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ABSTRACT

The recent transition to Next-Generation Sequencing technology has acceler-

ated the growth of genome projects exponentially. This explosion includes a

multitude of species with different strains/individuals being sequenced and

made available to the scientific community. As time passes, errors in genome

assemblies are also being discovered and corrected. Biologists need to up-

date their working assembly to a newer version or to convert between dif-

ferent strains or species for comparisons. The LiftOver utility in the UCSC

Genome Browser handles these tasks with ease. Unfortunately, the choice

for yeast genome conversions is limited. Here, I extend the capabilities of

LiftOver by developing applications that generate the chain files required by

LiftOver in an efficient way. These files are then utilised by a website that

I built to allow conversion between assemblies, strains, or species of yeast

using LiftOver. Also, I used R to produce dot-matrix plots of sequence align-

ment for rapid comparative analysis of a new genome sequence.

One important aspect of genome biology is the characterisation of the

replication start sites, called DNA replication origin. Studies with confirmed

and predicted replication origin locations, specifically in budding yeast Sac-

charomyces cerevisiae, are collated in a database (OriDB). However, the struc-

ture of OriDB is complex to maintain and currently includes just a descrip-

tion of S. cerevisiae replication origins. Here, I revamp the OriDB website

and database to be future-proof so that additional studies or species can be

added to the database without difficulties and maintenance can be carried

out with ease. The database will also include data of Schizosaccharomyces

pombe replication origins.
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CHAPTER 1

INTRODUCTION

1.1 Genome Sequencing

1.1.1 History

The history of genome sequencing dates back to the year 1977 when the genome

of bacteriophage φX174 was sequenced by Frederic Sanger [1]. It was the very

first viral genome to be completely sequenced and soon after this, Andre Gof-

feau established a consortium to sequence the genome of the budding yeast [2].

Saccharomyces cerevisiae was the first eukaryotic genome to be sequenced and

published in the year 1996. Since then, extensive research on S. cerevisiae has

been carried out including the study of DNA replication, damage and repair

mechanisms [3]. Advances in yeast research have developed S. cerevisiae as a

powerful model organism in large part due to the advantages of being the first

organism with a fully sequenced genome.

All these were made possible when Frederic Sanger introduced a se-

quencing technique (Sanger sequencing) that used chain-termination methods

[4]. Sanger sequencing was more efficient compared with other sequencing

methods available during that period of time and was deemed the method of

choice. However, this technique of sequencing comes with a cost; it is expensive

and time-consuming to sequence a genome using lower throughput technolo-

gies such as Sanger sequencing. This led to demand for a cheaper and faster

solutions that could yield higher throughput, which spurred the development

1



CHAPTER 1: INTRODUCTION

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

"('!)!!!""

"('!!)!!!""

"(')!!!)!!!""

"('!)!!!)!!!""

"('!!)!!!)!!!""

#!
!'
"

#!
!#
"

#!
!*
"

#!
!$
"

#!
!+
"

#!
!%
"

#!
!,
"

#!
!&
"

#!
!-
"

#!
'!
"

!
"
#
$
%
&'
(
)'
*
%
+
(
#
%
',
&(
-%
./
0'

1
%
2
"
%
+
.3
+
4
'5
(
0/
0'

6%7&'

5(#89%/%9:'1%2"%+.%;'*%+(#%0'<0'1%2"%+.3+4'5(0/'

./01"234"536/73" 86"5369:6;"

Figure 1.1 Graph displaying two data: cost of genome sequencing which declines

over time and number of completely sequenced genomes which increases over

time. It shows the inverse correlation between the two data and that more and

more genome sequences are being published over the years.

Sources: http: // www. genome. gov/ pages/ der/ sequencing_

cost. xls and http: // www. genomesonline. org/ Gold_ Stats. xls .

of high-throughput sequencing technologies — first launched by Lynx Thera-

peutics [5]. These kind of sequencing methods, also known as Next-Generation

Sequencing (NGS), split sequencing processes into parts and execute them si-

multaneously on different processors of the machine. This enables a great quan-

tity of data to be processed in parallel [6].

With the inception of NGS, genome sequencing is becoming more ef-

ficient and cost-effective. Figure 1.1 refers to the data collected by the Na-

tional Human Genome Research Institute (NHGRI) and the Genomes OnLine

Database (GOLD) projects. NHGRI reported that sequencing costs drop each

year, but there was a drastic drop following 2007 when Sanger sequencing tran-

sitioned to NGS [7]. During this phase, there is a noticeable impact to the ex-

ponential increase in the number of genome projects in GenBank as reported

2
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CHAPTER 1: INTRODUCTION

by GOLD [8]. The explosion in complete genome projects resulted in various

prokaryotic and eukaryotic organimsms being completely sequenced. This in-

cludes various yeast species and strains.

1.1.2 Motivation

The surge of genome sequence data in recent years has resulted in a number of

challenges. The initial genome was sequenced in 1977, but GOLD had recorded

over 1,000 complete genome sequences in GenBank by the year 2010. Like-

wise, the first complete genome of an eukaryotic organism, S. cerevisiae, was

published in 1996. Since then, scientists have identified multiple errors in the

original genome sequence which have resulted in the necessity for corrections

to be made. The date when the corrections are made will be used as an identi-

fier for the altered genome assembly once it is made public. Over time, as more

errors are discovered and corrected, further genome assemblies are released.

Those assemblies are frequently used by microarray platforms and have

also been made popular by their availability at the UCSC genome browser. The

updates for genome assemblies are maintained on a regular basis by Saccha-

romyces Genome Database (SGD) curators [9]. Table 1.1 summarises the total

number of sequence updates made for each chromosome of the S. cerevisiae

reference genome. These numbers signify the frequent updates, since 1996

through 2011, to the genome assemblies. Two notable assemblies for S. cere-

visiae, with significant corrections made over the past years, are frequently used

as standards. These are the October 01, 2003 and June 28, 2008 assemblies.

Two issues arise for biologists working with those genome sequences:

(i) there are now many genome sequences available for the different strains

and species of yeast, and (ii) there are many genome assemblies for each strain,

due to the updating and correcting of assemblies (Table 1.1). Therefore there

is a demand from biologists for tools to compare different datasets between

assemblies, strains, or species. For example, they want to convert their current

working genome assembly to a new assembly to maintain an updated version.

3
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Sequence Updates

Chromosome History Total Number Last Update

I 115 2011-02-03

II 192 2011-02-03

III 705 2011-02-03

IV 63 2011-02-03

V 20 2011-02-03

VI 36 2011-02-03

VII 125 2011-02-03

VIII 33 2011-02-03

IX 9 2011-02-03

X 106 2011-02-03

XI 79 2011-02-03

XII 28 2011-02-03

XIII 13 2011-02-03

XIV 43 2011-02-03

XV 63 2011-02-03

XVI 23 2011-02-03

Mitochondrial Genome 0 N/A

Table 1.1 Summary of chromosome update history. Each of the chromosomes have

been updated frequently since 1996, with the exception of the mitochondrial

genome.

Data extracted from http: // www. yeastgenome. org/ cgi-bin/

chromosomeHistory. pl .

Genome Coordinate Systems

The raw data from genome sequences consist of nucleotide bases, usually stored

in FASTA format. These kind of data are lengthy when dealing with long se-

quences. To compact data, coordinate systems are used for recording genome

annotations (e.g. the location of genes). Sections of sequences can be repre-

sented in start-end numbering of genomic coordinates and thereby reduces data

space. One example is the BED file shown in Table 1.2. Two coordinate systems

exist in genome bioinformatics: "one-based" or "zero-based" [10]. Both conven-

tions are widely used by major genome browsers.

4
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chrom chromStart chromEnd name score strand thickStart thickEnd itemRgb blockCount blockSizes blockStarts

chr10 109957 111151 YJL164C 0 - 109957 111151 0 1 1194, 0,

chr10 111659 113327 YJL163C 0 - 111659 113327 0 1 1668, 0,

chr10 114174 115623 YJL162C 0 - 114174 115623 0 1 1449, 0,

chr10 117238 117781 YJL161W 0 + 117238 117781 0 1 543, 0,

chr10 118277 118820 YJL160C 0 - 118277 118820 0 1 543, 0,

chr10 120443 121376 YJL159W 0 + 120443 121376 0 1 933, 0,

chr10 121961 122645 YJL158C 0 - 121961 122645 0 1 684, 0,

chr10 123532 126025 YJL157C 0 - 123532 126025 0 1 2493, 0,

chr10 126586 128650 YJL156C 0 - 126586 128650 0 1 2064, 0,

chr10 128982 130341 YJL155C 0 - 128982 130341 0 1 1359, 0,

Table 1.2 An example of BED format which stores a list of annotations in chromosome 10 with their start and end locations using coordinate

system, as well as other relevant details. The inclusion of heading is optional in BED file.

5
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In this context, corrections in genome assemblies bring forth an issue.

For example, SGD had reported two major corrections in an open reading frame

(ORF) of chromosome 10 in S. cerevisiae. The affected feature (YJL159W in Ta-

ble 1.2) went through the first major correction in February 18, 2004 where 220

bases were inserted in the position 121,258 and another major correction in Oc-

tober 4, 2006 where 104 bases between the positions 120,806 and 120,909 were

substituted with a unique sequence of 182 bases.∗ That being said, whenever

there is a new version of genome assembly being published, the information

of the chromosomes will be stored in FASTA files which only contains data of

nucleotide bases; it does not include information where changes occurred in

specific locations after the corrections.

This proves to be a challenge as genomic coordinates do not automati-

cally follow the modifications of genome assemblies. These errors on a single

chromosome may accumulate and become more significant towards the end of

the chromosome sequence. When biologists need to query a specific genome

annotation, it may report the wrong sequence if they are working with differ-

ent assemblies. To overcome the problem, it is necessary to be able to convert

the genomic coordinates of one assembly to other available assemblies; correct

genomic coordinates will then yield correct genome annotations. There are sev-

eral ways of converting genome coordinates and these are described in the next

section.

1.2 Approaches to Convert Genome Coordinates

1.2.1 Sequence Alignment

Sequence alignment tools were developed to align regions with similar nu-

cleotide sequences. Various tools such as Basic Local Alignment Search Tool

(BLAST), BLAST-Like Alignment Tool (BLAT), Sequence Search and Alignment

by Hashing Algorithm (SSAHA), or MegaBLAST have their own algorithms for

∗Data observed in http://www.yeastgenome.org/cgi-bin/chromosomeHistory.pl?chr=10.

6
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CHAPTER 1: INTRODUCTION

searching alignments. Each of them are optimised for specific tasks based on

their strengths and weaknesses. BLAT, for example, is particularly useful at

aligning short-read sequences. Nevertheless, these tools can also be used to

directly search for a sequence [10]. This is achieved by extracting the DNA se-

quence from the “old” assembly (based upon the coordinates) and using this to

search (e.g. by BLAST) the new assembly. The result will include the coordi-

nates of the sequence in the new assembly. This approach of conversion is usu-

ally not difficult, but with a low throughput because everything has to be done

manually. In fact, these tools cannot cope with a single base coordinate or short

sequences because such sequences might be repeated throughout the genome.

This is the approach generally employed by the yeast genome database.

1.2.2 Rule-based Conversion

Alternatively, it is possible to write a script that includes the rules for conver-

sion. These rules are set at specific locations where the regions after the spec-

ified locations will be manipulated according to the rules. To obtain the rules,

changes need to be tracked for each update. Unfortunately, this approach is not

flexible because it only allows direct conversion from one assembly to another

as specified in the script. If there are numerous changes between the assem-

blies, it will be exhaustive to include every conversion rule as the script has to

be written manually.

1.2.3 LiftOver

The aforementioned methods to convert genome coordinates are by themselves

laborious and time-consuming. It is unwise to use those methods to convert

large datasets. Realising the problem at hand, Jim Kent came up with a tool

called LiftOver [11]. Basically this programme relies on a sequence alignment

tool to search for similarities between two sequences. These standard align-

ments are linked together to form a sequence of gapless aligned blocks, known

as chains [12]. Chains are then grouped with the highest-scoring non-overlapping

7
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chains on top of the hierarchy. This hierarchical collection of chains is known

as nets [12]. Sets of rules can then be extracted from these nets.

As such, LiftOver is the method of choice over the previous two because

of the completeness in converting genome coordinates; it is sophisticated. This

LiftOver utility is embedded in the UCSC Genome Browser and is available

for the public. It has a multitude of species that the users can select for con-

version. Despite that, the choice for yeast genomes is restricted to S. cerevisiae.

Only the October 2003 and June 2008 assemblies are provided where conver-

sion is allowed just between the two, manipulating the chromosome naming

during conversion between roman and arabic numerals (chr5 of October 2003

assembly ⇔ chrV of June 2008 assembly). In this regard, we aim to expand the

capabilities of LiftOver further so that conversions between a variety of strains

and species of yeast genome assemblies can be achieved while setting a stan-

dard in chromosome naming convention.

Originally, LiftOver makes use of two alignment tools: (i) BLAT for

same-species conversion where it is optimised for speed [13], and (ii) BLASTZ

which is more compatible for cross-species conversion [14]. However, BLASTZ

has many parametric choices and the settings can be cumbersome when deal-

ing with different sets of species. Later on, BLASTZ became obsolete when

an improved version of the programme called Local Alignment Search Tool,

blastZ-like (LASTZ) replaces it. LASTZ has two clear advantages over BLASTZ:

(i) it infers appropriate scoring parameters automatically, and (ii) it requires

much less memory to process larger sequences [15]. Because of the speed it can

achieve during the aligning process and with easier implementation for cross-

species conversion, LASTZ will be used here to substitute both BLASTZ and

BLAT.

8
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1.3 Origin of Replication

1.3.1 Background Study

DNA undergoes replication during cell division. The entire double-stranded

DNA is duplicated in all living organisms and undergoes mitosis to form two

diploid cells or meiosis to form four haploid cells. Replication initiates at spe-

cific sites in the DNA, known as replication origins. When initiated, certain

proteins target these replication origins to separate the two strands and per-

form DNA synthesis [16].

Figure 1.2 shows that the DNA replication process starts at origin sites

in a given example of circular viral chromosome. Viral chromosomes have a

single replication origin, but eukaryotes with large chromosomes are replicated

Circular viral

chromosome

EcoRl

Origin

Replication
bubble

T
im

e
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f 
re

p
li

c
a

ti
o

n

EcoRl 
restriction 
site

Figure 1.2 Illustration of DNA replication process starts at origin sites in a circular

viral chromosome, forming replication bubble which gets larger in size for the

duration of replication. The enzyme EcoRI linearises the circular chromosome.

Image courtesy of Lodish et al., [16].
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from multiple origins of replication on each chromosome to help replicate the

whole genome rapidly [16, 17].

The importance of DNA replication requires mechanisms of tight reg-

ulation to avoid genomic instability. Errors in DNA replication may occur

nonetheless, and these can lead to diseases. Hence understanding where repli-

cation origins are located is key to truly understanding genome integrity [18].

1.3.2 Database

S. cerevisiae was first sequenced in 1996 and since then, it is well studied and has

become a powerful model organism. S. cerevisiae is highly suited for the study

of replication origins because of its characteristics. A number of studies have

mapped the locations of replication origins and these different studies provide

complementary information. These datasets were collated to produce a single

list of replication origin locations. To allow viewing of these collated datasets,

OriDB was built and made publicly available in 2006.

OriDB acts as a repository that stores confirmed and predicted S. cere-

visiae DNA replication origin locations [19]. Presented information about repli-

cation origins include genomic location and chromosome state of origin sites,

origin replication time, DNA sequence of origin elements, free energy required

for stress-induced DNA duplex destabilisation (SIDD), and phylogenetic con-

servation of sequence elements [19]. All these can be viewed through the OriDB

website (http://www.oridb.org/) in text or graphical formats where relevant.

With the recent explosion in genome projects due to NGS, many differ-

ent yeast species are being sequenced and extensively studied to gain valuable

insights into particular biological phenomena. Another well studied example is

the fission yeast Schizosaccharomyces pombe which is also widely used as a model

organism. Several studies have mapped the locations of replication origins for

S. pombe [20]. At present OriDB only provides origin data for S. cerevisiae. There

is a need for OriDB to include origin data for S. pombe and perhaps some other

species in the future. As the number of studies increases, OriDB will also need

10
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an efficient way to incorporate new studies so that new information can be dis-

played in the OriDB website.

1.4 Aims and Objectives

Yeast is an important organism for in-depth study in the field of molecular

biology. Biologists will need sophisticated techniques to allow conversion of

genome coordinates between different assemblies for update purposes, or be-

tween different strains or species for comparison purposes. LiftOver from UCSC

browser does this job, but without much support for yeast genomes. That gives

us the opportunity to expand LiftOver’s capability further with modest modifi-

cation specifically for yeast genomes. The objective is to build a website which

brings the customised LiftOver utility online.

Secondly, we intend to redesign the OriDB website so that more species

can be implemented in the future. The design has to be as generalised as possi-

ble because this allows new studies or species to be added easily without jeop-

ardising the database. Besides aiming for future-proof, redesign of the web

interface to improve usability is also beneficial to cater a wider user base. Ul-

timately, the codes are rewritten from scratch instead of reusing the previous

codes to impose a clean coding structure. A better structure means that main-

tenance or future enhancements will be easier to perform.

The next chapter describes the necessary steps needed to execute the

two objectives as mentioned. The resulting LiftOver implementation is demon-

strated in Chapter 3 whereas Chapter 4 describes the outcome of the revamped

OriDB.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Tools for Genome Coordinates Conversion

2.1.1 Platform

The platform used is a local Mac OS X Server. Only those who are in the uni-

versity network have the privilege to use the LiftOver tool implemented on

the server. With Macintosh being a Unix-based operating system, Unix shell

commands are being used extensively in our programme. Common Gateway

Interface (CGI) is used for input and output of data to a web browser, in which

the web server software delegates the generation of web pages for data output

to CGI scripts.

2.1.2 Dataset

FASTA files, which contain sequence as nucleotide bases, are used as data input

for the creation of chain files. Chain format describes a pairwise alignment that

permit gaps in both sequences concurrently. The purpose of a chain file is to

map from one assembly to another assembly with the input files of one of the

given format: BED, GFF/GTF, GenePred, or Genomic Coordinate Position.∗

∗Details for each of the file formats are described in http://genome.ucsc.edu/FAQ/

FAQformat.html.
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2.1.3 External Tools

I utilised Jim Kent’s source from UCSC Genome Browser which contains a

whole set of biological analysis and web display programmes [11]. Only a mi-

nor fraction of the entire source tree was required. The following subsection

describe the installation stage and procedures to operate the necessary tools.

Installation

Several tools are required to generate LiftOver chain files and each of them is a

separate application which needs to be installed properly. The following steps

serve as a guideline for the installation process which adhere to the comprehen-

sive manual available in the source itself.†

i. The source is downloaded from the UCSC Genome Browser available at

http://hgdownload.cse.ucsc.edu/admin/jksrc.zip and it requires a GNU

gcc compiler to compile C codes.

ii. The environment variable MACHTYPE should exists on Unix systems. To ob-

tain the MACHTYPE value, type the following command in the terminal:

uname -p

If needed, assign the value to this variable in the shell environment:

MACHTYPE=i386

The value should be a short non-hyphenated name of the machine type

(e.g. i386, i686, x86_64, alpha, or sparc).‡

iii. A subdirectory is created in bin of the home directory with the name de-

pending on the MACHTYPE value:

†Also available at http://hgwdev.cse.ucsc.edu/~kent/src/unzipped/product/README.

building.source.
‡Note that the current system gives the uname value of i386, this will be used throughout.
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mkdir -p ∼/bin/i386

Throughout the build, binaries will be moved to this subdirectory.

iv. MYSQLINC and MYSQLLIBS environment variables are assigned depending

where MySQL is installed in the system:

MYSQLINC=/usr/local/mysql/include

which directs to the MySQL include files, and

MYSQLLIBS=‘/usr/local/mysql/lib/libmysqlclient.a -lz’

which directs to the libmysqlclient.a library and any other libraries needed

to connect network applications.§

v. A directory named jksrc is created and the source file is uncompressed in

this directory. This creates the source hierarchy ./kent and the src direc-

tory lies within. The following command is entered in the src directory

which builds the libraries:

make libs

This results in the libraries being built from the source directories:

• jkweb.a compiled from kent/src/lib

• jkOwnLib.a compiled from kent/src/jkOwnLib

• jkhgap.a compiled from kent/src/hg/lib

• jkhpap.a compiled from kent/src/hg/protein/lib

§Additional options required for libmysqlclient.a in different systems: ‘-lxnet’ for Alpha,

‘-lsocket -lnsl’ for Solaris, and ‘-lsocket -lnsl -lresolv’ for SunOS.

14
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Those lib.a files are moved to kent/src/lib/i386.

vi. For any particular tool that needs to be installed, go to the directory of the

required tool and run:

make

The resulting executables will be placed into ∼/bin/i386. Associated di-

rectories for the required tools can be found in Appendix A.1.

2.1.4 Development

Most of the programmes are written in Practical Extraction and Report Lan-

guage (Perl 5) due to its powerful text processing facilities and strong integra-

tion with the BioPerl modules. Furthermore, Perl can make use of Unix utili-

ties allowing the usage of UCSC tools. The programme written specifically for

liftOver function was placed in /Library/WebServer/CGI-Executables of the

server which takes up the role of a stand-alone CGI script.

A website was built to bring the custom liftOver facility online. For web

development, scripting languages are incorporated in HyperText Markup Lan-

guage (HTML5) web pages. PHP: Hypertext Preprocessor (PHP 5.3) was used

for server-side scripting to produce dynamic web pages, whereas JavaScript

was used for client-side scripting to add interactivity in HTML pages. jQuery,

a fast and concise JavaScript Library, handles and simplifies event handling as

well as Ajax interactions.

2.1.5 Analysis

To perform comparisons between genome sequences, graphical techniques can

be used to visualise quantitative data. R64 version 2.13.0 is used to plot graphs

of the sequence comparisons by aligning two genome assemblies. Perl pro-

grammes are written to generate LASTZ output with the rdotplot setting. This

15
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setting outputs files compatible with R and this allows the assignment of data

generated by LASTZ into variables in R. The graphs plotted by R can be in

Portable Document Format (PDF), Portable Network Graphics (PNG) or Scal-

able Vector Graphics (SVG) format. The plot diagrams produced are shown in

Section 3.7.

2.2 Database for DNA Replication Origin

2.2.1 Platform

A prototype of the OriDB web interface is being developed through the Uni-

versity of Nottingham’s Granby server with SunOS 5.9 operating system. We

were allocated a workspace on the server to test the prototype websites for S.

cerevisiae and S. pombe.¶ After completion, the website was then ported and

deployed externally to the actual server (http://www.oridb.org/) to bring it

online for public access.

2.2.2 Dataset

The materials involved consist of FASTA files of the associated genomes: S. cere-

visiae and S. pombe plus lists of origin locations from various studies. These files

contain data of nucleotide bases which allow the calculation of whole genome

length, length for certain sequences, and to extract sections of nucleotides to

view.

2.2.3 Development

Although there is an existing OriDB site established five years ago which is

still functioning to date, unfortunately the current website is perplexed in code

structure and difficult to maintain. The codes do not comply with the pro-

gramming standards and therefore add complications when new functions or

¶Workspace allocated is available at http://www.nottingham.ac.uk/plzcnlab/.
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genomes are to be incorporated.

As such, the current website is to be revamped with good coding prac-

tice in mind such that the codes adhere to professional programming standards.

PHP is used for server-side scripting and jQuery is used for client-side scripting.

In addition, HighCharts JS is utilised to generate graphical view of chromosome

data, replacing the old viewer which uses Adobe Flash.

2.2.4 Database

Many of the interactions come from data retrieval of the database. The existing

database consists only a single table with all the data in it. In consequence, it is

extremely hard to maintain when new data is to be added, given that the single

table contains numerous fields. An overly complex data table is prone to errors

when all the information is cluttered in one table.

To improve the database, normalisation is performed to partition the

single table into several tables, hence minimising redundancy. Structured Query

Language (MySQL) is used as a relational database management system. Database

design is done with MySQL Workbench and the entity-relationship diagrams

(ERDs) are illustrated in Section 4.3.1.
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CHAPTER 3

CONVERSION AND COLLATION

BETWEEN GENOME ASSEMBLIES

3.1 Brief Description

Frequently, biologists need to map from one assembly to another and they re-

quire a way to do this task. Three approaches are known to convert genome

coordinates: by using sequence alignment tools, to write Perl scripts for rule-

based conversions, and by using the LiftOver utility provided by the UCSC

Genome Browser (see Section 1.2). LiftOver turns out to be superior over the

other two methods, thus it became the norm in terms of assembly-assembly

mapping. In some cases, the scientific community might notice some limi-

tations in the LiftOver online utility in that it lacks the required assembly to

map for a particular genome, or some organisations just want to incorporate

the LiftOver utility to their projects or browsers but do not need the complete

package. As a result, tools similar to LiftOver have been spawned, specialising

in certain tasks.

3.2 Related Work

The UCSC Genome Browser LiftOver utility pioneered the translation tool for

genomic coordinates conversion between assemblies [11]. They provide online

service as well as downloadable LiftOver executable and Perl scripts that auto-
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mate the generation of chain files using the chains and nets algorithm. These

chain files act as a dictionary that contains all the necessary rules to map be-

tween assemblies. Other existing tools that also provide similar services are

described in Table 3.1.

For instance, Galaxy is one of the website that fully incorporates UCSC’s

LiftOver utility. It acts as a platform that merges existing genome annotations

databases into a single portal [21]; one of them is the UCSC Genome Browser.

Likewise, Galaxy’s Lift-Over utility allows the conversion of many genomes

but with the exception that it requires users to import UCSC genome data man-

ually from the portal. On the other hand, NCBI Coordinate Remapping Service

resembles UCSC’s LiftOver whereas Ensembl’s Assembly Converter and Fly-

Base Sequence Coordinates Converter provide a minimalistic web interface for

simple usage. These three deal with specific genomes only, unlike the long list

of available genomes provided in UCSC Genome Browser.

As an alternative, Perl scripts that allow conversion are available via

the internet. Ensembl’s AssemblyMapper.pl is similar to its online counterpart

and suited for larger datasets, but still limited to human and mouse genome

assemblies. convert_yeast_genome_version.pl by biotoolbox is the only util-

ity available besides LiftOver that supports conversion between yeast genome

assemblies. However, it implements the rule-based conversion approach that

renders the utility inflexible; every time an additional assembly is required for

conversion, the developer has to know how to map from one assembly to that

particular assembly precisely and enforce the rules manually in the script. This

approach is time-consuming while adding complexities to the code.

UCSC’s LiftOver remains the ultimate solution due to its power, speed,

and flexibility. For the yeast genome however, LiftOver is only able to convert

from October 2003 to June 2008 assembly of S. cerevisiae or vice versa. This is

because the yeast genome is not part of the focus of the UCSC Genome Browser

and therefore there is a lack of datasets. To expand the number of assemblies

available for yeast genome assemblies, it is better to have an in-house LiftOver
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Site Genomes Online Service URL Citation

UCSC 53 available genomes LiftOver http://genome.ucsc.edu/cgi-bin/

hgLiftOver

[11]

Galaxy Follows that of UCSC. Lift-Over http://main.g2.bx.psu.edu/ [21]

NCBI Mus musculus, Bos taurus, Homo sapiens NCBI Genome Remapping Service http://www.ncbi.nlm.nih.gov/genome/

tools/remap

[22]

Ensembl Homo sapiens, Mus musculus Assembly Converter http://www.ensembl.org/Homo_

sapiens/UserData/SelectFeatures

[23]

FlyBase Drosophila melanogaster FlyBase Sequence Coordinates Converter http://flybase.org/static_pages/

downloads/COORD.html

[24]

Source Perl Script Description

UCSC http://hgwdev.cse.ucsc.edu/~kent/src/unzipped/hg/utils/

automation/doSameSpeciesLiftOver.pl

Automates same-species chain file creation using BLAT. Optimised for

speed but incompatible with cross-species conversion.

UCSC http://hgwdev.cse.ucsc.edu/~kent/src/unzipped/hg/utils/

automation/doBlastzChainNet.pl

Automates cross-species chain file creation using BLASTZ. Requires

appropriate settings depending on the distance between species.

Ensembl ftp://ftp.ensembl.org/pub/misc-scripts/Assembly_mapper_1.

0/AssemblyMapper.pl

Map slices from old assemblies to the latest assembly. Deals with larger

datasets as compared with its web service (Assembly Converter).

biotoolbox http://code.google.com/p/biotoolbox/source/browse/trunk/

scripts/convert_yeast_genome_version.pl

Rule-based conversion with the conversion rules being hard-coded in

the script with limited set of assemblies.

Table 3.1 An overview of LiftOver and its related tools. The upper portion of the table lists the available online services for conversion between

assemblies of given genomes, whereas the lower portion of the table describes the available Perl scripts for ready-made in-house conversion.
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utility; the LiftOver executable can be downloaded or compiled manually, and

necessary chain files can be generated using a series of tools from Jim Kent’s

source.

doSameSpeciesLiftOver.pl and doBlastzChainNet.pl automate chain

file creation and are downloadable from UCSC Genome Browser. In spite of

that, these scripts come with a multitude of module dependencies with the us-

age of the legacy BLASTZ or the less flexible BLAT. Due to the complexity of

the codes, it is unwise to customise those scripts to our requirements. As such,

we attempt to build our personalised LiftOver online utility that deals primar-

ily with yeast genome, encompassing those further away from the phylogenetic

tree. The following sections show the stages involved to implement the gener-

ation of LiftOver chain files, the web interface for the utility, and additionally

the analysis for genome comparisons.

3.3 Procedure

A series of operations has to be conducted in order to generate a single chain

file.∗ The actions listed below are fundamentally Unix shell commands. In

essence, target denotes the original genome build, whereas query denotes the

new genome build.† Refer to http://genome.ucsc.edu/FAQ/FAQformat.html

for further descriptions of the data file formats involved.

i. FASTA files from the query genome build are partitioned into several chunks,

each with 3000 bases which will be stored in one file. Output is specified in

.lft file format which stores information on how to reconstruct the genome

sequence from these fragments.

∗Adapted from: http://genomewiki.ucsc.edu/index.php/Minimal_Steps_For_LiftOver.
†T and Q after input or output indicate that target or query side is to be placed in particular.

@ before input or output symbolises an array.
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faSplit -lift=outputQ.lft size inputQ.fa -oneFile 3000 outputQ

ii. A list of sequences from FASTA files is gathered and all the information of

these sequences are stored in .2bit file. This single file acts as a database for

multiple DNA sequences.

faToTwoBit @input.fa output.2bit

iii. Information about sequence lengths in a .2bit file is retrieved and stored in

chrom.sizes file which is required in step viii.

twoBitInfo input.2bit output.chrom.sizes

iv. Query sequence is aligned with the whole target sequences using LASTZ.

–notransition and –step=20 lower the sensitivity level, hence reducing

runtime and memory consumption. –nogapped removes the computation

of gapped alignments. These settings speed up the alignment process. Out-

put is the pairwise alignment format (.axt).

lastz inputT.2bit[multiple] inputQ.fa –notransition –step=20

–nogapped –format=axt > output.axt

v. Coordinates of an axt alignment file are converted to the parent coordinate

system where the query side is lifted rather than the target side. The lift

specification for query build is used to generate merged and lifted .axt files.

liftUp -axtQ output.axt inputQ.lft warn inputT.axt

vi. Alignments are chained together at this stage. In the chaining process, two

neighbouring alignments which correspond are merged into a single frag-

ment if they are evenly matched [12]. The minimum score for chain is set to
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1000 by default where the higher-scoring chain tends to be syntenic. As for

the linear gap cost, ‘medium’ is used in the case of same species conversion,

while ‘loose’ is intended for cross-species conversion.‡

axtChain -minScore=1000 -linearGap=<medium|loose> input.axt

inputT.2bit inputQ.2bit output.chain

vii. Sorted chain files are combined into a larger sorted file, piped into another

function which takes as input the larger sorted file, and then chains are

partitioned by target or query sequences to the output folder.

chainMergeSort *.chain | chainSplit outputFolder stdin

viii. In the netting process, alignment nets are formed by grouping blocks of

chained alignments into a hierarchy, sorted to begin with the highest-scoring

non-overlapping chains [12]. The output for a target-centric net in query

coordinates is ignored since the reciprocal nets are symmetrical.

chainNet input.chain inputT.chrom.sizes inputQ.chrom.sizes

outputT.net /dev/null

ix. Ultimately, a chain file is created which derived from subset of chains in

net.

netChainSubset inputT.net input.chain output.chain

x. The LiftOver chain file will be usable with a BED file as the default format.

‡<medium|loose> denotes an option to select between medium or loose.
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liftOver input.bed input.chain output.bed unmapped

3.4 Chain File Creation

To automate this overly complex process, I wrote a Perl script to manage the

procedure. Subroutines are defined for each operation to allow sets of instruc-

tions to be performed in order.§ Figure 3.1 illustrates the inputs required for the

Perl script liftOverChainCreation.pl, intermediate processes involved dur-

ing runtime, and the resulting output which is the chain file. Those processes

are performed sequentially with a certain loop count depending on the number

of FASTA files, where each FASTA file represents each individual chromosome

sequence of a genome.

Likewise, liftOverChainCreation.pl automates the working units pre-

cisely and therefore encapsulates the intermediate processes from the user. It

directly generates the chain output for the user, requiring merely two genome

builds of FASTA format for input and the necessary tools to perform the pro-

cesses; no extraneous dependencies are involved. For convenience, the script

can be used as follows:

liftOverChainCreation.pl

or

liftOverChainCreation.pl -i inputT outputQ

where the first method allows users to input the required information when

prompted. The -i flag in second method opens up an option to directly input

§Instructions are based on http://hgwdev.cse.ucsc.edu/~kent/src/unzipped/hg/doc/

liftOver.txt, but with modest modification.
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faSplit lastztwoBitInfo

liftUp axtChain

chainNet netChainSubset

faToTwoBit

liftOverChainCreation.pl

Target Assembly

Query Assembly

Chain File

Intermediate processes

Managed by Perl script

chainMergeSort | chainSplit

n

1

n

n n n

n n

cat (concatenate chains)

Figure 3.1 Subroutines for chain file creation. n represents the execution count for

each subroutine depending on the number of FASTA files of a genome build (i.e.

the chromosome number). faToTwobit and twoBitInfo are performed twice

in total, once for each genome.

the information for both target and query assemblies into the arguments, al-

lowing the script to be embedded in another script. These assemblies should be

stored in the directory ∼/bin/fastaFiles because the script is programmed to

search in that specific location.¶

An assembly consists of a directory containing the associated FASTA

files of a genome, with the name of the directory corresponding to the name of

the assembly. In this case, we established a nomenclature in which the name is

divided into three sections; first is the species, followed by strain, and ending

with the assembly date. For example:

¶The script sets the directory ∼/bin/fastaFiles to locate genome assemblies with FASTA

format as well as ∼/bin/chainFiles to store chain files for convenience. Users have to modify

the codes if they want those files to be located elsewhere.
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sacCer_REF_20080628

refers to S. cerevisiae of the reference genome (strain S288c) with 28 June 2008

assembly build. The name for the chain files depend on the names of the as-

semblies:

sacCer_REF_20031001_-_sacCer_REF_20080628.over.chain

refers to the chain file that maps S. cerevisiae of the reference genome with 01 Oc-

tober 2003 assembly build to S. cerevisiae of the reference genome with 28 June

2008 assembly build. The generated chain files will be stored in the directory

∼/bin/chainFiles.

3.5 Batch Chain File Creation

Despite liftOverChainCreation.pl being able to create chain files, it produces

only a single chain file at a time. It will be time-consuming to use this script

to generate large number of chain files. For n genome assemblies, it must be

run n × (n − 1) times to cover each and every available genome assemblies

along with reverse conversions. Therefore the number of runs needed will grow

exponentially as the number of genome assemblies increases linearly. As shown

in the left of Figure 3.2, liftOverChainCreation.pl alone cannot cope with the

vast number of genome assemblies.

To harness the capability of liftOverChainCreation.pl, another Perl

script was written to utilise liftOverChainCreation.pl and augment the abil-

ity to generate chain files in batch. liftOverMultiChain.pl automates the pro-

cess and does the job thoroughly; it searches all the genome assemblies in the

directory ∼/bin/fastaFiles and checks whether the chain files of any two

genome assemblies for forward and reverse conversions exist in the directory

∼/bin/chainFiles. If a chain file exists for two given genome assemblies in

∼/bin/fastaFiles, it skips the process and checks the subsequent assemblies,

otherwise liftOverMultiChain.pl will call liftOverChainCreation.pl which
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S. cerevisiae, 
REF, 01/10/2003

S. cerevisiae, 
REF, 28/06/2008

S. cerevisiae, 
W303, SGRP

S. cerevisiae, 
REF, SGRP

S. arboricolus, 
MOD, 23/03/2011

liftOver chain 
function

S. cerevisiae, 
REF, 01/10/2003

S. cerevisiae, 
REF, 28/06/2008

S. cerevisiae, 
W303, SGRP

S. cerevisiae, 
REF, SGRP

S. arboricolus, 
MOD, 23/03/2011

liftOver chain 
function

S. cerevisiae, 
REF, 01/10/2003

S. cerevisiae, 
REF, 28/06/2008

S. cerevisiae, 
W303, SGRP

S. cerevisiae, 
REF, SGRP

S. arboricolus, 
MOD, 23/03/2011

(accidentally removed)

(new genome 
assembly)

Figure 3.2 Schematic representation of applying LiftOver to genome assemblies.

Left: liftOverChainCreation.pl is capable of generating a chain file for any given assembly comparison. A set of genomes with

different assemblies, strains, and species exist in the directory.

Middle: Batch output of chain files with the help of liftOverMultiChain.pl utilising liftOverChainCreation.pl. Every genome

assembly are linked to one another in both directions after running the programme.

Right: Ability of liftOverMultiChain.pl to process recently added genome assemblies or to recreate chain files that have been

removed, whilst skipping the process when a particular chain file exists. This potentially reduces the computational time.
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in turn performs all the subroutines to generate that chain file.

The automation of liftOverMultiChain.pl is demonstrated by the mid-

dle and right of Figure 3.2 where every genome assemblies will be accounted

for in the generation of chain files. Since existing chain files do not need to be

created again, this greatly reduces computational time. Whenever new genome

assemblies are added to the folder or if one of the chain files is removed, run-

ning the programme once will automatically produce those chain files. On top

of that, it is fairly simple to run the programme, require only the script in the

working directory and the user to enter the following to the command prompt:

liftOverMultiChain.pl

3.6 Web Interface

To provide the LiftOver utility where users can access the service easily, a user-

friendly website was developed (University of Nottingham access only: http:

//128.243.182.148/~siow/liftover/). The website proves to be simple yet

effective in delivering the service. Figure 3.3 demonstrates two web pages for

the site; the top illustrates the page for input which redirects to the page for

output represented at the bottom.

For the input page, users are given two rows of options; target and

query assemblies, each with three fields to choose from. The first field denotes

the available species to choose from, followed by the available strains for the

selected species, and finally the assemblies for that particular strain. The op-

tions are automatically generated based upon the chain files available. Users

paste the data for target assemblies into the text box provided or upload the

file if they so choose. The advanced tab permits the users to further configure

how the LiftOver works to suit their preference. The configurations imitate that

which UCSC Genome Browser has to offer [11].

Instead of giving a whole list of genome assemblies in one field, three
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Figure 3.3 Screenshots of liftOver website.

Top: Home page where the user selects the target and query genome

assemblies as well as to paste or upload data input for the assembly to be con-

verted. The advanced tab allows the user to configure the conversion settings.

Bottom: Results page displaying the converted coordinates of a given

genome assembly. User is able to download the output as .txt file or to view the

unmapped regions for the conversion.
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fields of categories are designed to minimise the selection from each of the lists.

The following fields are disabled unless the option for the current field is se-

lected and the choice for each subsequent field depends on the options chosen

formerly. These greatly enhance the usability of the selection whereby each

category is easily distinguished from one another and the option lists remain

concise depending on the chain files available.

Once inputs are set and submitted, the web server redirects the data to

a specified CGI script for processing. The script then processes the incoming

data and perform LiftOver. The whole operation is hidden from the users and

they will be redirected to the results page. On the results page, the converted

genome coordinates are displayed in the uneditable text box for viewing. Users

are able to download a coordinates file with the format being decided during

input. Furthermore, the unmapped regions which the LiftOver might produce

can also be downloaded as per users choice.

3.7 Visualising Comparisons

As a sequence alignment tool, LASTZ has the potential to produce data for

analytical purposes besides utilising LASTZ’s output to generate chain files.

Two genome sequences were aligned using LASTZ and the alignment data was

passed to R for processing. R is capable of plotting graphical displays of data.

For that reason, I used R to generate dot-matrix plots of the alignments for

further sequence analysis.‖

Dot-matrix plots are useful for determining shared regions between two

large sequences to identify certain features. To construct a dot-matrix plot, the

S. cerevisiae and S. arboricolus genome sequences are placed in the x and y axis

of a two-dimensional matrix, respectively. A dot is plotted for any region with

two identical nucleotides. LASTZ’s output from aligning S. cerevisiae and S.

‖Another existing programme (Dotlet) also draws dot plots using different matrices [25].

Dotlet is available at http://myhits.isb-sib.ch/cgi-bin/dotlet and requires Java plug-in

to run, but I wrote our own programme instead to produce graphs that suit our requirement.
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arboricolus genome sequences will have this data for plotting. The dots plotted

as a single diagonal line along a region shows that two sequences are closely

related and a backward slash means that the sequence from y axis is on the

reverse strand relative to the sequence on the x axis. In addition, the red grid

lines in the plot represent the chromosomes in ascending order.

S. arboricolus is a close relative of S. cerevisiae and belongs to the Sac-

charomyces sensu stricto group of yeasts [26]. The genome of S. arboricolus was

sequenced at the Next-Generation Sequencing Facility (DeepSeq) at the Univer-

sity of Nottingham using Roche 454 pyrosequencing. To assess the quality of

the various assemblies of the sequenced S. arboricolus genome, we compared

each assembly to the S. cerevisiae genome sequence by analysing the dot-matrix

plots produced by R.

Figure 3.4 illustrates the graphs plotted for genome sequences of S. cere-

visiae aligned to S. arboricolus. The reference genome of S. cerevisiae (the as-

sembly from 28 June 2008) was used as a base to compare with S. arboricolus

genome. For the top of the figure, the S. arboricolus genome with 23 July 2010

assembly was used for comparison as a control. By analysing the dot-matrix

plot, anomalies were detected in that assembly; chromosome 14 of S. cerevisiae

is broken into two scaffolds in S. arboricolus. Moreover, chromosomes 12 and

14 of S. cerevisiae are fused into a single large scaffold in S. arboricolus. These

anomalies mean that errors were discovered in that genome assembly.

The DeepSeq facility has generated ten different S. arboricolus genome

assemblies by combining different sequencing runs and setting different pa-

rameters for the assembly software (using Newbler 2.3). After comparing all of

them to S. cerevisiae reference genome, one of the ten genome assemblies was

found to exhibit no anomalies. This particular S. arboricolus genome assembly

“combined_R_2009_10_06_R_2010_03_ 29_R_2010_05_28.454Scaffolds” was set

as a new assembly (23 March 2011). The bottom of Figure 3.4 represents the dot-

matrix plot for this build. Refer to Appendix A.2 for a complete set of the ten

comparisons.
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Figure 3.4 Dot-matrix plots for sequence alignment between S. cerevisiae and S.

arboricolus. The dots other than the aligned sequences are the recurring noises

and can be ignored.

Top: The older assembly of S. arboricolus shows the fusion of chromo-

somes 12 and 14 of S. cerevisiae into one large chromosome in S. arboricolus.

Also, chromosome 14 in S. cerevisiae is broken into two in S. arboricolus.

Bottom: The new assembly of S. arboricolus shows no signs of fusions

or broken chromosomes.
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Figure 3.5 Dot-matrix plot for sequence alignment between S. cerevisiae and the

modified S. arboricolus genome sequence assembly. The matrix shows a fairly

straight line along the main diagonal indicating that the two sequences are

closely related, with the exception of the reciprocal translocation in chromo-

somes 4 and 13. Any anomalies can be detected easily when a line does not

follow the main diagonal and is plotted in other regions.
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We renamed the scaffolds of S. arboricolus to follow the chromosomes

of S. cerevisiae that shares the homologous sequence. For example, scaffold 3

of S. arboricolus was aligned with chromosome 1 of S. cerevisiae, thus scaffold 3

was reverse complimented (because it was a reverse strand), and then renamed

to chr1. The same process was repeated for each of the S. arboricolus scaffolds

that linked with S. cerevisiae chromosomes and the rest of the scaffolds with

sequences small in length were numbered (all <10kb and representing repeat

sequences). This modification aids in species comparisons, hence the ‘MOD’

under the strain category to follow the nomenclature that we had set. The result

of modification is shown in Figure 3.5.

The alignment between S. cerevisiae and the modified S. arboricolus shows

that the two genomes are mostly syntenic represented by a fairly straight diag-

onal line across the dot-matrix plot, with the exception of the reciprocal translo-

cation between chromosomes 4 and 13 that has been confirmed experimentally

through laboratory tests. The second-half portion of chromosome 4 is shifted to

chromosome 13 and the same goes for the second-half portion of chromosome

13. No anomalies were detected in the new assembly and this validates the re-

sult. This technique makes use of the sequence alignment tool to generate data

for the dot-matrix plots produced by R and allows for rapid analysis of a new

genome sequence.
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DNA REPLICATION ORIGIN

DATABASE

4.1 Brief Description

Many studies have mapped the replication origin sites of S. cerevisiae which pro-

vide complementary information. It is advantageous to be able to view all of

these datasets at a single location. OriDB was developed to collate all the rele-

vant studies of replication origins, curate and store the datasets in the database,

and ultimately to display meaningful information through a website. However,

the website was developed five years ago, and is hard to maintain and expand.

There is a need to update both the website and database to accommodate new

studies and to support more species. As a result, I attempt to enhance OriDB.

Prototype websites were developed through a test server before being ported

to the actual server with the URLs as shown in Table 4.1.

Species Test Server Actual Server

S. cerevisiae http://www.nottingham.ac.uk/

plzcnlab/oridb/cerevisiae/

http://cerevisiae.oridb.org/

S. pombe http://www.nottingham.ac.uk/

plzcnlab/oridb/pombe/

http://pombe.oridb.org/

Table 4.1 URLs for development and deployment of OriDB. Websites for both S.

cerevisiae and S. pombe were developed in the provided test server. The com-

pleted websites were then deployed in the actual OriDB server.
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4.2 Literature Review

Various biological databases were established to provide a set of services. They

are the libraries that store life sciences information collated from published liter-

ature, and provide information retrieval through the website for analyses. With

the rapid technological advancements in this modern era, there is a paradigm

shift in the domain of biological databases [10]. New technologies including

NGS are the cause of overwhelming biological data and there is a need to cater

for all the varying data types generated by biological research in different fields.

This explains the availability of 1330 online databases in total that are

featured in the current Nucleic Acids Research (NAR) annual database issue along

with 96 new databases and 83 database updates, as well as a new forum for bio-

logical databases and curation being established (DATABASE) [27, 28]. The re-

cent redesign of RCSB Protein Data Bank (PDB) website and web services serve

as an exemplar of a database update with several enhancements, new features,

and improved usability to accommodate a wider community [29].

4.3 Database Design

4.3.1 Database Model

A poorly structured database can be error-prone. The current database for

OriDB comprises only a single table containing a large number of data columns

(Figure 4.1). When adding data into a particular field of the table, correspond-

ing data must be added for all the other fields. These data can be represented

by null values depending on the criteria set upon each field, but the entire row

must be populated nonetheless. This kind of table introduces redundancy and

is expressed in terms of functional dependencies. Redundant data leads to var-

ious subtle, but significant problems: insert, update, and delete anomalies [30].

Such organisation of data is in fact prone to error as further data is added.

These data could potentially constitute valuable information for knowl-
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Figure 4.2 ERDs of the new S. cerevisiae OriDB database system (simplified for

compactness). Data are categorised in tables to have an organised structure of

the database. Data from ‘local_pubmed’ will be shared whenever new species

has been added.

edge extraction and a database with an organised storage of data is mandatory

in data mining [28]. To achieve a well-structured database, instead of using just

a table to catalogue all of the data, the solution is to normalise the database.

Database normalisation involves partitioning large tables into smaller less re-

dundant tables while imposing relations between them. These relations set

the criteria to link data from different tables. Here we adopt the relational

approach of modelling (entity-relationship modelling or ERM) to build a re-

lational database management system (RDBMS).

During the modelling process, entity-relationship diagrams (ERDs) were

generated as a blueprint for the design. Figure 4.2 shows the relationships be-

tween tables using Crow’s Foot notation. Relationships are associated among

these tables so that data are interconnected between linked tables. The purpose

is to allow the propagation of data to all the tables via the defined relationships

when data is added, deleted, or updated in one of the tables [30]. Maintenance
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on OriDB can then be performed without difficulties using the ERM approach.

The produced ERDs (Figure 4.2) represent the current version of the database;

in the future, further tables can be added as more studies published and cu-

rated. Refer to Appendix B.1 for a comprehensive view of the entities with

their attributes.

4.3.2 Information Retrieval

The ‘local_pubmed’ table (in Figure 4.2) stores information about publications

relevant to the studies curated in the OriDB website. New references are needed

when adding new studies to the database and these references are automati-

cally retrieved from PubMed. As an added function, OriDB stores these refer-

ence data in the database. Whenever a user visits a reference, OriDB retrieves

the data from ‘local_pubmed’ via PubMed ID associated to that reference. If the

PubMed ID data is not available locally, it is extracted directly from PubMed

and stored locally for future use. References need to be downloaded only once

and any future visits will retrieve the references locally. This helps minimise the

downtime when loading the references in OriDB; it is faster to load data locally

rather than to download from PubMed each time for display.

4.4 Website Design

A website with strong foundation relies on the initial design. To totally revamp

the website, code from the previous OriDB was not be reused; my intention

was to develop OriDB from scratch. Most of the functionality remains however

so that users of the existing OriDB will have a familiar experience but with the

increased quality of the new OriDB. Even so, OriDB will continue to evolve

step-by-step through feedback from the users.

Future-proofing is desired for OriDB in the sense that new studies can

be displayed swiftly when added to the database, or new species can be incor-

porated to the website with ease. This is the long-term vision of OriDB to allow
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Figure 4.3 Screenshot of OriDB’s new website displaying its main page. It is vi-

sually easy on the eyes and simple to navigate through the web pages. The

ORGANISMS link will lead the users to a list of available species and the se-

lected species will show its name on the top left corner of every page.

the website to accommodate such expansion with the advancement of replica-

tion origin research. To benefit from the idea of future expansion, OriDB needs

to be designed in such a way that the website can manage new data without

trouble. Whenever new data is added to the database, the revamped OriDB

will automatically include the new data and thus display that information in

the appropriate web pages.

Furthermore, the layout of the website has been redesigned to increase

readability and usability. Usability is vital in navigating the web pages and

having a user-friendly interface is therefore crucial. Web links are planned ac-

cordingly to lead the users to the most relevant information. Figure 4.3 displays

the main page of OriDB where users have access to most of the links on both the

top bar and the navigation bar as well as to search for the names of replication

origins in the search text box.
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4.4.1 Web Structure

One of the major enhancement is that S. pombe is incorporated in OriDB. Users

are able to access the site for S. cerevisiae and S. pombe replication origins through

“ORGANISMS” located in the navigation bar. A list of replication origins with

their assigned status, genomic location, the names allocated to the origins, and

the chromosomes with start and end coordinates associated to the origins can

be extracted from the database through the “SEARCH” facility or the search

text box provided. Figure 4.4 shows part of the search pages for both S. cere-

visiae and S. pombe, each retrieved a total of 740 and 741 results respectively

from the database. Since the incorporation of S. pombe to OriDB is fairly re-

cent, it currently does not have the names of origins recorded but this will be

included in the future. For the time being, examples from S. cerevisiae will be

used throughout.

The search criteria includes the chromosome number, the assigned sta-

tus of the origin, and the names of the origins. For instance, entering ‘606’ with

all the status and chromosomes included in the criteria will return two origins,

one with the name ‘ARS606’ (or proARS606) and the other origin with an al-

ternative name associated to it (proARS1606). Links are provided under the

“Genomic location” column which redirect users to the details page.∗

The details page will be similar with the previous OriDB to some ex-

tent, displaying a panel with seven components: Origin Summary Information,

Origin Summary Graphics, Origin Location Assignments, Origin Sequence El-

ements, Phylogenetic Sequence Conservation, User Notes, and References for

this Origin [19]. The details page for S. pombe has four tabs instead to hide in-

formation irrelevant to the species. Changes made to the tabs include the use

of jQuery to implement asynchronous event loading. Tabs can be navigated

rapidly without the need to reload the pages each time a tab is clicked. More-

∗Genomic location of an origin is represented in the following format: VI-168 where VI is the

chromosome number in roman numerals and 168 is the location calculated by adding the start

and end coordinates of the origin, then divide by 2000, and finally to round the result.
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Figure 4.4 Screenshot of the search page for both S. cerevisiae and S. pombe, each displaying all the origins available in the database. Users can set

the search criteria to narrow the returned search results. S. pombe has only recently been added to the database and so without the names filled

at the moment. This is just to prove that new species can be incorporated in the new OriDB.
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Figure 4.5 Screenshot of the details page for S. cerevisiae containing seven tabs on

the panel (four tabs for S. pombe). These tabs were implemented using jQuery

to allow swift shifting between tabs without reloading the whole page. Some of

the contents provide jQuery tooltips to display detailed information.

over, some of the elements, in Origin Location Assignments tab for example,

provide extra information in the tooltip when users hover their cursor over the

authors as shown in Figure 4.5. These improvements enhance the users experi-

ence by giving them responsive and interactive website, whilst providing more

useful information.
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4.4.2 Graphical Data Presentation

The ability to visualise data allows users to view relevant experimental data in

graphical format. The former Chromosome Viewer uses Adobe Flash technol-

ogy to visualise data. However, it takes time when loading the viewer as it is

cumbersome. The complexity of the viewer makes it difficult to add new stud-

ies into the graph. It is therefore obsolete when it comes to future expansion. By

utilising technology that specifically deals with generating charts, Highcharts

JS does the job perfectly. Highcharts is simple yet powerful in that it is a chart-

ing library which utilises JavaScript and is compatible to most of the modern

browsers. The graphs produced by Highcharts is in SVG format as default,

with the exception of Internet Explorer which Highcharts uses Vector Markup

Language (VML) as an alternative for browser compatibility.

The new Data Viewer utilises Highcharts for graphical data presenta-

tion. The new viewer adds interactivity where users can hover across the data

of a study and view the value on a particular location, or to view extra infor-

mation by hovering on the studies in the legend. Figure 4.6 illustrates the three

different views of Data Viewer in the Origin Summary Graphics tab of the de-

tails page: Default, Detailed, and Zoomed Out view. The information presented

in Data Viewer does not change much compared to the previous viewer, except

for the data displayed in the Detailed view. Instead of displaying data of su-

perhelically induced duplex destabilisation (SIDD), DNA helical stability data

is used in place of SIDD. It follows that of WEB-THERMODYN where the free

energy required to unwind the double-stranded helix for a particular sequence

is calculated and displayed in the viewer [31].

The charts shown in Figure 4.6 were used as an example where images

can be downloaded (in PNG, JPEG, PDF, or SVG format) using Highcharts ad-

ditional module for print and export of the generated charts. This is convenient

for users who want charts with high-resolution to be embedded in their reports

instead of taking screenshots of the browser and cropping it. Users are also

given a choice to print the charts on the spot without including the whole page.

44



C
H

A
P

T
E

R
4:

D
N

A
R

E
P

L
IC

A
T

IO
N

O
R

IG
IN

D
A

T
A

B
A

S
E

Figure 4.6 Images of default, expanded, and reduced view of chromosome data respectively. When the length of chromosome is lower than a set

threshold, helical stability data is displayed in place of timing and HU data (reduced view).

These high-resolution images were downloaded through the Highcharts print and export module. Date of download is embedded at the

bottom right corner.
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Figure 4.7 Screenshot of the chromosome Data Viewer displaying data of the whole

range of chromosome 7. The transcription unit will be hidden when the chro-

mosome length viewed exceeds a set threshold. Control and navigation of the

Data Viewer are located at the top, and the collapsible configuration panel be-

low offers the users to view or hide some of the studies. The top right corner of

the viewer provides the print and export module for the chart.
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To provide more control over the viewer, users can access a more ad-

vance viewer through the link provided below in Origin Summary Graphics.

This brings up a separate page which provides flexibility in handling the viewer

(Figure 4.7). Zooming and shifting of chromosome details in the viewer does

not rely on Adobe Flash anymore, event handling with jQuery was imple-

mented on the navigational buttons instead. This method offers speed and con-

trol where users can manipulate the structure of the viewer easily, including

the width of the viewer to suit users with wider screens. On top of that, the

collapsible panel below the viewer contains more options for the users to select

which type of data they want the viewer to display.

4.5 Outcome

The revamped OriDB will have better performance in data mining due to the

improved database structure. The search space is significantly lower in the new

tables, thus decreasing load time while querying the database. The cleaner code

structure also allows developers to expand OriDB easily in the future by reusing

the code. By introducing new methods such as Highcharts and jQuery imple-

mentation to the website, user experience will be enhanced with the added in-

teractivity and ease of navigation through the website. With everything consid-

ered, OriDB does indeed improved with faster interface for the users.

47



CHAPTER 5

CONCLUSIONS

5.1 Future Enhancements

5.1.1 LiftOver

A local Mac OS X server was used in place of the Granby server because Granby

server comes with SunOS. I had tried to compile LiftOver tool (written in C)

in Granby by modifying the codes and changing the settings for installation,

to the extent that I contacted the genome bioinformatics group in UCSC for

advice, but to no avail. The UCSC’s group replied that SunOS 5.9 is a legacy

operating system and that we need a skilled technician to port the application.

As an alternative, the university holds another server (Caunton) that deals with

high-performance computing. It uses Linux operating system which LiftOver

is compatible with, but we were not given a workspace in the server. Perhaps

in the future when there is an available server capable of running LiftOver, the

LiftOver utility that I had developed can be brought online to make the site

publicly available for the wider community.

As for the LiftOver tool itself, it was originally designed for converting

genome coordinates of closely related species. Conversion between different

assemblies of the same strain yields over 99% identity in sequence, whereas

conversion between different strains of the same species yields approximately

99% identity in sequence. These results prove the reliability of LiftOver to con-

vert similar strains. By contrast, conversion between different species yields
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approximately 80% identity in mapped sequence but 20% identity where gaps

exist. The percentage varies with more distant species yielding lower identity

and therefore more unmapped regions exist. This might be due to the default

settings of LASTZ.

To deal with this issue, in the future we could try to lower the threshold

of alignments precision. The lower it is, the more regions can be mapped and

thus increase the percentage of identity. However, too low a threshold may lead

to false positive paradox. If successful, high identity mapping can be done for

continuous sequence between different species. Additional configurations can

be added to the web interface to implement the settings that control LASTZ.

This would equips the LiftOver utility for different kinds of mappings as per

users choice.

5.1.2 OriDB

At present, OriDB uses the October 2003 assembly for S. cerevisiae genome to

date. There have been multiple modifications in genome sequence since then.

Modifications include insertions, substitutions, or deletions of nucleotides in a

particular sequence and these can be drastic to how the data are displayed to

the users no matter how small the changes are. In the future, OriDB should

employ more recent assemblies for the featured species. Furthermore, OriDB

is limited to S. cerevisiae and is just in the process of including S. pombe in the

database. Future addition of different species might be important. To allow

the inclusion of new species, OriDB needs to be as general as possible to make

expansion as straight forward as possible.

The integration of Web 2.0 and 3.0 for biological databases may become

an important feature in the future [28]. Web 2.0 facilitates user-centric informa-

tion sharing. To implement this feature for example, the User Notes component

in the details page can be modified to allow users who are given permission (by

logging in to OriDB) to state further manually curated information. Web 3.0 on

the other hand facilitates the semantic approach to web usage. This can be
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thought of having users who logged into OriDB to have a personalised search

preference where the search engine gears toward the users instead of keywords.

By way of illustration, a person who is interested mostly in graphical view of

ARS606 in S. cerevisiae for certain features will likely to get the desired results

through the search facility in OriDB, rather than having to click through all the

way to the Data Viewer with those features that the person needs.

5.2 Summary

Presented here is the online LiftOver utility that deals specifically with yeast

species. LiftOver chain files can be created when needed for two particular

genome or in batch. These chain files are stored in a specified directory for

the utility to detect the available chain files and provide lists of three columns

for target and query genomes: species, strain, and assembly. Users are able to

configure the settings on the LiftOver website and input the required data for

genome coordinates conversion. These tools are made to help biologists max-

imise the value of their data where they can compare yeast genome assemblies

with visualised data.

On top of that, OriDB has been revamped for better web structure and

ease of maintenance. It is redesigned to be future proof such that new studies or

organisms can be added to the database effortlessly. As for the graphical data

viewer, Highcharts JS was utilised extensively for interactive chart interface.

Layout of the configurations for data viewer are in order and users are able to

download or print the graphs from the data viewer output.
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APPENDIX A

SUPPLEMENTARY DATA -

LIFTOVER

A.1 Utilities and Their Paths

Utility Path

faSplit kent/src/utils/faSplit

faToTwoBit kent/src/utils/faToTwoBit

twoBitInfo kent/src/utils/twoBitInfo

liftUp kent/src/hg/liftUp

axtChain kent/src/hg/mouseStuff/axtChain

chainMergeSort kent/src/hg/mouseStuff/chainMergeSort

chainSplit kent/src/hg/mouseStuff/chainSplit

chainNet kent/src/hg/mouseStuff/chainNet

netChainSubset kent/src/hg/mouseStuff/netChainSubset

liftOver kent/src/hg/liftOver

Table A.1 Digest displaying the paths to their associated utilities located in Jim

Kent’s source. The working directory has to be changed to the specified path

when compiling one of the utilities.
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A.2 S. cerevisiae versus S. arboricolus variants

Figure A.1 Dot-matrix plot showing the chromosomes 12, 14, and 16 in S. cere-

visiae, each broken into two in S. arboricolus.

The genome was deemed a flawed assembly.
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APPENDIX A: SUPPLEMENTARY DATA - LIFTOVER

Figure A.2 Dot-matrix plot showing the fusion of chromosomes 12 and 14 of S.

cerevisiae into one large chromosome in S. arboricolus. Also, both the chro-

mosomes 12 and 14 in S. cerevisiae are broken into two in S. arboricolus.

The genome was deemed a flawed assembly.
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APPENDIX A: SUPPLEMENTARY DATA - LIFTOVER

Figure A.3 Dot-matrix plot showing the fusion of chromosomes 12 and 14 of S.

cerevisiae into one large chromosome in S. arboricolus. Also, chromosome 14

in S. cerevisiae is broken into two in S. arboricolus.

The genome was deemed a flawed assembly.
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Figure A.4 Dot-matrix plot showing the fusion of chromosomes 12 and 14 of S.

cerevisiae into one large chromosome in S. arboricolus. Also, chromosome 14

in S. cerevisiae is broken into two in S. arboricolus.

The genome was deemed a flawed assembly. Apparently this assembly

is the same as the 23 July 2010 assembly of S. arboricolus.
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Figure A.5 Dot-matrix plot showing the chromosome 14 in S. cerevisiae is broken

into two in S. arboricolus.

The genome was deemed a flawed assembly.
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Figure A.6 Dot-matrix plot showing the chromosome 12 in S. cerevisiae is broken

into two in S. arboricolus.

The genome was deemed a flawed assembly.
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Figure A.7 Dot-matrix plot showing no signs of fusion or broken chromosomes.

The genome was deemed a flawless assembly, thus was set as an update

assembly in 23 March 2011.
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Figure A.8 Dot-matrix plot showing the chromosomes 12 and 14 in S. cerevisiae

are broken into two in S. arboricolus.

The genome was deemed a flawed assembly.
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Figure A.9 Dot-matrix plot showing massive amount of chromosome fragments in

S. arboricolus. Any of the fragments are not large enough to represent valid

chromosomes.

The genome was deemed a flawed assembly.
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Figure A.10 Dot-matrix plot showing massive amount of chromosome fragments

in S. arboricolus. Any of the fragments are not large enough to represent

valid chromosomes.

The genome was deemed a flawed assembly.
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APPENDIX B

SUPPLEMENTARY DATA - ORIDB

B.1 Entities and Their Attributes

The following figures show groups of S. cerevisiae entities and their attributes.

The implementation of S. pombe is still in the process and is not included here.
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Figure B.1 Main entities of OriDB. sc_ori_studies, sc_repl_data, and sc_elements_studies hold data which links to the corresponding studies.

local_pubmed holds data for the references whereas sc_ori holds the origins data of S. cerevisiae.

68



A
P

P
E

N
D

IX
B

:
S

U
P

P
L

E
M

E
N

T
A

R
Y

D
A

T
A

-
O

R
ID

B

Figure B.2 Entities linked from sc_ori_studies.
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Figure B.3 Entities linked from sc_repl_data.
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Figure B.4 Entities linked from sc_elements_studies.
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