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Abstract

Wind borne debris is one of the principal causes of building envelope failure dur-

ing severe storms. It is often of interest in windstorm risk modelling to estimate

the potential flight trajectories and impact energy of a piece of debris. This thesis

presents research work aimed at the development and validation of a numerical

model for the simulation of plate-type windborne debris. While a number of

quasi-steady analytical models are available at present, these models are unable

to account for the fluid-plate interaction in highly unstable flows. The analytical

models are also limited to simple launch flow conditions and require extensive a-

priori knowledge of the debris aerodynamic characteristics. In addition, the use

of Euler angle parametrisations of orientation in the analytical models results in

mathematical singularities when considering 3D six degree-of-freedom motion.

To address these limitations, a 3D Computational Fluid Dynamics (CFD) model

is sequentially coupled with a quaternion based singularity-free six degree of free-

dom Rigid Body Dynamics (RBD) model in order to successfully simulate the

flight of plate-type windborne debris. The CFD-RBD model is applied to the

numerical investigation of the flow around static, forced rotating, autorotating

and free-flying plates as well as the treatment of complex launch conditions.

Key insights into the phenomena of plate autorotation are highlighted includ-

ing the genesis of the aerodynamic damping and acceleration torques that make

autorotation possible. The CFD-RBD model is then validated against measure-

ments of rotational speed and surface pressure obtained from recent autorota-

tion experiments. Subsequently a general 3D spinning mode of autorotation is

demonstrated and the CFD-RBD model is extended to include plate translation

in order to simulate windborne debris flight.

Using the CFD-RBD flight model, a parametric study of windborne debris flight

is carried out and four distinct flight modes have been identified and are dis-

cussed. The flight results are contrasted against available free-flight experiments

as well as predictions from existing quasi-steady analytical models and an im-

proved quasi-steady force model based on forced rotation results is proposed.

The resulting CFD-RBD model presents the most complete numerical approach

to the simulation of plate-type windborne debris, directly simulating debris aero-

dynamics, and incorporates complex launch flow fields in the initial conditions.
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Chapter 1

Introduction

1.1 Wind Related Damage

A 2003 report from the Association of British Insurers estimates the annual cost

of repairing windstorm damage in the UK to be £825 million (ABI, July 2003).

In addition, due to climate change, wind-related insured losses from extreme

storms are expected to increase. For instance, in the case of European storms,

insurance losses are now forecast to increase by at least 5% to e25-30 billion by

the 2080s (ABI, June 2005).

Outside Europe, in Japan, almost US$6 billion in damages was paid out for

Typhoon Mireille in September, 1991, US$18 billion for Hurricane Andrew in

August, 1992, and almost US$8 billion for the 10 typhoons that made landfall

on Japan in 2004 (Tamura, 2009). Hurricane Katrina killed 2,541 people in

August, 2005 and caused US$28 billion economic loss in the US, Cyclone Sidr

in November, 2007 killed 4,234 people and caused US$1.7 billion of losses in

Bangladesh, and Cyclone Nargis in May, 2008 killed 138,366 people and caused

a US$10 billion economic loss (Tamura, 2009).

While a variety of wind engineering design codes exist to aid in the structural

design of buildings against wind pressure loading, according to Minor (1994)

extensive evaluations of building performance in wind storms carried out in the

1970s have shown that two wind storm effects, previously not considered in

design, leave the building envelopes vulnerable. These effects are fluctuating

pressures and windborne debris. For building fittings such as windows, which

are traditionally designed to withstand wind pressure loading, the most common

failure mechanism was found to be breakage from impacts by windborne debris

(Minor, 1994). Figure 1.1 illustrates wind damage to different types of structures.

1.2 Windborne Debris

Windborne debris refers to loose items, tree branches, street furniture or failed

building components that are picked up and carried by the wind during severe

1
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(a) (b) (c)

Figure 1.1: Wind damage to different types of structures. (a) Window breakage

and roof uplift from an isolated low-rise structures, (b) Building facade damage

to an urban high-rise structure, (c) Building envelope failure for a portal framed

steel storage building (AAWE, 2011).

storm events. The most commonly used classification of wind borne debris is

that presented by Wills et al. (2002) and will be used throughout this thesis.

In this classification, debris is grouped into three main categories, which are

illustrated in Figure 1.2.

Compact debris whose three spatial dimensions are approximately the same

includes near-spherical objects such as gravel.

Sheet/Plate debris with one of the spatial dimensions much smaller than the

other two includes roof tiles, roofing sheets and other cladding elements.

Rod debris with one of the spatial dimensions much larger compared to the

other two includes objects such as timber pieces and bamboo rods.

Windborne debris has been established as a principal cause for the breaching

of the building envelope during wind storms (Minor, 1994). This research is

mainly interested in plate type windborne debris - such as roofing sheets, shingles

and tiles (Figure 1.3) - which has been found to be the dominant type in a

residential setting (NAHB Research Center, 2002). Plate debris also presents

a unique modelling challenge due to the six-degree-of freedom motion and non-

linear Fluid-Structure Interaction (FSI) involved. For the purposes of this study,

the debris plates have been assumed to be rigid.

According to Holmes (2010), observations of wind damage from severe storms

such as tropical Cyclone Tracy in Darwin, Australia in 1974, and Hurricane

Andrew in southern Florida in 1992 suggest that windborne debris may produce
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Figure 1.2: Commonly used debris type classifications by Wills et al. (2002).

Figure 1.3: Photo from a damaged roof in Birmingham showing the typical UK

roofing tile with nailing only at the top making bottom uplift easy (Marshall

and Robinson, 2006).

(a) (b)

Figure 1.4: Damage to (a) building facades (Marshall and Robinson, 2006) and

(b) cars due to windborne debris generated during the 2005 Birmingham Tornado

(BBC, 2005).
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(a)

(b)

Figure 1.5: Illustrations of (a) Building damage correlation during severe storms

(Uematsu et al., 1992), and (b) the debris damage chain (Tamura, 2009).

nearly the same amount of wind damage as direct wind loads on buildings in

urban areas. Damage assessment reports of extreme windstorms in the UK,

such as the Birmingham Tornado in 2005 - which at £30 million was the most

costly tornado in the UK to date - also suggest a significant contribution to the

failure of downstream structures by windborne debris generated from upstream

structures (Marshall and Robinson, 2006) (Figure 1.4). This pattern, illustrated

in Figure 1.5, has been consistently observed during severe storms and is referred

to as the debris damage chain (Minor and Beason, 1976; Holmes, 2010).

The debris damage chain begins with debris generated from failed building com-

ponents, street furniture and loose items upstream. These flying projectiles

are carried by the wind, eventually impacting onto downstream buildings and

breaching the roof structures, building glazing and wall cladding. This leads

to several harmful situations: high internal pressure resulting in failure of the

principal structural frame (this could include entire roof uplift as observed by

Marshall and Robinson (2006)), exposure of occupants to wind and rain, dam-

age to building contents, additional debris in the wind stream, hazardous debris

falling to the street, disrupted business, and a blemished image of the building.
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In addition to contributing significantly to wind related property damage, there

is also evidence to suggest that windborne debris poses a substantial risk to

human life during severe storms. Katsura et al. (1992) reported that of the

63 fatalities due to Typhoon Mireille, which struck Japan in 1991, the causes of

death were; 31% blown by wind, 30% caught under collapsed or blown obstacles,

and 23% hit by wind-borne debris.

Understanding the aerodynamics of windborne projectiles is also of importance

to a number of related environmental and safety problems (see Figure 1.6). In

order to model fire spotting - the ignition of forest fuel beds and houses ahead

of the main fire by firebrands - accurate numerical models of the trajectories of

cylindrical and disk shaped firebrands are required (Kortas et al., 2009). Sim-

ilarly, windborne projectile models are increasingly playing a significant role

in the numerical estimation of the risk presented by wind turbine ice-throws,

where fragments of ice thrown-off from turbine rotor during winter conditions

are transported by the wind, posing a threat to downstream infrastructure and

human life (Seifert et al., 2003; Cattin et al., 2007). In the aerospace and avi-

ation sector, safety studies to assess the vulnerability of both aerospace vehicles

(Gomez, 2006), and the general public on the ground (Lin et al., 2003) to debris

resulting from shuttle failure also require accurate windborne debris trajectory

models.

A number of debris damage models and risk assessment models have previ-

ously been presented (Wills et al., 2002; Schneider and Schauer, 2006; Lin and

Vanmarcke, 2008, 2010) to address the problem of windborne debris. Addition-

ally, new impact tests have also been developed for building cladding elements

in hurricane prone regions (Masters et al., 2010). However, the successful im-

plementation of these debris risk models and impact test procedures requires

adequate knowledge of:

i.) The sources and aerodynamic properties of the various debris types,

ii.) The debris flight behaviour, trajectory and impact velocities,

iii.) The damage resulting from debris impact.

Empirically derived analytical models are currently used to predict debris flight

behaviour and impact energy. However these analytical models are limited to
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(a)

(b)

(c)

Figure 1.6: Windborne projectile models have potential applications beyond the

modelling of storm debris. These include: (a) Modelling fire spotting (FARSITE,

2011), (b) Wind turbine ice-throw modelling (Aerospace, 2011), (c) Modelling

aerospace debris risk to space vehicles and human life on the ground (NASA,

2011).
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simplified cases and further improvement is precluded by the limited understand-

ing of the non-linear coupling between the free-flying plate and the surrounding

fluid.

There is therefore a need to develop a better understanding of the unsteady

aerodynamic behaviour involved in windborne debris flight and to create more

complete numerical models for the accurate simulation debris flight trajectories

in realistic conditions. A more complete model would be particularly useful in

the evaluation of debris types for which experimental measurements are currently

unavailable.

1.3 Research Aims and Objectives

This research is primarily concerned with the development of more accurate

models for the flight behaviour and trajectory of plate-type debris. The research

has been carried out with the aim of:

simulating the flight of plate-type debris in extreme winds based on an

improved understanding of the non-linear fluid-structure interaction

involved.

To achieve the stated aim, the following specific objectives have been met:

I. Develop a numerical model to simulate the aerodynamic characteristics of

static, autorotating and free-flying plates.

II. Identify the primary flow mechanisms involved in the autorotation and

free-flight of low-aspect-ratio plates.

III. Validate the numerical models against available experimental force meas-

urements on static, autorotating and free-flying plates.

IV. Carry out a parametric study to identify the key parameters controlling

debris flight behaviour.

V. Demonstrate the application of the numerical model to a more complete

simulation of debris flight with near-real launch conditions and flow fields.
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1.4 Methodology

Numerical simulations using coupled Computational Fluid Dynamics (CFD) and

Rigid Body Dynamics (RBD) models are used as the central tool for this re-

search. Commercial code ANSYS FLUENT (FLUENT Inc., 2009) is used for

the CFD modelling. Simulations are run in parallel using a Beowulf Linux cluster

with a total of 64 2.21 GHz CPUs and 20 1.95 GHz CPUs, each holding 8GB of

RAM.

Initially two- and three-dimensional CFD simulations of the flow around a static

flat plate have been performed to assess the performance of different turbulence

models. The aerodynamic force coefficients and the coherent flow structures in

the wake of the plate are validated against existing experimental measurements

from ESDU (1970) and Taira and Colonius (2009). Model verification studies

are also performed in order to inform the selection of turbulence model, optimal

grid and time-step resolution and discretisation schemes.

The CFD model is subsequently coupled with a RBD model using User Defined

Functions (UDF) written in the C programming language. This coupled CFD-

RBD model is used to simulate the forced rotation and autorotation of flat

plates in a uniform wind stream about a fixed axis, with the aim of develop-

ing a better understanding of the mechanisms leading to and sustaining plate

autorotation. Validation of the CFD-RBD results is achieved by comparisons

against recent autorotation experiments by Martinez-Vazquez et al. (2010). The

key observations used for CFD-RBD verification include the aerodynamic force

and torque coefficients, the net pressure distribution across the plate surface and

the rotational speed. In all the CFD simulations, the coherent flow structures

present in the flow around the plate are identified from the CFD-RBD flow solu-

tion and their interaction with the plate is investigated to provide some insight

into the non-linear Fluid-Structure Interaction (FSI) taking place. CFD predic-

tions for scalar flow variables such as pressure, velocity magnitude and vorticity

magnitude are also presented throughout the thesis in contour plots. In these

contours plots, the convention has been to present the figures with a height to

width aspect ratio of 1 and a horizontal scale bar to indicate the dimensional

scale of the figure in metres.

Finally, the model is extended to the simulation of full debris flight in uniform
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flow conditions as well as in non-uniform flow fields such as those typically

present during roof-top launch situations. Comparisons are also made against

existing analytical models for smooth flow solutions, and improvements to these

quasi-steady analytical models are proposed based on the findings of this study.

1.5 Thesis Outline

This thesis has 7 chapters, including the Introduction.

Chapter 2 presents a review of literature that documents relevant research into

the aerodynamics of plate-type windborne debris. Previous wind tunnel and

numerical investigations into the aerodynamics of static, autorotating and free-

flying flat plates are presented, highlighting the key findings on the nature of

the aerodynamic forces and unsteady flow structures involved. Existing debris

flight modelling research is discussed and the key limitations and criticisms are

presented.

Chapter 3 provides an introduction to Computational Wind Engineering with a

discussion on the numerical approaches to solving the Navier-Stokes equations

and developments in the simulation of fluid flow around moving wall boundaries.

An introduction to the problem of turbulence is also presented, with a review of

the different turbulence modelling approaches currently available. The chapter

also includes a brief introduction to the wind in the atmospheric boundary layer.

This is followed by Chapter 4 which describes the singularity free 3D, six degree-

of-freedom Rigid Body Dynamics (RBD) model used in this study. In Chapter 5,

the CFD-RBD model development, verification and validation is presented. This

includes a description of the model domain, numerical discretisation schemes

used and the various sensitivity studies carried out for spatial and temporal dis-

cretisation, solution schemes and turbulence modelling approach. The chapter

then presents results for CFD simulation of static and autorotating plates as

well as a forced rotation study performed to assess the accuracy of existing

quasi-steady force models. Finally, preliminary results from both two- and

three-dimensional simulations are presented for plate free-fall, free-flight and

autorotation and validated against existing experimental measurements.

Chapter 6 then presents the results of a parametric study of over 130 CFD sim-

ulations of plate free-flight, assessing the sensitivity of plate free-flight to initial

orientation, Tachikawa number, Mass moment of Inertia, Aspect Ratio, Froude
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Number and complex launch conditions. The different flight modes observed are

categorised.

Finally, Chapter 7 summarises the main conclusions of this research and includes

recommendations for future research.



Chapter 2

Literature Review

This chapter presents existing literature on; the fundamentals of plate aerody-

namics, existing quasi-steady models of debris flight and their limitations, as well

as wind tunnel experiments and full scale studies of plate debris flight. Recent

applications of numerical modelling to related problems such as plate autorota-

tion, free-falling aerofoils and shuttle ascent foam debris are also discussed. A

further review of CFD applications to wind engineering is presented in Chapter

5.

2.1 Flat Plate Aerodynamics

A number of fundamental studies have been carried out on the aerodynamics

of static and rotating flat plates. Early experiments on fluid flow over a flat

plate found that the flow could be generally described as streamlined flow at

low angles of attack, transitional or stalling flow at moderate angles of attack

and bluff-body flow at high incidence (Abernathy, 1962). The angle at which the

flow first begins to separate from the plate, resulting in bluff-body behaviour,

is known as the stall angle. This angle varies with plate shape and size and

will further be influenced by the flow Reynolds number, turbulence levels in the

incoming flow and whether the plate is static or rotating (ESDU, 1970). Because

of the qualitative differences between each type of flow, the modelling of rotating

plates exhibiting all three types of flow presents a complex problem.

Figure 2.1 shows a typical plate with common descriptive parameters that will

be used throughout the rest of this thesis, where B is the plate breadth, L is the

plate chord, h is plate thickness, c is the plate’s projected chord length onto a

vertical plane normal to the horizontal wind speed, αz is the angle of attack in

the X-Y plane (corresponding angles of attack exist in the X-Z and Y-Z planes).

u, v and w are the components of plate velocity in the X-, Y- and Z-directions.

ω represents the angular velocity of the plate about an axis through its centre

of mass and parallel to the Z-axis, additional angular velocities exist for axes

parallel to the Y- and X-axes during full 3D rotation. Uw is the absolute mean

11
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(a) (b)

Figure 2.1: Typical plate dimensions, orientation and motion conventions.

horizontal wind speed, which acts in the positive X-direction. A translating plate

with plate velocity (u, v, w) can be viewed from a plate-fixed reference frame as a

static plate in 3D wind field given by the relative wind velocity ((Uw −u), v, w).

Abernathy (1962) describes bluff body flow around a high aspect ratio static

plate (occurring at between approximately 30◦ to 90◦ angles of attack) as be-

ginning with the movement of fluid from the stagnation point at the front of

the plate towards the leading and trailing edges. As the fluid is unable to turn

around these edges it separates from the plate at both points giving rise to a re-

gion of low static pressure behind the plate. The separated free-boundary layers

are unstable and through an interaction with the mean flow or with each other

are partially transformed into a von Karman vortex street in the plate’s wake

(Figure 2.2).

The von Karman vortex sheet consists of alternating vortex shedding from the

plate’s leading and trailing edges characterized by a regular non-dimensionalised

frequency known as the Strouhal number, St.

St =
fc

Uo
=
fL sinαz

Uo
, (2.1)

where f is the frequency of vortex shedding in Hertz, c, L and αz are as defined in

Figure 2.1 and Uo is the free stream mean wind speed. Abernathy also presents

a modified form of the Strouhal number (S∗) defined as,

S∗ =
fD

Us
=
f1.41c sin α

kUo
=
f1.41c sinα√
1− C∗

pUo
. (2.2)

S∗ uses the separation distance between free-vortex layers, D, as the character-

istic length which is independent of lateral flow constriction and angle of attack.
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Figure 2.2: Smoke filaments around a bluff body showing a von Karman vortex

street in the two-dimensional flow around a high aspect ratio bluff body, and the

interaction between the top shear layer and the vortex forming on the opposite

side of the wake (Bearman, 1984).

Us is the maximum local speed in the free-vortex layers from the inclined plate

(which occurs at the outer boundary of the free-vortex layer), k = Us/Uo is the

velocity ratio, and C∗
p = 2(ps − po)/ρU

2
o is the pressure coefficient behind the

plate. ps is the pressure behind the plate measured at the geometric centre of

the plate model, and po is the free stream pressure.

The von-Karman vortex street is a special case of two-dimensional bluff body

vortex shedding involving the periodic shedding of vortices from the leading and

trailing edges (Bearman, 1984). However, in the case of low aspect ratio bluff

bodies, a more complex and three-dimensional wake is observed. In addition

to leading- and trailing-edges vortices, tip vortices exist at the side-edges of the

plate and depending on the angle of attack and aspect-ratio (AR = B/L) of the

plate, different types of wake behaviour may be observed.

For instance, given a plate at 30◦ angle of attack in a flow of Re = 300, as shown

in Figure 2.3(a) for a square plates with an aspect ratio (AR) of 1, the leading

edge vortex remains attached due to the downward induced velocity from the

two counter-rotating tip vortices covering the entire span of the plate leading to

a stable steady wake (Taira and Colonius, 2009). However, for plates with an

aspect ratio of 2, at the same angle of attack, the tip vortices are not strong

enough to keep the leading edge vortex attached, Figure 2.3(b), which leads

to the unsteady shedding of hair-pin vortices. Taira and Colonius (2009) also
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(a) (b)

Figure 2.3: Leading edge and tip vortices in the wake of a static flat plate at

30◦ angle of attack and Re = 300. (a) Steady wake behind plate of AR=1; (b)

Unsteady wake behind plate of AR=2 (Taira et al., 2007).

observed that at higher angles of attack, the tip vortices that form along the

side edges of the plate became vertically aligned and of similar strength to the

leading and trailing edge vortices. The interaction of tip vortices with leading

edge vortices then results in a suppression of the dominant shedding frequency,

the development of a span-wise asymmetry in the wake and the aperiodic nature

of the flow. Figure 2.4 summarises the findings from Taira and Colonius (2009).

This wake topology and the vortical structures observed at the low Reynolds

numbers although less diffusive, have been found to be qualitatively similar to

those observed at higher Reynolds numbers (Dong et al., 2006). The Reynolds

number is also observed to affect the stability of the wake, with higher Reynolds

number flows more likely to exhibit unsteady wake behaviour as well as aperiodic

vortex shedding at higher angles of attack. Results from extensive computational

investigations by Taira and Colonius (2009) are summarised in Figure 2.4. These

results show that depending on the Reynolds number, aspect ratio and angle of

attack, low aspect ratio plates can exhibit; (i) a steady wake with no vortex

shedding; (ii) an unsteady wake with periodic vortex shedding; (iii) an unsteady

wake with aperiodic vortex shedding and span-wise asymmetry.

Taira et al. (2007) further observed that plate shape also played a role in the

wake behaviour and onset of vortex shedding. For rectangular plates, the right

angled corners created a thinning-out of vortex sheets in these regions resulting

in the formation of separate vortex core structures at the leading edge, trailing

edge and side edges. With no convective vorticity flux in the span-wise direction

(which would act to stabilise the leading-edge vortex), the only mechanisms left
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Figure 2.4: Wake stability and behaviour for a range of α and AR at (a) Re = 300

and (b) Re = 500. The shaded area and the dashed line represent the regions

of stability and the transition from periodic to aperiodic shedding respectively

(Taira and Colonius, 2009).

to transport the vorticity being fed into the leading-edge are diffusion and vortex

shedding (Taira et al., 2007).

It is important to note that in the context of windborne debris flight, if the

relative wind speed is used as the reference wind speed, then during launch

stages flow may be characterized by a high Reynolds number flow while in the

long-term flight stages as the plate velocity tends towards the mean wind speed,

the flow would be characterized by a low Reynolds number.

2.2 Aerodynamic Forces on Static Flat Plate

As the fluid flows around a flat plate, fluid pressure and viscous forces are ex-

erted on the plate. These forces may be steady or unsteady depending on the

behaviour of the wake behind the plate and are dependant on the plate’s angle

of attack α.

At angles of attack higher than the stall angle, the plate enters into normal or

static stall if it is static or steadily translating. Plates in static stall experience a

decrease in the aerodynamic lift with increasing angle of attack. In addition to

static stall, there exists a dynamic stall that occurs in rotating plates. During

dynamic stall, rotating plates experience a momentary increase in the plate’s

normal force coefficient - CN - due to non-linear interaction between the plate

and the leading edge vortex (or dynamic stall vortex). As the leading edge
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vortex dissipates, the normal force then rapidly falls and the plate returns to

normal stall (Gupta and Leishman, 2006; Larsen et al., 2007). Both static and

dynamic stall phenomena are of interest in the study of windborne debris which

has been experimentally observed to exhibit either pure translational motion

or more commonly, combined translational and rotational motion (Kordi and

Kopp, 2011). However this section focuses on the behaviour of static plates.

For static plates, vortex shedding and wake unsteadiness beyond the stall angle

result in unsteady fluctuating pressure forces on the plate. As shown in Figure

2.5, due to the absence of the stable tip vortices, the two-dimensional flow exerts

larger fluctuation in force per unit span compared to the low aspect ratio flow

cases (Taira and Colonius, 2009). In cases, where the wake behind a low-aspect-

ratio plate remains steady, a steady body force time-series is observed.

A number of experimental studies have previously been carried out to determine

the aerodynamic forces acting on flat plates at different angle of attack in a

steady, uniform flow (Hoerner, 1958) and the results are compiled in ESDU

(1970). Subsequent measurements of static plate forces such as Richards et al.

(2008) agree with older records and extend the data to more three dimensional

plate orientations involving an orientation of the plate about both a horizontal

cross-wind axis as well a vertical cross-wind axis. The values typically measured

in these studies are the time-averaged pressure forces acting normal to the plate,

N , and the time-averaged aerodynamic torque, M , about the horizontal axis

through the plate’s centre and perpendicular to the flow.

From these values, the non-dimensionalised normal force coefficient, CN , and

the centre of pressure positions, xcp, shown in Figures 2.6 and 2.7 respectively,

are determined as

CN =
N

0.5ρAUw
2,
, (2.3)

xcp =
c

2
− M

N
, (2.4)

where c is the chord length. ESDU (1970) defines xcp as the distance along the

plate centre-line of the centre of pressure behind the leading edge of the plate.

Other studies, however, define xcp as the distance from the plate’s geometric

centre of the centre of pressure, and this is the convention used in this research.

xcp is usually non-dimensionalised by c.

The discontinuities in the curves in Figures 2.6 correspond to incidence of stall
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Figure 2.5: Lift, CL, and Drag, CL, force coefficient time series for rectangular

flat plates of different AR for a range of angles-of-attack at Re=300 (Taira and

Colonius, 2009).

which may be expected to lie within ±5◦ of the vertical lines shown. From

Figures 2.6 and 2.7, xcp/c and CN values may be obtained to within an accuracy

of ±5% except in the stall region where data was more widely scattered (ESDU,

1970). With these values, the aerodynamic drag, lift and torque may then be

computed for a plate at a given angle of attack and are shown in Figure 2.8 for

a square flat plate. However as the ESDU data presents only the time-averaged

measurements on static plates, they do not capture the unsteady/fluctuating

component of the body forces which could play a significant role in the non-

linear interaction expected in windborne debris flight.
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Figure 2.6: Variation of rectangular flat plate normal force coefficients (CN )

with angle of attack (αo) and plate aspect ratio (b/c) (ESDU, 1970).

Figure 2.7: Variation of rectangular flat plate centre of pressure position (xcp/c)

with plate aspect ratio (b/c) and angle of attack (αo) (ESDU, 1970).
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Figure 2.8: Steady-state curves showing the variation of (a) Normal Force and

Drag coefficients, (b) Lift and Torque coefficient, with angle of attack for static

square flat plates held in a uniform steady flow. Curves are computed using

piece-wise linear approximations of CN and xcp curves from ESDU (1970).
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2.3 Autorotation

Windborne debris flight can be viewed as a special case of combined plate autoro-

tation and translation. In addition to the aerodynamics of translating plates,

understanding the phenomenon of autorotation is central to understanding the

aerodynamics of windborne debris.

Autorotation is defined as the continuous rotation, without external power of a

body exposed to an air stream (Skews, 1990; Smith, 1971). The study of the the-

ory of autorotation dates as far back as Maxwell (1854) who studied the rotation

of falling cards and Riabouchinsky (1935), who introduced the term “autorota-

tion”. Some authors (Lugt, 1983; Riabouchinsky, 1935), however, consider this

to be pseudo-autorotation and insist that proper/classical autorotation can oc-

cur only if one or more stable positions exist at which the fluid flow exerts no

torque on the resting body. Symmetric plate-type debris, because of the ab-

sence of significant aerodynamic torque at 0◦ or 90◦ angles of attack satisfies

the definition of classical autorotation although other irregular or asymmetric

debris shapes might not. For the purposes of the present research, no distinction

is made between classical and pseudo autorotation.

Figure 2.9 illustrates the point of stable autorotation for a Lancaster propeller as

defined by Riabouchinsky (1935) for autorotation about an axis perpendicular

to the flow. The experiments involved using a motor to drive the propeller at a

constant angular velocity Ω, with the torque T acting on the propeller measured

as a function of Ω.

Although in reality a free plate may rotate about any arbitrary axis, two special

cases have been the focus of existing literature and research into autorotation.

These are; autorotation about an axis parallel to the flow (e.g; in the Lancaster

propeller, spinning airfoil, horizontal axis wind turbines), and autorotation about

an axis perpendicular to the flow (e.g; in falling rectangular pieces of cardboard

rotating about a free or moving axis and vertical axis wind turbines). The

fundamental difference between the two cases is essentially that while the rate

of stable autorotation is constant for bodies autorotating about an axis parallel

to the flow (provided the wake is fairly constant), the rate of autorotation for

bodies autorotating about an axis perpendicular to the flow is periodic (Lugt,

1983).
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Figure 2.9: The Riabouchinsky curve (Riabouchinsky, 1935) showing the average

torque T required to drive a Lancaster propeller at a constant rotational speed

Ω. Positive T means that an external driving torque is required, while negative

T (in the shaded area) indicates a braking torque. If a plate in the shaded area

is free to rotate, it will autorotate and increase its angular velocity until the

point of stable autorotation (point A).

During the flight of wind-borne debris, plate debris has been observed to exhibit

a complex three-dimensional (3D) spinning mode of autorotation that is the

dominant mode (Kordi and Kopp, 2011). However due to the numerical and

experimental difficulties involved, there is lack of existing research on this type

of autorotation.

2.3.1 Autorotation Parallel to the Flow

During autorotation about an axis parallel to the flow, the fluid motion is qual-

itatively steady in the stable state of a body-fixed reference frame (Lugt, 1983).

The local angle of attack of the flow against a blade element, α, changes due to

the rotational velocity, V = ΩR, according to,

α = αo +∆α, ∆α = tan−1 p, p =
V

U
, (2.5)

where U is the constant speed of the parallel flow, R is the radius of the wing-

type body, Ω is the angular velocity, αo the local angle of attack for V = 0 and

p the roll parameter.

In this case, the aerodynamic forces will support autorotation if V/U = p > L/D,

where L is the lift and D is the drag. To meet this criterion, the total angle of

attack must be in the stall region so that the slope dL/dα is negative and its
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Figure 2.10: The rate of autorotation, p for an autorotating wing as a function

of α0 (Lugt, 1983).

absolute value large enough to satisfy the condition (Lugt, 1983):

dL

dα
+D < 0. (2.6)

Figure 2.10 shows for an autorotating wing the rate of autorotation, p as a

function of α0.

2.3.2 Autorotation Perpendicular to the Flow

Unlike autorotation parallel to the flow where steady fluid flow is observed,

during autorotation perpendicular to the flow, the fluid flow is qualitatively

observed to be unsteady and periodic. In addition, while it is immediately

obvious that asymmetric plates and aerofoils held about an axis perpendicular

to the flow should autorotate, this is not the case for symmetrical plates.

Consider the steady lift and moment coefficient shown in Figure 2.8(b). As the

angle of attack slowly increases, lift force and torque increase until the plate

begins to stall. At the stall point, these values decrease and eventually become

insignificant when the plate is perpendicular to the flow. As the wing continues

to rotate from 90◦ to 180◦ angle of attack, the cycle is repeated with reversed

sign on the moment and lift. Therefore assuming a quasi-steady behaviour (i.e.

that the plate is rotating so slowly that the aerodynamic forces at a given angle

of attack can be assumed to be the static plate equivalents), a symmetrical

plate exposed to a steady air stream would be expected to experience equal

accelerating and retarding torque during different halves of the cycle (either side

of α = 90◦), resulting in a static plate at the stable α = 90◦ position, with

no autorotation. A number of empirically derived theories have therefore been
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suggested to explain the phenomenon of autorotation in symmetric plates, and

how it is influenced by additional factors.

Smith (1971) experimentally investigated the autorotation of symmetrical wings

about a span-wise axis perpendicular to the flow. Smith observed that in prac-

tice, a wing released from rest at an angular position at which the flow was

stalled would come to rest (after a number of oscillations) in a statically stable

position with the wing perpendicular to the free stream. However, if the wing

was released at a small enough initial angle of attack, αo, so that the flow was

un-stalled, the wing usually began autorotating with the final direction of ro-

tation determined by the initial orientation. Smith also reported that the wing

would not autorotate if its moment of inertia, I, was too low as it was then

unable to store enough angular momentum to pass through the stalled portion

of its cycle during which it received a retarding torque.

Autorotation was therefore found to be dependant on both the initial angle of

attack, αo, and the plate’s mass moment of inertia, I. As I was increased, the

roll parameter, p, increased since the wing slowed less during the stalled portion

of its cycle. However, Iversen (1979) later found that for non-dimensionalised

inertia I∗ = I/(ρBL4) > 1 (where ρ,B,L are density of fluid, span and chord

length), the roll parameter p becomes independent of I and here the difference

between free-flight and fixed-axis autorotation becomes indistinguishable (Lugt,

1983).

For free rotation, Smith (1971) found the roll parameter to be sensitive to, and

greatly determined by, the Reynolds number. Apart from the Reynolds number,

other factors influencing the rate of autorotation about an axis perpendicular to

the flow are; plate thickness, plate aspect ratio, lift and drag coefficients and the

moment of inertia (Lugt, 1983).

To account for the influence of plate thickness ratio, τ = h/L, and aspect ratio,

A = B/L, Iversen (1979) obtained the correlation function given by (2.7), (2.8)

and (2.9) for tip speed ratio (p = V/U) based on data from experiments by

Bustamante and Stone (1969), Smith (1971) and Glaser and Northup (1971).

p =
V

U
= f1(A)f2(τ), (2.7)
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Figure 2.11: Tachikawa’s experimental plate autorotation set-up (Tachikawa,

1983).

where functions f1(A) and f2(τ) are defined as;

f1(A) =

{[
A

2 + (4 +A2)
1
2

][
2−

(
A

A+ 0.595

)0.76]} 2
3

, (2.8)

f2(τ) =

(
0.329 ln

(
c

h

)
− 0.0246 ln

(
c

h

)2)
. (2.9)

The experiments (Bustamante and Stone, 1969; Smith, 1971; Glaser and Northup,

1971) involved plates of aspect ratios, 0.25 ≤ A ≤ 4, and thickness ratios,

0.0054 ≤ τ ≤ 0.5. According to Iversen (1979), for plates with aspect ratio,

A > 5, the influence of A on p can be ignored. τ was also found to have a

negligible effect on p for values less than 0.01 (Lugt, 1983).

Although Iversen’s correlation has become widely accepted and even applied

to quasi-steady models of debris flight (Kordi and Kopp, 2009b), later invest-

igations by Tachikawa (1983) and Skews (1990) pointed to some limitations.

Tachikawa (1983) performed low-speed wind tunnel experiments to determine

the force coefficients and angular velocity of autorotating square and rectangu-

lar flat plates (as shown in Figure 2.11), with the motivation of applying results

to windborne debris flight modelling. The plate thickness ratios were in the

range 0.029 ≤ τ ≤ 0.057 and the results for rectangular plates did not necessar-

ily agree with Iversen’s correlation equations and suggested a large influence of

thickness ratio (Tachikawa, 1983).

Later, Skews (1990) carried out wind tunnel experiments of two-dimensional

plate autorotation (for which effects of aspect ratio can be neglected) and ex-

tended the range of thickness ratio, τ , of plates tested up to to 1.0. Skews found
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Figure 2.12: A schematic showing span-wise and side-edge vortices shed from

the retreating edges of an autorotating plate as postulated by Skews (1990).

that for instance, although Iversen’s correlation, (2.7) - (2.9), does not allow for

autorotation of square plates of large thickness, τ = 1.0, this was experimentally

achieved just as easily as for thin plates with , τ < 0.1. The experimental results

by Skews (1990) were in good agreement with 2D numerical predictions by Lugt

(1980) and Skews concludes that Iversen’s correlation does not correctly account

for effects of aspect ratio beyond A > 4 and should therefore be limited to low as-

pect ratio plates. Skews attributes the variations in behaviour with aspect-ratio

to differences between the flow structure in low- and high-aspect-ratio plates as

illustrated in Figure 2.12.

2.3.2.1 Flow Around Autorotating Plates

During plate autorotation, a distinctly different flow pattern was observed in

experiments by Smith (1971), Figure 2.13, compared to the flow over a static

plate described in section 2.1. The main difference being that the wing stalled

much later than in the static case and the flow reattached later to the lower

surface. As a result of this delayed stall, in the first 90◦ cycle, positive lift and

moment were increased while the negative lift and moment during the second

half of the cycle were reduced by the delayed reattachment. The net driving

torque created by this delayed stall phenomena gradually led to an increase in

the wing’s angular velocity until a steady speed was reached at which the average

torque was reduced to zero by aerodynamic damping effects.
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Figure 2.13: Schematic flow pattern over autorotating wing at Re = 90, 000 and

non-dimensionalised wing rotation rate, S = (nL/Uw) = 0.35, where n is the

rotation rate in Hz. (Smith, 1971).
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Figure 2.14: Sketch from smoke-tunnel photograph of an autorotating flat plate

by Yelmgren (1966), showing a large vortex downstream of the retreating edge

(Iversen, 1979).

Smith (1971) went on to speculate that there were two possible causes for the

delayed stall. Firstly, he argued that the boundary layer on the upper (suction)

surface of the wing takes time to thicken and separate when the angle of attack is

rapidly increasing, such that the wing can reach a higher angle of attack before

it stalls. Secondly, the flow over the upper surface of a wing with a rapidly

increasing angle of attack is accelerating - this reduces the adverse pressure

gradient thereby delaying stall.

According to Smith (1971), it is this hysteresis in the lift, resulting from un-

steady aerodynamic effects, that causes autorotation. Bustamante and Stone

(1969), Iversen (1979) and Smith (1971) suggested that these unsteady aerody-

namic effects could themselves be attributed to the large vortex shed from the

retreating face of the plate which then creates an aerodynamic torque support-

ing autorotation due to the low pressure at its core. The sketch in Figure 2.14

from a smoke-tunnel photograph of streak lines around an autorotating plate

(Yelmgren, 1966) shows this large vortex that remains attached and is eventu-

ally shed from the retreating face of a rotor while no similar vortex is visible

from the advancing face.

Related experiments by Lentink et al. (2009) on scaled models of maple seed

flight show similar findings, with a pronounced leading edge vortex present
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during seed autorotation. Unlike with rectangular plates, however, the vortex

around a smooth edged maple seed remains stable and attached due to signific-

ant span-wise vorticity transport from the leading-edge vortex to the tip vortex

(Lentink et al., 2009), which is not present in square flat plates with sharp

corners.

There are still a few unanswered questions regarding the flow around low aspect

ratio autorotating plates. As described by Lugt (1983) and Skews (1990), for

autorotating plates and the theory of low aspect ratio static flat plates, in ad-

dition to a pronounced leading edge vortex, large tip vortices are present in the

flow. These tip vortices have a complex non-linear interaction with the leading

edge vortex which is expected to play an important role during low aspect ratio

plate autorotation.

In addition, the cause of the aerodynamic damping that ultimately limits the

angular velocity of the wing to the stable speed of autorotation is not fully un-

derstood (Smith, 1971). Lugt (1980) based on 2D numerical modelling suggested

there was linkage between the vortex shedding frequency and the plate rotational

speed. Lugt reported that during stable autorotation, the vortex shedding fre-

quency is locked-in to the plate’s rotational speed. The aerodynamic damping is

therefore likely to be due to premature or delayed shedding that occurs when the

plate’s instantaneous rotational speed exceeds the mean autorotational speed.

There is, however, a need to study this damping effect in more detail for low

aspect ratio plates.

Smith (1971) also suggested the centre of gravity location was important es-

pecially if the wing was rotating about a horizontal axis or freely falling and

recommended further studies into this.

2.3.3 Numerical Modelling of Autorotation

In addition to experimental investigations of plate autorotation, a number of of

two-dimensional (2D) numerical studies of plate autorotation about a horizontal

axis perpendicular to the flow in a steady uniform flow stream have previously

been carried out including Lugt (1980), Seshadri et al. (2003), Mittal et al. (2004)

and Andronov et al. (2007). These studies involve solving the 2D Navier-Stokes

equations to obtain the unsteady flow field around an autorotating plate and

the aerodynamic forces resulting. Early simulations by Lugt (1980) have been
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compared against experiments by Skews (1990), showing good agreement.

A number of other 2D numerical studies have also recently been conducted with a

focus on understanding the aerodynamics of related problems such as the motion

of falling paper (Andersen et al., 2005; Jin and Xu, 2008) and the aerodynamics

of insect flight (Wang, 2005).

These studies have all focused on autorotation of high-aspect-ratio plates, ex-

hibiting 2D motion, in low Reynolds number flow. The only low-aspect-ratio

studies performed, such as Dong et al. (2006) and Taira and Colonius (2009)

relate to the aerodynamics of plates undergoing prescribed rotations such as

those involved in insect flight as opposed to the non-linear motion involved in

autorotation.

The present research therefore aims to carry out a numerically investigation into

3D fixed axis autorotation about an axis perpendicular to the flow, as well as

the full 3D complex spinning autorotation about the centre of mass, which are

relevant to the aerodynamics of windborne debris.

2.4 Empirical Modelling of Windborne Debris

2.4.1 Early Numerical Models

Early work on windborne debris modelling began during the 1970s and was fo-

cused on the safety design of nuclear power plant structures from tornado borne

missile damage. At the time it was necessary to estimate the tornado borne

missile ejection velocities in order to assess the potential damage scenarios. Lee

(1974) presents one of the procedures for calculating this velocity using a sim-

plified three-dimensional tornado model to represent the wind. This was used

together with a set of equations for calculating missile motion from estimated

body forces and linear momentum conservation principles. Conservative orient-

ations and aerodynamic characteristics of the missile were taken into account

and the ejection velocities obtained were found to be highly dependant on the

missile characteristics. The three-dimensional equations of motion presented by

Lee (1974) allowed for only three translational degrees of freedom and did not

solve for changes in debris attitude. During this period, other compact type

debris such as roof gravel received considerable attention because of its estab-

lished role in urban window glass damage (Minor and Beason, 1976). Plate
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type debris however received little attention because of the complexity of the

combined autorotation and translation involved.

Most of these earlier approaches generally took a deterministic approach to the

problem of debris flight, employing three-degree-of-freedom (3DOF) particle tra-

jectory models that only allowed for translation within a vortex field (Lee, 1974).

However, considering the random behaviour observed in the displacements of ob-

jects transported by tornadoes and the high turbulence associated with tornado

winds, an alternative probabilistic approach to tornado missile analysis was sug-

gested by Twisdale et al. (1979). This approach was justified by the fact that for

missile transport near the ground surface, flow modification, wind turbulence,

and missile interactions all play a significant role. As a result of this, identical

objects having similar initial conditions were found to exhibit significantly dif-

ferent terminal conditions, suggesting that the variations can be assumed to

result from probabilistic mechanisms (Twisdale et al., 1979). In view of these

considerations and the computational requirements of a 6DOF model, Twisdale

et al. (1979) presented a modified 6DOF random missile orientation model in

which the instantaneous rigid body orientation of the missile was specified by

two randomly determined angles. The aerodynamic forces were computed using

available ballistic coefficients (ratio of drag force to gravity force) for spherical

particles and drag, lift, and side force coefficients for fully characterised debris

shapes. Although the results were found to be time step dependant due to the use

of a random orientation model, comparisons of a series of trajectories indicated

that, an update frequency of 1 Hz for the random orientation model provided

the transport variance expected of rigid bodies in three-dimensional tornado

flows. The results also suggest that ballistic transport (with 3DOF transla-

tions and no rotation) underestimates the velocity and range characteristics of

tornado-generated missiles (Twisdale et al., 1979). For the debris generation,

Twisdale et al. (1979) used a force exceedance criterion to initialize the missile

release where a restraint force was applied that must be exceeded before debris

is injected into the flow.

The main limitation of Twisdale’s approach is that full 3D aerodynamic char-

acteristics of expected debris shapes are still required and these may not be

available a-priori. An additional criticism arises from the fact that although

debris orientations are chaotic, they are not random, and therefore randomly
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selecting orientation from one time-step to the next can result in fictitious and

unrealistic rotations.

2.4.2 Analytical Modelling

2.4.2.1 The Tachikawa Equations

To address these challenges, Tachikawa (1983) carried out a pioneering study

on the trajectories of typhoon-generated missiles in which he investigated the

two-dimensional (2D) trajectories of square and rectangular flat plates in a low

turbulence (with a turbulence intensity of ≈ 1%) uniform horizontal wind flow.

Rather than assume a random debris orientation, Tachikawa’s model directly

computed translational and rotational velocities based on linear and angular

momentum conservation principles according to

m
d2x

dt2
=

1

2
ρA

[(
Uw − dx

dt

)2

+

(
dy

dt

)2](
CD cos β − CL sin β

)
, (2.10)

m
d2y

dt2
= mg − 1

2
ρA

[(
Uw − dx

dt

)2

+

(
dy

dt

)2](
CD sinβ + CL cos β

)
, (2.11)

I
d2θ

dt2
=

1

2
ρAl

[(
Uw − dx

dt

)2

+

(
dy

dt

)2]
CM , (2.12)

where x and y are the horizontal and vertical displacements of the plate’s centre

of mass, g is the acceleration due to gravity, m is the mass of the plate, ρ is

the air density, Uw = mean horizontal wind speed, I is the moment of inertia,

β = tan−1{(dydt )/(Uw − dx
dt )} is the effective angle of attack. By incorporating

dimensionless variables: x̄ = (gx/U2
w), ȳ = (gy/U2

w), t̄ = (gt/Uw), ū = (u/Uw),

and v̄ = (v/Uw), (where u = dx
dt and v = dy

dt ), Tachikawa (1983) presented a set

of non-dimensionalised 2D equations of motion for plate type debris,

d2x̄

dt̄2
= K

[
(1− ū)2 + v̄2

][
CD cos β − CL sinβ

]
, (2.13)

d2ȳ

dt̄2
= 1−K

[
(1− ū)2 + v̄2

][
CD sin β + CL cos β

]
, (2.14)

d2θ

dt̄2
= KFr2L∆

[
(1− ū)2 + v̄2

]
CM . (2.15)

Tachikawa’s non-dimensionalised formulation of the debris flight equations showed

that plate type debris flight was controlled by a number of dimensionless para-

meters; K(= ρU2
wA/2mg) - the ratio of aerodynamic force to gravity force,
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FrL(= Uw/
√
gL) - a Froude number and ∆(= mL2/I) - the dimensionless mass

moment of inertia parameter, and CD, CL, CM - the aerodynamic drag, lift and

moment coefficients,

CD =
FD

1
2ρU

2
wA

, CL =
FL

1
2ρU

2
wA

, CM =
M

1
2ρU

2
wAL

, (2.16)

where A(= Lb) is the plate reference area and FD, FL, M are the aerodynamic

drag force, lift force and pitching moment acting on the plate. Tachikawa’s model

relied on experimentally obtained flat plate aerodynamic coefficients. K, later

proposed as the Tachikawa number (Holmes et al., 2006a), has been suggested as

the main non-dimensional parameter controlling the trajectories of windborne

debris. For any given missile type (i.e. compact, plate/sheet, or rod type), a

higher value of K indicates a greater propensity of a missile to become air-borne

and travel further and faster under wind action. K may also be expressed either

as a function of Froude number, FrL, thickness ratio, τ = h/L, and the specific

gravity of the plate with respect to air, SG = ρm/ρa, or as a product of FrL and

a buoyancy parameter (φ = 0.5ρAL/m),

K =
ρU2

wA

2mg
=

1

2

(
ρm
ρa

)−1(
h

L

)−1(
U2
w

gL

)
=

Fr2L
τSG

= Fr2Lφ. (2.17)

Tachikawa (1983) validated the model against wind tunnel free flight tests on

different aspect ratio plates, revealing the existence of three modes of motion:

autorotation, pure translation and intermediate motion. Tachikawa’s experi-

ments revealed a relationship between a plate’s mode of flight, the aspect-ratio

and the initial angle of attack, as shown in Figure 2.15.

Results of these plate free fight tests were compared against results from the

numerical integration of Tachikawa’s 2D equations of debris flight. Modelled

plate trajectories were found to be distributed in a wide range and not always in

agreement with the free flight tests (Tachikawa, 1983). Tachikawa (1988) later

reported that based on a limited experimental trial, the debris flight equations

could sufficiently predict the upper and lower limits of the wide distribution of

trajectories observed as shown in Figure 2.16.

In his studies, Tachikawa only considered uniform flow fields and the 2D debris

flight of high aspect ratio plates. The influence of atmospheric turbulence, com-

plex launch conditions remained unknown (Tachikawa, 1988). The treatment
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Figure 2.15: Change of plate mode of motion with initial angle of attack (left)

and plate aspect ratio (right) observed in wind tunnel experiments by Tachikawa

(1983).

Tachikawa suggested for building wake effects was also focused mainly on ver-

tical adjustments of distribution ranges and ignored any influence building wake

effects might have on the lateral motion of debris. There are also some funda-

mental questions regarding the validity of the quasi-steady force model proposed

by Tachikawa and subsequently used in future studies. Aerodynamic forces used

in the analytical solution are estimated from experimentally obtained aerody-

namic coefficients of static plates and the time-averaged coefficients of autoro-

tating plates (Tachikawa, 1983). Tachikawa, assumed a decomposition of the

unsteady aerodynamic forces coefficients, C, into a mean (autorotational) com-

ponent, CR(ω̄), that is a function of the plate’s rotational speed and a fluctuating

component, Cf (αeff ), that is a function of the plate’s instantaneous angle of at-

tack, according to,

C = Cf (αeff ) + CR(ω̄). (2.18)
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Figure 2.16: Computed and experimental upper and lower limits of debris tra-

jectories (Tachikawa, 1983).

Tachikawa obtained expressions for CR(ω̄) from experimental measurements of

the time-averaged force and torque acting on a rotating plate, as a function

of the plate’s rotational speed. However, due to the lack of sufficient data on

the nature of the fluctuating component about the mean, Cf (αeff ), Tachikawa

assumed it to be equivalent to the fluctuations in the static coefficients according

to

Cf (αeff ) = Cs(αeff )− C̄s, (2.19)

where Cs(αeff ) are the instantaneous drag, lift and torque coefficients for a

static flat plate (see Figure 2.8), and C̄s is the α-average of Cs(αeff ) over one

revolution.

However, Tachikawa’s assumption expressed in (2.19) has no empirical basis

and has recently been found to be invalid (Martinez-Vazquez et al., 2010), with

much larger force fluctuations observed in autorotating plates compared to the

fluctuations in static coefficients.

2.4.2.2 2D Quasi-steady Debris Flight Models

More recently, a number of quasi-steady models of debris flight have been furthered,

the most notable of which are discussed in this Section.
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Figure 2.17: Experimental and computed plots of non-dimensionalised horizontal

plate velocity versus non-dimensionalised displacement for various Tachikawa

numbers (Holmes et al., 2006b).

Holmes et al. (2006b) presented a three degree of freedom (3DOF) model for the

2D flight of plate type debris, using a quasi-steady force model similar to Tachi-

kawa (1983). Magnus effects due to plate rotation on drag and pitching moment

were ignored and linear segmented models of experimentally obtained data of

normal force coefficients and centre of pressure motion presented in Hoerner

(1958) and ESDU (1970) were used to estimate the aerodynamic characterist-

ics of static plates. Non-dimensionalised predictions of horizontal plate velocity

against horizontal displacement are shown in Figure 2.17.

The model of Holmes et al. (2006b) does have some limitations. Firstly, debris

flight is artificially constrained to 3DOF whereas in reality it would occur with

6DOF. The model does not incorporate the effects of turbulence on plate mo-

tion, with a uniform wind speed applied throughout the simulations, under the

assumption that the time scale of flight would be too small for temporal tur-

bulence effects to have any impact. Spatial turbulence effects on aerodynamic

coefficients were also neglected assuming the length scales the plate interacts

with to be much larger than the plate and hence that the smooth flow wind

tunnel coefficients should be appropriate for full-scale trajectory calculations.

These assumptions, however, neglect the turbulent length and time scales that
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would be created as a result of complex launch conditions and the interaction of

the plate with its own wake.

Baker (2007) also presented a 2D numerical model for compact, rod and plate

type debris, allowing for three degrees of freedom. In his model, Baker incor-

porates autorotational lift (CLA) as well as moment (CMA) coefficients based on

Tachikawa (1983) and Iversen (1979),

CLA = kLA(ω̄/ω̄m), (2.20)

CMA = kMA(1− (ω̄/ω̄m))(ω̄/ω̄m), (2.21)

where ω̄ = ωL/U is the non-dimensionalised rotational velocity, ω̄m is the max-

imum numerical value of ω̄, taken to be 0.64, hence imposing an artificial upper

limit on debris rotational speed. This upper limit of ω̄ has been shown by Kordi

and Kopp (2009a) to be inconsistent with the debris flight behaviour. The con-

stants kLA and kMA in these equations are taken to have the values of 0.4 and

0.12, respectively.

Baker (2007) incorporated simulations of atmospheric turbulence by allowing

horizontal and vertical fluctuations in wind speed. He states that this approach

to turbulence modelling, which is similar to that presented for spheres in Holmes

(2004), assumes a spatial uniformity of the velocity field across the debris tra-

jectory and thus does not fully represent the velocity field experienced by the

debris (Baker, 2007). The implications of using a three dimensionally spatially

varied flow field as opposed to the two dimensional spatially uniform flow fields

assumed by debris research so far are unclear and need to be assessed. Baker

(2007) identified from his results that the major parameters that characterise

debris flight are Ω(=Mg/(0.5ρAU2)) which is an inverse of the Tachikawa para-

meter and ∆(=ML2/I) with plate rotational direction sensitive to initial angle

of attack as well (Figure 2.18).

Baker also proposes a set of theoretical equations relating dimensionless velocity

to dimensionless horizontal displacement which are of practical use in design. He

suggests that because of the sensitivity to initial boundary conditions, especially

in the case of sheet type debris, a broad range of trajectories would be of more

practical use than precise trajectory values. Baker recommends further research

into the influences of turbulence and initial conditions to debris flight. A number

of other authors such as Kordi and Kopp (2009b) and Scarabino and Giacopinelli
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Figure 2.18: Regions of positive and negative asymptotic rotations for sheet

debris in ΩΘ0 plane. White areas indicate clockwise rotation, grey areas anti-

clockwise rotation, and black areas regions of small rotation of variable sign

(Baker, 2007).

(2010) have more recently performed further investigations into the 2D quasi-

steady modelling of windborne debris.

2.4.2.3 3D Quasi-steady Debris Flight Models

While most of the numerical models of plate type debris flight presented so

far were 2D in nature, in reality plate debris orientations and translations are

three dimensional in nature. Richards et al. (2008) presented a full 6DOF debris

flight model based on linear and angular momentum conservation principles and

incorporating a 3D Euler rotational matrix to handle rotations. The complex

three dimensional motion is described using a set of translating and rotating

coordinate axes as shown in Figure 2.19.

The model makes use of experimentally measured aerodynamic body forces and

a centre of pressure position estimation model. Richards carried out experiments

on different aspect ratio plates and demonstrated that the normal force coeffi-

cients of plates, especially in the case of rectangular plates, are dependant on

both the angle of attack and the tilt angle. Richards et al. (2008) also presented

a more detailed treatment of aero-elastic effects, incorporating damping terms

and hysteresis effects due to dynamic stall and apparent camber. The trajectory

model results were found to match full scale flight tests of large roofing sheets,

with significant lateral motion observed as well as horizontal plate speeds very
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(a) (b) (c)

Figure 2.19: (a) The principal axes of a rectangular object, (b) the ground fixed

and translating axes and (c) the angles defining the orientation of the object

(Richards et al., 2008).

close to, or even exceeding, the wind speed are predicted. Figure 2.20 shows the

comparison between experimental and computational results.

2.4.3 Wind Tunnel and Full-Scale Testing

In order to validate these quasi-steady flight models and to gain more insights

into plate-type debris flight behaviour, a number of wind tunnel and and full-

scale debris flight tests were performed.

Lin et al. (2006) extended the early work by Holmes (2004) on compact debris

to plate type debris. Model experiments and full-scale tests on plates were

conducted and the plate’s mode of motion was observed, together with measure-

ments of plate trajectory, and velocities, all of which are affected by the wind

field, model characteristics, and initial support configuration. Results are non-

dimensionalised according to Tachikawa (1983) and simple empirical expressions

are derived to estimate the horizontal flight speed and flight distance of plate-

type debris (Lin et al., 2006). The wind-tunnel and full-scale test results were

found to be in reasonable agreement.

Experimental results presented indicate that for a certain debris shape, the debris

trajectory, T , is a function of at least nine parameters: wind speed, U , air

density, ρa, plate dimensions, b, L, and t, plate density, ρm, support dimension,

D, support position, s, (e.g., centre, corner or edge), and initial angle of attack,

αo.
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Figure 2.20: Top and side views of the motion of a 2:1 side ratio plate as captured

on video: (a) top and (c) side views, and computed: (b) top and (d) side views

(Richards et al., 2008).

Lin et al. (2006) identified the Tachikawa parameter, K (Holmes et al., 2006a),

the side ratio L/b, and the debris initial support configuration as the main influ-

ences on plate trajectories in the vertical direction, with K as the key influence

on horizontal trajectories. Empirical equations based on extensive experimental

data were presented for use in estimating the plate speed at a given flight dis-

tance,

ū ≈ 1− e−
√
1.8Kx̄, σū = 0.0814, (2.22)

and the horizontal travel distance covered by a plate after a given flight time,

Kx̄ ≈ 0.456(Kt̄)2 − 0.148(Kt̄)3 + 0.024(Kt̄)5, σKx̄ = 0.134, (2.23)

where σ are the standard deviations of the experimental data points from the fit-

expressions, K is the Tachikawa number, and x̄, ū are non-dimensionalised hori-

zontal displacement and horizontal plate speed, according to Tachikawa (1983).

It should be noted that these expressions were derived for approximately two-

dimensional flight trajectories in uniform wind flow conditions with little cross-

wind deflection being seen. The expressions are also derived for a narrow range

of data, with a flight time of up to 0.6 s (t̄ < 0.8) before debris it hit the ground,

depending on the initial height of debris and the vertical trajectory. In addition,

the effect of support position on the results is not altogether clear. Lin et al.

(2006) recommended further investigation of debris vertical trajectories which

are key for estimating landing location. These experimental expressions (Lin
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Figure 2.21: High-speed digital images of typical panel flight trajectories follow-

ing overturning failure (Visscher and Kopp, 2007).

et al., 2006) have been compared against results from 2D quasi-steady models

in Holmes et al. (2006b) with good agreement.

2.4.3.1 “Failure Model” Wind Tunnel Testing

Further experimental studies into windborne debris flight have recently been

performed, mainly focused on investigating the effects of atmospheric turbulence

and complex launch conditions on debris flight. Visscher and Kopp (2007), Kordi

et al. (2010) and Kordi and Kopp (2011) have recently undertaken pioneering

experimental work involving a destructive wind tunnel modelling approach that

more realistically represents the unsteady force coefficients on the plate which

change dramatically as the panel lifts off of the roof, leaving a hole beneath. The

experiments also included a simulated turbulent atmospheric boundary layer.

This work has provided some insights into the influence of initial conditions (i.e:

the fixing conditions and complex flow environment around the plate initially

mounted on a roof) and flow turbulence to the mechanics of plate flight.

A 1:20 scale, aero-elastic failure model of a 1.2m × 2.4m roof sheathing panel on a
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scaled house model was used in a scaled, open country, turbulent boundary layer.

The panel is initially held to the model house with electromagnets which apply

a scaled restraining forces. The initial failure mechanism and the trajectory

of the panel in flight were captured with high-speed digital video, Figure 2.21

contains sample images (Visscher and Kopp, 2007). For nominally similar initial

conditions, Visscher and Kopp (2007) observed different modes of flight including

translational, autorotational and intermediate modes. For the particular model

arrangement examined, the translational mode was observed 75% of the time,

while the autorotational mode was observed 25% of the time (Visscher and

Kopp, 2007). Translational trajectories were found to have a short range with

less absolute scatter, resulting in less dispersion in the landing location, while

autorotational trajectories were far more variable in landing location and tended

to display greater ranges as shown in Figure 2.22. An initial overturning failure

was observed for every test although the results were noted to be dependant on

hold down strength, panel mass and size as well as the angle of attack of the

wind and the house geometry.

Visscher and Kopp (2007) suggest that the effects of variability of the flow field

on the resulting aero-dynamic normal forces play a critical role in determining

the flight mode and this is probably most significant during the initial over-

turning and the first few moments thereafter. They therefore conclude that the

sensitivity to particular flight conditions appears to be greater even than indic-

ated by Baker (2007) when actual panel failures are considered. Visscher and

Kopp (2007) also found the speed at which sheathing panels fly to be a fraction

of the mean wind speed and was calculated as 0.60 with standard deviation of

0.08 for the translational mode, and 0.70 with standard deviation of 0.12 for

the autorotational mode for the particular panel, wind angle, roof location and

hold-down force examined. These failure wind speed distributions were found to

fit a Gumbel distribution (Visscher and Kopp, 2007) as shown in Figure 2.23.

Kordi et al. (2010) and then Kordi and Kopp (2011) applied the same failure

model approach to investigate the effect of varying wind direction, debris prop-

erties and the surrounding neighbourhood structures. They observed that with

oblique wind approach angles relative to the roof ridge, complex 3D spinning was

the most dominant mode of flight and that the mode of flight was dependant on

the approaching wind direction. Comparisons with the theoretical asymptotic
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Figure 2.22: Scatter plot of equivalent full scale panel flight distances. The

graph origin is located at the center of the house with the panel being tested

located at approximately 3.7m (12 ft) to the right, and 0.6m (2 ft) downstream

in equivalent full scale dimensions (Visscher and Kopp, 2007).

limit from analytical models revealed conflicting results for different debris types

with shingles flying close to the theoretical asymptotic limit speed while tiles did

not.

2.5 Debris Damage and Risk Modelling

Subsequent to debris generation, flight and impact onto a target building, there

is a need to estimate the potential damage on the target building due to debris

impact. This is the central application of information on impact location and

impact velocity obtained from debris flight models.

Unanwa et al. (2000) presented a debris damage model using the concept of wind

damage bands which employ an objective weighting technique driven by building

component cost factors, component fragilities, and location parameters to obtain
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Figure 2.23: Distribution of 10-min mean wind tunnel speeds for the observed

failures with units in equivalent full scale (Visscher and Kopp, 2007).

upper and lower bounds to building damage thresholds. These wind damage

bands formed the basis for the proposed methods of wind damage prediction

of individual buildings and groups of buildings, wind damage mitigation, and

emergency management planning.

Wills et al. (2002) later presented a model definitively linking the aerodynamics

of debris particles with the damage caused when flying debris strikes a building

or structure. The model defined a critical wind speed at which different types of

debris became airborne based on the fixing conditions and weight for compact

debris, mass per unit area for plate debris and mass per unit length for rod

debris. The kinetic energy of the debris was then expressed as a fraction of the

notional kinetic energy which is the kinetic energy it would posses if it were

flying at the velocity of the wind. A debris damage function based on estimated

impact kinetic energy was then presented as,

D =
1

16
ρm{(CFρa)/(ρmIg)}3J2U8, (2.24)

where ρm is the material density, ρa is the air density, CFρa is a generalized

body force coefficient, I is the ratio of fixing strength to material weight, g is

the gravitational acceleration, J is the fraction of the wind speed at which the

object flies before impact, and U is the mean wind speed. Expression (2.24)

assumed the damage sustained by the structure (D) to be proportional to the

missile impact kinetic energy.

The damage model presented by Wills et al. (2002), characterizes debris flight
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and damage mainly by density, size and shape with many aspects of the debris

flight and damage being simplified in order to make useful prediction. As a result

it might not give accurate predictions for non-compact debris types. Full scale

observations of flying debris damage in real storm conditions were recommended

in order to validate the model.

A study by Vickery et al. (2003) on hurricane pressure cycling following missile

impact for residential buildings further provided a link between realistic storm

wind speed simulations, debris generation, debris flight and impact on buildings

or the ground. As part of the model, simulated hurricane data with changing

wind speed and direction was used to generate debris from the model buildings,

track the debris as it flew through the air, and record its final impact position

and velocity. The debris was generated using a load resistant approach, where

once the calculated wind load at a time step exceeded the resistance of a com-

ponent, the component was released into the wind field from the structure and

becomes a wind-borne missile. The trajectory module used tracks the movement

in a turbulent wind field by numerically solving a set of equations of motion for

a rigid body. The process continues until the trajectory intersects with a wall

or roof surface of a structure or the ground, at which point the module records

such variables as impact time, location, impact speed, incident angle, missile ori-

entation and mass, for subsequent impact and pressure cycle counting analysis.

Figure 2.24 illustrates the overall debris modelling framework presented by this

study.

The work presented by Vickery et al. (2003) represented a complete debris mod-

elling cycle with a contribution through more detailed storm simulation and a

more elaborate debris generation and damage modelling approach. However, the

model neglects a number of factors affecting debris flight such as the sensitivity

to initial orientation, complex launch conditions and atmospheric turbulence.

Due to the broad range of factors influencing debris flight, its behaviour can

be inherently chaotic, as a result, stochastic approaches to the problem have

emerged. Recently, Lin and Vanmarcke (2008, 2010) have proposed a probabil-

istic model, based on the application of Poisson random measure theory to the

prediction of windborne debris damage in residential areas and the estimation

of economic losses due to severe storms. The model uses four probabilistic dis-

tributions for each type of debris generated from each building in an area: (i)
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Figure 2.24: Wind borne debris modelling methodology (Vickery et al., 2003).

the mean number of debris objects generated, λ, (ii) the probability distribu-

tion of debris landing positions on the horizontal plan, µ, (iii) the conditional

probability of debris impacting a vulnerable building component, p, and (iv) the

conditional probability distribution of horizontal impact momentum, φ (Lin and

Vanmarcke, 2010). The two probabilistic quantities, µ and φ, are estimated from

experimental and numerical simulations based on previous work by Tachikawa

(1983), Lin et al. (2006), Holmes et al. (2006b) and Lin et al. (2007).

However, these models are not without limitations, the most notable being their

two-dimensional nature. Lin and Vanmarcke (2010) admit that debris traject-

ories by their nature, are much less predictable, due to other effects that are not

easily parameterised, such as the irregularity of actual debris shapes, initial sup-

port conditions, and turbulence in hurricane winds. Lin and Vanmarcke (2010)

therefore recommend that in order to estimate the probability distributions of

actual debris trajectory parameters, larger data sets obtainable from Monte-

Carlo type numerical simulations, model-scale and full-scale experiments, and

storm observations and post-damage surveys are needed.

The Monte-Carlo approach has itself been separately demonstrated in determin-

ing the debris risk to the public due to the columbia breakup during reentry (Lin

et al., 2003). In this approach, key parameters are randomized over repeated tri-



CHAPTER 2. LITERATURE REVIEW 46

als while keeping the trajectory model itself deterministic. The trajectory model

used may be a detailed CFD model as used in the Monte-Carlo simulation of

shuttle ascent foam debris modelling by Murman et al. (2005). Other Monte-

Carlo simulations have however used simplified analytical/ballistic models for

estimating cylindrical mine motion in water (Mann et al., 2007) or modelling

the risk to ground based populations of aerospace debris (Lin et al., 2003).

Although the present research has not been directly concerned with the probab-

ilistic modelling of windborne debris flight, the CFD-RBD model presented can

be used as a deterministic trajectory model for the Monte-Carlo simulation of

windborne debris flight.

2.6 CFD Modelling of Debris

Relatively little work has been carried out in the area of Computational Fluid

Dynamics (CFD) based modelling of debris flight. Most of the relevant CFD

modelling work so far done has been concerned with 2D simulations of plates

falling freely under calm conditions (see for example Andersen et al. (2005) and

Jin and Xu (2008)). Similarly, work on the CFD modelling of plate autorotation

(previously discussed in section 2.3.3 of this report) has been restricted to 2D

autorotation of high-aspect-ratio plates which, as earlier explained, is qualitat-

ively different from the low-aspect-ratio plate behaviour. Some work has been

performed on the CFD simulation of low aspect ratio plate translations and ro-

tations but this has been mainly concerned with the prescribed motion of wing

shaped plates (Wang, 2005; Dong et al., 2006; Taira and Colonius, 2009) with

the exception of Murman et al. (2005).

Murman et al. (2005) present an automated CFD process for determining the

aerodynamic characteristics of debris shedding from a Space Shuttle Launch

Vehicle (SSLV) during ascent. This work was initiated by the Colombia Accident

Investigation Board (CAIB) in the after-math of the Columbia Shuttle accident,

with the aim of determining a credible flight path and impact velocity for a piece

of foam debris from a SSLV.

One of the recommendations of the CAIB for Return-To-Flight (RTF) of the

shuttle fleet was an analysis of the complete debris environment experienced by

a SSLV during ascent, including a categorization of all possible debris sources,

their probable geometric and aerodynamic characteristics, and their potential for
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Figure 2.25: Debris analysis feedback loop. Damage from potential debris

sources is assessed, and those which are not tolerable are eliminated. This cycle

then continues until a safe tolerance is achieved (Murman et al., 2005)

damage (Murman et al., 2005). These aerodynamic characteristics were required

for the debris transport analysis, Figure 2.25, to predict flight path, impact

velocity and angle, and provide a statistical distribution to support risk analyses

where appropriate. According to Murman et al. (2005), existing debris transport

analysis codes simplified many aspects of the problem in order to provide quick

and efficient engineering analysis of debris flight. Firstly, it was assumed that the

debris had no effect on the flow field and, secondly, these ballistic models did not

account for any potential rotation of the body or for dispersion of trajectories

about the zero-lift trajectory. However, in reality the debris trajectories are

highly non-linear, involving uncontrolled three-axis rotations (Murman et al.,

2005) and the debris was also found to have significant effects on the flow field

(Gomez et al., 2004). Traditional aerodynamic modelling techniques developed

for controlled manoeuvres of aerodynamically-trim aircraft are therefore not

sufficient.

While free-flight ballistic range testing can provide the trajectory data needed

for model development, this type of testing is time-consuming, costly, and lim-

ited in the types of shapes and conditions that can be efficiently tested (Murman

et al., 2005). Unsteady 6DOF CFD methods which provide the same trajectory

data as free-flight testing without these limitations were therefore found more

suitable. Depending on the available computing power, CFD methods can effi-

ciently provide hundreds of trajectories in a relatively short period of time for

an arbitrary geometry and the use of numerical simulations frees the ballistic
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testing to concentrate on a critical subset of the requirements, such as structural

limit testing or reference validation cases (Murman et al., 2005).

In light of this, Gomez et al. (2004) and Murman et al. (2005) presented a

strategy involving an unsteady CFD simulation fully coupled with a 6DOF solver

based on an implicit Cartesian moving-boundary solver described in Murman

et al. (2003a,b). The CFD code was used to solve the Navier-Stokes equations

using a finite difference formulation in body-fitted curvilinear meshes and the

Spalart-Allmaras turbulence model. Added enhancements to the CFD code in-

cluded: on-the-fly generation of off-body grid systems, MPI enabled scalable

parallel computing, automatic load balancing, aerodynamic force and moment

computations, general 6DOF model, rigid-body relative motion between an ar-

bitrary number of bodies, domain connectivity, solution error estimation, and

grid adaptation in response to body motion (Gomez et al., 2004). This allowed

for a significantly more accurate determination of the aerodynamic forced and

moments acting on the debris using the CFD code while the 6DOF motion solver

computed the debris movement in response to these forces.

This level of automation of the CFD/6DOF simulations allowed for a Monte-

Carlo based simulation approach to the characterisation of debris trajectories.

This was necessary in order to achieve a stochastic description of debris traject-

ories which were found to be sensitive to Mach number, altitude, geometry and

initial conditions. Figure 2.26 presented by (Murman et al., 2005) illustrates the

Monte Carlo 6-DOF trajectory analysis process. To achieve this Monte Carlo

6DOF/CFD simulation approach, the geometry was held fixed while the flight

conditions, initial orientation and initial rotation rate of the debris were varied,

with multiple trajectories being run in parallel.

Six different debris shapes and sizes were simulated based on the several possible

foam-shedding scenarios with various initial velocity and rotation conditions ap-

plied to each piece of debris (Gomez et al., 2004). The debris path was found

to be sensitive to initial conditions, however the axial velocity of the debris rel-

ative to the vehicle was nearly independent of the debris initial conditions and

depended primarily on the mass of the debris (Figure 2.27). The 6-DOF calcu-

lations also showed that debris of the dimensions captured on film would strike

the wing with a relative velocity of nearly 950 feet/sec. In large part due to the

CFD results, the CAIB determined that the most likely debris size and this was
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Figure 2.26: Process diagram for Monte Carlo 6-DOF trajectory analysis. Green

boxes are process inputs which are given a range of inputs, orange boxes are in-

ternal modules, and the purple box is output fed to the debris transport software

(Murman et al., 2005).

used in foam firing tests into actual flight RCC panels. The study also concluded

that the debris does have a significant influence on the flow field around it, with

calculations showing a lowering in leading edge pressure of approximately 0.4 psi

just before debris impact.

Experimental free-flight tests were conducted to validate the numerical predic-

tions and the results are presented in Brown et al. (2006). These free-flight

tests were carried out in the NASA Ames Gun Development Facility (GDF)

for unconstrained, isolated debris pieces with representative shapes and flight

conditions (Murman et al., 2005).

Polyethylene frustums - nominally 3.56 cm in diameter, 0.71 cm long, and

4 grams in mass - were launched into 1 atm air at a Mach number of approxim-

ately 2.8. Their rapid-decelerating, often highly-lifting, and sometimes tumbling

6DOF trajectories were recorded over a distance of 12 feet by arrays of top and

side view high speed cameras (Murman et al., 2005; Brown et al., 2006). In

addition, the response of the debris to perturbation was obtained by “tripping”

the debris projectile before it entered the test section, thereby changing its ori-

entation and providing a high initial rotation rate.

Brown et al. (2006) and Murman et al. (2005) conclude from the results that

under conditions dynamically similar to SSLV insulating foam debris flight, sym-

metric frustums oscillate about the bluff-body, static-stability orientation and

do not tumble. The perturbation has the effect of inducing larger amplitude
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Figure 2.27: Axial velocities for debris pieces with volume of 704 cubic inches

and different foam densities. Dotted and dashed line indicate different initial

condition sets (Gomez et al., 2004).

damped oscillations about the bluff-body orientation but still does not tumble.

Comparison between the measured axial translation distance and the model

pitch and yaw variations and the CFD/6DOF computations showed excellent

agreement and is shown in Figure 2.28 for symmetrical unperturbed debris and

Figure 2.29 for symmetrical but perturbed (or tripped) debris.

It was noted that the dynamical stability observed for the idealized symmet-

rical frustums is due to the low rotational inertia and idealized aerodynamic and

inertial symmetry, although actual debris would not exhibit these properties res-

ulting in significant tumbling motion (Murman et al., 2005). While the average

drag for the oscillating trajectory of an idealized frustum and the tumbling tra-

jectory of a highly asymmetric debris piece are similar, this is not the case when

considering the cross-range behaviour. Simulations of actual foam divots which

were asymmetric both aerodynamically and inertially (in terms of geometry and

mass distribution) showed trajectories developing significant cross-range (lateral

dispersion) as the debris rotates about all three body axes. Figure 2.30 illus-

trates the computed cross-range of different foam debris geometric and inertial

asymmetries.

Rather than model the aerodynamic properties, a cross-range envelope is de-

veloped from the results of the Monte Carlo process and superimposed on the
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Figure 2.28: Comparison of free-flight and computed translation and rotation

variations for un-tripped frustum trajectory obtained in the NASA Ames GDF.

Initial Mach number is 2.74. Uncertainty approximated from visual inspection

of reduced data. (D/t = 5, θ = 40◦) (Gomez et al., 2004; Murman et al., 2005).

Figure 2.29: Comparison of free-flight and computed translation and rotation

variations for initially perturbed frustum trajectory obtained in the NASA Ames

GDF. Initial Mach number is 2.56. Uncertainty approximated from visual in-

spection of reduced data. (D/t = 5, θ = 40◦) (Gomez et al., 2004; Murman

et al., 2005).
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Figure 2.30: Computed cross-range behaviour from Monte Carlo 6-DOF traject-

ories for foam debris shapes at a release Mach number of 2.5 (Murman et al.,

2005).

zero-lift trajectory as shown in Figure 2.31 (Murman et al., 2005). The cross-

range envelope was then used to determine the possible impact area while the

drag (zero-lift) model determines the impact velocity. Further, Murman et al.

(2005) suggests that a complete statistical distribution of cross-range behaviour

can be provided so that a probability function can be queried for any point

within the envelope.

The process focused on modelling the resulting behaviour of Monte-Carlo 6DOF

simulations, rather than developing highly accurate aerodynamic models, due

to the short term nature of the project and in the interest of efficiency of the

process. More proximate aerodynamic models are recommended as a longer-

term research topic which can build on the model presented (Murman et al.,

2005).

CFD-Rigid Body Dynamics (RBD) coupling approaches have also been widely

used in military applications (Costello et al., 2007) to generate the aerodynamic

coefficients needed for the simulation of rigid projectile flight. During a CFD-

RBD simulation, aerodynamic forces and moments and the full rigid body state
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Figure 2.31: Cross-range envelope superimposed upon the computed ballistic

zero-lift trajectory (Murman et al., 2005).

vector of the projectile are generated at each time step in the simulation. A 3D

unsteady Reynolds-Averaged Navier-Stokes (RANS) solver is used for computa-

tion of turbulent flows (Costello et al., 2007).

The coupled CFD-RBD simulations were used to provide a full solution of the

aerodynamic forces and moments along with the full state of the rigid projectile

at every time step in the solution. This data was then used for the estimation of

projectile aerodynamic coefficients which are required for more rapid trajectory

modelling. Through this approach, Costello et al. (2007) attempted to exploit

the benefits of CFD-RBD simulations while avoiding the high computational

time required in the application of accurate CFD-RBD to generate the thousands

of ‘simulations required for dynamic analysis.

These different studies demonstrate the potential for the application of coupled

CFD-RBD motion to wind borne debris flight simulations.

2.7 Concluding Remarks

A review of existing literature on the aerodynamics of static and rotating flat

plates has been presented. The availability of extensive measurements on flat

plates have allowed a complete understanding of the aerodynamics of static 2D

and 3D flat plates. This quantitative information on the aerodynamic character-

istics of the static plates and the qualitative knowledge of the flow structures in

the wake of the flow would be useful in the preliminary validation of numerical
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models for debris flight.

In comparison, there remain a number of open questions regarding the phenom-

ena of plate autorotation and the limitations of autorotational theory. The origin

of the aerodynamic damping that allows stable autorotation to occur is hitherto

unclear and there is a need to investigate this phenomena. In addition, although

wind-borne debris has been observed to exhibit a complex three-dimensional

(3D) spinning modes of autorotation, most numerical models and experimental

studies have been pre-occupied with a fixed-axis (2D) autorotation and there is

a need to extend these models to full 3D autorotation. CFD-RBD simulations

which have been demonstrated as useful tools for the investigation of low aspect

ratio winged flight and high aspect ratio autorotation can play an important

role in the further development of low aspect ratio autorotational theory and be

extended to full 3D autorotation.

Although number of quasi-steady analytical models of windborne debris flight

have been presented, these models remain largely limited to 2D debris flight in

uniform flows and simple debris shapes for which a full aerodynamic charac-

terisation is available. The quasi-steady forces used by these analytical models

are based on a decomposition into static and autorotational components which

needs to be adequately verified.

Further more, debris trajectories are sensitive to effects that are not easily para-

meterised, such as atmospheric boundary layer turbulence and the complex sup-

port and launch conditions, as demonstrated by the results of recent failure

model experiments. Existing analytical models are however unable to account

for these effects. The reliable and accurate prediction of debris risk and dam-

age calls for a more robust approach to the numerical simulation of plate type

windborne debris which does not require extensive a-priori knowledge of the

aerodynamic behaviour of the debris and easily allows for the incorporation of

complex launch conditions.

Recent applications of CFD-RBD simulations to the debris transport analysis of

shuttle ascent foam debris have demonstrated the potential that these methods

hold as valuable tools for understanding the behaviour of plate-type windborne

debris. This has been the major inspiration for this research whose goal is to

present a more complete numerical model which would allow for the Monte-carlo

simulation of plate type windborne debris.



Chapter 3

Computational Wind

Engineering (CWE)

This chapter introduces Computational Wind Engineering (CWE), which is the

application of Computational Fluid Dynamics (CFD) to wind engineering prob-

lems. The chapter begins with a discussion of the wind in the atmospheric

boundary layer, followed by an introduction to CFD, turbulence modelling and

developments in the modelling of fluid flow around moving wall boundaries.

3.1 The Wind

The wind is generally defined as the bulk motion of air in the earth’s atmosphere.

This motion is initiated a considerable distance above the Earth’s surface, bey-

ond the influence of surface friction, in the free atmosphere. Here, the air is

driven by large scale synoptic pressure gradients arising from differential heat-

ing of the earth’s surface and the atmosphere, and subsequently influenced by

Coriolis forces due to the earth’s rotation. As a result of the geostrophic balance

between Coriolis and pressure forces, the resulting geostrophic wind direction is

parallel to the isobars as shown in Figure 3.1. This perfect geostrophic balance

rarely occurs in nature due to the presence of other forces such as ground friction

as well as the fact that the pressure isobars were never perfectly straight. It is

however, still a valuable approximation.

Closer to the earth’s surface, the wind is affected by the drag imparted by the

earth’s surface creating an Atmospheric Boundary Layer (ABL) in which flow

is no longer parallel to the isobars. Burton et al. (2001) highlight the principal

effects governing the properties of the ABL as; the strength of the geostrophic

wind, the surface roughness, Coriolis effects due to the earth’s rotation, and

thermal effects.

The influence of thermal effects is classified into three categories; stable, unstable

and neutral stratification. A neutrally stratified ABL often occurs in strong

winds, when turbulence caused by ground roughness causes sufficient mixing of

55
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Figure 3.1: The geostrophic balance between pressure and coriolis forces in the

free atmosphere.

the boundary layer to disrupt any thermal effects. As the air rises and cools

adiabatically, it remains in thermal equilibrium with its surroundings and leads

to what is known as a Neutral Atmospheric Boundary Layer (Burton et al.,

2001). For wind engineering applications, where extreme wind storm conditions

are of interest, neutral stability is the more relevant scenario to consider.

Sutton (1953) described the neutral ABL as composed of two regions: a surface

layer 50-100m deep with constant shear stress and a region above this extend-

ing to a height of 500-1000m where the shear stress varies with height. The

surface layer region is characterised by approximately constant shear stress in

the vertical direction and is not affected by the earth’s rotation. As a result,

the structure of the wind in this layer is determined predominantly by surface

friction and vertical temperature gradients (Kaimal and Finnigan, 1994).

For surfaces covered with a large number of discrete bluff obstacles (such as in

urban and forest canopies), a roughness sub-layer is observed with a vertical

extent of up to several tens of metres, which is characterized by inhomogeneous

regions of reduced mean velocity and enhanced levels of turbulence (Macdonald,

2000).

Above the surface layer region, shear stress becomes variable and the wind struc-

ture is determined by surface friction, temperature gradients and the earth’s ro-

tation. This intermediate region between the surface layer and the geostrophic

wind can be described as an Ekman layer in which a balance exists between

pressure forces, Coriolis forces and surface friction (Tennekes and Lumley, 1997).
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Figure 3.2: The different regions of the atmospheric boundary layer.

Figure 3.2 illustrates the different layer of the Neutral ABL.

Winds are typically classified by their spatial scale, speed, the types of forces

that cause them, the geographic regions in which they occur, and their effect.

Wind speeds are usually obtained as averages over a ten minute period. These

measured wind speeds can be thought of as consisting of a mean wind speed de-

termined by annual, seasonal, synoptic and diurnal effects which vary on a time

scale of one to several hours, with superimposed turbulent effects which have

a zero mean when averaged over the ten minute window (Burton et al., 2001).

Figure 3.3 illustrates this mean wind speed composition, where Ū is the mean

annual wind speed at a given location, while Table 3.1 compiled from Burton

et al. (2001), summarizes the different wind speed variations, their associated

time scales and causes, as well as their common mathematical representations.

The temporal and spatial fluctuations of the wind are, for practical and model-

ling applications, its most important characteristics.

3.1.1 The ABL Velocity Profile

In the neutral equilibrium atmospheric boundary layer, the mean horizontal

wind speed in the surface layer has been observed to follow a log-law profile
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Figure 3.3: Mean and turbulent wind speed fluctuations.

described in ESDU (1985) as,

Ū(z)

u∗
=

1

κ

[
ln

(
z − d

zo

)
+ 34.5

fz

u∗

]
, (3.1)

with

f = 2Ω sin(|λ|), (3.2)

where κ is the von Karman constant, zo is the aerodynamic roughness length,

d is the zero-plane displacement height, f is the Coriolis parameter defined for

temperate regions in (3.2), Ω is the angular velocity of the earth’s rotation,

and λ is the latitude. From a mean wind speed measurement, Ūref , taken at a

reference height, zref , the friction velocity, u∗, is computed according to

u∗

Ūref
=

κ[
ln
(
(zref−d)

zo

)
+ 34.5fz

u∗

] . (3.3)

The aerodynamic roughness length, zo, is a measure of surface roughness and

is proportional to the average height of upstream roughness elements, while the

zero-plane displacement height, d, is the height at which wind speed becomes

zero when the logarithmic wind profile Ū(z) is extrapolated. Together, zo and d

characterise the surface roughness and Table 3.2 shows approximate values for

these parameters from ESDU (1985).
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Table 3.1: Wind speed variation components and their corresponding time scales

(Burton et al., 2001).

Type of Variability Characteristics Causes Modelling

Long Term Variations Variation in mean

annual speed from

year to year.

El’Nino, Climate

change, etc.

Not well understood.

Annual and Seasonal

variations

Annual mean wind

speed variations

within the year.

Random, Tilt in

Earth’s rotation

axis, seasonal

climates.

Weibull, Rayleigh,

“bi-Weibull”

distributions.

Synoptic Variations ≈ 4 day frequency. Large scale

weather fronts,

Coriolis forces.

Numerical Weather

Prediction Models.

Diurnal Variations ≈ 24 hr frequency. Local thermal

effects

Numerical Weather

Prediction Models.

Turbulence Less than 10 min

frequency.

Gaussian nature.

Friction with

Earth’s surface,

Thermal effects.

Complex deterministic

equations,

Statistical descriptors.

Table 3.2: Typical Surface Roughness Lengths, zo (ESDU, 1985).

Type of Terrain zo (m) d (m)

Cities, forests 0.7 15 - 25

Suburbs, wooded countryside 0.3 5 - 10

Villages, countryside with trees and hedges 0.1 0 - 2

Open farmland, few trees and buildings 0.03 0

Flat grassy plains 0.01 0

Flat desert, rough sea 0.001 0
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The log-law profile is valid throughout the surface layer up to the free atmo-

sphere. From purely theoretical considerations, Tennekes and Lumley (1997)

showed that the height of the boundary layer, h may be estimated using

h = C
u∗

f
, (3.4)

where C is an empirical constant, and a value of C = 0.25 has been found to

yield boundary layer heights close to day time conditions (Kaimal and Finnigan,

1994). Depending on the nature of the surface forcing, the depth of the ABL

may vary from 0.1 - 3km (Stull, 1988).

3.2 Turbulence

In wind engineering, turbulence generally refers to fluctuations in wind speed on

a relatively short time-scale, typically less than about 10 minutes. Wilcox (1994)

presents a definition proposed by Taylor and Von Karman describing turbulence

as

an irregular motion which in general makes its appearance in fluids,

gaseous or liquid, when they flow past solid surfaces or even when

neighbouring streams of the same fluid flow past or over one another.

According to Burton et al. (2001), wind turbulence in particular is generated

mainly from two often interconnected causes friction effects between the wind

and the earth’s surface including topographical features, buildings and veget-

ation, and thermal effects which can cause air masses to move vertically as a

result of variations of temperature and hence of the density of the air.

Tennekes and Lumley (1997) list some of the characteristics of turbulent flow as:

I. Irregularity. Turbulent flow is irregular and chaotic. The flow consists of

a spectrum of different length scales (eddy sizes) where the largest eddies

are of the order of the flow geometry and characterize the production range

and the smallest eddies characterize the dissipation range where energy

is extracted from the flow by viscous forces (stresses) and dissipated as

internal energy. Even though turbulence is chaotic, it is deterministic and

is described by the Navier-Stokes equations.

II. Diffusivity. Turbulent flows exhibit increased diffusivity. The turbulence

increases the exchange of momentum in the fluid and thereby reduces or
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delays separation at bluff bodies. Increased diffusivity also increases the

resistance (wall friction) in internal flows such as channels and pipes.

III. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds

number. For example, the transition to turbulent flow in pipes occurs at

ReD ≈ 2300, and in boundary layers at Rex ≈ 105, where the subscripts, x

and D refer to the characteristic length scale of the flow.

IV. Three-Dimensional. Turbulent flow is always three-dimensional, how-

ever in some cases, when the equations are time averaged the flow can be

treated as two-dimensional.

V. Dissipation. Turbulent flow is dissipative, which means that kinetic en-

ergy in the small (dissipative) eddies is transformed into internal energy.

The small eddies receive the kinetic energy from slightly larger eddies. The

slightly larger eddies receive the energy from even larger eddies and so on.

The largest eddies extract their energy from the mean flow. This process of

transferred energy from the largest turbulent scales (eddies) to the smallest

is called the Energy Cascade process.

VI. Continuum. Even though we have small turbulent scales in the flow they

are much larger than the molecular scale and we can treat the flow as a

continuum.

Since turbulence is in nature a very complex phenomena, the conscientious en-

gineer will strive to use as conceptually simple an approach as possible to achieve

his ends (Wilcox, 1994) while at the same time providing a satisfactory represent-

ation of turbulence and its effects. Historically, there are two main approaches

to turbulence modelling: stochastic and deterministic methods. Stochastic ap-

proaches treat turbulence as a random process and make use of statistical de-

scriptions to represent its effects. In reality however, turbulence is deterministic

and can be modelled using the Navier-Stokes equations and a number of CFD

based modelling approaches for the simulation of turbulence flows exist.

3.2.1 Turbulence Scales

As previously mentioned, turbulent flow is characterized by irregularity, exhib-

iting a wide range of scales in the flow. The larger production scales are of the
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order of the flow geometry with length scale ℓ and velocity scale U . Produc-

tion scales extract kinetic energy from the mean flow. These disturbances which

are initially laminar, organized and well defined are turned into chaotic three-

dimensional random fluctuations through interactions with the main flow that

are defined by the idealized phenomena of: vortex stretching and vortex tilting

(Davidson, 2003). These interactions will on average create smaller and smaller

scales with the kinetic energy of the larger scales lost to slightly smaller scales

with which they interact. Most of the energy that goes into the large scales

(approximately 90% of it) is finally dissipated at the smallest (dissipative) scales

(Davidson, 2003).

While the large scales which interact with the main flow contain detailed inform-

ation about the mechanism of energy production, if the number of steps in the

cascade is sufficiently large, we could presume that the small scales would know

only how much energy they were receiving (Lumley et al., 1996). The smaller

scales might then be assumed to be isotropic having lost all information about

the anisotropy of the energy containing scales. This state of isotropy would

however exist only at infinite Reynolds number flows with infinitely many steps

in the cascade. According to Lumley et al. (1996), at any finite Reynolds num-

ber, the small scales would be expected to be less anisotropic than the energy

containing scales, but still somewhat anisotropic.

For high Reynolds numbers, the dissipation scales will only be aware of the

amount of energy they receive which is then dissipated into internal energy. The

dissipation rate is denoted by ε which is energy per unit time and unit mass.

In equilibrium conditions, we could assume the smallest scales where dissipation

occurs to be dependant on only the dissipation rate, ε, and kinematic viscosity,

ν.

This assumption gives us the Kolmogorov scales: the velocity scale, v, the length

scale, η, and the time scale, τ , that define the dissipative range and using di-

mensional analysis, can be expressed in terms of viscosity and dissipation as

v = (νε)1/4, η =

(
ν3

ε

)1/4

, τ =

(
ν

ε

)1/2

. (3.5)
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Figure 3.4: The Energy spectrum of turbulence showing the energy density per

unit wave number, E(κ), against wave number, κ. Region I is the range for the

large, energy containing eddies, region II is the inertial sub-range and region III

corresponds to the range for small isotropic scales (Davidson, 2003).

3.2.2 Energy Spectrum

The energy spectrum of turbulence is a representation of kinetic energy distribu-

tion across the various eddies present in the flow as a function of wave number κ.

Turbulence length scales which are a measure of eddy sizes present in the flow

can be expressed in terms of a wave number which is proportional to the inverse

of an eddy’s radius r, i.e κ ∝ 1/r. In wave number space, the energy contrib-

uted by eddies with wave number between κ and κ+ dκ to the turbulent kinetic

energy, k, is expressed by E(κ)dκ. The total turbulent kinetic energy over the

whole wave number space is then given as;

k =

∫ ∞

0
E(κ)dκ, (3.6)

where turbulent kinetic energy refers to the sum of the kinetic energy of the

three fluctuating velocity components. The resulting energy spectrum (Figure

3.4) is subdivided into the production range, I, the inertial sub-range, II, and

the dissipation range, III.

3.2.3 Stochastic Descriptions of Turbulence

In the practice of wind engineering, statistical descriptors of turbulence are tradi-

tionally used in the modelling of the atmospheric boundary layer. These include

simple turbulence intensities and gust factors as well as detailed descriptions of
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the way in which the three components of turbulence vary in space and time

as well as their frequency composition. These descriptors are discussed in this

section.

3.2.3.1 Turbulence Intensity

Turbulence intensity, I is a measure of the overall level of turbulence and is

defined as

I =
σ

Ū
, (3.7)

where σ is the standard deviation of wind speed about the mean wind speed Ū

with the turbulent wind speed variations usually assumed to be Gaussian (Bur-

ton et al., 2001). For the longitudinal component of turbulence, the standard

deviation σu is approximately constant with height, so the turbulence intens-

ity decreases with height. ESDU (1985) present an expression for σu based on

experimental observations as

σu =
7.5η(0.538 + 0.09 ln(z/zo))

pu∗

1 + 0.156 ln(u∗/fzo)
, (3.8)

where

η = 1− 6fz/u∗, (3.9)

p = η16. (3.10)

u∗, zo and f are as previous defined in (3.3), (3.1) and (3.2). The longitudinal

turbulence intensity, Iu is then obtained as

Iu = σu/Ū , (3.11)

while based on ESDU (1985) data, the lateral, Iv, and vertical, Iw, turbulence

intensities are defined as

Iv =
σv
Ū

= Iu

(
1− 0.22 cos4

(
πz

2h

))
(3.12)

Iw =
σw
Ū

= Iu

(
1− 0.45 cos4

(
πz

2h

))
(3.13)

3.2.3.2 Turbulence Spectra

The variance, σ2i , of a fluctuating signal is made up of contributions over a range

of frequencies (ESDU, 1986). Turbulent spectra describe the frequency com-

position of wind speed variations, and according to the Kolmogorov law, must



CHAPTER 3. COMPUTATIONAL WIND ENGINEERING 65

approach an asymptotic limit proportional to n−5/3 in the high frequency limit,

where n is the frequency in Hz. Burton et al. (2001) presents the two alternative

expressions commonly used for the spectrum of the longitudinal components of

turbulence which are, the Kaimal spectra,

nSuu(n)

σ2u
=

4nL1u/Ū

(1 + 6nL1u/Ū)5/3
, (3.14)

and the Von Karman Spectra,

nSuu(n)

σ2u
=

4nL2u/Ū

(1 + 70.8(nL2u/Ū)2)5/6
, (3.15)

where Suu(n) is the auto-spectral density function for the longitudinal compon-

ent and L1u and L2u are length scales and L1u = 2.329L2u. The length scale

L2u is defined as the integral length scale of the longitudinal component in the

longitudinal direction, denoted xLu.

The von Karman spectrum gives a good description of turbulence in wind tun-

nels while the Kaimal spectrum may give a better fit to field observations of

atmospheric turbulence although even in these cases the von Karman spectrum

is often used for consistency (Petersen et al., 1998). The Kaimal spectra have

the same form for the lateral and vertical components of turbulence as the lon-

gitudinal component but with different length scales, L1v and L1w respectively

(Burton et al., 2001).

The von Karman spectrum however has a different form for the lateral cross-wind

and vertical components, v and w respectively, which is given by

nSii(n)

σ2i
=

4(nL2i/Ū )(1 + 755.2(nL2i/Ū )2)

(1 + 283.2(nL2i/Ū)2)11/6
, (3.16)

where index i = v or w, with L2v = xLv, the integral length scale of the lateral

component in the longitudinal direction, and L2w = xLw, the integral length

scale of the vertical component in the longitudinal direction. Identification of

the appropriate length scales for use in these spectra is discussed in section

3.2.3.3.

3.2.3.3 Turbulence Length Scales

Turbulence length scales are a measure of the size of eddies present in a flow

due to turbulence. In order to use turbulence spectra, the length scales need to

be defined. Length scales are dependant on the surface roughness, zo, as well
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as on the height above ground, z, since proximity to the ground constrains the

size of turbulent eddies and hence reduces the length scales. Above a critical

height from the ground, zi = 1000z0.18o , the turbulence is no longer constrained

by the ground surface and becomes isotropic with xLu = 280 m and, yLu =

zLu = xLv = zLv = 140 m (Burton et al., 2001). For z < zi, the length scales

are anisotropic and corrections are applied according to

xLu = 280(z/zi)
0.35, yLu = 140(z/zi)

0.38,

zLu = 140(z/zi)
0.45, xLv = 140(z/zi)

0.48, (3.17)

zLv = 140(z/zi)
0.55, xLw =y Lw = 0.35z.

3.2.3.4 Cross-spectra and Coherence functions

The von Karman and Kaimal turbulence spectra provide a description of the

temporal variation of each of the turbulence components at a given point in

space. These are known as Eulerian spectra. The spatial variations of turbulence

in space from one point to another is however often required. Therefore the

spectral definition of turbulence needs to be extended to including information

about the cross-correlations between turbulent fluctuations at points separated

by a given distance.

According to ESDU (1986), these correlations will decrease as the distance sep-

arating two points increases and are also smaller for higher-frequency than for

low-frequency variations. They can therefore be described by Coherence func-

tions which describe the correlation as a function of frequency and separation.

Burton et al. (2001) defines the coherence C(∆r, n) as

C(∆r, n) =
|S12(n)|√
S11(n)S22(n)

(3.18)

where n is frequency, S12(n) is the cross-spectrum of variations at the two points

separated by ∆r, and S11(n) and S22(n) are the spectra of variations at each of

the points which can usually be assumed to be equal.

Starting from the von Karman spectral equations, and assuming Taylor’s frozen

turbulence hypothesis (Taylor, 1938), an analytical expression for the coherence

of wind-speed turbulence is derived and presented in Burton et al. (2001).
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3.2.3.5 Gust factors

It is often useful to know the maximum gust speed which can be expected to

occur in any given time interval. This is usually expressed by a gust factor

G, which is the ratio of the gust wind speed to the hourly mean wind speed

(Burton et al., 2001). The gust factor is a function of turbulence intensity,

and also depends on the duration of the gust, with shorter duration gust factors

larger than those for longer durations. Although gust factors can be derived from

turbulence spectrum, the empirical expression from Wieringa (1973) are often

used for simple and theoretically accurate method of estimating gust factors

according to

G(t) = 1 + 0.42Iu ln
3600

t
. (3.19)

Wind-borne debris flight is often characterized by short flight times and gust

winds can have a controlling influence on the resulting debris flight trajectories

(Baker, 2007).

3.3 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) has been defined as the analysis of sys-

tems involving fluid flow, heat transfer and associated phenomena such as chem-

ical reactions by means of computer-based simulation (Versteeg and Malalasekera,

2007). CFD applications span a wide variety of industrial and non-industrial ap-

plications including; aircraft and vehicle aerodynamics, hydrodynamics, turbo-

machinery, chemical process engineering, hydrology and oceanography, envir-

onmental engineering and biomedical engineering. The main goal of CFD is

to provide an economical and sufficiently complete predictions of complex fluid

flow problems by solving the governing equations of fluid flow often coupled with

additional equations for any associated phenomena. For the purposes of this re-

search which is concerned with very low Mach number flows, the wind is treated

as an incompressible fluid in which fluid density is independent of pressure. The

rest of this chapter will therefore only be concerned with the CFD modelling of

incompressible fluid flow.

Three-dimensional incompressible fluid flow, is governed by a set of non-linear

partial differential equations known as the Navier-Stokes equations,

∂U

∂t
+U · ∇U =

1

ρ
(−∇p+∇ · τ + FB), (3.20)
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which are derived from the principle of momentum conservation. Where U =

(u, v, w) is the fluid velocity vector, p is fluid pressure, ρ is the fluid density,

t denotes time, τ is the viscous stress tensor and FB is the vector of body-

force per unit volume such as those arising from gravity, buoyancy, rotation and

electromagnetic fields. The Navier-Stokes equations are often solved together

with supplementary equations representing additional physical conservation laws

governing the fluid flow, such as the law of mass conservation represented by the

incompressible form of the continuity equation

∇ ·U = 0, (3.21)

and the first law of thermodynamics expressed as the temperature equation

∂e

∂t
+U · ∇e = 1

ρ
(∇ · (k∇T ) + ST ), (3.22)

where T is the temperature, k is the thermal conductivity, e is the specific in-

ternal energy and ST is the temperature source/sink. For an isothermal system

with negligible contribution from body-forces, the Navier-Stokes equations re-

duce to (3.21) and (3.20).

The viscous stress tensor, τ , is obtained by introducing a suitable fluid viscosity

model. For a Newtonian fluid, the viscous stresses are proportional to the rates

of deformation. The three-dimensional form of Newton’s law of viscosity for

compressible flows involves two constants of proportionality: the first (dynamic)

viscosity, µ relates stresses to linear deformations, and the second viscosity, λ

relates stresses to volumetric deformation and for gases is usually estimated by

taking the value λ = (−2µ/3) (Schlichting, 1979). The nine components of the

viscous stress tensor are expressed as

τxx = 2µ
∂u

∂x
+ λ

(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
, (3.23)

τyy = 2µ
∂v

∂y
+ λ

(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
, (3.24)

τzz = 2µ
∂w

∂z
+ λ

(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
, (3.25)

τxy = τyx = µ
(∂u
∂y

+
∂v

∂x

)
, (3.26)

τxz = τzx = µ
(∂u
∂z

+
∂w

∂x

)
, (3.27)

τyz = τzy = µ
(∂v
∂z

+
∂w

∂y

)
. (3.28)
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A detailed discussion of the CFD modelling process is provided in Appendix

A while Appendix B provides a brief theoretical background to the Arbitrary

Lagrangian-Eulerian formulation of the Navier-Stokes equations which is useful

in the numerical modelling of fluid flow around moving wall boundaries.

3.3.1 Turbulence Modelling for CFD

The accurate simulation of high Reynolds number flows requires that the effects

of all the flow scales involved, from the integral length scale all the way down

to the dissipative length scale, be taken into consideration. This would require

solving the NavierStokes equations with a sufficient spatial and temporal resol-

ution to capture the smallest scales in the flow. This approach is referred to as

the Direct Numerical Simulation (DNS) and requires no additional modelling.

The first DNS was performed by Orszag and Patterson (1972), however, due

to the very high grid and time-step resolution required, the method remains

unfeasible for practical engineering problems with high Reynolds numbers. For

such applications, additional turbulence modelling approaches are introduced to

avoid having to resolve all the scales in the flow and these are discussed in this

section, starting with the Reynolds Averaged Navier-Stokes (RANS) method

which enjoys widespread popularity.

Rather than directly simulate the flow, the RANS approach attempts to model

its statistical properties. Fluid properties such as velocity, U, and pressure,

p, are decomposed into a mean and fluctuation components according to the

Reynolds decomposition

U = Ū+ u′, p = p̄+ p′, (3.29)

where the “¯” denotes a time-averaged component and “′” represents the fluctu-

ating component. When we combine this Reynolds decomposition with the in-

compressible Navier-Stokes equations, we obtain a set of time averaged continu-

ity and momentum equations known as the Reynolds Averaged Navier-Stokes

(RANS) equations for incompressible flow:

∇ · Ū = 0, (3.30)

∂Ū

∂t
+∇ ·

(
Ū⊗ Ū

)
= −1

ρ
∇p̄+∇ ·

(
ν∇Ū− u′ ⊗ u′

)
. (3.31)

where ν = µ/ρ is the kinematic viscosity. The term RANS is often used to refer

to steady models for stationary flow with ∂Ū
∂t = 0 while in non-stationary flows
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where ∂Ū
∂t 6= 0, the equations are refered to as the unsteady RANS (URANS)

equations. A new term u′ ⊗ u′ known as the Reynolds stress tensor is introduced

which is composed of nine Reynolds stresses, u′iu
′
j computed from the dyadic

product of the fluctuating velocity vectors as

u′iu
′
j = u′ ⊗ u′ =




u′1u
′
1 u′1u

′
2 u′1u

′
3

u′2u
′
1 u′2u

′
2 u′2u

′
3

u′3u
′
1 u′3u

′
2 u′3u

′
3


 , (3.32)

where u′1, u
′
2, u

′
3 are the fluctuating components of velocity in the X, Y and Z

directions. The Reynolds Stress tensor represents the correlations between fluc-

tuating components of velocity and is symmetric, with u′iu
′
j = u′ju

′
i, hence intro-

ducing an additional six unknowns to be solved for. This results in what is known

as the closure problem since the system of equation now has ten unknowns (3

mean velocity components, 1 pressure value, and six Reynolds stresses) to solve

for but only four equations (1 continuity equation and 3 momentum equations).

We therefore require an additional model to predict the six Reynolds stresses.

There are a number of RANS turbulence models available to solve the closure

problem and they can be classified as: Eddy Viscosity Models and the Reynolds

Stress Models (RSM).

Reynolds Stress Models (RSM) or second-closure models originally pro-

posed by Launder et al. (1975) introduce six additional partial differential equa-

tions which are solved to obtain each of the Reynolds stresses directly. Wilcox

(1994) presents a derivation of these partial differential equations. This approach

is computationally expensive on account of having to solve six additional coupled

differential equations. Further complexity results from the fact that in order to

solve these resulting six differential equations for the Reynolds Stresses, a total of

22 additional unknown terms must be modelled. These additional unknowns are

modelled in a calibration based approach, with no verifiable physics to support

their modelling (McDonough, 2007). According to McDonough (2007), what

is actually accomplished by RSM is not a model containing more physics but

rather one containing far more closure constants that can be adjusted at will

in efforts to match observed flow field behaviours. This has served to obscure

further development of RSMs.

Therefore despite the increased computational cost, there is no significantly im-



CHAPTER 3. COMPUTATIONAL WIND ENGINEERING 71

proved predictability, and as a consequence, RSMs are not as widely used. While

it is noted that they do offer improved performance in predicting anisotropic tur-

bulence, Wilcox (1994) concludes that it is unlikely that RSMs would yield any

significant improvement for separating and reattaching flow.

Eddy Viscosity models on the other hand relate the Reynolds stresses to

the velocity gradients via the turbulent viscosity in a relation known as the

Boussinesq assumption:

u′iu
′
j = −νt

(
∇Ū+∇ŪT

)
= −νt

(
∂Ūi

∂xj
+
∂Ūj

∂xi

)
, (3.33)

where νt is the turbulent (eddy) viscosity and
(
∇Ū+∇ŪT

)
is the mean strain-

rate tensor. A turbulence model is then used to estimate the eddy viscosity

νt in order to solve for the Reynolds stresses. A number of eddy viscosity tur-

bulence models exist and the choice of appropriate turbulence model is largely

problem specific. They include algebraic models (zero equation) models such as

the Baldwin and Lomax model (Baldwin and Lomax, 1978) and one-equation

turbulence models such as the Spalart-Allmaras model (Spalart and Allmaras,

1992). However, the most complete models of turbulence are the two-equation

eddy viscosity models in which two separate transport equations allow for the

flow history, turbulence energy and length scales of turbulence to be determined.

These include the standard k − ε (Launder and Sharma, 1974) and the k − ω

model (Wilcox, 1994). For the present research, two equation turbulence models

have been used and these are discussed in the following section.

It is worth nothing that while these models have gained wide spread applicability,

the Boussinesq approximation at the centre of the eddy viscosity models has

no physical basis. In fact, using several different experimental and numerical

databases for which the Reynolds stress tensors are known, Schmitt (2007) shows

that the Boussinesq hypothesis is almost never valid. As a consequence, eddy

viscosity models often fail in applications involving flows with sudden changes in

mean strain rate, flow over curved surfaces, flow in rotating and stratified fluid

and flows with boundary layer separation (Wilcox, 1994). Recent developments

have focused on introducing modifications and constraints to improve model

performance in these cases.
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3.3.1.1 The k − ε Model

The standard k− ε model by Launder and Sharma (1974) is based on transport

equations for the turbulence kinetic energy, k = 1
2 (u

′2 + v′2 + w′2), and its dis-

sipation rate, ε = dk/dt. The model transport equation for k is mathematically

derived from the Navier-Stokes equations, while the transport equation for ε is

empirically derived (Wilcox, 1994). The final equations for the standard k − ε

model are
∂k

∂t
+ Ū · ∇k = P − ε+∇ ·

[(
ν +

νt
σk

)
∇k
]
, (3.34)

∂ε

∂t
+ Ū · ∇ε = Cε1

ε

k
P − Cε2

ε2

k
+∇ ·

[(
ν +

νt
σε

)
∇ε
]
, (3.35)

where σk, σε, C1ε, C2ε are model constants with experimentally obtained val-

ues of 1.00, 1.30, 1.44, 1.92. The term P represents turbulent kinetic energy

production

P =
νt
2
|∇Ū+∇ŪT|2 (3.36)

The k−ε model, like all other eddy viscosity models assumes fully turbulent flow

with isotropic turbulence, such that u′2 = v′2 = w′2 . The turbulence velocity

scale, ϑ and length scale, l, are then computed from the obtained solutions for

k and ε as

l =
k

3
2

ε
, ϑ = k

1
2 . (3.37)

Finally the turbulent viscosity is computed according to

νt = Cµϑl = ρCµ
k2

ε
. (3.38)

For the standard k − ε model, Cµ is a constant with a value of 0.09.

3.3.1.2 The Realisable k − ε Model

In some conditions, such as at stagnation flows and at separation points, the

standard k − ε turbulence model might make non-physical predictions (Wilcox,

1994). This makes it necessary to impose some mathematical constraints that

are consistent with the basic physical and mathematical principles to which any

turbulent flow must conform.

The Realisable k − ε model proposed by Shih et al. (1995) is one of the modi-

fications to the standard k − ε model in which this approach is applied. In the

Realisable k − ε model, two new mathematical constraints are introduced into
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the k−ε equations. These are Realisability and Shwarz’ inequality. Realizability

is defined as the requirement of the non-negativity of turbulent normal stresses

(i.e; u′iu
′
i > 0) while the Schwarz inequality between any fluctuating quantities,

is a basic physical and mathematical principle that the solution of any turbu-

lence model equation should obey. It also represents the minimal requirement

to prevent a turbulence model from producing non-physical results (Shih et al.,

1995). A new formulation of the turbulent viscosity imposing these constraints

is obtained by deriving a new transport equation for the dissipation rate ε from

an exact equation for the transport of the mean-square vorticity fluctuation.

For the Realisable k − ε model, the eddy viscosity is still computed from (3.38)

however Cµ is no longer a constant but is computed form an expression involving

the mean strain and rate of rotation, and C1ε is defined as

C1ε = max

[
0.43,

η

(η + 5)

]
, (3.39)

where η = k
εS, with S representing the modulus of the mean strain-rate tensor.

3.3.1.3 The k − ω Model

The standard k−ω turbulence model by Wilcox (1988) is a two-equation model

based on transport equations for turbulent kinetic energy, k, and the specific

dissipation or turbulence frequency, ω ∝ ε/k. This model has an advantage over

the standard k − ε model in regions of low turbulence such as wall boundary

layers, when both k and ε go to zero. In these regions, the k− ε model becomes

numerically unstable due to the destruction term in the ε equation, (3.35), which

has a ε2/k term and this causes problems as k → 0 even if ε goes to zero except

in rare occasions where both k and ε tend to zero at a correct rate (Davidson,

2003). This however is not the case for the ω equation, (3.41), in the k − ω

model.
∂k

∂t
+ Ū · ∇k = Pk − β∗ρkω +∇ ·

[(
ν +

νt
σk

)
∇k
]
, (3.40)

∂ω

∂t
+ Ū · ∇ω = Pω − β1ρω

2 +∇ ·
[(
ν +

νt
σω

)
∇ω
]
, (3.41)

where Pk and Pω are the rates of production of k and ω respectively. σk, σω,

γ1, β1 and β∗ are model constants with values of 2.0, 2.0, 0.553, 0.075 and 0.09

respectively (Versteeg and Malalasekera, 2007).
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The turbulence length scale, l, and the eddy viscosity, µt, can then be defined

as

l =

√
k

ω
, µt = ρ

k

ω
. (3.42)

3.3.1.4 Large Eddy Simulation (LES)

In order to account for the deficiencies in the eddy viscosity and RSMs, an

alternative approach known as Large Eddy Simulation (LES) was suggested by

Smagorinsky (1963). The LES approach involves decomposing flow variables

into large-scale and small-scale components using a filtering process known as

the LES decomposition (Deardorff, 1970),

U(x, t) = Ũ(x, t) + u′(x, t), (3.43)

where Ũ is the large- or resolved-scale component and u′ is the unresolved- or

small- or sub-grid scale component. An LES formulation of the Navier-Stokes

equations is solved to obtain the large-scale (resolved) components while the

small-scale components are modelled using sub-grid scale models.

Although LES offers a more physically correct approximation of turbulent flow

it is more computationally intensive than RANS models and the number of grid

points required to adequately resolve the flow increases with Reynolds number.

For this reason, LES has therefore been largely unfeasible for the purposes of

this research where a fairly rapid computation of a large number of simulations

was required.

3.3.1.5 Turbulence and Wall Functions

The presence of wall boundaries has an affect on turbulent flows that needs to be

adequately modelled. Very close to the wall, the velocity is affected by the no-slip

condition which results in a thin layer of laminar flow known as the viscous sub-

layer where viscous effects are dominant. In this layer, sharp velocity gradients

are observed and the tangential and normal velocity fluctuations are affected by

viscous damping and kinematic blocking respectively, reducing their magnitude.

Above this viscous sub-layer is a buffer layer where viscous and turbulent effects

are of similar magnitude. This is followed by an outer fully-turbulent boundary

layer where turbulent effects are dominant due to interaction with the mean

flow where turbulence kinetic energy is produced by large gradients in the mean

velocity (Versteeg and Malalasekera, 2007).
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The more straightforward approach to treating wall boundaries would be to

have a sufficiently fine grid to be able to resolve the steep velocity gradients

prevailing in the boundary layer. However this very fine grid would have a high

computational cost associated with it and is often not feasible. Therefore a wall

function approach is often used in order to adequately model turbulent flows at

wall boundaries. Two wall function modelling approaches are commonly used,

the standard wall function and the enhanced wall function approach.

The Standard Wall Function approach by Launder and Spalding (1974),

assumes the flow in the layer of cells adjacent to the wall to be in the fully-

turbulent region of the wall boundary layer. Semi-empirical equations are then

used to model the flow in the viscosity affected viscous sub-layer and buffer layer

of the boundary layer. In the fully-turbulent region of the boundary layer, the

velocity profile is described using an equation known as the log-law

u+ =
1

κ
ln
(
Ey+

)
, (3.44)

with,

u+ =
U

uτ
, (3.45)

where κ is the von Karman constant with a value of 0.4, E is a constant with

a value of 9.8 for flows past smooth walls at high Reynolds number, u+ is a

non-dimensionalised velocity defined by (3.45), y+ is a non-dimensionalised wall

distance defined by (A.1), uτ is a characteristic velocity known as the friction

velocity which is defined by (A.2) and U is the mean velocity at a point. This

log-law has been found to be valid for (30 < y+ < 500) with the upper limit

dependant on the Reynolds number (Versteeg and Malalasekera, 2007).

Expressions for the turbulent kinetic energy, k and rate of dissipation, ε in the

wall-adjacent cells can then be computed as

k =
u2τ√
Cµ

, ε =
u3τ
κy
. (3.46)

Instead of using the expression for k in (3.46), ANSYS FLUENT solves the

k-equation in the wall-adjacent cells. The standard wall function approach is

derived under the assumption of a local equilibrium turbulent boundary layer

such that the production of k, P, and its dissipation rate, ε, are assumed to

be equal in the wall-adjacent control volume. However, this local equilibrium
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assumption is not valid when the near-wall flow is subjected to severe pressure

gradients, and when the flows are in strong non-equilibrium. Such conditions

are likely to occur in complex flows involving large separation, recirculation and

flow reattachment (Kim and Choudhury, 1995).

A Non-Equilibrium Wall Functions has therefore been proposed by Kim

and Choudhury (1995) in order to extend the standard wall function by incor-

porating two-layer wall functions which are sensitized to pressure gradient. A

new pressure-sensitive log-law for the mean velocity is introduced in place of

(3.44) together with a two-layer approach for computing k in the wall neigh-

bouring cells.

The two-layer approach assumes wall neighbouring cells to consist of a viscous

sub-layer and a fully turbulent layer in varying proportions from cell to cell. A

viscous sub-layer thickness, yv is computed according to

yv =
µy∗v

ρC
1/4
µ k1/2

, (3.47)

where y∗v = 11.225. Different expressions for turbulent quantities, k, ε and τw are

then assumed for the viscous sub-layer and turbulent layer. The local equilibrium

assumption is discarded and using the assumed expressions for the turbulence

quantities, a local cell-averaged production, P, and dissipation rate, ε of k may

be computed. These cell-averaged production and dissipation terms take into ac-

count the varying proportions of the viscous and turbulent layer, hence relaxing

the local equilibrium assumption.

Due to this ability to partly account for the effects of pressure gradients and de-

parture from equilibrium conditions, the non-equilibrium wall function approach

has showed improved performance in the prediction of skin-friction coefficients

in complex flows involving separation, reattachment, and impingement where

the mean flow and turbulence are subjected to severe pressure gradients and

change rapidly (FLUENT Inc., 2009).

Although the standard and non-equilibrium wall functions are applicable to the

majority of flows, they are confined to coarse mesh applications, with the cell

centre located in the turbulent region of the boundary layer. For some flow

problems, such as those involving strong body forces around a rotating disk, it

is necessary for a successful simulation to employ a fine near wall mesh in order
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to resolve the important near wall features (FLUENT Inc., 2009).

The Enhanced Wall Function is a near-wall modelling method that is ap-

plicable throughout the entire near-wall region including the laminar sub-layer,

buffer region, and fully-turbulent outer region. The approach is based on a re-

formulation of the law of the wall by blending linear (laminar) and logarithmic

(turbulent) laws into a single wall law for the entire wall region (Kader, 1993).

A two-layer zonal model is further incorporated for the turbulence quantities by

dividing the computational domain into a viscosity-affected region and a fully

turbulent regions using a wall-distance based Reynolds number,

Rey =
ρy

√
k

µ
, (3.48)

where y is the normal-distance from the wall to the cell centres, and cells with

Rey > 200 are considered by FLUENT to be in the fully-turbulent region (FLU-

ENT Inc., 2009). A one-equation model is used in the viscosity-affected near-

wall region, while the two-equation turbulence modelling approach is used in the

fully-turbulent region, with a blending function.

3.4 Progress in Computational Wind Engineering

In recent years, there has been an increased application of CFD to the numer-

ical simulation of a number of wind engineering problems ranging from pollutant

transport and wind energy resource estimation to urban meteorology and mod-

elling wind effects on urban infrastructure. Progress in this area is highlighted

in the proceedings of the fifth international symposium on Computational Wind

Engineering (CWE)- Chapel Hill, 2010.

CFD holds a number of advantages of traditional wind tunnel models of wind en-

gineering problems such as; the ability to model problems in full scale as opposed

to the model scale used in many experimental models, CFD flow data is avail-

able at a much greater spatial and temporal resolution and readily visualised in

an useful format and CFD simulations also offer the only means of investigating

certain complex phenomena where physical modelling is not feasible.

Early work in the field of CWE was concerned with providing an accurate nu-

merical simulation of atmospheric flow over large scale topography such as hills.

Such information is key to a number of engineering problems such as assessing
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the local wind resource for positioning of wind farms or determining the disper-

sion of pollutants. Initially, Jackson and Hunt (1975) presented a linear analysis

of turbulent flow over low hills, defining an inner layer close to the hill where

turbulent effects were important and an outer layer above that which could be

modelled as inviscid flow. This two-layer approach has been shown to perform

adequately when validated against full scale experimental data obtained from

controlled measurements over simple topography (such as the Black Mountain

and Askervein hill). Hunt et al. (1988a), and Belcher and Hunt (1998) presented

further improvements to this theory, which now forms the basis of numerical

models used for the prediction of wind fields and dispersion over arbitrary to-

pography. In these methods, an algebraic mixing-length model is typically used

to approximate Reynolds Stresses in the inner layer where turbulent effects are

important.

At the urban scale, there has been an increased academic and industrial applic-

ation of CFD to predict wind effects on pedestrians, pollution dispersion and,

in preliminary wind loading studies on buildings and bridges. CFD offers the

advantage of relatively rapid and low cost modelling of different scenarios com-

pared with physical model testing. However, there are a number of challenges

associated with CWE in the urban environment, and these include turbulence

modelling, accuracy of the numerical schemes and the treatment of the viscous

sub-layer at walls (Murakami, 1990). More recent CWE developments have

largely been focused on addressing these challenges.

For urban scale wind engineering applications, a more complete treatment of

atmospheric turbulence than the mixing-length model used in the linear analysis

of turbulent flow over low hills is required and two-equation RANS models which

provide information on turbulence history as well as an estimate of the local

turbulence velocity and length scale offer the best alternative (Wilcox, 1994).

The most widely used two-equation RANS model in CWE is the linear standard

k − ε model (Murakami, 1990).

During the 1980s, a number of numerical simulations of wind flow around surface

mounted bluff bodies with sharp edges were performed (Murakami, 1990) and

these revealed the weaknesses of RANS models in accurately simulating these

complex flows. The focus in the development in CWE therefore switched to

providing several ad-hoc modifications to the two-equation RANS turbulence
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models, such as Wright and Easom (2003) and Luna et al. (2007), to improve

predictions of the pressure distributions on the surface of simple building struc-

tures. These modifications in general improved the performance of two-equation

RANS models in predicting pressure coefficients in the front of the building but

led to worse predictions of the velocities especially in the wake (Franke et al.,

2004). More advanced two-equation RANS models, such as the RNG k − ε by

Yakhot et al. (1992) and the realizable k− ε by Shih et al. (1995) which provide

better stagnation pressure predictions without leading to worse velocity predic-

tions in the wake have also become increasingly used in CWE (Franke et al.,

2004).

Wood (2000) expresses scepticism regarding whether RANS can adequately rep-

resent CWE flow and instead advocates the continued development of LES mod-

els in this field, and this seems to be the generally accepted view on the use of

CFD techniques for such problems. LES also has the particular advantage of

being able to predict flow fluctuations, extreme values etc, which are often the

parameters required in practical situations. Although RANS models can accur-

ately predict mean pressures on buildings for a given mean wind speed, they

are unable to accurately predict the resulting peak pressures experienced by the

structure. Driven by the need to improve CFD predictions for pressure on bluff

bodies, Murakami et al. (1987) applied LES to simple problems, such as the

surface-mounted cube, and obtained good agreement between numerical predic-

tions and wind tunnel experiments.

Due to the high computational cost associated with and LES in contrast with

RANS models, hybrid LES/RANS models such as Detached Eddy Simulation

(DES) model of Spalart et al. (1997) have gained increased popularity. Bech-

mann and Sorensen (2010) recently present an application of a hybrid RANS/LES

model to the simulation of wind flow over complex terrain.

Aside from the turbulence model, appropriate boundary conditions are also re-

quired for CWE simulations. It is often necessary to simulate an equilibrium

neutral atmospheric boundary layer profile and in order to achieve this, appro-

priate velocity and turbulence quantity boundary conditions are required as well

as an adequate representation of surface roughness. Richards and Hoxey (1993)

formalised the specification of the logarithmic profile at the inlet of the domain

and their work has recently been revisited by a number of authors including
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Hargreaves and Wright (2007), Yi et al. (2009) and Richards and Norris (2011).

Xie and Castro (2008) also present turbulent inflow boundary conditions suit-

able for LES, which includes both temporal and spacial correlations of wind

speed and allows for the simulation of gusts. Since most turbulence models use

a sand-grain representation of roughness together with a wall function, it is also

necessary to adapt these for equivalent ABL ground roughness heights. Parente

et al. (2011) recently proposed a consistent approach to the treatment of inflow

and wall boundary conditions for the simulation of a neutral equilibrium ABL

using a modified k − ε turbulence model.

With improvements in technology that allow fluid-structure coupling, and the

simulation of moving boundaries, CWE has also been extended to the direct sim-

ulation of the wind induced oscillation of tall buildings. In these applications,

there is evidence to suggest that in cases where the motion of the structure con-

tributes the dominant frequency to the flow, even URANS models can produce

meaningful results (Owen et al., 2006). This is especially true for tall, flexible

structures where URANS model inaccuracies in flow separation on the roof play

only a small part in the structural response (Braun and Awruch, 2009). The

implications are also of relevance to windborne debris flight where rotational

frequency of a flying plate contributes the dominant frequency.

Although there are still persistent challenges in improving the accuracy and

ability of CFD to simulate complex wind engineering problems, it has largely

been recognised as a valuable tool in analysing these flows. Provided that there

is sufficient data for validation of the model, then its results can be relied upon

to give well-founded conclusions. A detailed understanding of fluid mechanics

and how the CFD code works is also necessary in order to correctly evaluate the

results. Increasingly, a number of guidelines on the verification and validation of

CFD simulations, such as AIAA (1998), are becoming available and these should

be used as guidelines to the CWE process.



Chapter 4

Rigid Body Dynamics Model

4.1 Background

Rigid Body Dynamics is one of the central components for the accurate numerical

modelling of rigid wind-borne debris. A rigid body may be viewed as a special

case of a system of particles in which the particles are rigidly interconnected

with each other (Greenwood, 2003).

Rigid body motion in real three-dimensional (3D) space consists of at most

six degrees of freedom - three translational degrees of freedom of a base point

(usually the body’s centre of mass) and three independent rotational degrees

of freedom about suitably chosen axes. The Euler equations of rigid body dy-

namics, define a set of six differential equations of motion based on linear and

angular momentum conservation principles,

m
dug

dt
= Fg, (4.1)

Ip
dωp

dt
= Mp − ωp × Ipωp, (4.2)

where a p subscript indicates that a quantity is expressed in the plate-fixed

coordinate system and a g subscript indicates that the quantity is expressed in

the global inertial reference frame. m is the mass of the body, I is the mass

moment of inertia tensor, u is the translational velocity vector, F is the applied

force vector, ω is the angular velocity vector and M is the vector of applied

torque. These equations provide the complete system of six scalar equations

required to compute the general 6DOF motion of a rigid body.

At any given instant during the motion of the rigid body, its configuration is

described by specifying the location of the chosen base point and the orientation

of the body in space. This can be achieved using a combination of inertial and

rotating reference frames. Section 4.2 discusses the two main representations of

orientation that have been considered during this research, and the merits and

drawbacks of each approach.

81
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4.2 Representing Orientation

The location of a body in three dimensional space is described by specifying

its position relative to a fixed inertial reference frame. This is represented in

Figure 4.1 by the cartesian XgYgZg coordinate system. In order to specify the

orientation of the body, a set of cartesian axes XpYpZp corresponding to the

body’s principal axes are fixed onto the body with the origin at the body’s

centre of mass. This body-fixed reference frame is allowed to rotate with the

plate and is therefore a non-inertial reference frame. The orientation of this

body fixed reference frame (XpYpZp) relative to the fixed inertial reference frame

(XgYgZg) is obtained via a translating inertial reference frame, XtYtZt, which

has its origin at the body’s centre of mass. Figure 4.1 illustrates these three

coordinate reference frames.

The angles - φ, θ, ψ - as illustrated result from a series of three rotations on

the XtYtZt reference frame. Firstly a rotation of ψ about the positive Zt axis,

displacing the Xt and Yt axes (onto the dotted lines). This is followed by a

rotation of θ about the displaced positive Yt axis, which rotates the displaced

Xt axis onto the final Xp axis. Thirdly, a rotation of φ is performed about the

Xt axis, which is now at its final Xp position, and this rotates the displaced

Yt and Zt axes onto their final Yp and Zp positions. Any plate orientation in

real three-dimensional space can be decomposed into a series of three rotations

about different axes.

4.2.1 Euler Angles and Rotational Matrices

The most common representation of rigid body orientation is a set of three Euler

angles that define the rotation of the plate-fixed reference frame relative to the

inertial reference frame. Euler angles have become very widely used largely

because of their intuitive nature.

Euler angles employ a rotational matrix, R, based on the Euler angles in order

to transform coordinates from the inertial to the rotated reference frames. A

rotational matrix is defined as the matrix that when pre-multiplied by a vector

expressed in the global inertial reference frame yields the same vector in the

body-fixed reference frame according to

x′ = R(φ, θ, ψ)x, (4.3)
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(a) (b)

(c)

Figure 4.1: Illustration of (a) the fixed global inertial reference frame, XgYgZg,

(b) the translating inertial reference frame, XtYtZt and (c) the rotating plate-

fixed reference frame, XpYpZp with the angles - φ, θ, ψ - which describe the

plate’s orientation relative to the translating plate-fixed reference frame.



CHAPTER 4. RIGID BODY DYNAMICS MODEL 84

where x is a vector in the global inertial reference frame, R is the rotational

matrix, and x′ is the same vector in the body-fixed reference frame. A rotational

matrix must always be orthogonal in order to constitute a pure rotation and its

determinant must be equal to +1. In plain terms this implies that if a vector

is subjected to a rotation, followed by a subsequent inverse rotation, the final

vector should be the same as the original vector before the rotations.

The fundamental assumption behind Euler rotational matrices is that the rota-

tion of a rigid body from one reference frame to another can be achieved using

three rotations in a given sequence as illustrated in Figure 4.1. 12 unique Euler

angle parametrisations exist depending on the sequence in which the rotations

are carried out. Of the 27 possible sequences, only 12 satisfy the constraint that

no two consecutive rotations occur about the same axis. These are listed in

Diebel (2006) and their corresponding matrices derived.

For aerodynamics applications, the most common sequence of Euler angle rota-

tions is the XYZ sequence, with the angles [φ, θ, ψ] representing rotations about

the X,Y,and Z axes respectively. In this parametrisation of orientation, the Euler

Rotational Matrix, R, is defined as a function of the Euler angles - [φ, θ, ψ] -

according to:

R(φ, θ, ψ) = RX(φ)RY(θ)RZ(ψ) =



cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ cos θ sinφ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cos θ cosφ


 .

(4.4)

In addition to the rotational matrix, a Euler angle rates matrix is also required.

This Euler angle rates matrix, E, relates the rate of change of the Euler angles

to the angular velocity of the body according to

ω = E(Ψ)Ψ̇, (4.5)

where ω is the angular velocity vector, Ψ = [φ, θ, ψ] and Ψ̇ = [φ̇, θ̇, ψ̇].

During rigid body dynamics computations, the angular velocity, ω, will usually

be determined from solving the Euler equations of rotational motion, (4.2), in a

body-fixed reference frame. As a result of the rotational motion, there will be

a change in plate orientation and in order to update the rotational matrix, R,
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it is necessary to compute the updated vector of Euler angles, Ψ, by numerical

integration of the Euler angle rates vector, Ψ̇. This Euler angle rates vector is

obtained from the computed angular velocities as

Ψ̇ = [E′(Ψ)]−1
ωp, (4.6)

where the inverse conjugate Euler angle rates matrix, [E′(Ψ)]−1, which is defined

as

[E′(Ψ)]−1 =




1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ


 . (4.7)

A cursory examination of (4.7) reveals that if θ = ±π
2 , then φ̇ and ψ̇ can be

infinite for finite values of ωp. This constitutes a mathematical singularity for

the Euler angle parametrisation creating what is commonly known as gimbal

lock. Stuelpnagel (1964) proves that it is topologically impossible to have a

global three-dimensional parametrisation of orientation based on Euler angles

that does not have singular points.

The direct implication for this unavoidable singularity in debris flight modelling

is that existing six degree of freedom RBD models for debris flight which rely on

Euler angle parametrisation of orientation are not globally valid for all possible

orientations in real 3D space. One therefore has to restrict the rotation of the

plate to remain within the singularity-free range of motions or force the code to

switch parametrisations when a singular orientation is approached.

Therefore, although Euler angles offer an intuitive representation of orientation

that is fairly straight forward to implement, the two main disadvantages of Euler

angle parametrisation are:

• Mathematical Singularities: Because certain trigonometric functions

used in the Euler angle parametrisations (e.g. tan and sec) have singu-

larities, all Euler angle parametrisations have orientations at which the

parametrisation breaks down. It is therefore necessary, when using Euler

angles to ensure that the motion of the rigid body does not approach

the singular orientations. However, for chaotic three-dimensional motions

such as those in debris flight, this might not be possible to judge a pri-

ori. A globally singularity free parametrisation of orientation is therefore

required.
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• Accuracy and Computational Efficiency: Studies by Robinson (1958)

proved that Euler angle parametrisations of orientation are less accurate

and less computationally efficient than other methods (e.g. Rotational

Quaternions), especially when used to integrate incremental changes in

orientation over time. This is partly due to the relatively higher compu-

tational effort (solving six additional equations) required to enforce the

orthogonality constraint on the rotational matrix as well as the accumu-

lating numerical errors in successive calculations, resulting in angular drift.

4.2.2 Rotational Quaternions

Due to the limitations in Euler angle parametrisation of orientation, alternative

parametrisations of orientation have been formulated, among which are the Euler

parameters, commonly referred to as rotational/unit quaternions.

Quaternions, were first proposed by William Rowan Hamilton in 1843, in an

attempt to present a higher dimensional generalisation of complex numbers

(Hamilton, 1847). A quaternion, q, may be represented as a vector in four-

dimensional space,

q = [q0, q1, q2, q3]
T . (4.8)

Given a rotation α about an axis n, a rotational quaternion may be defined as:

q =


 cos(12α)

n sin(12α)


 . (4.9)

Rotational quaternions are additionally constrained to have a unit norm, in order

for them to represent a pure rotation (Greenwood, 2003). This is achieved by

enforcing the algebraic constraint:

‖q‖ =
√
q · q̄ =

√
q20 + q21 + q22 + q23 = 1, (4.10)

where q̄ = [q0,−q1,−q2,−q3]T is the adjoint of the quaternion.

Given a vector, x in the global inertial reference frame, then x′ - its repres-

entation in the body-fixed reference frame - can be obtained using rotational
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quaternions according to:

x′ = q ·


0
x


 · q̄ = Rq(q)x, (4.11)

Rq(q) =




q20 + q21 − q22 − q23 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 q20 − q21 + q22 − q23 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 q20 − q21 − q22 + q23


 , (4.12)

where Rq(q) is a quaternion based rotational matrix. As with Euler angles, it

is necessary to compute the vector of quaternion rates, q̇, and its mapping to

the angular velocity vector ω in body-fixed coordinates. This is achieved using

the inverse conjugate quaternion rates matrix, [W′(q)]T , according to:

ω = 2W (q)q̇, (4.13)

q̇ =
1

2
[W ′(q)]Tωp, (4.14)

[W′(q)]T =




−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0



. (4.15)

Unlike the Euler angle rates matrix, the quaternion rates matrix is valid for all

possible orientations in real 3D space. Because of their accuracy, computational

efficiency and lack of any singularities, quaternions have become widely applied

in Rigid Body Dynamics applications. In some applications, such as robotics and

aerospace, a full quaternion formulation of the kinematic and dynamic equations

of motion is used (Chou, 1992).

The resulting system of equations consists of differential equations of motion

which must be solved together with appropriate enforcement of the algebraic

unity norm constraint, ξ, based on (4.10) and defined as

ξ = q20 + q21 + q22 + q23 − 1 = 0. (4.16)

The unity norm constraint, (4.16), is however quadratic in form and this often

results into instabilities during algebraic constraint enforcement (Baumgarte,

1972).

Despite their benefits, Quaternion based representations of orientation in rigid

body dynamics therefore have two main drawbacks:
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• Less Intuitive: Unlike the three Euler rotation angles, the four qua-

ternion parameters have no physical meaning. As a result, quaternions are

generally less intuitive than Euler angles when it comes to representing

orientation.

• Instability of Resulting Differential-Algebraic Equations: When

quaternions are used as generalized coordinates in formulating a rigid body

dynamics problem, a system of Differential-Algebraic Equations results,

which has an algebraic constraint that is quadratic in nature. Enforcing

this constraint is problematic as it results in numerical instabilities even for

stable physical systems as illustrated by Baumgarte (1972) and Greenwood

(2003).

Greenwood (2003) discusses a number of methods for constraint enforcement.

Due to the holonomic nature of the unit norm constraint (i.e. a constraint that

can be formulated without explicitly including velocity) this study investigated

two approaches to holonomic constraint enforcement: Baumgarte’s method for

holonomic constraints and the one-step method for holonomic constraints. These

methods are discussed briefly in sections 4.2.2.1 and 4.2.2.2

4.2.2.1 Baumgarte Method for Holonomic Constraints

In this method, proposed by Baumgarte (1972), the full quaternion kinematic

and dynamic differential equations of motion are solved together with the algeb-

raic unit norm constraint, (4.16). This unit norm constraint on the rotational

quaternions is enforced using the method of Lagrange multipliers. The unit norm

equation, (4.16), is then differentiated twice in order to obtain a differential equa-

tion describing the acceleration constraint. It is this double differentiation with

respect to time that introduces numerical instabilities into the final system.

Baumgarte (1972) presented a method for stabilising the differential representa-

tion of the holonomic constraint by introducing two damping terms that depend

on two suitably chosen stabilisation constants (α and β which may themselves

depend on time step size) as well as the algebraic constraint error and its first

derivative.

The main drawback of Baumgarte’s method is the difficulty in finding suitable

values for the stabilisation constants α and β. Often this cannot be done a priori
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and requires repeated simulations before suitable values are obtained (Cline,

2002). In addition, if multiple constraints exist the terms added to stabilise one

constraint could increase the error of a second constraint (Greenwood, 2003).

4.2.2.2 One-step Method for Holonomic Constraints

Although the Baumgarte method works well in stabilizing kinematic constraints,

there remained a need to eliminate the complexity in selecting the stabilisation

constants. Later studies found that one could improve the accuracy of constraint

representations by using a one-step method (Greenwood, 2003). The goal of the

one-step method is to minimize the error at the end of each time step and to

do so in such a manner that the dynamical response of the system will not be

significantly affected.

In this method, the angular velocity in the body-fixed coordinate system is ob-

tained from solving the traditional equations of motion, (4.1) and (4.2), to obtain

the body-fixed rotational speeds. The quaternion rates vector is then computed

according to (4.14). This quaternion rates vector is numerically integrated to

obtain the updated quaternion.

At the end of each time-step, a correction is then made separately to eliminate

the numerical drift in the unit quaternion. If the initial errors are unusually

large due to the use of a large step-size, the one-step corrections can be repeated

to yield negligibly small final constraint errors. Since in the one-step method,

the Euler parameters do not directly enter the equations of motion (unlike the

full quaternion formulation used in Baumgarte’s method), the correction of the

unit quaternion does not cause numerical instability (Greenwood, 2003). The

one-step method is also relatively easy to implement as it does not require a full

quaternion formulation of the RBD equations.

Greenwood (2003), Cline and Pai (2003) and Cline (2002) present comparisons

between the two methods for constraint enforcement discussed above and the

one-step method was found to yield more accurate results. The one-step method

was also found to be relatively easier to implement, and for the purposes of this

study, the approach proposed by Greenwood (2003) was implemented and is

discussed here.

Consider the quaternion unit norm constraint, ξ, as presented in (4.16). Al-

though this constraint should usually hold, due to a small numerical drift occur-
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ring at each time step, in reality ξ 6= 0. We therefore need to apply a correction

∆ξ to the constraint equation, (4.16), such that

∆ξ = −ξ. (4.17)

In order to apply this correction through corrections to the individual quaternion

vector components, the one step method first calculates the gradient vector of

the constrain equation in q-space as

∇ξ = [2q0, 2q1, 2q2, 2q3]
T . (4.18)

The constraint correction ∆ξ is then calculated according to

∆ξ = ∇ξ ·∆q, (4.19)

where ∆q is the quaternion correction vector that exactly compensates for the

constraint error at the end of each time step. ∆q is assumed to act in the

direction of the gradient ∇ξ, such that:

∆q = C∇ξ, (4.20)

where C is a coefficient. From combining (4.20), (4.19), (4.18) and (4.17), C is

calculated as

C =
−ξ

∇ξ · ∇ξ =
−ξ

4(q20 + q21 + q22 + q23)
≈ −ξ

4
. (4.21)

Finally by combining (4.21), (4.20) and (4.18), the values for the corrections to

the quaternion vector are given by Greenwood (2003):

∆q0 = −1

2
q0ξ, ∆q1 = −1

2
q1ξ, ∆q2 = −1

2
q2ξ, ∆q3 = −1

2
q3ξ. (4.22)

By applying this quaternion correction vector to the new quaternion at the end

of each time step, the normality constraint would be effectively enforced. This

correction step is repeated iteratively at the end of each time-step until the

desired accuracy, δ, is met such that ξ ≤ δ.

4.3 Conclusions

A rigid body dynamics model based on rotational quaternions has been success-

fully implemented in this research to ensure the accurate and singularity-free

simulation of plate type debris flight. A one-step post-correction method for
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holonomic constraints is used to enforce the unit norm constraint in order to

ensure orthogonality of the rotational matrix.

The resulting singularity-free 6DOF RBD model constitutes a key improvement

to the Euler angle parametrisations currently used in analytical models of plate

type windborne debris flight. Appendix C contains the RBD model code imple-

mentation in the C programming language as a FLUENT User Defined Func-

tion (UDF). This RBD model has been applied to simulate 3D plate free flight

(Kakimpa et al., 2010a) and autorotation (Kakimpa et al., 2010b).



Chapter 5

Static and Rotating Plate

Simulations

This chapter presents preliminary studies carried out with the aim of develop-

ing and validating a CFD-RBD model to simulate the combined translation and

rotation involved in windborne debris flight. First, a URANS CFD model has

been developed and is used to simulate the flow around static 2D and 3D plates.

Based on the results of sensitivity studies of 2D and 3D static plates, appro-

priate spatial and temporal resolution, discretisation schemes, pressure-velocity

coupling and turbulence modelling approach have been selected.

The static plate CFD model has been verified against experimental measure-

ments by ESDU (1970) and then extended to rotating plate cases, starting with

the simulation of forced rotation at a prescribed constant speed. Coupling the

CFD model with a single degree of freedom (1DOF) RBD model allows for the

simulation of low aspect ratio plate autorotation. CFD-RBD predictions for

rotational speed, aerodynamic torque and wall pressure distribution on a plate

that is autorotating about a fixed axis are validated against existing experimental

measurements by Martinez-Vazquez et al. (2010). Finally the CFD-RBD model

is applied to unconstrained three-degree-of-freedom (3DOF) free-axis autorota-

tion about a fixed point, in which the axis of rotation is not fixed but rather

determined by the Fluid-Structure Interaction (FSI).

The result is a validated CFD-RBD model capable of simulating free autorota-

tion as well as an increased understanding of the key flow phenomena leading to

stable autorotation.

5.1 2D Static Plate Simulations

A 2D URANS model has been used to simulate the aerodynamics of a high

aspect-ratio static plates. The goal is to assess the sufficiency of CFD models

for predicting the aerodynamics of high aspect-ratio flat plates. Figure 5.1 shows

Mesh B, the main computational mesh used for the 2D sensitivity studies.

92
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Figure 5.1: Computational domain and mesh used in 2D simulations.

Mesh dependency studies were performed using a finer and coarser mesh, referred

to as Mesh C and Mesh A respectively, and the drag predictions for the worst

case angle of attack, αz = 90◦, are found to be mesh independent as shown in

Table 5.1. Mesh B is therefore used for the rest of the simulations.

The plate is modelled as an infinitely thin flat plate of length L = 0.3 m and

thickness h = 0.0 m having only two faces. The plate’s two faces together with

the domain’s top and bottom boundaries are modelled as wall boundaries with

zero normal velocity and a no-slip condition for tangential velocity. A velocity

inflow boundary condition is applied at the inlet with a Dirichlet condition for

velocity together with a homogeneous Neumann condition for pressure, while

the outlet boundary is modelled as a pressure outlet with a Dirichlet condition

for pressure and a homogeneous Neumann condition for velocity. In all the

simulations performed, inlet turbulence intensity and length scales of 1% and

0.02 m respectively are used, which are consistent with low turbulence wind

tunnel values reported by ESDU (1970).

The plate is positioned 10L from each of the top and bottom boundaries giving

a blockage ratio of 5% which is well within the 6% limit where blockage effects

are negligible (West and Apelt, 1982). The plate is also 10L from the inlet

boundary and 30L from the outlet so as to reduce the effect of the truncated

solution represented by the boundary conditions. The domain is discretised

using a structured grid into approximately 57,000 rectangular cells.
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Table 5.1: Grid size sensitivity study for the 2D CFD computations.

Mesh A Mesh B Mesh C

No of Cells 31,744 57,344 207,360

Wall Adj. Cell Size, ∆x (m) 1.73 × 10−2 4.74× 10−3 2.53 × 10−3

Maximum Cell Volume (m3) 6.03 × 10−1 1.19× 10−1 1.25 × 10−1

Minimum Cell Volume (m3) 9.00 × 10−5 6.75× 10−6 1.93 × 10−6

Uw (m/s) 2.75 2.75 2.75

∆t (s) 1.0× 10−3 1.0× 10−3 1.0× 10−3

Courant Number, Cr 1.59 × 10−1 5.80× 10−1 1.09

(CD)αz=90◦ 2.068 2.125 2.123

5.1.1 Simulation Results

Simulations were performed at a Re = 5.46×104 which corresponds to a 2.75 m/s

inlet velocity. For the CFD results presented in this section, a second order

upwind scheme is used for advection terms, with the standard Rhie-Chow inter-

polation scheme for the pressure term and the SIMPLE algorithm for pressure-

velocity coupling.

The Realisable k − ε turbulence model is used, together with a two-layer en-

hanced wall function approach. The sensitivity studies for advection scheme

and pressure-velocity coupling scheme are presented in Section 5.1.2, while the

choice of turbulence model and near-wall modelling approach is reported in Sec-

tion 5.2.1.

The predicted flow field is illustrated using contours of pressure, velocity, vor-

ticity magnitude, and Q-criterion in Figures 5.2 and 5.3. For incompressible

flow the Q-value, an objective method of vortex identification proposed by Hunt

et al. (1988b), is computed as

Q =
1

2
(|Ω|2 − |S|2), (5.1)

whereΩ = 1
2 [∇U−(∇U)T] is the vorticity tensor and S = 1

2 [∇U+(∇U)T] is the

strain-rate tensor. The Q-criterion (Hunt et al., 1988b) identifies a vortex as a

region where Q > 0 such that flow swirl, represented by |Ω|, is more prominent

than flow shear, represented by |S|. This method of vortex identification has

been preferred over vorticity magnitude since vorticity has been shown not to
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distinguish between pure shearing motions and the actual swirling motion of a

vortex (Kolar, 2007), as illustrated by Figure 5.3(a) and (b).

As previously discussed in Section 2.1, the results in Figures 5.2 and 5.3 show

that at lower angles of attack the flow remains steady and attached to the plate

with no significant vortex shedding. However, at higher angles of attack, beyond

the stall angle, αz ≈ 15◦, the flow around the plate becomes unsteady. Strong

vortex shedding is observed from the leading and trailing edges of the plate as

shown in Figure 5.3, resulting in periodic fluctuations in the force coefficients

(Figure 5.4). A von Karman vortex street results, characterised by a Strouhal

number St ≈ 0.15, which is consistent with experimental measurements by Chen

and Fang (1996) where a value of 0.16 ± 0.003 was measured for 2D plates at

20◦ ≤ αz ≤ 90◦ in a high Reynolds number flow.

The time-averaged aerodynamic force coefficients for all the angles of attack

tested are shown in Figure 5.5, contrasted against experimental measurements

from ESDU (1970) for infinite aspect ratio plates in a flow of (5× 104) ≤ Re ≤
(5× 105). The results show that for lower angles of attack, the CFD predictions

are in good agreement with experimental measurements while at higher angles of

attack, the CFD predicted much higher aerodynamic forces, with the maximum

drag approximately 20% higher than experimental measurements.

Contrary to findings by Breuer et al. (2003) using a Spalart-Allmaras model,

where both 2D and 3D URANS simulations of flow around a static plate did not

show any vortex shedding, using the Realisable k− ε model in this study, with a

two-layer enhanced wall function approach, 2D URANS models have been shown

to be capable of accurately predicting vortex shedding.

5.1.2 2D Sensitivity Studies

5.1.2.1 Advection and Pressure-Velocity Coupling Schemes

Simulations have been performed to assess the sensitivity of model predictions to

advection schemes and pressure-velocity coupling method. Findings from these

sensitivity studies have been applied to the 3D cases. The studies are performed

for the αz = 90◦ position and the Strouhal number is used as the key parameters

for assessing model performance. A description and results for each of the cases

I to VIII are reported in Table 5.2 along with predicted results.

Results from cases I to IV show that while the first order upwind advection
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(a)

(b)

Figure 5.2: CFD predictions for (a) velocity magnitude, V (m/s), and (b) pressure, p (Pa), in the wake of a 2D static plate held at

α = 10◦ (left) and α = 90◦ (right) in a uniform flow of Re = 5.46 × 104.
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(a)

(b)

Figure 5.3: CFD predictions for (a) vorticity magnitude, | ω | (s−1) and (b) Q-criterion value, Q (s−1), in the wake of a 2D static plate

held at α = 10◦ (left) and α = 90◦ (right) in a uniform flow of Re = 5.46 × 104.
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Figure 5.4: CFD predicted time series of drag force coefficient for a 2D static

flat plates at (a) α = 10◦, with no force fluctuation due to steady wake, (b)

α = 20◦ with weak fluctuations due to weak vortex shedding, and (c) α = 30◦

with strong fluctuations due to stronger vortex shedding.

scheme gives good agreement between mean drag predictions and experimental

measurements, this is at the expense of relatively poor performance in predicting

the vortex shedding frequency, as indicated by the relatively low value of Strouhal

number.

Higher order advection schemes such as second order upwind, QUICK and third

order MUSCL schemes have been preferred together with either coupled or

SIMPLE algorithms for Pressure-Velocity coupling, as shown in cases V to VIII.

The QUICK and third order MUSCL schemes gave comparable performance to

the second order upwind scheme in drag prediction but like the first order upwind

scheme, this occurred with worse predictions for vortex shedding frequency.

Coupling the pressure and velocity equations improved overall accuracy and

rate of convergence but resulted in significantly increased computational cost.

Therefore a coupled solver was only used in obtaining an initial solution, while a

segregated solver with the SIMPLE algorithm is used in the actual computations.

Using higher order discretisation schemes for the pressure term was found to

have no effect on the results so the standard Rhie-Chow interpolation scheme is

satisfactory (Rhie and Chow, 1983).

5.1.2.2 Time-step Dependency Study

The choice of time step size, ∆t, is initially based on the desire to achieve a

sampling frequency 1/∆t that is at least an order of magnitude greater than the
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Figure 5.5: Experimental measurements (ESDU, 1970) and CFD predictions for

time averaged (a) drag and (b) lift coefficients for 2D static plates at different

angles of attack

dominant frequency of an unsteady flow. For a 2D static flat plate which has a

Strouhal number St ≈ 0.16, a time-step size ∆t ≤ 0.07 s would be required. A

generalised Grid Convergence Index (GCI) based on the Richardson extrapola-

tion approach (Roache, 1997; Oberkampf and Trucano, 2002) is used to estimate

the solution error due to temporal discretisation.

Simulations are performed at three time levels h1, h2 and h3 with a refinement

ratio, r = h3

h2
= h2

h1
= 10.0. The Richardson extrapolation assumes the error ǫh

on a grid i to be defined as,

ǫh = (fexact − fi) = αhpi +O(hp+1
i ), (5.2)

where f is a quantity, such as drag whose value is sought and hi is the time-step

size for discretisation i, p is the order of convergence, O(hp+1) is the truncation

error due to higher order terms and α is a constant which can be computed using

the solution on two separate grids as

α =
f1 − f2
hp2 − hp1

+O(hp+1
1 ) +O(hp+1

2 ). (5.3)

Neglecting higher order terms, the error on fine grid ǫ1, and coarse grid ǫ2, can

be computed according to (Roache, 1997):

ǫ1 = ‖fexact − f1‖ ≈
∣∣∣∣∣
f2 − f1
1− rp

∣∣∣∣∣, (5.4)

ǫ2 = ‖fexact − f1‖ ≈
∣∣∣∣∣
rp(f2 − f1)

1− rp

∣∣∣∣∣, (5.5)
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Table 5.2: Unsteady CFD sensitivity study of various pressure and advection

schemes for a thin flat plate held normal to a flow of Re=5.4× 104.

Case ∆t (s) Advection Scheme Pressure

Scheme

P-V

Coupling

St

I 1.0×10−3 1st Order Upwind Standard SIMPLE 0.145

II 5.0×10−2 1st Order Upwind Standard SIMPLE 0.146

III 5.0×10−2 1st Order Upwind Standard Coupled 0.135

IV 5.0×10−2 1st Order Upwind 2nd Order Coupled 0.135

V 5.0×10−3 2nd Order Upwind Standard SIMPLE 0.157

VI 5.0×10−2 2nd Order Upwind 2nd Order Coupled 0.148

VII 5.0×10−2 QUICK 2nd Order Coupled 0.147

VIII 5.0×10−2 3rd Order MUSCL 2nd Order Coupled 0.135

where the order of convergence, p, is calculated by using the solution on three

separate grids as

p = ln

(
fh3 − fh2
fh2 − fh1

)
/ ln(r), (5.6)

where r > 1. Finally, the Grid Convergence Index (GCI) is computed by ap-

plying a factor of safety Fs to the computed error ǫ in order to account for

uncertainty in Richardson’s extrapolation error estimates,

GCIi = Fs[ǫi]. (5.7)

Roache (1997) recommends a factor of safety Fs = 1.25 to be sufficiently con-

servative.

Results of the time-step sensitivity study are shown in Table 5.3. The order of

convergence, p was computed as 0.68, with fexact approximated as 2.371. Based

on the findings of this study, a second order implicit time stepping scheme with

a time step size of 5× 10−2 s has been found to be sufficient.

5.1.2.3 Reynolds Number Dependence

Additional simulations were performed to asses the sensitivity of the solution to

Reynolds number by varying the inflow velocity. The results, shown in Table 5.4

were found to be fairly Re independent in the 5.5× 104 ≤ Re ≤ 5.5× 105 range

for which experimental data from ESDU (1970) is valid.
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Table 5.3: Temporal Discretisation Error estimated using a Richardson’s extra-

polation approach (Roache, 1997) on a 2D computational grid.

i ∆ti (s) fi = CD ǫi GCI (%)

1 5.0 ×10−4 2.366 5.667 ×10−3 0.299%

2 5.0 ×10−3 2.344 2.735 ×10−2 1.445%

3 5.0 ×10−2 2.239

Table 5.4: Reynolds number sensitivity studies

Re U (m/s) (Cd)avg

5.46× 103 0.275 2.197

5.46× 104 2.75 2.342

1.10× 105 5.5 2.342

5.46× 105 27.5 2.341

Drag predictions from an additional case with Re = 5.46×103 showed relatively

lower mean drag indicating some dependency of results on Re. Similar Reynolds

number effects have been identified in experimental studies of slender sharp

edged bodies and are attributed to changes in the topological structure of the

wake due to transition from laminar to turbulent boundary layer flows (Schewe,

2001).

Although 2D URANS models successfully predicted vortex shedding and its

frequency, the aerodynamic force predictions showed poor comparison with ex-

perimental measurements at higher angles of attack with an error of up to 20%

in the drag prediction compared to ESDU results. Some of the differences may

be attributed to plate thickness in this case, however the principal weaknesses

of 2D CFD simulations is the suppression of vortex stretching and the lateral

3D breakup of vortices. This 2D representation of inherently 3D turbulence

results in idealised vortex tubes of superficially high vorticity resulting in an

over-prediction of aerodynamic forces by 2D URANS models. Therefore in or-

der to adequately simulate the three dimensional nature of the flow structures,

it is necessary to use full 3D simulations for even high aspect ratio plates.
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(a) (b)

Figure 5.6: Vertical sections (a) Normal to the wind flow and (b) Parallel to the

wind flow, showing the plate and the computational domain and boundaries.

5.2 3D Static Plate Simulations

To extend the CFD model to three-dimensional cases, 3D URANS CFD simula-

tions have initially been carried out on static plates. The computational domain

described in Figure 5.6 is used, with a square flat plate of side length L =1 m

and thickness h =0.0254 m which is consistent with experimental measurements

by Martinez-Vazquez et al. (2010) that are later used for model validation (see

Section 5.5). The plate is positioned with its centre 3.5L from each of the inlet,

top, bottom and side boundaries, and 9L from the outlet boundary. This results

in a maximum blockage ratio of 2.04% when the plate is normal to the flow,

therefore blockage effects may be neglected (West and Apelt, 1982).

The computational mesh is split into two regions, a spherical inner region and

an outer region. The plate was held within the spherical inner volume of radius

1.5L, which can be rotated relative to the fixed outer region to allow for ease in

aligning the plate orientation relative to the oncoming flow without re-meshing

the domain. The spherical boundary of the inner region is connected to the

co-incident spherical boundary of the outer region through a non-conformal grid

interface. This involves first computing a virtual layer of faces which is an

intersection between the two boundaries making up the interfaces. Fluxes across

the non-conformal interface are then interpolated via the new virtual layer of

faces FLUENT Inc. (2009).

The domain is discretised into approximately 291,000 hexahedral cells, with grid

refinement close to the plate boundary such that the cell centroid of the wall
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neighbouring cell, yp is between (3.6 × 10−3) m to ≤ (8.6 × 10−3) m, while the

dimensionless wall distance, y+ is in the range 10 ≤ y+ ≤ 130. An enhanced

wall function with a two layer approach was used to approximate turbulence

quantities near the wall.

Simulations were performed for angles of attack 0◦ ≤ α ≤ 90◦ at 10◦ intervals,

with the Realisable k − ε turbulence model and the SIMPLE algorithm for

pressure-velocity coupling. Second order upwind scheme is used for advection

terms with the second order implicit scheme for time discretisation. The results

are assumed to be symmetric about the 90◦ position, and are shown for 0◦ ≤
α ≤ 180◦ in Figure 5.7.

The CFD predictions for 3D static plate drag, lift and torque compare well with

experimental data for similar plates and Reynolds number (ESDU, 1970). At

the stall region, the CFD model slightly under-predicts the aerodynamic forces,

showing a gradual transition as opposed to a distinct peak in the force coefficients

at the stall angle that is shown in the ESDU data. Recent experimental data

such as Martinez-Vazquez et al. (2010) based on surface pressure measurements

shows a less distinct peak at the stall angle compared to the ESDU (1970)

data. However this difference could be explained by insufficient angle of attack

resolution to capture the exact stall angle in both the CFD results and Martinez-

Vazquez et al. (2010) experiment which use angle of attack resolutions of 5◦ and

15◦ respectively. Further experimental investigation of plate aerodynamics at

the stall angle is recommended.

Overall, however, the body force predictions from the model were found to com-

pare well with experimental results, with a maximum deviation from the experi-

mental values of approximately 10%, which occurs at a 90◦ angle of attack and is

comparable to a reported experimental uncertainty range of ±5% in the ESDU

(1970) results.

URANS turbulence models have had limited success in predicting massively

separated bluff body flows (Rodi, 1997). Because URANS models predict the

statistical nature of the turbulent flow and not the actual realisations of the

flow, they have been shown not to reproduce unsteady phenomena well (Breuer

et al., 2003) due to an inability to distinguish between turbulent fluctuations

and unsteady flows. As a result, excessively large turbulent viscosities are of-

ten predicted, creating an artificial diffusion and steady wake behaviour where
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Figure 5.7: Comparison between experimental (ESDU, 1970)(-) and 3D CFD (•) predictions for (a) drag, (b) lift and (c) torque

coefficients for a flat square plate at different angles of attack.
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unsteady behaviour is expected. However, some researchers such as Iaccarino

et al. (2003) present conflicting results, with URANS models successfully used to

predict the underlying statistics of the highly unsteady flow around 3D surface

mounted cube. Results from Iaccarino et al. (2003) also showed that in the case

of the surface mounted cube, vortices shed from the side of the cube induced

a side-to-side oscillation that creates instability in the main arch vortex, even-

tually leading to periodic unsteadiness of the wake. This flow separation and

vortex shedding from the sides of the cube is likely to be affected by the near wall

treatment since the assumptions of a logarithmic velocity distribution and local

equilibrium of turbulence made in the wall function approach are questionable

in separated flows and a two layer approach is recommended (Rodi, 1997). For

his successful simulations, Iaccarino et al. (2003) uses a y+ ≈ 1, resolving the

viscous sub-layer, however for practical computations, much higher y+ values

would have to be considered in order to reduce the computational cost.

In order to address these concerns, additional studies have been performed to

assess the influence of near wall grid refinement and turbulence modelling ap-

proach on wake behaviour and force predictions.

5.2.1 Influence of Near-wall Grid Size and Turbulence Model

Initially a relatively coarse computational grid contained 291,000 cells is used

which has a near-wall cell distance in the range 10 < y+ < 130. Although a

two-layered enhanced wall function approach is used, since the majority of cell

points lie within the turbulent boundary layer (y+ > 30) a standard log-law wall

function is effectively applied.

This coarse grid resolution at the plate side edges also restricts the development

of a secondary recirculation at the plate side edges resulting in more stable

shear layers. For different angles of attack investigated, Figures 5.8 and 5.9

show the pressure and velocity contours on a vertical section through the centre

of the plate while Figure 5.10 shows the 3D flow structures in the wake of the

plate. These 3D flow structures in the wake are visualised using a Q-criterion

iso-surface, which shows the vortex cores.

The flow structure is composed of a leading edge vortex that remains stably

attached to the plate, together with tip vortices at the side edges and a vor-

tex sheet from the trailing edge. In all the cases where no vortex shedding
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Instantaneous CFD contours of velocity magnitude, V (m/s), for a

1 m square flat plates at angles of attack, αz, of: (a) 15◦, (b) 30◦, (c) 45◦, (d)

60◦, (e) 75◦ and (f) 90◦, in a flow of Uw = 5.0 m/s.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Instantaneous CFD contours of pressure, p (Pa), for a 1 m square

flat plates at angles of attack, αz, of: (a) 15◦, (b) 30◦, (c) 45◦, (d) 60◦, (e) 75◦

and (f) 90◦, in a flow of Uw = 5.0 m/s.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Instantaneous CFD iso-surfaces of Q-criterion, Q = 10 s−1, for a

1 m square flat plates at angles of attack, αz, of: (a) 15◦, (b) 30◦, (c) 45◦, (d)

60◦, (e) 75◦ and (f) 90◦, in a flow of Uw = 5.0 m/s.
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is observed, a steady separated wake results as illustrated by the velocity and

pressure contours in Figures 5.8 and 5.9. Larger flow structures are observed for

higher angles of attack as illustrated in Figure 5.10(c)-(f). At very high angles

of attack, the tip vortices become nearly vertical and merge together with the

leading and trailing edge vortices to form a stable ring vortex as shown in Figure

5.10(f). In the αz = 60◦ case, Figure 5.10(d), weak shedding of hair-pin vortices

was observed due to the interaction between the tip vortices and the leading

and trailing edge vortices. This vortex shedding has not been observed for the

other angles of attack, and the reasons for this are unclear. The onset of vortex

shedding at higher angles of attack appears to be chaotic and sensitive to flow

perturbations.

Since the coarse grid URANS simulations predicted stably attached vortices in

the wake of the plate, with no flow unsteadiness, no aerodynamic force fluctu-

ations are observed, except in the 60◦ case. The steady aerodynamic coefficients

predicted are however found to compare well with experimental results as pre-

viously shown in Figure 5.7 despite being unable to predict wake unsteadiness.

In order to assess the sensitivity of the wake flow behaviour to turbulence model

and grid resolution, additional simulations have been performed with adjust-

ments to the turbulence modelling approach and the near-wall grid resolution.

Firstly, the computational mesh has been refined in the near wall region so that

y+ ≈ 1, at the first grid point away from the wall. Table 5.5 describes all three

grids used. The initial grid refinement is referred to as the “FINE1” mesh and

contained a total of over 918,000 computational cells with near wall y+ values

in the range 0.19 ≤ y+ ≤ 17.28. Refinement is focused in the near wall region

with no significant wake region mesh refinement. An additional refinement of

the “FINE1” grid is performed, focusing on the wake region and resulting in a

third grid referred to as “FINE2” composed of 2,370,000 cells.

Secondly, in order to assess the sensitivity of results to turbulence modelling

approach, DES simulations have been performed. In the DES cases, the Realis-

able k − ε model is used as the sub-gird scale model for the LES region, while

URANS is used in the near wall region. The LES region is defined as the re-

gion where the local grid cell size is sufficient to resolve the estimated turbulent

length scale l = k(3/2)/ε. Aerodynamic force and wake structure from the more

computationally expensive hybrid RANS/LES approach in DES is compared to
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Table 5.5: Description of the computational grids used in predictions for the

flow around a static falt plate held at 45◦ angle of attack.

COARSE FINE1 FINE2

y+min 12.23 0.19 0.17

y+max 127.67 17.28 16.68

No. of Cells 291,328 918,668 2,370,370

∆Vmin 1.65× 10−6 6.03× 10−10 6.03 × 10−10

∆Vmax 1.56× 10−2 1.56× 10−2 1.56 × 10−2

Table 5.6: A summary of computational cases run to compare results from

different grid resolutions and turbulence models for the flow around a static flat

plate at αz = 45◦ in a flow of Uw = 5 m/s.

No Mesh Turbulence

Model

∆t (s) CL (CL)RMS

I COARSE R k − ε 2× 10−2 7.47× 10−1
−

II COARSE R k − ε 1× 10−3 7.47× 10−1
−

III FINE1 R k − ε 2× 10−2 7.55× 10−1 1.3× 10−3

IV COARSE DES 1× 10−3 7.61× 10−1 1.7× 10−2

V FINE1 DES 5× 10−3 8.25× 10−1 2.3× 10−2

VI FINE2 DES 1× 10−2 7.99× 10−1 1.5× 10−2

the URANS approach. Table 5.6 summarises the results from different cases run

for a 45◦ angle of attack with different combinations of turbulence modelling

approach and grid resolution. The lift force time-series for the different cases

are shown in Figure 5.11.

The results were found to be time-step independent as illustrated by URANS

Cases I and II. Results for Cases I and III reveal that for the URANS cases,

using a finer near-wall resolution with a two-layer wall function approach can

result in unsteady flow behaviour and the onset of stable vortex shedding where

a standard wall function with a coarse near wall grid would predict a steady

separated wake. A two-layer wall treatment with a fine near-wall grid spacing

has therefore been recommended. Figure 5.12 shows the velocity profile along a

line normal to each of the the leading and trailing edges in Case I and Case III.
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Figure 5.11: CFD predicted lift time-series for a flat plate at αz = 45◦ in a 5 m/s

stream using different computational grids and turbulence models. A uniform

velocity field of 5 m/s in the along wind direction is used as an initial velocity

condition at t = 0 s.

For Case III with the finer grid, a small recirculation region is observed along the

leading and trailing edges which is not present in the coarse grid Case I solution.

The results reveals that adequate grid resolution at the plate tips is necessary

in order to reproduce the secondary vortices at the side edges that play a role

in the onset of vortex shedding.

Despite being able to predict vortex shedding and wake unsteadiness using UR-

ANS with a finer near-wall grid, as shown in Figure 5.13(a), the leading edge

vortex remains steady and stably attached and as a result only weak force fluc-

tuations associated with shedding of tip and trailing edge vortices are observed.

However, this is not the case with the DES simulations.

Unlike the URANS cases (I - III) where steady force predictions are obtained, in

all the DES cases (IV - VI) an unsteady wake is observed with aperiodic shedding

of tip and trailing edge vortices as well as chaotic instability in the leading edge

vortex (Figure 5.13(b)) that is associated with smaller scale turbulent motions.

Further refinement of the wake region in case VI allowed for the resolution of

smaller scales in the wake but gave no significant improvement in the overall lift

force prediction as shown in Figure 5.11.

The findings of these studies reveal that although coarse URANS does not accur-
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Figure 5.12: Instantaneous profiles of the velocity component parallel to the

plate edge, u∗∗, taken along a line normal to the plate edge and at mid-span. x′

is the normal distance from (a) the trailing edge face (b) the leading edge face.
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Figure 5.13: Instantaneous iso-surfaces of Q-criterion value, Q = 10 s−1, showing

CFD predicted flow structure in the wake of a static flat plate using (a) URANS

and (b) DES to model flow turbulence on the FINE1 mesh.
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ately simulate wake unsteadiness and the resulting small scale force fluctuations

it gives acceptable values of the mean aerodynamic forces acting on the plate at

a low computational cost. Fine grid URANS (y+ ≈ 1) simulation results show

that the URANS wake behaviour is dependant on the near-wall grid resolution

although this has no significant impact on the aerodynamic forces. Even in cases

where unsteady wakes are observed, the resulting force fluctuations in URANS

simulations are weaker than those shown in DES since the very large leading

edge vortex remains steadily attached in all the URANS cases.

DES simulations successfully predicted the small scale wake unsteadiness to-

gether with the associated weak aerodynamic force fluctuations. The DES pre-

dicted mean force values however show only marginal improvements compares

with the URANS predictions and this comes at an increased computational cost

for fine-grid DES simulations. Previous experimental studies for low aspect ra-

tio bluff bodies, which are the focus of this study, reveal that the resulting force

fluctuations due to small scale wake unsteadiness in these cases are expected to

be too weak to cause any significant oscillation (Bearman, 1984). Therefore in

the context of windborne debris flight, there is no practical benefit gained from

being able to accurately predict these weak force fluctuations arising from the

small scale turbulent motion.

Since the computationally low-cost URANS models have been shown to be cap-

able of predicting the mean forces acting on the plate and, as will later be illus-

trated in the rotational cases, of re-producing the large scale wake unsteadiness

when it occurs, these models have been preferred for the rest of the simulations

presented in this thesis. Adopting these URANS models allowed for the fairly

rapid computation of an accurate solution to the aerodynamic forces acting on

a piece of debris. This feature is central to the study of windborne debris flight

where several flight simulations would be required to develop a database for

debris risk analysis.

Although the numerical error introduced by ignoring the weak small scale force

fluctuations is assumed to be acceptable based on previous experimental find-

ings (Bearman, 1984), these experiments were focused largely on static plates.

LES studies of plate autorotation are therefore recommended in order to verify

this assumption and to further quantify the numerical improvements that are

obtainable from using a more computationally intensive LES simulation of the
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flow around a rotating plate.

5.3 Simulating Forced Rotation

The CFD model has been used to investigate the aerodynamics of rotating plates,

which is central to plate type windborne debris flight behaviour. The computa-

tional domain used for the 3D static plate cases and shown in Figure 5.6 is used.

The plate is rotated at a constant angular speeds, ωz, ranging from 0.0873 rad/s

to 10.0 rad/s, about the Z-axis, which is a fixed horizontal axis perpendicular to

the flow and corresponding to the plate’s centroidal axis. In these forced rotation

simulations, rotations about the Z-axis are taken to be anti-clockwise positive,

according to the right-hand rule as illustrated in Figure 2.1. To achieve plate

rotation, the inner spherical grid region containing the plate’s wall boundaries

is rotated at the prescribed angular speed while keeping the outer region fixed.

The two mesh regions are connected using a non-conformal grid interface and the

rest of the domain boundary conditions are similar to the 3D static plate setup

described in Section 5.2. The Arbitrary Lagrangian-Eulerian formulation of the

Navier-Stokes equations, described in Section B, is solved to obtain the unsteady

velocity and pressure flow field around the rotating plate. Aerodynamic forces

acting on the plate are also computed from wall pressure and skin friction values.

In all the simulations, a uniform inflow speed of Uw = 5 m/s is used with low

turbulence intensity and length scale values similar to the static plate 3D cases.

The Realisable k−ε turbulence model is used with a two-layer near wall spacing

and the coarse grid containing approximately 290,000 computational cells.

Table 5.7 summarises the key results for all the forced rotation simulations per-

formed. The “avg” subscript denotes a time-averaged force coefficient while

the “rms” subscript denotes the root mean square (RMS). Figure 5.14 shows

force and torque coefficients, plotted against non-dimensionalised time t̄ = t/To,

where To = 2π/ω, for different rotational speeds. The mean and peak aerody-

namic force coefficients are shown to vary with non-dimensionalised rotational

speed, ω̄ = ωL/U . As clearly illustrated in Figure 5.15, the mean and RMS

of aerodynamic drag have an inverse exponential relationship with rotational

speed, up to ω ≈ 1.0, beyond which further increase in rotational speed has no

significant effect. The mean and RMS aerodynamic lift show a power law rela-

tionship with rotational speed, while the aerodynamic torque shows a complex



CHAPTER 5. STATIC AND ROTATING PLATE SIMULATIONS 115

Table 5.7: A summary of forced rotation simulations and the resulting aerody-

namic forces.

Case No I II III IV V VI VII VIII IX

ω (rad/s) 0.087 0.175 0.349 0.698 1.396 2.793 5.0 5.236 10.0

ω = ωL
Uw

0.018 0.035 0.07 0.14 0.28 0.559 1.0 1.047 2.0

(CD)avg 0.771 0.789 0.865 0.970 1.096 1.258 1.331 1.329 1.357

(CD)rms 0.891 0.936 1.054 1.211 1.392 1.607 1.759 1.765 1.808

(CL)avg -0.123 -0.165 -0.227 -0.278 -0.373 -0.473 -0.627 -0.640 -0.747

(CL)rms 0.632 0.661 0.713 0.778 0.867 1.011 1.093 1.100 1.240

(CM )avg 0.012 0.016 0.023 0.030 0.041 0.023 -0.036 -0.044 -0.226

(CM )rms 0.080 0.087 0.101 0.120 0.125 0.130 0.130 0.131 0.295

exponential-power law relationship.

Based on these results, appropriate fit expressions for mean and RMS of the

aerodynamic coefficients have been derived for 0 ≤ |ω| ≤ 2.0 as,

(CD)avg = c− a exp (−bx),RMSE = 8× 10−3, (5.8)

where a = 0.6211, b = 3.27 and c = 1.354,

(CD)rms = c− a exp (−bx),RMSE = 1.82 × 10−2, (5.9)

where a = 0.9472, b = 3.049 and c = 1.802,

(CL)avg = axb + c; ,RMSE = 1.98 × 10−2, (5.10)

where a = −0.6723, b = 0.3164 and c = 0.06843,

(CL)rms = axb + c; ,RMSE = 1.52 × 10−2, (5.11)

where a = 0.6644, b = 0.3055 and c = 0.4266,

(CM )avg = a exp (−bx) + c exp (−dx) + exf ,RMSE = 5.24 × 10−3, (5.12)

where a = −4.831, b = 2.85, c = 4.837, d = 2.779, e = −0.06257 and f = 1.86,

(CM )rms = a exp(bx)+c exp(dx) +e exp(fx)+gxh,RMSE = 2.24 × 10−2, (5.13)

where a = 6.929, b = 0.3161, c = −6.63, d = −0.611, e = −0.2188, f = −11.13, g =

−5.781 and h = 0.8997.
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Figure 5.14: (a) Drag, (b) lift and (c) torque coefficients for a 1 m square flat

plate rotating at various constant speeds in a uniform wind stream of 5 m/s.
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Figure 5.15: CFD predictions and data fit expressions for (a) Mean, and (b)

RMS of drag, lift and moment coefficients of a rotating plate as a function of

rotational speed. The (⋆) points indicate mean and RMS results for a forced

rotations simulations performed at the plate’s expected mean autorotational

speed, ω = 0.75.



CHAPTER 5. STATIC AND ROTATING PLATE SIMULATIONS 118

These fit expressions would be useful for quasi-steady force predictions in ana-

lytical models of windborne debris flight. The fluctuations of aerodynamic force

about the mean are shown to be significantly different to those of static plates

and dependant on the rotational speed. The direct implication of this finding is

that the quasi-steady force assumption made by Tachikawa (1983) and expressed

in (2.19) is incorrect. Existing quasi-steady models for windborne debris flight

can therefore be improved by incorporating the expressions for aerodynamic

force fluctuations presented.

Based on the results of the simulations, three distinct types of motion may

be derived depending on rotational speed: pre-autorotational with ω̄ < 0.75,

autorotational with ω̄ ≈ 0.75 and post-autorotational with ω̄ > 0.75. In the

pre-autorotational cases, the aerodynamic torque acting on the plate is posit-

ive and supporting plate rotation creating an accelerating effect, while in the

post-autorotational cases the aerodynamic torque is negative and opposes plate

rotation resulting in an aerodynamic damping effect. The point of stable autoro-

tational motion is the point at which the mean aerodynamic torque acting on

the plate is zero and the predicted value of ω̄ ≈ 0.75 is noted to be consistent

with empirical predictions represented by Iversen (1979) in expressions (2.7) -

(2.9).

During debris flight, where no external driving torque is present, plates are

expected to fly at this stable auto-rotational speed, with strong aerodynamic

damping limiting the plate’s rotational speed beyond this point. As a result of

this aerodynamic damping effect, very large rotational speeds |ω| ≫ 1.0 are not

expected in free-flying plates. None-the-less, since these fit expressions have not

been investigated in the asymptotic limit, caution should be taken in applying

them in cases with |ω| > 2.0.

The following section discusses some of the key findings with regards to the flow

structures around rotating flat plates in different modes of motion, in order to

better understand the mechanisms creating the aerodynamic acceleration and

damping that make stable autorotation possible.

5.3.1 Flow Around Rotating Plates

As previously discussed in Section 2.3.2.1, the nature and origins of the aero-

dynamic damping effect present in plate autorotation have been attributed to
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the complex interaction between a rotating plate and the flow structures in its

wake. This FSI phenomena has so far not been fully understood. Based on the

flow predictions from URANS CFD simulations of rotating plates, an analysis

of the evolution of flow structures in the wake of a rotating plates is presented

and used to identify the source of the aerodynamic acceleration and damping

effects.

To achieve this, a comparison is made of the flow around plates in the pre-

autorotational and post-autorotational range, while the flow around autorotating

plates is itself discussed later in Section 5.5. The behaviour of plate with speeds

in the pre-autorotational range is illustrated by results of the ω = 0.28 case, while

for the plates with speeds in the post-autorotational range, results of ω = 1.0

and ω = 2.0 are presented.

Contours of Q-value on a vertical plane through the centre of the plate are used

to identify the coherent structures in the flow and their time evolution. These

contours are taken at 10◦ intervals of instantaneous angles of attack in a typical

180◦ cycle and are presented in Figures 5.16 - 5.18 for the pre-autorotational

speeds and Figures 5.19 - 5.21 for the post-autorotational speeds.

The main flow structures in the wake of the flow are hair-pin vortices shed from

the leading and trailing edges as the result of an interaction between the tip

vortices and the leading and trailing edge vortices similar to observations in static

plate cases. In both the pre- and post-autorotational cases, vortex shedding is

dependant on the rotational frequency of the plate with two hair-pin vortices

shed in a complete 180◦ cycle. For purposes of clarity, it is important to note

that in a rotating plate, the leading and trailing edges may either be advancing

towards the oncoming flow or retreating towards the wake at different points

in the rotational cycle. A distinction has therefore be made between, what is

referred to as the retreating leading edge and the advancing leading edge, as well

as between the retreating and advancing trailing edges, all of which represent

different key stages in the rotation of the plate.

For the pre-autorotational case, ω = 0.28, at αz ≈ 0◦ (Figure 5.16(a)) the

leading edge is retreating while the trailing edge is advancing. The flow around

the plate is streamlined at these very low angles of attack, with no coherent

vortex structures attached to the plate. At these very low angles of attack,

the mean and RMS of aerodynamic forces have been found to exhibit a weak
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Figure 5.16: Q-value contours on a vertical plane through the centre of a pre-autorotating plate of dimensionless rotational speed

ω = 0.28. Contours are taken at instantaneous angles of attack of (a) 0◦, (b) -20◦ and (c) -40◦.
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Figure 5.17: Q-value contours on a vertical plane through the centre of a pre-autorotating plate of dimensionless rotational speed

ω = 0.28. Contours are taken at instantaneous angles of attack of (a) -60◦, (b) -80◦ and (c) -100◦.
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Figure 5.18: Q-value contours on a vertical plane through the centre of a pre-autorotating plate of dimensionless rotational speed

ω = 0.28. Contours are taken at instantaneous angles of attack of (a) -120◦, (b) -140◦ and (c) -160◦.
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Figure 5.19: Q-value contours on a vertical plane through the centre of a post-autorotating plate of dimensionless rotational speed

ω = 2.0. Contours are taken at instantaneous angles of attack of (a) 0◦, (b) -20◦ and (c) -40◦.
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Figure 5.20: Q-value contours on a vertical plane through the centre of a post-autorotating plate of dimensionless rotational speed

ω = 2.0. Contours are taken at instantaneous angles of attack of (a) -60◦, (b) -80◦ and (c) -100◦.
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Figure 5.21: Q-value contours on a vertical plane through the centre of a post-autorotating plate of dimensionless rotational speed

ω = 2.0. Contours are taken at instantaneous angles of attack of (a) -120◦, (b) -140◦ and (c) -160◦.
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sensitivity to rotational speed. As the angle of attack increases (in the negative

sense due to anti-clockwise rotations), a leading edge vortex begins to form at

the retreating leading edge as illustrated by the high Q-value at this edge in

Figures 5.16(b) - 5.17(a). A vortex sheet also forms at the advancing trailing

edge and is visible at the top edge in Figures 5.16 - 5.18. Large tip vortices,

which increase in size with increasing angle of attack, also form at the plate’s

side edges and these are illustrated using helicity iso-surfaces shown in Figure

5.22 for αz ≈ 90◦. These large tip vortices manifest as long vorticity streaks on

the mid-plane at higher angles of attack as seen in Figures 5.17(b) - 5.18(a).

The vortex at the retreating leading edge (bottom edge of Figures 5.16 - 5.18)

remains stably attached for the first part of the cycle and grows in size, with

increasing angle of attack up to the αz ≈ −90◦ position where it is shed into

the wake, interacting with the tip vortices from the side edges of the plate to

form a hair-pin vortex. The negative pressure associated with the core of this

stably attached leading edge vortex is responsible for the net positive aerody-

namic torque experienced by plates with pre-autorotational speed. Figure 5.23

illustrates the pressure field around the pre-autorotating plate at approximately

0◦ and −30◦ angles of attack.

At αz ≈ −90◦, the plate is normal to the flow with no leading or trailing edge.

Beyond this point, what was previously the advancing trailing edge becomes the

advancing leading edge and a vortex sheet at this edge begins to curl-up into a

leading edge vortex at the advancing edge (Figure 5.19(c)). Unlike the retreating

leading edge vortex, this advancing leading edge vortex is not stably attached

to the plate and is quickly shed into the wake to form a second hair-pin vortex.

Similar flow structures are observed for the post-autorotational plates as shown

in Figures 5.19 - 5.21 for a plate rotating at ω = 2.0. However, there are a number

of key differences. Firstly, while a phase-lag of ≈ 40◦ exists between the shedding

of the retreating edge vortex and the shedding of the advancing edge vortex in

pre-autorotational cases, the two vortices are shed almost simultaneously in the

post-autorotational cases. In addition, the formation of the stably attached

retreating edge vortex commences at a much higher angle of attack in post-

autorotational cases, and remains attached over a shorter range of angles. The

strength of the swirling flow associated with this retreating edge vortex is also

lower than in pre-autorotational cases, possibly due to the lower relative wind
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(a) (b)

Figure 5.22: Iso-surfaces of positive and negative helicity showing the two

counter-rotating tip vortices as regions of high helicity near the advancing edge

for a plate rotating with ω = 0.28. (a) Plan view and (b) side view.

(a) (b)

Figure 5.23: CFD predicted pressure field around a rotating plate with ω = 0.28

at (a) αz ≈ 0◦, and (b) αz ≈ 30◦.
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speed between the plate’s retreating edge and the mean flow. Conversely, the

strength of the advancing edge vortex would be higher for larger plate rotational

speeds due to a higher relative wind speed. All these factors would result in a

lower magnitude of aerodynamic accelerating torque in post-autorotating plates.

The second critical difference between the two modes of motion is that while

in pre-autorotational cases, the tip vortices are only present in the wake face

of the plate, concentrated near the advancing edge (Figure 5.22), in the post-

autorotational cases, two additional tip vortices exist at the front of the plate,

concentrated at the retreating edge as shown in Figure 5.24. These tip vortices

have a complex interaction with the retreating edge vortex that is shed, forming

a large hair-pin vortex attached to the plate. As a result, large negative pressures

are observed at the front of the plate, concentrated near the retreating edge as

shown in Figure 5.25. It is these negative pressures associated with the hair-pin

vortex attached to the front of the plate that creates the large negative torque

associated with aerodynamic damping at post-autorotational speeds.

The merging of the shed retreating edge vortex with the tip vortices at the front

face in post-autorotational cases is partly facilitated by the slower advection of

the shed retreating edge vortex away from the plate tip, as shown Figure 5.19(c),

which is the result of a low relative wind speed between the plate tip and the

mean free-stream flow. In the case of post-autorotational plates with ω = 2.0, at

the αz ≈ 90◦ position, a relative wind speed (Uw −ωL/2) of approximately zero

would be expected meaning that the shed vortices would be almost stationary

relative to the plate-tip resulting into a strong interaction with the front face of

the plate.

Based on these findings, it may be concluded that the aerodynamic behaviour

of rotating plates is strongly dependant on the interaction of the plate with the

flow-structures in its wake. This interaction creates regions of accelerating and

decelerating aerodynamic torque as well as a stable point of autorotation at

which plates would be expected to autorotate if there were no external torque.

The findings are therefore similar to observations by Riabouchinsky (1935) for a

Lancaster propeller’s autorotation parallel to the flow (Section 2.3.1). The res-

ults are expected to be dependant on aspect ratio, with high aspect ratio plates

which have less prominent tip vortices exhibiting different behaviour from the

square plates considered in this study. Additional studies to assess the sensit-
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(a) (b)

Figure 5.24: Iso-surfaces of Q = 10 showing showing flow structures in the wake

and at the front face, near the retreating trailing edge, of a post-autorotational

plate with ω = 2.0. (a) Side view and (b) Isometric view.

ivity of the coherent flow structures observed to turbulence modelling approach

are also recommended.

5.4 Flat Plate Autorotation Model

A theoretical background of plate autorotation has already been presented in

Section 2.3 along with a discussion of previous work on CFD modelling of plate

autorotation in Section 2.3.3. This section describes the CFD-RBD model used

for the simulation of 3D low aspect ratio plate autorotation as part of this re-

search. The CFD-RBD coupling approach is described followed by a description

of sub-models for additional phenomena such as bearing friction and mass ec-

centricity which played an important role in the experimental setup. The model

is subsequently applied to simulate fixed-axis autorotation in Section 5.5, as well

as the more general free-axis autorotation in Section 5.6.

5.4.1 CFD-RBD Coupling

In order to simulate plate autorotation, the 3D CFD model previously described

has been sequentially coupled with the 6DOF rigid body dynamics model de-

scribed in Section 4. Figure 5.26 illustrates the two-way sequential coupling

approach used. ANSYS FLUENT (FLUENT Inc., 2009) is used as the 3D UR-

ANS solver while the RBD model is implemented as a user-defined-function code
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(a) (b)

Figure 5.25: CFD predicted pressure field at the centre plane of a rotating plate

with ω = 2.0 at instantaneous angles of attack of (a) αz ≈ 0◦, and (b) αz ≈ 30◦.

written in the C programming language.

For fixed axis autorotation cases, the 6DOF model is reduced to a 1DOF model

by constraining motion of the plate in all three translational degrees of freedom

and two rotational degrees of freedom. Similarly, for free-axis autorotation only

the three translational degrees of freedom are constrained, resulting in a three

rotational degrees of freedom system.

Aerodynamic forces acting on the plate are computed from the face pressure and

skin friction from the CFD solution and used to compute the aerodynamic torque

about the plate’s geometric centre. The computed translational and rotational

speeds of the mesh are then used to specify the instantaneous mesh velocity in

the CFD model. This two-way coupling allows for an accurate representation of

the non-linear FSI involved in plate autorotation and free-flight.

5.4.2 Additional Sub-models

5.4.2.1 Mass-Eccentricity

The term “mass eccentricity” is used to refer to the offset of the plate’s centre

of mass from the geometric centre of the plate. In most practical configurations,

the axis of rotation corresponding to the plate’s geometric centre-line does not

run through the plate’s centre of mass, generating an additional torque. A mass

eccentricity model is incorporated in order to account for the effects of this

additional eccentricity torque on the rotational motion of the plate.

Assuming a mass eccentricity error, e, during autorotation the plate would ex-

perience an additional torque, Te, about its geometric centre line given by
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Figure 5.26: A schematic of the CFD-RBD sequential coupling algorithm.

Te = mge sin φ, (5.14)

where m is the mass of the plate, g is gravitational acceleration, and φ is the

angular rotation of the plate about the Z-axis. In addition, using the parallel-

axis theory, the mass moment of inertia of the ideal plate, Izz, would be corrected

according to

I∗zz = Izz +me2, (5.15)

where I∗zz is the corrected mass moment of inertia of the plate about the rotation

axis.

The model used in this thesis is constructed based on an assumption that in the

experimental setup of the plate, small errors of up to 5% of the plate’s length

may occur while positioning the plate’s centre of mass. Such errors would be

expected due to the complexity of the data acquisition and plate mounting and

support system used (Martinez-Vazquez et al., 2010). For a valid comparison

of experimental and CFD-RBD results to be made, the effect of these errors

would have to be allowed for. However, as the exact value of the eccentricity is
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Figure 5.27: Roller bearing unit added to the experimental plate support frame

to reduce bearing friction during autorotation (Martinez-Vazquez et al., 2010).

not known, a calibration approach has been adopted and is described in Section

5.5.3.3.

5.4.2.2 Bearing Friction

Previous experimental studies of plate autorotation (Iversen, 1979; Martinez-

Vazquez et al., 2010) have indicated a significant contribution of bearing friction

to the autorotational results. A bearing friction sub-model was therefore in-

cluded in the RBD code to account for the contribution of bearing friction to

the total torque.

A friction torque, Tfric is included in addition to the aerodynamic torque com-

puted from the CFD model and the mass eccentricity torque. Roller bearings

were considered, although the experimental bearing system as shown in Figure

5.27 is more accurately described as a lubricated steel on steel bearing connec-

tion.

The friction torque due to each bearing is then computed as

Tfric =

( −ω
| ω |

)
(0.5µrd)

√
(mg − L)2 +D2, (5.16)

where mg is the weight of the plate, L is the aerodynamic lift force, D is the

aerodynamic drag force, ω is the rotational speed about the axis of rotation, d

is the bore diameter of the bearing block which is approximately 0.025 m, and

µr is the rolling friction coefficient of the bearing block. The friction torque
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Table 5.8: Bearing friction coefficients for various types of bearings (SKF, 2010).

Bearing Type Coefficient of Friction

Deep groove ball bearings 1.5 × 10−3

Cylindrical roller bearings 1.1× 10−3 to 2.0× 10−3

Needle roller bearings 2.5 × 10−3

Steel on Steel roller connection 5.0 × 10−3

is pre-multiplied by (−ω
|ω| ) so as to ensure that it always acts in the direction

opposite to the plate’s instantaneous direction of rotation. The bearing friction

coefficients were estimated from a bearing manufacturer catalogue (SKF, 2010),

which gives values for different roller bearing types as shown in Table 5.8.

5.5 Simulating Fixed-axis Autorotation

In the fixed-axis autorotation model, a square flat plate of mass (M) 2.7 kg, side

length (L) 1 m and 0.025 m thickness (h) is used, with initial angles of attack

ranging from 10◦ to 15◦. Three main autorotation cases have been run with

mean wind speeds, Uw, of 5 m/s, 7.5 m/s and 10.0 m/s.

Two different computational domain set-ups have been considered. The first is

a control set-up referred to as the “cuboid” domain, which uses the symmetric

computational grid and boundary conditions described in Figure 5.6 for the

static 3D cases. In simulations using this domain, no mass eccentricity or bearing

friction models are used.

The second computational set-up shown in Figure 5.28 is referred to as the

“Auckland” domain and corresponds to the experimental set-up by Martinez-

Vazquez et al. (2010) in the open section wind tunnel at the University of Auck-

land. Results from this computational domain were used in the CFD-RBD

validation.

The Auckland domain inlet is modelled as a constant velocity boundary while the

outlets were modelled as constant pressure boundaries. At the inlet, 1% turbu-

lence intensity and 0.02 m turbulence length scale are specified, corresponding

to typical low turbulence wind tunnel values from ESDU (1970). Altogether

three outlet boundaries are defined, corresponding to both side walls and the far

section of the top boundary. The inlet is a 3.5L square section while the test
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Figure 5.28: New CFD computational domain intended to reproduce experi-

mental setup in experiments by Martinez-Vazquez et al. (2010).

section is 15L× 7L× 3.5L. The plate’s axis of rotation is 5L from the inlet and

1.2L from the bottom wall. The top wall stretched for 8L from the inlet before

giving way to the top outflow boundary.

As in the Cuboid domain, the Auckland domain is split into two mesh regions, a

spherical inner region that is free to rotate and contains the plate wall boundar-

ies, and an outer region that is kept stationary. The two regions are connected

through a non-conformal sliding mesh interface (FLUENT Inc., 2009). The Real-

izable k− ǫ turbulence model (Shih et al., 1995) is used for turbulence modelling

with an enhanced wall function.

The domain is discretised using a structured hexahedral mesh of 291,000 cells,

with mesh refinement close to the plate wall boundary, such that the first layer

of cells close to the plate has a cell spacing of approximately 0.01 m with a cell

size growth ratio of approximately 1.2 away from the wall boundary. Figure 5.29

shows a vertical cross sections through the computational grid.

In both the CFD and experimental cases, the plate, which is initially held static

relative to the flow at a low initial angle of attack, is released and accelerates

from rest up to a stable mean autorotational speed, with periodic fluctuations

about this mean. The results are discussed in the following section.

It should be noted that unlike forced rotation and free-axis autorotation simu-
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Figure 5.29: A vertical section through the Auckland computational grid showing

mesh resolution close to the plate wall boundary.

Figure 5.30: The clockwise-positive rotational convention used in the autorota-

tional cases.

lations where a conventional right hand rule has been used to represent torque

and rotational speed as positive in the anti-clockwise direction (Figure 2.1), for

purposes of remaining consistent with existing literature and experimental res-

ults, the fixed-axis autorotation results presented in this section (section 5.5) use

a clockwise positive convention for rotation and torque as illustrated in Figure

5.30.

5.5.1 Simulation Results

The six main fixed-axis autorotation cases discussed are listed in Table 5.9. Cases

I-III use the Cuboid domain with no mass eccentricity applied, while cases IV

to VI use the Auckland domain and simulations have been performed with a
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mass eccentricity of 0.03 m applied. The eccentricity value used is not based on

physical measurements which were difficult to obtain but has been chosen using

a calibration approach discussed in Section 5.5.3, with the only constraint being

that the error should reasonably be no more than 5% of the plate’s length.

A segment of the CFD-RBD time-series for autorotation speeds in cases IV to

VI, together with corresponding experimental measurements using a gyroscope

(Martinez-Vazquez et al., 2010) are presented in Figure 5.31. Similarly Figure

5.32(a) shows rotational speed predictions for the cuboid domain cases I to III

while Figure 5.32(b) - (d) show the associated aerodynamic forces and torque.

Table 5.10 summarises the CFD and experimental results for mean and RMS

rotational speed (shown in parentheses). The cuboid domain CFD predictions

for mean autorotational speed, CFDCuboid, are in agreement with the values

from empirical fit expressions by Iversen (1979), ExptIversen. However, there is

relatively poor agreement with recent measurements by Martinez-Vazquez et al.

(2010), ExptMartinez−Vazquez, although the CFDAuckland results which used a set-

up that more closely matched the experiment, showed better agreement. The

difference between CFDCuboid and CFDAuckland are attributed to mass eccentri-

city error, bearing friction and local blockage effects which are absent from the

CFDCuboid cases. Sensitivity studies were performed for these factors and are

discussed in more detail in Section 5.5.3.

Overall, the CFD-RBD model provided an accurate qualitative and quantitative

representation of the behaviour of autorotating plates. The onset of autorotation

was found to be sensitive to initial angle of attack and the plate’s mass moment

of inertia. For a given mass moment of inertia, plates starting from a lower

initial angle of attack were more likely to autorotate, while for the same initial

angle of attack, plates with a higher mass moment of inertia were more likely

to autorotate. This sensitivity is due to the existence of both retarding and

accelerating stages in a complete rotational cycle as illustrated in Figure 5.32(d)

which shows typical aerodynamic torque predictions from the CFDCuboid cases.

In order for a plate to enter into autorotation, it must gain sufficient inertia

during the positive torque half-period to overcome the negative torque in the

retarding half-period as previously discussed in Section 2.3.2.
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Table 5.9: List of different simulations run for fixed-axis autorotation.

No Domain Uw (m/s) e/L (%)

I Cuboid 5.0 0.0%

II Cuboid 7.5 0.0%

III Cuboid 10.0 0.0%

IV Auckland 5.0 3.0%

V Auckland 7.5 3.0%

VI Auckland 10.0 3.0%
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Figure 5.31: Auckland domain CFD-RBD predictions and experimental gyro-

scope measurements of rotational speed for a 1 m square flat plate in a uniform

wind stream of (a) 5.0 m/s, (b) 7.5 m/s and (c) 10.0 m/s
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Figure 5.32: CFD-RBD Cuboid domain results for (a) rotational speed, (b) drag

coefficient, (c) lift coefficient and (d) moment coefficient of an autorotating plate

in uniform flow of different mean wind speed.

Table 5.10: Comparison of CFD predictions for average and RMS (in paren-

theses) of the dimensionless autorotation speeds, ω,together with corresponding

experimental measurements from (Martinez-Vazquez et al., 2010), and values

from empirical expressions by (Iversen, 1979).

Uw (m/s) CFDCuboid CFDAuckland ExptMartinez−Vazquez ExptIversen

5.0 0.69(0.71) 0.54(0.59) 0.62(0.64) 0.70(-)

7.5 0.66(0.68) 0.60(0.63) 0.63(0.66) 0.70(-)

10.0 0.69(0.71) 0.59(0.62) 0.57(0.60) 0.70(-)
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5.5.2 Frequency Filtering of Experimental Signal

Prior to the validation of aerodynamic torque predictions, frequency filtering of

the raw experimental measurements of aerodynamic torque (Martinez-Vazquez

et al., 2010) has been performed in order to eliminate experimental noise.

A Discrete Fourier Transform (DFT) algorithm based on Frigo and Johnson

(1998) is used to compute the frequency domain representation of the experi-

mentally generated time-series. Frequency filtering is performed and the signal

is then re-constructed as a complex-periodic signal using only the dominant

harmonic frequencies. For a signal x(t) containing a sequence {xn} of uniformly

spaced time measurements of non-dimensionalised aerodynamic torque, CM , the

exact equivalent of a discrete Fourier Transform, Xk, is computed as

Xk =

N−1∑

n=0

xne
−i2πkn\N . . . k = 0, 1, 2, . . . (N − 1), (5.17)

where N is the number of elements in the raw signal sequence. The raw experi-

mental signal is first de-trended in order to remove any linear static components

such as those due to average autorotational lift. Figure 5.33 shows a 10 s segment

of the raw experimental CM time-signal.

Frequency (f), amplitude (A) and phase information (φ) are then obtained from

the DFT, Xk, according to

fi =
i

N∆t
, . . . i = 0, 1, 2, . . . , (N − 1), (5.18)

Ai =
2(abs(Xk(i))

N
, . . . i = 0, 1, 2, . . . , (N − 1), (5.19)

φi = arg(Xk(i)), . . . i = 0, 1, 2, . . . , (N − 1). (5.20)

The frequency-amplitude signal generated from the raw experimental data, shown

in Figure 5.34, shows that the raw signal is predominantly complex-periodic, con-

sisting of five major harmonics whose frequencies are all integral multiples of the

first harmonic frequency, f1 = 0.42. Table 5.11 shows the amplitude, frequency

and phase information for the harmonics.

Using the harmonic frequencies and their corresponding amplitude and phase in-

formation, a sine-wave reconstruction of the original signal is computed. Given

n number of harmonics, each with a frequency, fi, that has a corresponding amp-
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Table 5.11: Frequency, Amplitude and Phase information computed for the five

major harmonic frequencies of the raw experimental data.

Harmonic Name F1 F2 F3 F4 F5

Frequency (Hz) 0.42 0.84 1.26 1.68 2.10

Amplitude 0.031 0.09 0.032 0.018 0.018

Phase -87 -154 -226 -298 -360

litude Ai, and phase φi, the filtered time-series y was computed as a combination

of n sine waves according to:

y =
n∑

i=1

Ai sin(2πfit+ φi) . . . i = 0, 1, 2, . . . , n, (5.21)

where t is the time and number of sine waves, n = 5. Figure 5.33 shows a segment

of the raw experimental signal together with a complex periodic reconstruction

of the signal using frequency and amplitude data from Table 5.11 to create the

new filtered signal. Figure 5.34 shows the good agreement between the frequency

representations of the raw experimental time signal and the reconstructed time

signal. This reconstructed time signal of the experimental CM data is taken as

a sufficiently accurate representative of the experimental results and is used in

the subsequent validation of the CFD-RBD torque predictions.

5.5.3 CFD Aerodynamic Torque Validation

Using the filtered experimental time signal, the CFD-RBD computed aerody-

namic torque is validated. Initial results for cases I to III, using the cuboid

domain are illustrated in Figures 5.35 and 5.36, which show the CFD-RBD pre-

dictions and experimental measurements for aerodynamic torque.

As shown in Figure 5.36, the cuboid domain CFD predicts a complex periodic

signal with only two harmonic frequencies. The first harmonic frequency corres-

ponds to twice the rotational frequency of the plate (i.e. the time taken to com-

plete a full 180◦ cycle) and may therefore be associated with periodic variations

in aerodynamic torque due to changing angle of attack and vortex shedding. The

second harmonic, with a frequency value of twice the first harmonic frequency,

may be associated with non-linear effects due to asymmetry/hysterisis in the

aerodynamic torque signal arising from delayed reattachment of flow when the

angle of attack is decreasing as described in Smith (1971) and Richards et al.
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Figure 5.33: Raw and frequency filtered experimental time signals for moment

coefficient (CM).
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Figure 5.34: Frequency domain representations of raw and reconstructed time

series of experimental moment coefficient (CM).
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(2008). This alternation between increasing and decreasing angle of attack would

be observed in every 90◦ cycle.

However significant differences do exist between the CFD signal and the filtered

experimental signal when compared in both frequency and time domains. The

filtered signal has three additional harmonics in the frequency domain that are

likely associated with physical mechanisms present in the experimental setup

which are not represented in the cuboid domain CFD-RBD setup. Sections

5.5.3.1 to 5.5.3.3 discuss the possible additional mechanisms in the experimental

setup.

5.5.3.1 Domain Blockage Effects

In the Auckland experimental setup, the plate was supported so that it’s axis of

rotation was closer to the ground than the top wall of the wind tunnel (Martinez-

Vazquez et al., 2010). A blockage effect is therefore likely due to the interaction

of the plate with the flow between the plate-tip and the floor.

Simulations using the Auckland domain, which more closely matches the ex-

perimental setup were preformed with no eccentricity or bearing friction. The

results in Figures 5.38 and 5.37 show a frequency shift on the plate’s rotational

speed relative to the symmetric cuboid in which no blockage effects were present.

Although the domain asymmetry does not account for the additional harmonics,

the results indicate that it does have a significant effect on the aerodynamic

torque and rotational speed of the plate. This blockage effect therefore explains

some of the differences in rotational speed between the cuboid domain CFD

results and experimental measurements.

5.5.3.2 Bearing Friction

In addition, friction between the plate mounting cage and the support at the

bearings could introduce a retarding torque on the plate, and this would influ-

ence the dynamics of the plate. A number of authors such as Iversen (1979)

and Martinez-Vazquez et al. (2010) have suggested bearing friction as the likely

explanation for the complex periodic nature of the experimental signal. To in-

vestigate this, an additional friction sub-model was added to the rigid body

dynamics code as described in section 5.4.2. However for expected bearing fric-

tion coefficients within the range of values previously presented in Table 5.8, the

effect of bearing friction torque was found to be negligible.
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Figure 5.35: Time series of CFD computed moment coefficient for autorotation

in a cuboid domain and filtered experimental moment coefficients.
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Figure 5.36: Frequency domain representations of CFD computed moment coef-

ficient for autorotation in a cuboid domain and filtered experimental moment

coefficients.
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Figure 5.37: Time series of CFD computed moment coefficient for different do-

main configurations.
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Figure 5.38: Frequency domain representation of CFD computed aerodynamic

torque from a perfectly symmetrical low blockage domain (cuboid) and an asym-

metric configuration similar to the experimental setup (Auckland).
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Findings from existing literature also suggest that bearing friction is unlikely to

cause a dual periodicity as other experimental studies of high aspect ratio free-

falling plates (Hirata et al., 2009; Andersen et al., 2005) report a similar dual

periodicity about both 180◦ and 360◦. In these free-fall experiments however,

there is no bearing friction and yet a dual periodicity is still observed in both

low and high mass moment of inertia plates. Hirata et al. (2009) and Andersen

et al. (2005) further found that although present in all plates, the 360◦ periodicity

became more pronounced as the mass moment of inertia decreased. No detailed

explanations for this phenomena have been given, however based on the results

of this research, the mass eccentricity has been concluded to offer a possible

explanation.

5.5.3.3 Mass Eccentricity

The effect of mass eccentricity on the aerodynamic behaviour of autorotating

plate was investigated by performing simulations using the mass eccentricity

torque sub-model described in Section 5.4.2. Figures 5.40 and 5.39 show the

frequency and time-series representations of experimental data and CFD-RBD

models for various eccentricity values.

The results revealed that the mass eccentricity has the effect of accelerating

the motion of the plate in one half of the cycle (90◦ ≤ αz ≤ 270◦), followed

by a deceleration in the second half of the cycle. However, if the value of the

mass eccentricity is too high, as in the 0.04 m case, the eccentricity torque has

the overall effect of preventing plate autorotation. Lower mass eccentricities of

0.02 m and 0.03 m however resulted in stable autorotation cycles, with three

additional harmonic frequencies observed in the Figure 5.40. The additional

harmonics observed in the mass eccentricity cases are be associated with the

acceleration and deceleration effects of the eccentricity torque.

Both frequency and time domain results for aerodynamic torque in the 0.02 m

and 0.03 m cases were found to compare well with the experimental results, with

the 3 cm case offering the closest match both in terms of harmonic frequency

values and number of harmonics. Results are sensitive to mass eccentricity

changes of as little as 1% of plate length.

Mass eccentricity appears to offer the best explanation to the experimental ob-

servations presented in Martinez-Vazquez et al. (2010) and together with the



CHAPTER 5. STATIC AND ROTATING PLATE SIMULATIONS 146

58 59 60 61 62 63 64 65 66 67 68

−0.2

−0.1

0

0.1

0.2

0.3

t (s)

C
M

 

 

Expt Ecc=2cm Ecc=3cm Ecc=4cm

Figure 5.39: Time series of CFD computed moment coefficient for different values

of mass eccentricity.
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Figure 5.40: Frequency domain representation of CFD computed aerodynamic

torque for various mass eccentricity values.
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domain blockage effect, accounts for most of the difference between the compu-

tational and experimental results. The CFD-RBD modelling approach together

with the additional sub-models has been shown to adequately represent the non-

linear FSI that governs the motion of autorotating and free-falling plates.

In order to improve accuracy of the results, further investigations are required

in order to more accurately determine the exact value of aerodynamic torque,

which results indicate should lie between 0.03 m and 0.04 m.

5.5.4 Surface Pressure Distribution

During the autorotation experiments by Martinez-Vazquez et al. (2010), in addi-

tion to the gyroscope and data loggers, 24 surface pressure taps were embedded

within the plate. Each pressure tap measured the instantaneous differential (net)

pressure between a point at the front of the plate and another point at the same

geometric location on the rear of the plate. Using these differential pressure

measurements, the distribution of net pressure on the plate could be determined

and has been used to provide further validation of the CFD-RBD model. Figure

5.41 illustrates the pressure tap locations on the plate, with the rotational axis

along the line x = 0.

For purposes of comparison, CFD-RBD pressure predictions at the 24 exper-

imental pressure tap locations are interpolated from the CFD face pressure

solution obtained at the 1600 grid cells on each of the plate’s front and back

faces. CFD differential pressure values are then calculated and compared with

the equivalent experimental measurements. A segment of the time-series show-

ing the normal pressure coefficient, CNP = (iPface1 −i Pface2)/(0.5ρU
2
w), where

(iPface1 −i Pface2) is the differential pressure at sensor i, is shown in Figure

5.42(a) for experimental measurements (Martinez-Vazquez et al., 2010) and Fig-

ure 5.42(b) for the CFD results.

The experimental and CFD results shown in Figure 5.42 have been averaged over

a series of successive rotational cycles to obtain a representative pressure-phase

relationship. Figures 5.43 - 5.45 show the resulting phase-pressured differential

pressure curves for sensor locations: S1, S2, S3, S6, S7, S8, S11, S12 and S13.

As defined in Figure 5.41, sensors S1, S2 and S3 located close to the leading or

trailing edge and would capture pressure effects by the leading and trailing edge

vortices, sensors S1, S6, S11 are at the plate side edges and would show pressure
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Figure 5.41: Physical location of pressure taps in experimental set-up by

Martinez-Vazquez et al. (2010), represented on a flat plate at αz = 0◦.

fluctuations due to the tip vortices, while sensors S7, S8, S12 and S13 near the

centre of the plate would represent pressure fluctuations away from the edges.

The CFD results are found to be in fairly good qualitative and quantitative

agreement with experimental measurements and the CFD-RBD model can be

concluded to give an accurate representation of the pressure distribution on the

surface of the plate. However, significantly larger peak pressures are sometimes

observed in the CFD data for sensor locations near the plate side-edges where

tip vortices are expected. The discrepancies in results at these sensors may be

attributed to inaccurate representation of vortex core pressure by the URANS

models which do not resolve the flow structures but rather represent their gross

statistical properties. These discrepancies may also be due to experimental error

arising from the presence of a plate support frame in very close proximity to

the side edges in the experimental set-up, which would disrupt the flow near the

edges and interact with the large tip vortices. Further investigations are required

to explain this discrepancy. The CFD results are however still within acceptable

limits, with an average (across all tap locations) normalised root-mean-square
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Figure 5.42: Time-series of differential pressure coefficients (normal force coef-

ficients), CNP , from (a) experimental measurements (Martinez-Vazquez et al.,

2010) and (b) CFD predictions, for an autorotating flat plate in a Uw = 5 m/s

uniform wind stream.
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Figure 5.43: CFD and experimental (Martinez-Vazquez et al., 2010) phase-averaged net pressure coefficients, CNP at various sensor

locations (a) S1, (b) S2 and (c) S3.
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Figure 5.44: CFD and experimental (Martinez-Vazquez et al., 2010) phase-averaged net pressure coefficients, CNP at various sensor

locations (a) S6, (b) S7 and (c) S8.
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Figure 5.45: CFD and experimental (Martinez-Vazquez et al., 2010) phase-averaged net pressure coefficients, CNP at various sensor

locations (a) S11, (b) S12 and (c) S13.
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error (NRMSE) of approximately 18%.

The accurate prediction of the surface pressure distribution is necessary in order

to correctly determine the centre of pressure location and estimate the aerody-

namic torque acting on the plate. Based on the CFD solution, the front face

(windward), back face (wake) and the differential pressure distribution across

the plate surface at different instantaneous angles of attack are shown in Figures

5.46 - 5.48. Q-criterion iso-surfaces showing the 3D vortex cores at these angles

of attack are shown in Figures 5.49 - 5.51 in order to more directly highlight the

role of the coherent flow structures in determining the instantaneous pressure

distribution on the plate.

In Figure 5.47 the influence of tip vortices can be seen as distinct negative pres-

sure peaks along the side edges (left and right edges) of the back face, while the

retreating edge vortex creates negative pressure peaks at the retreating edge (top

edge). The large stagnation pressure on the front face, close to the advancing

edge (bottom edge) is also visible as a positive pressure peak in Figure 5.46.

With the plate autorotating in the clockwise direction, at lower angles of attack,

αz < 30◦, the positive stagnation pressure at the front face is concentrated

near the retreating edge (top edge) which is also the leading edge. At higher

angles of attack, this positive stagnation pressure peaks is centred closer to the

advancing edge, even in Figure 5.46(c) and 5.46(d) when the advancing edge is

not the leading edge. This may be attributed to effective local wind speed which

is higher at the advancing edge than at the trailing edge, resulting in larger

advancing edge stagnation pressures.

At the rear face of the plate the negative pressure peak at the top edge, associated

with the retreating edge vortex is observed in Figures 5.47(a) and 5.47(b). The

magnitude of these negative peak pressures increases until the αz ≈ 90◦ position,

Figure 5.47(d), when the retreating edge vortex is shed into the wake. Tip

vortices attached to the plate side edges are also observed to create increasingly

negative pressure peaks close to the plate edges as angle of attack increases.

Two trailing edge vortices are present in the flow, however, these appear to be

dominated by the large tip vortices and are eventually shed at αz ≈ 90◦ and

αz ≈ 160◦. The second trailing edge vortex is quickly transported into the wake

and does not have a large impact on plate pressures.

The negative pressure from the wake flow structures, together with the positive
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Figure 5.46: Contours of CFD predicted instantaneous pressure coefficients

showing the surface pressure distribution on the front face at various angles

of attack; (a) αz = 0◦, (b) αz = 30◦, (c) αz = 60◦, (d) αz = 90◦, (e) αz = 120◦

and (f) αz = 150◦. The top and bottom edges of each figure correspond to the

top and bottom edges of the plate.
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Figure 5.47: Contours of CFD predicted instantaneous pressure coefficients

showing the surface pressure distribution on the rear face at various angles of

attack;(a) αz = 0◦, (b) αz = 30◦, (c) αz = 60◦, (d) αz = 90◦, (e) αz = 120◦ and

(f) αz = 150◦. The top and bottom edges of each figure correspond to the top

and bottom edges of the plate.



CHAPTER 5. STATIC AND ROTATING PLATE SIMULATIONS 156

(a)

0.2

0.
3

0.3

0.3

0.
3

0.3
0.3

0.4

0.4

0.
4

0.
4

0.4
0.4

0.4

0.
5

0.
5

0.
5

0.5

0.5

0.5

0.5

0.5

0.
5

0.6

0.6

0.60.7 0.70.8

Differential Pressure (F2−F1)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b)

0.8 0.8
0.8

1.2

1.2 1.2

1.
2

1.6

1.6

1.6 1.6

1.6

1.
6

1.6 1.
6

2

2 2

2

2

2

2

2

2.4

2.4

2.
4

2.4

2.4

2.4

2.4 2.
4

2.8

2.8

2.82.
8

3.2 3.23.6 3.6

Differential Pressure (F2−F1)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c)

1.5 1.5

2 2 2

2

2

2.5

2.5

2.5

2.5

2.
5

2.5

2.
5

2.5

3

3
3

3

3

3

3

3

3

3

3.5

3.53.
5

3.
5

3.
5

3.5

3.5

3.5

3.5

3.
5

4

4

4

4

4

4

4.
5 4.55 5

5.55.
5

Differential Pressure (F2−F1)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d)

0.8

1.21.
2

1.6

1.
6

1.
6

2 2

2 2

2 2

2

2

2

2.
4 2.4

2.4

2.4

2.4

2.4

2.
4

2.4 2.4

2.4

2.4

2.4

2.4

2.4

2.8

2.8

2.8 2.8

2.8

2.8

2.8

2.8

2.8

2.8

2.
8

2.
8

2.8

2.8

2.
8

2.8

3.2

3.2

3.2

3.2

3.2

3.2

3.2
3.2

3.2

3.2

3.6

3.6

Differential Pressure (F2−F1)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(e)

−0.6

−0.2

0.2

0.
2

0.6

0.6
0.6

0.6

1

1 1

1

1.
4

1.
4

1.4

1.4

1.4

1.4
1.4

1.
4

1.4

1.8

1.8

1.8

1.
8

1.8

1.8
1.8

1.
8

1.8

2.2 2.2

Differential Pressure (F2−F1)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(f)

−0.1
−0.1

0.2
0.2

0.2

0.2

0.
5

0.5
0.5

0.5

0.5

0.5 0.5

0.5
0.8 0.8 0.8 0.81.1 1.1

Differential Pressure (F2−F1)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 5.48: Contours of CFD predicted instantaneous net pressure coefficients

for various angles of attack; (a) αz = 0◦, (b) αz = 30◦, (c) αz = 60◦, (d)

αz = 90◦, (e) αz = 120◦ and (f) αz = 150◦. The top and bottom edges of each

figure correspond to the top and bottom edges of the plate.
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(a) (b)

Figure 5.49: Contours of Q-value showing leading and trailing edge vortices in the wake of an autorotating plate at (a) αz = 0◦, (b)

αz = 30◦.
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(a) (b)

Figure 5.50: Contours of Q-value showing leading and trailing edge vortices in the wake of an autorotating plate at (a) αz = 60◦, (b)

αz = 90◦.



C
H
A
P
T
E
R

5.
S
T
A
T
IC

A
N
D

R
O
T
A
T
IN

G
P
L
A
T
E

S
IM

U
L
A
T
IO

N
S

159

(a) (b)

Figure 5.51: Contours of Q-value showing leading and trailing edge vortices in the wake of an autorotating plate at (a) αz = 120◦, (b)

αz = 150◦.
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stagnation pressure at the front of the plate create the positive net pressure

distribution shown in Figure 5.48. As illustrated in Figure 5.48(a - d), for 0◦ ≤
αz ≤ 90◦ the net pressure in the top half of the plate is much greater than

the net pressure in the bottom half, resulting in a positive accelerating torque.

Beyond αz ≈ 90◦ however, Figure 5.48(e - f), the net pressure in the bottom half

of the plate is greater than the net pressure in the top half of the plate, creating

a decelerating torque.

5.6 Simulating Free-axis Autorotation

For many practical and unconstrained problems, such as windborne debris flight,

fixed axis autorotation which is a special case of plate autorotation is not a suf-

ficient representation the plates behaviour. The plate will more likely undergo

three-dimensional autorotation about an arbitrary axis determined by Fluid-

Structure Interaction. This complex 3D spinning behaviour is very difficult to

model experimentally as most plate mounting systems will only allow autorota-

tion about a single fixed axis. It is therefore necessary to extend the validated

model of fixed-axis autorotation to include low aspect ratio (3D) plates with

three rotational degrees of freedom.

The CFD-RBD model has been used to demonstrate complex free-axis autoro-

tation cases, where plate motion is not constrained to any fixed axis and only

the plate’s centre of mass is constrained from motion, creating a three rotational

degree of freedom system. The cuboid domain described in Figure 5.6 has been

used.

The plates initial orientation was setup so that φ = −14.5◦, θ = −3.8◦ and ψ =

75.5◦. As a result of the initial orientation, aerodynamic torque was developed

about the X, Y and Z axes leading to complex 3D spinning. For plates whose

initial orientation is normal to the flow in the horizontal plane, only the fixed-axis

autorotation mode is observed. The results are therefore found to be strongly

dependant on the initial orientation of the plate.

The simulations were carried out at mean wind speeds of 5 m/s and the stable

aerodynamic coefficients for drag force, CD, in the X-direction, lift force, CL, in

the Y-direction, and side force CS in the Z-direction are shown in Figure 5.52

together with the aerodynamic torque about the X, Y and Z axes (CMX , CMY

and CMZ respectively).
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Figure 5.52: Three-degree of freedom CFD-RBD predictions for (a) aerodynamic torque, (b) aerodynamic force, (c) rotational speed

and (d) orientation of a flat plate in free-axis autorotation about its centre of mass.
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Similar to fixed-axis autorotation, plates were observed to enter into stable

autorotation with the main distinction being that with free-axis autorotation, a

stable rotational speed is reached about all three axes. This can alternatively

be viewed as autorotation about an arbitrary axis, which has components in

the X- Y- and Z-directions. This arbitrary axis of rotation is determined by a

complex non-linear interaction between the plate and the flow, and is a function

of the plate’s initial orientation and mass moment of inertia tensor. Further

investigations are recommended in order to better understand this behaviour.

5.7 Conclusions

Two-dimensional CFD models have been found to be inadequate even for high-

aspect ratio plates and 3D simulations are recommended. Static plate sensitivity

studies for grid size and time resolution have shown results to be mesh and time-

step independent.

3D static plate CFD models have been found to be sensitive to near-wall grid

resolution and turbulence modelling approach. URANS models which predict

the statistics of a grossly unsteady flow have difficulty in reproducing the un-

steadiness in the coherent flow structures in the wake of a static plate. However

comparisons with more computationally expensive DES simulations confirm that

although wake unsteadiness exists and produces fluctuations in the body forces

of low aspect-ratio plates, these fluctuations have a weak effect on plate motion.

The additional computational effort in reproducing these weak fluctuations has

therefore been found to be unjustified and a URANS turbulence modelling ap-

proach with the Realisable k − ε model is preferred. In the case of rotating

plates, this URANS approach has been shown to be capable of reproducing the

strong unsteadiness in the flow.

A CFD-RBD sequential coupling approach has been presented and used to simu-

late the unsteady aerodynamics of forced rotating and autorotating plates. The

results of the forced rotation studies reveal a strong dependency of mean and

fluctuating aerodynamic loading on rotational speed. Quasi-steady theory as

proposed by Tachikawa (1983) is shown to be incorrect in as far as predicting

the fluctuating component is concerned and new empirical expressions based on

CFD results are presented.

Three modes of motion are identified in rotating plates depending on the ro-



CHAPTER 5. STATIC AND ROTATING PLATE SIMULATIONS 163

tational speed; pre-autorotation, autorotational and post-autorotational. The

point of stable autorotation is identified below which the FSI results in aerody-

namic acceleration and beyond which the FSI results in aerodynamic damping.

The main flow structure responsible for determining the plate’s aerodynamic ac-

celeration and damping is identified as the leading-edge vortex at the retreating

edge. Tip vortices also play a significant role, while the advancing edge vortex

was found to have a relatively weak influence.

The CFD-RBD model has been validated against experimental measurements

and shown to accurately reproduce the rotational dynamics as well as the surface

pressure distribution on fixed-axis autorotating plates. The surface pressure

distribution is found to be strongly influenced by the unsteady flow structures

in the wake of the plate. Autorotational dynamics of the plate are also shown to

be strongly dependant on the centre of mass and local blockage effects present

in the experimental setup.

Finally, the validated model has been used to demonstrate free-axis autorotation

about the plate’s centre of mass and its sensitivity to initial orientation. The

following chapter extends the three rotational degree of freedom model presented

here to include plate translation and simulate windborne debris flight.



Chapter 6

Simulating 3D Windborne

Debris Flight

In this chapter, the validated CFD-RBD model, previously applied to simulate

plate autorotation in section 5.4 is here extended to include 3D plate transla-

tion in order to simulate the 6DOF flight of plate-type windborne debris. While

previous coupled CFD-RBD models of plates have been limited to 2D free-fall

motion with 3DOF (Jin and Xu, 2008), and the prescribed motion of 3D flap-

ping plates (Dong et al., 2006), this research extends this work to include the

numerical investigation of the non-linear FSI involved in windborne debris flight.

The resulting 6DOF debris flight model is used to perform parametric studies

for initial orientation, flow properties, plate properties, and complex launch con-

ditions. Comparisons are also made between the CFD-RBD model predictions

and quasi-steady solutions to the debris flight equations.

6.1 Model Description

A 3.0 kg square plate of side, L = 1.0 m and thickness, h = 0.0254 m is positioned

in a domain of size 80L × 30L × 30L. Figure 6.1 illustrates the computational

domain and associated boundaries. The plate is initially positioned with its

centre of mass 10L from the inlet and top boundary, 20L from the bottom

boundary and 15L from each of the side boundaries.

The domain is split into a spherical inner region which is discretised using a 3D

structured hexahedral mesh of approximately 280,000 cells, and an outer region

discretised using an unstructured tetrahedral mesh of approximately 570,000

cells. The spherical inner region of radius 2L is rotated and translated mono-

lithically with the plate in order to preserve mesh quality in the near-wall region,

while the stationary outer zone is re-meshed at each time step in order to accom-

modate the motion of the inner zone. Cell volume, skewness and length scale

constraints are used to determine whether to re-mesh the domain as well as

which cells are to be re-meshed in order to preserve mesh quality in the outer re-

164



CHAPTER 6. SIMULATING 3D WINDBORNE DEBRIS FLIGHT 165

Figure 6.1: Computational domain and boundaries of the free-flight simulations.

gion. No non-conformal interface is applied in the free-flight simulations, rather

the inner and outer regions are connected through a single shared surface.

The plate walls are modelled as a rigid wall boundaries with a no-slip condition.

The inlet is modelled as a constant inflow velocity boundary while the outlet

is modelled as a constant pressure boundary, and the side, top and bottom

boundaries are modelled as walls with a free-slip condition. A uniform wind

speed, Uw of 20 m/s (Re =1.3 × 106 , based on L) is imposed at the inlet with

a turbulence intensity and length scale of 1% and 0.02 m respectively which

correspond to typical low turbulence wind tunnel values (ESDU, 1970).

The Realisable k − ε model is used with a two-layer enhanced wall function for

near-wall turbulence modelling. Second order upwind spatial discretisation is

used for the momentum, turbulent kinetic energy and turbulent dissipation rate,

with standard interpolation for the pressure variable. The SIMPLE algorithm

is used for Pressure-Velocity coupling and only first order implicit time-stepping

scheme is available for temporal discretisation since previous mesh information

is discarded after the data is interpolated onto the new mesh. A time-step size of

5× 10−3 s is used and results have been found to be time-step independent. For

each case, a precursor steady-state simulation is performed on the static plate

in order to obtain an accurate initial solution for the flow around the plate.

The CFD model is used to obtain the aerodynamic forces acting on the plate,
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which together with the self-weight of the plate are used to compute the velocities

for the inner spherical region using the 6DOF RBD model presented in Section

4. The sequential coupling between the CFD model and this RBD model is

described in Section 5.4.1.

6.2 Sensitivity to Initial Orientation

Using the model, a parametric study is performed to assess the sensitivity of

plate-type windborne debris to initial orientation. Results are compared against

findings from existing free-flight experiments by Lin et al. (2007). The CFD-

RBD model is demonstrated as a reliable tool for the investigation of windborne

debris flight behaviour.

Free flight simulations have been performed at a Tachikawa number, K, of ap-

proximately 8.3, which corresponds to typical values for large roofing sheets in a

wind storm. Initially, 77 cases were set-up to cover the broad range of possible

initial orientations in 3D space, and these are sub-divided into two batches.

Batch 1 - Single Plane Motion: In the first batch of 36 simulations (batch 1)

the plates have been setup at initial angles of attack in the vertical X-Y plane,

αz, as shown in Figure 2.1, ranging from −85◦ through to 90◦ at intervals of 5◦.

In batch 1 simulations, the plates are initially held normal to the flow in the

horizontal X-Z plane.

Batch 2 - 3D Flight: A second batch of 41 simulations (batch 2) are performed

with the plate rotated at 15◦ intervals about the Z−axis and the Y −axis such
that it’s initial orientation is no longer normal to the flow laterally. In these

cases, an initial orientation, ψ, about the Z-axis is applied, resulting in an angle

of attack αz = (90◦ − ψ), followed by a second rotation θ about the Y-axis.

These two rotations would correspond to a pitch followed by a yaw of the plate

as previously illustrated in Figure 4.1.

6.2.1 Results

Batch 1 simulations resulted in no significant lateral crosswind motion even

though plates were unconstrained to translate and rotate in the lateral horizontal

plane. Plate motion was therefore essentially two-dimensional.

Figure 6.2(a) from the batch 1 simulation results shows the non-dimensionalised
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horizontal distance, Kx∗ = Kxg/U2, against non-dimensionalised time, Kt∗ =

Ktg/U , while Figure 6.2(b) shows results for non-dimensionalised horizontal

speed, u = u/Uw, against non-dimensionalised horizontal distance.

The CFD-RBD model results compare well with experimentally derived fit ex-

pressions from Lin et al. (2006). The results demonstrate the significant role

of initial angle of attack in determining the final flight behaviour of the plate.

A non-linear least squares data fit expression of the CFD-RBD data for non-

dimensionalised horizontal distance versus time is computed as the rational poly-

nomial function;

Kx∗ =
C1(Kt

∗) + C2(Kt
∗)2 +C3(Kt

∗)3 + C4(Kt
∗)4 + C5(Kt

∗)5

D0 +D1(Kt∗) +D2(Kt∗)2 +D3(Kt∗)3 +D4(Kt∗)4
, (6.1)

where the polynomial coefficients Ci and Di are fit coefficients, computed as:

C1 = 0.01737, C2 = 0.06659, C3 = 0.6404, C4 = −0.08606, C5 = 0.003026,D0 =

1.0,D1 = 0.9675,D2 = 0.5874,D3 = −0.09255,D4 = 0.003449. Unlike previous

polynomial fit expressions of experimental data by (Lin et al., 2006), expressed

in (2.23), Figure 6.2(a) also shows that this new fifth order rational polynomial

has better extrapolation properties and does not diverge outside the range of

data used to derive the expression. The new fit expression in (6.1) is therefore

valid for longer flight durations than the original fit expression by Lin et al.

(2006) shown in (2.23).

Expression (2.22) for non-dimensionalised horizontal wind speed, by Lin et al.

(2006) is found to give an accurate mean representation of the final flight speed

of the debris plates. However, a larger spread of terminal horizontal wind-speeds

is observed in the CFD-RBD model results, which give a σu ≈ 0.162, in contrast

to experimental observations by Lin et al. (2006), where a σu ≈ 0.0814 was

observed. This discrepancy between the two results can be attributed to the

fact that the Lin’s expressions are derived from a narrow range of data, with

typical flight times of t∗ ≤ 0.8 (approximately 0.6 s), while the CFD data is

derived for plates with longer flight durations of 1.6 ≤ t∗ ≤ 2.2.

In the Batch 2 simulations, as a result of the plate’s non-zero yaw, considerable

side-force and torque is generated about the vertical and horizontal axes as

previously illustrated in the free-axis autorotation cases (Section 5.6). Significant

horizontal cross-wind motion and complex 3D free-axis autorotation are observed
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Figure 6.2: CFD-RBD predicted trajectories for batch 1 cases with −85◦ ≤
αz ≤ 90◦, showing (a) experimental (Lin et al., 2006) and CFD-RBD based

fit expressions for non-dimensionalised horizontal distance, and (b) CFD-RBD

predictions for non-dimensionalised horizontal speed, together with a an exper-

imentally derived fit expression (Lin et al., 2006).
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and Figure 6.3 illustrates the broad range of debris trajectories observed.

6.2.2 Debris Flight Modes

The debris trajectories for batch 1 cases can be categorized into three distinct

modes of flight; Flutter (Mode 1), Transitional (Mode 2) and Autorotational

(Mode 3), based on the plate’s rotational behaviour. Figure 6.4 illustrates the

corresponding modes observed for various initial angles of attack. The asym-

metry of mode behaviour about αz = 90◦ initial orientation is attributed in part

to the contribution of the plates vertical velocity, which affects the effective angle

of attack.

Figures 6.5, 6.6 and 6.7 show respectively, the non-dimensionalised rotational

speed, translational speed and trajectory observed for plates in each flight mode.

Mode 1, flutter, is mainly translational and is observed for plates with an

initial angle of attack in the range 70◦ < αz < 95◦. As shown in Figure 6.5(a),

the rotational motion of fluttering plates is characterized by oscillations between

positive and negative values of ω. Values of ω generally remain within the range

|ω| < |ωo|, where ωo is the stable autorotational speed, which for a plate with

the mass and inertia under consideration in these simulations is approximately

1.0 as shown by the dotted line in Figure 6.5(c).

This value of ωo is higher than the CFD-RBD and experimental fit predictions of

ωo ≈ 0.70 for a fixed-axis autorotating plate of similar dimensions (Table 5.10).

This is a result of additional non-linear effects due to the periodic fluctuations

in the magnitude and direction of the wind speed relative the the plate in the

free-flight cases, while in the fixed-axis autorotational simulations presented in

Section 5.4, the mean wind speed is kept constant.

The RMS of ωo increases from one cycle to the next for fluttering plates, and

given a long enough flight duration, plates in the flutter mode would eventually

reach ω ≈ ωo and transition into stable autorotation. It is therefore worth noting

that although traditionally a distinction has been made between these different

flight modes for descriptive purposes, in reality they constitute different stages of

autorotational flight as well as an indication of the dimensionless time required

to reach stable flight.
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(a)

(b)

Figure 6.3: (a) Plan and (b) Side elevations showing broad range of trajectories

from batch 2 cases.
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Figure 6.4: Schematic illustrating debris flight modes observed for different ini-

tial angles of attack in the batch 1 cases.
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Figure 6.5: Non-dimensionalised rotational velocity against non-dimensionalised

time for (a) mode 1, flutter, (b) mode 2, transitional, and (c) mode 3, autorota-

tional, trajectories.
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Figure 6.6: CFD-RBD predicted non-dimensionalised time-series of vertical

(dashed lines) and horizontal (solid lines) plate speed for (a) mode 1, flutter,

(b) mode 2, transitional, and (c) mode 3, autorotational, trajectories.
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Figure 6.7: CFD-RBD predicted non-dimensionalised centre of gravity position

for (a) mode 1, flutter, (b) mode 2, transitional, and (c) mode 3, autorotational,

trajectories.

Mode 2, transitional, behaviour is observed for plates with an initial angle

of attack in the range 50◦ ≤ αz ≤ 65◦ or 100◦ ≤ αz ≤ 140◦. These transitional

mode plates initially exhibit oscillations between positive and negative values of

ω but eventually enter into stable autorotation when ω ≈ ωo as shown in Figure

6.5(b).

Based on the results from mode 1 and mode 2 plates, it can be concluded that

provided the flight duration is long enough and the mass moment of inertia of

the plate is sufficiently large to allow plate autorotation (see Section 2.3.2), a

free-flying plate will enter into autorotation at a stable value of ωo, regardless of

the initial orientation. Plate geometry and mass moment of inertia are therefore

crucial parameters in determining whether plate autorotation occurs. However,

the rotational direction and time required to reach stable autorotation are found

to be strongly dependant on the initial orientation of the plate.

Mode 3, Autorotational flight, occurs for −35◦ < αz < 45◦. Plates ro-

tate with either positive or negative velocities from the start, with no change in

rotational direction during the simulation, and quickly reach the stable autoro-

tational speed, ωo, as shown in Figure 6.5(c). The plate’s rotational direction

is strongly influenced by initial orientation, with plates having an initial orient-

ation in the range −35◦ ≤ αz < 0◦ exhibiting ω > 0 while plates with initial

orientation 0◦ ≤ αz ≤ 45◦ have ω < 0.

It should be noted, however, that due to the positive (upward) high initial lift ex-

perienced by plates of initial angle of attack, αz > 0◦, in contrast to the negative

(downward) lift experienced by plates of initial angle, αz < 0◦, the plates with a
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positive initial angle of attack are observed to fly further for the flight durations

considered despite having a lower maximum horizontal velocity. A convergence

in trajectories is apparent as illustrated in Figure 6.7(c), implying that given

longer flight durations, plates with negative initial angle of attack would in fact

catch up with the positive initial angle of attack plates and subsequently fly

further.

In all modes, the terminal vertical velocity of the plate is found to be relatively

independent of initial orientation. The horizontal velocity is however strongly

influenced by the rotational direction of the plate. Plates with a terminal ω > 0

fly with u > 1, while plates with terminal ω < 0 exhibit u < 1. Plates in the

transitional flight mode with an unstable ω of zero mean (Figure 6.5(a)), exhibit

an oscillating u with values close to 1.0, as shown in Figure 6.6(a). These CFD-

RBD results reveal that existing assumptions that u has an asymptotic limit of

1.0 are in fact incorrect and need to be re-evaluated.

This coupling between the rotational direction and the terminal plate horizontal

speed can be explained by the presence of autorotational drag, lift and torque.

As previously demonstrated using forced rotation simulations in Section 5.3,

these autorotational coefficients vary with the plate’s instantaneous rotational

speed and they act in a direction determined by the the plate’s direction of

rotation. Depending on the direction of rotation, the autorotational drag will

either act to accelerate or decelerate the plate. This is further discussed in more

detail in Section 6.3.

Mode 4, complex 3D spinning is the final mode and this was observed for

plates in batch 2. Figure 6.8 shows the computed trajectory results for these

complex 3D spinning mode plates. Terminal horizontal and vertical speeds, u,

and v, are in the same range as modes 1-3 plates. In addition, complex 3D

spinning mode plates exhibit significant horizontal cross-wind speeds (Figure

6.8(e)), as well as rotations about the X-axis and vertical Y-axis. This flight

mode has been identified by Kordi and Kopp (2009b) as the the most common

flight mode.

The CFD-RBD model is shown to both qualitatively and quantitatively repro-

duce all the 4 major flight modes observed experimentally by Kordi and Kopp

(2009b, 2011) in their destructive wind tunnel studies. Figure 6.9 shows instant-
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Figure 6.8: Non-dimensionalised translational speed (left) and rotational speed

(right) for batch 2 cases.
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Figure 6.9: Instantaneous orientations of plates in flutter (red), transitional

(blue), autorotational (green) and complex 3D spinning (yellow and brown)

modes of flight.

aneous snapshots of a plate in each of the four flight modes observed for both

batch 1 and 2 cases.

6.2.3 Debris Impact Location

The main application of debris trajectory information derived from the CFD-

RBD simulation would be in the prediction of debris impact and damage prob-

abilities for a given target area and debris sources. The key trajectory outputs

required in order to perform this risk analysis include, the likelihood of impact

from debris as well as the expected impact momentum and orientation (Lin and

Vanmarcke, 2010).

The impact point distribution on a vertical plane is illustrated by Figure 6.10

which shows vertical sections through the CFD-RBD predicted trajectories for

mode 1-4 plates. The results reveal that although distribution of trajectories on

a vertical plane is initially circular as experimentally observed in a wind tunnel

by Tachikawa (1988), the distribution progressively becomes more elliptical with

increasing distance from the launch position. Predictions for impact location and

kinetic energy onto a horizontal plane may also be obtained as shown in Figure

6.11 for launch heights of 3.0 m and 10.0 m. This landing location information

is used to compute the number of impacts over a given area for a given set of
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simulations, as shown in Figure 6.12, which is valuable for debris risk assessment.

The impact kinetic energy is indicated by the point size in Figure 6.11 and would

be useful in computing the likelihood of damage upon impact (Wills et al., 2002).

More extensive simulations are required in order to derive more realistic debris

distribution pattern and impact probabilities. In addition to initial orientation,

it is necessary to incorporate different debris types and properties, various wind

flow conditions as well as the debris launch conditions. The effect on debris

flight trajectories of some of these factors are discussed in the Section 6.4.

The CFD-RBD models has nonetheless been demonstrated as a reliable tool

for the numerical prediction of the complex behaviour of plate type windborne

projectiles as well as a source for debris impact distribution and momentum

information for use in debris risk models. Using CFD-RBD models would help

remove some of the practical restrictions of experimental investigations which

have been limited to relatively short non-dimensionalised flight times.

6.3 Fluid-Rigid Body Interaction

To better understand the different debris flight modes involved in plate type

debris flight, the FSI behaviour associated with each flight mode has been invest-

igated. Results from CFD predictions for the flow field around autorotational,

transitional and flutter mode plates have been used to identify the main vortex

structures in the plate’s wake. In addition, the role of rotational direction in

determining the terminal horizontal plate speed is discussed.

6.3.1 Flow Around a Free-Flying Plate

The coherent flow structures in the wake of the plate are similar to those iden-

tified in plate autorotation (Section 5.4) namely, a retreating edge vortex that

strongly interacts with the plate, an advancing edge vortex that shows a relat-

ively weak interaction with the plate and two tip vortices at the side-edges of the

plate. Debris trajectories have been split into two distinct stages - the launch

stage at 0 < Kt∗ < 6.5, and the stable flight stage at Kt∗ > 6.5, with each stage

exhibiting different plate-wake interaction.

Plate-wake interaction during the launch stage: The main distinction

between the launch and stable flight stages is that during the launch stage, the

plate has a strong interaction with the flow structures in its wake. Figures 6.13
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Figure 6.10: Vertical section showing plate locations in the Z-Y plane at a

distance in the along-wind direction of; (a) 2L (b) 4L (c) 8L (d) 16L (e) 32L

and (f) 64L from the plate’s launch position.



CHAPTER 6. SIMULATING 3D WINDBORNE DEBRIS FLIGHT 178

(a)

0 2 4 6 8 10 12 14
−1.5

−1

−0.5

0

0.5

1

1.5

Kx∗

K
z
∗

(b)

0 2 4 6 8 10 12 14
−1.5

−1

−0.5

0

0.5

1

1.5

Kx∗

K
z
∗

Figure 6.11: Scatter plot of debris impact location relative to the launch position

(⋆) for (a) 3 m launch height and (b) 10 m launch height, with points scaled

according to impact kinetic energy.
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(a)

(b)

Figure 6.12: Estimated number of impacts at a given ground location for (a)

3 m launch height and (b) 10 m launch height.
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- 6.16 illustrate the plate’s interaction with the vortex structures in it’s wake

during the launch stage.

In addition, during the plate launch stage, unlike the fixed-axis autorotational

behaviour where the retreating edge vortex is shed at approximately 90◦, here the

retreating edge vortex remains stably attached until αz ≈ 180◦. The strong non-

linear interaction between the plate and this stably attached vortex is responsible

for the large translational and rotational accelerations experienced by the plate

in the launch stage. While Taylor’s frozen turbulence hypothesis (Taylor, 1938)

implies that the vortices shed from the plate should normally be translated

away from the plate at the instantaneous relative wind speed, due to the plate’s

rapid acceleration the vortices shed into its wake are not translated away quickly

enough. This would explain the strong plate-wake interaction and delayed vortex

shedding observed. Similar behaviour is observed between the plate and its

stably attached retreating edge vortex in the flutter mode cases where the mean

relative wind speed is approximately zero since the plate translates with u = 1.0.

Fixed-axis autorotation, previously described in Section 5.4, does not accurately

represent the strongly unsteady behaviour involved in plate launch and flutter

modes. As a result, the use of quasi-steady force models based on fixed-axis

autorotation theory is questionable in these scenarios. A detailed comparison

of quasi-steady analytical models and URANS CFD predictions is presented in

Section 6.5.

Plate-wake interaction during the stable flight stage: As the plate con-

tinues to accelerate, it eventually reaches a terminal vertical and horizontal

translational speed and settles into a stable flight stage. In this stable flight

stage, the plate exhibits FSI effects equivalent to fixed-axis plate autorotation

as shown in Figures 6.17 - 6.18. Vortex shedding is observed from the retreating

and advancing edges as well as the side edges in each rotational cycle. The find-

ings reveal that fixed-axis autorotation is a sufficient qualitative representation

of plate behaviour in the stable flight stage and as a result, quasi-steady force

models are expected to perform well in these cases.

Autorotational lift and drag components resulting from the plate’s interaction

with the flow structures in its wake are observed to play an important role in

determining the terminal horizontal speed of the plate. Figures 6.17 - 6.18 show
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(a)

(b)

(c)

Figure 6.13: Q-value contours at instantaneous angles of attack of (a) 30◦, (b)

60◦ and (c) 90◦, during the launch stage for a plate of initial αz = 30◦.
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(a)

(b)

(c)

Figure 6.14: Q-value contours at instantaneous angles of attack of (a) 120◦, (b)

150◦ and (c) 180◦, during the launch stage for a plate of initial αz = 30◦.
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(a)

(b)

(c)

Figure 6.15: Q-value contours at instantaneous angles of attack of (a) 210◦, (b)

240◦ and (c) 270◦, during the launch stage for a plate of initial αz = 30◦.
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(a)

(b)

(c)

Figure 6.16: Q-value contours at instantaneous angles of attack of (a) 300◦, (b)

330◦ and (c) 360◦, during the launch stage for a plate of initial αz = 30◦.
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(a)

(b)

(c)

Figure 6.17: Contours of Q-criterion value showing the strong interaction

between an autorotational flight mode plate with a negative or clockwise ro-

tational speed and the flow structures in its wake. Contours are taken at in-

stantaneous angles of attack of (a) 0◦, (b) 30◦ and (c) 60◦, relative to the mean

horizontal wind flow.
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(a)

(b)

(c)

Figure 6.18: Contours of Q-criterion value showing the strong interaction

between an autorotational flight mode plate with a negative or clockwise ro-

tational speed and the flow structures in its wake. Contours are taken at in-

stantaneous angles of attack of (a) 90◦, (b) 120◦ and (c) 150◦, relative to the

mean horizontal wind flow.
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the flow structures around a plate with negative (clockwise) rotational speed,

while Figures 6.19 - 6.19 show the flow structures around a plate with positive

(anti-clockwise) rotational speed.

Depending on the direction of rotation, the plate’s interaction with the retreating

edge vortex during stable flight will result in a negative autorotational drag and

positive autorotational lift or positive autorotational drag and negative autoro-

tational lift.

6.3.2 Effects of Rotational Direction

Results in section 6.2.2 show that the direction of rotation is strongly dependant

on the initial orientation for autorotational plates. We may decompose the flow

field into a vertical wind component flow associated with the relative downward

motion between the plate and the surrounding air, and a horizontal wind flow

component due to the mean horizontal relative wind speed. The mean force in

the X-direction, FX, and the mean force in the Y-direction, FY, over a rotational

cycle may then also be decomposed into components due to the horizontal and

vertical wind speeds, as illustrated in Figure 6.21.

As previously discussed in Section 5.3, the magnitude of these autorotational

forces is related to the magnitude of rotational speed and the direction of the

forces is dependant on the direction of rotation. For clockwise (negative) rota-

tional speeds, as shown in Figure 6.21(a,c), the horizontal and vertical forces

acting on the plate may be computed according to

FX = DH − LV, (6.2)

FY = DV + LH −mg, (6.3)

Similarly, for a plate with anti-clockwise (positive) rotational speed, shown in

Figure 6.21(b,d), the horizontal and vertical forces acting on the plate over a

rotational cycle are

FX = DH + LV, (6.4)

FY = DV − LH −mg, (6.5)

Let us start at Kt∗ ≈ 1.0, when both positive and negative rotational speed

plates have reached their peak vertical speeds, and have similar horizontal speeds

u ≈ 0.4 as shown in Figure 6.6. In the clockwise rotating plates, the vertical
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(a)

(b)

(c)

Figure 6.19: Contours of Q-criterion value showing the strong interaction

between an autorotational flight mode plate with a positive or anti-clockwise

rotational speed and the flow structures in its wake. Contours are taken at in-

stantaneous angles of attack of (a) 0◦, (b) -30◦ and (c) -60◦, relative to the mean

horizontal wind flow.
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(a)

(b)

(c)

Figure 6.20: Contours of Q-criterion value showing the strong interaction

between an autorotational flight mode plate with a positive or anti-clockwise

rotational speed and the flow structures in its wake. Contours are taken at in-

stantaneous angles of attack of (a) -90◦, (b) -120◦ and (c) -150◦ relative to the

mean horizontal wind flow.
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(a) (b)

(c) (d)

Figure 6.21: Decomposition of mean drag and lift acting on a free-flying plate

over a single rotational cycle into; (a, b) the autorotational forces associated with

the horizontal velocity component and (c, d) autorotational forces associated

with the vertical velocity component, for clockwise or negative rotations (left)

and anti-clockwise or positive rotations (right).
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Figure 6.22: Decomposition of the mean autorotational drag and lift on a free-

flying plate with instantaneous u > 1.0 and a positive (anti-clockwise) rotational

speed.

velocity, v, will initially decrease from its peak positive value to zero and become

negative as the plate reaches its maximum elevation and starts to fall downwards

at Kt∗ ≈ 3.0. As the magnitude of vp increases, LV will also increase until

DH = LV and DV + LH = mg, hence FX = FY = 0.0 and the plate continues

in flight with a terminal vertical and horizontal velocity. This occurs when

v ≈ −0.2 and u ≈ 0.8Uw.

However in anti-clockwise rotating plates, sinceDH and LV both act to accelerate

the plate, it will continue to accelerate beyond up ≈ 0.8Uw, until up ≈ Uw,

implying a zero horizontal component of wind speed, and as a result, DH =

LH = 0. However, a significant horizontal accelerating force, FX = LV is still

present and this continues to drive the horizontal velocity of the plate such that

up > Uw (i.e. u > 1.0). As up continues to increase beyond Uw, the horizontal

component of relative wind speed becomes reversed and consequently, the drag

and lift forces associated with this negative relative wind speed are also reversed

as illustrated in Figure 6.22.

As a result, the new horizontal and vertical force may be computed as

FX = LV −DH, (6.6)

FY = DV + LH −mg. (6.7)

Subsequently, as up increases further, eventually at u ≈ 1.2, LV = DH and
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DV + LH = mg, hence FX = FY = 0.0, and the plate continues to fly at a

terminal horizontal and vertical velocity.

The terminal vertical and horizontal speeds of the plate are therefore thought to

be controlled by the autorotational drag and lift associated with the non-linear

interaction between the plate and the flow. Figure 6.23 shows the time-series of

horizontal and vertical aerodynamic forces acting on the plate for both clockwise

and anti-clockwise rotational directions. The plate with initial angle of attack,

αo = 30◦ flies with a clockwise rotational speed, while the plate with αo = −30◦

flies with an anti-clockwise rotational speed.
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Figure 6.23: CFD computed time-series of the non-dimensionalised aerodynamic

forces acting on free-flying plates, decomposed into; (a) horizontal force coeffi-

cient, CFX, and (b) vertical force coefficient, CFY. Plates with initial angle

of attack, αo = 30◦ fly with a clockwise rotational speed, while plates with

αo = −30◦ fly with an anti-clockwise rotational speed.

As a result of the non-linear interaction described in this section, a rotating

plate is able to convert some of its gravitational potential energy into lateral

kinetic energy. Depending on the direction of rotation this will result in plates

exhibiting terminal horizontal wind speeds higher than the mean wind speed or

consistently lower than the mean wind speed. Only flutter mode plates with

ω ≈ 0.0 will fly with a terminal horizontal speed of approximately 1.0.
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6.4 Parametric Studies

The results discussed in the previous section were obtained from simulations

performed using the same flow conditions and plate properties. As discussed in

section 2.4, aside from initial orientation, debris trajectories have been shown

to be sensitive to variations in flow properties - parameterised using the Tachi-

kawa number, K(= ρU2
wA/2mg), which is a function of the Froude number

and buoyancy parameter, - and plate properties - parameterised using the non-

dimensional inertial parameter, ∆zz(= ML2/Izz), the thickness ratio, τ = h/L,

and aspect ratio B/L. In this section, the CFD-RBD model is applied to the

numerical investigation of the effects of these parameters on debris flight beha-

viour.

In order to achieve this, an additional 35 simulations have been carried out,

including each of the four flight modes identified in Section 6.2.2 at a Tachikawa

number of 8.3. The cases are sub-divided into 7 subgroups, A to G depending

on the initial orientation and expected flight as shown in Table 6.1. Cases A

and D represent autorotational mode plates, case B represents transitional mode

plates, case C represents flutter mode plates, while cases labelled E, F and G

are expected to enter into a complex 3D spinning mode. A description of the

cases run for the whole range of initial orientations is presented in Table 6.2.

For each of the 7 case groups, each corresponding to a different initial orientation,

a total of 5 simulations were run. Cases numbered 1,2 and 3 in each case group

refer to simulations performed to assess the sensitivity of the simulation to K

by varying the inflow wind speed, while keeping the plate’s mass and geometry

properties constant. The results of these simulations are reported in section

6.4.1.

Cases numbered 4 and 5 were performed to illustrate the effect of variations in

the plate’s geometric and mass properties for a constant K. Cases 4 and 1 are

together used to investigate the effects of τ and ∆zz on trajectory dispersion,

while cases numbers 4 and 5 together are used to illustrate the effects of vari-

ations in B/L. The results of these sensitivity studies for plate parameters are

reported in section 6.4.2

For all the cases run as part of the parametric studies, the same boundary con-

ditions, turbulence model, discretisation scheme and pressure-velocity coupling
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Table 6.1: A list of the initial orientations used for parametric study simulations.

Batch
Orientation

Mode
θo (◦) φo (◦) ψo (◦)

A 0.00 0.00 75.00 Autorotational

B 0.00 0.00 45.00 Transitional

C 0.00 0.00 15.00 Flutter

D 0.00 0.00 -75.00 Autorotational

E 10.73 10.54 45.99 3D Spinning

F 35.26 30.00 54.74 3D Spinning

G 69.25 43.08 75.49 3D Spinning

scheme described in Section 6.1 have been used.

6.4.1 Tachikawa Number

21 simulations are performed at three different wind speeds of 20.0 m/s, 17.5 m/s

and 15.0 m/s to illustrate the effect of varying flow parameters on plate beha-

viour. The results are shown in Figures 6.24 - 6.26.

As shown in Figure 6.24 (a,c,e), with increasing K, plates are observed to fly

higher and further due to the greater influence of aerodynamic forces relative

to gravitational forces. Even when non-dimensionalised using K, the variation

in mean trajectory is still evident. The dispersion of trajectories away from the

mean is also observed to increase with increasing Tachikawa number. The direct

implication of this is that although K is shown to be an adequate parameterisa-

tion of debris flight range, the validity of fit expressions for Kx∗ and Ky∗, such

as (2.23) by Lin et al. (2006) and (6.1) is questionable. Although such expres-

sions have become incorporated into debris risk models (Lin and Vanmarcke,

2010), they are clearly not valid away from the Tachikawa numbers for which

they are derived.

The non-dimensionalised terminal horizontal, vertical and rotational speeds, are

found to be independent of K, as shown in Figure 6.25 and Figure 6.26(b,d,f).

As a result, fit expressions for u, such as (2.22) may be expected to remain valid

over a range of K. The lateral cross-wind velocity component in the 3D spinning

mode cases is found to be sensitive to K as shown in Figure 6.26(a,c,e). As a

result, a significant difference in the overall lateral dispersion of trajectories is
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Table 6.2: CFD-RBD cases run as part of the parametric study for windborne

debris flight. All plates are of thickness, h = 0.025 m.

Case L (m) B (m) ρm/ρa Uw K Fr 1/τ ∆zz B/L

A1 1.00 1.00 97.959 20.0 8.325 6.386 40.00 11.993 1.00

A2 1.00 1.00 97.959 17.5 6.374 5.587 40.00 11.993 1.00

A3 1.00 1.00 97.959 15.0 4.683 4.789 40.00 11.993 1.00

A4 0.56 0.56 55.102 15.0 8.325 6.385 22.50 11.976 1.00

A5 0.56 1.00 55.102 15.0 8.325 6.385 22.50 11.976 1.78

B1 1.00 1.00 97.959 20.0 8.325 6.386 40.00 11.993 1.00

B2 1.00 1.00 97.959 17.5 6.374 5.587 40.00 11.993 1.00

B3 1.00 1.00 97.959 15.0 4.683 4.789 40.00 11.993 1.00

B4 0.56 0.56 55.102 15.0 8.325 6.385 22.50 11.976 1.00

B5 0.56 1.00 55.102 15.0 8.325 6.385 22.50 11.976 1.78

C1 1.00 1.00 97.959 20.0 8.325 6.386 40.00 11.993 1.00

C2 1.00 1.00 97.959 17.5 6.374 5.587 40.00 11.993 1.00

C3 1.00 1.00 97.959 15.0 4.683 4.789 40.00 11.993 1.00

C4 0.56 0.56 55.102 15.0 8.325 6.385 22.50 11.976 1.00

C5 0.56 1.00 55.102 15.0 8.325 6.385 22.50 11.976 1.78

D1 1.00 1.00 97.959 20.0 8.325 6.386 40.00 11.993 1.00

D2 1.00 1.00 97.959 17.5 6.374 5.587 40.00 11.993 1.00

D3 1.00 1.00 97.959 15.0 4.683 4.789 40.00 11.993 1.00

D4 0.56 0.56 55.102 15.0 8.325 6.385 22.50 11.976 1.00

D5 0.56 1.00 55.102 15.0 8.325 6.385 22.50 11.976 1.78

E1 1.00 1.00 97.959 20.0 8.325 6.386 40.00 11.993 1.00

E2 1.00 1.00 97.959 17.5 6.374 5.587 40.00 11.993 1.00

E3 1.00 1.00 97.959 15.0 4.683 4.789 40.00 11.993 1.00

E4 0.56 0.56 55.102 15.0 8.325 6.385 22.50 11.976 1.00

E5 0.56 1.00 55.102 15.0 8.325 6.385 22.50 11.976 1.78

F1 1.00 1.00 97.959 20.0 8.325 6.386 40.00 11.993 1.00

F2 1.00 1.00 97.959 17.5 6.374 5.587 40.00 11.993 1.00

F3 1.00 1.00 97.959 15.0 4.683 4.789 40.00 11.993 1.00

F4 0.56 0.56 55.102 15.0 8.325 6.385 22.50 11.976 1.00

F5 0.56 1.00 55.102 15.0 8.325 6.385 22.50 11.976 1.78

G1 1.00 1.00 97.959 20.0 8.325 6.386 40.00 11.993 1.00

G2 1.00 1.00 97.959 17.5 6.374 5.587 40.00 11.993 1.00

G3 1.00 1.00 97.959 15.0 4.683 4.789 40.00 11.993 1.00

G4 0.56 0.56 55.102 15.0 8.325 6.385 22.50 11.976 1.00

G5 0.56 1.00 55.102 15.0 8.325 6.385 22.50 11.976 1.78
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Figure 6.24: CFD-RBD predictions of trajectory in the X-Y plane (left) plate

trajectory in the X-Z plane (right) for plates of various initial angles of attack

and in flow conditions of Tachikawa number; (a,b) K = 8.3, (c,d) K = 6.4 and

(e,f) and K = 4.7.
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Figure 6.25: CFD-RBD predictions of horizontal along-wind velocity (left) and

vertical velocity (right) of plates with varying initial angle of attack and in flow

conditions of Tachikawa number; (a,b) K = 8.3, (c,d) K = 6.4 and (e,f) and

K = 4.7.
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Figure 6.26: CFD-RBD predictions of dimensionless horizontal cross-wind ve-

locity (left) and dimensionless rotational speeds (right) of plates with varying

initial angle of attack and in flow conditions of Tachikawa number; (a,b)K = 8.3,

(c,d) K = 6.4 and (e,f) and K = 4.7.
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therefore observed, with increasing dispersion with increasing K. For instance;

cases groups F (F1, F2, F3) and G (G1, G2, G3) in Figure 6.24(b,d,f) exhibit

greater lateral dispersion with increasing K while cases group E (E1, E2, E3),

showed a decrease in lateral dispersion.

The results of the K sensitivity study agree with previous experimental findings

on the relationship between along-wind dispersion and K (Lin et al., 2006). A

similar relationship is shown to exist for the overall debris dispersion in the

along-wind direction. The mean dimensionless trajectory (Kx∗ versus Ky∗) is

shown to vary with K and as a result, existing expressions for Kx∗ as a function

of Kt∗ are only valid for the K value used to derive them.

6.4.2 Plate Properties: τ , ∆zz, B/L.

To investigate the sensitivity of the CFD-RBD predicted debris dispersion to the

plate’s geometric and mass properties, an additional 14 simulations have been

performed.

For each of the 7 initial orientations A-G described in Table 6.1 a fourth case,

numbered 4 in Table 6.2, is run using a 0.563 m square plate of thickness 0.025m.

The plate’s density is adjusted appropriately in order to ensure that at a mean

horizontal wind flow, Uw = 15.0 m/s, the Tachikawa number, K and Froude

number FrL are the same as in the number 1 cases (i.e K = 8.325 and FrL =

6.386). The result is two set of cases, A1 - G1 and A4 - G4, with the same set

of initial orientations, aspect ratio and flow parameter but considerably lower

thickness ratio, τ , and non-dimensionalised mass moment of inertia about the

Z-axis, ∆zz, in the A4-G4 cases. Similarly a fifth case, numbered 5 in Table 6.2

is run for each initial orientation, and the plate’s K, FrL, τ and ∆zz are kept

constant relative to cases numbered 4, but the plate’s breadth is increased to

give a higher aspect ratio, B/L.

The results for cases A1-G1 and A4-G4 are presented in Figures 6.27 - 6.28

illustrating the sensitivity of debris dispersion to τ and ∆zz while Figures 6.29

- 6.30 contrasts results for cases A4-G4 and A5-G5 and highlights the influence

of plate aspect ratio.

For plates of same B/L, K, and initial angle of attack, different qualitative flight

modes may be observed due to changes in ∆zz and τ . For instance, consider case

E1 which has a plate of M = 3.0 kg and Izz = 0.25 kgm2, and case E4 which
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Figure 6.27: CFD-RBD predictions of; (a,b) plate trajectory in the X-Y plane,

(c,d) plate trajectory in the X-Z plane, and (e,f) non-dimensionalised rotational

speed, for plates with varying initial angle of attack and ∆zz = 11.976, 1/τ =

22.50 (left) and ∆zz = 11.993, 1/τ = 40.00 (right).
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Figure 6.28: CFD-RBD predictions of; (a,b) horizontal along-wind velocity, (c,d)

vertical velocity, and (e,f) horizontal cross-wind velocity, for plates with varying

initial angle of attack and ∆zz = 11.976, 1/τ = 22.50 (left) and ∆zz = 11.993,

1/τ = 40.00 (right).
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Figure 6.29: CFD-RBD predictions of; (a,b) plate trajectory in the X-Y plane,

(c,d) plate trajectory in the X-Z plane, and (e,f) non-dimensionalised rotational

speed, for plates with varying initial angle of attack and aspect ratio, B/L = 1.0

(left) and B/L = 1.78 (right).
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Figure 6.30: CFD-RBD predictions of; (a,b) horizontal along-wind velocity, (c,d)

vertical velocity, and (e,f) horizontal cross-wind velocity, for plates with varying

initial angle of attack and aspect ratio, B/L = 1.0 (left) and B/L = 1.78 (right).
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has a plate of M = 0.534 kg and Izz = 0.014 kgm2. The results for these two

cases shown in Figures 6.27 and 6.28, reveal that with increasing ∆zz, the plate

changes from a flutter mode of flight at ∆zz = 11.976 (E4) to an autorotational

mode of flight at ∆zz = 11.993 (E1).

∆zz and τ are shown to affect both the qualitative flight modes observed as well

as the overall dispersion of debris, with a marked sensitivity observed for the

horizontal cross-wind dispersion in the complex 3D spinning cases. Much greater

lateral dispersion is observed with increasing ∆zz and 1/τ as shown in Figure

6.27(c,d).

Plate dispersion and impact velocity were found to be highly sensitive to aspect

ratio, B/L. As shown in Figure 6.29 and 6.30, a much greater dispersion is

observed in both the along-wind and the cross-wind directions with increasing

aspect ratio. Aspect ratio also had an effect on the observed flight modes, with

no flutter mode cases observed at higher aspect ratios.

Further CFD-RBD studies are recommended, over a wider range of K, ∆ and

B/L in order to derive appropriate relationships for the influence of these para-

meters on the the dispersion of plate-type debris. The limited results presented

nonetheless demonstrate the ability of CFD-RBD simulations to reproduce the

chaotic behaviour of plate-type windborne debris. CFD-RBD models therefore

constitute a viable analytical model for the Monte-Carlo simulation of plate-type

windborne debris, as well as the parametric study of debris dispersion.

6.5 Comparisons with Analytical Solutions

The predictions from CFD-RBD models have been compared against those from

quasi-steady numerical solutions to the debris flight equations, (2.10) - (2.12)

(Tachikawa, 1983). Two different quasi-steady models have been considered, a

recent 2D model proposed by Kordi and Kopp (2009b), hereafter referred to as

QS1, and an improved quasi-steady force model based on the findings on forced

rotating plates, hereafter referred to as QS2.

As previously discussed in Section 2.4, one of the fundamental assumptions of

existing quasi-steady models, such as QS1, is a decomposition of aerodynamic

coefficients into a static and an autorotational component according to (2.18)

and (2.19). Using forced rotation simulations, this assumed decomposition has

been shown to be false in Section 5.3.
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In order to provide a more accurate representation of the aerodynamic forces

on a rotating plate, an improved quasi-steady force model has been used in

QS2. The aerodynamic drag, CD, lift, CL, and torque, CM are expressed as

functions of both the instantaneous non-dimensionalised rotational speed, ω,

and the effective angle of attack, α according to

CD = (CD)avg +
√

2
(
(CD)2rms − (CD)2avg

)
sin(2α− π/2) (6.8)

CL = k1(CL)avg +
√

2
(
(CL)2rms − (CL)2avg

)
sin(2α) (6.9)

CM = k1(CM )avg −
√

2
(
(CM )2rms − (CM )2avg

)
sin(2α), (6.10)

where

k1 =





ω
|ω| if ω 6= 0

0 if ω = 0
(6.11)

The “avg” and “rms” subscripts denote the mean and RMS of the force coeffe-

cients over a complete rotational cycle, which are functions of rotational speed

and are computed using expressions (5.8) to (5.13).

The results of the two analytical models, QS1 and QS2, are compared with CFD

predictions for a case in each of the three single-plane flight modes identified in

Section 6.2. No comparisons are made against the complex 3D spinning mode

as the QS models are limited to 3DOF. The trajectory results from four cases

are presented in Figure 6.31. These include two autorotational mode cases with

αo = ±30◦, shown in Figure 6.31(c, f, i), one transitional mode case of αo = 50◦,

shown in Figure 6.31(b, e, h), and one flutter mode case of αo = 90◦, shown in

Figure 6.31(a, d, g).

Both quasi-steady models, QS1 and QS2 are unable to sufficiently predict the be-

haviour of flutter mode plates, as shown in Figure 6.31(a, d, g), and transitional

mode plates, as shown in Figure 6.31(b, e, h), which modes are reproduced by

the CFD-RBD simulations. In the autorotational cases, shown in Figure 6.31(c,

f, i), the CFD-RBD and quasi-steady models predict the same qualitative mode

of flight, together with comparable predictions of the overall debris dispersion.

Although the quasi-steady models based on fixed-axis autorotation theory are

able to adequately represent the autorotational mode of flight, they are unable

to capture the strongly unsteady FSI involved in the flutter and transitional

mode cases. Similar limitations of quasi-steady models have been observed in
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Figure 6.31: CFD-RBD results (CFD) and quasi-steady analytical model (QS)

predictions of (a,b,c) rotational speed, (d,e,f) translational speed and (g,h,i)

trajectory, for flutter (left), transitional (centre) and autorotational (right) flight

modes.
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Figure 6.32: A comparison between phase-averaged CFD-RBD aerodynamic

forces (CFD) and quasi-steady forces (QS1 and QS2) averaged over consecutive

rotational cycles during the stable autorotational stage of flight. Data presented

is for a plate with initial αz = 30◦.

studies involving free-falling plates (Andersen et al., 2005) and hovering insect

flight (Wang, 2005) where a similar strong interaction between the plate and

its own wake is observed. In these scenarios, CFD-RBD models which directly

simulate the complex non-linear interaction involved offer the best approach for

evaluating aerodynamic forces and dynamic response.

Figure 6.32 shows phase averaged aerodynamic coefficients of the final three

cycles of flight in a plate with initial angle of attack 30◦ which would be under-

going stable autorotation. The results are plotted against the effective angle of

attack which takes into account the relative horizontal and vertical wind speed.

Although comparable values of the average aerodynamic force and torque are

obtained for all three models (QS1, QS2 and CFD-RBD), QS1 predictions for

the unsteady force coefficients are different from those obtained from QS2 which

gives better agreement with CFD-RBD predictions. This is mainly attributed

to the inaccurate force decomposition used in QS1. QS2 which uses expressions

(6.11) is shown to offers a more accurate representation of the quasi-steady forces

involved in plate autorotation and debris flight.

Although the QS2 model based on forced rotation results shows improved quasi-

steady force predictions, there is room for further improvements aimed in partic-

ular at incorporating corrections to account for the effects of strong accelerations

in the mean flow.
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6.6 Incorporating Complex Launch Conditions

In the preceding discussions, the CFD-RBD model has been successfully applied

to the numerical investigation of flat plates in uniform flow fields. Apart from

the initial orientation, flow parameters and plate properties discussed in the pre-

ceding sections, debris flight is also affected by complex initial launch conditions

which are not easily parameterised. According to Kordi et al. (2010), the com-

mon quasi-steady approach to windborne debris flight neglects two important

facts:

(i) windborne debris initiating from a real roof is affected by the building

aerodynamics and the local velocities on the roof and in the wake, and

(ii) the debris flies in the turbulent wind defined by both the terrain and the

gust structure causing failure.

To investigate these effects, destructive wind tunnel studies have previously been

carried out by Kordi and Kopp (2011), Kordi et al. (2010) and Visscher and

Kopp (2007). The results of these experimental studies, reveal that debris flight

behaviour is strongly influenced by the complex flow fields above the roof of a

building as well as the scaled restraint force.

CFD-RBD models offer an additional tool for the investigation of these effects

because of their ability to simulate these complex flow fields around buildings as

well as the non-linear interaction between debris and this flow.

In this section, the CFD-RBD model is extended to include the complex velocity

fields on the roof and in the wake of the building and how they influence the

subsequent flight behaviour of a typical roofing sheet. An unsteady and non-

uniform flow field around a low rise residential building is simulated using the

CFD model. A square flat plate of length L = 0.5 m and thickness, h =0.0125 m

is considered. The plate is initially held static at the eaves of the building, as

shown in Figure 6.33(a) and then subsequently released into the flow and is

transported downstream. The results of two different cases are presented here,

Case1 with a 1.0 kg plate and Case2 with a 6.35 kg plate, which is typical of a

clay roofing tile.

The building has a square planform, with length 12L, an eaves height of 6L

and a double-pitched roof with a 20◦ slope. Figure 6.33 illustrates the model
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(a) (b)

Figure 6.33: Sections through the computational domain used in the complex

launch simulations, showing the launch position of the plate as well as the domain

size.

building, together with the initial plate position on the wind-ward side of the

roof. The computational domain has dimensions 75L× 26L× 40L and the same

boundary conditions described in Section 6.1 for uniform flow cases are applied.

For the precursor simulations performed to assess the performance of different

building representation models, a similar domain is used, but with a size of

100L× 13L× 60L.

The ABL profile, which represents 10-minute averages of wind speed has not

been simulated, instead a uniform inflow condition is used, with the wind speed

approximately equal to the peak 3 s gusts expected. An inflow wind speed of

35 m/s (126 km/hr) is used, which is within the range of full-scale failure wind

speeds typically observed in experimental studies by Visscher and Kopp (2007).

Further studies incorporating recent methods for simulating ABL profiles, such

as Parente et al. (2011) and restraint force models by Kordi and Kopp (2011)

are recommended.

As with the free-flight cases, the plate is held in an inner mesh region that

translates and rotates monolithically with the plate in order to preserve mesh

quality close to the plate walls, while the outer region of the domain is re-

meshed to accommodate plate motion. Since the plate is initially expected to

coincide with wall boundaries of the roof, the use of body fitting meshes and

building walls is unfeasible. In order to address this limitation, the buildings

have been represented as porous regions of high viscous resistance, as opposed

to the traditional approach of using wall bounded volumes. As a result of this

porous building approach, the region occupied by the building can be re-meshed
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as the plate approaches the building and in addition, the plate can initially lie

in contact with the geometric plane corresponding to the roof.

A set of geometric expressions prescribing the volume bounded by the building’s

walls are used to define the mesh region occupied by the building. In this region

a source term, Si, is added to the momentum equations in order to represent

the momentum loss in each cell due to viscous resistance of the porous media as

Si = −µ
α
vi, (6.12)

where µ is the dynamic viscosity of the fluid, vi is the velocity component in

the i direction, and α is the permeability of the media, which is assumed to be

homogenous. After calibration studies aimed at selecting an appropriate value

of α that results in a near-zero velocity at the surface of the porous region, a very

low permeability value of α ≈ 10−9 has been used. Using this porous building

approach, multiple buildings could be defined with relative ease with boundaries

in very close proximity or even co-incident with the plate’s walls.

Precursor simulations have been run, without any debris present in order to

compare the flow field from the porous building model to that from the wall

bounded building model. Figures 6.34 and 6.35 show the vertical profile of the

horizontal wind speed and turbulent kinetic energy for each of the two building

representations. The flow solution using the porous building model is shown

to give a qualitatively and quantitatively similar prediction for the velocity flow

field around the building, although the turbulent kinetic energy is over-predicted

close to the building. Further improvements for the turbulent quantities may be

obtained by incorporating appropriate source terms into the k and ε equations

in the building region.

Figure 6.36(a,b) shows instantaneous snapshots of the plate during flight for both

Case1 and Case2, while Figure 6.37 shows the velocity time-series for Case1. In

a uniform flow, plates of similar negative initial angle of attack attack would be

expected to experience negative lift and positive torque during launch. However,

in the more realistic flow scenario presented, the roof launch plates are shown

to experience positive initial lift and negative torque due to the large suction

pressures at the windward eaves of the building. Similar findings have been

reported from recent destructive wind tunnel studies of launch and flight of a

plate from a low rise building roof by Kordi and Kopp (2011).
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Figure 6.34: Vertical profiles of the horizontal component of wind speed, U , for

both porous region and wall bounded buildings, taken at (a) 12L upstream of

the building, (b) the building’s upstream face position, (c) the building ridge, (d)

the building’s downstream face position and (e) 24L downstream of the building.
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Figure 6.35: Vertical profiles of turbulent kinetic energy, k, for both porous

region and wall bounded buildings, taken at (a) 12L upstream of the building, (b)

the building’s upstream face position, (c) the building ridge, (d) the building’s

downstream face position and (e) 24L downstream of the building.
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(a) (b)

Figure 6.36: Instantaneous snapshots of plate position and orientation during

flight for (a) Case1 - 1 kg plate and (b) Case2 - 6.35 kg plate.
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Figure 6.37: Predictions for (a) horizontal plate speed, (b) vertical plate speed

and (c) Rotational speed about the Z-axis, for Case1.

The plate trajectory is shown to be significantly affected by the flow field at the

launch position, most notably, the suction pressures at the eaves which create the

large positive vertical velocity, and a slight negative initial horizontal velocity.

As both cases represent high lift trajectories, no significant interaction with the

recirculation region in the wake of the building was observed.

The results of this simulation show that although the modelling of failure and

flight of plate type roof components has traditionally been restricted to exper-

imental investigations, such as Kordi and Kopp (2011), the CFD-RBD models

presented in the present research are capable of numerically reproducing this

behaviour and allowing more detailed investigations of the FSI involved. Fur-
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ther simulations incorporating hold down restraint forces, different plate sizes

and varying inflow wind direction relative to the building, as experimentally

modelled by Kordi and Kopp (2011) are recommended.

6.7 Concluding Remarks

CFD-RBD models have been shown to adequately predict the flight behaviour

of plate type windborne debris. The results for translational speed and mean

trajectory are in good agreement with fit expressions of experimental data by

Lin et al. (2006). Using the results of the CFD-RBD models, the likely impact

location and energy may be obtained for use in debris risk and damage modelling.

With no a-priori information about the quasi-steady aerodynamic properties of

the debris, the CFD-RBD models are shown to sufficiently predict debris flight

trajectories in uniform, smooth flows with an ability to reproduce all the key

flight modes previously observed in experimental studies. Although fixed-axis

autorotation has been shown to be an accurate description for the stable flight

stage, this is not the case in the initial launch stage when the plate experiences

large accelerations resulting in a strongly non-linear interaction with its wake.

The role of autorotation in determining the terminal velocities of the plates has

been explained based on an analysis of the FSI involved in debris flight, and the

phenomena of plate over-speeding explained.

The CFD-RBD model is extended from the uniform flow field scenarios to the

more complex flow conditions involved in typical debris launch and is demon-

strated as valuable tool for understanding the launch and the parametric study

of debris flight. Wider parametric studies are recommended as well as an in-

vestigation into the influence of ABL turbulence effects and the sensitivity of

CFD-RBD predictions to the turbulence modelling approach. The difficulties

in modelling complex launch conditions using body-fitted meshes are illustrated

and immersed boundary and overset grid methods are recommended for future

CFD studies.

An improved quasi-steady model based on forced rotation CFD predictions has

been presented and is shown to provide a more accurate estimate of the fluctu-

ating component of aerodynamic forces. However, although both the improved

quasi-steady analytical model and previous analytical models provide sufficiently

accurate representations of debris flight behaviour in the autorotational mode
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of flight, they are unable to adequately represent flutter and transitional modes

as well as the plate’s launch behaviour. This limitation arises from an inher-

ent inability of quasi-steady models based on stable autorotation to represent

the the strong non-linear interaction between the plate and its wake in unstable

conditions. Similar failures may be expected from quasi-steady models when

extended to complex and non-uniform launch flow fields. In these scenarios, the

CFD-RBD model is shown to be the most suitable modelling approach.

Because the CFD-RBD modelling approach requires no a-priori knowledge of

debris aerodynamics, as this is directly simulated, and easily incorporates com-

plex flow and initial conditions, the CFD-RBD model is the most complete

numerical model for the simulation of plate-type windborne debris flight.



Chapter 7

Conclusions and

Recommendations

This chapter summarises the conclusions reached by the present study together

with proposed recommendations for future work.

7.1 Conclusions

Rigid Body Dynamics modelling: The Euler angle parametrisations of ori-

entation commonly used in 3D analytical debris flight models have singular ori-

entations that make them unsuitable for 3D flight simulation. An alternative

quaternion based RBDmodel has been presented in Chapter 4. This model is sin-

gularity free and more computationally efficient in terms of reducing the numer-

ical error in the solution which results in numerical drift and non-orthogonality

of the rotational matrix. Orthogonality in the quaternion formulation is easily

guaranteed by enforcement of a single unit norm constraint equation using a

post-correct at the end of each time step, leading to a more accurate solution.

Static plate CFD simulations: Static plate CFD simulations have been per-

formed in Chapter 5. Based on the results of these simulations, 3D URANS

CFD models are shown to be more suitable than 2D URANS models for the

numerical prediction of the aerodynamic forces acting on plates. This is due

to the more accurate representation of the 3D nature of turbulence in the 3D

simulations.

The behaviour of the plate’s wake in URANS simulations is shown to be sensitive

to near-wall grid resolution with coarse grids predicting steady separated flow at

high angles of attack where unsteady separated flows have been experimentally

observed. For these large separated flows occurring at high angles of attack, a

fine near-wall mesh resolution, together with a two-layer enhanced wall function

are recommended.

Even with the enhanced wall function and fine grid, the URANS models predict

216
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a stably attached LEV, where fine and coarse grid DES simulations predict smal-

ler scales and a greater degree of wake unsteadiness in the LEV. However, for low

aspect ratio plates, the force fluctuations associated with small scale wake un-

steadiness are shown to be weak, a finding that us consistent with experimental

observations of low aspect ratio bodies by Bearman (1984). The additional com-

putational cost and finer near-wall and wake region meshes required to perform

an accurate DES simulation for low aspect ratio plates is therefore unjustified

and a Realisable k − ε model has been found to be sufficient.

Insights into the aerodynamics of rotating plates: As shown in Chapter

5, coupling the CFD model sequentially with a 6DOF RBD model allows for

an accurate simulation of the non-linear FSI involved in plate autorotation.

Rotating plates show a stronger interaction with flow structures in the wake

of the plate resulting in greater mean and RMS of aerodynamic drag, lift and

torque compared to static cases.

Unlike previous work that has focused on fixed axis autorotation of high aspect

ratio 2D plates, the model presented in this research extends this work to 3D

low aspect ratio plates and free-axis autorotation. In fixed-axis autorotation,

the tip vortices present at the side edges of the plate have been found to play

an important role in delaying separation and also interact with the leading and

trailing edge vortices to form hair-pin vortices that are periodically shed from

the plate. The vortex shedding frequency is controlled by the plate’s rotational

speed, with a vortex shed from each of the leading and trailing edges during a

typical 180◦ cycle. The plate’s rotation is however in turn limited by the vortex

shedding leading to stable autorotation.

The leading edge vortex at the retreating edge plays a dominant role in creating

the aerodynamic acceleration and damping that make autorotation possible. At

rotational speeds lower than the speed of autorotation, the low pressure asso-

ciated with the core of the retreating edge vortex is responsible for the large

accelerating torque that leads to an increase in rotational speed up to the point

of autorotation. At rotational speeds beyond the plate’s autorotational speed,

the vortex shed from the plate’s retreating edge is not translated away quickly

enough and interacts with the front of the plate creating a damping torque. Us-

ing the results of forced rotation simulations, an empirical relationship between
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the aerodynamic forces and rotational speed has been derived. Surface pressure

predictions have been validated against existing experimental measurements and

CFD-RBD simulations using URANS models are shown to provide an adequate

representation of the pressure distribution and rotational dynamics of rotating

plates.

Coupled CFD-RBD flight simulations and parametric studies: The

CFD-RBD model is extended to 6DOF debris flight in Chapter 6. CFD-RBD

predictions for debris flight have been found to be in good agreement with avail-

able experimental observations for horizontal displacement and terminal transla-

tional speed. Altogether four primary flight modes have been identified depend-

ing on the initial orientation of the plate; autorotational, transitional, flutter

and complex 3D spinning. Based on CFD-RBD model predictions of the expec-

ted trajectory, estimates of the impact probability and energy may be computed

for a given launch height and these results would be useful for the probabilistic

modelling of debris damage risk.

The plate’s terminal horizontal velocity is shown to be dependant on the direc-

tion of rotation, with the autorotational effects resulting in plates overspeeding

with a non-dimensionalised horizontal speed greater than one, or flying with a

non-dimensionalised speed consistently below one. Previous assumptions, sug-

gesting a non-dimensionalised terminal horizontal speed of one are shown to

be invalid, except for flutter mode plates which have relatively low rotational

speeds. This coupling between the terminal horizontal speed and rotational dir-

ection is due to the direction of the autorotational component associated with

the vertical components of relative wind speed.

CFD-RBD predictions have been contrasted against predictions from a 2D quasi-

steady analytical model. Although the 2D quasi-steady analytical model is found

to perform reasonably well for autorotational mode plates, they do not account

for the strongly unsteady FSI involved in the launch stages and flutter mode

of flight and hence perform poorly in these cases. In addition, the Tachikawa

assumption about the fluctuating component of aerodynamic forces, which is at

the core of quasi-steady force models, is found to be incorrect and an improved

quasi-steady force model has been proposed based on the results of CFD forced

rotation simulations. However, even with an improved force model, the quasi-
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steady analytical models of plate type windborne debris flight are shown to still

be limited when applied to strongly non-linear and unsteady flow conditions.

Finally, while traditionally numerical models have been limited to uniform steady

wind-flow and simple launch conditions involving only initial orientation, CFD-

RBD model can be extended to more realistic flow conditions. Using CFD-RBD

simulations, the complex launch flow field above the roof-top is directly simu-

lated and its impact on debris flight accounted for. The porous region building

model presented in this thesis is a simple method of obtaining qualitatively

similar flow fields to those observed with conventional wall bounded building

models. The results of the the porous building model simulations demonstrate

the applicability of CFD-RBD simulations to these complex launch conditions

whose investigation has previously been restricted to experimental studies.

7.2 Recommendations

A number of avenues exist for further improvement and application of the CFD-

RBD modelling approach presented.

In the autorotation experimental setup, measurements of the flow in the wake

of the plates were not taken and as a result, data is currently unavailable for

validation of the CFD-RBD predicted flow structures. Further studies are re-

commended in order to obtain the velocity and pressure measurements required

to validate the predicted flow structures. CFD-RBD simulations of autorotation

and free-flight using DES and LES turbulence modelling approaches are also

recommended in future studies.

Limited parametric studies have been performed using the CFD-RBD model for

K, I∗, τ and B/L which are the key parameters determining debris flight mode

and overall distribution of trajectories. Additional simulations are however re-

commended in order to fully understand and quantify the effects of these various

parameters on debris distribution and impact energy.

A wider set of the complex launch simulations should be carried out and com-

parisons made against existing destructive wind tunnel data from (Kordi and

Kopp, 2011) in order to validate the CFD-RBD predictions. In addition, a re-

straint force model for building components should also be incorporated into the

simulations. Accuracy and performance in these complex launch cases can be

improved by using an immersed boundary method or grid overset methods as



CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 220

opposed to the porous building model and body fitting grids used in the present

study. For the body-fitting grid cases, further optimisation of the domain de-

composition, mesh motion strategy and mesh size is recommended in order to

reduce the overall computational cost of a typical CFD-RBD flight simulation.

For all the results presented in this thesis, an ABL profile has not been simulated,

but rather a uniform gust front has been assumed. Further studies investigating

the implications for debris flight of ABL profile simulations using URANS models

(Parente et al., 2011) as well non-uniform gust fronts using LES (Xie and Castro,

2008; Revuz et al., 2010), are therefore recommended.

Finally, due to the sensitivity of debris trajectories to a variety of parameters

and launch conditions, a Monte-Carlo type simulation with randomly generated

flow and debris parameters is recommended as the most suitable approach for

debris risk modelling. The CFD-RBD models presented in this research provide

the most complete numerical model for the deterministic step of these Monte-

Carlo type simulations. Further automation of the grid generation, boundary

condition definition and post-processing is recommended in order to make the

CFD-RBD approach more amenable to Monte-Carlo type simulation.
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Appendix A

The CFD Modelling Process

Numerical solutions of the Navier-Stokes equations are usually computed for a

given geometrical or physical context. The spatial domain of interest is therefore

discretised using computational grids (meshes) based on the particular numer-

ical solution technique used. This could be a finite difference method, a finite

element method or a spectral method. The most common of which is a finite

difference formulation known as the Finite Volume Method (FVM). In the FVM,

the computational domain is subdivided into discrete volumes of fluid known as

Control Volumes. The governing equations of fluid flow are then discretised and

solved for each control volume in the domain.

A complete CFD process involves the use of numerical algorithms to solve for U,

p and any other variables such as temperature that describe the flow problem.

To do achieve this, the CFD process may be sub-divided into three main stages:

Pre-processing, Solving and Post-processing.

A.1 Pre-processing

During the pre-processing stage, a conceptual model of the fluid flow problem is

developed. Existing information about the physical and chemical nature of the

problem (i.e. whether it is laminar or turbulent, steady or unsteady, viscous or

inviscid, compressible of incompressible, single or multi-phase, reactive or unre-

active, etc.) is used to define a system of equations that sufficiently describes

the problem. This system of equations usually involves some formulation of the

Navier-Stokes equations together with additional equations for any associated

phenomena or constraints. Subsequently the region of interest, commonly re-

238



APPENDIX A. CFD MODELLING PROCESS 239

ferred to as the computational domain, is defined along with a mathematical

definition of the domain boundaries and fluid properties.

The physical computational domain is then discretised into a number of control

volumes using a computational grid (see section A.5.1). According to Versteeg

and Malalasekera (2007), over 50% of the time spent on a CFD project in in-

dustry is devoted to the definition of domain geometry and grid generation.

Similarly, for unsteady problems, the duration of simulation is defined and the

time-domain is subdivided into discrete time-steps (see section A.6 for a discus-

sion on temporal discretisation). Finally, the model of the problem is initialised

by defining initial values for all the model variables at the solution points.

A.2 Solving

With the problem adequately defined, the governing partial differential equa-

tions of fluid flow are integrated over all the control volumes in the domain to

give a system of algebraic equations. The resulting system of linear algebraic

equations is then solved by an iterative method such as the Gauss-Siedel Method,

the Successive Over-relaxation (SOR) method, the Conjugate Gradient Method

(CGM) or Multigrid methods (Hirsch, 2007).

A.3 Post-processing

After the iterative matrix solver has converged upon a solution with a sufficient

degree of accuracy, the resulting U and p fields obtained are then analysed

in order to extract key information about the fluid flow and any associated

phenomena. This is known as post-processing. Typical outputs include vector

plots, line plots, streamlines, contour plots and iso-surfaces.

A.4 Verification and Validation

Finally, it is important to determine the level of accuracy and reliability of the

CFD model before utilising its results. To do this, verification and validation

studies are performed.

Verification is defined as the process of determining whether a model im-

plementation accurately represents the developer’s conceptual description of a

model and the solution to the model. According to Oberkampf and Trucano

(2002), given a numerical procedure (or CFD code) that is stable, consistent,
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and robust, the five major sources of errors in CFD solutions are: (i) insufficient

spatial discretisation convergence, (ii) insufficient temporal discretisation con-

vergence, (iii) insufficient convergence of an iterative procedure, (iv) computer

round-off, and (v) computer programming errors. The fundamental strategy of

verification is the identification, quantification, and reduction of these errors in

the computational model and its solution. While the computer programming

error is dealt with during code verification, the first four error sources are col-

lectively dealt with as part of solution verification or solution error assessment.

The main focus of verification studies performed during this research has been

on solution verification in the form of checks for spatial and temporal grid con-

vergence studies as well as convergence of iterative procedures. Computer code

verification has not been performed as a pre-compiled commercial CFD code,

ANSYS FLUENT (FLUENT Inc., 2009), has been used for all of the CFD mod-

elling in this research.

Validation is the process of determining the degree to which the model is ac-

curate in its representation of the real world from the perspective of the intended

use of the model (AIAA, 1998). This would usually involve comparisons between

verified model results and experimental measurements which are taken as the

best measure of reality.

Oberkampf and Trucano (2002) note that it is important to remember that this

strategy does not assume that the experimental measurements are more accurate

than the computational results. The strategy only asserts that experimental

measurements are the most faithful reflections of reality for the purposes of

validation. Estimation of error must therefore be performed both on the model

and the experimental data.

For some engineering simulations, the important physical modelling parameters

are not known a priori. It is common engineering practice in these cases to adjust

the modelling parameters within a reasonable range of values, so that improved

agreement with the experimental data is obtained. These types of practical

engineering activities that occur during model validation may more appropri-

ately be described as calibration (Oberkampf and Trucano, 2002). During this

research, model calibration has been performed for some parameters such as

bearing friction and mass eccentricity, whose values were not easily obtainable

although a general range of possible values were known.
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For complex systems, it might also be infeasible or impractical to conduct true

validation experiments on the complete system (Oberkampf and Trucano, 2002).

The recommended strategy in these cases is to use a building-block approach

where the performance of the system is assessed at different levels of physical

coupling and complexity (AIAA, 1998). This building-block approach has been

adopted in this research with validation of free-flight broken down into the sim-

pler blocks of purely translational and purely autorotation motion.

A.5 Spatial Discretisation

A.5.1 Computational Mesh

In the Finite Volume method, the domain is split into discrete volume units

known as control volumes /cells using a computational mesh. One of the crucial

steps in the CFD pre-processing stage, after the domain of interest has been

defined, is building a computational mesh sub-dividing the continuous domain

into these discrete control volumes. This is frequently referred to as mesh gen-

eration and the governing equations are later solved over each control volume in

the mesh.

Depending on the nature of the problem, the mesh may be two- or three-

dimensional (2D or 3D) and may be further classified according to the type of

elements used. The most common 2D mesh elements are triangular and quad-

rilateral elements, while the most common 3D elements are hexahedral, wedge

(prism), pyramid, tetrahedral, and more recently, polyhedral elements.

Computational grids may further be classified based on the arrangement and

topology of the elements as structured or unstructured as illustrated in Figure

A.1. Structured meshes have elements arranged in a regular topology that can

be expressed as a two or three dimensional array. These meshes are sometimes

referred to as mapped meshes as they can be seen as a cuboid mesh that has

been stretched and mapped onto some other geometry (Shaw, 1992). Unstruc-

tured meshes on the other hand have elements arranged in an irregular topology

that cannot be easily expressed as a two- or three-dimensional array. The cell

connectivity information must therefore be explicitly stated and this increases

the storage requirements. However unlike the structured mesh that is limited

to quadrilateral (2D) or hexahedral (3D) elements, an unstructured mesh allows
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(a) (b)

Figure A.1: (a) A structured mesh of hexahedral cells and (b) an unstructured

mesh of tetrahedral cells.

the use of multiple element types in a single mesh.

The accuracy of a CFD simulation is strongly dependant on the quality of the

computational grid. Grid quality expresses the smoothness, regularity and dis-

tortion of the mesh as well as whether it adequately resolves flow in the critical

regions. A number of mesh quality parameters are used to quantify these as-

pects and include: cell area/volume, cell skewness, cell aspect ratio and cell size

growth factors.

In CFD simulations involving wall boundaries, the mesh must be designed to

adequately resolve the wall boundary layer. For turbulent flows, this is achieved

by designing the mesh to ensure that the dimensionless wall distance, y+, of the

first interior cell centre is consistent with that of the wall function applied. y+

is defined as

y+ =
uτy

ν
, (A.1)

where ν(= µ/ρ) is the fluid kinematic viscosity. uτ is the friction velocity defined

by wall shear stress, τw, and fluid density, ρ, as

uτ =

√
τw
ρ
. (A.2)

As part of model verification, it will often be required to adapt the grid until a

sufficient quality and resolution mesh is obtained. Grid convergence studies are

also performed, based on the Richardson extrapolation (Celik and Zhang, 1995)
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Figure A.2: Grid structures for solving the 2-D incompressible Navier-Stokes

equations: (a) natural unstaggered, (b) staggered, (c) partially staggered, (d)

cell-centered unstaggered and (e) staggered with multiple momentum equations

(McDonough, 2007).

in order to assess the sensitivity of results to mesh quality and quantify the error

due to spatial discretisation.

A.5.2 Grid Structure

A correct treatment of pressure-velocity coupling requires the correct combina-

tion of discretisation of the equations and the grid structure used, in terms of

where in the control volume the solution variables are computed and stored. A

number of grid structuring approaches are available as illustrated for a 2D mesh

in Figure A.2.

Each grid structure has its merits and drawbacks. The natural unstaggered grid

has the advantage of allowing a straightforward implementation of boundary

conditions as grid points coincide with boundary points. However, it is possible

with this structure to satisfy the divergence-free condition (A.16) with physic-

ally unrealistic velocity fields and for unrealistic pressure fields to go undetec-

ted (McDonough, 2007). This leads to a problem known as checker-boarding

where an un-physical solution can become stable due to the effective decoupling

of pressure and velocity. One of the ways to address this problem is to use a

staggered grid structure proposed by Harlow and Welch (1965). In the staggered



APPENDIX A. CFD MODELLING PROCESS 244

grid, the problem of pressure-velocity decoupling observed on the natural grid is

avoided, however some of the drawbacks of this approach are include the relat-

ively counter-intuitive implementation and the fact that boundary conditions are

often not exactly enforced. Similar grid structures such as the partially staggered

structure and the staggered with multiple momentum equations structure have

subsequently been proposed, but these required a substantial amount of addi-

tional calculations as well as complex algorithms yet some of the drawbacks of

the simple staggered grid still occur (McDonough, 2007).

Eventually, the cell-centered unstaggered grid structure (also known as the co-

located scheme) introduced by Rhie and Chow (1983) has become the most

successful and most widely implemented in incompressible flow cases. This co-

located structure is applied in FLUENT (FLUENT Inc., 2009), and will be the

main focus of this section. One of the main drawbacks of this approach is that

since all variables are stored at the cell centres, it is not possible to exactly

satisfy all boundary conditions hence results are expected to be generally less

accurate than those computed on a staggered grid (McDonough, 2007).

A.5.3 Discretisation Schemes

In order to compute convection and diffusion fluxes of scalars through the cell

faces, the face values, φf are usually required. In the co-located scheme, these are

obtained by interpolation from the computed cell centre values using a suitable

discretisation scheme.

For convective terms, upwinding schemes are often used, in which the face values

are computed from cell centre values of cells that are located upstream relative to

the direction of the normal velocity vn through the face. Other possible schemes

include power law, QUICK and MUSCL schemes. For diffusion terms on the

other hand, central differencing schemes are usually used with second-order or

higher accuracy. A brief descriptions of these schemes is presented here.

The First Order Upwind Scheme assumes the cell centre value, φ, to be

the average cell values and valid throughout the entire cell including at the cell

faces. Therefore when using this scheme the face values, φf , are set equal to the

cell centre value in the upstream cell.
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The Second Order Upwind Scheme on the other hand offers second order

accuracy and computes cell face values, φf , using a Taylor series expansion of

the cell-centred values according to

φf = φ+∇φ · ~r, (A.3)

where φ and ∇φ are the cell-centred value and its gradient in the upstream cell,

and ~r is the displacement vector from the upstream cell centroid to the face

centroid. The gradients, ∇φ, must be determined for each cell using a suitable

gradient method, allowing for higher order upwinding schemes to be derived.

The Power Law Scheme interpolates the face values of a variable, φ, using

an exact solution to the one-dimensional convection-diffusion equation

∂

∂x
(ρuφ) =

∂

∂x
Γ
∂φ

∂x
, (A.4)

where diffusivity, Γ and ρu are constant across the interval ∂x. Integrating (A.4)

yields (A.5) which describes how φ varies with x.

φ(x)− φ0
φL − φ0

=
e(Pe

x
L
) − 1

e(Pe) − 1
(A.5)

where, φ0 = φ|x=0, φL = φ|x=L, and Pe is the Peclet number: Pe = ρuL
Γ . For

large Pe, the value of φ at x = L/2 is approximately equal to the upstream

value, which is the equivalent of a first-order upwind scheme.

The Central Differencing Scheme computes face values for a variable, φf

by averaging the multidimensional linear reconstructions of φ obtained from the

two cells that share the face. The resulting expression for φf is

φf =
1

2
(φ0 + φ1) +

1

2
(▽φ0 · ~r0 +▽φ1 · ~r1) (A.6)

where the indices 0 and 1 refer to the cells that share face f , ▽φ0 and ▽φ1
are the reconstructed gradients in cells 0 and 1, respectively, and ~r is the vector

directed from the cell centroid to the face. The central differencing scheme can

produce unbounded oscillating solutions which can lead to numerical instability.

The QUICK scheme is suitable for quadrilateral and hexahedral meshes where

unique upstream and downstream faces and cells can be identified. The scheme

gives higher-order values of the convected variable φ at a face by using a weighted
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Figure A.3: One-dimensional control volume between two neighbouring control

volumes.

average of second order upwind and central interpolation of variables. Consider

the one-dimensional control volume set-up shown in Figure A.3.

Assuming flow from left to right in Figure A.3, the face value of e is given by

φe = θ

[
Sd

Sc + Sd
φP +

Sc
Sc + Sd

φE

]
+ (1− θ)

[
Su + 2Sc
Su + Sc

φP − Sc
Su + Sc

φW

]
, (A.7)

where, θ = 1 results in a second-order central interpolation, while θ = 0 results

in a second order upwind value. The traditional QUICK scheme is obtained by

setting θ = 1/8 while some implementations have a solution dependant value

of θ.

This scheme is more accurate on structured grids that are aligned with the flow

direction although it may be extended to unstructured grids.

A Third Order MUSCL Scheme calculates face values by blending a central

differencing scheme with a second-order upwind scheme. This scheme is based

on the Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL)

with face values, φf calculated according to

φf = θφf,CD + (1− θ)φf,SOU , (A.8)

where φf,CD is computed using the central differencing scheme and defined by

(A.6), and φf,SOU is computed using the second-order upwind scheme as defined

in (A.3).

Compared to the second order upwind scheme, the third order MUSCL has the

potential to improve spatial accuracy for all mesh types even in cases exhibiting

sudden flux (shock), discontinuities or large gradients by reducing numerical
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diffusion especially with 3D flows. It also has the advantage over the QUICK

scheme of being applicable to arbitrary and unstructured meshes. However, the

third order MUSCL scheme can still produce incorrect estimates when the field

under consideration has discontinuities or sudden flux changes.

A.6 Temporal Discretisation

For unsteady simulations, in addition to the spatial discretisation described in

section A.5, the time domain is split into a number of discrete time-steps, ∆t,

and every term in the Navier-Stokes equations is integrated over this time-step.

The evolution of a variable, φ in time is then given by

∂φ

∂t
= F (φ), (A.9)

where F incorporates any spatial discretisation. The time derivative may then

be computed using a number of differencing schemes such as first-order backward

differencing:
φn+1 − φn

∆t
= F (φ), (A.10)

and second-order backward differencing:

3φn+1 − 4φn + φn−1

∆t
= F (φ), (A.11)

where, φ is a scalar quantity, φn+1 is its value at the next time level, t+∆t, φn

is the value at the current time level, t, and φn−1 is the value at the previous

time level, t−∆t. After the discretisation of the time derivative, F (φ) may be

calculated by applying either an implicit or an explicit time integration scheme.

Implicit Time Stepping. With the implicit time integration schemes, the

spatial discretisation F is estimated at the next time level n + 1 at which the

value of φ is sought. For the first order implicit time stepping scheme, this is

expressed as

φn+1 = φn +∆tF (φn+1). (A.12)

The equation is “implicit” since φn+1 is not explicitly expressed in terms of

the known values φn at the previous time level. The spatial discretisation of

φn+1 is incorporated into F (φn+1). This scheme holds the advantage of being

unconditionally stable irrespective of the time-step size. However the time-step

size still has to be sufficiently small to resolve the smallest timescales occurring

within the flow.
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Explicit Time Stepping. For explicit time integration schemes, F (φ) is eval-

uated at the current level using known values, φn,

φn+1 = φn +∆tF (φn). (A.13)

It is referred to as explicit integration since φn+1 is explicitly expressed in terms

of the existing solution values, φn. This scheme is only conditionally stable. In

order to maintain the stability of the explicit method, time step size ∆t must

obey the the Courant-Friedrich-Lewy (CFL) condition (Courant et al., 1967),

which for a one-dimensional problem is

Cr =
u∆t

∆x
≤ k (A.14)

where Cr is the Courant number and k is a constant whose value depends on

the type of problem being solved. For advection dominated problems, k = 1.

In order to maintain numerical stability of the explicit scheme, the time-step

size throughout the domain must be the minimum required to satisfy the CFL

condition for all the cells in the domain.

Due to the conditional instability of the explicit time-stepping scheme, only first

and second order implicit time-stepping was used in this research.

A.7 Pressure-Velocity Coupling

After discretisation of the fluid flow equations, a set of linear algebraic equations

results. For compressible flow solvers, the velocity field values are given by the

discretised momentum equations with the continuity equation used to obtain the

density field, while the pressure field is determined from the equation of state.

This however is not the case for incompressible flows.

In solving the incompressible Navier-Stokes equations, a numerical difficulty

known as the pressure-velocity coupling problem arises. Usually, a velocity field

U is obtained from solving the discretised momentum equation (3.20), leaving

only the continuity equation (3.21) (also referred to as the divergence-free con-

dition) for computing the pressure p. However, as p is not explicitly included

in (3.21), an additional expression for pressure known as the Pressure Poisson

Equation (PPE) is derived from computing the divergence of (3.20), while as-

suming the divergence-free condition given by (3.21) to hold.
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∂(∇ ·U)

∂t
+∇ · (U · ∇U) = −1

ρ
∇ · (∇p+∇ · τ +FB), (A.15)

∇2p = ∇ · FB − ρ∇ · (U · ∇U), (A.16)

where ∇2 = ∇ · ∇ is the Laplace operator. The set of discretised momentum

equations and the discretised PPE for pressure form a system of algebraic equa-

tions with linear inter-dependencies, and in which the continuity principle is not

explicitly enforced. While (A.16) requires that the velocity field used to compute

the pressure be divergence free, it does not explicitly enforce this condition and

the velocity field obtained from solving the discretised momentum (3.20) will

seldom be divergence-free.

A number of solver algorithms have been developed to address these Pressure-

Velocity coupling difficulties. These solver algorithms may be considered as

either coupled or segregated depending on whether the system of equations is

solved sequentially (i.e. segregated from one another) or solved together as a

coupled system of equations. Some of the most commonly used segregated solu-

tion algorithms to-date include: the Marker-and-Cell Method (MAC) by Harlow

and Welch (1965); the SOLA algorithm by Hirt et al. (1975); the Artificial Com-

pressibility method by Chorin (1966); Kwak et al. (1986); projection methods by

Chorin (1966, 1969); the Semi-Implicit Method for Pressure Linked Equations

(SIMPLE) algorithm by Spalding (1977) and Patankar (1980) and the Pressure

Implicit with Splitting of Operators (PISO) algorithm by Issa (1986).

The SIMPLE algorithm and its variants have become the most widely used and

are at the core of many commercial CFD codes such as FLUENT Inc. (2009).

They are used for most of the simulations performed during this research.



Appendix B

Arbitrary Lagrangian-Eulerian (ALE) Methods

The numerical simulation of wind engineering problems often involves the non-

linear interaction between the fluid and moving wall boundaries. This could be

due to the oscillation of the wall boundaries making up a tall building or the

complex 3D spinning of plate type windborne debris. It is often necessary in

these cases to cope with fairly large deformations of the domain as the fluid

moves while allowing a clear delineation of the fluid-structure interface and an

accurate solution of the resulting fluid flow field.

There are two traditional approaches to this problem, the Lagrangian approach

and the Eulerian approach. In the Lagrangian approach, commonly used in

structural mechanics, each individual node of the computational domain follows

an associated material particle during motion. While this allows for the easy

tracking of free surfaces and fluid-structure interfaces, it is unable to account

for large distortions of the computational domain without frequent re-meshing.

However, the Eulerian approach, which is widely used in fluid dynamics, involves

fixing the computational mesh and allowing the fluid to move relative to the

mesh. Although this allows for the easy handling of large distortions in the fluid,

the Eulerian approach is unable to precisely define the fluid-structure interface

(Donea et al., 2004).

The Arbitrary Lagrangian-Eulerian (ALE) method is an attempt to combine

the advantages of Lagrangian and Eulerian descriptions while minimizing their

drawbacks. In the ALE description, the nodes of the computational mesh may

be moved with the continuum in normal Lagrangian fashion, or be held fixed

in Eulerian manner, or, be moved in some arbitrarily specified way to give a

250
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continuous rezoning capability (Donea et al., 2004). To achieve this, the ALE

introduces translational and rotational velocities for the fluid mesh nodes as ug

and ωp, respectively. At the fluid-structure interface, these fluid mesh velocities

must coincide with the structural node velocities.

Subsequently, starting from the Eulerian description of the mass, momentum

and energy conservation equations as stated in (3.21), (3.20) and (3.22), a new

ALE formulation of the fluid flow equations is obtained by replacing the fluid

velocity, U, with the relative velocity between the fluid and the moving mesh,

Ur, to give

∇ ·Ur = 0, (B.1)

∂Ur

∂t
+Ur · ∇U =

1

ρ
(−∇p+∇ · τ + FB), (B.2)

Ur = U− (ωp × r)− ug. (B.3)

It is important to note that in the resulting formulation, the arbitrary motion

of the computational mesh is only reflected in the left-hand side, which has led

to some authors refereing to this as the quasi-Eulerian description.

The ALE formulation of the Navier-Stokes equations has been successfully used

for the numerical simulation of fluid-rigid body interaction by Sarrate et al.

(2001), and the present research uses a similar approach.
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#include ”udf . h”

#include ”math . h”

#define R2D 180.0/M PI /∗ Convert radians to deg ree s

∗/
#define D2R M PI/180.0 /∗ Convert deg ree s to radians

∗/
stat ic r e a l MASS; /∗ MASS of o b j e c t ( kg ) ∗/
stat ic r e a l IXX, IYY, IZZ ; /∗ moment o f i n t e r t i a (Nmsˆ2) ∗/
stat ic int BodyId ; /∗ ID o f zone r e f e r i n g to p l a t e ∗/
stat ic r e a l theta [ 3 ] ;

stat ic r e a l velBody [ 3 ] ; /∗ Trans l a t i ona l v e l o c i t y ∗/
stat ic r e a l grav acc [ 3 ] ; /∗ Grav i t a t i ona l Acce l e ra t i on ∗/
stat ic r e a l centreOfGrav i ty [ 3 ] ; /∗ Pla te Centre o f g r a v i t y ∗/
stat ic r e a l omegaBody old p [ 3 ] = {0 .0 , 0 . 0 , 0 . 0} ;

void c o l l e c t d a t a f r om pan e l ( )

{
/∗ Co l l e c t data from the a s s oc i a t e d 6DOF−RBD pane l ∗/
#i f !RP NODE

MASS = RP Get Real ( ”quatrbd/mass” ) ;

IXX = RP Get Real ( ” quatrbd/ ixx ” ) ;

IYY = RP Get Real ( ” quatrbd/ iyy ” ) ;

IZZ = RP Get Real ( ” quatrbd/ i z z ” ) ;

theta [ 0 ] = D2R∗RP Get Real ( ”quatrbd / theta−x” ) ;
theta [ 1 ] = D2R∗RP Get Real ( ”quatrbd / theta−y” ) ;
theta [ 2 ] = D2R∗RP Get Real ( ”quatrbd / theta−z” ) ;

velBody [ 0 ] = RP Get Real ( ”quatrbd/velbody−x” ) ;
velBody [ 1 ] = RP Get Real ( ”quatrbd/velbody−y” ) ;
velBody [ 2 ] = RP Get Real ( ”quatrbd/velbody−z” ) ;

omegaBody old p [ 0 ] = RP Get Real ( ” quatrbd/omega−x” ) ;
omegaBody old p [ 1 ] = RP Get Real ( ” quatrbd/omega−y” ) ;
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omegaBody old p [ 2 ] = RP Get Real ( ” quatrbd/omega−z” ) ;

grav acc [ 0 ] = RP Get Real ( ”quatrbd/ grav i ty−x” ) ;
grav acc [ 1 ] = RP Get Real ( ”quatrbd/ grav i ty−y” ) ;
grav acc [ 2 ] = RP Get Real ( ”quatrbd/ grav i ty−z” ) ;

centreOfGrav i ty [ 0 ] = RP Get Real ( ” quatrbd/cog−x” ) ;
centreOfGrav i ty [ 1 ] = RP Get Real ( ” quatrbd/cog−y” ) ;
centreOfGrav i ty [ 2 ] = RP Get Real ( ” quatrbd/cog−z” ) ;

BodyId = RP Get Integer ( ”quatrbd/body−id ” ) ;

#endif

/∗ Pass arrays and v a r i a b l e s to nodes ∗/
h o s t t o n od e r e a l 4 (MASS, IXX , IYY, IZZ ) ;

h o s t t o n od e i n t 1 (BodyId ) ;

h o s t t o n od e r e a l ( theta , 3 ) ; /∗ Pass array ∗/
h o s t t o n od e r e a l ( velBody , 3 ) ; /∗ Pass array ∗/
h o s t t o n od e r e a l ( grav acc , 3 ) ; /∗ Pass array ∗/
h o s t t o n od e r e a l ( centreOfGravity , 3 ) ; /∗ Pass array ∗/
h o s t t o n od e r e a l ( omegaBody old p , 3 ) ; /∗ Pass array ∗/

}

DEFINE CG MOTION(Flight6DOF , dt , vel , omega , time , deltaT )

{
stat ic r e a l f o r ceBody i [ 3 ] = {0 .0 , 0 . 0 , 0 . 0} ;
stat ic r e a l momentBody i [ 3 ] = {0 .0 , 0 . 0 , 0 . 0} ;
stat ic r e a l momentBody p [ 3 ] = {0 .0 , 0 . 0 , 0 . 0} ;
stat ic r e a l omegaBody i [ 3 ] = {0 .0 , 0 . 0 , 0 . 0} ;
stat ic r e a l omegaBody p [ 3 ] = {0 .0 , 0 . 0 , 0 . 0} ;
stat ic r e a l q [ 4 ] ; /∗ Rota t i ona l Quaternion ∗/
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stat ic r e a l qdot [ 4 ] ; /∗ Quaternion ra te o f change ∗/
stat ic r e a l rotKE ;

stat ic r e a l transKE ;

stat ic int ud f s t ep count =0;

r e a l R [ 3 ] [ 3 ] ; /∗ Rota t i ona l matrix ∗/
r e a l Wq[ 3 ] [ 4 ] ; /∗ Rota t i ona l r a t e s matrix ∗/
r e a l Qerr ; /∗ Unit normal i ty c on s t r a i n t e r ror ∗/
int i , j ; /∗ General i t e r a t i o n loop counters ∗/
Domain ∗domain = Get Domain ( 1 ) ;

Thread ∗ f t ;

#i f RP HOST

FILE ∗ f i l e ; /∗ Pointer to l o g f i l e ∗/
#endif

/∗ I f t h i s i s the f i r s t s t e p o f the UDF ∗/
i f ( ud f s t ep count==0)

{
c o l l e c t d a t a f r om pan e l ( ) ;

/∗ Set Quaternion to i n i t i a l o r i e n t a t i o n ∗/
q [ 0 ] = cos ( theta [ 0 ] ∗ 0 . 5 ) ∗ cos ( theta [ 1 ] ∗ 0 . 5 ) ∗
cos ( theta [ 2 ] ∗ 0 . 5 ) + s in ( theta [ 0 ] ∗ 0 . 5 ) ∗
s i n ( theta [ 1 ] ∗ 0 . 5 ) ∗ s i n ( theta [ 2 ] ∗ 0 . 5 ) ;

q [ 1 ] = −cos ( theta [ 0 ] ∗ 0 . 5 ) ∗ s i n ( theta [ 1 ] ∗ 0 . 5 ) ∗
s i n ( theta [ 2 ] ∗ 0 . 5 ) + s in ( theta [ 0 ] ∗ 0 . 5 ) ∗
cos ( theta [ 1 ] ∗ 0 . 5 ) ∗ cos ( theta [ 2 ] ∗ 0 . 5 ) ;

q [ 2 ] = cos ( theta [ 0 ] ∗ 0 . 5 ) ∗ s i n ( theta [ 1 ] ∗ 0 . 5 ) ∗
cos ( theta [ 2 ] ∗ 0 . 5 ) + s in ( theta [ 0 ] ∗ 0 . 5 ) ∗
cos ( theta [ 1 ] ∗ 0 . 5 ) ∗ s i n ( theta [ 2 ] ∗ 0 . 5 ) ;
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q [ 3 ] = cos ( theta [ 0 ] ∗ 0 . 5 ) ∗ cos ( theta [ 1 ] ∗ 0 . 5 ) ∗
s i n ( theta [ 2 ] ∗ 0 . 5 ) − s i n ( theta [ 0 ] ∗ 0 . 5 ) ∗
s i n ( theta [ 1 ] ∗ 0 . 5 ) ∗ cos ( theta [ 2 ] ∗ 0 . 5 ) ;

/∗ Enforcing normal i ty c on s t r a i n t e r ror ∗/
Qerr = q [ 0 ] ∗ q [ 0 ] + q [ 1 ] ∗ q [ 1 ] + q [ 2 ] ∗ q [ 2 ] +

q [ 3 ] ∗ q [ 3 ] − 1 . 0 ;

do /∗ app ly post−co r r e c t i on s t e p r e pea t e d l y ∗/
{
for ( i =0; i <4; i++)

{
q [ i ] += −0.5∗Qerr∗q [ i ] ;
}
Qerr = q [ 0 ] ∗ q [ 0 ] + q [ 1 ] ∗ q [ 1 ] + q [ 2 ] ∗ q [ 2 ] +

q [ 3 ] ∗ q [ 3 ] − 1 . 0 ;

} while ( ( Qerr > 1 .0 e−10) | | ( Qerr < −1.0e−10)) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

ud f s t ep count =1;

}

/∗ Get the thread f o r the de b r i s p l a t e wa l l s ∗/
f t = Lookup Thread ( domain , BodyId ) ;

/∗ Get CFD computed aerodynamic f o r c e s and moments ∗/
Compute Force And Moment ( domain , f t , centreOfGravity ,

forceBody i , momentBody i , TRUE) ;

/∗∗∗∗∗∗∗∗Pass data from nodes to hos t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
n od e t o h o s t r e a l ( forceBody i , 3 ) ;

n od e t o h o s t r e a l (momentBody i , 3 ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
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/∗ Add g r a v i t y f o r c e and any o the r body f o r c e s ∗/
for ( i =0; i <3; i++)

for ceBody i [ i ] += grav acc [ i ]∗MASS;

/∗ Compute Tran s l a t i ona l Ve l o c i t y ∗/
for ( i =0; i <3; i++)

velBody [ i ] += for ceBody i [ i ]∗ deltaT /MASS;

/∗ Compute new cen t re o f g r a v i t y p o s i t i o n ∗/
for ( i =0; i <3; i++)

centreOfGrav i ty [ i ] += velBody [ i ]∗ deltaT ;

/∗ Compute 3D ro t a t i on a l t rans format i on matrix R ∗/
R[ 0 ] [ 0 ] = q [ 0 ] ∗ q [ 0 ] + q [ 1 ] ∗ q [ 1 ] − q [ 2 ] ∗ q [ 2 ] −
q [ 3 ] ∗ q [ 3 ] ;

R [ 0 ] [ 1 ] = 2.0∗ q [ 1 ] ∗ q [ 2 ] + 2.0∗ q [ 0 ] ∗ q [ 3 ] ;

R [ 0 ] [ 2 ] = 2.0∗ q [ 1 ] ∗ q [ 3 ] − 2.0∗ q [ 0 ] ∗ q [ 2 ] ;

R [ 1 ] [ 0 ] = 2.0∗ q [ 1 ] ∗ q [ 2 ] − 2.0∗ q [ 0 ] ∗ q [ 3 ] ;

R [ 1 ] [ 1 ] = q [ 0 ] ∗ q [ 0 ] − q [ 1 ] ∗ q [ 1 ] + q [ 2 ] ∗ q [ 2 ] −
q [ 3 ] ∗ q [ 3 ] ;

R [ 1 ] [ 2 ] = 2.0∗ q [ 2 ] ∗ q [ 3 ] + 2.0∗ q [ 0 ] ∗ q [ 1 ] ;

R [ 2 ] [ 0 ] = 2.0∗ q [ 1 ] ∗ q [ 3 ] + 2.0∗ q [ 0 ] ∗ q [ 2 ] ;

R [ 2 ] [ 1 ] = 2.0∗ q [ 2 ] ∗ q [ 3 ] − 2.0∗ q [ 0 ] ∗ q [ 1 ] ;

R [ 2 ] [ 2 ] = q [ 0 ] ∗ q [ 0 ] − q [ 1 ] ∗ q [ 1 ] − q [ 2 ] ∗ q [ 2 ] +
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q [ 3 ] ∗ q [ 3 ] ;

/∗ Transform torque i n t o p la t e−f i x e d coord ina te s ∗/
for ( i =0; i <3; i++)

{
momentBody p [ i ]=0 . 0 ;

for ( j =0; j <3; j++)

momentBody p [ i ] += R[ i ] [ j ]∗momentBody i [ j ] ;

}

/∗Compute p la t e−f i x e d angu lar v e l o c i t y ∗/
omegaBody p [ 0 ] = omegaBody old p [ 0 ] + (momentBody p [ 0 ] −
( IZZ − IYY)∗ omegaBody old p [ 1 ] ∗ omegaBody old p [ 2 ] ) ∗
deltaT /IXX;

omegaBody p [ 1 ] = omegaBody old p [ 1 ] + (momentBody p [ 1 ] −
(IXX − IZZ )∗ omegaBody old p [ 0 ] ∗ omegaBody old p [ 2 ] ) ∗
deltaT /IYY;

omegaBody p [ 2 ] = omegaBody old p [ 2 ] + (momentBody p [ 2 ] −
(IYY − IXX)∗ omegaBody old p [ 0 ] ∗ omegaBody old p [ 1 ] ) ∗
deltaT /IZZ ;

/∗ Store the new angu lar f requency f o r next time s t e p ∗/
for ( i =0; i <3; i++)

omegaBody old p [ i ] = omegaBody p [ i ] ;

/∗ Transform ro t a t i on a l speed i n t o g l o b a l coord ina te s ∗/
for ( i =0; i <3; i++)

{
omegaBody i [ i ]=0 . 0 ;

for ( j =0; j <3; j++)

omegaBody i [ i ] += R[ j ] [ i ]∗ omegaBody p [ j ] ;
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}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Update l i n e a r and angu lar v e l o c i t y o f the MOVING ZONE. ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
NV V(omega ,= , omegaBody i ) ;

NV V( vel ,= , velBody ) ;

/∗∗∗∗∗∗∗∗Pass data from hos t to nodes ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
h o s t t o n od e r e a l ( omega , 3 ) ;

h o s t t o n od e r e a l ( vel , 3 ) ;

h o s t t o n od e r e a l ( centreOfGravity , 3 ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ Compute new ro t a t i on a l quaternion ∗/
Wq[ 0 ] [ 0 ] = −q [ 1 ] ;

Wq[ 0 ] [ 1 ] = q [ 0 ] ;

Wq[ 0 ] [ 2 ] = q [ 3 ] ;

Wq[ 0 ] [ 3 ] = −q [ 2 ] ;

Wq[ 1 ] [ 0 ] = −q [ 2 ] ;

Wq[ 1 ] [ 1 ] = −q [ 3 ] ;

Wq[ 1 ] [ 2 ] = q [ 0 ] ;

Wq[ 1 ] [ 3 ] = q [ 1 ] ;

Wq[ 2 ] [ 0 ] = −q [ 3 ] ;

Wq[ 2 ] [ 1 ] = q [ 2 ] ;

Wq[ 2 ] [ 2 ] = −q [ 1 ] ;

Wq[ 2 ] [ 3 ] = q [ 0 ] ;
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for ( i =0; i <4; i++)

{
qdot [ i ] = 0 . 0 ;

for ( j =0; j <3; j++)

{
qdot [ i ] += 0.5∗Wq[ j ] [ i ]∗ omegaBody p [ j ] ;

}
q [ i ] += qdot [ i ]∗ deltaT ;

}

/∗ Enforcing normal i ty c on s t r a i n t e r ror ∗/
Qerr = q [ 0 ] ∗ q [ 0 ] + q [ 1 ] ∗ q [ 1 ] + q [ 2 ] ∗ q [ 2 ] +

q [ 3 ] ∗ q [ 3 ] − 1 . 0 ;

do /∗ app ly post−co r r e c t i on s t e p r e pea t e d l y ∗/
{
for ( i =0; i <4; i++)

{
q [ i ] += −0.5∗Qerr∗q [ i ] ;
}
Qerr = q [ 0 ] ∗ q [ 0 ] + q [ 1 ] ∗ q [ 1 ] + q [ 2 ] ∗ q [ 2 ] +

q [ 3 ] ∗ q [ 3 ] − 1 . 0 ;

} while ( ( Qerr > 1 .0 e−10) | | ( Qerr < −1.0e−10)) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ Compute Euler ang l e s ∗/

theta [ 0 ] = atan2 ( ( 2 . 0∗ q [ 2 ] ∗ q [ 3 ] + 2.0∗ q [ 0 ] ∗ q [ 1 ] ) ,

( q [ 0 ] ∗ q [ 0 ] − q [ 1 ] ∗ q [ 1 ] − q [ 2 ] ∗ q [ 2 ] + q [ 3 ] ∗ q [ 3 ] ) ) ;

theta [ 1 ] = −as in ( 2 . 0∗ q [ 1 ] ∗ q [ 3 ] − 2.0∗ q [ 0 ] ∗ q [ 2 ] ) ;

theta [ 2 ] = atan2 ( ( 2 . 0∗ q [ 1 ] ∗ q [ 2 ] + 2.0∗ q [ 0 ] ∗ q [ 3 ] ) ,
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(q [ 0 ] ∗ q [ 0 ] + q [ 1 ] ∗ q [ 1 ] − q [ 2 ] ∗ q [ 2 ] − q [ 3 ] ∗ q [ 3 ] ) ) ;

/∗ Compute t r a n s l a t i o n a l and r o t a t i o n a l k i n e t i c energy ∗/

rotKE = 0.5∗ IXX∗omegaBody p [ 0 ] ∗ omegaBody p [ 0 ] +

0.5∗ IYY∗omegaBody p [ 1 ] ∗ omegaBody p [ 1 ] +

0.5∗ IZZ∗omegaBody p [ 2 ] ∗ omegaBody p [ 2 ] ;

transKE = 0.5∗MASS∗( velBody [ 0 ] ∗ velBody [ 0 ] +

velBody [ 1 ] ∗ velBody [ 1 ] + velBody [ 2 ] ∗ velBody [ 2 ] ) ;

#i f RP HOST

Message ( ”\n \ t \ t RBD Resu l ts ! ! ! \ t \ t \n omega x = %12.3 e (N)

omega y = %12.3 e (N) omega z = %12.3 e (N) ” , omega [ 0 ] ,

omega [ 1 ] , omega [ 2 ] ) ;

Message ( ”\n ve l x = %12.3 e (Nm) ve l y = %12.3 e (Nm)

v e l z = %12.3 e (Nm)” , v e l [ 0 ] , v e l [ 1 ] , v e l [ 2 ] ) ;

Message ( ”\n \ t \ t RBD Resu l ts ! ! ! \ t \ t \n F x = %12.3 e (N)

F y = %12.3 e (N) F z = %12.3 e (N) ” , f o r ceBody i [ 0 ] ,

f o r ceBody i [ 1 ] , f o r ceBody i [ 2 ] ) ;

Message ( ”\n M x = %12.3 e (Nm) M y = %12.3 e (Nm)

M z = %12.3 e (Nm)” ,momentBody i [ 0 ] , momentBody i [ 1 ] ,

momentBody i [ 2 ] ) ;

Message ( ”\n CoG x = %12.3 e ( deg ) CoG y = %12.3 e ( deg )

CoG z = %12.3 e ( deg )\n” , centreOfGrav i ty [ 0 ] ,

centreOfGrav i ty [ 1 ] , centreOfGrav i ty [ 2 ] ) ;

Message ( ”\n theta x = %12.3 e ( deg ) the ta y = %12.3 e ( deg )

th e t a z = %12.3 e ( deg )\n Qerr = %12.3 e \n” , theta [ 0 ] ∗R2D,
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theta [ 1 ] ∗R2D, theta [ 2 ] ∗R2D, Qerr ) ;

/∗ Open the f i l e f o r appending data ∗/
f i l e = fopen ( ”Quatern ionFreeFl ight3dLog . dat” , ”a” ) ;

/∗Write data to f i l e ∗/
f p r i n t f ( f i l e , ”%15.6 e” , CURRENT TIME) ;

f p r i n t f ( f i l e , ”%15.6 e%15.6 e%15.6 e” ,

centreOfGrav i ty [ 0 ] , centreOfGrav i ty [ 1 ] , centreOfGrav i ty [ 2 ] ) ;

f p r i n t f ( f i l e , ”%15.6 e%15.6 e%15.6 e” ,

theta [ 0 ] ∗R2D, theta [ 1 ] ∗R2D, theta [ 2 ] ∗R2D) ;

f p r i n t f ( f i l e , ”%15.6 e%15.6 e%15.6 e” , omega [ 0 ] , omega [ 1 ] , omega [ 2 ] ) ;

f p r i n t f ( f i l e , ”%15.6 e%15.6 e%15.6 e” , v e l [ 0 ] , v e l [ 1 ] , v e l [ 2 ] ) ;

f p r i n t f ( f i l e , ”%15.6 e%15.6 e%15.6 e” ,

f o r ceBody i [ 0 ] , f o r ceBody i [ 1 ] , f o r ceBody i [ 2 ] ) ;

f p r i n t f ( f i l e , ”%15.6 e%15.6 e%15.6 e” ,

momentBody i [ 0 ] , momentBody i [ 1 ] , momentBody i [ 2 ] ) ;

f p r i n t f ( f i l e , ”%15.6 e%15.6 e%15.6 e\n” , Qerr , rotKE , transKE ) ;

/∗ Close the f i l e ∗/
f c l o s e ( f i l e ) ;

#endif

}
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#include ”udf . h”

#include ”math . h”

#define UDMCR 0 /∗ UDM to s t o r e r e s i s t an c e ∗/
#define CR0 1 .0E+09 /∗Resi s tance o f the porous medium ∗/

/∗ Compute f a c t o r to c o r r e c t roughness

1 = Ce l l Within Planes ,

0 = Ce l l En t i r e l y ou t s i d e Planes . ∗/

r e a l RoughnessCorrect ion ( c e l l t c e l l , Thread ∗ ce l lThread )

{
r e a l f a c t o r ;

int n , j ;

Node ∗node ;
r e a l dNSum1 = 0 . 0 ;

r e a l dNSum2 = 0 . 0 ;

/∗
Define p lane s enc l o s i n g house reg ion and f o r each plane ,

s e t the 3D plane equat ion : (aX+bY+cZ+d=0). ∗/

for ( j =0; j <6; j++)

{
r e a l coe f fA =0.0 , coe f fB =0.0 , coe f fC =0.0 , coe f fD =0.0;

switch ( j )

{
case 0 : /∗ Windward roo f p lane ∗/
coe f fA = −0.364;

coe f fB = 1 . 0 ;

coe f fC = 0 . 0 ;

coe f fD = 0 . 0 5 ;
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break ;

case 1 : /∗ Le f t Wall , p lane X=−0.14 ∗/
coe f fA = −1;

coe f fB = 0 ;

coe f fC = 0 ;

coe f fD = −0.14;

break ;

case 2 : /∗ , p lane Z=3.0 ∗/
coe f fA = 0 ;

coe f fB = 0 ;

coe f fC = 1 ;

coe f fD = −3.0;

break ;

case 3 : /∗ , p lane Z=−3.0 ∗/
coe f fA = 0 ;

coe f fB = 0 ;

coe f fC = −1;

coe f fD = −3.0;

break ;

case 4 : /∗ Right Wall , p lane X=5.85 ∗/
coe f fA = 1 ;

coe f fB = 0 ;

coe f fC = 0 ;

coe f fD = −5.85;

break ;

case 5 : /∗ Leeward roo f p lane ∗/
coe f fA = 0 . 3 6 4 ;

coe f fB = 1 . 0 ;

coe f fC = 0 . 0 ;

coe f fD = −2.179;

break ;

}
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c node loop ( c e l l , ce l lThread , n)

{
r e a l xN, yN, zN , dN;

node = C NODE( c e l l , ce l lThread , n ) ;

/∗ Store the nodal coord ina te s ∗/
xN = NODE X( node ) ;

yN = NODE Y( node ) ;

zN = NODE Z( node ) ;

/∗ Calcu la t e the d i s t anc e from node to p lane ∗/
dN = ( coe f fA ∗xN + coe f fB ∗yN + coef fC ∗zN + coef fD )

/ sq r t ( coe f fA ∗ coe f fA + coe f fB ∗ coe f fB + coef fC ∗ coe f fC ) ;

dNSum1 += dN;

dNSum2 += fabs (dN) ;

}
}

f a c t o r = pow ( ( 0 . 5 ∗ ( 1 . 0 − (dNSum1/dNSum2) ) ) , 1 0 0 0 ) ;

return ( f a c t o r ) ;

}

/∗ UDF to de f i n e v i s c ou s r e s i s t an c e p r o f i l e ∗/
DEFINE PROFILE( Vi s cou s Res i s tance , ct , i )

{
c e l l t c ;

b eg i n c l oop ( c , ct )

{
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r e a l f a c t o r = 1 . 0 ;

f a c t o r ∗= RoughnessCorrect ion ( c , ct ) ;

/∗ Store r e s i s t an c e c o e f f i c i e n t o f each c e l l . ∗/
C UDMI( c , ct , 0 ) = f a c t o r ∗CR0;

/∗ Update p r o f i l e ∗/
C PROFILE( c , ct , i ) = C UDMI( c , ct ,UDMCR) ;

}
end c loop ( c , ct ) ;

}
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