowest order non-oscillatory component of Φ̂, the slow function W0(X ,Y) will
also obey

W0XX +W0YY = 0 for Y > 0 (4.249)

and

∂W0

∂Y
= 0 on X < 0, Y = 0. (4.250)

163



Chapter 4: Two-fluid half-plane problem

X

W0

−5 0 5
−0.5

0

0.5

Figure 4.21: �e function W0(X , 0) (black) de�ned by (4.252) for η = 1, µ = 1 and its leading

order, logarithmic, behaviour as X → ∞ (blue) given by −V(0) log ∣X∣/π, where
V(X) is de�ned by (4.248).

We would also like to �ndW0(R, θ) → 0 as R →∞ for 0 ≤ θ ≤ π. Unfortunately,W0 as

just de�ned has a logarithmic source at X = 0, as
∫
∞

0
W0YdX = −1

2
AX(0) (4.251)

which is non-zero (we also have V → 0 as X →∞). �e version ofW0 that is regular at

X = 0 has
W0(X , 0) = 1

π ∫
∞

0
log ∣X − X′∣VX(X′)dX′

= − 1
π
V(0) log ∣X∣ − 1

π ∫
∞

0

V(X′)
X′ − XdX′. (4.252)

Figure 4.21 showsW0(X , 0) for η = 1 and its leading order logarithmic behaviour for large

X. Fortunately, the logarithmic term in (4.252) is exactly cancelled by a logarithmic term

with equal magnitude but opposite sign emerging from the far-�eld of the inner problem,

so that with suitable choice of the constant C1, the composite solutions for Φ̂ de�ned

in (4.245) and (4.247), and plotted in �gures 4.22 and 4.23 vanish as ∣X∣→ ±∞ and are

bounded everywhere. Figure 4.24 shows that half-plane solution for Φ̂ for λ = 50 �ts the
shape of this envelope, and shows a deviation of the mean of Φ̂ on the scale X = O(1).
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Figure 4.22: �e composite solution envelope for Φ̂ for η = 1, µ = 1. �e red line shows the

mean value of Φ̂ over a single oscillation. �e black lines indicate the maximum

and minimum values of Φ̂ in each oscillation. �e black and red lines here represent

the solution at �xed X as є → 0. For �nite є̂, this ‘outer’ envelope is inaccurate for
X = O(є), where the inner problem smooths over the singular behaviour at X = 0.
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Figure 4.23: An outer composite solution and solution envelope for Φ̂ with η = 1, µ = 1. Here
є̂ = x−3c = 0.05.

165



Chapter 4: Two-fluid half-plane problem

X

Φ̂

0 1 2 3 4 5
−1

−0.5

0

0.5

1

Figure 4.24: A �nite-λ solution calculated using the numerical discretisation from section 4.4.

�is has µ = 1, η = 1 as in �gure 4.23, but with λ = 50 and є̂ = x−3c = 0.535. �e

rapid decay of the numerical solution compared to the asymptotic envelope is due to

discretisation errors.
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4.8 Conclusion

In this chapter we have sought distinguished density ratios for the two �uid problem

corresponding to a small change in contact angle for a fat wedge, with far-�eld wedge

angle π − є and contact angle π − λє where є ≪ 1. For density ratio ρ1/ρ2 = O(є), we
found that for є → 0 with λ = O(1) we obtained a leading order problem where the

equations for ρ1 = 0, ρ2 = 1 and for ρ1 = 0, ρ2 = 0 were directly coupled in the Bernoulli

equation. �is leading order system featured linear PDEs for the velocity potential in �uid

2 coupled to nonlinear ODEs for the velocity potential in �uid 1. We solved the leading

order system numerically using a boundary integral method to reduce the equations for

Φ2 to a one-dimensional integro-di�erential equation, and used parameter continuation

to obtain nonlinear solutions.

�e numerical solutions to the half-plane problem indicated that pinch-o� does not

occur for �nite λ if the density ratio k, where ρ1/ρ2 = kє, is �nite as λ → 0. Solutions for

k = 1 shown in �gure 4.2(a) have a similar magnitude and frequency to those for k = 0
shown in �gure 3.10. However, unlike for the solutions for k = 0, the solutions for k = 1
have local minima approaching but not intersecting the wall as λ increases. A scaling

argument suggested that a distinguished limit is obtained for large λ when the density

ratio k = O(λ), so ρ1/ρ2 = O(λє). Numerical solutions for k = µλ with µ = 1 shown in

�gure 4.2(b) have a smaller contact point displacement xc and also interface height H for

�xed values of λ compared to the k = 0 and k = 1 solutions.
In section 4.5, we derived equations for a large-λ asymptotic solution with density

ratio ρ1/ρ2 = µλє with µ = O(1). �e free surface equations featured both nonlinear

and nonlocal terms, and were able to support rapidly oscillating capillary waves, with

slowly varying amplitude and phase. Due to the nonlinearity, the wavelength of the

oscillations may depend on the solution amplitude, and had to be determined as part

of the solution. �e resulting leading order periodic oscillator solutions could not be

solved analytically for �nite density ratio, but we were able to �nd numerical solutions to

a discretised scheme with a spectral term for the nonlocal e�ects and continuation for

nonlinear elements. We also derived secularity equations for the slow variation of the

oscillator equation parameters.

Given reasonable constraints on the behaviour of the oscillator equation parameters
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near the contact point, we found that the oscillator solutions became progressively sharper

as we approached the contact point along the free surface. For small X, we found that the

solution resembled a sequence of upturned parabolas, with ‘V’ shaped regions connected

by highly curved neck regions (�gure 4.9). In order to reconcile this periodic solution

with a two-dimensional �ow in the region of the contact point, we matched to an inner

region where the periodicity that de�nes the oscillator solutions was slightly relaxed in

favour of solving a new half-plane problem. We attempted to solve this half-plane problem

numerically in appendix A, but were thwarted by evidence of a discretisation-related

branch structure, and so cannot be con�dent that we have found a solution that has a

well-behaved non-discretised counterpart. �e appearance of this non-periodic inner

problem is consistent with the phenomenon of non-homogenisable regions in the vicinity

of cracks.

We used a set of inner problem numerical solutions obtained in appendix A to supply

the necessary boundary conditions for integration of the secularity conditions. �is

allowed us to calculate solution envelopes and composite solutions for the interface

position and velocity potentials along the free surface. We found that the composite

solution for Φ, the velocity potential in �uid 2, features a non-trivial slowly varying

mean which arises from a fourth secularity equation that is uncoupled from the oscillator

equations. �e composite solutions agreed surprisingly well with the numerical solutions

to the full �nite-λ half-plane-problem, given the uncertainty over the inner problem

solutions.

Finally, we note that for �nite density ratio µ/η, the capillary wave decay is determined

primarily by the �ow in �uid 2 once x is large enough. As the density ratio ρ1/ρ2 decreases,
the critical distance from the contact point decreases, so for large η or small µ, we expect

the solution envelope to be largely controlled by �uid 2. However, we �nd that the terms

in the Bernoulli equation corresponding to �uid 1 have a signi�cant e�ect on the interface

position even as µ → 0, due to a constraint on the average of 1/H2, and this constraint is

independent of density ratio. We therefore are able to �nd a large-η asymptotic solution

to the secularity equations, with the solution envelope amplitude determined by �uid 2,

but its slowly varying mean determined by �uid 1. We rescaled this to provide a solution

for µ ≪ 1.

168



Chapter 4: Two-fluid half-plane problem

�e limit µ → 0 seems very likely to be a singular limit. In chapter 3, we found that the

outer limit of the inner problem, solved exactly in terms of the dock problem, involved H

oscillating with �xed amplitude about a mean of O(x−1/2). �e decay of this mean forced

the eventual scaling λ = O(x9/2c ), rather than O(x3c ) as expected from the initial scaling,

and as in the problems for �nite µ/η and for µ ≪ 1 that we investigated in this chapter.

Here, our inner problem is constructed such that the mean of H must tend towards a

�nite constant as x →∞, so we must have a di�erent solution to that for k = 0.
�e strong dependence of the asymptotic results on the solution of this inner problem

means that this chapter has a less triumphant conclusion than chapter 3. However, in

retrospect, we could have anticipated the crucial role of the inner problem for this two-

�uid problem, due to the pivotal role of the dock problem solution in the chapter 3

analysis.
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Conclusion

5.1 �esis results

In this thesis, we have analysed the surface tension driven recoil of inviscid �uid wedges.

We focused on the case where one wedge is very fat, with initial wedge angle π − є where
є≪ 1. A second inviscid �uid occupies the slender wedge with angle є between the �rst

wedge and a rigid wall. At time t = 0, the tip angle є is suddenly changed to λє, and the

�uid recoils. We must determine the subsequent position of the wedge tip, the interface

position and the velocity within each �uid.

For this inviscid recoil problem, with all boundary conditions expressed in angles,

the solution must be self similar, with all lengthscales proportional to t2/3. �is removes

the time dependence from the problem. For general λ and є, we must solve the Bernoulli

equation, which is anODE involving the interface position and velocity potentials, coupled

to kinematic equations for the velocity potentials in the two �uids, which we can write as

nonlinear integral equations.

In chapters 3 and 4, we considered recoil problems with λ = O(1) as є → 0, so that

the domain for the �uid in the fat wedge becomes a half plane at leading order, while the

domain for the other �uid remains slender. As є → 0, the kinematic equations become a

linear PDE for the �uid in the fat wedge, while the �ow in the slender wedge is described

by nonlinear ODEs.

We began our analysis of this linearised problem by considering the case when the �uid

in the slender wedge has zero density. �e leading order system as є → 0 and λ = O(1)
is then a linear partial di�erential equation with a single independent parameter, λ.

We solved this system numerically using a boundary integral method. We found that
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the amplitude of capillary waves increased with λ, and the free surface became self

intersecting for λ > 37.8. In order to improve our understanding of the solution structure,

we investigated the behaviour of the linear PDE system for λ →∞.

We found a solution usingmatched asymptotic expansions, with an inner regionwhere

x = O(x−2c ) and an outer region where x = O(xc). In the inner region the equations

reduced to the dock problem, which is a PDE describing constant amplitude surface

waves incident on a rigid dock. We discussed the calculation of the exact solution of the

dock problem by complex variable methods in chapter 2. �e dock problem solution gave

the amplitude and phase of the free surface waves explicitly, and also a bounded mean

velocity potential that decays to zero as r →∞. We related the dock problem solution to

the interface position for the wedge recoil problem. We found that in the outer region,

the capillary waves in H have amplitude O(λ/x2c ), while the slowly varying mean of H

has magnitude O(λ/x7/2c ), and so as xc increases, the interface position H will eventually

become negative and hence self intersecting. �e slow variation of the mean of Φ in the

far �eld, coupled to the kinematic equation for Φ, gave us an ODE for the mean of H,

which we solved to �nd λ = O(x9/2c ).
We also considered the recoil of a fat wedge with ∣λ − 1∣ ≪ 1 and є ≪ 1, so that

the contact and wedge angles are both close and small and so we were able to neglect

terms corresponding to the contact point displacement in the Bernoulli and kinematic

equations. �e leading order system was a parameter-free linear PDE.We solved this PDE

using Mellin transforms in chapter 3; the method was very similar to the dock problem

solution by Mellin transforms in chapter 2. We found that, as for the dock problem, there

was a unique bounded solution for the velocity potential that vanishes as r →∞.

We can calculate the �ow induced in the slender wedge for a given interface position

H(x). We �nd that a rapid �ow is driven in the negative-x direction in regions where

the interface position approaches the rigid wall, which may have a signi�cant e�ect on

whether the solution pinches o� or remains valid as λ → ∞ for two-�uid problems.

�e velocity in the slender wedge is O(1) as є → 0 with λ = O(1), while the velocity
in the fat wedge is O(є) in this limit, and so a distinguished density ratio occurs when

ρ1/ρ2 = kє where k = O(1). We investigated the resulting leading order problem in

chapter 4 and obtained non-intersecting numerical solutions for all λ with k > 0. �e
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solution is again dominated by capillary waves, which have a high curvature in regions

where they approach the wall, and so the solutions became harder to resolve as λ →∞.

We then considered the behaviour of this two-�uid half-plane problem in the double

limit 1 ≪ λ ≪ є−1. We found that maximum coupling between the two �uids occurs

if ρ1/ρ2 = O(λє). �e leading order equations were nonlinear ODEs for the interface

position H and the velocity potential in the slender wedge P(x), coupled to a linear

PDE for the velocity potential in the fat wedge Φ(x , y). �e asymptotic analysis of this

system via Kuzmak’s method featured elements of the ρ1 = 0 solution derived in chapter

3 and the ρ2 = 0 solution found by Billingham [2006]. We derived periodic oscillator

equations for capillary waves on the free surface in the two-�uid problem. We solved

these equations numerically using a spectral method, and used the solutions to evaluate

and solve secularity equations for the slow variation of oscillator parameters.

�e determination of the boundary conditions at the contact point for the secularity

equations required the solution of another integral equation problem. �is two-�uid

inner problem incorporated both the discontinuous interface derivative Hx required by

Billingham [2006] for the recoil of a slenderwedge of �uid, and equations for the half-plane

problem that we solved in chapter 3. �e resulting PDE is nonlinear in the semi-in�nite

sequence of ‘contact points’ at which Hx is discontinuous, which we must determine as

part of the solution. We attempted to solve the inner problem numerically in appendix

B; however we found that this nonlinearity, together with the inevitable truncation of

the contact point sequence, led to the numerical solutions having a discretization related

branch structure. We did obtain some plausible solutions to the inner problem, which

led to reasonable composite solutions to the large-λ problem, however it is far from clear

whether suitable inner problem solutions exist for all density ratios, in the semi-in�nite,

non-truncated limit.

Assuming that suitable inner problem solutions do exist, we �nd that the composite

solutions for 1 ≪ λ ≪ є−1 and ρ1/ρ2 = O(λє) do not pinch o� or intersect the wall as

λ →∞, and that the contact point displacement xc = O(λ1/3). �is is in contrast to the

zero density surrounding �uid solution where solutions are self-intersecting for λ ⪆ 30,
and xc = O(λ2/9) as λ →∞.
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Figure 5.1: To compare coalescence of wedges and spheres, we must relate the tangent angle є
to rm/R. �e tangent to the circle at x = rm makes an angle є1 = arcsin(rm/R) with
the x-axis. �e tangent to the circle that goes through (x , y) = (rm , 0) has angle
є2 = 2 arctan(rm/R). As rm/R → 0, we �nd є1 ∼ rm/R and є2 ∼ 2rm/R.

5.2 Further work

�e relationship between є and xc for self similar solutions with β = π/2 governs the
time dependence of spherical coalescence. Similarity solutions for the inviscid recoil of a

wedge have L ∝ t2/3, while experiments and numerics for spherical coalescence of drops

and bubbles agree that rm = O(t1/2). �e far �eld angle є slowly increases throughout

coalescence, and we �nd that if xc = O(є−1/3) as є → 0 for the self similar solution, we

recover the t1/2 time dependence for spherical coalescence.

We suppose that at meniscus radius rm, the far �eld angle є is zrm/R, where z is a
constant (�gure 5.1). We also suppose that the asymptotic solution for є → 0 with β = π/2
gives xc ∼ xcoє−a. �e self similar solution then relates rm and xc by

rm = xc (γ
ρ
)1/3 t2/3 ∼ xcoє−a (γ

ρ
)1/3 t2/3 = xco ( R

zrm
)a (γ

ρ
)1/3 t2/3. (5.1)

Solving this equation for rm we �nd rm ∝ tb, where b = 2/(3(1 + a)). To obtain b = 1/2
we must have a = 1/3, in which case we �nd

rm = x3/4c0 z−1/4 (γR
ρ
)1/4 t1/2, (5.2)

173



Chapter 5: Conclusion

which has the same dependence on R, γ, ρ and t as equation (1.9). �e asymptotic result

xc = O(є−1/3) is exactly that found by Billingham [2006] for a recoiling slender �uid

wedge, which is applicable to the coalescence of bubbles surrounded by an inviscid �uid.

In order to compare the prefactor of (1.9) and (5.2), we need to choose the constant z

which relates є to rm/R. Some obvious choices are z = 1, which gives the original angle

of the sphere at horizontal displacement rm, and z = 2, which gives the angle of the line

tangent to the sphere passing through rm. �ese tangents and angles are illustrated in

�gure 5.1. Billingham’s calculations suggest xc0 ≈ 1.11, which gives a prefactor of 1.08 if

z = 1 and 0.909 if z = 2, which should be compared to the prefactor 1.39 calculated by

�oroddsen et al. [2005] from experimental observations of the coalescence of bubbles.

�ere is no asymptotic solution for є → 0 applicable to the coalescence of drops with zero

density surrounding �uid, as the similarity solutions do not exist in this limit. It would

be interesting to compare asymptotic solutions for other density ratios to experimental

observations of coalescence with a surrounding �uid.

Calculation of self similar solutions for the coalescence problem requires solving

the recoil problem with β = π/2. In this case, the problem for є → 0 becomes a fully

nonlinear free boundary problem. �e interface height need not be a monotonic function

of x, so should be parameterised with respect to arc length. �e kinematic conditions on

the velocity potential can be written as integral equations that depend linearly on Φ1,2

and nonlinearly on the interface position (X(s),Y(s)). We derive the equations for this

nonlinear free boundary problem in appendix B and show that as є → 0 the nonlinear

integral equations reduce to the kinematic equations for P and Φ found in chapter 4. �e

integral equations become harder to resolve numerically as the interface approaches the

wall, and we again expect to �nd that the slender wedge velocity and interface curvature

increase in neck regions.

Another consideration for coalescence of spherical and cylindrical drops is the in�u-

ence of the re�ected interface (�gure 5.2) and of the axisymmetric component of curvature.

Both of these e�ects would be signi�cant if xc ≪ 1, but we expect to �nd that xc ≫ 1 for

є → 0. �e re�ection in x = 0, and the axisymmetric curvature, do not have a strong e�ect

in neck regions where Y → 0 away from the contact point, and so these extra terms are

unlikely to a�ect the leading order behaviour as є → 0. In section B.3 we discuss the e�ect
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x
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−5 0 5
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Figure 5.2: �e problems analysed in chapters 3 and 4 have a rigid wall along the x-axis but are
not symmetric about the x-axis. For the coalescence of cylinders, we should consider

the e�ect of the other half of interface, re�ected in the y-axis, as in was implemented

by Keller et al. [2002]. Investigation of the integral equations for λє ≪ 1 shows that

the e�ect of the re�ected free-surface diminishes as the contact-point displacement

xc increases, and so the asymptotic solutions we found for large λ are essentially

unchanged.

of the second re�ected interface on the asymptotic solutions calculated in this thesis.

�e asymptotic analysis of the two-�uid small angle problem led to a distinguished

density ratio ρ1/ρ2 = O(λє) for 1 ≪ λ ≪ є−1. If this density ratio is still distinguished

when λє = O(1), then we should �nd a new balance when ρ1/ρ2 = O(1) in the nonlinear

free boundary problem. Extrapolating from the structure of the two-�uid solution for

large λ here, we would expect asymptotic solutions of the nonlinear problem for є → 0

to require the solution of an integral equation that is also a free-boundary problem, and

also to require matching to capillary waves, also described by nonlinear free-boundary

problems. For the linearised problem we considered in chapter 4, these elements in the

two-�uid problem are considerably more complicated than in the two separate one-�uid

problems, and we may expect a further increase in complexity for the two-�uid free

boundary problem.
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Two-�uid inner problem

For the two-�uid inner problem in chapter 4, we wish to �nd a solution, in the limit

A→ 0, of

µ [1
3
P̄ − 2

9
+ 1

2

A2

Ĥ2
0

] + 2

3
ηωΦ̂0x̂(x̂ , 0) = ω2Ĥ0x̂ x̂ , (A.1)

and

Φ̂0 ŷ(x̂ , 0) = −2
3
Ĥ0x̂ , (A.2)

both for x̂ > 0, with
Φ̂0 ŷ(x̂ , 0) = 0 (A.3)

on x̂ < 0. �e eigenvalue ω will eventually be determined by the new boundary condition

ωĤ0x̂(0, 0) = 0. (A.4)

For all x̂ and ŷ, we have

Φ̂0x̂ x̂ + Φ̂0 ŷ ŷ = 0 for ŷ > 0. (A.5)

We seek a solution with Ĥ0(x̂) tending to a periodic functions with period 1 as x̂ →∞.

We expect Φ̂0 to grow no faster than logarithmically as r̂ →∞ (section 4.7.5).

A.1 Behaviour of Bernoulli equation as X → 0

As A→ 0, the term
A2

Ĥ2
0

(A.6)

in (A.1) behaves like a δ-function if Ĥ0 approaches zero. �e oscillator equation solutions

for small non-zero A show a solution that looks like a parabola, with a rapid sign change in
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Ĥ0x̂ near the minimum of Ĥ0. For A→ 0, we obtain a δ-function in Ĥ0x̂ x̂ at any x̂n where

Ĥ0(x̂n) = 0. �e magnitude of this delta function should be determined by the constraint

that Ĥ0x̂ changes sign at x̂ = x̂n. �e small-A behaviour of the oscillator solutions is

discussed further in section 4.6.3.

So now we replace (A.1) by

µ [1
3
P̄ − 2

9
] + 2

3
ηωΦ̂0x̂(x̂ , 0) = ω2Ĥ0x̂ x̂ , (A.7)

which holds for x > 0, x ≠ zn. �e zn are points where Ĥ0(x̂) = 0, and the derivative Ĥ0x̂

changes sign.

A.2 Reduction to the single independent parameter σ

We currently have an eigenvalue problem for ω, with three independent parameters,

which are the density ratios η and µ, and also the value of P̄(0). We can rescale our

discontinuous inner problem to give only one independent parameter rather than three

in the eigenvalue problem. We leave x̂ unchanged to keep the far-�eld period �xed at 1.

We let:

ω = ω0ω̃, Ĥ0 = ω−10 h, Φ̂0 = 2

3
ω−10 ϕ, (A.8)

where

ω0 = −µ [1
3
P̄ − 2

9
] , x̂ = x , ŷ = y. (A.9)

�e new density parameter σ is de�ned as

σ = − 4η

9µ [ 1
3
P̄ − 2

9
] . (A.10)

�e problem for σ = 0 corresponds to η = 0. We expect to �nd P̄(0) < 0, so that we seek
solutions for σ ≥ 0.

�e rescaled Bernoulli equation is

ω̃2hxx = ω̃σϕx − 1 (A.11)

on x > 0, y = 0, for x ≠ zn. �is is coupled to the kinematic boundary conditions

ϕy(x , 0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−hx for x > 0,
0 for x < 0,

(A.12)

177



Appendix A: Two-fluid inner problem

with

ϕxx + ϕyy = 0, for y > 0, (A.13)

with the crucial new pointwise boundary condition

ω̃hx = 1 at x = 0. (A.14)

At the ‘contact points’ at x = zn, we have
h(zn) = 0, ω̃h(zn+) = −ω̃h(zn−) = αn . (A.15)

We want zn − zn−1 → 1, and αn to tend to a non-zero constant, as n →∞. As the whole

system is unchanged by the addition of an arbitrary constant to ϕ, we choose to normalise

so that ϕ(0, 0) = 0. For large x, we want h(x) to tend to a periodic function with period

1. We �nd that ϕ must grow logarithmically as r →∞.

A.3 Logarithmic growth of velocity potential

Webegin by considering the velocity potentialψn(x , y)driven by h in the single oscillation
zn < x < zn+1 We assume that h(x) is �nite and di�erentiable in this region. �is velocity

potential is bounded, and up to a constant, can be written as

ψn(x , 0) = 1

π ∫
zn+1

zn
log ∣x − x′∣ϕy(x′, 0)dx′ = − 1

π ∫
zn+1

zn
log ∣x − x′∣hx(x′)dx′. (A.16)

�e potential ψn(x , 0) as de�ned by (A.16) is bounded everywhere and decays as O(∣x −
zn∣−1) as ∣x∣→∞ with n �xed, which is the decay rate of a dipole. In order to assemble ϕ,

we need to add together a half-line of these dipoles. However, as the far �eld of each one

decays as O(∣x − n∣−1), we �nd that this sum does not converge for any �xed value of x.

For example, with x = −a, a > 0, we would like to write

ϕ(−a, 0) ∼ const. × ∞∑
n=0

1

a + n , (A.17)

�is sum does not converge for any �nite a, but in some sense ‘tends to zero’ as a →∞.

By renormalising the �ow from an individual oscillation, we can exchange decay at

in�nity for boundedness for �nite x. We do this by choosing the additive constant for ψn

so that ψn(0, 0) ≡ 0 for all n. �e new expression for ϕ converges for �nite x, and grows

logarithmically for large ∣x∣.
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We now write the contribution ϕn to ϕ from the region 0 ≤ zn < x < zn+1 as
ϕn(x , 0) = 1

π ∫
zn+1

zn
log ∣x − x′∣ϕy(x′, 0)dx′ − 1

π ∫
zn+1

zn
log ∣x′∣ϕy(x′, 0)dx′

= − 1
π ∫

zn+1

zn
log ∣x − x′∣hx(x′)dx′ + 1

π ∫
zn+1

zn
log ∣x′∣hx(x′)dx′

= 1

π ∫
zn+1

zn

h(x′)
x′ − x dx′ − 1

π ∫
zn+1

zn

h(x′)
x′

dx . (A.18)

�e cumulative function ϕ can then be expressed as

ϕ(x , 0) = 1

π

∞∑
n=0

( ∫ zn+1

zn

h(x′)
x′ − x dx′ − ∫

zn+1

zn

h(x′)
x′

dx) . (A.19)

We want to determine the behaviour of (A.19) as ∣x∣→∞. Now suppose that x = −a
with a > 0, so that ∣x − zn∣ >> 1 for all n. If ∣x − zn∣ ≫ 1 and zn ≫ 1, we can estimate ϕn as

ϕn(x , 0) ∼ 1

π

x

zn(zn − x) h̄n as ∣zn − x∣→∞. (A.20)

where

h̄n ≡ ∫ zn+1

zn
h(x′)dx′. (A.21)

We know that h̄n > 0 for n ≥ 0, and h̄n → h̄∞ as n →∞. In order to determine the leading

order behaviour of ϕ as r →∞, we can take zn = n and h̄n = h̄∞ for n ≥ 0. Corrections to
this do not a�ect the logarithmic growth of ϕ but would alter the constant term.

At leading order for ∣x∣ ≫ 1, we �nd

ϕ(x , 0) ∼ 1

π
h̄∞

∞∑
n=1

x

n(n − x) +O(1). (A.22)

Now, it happens that

∞∑
n=1

1

n(n − x) = 1

π
(−γ − ψ0(1 − x)) (A.23)

where γ is the Euler-Mascheroni constant, and ψ0 is the digamma function [NIST, 2011],

de�ned by

ψ0(z) = d

dz
log Γ(z). (A.24)

If z does not lie on the negative real axis, we �nd

ψ0(z) ∼ log z +O(1/z), (A.25)
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Figure A.1: ϕ(x , y) calculated for σ = 0, in which case h is a sequence of parabolas, all of width

1. �is plot tests the Gaussian quadrature rule. We should get perfect agreement for

σ = 0, as in this caseH is a parabola for each oscillation andHx varies linearly between

grid points. �e solutions shown here are for N = 10, k = 100, M = 100 (black solid
line), N = 10, k = 10, M = 100, (blue crosses) and N = 100, k = 10, M = 100 (red
plusses).

so that

ϕ(x , 0) ∼ − h̄∞
π

log x +O(1), (A.26)

for ∣x∣ ≫ 1 with x < 0, and by analytic continuation we �nd

ϕ ∼ − h̄∞
π

log r +O(1) (A.27)

for all r ≫ 1. �is logarithmic growth does not appear in the composite solution for Φ̂

in the secularity calculations of chapter 4, as it is exactly cancelled by a singularity as

R → 0 in the slow variation of the velocity potentialW0(X ,Y). �e composite solution is

discussed in section 4.7.5.
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A.4 Piecewise integration of Bernoulli equation

We can integrate (A.11) to reach

ω̃2hx = ω̃ + ω̃σϕ(x , 0) − x + ∞∑
m=1

Bmθ(x − zm), (A.28)

where θ is the Heaviside step function. We know ϕ(x , 0) is continuous at x = zn, and
ω̃hx(zn±) = ±ω̃αn. Evaluating (A.28) at x = zn±, we �nd

ω̃2hx(zn+) = ω̃αn = ω̃ + ω̃σϕ(zn , 0) + n∑
m=1

Bm (A.29)

and

ω̃2hx(zn−) = −ω̃αn = ω̃ + ω̃σϕ(zn , 0) + n−1∑
m=1

Bm . (A.30)

Subtracting (A.30) from (A.29), we �nd that Bn = 2ω̃αn for n ≥ 1, and so we can write

(A.28) as

ω̃2hx = ω̃ + ω̃σϕ(x , 0) − x + 2ω̃ ∞∑
m=1

αmθ(x − zm). (A.31)

We can rearrange (A.31) to give ϕ(zm):
ω̃σϕ(zn , 0) = ω̃αn − ω̃ + zn − 2ω̃ n∑

m=1

αm . (A.32)

We know from the previous section that ϕ(x , 0) should growno faster than logarithmically

with x for large x. We can use this to �nd a constraint on the behaviour of α as n →∞.

For large n, we require zn − zn−1 → 1 and α to tend to a constant, so suppose

zn = n + z̄ + o(1), αn = ᾱ + b0
n
+ o(n−1). (A.33)

�en (A.32) becomes

ω̃σϕ(zn) = n(1 − 2ω̃ᾱ) − 2ω̃b0 n∑
j=1

1

j
+O(1). (A.34)

Here the O(1) term includes anything that is bounded as n → ∞. Kinematically, we

expect ϕn to grow logarithmically as x →∞. However, linear growth in n is not permitted,

so

ᾱ = lim
n→∞

αn = 1

2ω̃
. (A.35)
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A.5 Formulation of integral equation

Given a trial solution h, σ , ω̃, αn and zn for 1 ≤ n ≤ N , we want to �nd a harmonic

function ϕ(x , y) with ϕ(0, 0) = 0 such that

ϕy(x , 0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−hx , for 0 < x < zN
0, for x < 0

(A.36)

and

ϕ(x , y) = − ∞∑
m=1

am sin(2πm(x − zN))e−2πmy + C1

2
log(x2 + y2) + C2 (A.37)

for x > zN ≡ X. In terms of σ and ω̃, the Fourier coe�cients are

am = 1

πmω̃(σ − 2πmω̃) . (A.38)

For the integral equation, we use the Green’s function G(x, x′) = log ∣x − x′∣/2π, on
the semicircle of radius R = X, centred at the origin. We know that

∫
V
ϕ(x′)∇′2G(x, x′)dx′ = ∫

∂V
ϕ(x′)n′ ⋅∇′G(x, x′)dx′−G(x, x′)n′ ⋅∇′ϕ(x′)dx′, (A.39)

where n is outwards-pointing unit normal. For x = (x , 0), with the normalisation

ϕ(0, 0) = 0, this becomes

1

2
ϕ(x , 0) = ∫ X

0

1

2π
log ∣x − x′

x′
∣ϕy(x′, 0)

+ ∫
∣x′∣=X

ϕ(x′)n′ ⋅ ∇′G(x, x′)dx′ −G(x, x′)n′ ⋅ ∇′ϕ(x′)dx′
− ∫

∣x′∣=X
ϕ(x′)n′ ⋅ ∇′G(0, x′)dx′ −G(0, x′)n′ ⋅ ∇′ϕ(x′)dx′.

(A.40)

�ere are two components of the far �eld contribution to the velocity potential ϕ. �e

sequence of oscillations corresponding to am gives a �ux across the line x = R. Also, the
slow, smooth decay of ϕ could give a contribution across the whole semicircle arc r = R.
On this semicircle, we have

G(x, x′) = 1

4π
log [R2 − 2xR cos θ + x2] (A.41)

and

n′ = (cos θ , sin θ), (A.42)
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so

n′ ⋅ ∇′G(x, x′) = ∂G

∂R
= 1

2π

R − x cos θ
R2 − 2xR cos θ + x2 . (A.43)

We begin by considering the slow growth of ϕ as r →∞. Suppose that for large r, we

have

ϕ = C1 log r + C2 (A.44)

where C1 and C2 are constants. �en

ϕouter(x) = ∫
∣x′∣=R

ϕ(x′)n′ ⋅ ∇′G(x, x′)dx′ −G(x, x′)n′ ⋅ ∇′ϕ(x′)dx′
− ∫

∣x′∣=R
ϕ(x′)n′ ⋅ ∇′G(0, x′)dx′ −G(0, x′)n′ ⋅ ∇′ϕ(x′)dx′

= ∫
π

0
{(C1 logR + C2) 1

2π
( R − x cos θ
R2 − 2xR cos θ + x2 − 1

R
)

−C1

1

4π
(log [R2 − 2xR cos θ + x2] − 2 logR)}Rdθ .

(A.45)

Let u = x/R. �en

ϕouter(x) =(C1 logR + C2) 1
2π ∫

π

0
( 1 − u cos θ
1 − 2u cos θ + u2

− 1) dθ
−C1

1

4π ∫
π

0
log [1 − 2u cos θ + u2] dθ . (A.46)

However we �nd that

∫
π

0

1 − u cos θ
1 − 2u cos θ + u2

dθ = π, ∫
π

0
log [1 − 2u cos θ + u2] dθ = 0 (A.47)

so

ϕouter(x) = 0 (A.48)

So with the normalisation ϕ(0, 0) = 0, the slow growth from ϕ ∼ C1 log r + C2 gives no

contribution to the boundary integral expression for ϕ.

However, we do obtain a non-trivial contribution from the oscillations for x > X. In
the far �eld,

hosc =
∞∑
m=1

am[cos{2πm(x − X)} − 1], (A.49)

so
∂ϕosc

∂y
(x , 0) = −hx(x) = ∞∑

m=1

am2πm sin{2πm(x − X)} , (A.50)
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and

ϕosc(x , y) = − ∞∑
m=1

am sin{2πm(x − X)} e−2πmy . (A.51)

Along the line x = X, the Fourier expansion (A.51) gives ϕosc(X , y) = 0, but
∂ϕosc

∂x
(X , y) = − ∞∑

m=1

2πmame
−2πmy . (A.52)

Substituting (A.51) for ϕ in the integrals over x′ = X in (A.40), we obtain

ϕ(x , 0) = − 1

π ∫
X

0
log
∣x − x′∣∣x′∣ hx(x′)dx′

+ 1

2π

∞∑
m=1

am2πm ∫
∞

0
log((X − x)2 + y2

X2 + y2 ) e−2πmydy.

(A.53)

We can transform the variable of integration, letting Y = 2πmy. �en

ϕ(x , 0) = − 1

π ∫
X

0
log
∣x − x′∣∣x′∣ hx(x′)dx′

+ 1

2π

∞∑
m=1

am ∫
∞

0
log((2πm(X − x))2 + Y2

(2πmX)2 + Y2
) e−YdY . (A.54)

For the numerical evaluation, we de�ne a function:

S(Z) ∶= ∫ ∞
0

log(Z2 + Y2)e−YdY . (A.55)

S(Z) is de�ned for all real Z, with S(0) = −2γ, where γ = 0.577... is the Euler-Mascheroni

constant. For large Z, S(Z) ∼ 2 logZ. Plots of S(Z) against Z and log(1 + Z) are shown
in �gures A.2 and A.3.

We can rewrite (A.54) in terms of S as

ϕ(x , 0) = − 1

π ∫
X

0
log
∣x − x′∣∣x′∣ hx(x′)dx′

+ 1

2π

M∑
m=1

am [S(2πm(X − x)) − S(2πmX)]
+ 1

2π

∞∑
m=M+1

am [2 log(X − x
X
)] .

(A.56)

Here we evaluate S(Z) explicitly for the �rst M Fourier modes, and use the large-Z
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Figure A.2: A semi-logarithmic plot of the function S(Z) de�ned by (A.55). �e blue line shows

S(Z) calculated using Matlab’s quadgk routine. �e green line shows the leading-

order large Z approximation S ∼ 2 log(Z). �e red line shows the next correction:

S ∼ 2 log(Z)+2/Z2. �is correction improves convergence for large Z, but has a large
deviation for small Z.
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Figure A.3: For the purposes of interpolating S, we use linear interpolation based on S(Z) vs.
log(1 + Z), which gives a close-to-linear plot, compared to �gure A.2.
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approximation S(Z) ∼ 2 log(Z) for m > M. �is simpli�es to become

ϕ(x , 0) = − 1

π ∫
X

0
log
∣x − x′∣∣x′∣ hx(x′)dx′

+ 1

2π

M∑
m=1

am [S(2πm(X − x)) − S(2πmX)]
+ 1
π
log(X − x

X
)( ∞∑

m=M+1

am) .
(A.57)

�e use of the large Z expansion for the higher terms of S(Z) should be a good approxi-

mation provided 2πM(X − x)≫ 1.

Clearly this approximation will fail when x = X, in which case we can make use of

the exact result S(0) = −2γ. �en we can write

ϕ(X , 0) = − 1

π ∫
X

0
log
∣X − x′∣∣x′∣ hx(x′)dx′

+ 1

2π

M∑
m=1

am [−2γ − S(2πmX)]
+ 1

2π

∞∑
m=M+1

am [−2γ − 2 log(2πmX)] ,
(A.58)

or

ϕ(X , 0) = − 1

π ∫
X

0
log
∣X − x′∣∣x′∣ hx(x′)dx′

+ 1

2π

M∑
m=1

am [−2γ − S(2πmX)]
+ 1

2π
[−2γ − 2 log(2πX)] ∞∑

m=M+1

am ,

− 1

2π

∞∑
m=M+1

am logm.

(A.59)

In order to evaluate the integrals involving hx in (A.57) and (A.59) we use Gaussian

quadrature with a logarithmic weight function, and a single collocation point, so that

the integrals are exact if hx varies linearly between grid points. �e Gaussian weight

functions and abscissa will be di�erent for every subinterval and value of x′.

We want to �nd weight functionsW and collocation points q so that:

∫
b

a
f (x′) log ∣x − x′∣dx′ =W[q f (a) + (1 − q) f (b)], (A.60)
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where W and q are constants, that give exact results for f (x) = Ax + B, for arbitrary
values of the constants A and B. �en

∫
b

a
(Ax′ + B) log ∣x − x′∣dx′ =W[q(Aa + B) + (1 − q)(Ab + B)], (A.61)

so

F1 = ∫
b

a
x′ log ∣x − x′∣dx′ =W[qa + (1 − q)b]. (A.62)

and

F2 = ∫
b

a
log ∣x − x′∣dx′ =W . (A.63)

�us

q = 1 − F1/F2
b − a , W = F2. (A.64)

F1 and F2 both depend on a, b and x′. We use integration by parts to �nd exact expressions

for F1 and F2.

When σ = 0, the solution for h is a sequence of parabolas, so hx varies exactly linearly

between grid points. We �nd that for σ = 0, the grid points for ϕ(x , 0) for using k = 10
points per subinterval lie directly on top of those calculated using k = 80 points per

subinterval (�gure A.1). As σ increases, the solution will deviate from the initial sequence

of parabolas, and so discretisation errors will be introduced.

A.6 Numerical continuation scheme

We discretise x with k points per oscillation and a total of N free oscillations. �e grid

points are equally spaced within each oscillation. We use �nite di�erence formulae to

discretise the Bernoulli equation (A.31), taking care that di�erence formulae do not cross

the points x = zn where hx is discontinuous. We interpolate S for the �rst M Fourier

modes in (A.57) and (A.59). We would like to solve for the eigenvalue ω̃(σ) as the
discretisation parameters N , k and M tend to in�nity.

For given values of zn, the problem is linear in h, ϕ and αn, and depends nonlinearly

on ω̃. We also need to �nd zn as part of the solution, which provides a signi�cant source of

nonlinearity. �e integral equation can be expressed as a dense matrix equation linking ϕ

and h. However, the coe�cients of this matrix depend on the x distribution and hence the

choice of zn, so whenever zn is altered, the matrix must be recalculated. �e Jacobian for
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the relationship between the integral equation and zn is determined by �nite di�erencing,

which is the most time consuming component of the computation.

A.7 Solutions for general σ

We use Newton iteration and continuation in σ to obtain solutions, starting from the

known solution at σ = 0, ω̃ = 1/2. �e system is linear in αn, h and ϕ, but nonlinear in ω̃

and zn. Discretised solutions of this problem show a branch structure, illustrated in A.4

for some attainable values of N , k and M. We are interested in the solution in the limit of

each of these three discretisation parameters tending to in�nity.

We expect the ‘true’ branch to be connected to σ = 0, ω̃ = 1/2, and to satisfy ω̃ > σ/2π,
as crossing this line would give a singularity in the Fourier coe�cients (A.38). In �gure

A.4, we note that as N increases, the two branches above this line move closer together,

and are almost touching when N = 30, however there is still a small kink near σ = 6.86.
It is not clear whether for σ > 6.86, the true solution should follow the upper branch

(passing through σ = 20, ω̃ ≈ 4) or the lower branch (passing through σ = 20, ω̃ ≈ 3.5),
or some other path.

Figures A.5 and A.6 show individual solutions on the upper and lower branches that

are above the line ω̃ = σ/2π. It seems the upper branch is the correct one for σ < 6.86 and
the lower branch is correct for σ > 6.86. �is path corresponds to the one taken by the

red line (for N = 30, k = 30, M = 100) in �gure A.4, though this red line cannot represent

the true behaviour in the kink area itself. We use the red branch, smoothing over the

kink, to calculate boundary conditions for the multiple scales analysis in section 4.7.1.

A.8 Conclusion

In this appendix, we discussed numerical solutions to the two-�uid inner problem. �is

is a half-plane problem, corresponding to two-dimensional �ow around a sequence of

constant pressure regions. �e length and position of these regions is unknown, which

causes signi�cant nonlinearities in the discretised equations, and the solutions to the

eigenvalue problem for ω̃(σ) show a complicated branch structure which seems to be

related to the discretisation parameters. We can choose a path of plausible branches

through this branch structure in order to calculate boundary conditions for the secularity
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integration in section 4.7.1, however it is not clear whether this path corresponds to valid

solutions of the non-discretised problem.
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σ

ω̃

N = 10, k = 10, M = 50

N = 20, k = 20, M = 50

N = 30, k = 30, M = 100

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure A.4: �e dependence of the eigenvalue ω̃ as calculated by solution of the discretised problem

shows a complicated branch structure with respect to density parameter σ . We are

looking for a branch connected to σ = 0, ω̃ = 1/2. �ere is a singularity in the far-�eld

Fourier coe�cients if σ = 2πnω̃ for any integer n, and so we expect the true eigenvalue
to remain above the dashed line which indicates ω̃ = σ/2π. Figures A.5 and A.6 shows
solutions for σ = 4 and σ = 12 for the two branches above this line. An examination

of the behaviour of these solutions near x = zN suggests that we should choose the

upper of the two branches for σ = 4 and the lower of the two branches for σ = 12.
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(a) Upper branch solution: ω̃ = 0.9500
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(b) Lower branch solution: ω̃ = 0.8046

Figure A.5: Two solutions forN = 20, k = 20,M = 100 at σ = 4.�e upper branch solution appears

to be periodic for x > 5. �e lower branch solution has non-periodic behaviour in h
for the last oscillation, and O(1) growth in ϕ; this solution is probably invalid. �e

crosses mark the value ϕ(zn , 0).
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(a) Upper branch solution: ω̃ = 2.3858
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(b) Lower branch solution: ω̃ = 2.1700

Figure A.6: Two solutions for N = 20, k = 20, M = 100 at σ = 12. �e di�erence between these

two solutions is much more subtle than for those in �gure A.5. �e crosses mark the

values of ϕ(zn , 0). Neither sequence ϕ(zn) is completely smooth near n = N , but the

upper branch solution shows a much larger kink. For this value of σ it seem that the

lower branch solution is better converged to a periodic solution as x →∞, and so we

take the lower branch of this pair for the secularity calculations in section 4.7.1.
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B.1 Nonlinear free-boundary problem

In chapters 3 and 4 we analysed wedge recoil problems with wedge angle є and contact

angle λє in the limit 1 ≪ λ ≪ є−1. �e interface height tends to zero as є → 0, and

we can write the interface position as (x , y) = (x , єH(x)), where H is a single-valued

di�erentiable function of x. However, for coalescence problems with β = π/2, Hx is

not de�ned at the contact point, and the interface height y need not be a single-valued

function of x. It is therefore sensible to parametrize the interface with respect to arc-length

for problems which have O(1) contact angles.
�e interface is located at (x , y) = (X(s),Y(s)) = R, where s is arc-length and so

X′2 + Y ′2 = 1. (B.1)

where a ′ to indicate d/ds. We need to solve for X(s), Y(s), Φ1(s) ≡ Φ1(X(s),Y(s)) and
Φ2(s) ≡ Φ2(X(s),Y(s)).

�e nonlinear, dimensional Bernoulli equation can be written as

ρ1 (∂ϕ1

∂t
+ 1

2
∣∇ϕ1∣2) − ρ2 (∂ϕ2

∂t
+ 1

2
∣∇ϕ2∣2) = σκ, (B.2)

where ϕ1 and ϕ2 are the dimensional velocity potentials, and κ is the dimensional curva-

ture. In similarity variables this becomes

ρ1
ρ
(1
3
Φ1 − 2

3
R ⋅ ∇Φ1 + 1

2
∣∇Φ1∣2) − ρ2

ρ
(1
3
Φ2 − 2

3
R ⋅ ∇Φ2 + 1

2
∣∇Φ2∣2) = X′Y ′′ − Y ′X′′,

(B.3)

where ρ is the reference density used in the nondimensionalisation, and the expression

for curvature has been simpli�ed using the arc-length equation.
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�e kinematic boundary condition is that the normal velocities of the interface and

the �uid on either side match, so dimensionally we have

n ⋅ ∂R
dt
= n ⋅ ∇ϕ1 = n ⋅ ∇ϕ2, (B.4)

which becomes
2

3
n ⋅R = n ⋅ ∇Φ1 = n ⋅ ∇Φ2 (B.5)

in similarity variables, wheren and t are unit normal and tangential vectors to the interface

respectively.

�e Bernoulli equation currently involves derivatives of Φ1,2 with respect to both x

and y. However, the kinematic boundary condition gave the normal components of ∇Φ
at the boundary in terms of the interface position directly, and so it is helpful to write

∇Φ in (B.3) as

∇Φ1,2 = t(t ⋅ ∇Φ1,2) + n(n ⋅ ∇Φ1,2) = Φ′1,2t + 2

3
(n ⋅R)n. (B.6)

As the interface is parametrized by arc-length, the normal and tangential vectors can

be written as n = (−Y ′, X′) and t = (X′,Y ′), where n points into �uid 2. �e Bernoulli

equation (B.3) now becomes

ρ1
ρ
[1
3
Φ1 − 2

9
(X′Y − XY ′)2 + 1

2
Φ′1 (Φ′1 − 4

3
(XX′ + YY ′))]

−ρ2
ρ
[1
3
Φ2 − 2

9
(X′Y − XY ′)2 + 1

2
Φ′2 (Φ′2 − 4

3
(XX′ + YY ′))]
= X′Y ′′ − Y ′X′′,

(B.7)

which requires only tangential derivatives of Φ1 and Φ2.

We would also like to write the kinematic boundary conditions in terms of Φ1 and Φ2

and their tangential derivatives. We do this by using a boundary integral method, with

the Green’s function G(x, x′) = log ∣x − x′∣/2π. In order to avoid explicit contributions

from the line of symmetry at y = 0, we re�ect the interface in this line, so the integral is

over both parts of the interface. �e vector n is an outwards pointing normal to �uid 1,

and so we obtain

−Φ1(s0) = 2

3π ∫
∞

0
n(s) ⋅R(s) {log ∣R(s) −R(s0)∣ + log ∣R−(s) −R(s0)∣} ds

+ 1

π ∫
∞

0
Φ1(s){n(s) ⋅ (R(s0) −R(s))∣R(s0) −R(s)∣2 + n−(s) ⋅ (R(s0) −R−(s))∣R(s0) −R−(s)∣2 } ds.

(B.8)
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n is an inwards pointing normal to �uid 2, and so the integral equation for �uid 2 di�ers

only by a sign from (B.8), speci�cally

Φ2(s0) = 2

3π ∫
∞

0
n(s) ⋅R(s) {log ∣R(s) −R(s0)∣ + log ∣R−(s) −R(s0)∣} ds

+ 1

π ∫
∞

0
Φ2(s){n(s) ⋅ (R(s0) −R(s))∣R(s0) −R(s)∣2 + n−(s) ⋅ (R(s0) −R−(s))∣R(s0) −R−(s)∣2 } ds. (B.9)

Here R = (X ,Y), R− = (X ,−Y), n = (−Y ′, X′) and n− = (−Y ′,−X′). R− is the position
of the re�ected part of the interface, and n− is the re�ected normal.

B.2 Recovery of linearised kinematic equations

We can obtain the leading order kinematic conditions on Φ1 and Φ2, that is (4.28) and

(4.29), by manipulating the boundary integral equations (B.8) and (B.9)

We begin by scaling X and Y as є → 0. We write

X(s) = Xc + s +O(є2), Y(s) = єH(s) +O(є2). (B.10)

We �nd

2

3π ∫
∞

0
n(s) ⋅R(s) {log ∣R(s) −R(s0)∣ + log ∣R−(s) −R(s0)∣} ds
= 4є

3π ∫
∞

0
[H(s) − (Xc + s)H′(s)] log ∣s − s0∣ds +O(є2). (B.11)

�e kernel integral coming from the non-re�ected part of the interface gives a term

which is O(єΦ1,2) respectively as є → 0. We have

1

π ∫
∞

0
Φ1,2(s){n(s) ⋅ (R(s0) −R(s))∣R(s0) −R(s)∣2 } ds

= є

π ∫
∞

0
Φ1,2(s){H(s0) −H(s) − (s0 − s)H′∣s0 − s∣2 } ds +O(є2). (B.12)

�e integrand in (B.12) is �nite at s = s0, taking the value
−Φ1,2(s0)H′′(s0)

2
.

Determining the behaviour of the kernel integral coming from the re�ected free

surface as є → 0 is more problematic. �e approximation

1∣R(s0) −R−(s)∣2 ≡ 1∣X(s) − X(s0)∣2 + ∣H(s) +H(s0)∣2 ∼ 1∣s − s0∣2 +O(є) (B.13)
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fails when ∣s − s0∣ = O(є). We therefore split this integral into regions for ∣s − s0∣ ≫ є and

∣s − s0∣ = O(є), writing
1

π ∫
∞

0
Φ1,2(s){n−(s) ⋅ (R(s0) −R−(s))∣R(s0) −R−(s)∣2 } ds

= P.V. є
π ∫

∞

0
Φ1,2(s){−H(s0) −H(s) − (s0 − s)H′(s)∣s0 − s∣2 } ds

+ є

π ∫
s0+є

s0−є
Φ1,2(s){−H(s0) −H(s) − (s0 − s)H′(s)∣s0 − s∣2 + є2∣H(s) +H(s0)∣2 } ds

(B.14)

�e �nal integral in (B.14) may be approximated by

−2є
π
Φ1,2(s0)H(s0) ∫ ∞

−∞
{ 1∣s0 − s∣2 + 4є2H(s0)2} ds = −Φ1,2(s0). (B.15)

�is term exactly cancels the le�-hand-side of (B.8), and has the opposite sign to the

le�-hand-side of (B.9), and so we reach very di�erent leading order equations from the

two integral equations.

Rearranging the integral equation (B.8) for Φ1(s) gives an equation which is indepen-

dent of є:

4

3π ∫
∞

0
(H(s) − (Xc + s)H′(s)) log ∣s − s0∣ds

= P.V. 2
π ∫

∞

0
Φ1(s){H(s) + (s0 − s)H′(s)∣s0 − s∣2 } ds, (B.16)

while the leading order version of (B.9) gives Φ2 explicitly as

Φ2(s0) = 2є

3π ∫
∞

0
(H(s) − (Xc + s)H′(s)) log ∣s − s0∣ds, (B.17)

which is the desired leading order equation for Φ2(s).
We can rearrange (B.16) to give an ODE for Φ1. We observe that

H(s) + (s0 − s)H′(s)∣s0 − s∣2 = d

ds
(H(s)
s0 − s) , (B.18)

We then di�erentiate (B.16) with respect to s0, and make use of the identity

∫
∞

0

g′(s)
t − s ds = [ g(s)t − s ]

∞

0

+ d

dt ∫
∞

0

g(s)
t − s ds, (B.19)

so that the integral equation (B.16) becomes

0 = P.V. ∫
∞

0
[2
3
(H(s) − (Xc + s)H′(s)) + (Φ′1(s)H(s))′] 1

s0 − s ds (B.20)
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and hence
d

ds
[H(s)Φ′1(s)] = 2

3
[H̃(s) − (Xc + s)H̃′(s)] (B.21)

which is the desired leading order equation for Φ1(s).
B.3 In�uence of re�ected interface

Figure 5.2 shows a coalescence problem with �uid 2 bounded by two free-surfaces, with

the interface for x > Xc re�ected in the line x = 0. �is interface does not a�ect the

integral equation for �uid 1, as it does not change the boundary for this �uid, but will

change the integral equation for �uid 2. In terms of the interface position (X(s),Y(s)),
where X(0) = Xc, Y(0) = Y , the integral equation for Φ2 with only the free-surface for

x > 0 can be written as

Φ2(s0) = 1

3π ∫
∞

0
(X′Y − Y ′X) {log ∣(X − X0)2 + (Y − Y0)2∣ + log ∣(X − X0)2 + (Y + Y0)2∣} ds

+ 1

π ∫
∞

0
Φ2(s){−Y ′(X0 − X) + X′(Y0 − Y)(X − X0)2 + (Y − Y0)2 + −Y ′(X0 − X) − X′(Y0 + Y)(X − X0)2 + (Y + Y0)2 } ds.

(B.22)

With two free-surfaces, the integral equation becomes

Φ2(s0) = 1

3π ∫
∞

0
(X′Y − Y ′X) {

log[(X − X0)2 + (Y − Y0)2] + log[(X − X0)2 + (Y + Y0)2]
+ log[(X + X0)2 + (Y − Y0)2] + log[(X + X0)2 + (Y + Y0)2]} ds
+ 1

π ∫
∞

0
Φ2(s){−Y ′(X0 − X) + X′(Y0 − Y)(X − X0)2 + (Y − Y0)2 + −Y ′(X0 − X) − X′(Y0 + Y)(X − X0)2 + (Y + Y0)2 } ds

+ 1

π ∫
∞

0
Φ2(s){Y ′(X0 + X) + X′(Y0 − Y)(X + X0)2 + (Y − Y0)2 + Y ′(X0 + X) − X′(Y0 + Y)(X + X0)2 + (Y + Y0)2 } ds.

(B.23)

At leading order as є → 0, we reach

Φ2(s0) = 2є

3π ∫
∞

0
(H(s) − (Xc + s)H′(s))[log ∣s − s0∣ + log ∣s + s0 + 2Xc ∣]ds. (B.24)

However, there is no source in the �ow, so we can write this as

Φ2(s0) = 2є

3π ∫
∞

0
(H(s) − (Xc + s)H′(s)) [log ∣s − s0∣ + log ∣1 + s

s0 + 2Xc
∣] ds. (B.25)
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and the e�ect of the new re�ected term on Φ2 diminishes as Xc increases.

We can consider the e�ect of this new term on the asymptotic solutions we found

in chapters 3 and 4. A new line of symmetry at x = 0 would change the leading order

problem for ∣λ − 1∣ ≪ 1 with ρ1 = 0, which is sensible as xc ≪ 1 for this solution. �e

re�ected interface would not change the leading order capillary wave equations for the

two large-λ analyses, as these are derived for a lengthscale x = O(x−2c ). However, the
next order equations are for variation on the lengthscale x = xc, which is exactly the

separation of the two interfaces. �e re�ected interface signi�cantly changes the leading

order problem for Φ outer problem for ρ1 = 0. �e far-�eld solution for Φ was important

in determining the mean of H in the far-�eld, and hence the contact-point displacement.

However, for the two-�uid problem, the slow variation of Φ inW0 has no e�ect on the

interface. �e new terms do not a�ect the short-lengthscale inner region near the contact

point.

It is important to note that for any contact angle, the new terms in (B.23) compared to

(B.9) add no extra sensitivity to interfacial neck formation, and so the re�ected interface

will not have an e�ect on the leading order �ow in the neck regions.
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