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ABSTRACT 

The thesis describes infrared spectra recorded during 

the adsorption of water, acetone, acetic acid and hexifluaroacetone 

onto oxidized and reduced rutile, and the development of a technique 

for recording the infrared spectrum of a solid ir, ýrsed in a liquid. 

Bands observed on the hydroxylated rutile surface have 

been assigned to hydroxyl groups on the (110) plane and 

water IrDlecules adsorbed onto strong and weak Lewis sites on all 

exposed planes. The hydroxyl groups exist as isolated or hydrogen 

bonded groups on surface titanium ions or as hydrogen ions on 

bridging oxygen ions. Reduction of the rutile surface considerably 

decreased the amount of rmlecular water adsorbed on the 

hydroxylated surface. 

'! he adsorption of acetone onto the hydroxylated surface 

took place in three consecutive stages, the first involved acetone 

molecules Lewis bonding to weak sites, the second resulted in the 

formation of mesityl oxide on strong surface sites and occurred 

with stage one in the absence of surface water molecules. In the 

third stage acetate molecules were formed as a result of the 

decomposition of mesityl oxide. 

Adsorption of acetic acid onto rutile resulted in the 

formation of water and arpeaxeme of bands due to acetate groups 

and Lewis-bonded co lexes on the weak sites. 



Hexafluoroacetone reacted with surface hydroxyls to 

produce a salt of the gem-diol hexifluoropropane-2,2-dio1, which 

decomposed on the removal of water to form trifluoroacetate 

species. 

An infrared cell has been developed enabling solid 

discs to be treated and inmiersed in a solution under inert 

conditions. The cell, of path length 0.7cm, has been used to 

study the adsorption of ether, from a solution in carbon tetra- 

chloride, onto silica. Designs of variable path length cells 

for use unier vacuum are included. 
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PREFACE 

The work described in this thesis continues that 

reported by Jackson and Ramsbotham2 on the surface properties 

of rutile. It differs from these studies in that infrared 

spectroscopy is the only technique used, Jackson and Rambotham 

using both electrophoresis and infrared spectroscopy to study 

the surface of rutile. 

The basic aims of this work have been the study of the 

rutile surface by the adsorption of molecules containing carbonyl 

groups and the development of an infrared cell in which to measure 

the spectrum of the solid-liquid interface. The thesis has 

therefore been divided into two sections, the first reporting and 

discussing the results from the adsorption of water, acetic acid, 

hexafluoroacetone and acetone onto oxidized and reduced rutile, and 

the second considering the design and construction of a suitable 

cell for measuring the infrared spectrum of a solid in rsed in 

a liquid. 

The introduction to Section 1 contains information 

concerning the catalytic and surface properties of rutile. 

Detailed consideration of the bulk and catalytic properties would 

be out of place in this thesis but the study of reduced rutile and 

the condensation reactions of acetic acid and acetone on the si face 

require that a brief description of these properties is included. 

Results from the study of surface properties of rutile using a 

variety of techniques including infrared are considered. The theory 
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and applications of infrared are not included in the introduction 

as it is a well }maven technique on which many books have been 

written 
3,4. Similarly, no detailed survey of infrared spectroscopy 

applied to the study of surfaces is included, two books S26 
and 

several reviews? having been published on the subject. Relevant 

references are cited and discussed where necessary. A brief 

survey of infrared work on anatase and rutile has been included in 

the introduction but as the study of the adsorption and desorption 

of water (Chapter 3) fa-m, a basis for discussion of the rutile 

surface detailed consideration of this wank is included in Chapter 3 

and subsequent chapters. 

The requirements and design of apparatus fcr the 

measurement of spectra produced by gas or vapour phase adsorption 

onto oxide discs are considered in the introduction to the 

experimental work (Chapter 2). Details of the apparatus and 

reagents used in this werk are included in the sections that follow. 

The fair succeeding chapters (3-6) consider the 

adsorption of each of the reagents and have the same basic structure: 

introduction, results, discussion and conclusions. All spectra ard 

gL-aphs are included in an appendix at the end of the thesis to 

permit easy reference and prevent separation of the text. The 

properties of the adsorbate are included in the discussion of the 

results, together with a srrnnary of the behaviour of the individual 

bands observed. Bands are then assigned and a reaction mechanism 

proposed. 



iii 

The final chapter (7) of Section 1 summarizes the 

conclusions drawn from the results discussed in the previous 

chapters. 
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CH 

INTRODUCTION 

1.1. TITANIUM DIOXIDE 

Titaniun dioxide exists in three crystalline modifica- 

tions8'62, anatase, rutile arr brookite, the first two of these 

being the prost canuron and com= ciai1y iirpar tart. It is manufactured8' 
9 

from two mineral cress ilmenite (Fe-i03) and natural rut ile 
. 

The hydrated oxide may be prepared in the laboratory by 

the hydrolysis of many titaniwn compounds, the tetrachloride being 

cor=nly used, although this may result in contamination of the 

surface by chloride ions1'10'll. An alternative method, used by 

Jones and Hockey', is the burning of a titanium iso1opoxi de-hydrogen 

mixture in a diffuse flame. Single crystals of rutile may be made 

by the Verneuil flame method12. 

Titanium dioxide is non-toxic, inert to rast reagents 

and is white in the pime crystalline form. These poperties, 

together with the high opacity derived from its very high refractive 

index carbine to make it an idea]. 9 
pi, gmnt, particularly for paints . 

In carmen with many other transition metal oxides it may also be 

used as a semicorductorD or catalystl4. 

Studies of the oxide nay be divided into three broad, 
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overlapping categories consistent with its uses. These categories 

being: properties of the bulk structure; catalytic activity; and 

surface characteristics, other than those studied by catalytic 

reactions. Nach work has been published on the electrical 

zoperties13 of the bulk structure, particular reference being 

given to the defect structure, and on the catalytic activity, 

usually in relation to other transition metal oxides. Although 

rxuzch of this work falls outside the scope of this thesis the 

relevant fundamental properties are discussed below. 

Characteristics of the surface, which include the 

groups present on the surface and the surface structure, are 

important factors in the manufacture of paints as they determine 

the interaction between the pigment and dispersing liquid. Hence 

they have been widely studied with a variety of. techniques 

including electrophcresis, heats of adsorption, electron spin 

resonance and infrared spectroscopy. 

Detailed comparison of results and conclusions from 

studies of titanium dioxide is not usually possible because of 

differences in the samples used. Not only may the samples' 

crystalline structure differ but as the extent of reduction 

varies considerably with the pretreatment (Section 1.2.4. ) the 

observed properties may also vary. A further consideration, 

particularly with samples obtained from titanium tetrachloride, 

is the absence in many studies of attempts to establish the 

purity of the starting surface which might be contaminated and 

hence produce unreliable results. 
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1.2 BULK PROPERTIES 

Rutile has a tetragonal structure$'13,15 with each 

titanitxn (IV) ion coordinated to six oxygen ions in a distorted 

octahedron, and each oxygen ion coordinated to three titaniumn 

ions. Foam of the oxygen ions are in a plane round the titanium 

ion, 0.1944 nm from it, while the other two oxygen ions are 

perpendicular to this plane, 0.1988 rm above and below the 

central ion15. 

The bonding in rutile is not purely ionic. There is 

strong evidence for some degree of covalent bonding 
13, 

electronegativity measurements indicating a value of 43% ionic 

character for the Ti-O bond 13 

Unier vacuum, at room temperature rutile is a non 

stoichiometric oxide with a deficiency of oxygen ions 16. There 

is disagreement corcerning the position of the resultant emess 

titaniinn ions which nay be in interstitial sites associated with 

an equivalent number, of electrons or on lattice sites as a Ti3+ 

ion associated with an oxygen vacancy14117. The emess Ti 3+ ions 

cause n-type semiconductivity in rutile13,18 which varies with 

the extent of re`iuction18. The band structure of rutile has 

been considered by Goodenough19. 

Reduction of rutile by evacuation at elevated 

temperatures or in reducing atmospheres13 results in an increase 

in the number of Ti3+ ions in the surface and subsurface layers17 

and darkening of the sample to a blue-grey coloum20. Sarldier20 
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has determined the corcen ration of the Ti3+ ions on the surface 

to be 0.3% (white rutile) and 1.0% (blue rutile) while 

Richardson et al17. fou. ni that approximately 40% of Ti3+ ions 

were on the surface of their sample, the rana. inder occupying 

subsurface levels. 

On mild reduction to TiO2_d (ö ^' 0.005) rarx anly 

spaced and orientated (132) shear planes appear on the rutile 

surface21 together with {101j planar defects. Greater reduction 

leads to an increase in the runber of (132) shear planes. 
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1.3 CATALYTIC ACTIVITY 

1.3.1 THEORIES OF CATALYSIS 

Only a brief description of the electronic theory of 

catalysis is given he, detailed discussions are to be found in 

. 
22 

two reviews 

A. Boundary Layer Theory 

The majority of the first row transition metal oxides 

are either n-type, due to a stoichiometric excess of metal, or 

p-type due to a stoichiomettric excess of oxygen ions probably in 

anion vacancies. The maj crity carriers in n-type oxides are 

conduction bard electrons and in p-type oxides valence bard holes. 

In the boundary layer theory chemist rbed species are 

assumed to accept electrons fron the sEniconductor cr donate 

electrons to it. Charges in conductivity may now occur, 

depending on the chemisorbed species and oxide, as shown in Table 1.1. 
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TABLE 1.1 

Chartges of Conductivity on Ctemisarºption onto Semiconductors 

Type of Oxide Increase in conductivity Decrease in conductivity 

(ctumlrative chemisorption) (depletive chemisarption) 

n type electrons from chemisorbed electrons from conduction 

species to conduction band band to chemi. sorbed species 

p-type electrons from valence electrons from chemiscrbed 

band to chemisorbed species species to valence band 

Depletive chemisorption results in a, charge transfer 

which is limited by the space charge barrier (body layer) formed 

and is characterized by equilibriwn coverage less than 1% of 

nonolayer and a decreasing heat of chemisorption with coverage. 

Ctmnalative chemisorption results in adsorption to a monolayer and a 

constant heat of adsorption. 

Wolkenstein24 has enlarged the above concept and defines 

two types of chemisorption "weak" and "strong". "Strong" 

chemisorption involves donation or capture of electrons by the 

chemisorbed species and results in changes of conductivity and work 

function. "Weak" chemiscrption does not involve transfer of electrons 

and no charges in conduction occur. The chemisorbed species remain 

electrically neutral, unlike those: involved in "strong" adsorption 

which becorre ionic. This theory is further discussed in Section 1.4.2. 

with reference to the adsorption of water on rutile. 
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B) Correlation of catalytic activity with d-electron configuration 

Dowden25 found fcr the reaction H2 + D2 c 2HD that 

the catalytic activity was high fcr 3d3,3d6,3d7, and 3d8 cationic 

configurations and low fcr 3dß, 3d5,3d1° and concluded that, fcr 

this reaction, the reserve of a partially filled d-shell was 

necessary fcr the bonding of the adsc'be3 species to the cation. 

1.3.2 CATALY'T'IC PROPERTIES OF RUTILE14 

Rutile is an inactive catalyst compared with other 

transition metal oxides. In oxidizing atmospheres (e. g. hcvno- 

molecular ethange of oxygen, C02/02 exchange, decomposition N20) 

and oxidizing-reducing atmospheres (oxidation H2, CO2 and (14) the 

low activity is consistent with the bulk electrical properties. In 

reducing atmospheres (H2/D2) hydrogenation of ethylene) the low 

activity is consistent with the d0 configuration of the cation, 

the reactivity being due to the Ti3+ 
[dlj 

ions produced by the 

reduction of the surface during the retreatnent or reaction26. 

The reduction of rutile imreases the number of Ti3+ 

ions in the surface 
7 

and the rnnber of electrons in the conduction. 

x'13,18, hence the catalytic activity irr, =eases. 
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1.4 STUDIES OF SURFACE CHARACTERISTICS 

1.4.1 ELECrRON SPIN RESONANCE S'T'UDIES 

Recent studies27'28 of rutile have shown that two types 

of Ti3+ species areeserrt on the reduced rutile surface. On 

moderate reduction Ti3+ ions are formod in lattice sites or 

interstitial positions which exhibit low reactivity towards oxygen 

at 77 K27. Further reduction creates Ti3+ ions in lattice or 

interstitial positions associated with one or two anionic vacancies. 

Adsorption of oxygen onto reduced rutile produces two 

triplet signals of differing thermal stability28 which are assigned 

to 02 species adsorbed on two different sites. These species may 

also be produced by the ultra-violet irradiation of urweduced rutile 

in the presence of oxygen27. The adsorbed 02 species are thought 

to exist as ions with the intern lean axis parallel to the plane 

of the surface and perpendicular to the axis of symmetry. 

Adsorption of tetracyanoethylene (TcNE) and 

syrrt-trinitrobenzene (TNB) onto unreduced titanium dioxide29 tmoduces 

the radical anions (TCNE) and (TNB) 
. At temperatures below 573 K 

it is proposed that the electron donor centres are the OH groups 

while above this temperature the OH groups condense to form 02- ions 

which are responsible for the reducing properties of the oxide. 
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1.4.2 ELECTRICAL MEASUREMENTS 

Figurovskaya30 determined the change in electrical 

conductivity and work function when water was adsorbed onto 

titanium dioxide surfaces pretreated at 293 K to 673 K. 

Adsorption of water onto a hydrated surface evacuated at roan 

temperature caused a decrease in the work function and increase 

in conductivity. Adsorption of water onto surfaces evacuated at 

temperatures fron 293 K to 673 K also caused a similar effect, 

however the change in work function ixrreased while the change in 

conductivity decreased. On evacuation of the water the values 

coincided with the initial values indicating the process to be 

reversible. Adsorption onto the 473-673 K evacuated surfaces 

resulted in a decrease of conductivity after evacuation. 

The in=ease of conductivity does not result from the 

loss of an electron from water molecules due to its high ionization 

potential. A dor -acceptor mechanism is proposed in which the 

oxygen lone pair interacts with the empty Ti d-orbital to form a 

donor-acceptcr complex. This results in an effective dipole with 

a negative charge on the titanium and a positive charge on the 

oxygen which decreases the work function but does not charge the 

conductivity. This complex corresponds to Wolkenstein's2' "weak" 

chanisarption. It is further proposed that the presence of this 

dipole affects the surrounding crystal field and might cause a 

charge defect (eg. Ti3+) to lose its electron31 so increasing the 

conductivity. 

Two forms of water are proposed to exist on the surface 



10. 

of rutile which has been heated at 293-473 K, a neutral reversible 

fcvm leading to a decrease in the work furration and not changing 

the electrical conductivity, and a charged reversible form, 

accanpanied by a decrease in the work function and an increase in 

the conductivity. 

Above 473 K evacuation causes loss of the surface OH 

groups and adsorption of water correspondingly results in a 

dissociation of some water molecules into OH and H+ ions. This 

dissociation may cause an irreversible negative charge either by 

localization of the holes and electrons by OH and H groups or an 

elimination of donor defects resulting in a surface negative charge 

and decrease in conductivity. 

1.4.3 INFRARED SPECTROSCOPY 

Infrared and Raman spectroscopy are valuable techniques 

fcr the investigation of surface characteristics as they offer a 

direct method of examining surface groups and species adserbed on 

the surface. The surface structure and poperties may be 

investigated by recording spectra of the surface after evacuation at 

different temperatures, after the adsorption of 'inert' conpo ulds, 

a xl after the adsorption of canpcun s which react with the surface. 

Infrared transmittarce spectroscopy, in which the solid 

is placed between the source and detector, is the most popular 

method of dete=dnih g the vibrational spectrum of the surface as 
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commercial spectraieters may be used without modification. The 

solid is usually in the form of a pressed disc of the oxide powder 

and is contained in a cell connected to a vacuum frame. Details of 

the experimental technique are given in Section 2.1. 

Thansmittance spectroscopy is not suitable fa solids 

of low surface area as the number of active groups in the beam is 

low, nor is it usually suitable for powders as scattering greatly 

reduces the intercity of the radiation reaching the detector. The 

use of discs to reduce this scattering can cause interparticulate 

32 
contact which may affect the spectrum of the oxide. 

Reflectarce spectroscopy33 is a relatively new 

technique which may be used to record the spectra of low surface 

area solids in powder34 Q crystal 
35,36 fam. The technique 

requires modification of the spectrometer and the resolution is 

inferior to that of transmittance spectroscopy. Reflectance 

spectra have been determined fc' titanium dioxide 37, 
silica34,35938 

magnesium oxide 
37038, 

zinc oxide37, tin (IV) oxide 
37 

and 

gerrnanium (IV) oxide 
7. 

The bands observed for Ti02 are reported 

at 3690 and 3350 cart 
1.37 

1.4.4 RAMAN SPECTROSCOPY 

The introduction of lasers ard mare sophisticated 

instruments has made Raman spectroscopy3 a technique suitable for 

the study of adsorbed species. Herxira39 has recently published a 
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review describing the experimental techniques and discussing the 

spectra which have been obtained. Raman spectroscopy has several 

advantages compared with infrared, the most important being the 

relatively low intensity of bands due to the bulls adsorbent. These 

usually obscure at least part of the useful infrared region, for 

example rutile completely absorbs infrared radiation below 1000 cni-1 

due to the Ti-O-Ti vibrations of the lattice. The recorded spectra, 

however, usually have a ]yaw signal: noise ratio and consequently 

weak bards are difficult to detect although computes averaging 

techniques may be used to eliminate mich of the noise. 

Rahen spectroscopy is not suitable for recording bands 

in the 3800 to 3200 cm-1 region in which OH stretching frequemies 

occur dud to the insensitivity of detectors in the region and the 

weak absorbance of CH bands in the Raman caused by the low 

polarizibility of the bond. The use of Argon ion lasers, instead 

of the usual, less powerful He/Ne, to overcome this problem may 

result in overheating of the sample. Herxira39 reports a blackened 

thermaneter in an evacuated cell reaching 673 K in the argon-ion 

beam arrd, although he records a temperature rise of v50 for a P'I'FF 

sample in the same beam, it is possible that the temperature rise 

for an opaque oxide would be too high for studying adsorption. 

Immersion of the solid in a liquid would reduce the temperature 

rise and consequently Raman spectroscopy might be used for the study 

of the solid-liquid interface. 

No detailed study of the Ran, an spectrwn of titanium 

dioxide has been reputed, Hendra40 observed bars below 1100 cm 
1 

due to the adscmption of pyridine on the oxide. 
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1.5 INFRARED STUDIES OF TITANIU4 DIOXIDE 

1.5.1 PREVIOUS WORK 

Infrared studies of the desczrption of water fran the 

rutile surface have been carried out by Jones and Hockey 
42,43 

Jackson and Parfitt10, and Priniet et a141. With sorge exceptions 

the spectra observed after particular treatments are similar, the 

roan temperature evacuated surfaces showing bands due to surface 

OH species and adsorbed water molecules. On the basis of these 

spectra models of the rutile surface have been proposed based on 

some of the exposed planes on the bulk rutile crystal. These 

results and models are discussed in Chapter 3 together with the 

results, from this work, for H2O and D20 adsorption and desorption 

on oxidized and reduced rutile. 

A swxinary of reagents adscmbed onto rutile and anatase 

is given in Tables 1.2 and 1.3. These results will be discussed in 

Chapters 3 to 6. 

1.5.2 THE PRESENT WIRK 

The treserr-e of hydroxyl groups, water molecules and 

Lewis sites on the room temperature surface of rutile has been 

confirmed by studies detailed in Table 1.2. The purpose of this work 



TABLE 1.2 

Summary of Investigations by Infrared Spectroscopy 

of Inorganic canpaunds adsorbed onto Titanium Dioxide 

Ads_ Msrbent Reference 

1äutile Water 10911,41942943 

Anatase Water 44,46 

Rutile Pmmn 45 

Anatase Armoma 46,47 

Anatase Carbon Monoxide 49,50 

1itile Carbon Dioxide 51 

kiatase Carbon Dioxide 47 

1. itile Hydrogen Chloride 11,52 

Anatase Hydrogen Chloride 53 

1itile SO2, SOC12 11 

Anatase Nitrogen Dioxide 54 

Anatase Carbon Tetrarhlcride 53 

motile Si, Ti, Sn Tetrachloride 55 



TABLE 1.3 

Su m nary of Investigations by Infrared Spectroscopy 

of Organic compounds adsorbed onto Titanium Dioxide 

Adsarrbate Adsarrbent Reference 

Rutile Alcohols 56,57 

Ritile Phenol 47 

Futile Acetic acid 58 

Anatase Acetic acid 47 

Rutile IN-Hexine 58 

Rutile Benzene 58 

Rutile Diethyl Ether 58 

Ritile Acetone 58 

Anatase 'Iimethylvnine 47 

Futile But-l-ene 51 
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was to study the interaction of carbonyl and carboxylic acid 

groups with the surface in corder to acquire further information 

about the nature of the surface sites. 
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CHAPTER 2 

EXPERIMENTAL 

2.1 INTRODUCTION 

2.1.1 GENERAL REQUIRF=S OF THE APPARATUS 

An essential requirement. fcr the study of surfaces is 

the canplete absence, as far as practically possible, of any forms 

of contamination, either on the surface cr in the apparatus19. The 

purity of the sample is therefore very important, particularly with 

respect to species which, although present in very small 

concentrations, are sufficient to alter the surface characteristics. 

These contaminating species may be introduced59 during the 

preparation of the sample cr during its stcr-age and subsequent use. 

Atmospheric impurities, caion to most oxides, are introduced during 

preparation and storage. They may usually be removed by heating in 

oxygen (673 K) and evacuating (673 K). Contamination of a surface is 

indicated by the preserve of bands due to impurities or by changes in 

the spectra of other adsorbed species. 

2.1.2 THE VAOJUM FRAME 

Most infrared and catalytic studies are carried cxxt with 

the disc in vacuo to tevent contamination by the atmosphere and to 



16. 

permit dosage of gases onto the surface. Contamination by grease 

in the vacuum systen59 is prevented by the use of greaseless taps 

together with liquid nitrogen traps to isolate any greased taps 

present in the pupping systen. Contamination due to leakage of air 

thr cugh the greaseless taps may be kept to a mina nun by including 

as few taps as possible between the cell and pumping system, and 

between the cell and dosing system. 

Reagents used during a pevious experiment may adsorb on 

the walls of the apparatus and contariinate discs subsequently 

introduced into the cell. The vacuum frame must therefa. e be 

thoroughly evacuated after each experiment and the cell removed fa 

cleaning. Possible contamination from reagents trapped in the 

pumping system May be prevented, by the use of a separate pumping 

line ('backing line') to remove reagents. This line needs only one 

liquid nitrogen trap which is frequently evacuated to prevent a 

build-up of waste. 

2.1.3 THE DESIGN OF AN INFRARED CELL 

The basic requiremerrt of a cell is the complete absence 

of materials likely to cause contamination of the solid. Other 

requirements vary with the conditions under which the cell is to be 

used and may include ease of cleaning, ease of operation and the 

treatment of discs at high tanperature. 

Two basic designs of cell are available for treating 
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discs to high temperatures, the disc either remaining in the 

infrared beam cr being moved to a separate section of the cell 

fcr heating. The basic designs are modified to fit the 

requirements of the system in use; Buck7and et a16O describe 

one cell of each design recently used for studies of rutile 

& thra ia. 

Heat treatment of the disc in the infrared beam 

requires a long cell to accarn ate the heater, which may be 

internal or external, and to imeverrt overheating of the cell 

windows, for which cooling coils are also used. The use of a 

long cell (approximately 8C n) may result in less light reaching 

the detector due to irrreased scattering. Replacement of discs 

is rcrmally carried out by removing a section of the cell clamped 

to another section with an ' 0' ring between to form a vacuum tight 

seal. This '0' ring may cause contamination (see below and 2.2.2). 

The heating of a disc in the infrared beam enables reactions at 

elevated tanperatures to be followed, although at higher 

tanperatures the mission spectr= of the disc may also be observed. 

Removal of the disc fron the beam for heat treatment 

may cause mechanical shock and subsequent breakage of new discs, 

this being less likely if the disc is raised vertically 
° 

than if 

moved borizorrtally (this wcrk). The fcrmer type of cell requires 

the presence of an 101 ring seal in cyder to replace the disc60 

while the latter may be sealed by glassblowing. The absence of a 

heater permits the use of a short path length allowing the disc to 

be closer to the detector. 

The requirements for a cell to be used in this work 
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were the canplete absence of any contamination, treatment of discs 

up to 673 K and ease of cleaning. The cell would have to be 

cleaned in chranic acid after each experiment to reeve organic 

contaminants, and consequently the windows must be easily removed 

and replaced and the ccanplete cell easily detached fi^an the vacuum 

frame. The cells used by Ramsbotham60 and Jackson1 fulfilled these 

criteria but subsequent werk indicated that the 101 ring in the 

former cell was a possible source of contamination. The cell used 

by Jackson has been used in all the experiments described in this 

section of the thesis. 

Many different cell window materials5 are available for 

use with this type of cell, sodium chIcride and potassium bromide 

being the most conmmn. Haaever these are hygroscopic and calcium 

fluoride windows were used, these being relatively inexpensive and 

mechanically strong. They are opaque to infrared radiation below 

1000 cm 
1, 

r, ich coincides with a strong band due to the Ti O-Ti 

lattice vibrations, and do not therefore decrease the spectral 

range available for study. 

2.1.4 THE CRYOSTAT 

Dosage of organic vapors (eg. acetone, acetic acid) 

onto reactive oxides (eg. TiO 
21 

A1203) at approximately 103 

Nm2 results in irreversible saturation of the surface producing 
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intense infrared bards which are broad and difficult to intergret47 

slower rates of dosage are possible either by introducing known 

quantities of vapour into the cell cr by reducing the vapour 

pressure of the liquid. The favorer method is difficult experimentally 

as very small quantities are involved a rd it may still result in 

overdosing. The latter method is preferable as the adsorption 

process may be monitored by recc dir g the spectrum of the adsorbed 

species. Dosage may be stopped at suitable intervals to record the 

complete spectrum. 

The vapour pressure of the liquid was reduced by 

lowering the liquid temperature in a cryostat61. This consisted 

of a bulb containing the liquid attached to the vacuum frame and 

surrounded by a vacuum jacket inrrersed in a coolant liquid 

(liquid nitrogen or C02/acetone). The temperature of the liquid 

was controlled by a law voltage furnace surrounding the bulb and 

could be set at a value for the optinum rate of dosage. A 

disadvantage of this apparatus was the possibility of products 

fran the surface reaction being distilled back into the cryostat. 

2.1.5 THE INFRARM SPECTROMETER 

The infrared specter used was similar to those 

described in books on infrared spectroscopy 
3-6, 

no modifications 

being necessary for studies of discs. The low transriittame of 

discs usually required the use of an attenuatcr in the reference 
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bean and the use of wider slit programs to catpensate for the 

subsequent loss of response. 

The majority of infrared spectrometers record on 

chart paper with an 
' 

as the abscissa and percent transmittance 

as the ordinate. The course of adsorption may sometimes be 

plotted by measuring the absorption of bands which are calculated 

from the transmittance value of the peak (T1) and that of the base 

line urgier the peak (T2) . The latter is determined (Hair5 P50) 

for a sloping base line by either drawing a tangent to the 

transmittance curve, assuming a linear base line, or by 

superimposing the original baseline onto the transmittance curve. 

The two transmittance values are converted to absorbance values 

and subtracted as follaas: - 

If radiation of intensity 10 is trammitted thrcugh a 

substance thiclmess d, the intensity of the emergent 

radiation I is given by 

I=1o exp (- ed) where 6 is the extinction coefficient 

The abscrbarce A of the sample is given by: - 

A= Ed = In (Io/I) 

this is usually expressed in terms of log10 

A=E d/2.303 = log10 (lo/I) 

since transmittance T is given by 

T= (I/I0) x 100% 

and A= 1og10 (100/T) 

which assumes a base line at 100% transmittance. 

If the transmittance of the peak is T1 and that of the base line 

directly under the peak T2 the absorbance A of the band is given by: 

A_ log 10 
(1100/T1) - log (100/T2) 
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In order to follow the course of a reaction in detail by infrared 

spectroscopy it is necessary to record spectra at frequent 

intervals during an experiment. It is not practical, nor 

necessary, to present all of these spectra as many are similar 

and represent only intermediate stages in the absorption. The 

spectra presented in this thesis have been chosen to provide a 

complete account of the adsorption process. 

Spectra may be reproduced in two fors., either 

superimposed on each other or with the cardinate displaced. 

Superimposition indicates small changes of bard intensity which 

may not be apparent when the spectra are displaced, however it 

is not suitable if sane bands are increasing in intensity while 

others are decreasing, and when nax ow bards appear. In these 

circumstarr-es the resultant diagram is usually confusing. Score 

spectra in the thesis have been presented in this form in corder 

to compare absorbance changes directly. 

The majority of spectra are presented with their 

ordinates displaced which does not allow the direct canparison 

of band intensities. To facilitate this comparison the 

absorbance of bands have been calculated for the majority of 

experiments and these are plotted against increasing adsorption 

as represented by the order of the spectra. The graphs have no 

significance other than that of a 'visual aid' for the cainparison 

of band intensities. 
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2.1.6 THE PRETREAT1 OF RUTILE 

The effect of surface chloride ions, present on rutile 

prepared from titanium tetrachloride, has been investigated 

thoroughly by Jackson1,10 and is removed by alternate soxhietting 

and heating pretreatmerrts. The resultant surface contains 

carbonate species which are ranoved by treatment with oxygen (673 K) 

and evacuation (673 K). As evacuation at this temperature causes 

loss of lattice oxygen a standardized cleaning procedure (2.3.1) 

had to be used which reduces oxygen loss to a minimum and 

therefore final evacuation at 673 K continued for only 15 min 

before cooling. The resultant surface was }jam as a 'standard 

surface' and all treatments were carried out with this surface. 

The hydroxylated surface was formed by exposing the 

discs to saturated H2 0 or D20 vapour and, after heating and 

evacuating at beam tanperature (ah), formed a 'beam temperature H2O 

(or D20) surface'. Dehydroxylation by evacuation at 673 K is 

followed by treatment in oxygen to replace that lost by evacuation. 

The resultant surface is known as a 1673 K H2O (csr D20) surface'. 

Reduction of the standard surface was carried out by 

four separate doses of hydrogen (2.3.1) as H2O formed during the 

treatment and prevented filer reduction. 

Many of the treatments of rutile samples were carried 

out with the oxide disc at its ambient temperature in the optical 



23. 

beam of the spectrometer. Throughout this thesis this temperature 

is designated the BT, or beam temperature. An estimate of this 

temperature would be that it lies between 320 and 350 K. 
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2.2 APPARATUS 

2.2.1 THE VACUUM FRAME (Fig. 2.1) 

The frame consisted of five basic units; pumping 

line, reagent line, mass spectrometer bulbs, cryostat and cell. 

The pumping line connecting the cell to the pumps contained the 

mininam rnunber of taps possible to prevent contamination due to 

leakage through the taps during evacuation of the cell. The 

pumpir ; system c nTrised the usual rotary oil pump and mercury 

diffusion pump with three liquid nitrogen traps separating than 

from the pimping line. The trap next to the diffusion pump was 

detachable, using a greased cone and trap fitted with a B29 

socket, while the other two traps were sealed and prevented grease 

ft , cm the taps used in the pumping system from contaminating the 

frame. A Penning gauge connected between the detachable and 

sealed traps indicated pressures down to 1.3 x 1074 Nm2. 

All taps after the pumping system were grease-free 

(Rotaflo TF2/18 or Youngs POR4 and POR10) and capable of a 

dynamic vacu= of 1.3 x 10 
4N m2 but leaked slightly under 

static conditions. As this leakage occurred through the barrel 

of the tap between the glass and teflon or teflon/rubber seals 

the internal seal was placed to prevent leakage into the main 

p=ping line and 'closed' spaces such as the cell, gas and 

liquid bulbs, and molecular sieve. 
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An oxygen bulb (BOC Grade X) was connected to the 

pLunping line together with a transducer (Bell atxi Hcwell) to 

record the pressure. The transducer was connected to a 

poterrticmeter ((ropico P6) and calibrated (0-100 KN m2) with 

air usirg a mercury manancter. 

AU reagents, ether than oxygen, were attached to 

the reagent line, liquids being stcred in bulbs tapered to 

prevent cracking during freezing and thawing of the liquid. 

Condensible gases were stored under, liquid nitrogen in a bulb 

fitted with a mercury manometer. Liquids were introduced either 

by repaving a 'Rotaflo' tap and pouring in the liquid cr by 

'eaking a sealed ampule of the liquid (CD3000D, CD3COCD3) fie' 

vacuum (fig 2.2) after first freezing the liquid. Liquids were 

dried by distillation onto the molecular sieve, (4A, dried by 

evacuation 523 K) befcre transfering them to the cryostat which 

was connected directly to the cell via a Youngs tap (POR 4) to 

minimize leakage of air during the dosage of vapour. 

Three 10cm diameter bulbs with cold fingers we 

attached via two taps (Youngs POR 4) to a line connected to the 

main line and were used to trap cut and stcre samples for mass 

spectrum analysis. 

The riain and reagent lines were connected to a 

'backing' line containing a sealed trap under liquid nitrogen, 

which was frequently evacuated to prevent a build-up of 

contamination. 
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2.2.2 THE CELLS 

A. Cell used by Ramsbotham60 

Overnight evacuation of a dehydroxylated surface at 

roan temperature in this cell results in the appearance of weak 

bands at 2960,2925 cm 
1 

and mare intense bands at 1595 and 

1485 cri 
1 together with partial rehydroxylation of the surface. 

Replacement of the neoprene 101 ring by flat gaskets of nitrile 

crº silicone rubber also voduced contamination bands in the 

3000-2800 cm 
1 

and 1600-1400 cm 
1 

regions, partial rehydroxylation 

also occurring although no leakage of air was indicated. These 

bards were removed by evacuation at 673 K but reappeared on 

further punpi g at room temperature. 

The insertion of a stainless steel gasket (0-32M, ) 

between the '01 ring and interior of the cell prevented contam- 

ination of the disc but resulted in an unsatisfactory static 

vacuum. The contamination was probably caused by the '0' ring 

while partial rehydroxylation of the surface was due to the 

desorption of water from the 10t ring. 
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B. Cell used by Jackson 

The cell (fig 2.3) consisted of a pyrex glass tube 

4Ciun in diameter sealed at one end with two parallel ground 

glass flanges (SOxnn outside diameter) either side of the 

tube and approximately 40rrcn from the sealed end. The calcium 

fluoride windows were attached to the flanges by brick red 

enamel (AEI M-V No38) which, after drying at roan temperature, 

was further dried in an oven (373 K). 

The disc carriage was constructed fix na flat pyrex 

plate (6Q= x 3Qrm) with two holes (22mm diameter) surrounded 

by grooves (26mn diameter) to accomriodate the discs. These 

were held in place by a stainless steel plate bolted to the 

glass holder. The carriage was supported in the cell by two 

pairs of glass rods (3n4n diameter) at the top and bottom of the 

cell and roved by a magnet attracting the nail sealed in the 

top of the glass holder. The open end of the cell was sealed 

after the introduction of the discs and blown open at the end 

of each experiment to remove the holder and discs. A 

dehyroxylated surface showed no indication of contamination or 

leakage after remaining in the closed cell fcr two weeks. 

Discs were heated by an external furnace controlled 

by a platinum resistance thenpeter coupled to a relay, the 

tenperature of the disc being measured by a chranel-alumel 

thermocouple in the pocket opposite the carriage holder. 
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After each experiment involving organic vapours the 

cell was detached from the frame and the windows removed by 

soaking the cell in acetone. The cell was then immersed in 

ctiramic acid before being washed with deionized water and 

dried. 
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2.2.3 THE CRYOSTAT 

The construction (fig 2.4) was similar to that used by 

AShnea61 and differed only in minor details. A flange replaced 

the B55 cone and socket of the cuter jacket while a circular 

reaction vessel used for solids was replaced by the tapered 

vessel. The heater voltage was set at 20V and switched by a 

mains-operated relay controlled by the plati! lml resistance 

then ianeter. The tanperature was varied by a potentianeter on the 

relay, and the copper-constantan theanocouple connected to a flat 

bed recorder (Servoscribe). 

The outer vessel was evacuated via the backing line 

through a two way tap, which allowed air to be bled into the 

cryostat, and was immersed in liquid nitrogen (temperatures 

below 230 K) and solid C02/acetone (230 K to 270 K). At 

t perattmes below v230 K the liquid (or solid) in the bulb 

became warmer than the upper tube and distillation occurred, 

solid collecting on the tube above the heater. This effect may 

have caused differences in the spectre, of water adsorbed on rutile 

at apparently similar equilibriwn vapour pressures, as indicated 

by the temperature of the ice, using the two different baths. 

The vapour pressures during dosage are not therefore quoted in 

the results except as an approximation. 



30. 

2.2.4 THE INFRARED SPECTROMETER 

All spectra were reccrded on a Perkin-Elmer 257 

spectraneter (specification table 2.1) 

An attenuator was placed in the reference bean to 

compensate fcr the low trans ittance of the discs (v 5%) and 

set to give the transmittances shown in table 2.2 at particular 

waverunbers. The scanning speed was slow, the gain and slit 

settings at particular wavenu ber are shown in table 2.2 and 

were adjusted to give the correct response for minim n slit 

width and maxiMm gain consistent with low noise levels. The 

noise level is indicated in spectra 2.1 to 2.3, the decreased 

transmittance Df the reduced sample requiring rrwdnnun slit 

program and maxirrnun gain. 

The beam tanperature (BT) at the surface of the disc 

could not be measured directly but evacuation of a hydroxylated 

disc in the beam overnight produced a spectrum characteristic 

of a surface evacuated at 337 K. 

The spectrcaneter cros fitted with a readout accessory 

of lQnV output correspornding to full scale deflection. This was 

connected to a flat bed recorder (Servoscribe) set at 5mV full 

scale deflection enabling spectra to be enlarged. A chart speed 

of 3Qin/min produced a trace of similar proportions to those 

recorded on the specter. 
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Spectra 2.1 to 2.4+ were copied direct from the chart 

paper and reduced in size by 40% using a Rank Xerox 7000 copier. 

These spectra show typical noise levels and base lines for 

oxidized and reduced rutile. The majority of other spectra were 

traced frown the original recordings produced by the sp netev 

or, recorder and reduced in size by 10%. An accurate indication 

of noise levels being given in all these spectra. 

Absorbances in the 4000 to 2000 cm 
1 

region were calculated 
a x 

by extrapolating the linear base line on the high waveiu ber side 

of the bard while below 2000 cm 
1 

the base line of the standard 

surface was superimposed on the spectrum. Due to changes in base 

line calculated absorbarres may contain errors but are sufficient 

fcr canparison purposes. 
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2.2.5 OPERATION 

Before a clean cell and discs were attached to the 

frame, the cryostat, molecular sieve, mass spectrum bulbs and 

main and reagent lines were thoroughly evacuated to remove 

traces of reagents previously adsorbed. The frame was then 

closed off from the pumping system which was cleared of any 

trapped amities by evacuation of the traps at room temperature. 

The cell was attached to the frame and evacuated at room temperature 

tough the backing line before pumping on the main line. The 

spectrum of rutile showed bards due to hydroxyl groups, water 

molecules and carbonate species. Oxygen (1.33 x 10 
4Nm 2) 

was admitted into the cell and the discs heated to 673 K. The 

pretreatment of the discs proceeded as outlined below (2.3.1) 

and the cell was then closed off from the frarr. If necessary 

the reagent was introduced into the frame as outlined in 2.2.1 

and purified (2.3) before distilling approximately 3 cm3 into 

the cryostat. The cryostat control was set for a temperature 

approximately 60o below the malting point and the tap between 

the cryostat and cell opened. The progress of the adsorption 

was followed by recording the spectrum, on fast or medium scan, 

in the range containing those bands which indicated the extent 

of adsorption. When sufficient adsorption had occurred, the 

tap between the cryostat and cell was closed and the complete 

spectrum of the disc recorded. If no increased adsorption had 

occurred after one hour the tanperature of the cryostat was 

increased. Spectra were also recorded after prolonged exposure 

of the disc to the vapour, and after evacuation at been 

tanperature for one hour. 
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After each experiment the cell was ranvved fcr clean 

and reagent ranaining in the cryostat was renaved via the backing 

line. 
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2.3 REAGENTS 

2.3.1 RÜTTLE 

The rutile (code no. CL/D338) used in this work was 

supplied by British Titan Products (now Tioxide International. ) 

and was prepared by the hydrolysis of redistilled titanium 

tetrachloride before calcini at 723 K. Electron m crographs 

of the sample showed aggregates and crystals similar to those 

of a different sample described by Jacksonl. The crystals 

were of a similar shape to those found naturally62 and differed 

fron the amcmphous lumps observed in micrographs of rutile 

prepared fran titanium sulphate. 

Chloride impurities were removed by alternately 

soxhletting (24h) and heating in air (24h 673 K)1. This 

procedure was carried out four times before a final soxhlet 

treatment and drying (383 K 24h). The final bulk chloride 

content was 0.13% determined by the XRP technique. The 

was no evidence of significant surface chloride ion 

concentrations even after prolonged treatment of the disc at 

673 K, the spectra of the hydroxylated surface being similar 

to those observed by Jackson' for low surface chloride 

concentrations. The possible effect of wall surface chloride 

concentrations will be discussed later (Chapter 3). 

The rutile discs were prepared by pressing 

(84 MN m 2) 0.15 to 0.25g of oxide under vacuum (2.6 x 102 Nm 2) 

in a 25.4m diameter die. The adherance of the disc to the die 
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faces was Fseverrted by p: 'essirgg the powder between two discs 

of typing paper. 

The spectrum of discs evacuated at roan temperature 

showed a band due to surface carbonate species at 1440 cm 
1. 

Evacuation at 673 K (1 h) removed this bard while heating in 

oxygen 673 K (1 h) and cooling caused the reappearance of the 

band at a reduced intensity. Subsequent evacuations (673 K, 1 h) 

and heating in oxygen (673 K, 1 h) before cooling in oxygen 

reduced this bard to a weak shoulder cr renoved it canpletely. 

The 'standard surface' was therefore prepared by alternate 

heating in oxygen (673 K, 1 h) and evacuating (673 K, 1 h) 

until on cooling in oxygen only a weak bwd was observed at 

1440 cm 
1. The discs were reheated (673 K, 1 h), evacuated 

(673 K, 1 h) and cooled to beam temperature (4 h). The spectrum 

of the standard surface is shown in spec. 2.1. 

Hydroxylated surfaces (BT, H20) were roduced by 

heating the disc with water vapour (673 K, 2 h), cooling (I h) 

and evacuating (BT, j h). Deuterated surfaces were similarly 

prepared by heating in D20 vapour (673 K, 2 h) and evacuating 

(673 K, 1 h) at least twice before cooling in D20 vapour and 

evacuating (BT, I h). 673 K surfaces were prepared by 

evacuating (673 K, 12 h), heating in oxygen (1.33 x 104 N n-21 

673 K, 1 h), evacuating (673 K, 4 h) and cooling (4 h). 

Surfaces were reduced, by heating in hydrogen 

(1.33 x 104 N m2,673 K, 1 h) and evacuating (673 K, 1 h) fcur 
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times before evacuating (673 K, 12 h) aal cooling to beam 

temperature (spec. 2.3). Dosing D20 a H2O onto the surface 

(Br, I h) and evacuation (BT, I h) fcmmed the hydroxylated 

surface (spec. 2.4). 

Sintered samples fog use in the water adsorption 

and desorption experir. ents were prepared by heating rutile 

discs in air at 973 K fcr 13 h before sealing them in the 

cell. The standard surface was prepared as described above 

for non, -sintered rutile. 

Impurities: Cationic impurities do not, vary 

appreciably with samples prepared by, the same method fran the 

same source arrd are of the order 
63: 

A< 1, P=0, K=5, Ca. = 20, V 0.02, ( 0.1, Fez1 

Mn< 0.02, As = 3, Sn = 50, Ba = 0.1, Pb = 0.5 

Surface area = 22m2 g 
1. 

2.3.2 H2O and D20 

H2O was triply distilled, once fran alkaline 

potassium permanganate and twice fran itself. Dissolved gases 

were removed by the freeze-thaw cºocess. 

D20 (Kroch-light 99.7% isotopic purity) was used 

as supplied after degassing. 
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2.3.3 ACET1E h6 AND d6 

Analar acetone h6 (Hopkin and Williams) was stored 

over dry calcium sulphate for two days prior to distillation 

under nitrogen from fresh CaSO4 through a colunm packed with 

glass helices. After discarding the first 10 cm3 the fraction 

distilling between 329 K and 330 K was collected and stored 

under nitrogen. Gases were removed by the freeze-thaw 

technique and the acetone was dried over molecular sieve before 

transference to the cryostat. 

Acetone d6 (CIBA Isotopic purity 99.5%) was used as 

supplied after degassing and drying as above. The miss spectrum 

of the vapour at room teil erature showed 2.5% CD3 COCHD 2 
(99.6% 

Isotopic purity), 0.02% CD3 COCD2 COCD3 and less than 0.01% of 

other impurities (mass numbers. 114,134). 

2.3.4 HEXAFLUOROAOETQNE 

Hexifluc etone (Pierce Chemical Company) was used 

as supplied after drying over mlecular sieve. No impurities 

were detected in the nass spectrum of the vapour. 

2.3.5 ACETIC ACID d4 

Acetic acid d4 (CIBA Isotopic purity >99.5, atom) 

was used as supplied after degassing. No impurities were 

observed in the nass spectrum of the vapotim, Isotopic purity 



38. 

could not be confirim3d by this technique due to possible 

enge of the acidic deuterium with water vapour in the 

apparatus. 

2.3.6 OXYGEN AND HYDROMI 

British Oxygen Grade X gases were used as supplied. 

0 
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3. ADSORPTION AND DESORPTION OF 

VATER AND DE[JTERIU4 OXIDE 

3.1 INTRODUCTION 

Several detailed infrared studies of water 

desorgtion10'11,42,44 frý hydroxylateýl rut le, and water 

adsorption 
0'42 

onto dehydroxylated rutile propose models of 

the rutile surface based on the (110) surface plane 
10,10,44 

and 

on the (110) , 
(101) and (100) surface planes"2. Both results 

and conclusions fron these studies differ and this work was 

undertaken to examine these differences in detail and also to 

study the reduced surface which, contrary to a previous report45, 

differs considerably from the oxidized surface. 

A Sumnary of the experiments appears overleaf :- 
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Graph Spectra 

Desorption of H 
20 

fron Oh ize3 Rutile 

a) Beam Temperature H2O Surface 3.1 3.1 

b) Sintered Bearn Temperature. H2O Surface 3.2 3.2 

Adsorption of H2O arid D20 onto Oxidized Rutile 

a) H2O onto a 673 K H2O Surface 3.3 3.3 

b) D20 onto a 673 K D20 Surface 3.4 3.4 

c) H2O onto a sintered 673 K H2O Surface 3.5 3.5 

Adsorption of H2O and D20 onto Reduced Rutile 

a) Reversibility of the Reduction Process --- 3.6 

b) H2O onto a 673 K H2O Surface --- 3.7 

c) D20 onto a 673 K D20 Surface 3.6 3.8 

The spectra are Wesented in the apperxlix. Spectra 

3.1 and 3.2 contain some duplicate spectra doubled in size on 

the flat-bed recorder ard superimposed on each other to present 

a direct caparison of absorbances. Spectra 3.4 and 3.7 were 

also traced from the recorder, the former to supplement the 

results presented in spec. 3.3. 

Graphs of absorbance changes precede the relevant 

spectra. 
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3.2 RESULTS 

3.2.1 DESORPTION OF WATER FRCM OXIDIZED RUTILE 

A. Beam Temperature H2O Surface 

(Spectra 3.1 and Graph 3.1) 

The Spectrum of a hydroxylate3 rutile surface 

cduced by exposing a standard surface to H2O vapour (BT, h) 

and evacuating (BT, h) stowed bards at 36 80 (sh) 
, 3655,3610, 

3520,3420 and 1620 cm 
1 (spec. 3.1a). Heating this surface 

in H2O (673 K, 5h), cooling and evacuating (298 K, 14h) 

(spec. 3.1b) increased the 3420 cm 
1 barxi and decreased the 

3680 cm 
' 

shoulder. ) no other charges occurring. Evacuation at 

beam tanperature (Gh) (spec. 3. lc) caused a slight increase in 

the 3655 ca 
1 bard and decreased the 3610,3520 and 1620 cm 

1 

bands. 

Evacuation to 368 K (spec. 3. ld, e) increased the 

3680,3655 cri 
1 bands to a ma h um, re<naved the 3610 and 

3520 cm 
' 

bands and decreased the 3420 and 1610 cm 
1 bands, 

the latter having shifted from 1620 cm 
1. O then evacuation 

to 423 K (spec. 3. lf, g) caused broadening of the 3680 =171 

shoulder and decreased the 3655,3420 and 1610 cm-1 bands, the 

intensity of the 1610 cm 
1 bard being reduced to 50% of the 

absorbance ranaining after the 368 K evacuation. On fu ther 

pumping to 481 K (spec. 3. h-k) the 3680 cm-1 shoulder decreased 
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to reveal a 3700 an 
1 band while the 3655 cm 

1 band decreased 

to approximately 20% of its maximum value and the 3420 cm 
1 

bard disappeared to leave a broad 3400 crr 
1 bard. The 

1610 cm 
1 ]and decreased slightly to an intensity which 

rarained constant until evacuation at 663 K. On evacuation 

to 663 K (spec. 1-p) the 3655 cm 
' band decreased to a very 

weak shoulder on the 3700 cm 
1 band which also decreased, while 

the broad 3400 an 
1 band flattened. Apparent absorption due to 

the 1610 em 
1 band gras still pmeserrt after the 663 1C evacuation. 

B. Beam Tetrperatime H2O Sintered Surface 

(Spectra 3.2 and GLaph 3.2) 

The sintered discs were heated in water(673 K, 2h) 

before cooling and evacuating (B'T, lh). The spectrum of 

resultant surface (spec. 3.2a) was considerably different from 

the nor-sintered rutile (spec. 3.1b), the 3680 cm 
' 

shoulder 

was less intense while the 3655 and 3420 cm 
l bands were murre 

intense - the latter being mich more sharp coiared with 

that on the non-sintered rutile. The 3610 and 3520 cm 
' 

bands were less intense, the form r being observed only as a 

weak shoulder. The 1610 cm 
1 bard was 30% of its value on 

the ccrrespording rin-sintered surface. 

Evacuation at 383 K (spec. 3.2a-c) reduced the 

3680 ar 
1 

band, increased the 3655 cri 
1 bard to a maxim un at 
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approximately 353 K (graph 3.2) and decreased the 3410 cm 
1 

band. The 3610 and 3520 cm-1 bards disappeared by evacuation 

at 338 K while the 1620 cm-1 band had nearly disappeared by 

383 K in contrast to that on the non-sintered surface. 

Further evacuation at 443 K (spec. 3.2d-f) caused little 

change in the 3655 cm 
1 barn and 3500 cm 

1 
region in contrast 

to the non-sintered surface. The 3680 ciit 
1 

shoulder 

decreased on raising the evacuation temperature from 398 K to 

410 K and then remained relatively constant until 503 K. The 

1620 cm 
1 band decreased further and disappeared after 

evacuation at 458 K. 

on evacuation at 478 K (spec. 3.2g-i) the 3655 

and 3420 cm 
1 

bands showed. sharp decreased similar to those 

for the corresponding bards on the non-sintered surface, the 

3420 cm 
1 barxi disappearing to leave a broad 3400 cm 

1 

shoulder Huch less intense than that on the non-sintered 

rutile. The 3700 cm 
1 

band appeared after evacuation at 

468 K and further evacuation to 583 K (spec. 3.2j-l)- 

decreased the 3655 cm 
l. band to a shoulder on. this__band. 
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3.2.2 ADS RPTICK OF H2O AND D20 ONTO OXIDIZED MM LE 

A. H2O 
_ 
orito 

,a 
673K H2O surface 

(Spectra 3.3 and G mph 3.3) 

The starting surface (spec. 3.3a) showed a bare at 

3700 cri 
1 

with a very weak slx older at 3655 cri 
1. Initial 

adsorption (spec. 3.3b-d) caused an increase in the 3700 and 

3655 an 
1 bands, the latter increasing move than the fomer. 

Bmad bands also appeared in the 3400 and 1610 cmci-1 regions. 

Further adsorption (spec. 3.3e, f) of H 20 
increased the 3655 cd" 

band, the 3700 cn 
1 bard becaning a broad shoulder on the more 

intense 3655 an 
1 band (spec. 3.3e). This shoulder n rrowed and 

became more intense on further adsorption (spec. 3.3f) to form a 

sicuUer at 3680 ci 
1. 

the bard at 3700 csri 
1 having now disappeared. 

The broad bard at 3400 cri 
1 in2reased and a broad bard fomme3 at 

1610 cni-1. 

On imseasing the dosage of H2O bands fcmed at 

3610 and 3520 cri 
1 (spec. 3.3g) and the byroad band centred on 

1620 - 1610 ca 
1 

also irxreased. These bards all increased 

with increases in H2O pressure (spec. 3.3h, j, l, n, o, q, r), the 

1610 cd -1 broad band shifting to 1625 ari 
1. The 3655 cm 

1 

bard increased by approximately 6% (spec. 3.3h, j) in contrast 

to the sharp rise previous to the appearance of the 3610 and 

3520 cn 
1 bards and decreased at higher vapour pressures of 
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H 
20 

(spec. 3.3 1, n, o, q, r) shifting to 3620 cm 
1. Little change 

occurred in the 3680 an 
1 

bard although it became prominent at 

high vapour pressures (spec. 3.3 o, q, r). The 3400 cm-1 lid 

bard increases while the 3420 cari 
1 

peak ms only observed at a 

late stage in the adsorption (spec. 3.3 k-s). 

Evacuation of the cell (spec. 3.3 i, k, m, p, s) 

cause) little change in the spectrum during earlier stages of 

the adsorption (compare spec. 3.3 h and i), evacuation of surfaces 

with greater H2O coverage decreased the 3610,3520,3420 and 

1630 cri 
1 bards (spec. 3.3 k, m, p, s) and increased the 3655 cm-1 

bard, little charge was observed in the 3680 cm 
1 band. 

Comparison of the evacuated surface spectra showed increases in 

the 3655 cm 
1 bard (graph 3.3 and spec. 3.3 i, k, m, p, s) and in 

the 3610,3520,3410 and 1630 cmml bands (spec. 3.3 i, k, m) as 

the adsorbed amount of H2O on the surfaces prior to evacuation 

increased. 

B. D20 onto a 673 K Oxidized Surface 

(Spectra 3.4 and C aph 3.4) 

The adsorption of D20 onto rutile showed similar 

spectra to those of H20, the bards being shifted by a factor 

of approximately J2 to lower wavenambers due to the 

substitution of the hydrogen atom by the heavier deuterium 

atom. Using the readout accessory on the spectrometer, the 

spectra were reproduced at twice the size of the origira1 trace 
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ard with the ordinate scale reversed. The spectra (3.4) showed 

clearly the initial stages of adsorption. 

The initial dosage of D20 (spec. 3.4 a-e) increased 

the 26 95 an 
1 bared (corresporr i. ng to the 3655 cm 

1 band) while 

the original 2720 cm 
1 bard became a broad shoulder on this 

bard (spec. 3.4 d-e). The 2680-2500 czri 
1 

region also 

increased in intensity. Furthev dosage of D20 (spec. 3.4 f-i) 

increased the 2690 cri-1 bard while two shoulders appeared at 

2720 and 2710 cm 
1 (corresponding to the 3700 and 3680 cm 

1 

bards on the H2O surface). Optical density also increased in the 

2680-2500 cm 
1 

region, bards appearing at 2660 a rd 2600 cm 
1 

(corresporxiing to 3610 and 3520 cm 
1 H2O barns). On increased 

dosage of D20 the 2720 cm 
1 bard merged into the 2710 cm 

1 

band while the 2660 and 2610 cm 
1 bands increased as observed 

for the adsorption of H20" 

C. Adsorption of 1120 onto a 673 K H2O Oxidized Sintered Surface 

(Spectra 3.5 and Graph 3.5) 

Initial adsorption of H2O produced spectra similar 

to those for the non-sintered surface spec. 3.5a, corresponding 

to spec. 3.3g. The difference of intensities between the two 

sairtples was due to the greater density (0.318 cm 
2 

cornared with 

0.39g cm-2) of the sintered rutile disc. 

Further adsorption of H 
20 

(spec. 3.5 a, b, d) resulted 

in a decrease of the 3680 cm 
1 

shoulder and increases in the 
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3 6109 3520 and 1610 cm-1 barxis. A band appeared at 3 410 cm-1 

which was sharper than on the correspondirgg non-sintered surface. 

On evacuation (spec. 3.5 c, e) of these surfaces the 3680 cm 
1 

bard decreased, the 3655 cm 
1 increased slightly (graph 3.5) 

and the 3610,3520 and. 1610 cm 
1 bands decreased to lower 

intensities than observed for the non-sintered rutile. The 

3410 cm 
1 band decreased on evacuation. 

Dosage of H2O at higher vapour pressures (spec. 

3.5 f, g, h, j) decreased the intensity of the 3680 cm 
1 band 

which became a separate band and also decreased the 3655 cm 
1 

band shifting it to 3620 cm 
1. 

The 3520,3410 and 1610 cm 
1 

bands increased while the 3610 cm 
1 band was observed only as 

a shoulder, in contrast to the non-sintered surface. 

Evacuation of these surfaces (spec. 3.5 i, k) reduced the 

3680 cnml band to a constant value, increased the 3655 cm 
1 

band and reduced the 3610,3520,3410 and 1620 cm 
1 bands to 

lower intensities than observed for the corresponding 

nm-sintered surface (spec. 3.3 3). 

Heating in H2O (673 K, 2h) cooling and evacuating 

(BT, lh) produced little charge emept a 25% increase in the 

3410 cm 
1 band. 
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3.2.3 ADSORPTICU OF 1120 AND D20 0NTO REDUCED RUTILE 

A. Reversibility of the Reduction Process 

(Spec 3.6) 

Reduction of discs caused a decrease in transmittance 

resultin ; in the need for maxim= gain and maxirau slit width 

between 4000 to 3000 cm 
1 (2.2.4). The loss of response and 

low signal: roise ratio prevented the accurate measummnt of 

spectra- in this region and deuterated surfaces were used in 

rmst of the experiments on BT reduced surfaces. Reduction also 

caused the discs to turn a blue-grey colour and increased the 

slope of the base line (spec. 2.3,2.4). 

Adsorption of D20 onto the surface (BT, jh) and 

evacuation (BT, 1h) resulted in the formation of bands at 2720, 

2695,2535 cm 
1 

and a broad band at 3660 cm 
1 (spec. 3.6a). 

A second dose of D20 (BT, 1ih) and evacuation (BT, 4h) removed 

the 3660 cm 
1 band which reappeared on farther dosage of D20 

(298 K, 5 days) and evacuation (BT, jh) (spec. 3.6b) together 

with a broad band at 1570 cm 
1. 

Reoxidation of the surface (02,1.33 x 104 Nm2 , 

673 K, ih, x2) (spec. 3.6c) and dosage of D20 (BT, 4h) 

followed by evacuation (BT, lh) (Spec. 3.6d) formed the usual 

'beam tenperatume, D20' surface. Further reduction (usual 

process) aril evacuation (673 K, 6Ch) followed by treatment 
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0 

with D20 (BT, jh) and evacuation (BT, '-2h) resulted in a surface 

(spec. 3.6e) similar to that observed after the initial reduction 

(spec. 3.6a) e ept for the absence of a 3660 cm-' band . Heating 

in D20 (673 K, 2h and 16h) (spec. 3.6 f, g) cooling and evacuation 

increased the 2690 and 2535 cm 
1 bands and also increased the 

broad band beneath the 2535 cm 
1 

peak. 

B. ' Adsorption of H 20 onto a 673 K H2O Reduced Rutile Surface 

(Spec. 3.7) 

As previously stated the response and signalmoise 

ratio are too low fr the rcccrding of acctate spectra in the 

4000 - 3000 cm 
1 

region, arxi it was not possible to study the 

re hydroxylation of a reduced surface using H20. Spec. 3.7 shows 

a rehydroxylated surface after evacuation (BT, jh) and indicates 

the quality of the spectruun in the range 4000 - 3000 cml. The 

intensity of the band observed at 1620 cm 
1 is 35% that of the 

same band on the corresponding oxidized surface. No 1560 cm 
1 

band was observed. 

C. Adscrption of D20 onto a 673 K D20 Reduced Rutile Surface 

(Spec. 3.8 and Graph 3.5) 

Bands appeared at 2720 and 2695 cm -1 on the initial 

adsorption of D20 onto reduced rutile (spec. 3.8 a-e) and 

increased with dosage, the form rrore rapidly than the latter 

(in contrast to the oxidized surface) to reach a ma dir nit by 

spec. 3e. The 2710 cm 
1 

shoulder was not observed, while the 
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absorbance of the base line below 2680 cri 
1 increased. 

Further adsorption of D20 (spec. 3 f, h, i, j) decreased 

the 2720 an 
1 bard while the 2695 cri-1 bard continued to in2rease, 

the 2720 as 
1 band beaming a shoulder at the higher intensities 

(spec. 3.8 i, j), with a possible shoulder at 2710 cm 
1 (spec. 3.8j). 

The 2535 aril bard appeared (spec. 3.8j) together with increases 

in the 2680 - 2500 cm 
1 

region. Evacuation of the D20 vapour 

(spec. 3.8k) increased the 2720 cm-1 bard to its maxb=, decreased 

the 2695 cri 
1 bard (in contrast to the oxidized surface) and 

reduced the 2680 - 2500 cm 
1 band. 

Adsorption of D20 at higher vapour pressures (spec. 

3.8 l, m) decreased the 2720 cni 
1 bard to a shoulder on the 

increased 2695 cm 
l band while bards appeared at 2660,2610 cri 

' 

and the 2535 rni 
1 bard increased in intensity. Dosage of D20 

at relatively high vapour pressures (spec. 3.8 o) produced a 

spectrum with vapour barxis present. No comparable spectra 

were observed for the oxidized rutile at s milar vapour 

pressures. Evacuation of these surfaces increased the 2720 cri 
1 

bard to its maxinuun value ard decreased the 2655 aid 2535 cut 
l 

bands to intensities which were greater than on the previous 

evacuated surface. 

Evacuation of the surface at 473 K (16h) 

(spec. 3.8 q) decreased the 2695 ari 
1 band to a weak shoulder 

on the 2720 a1 peak which had also decreased. 
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3.2.4 SLM 4ARY 

A Sunr! ary of bards observed is shown in Table 3.1. 

Desorption of water to 368 K from non-sintered rutile 

first rei ved the 3610 and 3520 cm 
1 bands together with a 

decrease in the 1620 cm 
1 band. Evacuation at 473 K removed 

the 3420 cm 
1 

bared to leave a broad 3400 cm 
1 band and reduced 

the intensities of the 3655 cm 
l band (by 70%) and 3680 cm 

1 

shoulder which resolved to reveal a 3700 cm 
1 band. Evacuation 

at 663 K reduced the 3655 cm 
1 band to a shoulder on the weak 

3700 cm 
1 band and renxoved the 3400 cm 

1 broad band. A broad 

band at 1600 cm 
1 

was still present. Evacuation of the 

sintered surface was similar emept the 3610,3520,1610 cm-l 

bands were less intense and the 1610 cml band was rermved by 

evacuation at 358 K. Differences also occurred in the 

behaviour of the 3700 cm 
1 band while the 3420 cm 

1 band was 

rrn^e intense than for the cc espording non-sintered surface. 

Initial adsorption onto oxidized rutile resulted 

in an increase of the 3700,3655, broad 3400 and 1610 cm 
1 

bands, the 3700 cm- 
1 band merging into the 3680 ci 

1 
shoulder 

before the appearance of the 3610 and 3520 cm 
1 bards. 

Higher vapour pressures increased the 3610,3520 and 1610 cm 
' 

bands, decreased the 3655 an 
1 band and famed the 3 420 cm 

1 

peak. Evacuation increased the 3655 cm 
1 

bard and decreased 

the 3610,3520,3420 and 1610 cin 
1 bards. 
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Spectra recarded during the adscrpptim on the 

adsorption of D20 onto a reduced surface differed fran those 

recorded during similar adsorption onto the oxidized surface. 

The 2720 and 2695 cn1 bards increased on initial adsorption 

while the 2720 cm 
1 band fanned a shoulder on the 2695 cm 

1 

band after it had reached its maxi m. Evacuation increased 

the 2720 cri 
1 band back to its maximum and decreased the 

2695 an-1 band. Dosage at higher vapour Messures formed the 

2660,2600 and 2535 cm 
' bands, the first two disappearing cn 

evacuaticn, while the 2535 crr 
' 

decreased in intensity. 
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3.3 DISCUSSION AND CONCLUSIONS 

In the follodng discussion only bards observed on 

the H2O surface will be considered although the raT1arks apply 

to the equivalent bards on the deuterate1 surface unless 

stated. 

3.3.1 PRELB'SARY ASSIGN= TS 

Sands observed above 2000 em 
l 

on H2 0 and D20 

surfaces have frequencies typical of those observed for OR and 

OD stretching vibrations 
596 

and may therefore be assigned to 

hydroxyl groups either directly bonded to the surface or 

present in water molecules. Individual groups are assigned 

to one of these types of hydroxyl groups by considering the 

spectres of water, and the results from adsorption and desorption 

experiments. Adsorption of ccm pounds which interact with 

hydroxyl grasps or other surface sites provide further 

information on the nature of the surface (3.3.3). 

The furdamental frequencies observers fcr 11 
20 and 

D20 are shown in Table 3.264. The 1610 cni 
1 

bard observed on 

the H2O surface is assigned to the bending vibration of water 

molecules. The reduction of this bard during evacuation to 

393 IC coincided with the disappearance of the 3610,3520 cm 
1 

bards and a reduction in the broad 3400 cm 
1 

underlying the 

3420 cm 
' 

peak. The behavicnr of the 3610,3520 and broad 
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3400 an 
1 bands is similar to that of the 1610 cn-1 bard and they 

may be tentatively assigned to water molecules on the rutile 

surface ca hydroxyl groups hydrogen-bonded to water nolecules. 

The remain g, 3700,3655 and 3420 cm 
1 bands are assigned to 

hydroxyl groups on the surface of ratile while the 3680 cn 
' 

shoulder will not be assigned aal is discussed later together 

with a detailed discussion of the behaviour of all the bands 

observed. 

To account for the different types of OH groups 

observed and the results obtained from other infrared studies 

on the rutile surface (Table 1.2) a model of the surface structure 

crust be consi dermal. 

3.3.2 SURFACE STRUCTURE 

The structure of an oxide surface may be assumed 

either completely hetereogeneeus or formed from a nuriber of 

well defined crystal planes. The infrared spectrum of a 

hetereogeneous surface would contain broad bands due to 

hydroxyl groups in many different environments and is not 

considered for oxides which show sharp discrete bands. The 

latter model has been adopted to explain the observed bands 

in infrared spectra of silica65, alumina66, rutile10541,44 

anatase67, zinc oxide68 and magnesium oxi 1e69. 
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The planes assured for the microsurface are deduced 

from those present on the massive crystal if the oxide 

10,41268 
crystallites are of similar structure Electron arxi 

x-ray diffraction studies may indicate the preda*ninant planes 

exposed on other crysta111tes66 while the requirement of a low 

surface energy, that is minimum loss of coordination of surface 

ions, also indicates the favourable surface planes69. 

The nature of the hydroxyl and water species on the 

oxide surface is determined by considering the adsorption of 

water molecules onto the uncoordinated ions present in the surface. 

Possible division of the water molecules into hydroxyl ions and 

protons may lead to acidic and basic sites in the surface67 

onto which other water molecules may adsorb. 

Peri66 adopted an alternative method for the model 

of the surface of X- alumina. All the (100) sites were 

initially saturated with hydroxyl groups and a 'Monte Carlo' 

method applied, using a computer, to determine the random 

elimination of Chi groups to form water, assuming certain 

conditions. Five observed bands between 3800 and 3700 cm 
1 

were assigned to five types of hydroxyl groups which differed 

by the number of nearest oxide neighbours (0 to 4) surrounding 

them. 

The crystallites of rutile used in these experiments 

resembled the massive mineral crystals62 (section 2.3.1) and the 
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planes exposed on the surface are assumed identical. Rutile 

mineral crystals are of the Zirccn Type62 with the (110), (100), 

(101) and (111) planes exposed. Table 3.3 shows the percentage 

occurrence of the exposed planes as determined by electron 

diffraction studies on a rutile ctal70. 

Diagrams of the (110), (101) and (100) planes are 

shcrwn in figs. 3.1-3 (redrawn from ref. 41). The (110) plane 

(fig. 3.1) consists of coplanar oxygen ions (fully coordinated) 

and titanium ions (5 coordinate) with oxygen ions (2 coordinate) 

above the plane bridged between two fully coordinated titanium 

ions. The four coplanar oxygen ions round the uncoordinated 

titanium ion are in the 'equuätcrial(e) position 

(Ti-0(e) = 0.1944 N m) while the vacancy is in the axial(a) 

position (Ti-0(a) = 0.1988 N m). 

The (101) plane is sham in figure 3.2. All of the 

Ti + ions are five coordinate with a vacarr-y in the equatorial 

position. The (110) plane (fig. 3.3) contains 5 coardinate 

titani= ions with the vacancy in the axial position. The 

(211) and (111) planes have 3 coordinate titaniwn ions and a 

caaplex structure which may be seen by reference to the 

appropriate crystal model. 

The model of the rutile surface to be used in this 

work is based on that shown in table 3.3 in which the (110) 

plane predaninates while the other four planes account for 40ý 

of the surface. The titanium and oxygen atcins are toiideºed 
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as ions in the text but are drawn as though covalent bonded to 

indicate spatial distribution. 
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3.3.3 ADSORPTION ONTO THE RUTILE SURFACE 

A. Infrared Studies of I-later Adsorption 

The effect of surface chloride adsorbed on rutile has 

been investigated by Jackson aryl Parfitt10 and found to affect 

the infrared spectra m of the ET, H 
20 surface at surface 

concentrations higher than 147-277pgn. Above these concentrations 

the 3615 and 3530 csri 
1 bards were not observed, the 3400 cm-1 

was of greater intensity and split into shoulders at 3410 and 

3300 cri-1 due to the interaction of water molecules with the 

chloride ions. 

Jones arxd Hockey1 canpared rutile prepared fron 

titanium tetrachloride and treated1 to ranove chlaride ions with 

rutile prepared fron the isopopoxide11. They fa n-d that the 

former sample retained mare water at beam temperature, was 

canpletely dehydroxylated by evacuation at 673 K and contained 

all the hydroxyl and water species on the surface, all the bands 

being completely exchanged by exposure to D20 at roan temperature. 

After staring the sample in a closed pyrex tube for four months 

canplete exchange at roam temperature did not occur due to 

aggregation of the particles. Similar results were observed fcv 

ather ' chloride' rutiles 
51552 

, The infrared spectrm of the 

rutile repar1 from titanium isopropoxide showed lower scattering 

characteristics than the 'chloride' samples, a less intense 

3520 cm 
' bard and a sharp 3410 cm 

1 band. 'Chloride' samples 

which had been sintered also showed this sharp band. 
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The assignments of bands observed on H20, oxidized, 

rutiie surfaces during adsorption and desorption studies10,11,42,44 

are shown in table 3.4. Jackson and Parfitt10, and Primet et al 
44 

considered only the predominant (110) cleavage plane while Jones 

and Hockey42 considered the (110), (101) and (100) planes 

assuming these to form 98% of the surface with percentage 

occurrermes of 60,19,19 respectively. These models are briefly 

described below while the assignments will be discussed in 

section 3.3.4 which details the behaviour of the bands 

observed in this work. 

The spectra observed by Jackson arnd Parfitt10 durirg 

the adsorption and desorption of water are similar to those 

observed in this work with some exceptions. The spectrum of 

their beam temperature surface canpare3 with the corresponding 

surface in this work showed rxme intense 3610 and 3520 cm 
1 

barns while the 3420 cm 
1 

peak was obscured by a broad 

3400 cm 
1 

bard which on evacuation to 423 K divided to produce 

a peak at 3420 cwt 
1 

with a broad shoulder at 3350 cm 
1. The 

3420 cm 
1 bard did rat decrease significantly until after 

evacuation at 573 K, contrasting with its disappearance after 

a 473 K evacuation in this work. The sample investigated by 

Jackson' appears to retain more water at room temperature and 

diming evacuation at higher temperatures than the sample studied 

in this werk. Amther differerce is the appeararce of a 

3690 ari 
1 band after evacuation at 473 K for 2h which disappeared 

on further evacuation. 
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The infrared spectrum of the sintered rutile surfaces 

are similar in both studies with the exception of the 

3690 cm 
1 band observed by Jackson. 

The model of the rutile surface adopted by Jackson 

and Parfitt10 is similar to, that adopted by Boe1- fcr 

anatase. H2O molecules adsorb on the uncoordinated metal 

ions (raw A41) in the (110) plane befcie dividing to leave 

Oi groups on the-Ti 
4+ ions and protons on the two coordinate 

oxygen ions (raw B). The T14+ ions with a vacant site 

(rar A) carry a fcvmal positive charge of 2/3+ while the 

oxygen ions with a vacant site (raw B) carry a 2/3- charge. 

On hydroxylation these are reduced to 1/3- arni 1/3+ 

respectively and the surface energy is lowered. 

The hydroxyl groups famed on the cation (raw A) 

are monderrtate in attachment (terminal groups) and more 

basic, due to the 1/3- charge, than the OH groups (raw B) 

bidentate -in attachment (bridged groups) with a 1/3+ charge. 

The terminal groups are sufficiently close (296pm) to 

hydrogen bond and condense by a proton tunneling mechanism at 

temperatures above 473 K77 while the biderrtate nature of the 

bridged hydroxyl groups (29613n apart) hinders mutual 

corrlensation. The 3700 an 
1 bard was therefore assigned to 

the bridged hydroxyls and the 3670 cm 
1 

barxl to the tl 

hydroxyl grasps. other assigrinents are shoran in table 3.4. 

pr, et et a44 consider hydroxyl groups attached to 
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the five cocrdinate titanium ions on the (110) face which 

are surrounded by the four equatorial oxygen ions formirr; a 

square plane of sides 253rnn and 296rini. The edges of these 

planes are considered adjacent resulting in hydroxyl groups 

253rm and 296rmi apart which hydrogen borri to produce bands 

at 3410 and 3655 cm 
1 

respectively, while the 3685 crn 
1 bard 

is assigned to the isolated hydroxyl groups. This model 

appears to be inccrrect as the fides of the planes are joined 

in one direction only on the (110) face to give rai A 

hydroxyl 296rm apart. 

Dehydroxylation-rehydroxylation cycles reduced the 

temperature required to remove the OH groups while after ten 

cycles no more specific OH groups were reformed. It was 

proposed that dehydroxylation initially removes hydrogen bonded 

OH groups to farm Ti-O-Ti Iridges which reform hydroxyl groups 

on rehydration with the possible migration of protons or 

hydroxyl groups. After the condensation of hydrogen bonded OH 

groups migration of protons or hydroxyl groups removes 

isolated Obi groups leaving an oxygen ion attached to one Ti 4+ 

ion and a five coordinate Ti4+ ion, capable only of 

cocsddinately bonding to H2O molecules. Subsequent dehydroxylation- 

rehydroxylation cycles in=ease these uncoordinated metal ions 

consequently decreasing the member of OH groups formed on 

rehydroxylation. 

The 'chloride free' rutile sample used by Jones aid 

Hockey has a Er, H20 spectrm similar to those observed 
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by Jackson 0 
and Griffiths (this work) fcr a sintered surface, 

but showed considerable differences on evacuation at elevated 

to peratures. The 3680 c1 shoulder dirt not develop into a 

3700 cm 
1 band but disappeared with the 3 610 cri-1 shoulder. 

The 3410 and 3650 cm 
1 bands behaved in a similar manner to 

those observed in this wcrk, the fcrmer band disappearir, 

first, but the 3650 cri-' band did not disappear and remained 

after evacuation at 673 K (zh). 

Jones and Hocke 1 
consider the initial adsorption 

of water onto the (110) plane to form terminal. (raw A) and 

bridged (row B) hydroxyl groups. The bidentate OH groups shift 

to fain a monodentate attachment to the titanium ions which 

becane five coordinate. The 3650 crri 
1 

band is assigned to the 

row A hydroxyls while the 3410 crn 
1 band is assigned to the 

row B hydroxyls, the lacer frequency being due to the greater 

unsaturation of the underlying titanium ion reducing the bond 

strength. AU the hydroxyl groups are considered to lie with 

their axes perpendicular to the surface which prevents hydrogen 

bonding between hydrogen atoms and neighbouring oxygen atoms. 

Adsorption of H 20 molecules onto the (100) and 

(101) planes and subsequent division would result in each 

titaniiun ion being attached to two hydroxyl groups which 

occupy an individual cross-sectional area of 6-7x10 2N 
m2. 

As the cross-sectional area of an OH ion 1x10 
1Nm 

the 

H 20 molecules are considered to bond via a d- bond fanned 

using a filled orbital of the oxygen atan in the water rtoleoule 
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and the empty orbital on the titanium ion. 

The water nolecules on the (101) plane are directed 

such that the hydrogen atoms do not interact with surface 

oxygen ions while the direction of those on the (100) plane 

does enable the hydrogen atoms to interact with the 

supra-planar oxygen ions. The two hands at 3680 and 3610 cm 
1 

are assigned to the Y3 and Y1 vibrations of water molecules 

on the (101) plane and the 3550 cm 
1 

to hydrogen bonded 

moleculgs on the (100) plane. The loss of water molecules from 

the (110) plane is not as energetically favourable as loss 

fran the (100) plane as molecules on the former plane are in 

the equatorial position of the titanium. ion and those on the 

latter are in the axial position. 

B. Other Studies of the Adsorption of Water onto Rutile 

Nh=era and Stone71 have investigated the adsorption 

of water onto rutile and the temperature progr nned desorption 

(TPD) of water from rutile. TPD showed two peaks at 523 K and 

643 K, the former due to a strongly adsorbed form of mlecular 

water and the latter due to dissociatively adsorbed water 

forming surface hydroxyl groups. Calibration of the 643 K 

peak indicated not mime than 50% of the sites on the (110) 

plane were hydroxylated asses all the surface to consist of 

this plane. The coverage corresponds to a 100% hydroxylation 

of the (110) plane assuming a 60% surface occurrence41. 

Bickley and Jayanty72 also observe two TPD peaks 

at 423 K and 643 K on a sample calcined in air at 1123 K (5h). 
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After repeated cycles of autgassing and baking in oxygen 

(1123 K) the water peaks were greatly reduced but partially 

restcred by : Immersing., g the sample in boiling water. The 

first peak ccrresporxds to 65% total water descrbed while the 

remaining 35% arises fron the condensation of surface hydroxyl 

grcxxps. 

Waldsax and Jaycock73'm have repcrted sane 

calculations on the surface adsorption energies of water on 

rutile. A map of the surface electrostatic field 0.2nm, above 

the surface of rutile shows the most favourable adsorption site 

to be over the five coordinated Ti4+ ion. The bonding energy 

is -104 kcal mole 
l; 

the molecule being cvientated with the 

dipole almost vertically daanwards. The first dissociation 

energy of H-OH is l17 kcal mole 
1, 

the water molecule is assumed 

to dissociate (egn. 1) with the proton descending the steepest 

field slope to the two-cocrdinated oxygen (egn. 2, ccmpiete 

reaction). 

V[Ti4+] 
+ CH -H -> Vl 

[ T13+ d+ 30H + H+ (1) 

V[Ti4+} 
+ cn Ii + 

3C[02-] --i vi 
[ Ti3+ r+ ]OHS + OHS (2) 

(Ronan numerals denote the coordination nu er of 
the atcm). 

On the basis of these calculations total hydroxylation 

of the (110) face is expected in contrast to the 50% hydroxylation 

observed7l. 

Waldsax and Jaycock also calculatedly the effect of 

substituting xl3+ and Ti3+ ions irrto the place of the five 
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coordinate Ti4+ ion. The potential well of -104 kcal nmole 
1 fc' 

the unsubstituted (110) face rose to -41 kcal sole-1 far A13+ 

and -35 kcal mle 
1 far T`i3+. 

Calculations carried out on water adsorption on the 

(100) surface show a potential well of -98 k cal mole 
1 

to exist 

on the surface but with 60% of the surface having binding energies 

of less than 10 k cal rule-1. 

Mor1noto et ai74 have investigated the water content 

aril heats of it ersion of rutile samples prepared from titanium 

sulphate and suitably treated to renne surface impurities. The 

samples studied were: unsintered rutile (RI), rutile heated in 

air (1073 K, 4h) and exposed to saturated water vapour for five 

days (RT)(RII), and the unsintered sample inanersed in hot water 

(353 K, 3 days) and dried (383 K, 10h)(RIII). The water content 
o 

(expressed as CH's/A2) was determined after outgassing temperatures 

of 373-1273 K and found to decrease in the order RIII > RI > RII 

at any given temperature. Sample RIII began to sinter at 873 K 

200° lower than RII possibly due to condensation dehydration of 

hydroxyl groups from the facing surfaces of contacting 

particles75. Heats of immersion were found to have a maximau, at 

673 Kin the order RIII > RI > RII identical to the order of 

water content. These results support those observed in this 

work that show the sintered surface adsorbs less water than the 

unsintered surface. 
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Day et x185 have recently studied water adsorption 

cnto rutile using an electrobalance. The adsorption isotherm 

shows two 'knees' at relative wessures of 0.03 and 0.22, the 

latter corresponding to monolayer coverage. The quantity of 

water adsorbed at the second 'knee' on a surface outgassed at 

393 K cc-responds to that required for a close packed 

monolayer. The water molecules descrbed below 393 K are 

removed from the monolayer while those removed above 393 K 

are coordinately bound to the surface. 1.4 molecules Nm2 

of H2O were r moved fran 373 to 473 K and 1.7 molecules Nm2 

frm 473 K to 673 K while the total quantity of H2O descrbed 

was half that observed by Jones and Hockey 42 
who assume that 

hydrogen borcled water was removed by overnight evacuation at 

298 K. 

C. Lewis and &nsted Acid Sites on Rutile 

The exist. nce of sites on metal oxides which exhibit 

Lewis and Br6nsted acidity is well documented5'6. The reactions 

of the acidic and basic OH groups on Ti02 with various acids 

and bases have been investigated67 while the acidity of 

surface hydroxyl groups on several oxides (not Ti02) has also 

been determined76. Ammonia has been used extensively5'6 to 

study the acidic nature of oxide surfaces as it may act as a 

Bc6nsted base, to fcmm arrunoniwn ions, cs coordinate to Lewis 

acid sites, each of these fcams having a characteristic 
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spectrum. Pyri. dine5'6 has also been used as it shows 

characteristic spectra dependant on its action as a Lewis base, 

a Er6nsted base (to form the pyridini= ion) or as a ccmpcund 

capable of hydrogen bonding to the hydroxyl groups. 

Parfitt et al45 have studied the adsorption of 

arrn onia onto rutile and observed four N-H stretching bands 

between 3400 cm 
1 

and 3200 cm 
1 

which were assigned to anmonia 

rrrlecules cocrdinated to two Lewis sites. The disappearance of 

the 3700 cm 
1 band on adsorption and reapperance on evacuation 

of the sample indicate hydrogen bonding to the hydroxyl group 

assigned to this band while an increase in the 3660 cm 
1 

hydroxyl band after evacuation of excess ammonia is assumed, 

to indicate the reaction 

NH3 + Ti-O-Ti TiOH + TiTJH2 

No bands due to NH+ were observed after dosage onto wet or dry 

surfaces or after admission of H2O vapour to a surface 

pretreated with ammonia indicating that no Brbnsted sites were 

present on the surface. Adsorption of ammonia onto a surface 

pretreated with hydrogen chieride did produce ammonium ions. 

Jones and Ho ey1' adsorbed pyridine onto rutile and 

observed bands due to pyridine molecules bonded to Lewis sites, 

bands due to pyridinium ions or hydrogen-bonded molecules were 

not observed. The bands at 3650 and 3410 cm 
1 

were unaffected 

by the adsorption of pyridine while the 3680,3610,3550 and 

1600 ciri 
1 bands decreas 3. indicating that pyridine adsorbed by 

displacing coo d. inately bonded water. 
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Parfitt Lt x, 1,48 observed a series of bards on the 

adsorption of pyridine onto rutile which were interpreted as 

adsorption onto one type of Leciis site. Two other bards were 

assigned to pyridine molecules weakly adsorbed onto the second 

type of Lewis site 
45.. No bands due to pyridinitun ions were 

observed on dry and -wet surfaces but were observed on surfaces 

55 
pretreated with hydrogen chloride, and tin tetrachlori. de. 

Primet et a147 observed bands due to the NH+ group 

after adsorbing trimethylamine onto anaatase evacuated at 473 K 

and concluded that scene OH groups on this surface show 

Bv6nste1 acidity. 

Parfitt et a152 investigated the adsorption of hydrogen 

chloride onto "wet" and "dry" rutile surfaces. Initial dosage 

of Iti onto the dry surface increased the 3660 cm 
l hydroxyl 

band, shifted the 3700 czri-1 band to a shoulder and increased 

the 3400 and 1600 cm 
1 

bards indicating the farmation of water. 

Further adsorption decreased the 3690 cm-1 band due to reaction 

while the 3660 cm 
1 barxi decreased slightly indicating the 

fanner to be more reactive. 3360 and 1565 cm 
1 

bards were 

observed at high partial pressures of HCl which were assigned 

to the species Ti4+(H20)Cl . Dosage of FEl onto a "wet" surface 

renoved the 3690 cm 
l 

shoulder and the 3660 cm -l bard, which 

reappeared at lower intensity on evacuation indicating a 

hydrogen -borrhir)g interaction. 
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Jones and Hockey 1 
investigated the reactions of 

IC1, SOC12 and SO2 with the groups on a beam temperature 

surface. Initial adsorption of HCl onto a BT H2O surface with 

a spectrum indicating less coordinated water than observed by 

Parfitt et a152 replaced all the bards except the 3655 and 

3410 cm 
1 by a lroad 3400 crn 

1 
band. Further adsorption 

removed the 3680 cm 
1 bard before the 3655 cm 

1 bard, increased 

the 3400 cn 
1 band alongside the 3410 cm 

1 bard and produced a 

bard at 1565 cm 
1. Evacuation at 473 K increased the 3655 cm 

1 

bard and removed the 3400 cm 
1 bard to leave a very weak 3410 cl i-1 

absorption, which indicated the effect of surface chloride in 

reducing the 3410 cri 
1 band and decreasing the dehydroxylation 

temperature. 

Thionyl chloride reacted readily at room temperature 

with the hydroxyl groups on rutile in contrast to the slaw 

reaction with silica hydroxyls and indicated the former to be 

appreciably ionic in nature. The reaction of the rutile surface 

with sulplw dioxide was similar to that with hydrogen chloride, 

the 3680 cm 
1 band being ra coved and the 3655 crri 

1 band 

decreasing. No broad bands were observed at 3400 and 1565 cm 
1 

and the 3550 band did not disappear but increased in intensity. 
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D. Conclusions 

woad conclusions may be drawn from the above wank. 

i) Two hydroxyl groups exist on the beam tanperature 

rutile surface, probably on the (110) plane. They 

may be hydrogen -bonded. 

ii) Two Lewis sites exist on the surface, one stronger 

than the other. These may be related to the two 

3+ 27 types of Ti ions observed by e. s. r. spectroscopy'28. 

iii) No & 6nste3 sites exist on the surface. 

iv) Sintering affects the beam temperature surface, 

increasing and sharpening the 3410 cm 
1 bard. 

v) The presence of surface chloride affects the 

properties of the rutile surface. 

The behaviaar and assignment of the individual barns 

is now considered. The adsorption and desorption processes on 

the surfaces studied is considered in 3.5. 
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3.4 BEHAVIOUR OF OBSERVED BANDS 

3.4.1 3700 cm 
1 BAND 

This band is hidden on the BT, H20, oxidized 

unsintered surface (spec. 3.3) ärxi does mt appear until 

evacuation at 423 K- 455 K (spec. 3.1 g, h). On evacuation 

at higher temperatures it does not decrease as rapidly as the 

3655 and 3410 cm 
1 barxis and ranains on a surface evacuated at 

663 K (13h) together with a weak 3660 cm 
1 

shoulder and 

residual absorption at 1600 cm 
1. 

Behaviour on the sintered 

surface (spec. 3.2) is similar although it is less intense and 

does not show a regular decrease. 

This bard is present on 673 K H2O and D20 oxidized 

surfaces before dosage of I20 and D20 respectively. Dosage of 

H2O (spec. 3.3) and D20 (spec. 3.4) appear to increase the 

intensity of this bard which may, in part, be due to increases 

in the adjacent 3680 and 3655 an 
1 

bands. The intensity of the 

band reaches a maxizn absorbance (specs. 3.3f, 3.4h) just 

before merging into the 3680 cm 
l 

shoulder. The rate of increase 

of the 3655 cm 
l bard decreases considerably near this mmdrwm 

(graphs 3.3 and 3.4). Dosage of H2O onto the sintered surface 

roduces results similar to those observed for the 3700 cm-1 on 

the unsintered sample. 
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Dosage of D20 on a 673 K reduced surface (spec. 3.8) 

I. 

produces a band at 2720 cm 
1 

which behaves differently from that 

observed on a D20 oxidized surface ard the equivalent 3700 cm 
' 

on an H 20 oxidized surface. On initial dosage the 2720 cm 
' 

bard increases rmre rapidly (graph 3.6) than the 2695 cm 
1 band 

and reaches a maxi= (spec. 3.8e) while the latter is less 

intense. At higher vapour pressures it decreases in intensity, 

forming a shoulder on the 2695 cr. ý, 
1 bard which. increases in 

intensity. On evac the 2720 cm 
1 

bard irrreases to its maximini 

value to become a discrete bard while the 2695 cm 
1 band 

decreases. 

Jones and Hockey11941,42 do not observe this bans 

while Jackson and Parfitt1° assign it to the bidentate 

hydroxyl group and Prßmet et a142 to an isolated hydroxyl 

group of the five-coc dinate titanium ion on the (110) plane. 

Of the termixO1 arxi bridged hydroxyls the latter is the rn=e 

acidic and would have a 1owez freq. uency than the fcrirer76; 

the 3700 cm 
1 

bard is not therefore assigned to bridged 

hydroxyl groups. 

The 3700 cm-1 band is the mst thermally stable 

ar"I highest frequency band observed on the rutile surface. 

Bareis of this type on other oxides are usually assigned to 

isolated hydroxyl gs5,6,68,69 which is the assigrnnt 

adopted here, the five-coordinate Ti 4+ ions (row A) on the 

Pr'edO ý-Lm X110% Plane70 being the probable sites The 

3700 ezri 
1 band is thmefare assigned to isolated terminal 
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(rcw A) hydroxyl groups. 

bard to this group. 

3.4.2 3680 cm 
1 BAND 

Other studies 
10241 

assign the 3655 can-' 

On the Br, H 20 oxidized sintered and unsintevei 

surfaces this bard. is eserrt as a shoulder on the 3655 cm 
1 

bard. On evacuation of the unsintered rutile it increases with 

the 3655 cm 
1 band (graph 3.1) before decreasing and revealing 

the 3700 czri-1 band (spec. 3.1h) while on the sintered surface 

it does not increase and reveals the 3700 cm 
1 

at a lower 

intensity than on the unsintered surface. 

On initial dosage of H2O (spec. 3.3) arri D20 

(spec. 3.4) onto oxidized rutile it is observed as a shoulder 

between the 3700 and 3655 am-' bands (or deuterium ecuivalents) 

and increases with the 3655 cm 
1 band eventually obscuring the 

3700 cm 
1 

band. Dosage of water at higher pressures does not 

increase the intensity of this band but it becanes predaninarrt 

due to the decrease and shift of the 3655 an 
1 

band. The 

3680 an 
' 

shoulder is not observed on dosage of D20 onto reduced 

rutile except in the presence of high relative vapour pressures. 

It disappears on evacuation with the decrease of the 3655 cm 
1 

band and the disappearance of the 3610 and 3520 cn 
1 bands. 

Jackson and Parfitt10 observed a band at 3690 crri 
1 

between the 3700 and 3670 an 
1 bands on unsintered and sintere. 
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rutile samples evacuated at 473 K (2h, unsintered) and 373 K 

(10h, sintered) respectively and also during the exchange of OH 

groups with deuterium at 473 K and 573 K. This band was 
51 

assigned to bridged (raw B) hydroxyl groups hydrogen-bonded to 

terminal grazps. Jones and Hockey11 observed the 3680 cin-1 band 

as a shoulder on the 3650 cx 
1 band and noted that it disappeared 

with the 3610 crri 
1 ban`lq assigning it to the Y3 vibration of 

molecular water on the (101) face. Neither of these assigrnents 

is acceptable in the present work as the 3700 ciri 
1 band is not 

assigned to the bridged hydroxyls and the 3680 cnt 
1 

and 3610 cri 
1 

bands do not disappear together. 

The 3680 cm 
1 band is difficult to assign, it is not 

predaniri nt and the behaviour is influenced by the presence of 

the 3700 and 3655 cm 
l bands. It does not reveal the 3700 cm 

1 

band until after evacuation above 423 K and is therefore calse3 

by hydroxyl groups or strongly bonded water as possibly indicated 

by the 3400 an 
1 

band. The 3680 and 3400 cmml bands shows 

sunilar behaviour, both being observed on initial adsorption of 

H2O orrto oxidized rutile but the equivalent deuterated bands 

are not observed on the reduced surface until high relative D20 

pressures. The 3680 cra 
1 band does not increase with the 

3400 cm 
1 

band at high vapour pressures of H2O on oxidized 

surfaces. The 2680 an 
1 band is assigned to isolated hydroxyl 

groups (3700 an 
1) 

which are perturbed by a weak interaction 

with water molecules adsorbed onto other sites on the surface. 
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3.4.3 THE 3655 cm 
1 

BAND 

This is the most predominant bard in the spectrum 

of the hydroxylated beam temperature oxidized surface. It 

increases on evacuation at 373 K before decreasing rapidly 

during evacuation of the unsintered surface at 483 K (graph 3.1). 

Evacuation of the sintered surface rapidly decreases the intensity 

of this band in the temperature range 453-473 K (graph 3.2). 

R=ther evacuation decreases the band to a weak shoulder on the 

3700 cm band. The 3655 cm 
1 band behaves in a similar m armer 

to the 3410 cri-1 band. 

Initial dosage of H2O onto an oxidized surface 

causes a rapid increase in the intensity of this band which may 

also increase on evacuation. The rapid increase slows after 

the 3700 cm-1 band merges in the 3680 cml shoulder and as the 

3610 and 3520 cm 
' 

bands appear. Further dosage of water does 

not appear to change the intensity of the 3655 cml bard until 

the 3520 and 3610 cm 
1 

bands are equal to those observed on the 

evacuated bean temperature surface. Increasing dosage of H2O 

then decreases the 3655 cm 
1 bard, shifting it to 3620 cm- 

1 
at 

high concentrations, while evacuation increases the intensity 

over that observed on the previous evacuated surface. No 

ccrresponding increase is observed in the intensity of the 1610 

cml barn on the evacuated surface confirrninb the initial 

assiguint that this band is due to hydroxyl groups. It is 

also probable that these hydroxyl groups are formed continuously 

on H2O adsorption and that the intensity of the 3655 cm 
1 

band 
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is decreased by hydrogen bor ing of water molecules to these 

groups (3.4.4) 
, the majority of this hater being removed by 

evacuation with a resultant increase in the 3655 cml band. 

This band continually increases with dosage of D20 

onto the reduced surface (spec. 3.8) and decreases on evacuation 

to an intensity greater than that observed on the previous 

evacuated surface. The behaviour on the reduced surface is 

therefore considerably different from the corresponding band on 

the oxidized surface which is not decreased by evacuation. 

The reamval of the hydroxyl groups assigned to the 

3655 cm 
1 band on evacuation at 453-473 K (oxidized rutile) 

and beam temperature (reduced rutile) indicates that they are 

not isolated hydroxyl groups (usually removed N 470 K) but 

hydrogen-bonded terminal (row A) hydroxyl groups which may be 

removed by proton tunelling77. The hydrogen-bonding shift 

(45 cm 
1) 

may be compared with correlations of 0... 0 distance 

and hydrogen-bond wavenuiber or shift obtained for other 
78,79 

compounds . No exact comparisons may be made as the slope 

of the graph, 0... 0 distance against wavenurber of hydrogenic 

species, is steep in the range 3700-3400 cm- 
1 

and small 

variations in the 0. .. 0 distance cause large changes in the 

frequency. A further limitation is the assumption that the 

0--H"""0 bond is linear which might not be true for hydrogen 

boding on the rutile surface. Using the results of 

Nakanoto et al79 the 3655 cnº 
1 band implies an 0... 0 distance 
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of 310gn compared to " 296pn far Ti-O bonds perperxiicular to 

the (110) plane. 

Glenser and FZarter t80 studied the wavernamber shifts 

of CH groups in metal hydroxides and correlated the hydrogen. - 

bonding energy and 0... 0 distance with the wavenumber of the 

shifted hydroxyl band. Jackson (ref. 1 page 195) used this 

information to calculate the waver m-ber of hydroxide bards with 

shifts equal to those he observed for the rutile bards. The 

0 ... 0 distances and hydrogen-bord energies were then calculated. 

Table 3.5 shoyas the results after applying this technique to 

bands observed in this work. The use of these results from 

metal hydroxides may not be entirely valid but they indicate a 

shift of approximately 45 ccri 
1 

may result from hydrogen-bonding 

between hydroxyl groups where the oxygen-oxygen distance is 

296 ti m. 

Evacuation of water vapour from oxidized or reduced 

rutile in eases the intensity of 3655 cs: i 
1 

compared with that 

of the previous evacuated surface indicating that the hydroxyl 

groups are formed by a slaw reaction. This reaction will be 

coridered in detail later together with a discussion of the 

behaviour of the band on the reduced surface. 

3.4.4 THE 3610 AND 3520 cm 
1 

BANDS 

These bands, which are rcre intense on the unsintered 

BT surface than the sintered, are removed by evacuation to 368 K 
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together with a decrease in the 3420 and 1620 cm 
1 

bands and an 

increase in the 3655 cr. 1 
1 

band. Dosage of H2O onto a 673 K 

oxidized surface does not produce these bands until the later 

stages of adsorption when their appearance coincides with a 

slowing of the rate of increase of the 3655 cm 
1 

band. Further 

dosage increases the 3610,3520,3420 and 1620 cm 
1 bands and 

decreases the 3655 c1 band. The 3610 and. 3520 cm 
1 bands are 

not obsarved on the reduced surface e- ept at high relative 

vapour pressures when they are rauch less intense than on the 

equivalent oxidized surface, and are conpletely rE oved by 

evacuation. 

Jackson and Parfitt10 interWeted the ]rinds as either 

an interaction of water with various OH species or the effect on 

the OH stretching frequency of physisorbed water. Jones and 

Hockey41 assign the 3610 cm 
1 

band to the Vl vibration of 

crater on the (101) face and the 3550 cm-1 band to hydrogen-bonded 

water coordinated to titaniun ions in the (100) face. This 

model assumes 38% of the rutile to be formed of the (100) and 

(110) faces, 60% being forced of the (110) face, while electron 

diffraction studies70 of a single crystal show only 159. of the 

rutile surface to be covered by these faces, 60% by the (110) 

and the remaining 25% formed from the (211) aryl (111) faces. 

The assignments may be correct but adsorption on to the (211) 

and (111) faces aalst be considered. 
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The 3610 and 3 520 em-1 bawls are tentatively assigned. 

to water molecules adsorbed on the surface or hydroxyl groups 

hydrogen-bonded to water molecules. The absence of these bands 

on the reduced surface indicates that the water molecules are 

not adsorbed directly onto hydroxyl groups, as these are present 

on the reduced surface, but are coordinately bonded to the rutile 

surface and may be hydrogen-bonded to hydroxyl groups on the 

(110) plane. The increase of the 3655 cm 
1 bard with the decrease 

of the 3610,3520 and 3410 an 
1 

bands during evacuation to 373 K, 

and the decrease of this band during dosage of H2O when the 

3610,3520,3410 cm 
1 barns irxrease imply that one of the bands 

is due to the perturbed 3655 cn1 band while the cther might be 

due to the coordinately bound water. 

3.4.5 THE 3420 cm 
1 

FAND 

Heating a beam tanperature oxidized unsintered 

surface ih H2O (673 K, 5h) increased the intensity of this band 

(spec. 3.1 b) and decreased the 3680 cri 
' 

shoulder, no other 

changes occurring. Evacuation from 373 K to 473 K rapidly 

ranoved this peak (graph 3.1) to leave a broad band at 3400 ari 
1. 

This bard behaved similarly on the sintered surface (at 

3410 cm 
1) 

but was more sharp and intense than on the oxidized 

surface and disappeared to leave a 3400 cm 
l 

of lower intensity. 

On both surfaces the 3420 crri 
l 

band decreased at a slightly 

faster rate than the 3655 cri 
l 

band. 
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Dosage of H2O onto oxidized sintered and unsintere3 

rutile did rot produce this band until the 3610 and 3520 cm 
1 

bards had developed. The graphs (3.3 and 3.5) of absorbance 

changes do not indicate the formation of this bard but show a 

steady increase in intensity throughout the adsorption process 

possibly due to the underlying 3400 can-' band which also reduces 

the intensity of the 3420 cm 
1 bans on the evacuation of H20. 

Heating the sintered surface in H2O increased the 3420 an 
1 

bard (spec. 3 k, 1). 

Dosage onto a D20 surface produced the 3420 cr. 1-' 

lard only at high relative vapour pressures while evacuation 

decreased the intensity, but to a value greater than that on 

the previous evacuated surface (gcaph 3.6). 

Jackson and Parfitt11 assign the bard to terminal 

grcups shifted 250 cm 
1 by hydrogen-bonding. This shift implies 

a bard half-width of 200 cm 
1 81 

which is not observed for, the 

sharp bard on the sintered surface. Jones and Hockey'l assign 

the bard to raw B hydroxyls which are momderrtate above the 

Ti 
4+ ions. 

The division of H2O molecules on the surface may 

occur either by ]reap a bridged oxygen (fin 3.3) or by 

forming hydroxyl groups on rows A and 810941,73 (en 3.4) 
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/o 
Ti Ti 

Ti. 

A 

+ H2O 

/o\ 
Ti Ti + 

B 

HH 
II 
00 

-ý Ti Ti (3.3) 

HH 

H2O --> Ti + Ti Ti (3.4) 

AB 

The first reaction (equation 3.3) is unfavourable where the 

bridged oxygen is in raw B. as loss of coordination occurs, but 

is favorable if the two titanium ions are in row A, the bridging 

oxygen being previously formed by the condensation of two 

hydrogen-bonded hydroxyl groups. Equation 3.4 shows the 

formation of a bridged hydroxyl group which, being mare acidic 

than the ra, i A terminal hydroxyls, would vibrate at a lower 

frequency. The 3420 cm 
1 

bard has been assigned to hydroxyl 

groups, it is not hydrogen bonded and the lai frequency 

indicates it to be more acidic than the terrvnal hydroxyls. 

The 3420 cm 
1 

bard is therefore assigned to rau B bridged 

hydroxyls. These groups do not realign to rwnodentate ]igands41 

as loss of coordination of the Ti4+ occurs. The dehydration 

process involving these groups is considered in 3.5. No hydrogen 

bonding occurs between the terrv. nal and bridged hydroxyl groups 

as the 0... 0 distance is too great (325pm), and between bridged 

groups (296pm apart) as the 0-H bonds are parallel. 
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The 3420 cm 
l 

bard increases slowly even in the presence of 

excess water vapors which is removed by pumping at beam 

temperature. The 3655 cri 
1 

bans also increases slowly after 

the appearance of the 3420 cm 
1 

peak indicating that H20 

molecules are now dividing to produce 0He ions on the row A 

titanium ions with protons on the row B oxygen ions73. The 

dissociation of the H2O molecules is a slow reaction due 

probably to the distance between rows A and B which prevents 

interaction of water hydrogen atoms with row B oxygen ions. 

The shape and intensity of the 3420 cm 
1 band varies 

with the pretreatment and source of the sample. In the spectra 

of rutile prepared from TiC14 which was calcined in air (973 K) 

the band is broad (ref. 10 and this work) while in the spectra 

of rutile prepared from the isopropoxide the bad is sharp and 

intense. The spectra of 'chladde' rutile discs after sintering 

show a sharp intense 3420 cn 
1 bard similar to that on the 

Iisopropoxide' rutile cahich was sintered during its preparation. 

The sintering process nay affect the shape of the 3420 cm-1 

band directly, by altering the surface structure, or indirectly 

by removing surface chloride which is known to affect the 

. 
11 

3420 cm band at high coientrations, 
51 

The intensity of the 3420 cm 
1 band may also be 

increased by heating the disc in H2O vapour (673 K) which may 

result in loss of chloride ions as hydrogen chloride or may 

cause sintering by condensing hydroxyl groups from the facing 
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surfaces of contacting particles75. It is probable that the 

3420 c1 band is broadened by surface chloride on a rutile 

that has been pretreated 
1, 

however care rust be exercised when 

drawing conclusions fron differences between sintered and 

unsintered samples as changes in surface structure may occur. 

3.4.6 THE 3 400 cm 
1 BAPS[) 

This broad 
. 
band remained after the removal of the 

3420 cm 
' band by evacuaticn to 473 K and also appeared during 

the initial stages of H 20 adsorption, continuing to increase 

during further adsorption. Evacuation (BT) decreased the band 

together with the 3420 cm 
1 

pea},:. The 3400 cri-1 band was less 

intense on the sintered and reduced surfaces and not observed 

by Jones and Hockey' while Jackson and Parfitt10 recorded a 

broad 3400 cr. 1 
1 

band splitting into shoulders at 3420 cm. -1 and 

3350 cri 
i. The latter peak was assigned to strongly physisorbed 

water in micropcn^es or associated with surface chloride species. 

The 3400 cm ' band has been tentatively assigned to molecular 

water adsorbed on the rutile surface or hydroxyl gaups 

hydrogen-bonding to water on the surface. 60% of the rutile 

surface consists of the (110) plane while the remaining 40% is 

fcnned frc the (211), (111), (101) and (100) planes on which 

water molecules nray adscvb. Those adsorbed on the three- 

cocrdinate titanium ions on the (111) and (211) planes (total 

surface occupancy 25%) are able to bond with the hydrogen atoms 

directed -ta-rar'ds surface oxygen ions to form hydrogen-bonds. 
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Water molecules on the (100) plane which has sane high energy 

sitesin are similarly clirected4l while those on the (101) 

plane may be directed with the hydrogen atoms away from the 

surface oxide ions41, which assumes the lone-pair of electrons 

bonding to the empty titanium ion orbital to be in the plane 

of the atoms. However the oxygen atcan is sp hybridized83 and 

the angle between the lame-pair and HOH plane will be 

approximately 1100 which may result in the hydrogen atoms 

hydrogen-bonding to the surface oxygen ices and to other water 

molecules cn the surface. The infrared spectrum of water 

molecules adsorbed on the (111), (211), (101), (100) planes 

will show broad bands due to hydrogen bonding and it is to 

these that the 3400 c ni 
1 band is assigned. 

At high relative vapour pressures of water, 

molecules physiscvbed on those coc'dinately bonded to the 

surface increase the intensity of this band. The presence 

of this bard after evacuation at 473 K indicates sane water 

molecules to be strongly adsorbed on the (111) and (211) 

planes" (table 3.3) containing ions of low coo dination. 

The lower intensity of the 3400 cm 
1 band o the 

sintered surface canpared to that cn the unsintered surface may 

be due to a decrease in the surface occupancy at the higher 

index planes, (211) and (111), which would decrease in area 

during sintering due to the degree of unsaturation of the 

surface ions. The lower intensity may also be caused by loss 

of chloride ions onto which water molecules strongly adsorb1,10,51. 
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3.4.7 1625 - 1600 an 
1 

BAND 

This band has been assigned to the V2 bending 

vibration of water nolecules. On evacuation at elevated 

temperatures it decreases and shifts fran 1630 to 1600 cri 
1 

due to a change fron trimeric to monomeric water species 

It does not appear to be canpietely renoved from the 

non-sintered oxidized surface though this may be due to a 

change in the base line. The intensity of the band on the 

sintered surface is approximately 35% lower than that on the 

unsintered surface and disappears on evacuation to 358 K. 

Initial adsorption of H2O onto sintered and 

unsirrtered rutile formed this band which increased during 

dosage and decreased to a constant value after high relative 

vapour pressures. Dosage of H2O onto reduced rutile at high 

vapour pressures and evacuation reduced this band to 

approximately 35% of the ccrresponding oxide surface intensity. 

3.4.8 1570 crri 
1 BAND 

This bard has only been observed after exposirg a 

reduced disc to D20 fcr 5 days. It has also been observed by 

Par}: yr 
46 

on 'oxygen deficient' anatase and was assigned to 

water molecules cocrdi. nated to Ti3+ ions. 
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3.4.9 SIAMARY 

A stu: anary of the assignments of bands observed in 

this work is included in table 3.1. 

The 3700,3680,3655 and 3420 cm-1 bards are 

assigned to groups on the predominant (110) plane, which is 

the only face on which water may divide and roduce one OH 

group (terminal Cr bridged) for each titanium ion. Division 

of water on the other faces would result in at least two 

hydroxyls per titanium ion which is not possible 
41; 

consequently molecular water coordinately bonds to these planes. 

The existence of two types of Lewis sites65 and 

Ti 
3+ ions 27'28 in the surface is not explained by this model 

which has many different sites on the exposed planes. These 

sites will be discussed in chapter 7. 

The reactions occurring during adsorption and 

desorption of water may now be deduced by reconsidering the 

results in conjunction with the above assignnents. 
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3.4.10 REACTIONS OCCURRING ON THE ADSORPTION AND DESORFI'IOTN 

OF WATER 

A. Oxidized Rutile 

Evacuation at 370 K ranoves the water hydrogen 

bowled to the surface hydroxyl groups resulting in an increase 

in intensity of the hydrogen-bonded hydroxyl (3655 cm 
1) band. 

Further heating removes the terminal and bridging hydroxyl 

gimps, the bard resulting from the latter disappears first. 

The removal of these hydroxyl groups may occur, by several 

mechanisms 

j (1) 
0 "0 

Ti 

Ti 

-' Ti Ti +H20 

Ti Ti Ti Ti Ti Ti Ti Ti 

>/ 
0\ 

Ti Ti Ti Ti + 2H20 

(3) 
i 

Ti Ti Ti Ti + Ti Ti 
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Mechanism (1) involving terminal hydroxyl groups is 

expected to be the most favourable as the hydroxyl groups are 

at their closest. However the disappearance of the bridged 

hydroxyl groups indicates that mechanism (2), proposed by 

Hockey 
41, is as favourable. Mechanism (3) between a terminal 

and bridged hydroxyl group predominates at higher temperatures 

-ien the surface concentration of hydroxyl groups on the surface 

is relatively low. 

There is an apparent excess of hydroxyl groups over 

hydrogen ions after evacuation at about 500 K as shown by the 

presence of the terminal hydroxyl bards (3700,3655 cm 
') 

without the ]: ridged hydroxyl (3420 cm 
1) (spec. 3.11). The 

hydrogen ions corresponding to the terminal hydroxyl groups 

may be attached to oxygen atoms in surface defects resulting 

in a bard in the 3400 crr 
1 

region coinciding with the broad 

bard due to strongly held water molecules. 

Initial adsorption of water onto the oxidized 

surface produces hydrogen-bonded terminal hydroxyl groups 

(3655 cm 
1) 

suggesting that the reverse of mechanism (1) is 

prednt. This mechanism requires the presence of oxygen 

ions bridging two terminal titanium ions which would not be 

an unstable structure as the unsaturated coordination of the 

titanium ions is partially satisfied. C he et a12 
9 

also 

postulate the formation of weakly coordinated oxygen ions 

(02-) in considering the formation of radical anions. 
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During the later stages of adsorption mechanism the 

appearance of the 3420 cm 
1 bard indicates mechanism (2) also 

occurs. The increase in intensity in the 3400 cm 
1 

region at 

the same time shows that water nolecules are adsorbing on the 

(100), (101), (111) and (211) planes. Further adsorption of 

water results in water molecules forming the 3610 and 3520 cm 
1 

and also physically adsorbing to surface hydroxyl groups. 

B. The Reduced Surface 

The calculations made by Jaycock and Walsax111 

indicate that the binding energy of Ti 3+ ions is lower than 

that of Ti 4+ ions (37 corrpared with 104 k cal mol 
1). As a 

result the surface concentration of water molecules will be 

lower on the reduced than on the oxidized surfaces. This is 

shaven by the absence of the 3610 and 3520 cm 
1 bawls on the 

evacuated reduced surface and the reduced intensity of the 

3400 cm 
1 band. 

The reduction of the rutile surface will also 

remove the bridged oxygen ion, which results from the condensation 

of two terminal hydrogen-bonded groups, from between the two 

titanium ions. Consequently the formation of the 3655 cm 
' 

bard is not as rapid on the reduced surface as the oxidized 

surface, the 3700 cm 
1 band being forded on initial 

adsorption (spec. 3.8). 
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The reduction in intensity of the 3655 cm 
1 

tecrminal 

hydroxyl band on evacuation, which does not occur on oxidized 

rutile during the initial stages of adsorption, may be explained 

by the following mechanism: 

00 
029 

Ti 
3+ 

Ti 3+ Fva. cuation T14+ Ti4+ +H 2 

The oxygen ions will then migrate to an oxygen 

deficient site or react with a rrrlecule of water to form stable 

terminal hydroxyl groups. These 
-increase on the evacuated 

surface after each dose of water onto the reduced surface 

(spec. 3.8). 
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CHAPTER 4 

4. ADSORPTION OF ACETONE AND H=EUFEROACETONE 

4.1 INTRODUCTION 

Several infrared studies of the adsorption of acetone 

on silica. 
85986, 

al85987988989. nickel oxide 
90991992 

and rutile85 have been reported. The bands observed are 

generally assigned to Lewis acid complexes or carboxylate 

species although Winde 89, investigating acetone adsorbed on 

alumina using Raman spectroscopy, has recently assigned some 

of the observed bands in his and other studies to mesityl 

oxide. Mesityl Oxide, with isophorone and mesitylene, is 

produced on heating rutile in acetone vapour above 

373 K94995996 

The infrared studies of acetone adsorption onto 

rutile85 shag intense bards due to the relatively high vapour 

pressures dosed onto the surface. The spectra presented in 

this chapter show the species produced by slow dosage of 

acetone onto oxidized and reduced rutile. The experiments 

are swi- ºized belaa. 
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Spectra 

Adsorption of acetone and acetone d6 to 

oxidized rutile 

Acetone d6 onto a 673 K H2O surface 4.1 

Acetone h6 onto a 673 K D20 surface 4.2 

Acetone d6 onto a BT D20 surface 4.3 

Acetone h6 onto a BT D20 surface 4.4 

Acetone h6 onto a 373 K D20 surface 4.5 

Adsorption of acetone d6 onto reduced rutile 

Acetone d6 onto a 673 K D20 surface 4.6 

Acetone d6 onto a BT D20 surface 4.7 
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4.2 RESULTS 

4.2.1 ADSORPTION OF ACETONE AND ACETONE d6 ONTO OXIDIZED RUTILE 

A. Acetone d6 onto a 673 K H2O surface (spec. 4.1) 

The spectrum of the 673 K 11 
20 surface (spec. 4.1a) 

showed a band at 3700 cm . with a weak shoulder at 3655 cm- 

Initial doses of acetone (spec. 4.1 b-e) decreased the 3700 cm-1 

band to a broad 3700-3600 cm 
1 band which remained uncharged 

diming farther treatment, while a band appeared at 2700 cm 

with a 2725 crri 
1 

shoulder, and 2660-2400 cr 
1. 

Bands arizing 

roan C-D stretching appeared at 2225,2120,2060 cm 
1. TWO 

tr-oad bards, becoming more intense and narroaaing with increasing 

acetone adsorption, were observed at 1670 cm 
1, 

shoulder at 1645 

cm 
1, 

and 1580 cm 
1. The 1670 cm -1 bard reached a maxintm 

optical density of 0.155 (spec. 4.1 e). 

Further dosing of acetone (spec. 4.1 f) rezroved the 

2700 em 
1 band and decreased the 1670 cm-1 band while the 

shoulder at 1645 an 
1 increased to a band. The 1580 em 

1 
bard 

increased to a rna xi num (0.357) and bands appeared at 1510, 

1470 and 1425 cm 
1, 

evacuation of acetone causing an increase 

in these (spec. 4.1 g). Further dosage at this pressure 

(approximately 0.3 Nm 2) did not alter the infrared spectrum 

and an equi]. i iwn was assumed between the surface and the 

Vapour. 
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Incceasirg the equilibrium pressure (spec. 4.1 h, j) 

resulted in an increase ani broadening of the C-D bands, 

possibly due to a shoulder at 2210 crri 
", 

and a decrease of the 

1670 an 
1 bard. Evacuation of the ' equilihriun' surface 

(spec. 4.1 i, k) decreased the C -D. 1645 and 1590 cm 
1 bands, 

iicreased the 1510 cm 
1 bard ani caused the appearance of a band 

at 1540 cri 
1. 

B. Adsorption of Acetone h6 on a 673 K D20 Oxidized Surface 

(Spec. 4.2) 

The results are similar to the previous experiment 

(spec. 4.1) with some differermes: The 0-D band at 2720 crri 
1 

Present on the starting surface disappeared while the 

correspordirg 0-H bard at 3700 cni 
1 

on the 673 K H2O surface 

did rnt disappear canpletely. The separation of the C-H bards 

at 2970,2930 and 2880 czrCl was less than that of the C-D 

bands. Bands corresponding to the 1670,1645,1580 and 

1510 cm 
1 bands observed during the adsorption of acetone d6 

(spec. 4.1) appeared at 1685,1660,1595 and 1530 cm 
1. No 

bard corresponding to the 1540 cn1 band (spec. 4.1 i) was 

observed. 'The maximum optical densities of the 1670 and 1580 cm 
1 

bands were less than the ©orrespordirg abscrbarces for acetone d6 

(87% and 79% respectively). Bands not appearing on the adsorption 

of acetone d6 were observed at 1465,1380,1360 and 1345 cm 
1. 
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Exposing the disc. to D20 vapour (298 K, l5h) and 

evacuating (BT, lh) (spec. 4.2 p) produced a broad band-in the 

2700-2400 ci 
1 

region with peaks at 2680,2655,2600 and 

2520 em-1 and increased the 
. 
intensity of the 1550 - 1400 cm 

1 

region with peaks at 1490,1445 and 1430 cm 
1. No surface species 

were removed by D20 adscrption e=ept those causing the 1680 cm 
1 

bard, which decreased. 

C. Adsorption of acetone d6 onto a BT, D20 Oxidized Surface 

(Spec. 4.3) 

Initial. adscsption of acetone d6 (spec. 4.3 b, c) 

caused the appease of the 1670 and 1580 cm 
1 bands, the 

latter being less intense, in contrast to the spectrum of the 

equivalent 673 K surfaces in which the two bawls were of equal 

intensity. 'All the bards in the O-D stretching region 

decreased slightly (less than 10%) eXcept the 2535 cri-1 band. 

Further adsorption (spec. 4.1 d -h) decreased the 

2710,2695,2660 a rd 2600 cm 
1 bands, the 2710 cri 

1 
shoulder 

decreasing more rapidly than the 2695 ctä 
1 

band until it 

disappeared (spec. 4.3 e), while the 2660 and 2600 em 
1 bards 

remained until spec. 4.3 f. The C-D stretching bands appeared, 

with the 1580 cri-1 band. The 1670 cri 
1 bard increased to a 

maxim= (0.22 spec. 4.3'e) before decreasing in intensity, the 

1580 cori-1 bard increased aril bands appeared at 1645,1535,1510 

and 1425 cri 
1. 

Further, increases in acetone d6 pressure 



96. 

decreased the 2695 arxi 1670 cd -1 bands, the farmer reaching a 

minimun (0.046 ö. d. spec. 4.3 1) and shifting to 2670 cm 
l; 

the 

2535 cßä-1 bared was unaffected. The 2225 can 
1 bard ir*creesed and 

broadened due to the appeaxýanae of a 2210 cm 
1 band while the 

1580 cxri-1 bard increased to a maximum (0.336 spec. 4.3 k). 

The 1535,1510, a. nd 1425 cm 
1 bands I eäsed to spec. 4.1 j, 

further dosage of acetone d6 decreased them and increased the 

1580 cri 
1 bard, while evacuation decreased the 1580 cm 

1 band 

and increased the 1535,1510 and 1425 ari 
1 bands. 

D. Adsorption of Acetone hs onto a BT, D20 Oxidized Surface 

(Spec. 4.4) 

On initial dosage of acetone a bard appeared at 

3655 an 
1 

with a 3680 cm 
1 

shoulder, followed by barns at 

3610,3520,3420 cm-1 (spec. 4.4 a-d). The intensity of the 

OD and D20 bards decreased while the 1685 cdä-1 band increased, 

an1y a weak 1595 cni 
1 

band was observed. Further adsorption 

(spec. 4.4 e-j) increased the bands in the 4000 - 3000 a i-1 

region artd decreased those in the 2750 - 2500 enä 
' 

region until 

the OD and D20 bards had disappeared with the e, ception of a 

broad 2500 cm 
1 bard. The OH and H2O bards did not correspond 

to the initial D20 spectrun inxii cating that same displacement 

of groups had occurred. Adsorption of acetone at higher 

pressures did rot remove the excharged OH arxd H2O bands. 
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The behaviour of bands below 2000 cn 
1 

was similar 

to that observed for acetone d6 onto the beam temperature D20 

surface (spec. 4.3), the 1535 and 1510 an 
1 bands being 

observed as a broad 1545 cm-' bard with a 1510 an 
1 

shoulder. 

Spec. 4.4 k, 1, m, n, show the changes in bard intensities on 

adsorbing acetone onto an evacuated surface. The 1685 an -1 

bard initially increased while the broad 1510-1550 cm -1 band 

decreased (spec. 4.4 1). The 1685 cm 
1 barxi then decreased and 

the 1660 and 1595 an 
1 

bards increased, (spec. 4.4 m) untill, the 

intensity of the 1685 cm 
1 band gras similar to the initial 

value after 25 mixes (spec. 4.4 n). 

E. Adsorption of Acetone h6 onto a 373 K D20 Oxidized Surface 

(Spec. 4.5) 

The results are similar to those observed during the 

adsorption of acetone onto a beam temperature D20 surface 

(spec. 4.4). 3655 and 3420 cm-1 bards appeared on initial 

adsorption of acetone (spec. 4.5 b-e) the farmer reaching a 

maxin= (0.078 spec. 4.5 e) before decreasing with ix ceasing 

acetone pressure. The 1685 cm 
1 

reached a maximum absarbarme 

(0.166 spec. 4.5 e) appearing with the 1595 an 
1 band, in 

contrast to adsorption on the BT surface. 
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4.2.2 ADSORPTION OF ACETONE d6 ONTO REDUCED RUTILE 

A. Acetone ds onto a 673 K, H2O Sur-face 

On the initial adsorption of acetone d6 (spec. 4.6 a-e) 

bands appeared at 2720,2210,2110,2050,1670 and 1425 cm 
1 

with a broad 1580-1470 an 
1 bard showing peaks at 1575,1530 

1 
and 1480 cm . The 1670 cm hand reached a maxirrnuxt (spec. 4.6 d) 

which was lower than that on the corresponding oxidized surface. 

The 1580 an 
1 band was not observed as a discrete band but as 

part of the broad band with the 1530 and 1480 an-' peaks. The 

1645 can 
1 bard was not observed. 

Festher adsorption of acetone d6 (spec. 4.6 f-h) 

raiwved the 2720 cm 
1 band, decreased the 1670 cm 

1 band and 

increased the 2210,2110,2050,1480 and 1425 cm' bands while 

a shoulder, appeared at 1325 on 
1. 

B. Adsorption of Acetone d6 onto a BT, D20 Reduced Surface 

(Spec. 4.7) 

Initial adsorption of acetone d6 onto the reduced 

surface (spec. 4.7 a-d) was svnilar to that onto the oxidized 

surface, the 1670 can 
1 

bard appearing before the broad band 

centred on 1550 cm 
1 

while slight decreases (N 12 %) were 

observed in the hydroxyl bands. No C-D bands were observed. 
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Further adsorption (spec. 4.7 e-h) decreased the 2720 and 

2695 cm 
1 bards, the former disappearing (spec. 4.7 h) ile 

the intensity of the 2535 cm 
1 band remained uncharged. A bard 

appeared at 2210 crn 
1 fo11o ed by bards at 2110 and 2050 cm 

1, 

the 1670 cm 
1 

bard decreased and the broad 1550 em 
1 

absorption 

increased, no discrete 1580 crn 
1 bard was observed until 

spec. 4.5 h. The shoulder at 1425 cri 
1 increased together with 

a bard which appeared (spec. 4.7 g) at 1475 cn 
1. 

Dosage of acetone d6 at higher pressures decreased 

the 2695 cm 
1 

bard to a minirau n, (spec. 4.7 i) and shifted it to 

2670 cm 
1, 

and in ceased the 2210 cm 
1 band. The 1670 and 

1580 an bands were merged into a broad shoulder, on the 

1480 cm 
1 band which increased with the 1425 cm 

1 bard. 

Evacuation of the acetone d6 decreases the hydroxyl baris, the 

2210 cm 
1 C-D bared äni the 1580 cm 

1 
bard. The 1480 cm-1 bard 

did not cbange in intensity while the 1425 an 
1 bard in=eased. 

4.2.3 SU D ARY OF BANDS OBSERVED 

Table 4.1 s mirises those bawls observed below 

2000 air' in this we k. 
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4.3 DISCUSSION AND CONCLUSIONS 

4.3.1 PROPERTIES OF ACETONE 

A. Enolization97'98 

The eml form of acetone, CH3C(OH)=CH21 may be 

formed by an acid or base catalysed reaction. 

Base catalysed reaction: 

000 

CH3-C--CH2. H + OH t-- CH3-C=CH2 CH3-C-CH2: + H2O 

0 CH 

CH -= CH + H+ CH -C=CH 32 32 

Acid catalysed reaction: 

0 0H+ 
-C-c 

T+ IC FAST ,_1 
3 

x. [13 
` CH 33 

0i3+ OH 
a 

CH-'---n2: H +0 .= CH3 C=CH2 + H30+ 

Me acid catalysed reaction differs from the base catalysed in 

that the enol is formed directly and not subsequently to the 

formation of the enolate anion. 
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B. Aldol Condensation 

Acetaldehyde, in the ivesence of sodiun, hydroxide, 

or hydrochloric acid, undergoes condensation to form 

P-hydroxybutraldehyde (acetaldol). 

CH 

dilute NaOH 
I 

2CI 3CHO al3ULUI2CH0 

Acetone undergoes a similar reaction in the presence of barium 

hydroxide to form diacetone alcohol. 

2CH3000 
Ba(OH) 

2, (CH 
3) 2 

C(CEi)CH2COCH3 H3 

The equilibrium lies alrost entirely to the left but the yield 

may be increased by boiling in a Soxhlet with barium hydroxide 

in the thimble. 

Acetone in the presence of hydrochloric acid yields 

mesityl oxide and phcrone. 

2CH3000H3 
HC1 (CH3)2C=CHCOCi3 (C ) C=CHCOCH=C(CH3 ) H32 

2 

These reactions occur via the enolate anion. 
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0 00 0 

Cii3-C-al3 + C11 
2=C-CT'3ý-' : CH2-C-CH3 

0 

CY. 3 c-a-r--cx2 

CHI 
3 

CL 
3 

OA 0 
II 

CH3 
I-CH2-C-CH3 

CI3 

H+ 

Ci i3 Cri3 

(1) 

The formation o. (1) 

is rußt therrodymmically 

favourable" 
7. 

CN. 
3-C-CH2-C-CH3 

CH3 

(2) 

-1120 +iýý 

30 

CH-C-CH3 

CH3 

rtesityl odde 
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C. Othcr Reactions 

Reduction of acetone farms isopropanol; oxidation 

is difficult and results in fractuve of the mi lecule to form a 

mixture of acids containing fewer carbon atoms than the original 

molecule. 

Acetone and other ketones may form complexes with 

Lewis acids including TiC14992100, HfC14101 
. Zr C14101 2 

SnC14102, and BF3103. Bands assigned to the CO =stretch of 

acetone in these complexcs (table 4.2) are shifted approximately 

50 cm 
1 lower than the CO stretch in liquid acetone 

104. 

4.3.2 ADSORP TN OF ACETONE ONTO OXIDES 

Infrared studies of acetone adsorption on silica 
85,86 

show hydrogen bonding of the carbonyl group to surface 

hydroxyls when acetone vapour (6.6x102 Nm 2) is p esent85. 

Evacuation (298 K) removes most of the adsorbed acetone which 

is completely removed after evacuation to 373 K to leave a 

silica surface showing a slight increase in the intensity of 

the hydroxyl band85. 

Spec-ba of acetone adsorbed, on rutile and alumina 

at room terrerature contain bards in the 1700-1550 cm 
1 

region 

(table 4.3) which Winde89 assigns to adsorbed mesityl oxide. 
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Those bands observed by Kiselev and. Uvarov85 are assigned to 

acetone molecules adsorbed on surface hydroxyl groups and Lewis 

sites. Evacuation of the oxides to 383 K removes the 

hydrogen-bonded molecules85 while evacuation to 523 K forms 

carboxylate species85. 

Acetone adsorbed on magnesium, and nickel oxides112 

also produces bands in the 1700 to 1550 cm-' region. The bands 

have been assigned to coordinately bound acetone and to acetone 

bound dissociatively as an enolate ccnplex: - 

0 

c --c- 2 

Carboxylate ions are also observed after high 

temperature (> 423 K) treatment of alcohols, aldehydes and 

carboxylic acids adsorbed on rutile and alumina. The bawls 

assigned to these ions are shown in table 4.4 together with 

bards for the acetate ion. The highest wavenumber band 

(1590 can 
1 for alwnina 1555 cra 

1 for Rutile) is assigned to 

the arrtisyninetric carbonyl stretch and the lowest to the 

synmetric methyl deformation while there is disc ; reement as 

to the assigiinent of the two irrtennediate bands. Pri net47 

assigns the bards by comparing than with the assignments for 

the acetate ion bards106 and concludes that the 1450 cm 
1 bard, 

the higher of the intermediate fi equency bands, is caused by 

antisyniunetric methyl deformation. Greenler105 shows this band 
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shifts only 13 em 
1 

on deuteration of the acetate species while 

the 1390 cm 
1 band disappears. 

Kadushin et x190'91 observed bands at 1640,1570, 

1515,1450,1415,1390 and 1360 cn 
1 in the spectrum of acetone 

adsorbed on nickel oxide. The 1570 cml and one corponent of 

the 1640 cm 
1 band- are assigned to water coordinately bonded 

to the surface while the other component of the 1640 cm 
1 band 

is assigned to the C=0 vibration in the rmlecular cc rp1ex of 

acetone with the surface of NiO. The 1515 ari 
1 band is 

tentatively assigned to the valence vibration of either 

0_0 or c. c bonds of the enolate corrplex of acetone. 

Heating rutile in the presence of acetone vapour 

yields 
94,95,96 

mesityl oxide (I) phorone (II) isophorone (III) 

and rr sitylene (IV) 

II 
/cscH_c-G3 

C3 

(I) 

ries ityl oxide phone 

L_m thyl-3-penten-2-one 2: 6-Dimethyl-2: 5 heptadien-4-one 

CH `CH3 
3 

(III) 

isophorone 

3: 5: 5-9)c, imethyl-2-cyclohemnenone 

a, 3 ý3 

=Chi-G-Cýi= 
\ 

CH 
33 

(II) 

C 

(IV) 

mesitylene 

1: 3: 5-trinrthylbenzene 

I 
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Mesityl oxide axi mesitylene have been adsorbed on rutile, 

the former (spec. 4.8) showing bands at 2970,2940,2910, 

1660,1595,1445,1380,1368 cm 
1 

which are not removed on 

evacuation, and a band at 1550 cn 
1 

which appears on standing 

(8h) the disc at BT in the evacuated cell. Mesitylene shows 

bards at 3100,2930,2860,2575,1610 am -1 with a broad band 

at 1480-1440 cm 
1 

which resolves to two bards at 1480 and 

1440 an 
1. Evacuation removes the adsorbed species. 

4.3.3 VIOikt OF BANDS 

A. Hydroxyl Barris 

i) 3700 cn 
1 

Isolated hydroxyl 

Initial adsorption of acetone d6 onto a 673 K H2 0 

surface (spec. 4.1) reduces this band while OD bards appear at 

2720,2695 and 2520 cm 
1. 

These increase until the 3700 CM -1 

bard is decreased to a broad absorption (spec. 4.1 e) and the 

2720 cm 
1 band becomes a shoulder on the more intense 

2695 cm 
1 band unlike the equivalent 0H bands on the initial 

surface. Further adsorption (spec. 4.1 f) removes the 2720 

and 2695 cm 
1 

bands while the broad '2520 
cm 7l bard remains. 

Similar results are observed on adsorbing acetone 

h6 onto a 673 K D20 surface, the 3700 cm 
' 

band appears 

together with a 3655 cx1 
1 

shoulder which becomes the rrore 
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intense bard (spec. 4.2 f) as the 2720 cri 
1 band disappears. 

Unlike the 3700 cm 
' 

bard on the initial H2O surface the 

2720 cm 
' 

bared is not completely rennved. The 3655 and 

3700 cm 
' bards are also removed on further adscrption. 

The isolated hydroxyl group readily e harkres the 

hydrogen atan for a deuterium atom from the acetone d6 rrolecule 

before being removed completely. The appearance of a band due 

to hydrogen-bored hydroxyl groups (3655/2695 cm 
1) 

which 

becomes more intense than the isolated hydroxyl band may be 

due to the partial remval of the latter by acetone or the 

formation of hydrogen-bonded hydroxyls. 

Adsorption of acetone d6 onto D20 oxidized and 

reduced surfaces (spec. 4.3 and 4.7) rerroved the 2720 and 

2710 cri 
1 bands completely while the 2690 cm 

1 decreased n=e 

slowly and was not completely removed. 

ii) 3680 cm 
1 

bard 

This band is present on the BT D20 and H2O surfaces 

(spec. 4.3 and 4.4) and on the 373 K D20 surface (spec. 4.5). 

It is the first hydroxyl band to disappear on all three 

surfaces. It is riot observed during w urge of the OD groups 

on the 373 K D20 surface by acetone h6 (spec. 4.5) and is very 

weak on the BT D20 surface (spec. 4.4) after similar treatment 

due to rem, oval by the acetone rrolecule. 
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The renoval of the 2710 an -1 band, with the 

2720 cm71 bath on the appearance of the 1645 and 1580 cm 
1 

bands (spec. 4.3 a-e) indicates that the species producing 

these bands ranoves the isolated hydroxyl groups. 

The high thermal stability and high reactivity of 

the isolated terminal hydroxyl groups, also observed during 

reactions of pyridine 
11 

HU 11 
and SO211 with the BT surface, 

may be explained by their position on sites probably surrounded 

by defects which prevent hydrogen bonding to other hydroxyl 

groups and permits the unhirider©d approach of adsorbing molecules. 

iii) 3655 ad-' band-H-bonded Hydroxyl Croups 

The behaviour of this band on the 673 K surfaces 

(spec. 4.1 and 4.2) is similar to that of the 3700 crri 
1 band 

but is observed as a shoulder in the spectrLm of the initial 

surfaces and a peak mere intense than the 3700 (or 2720) cri 
1 

band after exchange has occurred. Initial adsorption of acetone 

h6 onto a BT D20 surface (spec. 4.4 a-c) results in the 

appearance of the 1670 and 3655 cri 
1 

bards indicating the species 

absorbing at 1670 cm, 
1 

to cause initial exchange of the OD 

deuterium atoms. Further adsorption (spec. 4.4 d -h) increases 

the intensity of bands at 3655,3610,3520,3420 cri-1 which are 

not removed at hier acetone vapaar pressures; broadening of 

these bads indicates hydrogen bonding. The exchanged bards are 

of lower intensity than the arigina1 bands, which disappear, with 
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the exception of a broad 2520 ci 
1 band, indicating that hydroxyl 

and water species not undergoing exchange reactions are ranove3. 

Initial adsorption (spec. 4.3 a-c) of acetone d6 on to 

the D20 Sr surface increases the 1675 cm 
1 band but does not decrease 

the 2695 cm 
1 bard while further adscrption (spec. 4.4 d-n) increases 

the 1580 cm 
1 bard and decreases the 2695 cm 

1 bard to a minimum. 

A plot of absorbance 2695 an 
1 barxi against absorbance 1580 cm 

1 

is an approximate straight line. The 2695 cm 
1 band is not completely 

removed indicating that the terminal hydroxyl groups remain on the 

surface, probably those which have undergone exchange remotions 

with the species absorbing at 1670 cn 
'. During the adsorption of 

acetone no shift is obsc: ved in the position of the initial 3655 

or 2695 can 
1 bards indicating that no hydrogen box-ding between 

acetone molecules an hydroxyl groups occurs. 

Adsorption of acetone d6 onto a BT D20 reduced surface 

(spec. 4.7) remves the 2695 cm 
1 

bard to leave a bix ad 2670 cm 

bard. (spec. 4.4 k, 1). 

iv) 3610,3520 cm 
1 bands 

The decrease in intensity of these bands on the initial 

adsorption of acetone d6 onto a ST, D20 surface (spec. 4.3 a-d) 

mieft be caused by heating of the disc by the beam cr displacement 

of coordinated water by the acetone d6 species absorbing at 

1670 cm 
1. The bards are not rived on initial adsorption 

(spec. 4.4 a-d) of acetone h6 onto a ET, D20 surface, which increases 
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the 1670 cm -1 bard, but decrease due to exchange of the deuterium 

atoms, bards appearing at 3610 and 3520 crri 
1. 

Further adsorption 

decreases and removes these bards with the 2695 cri 
1 

band 

(spec. 4.4 g, h) and increases the 1645,1580 csri 
1 bawls. Water 

molecules are not displaced by the species absorbing at 1670 cm 

but are ranoved by the species absarbing at 1645 and 1580 cn-1. 

Mumera and Stone report that adsorbed cater is not displaced 

by acetone vapour. 

v) 3420 cm -l Bridged Hydroxyl Group 

This band is decreased by 20% of the ariginal 

intensity during the adsorption of acetone d6 onto the BT, D20 

surface at relatively low vapour pressures (spec. 4.3 a-h). 

Further adsorption increases the band intensity, by approximately 

10-20ö, while evacuation reduces it to its i' 'r value. 

Adsorption of acetone 1i onto a BT, D20 surface (spec. 4.4) 

exchanges the deuterium atoms, a band appearing at 3+20 cm 
1, 

and decreases the original 2535 cn 
1 

band to a broad band at 

2520 cm 
1. 

The 2535 cm 
' band on the 373 K D20 surface 

(spec. 4.5) slaws similar behavßour. On the 373 K and BT D20 

surfaces the 3420 cm 
' OH band produced by e bange is mt 

removed after exposing the surface to high vapour pressures, 

while the origins 2535 cm-1 lard disappears after the 2695 cm 
1 

terminal, hydroxyl barmal. 

The 2535 cm- 
1 bridged hydroxyl band is increased in 

intensity during adsorption of acetone d6 onto the reduced surface 

while on evacuation the intensity is reduced to the original 
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value. The increase in intensity may be due to an increase in a 

broad barri beneath the 2535 cm 
1 band (spec. 4.7 i-1). 

The behaviour of this bard is different from that of 

the 2695 and 2720 cm 
1 bards assignedto the terms hydroxyl 

groups in that although bridged hydroxyl groups may undergo 

exchange reactions no reactions with acetone molecules occur 

which rerr ve the groups . 

vi) 3400 cm 
1 band Ccozdinated Watcw M3lecules 

The bard is observed on the BT H20, D20 and 373 K 

D20 surfaces and shows behaviour similar to that of the 2535 cin 
1 

band on the adsorption of acetone. The coordinated D20 molecules 

are capable of ewe reactions with the acetone but are not 

displaced by acetone rmlecules. 

vii) &mTl -pry of Behaviour of the Hydroxyl and Water Bands 

1. Hydrocen-bonding? 

Hydrogen-bonding between acetone and OH/OD groups 

did not occur at low acetone coverages as no shift of 

bands was observed and rw acetone molecules were removed 

by evacuating the disc. 

2. Ehant? e reactions 

a) All CH/OD bands initially present were capable of 

exchange; those fore by e is ge reactions with ET and 
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373 K surfaces were not r eis v1 at high acetone vapour 

pressures while those bands mt eked, with the eception 

of a broad 2520 cri 
1 

were removed by acetone adsorption. 

b) The species absorbing at 1685/1670 cm 
1 

were able 

to e1e hydrogen or deuterit n atoms. 

c) The species absorbing at 1660/1645 and 1595/1580 am-1 

removed those terminal hydroxyl groups which had not 

undergone an echange reaction. 

3. Removal of bands 

a) The isolated terminal hydroxyl cups (3700/3720 cM 
1) 

and those weakly hydrogen-bonded (3680/2710 cni 
1) 

are more 

reactive than the row A hydrogen-bonded hydroxyl groups 

(3655/2695 cm 
1). 

b) The 3610/2660 and 3520/2600 cri 
1 bands due to water 

molecules are reioved by the species causing the 1660/1645 

and 1595/1580 cm 
1 bards. The 3400/2520 cni 

l band is not 

affccted by these species. 

c) The species causing the 1685/1670 cm 
1 

bands does not 

remove any bands e}zept by e: change. 
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B. CH/CD Barris 

Bands due to Chi and CD stretching vibrations appear 

in the 3000-2800 and 2300-2000 cmm1 ranges respectively. The 

relative positions'ard bard intensities of the CH and CD bands 

differ, the 2970 and 2930 cm 
1 bands are 40 cm 

1 
apart and of 

similar intensity while the corresporxiing CD bands, 2225 and 

2120 cm 
1, 

are 105 cd -l apart, the forrrr being rmre intense than 

the latter. The relative intensities of the CH bands also differ 

with the surface pretreatment, on the 673 K D20 surface (spec. 4.2) 

the 2970 cm 
1 band is rrre intense than the 2930 cm 

1, 
while on 

the BT, D20 (spec. 4.4) and 373 K D20 surfaces (spec. 4.5) the 

2930 cm' is rrxe intense than the 2970 cm 
1. 

The CH and CD bards appear diming the initial 

adsorption of acetone onto 673 K and 373 K surfaces, while on 

the BT surfaces they appear with the 1660/1645 and 1595/1580 cm 
1 

bands. A plot, intensity of 2225 cn 
1 band against intensity of 

1580 cm 
1, is a straight line passing; through the origin indicating 

that the two bands arise from the same adsorbed species. 

The 2970/2225 cm 
1 

bard broadens when the 

1550-1510 crrm 
1 

region begins to increase in intensity (specs. 4.1 h, 

4.2 h, 4.3 h) due to the appearance of bands at 2260 and 2210 cm 
1. 

The 2210 cm-1 band becomes more intense than the 2225 cm 
1 band as 

the intensity of the 1510 cm 
1 

band increases (spec. 4.3 n, -p). 

This band is also observed as the rmst intense C-D band appearing 

on reduced surfaces (spec. 4.6 and 4.7) together with an intense 
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1480 cm 
1 bans. The 2210 cri-1,1510 and 1480 'cm 1 

baths arize 

from the sarre species. 
1 

The CD, Chi bands will be assigned after considering 

the assignt of the bands below 2000 cm 
1. 

C. 1685/1670 cm 
1 band 

The appearance of this band on a hydroxylated surface 

coincides only with exshange of the OH or OD groups, no water 

rmlecules arr hydroxyl groups are perturbed arr rei ved and the 

band is not rermved on evacuation of the rutile. The band does 

not therefcme arize from acetone hydrogen-bonded to Chi groups. 

The wavelength of this band is about 30 cm 
' less 

than the C=0 group vibration in acetone liquid and is typical 

of the wavelength of the C=0 group in Lewis acid complexes of 

acetone (table 4.2). The band is therefore assigned to acetone 

I ewis bonded to a surface titaniin ion. 

CH3-C-CH 
3 

0 
Ti 

The relatively law shift of the C=O -frequency, 

30 cm 
1 

as opposed to at least 50 cm 
l in other complexes and" 

the continued presence of water molecules bonded to the siface`' 

indicate that the acetone molecules bond to the weak sites from 

which water molecules have been rc tved by evacuation. 
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The acetone molecules are able to exi arge with about 

25% of all of the water a rd hydroxyl groups ire l icatirg that weak 

sites exist on all surface planes. 

No CD cr Chi bards were observed on the appearaae of 

this bard on the hydroxylated surface showing the surface 

concentration was low. On the reduced surface the maxim= 

intensity reached by this band was lower than on the oxidized 

surface probably because of the higher surface concentration of 

Ti3e ions which would mt readily form a Lewis complex as they 

have one electron in the psreviously enpty d-orbital. 

D. 1660/1645 cm 
1 

bard 

The behavio w of this bard is s milar to that of the 

1595/1580 cý 
1 bard and the intensity varies linearly with that 

of the other bard. It is probable that they are due to the same 

species and the assignment of these bands is considered below. 

E. 1595/1580 cn 
' bared 

On 373 K ani 673 K oxidized surfaces these 

appear with the 1685/1670 cnt 
1 bands as broad bards which 

narr w at the apex during the subsequent it cease in intensity. 

On a BT surface the band does not appear until the 1685/1670 an 
1 

bard is near its maxim= which Indicates water nolecules removed 

at 373 K hinder the formation of these species. The species 
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reiiove t final (row A) hydroxyl groups but do not react with 

the bridged (row B) hydro:: yls. The formation of the species is 

however independent of the terminal hydroxyl groups as the 

Maxi nun intensity of the barm does not vary with the surface 

hydroxylation. 

The adscrption of mesityl oxide onto rutile produces 

similar bands to the 1660 and 1595 cm-1 bands (spec. 4.8) as 

well as a 1440 cri 
1 band. It is therefore considered that both 

of these bands are due to raesityl oxide adsorbed onto rutile. 

The 1660 cri 
1 band is the C=0 vibration where the oxygen is 

Lewis bonded to a titaniun ion while the 1595 cm 
1 band is the 

C=C vibration. 

The existence of -Wo surface sites of differing Lewis 

acidity has been demonstrated by other workers (3.3.3) and the 

1685 cri 
1 band results from adsorption of acetone on the weaker 

of the two sites. The hydroxyl groups and water rrolecules on a 

BT hydroxylated surface occupy the stronger sites and the 

appearance of the 1660 and 1585 cm 
1 bands after the 1685 cm 

1 

on this surface, together with the removal of the ter. miinal OH 

band, with the increase in the two bands, indicates that riesityl 

oxide is formed on the stronger sites. The mesityl oxide molecule 

may be formed by the reaction between an acetone molecule adsorbed 

on the stronger site with one in the gas phase or one adsorbed on 

an adjacent site. Spec. 4.4 k-n shows that when acetone is dosed 

on after evacuation the 1685 cm 
1 is the first bard to be 
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produced, the 1660 and 1595 cm71 bawls forming mre slowly. Thus 

sane mesityl oxide is formed by a reaction between acetone molecules 

on strong and weak sites. 

. 
Hydroxyl groups resulting from exchange reactions with 

the Lewis bonded acetone are not reoved on the formation of 

mesitylf= oxide probably because of steric hindrance from the 

neighbouring acetone molecule. The terminal OD groups ra-, aining 

on the BT D20 surface after acetone d6 adsorption (spec. 4.3 p) 

have therefore taken part in an exchange reaction with the 

deuterium atoms in the acetone, or mesityl oxide, molecules. 

Spectra 4.4 ad4.5 show that although the 2535 cm 
1 bridged 

hydroxyl bard may be canpietely exchanged it reappears as the 

hydrogenated equivalent band but is not as sharp. This broadening 

of the bridged hydroxyl band does not occur in the all-deuterium 

system. 

The mesityl oxide forded is not reioved by evacuation, 

although the bard intensities do decrease after relatively high 

vapour pressures of acetone, and this is considered below. 

Mesityl oxide in carbon tetrachloride shows bands due to CO =at 

1715 and 1690 cmri 
1 

and to C=C at 1620 cri 
1. 

On rutile the C=0 

bands are observed at 1665 czri 
1 

and the C=C at 1595 cm 
1. After 

prolonged exposure to the rutile surface bards are observed at 

1540 and 1440 cm 
1 

similar to those observed after acetone 

adsorption at high pressures. 
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F. Bands in the region below 1550 cm -1 

On the oxidized surface bards appear in this region 

after the acetone and mesityl oxide bands and increase in intensity 

after the mesityl oxide bards have reached maxi=m intensity. The 

bawls decrease in intensity when the rutile is exposed to acetone 

and increase on evacuation. The reaction which produces the 

molecules absorbing below 1550 cm 
1 is therefore favoured by the 

remval of the acetone and mesityl oxide. 

The bawls occurring below 1550 cm 
1 

are shown in 

table 4.1. The 1540 em 
1 bard appears on the adsorption of both 

acetone and deuteroacetone but is prominent only on adsorption of 

the former whereas the 1510 cm-1 bard which also appears on all 

the oxidized surfaces is only prominent after the adsorption of 

deuteroacetone. The 1540 cm 
1 

and 1510 en 
I bands are considered 

to arise fret the same surface species, the 1540 an 
1 band being 

due to the hydrogenated isomer and the latter to the deuterated. 

The 1510 cm 
1 band formed as a weak shoulder on the 1540 cm" 

band on surfaces dosed with acetone h6 probably results from the 

exchange reaction occurring on these surfaces since all surfaces 

had OD cr D20 groups on then (spec. 4.2,4.4,4.5). The appearance 

of a 1540 cm -1 band, which has been assigned to a hydrogenated 

species, in an all deuteriiwn system car=t be explained by 

e hange. 

The 1480 ciri 
1 

bard which appears on the reduced 

surface after the adsorption of acetone is considered to be due 

to the same species as the other bands in this region and is 
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discussed in the following chapter describing the adsorption of 

acetic acid. 

The weak 1465 cm1 bard is observed on spectra 4.1. 

4.2,4.4 and 4.5 and is probably due to C-H vibrations. 

The 1440 an -1 band is observed in the specfrv n of 

mesityl oxide adsorbed on rutile but varies in intensity with 

the 1540 cm 
1 bard v lach is not assigned to mesityl oxide. 

Similarly the corresponding deuterium species absorbs at 

1425 c m-1, this bard varying with the 1510 cm-1 band. The 

1440 cm-' mcsityl oxide bard is weaker than the 1595 cri 
1 

bard 

and is not observed before the 1440 cm 
1 barm associated with 

the 1540 cm 
1 

barxi appears. 

The predominant bands in the region are the 1540 and 

1440 cm 
1 

bands formed by adsorption of acetone h6 or the 1510 

and 1425 cm 
1 

bands on the adsorption of acetone d6. These bands 

are of similar waveleng h to those observed for acetatesl13-116 

and bands observed in this region on oxide surfaces have been 

assigned to acetate species (table 4.4). The bands are therefore 

assigned to the asymmetric and s3metric vibrations of the 

acetate group. 

The bards due to CH and CD vi]mations at 2970,2930, 

2880 cm 
1 

and 2225,2120,2060 cm 
1 

respectively are assigned, to 

the mesityl oxide CH and CD vibrations since their intensity 

varies with the C=0 and C=C mesityl oxide bards. The shoulders 
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observed at 2955 and 2210 cm 
1 

on the principal peak vary in 

intensity with the acetate bards, and result from the methyl 

hydrogen, or deuterium, atom vibrations. 

G. Surary 

A surrnm xy of bands observed belai 2000 cm 
1 

and their 

assignments is given in table 4.5. 
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4.3.4 SURFACE REACTIONS 

A. Adsorption acetone onto BT hydroxylated oxidized surface 

Exposure of a hydroxylated rutile surface to law vapour 

vessures of acetone result in the formation of the 1680 cm 
1 

band indicating the acetone molecules are bonding via the lone 

pair electrons on the oxygen atom to titanium ions. No water 

rmlecules are displaced by the fornation of this cor, lex 

indicating the titanium ions to be weak sites from which water 

rolecules may be removed by evacuation at beam temperature. 

The surface acetone emharges with surrounding 

hydroxyl and eater molecules by the following mechanism 
95 

which 

is identical to the first stage of base catalysed, enolization 

(section 4.3.1). 

H 
e 

H3C-I-- D H3C-CH 
II fl 2 

Q H. 0 --ý 0 

Ti 
Ti 

Ti 

H 

CH C-C/H 
3- 11 ND 

0 

I 
Ti 

HD 

Ti 

H 

0 
I 

Ti 

Spectra show that this reaction occurs with all 

hydroxyl and water goups on the surface. 
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The second stage of the adsorption process occurs 

then the 1680 cm band has reached a mr n intensity 

indicating all the weaker sites to be occupied by acetone 

molecules. As previously considered (4.3.3e) mesityl oxide is 

fCrmed on the stronger sites, the initial step in the reaction 

after the saturation of the weaker sites being the rennoval of 

water and the f nation of a Lewis complex. The attraction of 

the lone pair electrons by the titanitn ion will be stronger in 

this complex than in the complex on the weaker site thus making 

the loss of a hydrogen ion nie favourable. 

e 
CH 3 

CH 
3 

CH 
32 

Ti Ti 

Normally the reverse reaction would occur before 

the carbanion had time to react at room temperature 
5. 

However 

the higher taiperature (approx. 330 K) of the conditions and 

greater stability of the carbanion would make reaction with 

another acetone molecule possible. 
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13 CH 
3 

e 
CH3 CH2 ä CH3 --ý CH3- ä Cýi2-C\ 

000Ie3 
0 

Ti Ti 

H2O H 

ý3 

CH3- q CH= C \c 
CH 

3 

Ti 

resityl oxide 

The third stage of adsorption is the formation of 

surface acetate species as shown by the appearance of the 1540, 

1440 cm-' bands. The reaction which forms these species is not 

obvious but may arise from the increased electron density at 

the rutile stmface due to the Lewis-bonded acetone, and mesityl 

oxide. This increased electron density may permit an 02e ion 

resulting, fron the elimination of 0H groups, either in the 

pretreatment process or on the adsorption of acetone, to react 

with a mesityl oxide or acetone molecule. 

ClI3 1 

-CCH=C 
/Ce 

CH3 

CH 3*0 

02e 
ýY J+ 

Ti Ti Ti Ti Ti 
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CH 
3 

This reaction produces the f-ragnent C: -I=C 

/ 

NNI 
CH 

3 

thi ch might react with the crater molecules produced in the 

reaction forming nesityl oxide to produce tertiary butyl 

alcohol. 

Fink87 proposes a reaction of acetone with alumina, 

surface Chi groups to form acetate species: - 

0 
CHI a+ au -ý. cu00e + 3-C- 3 34 

While this reaction my occur on the rutile surface the decrease 

of rresityl oxide bands on the formation of the acetate bards 

indicates that the reaction involving the oxygen ion predominates. 

Acetone thus reacts with the hydroxylated surface in 

three stages: - 

Stage I- the formation of a Lewis acid complex 

Stage II - the formation of msityl oxide 

Stage III - the formation of acetate species 

Each stage connerres when the devious stage is ai rost 

complete. 

Stases I and II are unaffected by evacuation of the 

surface, no change in band intensities are observed. The plotting 

of isotherm (band intensity against acetone pmessi. n e) was not 

possible because the band intensities continued to increase even 
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at very 1ari vapour pressures (less than 0.1 Nm 
2) indicatirn 

the fation of the Lewis complex and r. sityl oxide to be 

irreversible. 

Above apisoximately 0.3 Nm2 the intensity of mesityl 

oxide bands did not continue to increase with each dose of 

acetone at the sarge pressure but varied with the acetone pressure, 

indicating the surface to be in equilibrium with the vapour. The 

formation of this 'equilibrium surface' coincided with the 

rrn nam intensity of the mesityl oxide bands on the evacuated 

surface. Above the equilibrium pressure the intensity of these 

bands increased and on evacuation decreased to this 'maß t' 

intensity. 

The three stages of adsorption are related above the 

equil: i. briun, pressirre as shown in spec. 4.4 the equilibrium 

having been reached by spec. 4.4 i. Spec 4.4 k-n show that on 

initial adsorption Lewis acid complexes are formed (increase in 

1685 cm 
1 band) which react with acetone rolecules on strong 

sites to farm mesityl oxide causing a. decrease in the 1685 cm 
1 

band and an increase in the 1660 and 1595 cd -l bands. A slight 

decrease occurs in the 1550 cri 
1 

acetate bands. 

Evacuation of this surface (spec. 4.4 p) decreases 

the surface mesityl oxide and increases the surface acetate 

indicating the decomposition of the mesityl oxide. The 

mechanism fcr this reaction is probably sunilar to that shown 

above for the formation of the acetate species, the removal of 
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t-butyl alcohol by evacuation im ving the reaction equilibrium to 

the right. Subsequent dosage of acetone increases the surface 

msityl oxide and decreases the acetate concentration possibly by 

the, farmation of acetic acid which passes into the vapour phase. 

C3 

C 

0 

Ti Ti 

+ H2O ---ý 

(from mesityl 
oxide reaction) 

CH3000H 

B. Adsorption acetone onto 373 K and 673 K oxidized rutile 

The reactions are similar to those on the BT 

hydroxylated surface e ept that stages I and II occur concurrently 

indicating the hindrance of stage II by Lewis bonded water. 

The reaction to form mesityl oxide is similar to that 

shown in 4.3.4. a emept that the hydrogen ion from the carbanion 

combines with a bridged hydroxyl. 

H 

CH3-C-C/H CH -C-( i 

oH3 
11 

Ti Ti 

+ 
H® 

/oN 
Ti Ti 
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C. Adsorption of acetone onto a reduced surface 

The surface reactions of acetone adsorbed onto 

reduced rutile are similar to those observed on oxidized rutile 

with the e eption that bands due to acetate species occur with 

the mesityl oxide bands and not after them as observed on the 

rutile surface. The earlier formation of acetate species results 

from the increase surface electron density which discourages the 

far 
. 
tion of the Lewis bonded species and encourages the 

formation of acetate groups which ren ve electron density. 

The formation of the acetate groups might be by 

the mechanism involving hoidged oxygen ions resulting from the 

condensation of two terminal hydroxyl groups. Evidence from 

the adsorption of water (section 3.4.10 b) indicates that these 

are removed by reduction and the oxygen ion ray therefore be 

fron the row B bridged oxygen ions. 
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CHAPri 25 

ADSORPTION OF DEL=OA TIC ACID 

5.1 INTRODUCTION 

Results from the adsorption of acetic acid onto oxides 

have already been considered in section 4.3.2 (table 4.4) and 

the bands observed assigned to surface acetate-species. In this 

work acetic acid was adsorbod onto rutile at nach lower pressures 

than used by these other workers. 

The experiments carried out and reported beloca were: - 

Spectra 

Adsorption onto an oxidized 673 K D20 surface 5.1 

Adsorption onto an oxidized BT D20 surface 5.2 

Adsorption onto a reduced 673 K D20 surface 5.3 

Desorption from an oxidized 673 K D20 surface 5.4 
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5.2 RESULTS 

5.2.1 ADSORPTION ONTO AN OXIDIZED 673 K SURFACE 

Initial adsorption of acetic acid onto the rutile 

surface (spec. 5.1 a-g) produced OD bands at 2695,2660,2610 

and 2535 cd"'. Bands at 1670,1480 and 1440 cm 
1 

were also 

produced together with a broad band at 1580 cm-1 (spec. 5.1 d). 

Further adsorption (spec. 5.1 h, j) decreased the 

2695 cm 
1 band and increased the 2660, 2610 and 2535 cri 

' band. 

The 1670 cri 
1 decreased, the 14.80 and 1440 crn. 

' bards incr eased, 

and bands appeared at 1365 and 1320 cm 
1. 

The 1480 bard was 

broad indicating that other bards may be present in the 1600 to 

1500 cn 
1 

region. 

Evacuation of the above surfaces (spec. 5.1 i, ]: ) 

reduced bands in the 2660 to 2500 cm 
1 

region and the 

1670 cm 
1 bard. Other bards were not affected. 

Adsorption of acetic acid at higher pressures 

(spec. 5.1 1, n, o) removed the 2690 and 2660 cra 
1 bands, 

increased absorbance in the 2500 to 2200 cm 
1 

region with weak 

barns appearing at 2295 and 2110 cm 
1. A series of bands 

appeared in the 1800 to 1600 cm 
1 

region at 1785,1765,1730, 

1720,1695 arxd 1650 cm 
1. No changes were observed in the 
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1480 and 1440 an 
1 

bands vahich had reached zero transmittance in 

intensity, and a shoulder at 1340 cm 
1 

appeared on the 1365 cm 
1 

band. 

Evacuation after the above adsorptions (spec. 5.1 M, p) 

removed the bands at 2295 and. 2110 cm 
1 

and those in the region 

1600-1600 cm 
1. 

Bands renaming in the OD region after the final 

evacuation (spec. 5.1 p) were at 2630,2600 and 2540 cm 
1. 

Evacuation caused little change in the region below 1500 cm . 
1 

5.2.2 ADSORPTIOiI OF ACETIC ACID ONTO A BT SURFACE 

Initial adsorption of acetic acid onto the hydroxylated 

surface (spec. 5.2a) caused a decrease in the 2710 and 2690 cm 
' 

bands and increases in the 2660,2610 and 2535 cm-1 bands (spec. 

5.2 b, d). Intense bands appeared at 1485 and 1440 cm- 
1 

with a weaker 

band at 1365 cm 
1. 

The 1485 cn band was broad indicating that 

other bands might be adjacent in the 1600-1500 cm 
1 

region. 

Evacuation of these surfaces (spec. 5.2 c, e) increased 

the 2710 and 2690 cd -1 bands, but not to their original intensity, 

and decreased the 2660,2610 and 2535 cm 
1 

bands. The bands 

belay 2000 ca 
1 

were relatively unaffected by evacuation. 

Rirther adsorption (spec. 5.2 f, g, i) continued to 

decrease the 2710 and 2690 cm 
1 

bawls and increase the 2660, 

2610 and 2535 cm 
1 

bands 
. 
ich were decreased on evacuation 

(spec. 5.2 h, j) to below their intensities on the starting 
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surface (spec. 5.2 a). Belag 2000 cm 
1 

no increase was observed 

in the 1480 and 1440 cm 
' bands, which have reached zero transmittance, ) 

but the former band broadened on increased adsorption and was not 

affected by evacuation. Bands also appeared at 1340 and 1320 cri 
1. 

Bands appearing in the 1750 to 1600 cm 
1 

region 

(spec. 5.2 f, g, i) were removed by evacuation (spec. 5.2 h, j) to 

leave a shoulder at 1630 cm 
1. 

Adsorption of D20 and subsequent evacuation at bean 

tcnperature (spec. 5.2 k) increased intensity in the 2700 to 

2500 am-' region and famed two shoulders at 2640 and 2620 cm 
ý'. 

5.2.3 ADSORPTION OF ACETIC ACID ONTO A 673 K REDUCED SURFACE 

Initial adsorption of acetic acid onto the reduced 

surface (spec. 5.3 a-f) produced weak OD bands at 2720 and 

2690 cm 
1. 

Bands produced belay 2000 cm 
1 

were similar to those 

on the oxidized surfaces except the weak 1630 c: -1 is observed 

before the bands in the 1750-1600 cm 
1 

region appeared and the 

1480 and 1440 c m-1 bards did not reach zero transmittance. The 

1480 cri 
1 

band was also broad on this surface indicating other 

bands to be present. Evacuation (spec. 5.3 g) decreased the OD 

bands while the bands below 2000 csm71 were unaffected. 

Increased adsorption oduced bands in the 1600-1600 

cm 
1 

range at 1785,1765,1725,1695 and 1630 cm -1 which were 

different in appearance fron those observed in this region fca 

the oxidized surface. All of these bands were renoved on 
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evacuation (spec. 5.3 k) with the exception of a weak 1725 czri 
1 

band and the 1630 cm 
1 

band. 

5.2.4 DESORPTION OF ACETIC ACID AT ELEVATED TtUMATURES 

A clean rutile surface was dosed with acetone vapour 

at roan tanperature and evacuated at bean temperature to produce 

the surface s1r wn in spec. 5.4 a. This differed fron spectra 

produced by slaw dosage (spec. 5.1 o) in that no bands were 

observed below 1400 c 
1. 

Evacuation at 463 K for 11h (spec. 5.4 b) ranoved 

the OD bands and produced bands at 1630,1365 and 1325 ci-1. 

Further evacuation at 523 K roved the 1630 cm-1 bared and 

decreased the broad 1480 and 1440 cm 
1 

bands which were resolved 

by increasing the attenuation to four bards at 1540,1515,1480 

and 1440 cm 
1. 

The 1365 cn 
1 

bard decreased in intensity with 

this treatment, the 1325 ar 
1 

band disappeared while a bard appeared 

at 1340 cri The bands below 1400 c m-1 were raved by 

evacuation to 616 K and the 1515,1480 and 1-40 cri 
1 

bards 

considerably reduced. The 1540 cm 
1 

bard was visible as a 

shoulder on the 1515 cm 
1 band. 

Mass spectrum analysis of the cc rpounls r ve3 fi as 

the surface by evacuation shows rany bails which are mainly due 

to acetic acid fra gents. However, fragments due to a 

condensation product were observed at We 13 2,114 and 98 and 

are considered later. 
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5.3 DISCUSSION AND CONCLUSIONS 

5.3.1- PROPERTIES OF ACETIC ACID 

The properties of acetic acid relevant to the present 

studies are considered below. 

A. Decarboxylation 

Acetic acid may be decarboxylate1 by heating the salt 

with soda 1ir. 1e 

0 
CH3-Cý t; a'l 

º CH4 + co 

OP 
2 

0 

B. Formation of ketones 

Acetone may be produced by the heating of calcium acetate 

2CH3COOCa = CH3cocl% + CaCO3 

C. Oxidation 

Acetic acid is strongly resistant to oxidation but 

prolonged heating with an oxidising agent produces carbon dioxide 

and water. 
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5.3.2 ADSORPTION OF CARBOXYLIC ACIDS ONTO OXIDES 

Infrared bards observed on the adsorption of acetic 

onto oxide surfaces are shown in table 5.1. The bards observed 

by Primet47 and Kiselev85 were very intense and were resolved 

by heating. In their study of acetic acid adsorbed on al= im 

in carbon tetrachloride Hayashi at al 
118 

observed two groups 

of two bands which were assigned to acetate species on two 

different sites. 

Low et a1117 Studied the adscmption of a series of 

CXHyO molecules on a magnesium oxide surface. They do not 

detail fully the bands observed on the adsorption of acetic acid 

and evacuation at 298 K but the spectra presented permit the 

approxi. rnate band positions to be detemdned. The 1530 crz 
1 

band is a slight shoulder on the 1550 cm 
1 band and since the 

spectrum is s ni' lar to that of acetic acid on aluminal18 the 

1560,1530,1440,1410 bards have been interpreted have as 

two types of surface acetate species. 

Heating the above surface in the closed cell at 

873 K for 10 ndlnutes completely wed the spectrum to give 

bawls at 1640,1460,1360 and 1300 cm 
' 

which were assigned to 

bidentate (1640 arid. 1300 an 
1) 

and unidentate (1460 and 

1360 an 
1) 

carbonate species. 

Murnaera 19 
studied the mechanism of formic acid 

dehydration on titanium dioxide using temperature protammed 

desorption and infrared spectroscopy. He concluded that two 
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types of mechanisn were involved, one between 423 K and 523 K 

involving a protonated fc is acid rolecule and the other, 

between 623 K and 723 K. involved a formate ion. The results 

might however have been affected by surface silica impurities, 

indicated by the strong. stable 3725 cn 
1 

bard. 

5.3.3 ASSIGIIIENT OF OBSERVED BANDS 

A. Bands in the 4000-2000 cm 
1 

reg-ion 

Adsorption of acetic acid onto a dry surface produces 

all the bards observed on the adsorption of D20 onto a 673 K 

oxidised surface. The relative intensity of the basic hydroxyl 

bards (2710,2690 can 
1) 

to the other bands (2660,2610,2535 cri 
1) 

is, however, much less than observed on the adsorption of water. 

This might be due to reactions involving acetic acid and the 

basic hydroxyl groups or a blockage of the basic hydroxyl sites 

by Lewis bonded acetic acid. 

Adsorption of acetic acid onto a BT D20 surface also 

produces water molecules as shown by increases in the 2610 and 

broad underlying 2500 cm 
1 band. This increase in intensity is 

ranoved on evacuation indicating the water molecules to be only 

weakly adsorbed. The basic hydroxyl groups are removed on the 

adsorption of acetic acid (spec. 3.3 a, c, e, h, j recarded 

enlarged), the decrease mainly occurring in the later stages of 

adsorption indicating that the reaction occurs only at high 

surface coverage of acetic acid. Similarly the removal of the 

basic hydroxyl groups formed on the 673 K surface occurs only 

at higher coverages. 
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Acetic acid adsorbed onto the reduced surface only 

produces weak hydroxyl bands which disappear on further dosage. 

No bands are observed due to C-D vibrations which 

indicates either that the species causing the intense 1480 and 

1440 an 
1 bands contain no C -D bands or the absorbarre of these 

vibrations is much less than that of the C=0 bands which cause 

the 14 80 and 1440 an 
1 ba ds. 

The reasons for the formation of water on the 

adsorption of acetic acid are consideve3 belai. 

B. Bands in the 2000-1000 cri 
1 

re n 

Initial adsorption onto the 673 K surface produces a 

1670 ca 
' band which is a ssmilar wavelength to those acetone 

bands assigned to Lewis bonded C=O groups. The band therefcre 

results from acetic acid molecules Lewis bonding to the surface: - 

OH 
cx3.. 

< 

ýo 

1 
Ti 

This band does not appear on the Br D20 surface in 

contrast to the results from the adsorption of acetone which 

show the Lewis bonded species to be formed before the molecules 

react. On the adsorption of acetic acid onto the hydroxylatel 
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surface either the water, and hydroxyl molecules prevent the 

formation of the Lis complex or react irrmed. iately with it. 

The latter explanation is probable since water cr hydroxyl 

molecules did not prevent the formation of the acetone Lewis 

complexes. The reaction of the acetic acid complex is as 

follows: - 

/ °N 
,, - -. CD3-C I OD D, CD3 

\ ti I, 0 '",, Q"' --ý 

Ti 
Ti 

00+D0 
112 
Ti Ti 

This reaction acccurrts for the rava1 of the basic 

OD groups, the formation of water and the appearame of the 

1480 and 1440 cri 
1 bards which are considered below. The re oval 

of the 1670 cm-1 band on the 673 K surface at higher ace-tic acid 

pressures (spec. 5.1 g-j) results fron this reaction which also 

keeps the basic hydroxyl bands (2710,2695 cri 
1) 

at a lower 

intensity, in comparison with the 2353 cn 
1 

acidic hydroxyl bard, 

than is observed on the normal adsorption of water. 

The intense 1480 and 1440 czri 
1 bands are resolved by 

heating to 1540,1515,1480 and 1440 cm`1. These bands are 

assigned to acetate species, produced by the above reaction, 

adsorbed onto the two types of Loris sites. The 1540 and 

1480 cm 
' 

bards result fror acetate species adsorbed onto the 

weaker sites and the 1515 and 1440 cm-1 fran acetate species on 
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the stronger sites, the lowar wavenziber bard being due to the 

symmetric 0=C=0 stretch. 

These bards assigned to acetate species resulting from 

the adsorption of acetone onto oxidized rutile occur, at 1540, 

1440 cm 
1 (hydrogenated) and 1510,1425 cm 

1 (deuterated). 

C ison of these with the barx3s formed on acetic acid 

adsorption indicate that the acetate molecules are form, on the 

stronger sites. It is on these sites that the mesityl oxide is 

adsorbed which is oxidized to surface acetate species. 

Acetone adsorbed onto the reduced surface produces 

bards similar to those formed on the adsorption of acetic acid 

onto both oxidized and reduced surfaces. Acetate species are 

therefore considered to be adsorbed on both strong, and weck 

sites on the reduced surface whereas on the oxidized surface only 

the stronger sites are occupied by acetate ions. This difference 

may result in part from fewer weaker sites being occupied by the 

Lewis bonded ccmplex, since the higher electron density at the 

surface will make this type of bonding unfavourable. It is also 

possible that the reduction process increases the number of 

weaker sites by increasing the surface concentration of Ti3® ions 

which reduce the surface bonding energy 
ill 

0 

The average separation of the acetate bands is 

140 cm 7l 114,115,116 
whereas the separation observed in this 

work is 60 and 75 crn 
1 for acetate species on the weak and strong 

sites respectively. Separations as low as 100 cm 
1 

are 
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observed for Zn(ac) 2.2H20 , and Cd (ac) 
2, the fcrmev having a 

bidentate structumel'3. 

Zr C -CH3 

0z 

(rigor? 
_ev115 proposes that the separation of the two 

bands decreases with the O-C-0 angle which may irz5. cate that 

the 0-C-0 angle of the surface acetate species is near 110° 

the angle in Zn(ac)2.2H20. The low separation does indicate 

that the . 
C-0 bands are similar to those in the acetate ion and 

that both oxygen ions are therefore involved in bonding either 

in a bidentate or Ixidged structure. 

CD C3 

CC 

0000 

Ti Ti Ti 

Edwards and Hayward 
16 he ever, consider that the 

band separation is not a reliable indication of the mode of 

coordination of the acetate groups to the metal. 

No bands due to C-D vibrations are observed in the 

spectra even at relatively high surface concentrations of 

acetate ions due to the low intensity of these vibrations in 
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canparison with the C=0 vibrations. The absence of any C-D 

vibrations is not taken as evidence that the 1480 and 

1440 cm-1 bands are due to a carbonate type species since 

temperatures in excess of beam temperature are required to 

form these. Bards assigned to carbonate species have been 

observed 
117 

after exposing magnesium oxide to acetic acid at 

298 K, degassing, and heating at 773 K for 10 minutes in a 

closed cell. These bands were observed at 1640,1460,1360 

and 1300 cm 
1 

and did not resemble those produced after 

evacuation of the acetic acid at 298 K which were similar to 

those observed in this imrk. 

Bards were observed at 1785,1765,1730,1695, 

1650 cm 
1 (spec. 5.1 o) after adsorption of acetic acid onto 

oxidized rutile at high vapour pressures and were removed by 

evacuation. The 1785,1765 and 1730 an -1 are bands due to 

acetic acid vapour while the other bands result from acetic 

acid physically adsorbed on the rutile surface. These bands 

are not observed on the adsorption of acetic acid onto the 

reduced surface at high vapour pressures indicating that 

molecules are not physically adsorbed in high concentrations 

on this type of surface. These results are s' º to those 

observed when the reduced surface was exposed to water vapour 

at high pressure, a mach lower surface concentration of 

physically adsorbed molecules was observed in coiQarison with 

the oxidized surface. 
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The 1630 cin 
1 

band appears on the BT oxidized surface 

after exposure to high vapour pressures of acetic acid (spec. 5.2k, j) 

and on the reduced surface at 1c; er vapour pressures (spec. 5.3d). 

This band has been assi47ied117'120 to the C=O stretch in the 

bidentate carbonate species: - 

0 
Il 
c 

00 

The corresponding asymmetric stretch is the 1340 cri 
1 

bard which 

appears as a shoulder on the 1365 cri 
1 bard. 

The 1365 an 
1 

band, which is present befcme the 

appearance of the 1630 ca band (spec. 5.2 i) is probably due 

to the synmetric stretch of a unidentate carbonate species, 

o 
,. 
o 

Ti 

the antisymmtric stretch coinciding with the mrre intense 

1480 cm 
' 

acetate band. 

Assignment of bands observed below 2000 cri-l is 

sham in table 5.2. 
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5.3.4 SURFACE REACT'IOMS 

Initial. adsorption of acetic acid d4 onto rutile 

produces the Lewis acid corplex oh the 673 K oxidized sLmface 

only. 

? D3 

C--OD 
ýl 

0 

Ti 

The reason for the absence of this complex on the 

other surfaces has been considered. 

Water rrolecules and acetate species are formed on 

al]. surfaces during the initial stages of adsorption. The 

formation of water may occur via two roch 's, . 

(1) CD3-C-OD DO-C-CD3 
Q ý) 

00 
Ti Ti 

3 r---= CD-C-0-C-CD3I) 
ll 

00 

Ti Ti 

e 
(2) DO-C-CD 

3 DO-C-CD2 

0 

Ti Ti 

acetic anhydride 

+D20 

OD OD 

C-CD 
3 DO-C11 -CD2 C-CD3 

+0 ----> 0 Oe 

±D®_ OD 

DO-C-CD -C-CD 3 
-D 0 

1( 1 
0 OD 

DO-ý D2 
I IC-CD3 

00 

2-keto-butyric acid 
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The reaction of this product with another acetic acid molecule 

may produce deuterated phlarogluanol 

DO-11 CD2- ä CD3 + DO-IC-CDS --º DO- C-CD 2 I, -C-CD CD 

000000 

I 
-D20 

D2 D 

0 
D2 

phlorogludnot 

Reaction (1) which forms acetic anhydride is the 

simpler mechanism and is a reaction observed when acetic acid 

is passel over a suitable catalyst at 870 K. The spectra of 

anhydrides contain two bands due to C=O stretching in the 

region 1850-1740 cm 
1 

and the absence of any bands above 

1630 cm 
1 indicates that no anhydride is present on the 

surface. 

Mechanism (2) is more camplex and is similar to 

the mechanism proposed for the formation of mesityl oxide (4.3.4) 

from acetone both reactions involving a carbanion attacking the 

carbon atom attached to the oxygen atom. The mechanism is 

supported by the observation of mass peaks at 132,114 and 98 

in the mass spectrum of the vapour after contact with the 

heated rutile surface. The abserme of phloroglucinol bands 
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from any spectra may be explained by the absence of any groups 

capable of strong bonding with the surface. Alcohol and 

unsaturated groups bond with the surface at the saturated vapour 

pressure of the adsorbate56'87 but it is possible no adsorption 

will take place at the Huch hier pressures at which the 

phloroglucinol is formed. 

The presence of water molecules on the rutile surface 

results in the formation of acetate species from the reaction of 

acetic acid molecules with the basic hydroxyl groups as 

previously considered. 

CD 
I . ---. c-c b 
II .D 
o Q1 

Ti 

CD 

Ti Ti 
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CHAFER ER 6 

ADSORPTION OF HfXAFUJOROACETONE 

ONTO OXIDIZED AND REDUCED RU2ILE 

6.1 INrRODUMON 

6.1.1 AIM 

The existence of the two types of Lewis sites on the 

rutile surface has been sham in this and other studies (section 

3.3.3 c) , although the nature and strength of these sites has not 

clearly been established. Lappcrrt132 suggested that the shift in 

carbonyl stretching (AVco/cm ') 
of a carbonyl group forming a 

Lewis acid complex with a metal halide could be used as a measure 

of the Lewis acidity of the halide. Cook133 extended this wcrk 

and specified five criteria (reproduced in ref. 134) for the ligand 

to fulfill in order that Lewis acidity may be estimated. 

Hai, Chapman and 
134 

applied these criteria to the 

study of Lewis acid sites on alumina-containing surfaces using 

hexachloroacetone in place of the usual carbonyl canpcurds such 

as acetone or benzaldehyde, which are oxidized by alumina. Spectra 

were recorded for ö-alumina and two types of silica-alumina 

cracking catalysts by suspending the solid in a fluorolube oil 

after exposure to hexachlcroacetone vapour at temperatures up to 

770 K. The results sha. zed that there was a wide distribution 

range of sites of varying Lewis acidity, the strength of sites on 

the alumina and alumina-silica surfaces being of a similar strength- 
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Hexafluaioacetone was used as the Lewis base in this 

werk as the high boiling point of hexachlcroacetone (477 K) made 

it unsuitable for manipulation under vacuum. 

6.1.2 ß PERIMENI'S 

The following series of experiments was carried out to 

determine the interaction of hexaflucroacetone with the rutile 

surface 

Spectra 

Adsorption of hexafluoroacetone onto a 

673 K D20 oxidized surface 6.1 

Br D20 oxidized surface 6.2 

673 K D20 reduced surface 6.3 

BT D20 reduced surface 6.4" 

Owing to the nature of the adsarrgtion, treatment of the 

rutile disc was more extensive than in the werk involving water, 

ace-tone and acetic acid adsorption. Each experiment consisted of 

several stages generally in the following cmder: - 

a) Adsorption of hexaflucmoacetone 

b) Descvptiön at elevated tanperatures 

c) Adsorption of D20 

d) Desorption of D20 at elevated tenperatures 

Full details of the treatments are given in the legend 

z'ece. ing each series of spectra. 
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6.2 RESULTS 

6.2.1 ADSORPTION OF HEXAFLIJOROACEI'ONE ONTO A 673 K D20 SURFACE 

Initial adsorption of vapour onto the disc (spec. 6. lb, c, d) 

produced bards at 1810,1640,1615,1580,1480,1440,1330 cm 
' 

with 

a broad series of bands centred at 1200 cm 
1. 

Evacuation at 423 K (spec. 6.1 e) removed the bands at 

1810 and 1330 cm1 due to hexifluoroacetone vapc it (spec. 6.5) and 

increased the 1615 and 1580 cd -l bands while a weak 1670 cm-1 bard 

became apparent. Further evacuation at higher temperatures 

(spec. 6.1 f-h) removed all the bards except fcr a weak bard at 

1365 cm 
1 

and a should at 1235 cm 
1. The 1580 and 1480 cm 

1 band 

ixcreased on heating at temperatures up to 473 K (spec. 6.1 f) and 

decreased on heating at higher temperatures. 

Exposure of the disc to D20 vapour (BT, 21h) and 

evacuation (BT, 1h) produced a broad 2740 to 2400 cm 
1 band with 

peaks at 2700 and 2520 cm 
1 (spec. 6.1 D. A weak band also 

appeared at 1595 crn 
1. Evacuation of this surface (spec. 6.1 j) 

increased and shifted the 1595 cm 
1 bard to 1580 cm 

1 
and produced 

bands at 1480 and 1200 cm 
1. 

Further exposure of the disc to D20 vapour at 473 K 

(spec. 6.1 k) produced barxis in the OD region at 2760,2720 cm 
1 

with a broad band 2700-2400 cm-1. The 1580 cm 
' bard was shifted 

to 1600 cri 
1 

and a broad band appeared in the range 1500-1200 cm 
1, 

the 1480 cm-1 band was observed as a shoulder on this band. 
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6.2.2 ADSORPTION OF HEXAFUJOROACErONE ONTO A BT, D20 OXIDIZED 

SURFACE 

Initial adsorption onto the starting surface (spec. 6.2a) 

oduced no bards in the 1800-1400 an 
1 

region (spec. 6.2 b), in 

contrast to adsorption onto the 673 K surface, but irr-rease3 bards 

in the 2680 to 2560 cr. 1 1 
region. Evacuation (spec. 6.2 c) only 

decreased all bands in the 2680 to 2450 c ri 
' 

region arxd did not 

restore the original spect=ra (spec. 6.2 a). 

Further adsorption (spec. 6.2 d-e) decreased the band 

at 2695 cm due to hydrogen-bonded hydroxyl groups while a 

2680 cm 
1 bard increased in intensity. Bareis also appeared at 

2640,2460,1810 and 1600 cm 
1, 

while the 2535 cri 
1 

band decreased 

slightly. 

On evacuation at beten temperature a spectrtun similar to 

6.2c was recorded. Evacuation at 373 K (12h) (spec. 6.2 f) 

produced a spectrum in the 2700-2400 cm 
1 

region similar to a 

standard BT D20 surface evacuated at this temperature. The 1600 cm 
1 

bard increased, shifting to 1580 cm 
1, 

and a bard appeared at 

1480 cm . 

Spectra 6.2 g-o show spectra recorded after exposing 

the disc to irxreasing pressures of vapour and then evacuating at 

a series of elevated tenperatures (details in legend to spec. 6.2). 

Adsorption of the vapour increased bands which fomeä at 2680, 

2610,2460 cm 
1, 

decreased the 2695 and 2535 cin 
1 bards and 

increased the 1580 and 1480 cm 
1 bands. Evacuation of vapour at 
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elevated tanperatures restored the 2700-2400 c1 region to the 

spectra of ncrmal D20 surfaces after treatment at these temperatures, 

increased the 1580 and 1480 cm-' bands and prcduc¬1 a shoulder at 

1615 cm 
1. 

Evacuation at 543 K without readsorption of vapour 

(spec. 6.2 p-v) removed all the bands, except a broad bard at 

2530 cm 
1. 

Expose of the disc to D20 vapour (BT, 4h) and 

evacuation (Br, ]Th) (spec. 6.2 w) produced a spectrum similar to 

spec. 6.1: i, which was similarly fumed by adsorption of D20 onto 

a surface previously exposed to hexaflucroacetone and evacuated 

at 543 K. Subsequent evacuation (spec. 6.2 x) did not form bands 

at 1580 and 1480 an as occurred in the previous experiment. 

These bands were only formed after readscrption of hexafluoro- 

acetone vapaxr (spec. 6.2 y) and evacuation at 453 K. Evacuation 

of the D20 (spec. 6.2 x) reduced the broad OD bands to weak bands 

at 2695,2680 and 2535 ari 
1. Subsequent exposure to hexaflucro- 

acetone vapour ranaved the 2695 cri-1 band (spec. 6.2 y). 

Re-exposure of the disc to D20 vapour (spec. 6.2 a) 

produced an OD spectrum similar to spec. 6.2w and shifted the 

1580 cri-1 band to 1600 cm 
1. On evacuation of this surface 

(453 K, 2h) a band appeared at 2740 cm 
1 

and the broad 2700 to 

2400 cm 
1 band was reduced in intensity. 
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6.2.3 ADSORPTION OF HEXAFWOI DACETONE ONrO A 673 K D20 REDUCED 

SURFACE 

Exposure of the initial surface (spec. 6.3a) to 

increasing pressures of vapour (spec. 6.3 b-f) produced bards at 

1810,1770,1740; 1710,1660,1570,1480,1390,1340 cm 
'. 

Evacuation (Br) renaved the bands at 1810 and 1340 cm 
1 

due to the 

vapour phase while adsorption of 'D20 'ard evacuation (BT, 1h) 

(spec. 6.2 g) renove3 the 1660 ari-1 bard, considerably decreased 

the 1740 and 1710 cm 
1 bands and shifted the 1570 cri-1 band to 

1. 
1580 an 

Further evacuation at 473 K, 18h, (spec. 6.2 h) 

removed the 1740,1710 crri 
1 bands, increased and shifted the 

15 80 cr1 bard to 1570 cni-1, increases the 1480 cm 
1 

band and 

fcme3 a bard at 1430 an 
1. Evacuation at 573 K, 2h (spec. 6.2i) 

re. wved all bands except two at 1460 and 1430 cm 
1. 

Adsorption of hexaflucroacetone (spec. 6.2j) and 

evacuation (spec. 6.2k) produced additional bands at 1660 and 

1580 cm 
1. Exposure of this surface to D20 at 473 K, 16h and 

evacuation (Br, h) (spec. 6.3 1) fumed OD bands at 2750, 

2710 crri 
1 

and a broad band centred on 2530 cri 
1, increased the 

1580 and 1430 cm 
1 bands and produced bands at 1520 and 1480 cm 

1. 
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6.2.4 ADSORPTION OF HE}(AFLZJOROACETONE ONTO A BT, D20 REDUCED 

SURFACE 

Exposure of the initial surface (spec. 6.4 a) to 

increasing vapair, pressures (spec. 6.4 b-e) removed the 2710 cm 

band and increased the 2695 cri 
1 bard (spec. 6.4 b) befcre 

decreasing this bard and increasing a 2680 cm 
1 bard which appeared 

(spec. 6.4 c). Bands due to 0-0 stretching appeared at 2610 and 

2460 cm 
1 

and bands at 1810,1770,1730,1580,1520 and 1480 al 
1 

were also formed. 

Evacuation at BT (spec. 6.4 f) ranoved the 1810 and 

weak 1520 cm 
1 

bands while dosage of D20, BT and evacuation 

(spec. 6.4 g) r¬noved-the 1770,1730 cm 
1 bands and decreased the 

1515 c rn 
1 band. Evacuation at 588 K roved all the renaining 

bands and fcrmed two at 1460 and 1430 cm 
1. 

These bands increased 

with a second dose of D20 at 473 K (spec. 6.4 i) together with 

weak bands at 2740,2710,2650 and 2520 an 
1. 

Adsorption of hexaflucroacetone (spec. 6.4 j) increased 

the intensity of the OD region to a broad bans and resulted in the 

appearance and slow increase of a 1580 can 
1 

barm. Heating the 

disc in the vapour at 473 K increased the 1580 and 1480 an hands 1 

while the broad OD band decreased to give bands at 2710,2680, 

2600 and 2530 an 
1. 
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6.3 -DISCUSSION AND CONCLUSIONS 

6.3.1 PROPERTIES " OF HEXAFIMROACEPONE AND DERIVATIVES 

Krespan and MiddletoJ3 5 have reviewed the properties 

of hexifluoroacetone and those relevant to this work are 

considered below. 

A. General Properties 

Hexafluoacetone -has a boiling point of 246 K and 

is thermally stable to 573 K. The spectrwn of the vapour (spec. 6.5) 

shows bands`-at 1810 cm 
1 (C=0 stretch) 

136 
and 1340,1274,1250, 

1220 cm 
1 (asymmetric CF3 stretches) 

136 in the region recorded in 

this work. 

B. Reaction with hydroxyl groups 

Hexafluoroacetone will react with one equivalent of 

water to form a flucrinato3 Zen-diol (mpt 322 K). 

CF 

(CF3)2 C=0 + H2O 

` 

--ý" C 

CF3 OH 

hexafluoropopane-2,2-diol 

The, diol is very acidic (pKa 6.58)137 and salts 

may be foxrmed either by reaction with a base or by addition of a 

base directly to hexafluoroacetone. 
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C. Properties of gem-diols 

Studies carried out on the alkali metal salts1389 
139 

show than to be stable in solution after the addition of one 

equivalent of base but to decompose on the addition of excess base 

to the related carboxylate, aril in most cases a haloform. 

CF 3/ fl C\ OM C 
,0 

/C` 
+ MOH 

/C\ 
MCffi C+ CF3H 

CF3 OH CF3 cm emess OM 

AU of the mono alkali metal salts (e ept lithium) 

decomposed at 373 K to produce metal trifluoroacetate, metal 

fluoride, flu=form, hexaflucroacetone and perflucropropane-2,2-diol. 

6.3.2 BEHAVIOUR OF BANDS 

A. Bands in the 4000-2000crri 1 
region 

Bands not due to surface groups existing on a standard 

BT, D20 surface (spec. 6.2 a) occur at 2680,2610 and 2460 em 
1 

when hexafluoroaacetone is adsorbed onto a surface with OD groups 

present, and at 2740 cm 
1 

when rutile is heated in 1)20 vapour 

after treatment with hexifluoroacetone. 

Initial adsorption of hexif]ucroacetone (spec. 6.2) , 

results in a change to the O-D spectrum while bands due to the 

carbonyl group Lewis bonding to the surface are not observed. 

These observations are in complete contrast to the adsorption of 

acetone onto the same surface which only Lewis bons in the initial 

stages. 
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The appearance of the 2680,2610 and 2460 cm 
1 bawls 

coincides with the reduction in a 2695 cm 
1 

band. Reoval of the 

adsorbed species does rat occur with evacuation at BT but removal 

after evacuation at 373 K restores the intensity of the 2695 cm-1 

bare. 

The three bands may be assigned by considering the 

reactions which might occur when hexifluaroacetone is adsorbed. 

The reaction with the terminal hydroxyl groups is as follows: 

C\ CF3 

C 
q 
0 
D% 

0 '0 

11 
Ti Ti 

C F3 

CF -C-0-]ß 3I; 
/I,,.. /D 000 

i 
Ti Ti Ti 

(1) 

Nrther reaction to form a bidentate salt would result 

in the loss of two hydroxyl groups as a water molecule, dich is 

not observed. 

The salts (CF3)2 C(OH)Li. l. 5H20 and (CF3)2 C(OH)Na. H20 

show two bands in the CU region 
138 

at approximately 3650 and 

3400 cm 
1 (deuteroequivalents 2690 and 2500 cm 

1). The 3650 cm 
1 

may be assigned to the hydroxyl bard while the 3400 cm 
1 band is 

due to the water of crystallization. 

Caiparison of these results with those observed 

indicates that the 2610 crn 
1 

bard is due to the hydroxyl group in 
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the -dio1 salt hydrogen -bottled to a terninal group. This 

interaction also shifts the 2695 an 
1 band of the t iml hydroxyl 

group to 2680 cu i-1. 

The 2460 cm 
1 band together, with the increase in the 

underlying 2500 cn1 due to water on the (100) an (1D1) planes 

is due to a hydrogen-bonding interaction with the hexafluoroacetone. 

The nature of this, interaction is not clear fran the spectra observed 

but may involve the reversible formation of a gen-diol which 

hydrogen-bonds to other water molecules. Such a molecule would 

have to be strongly bonded in order to renain on the surface after 

evacuation at Br and 
, 
it' is possible that sane other- form of bonding 

may also be present. 

The 2740 cm 
l 

represents an OD group of higher 

frequency than has reviously been observed on the rutile surface. 

It is unlikely to be a hydroxyl band directly bowled to surface 

titan n atoms but results fran a reaction of D20 with surface 

species formed on the adsorption of hexaflucroacetone axed subsequent 

heat treatments. 

B. Bards below 2000 cm 
1 (table 6.1) 

A series of weak bards are observed on both hydroxylate3 

and dehydroxylated reduced, ruble at 1770 and 1730 cm 
1 

and on 

dehydroxy1ated rutile at 1710 and 1660 cm 
1. 

The bards are not 

removed by evacuation at BT but are ranove3 cr significantly 

reduced by the adsorption of D20 (spec. 6.3 g$ 6.4 g) and are in 

the mvenirber range occupied by C=O stretching vibrations. It 
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is probable that these bards result from Lewis 
: bonding interactions 

with the surface. The bards are not observed on the oxidized 

surface and . the sites probably result from defects for ne3 during 

reduction. 

The two bands at 1670 and 1640 cm -1 observed during. the 

adsorption of hexifluaroacetone onto the 673 K oxidized surface 

are shifted 130 and 160 cm-1 frcrn the C=0 vapour band, indicating 

that the sites are relatively strong. 

The bards at 1580 and 1480 cm 
' 

are observed on all 

surfaces together with a 1615 em 
1 

shoulder on the oxidized 

surfaces. The 1580 cm 
1 band shifts in the presence of water to 

1600 cm-1. The bards are produces by the initial adsorption of 

hexiflucroacetone on all surfaces enept the BT, D20 oxidized when 

they appear after the removal of same surface water molecules by 

evacuation at 373 K. Evacuation at 540 K removes the bards which 

may be regenevatod by adsorbing D20 onto the disc and evacuating 

at elevated tanperat res (spec. 6.1 j) though readsorption of 

hexaflucroacetone is usually necessary (spec. 6.2 z, 6.3 j, 6.4 j). 

The 1580 and 1480 cm 
1 

bands are typical of carboxylate 

groups arxi are assigned to trifluoroacetate species on the surface. 

Canparison of the bands with those observed140 far, TiO(OCOCF3)2 at 

1630 and 1470 cri 
1 

supports this assignment. The nature of the 
decarposition of this species is discussed in section 6.3.3. The 
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1615 cm 
1 

may be due to triflucroacetate species on weaker sites 

than those forming the 1580 cm 
1 

bard. The bard is not however 

observed on the reduced surface although it might be hidden under 

the 1580 cm 
1, band which is broader on this surface. 

Bards are observed on the reduced surface at 1460 and 

1430 cm 
1 

after removal of the trif]uoroacetate species by 

evacuation at high temperatures. The bands are not intense and 

are due to carbonate groups formed, on the decanposition of the 

trifluoroacetate groups. 

Intense bards below 1300 cm 
1 

are observed on the 

surface due to C-F vibrations but their behaviour is mt easily 

determined due to the low transrnittance in this region. 

A s=mary of bared assignments is shown in table 6.2. 
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6.3.3 SURFACE REACTIONS 

Adsorption of hexafluoroacetone onto the 673 K 

oxidized surface results in the formation of triflucroacetate 

species which .n ay be fc ed by reaction:. of hexaflucroacetone with 

the oxygen ions, resulting fron condensation of row A hydroxyl 

BPS" -. I. - 

CF CF CF CF CF 
\/ 3/3C 

CC3 (2) 
0 ---ý 0o --i. 00 CF 

Ti Ti Ti Ti Ti 

Ti Ti 

The trifluoroacetate species decanposes above 470 K 

to produce a surface with few sites for the formation of hydroxyl 

groups (spec. 6.1 i, 6.2 w, 6.4 i) indicating that decomposition 

rm, oducts occupy some surface sites. The decarposition40 of 

TiO(OCOCF3)2 occurs at 540 K to give COF29 CF3COF, CO2 CO, Ti02 

and TiF4 and it is probable that surface species such as Ti-F, 

Ti-O-CF3 and Ti-CF3 are produced from the surface trifluoroacetate. 

Adsorption of water and subsequent heating causes 

condensation of sane of these groups, and reactions with D20, to 

reform the surface trifluoroacetate species and a species with 

an 0-D bared at 2740 cm 
1 (spec. 6.1 k). 

Adsorption onto both oxidized and reduced 673 K 

surfaces results in bards between 1800 and 1640 cm 
1 (table 6.1). 
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The bands are not strong and have been assigned to Lewis bonding 

of the C=0 group in hexafluaroacetone, the nzrber of bands observed 

indicates that the surface contains more types of Lewis sites than 

the two ('strong' and 'weak') found in this and other work. It is 

probable that these sites might arise from a small munter of 

defects, or that steric hirxirarxe causes several different inter- 

actions with the same weak or strong sites. 

Reactions on the surface of 673 K reduced rutile are 

similar to those on the oxidized surface with the eNception of 
. 

the boards formed at 1460 and 1430 cm 
1 (spec. 6.3 i) which result 

11 
fron carbonate species formed during the decomposition of the 

. 

trifluoroacetate species. 

The adsc'ption of. hexafluaroacetone onto the hydroxylate3 

surface differs considerably from that of acetone orrto the same 

surface. Acetone Lewis-bonds to the weak sites and removes water 

from the stronger sites. Hexifluoroacetone does not bond to the 

weaker Lewis sites, either because it is a weaker base or is 

stericaUy hindered, nor is it able to remove water molecules. 

The monoderrtate salt of the n -d, iol is fcn^med on 

adsorption of hexaflucroacetone onto the hydroxylated surface 

(equation 1) and rearranges to farm the triflucroacetate if an 

adjacent site is available. Such a site may be created by r¬noval 

of water or hydroxyl molecules on heating. 
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C\ CF3 

C OD 

0 

Ti Ti 

CF 

C 

00+ CHF 3 
f1 
Ti Ti 

(3) 

Other reactions on the hydroxylated oxidized surface 

are s mil& to those on the dehydroxylated surfaces. 

Adsorption of hexaflucroacetone onto the hydroxylate3 

(BT) reduced surface renoves the 2710 cm 
1 isolated hydroxyl 

band and increases the 2695 cm -1 band. In contrast to the oxidized 

surface, bards due to the fcrnation of triflucroacetate species were 

also observed. The ranoval of the isolated OD group occurs by 

equation (1) to form the monoderitate salt of the, -diol which 

cannot hydrogen bond as no adjacent hydroxyl groups are near. The 

hydroxyl group thus remains free and results in a band at 2695 cm 
1 

coinciding with the row A hydroxyl band. 

Absence of water molecules on the reduced surface 

allows the fcrnation of the triflucroacetate species by mechanise 

(2) at, (3). 
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CHAFIER 7 

STfl ARY 

7.1 EXPERIMENTAL PROCEDURES 

- The basic- techniques used in this work are similar to 

those used by many other workers to record the infrared spectra of 

vapours or gases adsorbed onto solid surfaces. No attercpt has 

previously been made to adsorb at very low vapour pressures 

compounds which, if dosed on at room temperature vapour pressure, 

react to form intense bands. The use of a cryostat in this work 

to dose on highly reactive conpounds at very low pressures has 

enabled the surface reactions to be closely followed by infrared 

spectroscopy. 

Interpretation of the infrared spectra, produced has 

in same cases been difficult. and would have been aided by the use. 

of other techniques such as mass spectroscopy. 
. 
This was used in 

c twin circumstances but was not generally-suitable due to. the . 

difficulty of trapping out the small quantities of reaction 

products. 



162. 

7.2 THE RUTILE SURFACE 

Results obtained in the study of water adsorption and 

desorption onto rutile were mainly interpreted in terms of the 

surface planes, while results from the adsorption of acetone, acetic 

acid aM hexifluoroacetone were interpreted in terms of 'strong' 

and 'weak' Lewis sites on the rutile surface. Some reconciliation 

of the two approaches was proposed 'in the discussion of acetone 

results where it was stated that acetone Lewis bonded to 'weak' 

sites from which water molecules could be removed by evacuation at 

beam temperature., Water molecules and hydroxyl groups occupied 

all the 'strong' sites on which acetone reacted to form mesityl 

oxide. 'Weak' and 'strong' sites were found-to exist on all 

planes. 

It has been proposea2 thät the to types of site arise 

from the two bond lengths (axial and equatcvial) around the, 

titaniun ion, the shorter (equatorial). position being the stronger 

site. This is not considered acceptable as the acetone results 

indicate that the raw A terminal hydroxyl groups, which are in the 

axial position, are on 'strong' sites. 

The 'Weak' sites correspond to those sites onto which 

a neutral reversible form of water is adsorbed resulting in a 

decrease of work function but not changing the conductivity 

(section 1.4.2 and ref. 30). The strong site is presumably 

responsible for the charged reversible form accompanied by a 

decrease in the work function and an increase in the corxiuctivity30 
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The neutral reversible form of water may be those water molecules 

producing the 3610 and 3520 cm-1 bards which are completely 

removed by evacuation to 373 K. while the charged reversible form 

of adsorbed water may produce the 3400 cm-1 bard which is not 

removed completely even after evacuation at 673 K. 

It is probable that the two types of sites arise from 

the electrical properties of the surface and the weak sites may be 

associated with Ti3+ ions which have been calculated' to have a 

lower binding ener%y than corresponding Ti4+ ions. The increase 

of Ti sites occtsrirag on the reduction of rutile therefore 
3+ 

increases the number of weak sites axxd consequently decreases the 

surface comerrtration of water at beam tei erature. The 

reduction process however only increases the concentration of 

Ti 
3+ ions from 0.3% to 1.0% (ref. 20 and section 1.2) of . 

ich 

way 40% are on the surfacel7 . It is probable therefere that 

other surface electrical effects act to decrease the amount of 

water adsorbed on the reduced surface. 
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7.3 FURTHER WORK 

Considerable infonration has been gained about the 

nature of sites on the rutile surface in this work but as indicated 

above further study of the Lewis sites is required. 

Further information about the sites might be obtained 

by infrared study of the adsorption of stronger bases than 

hegfluoroacetone. However, the iq) tance of the surface 

electrical properties indicates that studies should be made of the 

work function and conductivity of oxidized and reduced samples 

diming the adsorption of Lewis bases. 
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CHAFFER 8 

A TECHIIIQUE FOR T} STUDY OF THE SOLID/LIQUID 

INTERFACE USING INFRARED SPECTROSCOPY 

B. 1 INTRODUCTION 

8.1.1 Afl1 OF THIS WORK 

Infrared spectroscopy has been widely used, as 

indicated in the previous chapters, to study the adsorption of 

a vapor or gas onto the surface of a solid. The main advantage 

of the technique is experimental simplicity. There are, however, 

certain disadvantages: - 

a) It may 'not be used for the adsorption of solids of 

low vapour pressure (e. g. fatty acids). 

b) The weight of vapor adsorbed may not easily be 

determined. 

c) Results frcm the study of a vapor/solid interface 

cart be applied to a liquid/solid interface for 

the same adsorbent due to the effect of the solvent 

in the latter case. Thus results fran the study of 

acetone vapour adsorbed onto rutil. e may differ fron 

those of acetone in hexane adsorbed onto rutile. 

The aim of these experiments was to develop a technique 

for the study of the solid/liquid interface using infrared spectros- 

copy. The experimental details are included in section 8.2. 



166. 

8.1.2 UTHIR STUDIES OF THE SOLID/LIQUID INTERFACE USING 

INFRARED SPECTROSCOPY 

The following four techniques have been used to study 

the solid/liquid interface: - 

a) Reflectance spectra of evaporated metal or metal 

sulphides. 

b) Adscrpticn onto a powder f cm solution. Powder 

rmoved, dried and infrared recorded by pressing it 

into a self-supporting, or potassium bran de disc, 

or supparting it in a niz&ol rraill57. 

c) Adsorption onto a powder from solution and transfer 

of the dispersion to an infrared cell118'121-123 

d) Adsorgticm fran solution onto a self-suppm-ting disc, 

all treatments being carried out in a cell attached 
124to 

a vacut frarne'128. 

Tecimique (a) is limited in application and in 

technique (b) the drying and subsequent pressing may result in 

changes to the adsorbate-adsorbent interaction. Results frail the 

adsorption of acetic acid on alumina118 using technique (c) have 

been discussed (section 5.3) but it is not a suitable method if 

atmospheric contamination is to be avoided. 

Hasegawa and Law 
124-126 developed a cell using technique 

(d) and found the rain problems of the technique to be bubbles 

fording in the liquid due to inadequate degassing, and infrared 
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bands of the solvent. These bands obscured part of the spectral 

region under investigation and lowered the instrument response, 

but could be removed by using a matched cell in the reference 

beam, although this distorted some bands if compensation was not 

precise124. In later workl25 a crystal wedge was used in the 

reference cell to ensure precise compensation. 

Using this cell Hasegawa and Law were able to reco1 

the spectrum resulting fron the adsorption of aniline onto 

silica 
24, 

stearic acid onto zinc oxide1251 silica 
26, 

and a]ýumina126 I 

and of decanoic acid onto magnesia 
126. 

The solvent in each case 

being carbon tetrachloride. 

Results from the adsorption of stearic acid onto ziri 

ße125 and a-lumina126 showed the fcrmation of surface stearates. 

In addition a series of bands due to the disturbed 'wagging' of 

methylene groups in the hydrocarbon chains were observed. 

CQngarison of these bands with those observed for sane stearates 

indicated that at relatively high surface coverage the chains of 

surface carboxylate were tilted by about 600. This band 

progression observed fare stearates on zinc oxide was not 

observed for alumina indicating the stearate chains to be 

randomly orientated. 

Decanoic acid was adsarbed onto magnesia126 fian 

solution and from the gas phase. Canparison of the results showed 

that although surface reactions to fcrm carboxylates were similar 

therewere considerable differences in the arranganent of the 

molecules at the surface. In the liquid system the orientation of 
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the surface carboxy], ate was regular and the dieters formed at high 

surface coverage arranged in a similar way to those in solid decanoic 

acid. The carboxylates and dimerºs resulting fran adsorption of 

decanoic acid fran the gas phase were, however, rarxdanly orientated. 

The study of the solid/liquid interface using infrared 

spectroscopy not only provides a method of studying the adsorption 

of high boiling point coiipounis but may also provide infcrmation 

about any regular orientation of- surface nolecules tthich does not 

occur on adsorption from the gas phase, possibly due to an abserre 

126 
of the polarizing effect of the solvent 

8.1.3 INITIAL EXPFRIM IS 

The first apparatus was designed and built to record 

the spectrum of rutile powder inmersed in a solution of an organic 

adsorbate in carbon tetrachloride. The rutile powder was treated 

and poured into the cell under vacuum to prevent contamination by 

the atmosphere and the solution then added. As the path length 

of the cell necessary for the introduction of the rutile powder 

between the windows resulted in a very ' high optical density over 

the whole infrared range, it was decided to use pressed discs. 

Rutile was replaced by silica in the experiments 

because of the reaction with carbon tetrachloride 
9. 

Other solvents 

could mt be used because of their high optical density. 

L 
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8.2 MENTAL 

8.2.1 DESIGN OF THE CELL 

The basic requirenents of a cell suitable for the 

recording of solid-liquid interface spectra are: - 

(1) 
. 
Low path length due to the high optical density of 

sane solventsl24. 

(2) Attachment to a system in which the solid can be 

treated at temperatures up to 670 K in vacuo. 

(3) Absence cf rubber seals or other possible contaminants. 

(4) Etw and exit tubes to allow the admission of solution 

into the cell and its subsequent removal. 

The first two of the above requirements are the most 

important and difficult to fulfill since they are nurtually 

exclusive. That is the disc Hoist be treated at high tenperatures 

out of the cell and then lowered between the windows, an operation 

not possible with a path length caanparable with the thickness of 

the disc. A cell in which the path length could be increased to 

anmit the disc and then closed to decrease the path length to a 

distance comparable with the thickness of the disc was therefore 

designed (fig. 8.1) 

The cell as originally built had two o-rings in grooves 

round the variable window which screwed into the fixed part of the 

cell, the o-rings forming a seal between the variable window and 

inside of the cell body. 
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This design was not successful because the o-rirg seal 

failed to hold a suitable vacuum and the turning motion of the 

variable window when screwed up cracked the disc. The screw 

threads were subsequently replaced by bolts which screwed into the 

main'body of the cell. The failure of the o-ring seals prevented 

the lowering of the disc into the cell under vacuum and an 

alternative procedure was devised whereby the variable window 

holder would be bolted up to the cell base via a teflon flange to 

form a vacuun tight seal when the disc was under treatment or in 

the cell. Increasing the path length in order to lower the disc 

into the cell would break this seal and allow air to leak in. 

This was to be prevented by filling the apparatus with dry oxygen 

or nitrogen at above atmospheric pressure. After lowering the 

disc into the cell the variable window could then be bolted back 

onto the cell body to restore the seal. 

The disc holder may also limit the minimun cell path 

length possible. Hasagawa and 1OW125 used stepped windows and a 

holder which fitted outside them to overcome this problem. 

However it was decried in this work to press a thin platirnun wire 

into the disc and attach this to the lowering mechanism. In later 

wark127 a platimm wire holder was used. 

The cell, as described in detail in section 8.2.2, differs 

frown that in reference 127 due to subsequent modifications made. 

These were the replacement of the magnetic lifting system by a 

modified grease-free tap and the use of a thicker teflon seal which 

increases the path length and allowed the disc to pass into the 
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cell without breaking the seal. The increase of path length did 

not affect the spectra recorded as the carbon tetrachloride bands 

were not in the frequency range studied127. 

The advantages of the cell used in this work over that 

used by Hasegawa and Low12 126 
are its ease of operation, lower 

path length (in the original cell) and the movement of liquids 

under a pressure of inert gas which prevented bubbles foxtning124. 

The use of a reference cell in this work was not considered 

necessary due to the narrow path length of the cell and difficulty 

in obtaining an exact canpensation. 

8.2.2 DESCRIPTION OF CELL (fig. 8.1) 

The lower section of the cell consisted of a brass ring 

into which a calcium fluoride window (5cm, diameter) was fixed with 

araldite. A tube at the bottom of the cell connected to the 

vacuum frame was used fa draining liquids from the cell and as a 

vacuum or gas line. Discs entered the optical section of the cell 

via a flat tube (2.5 x 0.5 an) through which passed two brass 

tubes, attached to the vacuum frame (fig. 8.2) via metal to glass 

seals, one being used for evacuation of the cell and the other as 

an inlet for liquids. 

The other calcium f 1ucride window was fixed with 

araldite onto a brass ring and bolted to the cell base via a teflon 

seal between a knife edge and opposing groove (the bolts are only 

sham in the front view, which is of the cell without the variable 
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window). The vacuum attainable with this arrangement was 

10-2 Nm2 and the path length 0.7m. 

The lifting system (fig. 8.3) was similar to that 

used by Hasegawa and Low124 and consisted of a 4cm diameter rube, 

35cm high, onto which was attached an inverted 'U' of lcm 

diameter glass 30cm high. 'Ilan soft iron weights sealed in glass, 

one in each arm of the 'U', were connected by a nylon thread. 

A thin pyrex rod was hooked onto the weight passing into the wide 

tube, to which the silica disc was attached using 2cm of platinum 

wire. The disc was raised or lowered using magnets to move the 

weights. The modified grease-free tap used later127 had the 

disadvantage of possible leakage through the barrel but was more 

s ooth in its operation than the system used here. 

The disc was heated at the middle of the tube opposite 

a thermocouple pocket, by a surrounding furnace. Asbestos card 

(not shown in the diagram) was fitted round the tube at each end 

of the furnace to prevent a through draught of hot air. 

The wide tube of the lifting mechanism was sealed to 

a thick glass flange clamped, via an o-ring, to a circular brass 

plate on top of the flat tube of the cell. The disc was guided 

into the flat tube by a stainless steel funnel. 

Admission of gas to the lifting mechanism was via a 

Rotaflo tap connected, via a polythene tube, to the gas line 

(fig. 8.2) on the frame. The gas left through one of the vacuum 



173. 

lines attached to the cell base, thous allowing treatment of the 

disc in a flow of gas. 

8.2.3 VACUUM FRAME 

The diagram of the system (fig. 8.3) is mainly 

self-explanatory. The pimping systan was that used for the solid 

vapour experiments and has been described (2.2.1). AU taps were 

grease-free (as described 2.2.1) and could be removed in order to 

add liquids into the storage vessels. Liquids were transferred 

from the storage vessels by condensirg the vapors in a burette 

using cotton wool, soaked in liquid nitrogen, wrapped round the 

burette. 

A gas bleed, consisting of a thin glass tube (diameter 

aimn) i=ersed under lcm of mercury, was attached to the frame to 

allow gas to flow out at 1cm pressure (1.33 x 102 kNm 2) 
above 

atmospheric. 

8.2.4 REAGIIITS 

A. Silica 

Saite used was Aerosil 200 (ref S41/542834)fran 

Bush, Beach and Segner Bayley Limited. Details of pressing and 

treatment in the cell are given in 8.2.6. 
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B. Carbon Tetrachloride 

Spectroscopic gerade, dried a rd stored on the vacuum 

frame over calcium chloride. Degassed by freeze-thaw method. 

C. Ether 

A. R grade, dried over molecular sieve. 

D. 0 
, en, Nitrogen 

Fin gas cylitxlers, passed through molecular sieve 

previously dried at 520 K under vacuum. 

8.2.5 SPECTRcMEr 

Results were recorded on the Perkin-. Elmer 257 

previously describe3. Due to the higher transmittance of the 

silica discs, compared with rutile, which became transparent in 

carbon tetrachloride the slit with was 1 with a gain settirg to 

give the raise levels shown in the spectra (spec. 8.1). 

8.2.6 OPERATIal 

A. Pressing of the silica disc 

0.2g of silica were weighed, tipped onto the bottom 

die face and spread to an even thickness. Approximately 2.5cm of 
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thin platinum wire was placed in a groove engraved in the top die 

face and bent so that lan lay along the bottom surface of the 

die (see below). 

Groove 

Platinum wire 

Top die face 

The top die was then placed on the silica powder and 

released pressed to 74 MN m2 (5 tons/ sq. in) 
, the pressure being 

immediately to prevent the disc sticking to the die faces. The 

die faces were mnoved after attaching a short length of thick 

platirwn wire to that pressed in the disc and the disc suspended 

in the lifting system as described. The lifting system was then 

clamped to the cell. 

B. Treatment of the disc 

The disc was raised to the centre of the furnace and 

with the adjustable cell window screwed up to the teflon seal the 

cell and frame were evacuated to 107 2Nm2. Oxygen was passed 
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rapidly through the molecular sieve and out of the adjacent manineter 

before shitting off the pumping line and other parts of the system 

fron the cell and main line. Oxygen was then bled slowly into the 

cell using the tap on the lifting system ensuring, by use of the 

manometer, that pressures in the molecular sieve and cylinder valves 

remained above atmospheric. When the cell and main line were full 

of oxygen the rate of flaw was decreased, the mananeter slut off 

and the gas allowed to flow through the cell and lifting system 

into the main line and cut of the gas bleed previously described. 

After treatment of the silica disc in the flaw of 

oxygen (673 Is 2h) the cell and main line were evacuated and the 

disc allowed to cool. Nitrogen was then introduced into the cell, 

as described far oxygen, except that the gas flowed through the 

bottan cell exit and out of the gas bleed at the initial high flow 

rate. The bolts holding the adjustable window were unscrewed by 

2nin and the window pulled out to allow the disc to be lowered onto 

the cell. The window was bolted up against the teflon seal, the 

upper gas exit from the cell to the main line was opened and the 

exit at the bottom of the cell closed. 

Nitrogen was admitted to the rest of the vacuum frame 

after transferring solute and solvent to the burettes. After 

reccrding the spectrum of the disc in nitrogen and immersed in 

solvent, the required volumes of solute and solvent were run into 

the mixing tube and agitated using a piece of soft iron sealed in 

glass and moved by a magnet. This system did not permit an 

accurate detection due to the small quantities involved and it 
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was subsequently modified141. The solution was run into the cell 

after nuxiTIg. 

The zesence of a flew of nitrogen above atmospheric 

Iressure not only rrevente 1 the corrtam; nation of the discs by 

the neorrene o-ring but everted the fcvmtion of bubbles in the 

liquid as observed byHasegawa arxi La 

After reccrdirig the spectrum of the disc innnersed in 

the solution the gas flow was shut off and the liquid ramved via 

the bottom exit and backing line. The disc was then th righly 

evacuated before re-admitting nitrogen and a solution of irxxeased 

concentration. 
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8.3 RESULTS AND DISCUSSION 

The spectra n of the initial surface (spec. 8.1a) 

showed bands at 3740 and 3680 csri 
1 

due to isolated and hydrogen- 

bonded hydroxyl groups respectively5. 

Imemion of the disc in carbon tetrachloride (spec. 8.1b) 

increased the transmittance of the disc and shifted the 3740 cm 
1 

band to 3680 cm 
1. The path length of the cell was determined as 

0.7iin by placing a variable path length cell containing carbon 

tetrachloride in the reference beam in order to precisely remove 

the solvent bis. 

Increasing concentrations of diethyl ether (spec. 8. ]c-e) 

shifted the isolated hydroxyl group to 3230 cm-1 with a resultant 

decrease in intensity of the 3680 cm 
1 

band. The shift (AV' 
OH) 

of 460 cm 
1 is in close agreement with observations frown the gas 

phase adsorption of ether which give shifts of 45058,460129, 

and 450131 ý 1. 
soo130 

Bands due to the adsorption of ether were also observed 

at 2980,2960,2880 cm 
1, due to C-H stretching vibrations and at 

1490,1445,1415 and 1385 can 
1. These bands below 1500 cnt 

1 
were 

partially obscured by silica bards. 

Removal of the liquid from the cell and subsequent 

evacuation (spec. 8.1 f-h) decreased the 3230 cm 
1 

band and 

increased the 3740 cari 
1 isolated OH group. The 3680 cm 

1 
bard 
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remained relatively constant. The final surface (spec. 8.1 1) 

was similar to the initial surface (spec. 8.1a). 

The results obtained fron the adsorption of ether 

showed that the cell was suitable for the study of the solid/liquid 

interface using infrared spectroscopy arYI father studies have now 

been carried out using it127,128. 
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8.4 FURTHER WORK 

8.4.1 DISC DO ERSED IN A LIQUID 

Marshall and Rochester 
1419142 

mdified the design of 

the original cell together with the surrourding system and were 

able to measure the spectra of adsorbed species and the weights 

of solute adsorbed, both as a function of solute concentration. 

The basic problem of bards due to the solvent still 

remains. 4hi1e it is not serious with carbon tetrachloride, which 

has few bands in the 4000-1000 ar 
1 

region, it becomes a problem 

with other organic solvents most of which have rich higher optical 

densities. Solvent bads may be eliminated by using a cell in the 

reference beam of identical path length but instrument response 

maybe Pß, 
1240 

Solvent bards may also be removed by running off the 

solution in the cell until only the bottcan of the disc remains in 

contact with, the liquid, the intention being that the whole disc 

remains in equilibritmm with the solution by capillary action. 

The disadvantage of this method is that any equilibrium between 

the solute and surface nay be changed by removal of the solution. 

The is also the possibility that the heat of the infrared beam 

may evaporate the solute and solvent making constant temperature 

recordings difficult and disturbing any surface equilibria. 
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The lowest path length attainable is of necessity 

equal to the thickness of the disc. Since with this path length 

the disc canmt be lowered between the windows, one window must be 

adjustable, ISefer+ably while maintaining a vacuum in the systen. 

The design of the cell described in this work has been 

modified (fig. 8.4) to allow the adjustable window to move up to 

the disc and reduce the path length to the thickness of the disc. 

The modifications are as follows: - 

(1) A flexible seal bas been introduced in the adjustable 

wirdcw flange between that part to which the window is 

attached aril the ring bolted to the main body via a 

teflon seal. The flexible seal is of metal and could 

consist either of a concertina metal tube of the type 

used in some glass-metal joints (A in fig. 8.4) or of 

two thin stainless steel rings bonded together on the 

outer edge with araldite and to either part of the 

adjustable wirxiow on the inner edge (B in fig. 8.4). 

(2) The two circular 5cri calcium fluoride windows are 

replaced by two 2.5 x 1.3 an windows of the same material. 

The use of rectangular windows allows a disc holder to 

be used which passes outside the window.. These are not 

therefore recessed into the cell base as in the original 

cell and are attached with araldite over 2.0 x 0.6 an 

holes in the cell body and adjustable flange. The 

circular design of the cell has been retained since it 

may easily be machined on a lathe. The proposed cell 

would be constructed from stainless steel. 
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(3) The teflon seal in the main cell has been replaced by 

a copper o-ring cl. anDed between a knife-edge and groove. 

This type of seal has been used in a later cell with 

good results 
141, 

since a higher vacuum is attainable 

without danger of contamination. 

(4) A cell holder must be used for rutile as the disc cracks 

if any attemmpt is made to press a wire in it or pass 

wire or quartz through it. A suitable cell holder 

(fig. 8.5) would be two 3mm glass rods about 5cm long, 

joined at the top with a 3mm rod and curved in at the 

botton. The disc would be held between the two rods in 

a groove. The cell is designed with a U-shaped groove 

for the holder and also to ensure the disc rests against 

the fixed window. This allows movement of the adjustable 

window without disturbing the disc. 

(5) The rubber O-ring at the junction between the cell base 

and lifting system has been replaced by a metal seal 

which reduces the risk of contamination. The glass flange 

at the bottom of the lifting system has been replaced by 

metal and a metal-glass seal used to attach the glass 

tube of the lift. 

The cell as described would be used in conjunction with 

142 
the liquid system used by K Marshall in his work. 
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8.4.2 POWER Il SID -IN A LIQUID 

In previous work it was fairrd difficult to fill a 

narrow path length cell with powder. The variable path length 

solid-Liquid cell could be used for powders using the same procedure 

as for discs. The cell windows would be separated while the 

powder was introduced (see below) and then pressed lightly together 

to remove the 'dead space' between the solid particles. A trial 

and err method would be required to determine the path length 

for filling, sufficient to give a suitable path length for recording 

of spectra. In addition the cell could be filled with or without 

solvent Iresent, or with a slurry. 

The proposed cell is shown in figure 8.6 (front view 

is with the adjustable window removed) and modifications to the 

above cell (fig. 8.5) necessary for the recordixg of powder-liquid 

spectra are as follows: -, 

(1) All 'dead' space in the cell, for example for the 

disc holder, can be eliminated. 

(2) The liquid exit tube at the bottan of the cell must 

be plugged with a filter to prevent solid passing 

out of the tube (not shown in figure). 

(3) The lifting system used for discs must be replaced 

by a system capable of treating powder and introducing 

it into the cell under vacuum. A system which was 

successfully used for treating powders is shown in 

fig. 8.7 
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The solid is heated in glass trucks mounted on short 

lengths of glass tubes through which passes a long glass tube, 

mounted in a wide bore tube sealed at both ends. The trucks are 

balanced by nails sealed into glass either side of each truck 

and are moved, and tipped, using a magnet. Powder is introduced 

into the trucks by ranoving the barrel of a Rotaflo tap and 

inserting a long funnel. The tap may also be used to admit gas 

into the systen. 

The powder treatment 'train' is attached to the cell 

by a wide bore glass tube with a metal flange and metal o-ring as 

considered in the disc systan. The cell would have a circular 

tube farming a funnel (not shown) unlike the disc system which 

has a flat tube to the optical part of the cell. 

This systan can be used to treat all solids under a 

pressure of inert gas but powders such as silica may not be 

evacuated as they pass into the rest of the vacuum systen. The 

powders may be tipped directly into the cell, or tipped into the 

liquid in a separate vessel, agitated using a mechanical stirrer 

or ultrasonic bath, arxi the resultant slurry run into the cell. 
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TABLE 2.1 

Spezification for the Perkin-Elmer 257 

Infrared Spectrometer 

Abscissa Range 4000-625 cm 
1 

grating change 2000 cm 
1 

Accuracy ±5 
cm 

' 
at 3000 cm 

1 

± 2.5 cm 
1 

at 1750 cm 
1 

Repeatability 3 cm 
1 

at 3000 cm-1 

1.5 cm 
1 

at 1750 cm 
1 

Ordinate Range 0 to 100% linear in transmittance 

Accuracy ± 1% of full scale 

Repeatability 4000 to 2000 cm-1 within 3116 full scale 

Resolution slit program 64 cm 
1 

at 3000 cm 
1 

2 cri 
' 

at 1000 crri 
1 

Scan speed slow 100 cm 
1/min 

4000-2000 cri 
1 

50 cm 
1/min 

2000-625 CM -1 
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TABLE 3.1 

ASSIGNMENT OF BANDS OBSERVED ON THE 

OXIDIZED RUTILE SURFACE 

Bands (cn 1) Assignment 

OH OD 

3700 2720 Isolated terminal hydroxyls on (110) plane 

3680 2710 Terminal hydroxyls perturbed by water molecules 

3655 2695 H-bonded terminal hydroxyls on (110) plane 

3610 2660 Surface hydroxyl groups H-bonded to molecular 

3520 2600 water or water molecules cocmdinately borided 

to surface (110) 

3420 2535 Bridged hydroxyl groups on (110) plane 

3400 2500 Water molecules on (101), (100), (111), 

(211) planes 

1620 -1 V2 berxding vilration of H2O molecules 



TABLE 3.2 

FUND AL BANDS OF H2O AND D2064 (cm 1) 

Mode H 20 
D20 

Vapour Liquid Vapour Liquid 

V3 Antisynunetric 3757 3400 2788 2500 

V1 Syrmetric 3653 3280 2767 2389 

L'2 Berxiing 1595 1645 1178 1220 

TABLE 3.3 

OCCURRENCE OF PLANES EXPOSED ON A RUTILE CRYSTAL 

Plane 

Exposed 

Occurrence 

(%) 

Coordination of 

Ti 

Surface Ions 

0 

110 60 5$6 2 

100 arg 1010 5 5 2 

101 ard Oil 10 5 2 

111 10 3 2 

211 15 3 2 



TABLE 3.4 

BANDS OBSERVED ON THE RUTILE SURFACE 

IN OTHER STUDIES AND THEIR ASSIGIF'IENTS 
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TABLE 3.5 

CALCULATED 0.. 
.0 

DISTANCES FOR HYDROGEM-BONDED 

HYDROXYL GROUPS CU IHE R1J ILE SURFACE 

Hydrogen-bond Shift from 0 
... 0 

Wavenumber 3 700 cm-1 Distance (pm) 

3680 20 304 5 

3655 45 298 5 

3610 90 292 5 

3520 180 272 5 

0.... 0 distances calculated from ref. 1 using figs. 5.1b and 

2.1a as described on page 190 of reference 
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TABLE 4.2 

THE POSITIONS OF INFRARED BANDS DUE TO CARBONYL 

STRETCHING VIBRATIONS OF LUAS ACID COMPLEXES 

CONTAINING ACETONE 

CaTound L Waveni rber 

cm7l 

Shift 

-1 

Reference 

- Acetone liquid I 1715 - This work 

TiC14. acetone 1665 50 99 

HfC14.2acetone 1660 55 101 

1630 85 

ZrC14.2acetone 1661 54 101 

1631 84 

SnC14 1650 65 102 

BF3. acetone 1640 75 103 



TABLE 4'3 

SPECTRA OF ACETONE ADSORBED ON METAL OXIDES - 

PANDS OBSERVED IN IM 1700-1580 cm-1 REGICN 

OXIDE B ANDS (cm 1) 
REFERENCE 

Alumina 1692 1625 1600 85 

1700 1635 1590 87 

1685-1703 1612-1629 1559-1579 89 

Rutile 1689 1600 85 

1685 1660 1595 This work 

Magnesium Oxide 1700 1650 1610 112 

Nickel Oxide - - 1580 112 

Ccmpare : 

Mesityl Oxide 

adsorbed onto 1660 1595 Spec. 4.8 

rutile 



TABLE 4.4 

BANDS ASSIGNED TO CARBOXYL ATE SPECIES 

ADSORBED ON OXIDE SURFACES 

Adsorbent Adsorbate Bands Ref. 

cm 

Al uni, na Ethanol 1572 1466 13 90b 1340 105 C 

2- opanol 1575 1465 1375 88 

Acetic acid 1585 85 

1590 1465 118 
Acetic acid 

1560 1420 

Acetone 1575 1465 85 

Acetones 1590 1470 87 

Acetaldehyde 1585 1470 87 

Titania Acetic acida 1555 1410 1450 1340 47 

Acetic acids 1545 1460 1315 85 

Acetone 1556 1527 1445 85 

Magnesium oxide Acetic acids 1560 1440 1320 117 

1530 1410 

Acetone 1572 1406 112 

Nickel oxide Acetone 1556 1395 112 

CH3000e 1556 1413 1456 1344 
106 

CD 
3000e 

1545 1406 1031 1085 

a See text b Shown in literature spectra 

c Bands not assigned 

DA 

{2111 

ý ýa . 

Is ,I, lk 
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"ryý 
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TABLE 4.5 

ASSIGN LENT OF BANDS BELOW 2000 cm 
1 FO 

ON THE ADSORPTION OF ACETONE h6 AND d6 ONTO 

OXIDIZED AND REDUCED RUTILE SURFACES 

Band (an 1) I Assignment 

Hydrog. Deut. 

1685 1670 C=0 stretch in acetone h6 Lewis bonded to 

a Ti4+ ion 

1660 1645 C=0 stretch in mesityl oxide adsorbed onto 

the rutile surface 

1595 1580 C=C stretch in mesityl oxide adsorbed orrto 

the rutile surface 

1540 1510 0==C==O asyrnnetric stretch in acetate species 

1480 Acetate species (to be assigned - chapter 5) 

1465 Asymmetric methyl deformation 

1440 C-H in mesityl oxide 

1440 1425 Symmetric 0=--C: -=O in acetate species 

1380 C-H viirations in mesityl oxide 

1360 



TABLE 5.1 

BANDS OBSERVED ON ME ADSORPTION OF ACETIC 

ACID oiro OXIDE SURFACES 

Oxide Titania Alumna MgO 

Treat nerrt 473 K 423K 523 K liquid 298 K 

Reference 47 85a 85a 1180 u7b 

1750 

1715 1715 1700 

1625 

1555 1545 1585 

1450 1460 1470 

1410 1423 

1340 1315 1335 

1285 

1590 1560 
1560 1530 

1465 1440 
1420 1410 

1320 

1285 

Ions I Assignment 

HD 

106 106 

[Adsarb1 acid 

I mlecules 

Not assigned 

1556 1545 = CO 

1456 1031 C-H 

1413 1406 C=0 

1344 1085 C-H 

Physically ads. 

a) Bands not generally assigned 

b) Details of all observed bards are not given in the text and 

were obtained from the spectra presented (fig. 4 of paper) 

c) The alumina was inmersed in a solution of the acid in CCl4 



TABLE 5.2 

ASSIGNMENT OF BANDS BELOW 2000 cm 
1 OBSERVED DURING 

THE ADSORPTION OF DEUTEROACETIC ACID ONTO RUT'ILE 

Surface Treatment 

0xd ized Reduced Assignment 

673 K 298 K 673 K 

1785 1785 

1765 1765 Acetic acid vapour 

1725 1725 

1695 1695 1695 Physically adsorbed acetic acid 

1670 1670 Lewis bonded acetic acid molecules 

1650 1650 Physically adsorbed acetic acid 

1630 1630 1630 C=0 stretch in bidentate carbonate 

1540 1540 1540 acetate ion on weak site asymmetric 

1515 1515 1515 acetate ion on strong site stretch 

1480 1480 1480 acetate ion on weak site symmetric 

1440 1440 1440 acetate ion on strong site stretch 

1365 1365 1365 symmetric stretch unidentate carbonate 

1340 1340 1340 asyimnetric stretch bidentate carbonate,,.,.,,., 

1320 1320 1320 



TABLE 6.1 

BANDS OBSERVED 1124 THE RANGE 2000-1300 cm 
1 

AFTER THE ADSORPTION OF H APUJOROACETONE 

ONTO A RUTILE SURFACE 

OXIDIZED 

673 BT 

REDUCED 

673 BT 

1810 1810 1810 1810 

1770 1770 

1740 1730 

1710 

1670 1660 

1640 

1615 1615 

1580 1580 1580 1580 

1480 1480 1480 1480 

1460 1460 

1430 1430 



TABLE 6.2 

ASSIGNMENT OF BANDS OBSERVED DURING THE 

ADSORFrION OF HEXAFLUOROACFTONE ONTO RUTILE 

Barxi (cxri 1) I Ass igrunent 

1810 IN (C=O in hexiflucroacetone vapour 

1770 
1740 V C=0 in hexifluoroacetone Lewis 
1710 
1670 bonded to surface sites 
1640 

1615 1) 0=--C=--0 asymmetric stretch in 
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SPEC. 2 



SPEC. 2 

SFFX flZA OF INITIAL SURFACES AS 

RECORDED c THE SPECMC14= 

2.1 673 K (400°C) H2O Oxidized Surface 

2.2 SI' H2O Oxidized Surface 

2.3 673 K (400°C) H2O Reduced Surface 

2.4 BT D20 Reduced Surface 
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SPEC. 3.1 

DESORFTICfiI OF H2O FROM A BI', H2O 

o)DrrED SURFACE 

(a) Initial Surface before heating in H20. 

Spectra after heating, in H2O (673 K, Sh) and evacuating 

at: - 

(b) 298 K, 14h (c) BT, 1h 

(d) 331 K, 18h (e) 368 K, 9h 

(f) 393 K, 12h (g) 423 K, 16h 

(h) 455 K, 6h (i) 461 K, 15h 

(j) 473 K, 8h (k) 481 K, 13h 

(1) 503 K, 7h (m) 523 K, 12h 

(n) 573 K, 9h (o) 623 K, 8h 

(p) 663 K, 13h 
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Spec 3.1 Desorption of H2O from a BT, H2O, Oxidized Surface 
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Spec 31 Desorption of H2O from a BT, H29 
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Oxidized Surface 
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Spec, 3.1 Desorption of H2O from a BT, H2O, Oxidized Surface 
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Spec. 3.1 Desorption of H2O from a BT H20, Oxidized Surface 
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SPEC. 3.2 

DESORPTION OF H2O FR1 ABI', 11,20 

OXIDI, SI 
Il Lf\! 

D SLRFACL 

(a) Initial surface 

Spectra after evacuatirg at: - 

(b) 338 K, 14h 

(c) 383 K, 21h 

(d) 398 K, Ch 

(e) 418 K, 14h 

(f) 443 K, 6h 

(g) 458 K, 1Sh 

(h) 468 K, 6h 

(i) 478 K, 14h 

(j) 503 K, 6h 

(k) 520 K, 15h 

(1) 583 K, 6h 
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Graph' a2 Desorption of H2O from a BT H2O Oxidized Sintered Surface 
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Spec 3.2 Desorption of 1120 from a BT, 1120, Oxidized, Sintered, Surface 
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Spec 3.2 Desorption of H2O from a BT, 1120, Oxidized, Sintered, Surface 
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Spec 3.2 Desorption of H2O from a BT, H2O, Oxidized, Sintered, Surface 
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SPEC. 3.3 

AD60RPI'ICU OF H2O CUM A 673 K (400°C) 

CºXIDIZED SURFACE 

(a) Initial Surface 

(b) - (h) adsorption of H2O at increasing pressures 

(i) evacuation BT, lh 

(j), (1), (n), (o), (q), (r) adsorption of H2O at increasing presse es 
(k), (m), (p), (s) evacuation, BT 
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Graph 3.3 Adsorption of- HIO onto a 673 K Oxidized Surface 
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Spec 33 Adsorption of H2O onto a 673 K Oxidized Surface. I 
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SPEC. 3.4 

ADSORPTION OF D20 WTO A 673 K (400°C) 

D20 QXIDIZED SURFACE 

(a) Initial surface 

(b) - (i) adsorption of D20 at increasing vapour pressures 

(jý evacuation BT 

(k) disc in isolated cell 12h 
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Graph 3.4_Adsorption of D20 onto a 673 K D20 Oxidized Surface 
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SPEC. 3.5 

ADSORPTION OF H2O TO A 673 K (400°C) 

H2O OXIDIZED SINTERED SURFACE 

(a) Surface after initial adscrption of H2O 

(compare spec. 3.3 g) 

(b), (d), (f), (g), (h), (j) adsorption of H2O at irroasing 

vapour pressures 

(c), (e), (i), (k) evacuation, BT 

(1) disc heated in H2O (673 K, 2h) and evacuated (BT, 1h) 
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Graph 3.5 Adsorption of KLO onto a 673 K Oxidized Sintered Surface 
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SPDC. ~3.6 

REVFRSIBILTTX OF THE FMUMON PROCESS 

(a) Initial reduced surface (see section 2.3.1 page 35 

fct preparation) after ncpoc=e to D20 and evacuation 

(b) Initial surface expoccci to D20 vapour (298 K, 112h) 

and evcI car, 3h) 
(c) Surface after heating in oxygen (1.33 x 104 2t m 2, 

673 K, ih), cvacu3tion (673 K, lh), oxygen (1.33 x 104 

!' m7,673 K, lh) and evacuation ABT, ah) 

(d) Surface after exposure to D20 (BT, 4h) and cvacuation 

(290 K, 18h) 

(e) Roducticn of surface (as for initial curfaco) 

evacuation (673 K, 6Ci), cctmo to D20 (BT, }h) 

and evacuation (Or, }h) 

(f) Heating in D20 (673 K, 2h) arx1 cvaustion (BT, Ih) 

(g) iicating in D20 (673 K, 16h) and cvaot%n (BT, }h) 
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SPEC. 3.7 

ADSaU al OF H. 70 Qfi0 A 673 K (400oC) 

120 R M= JRF 

Sp©ctr xt of amfaco after standard raduction 

p roco1 e, adsorption of 1120 vag at DT 

and ev at. ion (BT, Th) 
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SPDC . 3.8 

AD60RPrIa OF D20 CUM A 673 K (40(fC) 

H2O REIXUCID SURFACE 

(a) Initial surface 

(b)-(f) adsorption D20 vapour at increasing pressures 

(g) evacuation (BT, 3h) 

(h)-(j) adscarption D20 vapour 

(k) evacuation (13T, 2h) 

(1), (m) adsorption D20 vapour 

(n) evacuation (BT, Ih) 

(0) adsorption D20 at roan temperature vapour presse re 

(p) evacuation (BT, Ih) 

(q) evacuation (473 K, 16h) 
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SPEC. 4.2 



S'PFX. 4.2 

ADSORFn(Xi OF ACSE hs arm A 673 K (400°C) 

D20 MIDIZID SURFACE 

(a) Initial surface 

ad: ption of acctono h6 at incraýir vapour 

rrcwuryms 

(h), (j), (1) Evacuation (BT, 1h) 

(in) evacuation (298 K, 12h) 

(n) adsorption acatono hs 

(o) cvaou2tion (BT, lh) 

(p) teure to D20 vapour (298 K, Uh) and evacuation (BT, 1h) 
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SPEC. 4.3 

ADSORPTION OF ACETONE d6 ONTO A BT, 

D20 OXIDIZED SURFACE 

(a) Initial surface 

(b)-(i) adsarption of acetone d6 at increasing vapaur 

i^essures 

Q) exposure disc to acetone d6 vapour in closed cell 

(298 K, 13h) 

W, (m) 
, 
(n) adsorption of acetone d6 at increaving 

vapour pressures 

(o) exposure of disc to acetone d6 vapour in closed 

cell (298 K, 60h) 

(p) evac iaticn (BT, Ih) 
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SPEC. 4.4 

ADSORFr'ICi d OF AC1 1E hs 7, ßi"0 A Fes, 

D20 a== SURFACE 

(a) Initial surface 

(b)-(g) adsorption of acetone hs at incrrait vapour Pressures 

(h) expos= of disc (g) to acetone vapour in a closed 

cell (298 K, llh) 

(i) adsazption of acetone N 

(j) more of dizc (i) to acetone vag in a closed 

coil (298 Y., 62h) 

(k)-(n) id arption of acatone h5 (k) 0 coc (1) 5 ßocc (rt) 2 mies 

(n) 25 Mira 

(0), (q) furthcr adsorption of cctona hG 

(p) evacuation 
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SPEC. 4.5 

AMaU ION OF A=a IE N irro A 373 K (100°C) 

D20 OXSD27ED SURTfC; E 

(a) Initial surface 

(b)-(f) adscrption of acetone N at it rozir vapow pxm- surc3 

(g) exposure of disc (f) to acetone, hG vapour in a closed 

cell (BT, 15h) 

(1) adsorption of acetone t. at ircaiirr vapour 

Fsre*urco 

(i), (k), (m) evacuation (tfl) 
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SPIT. 4.6 

ADSORPTION OF ACLTUIE d6 arrO A 673 K 

REDUCED SURFACE 

(a) Initial surface 

(b)-(g) adsorption of acetone ds at irrroaz3ing vapour pressures 

(h) evacuation (BT, lh) 
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SPEC. 4.7 

ADSCRPrIOIJ OF ACITalE d6 WT0 A BT, D20 

REDUCED SURFACE 

(a) Initial surface 

(b)-(e), (g)-(i), (k) adsorption of acetone d6 at in=easing 

vapour cr. =c3 

(f), (j), (1) evacuation (BT) 
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Spec 4.8 Adsorption of Mestyl Oxide onto a 673 K H2O Oxidized Surface 
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SPEC. 5.1 

ADSORPTION OF DE LrMCACErIC ACID OflTO A 

673 K, D20, OXEDIZID SURFACE 

(a) Initial surface 

(b)-(h), (j), (1), (n), (o) adsorption deuteroacetic acid at increasing 

vapour pressures 

(i), (k), (m), (p) evacuation (BT) 
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SPEC. 5.2 

ADSORPTION OFD TTEROr=C ID aMA 

BT, D20, CCIDIZID SURFA 

(a) Initial surface 

(b), (d), (f), (9), (i) adsorption deutcroacetic acid at ircrcasing 

vapour pressmses 

(c), (e), (h), (j) evacuation (Br) 

(k) adsc rption D20 (BI'9 Jh) and evacuation (BT, Th) 
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spec 5,2 Adsorption of Deuteroacetic Acid onto a BT NO Oxidized Surface 
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SPEC. 5.3 

ADSORITION OF DII EROACETIC ACID ONTO A 673 K, 

D20 REDUCED SURFACE 

(a) Initial surface 

(b)-(f), (h), (i), (j) adsai ption of darteroacertic acid at 

increasing vapour pressures 

(g), (k) evacuation (BT, 1h) 
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SPEC. 5.4 

Dr.. J\Ai 
1Mal OF Da TMl. =C ACID FRCH A 

OXtDIZID SURFACE 

(a) 673 K, H 20 surface after dosirr, on darteroacetic acid 

vapour and evacuatim at Br 

Evacuation: - 

(b) 463 K, 11h 

(c) 523 K, 2h 

(d) 616 K, lih 
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SPEC. 61 

ADSORFTI011 OF H DAFUJOROA=O ONTO A 

673 K, D20, OXIDIZED SURFACE 

Adcticn of hexafluc a. ̂_etone 

(a) Initial surface 

(b)-(d) irrraasirg gs cz he fluor- acctone 

Evacuation 

(e) 423 K, 3h; (f) 473 K, 4h; (Z) 543 K, 2jh; 

(h) 643 Kg 20h; 

Adsorption of D20 

(i) Exposure disc to D20 vapour WT, 21h) and 

evacuation 

Evacuation 

(j) 363 K, llh, 443 K, lh 

Msorption of D20 

(k) ExpO UrC disc to D20 vapour (473 K, 15h) and 

Evacuation (BT, lh) 
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SPEC. 6.2 

ADSORPTION OF !D , AFUJOROACETON E OUIrO A 

BT, D20, OXIDIZED SURFACE 

Alternate adsoivtion and evacuation 

(a) Initial surface 

(b) adsorption of hexifluarocetone 

(c) evacuation BT, lh 

(d), (e) adsorption hexifluor acetone 

(f) evacuation 373 K, 12h 

(g)-(j) adscrption at ircreasirz pressures of hes. fluoroacetone 

(k) evacuation 423 K, 2h 

(1), (M) adsorption at irrraasir ; pressures of hexifluamacetone 

(n) evacuation 407 K, 13h 

(o) adsorption hexiflucraacctone 

Evacuation to ramve 1580,1480 rm 
1 bands 

(p) 473 K, 2h (q) 473 K, 15h (r) 513 K, 2h Cu) 543 K, jh 

(t) 643 K, 2h (u) 543 K, Gh (v) 543 K, 2Ch 

M. sorption of D20 

(w) exposure to D20 vapam (eh) and evacuation (11h) 
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SPEC. 6.2 Camirued 

Evacuation 

(x) 473 K, 12h 

Adsorption of hesafluoroccetone 

(y) exposure to vapour 

Evacuation 

(z) 453 K, Sh 

Adsorption of D20 

(al) exposure of disc to D20 vapour (Br, jh) and 

evacuation (Br, jh) 

Evacuation 

(b1) 453 K, 2h 
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M. 6.3 

ADSORma J OF 127AMCROACM Tt a TM A 

673 K, D2D, Rl=ED SURTAE 

Adsorption of hvxif1uoroacetone 

(a) Initial surface 

(b)-(f) exposure to irrre sirs pressures 

Adsorption of D20 aid evacuation 

(g) IIT, lh (h) 473 K, 18h (i) 573 K, Ih 

Adscartion of he tfluo o cetono 

tj) cxpossure to vapour 

Evacuation 

(k) $T, lh 

Adsorption of D20 

(1) disc e ed to D20 (473 K, 16h) and cvacuatcd (BT, Ih) 
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spec 6.3 Adsorption of Hexafluoroacetone onto a 673 K Reduced Surface 
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SPEC. 6.4 

ADSORPT'IO; J OF H AFLUORO=CtIE OirrO A 

BT, D20, REDUCID SURFACE 

Adsorption of heifluomwetone 

(a) Initial surface 

(b)-(e) exposure of the disc to irxreasing vapour pressures 

Evacuation 

(f) BT, lh 

Adsorption of D20 

(g) Exposure to D20 vapour (BT, 2h) ardd evacuation (BT, lh) 

Evacuation 

(h) 588 Kg lh 

Adsorption of D20 

(i) exposure to D20 vapour (473 K, 14h) and evacuation (BT, ) 

Adsorption of he aflucroacetone 

(j) exposure of disc to vapour (BT) 

(k) exposure of disc to vapour (473 K, lh) 
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SPEC. 8.1 

ADSa yrICtl OF DIETHYL M: o rro SILICA 

Spy of Silica after 

(a) initial trca tent in flow of oxygen (673 K, 2h) 

and cvaruation. 

(b) Imcrsion in carbon tetrachloride. 

(c)-(e) Contact with increa ire eorccn tion3 of ether 

in carbon tctzachl, aridc. 

Cf)-Ch) evacuation of solution. 

(i) final surface. 
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