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Abstract 

 

This thesis concerns a study of the three�body abrasive wear behaviour of two 

groups of materials with different abrasive particles using the Dry Sand Rubber 

Wheel (DSRW) test method. This investigation can be divided into three sections: 

 

In the first section, the abrasion of a range of steels with an ash from a biomass 

power station was compared with that observed for abrasion with a conventional 

silica abrasive. It was seen that the wear rate of the steels when abraded with silica 

increased in proportion to the applied load and decreased with the hardness of the 

steel. However, the bottom�ash was more friable than the silica abrasive, and as 

such, significantly more abrasive crushing was observed during the tests with the 

bottom�ash abrasive. It is proposed that the wear is dominated by abrasion by the 

larger particles in the distribution, and that damage is limited by the maximum 

load which the particles can sustain before failing.  

 

In the second section, the motion of particles in the DSRW test with silica 

abrasive against a range of steels, as a function of applied load and the hardness of 

the steels was studied. The results showed that particle rolling through the contact 

is favoured by low applied loads and low testpiece hardness whereas particle 

sliding through the contact is favoured by high applied loads and high testpiece 

hardness. A model was proposed to provide an analysis of the motion of particles 

in the DSRW test. The effect of hardness on particle rotation is well predicted by 

the model, but the effect of the applied load on particle motion observed 

experimentally is opposite to that which is predicted by the model. The 
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shortcomings of the model are discussed, and the model has been qualitatively 

modified to account for this discrepancy. 

 

In the third section, five different WC�metal cermet powders were deposited as 

coatings by HVOF thermal spraying. These were a WC�nickel alloy, a WC�iron 

alloy and three types of WC�Co powders with different carbide grain sizes. 

Characterisation of the coatings showed decomposition of WC during spray 

process for all the coatings. The results show different solubilities of W and C in 

the binders and different precipitation characteristics. DSRW tests were 

performed to assess the wear resistance of the coatings with silica and alumina 

abrasives. It was found that the coatings had different wear rates and mechanisms 

when abraded with silica compared with alumina. The differences in the wear 

behaviour of the coatings are due to the differences in powder characteristics, the 

extent of reaction and decarburisation during spraying, and the subsequent 

development of the microstructure in the coating during splat solidification at high 

cooling rates. 
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Nomenclature 

Al aluminium 

Al2O3   aluminium oxide (alumina) 

APS air plasma spraying 

ARp  particle aspect ratio 

ASTM  the American Society for Testing and Materials 

at% atomic percent 

BCC   body�centered cubic 

BOD   ball�on�disc 

BSE backscattered electron 

 C carbon 
oC degree Celsius 

Cermet ceramic�metal composite 

C3H8 propane 

CO  carbon monoxide 

CO2 carbon dioxide 

Co cobalt  

Co�I powder or coating of WC�17wt% Co with carbide size of ~1 Gm 

Co�II powder or coating of WC�17wt% Co with carbide size of ~0.8 Gm 

Co�III powder or coating of WC�17wt% Co with carbide size of ~0.5 Gm 

Cr chromium 

Cu copper 

D�Gun detonation gun 

DSRW dry sand rubber wheel 

dp     particle diameter  

DWC tungsten carbide grain size 

EDX energy dispersive X�ray analysis 

FCC  face�centred cubic 

Fe  Iron 

Fe (powder/coating)  powder or coating of WC�15wt% iron alloy (FeCrAl) with carbide 

size of ~0.5 Gm 

Hc   cermet hardness  



Nomenclature 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  xi 

HCP  hexagonal closed packed 

gf gram force 

H2 Hydrogen 

H hardness, kgf mm�2 

Ha abrasive hardness, kgf mm�2 

Hs surface hardness, kgf mm�2 

Hv Vickers hardness, kgf mm�2 

HVAF high velocity air fuel 

HVOGF  high velocity oxygen�gaseous fuel 

HVOF high velocity oxy�fuel 

HVOLF  high velocity oxygen�liquid fuel 

IRHD    International Rubber Hardness Degrees 

K  Kelvin 

kgf  kilogram force 

KIC  fracture toughness 

kV  kilovolt 

λ  binder mean free path 

λ  wavelenghth 

LPPS  low pressure plasma spraying 

m  metre 

mA  miliamper 

M6C  generic formula for eta carbides Co2W4C and Co3W3C 

M12C  generic formula for eta carbides Co6W6C  

MPa  megapascal where 1MPa = 1000000 Pa 

N  Newton 

Ni  nickel 

Ni (powder/coating) powder or coating of WC�15wt% nickel alloy (NiMoCrFeCo) with 

carbide size of ~0.6 Gm 

Q volume wear per unit sliding distance 

Ra  mean roughness (Gm) 

rpm  revolution per minute 

s  second 

SE  secondary electron 

SEI  secondary electron image 
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SEM  scanning electron microscopy 

SiC  silicon carbide 

SiO2   silicon oxide (silica) 

TEM  transmission electron microscopy 

Top�Gun a type of HVOF gun 

Vf
Co cobalt volume fraction 

Vf
WC  tungsten carbide volume fraction 

VPS vacuum plasma spraying 

Vol%   volume percent 

W  total applied normal load, N 

W   tungsten 

WC   tungsten carbide 

W2C  di�tungsten carbide 

WC�Co tungsten carbide with cobalt binder 

wt%   weight percent 

XRD  X�ray diffraction 

XRF  X�ray fluorescence 
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Chapter   1 
 

 
Introduction 

 
 

 
 

 
Wear occurs in many different industrial situations, and results in high costs due 

to equipment failure, replacement of wear parts and downtime during repairs. In 

addition, wear may influence the quality of the products involved. Wear is defined 

as the progressive removal of material from a surface due to mechanical 

movement with or without chemical processes. Among the various wear 

mechanisms, abrasive wear is the most important one due to its destructive 

character and its high occurrence frequency �50% of total wear failures�� [1]. In 

abrasive wear, detachment of material from surfaces in relative motion is caused 

by hard particles between the opposing surfaces or fixed in one of them. Its 

control and minimisation depends essentially on not only the appropriate selection 

of materials, but also understanding the mechanisms which are responsible for the 

abrasive wear of these materials. 

 

Due to its importance, much work has been conducted in the area of abrasive wear 

and a correspondingly large number of test methods have been used to evaluate 

abrasion resistance of materials. Often, test apparatus are designed with a specific 

service application in mind [2]. Test methods can be broadly divided into those 
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where the abrading medium is loose as it passes over the testpiece (commonly 

termed three�body abrasion) and those where the abrading medium is fixed in 

orientation as it passes over the testpiece (commonly termed two�body abrasion) 

[3]. The most commonly employed test setup for three�body abrasion is that 

encompassed in the ASTM standard G65 [4], commonly known as the dry sand–

rubber wheel (DSRW) test (Fig. 1.1). In this test, a stream of particles is fed 

through the loaded contact between a test specimen and a rotating rubber wheel; 

the abrasive particles pass through the contact region once only. Since the rubber 

wheel rotates and the abrasive passes through the gap, it is clear that no permanent 

embedment of the particles onto the sample surfaces can take place. Instead a 

particle can traverse through the contact either by rolling or by becoming 

temporarily embedded into the rubber wheel and being dragged through and 

forming a groove in the metal sample as it does so.  

 

The DSRW test has been employed to examine the abrasion behaviour of a very 

wide range of materials. In many programmes, the test is used simply to provide a 

quantitative ranking of the abrasion resistance of different materials. For example, 

the behaviour of a series of steels with a wide range of hardness has been tested, 

and whilst good correlation was found between wear rates and hardness, the 

operative mechanisms of wear were never examined [5, 6]. 

 

In DSRW abrasion, the operative mechanisms of wear depend largely upon the 

material properties (e.g. hardness, ductility, toughness) along with the manner in 

which the particles move through the contact between the wheel and specimen. 

The particles may embed into the moving rubber wheel and slide across the 
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sample material through the contact region (generally termed two�body abrasion) 

or pass through the contact region by rolling between the rubber wheel and the 

sample (generally termed three�body abrasion). Whilst it has been recognised that 

the manner in which the particles move through the contact affects the mode of 

wear and thus ultimately the rate of material removal, the motion of particles 

through the contact zone has itself been shown to depend upon a number of 

parameters associated with the system, amongst them particle shape, applied load 

and the hardnesses of the test surface and counterbody [7�9]. 

 

However, despite the recognition of the critical role of the particle motion in 

controlling the mode and thus (potentially) the rate of abrasive wear, surprisingly 

little work has examined the basic mechanics of the particle motion in the DSRW 

test. In a few papers, models to describe the motion of individual particles have 

been formulated and presented, which examine the moments upon such particles 

during a test [8, 10]. The model of Fang et al. [10] considers the motion of a 

particle in terms of the turning moment acting upon the particle; the simplicity of 

this model makes it useful for studying the effects of various external parameters 

on particle motion. 

 

In the first part of this work, two investigations on the abrasive wear behaviour of 

steels using the DSRW test are carried out; firstly, the abrasion of three steels with 

an ash from a biomass power station are compared with that observed for abrasion 

with a conventional silica abrasive. In the burning of biomass in thermal power 

stations, ash is produced which commonly leads to damage of the powerplant 

through a combination of abrasion, erosion and corrosion [11] and can be 
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considered as an abrasive media. The aim of this investigation is assessment of 

wear behaviour of this type of ash in order to reduce its harmful effects on the 

powerplant components. The second investigation is a study on the motion of 

particles in the DSRW test with silica abrasive against a range of steels, both as a 

function of applied load, but also as a function of the hardness of the steels. The 

changes in behaviour are rationalised in terms of the mechanics governing particle 

motion. The aim of this work is achievement of a robust model in order to 

describe the motion of particles in contact in DSRW test which addresses the 

detail of the particle�rubber wheel contact mechanics. 

 

Most engineering materials used for applications in which abrasive wear 

resistance is a major requirement, such as tool steels, white cast irons, cobalt�

based alloys and metallic matrix composites, are multiphase materials formed of a 

metallic matrix reinforced by a dispersion of hard particles [12]. The reason for 

the success of this type of material in tribological applications can be explained, in 

a simplified form, by stating that the toughness of the matrix together with the 

hardness of the reinforcement particles enables optimal wear resistance to be 

achieved. The abrasive wear resistance of materials consisting of mixtures of hard 

and soft phases depends on several microstructural parameters, e.g. hardness, 

shape, size, volume fraction and distribution of the hard phase particles, the 

properties of the matrix and the interfacial bonding between the two phases. They 

are composite materials with a hard phase, normally WC that has a hexagonal 

crystal form and a binder phase which is normally cobalt. To increase the 

corrosion resistance of the materials other metallic or alloyed binders such as 

nickel are used. 
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The characteristic high hardness and fracture toughness of sintered WC cermets 

has made them materials of choice for use as abrasive wear resistant components 

in a variety of industrial applications. These composites combine the hard, brittle 

WC phase and a ductile metallic binder phase in different proportions to produce 

materials with a wide range of properties [13]. Tungsten carbide grain size 

distribution, as well as the content and composition of the cementing metal binder 

phase, play a decisive role in determining the fracture mode, mechanical 

properties, and wear resistance of these materials [14, 15]. Studies of WC�Co 

materials have shown that abrasion typically involves rounding, fragmentation, 

and pullout of WC grains and removal of exposed binder, and have suggested that 

the material removal process involves both plastic deformation and fracture [16, 

17]. 

 

An alternative to the use of wear resistant bulk materials is surface engineering to 

produce materials that are wear resistant, with the objective of maximising the 

benefit�cost relationship�� Surface engineering aims to produce composite 

materials where the substrate and the coating or surface modification provide 

superior performance to that which would be obtained by each of the parts 

individually. The performance obtained is always a combination of various 

physical, chemical, mechanical, metallurgical and thermal properties of the 

substrate and coating. In this context, the use of high velocity oxy�fuel �HVOF��

thermal sprayed WC cermet deposits looks promising for wear protection due to 

the excellent combination of mechanical properties of these cermets�[18]. 
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HVOF spraying is one of many processes used for spraying coatings with 

tribologically attractive properties. In this process, the combustion reactions 

between oxygen and a fuel propel particles at high temperature and high velocity 

towards the substrate. The coatings produced have low porosity, high adhesion to 

the substrate and low oxide content due to the high velocities used��The coating is 

formed by particles of liquid and�or mushy materials that strike against the 

substrate where they form thin platelets called lamellae or ‘‘splats’’, which cover 

the surface irregularities. The lamellae cool rapidly depending on the thermal 

spray process used, and solidify. Other particles that are projected over the already 

deposited material acquire the same lamellar shape, forming anisotropic structures 

parallel to the interface. The result of such a deposition process is a coating with a 

structure of splats, voids and oxides. 

 

The properties and performance of WC cermet coatings are attributed to a 

complex function of size, shape and distribution of carbides, hardness and 

toughness of matrix, binder matrix composition and content, and microstructural 

changes which occur during the spray process. The investigations of the causal 

relationship between deposition process parameters, microstructure and wear 

performance have shown that to reach the best output, the coating should have 

high retained WC content which is finely dispersed [19, 20]. This depends 

essentially on minimising decarburisation and dissolution of WC during spraying, 

which is a function of the powder characteristics, flame temperature and particle 

velocity. The tungsten and carbon from the dissolving carbides diffuse into the 

matrix and react with binder and promoting the formation of amorphous phases 

that are hard and brittle. This change to the microstructure of the matrix has a 
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significant effect on the coating properties [19, 20]. These reactions have 

generally a negative effect on coating performance in wear. 

 

In recent decades, the processing, properties and applications of the WC�Co 

coatings with different cobalt content have been extensively studied. There are 

also a considerable works on the characterisation and properties of thermally 

sprayed WC cermets with other binders such as CoCr and Ni. However, there is 

little information in the literature about the new WC cermet coatings with 

complicated alloyed binders (e.g., nickel base and iron base alloys) and their wear 

behaviour, especially in relation to abrasive processes. Therefore, the second part 

of this investigation focuses on characterisation and three�body abrasion of WC–

NiMoCrFeCo and WC�FeCrAl coatings which were deposited using a Top Gun 

HVOF system. For comparison, three types of the WC�17 wt% Co powder 

feedstocks with different carbide grain sizes were also deposited. The aim of this 

study is characterisation of the new WC coatings (i.e. WC composite coatings 

with Ni base alloy and Fe base alloy binders) and their abrasive wear behaviour 

under “hard abrasion” and “soft abrasion” regimes.   

 

This thesis comprises eight chapters. Chapter 2 presents a review of the literature 

about the main subjects presented in this thesis. In chapter 3 the methodology and 

the experimental equipments and materials which are utilised are described. 

Chapter 4 includes the results and discussion of abrasive wear of steel substrates 

whereas chapters 5 and 6 present results and discussions of the characterisation of 

the coatings and their abrasive wear behaviour respectively. The conclusions and 

future work are presented in chapters 7 and 8. 
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Fig. 1.1 Schematic diagram of dry sand rubber wheel abrasion test apparatus [4]. 
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Chapter   2 
 

 
Literature Review  

 
 
 
This chapter presents a review of the literature about the main subjects presented 

in this thesis. Keeping in view the themes of the thesis, the chapter is divided into 

following main parts; i) Abrasive Wear and ii) HVOF� Sprayed WC Cermet 

Coatings. Section 2.1 addresses abrasive wear process in general followed by 

reviews of abrasive wear in steels, abrasive wear ash from power�plants and 

abrasive wear in WC cermet materials and coatings. Section 2.2 comprises a brief 

background to HVOF process, WC cermet materials, and microstructural 

developments during spraying of these materials.  

 

2.1�Abrasive Wear  

2.1.1�Introduction  

 
In general, wear may be defined as the progressive loss of material from a solid 

surface by the mechanical action of a contacting solid, liquid, or gas [21].  Many 

wear studies have focused on surface damage in terms of material�removal 

mechanisms, including transfer layer formation, plastic deformation, brittle 

fracture and tribochemistry [22]. Wear has been classified in various ways; one of 

the usual classifications of wear is based on the fundamental mechanism that is 

operating. Wear can be divided into different modes such as adhesion, abrasion, 

erosion, surface fatigue and tribochemical reaction. Each wear mode can also be 

divided additionally into various wear mechanisms. In studying the wear 
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behaviour of materials, a specific mechanism of material removed may be 

dominant; however, commonly, several wear mechanisms operate at the same 

time [23].  

 

Wear occurs in many different industrial situations, and results high costs due to 

equipment failure, replacement of worn parts and downtime during repairs. In 

addition, wear may influence the quality of the products involved. The cost of 

wear is high; findings have shown that the cost of wear to the U.S. economy was 

about $20 billion in 1978 [24]. 

 

2.1.2�Types of Wear 

 
Wear encountered in industrial situations can be broadly grouped as: abrasive 

50%, adhesive 15%, erosion 8%, fretting 8%, and chemical 5% [1].  

 

Abrasive Wear 

Abrasive wear is the displacement or detachment of material by the passage of 

hard particles or hard bulges which are forced against and slide along a solid 

surface [16]. In this type of wear, a material is seriously abraded or scratched by a 

counterbody harder than itself. Under a normal load, the asperities on the harder 

surface indent into the softer surface thus, producing plastic deformation. When a 

tangential motion is introduced, the material is removed from the softer surface by 

the combined action of micro�ploughing and micro�cutting. 

Adhesive Wear 
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This type of wear occurs due to localised bonding or welding between contacting 

solid surfaces leading to material transfer between the two surfaces and loss from 

either surface. 

 

Fatigue Wear 

Fatigue wear of a solid surface caused by fracture resulting from material fatigue. 

This wear is caused by deformation sustained by the asperities and surface layers 

in contact. Contact between asperities accompanied by very high local stresses 

generate fatigue propagated cracks, hence the term fatigue wear [25]. 

 

Erosive Wear 

This type of wear occurs when individual solid particles impact with a surface. 

This wear is defined as the process of material removal from a surface subjected 

to impingement attack by solid or liquid media, being particulate in nature for the 

former and in the form of droplet for the latter [21]. In erosion, several forces of 

different origins may act on a particle in contact with a solid surface [25]. 

 

Fretting Wear 

Fretting wear is defined as a type of wear which occurs as a result of slip by a 

small amplitude of two surfaces relative to each other. Like all tribological 

systems, the surfaces are loaded. As the amplitude is increased the material losses 

by fretting tend to be similar to that due to reciprocating sliding under comparable 

conditions of load and environment [21]. 

 

Chemical Wear 
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Chemical or corrosive and oxidative wear occur in a wide diversity of situations 

with both lubricated and unlubricated surfaces. The main cause of this form of 

wear is a chemical reaction between the wearing material and a corroding medium 

which can be a chemical reagent, reactive lubricant or even air. This type of wear 

occurs when a film of material is formed by chemical attack of either contacting 

body and while this may provide some lubrication, this film is commonly readily 

removed by the mechanical action associated with one of the other mechanisms of 

wear [25]. 

 

2.1.3�Abrasive Wear Processes 

 
The abrasive wear process has been classified according to three factors [26]:  

•� The number of bodies involved in the contact, two or three body;  

•� The stress level; low if the abrasive does not fracture significantly and 

high if it does;  

•� Freedom of the abrasive; open if the abrasive is free to move in the 

direction of the normal load, closed if it is constrained. 

Classifications such as two�body and three�body, high� and low�stress conditions 

have been developed over the years to describe abrasion processes in order 

facilitate meaningful discussion [27]. 

 

2.1.3.1 Two and Three�body Abrasion Wear 

  
In abrasive wear, material is removed or displaced from a surface by hard 

particles, or sometimes by hard protuberances on a counterface (hard rough 

surface), forced against and sliding along a soft surface [3]. The nature of abrasive 

wear is determined by the way which particles traverse the worn surface. Particles 
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may roll and/or slide over the surface (Fig. 2.1). Therefore two basic modes have 

been identified: two�body and three�body abrasive wear. 

 

Two�body abrasive wear involves the removal of material by abrasive particles 

which are held fixed (as in abrasive paper) while being moved across a surface. 

This process produces a grooving form of wear. 

 

Three�body abrasion involves loose particles which may rotate as well as slide as 

they contact the wearing surface. Compared to two�body abrasion, three�body 

abrasion is much more common and also much more complicated than two�body 

abrasion. Plastic indentation wear will be much more important in three�body 

abrasion than that in two�body abrasion [28]. Furthermore, in three body abrasion, 

the movement patterns of abrasives are more complicated than in two body 

abrasion, since the abrasives not only slide, but also roll. Thus, a relatively wide 

range of wear rates have been variously reported for three�body abrasion 

conditions, which depend not only on the material being tested, but also on the 

testing apparatus. In three�body abrasion of metals, cutting wear and plastic 

deformation wear coexist [29]. As a consequence, two�body abrasion tests are 

said to produce wear rates one to three orders of magnitude higher than three�

body abrasion under comparable loading conditions [30, 31]. 

 

2.1.3.2 Open and Closed Abrasive Wear 

 
Misra and Finnie [32] proposed a further subdivision of three�body abrasion into 

“closed” and ”open” groups. The closed group covers the cases of fine abrasives 

between closely mating surfaces. Open three�body abrasion covers cases where 
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there is a thick bed of abrasive, or the particles are so large, that the two�opposed 

surfaces are so far apart that the mechanical properties of one have no influence 

on the other. 

 

2.1.3.3 High and Low stress Abrasive Wear   

 
Abrasive wear processes have also typically been grouped into two regimes: high 

or low stress [2]. When abrasive particles are compressed between two solid 

surfaces, high�stress or grinding abrasion occurs. The high pressure produces 

dents and scratching of the surfaces and fractures and crushes the abrasive 

particles [33]. Low�stress or scratching abrasion happens when lightly loaded 

abrasive particles move across the wearing surface, generating cutting and 

ploughing on a microscopic scale but with no damage to the abrasive particles. 

The distinction between low�stress and high�stress conditions is not sharp [27]. 

 

2.1.4�Mechanisms of Abrasive Wear 

 
Several mechanisms have been proposed to explain how material is removed from 

a surface during abrasion. These mechanisms include plastic deformation, 

fracture, fatigue, grain pull�out and corrosion [3, 23, 25, 34]. In order to 

understand abrasive wear in simple terms, these mechanisms shall be separated 

into the two main mechanisms: plastic deformation and fracture (Fig.2.2). Under 

some circumstances, plastic flow may occur alone, but because of the complexity 

of abrasion, rarely does one mechanism completely account for all the loss. 

Although the plastic deformation mechanism is often linked with ductile materials 
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and the fracture mechanism is linked with brittle materials, both can occur 

together.  

 

2.1.4.1 Plastic Deformation 

 
Two major processes take place when abrasive particles contact the surface of a 

relatively ductile material [34]: 

•� The formation of grooves which do not involve direct material removal. 

•� The separation of material in the form of primary wear debris or 

microchips. 

In both cases, material is deformed to the side of the grooves and can become 

detached to form secondary microchips. Ultimately, material is removed by 

fracture, but plastic deformation processes control the rate at which material is 

removed. If fracture did not occur, the material would continue to deform until it 

was able to elastically support the load on the contacting particles.   

 

Robinowicz suggested a simple model for the abrasive wear process by plastic 

deformation [35]. This model is based on an abrasive particle, idealized as a sharp 

cone of semiangle θ, being dragged across the surface of a ductile material which 

flows under an indentation load F (Fig. 2.3). It forms a groove in the material with 

hardness H, and wear is assumed to occur by removal of some proportion of the 

material which is displaced by the particle from the groove. The volume of groove 

V per unit length can be obtained:  

H

F

L

V

θπ tan

2
=                                                                                      (2.1) 

Therefore, the wear rate Q is defined as: 
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H

F
KQ =                                                                                                             (2.2) 

which is the well�known Rabinowicz equation [31]. K is the wear coefficient and 

defined as: 

θπ
η

tan

2
=K                                                                                                         (2.3) 

where η is the fraction of material displaced from the groove. According to the 

Rabinowicz model, wear in homogeneous materials only depends on the attack 

angle θ, the normal load F, the hardness H of the material and the geometry of the 

indenter (in this case a conical indenter). This simple model suggests that the wear 

rate per length of sliding will be directly proportional to the load, and will vary 

inversely as the hardness of the surface. 

 

2.1.4.2 Fracture 

 
Although plastic deformation occurs during abrasive wear of brittle materials, 

fracture is often the rate controlling mechanism. Even during the wear of ductile 

materials, fracture may occur. For a ductile material, fracture is most likely to 

occur just behind a contacting abrasive particle since this region is subject to a 

tensile stress. The material removal in brittle materials is likely to be controlled by 

fracture rather than by plastic deformation except during wear by very lightly 

loaded blunt abrasive particles [36]. 

 

One model for the abrasive wear by fracture is based on the removal of material 

by lateral cracks which grow upwards to the free surface from the base of the 

subsurface deformed region and are driven by the residual stresses associated with 
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the deformed material (Fig. 2.4). Evans and Wilshaw developed a  model using 

fracture mechanics to describe removal of material by lateral cracking [37]. In this 

model, the volume wear rate per unit sliding distance Q is given by: 

214341

2145

HKA

dF
Q

C

α=                                                                                             (2.4) 

where F, d, A, Kc and H are load, diameter of abrasive particle, contact area, 

fracture toughness and hardness of material respectively. α is a material�

independent constant. 

 

2.1.5�Variables Affecting Abrasive Wear  

 
There are several factors which influence the wear of material during the abrasive 

wear process. These factors can be grouped under three main headings; particle, 

material and environment. 

 

2.1.5.1 Properties of the Particle  

 
Geometric properties (Particle shape, orientation and size) 

Both theoretical predictions and experimental results confirm that the abrasive 

particle shape has an effect on the rate of wear [38]. This is because it influences 

the transition load from elastic to plastic contact and the critical indentation size 

for fracture. If particle load and surface hardness are constant, the projected area 

of plastic contact will be constant, but the cross�sectional area of a groove 

resulting from such a contact will depend on the particle shape. Moore showed 

that the ratio of cross�sectional to projected area of contact for pyramidal, conical 

and spherical indenter increase as the included angle, cone angle and radius, 
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respectively, decrease [39]. In addition, this ratio is generally less for a spherical 

than for a pyramidal or a conical contact. Thus, for both plastic and brittle  

mechanisms of material removal, it is expected that the wear rate will be higher 

for “sharp” pointed abrasives than for “blunt” round abrasives [40]. Fig. 2.5 

shows a comparison of the wear rate obtained in abrasive wear testing for steel 

against two types of abrasive sands namely rounded and crushed silica sands. 

Both sands had the same particle size distribution and differed only in their shape. 

The sharp, crushed particles resulted in rates of wear typically two to five times 

higher than that produced by their rounded counterparts. Swanson and Klann [41] 

have reported a factor of ten in the volume loss of the plain carbon and low alloy 

steels examined using the wet and dry sand rubber wheel abrasion tests with 

round and angular silica abrasives.  

 

The abrasive particle size also affects the wear rate of materials. When the 

materials and the abrasive type remain fixed, the wear rate increases with 

increasing particle size up to a certain size; above this critical size, the wear rate 

becomes almost independent of further size increases. This critical size is often 

cited as about 100 Gm (Fig. 2.6) [42].  

 

Particle Hardness 

The hardness of abrasive particles can influence the rate of wear. Particles with 

lower hardness than that of the surface cause much less wear than harder particles. 

It has been found that the rate of material removal decreases significantly when 

the hardness of the surface Hs, approaches the hardness of the abrasive, Ha [43]. 

Fig. 2.7 shows the relative abrasive wear rates of a wide range of metals and 
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ceramics, abraded by two different types of abrasive particles. The wear rate 

becomes much more sensitive to the ratio of the abrasive hardness Ha to surface 

hardness Hs when Ha/Hs is less than ~1. The critical value of Ha/Hs has in fact 

been estimated as 1.2 [3, 44, 45]. Abrasive particles of any shape will cause 

plastic scratching only if Ha/Hs >1.2. Abrasion under conditions where Ha/Hs <1.2 

is sometimes termed soft abrasion, in contrast to hard abrasion when Ha/Hs >1.2. 

The critical transition point between hard and soft abrasion appears to be the point 

at which plastic deformation in the form of grooves and scratches occurs [46].  

 

Particle Strength 

Plastic deformation of the surface will occur as the normal load on the particle is 

increased only if the particle can sustain this contact pressure without deforming 

or crushing. Thus, the strength and toughness of an abrasive particle are important 

factors in abrasive wear. Gahlin and Jacobson [47] described abrasive with quartz 

and chert, which have similar hardness, but with chert having a greater resistance 

to fracture than quartz; wear generated by chert was between two and three times 

that  quartz.    

 

2.1.5.2 Properties of the Material 

 
Microstructure of the Specimen 

The microstructure of materials affects their wear properties. For ferrous 

materials, various factors like retained austenite, carbide content and size, heat 

treatment regime and alloy content impact on the wear properties [48]. In 

heterogeneous materials like composites synthesized from two or more distinct 

components, the structural properties are important in abrasive particle contact. 
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Parameters such as volume fraction and distribution of a dispersed phase, its 

coherency and hardness all affect abrasive particle indentation, strain hardening, 

strain distribution, fracture, and recovery processes [49]. Fig. 2.8 shows that a 

finely dispersed hard second phase can result in homogeneous behaviour of a 

composite which leads, in general, to an increase in wear resistance. 

 

Hardness of Specimen  

The relationship between wear resistance and material hardness is complicated 

[9], but it is generally recognized that hard materials exhibit lower abrasive wear 

rates than softer materials. Eq. 2.2 suggests that the wear rate varies inversely with 

the hardness of the material. Many pure metals do behave in this way, although 

alloys often exhibit more complex behaviour (Fig. 2.9) [50]. The loss of 

proportionality between hardness and the relative wear rate for hardened metals is 

the result of defining the wear resistance in terms of the undeformed hardness of 

the metal [25]. The materials at the worn surface will have been strain�hardened 

by plastic flow, and that hardness will generally be greater than that of the bulk. 

Moreover, the microcutting mechanism becomes more dominant as the hardness 

of the material increases. This was observed not only for abrasion with angular 

abrasives, but also for abrasives with a more rounded morphology [40]. 

 

2.1.5.3 Characteristics of the Test setup and Environment  

 
Load 

Eq. 2.2 predicts that the wear rate varies directly with the applied load. Although 

for many systems the wear rate varies proportionally with load over limited 

ranges, sudden transitions from low to high wear rate, (and sometimes back again) 



Chapter 2 ………………………………………………………………………  Literature Review 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  21 

are often found with increasing load associated with changes in mechanism of 

material removal [3, 51].  

 

Temperature  

The temperature of a wearing surface is controlled not only by the ambient 

temperature, but also by the heat generated (and carried away) by the wear 

process itself. The difference between those is that in the first, the abrasives 

remain relatively cool due to the transient nature of abrasion. During wear, a 

surface is subject to applied stress and temperature rises. At least 90% of the 

energy expended in plastic deformation during wear must be dispersed as heat [1]. 

The temperature increase caused by plastic deformation during abrasion is 

associated with the speed of sliding [52]. This may cause plastic deformation, 

recrystallization, and phase changes, all of which affect the mechanical properties 

of the surface material and, consequently, the abrasive wear rate. In general, with 

increasing temperature there is a corresponding decline in the hardness of both the 

worn material and the abrasive. Increasing temperature influences materials such 

as metals in decreasing their hardness more significantly than for the non�metallic 

abrasive materials [53]. Therefore the ratio of abrasive hardness to metal hardness 

increases with increase in temperature leading to a higher wear rate. In addition, 

in three�body abrasive wear, contact between an abrasive and the worn surface 

would be particularly short compared with that in the two�body abrasive mode. 

Thus, in three�body abrasion, heat generated in the deformed material would not 

easily diffuse into the abrasive particles. This causes thermal softening of the 

surface material while the abrasive remains with its hardness virtually unaltered 

[25]. Another effect of high temperatures is to induce a form of wear which 
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depends on the combined action of oxidation and removal of oxide layers by 

abrasion. The oxidation of steels in air is much more rapid at 600oC than at 20oC , 

and as temperature rises, the removal of steel as oxide becomes more significant 

[54]. 

 

Moisture  

Moisture has a strong influence on abrasive wear rates. Usually, abrasive wear 

rates increase with moisture content in the atmosphere, but there are occasions 

when opposite effects have been observed [55]. The abrasive may either be just 

sufficiently weakened by moisture to produce a large number of new cutting 

edges, or severe grit weakening may occur causing disintegration of the grits into 

non–abrasive, fine particles. Both the worn material and the abrasive may be 

weakened by moisture [56]. Indeed, for the same abrasive and worn material, two 

body abrasive wear may increase with humidity while the three�body abrasive 

wear rate may either increase or decrease [25].  

 

2.1.6�Abrasive Wear Tests 

2.1.6.1 Laboratory Abrasive Wear Tests 

 
In selecting and specifying laboratory wear tests, attention must be paid to the fact 

that wear performance is system related, depending not only on materials 

properties but also on the characteristics of the abrasive and the sliding and 

loading conditions. There are two major groups of laboratory test methods for 

abrasive wear: 

1�� Those in which the abrasive is fixed relative to the wearing specimen. 
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2�� Those in which the abrasive is loose or free with respect to the wearing 

specimen. 

 

In fixed abrasive tests, the type and size of abrasive is limited by the availability 

of bonded abrasive papers or cloths whereas in loose abrasive tests, there is 

(theoretically) complete freedom on the choice of abrasive which might even 

include abrasive material from a service environment. The load per unit area in 

some loose abrasive tests (particularly wheel tests and bin tests) is difficult to 

characterise and may vary widely throughout the duration of the test. 

 

For fixed abrasive tests, the mechanics of abrasive particle�wearing surface 

contact is consistent over a wide range of loading conditions and material types. 

This can vary with load, counterface properties, abrasive shape and test material. 

In attempting to devise or specify a laboratory test to simulate a service wear 

environment, the following system parameters should be considered [57]: 

•� Test conditions such as: Abrasive type, size, shape and distribution, fixed 

or loose abrasive, sliding distance, abrasive path length, sliding speed, 

load, and properties of counterface. 

•� Test materials such as: chemical/ physical/ mechanical properties and 

microstructural dimensions of materials. 

 

2.1.6.2 Standard Test of Abrasive Wear  

 
It is important to thoroughly characterize the test conditions, to determine the 

precision of the test technique, and to consider these as the results are interpreted. 

Reproducibility (an essential feature of any good test) can be achieved by careful 
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control of variables. The most commonly used laboratory tests for abrasive wear 

employ either a pin�shaped specimen sliding against fixed abrasive giving two�

body wear (Figs. 2.10a to 2.10c), or a rotating (rubber or steel) wheel sliding 

against a plane specimen with loose abrasive particles being continually fed 

between the two, giving three�body wear (Fig. 2.10d).   

 

Typical laboratory abrasive wear tests are [31]:  

1. Dry/wet�sand rubber�wheel three�body (low�stress) abrasion; 

2.  Dry/wet�sand steel�wheel three�body (high�stress) abrasion; 

3. pin�on�drum two body (high�stress) abrasion;  

4. Jaw crusher (high�stress) gouging�abrasion;  

5. High�speed, impeller–tumbler impact abrasion.  

 

The dry�sand rubber wheel (DSRW) abrasion test apparatus has been used widely 

to simulate low�stress, three�body abrasive wear [58]. The pin�on�drum abrasive 

wear test (POD) involves high�stress, two�body abrasive wear. The jaw crusher 

test is a type of high stress wear test that may result in either two�body or three�

body conditions [59].  

 

2.1.6.3 Dry Sand Rubber Wheel Test 

 
The most commonly used test configuration for three�body abrasion is that of a 

specimen loaded against a rotating wheel with abrasive particles being entrained 

into the contact zone. This is the basic principle of the tests described by ASTM 

standard G65 [4]. The rubber wheel tester, which was standardized by ASTM, has 

been said to produce low stress three�body abrasion [5]. Even before the test 
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became an ASTM standard, it had been used by a number of laboratories for 

many years. The test is widely used to rank materials for components that will be 

subjected to low stress abrasion in service like agricultural tools, chutes and 

hoppers in ore processing plant, and construction equipment [60]. This test has a 

longer history, and has generated more data than other types of abrasion testing 

machines [61]. However, this test configuration has some limitations. For 

example, the abrasive particles may get embedded in the rubber wheel and scratch 

the test specimen in a manner similar to two�body abrasion [2]. 

 

The apparatus is shown schematically in Fig. 2.11. In the test, a plane specimen is 

loaded against the rim of a rotating rubber wheel; sand is fed into the gap between 

the wheel and specimen and is carried past the specimen and thus abrades it. The 

behaviour of a material in a rotating wheel abrasion test depends not only on the 

intrinsic properties of the test sample itself, but also on the conditions of the test, 

such as nature of the abrasive  particle type, size, shape, brittleness, the wheel 

hardness, its stiffness and the nature of the environment. The rubber wheel 

abrasion test has been the subject of a large body of research [62]. 

 

2.1.6.4 Rubber Wheel Variables 

 
In the sand�rubber wheel test, the rate of wear increases with rubber hardness, 

which is measured with a Shore A Durometer tester, as described in ASTM D�

2240 [4]. It has been shown that the weight loss of some steels exhibits an 

exponential dependence on the rubber hardness (Fig. 2.12). This function could be 

linearized by means of a semi�log plot (Fig. 2.13). The plot represents results in 

the form of parallel straight lines displaced in a vertical direction. The effect of 
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rubber wheel hardness on wear rate can be explained in the way that particles 

groove or roll. It has been also suggested that the hard wheel tends to distribute 

the total load only over the largest grains, with particles too small to be loaded by 

the rubber probably being ineffective (Fig. 2.14) [62].  

 

Avery [62] used concept of “opportunity vs. severity” to explain the independence 

of the wear rate on the sand feed rate. Sand feed rate is partly opportunity, but it 

also affects severity, and thus would not be altered to merely change weight loss. 

In a low feed rate condition, a few particles are in contact between the rubber 

wheel and the surface resulting in high load per each particle, whereas in the high 

feed rate of abrasive, a large number of articles are in contact causing a low load 

per particle. Therefore, the wear rate is independent of feed rate of abrasive [63]. 

The Rabinowicz [35] wear model (Eq. 2.2) show two wearing parameters (F and 

H) that are obvious and others are concealed in the wear coefficient ,K , which has 

been given a physical definition but actually is a factor of ignorance. 

 

It has been found that the velocity of the wheel (sliding speed) only slightly 

affects the wear rate. This is thought to be due to surface temperature changes. 

Stevenson and Hutchings [63] remark that in the rubber�wheel dry�sand  abrasion 

test, the observed dependence of wear rate on sliding speed is more probably 

related to variations in the mechanical properties of the rubber with strain rate and 

temperature than with the properties of the test material. As the temperature of the 

rubber increases, its hardness declines (Fig. 2.15). A maximum was seen in the 

dependence of wear rate on sliding speed. This was attributed to a balance 
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between strain rate effects increasing the modulus of the rubber, and heating 

effects reducing the modulus. 

 

2.1.7�Abrasive Wear Behaviour of Steels 
 
Many investigators [1, 50, 64] have shown that the abrasive wear resistance of 

steels increases with carbon content and with increase in hardness due to heat 

treatment. Studies also show that the wear behaviour of steels greatly depend on 

their microstructural features. The nature of phases present such as pearlite and 

martensite and changes in volume fraction of martensite in a ferrite matrix (dual�

phase structure) have been observed to strongly control the overall wear response 

[48]. Fig. 2.16 shows that the abrasive wear ratio is a strong function of the carbon 

content and microstructure within a range from 0 to 0.8 wt%. However, the wear 

resistance does not increase with any hardening associated with work hardening 

[65].  Fig. 2.17 shows that the wear resistance of steel increases rapidly only when 

the surfaces being abraded exceeds some critical ratio of the hardness of the 

abrasive. Moreover, there is a direct correlation between carbide volume fraction 

in steels and their resistance to abrasive wear in which the wear rate of steel 

decreases as the carbide content increases [34]. Swanson and Klann [41] showed 

that the use of an angular abrasive produces a significant increase in the volume 

loss of the plain carbon and low alloy steels examined. The shape of the abrasive 

certainly is a significant factor; however the change in the number of particles that 

slid across the interface when the abrasive is changed from a round grain to a 

sharp grain sand is also a contribution factor to take into account. 
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2.1.8�Abrasive Wear with Ash Particles 

2.1.8.1 Introduction  

 
Due to sanitary and environmental problems and operational costs related to either 

the discharge, land disposal or re�use of wastes, the utilization of biomass as a fuel 

is significant issue [66, 67]. It is found that different types of biomass materials 

have a high heat content which can be classified as carbon�neutral energy content. 

Therefore as a renewable energy source, it can be employed for firing in power 

plants [68]. Recently its use as a fuel source for thermal power plants has 

increased, both as a main fuel, and for co�firing with coal.  

 

In combustion processes, ash is produced in the form of fly ash and bottom ash. 

Both types of ash particles can result in mechanical and chemical damage to the 

related components. Depending on the system, this damage may be erosion or 

abrasion; and it may be complicated by corrosion [11].  

 

There is a wide range of feedstock materials which are termed “biomass”; the ash 

produced from them is also different. The behaviour of the ash associated with 

these types of fuel sources is of concern, particularly in terms of their abrasiveness 

[66]. Ash associated with conventional coal burning plants has been seen to lead 

to significant abrasive wear of components of the power plant [69].  

 

2.1.8.2 The Ash Originating From Combustion 

 
During combustion, the mineral matter present in fuels may undergo chemical 

changes, such as oxidation, loss of water of crystallization, decomposition of the 
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less stable compounds, and calcination of carbonates to oxides. It may also 

undergo physical changes: some particles may melt, others may soften allowing 

rounding the corners of the particles, and the mineral within the coal and biomass 

material may accrete during the combustion of the particles to form hollow 

spheres (agglomeration) [67]. The extent of these changes will depend on the 

combustion process itself, and in particular on the maximum temperature attained 

and the residence time of the mineral matter in the hot zone. Some of the ash may 

be present as large particles; some of it may form a liquid slag which may freeze 

on cooler parts of the system and eventually separate as large fragments. These 

parts of the ash generally fall to the bottom of the combustion system, where they 

are removed: collectively they are referred to as bottom ash. Other parts of the ash 

are present as relatively small particles, and are carried along with the combustion 

gas as it flows through the system. This is called the fly ash. The chemistry of the 

bottom ash and the fly ash may be different; the relative amounts depend on the 

chemistry of the mineral matter in the fuel, and on the detailed characteristics of 

the combustion system. The wastage process may involve both mechanical effects 

and chemical effects. The mechanical effects include erosion, (which involves the 

impact of particles on the wasting surface, with the particles moving freely before 

and after the impact) and abrasion (where the particles are loaded onto the surface 

and move in contact with it for some time) [11]. 

 

2.1.8.3 Coal Ash 

 
The coal used in thermal power plants for generating electricity may result in 30 

to 40% ash and even more [70]. About 80%  of the ash is entrained in the flue gas 

and is captured and recovered as fly ash. The remaining 20% of the ash is dry 
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bottom ash, a dark gray, granular, porous, predominantly sand�sized (< 12.7mm) 

material that is collected in a water�filled hopper at the bottom of the furnace [71]. 

The coal ash itself is extremely abrasive. The aggressive nature of this mixture 

leads to rapid wear of the components. The mechanism of wear has been found to 

be a combination of corrosion and abrasion acting synergistically [69]. The fly ash 

particles can result in mechanical damage to the boiler tubes [11] whereas bottom 

ash generated from fluidized bed combustion (FBC) boilers causes significant 

wear in ash cooling screws (Fig. 2.18) [72]. 

 

2.1.8.4 Biomass Ash 

 
The wear of the equipment in power plants is associated with the hard particles 

present in the fuel and ash, particularly those that are harder than the steels and 

other materials which are used for construction. The only mineral species that is 

commonly found in clean biomass materials in significant levels which is in this 

category is quartz, and only high quartz biomass materials or those contaminated 

with significant levels of tramp materials are expected to present problems with 

erosion and abrasion in the fuel handling and firing equipment [73]. 

 

In general, biomass usually creates less ash than coal, and the composition of its 

ash tends to reflect the inorganic material required for plant growth [74]. For this 

reason, wear processes tend to be less important than they are in coal�fired plants. 

There are however, some specific areas where wear can be significant issues: 

•� Some biomass materials such as rice husk have high quartz content [66]. 

•� The formation fused ash materials, particularly the bottom ash from grate�

fired systems. 
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•� In biomass boiler systems which suffer severe convective section fouling 

problems, there are excessive rates of particle impact erosive wear of 

boiler tubes and erosive wear associated with the regular use of convective 

pass soot�blowers [73]. 

 

2.1.8.5 Abrasive Testing of the Ash 

 
Characterization of the abrasive wear resistance of the components against ash is 

best achieved by loose� abrasive testing, in which the particles are free to roll and 

or reorient themselves as they pass across a wearing surface. The most common 

tests which fall into this category utilize either the wet sand or dry sand rubber 

wheel abrasion tests. 

 

2.1.9�Abrasive Wear of WC�Metal Coatings 

2.1.9.1 Introduction 

 
The abrasive wear properties of WC–Co composites in the coated [20, 75�80] and 

sintered [81�84] forms have been extensively studied for the last two to three 

decades in light of their high resistance to wear. There is also a large body of 

work on WC cermets with other metallic binders such as Ni and CoCr [85�89] 

which are used in order to improve the corrosion resistance of these materials. In 

many of these works, research has sought to compare the behaviour of sintered 

and sprayed WC cermet systems to understand the microstructure–performance 

relationships, to enable the performance of coated systems to be improved 

towards that of sintered materials.  
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2.1.9.2 Abrasive Wear of Sintered WC�Metal Cermets 

 

Because of a favourable combination of hardness and toughness, cemented 

tungsten carbides are commonly used in applications where the material is 

exposed to abrasive wear conditions such as in cutting tools [90]. The abrasive 

wear resistance of materials consisting of mixtures of hard and soft phases 

depends on several microstructural parameters such as hardness, shape, size, 

volume fraction and distribution of the WC grains, the properties of the matrix 

and the interfacial bonding between the two phases [91]. The mechanism of 

abrasion depends on the hardness ratio of the abrasive particle and the cermet 

which controls the resistance of the cermet to penetration by the abrasive particle 

[82]. Studies of WC cermets have shown that abrasion typically involves 

rounding, fragmentation, and pullout of WC grains and removal of exposed 

binder, and have suggested that the material removal processes involve both 

plastic deformation and fracture [17]. 

  

Wear Mechanisms 

The mechanism of abrasion in ductile materials is plastic deformation (section 

2.2.4.1) while for brittle materials such as ceramics, it is dominated by fracture 

(section 2.2.4.2). Cemented WC cermets made up of two distinct hard and soft 

phases are more complex than homogeneous materials and it has been shown that 

their abrasion typically occurs by different mechanisms and at different rates, 

depending on the hardness ratio of abrasive and cermet [17]. If the abrasive 

hardness Ha is more than 20% harder than the cermet hardness Hc, it is termed a 

hard abrasive. In this regime, the wear rate is relatively high, and material is 
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removed by plastic deformation and grooves formed in the surface. Surface 

deformation is primarily by plastic flow, assisted, occasionally, by microfracture 

in the binder phase. The scale of each removal event is typically one or more 

orders of magnitude greater than the WC grain size and bulk hardness is the 

property which best correlates with resistance to abrasion in this region of 

abrasion by relatively hard abrasives [92]. Relatively soft abrasives, on the other 

hand, give a much reduced rate of wear and the mechanism of material removal is 

preferential removal of the binder followed by fragmentation and pullout of 

carbide grains [44, 93].  

 

Jia and Fischer [94] investigated wear behaviour of cemented WC�Co cermets 

under hard and soft abrasion.  Under a hard abrasion regime, their results showed 

that material was being removed by plastic deformation of the binder and 

fragmentation of the WC grains. Moreover, the fracture resistance of WC grains 

increased with decreasing grain size. Under soft abrasion, low penetration of the 

abrasive particle in to the cermet without clear grooving was observed, but instead 

binder removal was observed which left exposed WC grains which themselves 

were removed by cracking or pull out. It was also found that the abrasive wear 

resistance increased sharply with cermet hardness. They suggested that 

dependence of abrasion on the local fracture strength and therefore carbide grain 

size under the soft abrasion was less than that under the hard abrasion.  

 

Larsen�Basse and Koyangi [44] studied what they termed the scale effect in 

cemented WC�Co cermets. They concluded that an abrasive particle like silicon 

carbide which is slightly harder than the WC grains themselves, but much harder 
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than WC�Co cermet overall, can act as either a soft or hard abrasive particle 

depending on the testing parameters such as abrasive particle size and the loading 

conditions. For example, if the contact zone of the individual abrasive asperity is 

so large that bulk behaviour controls deformation of the WC�Co material, then 

these abrasives act as hard abrasives. However, if the contact zone is small, so that 

it only includes one or a few WC grains, then the abrasives act as relatively soft 

abrasives and very little material is removed [95]. 

 

Microstructural and Mechanical Properties 

Correlation studies of abrasion and mechanical properties have established that 

abrasive wear resistance is strongly related to changes in hardness and fracture 

toughness of the cermets [17]. An approximation toward predicting wear 

resistance by using a relationship between abrasion and mechanical properties was 

presented by Baldoni et al. [96]. They showed that abrasive wear resistance of 

ceramic materials increases linearly with increase of the mechanical property 

parameter KIC
3/4

H
1/2 while for cemented WC materials, the abrasive wear 

resistance increased with KIC
3/8

H
1/2, reflecting a decrease in dependence of 

abrasion fracture toughness for cemented WC materials compared with ceramic 

materials, and indicating the ability of cemented WC cermets to accommodate a 

degree of plastic deformation during abrasion. The dependence of KIC and H on 

microstructural parameters (composed of parameters such as mean free path, λ 

and WC grain size, DWC), has been studied by Chermant and Osterstock [97]. 

They showed that the ratio of λ� �����  directly correlates to hardness and fracture 

toughness; with increases in this ratio, fracture toughness increased and hardness 

decreased linearly. Many studies on cemented WC cermets have reported that for 



Chapter 2 ………………………………………………………………………  Literature Review 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  35 

a given binder content, hardness decreases and fracture toughness increases as 

WC grain size or binder mean free path increase [82, 94, 98, 99]. Moreover, 

increases in carbide phase fraction results increase in hardness and decrease in 

fracture toughness of WC hard metals. Fig. 2.19 shows the effect of changes in 

the WC grain size and binder content on the mechanical properties of cemented 

WC�Co cements. Wayne et al. [82] developed a combined mechanical 

property/microstructural parameter relationship for abrasion of WC�based cermets 

and proposed that: 

Abrasion resistance 









∝

WC

IC

D

HK 2183

                                                                    (2.5)                           

Increases in hardness and fracture toughness of a cermet (controlled by the binder 

content and composition), and decreases in WC grain size result in increased 

abrasive wear resistance. The dependence on hardness is seen to be greater than 

that on toughness. Gee et al. [100] investigated the abrasive wear behaviour of  a 

group of cemented WC�Co cermets with different binder contents using ASTM 

G65 and ASTM B611 abrasive tests. Their results show that the abrasive wear 

rate of cemented WC�Co cermets for smaller WC grain size and lower binder 

phase content is lower (Fig. 2.20). Saito et al. [98] worked on a range of WC�Co 

cermets with different binder contents and carbide grain sizes and found the same 

behaviour. They also showed a strong relation between the hardness and the 

inverse of the mean free path. As such, their results show that wear resistance was 

proportional to hardness and wear rate was linearly proportional to the mean free 

path. Quigly et al. [99] also studied abrasive wear behaviour of WC�Co cermets 

with different WC grain size and binder content. They showed that when the 

binder phase content increases, the hardness and abrasive wear resistance 
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decreases. In addition, at each binder content, the hardness and wear resistance of 

material with smaller WC grain size was higher. They therefore concluded that 

the ultrafine WC grained cermet was the hardest and most wear resistant.  

 

Larsen�Basse [91] studied effect of composition, microstructure and service 

conditions on the wear behaviour of different cemented carbides such as the WC�

Co and WC�Ni and compared the results with several carbides and hardened 

steels. The results show that there is a critical level of hardness (~1250 HV) at 

which abrasive wear resistance with quartz increased dramatically (Fig. 2.21). He 

also measured abrasive wear resistance of the cemented WC cermets under soft 

and hard abrasion regimes, shown in Fig. 2.22a and Fig. 2.22b respectively. The 

results show that for a given mean free path the wear resistance of WC�FeNi 

under soft abrasion (with SiO2) is significantly lower than that for the WC�Co 

while the opposite is true under hard abrasion (with SiC). He finally concluded 

that cobalt is an excellent binder to produce cermets with high abrasion resistance 

for following reasons; (i) strong bond with WC grains, (ii) relatively good ability 

to deform and lubricate and (iii) ability to undergo transformation from metastable 

to stable phase during deformation. Pirso et al. [101] investigated the abrasive 

wear of three groups of cermets; the WC�Co, TiC�Ni and Cr3C2�Ni. They 

suggested that abrasive wear mechanisms of different cermets are similar and 

occur through surface elastic�plastic and plastic deformation (grooving). The 

fracturing of bigger carbide grains and carbide frameworks and the formation of 

sub�surface cracks by a fatigue process under repeated abrasion is followed by 

loss of small volumes of the material.  
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In summary, the abrasive wear resistance of cemented WC cermets is controlled 

by the composition of the binder, WC content and grain size. Higher WC phase 

content and smaller carbide grains typically give the greatest abrasive wear 

resistance since cermets with these have smaller binder mean free paths and hence 

less exposure of the soft and ductile binder. The wear mechanism depends on the 

abrasion regime; under soft abrasion, the mechanism of material removal is 

preferential removal of the binder followed by fragmentation and pullout of 

carbide grains while under the hard abrasion, the material is removed by plastic 

deformation (grooving) and fragmentation of the WC grains followed by 

microfracture of the binder. The effect of binder type is complex.  

 

2.1.9.3 Abrasive Wear of Thermally Sprayed WC Coatings 

 
Since there are significant differences between composition and microstructure of 

thermally sprayed WC coatings and sintered WC cermets, the abrasive wear 

behaviour and mechanisms in the sintered cermets may not be directly applicable 

to thermally sprayed coatings. The microstructural features such as anisotropy in 

the coatings due to lamella splat formation and the presence of amorphous phases 

after spray process have a stronger influence on the abrasion resistance of 

thermally sprayed WC composites [102]. However, comparison of the thermally 

sprayed WC coatings with the sintered cermets may help in understanding the 

effect of changes in the microstructural parameters on the mechanical properties 

and wear behavior of these materials. 
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2.1.9.4 Variables Affects on Abrasion Performance 

 
The microstructural parameters of thermally sprayed WC coatings affect 

mechanical properties and wear resistance [14, 91]. The starting powder 

properties along with spray parameters establish the microstructural 

characteristics of the coating. The thermal spray parameters largely govern i) the 

thermal history of the particles, ii) the particle deposition velocity (Fig. 2.23) and 

iii) the oxidation of the particles in flight. Such parameters strongly affect the 

microstructure of the coatings. 

 

Feedstock powder 

The properties of the feedstock powder have important role in determining the 

microstructure and properties of the coating. Properties such as porosity and 

amount of W2C phase, which are strongly related to the density of the starting 

powder exert a strong influence on the coating hardness [103]. It has been 

observed that the reaction during spraying was greater for the powder with the 

high initial porosity level, which is attributed to more efficient heating and 

atmosphere penetration in flight [104]. The coatings deposited from powders with 

medium and coarse carbides generally had lower porosity than those deposited 

from the powder with fine carbides. In addition, some studies [102, 105�107] 

showed that a decrease in carbide size in the feedstock powder led to a higher 

amount of W2C in the coatings due to the larger surface�to volume ratio between 

the carbide and binder. Furthermore, powders having a narrow powder size 

distribution result in coatings of higher quality than powders with wider grain size 

distributions [108]. This is explained by the differing melting behaviour of 

powder particles of different size; small particles are more easily overheated than 
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larger particles, and overheating may give phases with low wear resistance and 

therefore coatings of poor quality (Fig. 2.24) [109]. 

 

Decomposition of WC 

One of the most important attributes of thermal sprayed WC composite coating 

microstructure is the extent of decomposition of WC grains during spraying, 

which is a strong function of the particle temperature in the flame, and can result 

in W2C and W phases and an amorphous binder phase, in addition to primary WC 

phase in the coating. The tribological behaviour of these sprayed coatings 

compared with bulk sintered WC cermets is complicated because of the 

inhomogeneous microstructure and the phase transformations of the starting 

material, which together lead to a wide variation in mechanical properties. Up to 

50% of the WC in the starting material is reported to decompose and transform 

during the spraying process [110]. Hence, the resultant coating microstructures 

can have a much lower volume fraction of the wear resistant primary WC phase 

and a much higher volume fraction of the binder phase compared to the starting 

powder microstructure [20, 77, 106]. Greater levels of WC decomposition have 

generally been seen as undesirable. From the work of Usmani et al. [102], 

comparison of Figs. 2.25a and 2.25d shows that an increasing of W2C phase in the 

coatings goes alongside a decrease in wear resistance. Stewart et al. [75] also 

showed that the effect of these phase transformations is generally deleterious to 

the abrasive wear performance of HVOF WC–Co coatings. More decarburisation 

results in a higher level of the harder and more brittle W2C phase surrounding the 

WC particles and an enrichment of the binder phase in W and C. This enrichment 

increases its hardness and brittleness.    
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The effect of decomposition on abrasive wear behaviour of thermally sprayed WC 

coatings can be considered clearly by comparing different thermal spray 

techniques such as HVOF with a liquid�fuel (HVOLF), HVOF with a gas�fuel 

(HVOGF) and plasma spray systems. Barbezat et al. [18] studied abrasive wear 

behaviour (DSRW test with quartz) of the WC coatings with Co, Ni and CoCr 

binders by using APS, VPS and HVOF spraying systems. Their best results for 

abrasion resistance were obtained with a cobalt matrix and a low level of brittle 

carbides like W2C, M6C and M12C. Khan et al. [111] investigated wear resistance 

of WC�Co coatings produced by APS and VPS spraying systems and found that 

the decomposition reaction during APS was significantly higher than that during 

VPS, likely due to an absence of oxygen. Their results show that plasma power 

only has a secondary influence on the decomposition reaction and measured wear 

resistance were greatest for the VPS coating compared with that for APS. Di 

Girolamow et al. [112] worked on atmospheric plasma spraying of WC�Co 

coatings and showed that by using a high helium flow rate in an optimized argon–

helium mixture and by optimizing the spraying parameters, the degree of 

decarburization may be significantly reduced. This results from an increase the 

velocity of sprayed particles. They concluded that the decrease of the 

decomposition degree enhances hardness, toughness, and wear resistance (ASTM 

G77 test), all resulting in coatings comparable to those sprayed by high velocity 

oxygen�fuel. Sanchez et al. [113] also worked on atmospheric plasma spraying of 

WC coatings, but with conventional and nanostructured WC�Co feedstock 

powders. They used two plasmogenous gases, H2 and He and showed that the 

plasma jet produced using He is less energetic, thus reducing decomposition 

degree and increasing the level of retained WC in the coating, resulting in the 
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highest hardness and toughness values and the best wear resistance. Legoux et al. 

[109] investigated abrasive wear behaviour( DSRW test) of a WC�10C0�4Cr 

coating which was sprayed by three different types of HVOF guns and one plasma 

gun. Their results indicated that the abrasion wear resistance are related primarily 

to the particle temperature at flight due to the carbide degradation (Fig. 2.24). 

 

Since the HVOF systems which employ gaseous fuel (HVOGF system) such as 

hydrogen often yield comparatively higher particle temperatures and lower 

velocities than systems which employ a liquid fuel (HVOLF system) such as 

kerosene [114], the degree of decomposition of WC in coatings produced by 

HVOGF is expected to be significantly higher than that produced by HVOLF. 

Sudaprasert et al. [115] compared wear resistance of WC�12 wt% Co sprayed 

with HVOLF and HVOGF techniques using a conventional ball�on�disc sliding 

test. Despite the higher levels of decomposition in the HVOGF coatings, their 

results showed that the wear rate of the HVOLF�sprayed coating is significantly 

greater than that of the HVOGF�sprayed coating (up to ten times depending on the 

applied load). They suggested that in HVOGF�sprayed coatings, the thermal 

history causes full melting of the binder phase leads to dissolution of the carbides 

and the formation of a highly alloyed matrix which during solidification on impact 

with the substrate leaving carbides well bonded to the amorphous matrix phase. 

However, in HVOLF�spraying, the binder is molten only in the rim of the particle 

whilst in the core, the binder phase remains solid. They concluded that the low 

wear resistance of the HVOLF�sprayed coating is associated with mechanical 

damage to the WC–Co powder particles as they impact with the substrate 

resulting in carbide cracking and a reduction in the integrity of the bond between 
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the carbide particles and the matrix phase. Picas et al. [116] studied abrasive wear 

properties (ball on disk) of a WC�10% Co 4% Cr deposited using three different 

variants of the HVOF process in which the fuels were hydrogen and kerosene. 

The results show the highest degree of decomposition and also highest hardness 

for the coatings sprayed by HVOGF system. The greater degree of decarburisation 

associated with the elevated temperature achieved during gas�fuelled spraying 

resulted in the formation of more of the hard and brittle W2C phase surrounding 

the WC grains and an enrichment of CoCr binder phase in W and C; however, it 

also produced a cohesion decrease in the WC particles within the coating and 

consequently a decrease in wear resistance. Khan et al. [104] in another work 

investigated abrasive wear behaviour of different WC�Co coatings produced by 

HVOF spraying of four powders using both hydrogen and propylene as fuel gas. 

Their measurements of hardness and Young’s modulus indicate that chemical 

reactions generate brittle phases and also tend to result in fine scale 

microcracking, porosity and residual stresses.  They finally concluded that there is 

a close correlation between high degrees of decomposition and poor resistance to 

abrasive wear. Marple and Lima [117] used three different HVOF systems (using 

hydrogen, propylene and kerosene as fuel) and a wide range of spray parameter 

settings to study the effect of in�fight particle characteristics on the abrasive wear 

resistance of WC�12Co coatings (DSRW test with silica abrasive). Their results 

indicate that there was generally a minimum in abrasive wear when the in�flight 

particle temperature was in the range of 1750 to 1950 oC. The XRD spectra and 

BSE images show increase in degree of decomposition with increasing in�fight 

particle temperature. They proposed that at low temperatures and velocities, 

particles are not sufficiently molten and have insufficient kinetic energy to 
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produce good bonding between the splats and only limited reaction between the 

constituents, leading to lower abrasion resistance with poorly bonded splats that 

can be relatively easily removed. At higher temperatures, reactions that degrade 

the carbide phase play an increasingly important role. While some dissolution of 

the carbide phase in the cobalt matrix may be beneficial, there is a point beyond 

which the reaction of the WC to produce increased levels of other species (e.g., 

W2C and W) is detrimental to the wear resistance of the coating. This offsets any 

improvements derived from increases in the cohesive strength of the coating or 

matrix hardening at higher particle temperatures and velocities.  

 

Schwetzke and Kreye [118] reported spraying of WC�Co powders with various 

HVOF gun systems to study coating properties such as abrasive wear (grinding 

wheel test under 30 N load against 320 grit SiC abrasive paper). They found that 

the extent of the carbon loss depended strongly on the spray system used, whereas 

the degree of carbide decomposition increased with higher heating of the particles. 

Their results show that carbon loss in the spray process ranging from 30 to 60% 

does not adversely effect the wear resistance of the coatings (Fig. 2.26). Carbide 

decomposition decreases the volume fraction of the carbides, but its detrimental 

effect on the hardness and wear resistance is compensated by the hardening of the 

binder matrix due to the solution of tungsten and carbide and the formation of 

hard W2C and eta phases. Only when the carbon loss exceeds 60% are the 

hardness and wear resistance reduced. Also at a carbon loss of less than 30% the 

hardness and wear resistance of the coatings are slightly lower. In this case the 

low carbon loss may indicate an insufficient heating of the particles. 
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Verdon et al. [119] studied the effect of decomposition on the erosive wear 

resistance of WC�Co coatings sprayed by HVOF system with two different fuel 

gases (H2 and C3H8) and found that there is an optimum amount of decomposition 

which ensures an optimum wear resistance for given erosion conditions (Fig. 

2.27).  

 

In summary, the degree of decomposition depends on the history of particle in�

flight which is controlled by many parameters like thermal spray technique, gun 

system and type of fuel. Chemical reaction during spraying in higher temperature 

causes new phases (W2C, W and eta) to form and changes the crystalline metallic 

binder phase to a brittle amorphous phase. In general, optimum abrasive wear 

performance is achieved with coatings having a balance between hard carbide 

phases within hard matrix phase, good bonding of the carbides and binder and 

high binder toughness to resist cracking. The properties required depend on the 

type of abrasive wear test and abrasive particle employed. In the other words, the 

wear mechanism determines the optimum coating characteristics.   

 

WC Grain Size and Content 

WC composites generally derive wear resistance from the presence of a high 

volume fraction of hard, wear resistant WC grains in a metal�based binder phase. 

General observations from HVOF thermally sprayed WC cermet coatings and 

sintered materials show that an increasing binder content reduces the hardness and 

abrasive wear resistance of the coating resulting from a reduction of hard carbide 

phases [101, 103]. In the coatings, the binder can exhibit some brittleness due to 

dissolution of W and C in binder during spraying. Khan et al. [104] studied 
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abrasive wear behaviour (DSRW test with silica) of HVOF sprayed WC�Co 

coatings with different binder content (9, 12 and 17wt%). Their results show that 

higher wear resistance is generally expected when the carbide content is higher, 

but the wear rate for coating with the highest carbide content is low due to 

extensive microcracking and fracture occurring during the test.  

 

The effect of carbide grain size on the abrasive wear resistance for thermally 

sprayed WC coatings has been studied by many investigators. Usmani et al. [102] 

studied abrasive wear (two�body  wet abrasion test with 120 grit SiC paper under 

240 kPa) behaviour of HVOF sprayed WC�Co coatings with different carbide 

grain sizes (0.75, 0.88, 1.03, and 1.43 Gm) and found that by increasing carbide 

size in the coatings, there is a decrease in hardness and W2C phase, and an 

increase in fracture toughness and abrasion resistance (Fig. 2.25).  Li et al. [120, 

121] in two different works studied the effect of carbide grain size of WC�Co 

powder with different carbide sizes using an HVOF system and showed that the 

wear rate of cermet coating was observed to be proportional to the square root of 

carbide particle size in the coating and inversely to the volume fraction of carbide 

phase content. 

 

The effect of both carbide grain size and content can be illustrated by mean free 

path parameter. For the cemented materials, it has been shown that there is a 

correlation between abrasion resistance and the mean free path in the binder phase 

between the carbide grains; a small mean free path, due to a high volume fraction 

of fine carbide grains, gives the highest abrasion resistance [91].  Kumara et al. 

[122] investigated abrasive wear (DSRW test with alumina) behaviour of WC�
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10Co�4Cr coatings produced by using HVOF and pulsed combustion processes 

and found a liner relationship between abrasive wear loss of coatings and the 

binder mean free path (Fig. 2.28) showing the best abrasion resistance among the 

coatings tested for coating with lowest mean free path. 

 

The effect of carbide grain size on abrasive resistance in HVOF coatings and 

sintered cermets seems to be opposite. Decomposition of the carbides during 

spraying is the main reason for this. The microstructure of thermally sprayed WC 

cermets must be consider in terms of bonded splats which contain WC, W2C and 

W phases within an brittle amorphous W�C�metal binder. Large carbides tend to 

undergo less decomposition than fine carbides as reported by many authors [106, 

123]. Higher decomposition leads to decreased volume fraction of retained WC 

grains and increased dissolution of W and C in the binder phase.   

 

Porosity 

Porosity has an effect on wear in that coating collapse often occurs around pores 

[124, 125]. Moreover, open surface pores will serve as origins for wear scratches 

made by individual abrasive particles. Pores which have been formed during the 

deposition process and can be found within the coatings have an effect on some of 

the mechanical properties such as elastic modulus, shear modulus, and hardness 

that may affect the wear performance [123]. Nevertheless, when the pores appear 

on the surface of a coating or are generated on the surface due to cutting or 

polishing process, the contact condition will be changed which causes the change 

in wear performance. 
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In thermal spray processes, it is known that high impact velocity and high 

temperature are considered to be desirable to obtain dense coatings. Marpel and 

Lima [117] reported that thermally sprayed WC�12Co coatings deposited with 

different type of HVOF systems contain porosity level of 1% and lower when the 

average particle temperature was above 1850oC (Fig. 2.29). The particle 

temperature and particle velocity depend on the morphology of the feedstock 

powder, and it has been shown that the larger the particle size, the higher the 

particle density and heat capacity, the lower the highest particle temperature and 

velocity that are reached during flight in HVOF spraying [126]. These result in 

higher porosity in the coating with larger particles. The effect of porosity on 

binder hardness also becomes more pronounced with increasing WC volume 

fraction since porosity tends to increase with higher WC content as shown in Fig. 

2.30. This effect is more sensitive for coatings with finer carbide sizes [126]. 

 

2.1.9.5 Abrasive Wear Mechanisms 

 
Wear of WC cermet coatings occurs by the accumulation of damage, fracture and 

removal of single grains of WC; the basic wear mechanism of all WC�based 

cermet coatings is reported to be the local pulling�out of carbide particles from the 

binder phase [127]. There are additional mechanisms of wear described by authors 

who have measured the abrasive wear of thermally sprayed WC cermet coatings. 

   

Stewart et al. [75] reported indentation�induced sub�surface cracking during 

abrasion of HVOF sprayed WC�Co with both hard (alumina) and also soft ( silica) 

abrasives. Their work showed that the brittle, tungsten�rich areas of the binder 

phase (and possibly splat boundaries) were the favoured routes for crack 
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propagation. The scars on the coatings produced by hard abrasion were relatively 

flat with large amounts of grooving and pitting, whereas the scars produced by 

soft abrasion exhibited only limited grooving in areas which were devoid of 

carbides, and where original splat outlines could still be discerned. Kasparova et 

al. [88] studied the abrasive wear mechanism of WC�Hastelloy C when abraded 

with alumina and silica and reported plastic deformation, grooving, ploughing and 

cutting of the surface when abraded by alumina particles whereas, the main wear 

mechanism associated with abrasion by silica particles was smearing of the binder 

phase and extruding of large materials blocks in the wear track. Kumari et al. 

[122] investigated abrasion of thermally sprayed WC�10Co�4Cr with alumina 

(average 50Gm) and reported  preferential removal of the binder phase, followed 

by WC grain pullout. Kim et al. [128] reported a splat delamination mechanism 

for abrasion of thermally sprayed WC�Co coatings. This splat delamination 

resulted from subsurface microcracks, the formation of which were controlled by 

the material properties such as the intersplat cohesive strength. The cohesive 

strength of the thermally sprayed coatings generally is an important factor 

controlling material removal. Hartfield�Wunsch and Tung [125] argued that for 

thermal spray coatings, if a splat delamination mechanism was predominant, the 

splat direction and waviness would play important role in wear performance of 

coating with delamination in flat splats being easier than that in wavy splats. 

 

2.1.9.6 Abrasive Wear Resistance 

 
The complex behaviour of WC cermet thermally sprayed coatings illustrate 

clearly that wear resistance can never be regarded as an intrinsic material 

property. The wear rate, and the mechanisms of wear, depend not only on the 
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composition and microstructure of the material, but also to a very important extent 

on the conditions to which it is exposed [3]. Under certain conditions, the abrasive 

resistance of these type of coatings can be dominated by their fracture toughness 

rather than their hardness [110]. Another important element for the abrasion 

resistance of the coatings is the bond strength between the hard particles and the 

matrix. A strong bond between the matrix and the particles, will result in a higher 

resistance to abrasive wear [77].  

 

In general, it is known that the wear resistance of a material depends on the 

material’s resistance to penetration by abrasive particles or protruding asperities 

of mating material, and the resistance to material removal by fracture and plastic 

flow. This resistance to wear is, in part, reflected by properties such as hardness 

(H) and fracture toughness (KIC) [129]. Wayne and Sampath [81] proposed 

following equation for abrasive wear resistance of thermally sprayed coatings 

which show the effect of hardness and fracture toughness along with binder 

content: 

Wear resistance � 	
��
� ⁄ �� �⁄ � � ����

�������                                                             (2.6) 

where Vf
Co is the volume fraction of cobalt. Although, they showed evidence in 

their work to confirm this relationship, it was believed that other mechanical 

parameters like residual stresses and cohesive strength would be required to 

improve the predictive capability of the relationship [102]. 

 

In sintered WC cements, the hardness decreases and the fracture toughness 

increases with increasing binder content. In thermally sprayed WC cermet 

coatings during the spraying process, the dissolution of WC decarburization and 
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results in the formation of an amorphous binder phase are considered to affect the 

mechanical properties of the binder phase. The intrinsic binder hardness has been 

estimated using a rule of mixtures [130] and exhibited significantly higher values 

than those reported for sintered materials. The hardening of binder phase increases 

the coating hardness and reduces the fracture toughness [103]. While the hardness 

of sintered WC cermets strongly depends on the WC volume fraction, the 

hardness of the coating depends more on the properties of binder and other new 

phases such as W2C and W distributed in the binder ( W2C phase (Hv=3000) is 

harder than the WC phase (Hv=1300–2300)) [90]. Therefore, the mechanical 

properties of the WC cermet coatings are a result of a balance of microstructure, 

phase make up (amounts of W2C, amorphous phase), porosity, etc. Also, it has 

been observed that thermally spayed WC coatings exhibit large anisotropy in 

mechanical behavior within the deposit; for example, the measured fracture 

toughness in the direction parallel to the substrate (perpendicular to the direction 

of spray) has been shown to be significantly lower than that measured in the 

direction perpendicular to the substrate (in the direction of spray) [131].  

 

In summary, the abrasive wear resistance of thermally sprayed WC cermet 

coatings is controlled not only by the composition of the binder, WC content and 

grain size in starting powder, but also by the degree of chemical reaction during 

spray process. In general, lower degree of decomposition and higher retained WC 

phase content give the greatest abrasive wear resistance. On the other hand, the 

hard W2C and brittle amorphous phases resulted from decomposition can enhance 

the bulk hardness of the coating and abrasive wear performance. There is an 

optimum point of decomposition for each coating which abrasive wear resistance 
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can be in maximum level. The wear mechanism in the thermally sprayed WC 

cermet coatings can be predicted based on the abrasion regime. Under soft 

abrasion, the mechanism of material removal is preferential removal of the binder, 

fragmentation and pullout of carbide grains while under hard abrasion, the 

material is removed by plastic deformation (grooving) and fragmentation of the 

WC grains followed by fracture in binder.  

 

There are a considerable number of works on the characterisation and properties 

of thermally sprayed WC�Co coatings. New advanced materials include WC 

composite with complicated alloyed binders such as nickel or iron base alloys 

which can improve the properties and applications of these types of coatings. The 

properties and performance of these coatings are attributed to the microstructural 

changes which occur during the spray process. Therefore, the characterisation of 

the new coatings and investigation of the causal relationship between deposition 

process parameters, microstructure and wear performance of these coatings will 

be important. 

 

2.2�HVOF� Sprayed WC Cermet Coatings  

2.2.1�Introduction  

 
Thermal spraying is a coating process in which melted and/or heated materials are 

sprayed onto a prepared surface. The feedstock material is typically heated by 

either plasma, arc or combustion flame. Coating materials available for thermal 

spraying include metals, alloys, ceramics, plastics and composites which are fed 

in powder or wire form, heated to a molten or semimolten state and accelerated 
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towards substrates in the form of micrometer�size particles. The resultant coatings 

therefore arise from the successive build�up of flattened particles commonly 

referred to as “splats” (Fig. 2.31). The metallurgical structure of splats may 

feature oxides, metastable phases, ultra�fine grained or even amorphous material 

[132]. Common thermal spraying systems are “flame spraying”, “wire arc 

spraying”, “plasma spraying”, “detonation spraying” and “High�velocity oxy�fuel 

(HVOF) coating spraying” [133]. The main differences between these types of 

spraying techniques are in the degree of heating and acceleration of the feedstock 

during spray process. In processes such as flame spraying and wire arc spraying, 

the particle velocities are generally low (< 150 m/s), and particles must be molten 

to be deposited. Plasma spraying, developed in the 1970s, uses a high�temperature 

plasma jet generated by an arc discharge with typical temperatures >15000 K, 

which makes it possible to spray refractory materials such as ceramic oxides. 

With the advent of vacuum plasma spraying systems (VPS) and low pressure 

systems (LPPS), materials which are prone to oxidation may also be deposited.  

 

During the 1980s, a new class of thermal spray processes called high velocity 

oxy�fuel spraying was developed. In this process in which the degree of heating of 

the powder particles is lowered in favour of their acceleration, a mixture of 

gaseous or liquid fuel and oxygen are combusted continuously in a combustion 

chamber. The resultant hot gas at a pressure close to 1 MPa flows out through a 

converging–diverging nozzle. The jet velocity at the exit of the barrel typically 

exceeds 1000 m/s. A powder�feed stock is injected into the gas stream, which 

accelerates the powder up to around 800 m/s. The stream of hot gas and powder is 

directed towards the surface to be coated. The powder partially melts in the 
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stream, and deposits upon the substrate. The resulting coating has low porosity 

and high bond strength [134]. The resultant bonding is more the result of kinetic 

as opposed to thermal energy. Some of the important differences between 

combustion and plasma systems are highlighted in Table 2.1. 

 

HVOF spraying is commonly used to deposit wear and corrosion resistant 

coatings. The process has been most successful for depositing cermet materials 

(e.g. WC�Co) and other corrosion�resistant alloys (stainless steels, nickel�based 

alloys, aluminium, hydroxyapatite, etc. [134]. 

  

2.2.2�HVOF Process Variables 

 
The HVOF process variables can be classified into primary and secondary 

parameters [135]. The primary parameters include the feedstock powder 

(composition, morphology, size and feed rate), the fuel gas (composition and flow 

rate), the oxygen�fuel gas ratio, the carrier gas (composition, flow rate and 

pressure) and the gun design (nozzle type and dimensions). The secondary 

variables include the spray distance, the rotational speed of sample, the gun 

traverse rate and substrate parameters (type, geometry, grit blasting or preheating 

prior to spraying and cooling during spraying). All of these variables can affect on 

the microstructural characteristics (i.e. phases present and porosity) and 

mechanical properties (i.e. hardness, ductility and wear behaviour) of the sprayed 

coating.  
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2.2.2.1 Feedstock Powder  

 
The structure and properties of coatings manufactured by thermal spraying depend 

strongly upon powder feedstock characterisation such as composition, 

morphologies, porosity, size distribution and flowability [133]. The powder 

feedstock morphology and particle size distribution are related to its 

manufacturing route. There are several manufacturing methods of thermally 

sprayed powder feedstock such as atomization, fusing and crushing, milling and 

sintering, cladding and spray�drying techniques [136]. Powders with the same 

chemical composition and size distribution produced by different manufacturing 

methods can have different morphologies which result in significant structural 

variations after thermal spray coating. The powder morphology, resulting from 

their manufacturing process, varies from spherical to irregular or blocky [137]. 

The effect of particle shape on their aerodynamic behaviour, different particle�

specific masses (corresponding to particles with different porosity) result in 

different thermal conductivities and diffusivities. The capability of powder in 

flowing through the powder feeder and injection system, termed the flowability is 

extremely important in all thermal spray processes. Poor flowability results in 

fluctuations in powder feed rate and thus in inhomogeneous coating structures 

[136]. It is well known that spherical and homogeneous powder particles with a 

narrow size range are preferable to particles having faceted shapes, wide size 

distributions and non�uniform distribution of components [138]. 

 

Spray�Drying Technique  

For producing cermet particles like WC cermets, it is necessary to mix rather fine 

ceramic and metal or alloy particles and form granules of their mixtures. Spray�
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drying is one of the most versatile techniques to manufacture of such powders. In 

spray�drying, agglomerated powders are produced from suspensions; particles are 

sintered in rotating furnaces where diffusion occurs within particles but not 

between them.  

 

2.2.2.2 Fuel Gas 

 
A number of different fuel types may be employed in HVOF thermal spraying 

including kerosene, hydrogen, propylene, acetylene and natural gas [139]. 

Different types of fuel gas can change the combustion temperature of the system 

affecting the amount of thermal transfer to the powder particles and consequently 

changing in coating structure [114].  

 

Oxygen to fuel gas ratio (stoichiomtry) also influences the temperature of the 

flame and spray condition (reducing or oxidising atmosphere) [19]. By changing 

the stoichiomtry, it is possible to change the temperature and exit velocity of the 

gas flow and the energy of the particles as they impact with the substrate which in 

turn affects their composition and the bond strength of the coating [140]. 

Microstructural decomposition in the coating is significantly influenced by 

oxygen�fuel ratio which then affects the microstructure and mechanical properties 

of the coatings [141].  

 

2.2.2.3 Powder Carrier Gas 

 
In order to feed the powder into the flame stream, a carrier gas is needed; the 

carrier gas can act as a diluent to the oxygen�fuel gas and will cause a reduction in 
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the gas temperature as it absorbs a fraction of the heat of combustion energy 

[114]. The main parameters relating to a carrier gas which can influence the final 

coating properties are the composition, flow rate and the pressure. 

 

2.2.2.4 Gun Design 

  
The gun design is an important part of the spraying system. Many factors such as 

where the powder enters the system and components such as the nozzle have a 

significant effect on the final coating. Figs. 2.32a and 2.32b exhibit two different 

types of HVOF nozzle which use liquid and gas fuel respectively.  

 

2.2.2.5 Stand Off Distance  

 
The length of time the particles dwell in the flame zone and as such the 

temperature of the particles at the impact point are determined by the stand�off 

distance. The larger distance means that the particles are more time in the 

oxidizing environment and probably have a lower temperature upon impact. Fig. 

2.33 shows the temperature and velocity of the particle in�flight as a function of 

stand�off distance for an HVOF system indicating stronger influence of particle 

size on the particle temperature than the particle velocity [105]. Apart from small 

particles, the dependence of velocity on stand�off distance is small. 

 

2.2.2.6 Traverse Speed 

 
Both the horizontal and vertical gun�substrate traverse speeds can affect the nature 

of each deposited layer of coating. Fig. 2.34a shows schematic diagram of a single 
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traverse of a spray stream across a substrate. Subsequent overlapping of 

successive passes of the gun will result in the build up of a coating layer [142]. 

The overlap of each pass should be less than half the width of the spray pattern to 

produce a coherent coating thickness (Fig. 2.34b). A thicker layer can result in 

overheating, cracking and possibly spallation. Thinner layers can increase the 

oxide content [142]. 

 

2.2.3�Sintered WC Cermet Materials 

 
WC�metal/alloy cermets (also known as hardmetals) are one of the important 

types of composite materials. The combination of hard carbide and tough, energy 

absorbing metal results in a material which has some of the best attributes of each 

phase. Two important aspects of the WC cermets which determine the 

characteristics of the composites are the composition and the WC grain size [13]. 

These factors describe the dispersion of the hard and brittle carbide phase within 

the ductile metallic matrix.  

 

2.2.4�Thermally Sprayed WC coatings 

 
Many thermal spraying techniques such as air plasma spraying (APS) and high 

velocity oxy fuel (HVOF) spraying can be applied to deposit the WC cermet 

coatings; however, the properties of coatings strongly depend on spraying 

technique. Compared to other spraying techniques, HVOF spraying is one of the 

best methods for depositing WC cermet powders due to the higher velocities and 

lower temperatures experienced by the powder [2]. Tungsten carbide based 

powders are widely used in high�velocity oxygen fuel (HVOF) spraying system to 
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produce dense coatings of high hardness and wear resistance, used in a variety of 

conditions which include sliding, fretting, abrasion and erosion. In applications 

where higher demands on corrosion or oxidation resistance are made, the WC 

based powders are produced with advanced binder materials such a Ni based 

alloys [88]. However, the microstructure and the mechanical properties of the 

coatings not only depend on the composition of the powder, they are also 

considerably affected by phase transformations which have taken place during the 

spray process. Compared to sintered WC cermets, for which the sintering 

atmosphere, temperature and time are carefully controlled, HVOF�sprayed WC 

coatings still suffer from decomposition and decarburization during spraying 

process leading to formation of detrimental phases such as W2C, W resulting from 

an oxidation of the spray material in the flame and from thermally activated 

reactions between WC and the binder matrix, respectively [119, 143, 144]. 

Furthermore, rapid solidification of the supersaturated binder (with tungsten and 

carbon in solution) matrix can cause the formation of an amorphous or 

nanocrystalline phase [20, 145, 146]. Phase transformations and the resulting 

coating characteristics are affected by the type and composition of the powder as 

well as by the spray system and the fuel used [102, 104, 147, 148]. 

  

2.2.4.1 Feedstock Powder 

 
In the past few years, feedstock powders prepared by agglomeration (via spray 

drying) and subsequent sintering have been used for HVOF coatings. Improved 

flowability is one advantage of these powders. Other advantages of spray powder 

preparation are the predominance of equilibrium phases, a homogeneous 

microstructure for all powder particles, and a controlled hard phase grain size. 
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Porosity of the powders can be reduced and controlled by optimisation of the 

spray drying process [149]. 

 

2.2.4.2 Phase Transformation during spraying process 

 
During thermal spraying of WC�based powders, phase transformations occur that 

determine the microstructure and chemistry of the coatings. In broad terms, these 

cover firstly the decomposition of carbide phase during time spent in the hot gas, 

and secondly the formation of new phases during the solidifications process 

within the rapidly cooled splats which form when powder particles impact the 

substrate (Fig. 2.35). The decomposition is directly linked to the temperature�time 

history and gaseous environment in the spray system; the degree of reaction 

determines not only the phases present within the coating, but also their quantities. 

The decomposition of the particles is dependent upon the reaction with oxygen in 

the hot gas resulting in a decarburisation process. The amount of  decarburisation  

is affected by  the flame oxidation potential, the local temperatures of the 

individual carbide particles and the relative solubility of the carbide into the 

binder phase [150].  

  

The mechanisms of decomposition can be described as follows: With increasing 

the temperature of the particle in�flight, the metallic binder phase reaches the 

melting point and wets the WC grains thus preventing direct contact with the gas 

phase. However, as dissolution of the WC crystals in the molten metal proceeds 

the total amount of the tungsten and carbon dissolved into the binder phase 

increases considerably. At the same time, oxygen diffuses through the molten 

phase and reacts with the carbon to form CO. Carbon will be removed from the 
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melt either by reaction with oxygen at the melt/gas interface or through oxygen 

diffusion into the rim of the molten particle, leading to CO formation [105]. The 

depletion of carbon from the melt will thus be restricted to a shell region, the 

depth of which will depend on transport of carbon, oxygen and the reaction 

kinetics. However, removal of carbon, locally, from the melt will drive further 

dissolution of WC grains in this shell region as the system attempts to re�establish 

local equilibrium at the WC�melt interface. The overall result will be WC grains 

which are considerably less angular in the outer shell regions (due to dissolution), 

a reduced WC volume fraction compared with the central regions of the particles, 

and a W:C atomic ratio in the melt greater than unity. When the temperature 

decreases, new phases are formed due to the decreasing solubility of tungsten in 

the binder liquid phase [150]. As the total amount of carbon has been reduced by 

oxidising reactions, it is only possible to form phases with a lower amount of 

carbon (i.e., W2C, W). Therefore, the composition of new phases depends on the 

solubility degree of W and C in the binder and amount of carbon loss during 

decarburising process. Once it is assumed that higher concentration of tungsten 

and carbon must be located near to the original WC crystals, it is reasonable to 

believe that new phases grow near to these carbides or they use the WC structures 

as crystallising nuclei.  

 

Stewart et al. [105] discussed the mechanisms associated with the production of 

the new phases in Co�W�C system and identified two points on the ternary phase 

diagram relating to possible melt compositions at ~2200 K (Fig. 2.36) although, 

they believed that W2C, W and the binder (W, C) nanocrystalline/amorphous 

phase all form during rapid solidification of the splat. Since high splat cooling 
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rates exist during thermal spray deposition (~106�107 K/s [151]), ternary phase 

diagrams can only aid in understanding how shell and core regions of splats, 

having different melt compositions as a result of decarburization, might behave. 

At approximately 2220 K the melt composition in equilibrium with WC at the 

core of a powder particle is shown by the solid circle in Fig. 2.36 (W:C atomic 

ratio=1). If, as in the shell region, carbon has been lost from the liquid then a 

possible melt composition would be indicated by the open circle. Higher spraying 

temperatures will result in large amount of W and C dissolution and as such will 

cause the composition at the periphery of a particle to change. In the presence of 

oxygen there have been several possible routes proposed which all result in the 

production of free carbon, liberated from WC during decarburisation [139, 152, 

153]. The nanocrystallinity may be due to crystallization of an originally 

amorphous matrix as a consequence of reheating during successive gun passes to 

build up a thick coating. 

 

There are two main methods for quantifying the amount of decomposition that 

occurs during spraying. Firstly, there is chemical analysis whereby the chemical 

composition of the coating is compared to that of the powder feedstock. Since 

carbon is the element most likely to be lost during spraying, the carbon value 

usually is the most informative. The second method by which phase content can 

be quantified is to use XRD techniques. In this method it is possible to quantify 

the amount of phases both in the coating and in the starting powder feedstock and 

compare these.  There are number of methods whereby this comparison may be 

done; i) obtaining the ratio of same Miller index WC/W2C peak intensities [114, 
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138, 154], ii) comparison to normalised WC/W2C samples [102] and iii) the 

Rietveld analysis method [78]. 

 

2.2.4.3 Phase Content and Composition      

 
The microstructure of thermally sprayed WC cermet coatings are characterised by 

special observable features. Depending on the degree of the dissolution and 

decomposition, the cross�sectional SEM backscattered electron (BSE) images of 

the coatings show quite clearly the layer by layer structure of the coatings, 

including carbide grains with different size, shape and distributions, binder matrix 

regions with various BSE contrast indicating different compositions, and  a degree 

of porosity dispersed within the coating (Fig. 2.37).  

 

Two types of carbides can be seen in the microstructure of the coatings, those that 

retain their morphology as in the powder feedstock (blocky or angular in nature) 

and those being more rounded in nature. It has established that these rounded 

carbides often comprise two phases, with the outer fringe usually being much 

brighter than the core (indicating higher mean atomic number). TEM 

investigations can confirm that the brighter surrounding phase is W2C [78, 105]. 

Formation of the new W2C and W phases is due to crystallization from tungsten�

rich molten binder during high rate solidification; the new phases form as fringe 

shape around WC grain as an efficient nucleation substrate [105].  

 

The matrix phase also generally includes at least two separate regions with 

variable contrast in the BSE image [145]. Variation in intensity within the binder 

material in BSE mode indicates different compositions due to the varying amount 
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of W and C dissolved into the binder [118]. Karimi et al. [145] showed the gray 

regions to be tungsten�rich in comparison with the dark regions (see Table 2.2). 

Schwetzke and Kreye [118] reported much higher amounts of W and C in the 

binder of an HVOF�sprayed WC�Co coating than those given in the equilibrium 

phase diagrams for Co�W and Co�C due to the binder phase being described as a 

super saturated solid solution. A number of workers have discussed the exact 

nature of the binder phase reporting amorphous [146], nanocrystalline [145] and 

even microcrystalline [155]. Grimberg et al. [155] suggested that amorphous or 

nanocrystalline binders result from rapid solidification rates whilst 

microcrystalline material would result from slower cooling rates. The cooling rate 

is also dependent on the particle size; smaller particles would reach higher 

temperatures and impact with the substrate at high speeds (Fig. 2.33) resulting in 

rapid solidification leading to more amorphous or nanocrystalline material. 

 

Porosity is a prevalent feature in the microstructure of WC cermet coatings and 

affects a wide range of coating properties such as abrasive wear behaviour. 

Various methods are employed for quantitative measurement of porosity, which 

forms an important and integral part of microstructural characterization of thermal 

spray coatings. Image analysis (IA) has been known as a reliable method for 

characterization of porosity using microstructural images from thermally sprayed 

coatings [156]. The level of porosity in the HVOF coatings is generally very low 

(a few percentage). Due to the structural complexity of WC cermet coatings, great 

care must be taken in preparing the cross sections to achieve a true representation 

of the microstructure in other to measure the extent of porosity [157]. There are 

two main kinds of porosity in thermal spray coatings: gas porosity and shrinkage 
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porosity. The first is responsible for the development of the large pores in the 

coating and is formed as a result of the gas capture due to the roughness of the 

substrate (coating) surface and the molten droplet deformation during its 

impingement. The second is formed within the coating during the solidification 

[158]. Tekmen et al. [159] suggested that the free carbon content from the 

decomposition of WC can react with oxygen to form CO2 gas porosity. In general, 

it is considered that the coating porosity decreases with the increase in spray 

particle velocity and an improvement in particle melting�degree. The combination 

of high temperature and velocity should facilitate the particle deformation upon 

impact, so that the solidifying splats will be able to conform to the surface of the 

previously deposited layer and fill the pores and defects [116]. Increasing binder 

contents also tended to reduce porosity of the coatings because compared to WC, 

metallic binder has lower melting point and easier to be melted, which can fill the 

pores in the coating [126]. However, the porosity of the coatings is also affected 

by the melting behaviour of the particles. Dense powders, produced by sintering 

or fusing, are difficult to melt in the HVOF process. Thus, coatings sprayed with 

these powders show higher porosity, especially when spray systems are used that 

provide rather low heating of the particles [118]. 

 

2.2.4.4 Microstructure and Mechanical Properties   

 
The mechanical properties of the thermally sprayed coatings are a result of a 

balance of their composition, microstructure, phase contribution, porosity, etc. For 

thermally sprayed WC cermet coatings, the levels of decomposition affect on the 

mechanical properties such as hardness and fracture toughness [160]. The 

hardness and fracture toughness value can be influenced by many factors such as 
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binder content [161], binder composition [150], splat cohesion [162], the spraying 

system employed [163], the particle temperature and velocity during spraying 

[117], size of WC grains [106] and the degree of porosity present [103, 160].  

 

Wide ranges of hardness value (between HV= 800�1800) have been reported for 

HVOF�sprayed WC cermet coatings by a large number of investigators [102, 104, 

116, 126, 141, 160, 164, 165]. This is not only due to different powder feedstocks 

and spraying parameters, but also because of inhomogeneous nature of these 

materials. This variation basically depends on microstructural characteristics of 

coatings. General trends observed for sintered WC cermet materials are that 

increasing the binder content reduces the hardness of the cermet because a 

reduction of hard carbide phase [126] while for HVOF deposited coatings the 

hardness depends on many parameters like volume fraction of hard carbide phase 

[161], hardness of amorphous binder (W, C), formation of new phases and 

porosity of coating [166]. For example reduction of the carbide phase during the 

spraying process due to the decomposition leads to dissolution of W and C into 

the binder and increase its hardness after rapid solidification. Thus although 

decreasing the carbide phase content causes the hardness of thermally sprayed 

WC cermet coatings to decrease, amorphous binder saturated with W and C can 

increase the bulk hardness of coating. 

 

In sintered WC cermets, it has been found that the toughness decreases as 

hardness increases [82, 98, 167]. This relationship is observed for most materials 

and is attributed to plastic deformation at crack tips that increases fracture energy. 
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O'Quigley et al. [168] showed that the relationship between hardness and fracture 

toughness of sintered WC hardmetals is of the following type: 

�� � ��
�� � �                                                                                                (2.7) 

where Hv and KIC are hardness and fracture toughness of hardmetal respectively 

whereas m and c are functions of the WC grain size (and possibly other 

microstructural parameters). In the sprayed WC cermet coatings (because of 

anisotropic laminated structure) the same flaws that decrease the hardness can 

also decrease the tensile strength and accelerate crack growth. Therefore, fracture 

toughness and hardness cannot essentially have inverse relationship. Qiao et al. 

[160] deposited a series of WC–Co coatings by the high velocity oxy fuel 

(HVOF) process and concluded that the hardness and toughness of the coatings 

increase together, in contrast to the behaviour observed in sintered WC cermets.  
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Table 2.1 Attributes of different types of thermal spray systems [133]. 

Spray system Heat source Feedstock Powder 

temp 

(
o
C) 

Powder 

velocity 

(m/s) 

Deposition 

rates 

(kg/hr) 

Flame Oxy�acetylene 
or hydrogen 

Wire or 
powder 

3000 40 2�6 

APS Plasma arc Powder 12000 200�400 3�9 

LPPS Plasma arc Powder 12000 200�400 3�9 

Detonation O2�acetylene�
N2+gas 

detonation 

Powder 4500 800 0.5 

HVOF Oxyfuel 
combustion 

Powder 3000 800 2�4 

 

 

 

 

Table 2.2 A typical characterisation of binder phase composition [145]. 

Element Dark binder (at%) Light binder (at%) 

W 32�35 34�52 

C 36�48 24�38 

Co 13�28 14�17 

O 4�7 3�8 
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Fig. 2.4 Generation of cracks under an indenter in brittle solids [3]. 
 
 
 

 

Fig. 2.5 Predicted and experimental volume wear versus 1/surface hardness for 
steel against two types of abrasive sands; rounded and crushed silica sands [38]. 

 

Fig. 2.6 Effect of abrasive particle size on wear of metals; × steel, ○ bronze [35]. 
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Fig. 2.7 Relative abrasive wear resistance versus hardness ratio of worn to 
abrasive material [34]. 
 

  
(a) (b) 

 
Fig. 2.8 Schematic diagram illustrating effect of abrasive particle size on 
deformation of WC composite; (a) scale of deformation is comparable with size of 
reinforcement and deformation is heterogeneous; (b) scale of deformation is 
considerably greater than that of reinforcement and deformation is effectively 
homogeneous [49]. 

 
 

Fig. 2.9 Relative wear resistance for pure metals and heat�treated and work�
hardened steels under condition of two –body abrasion, plotted against indentation 
hardness [50]. 
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Fig. 2.10 Schematic illustration of four common methods used to measure 
abrasive wear rates of materials: (a) pin on abrasive disc; (b) pin on abrasive plate; 
(c) pin on abrasive drum; (d) rubber/steel wheel abrasive test [3]. 
 
 

 

Fig. 2.11 Schematic diagram of dry sand rubber wheel abrasion test apparatus [4]. 
 
 
 
 

 
Fig. 2.12  The effect of rubber hardness on the wear rate of 1020 steel [63] 
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Fig. 2.13 Weight loss of various materials as determined from the rubber wheel 
abrasive test at different levels of rubber hardness [61]. 
 
 

 
Fig. 2.14 Idealized section of rubber wheel pressing on various size of spherical 
sand grains, to scale [62]. 
 
 
 

 
Fig. 2.15 The effect of temperature on the hardness of a cast polyurethane rubber 
and a chlorobutyl (ASTM standard) rubber [63]. 
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Fig. 2.16 Effect of carbon content and microstructure on abrasive wear resistance 
of steels [1]. 
 
 

 
Fig. 2.17 Effect of hardness ratio of steel and abrasive on wear resistance of steel 
[48].  
 
 

 
 

 
Fig. 2.18 Ash distribution inside cooling screws equipments [72].  
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(a) 

 
(b) 

 

Fig. 2.19 Effect of changes in the WC grain size and binder content on the 
mechanical properties of WC�Co cements (IFT: indentation fracture toughness, 
KHN: knoop microhardness, F: fine, M: medium, C: coarse size of WC grains, 6: 
6 wt%Co, 12: 12 wt%Co) [82]. 

 

 
Fig. 2.20 Dependence of abrasive wear on inverse square root WC grain size for 
sintered WC�Co cermets [100]. 
 

 
Fig. 2.21 Effect of hardness on the abrasion of metals, alloys, and cemented 
carbides by quartz abrasives [91]. 
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 (a) (b) 

 
Fig. 2.22 Abrasion resistance versus mean free path under; (a)  hard abrasion by 
silicon carbide particles and (b) soft abrasion regime by quartz particles [91]. 
 
 
 

(a) 

 
(b) 

 
 
Fig. 2.23 Relationship between coating hardness and the particle (a) temperature 
and (b) velocity during the HVOF spraying of WC�12Co powders for different 
spray parameters [80]. 
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Fig. 2.30 Effect of binder volume fraction and carbide size on the porosity of 
HVOF sprayed WC�Co coatings (F: fine, M: medium and C: coarse carbide size) 
[126]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.31  Schematic diagram of (a) thermal spraying process and (b) thermal 
sprayed coating [170]. 

(a) 

 
(b) 
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Fig. 2.32 Schematic diagrams of the design of HVOF system: (a) liquid fuel (Met�
jet) ; (b) gas fuel (Top Gun) [115]. 
 
 
 
 

  

(a) (b) 
 

Fig. 2.33 Profiles of (a) axial velocity and (b) temperature of different size 
particles injected at five different locations as a function of axial position [105]. 

(a) 

 

(b)  
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(a) 

 
(b) 

 
 
Fig. 2.34 schematic diagram of (a) single traverse and (b) thicker layer of a spray 
stream across a substrate [142]. 
 
 

 

 

Fig. 2.35 Schematic illustration of the processes involved in melting, WC 
dissolution and decarburization of a WC/Metal powder particle. The formation of 
a lenticular splat on impact with the substrate is illustrated in (c) [105]. 
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Fig. 2.36 The liquidus surface projection of the Co�W�C system. The solid lines 
show calculated liquid phase compositions in simultaneous equilibrium with two 
solid phases, dotted lines represent approximate isotherms on the liquidus. The 
solid circle represents the approximate liquid composition at 2220 K in 
equilibrium with WC at the core of a particle; the open circle represents a possible 
liquid composition at the periphery of a particle (i.e. depleted in C) also in 
equilibrium with WC at 2200 K [105]. 
 

 

 

P

WCBH

BL

 
Fig. 2.37 BSE cross�section image of a HVOF sprayed WC�17Co coating. P: 
porosity, WC: carbide grain, BH: binder phase with high dissolved WC and BL: 
binder phase with low dissolved WC. 
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Chapter   3 
 

 
Experimental Procedures 

 
 

 

 

3.1�Abrasive Wear Testing 

3.1.1� Introduction 

 
In this work, the abrasive wear tests were carried out in three groups and the wear 

behaviour of materials under these conditions of abrasion were considered. These 

groups are: 

1)� The abrasion of three steels with different hardnesses with an ash from a 

biomass power station,  

2)� The abrasive wear of five types of steels with widely varying hardnesses 

with silica sand, and  

3)� The abrasion of five types of tungsten carbide coatings with different 

binders and carbide grain sizes deposited by using HVOF thermal spray 

system with silica and alumina sands. 

 

The materials were abraded using a dry sand rubber wheel test (a variant on 

ASTM G65).  
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3.1.2�Test Method and Apparatus 

 
In order to testing the materials under three�body low�stress abrasion condition, 

the samples were tested using a modified “dry sand rubber wheel” tester. This 

modified design is based on that reported by Stevenson and Hutchings [63]. The 

test apparatus used in this work, shown in Fig. 3.4 differed from that described in 

the ASTM standards as illustrated in section 2.2.6.3. In this test apparatus, the 

sample was held in a slot on top of the rotating wheel; in this way a controlled 

feed of abrasive could be passed between the wheel and the sample with the raised 

walls of the slot preventing any abrasive from not passing over the top surface. 

The rubber wheel consisted of a cast polyurethane elastomer (monothane A60; 

CIL, Preston, UK) around an inner steel wheel to give an overall diameter of 227 

mm. The tyre had a width of 12 mm and an international rubber hardness of 63±3 

degrees as measured with a Wallace Hardness Meter. It was rotated at 195 

revolutions per minute, equivalent to a sliding speed of 2.32 m s�1 (in agreement 

with ASTM standard G65 [4]). The abrasive particles were fed via a chute onto 

the rubber wheel just before the contact region between the test specimen and the 

wheel. In this work, silica and alumina particles in medium distribution sizes as 

two usual abrasives which are used in the investigations on abrasive wear of 

materials were employed. The sand feed rates were maintained constant as 

follows: For bottom ash the feedrate was 1.09 g s�1, for silica sand in the size 

ranges 180�250 ]m and 300�600 ]m, the feedrates were 2.37 g s�1 and 0.85 g s�1 

respectively, and for alumina in the size range of 212�300 ]m, it was 2.64 g s�1. 

The higher feed rates cause larger amounts of abrasive particles to move into the 

contact region where whole particles cannot pass through the gap, while in the 
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lower feed rates, wear rate is too low to measure. The abrasive is dragged through 

the wheel�specimen contact zone which is loaded by a dead weight on the sample. 

 

The mass loss of the sample was measured before and after every test by a GF�

200 balance (A & D Instruments Ltd., Tokyo, Japan) with a 210g capacity and 

0.001 g resolution. Abrasion distances of 100, 200, 400, 600, 800 and 1000 

revolutions were employed for the steel samples and 800, 1600, 2400, 3200 and 

4000 revolutions for sprayed samples. The wear rate is taken as the gradient of the 

steady state part of the plot of mass loss versus sliding distance. Wear test were 

performed under five applied loads (19.6, 49, 68.6, 98, and 127.5 N). No 

recycling of the abrasive took place and all tests were performed dry. Before 

measuring the weight of samples, they were cleaned by washing in methanol and 

then dried. 

 

3.1.3�Characterisation of Abrasive Particles 

3.1.3.1 Abrasive Materials 

 

Three types of abrasives were employed in this work: (i) angular alumina 

(Abrasive Developments, Henley�in�Arden, UK), (ii) rounded silica (The David 

Ball Company, Bar Hill, UK) and (iii) the bottom ash particle from a waste�to�

energy power station. The alumina and silica sands were in different size ranges; 

212�300 ]m for alumina, 180�250 ]m and 300�600 ]m for silica. The bottom ash 

had a very wide range of particle sizes (some particles over 3 mm in size) and to 

allow the material to be used in the laboratory abrasion apparatus, the fraction of 

the ash with particle size less than 850 �m was sieved out and used for the tests. 
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3.1.3.2 Analysis of Size 

 
Size analyses of particles were conducted using two different techniques: sieve 

and laser granulometery. The sieve analysis technique uses a test sieve shaker, 

Octagon 2000 (Endecotts, London, UK) and the latter uses the Malvern 

Instruments Master Sizer (Malvern Instrument Limited, Worcs, UK).  

 

3.1.3.3 Morphology  

  
The morphology of the abrasive particles before and after an abrasive wear test 

was investigated by using a Philips XL30 (FEL Ltd, Cambridge, UK) scanning 

electron microscope in secondary electron (SE) mode. It was operated with an 

accelerating voltage of 20 kV and a working distance between 10 and 15 mm. The 

abrasive particles were sprinkled on to an aluminium stub and held in place 

through the use of an adhesive carbon tab. The ensemble was then sputter coated 

with gold by a Polaron sputter coater (Quorum Technologies Ltd. Company, East 

Sussex, UK) to make the particles conductive.  

 

3.1.3.4 Hardness  

 
The hardnesses of the abrasive particles were measured using a LECO M�400 

micro hardness tester with a 300 gf load. Abrasive particles were prepared by 

mounting in hot hardening resin and polishing so that a flat cross�section of the 

abrasive particle was exposed for indentation. Hardness measurements reported 

are an average of 5 indentations on different particles. 
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3.1.3.5 Fracture Strength 

 
The fracture strength of particles was measured by compression testing between 

very hard tungsten carbide ceramic platens. For each particle size range, ten 

individual particles were chosen and their strengths measure individually with an 

Instron Universal tester (Instron, Bucks, UK) fitted with a 45 N load cell. The 

machine was run in displacement control; when particles fractured, the load 

dropped. The load at first fracture and the maximum load borne by each particle 

were measured and the averages calculated. 

 

3.1.4�Characterisation of Worn Surfaces  

3.1.4.1 Wear Scar Investigation 

 
In order to investigate the wear processes and mechanisms, the wear surfaces of 

samples were examined by scanning electron microscopy (Philips XL30, FEI Ltd, 

Cambridge, UK). The SEM was operated with an accelerating voltage of 20 kV in 

SE and BSE imaging modes. Also, energy dispersive X�ray EDX�SEM analysis 

was employed for qualitative compositional analysis where required (qualitative 

since analysis performed as non�plane surface). 

 

3.1.4.2 Profilometery Assessment 

 
To measure the size, shape and depth of scars generated following wear tests, 

profilometery was employed. Stylus profilometery and surface roughness 

measurement of the samples were performed using two different machines for two 

and three dimensional profilometery. The former was a Surfcom Surface Texture 

Measuring Instrument supplied by advanced Metrology Systems Ltd ( Leicester, 
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UK). The latter was a Talysurf CLI 1000 Surface Profiling System (Taylor 

Hobson Limited, Leicester, UK) which can work with both stylus and laser 

surface detector.  

 

3.1.4.3 Temperature of Sample during Wear Testing 

 
In some steel cases, the increase in temperature during wear testing was 

investigated. A thermocouple was attached to the sample surface close to the 

centre of the wear scar using a special heat resistance glue (see Fig. 3.5). The 

temperature was recorded as a function of the number of revolutions of the wheel 

(readily converted to sliding time) and the effects of load and abrasive type (silica 

180�250 Gm and the bottom ash) were studied. The temperature of the rubber 

wheel was roughly monitored by pressing a fine thermocouple onto the wheel 

immediately at the end of each test. 

 

3.1.4.4 Particle Fragmentation Following Wear Test 

 
In some cases, the size distributions of the abrasive following wear testing were 

measured by the sieve analysis technique. To allow separate collection of abrasive 

particles which had passed through the contact zone from that which had not, a 

pair of stationary brushes (one each side of the wheel) were placed along the 

vertical radius on the wheel up to the level of the test specimen; the brushes 

separated the two abrasive collection routes. Thus, abrasive particles that passed 

through the contact zone would be collected separately from those that fell away 

from the wheel before being passed through the contact. Following wear testing, 

the size distributions of the particles that had passed through the contact zone 
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were again measured by mechanical sieving. Each test was performed at least 

three times.  

 

3.1.5�Abrasive Wear Testing of Steel Substrates 

 
In this part of the work, the main purposes were to evaluate the abrasive wear 

behaviour of steels with a bottom ash abrasive from a biomass power station and 

to compare it with wear observed when abraded with silica. As part of this study, 

analysis of the motion of abrasive particles in the dry sand�rubber wheel abrasion 

test was conducted. The aim was to understand the mechanics controlling particle 

motion, and thus the dependence of particle motion upon external factors, 

focussing on the effects of testpiece hardness and applied load. For these 

purposes, wear behaviour of steels under conditions of abrasion were studied in 

two groups of materials: (i) the abrasion of three steels with an ash from a 

biomass power station and (ii) the abrasive wear of five types of steels with 

various hardnesses with silica sand.  

 

Dry sand–rubber wheel testing was employed for abrasion test with bottom ash 

(0�850 ]m) and silica sand (180�250 ]m) as abrasive particles under five loads of 

19.6 N, 49 N, 68.6 N, 98 N and 127.5 N. 

3.1.5.1 Test Materials 

 
The compositions of the steels were determined by atomic emission spectroscopy 

(using a Foundry Master, Worldwide Analytical Systems AG, Germany). For 

abrasive wear testing, test pieces (59×25×12 mm) were produced and the surfaces 

to be exposed to wear (one of the largest faces on each sample) were ground with 
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successively finer silicon carbide abrasive papers and finally with a fabric pad 

loaded with 6 �m diamond abrasive.  

 

3.1.5.2 Hardness Testing 

 
The hardnesses of the steel samples were measured with a Vickers Hardness 

Tester with 10 kgf and 30 kgf indentation loads and a dwell time of 15 seconds. 

The block steel specimens were polished before testing. Hardness measurements 

reported are an average of five indentations, and the range quoted is the standard 

error in the mean.  

 

3.1.6�Abrasive Wear Testing of Sprayed Coatings 

 
Five different types of tungsten carbide cermet powders with different binders and 

carbide grain sizes were sprayed on mild steel substrates (as usual and 

inexpensive material) using the HVOF system. To evaluate the abrasive wear 

performance of the coatings, the dry sand–rubber wheel test method, described in 

section 3.2.2, was employed. The test parameters used for both the steels and 

coatings were the same. Two abrasive particles including alumina and silica with 

the particle size range of 212�300 ]m and 180�250 ]m respectively were used. 

The wear experiments were performed with loads of 19.6 N, 49 N, 98 N, and 

127.5 N. 
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3.2�Coating Properties and Characterizations 

3.2.1�Materials 

3.2.1.1 Powders 

 
In order to investigation on the properties of the new advanced thermally sprayed 

WC composite coatings, five different tungsten carbide based cermet powders 

were used as feedstock powders in this study. These powders had different 

average carbide grain sizes and binder compositions as follows: WC�15 wt% 

nickel alloy (NiMoCrFeCo), WC�15 wt% iron alloy (FeCrAl) and three types of 

WC�17 wt% Co with different carbide grain sizes. The materials have been 

labelled Ni, Fe, Co�I, Co�II and Co�III (indicating the Ni, Fe and Co respectively 

as basic elements in the binders). The mean grain sizes of WC in the Ni, Fe, Co�I, 

Co�II and Co�III powders were 0.7, 0.5, 1.0, 0.9, and 0.5 ]m respectively. All 

powders were agglomerated and sintered spheroids in the diameter range from 15 

to 45 ]m. Details of the powders provided by two manufacturers (H.C.Starck, 

Laufenburg, Germany and Sulzer Metco, Hattersheim, Germany) are given in 

Table 3.1 whilst their compositions are given in Table 3.2.  

 

3.2.1.2 Substrates 

 
The substrates used for coating deposition were mild steel (0.12% C, 0.7% Mn). 

The substrate sample dimensions used for wear testing were 59×25×12 mm 

whilst those used for characterisation of the coatings were 59×25×3 mm. 

Substrates were cleaned and grit blasted with ~250 ]m brown alumina just before 

the coating process in order to degrease and roughen the surface.  
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3.2.2�Spray Systems and Parameters 

 
Coatings were sprayed using a Praxair/UTP Top�Gun HVOF spray system shown 

schematically in Fig. 3.1. Hydrogen was employed as the fuel gas and nitrogen as 

the carrier gas. The powder is introduced axially in to the rear of the 22 mm 

combustion chamber, where gas was pre�mixed and burnt. The hot gas jet and 

powder were propelled along the nozzle (120 mm in length) to impact the 

substrate. The gun was attached to a traverse unit producing a vertical traverse at 

5 mm s−1. The specimens were mounted on the circumference of a horizontally 

rotating turntable with a radius of 140 mm giving a surface traverse velocity of 1 

m s�1. The specimens were cooled during spraying with compressed air jets. Fig. 

3.2 shows the schematic diagram of the spraying set�up. The spray parameters for 

all coatings are shown in Table 3.3. 

 

3.2.3�Characterisation of Powder Feedstock 

3.2.3.1 Size Analysis 

 
A Malvern Mastersizer S (Malvern Instruments Ltd, Worcestershire, UK) laser 

particle size analyser was used to measure the particle size distribution of the 

feedstock powders. By passing the powders in circulating water through a laser 

beam, the laser light is scattered, and collected by annular detectors. The 

scattering angle is proportional to the size of the particles, and thus the powder 

diameter can be calculated from the intensity of light scattered at each angle. For 

each powder, eight measurements were taken and the mean calculated.   
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3.2.3.2 X�ray Diffraction (XRD) 

 
The phase composition of the powders were studied by X�ray diffraction (XRD) 

using a Siemens D500 diffractometer (Siemens Analytical X�ray Instruments, 

Sunbury�on�Thames, UK). The X�ray generator was operated at 40 kV and 25 mA 

generating monochromatic Cu Kα radiation at a wavelength of λ = 0.15406 nm. 

The diffraction data were collected over a 2θ range of 30°–80° with a step size of 

0.010° and 4s dwell time per step.  

 

3.2.3.3 Scanning Electron Microscopy (SEM) and EDX Analysis 

 
Microstructural examination of powder particles was performed using a Philips 

XL30 (FEI Ltd., Cambridge, UK) scanning electron microscope (SEM) 

employing both secondary electron (SE) and back scattered electron (BSE) 

imaging  to study the morphology and phase distribution of the powder particles. 

The morphology of powders was examined by sprinkling powder on to an 

adhesive carbon tab attached to an aluminium stub. Cross�sections of the powders 

were obtained by sprinkling the powders into the mould followed by hot mounting 

in conductive resin. The mounted powder was polished with SiC papers and 

diamond pads. All SEM investigations were performed at an accelerating voltage 

of 20 kV in both SE and BSE modes and with energy dispersive X�ray (EDX) 

analysis to determine phase compositions.  
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3.2.4�Characterisation of Coatings 

3.2.4.1 XRD 

 
X�ray diffraction (XRD) was used to characterise the as sprayed coatings. The 

procedure and parameters were as for XRD studies of the powders.   

 

3.2.4.2 SEM 

 
Microstructural examinations were performed on the cross�sections of the as�

sprayed coatings using a Philips XL30 (FEI Ltd., Cambridge, UK) scanning 

electron microscope (SEM). Back scattered electron (BSE) imaging was used to 

study the phase content and carbide grain size and morphology in the coatings, as 

the differences in mean atomic number result in differences in contrast. All SEM 

investigations were performed at 20 kV. The specimens were prepared by 

sectioning normal to the coating�substrate interface with a precision ceramic blade 

on an automatic precision cut�off machine (Struers Accutom�5 Cutoff, 

Copenhageen, Denmark) operating at a slow cutting rate of 0.005 mm s�1 with a 

3000 rpm wheel speed. After cutting, cross�sectional samples were hot mounted 

in conductive resin (Metprep, Coventry, UK) and were then ground with P1200 

(~14 ]m) grit size SiC paper and polished by a lapping procedure to a 1 ]m finish. 

 

3.2.4.3 Microhardness 

 
Vickers microhardness of the as�sprayed coatings was measured using a LECO 

M�400 microhardness tester with a 300 gf load and a dwell time of 15 s. The 

mean value of 10 indents taken along the mid�plane of a coating cross�section 

parallel to the coating/substrate interface is quoted as the hardness of the 
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materials. The error quoted is the standard error in the mean, i.e. σ/√n where σ is 

standard deviation of the individual hardness measurements and n is the number 

of measurements made. 

 

3.2.4.4 Chemical Analysis 

 
Chemical analysis was performed on the as�sprayed coatings by LSM Ltd. 

(London and Scandinavian Metallurgical Co. Limited, South Yorkshire, UK). The 

X�Ray Fluorescence (XRF) analysis technique was used for all elements. Oxygen 

and carbon contents were determined by XRF�HSS (quantitative), whilst the other 

elements were determined by XRF�Uniquant (semiquantitave). Coating samples 

were prepared by spraying onto thin mild steel substrates and then removing the 

coating from the substrate by bending the samples. 

 

3.2.4.5 Phase Volume Fraction and WC Grain Size Analysis 

 
The volume fraction of phases and the carbide grain sizes in the powders and 

coatings were estimated by the method of line analysis from BSE micrographs at 

magnifications of between 5000 and 10000 times. A series of random lines were 

drawn across micrographs of the cross�sections of both powders and coatings and 

the length of each carbide intersection measured. It was assumed that the volume 

fraction of carbide was equal to the intersection fraction. The carbide grain size 

was taken as the average of the intersection lengths. 
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3.2.4.6 Porosity 

 
For measuring coating porosity level, image analysis (IA) was performed on 

SEM/BSE images at a magnification of 2500× obtained from polished cross�

sections of coatings. Image analysis software (ImagJ 1.41) was employed to 

identify and measure porosity. Ten images were recorded to calculate the mean 

pore volume fraction. 

 

3.2.4.7 Fracture Toughness 

 
The fracture toughness of coatings was determined by an indentation method. 

Vickers indentation measurements were performed on the metallographically 

prepared cross�sections of the coating surfaces using a load of 5 kgf. Indents were 

positioned such that the two indent diagonals were parallel and perpendicular to 

the coating/substrate interface, respectively. The indenter was positioned carefully 

at approximately the mid�point of the coating. If the indents were placed too close 

to the outer surface of the coating, the cracks produced by indentation resulted in 

the coating fracturing while if the indents were too close to the coating/substrate 

interface, the values of Vickers hardness measured would not be representative 

the coating properties [171]. Due to the presence of splat boundaries in the coating 

parallel to the coating�substrate interface (see Fig. 3.3), the fracture toughness is 

lower in this direction, resulting in preferential fracture. The lengths of the cracks 

which were parallel to the substrate/coating interface were measured from optical 

micrographs at a magnification of 400× using the image analysis software (ImagJ 

1.41). For each coating, at least 35 indentations were examined. The fracture 

toughness (Kc) of the coatings was calculated according to the Evans and 

Wilshaw model [37]. These values were calculated using only the cracks parallel 
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to the substrate–coating interface. The equation for indentation fracture toughness 

as given by Evans and Wilshaw is: 


� � 0.079 # $
%&/()  *+, #-..%

/ )                                                                  (3.1) 

where P is the applied indentation load (N), a the indentation half diagonal (m), 

and c the crack length from the centre of the indent (m). The recommended c/a 

ratio for valid use of this equation is 0.6 ≤ c/a < 4.5. Fig. 3.3 shows a typical 

photograph of a 5 kgf indentation coating cross�section with the important 

variables. 
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Table 3.1 The details of the commercially produced powders. 

Powder Manufacturer Commercial 

designation 

Powder type Nominal 

size (Bm) 

WC�NiMoCrFeCo  
(85�15%wt) 

H.C.Starck Amperit 529 Agglomerated 
and sintered 

�45 +15 

WC�FeCrAl  
(85�15%wt) 

H.C.Starck Amperit 618 Agglomerated 
and sintered 

�45 +15 

WC�Co  
(83�17%wt) 

H.C.Starck Amperit 526 Agglomerated 
and sintered 

�45 +15 

WC�Co  
(83�17%wt) 

Sulzer Metco Woka 3202 Agglomerated 
and sintered 

�45 +15 

WC�Co  
(83�17%wt) 

Sulzer Metco Woka 3202 FC Agglomerated 
and sintered 

�45 +15 

 

 

 

Table 3.2 The measured compositions of the feedstock powders. 

 

Designation 

 

Powder 

designation 

Composition (wt%) 

W Ni Mo Cr Fe Co Al C O 

Ni Amperite 
529 

80.04 8.48 2.24 2.15 0.84 4.05 � 5.65 0.06 

Fe Amperite 
618 

79.16 � � 3.41 10.81 � 1.03 5.59 0.16 

Co�I Amperite 
526 

78.14 � � � 0.05 16.83 � 5.03 � 

Co�II Woka  
3202 

78.01 � � � 0.04 16.83 � 5.16 � 

Co�III Woka  
3202 FC 

77.88 � � � 0.03 17.02 � 5.10 � 
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Table 3.3 Spray parameters employed for coating depositions. 

 

 

 

 
 

 
 

 
 

 
 

Spray parameter Ni Fe Co�I Co�II Co�III 

O2 flow rate (l min�1) 240 240 240 240 240 

Fuel gas (H2) flow rate (l min�1) 640 640 640 640 640 

Carrier gas (N2) flow rate (l min�1)   17 17 17 17 17 

Spray distance (mm) 250 250 250 250 250 

Number of pass 51 40 40 40 40 

Length of pass (mm) 76 77 77 77 77 

Carousel diameter (mm) 280 280 280 280 280 

Substrate velocity (m s�1)   1 1 1 1 1 

Gun transverse speed (mm s�1) 5 5 5 5 5 

Coating time (s) 924 729 733 674 669 

Consumption of powder (g) 555 635 665 710 711 

Coating thickness (Gm) 260 436 350 445 460 

Powder feed rate (g min�1) 36 52 54 63 63 
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Fig. 3.1 Schematic diagrams of the design of Top�Gun thermal spray system. 
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Fig. 3.2 Schematic diagram of spray set�up in plan view. 
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Chapter   4 
 

 
Abrasive Wear of Steel Substrates:  

Results and Discussion 

 
 
 

 
 

4.1�Introduction  
 
In this part of the work, the wear behaviour of different types of steel under 

condition of abrasion was investigated. For this purpose, five steels with widely 

varying hardnesses and two abrasive particle types were chosen. Abrasive wear 

tests were carried out in two groups; i) the abrasion of three steels with a bottom�

ash from a biomass�fired power station and, ii) the abrasive wear of five steels 

with conventional silica sand. To further assess the behaviour with silica abrasive, 

wear tests were also performed on two of the five steels using the same silica sand 

with a different size range. All materials were abraded using the dry sand rubber 

wheel abrasive test (a variant on ASTM G65) with five different loads. Finally, 

wear behaviour of the steels with the friable ash was compared with that observed 

when abraded with silica abrasive particles under the same test conditions.   
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4.2�Results 

4.2.1�Characterisation of Abrasive Particles 

4.2.1.1 Abrasive Materials 

 
Three types of abrasive were employed in this work, namely an ash abrasive and 

two conventional silica sands in two different size ranges. The ash was produced 

by a power station where the primary feedstock was meat waste streams. The 

composition of the ash was measured by an outside contractor and found to be 

composed of 50 wt% CaO, 39 wt% P2O5, 2.5 wt% Na2O, 1.2 wt% MgO with the 

balance made up of a wide range of materials in lesser fractions. The pH of the 

ash was measured to be ~12.1. Two silica sands (David Ball, Bar Hill, UK) which 

were used in the work had two nominal particle sizes ranging from 180 to 250 ]m 

and 300 to 600 ]m. 

 

4.2.1.2 Morphology and Particle Size Analysis  

 
Fig. 4.1 shows the morphology of the abrasive particles taken using scanning 

electron microscopy (SEM). The bottom ash particles which were used in the 

work had a very wide range of particle sizes (some particles over 3 mm in size) 

and to allow the material to be used in the laboratory abrasion apparatus, the 

fraction of the ash with particle size less than 850 ]m was sieved out and used for 

the tests (Fig. 4.1a). To compare with the ash, two types of silica sand with 

different particle sizes ranging from 180�250 ]m (Fig. 4.1b) and 300�600 ]m (Fig. 

4.1c) were used. SEM micrographs of the particles show rounded silica sands in 

contrast to angular shapes of the ash particles. Also, it can be seen that the size 

distribution for the ash is much wider than that of the silica sands. Higher 
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magnification SEM morphology images of the silica and ash are shown in Fig. 

4.2. The images demonstrate the spongy and agglomerated structure of the ash 

(Fig. 4.2 a) while the structure of silica shows less porosity (Fig. 4.2 b). 

 

The particle size distribution of the abrasive particles used for testing was 

determined by both passing the abrasives through a stack of wire�mesh sieves on a 

mechanical sieve shaker and by a laser granulometry technique (Malvern 

Instruments). In the sieve method, the mass proportions of the particles on each 

sieve were measured. Fig. 4.3 shows size distribution results for each particle type 

obtained using two techniques. The particle diameter, dp, below which 50% of the 

volume lay in the sieve method was taken as the nominal particle diameter of the 

particles in any further analysis. The results indicate that for silica sands, the 

particle sizes are in a limited range of size while for the ash that is in a wide range 

of size.  

 

4.2.1.3 Mechanical Properties 

 
It was found that the measured Vickers hardness of some larger and less porous 

ash particles (which allowed hardness measurements to be made upon them)     

exhibited a wide range between 550 kgf mm�2 and 720 kgf mm�2 when measured 

with a 50 gf load. This hardness is much higher than the value of 160 kgf mm�2 

quoted for calcium oxide (the main constituent of the ash) [11], and indicates that 

the complex phases present in the ash yield a much more abrasive material than 

the individual constituents would indicate. The Vickers hardness of both the silica 

sands was measured as 1116 ± 46 and 1151 ± 59  kgf mm�2 for silica 180�250 ]m 
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and silica 300�600 ]m respectively with a 300 gf indentation load. The Vickers 

microhardnesses of the abrasives are displayed in Table 4.1. 

 

The fracture strength of particles in each of the sieved size fractions was measured 

by uniaxial compression testing. Typical examples of compression test data for 

SiO2 and bottom ash particles are presented in Fig. 4.4. The results indicate that 

firstly, the load for the silica sands increases monotonically with displacement and 

at a critical load (at particle fracture) sharply decreases, whereas for the ash 

particles, the curve shows a large number of fracture events. Because of the 

importance of particle size in compression strength, the particles of each abrasive 

type were categorized in smaller ranges of size by sieving. The expectation was 

that for each abrasive, similar particles in a given size range should be have 

similar compression strength. Table 4.2 shows those groups of size and average 

fracture load of the abrasive particles related to each particle size. Fig. 4.5 shows 

the data of Table 4.2. It can be seen that both the silica abrasives have much 

higher crushing load than the ash abrasive. Furthermore, for silica sands, the 

compression load rises significantly with increasing particle size.  

 

4.2.1.4 Particle Density 

 
To enable estimates of the loads on particles during the abrasion test to be made 

requires a knowledge of the particle density. Silica sands are composed of solid 

particles, whereas the ash particles are in an agglomerated or spongy form. 

Estimating the density of ash particles was done by measuring its bulk density and 

comparing it to the bulk density of the two other silica sands with known real 

density. The true particle density of the silica sand was assumed to be 2650 kg m�3 
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and the bulk densities measured. Table 4.3 shows the bulk and true densities of 

two different size fractions of the silica sands together with the ratio of the 

densities. For these two fractions, the bulk density was shown to be 0.63 and 0.65 

respectively of the true particle density. It was then assumed that this ratio of bulk 

to true particle density was applicable to the bottom�ash abrasive. For average ash 

particle size of 425 ]m, the ratio will be 0.65 and since the measured bulk density 

of the bottom ash was 1116 kg m−3, an estimate of the true density of the bottom 

ash particles of 1720 kg m−3 was made. 

 

4.2.2�Characterisation of Steel Substrates 

4.2.2.1 Analysis of Elements 

 
The wear behaviour of five types of steels was examined in this work. These were 

Armco Iron, a low carbon steel, a mild steel (with a ferrite�pearlite structure), 

Hardox 400 (with a bainitic structure) and a ground flat stock (GFS) (with a 

quenched martensitic structure). In this work these steels have been designated 

C02, C04, C12, C18 and C99 respectively (utilising the two numbers to represent 

the first two decimal places in the weight percentage of carbon in the alloys). The 

compositions of these steels determined by atomic emission spectroscopy are 

shown in Table 4.4. The C02, C04, C12 and C18 steels were used in the as�

received state. The C99 was austenitized for 1 hour at 810oC (from a 500oC 

preheat) before being quenched into oil where it remained for 30 minutes 

followed by tempering at 150oC for 30 minutes; 0.5 mm was then ground from its 

surface to remove any decarburized material.  
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4.2.2.2 Hardness 

 
The hardnesses of the steels measured using a Vickers hardness tester are 

presented in Table 4.5. The hardness is seen to increase with increasing the carbon 

content. 

 

4.2.3�Characterisation of Wear Performance 

4.2.3.1 Abrasion of Steels 

 
The abrasive wear rates of the steel samples were measured with the dry sand 

rubber wheel abrasion test (DSRW) technique. For the silica 180�250 ]m 

abrasive, all of the five steels were tested while for bottom ash abrasive, only the 

C12, C18, and C99 steel samples were examined and finally, for silica sand 300�

600 ]m only two types of steels (C12 and C18) were tested. Fig. 4.6 exhibits an 

example of the raw mass loss data for one of the abrasive wear tests performed; 

the wear rate has been determined from the data that is in the linear (steady state) 

mass�loss regime. A typical graph showing the mass loss of C18 steel as a 

function of abrasion distance for five applied loads is shown in Fig. 4.7. It can be 

seen that for all five loads, the progress of mass loss was linear with abrasion 

distance. Moreover, there is a monotonic increase in wear rate with applied load.  

Figs. 4.8a through 4.8c show the steady state wear rates as a function of load for 

all steels with silica 180�250 ]m (Fig. 4.8a), silica 300�600 ]m (Fig. 4.8b) and the 

bottom ash particles (Fig. 4.8c).  

 

Eq. 2.2 represents the relationship between the abrasive wear rate and the other 

relevant parameters. According to Eq. 2.2 for a given substrate, the abrasive wear 

rate is directly proportional to the applied load as may be broadly seen for both 
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the silica abrasives in Figs. 4.8a and 4.8b over the range of loads examined for all 

steel types. The wear rates are also observed to increase as the steel hardness is 

reduced (from C99 to C02) as expected. In contrast, the wear rates observed for 

the steels abraded with the bottom ash abrasive (Fig. 4.8c) are clearly not 

proportional to the applied load; moreover, over certain load intervals for all three 

of the steel types examined, as the load was increased, the wear rates were 

observed to decrease, in some cases quite substantially. For the harder steels, the 

wear rates are generally lower than those observed for the silica abrasives, despite 

the ash being an angular abrasive and the silica being a rounded abrasive. The 

distribution of wear across the surface can be measured by employing 

profilometery. Figs. 4.9a and 4.9b show depths of wear on the surfaces of C12 

samples following wear with silica 180�250 ]m and bottom ash particle abrasives 

respectively. The images indicate that the wear scar increases in both depth and 

width with silica sands with increasing applied load. However, this trend is not 

observed following wear with the ash particles. 

 
After abrasive wear testing, the worn surfaces of all samples were examined by 

SEM. Fig. 4.10 shows the plan view SEM images of the five grades� of steel 

before abrasion while Fig. 4.11 shows the plan view SEM images (of the same 

magnification) of the central zone of the wear scars on the five grades�of steel 

following abrasion at the lowest and highest loads utilised� (19.6N and 127N 

respectively). In all cases the sliding direction�of the wheel across the sample has 

been in the vertical direction.�Some of the worn surfaces (e.g. Fig. 4.11a) show 

evidence typical of particle�rolling, with significant indentation of the surface and 

little� directionality. In contrast, Fig. 4.11j shows evidence typical of particle�

sliding (grooving) across the surface of the sample. There is evidence for particle 
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rolling through the contact for the C02 steel under both 19.6 and 127 N loads and 

the C04, C12 and C18 steels under a 19.6 N applied load only; however, the 

abrasion of C99 at the both loads was via a grooving mechanism. Moreover, for 

C04, C12 and C18 steels, as the load was increased, a transition in behaviour took 

place so that under a load of 127 N, only particle grooving through the contact 

was observed for these steel types. It is obvious that in the steels with lower 

hardness, the particle rolling mechanism is dominant while in the steels with 

higher hardness grooving is dominant. Moreover, increasing load causes to 

transition in behaviour from rolling to grooving. 

 

The plan view images of the central zone of the wear scars on the two steels C12 

and C18 following abrasion with silica 300�600 ]m are shown in Fig. 4.12. There 

is evidence that more particles roll through the contact for both C12 and C18 

steels with silica 300�600 ]m compared to where abraded with silica 180�250 ]m.   

 

Fig. 4.13 shows the plan view images of the central zone of the wear scars on the 

three steels following abrasion with bottom�ash at the lowest and highest loads  

utilised (19.6 N and 127 N respectively). It can be seen that in all cases, the 

mechanism of abrasion is that of grooving of the particles through the metals with 

very little evidence for particle rolling.  

 

4.2.3.2 Temperature of Wear Samples during the Test 

 
For selected cases, the effect of increasing applied load on the temperature of a 

sample during the wear test was investigated. The samples were instrumented 

with thermocouples which were inserted into holes drilled to within 1 mm of the 
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contact surface in the test specimens, and the temperature measured during the 

wear test. Fig. 4.14 shows the effects of load on the evolution of specimen 

temperature at a constant sliding speed for C12 and C99 samples with silica 180�

250 ]m and for C12 with the bottom�ash particles. In each case, the temperature 

of the specimen rose rapidly at first; the rate of increase then decreased and in 

some cases a steady state was reached. The rate of increase and the final 

temperature increased with load. The temperature of the rubber wheel was also 

monitored by pressing a thermocouple on the rubber surface immediately after the 

wear testing. The steady�state sample temperatures during abrasion of the C12 and 

C99 steels are shown in Table 4.6 as a function of the applied load along with the 

temperature of the rubber wheel immediately following testing. 

 

For all loads, the temperature reached was higher with the lower specimen 

hardness (compare Fig. 4.14a with 4.14b). Moreover, the temperature of samples 

reached with silica abrasive (which is harder) was higher than that with bottom 

ash abrasive (compare Fig. 4.14a with Fig. 4.14c).  

 

4.2.3.3 Particles Fragmentation during Wear Test 

 
The load applied to each abrasive particle during the wear test may cause the 

particle to fracture. This depends on the particle strength and the applied load. Fig. 

4.15a shows SEM images of the bottom�ash abrasive after wear of C12 steel 

under the lowest applied load of 19.6 N while Fig. 4.15b shows SEM images of 

the silica 180�250 ]m particles following wear test with C12 steel, but under the 

highest applied load of 127.5 N. Comparison the SEM micrographs with Fig. 4.1a 

and 4.1b revealed that significant fragmentation has occurred for the bottom ash 
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particles whereas no change can be seen in the silica sands. Crushing of the large 

particles of the ash following wear testing is apparent. Fig. 4.16a shows an ash 

particle with a highly porous (spongy) structure which will result in a low particle 

crushing strength. Fig. 4.16b also shows that many of the particles are indeed 

agglomerates of still smaller particles.   

 

To quantity particle crushing during wear testing, the particles that had passed 

through the contact zone were collected and mechanically sieved in order to find 

the particle size distribution. This was performed using a C99 steel sample 

abraded with ash under different applied loads. The results of the sieve analyses 

can be seen in Fig. 4.17. A significant shift in the size distribution of the ash to 

lower sizes is observed, which has only a small dependence upon the applied load 

employed during testing. The d50 value (the particle size for which 50 wt% is 

above that size) is 415 �m for the abrasive before testing, and drops to 294 �m 

and 308 �m respectively following abrasion under applied loads of 19.6 N and 

127 N. Further tests showed that as well as being insensitive to applied load in the 

range considered, particle fragmentation is also independent of the three steels 

types being abraded with the bottom ash abrasive. 

 

Fig. 4.18 presents the same data in another format, and shows the percentages of 

the bottom�ash abrasive within each of the size fractions both before testing and 

following abrasion of C99 under the lowest applied load of 19.6 N. It can be seen 

that the fractions in the larger size ranges (above 425 �m) have all decreased 

significantly, but that the fractions in the smaller sizes have increased 

considerably.  
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4.2.3.4 Particles in Contact Zone during Abrasion 

 
The magnitude of load in the dry sand rubber wheel abrasive test exerts an 

influence on the number of particles passing through the gap between the rubber 

wheel and the sample and also on the wear contact length. Not all of the abrasive 

fed towards the contact actually passed through the contact zone, with some 

falling off the wheel to the sides. To allow separate collection of abrasive particles 

which had passed through the contact zone from that which had not, a pair of 

stationary brushes were placed along the vertical radius on the wheel up to the 

level of the test specimen (one each side of the wheel); the brushes separated the 

two abrasive collection routes. Thus, abrasive particles that passed through the 

contact zone would be collected separately from those that fell away from the 

wheel before being passed through the contact. As such, the actual feedrate of 

abrasive through the contact could be measured. The ratio of the actual to the 

metered feedrate of particles was termed the flow fraction, f; this was measured as 

a function of applied load, Papp, and the results for silica 180�250 ]m abrasive 

shown in Table 4.7. Fig. 4.19 also shows the fraction of abrasive particles passing 

into the contact zone during abrasion of C18 steel with the bottom ash as a 

function of applied load. It can be seen that the fraction decreases significantly as 

the applied load for the abrasion test is increased.   

 

The worn surfaces were examined after a small sliding distance and at full sliding 

distances for all loads examined. The length of the wear scar was measured, 

which was primarily a function of applied load (indicating that the primary 

influence on wear scar length was the load�dependent elastic deformation of the 

rubber tyre) and it is not dependent on abrasive type. For each load, an average 
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contact length, Lc, was determined, as shown in Table 4.7. The Young’s modulus 

of the rubber can be estimated from the rubber hardness of 61 IRHD to be around 

3.5 MPa [172] and the Poisson’s ratio estimated to be 0.5 (typical for a rubber). 

Using simple contact mechanics for a line loaded contact, contacts lengths of 13 

mm (loaded under 19.6 N) and 36mm (loaded under 127 N) are estimated. These 

are reasonably correlated with the experimental values in Table 4.7, but show a 

larger range of values than those observed experimentally. The measured average 

wear scar lengths (contact lengths) between the rubber wheel and the test sample 

under different applied loads are presented in Fig. 4.20. The contact length is 

observed to increase significantly with increasing applied load. 

 

4.2.3.5 Particle Loading During Abrasion testing 

 
To estimate the loads on an individual particle during the abrasion test for a 

material with a wide particle size distribution is complex. It requires knowledge of 

the number of particles of a given size in the contact zone, along with knowledge 

of how the total applied load is shared over the different particle size ranges. In 

the current analysis, only the applied force is considered (i.e. the tractional forces 

on the particles are neglected). The number of particles of a given size in the 

contact zone at any one time (Ns) is given by:  

P

s
s

mv

LW
N =                                                                                                          (4.1) 

where Ws is the mass flow rate of that particular particle size fraction passing 

through the contact zone, L is the wheel�specimen contact length, v is the sliding 

speed between the wheel and specimen and mp is the mass of a particle in that size 

fraction.  
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The estimate of Ns is made more complex by the fact that L is a function not only 

of the applied load, but also of the time for which the test has been running. It was 

found experimentally that the average contact length, L, varied with applied load 

as shown in Fig. 4.20. It was also found that the fraction of the abrasive fed which 

actually passes through the contact zone is a function of the applied load in the 

test (Fig. 4.19); thus 

Tsps WffW =                                                                                                    (4.2) 

where WT is the total mass feedrate of the abrasive, fp is the fraction of the 

abrasive which passes through the contact zone and fs is the fraction of the 

abrasive which lies in the size range being considered, because not all particles 

which pass through the contact zone are under load. It is found that for the bottom 

ash, fp varies as shown in Fig. 4.19. The fraction of particles in a given size range 

are determined by sieve analysis and are shown in Fig. 4.18. Therefore, the Eq. 

4.1 can be written as 

P

Tsp

s
mv

LWff
N =

                                                                                                 
(4.3)

 
 

The mass of a particle is given by its volume and density. Assuming that the 

particles are spheres, the particle mass, mp, can be estimated as  

3

6

1
ppp dm πρ=                                                                                                 (4.4) 

where dp is the average particle diameter in that size fraction and ρp is the true 

density of the particle.  

 

To estimate the fraction of the total load borne by each individual size fraction is 

difficult. Avery [62] suggests that due to the low elastic modulus of the rubber 

wheel, it can be assumed that for an abrasive feedstock with a narrow size 
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fraction, the load per particle can be assumed to be the same for all particles 

within the contact. The assumption of a tightly graded abrasive is clearly not the 

case in this work, certainly for the bottom ash abrasive. As such, it was assumed 

that the larger particles will bear the whole load and then fracture, whereupon the 

next fraction down will bear the load and then fracture, and so on until the load 

per particle in a given fraction is below the crushing load for the size. As such, the 

load per particle in each fraction assuming that all the larger abrasive particles 

have been crushed (i.e. assuming that the total load is borne by this fraction 

alone), Pp, is given by: 

s

p
N

P
P =                                                                                                             (4.5) 

where P is total applied load. The values of Ns and Pp for each of the size fractions 

are shown for an applied load of 68.7 N in Table 4.8. It should be noted that 

although L and fp are functions of applied load, their effects counter each other, 

and the overall dependence of Pp on applied load varies almost in proportion to P 

within each size fraction. Fig. 4.21 shows the results of Table 4.8 as a graph. It is 

clear that the load per particle increases significantly with particle size. 

 

In addition to the load per particle, Stevenson and Hutchings [63] showed data for 

the packing fraction of the particles. The packing fraction, fpack, was defined as

pp

T
pack

bvd

fW
f

ρ
=                                                                                                  (4.6) 

where b� is the breadth of the wheel. The packing fraction under the various test 

conditions are also shown in Table 4.7. 
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4.3�Discussion  

4.3.1�Abrasive Wear of steels with Ash 

4.3.1.1 Abrasive Particle Characteristics 

 
The hardness of the both silica particles are higher than all the steels examined. 

They both exhibit a rounded morphology and a narrow size range (Fig. 4.1b and 

4.1c). However, as can be seen from Tables 4.1 and 4.5, the hardness of the silica 

abrasive is less than 1.2 times the hardness of the C99 steel, and, as such, particle 

blunting is likely during abrasion which will result in a lower rate of wear than 

might be observed with a harder abrasive particle [3]. The hardness of the ash 

particles (550 � 720 kgf mm−2) is soft compared to the silica sands. As such, the 

ash is relatively hard compared to the mild steel (C12), has a hardness range 

which spans that of 1.2 times the hardness of the C18 steel, and is soft compared 

to the C99 steel (see Table 4.5). The ash particles are also relatively angular in 

morphology (Fig. 4.1a) with a wide range of size (Fig. 4.3a). 

 

Many workers have used compression testing to measure the load�bearing 

capability of particles. Sikong et al. [173] employed this type of test to assess the 

breakage behaviour of fine particles of brittle minerals and coal. They used Eq. 

4.8, as given by  Hiramatsu and Oka [174], to calculate the stress, σf, required to 

initiate fracture in a spherical particle of radius R from the crushing load, F0: 

2
07.0

R

F
f π

σ =                                                                                                                          (4.7) 

Other workers have estimated the elastic strain energy required to cause fracture 

in a uniaxial crushing test; however, this method will only be valid if the fracture 

of the particles is governed by crack propagation rather than initiation, since in the 
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latter case the elastic strain energy may far outweigh the energy required to cause 

fracture. It is notable that for the ash particles, the strength does not significantly 

increase with particle size (Fig. 4.5). Moreover, the silica particles are observed to 

be much stronger in compression than the ash; this is not unexpected as the ash 

particles are commonly spongy or agglomerated (Fig. 4.16) whereas the silica 

particles are dense and solid (Fig. 4.2b).  

 

4.3.1.2 Wear Behaviour 

 
With both silica abrasive types, the wear rate (Figs. 4.8a and 4.8b) generally 

increases with higher applied load and decreases with harder steel. At lower 

applied loads and lower specimen material hardness, the dominant abrasion mode 

for the silica abrasives is rolling. As the sample hardness and applied load 

increases, the controlling mode changes to grooving (sliding) (Figs. 4.11 and 

4.12). The rounded shape of the silica particles primarily is reason of the rolling 

motion of the particle through the contact. With increasing the hardness of the 

sample material towards that of the abrasive particles themselves (for the case of 

C99), the wear rate is seen to decrease significantly, more than would be predicted 

assuming an inverse dependence upon substrate hardness. This occurs as the 

abrasive particles are no longer able to sufficiently indent the sample material, and 

are instead deformed themselves under the applied load. In spite of this, very little 

silica abrasive crushing was observed under any of the applied loads or against 

any of the sample types. Moreover, surface grooving of the C99 samples is still 

observed (Figs. 4.12 and 4.13) indicating that some indentation does still occur. 
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The wear rate of the steels with the bottom ash particles did not steadily increase 

with applied load for any of the materials examined (Fig. 4.8c). In this case, since 

the hardness of the abrasive particles is higher than the two softer steels examined 

(C12 and C18), the grooving of these two materials (Figs. 4.13a through 4.13d) is 

not unexpected. However, despite the fact that the abrasive is significantly softer 

than the hardest of the steels (C99), grooving wear can still be observed for in this 

case (Figs. 4.13e and 4.13f). The ratios of the wear rate with silica 180�250]m 

abrasive to the wear rate with the ash abrasives shown in Fig. 4.22. It can be seen 

that in all cases but one, the wear rate with silica is higher than that with the ash 

abrasive. Moreover, Fig. 4.22 shows that in broad terms the ratio of the wear rate 

with silica to that with ash abrasive particles tends to increases as material 

hardness increases. Gates et al. [175] suggest that the greatest benefits of harder 

materials in providing abrasive wear resistance is seen as the abrasive particles 

themselves become softer, since the softer abrasives are less able to damage the 

harder sample materials (Fig. 4.23). Fig. 4.22 also shows that for any material 

type, the ratio of wear with the silica to that with the abrasive ash particles is a 

function of load. The anomalous dependence of the wear rate on applied load with 

ash particles is again seen in this figure. 

 

The unusual relationship between wear rate and applied load for abrasion of the 

steels with the ash observed in Fig. 4.8c may depend on the following: (i) the 

relative softness of the ash particles, being between the hardness of the C18 and 

the C99 steels; (ii) the low level of compression strength of ash and (iii) the wide 

distribution size of ash particles in comparison with silica sands. These two latter 

factors cause the very high levels of fragmentation of these particles during 



Chapter 4  ………………………………………………………………  Abrasive Wear of Steels 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  118 

abrasion testing. It is well known that there is a particle size effect in abrasion, 

where below around 100]m, the wear rate decreases as the particle size is reduced 

[176]. However, the increase in the fraction of particles below around 100]m is 

relatively small (around 5% as seen in Fig. 4.18) and thus cannot be the cause of 

the behaviour observed. Shipway and Hutchings [177] have argued that particle 

crushing at high impact velocities in erosion results in a reduction in erosion rate 

with increasing particle impact velocity for erosion of a material much harder than 

the erodent itself. However, Fig. 4.17 shows that the particle size distribution in 

the abrasive following testing is insensitive to the applied load during the test, and 

this indicates that particle crushing at the higher loads cannot explain the low 

wear rates of the steels at these loads. Comparison of Fig. 4.21 with the single 

particle crushing test results (Fig. 4.5) has been presented as a graph in Fig. 4.24 

showing ratio of the load per particle, Pp and maximum load to fracture, Pf for 

bottom ash abrasive particles versus particle size. This shows that the loads 

experienced by particles above around 425 ]m will be sufficient to cause particle 

crushing, but that the smaller particle sizes will be broadly unaffected. This 

assessment is substantiated by the results presented in Fig. 4.18. 

 

In contrast to the silica sands, the low hardness of the ash abrasive causes low 

wear rates (especially for the C18 and C99 steels). Moreover, the fact that its 

hardness is significantly higher than the mild steel, results in the large differences 

in wear rates of the steels as a function of their hardness. However, the hardness 

of the abrasive cannot be responsible for the dependence of wear rate on load as 

observed in Fig. 4.8c. It seems that the large particles of ash cause much of the 

damage to the steel samples during the wear test. Over the range of loads 
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employed, the force per particle on these larger particles is limited not by the 

overall applied load, but by the crushing strength of the particles themselves. 

When these large size particles are crushed, the load will carried by the smaller 

particles. This means that when the particle size is reduced, the load per particle 

rapidly decreases (Table 4.4) and it seems that these more lightly loaded particles 

do less damage than the more heavily loaded larger particles. The wide particle 

size distribution of the ash affects the number of particles which are in contact 

with sample under load at the beginning of the wear test process in the contact 

zone. Furthermore, the loads on the larger particles is limited by the crushing 

strength of the particles themselves, and not on the applied load explaining why 

the observed wear rates are not a strong function of applied load (see Fig. 4.8c). 

 

4.3.2�Abrasive Wear of Steels with Silica 

4.3.2.1 Wear Rate and Mechanisms 

 
Fig. 4.8a shows the wear rates of the steels with silica 180�250 ]m as a function 

of applied load. It can be seen that the wear rates for the three steels with lower 

hardness (C02, C04 and C12) increase linearly with load at the lower loads, with 

the rate of increase of wear rate with load increasing at higher applied loads. 

Similar behaviour has been reported in the literature [178]. Also, it was observed 

that in general, with increasing hardness, the wear rate of the steels decreased. 

However, this was not always the case; for example, the C04 steel (with a 

hardness of 117 kgf mm−2) exhibited a higher wear rate than the C02 steel (with a 

hardness of 80 kgf mm−2), indicating that other factors (such as other materials 

properties or the mode of material removal) were affecting the wear rate. 
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SEM plan view micrographs of scar surfaces (Fig. 4.11) show clearly that the 

motion of particles through the contact zone depends upon both the material type 

and the applied load. For steel samples with low hardness and under low applied 

load, a particle rolling mechanism dominates, whereas a particle sliding 

(grooving) mechanism is favoured by samples of high hardness and by high 

applied loads. For the two hardest steels (C18 and C99), the particle sliding 

(grooving) mechanism is observed across the range of applied loads (see Fig. 4.12 

g, h, i, and j). However, for the steels of lower hardness (C02, C04 and C12), the 

rolling mechanism is observed at the lower loads and grooving at the higher loads. 

This change in mechanism may be the cause of the non�linear dependence of wear 

rate with applied load for these softer steels as observed in Fig. 4.8a��

 

4.3.2.2 Particle Motion during Abrasion 

 
Fang  et al. [10] have proposed a model of particle motion in abrasion testing with 

loose abrasives. In that work, the forces acting on the particle were analysed. A 

modified version of the diagram from the work of Fang et al. [10] is shown in Fig. 

4.25. It is proposed that the particle will move through the contact by sliding 

(grooving) if the clockwise moment is less than the anticlockwise moment, i.e. 

 ePhF pp <                                                                                                        (4.8) 

where Fp is the lateral force on the particle and the dimensions e and h are as 

defined in Fig. 4.25. If the inequality in Eq. 4.8 is not satisfied, the particle will 

roll through the contact. 
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Effect of Sample Hardness 

 
It has been shown for a given applied load on a particle that a high sample 

hardness favours particle sliding (grooving) whilst a low sample hardness favours 

particle rolling. According to Eq. 4.8, grooving will occur if: 

h

e

P

F

p

p <                                                                                                              (4.9) 

The coefficient friction in grooving, >p, is defined as: 

p

p

p
P

F
=�                                                                                                        (4.10) 

By examination of Eq. 4.9, the change in particle motion with hardness implies 

that the ratio of Fp to Pp changes with sample hardness, assuming that for a given 

particle type and particle geometry, the ratio of e to h is independent of sample 

hardness. This latter assumption can be shown to be reasonable since the largest 

metal–particle contact area in the cases considered in this work (given by the 

highest load per particle of 190 mN on the metal with the lowest hardness of 80 

kgf mm−2) is given by the ratio of the load to the hardness which is of the order of 

240 ]m2. If this area is assumed to be semicircular in plan view, it gives an 

estimate of the contact dimension of around 12 ]m. Thus any changes over 

dimensions of this order of magnitude will tend to be insignificant compared to 

the dimensions of the particle size itself, these being of the order of 250 ]m. 

 

To allow a simple model of particle motion to be developed requires that the 

shape of the particle in contact with the metal (and also in contact with the rubber 

wheel) be considered. Torrance [179] addressed the variation of attack angle with 

depth of penetration of an abrasive particle in machining (where sharp particles 
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such as alumina are employed). In this case, he employed a hyperbolic profile for 

the abrasive tip shape since he argued that modelling of particles as spheres 

provided attack angles which were too low. In contrast, other workers have 

modelled abrasives as sphere�ended cones or pyramids, allowing the radius of the 

tip to be decoupled from the abrasive particle size [180, 181]. Pintaude et al. [182] 

conducted two�body abrasion tests against abrasive papers. They observed that 

friction was higher as the metal being tested became softer, indicating that higher 

penetration of the abrasive particle into the surface leads to an increase in 

ploughing friction. However, they indicated that these observations cannot be 

explained if a model which employs a geometry which is independent of 

indentation depth is employed. Similarly, work by Goddard  and Wilman [183] 

has shown that for indenters for which the shape is independent of depth of 

indentation, there can be no change in the ratio of Fp to Pp as the hardness 

changes. However, if the indenter has a spherical shape, the ratio of Fp to Pp does 

change with depth of indentation (and thus with sample hardness under a given 

indentation load). 

 

In light of the above, if a grooving spherical contact is assumed, it can be argued 

that the load on each particle is borne by contact over half of a spherical cap (see 

Fig. 4.26). Assuming that the pressure exerted by the steel surface on the particle 

is given by its hardness, then the following may be shown [183]:                     

vp H
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P
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2π
=                                                                                                     (4.11) 
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where >g is known as the coefficient of friction in plastic resistance to grooving, 

Fg is the force required to overcome the plastic resistance to grooving and the 

dimensions r and R are as defined in Fig. 4.26. It must be noted that the radius of 

the spherical cap contact, R, in Fig. 4.26 is not the same as the particle radius. For 

a grooving contact, the force Fp indicated in Fig. 4.25 has two main origins; (i) 

that associated with overcoming the plastic resistance to grooving (Fg) and (ii) 

that associated with normal adhesive friction, Fa, and as such the total lateral 

force, Fp, is given by 

papgagp PPFFF �� +=+=                                                                            (4.13) 

which thus yields 

agp ��� +=                                                                                                    (4.14) 

where >p is the observed coefficient of friction in grooving and ?a is coefficient of 

friction in normal adhesion. Whilst no values for >a have been measured in this 

work, values of >p of around 0.4 have been quoted by Stevenson and Hutchings 

[63] for similar tests (although it is not reported as to whether these values were 

from rolling or grooving motion of particles, nor what the hardness of the sample 

steel was). Although the loads in the work of Stevenson and Hutchings were not 

dissimilar to those used in the current work, the packing fraction (fpack) was much 

higher in that work and thus the loads per particle in the work were all less than 

25 mN, which is less than the lowest load per particle utilised in the current work 

(see Table 4.7). Knowing that the contribution of >g reduces as the contact radius r 

becomes smaller (associated with a reduction in applied load), it is thus assumed 

that the value of >p of around 0.4 measured by Stevenson and Hutchings can be 

reasonably used as the value for >a in this work. 
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Fig. 4.27 shows the calculated values of observed coefficient of friction (>p) for 

the lowest and highest values of load per particle employed in the experiments 

over the range of hardnesses of the steels examined (see Tables 4.5 and 4.7). The 

data are presented for two values of R (see Fig. 4.26), namely 126 ]m and 12.6 

]m. The former value represents the case when the radius of the spherical cap in 

contact with the metallic surface is the same as that of the particle itself, whilst the 

latter case represents a case where the radius of the contacting asperity is much 

smaller than the particle radius. It can be seen that in both cases, for a given load 

per particle, the value of >p decreases with increasing hardness of the metal 

sample. (The trends in >p with applied load per particle will be considered 

separately in the next section.) According to Eq. 4.9, this decrease in the ratio of 

Fp to Pp with increasing sample hardness will tend to promote particle sliding 

(grooving) as the sample hardness increases, as is observed in the experiments. As 

such, the change in particle motion associated with sample hardness under 

conditions of constant applied load can simply be attributed to changes in the 

grooving friction coefficient associated with particle indentation depth (and thus 

the overall observed friction coefficient). 

 

Consideration of Eq. 4.9 indicates, therefore, that the observed coefficient of 

friction must be greater than the ratio (e/h) to promote particle rolling. An 

estimate for the maximum value of (e/h) for the particles can be given by the 

particle aspect ratio (ARp). The particle aspect ratio (ARp) was defined as the ratio 

of the maximum Feret diameter to the minimum Feret diameter. Feret's diameter 

is used to get an average value of particle size using microscopic measurements; 

the distance between two tangents on opposite sides of the particle profile, that are 
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parallel to some fixed direction (Fig. 4.28). A back�lit optical micrograph is 

presented in Fig. 4.29 which allowed image analysis of the projection of the 

particle shape to be conducted; the average value of ARp for the silica 180�250 ]m 

particles was measured to be 1.51 with the maximum and minimum values being 

1.70 and 1.28 ]m respectively. Consideration of simple geometry indicates that 

the maximum apparent coefficient of friction (>p) will be realised when the 

grooving coefficient of friction (>g) is at a maximum; from Eq. 4.12, it can be seen 

that this is achieved when the depth of indentation of the spherical indenter is 

equal to its radius, whereupon the observed coefficient of friction (>p) will be (1 

+>a). Earlier in this section, it was argued that a sensible value of >a was 0.4 and 

thus it can be seen that the maximum value of (1 +>a) is less than the value of the 

particle aspect ratio (ARp) of 1.51 required to cause particle rolling. Given that 

particle rolling has been experimentally observed indicates that there are a number 

of assumptions which are not valid, such as the simple view that complex particle 

shapes can be expressed by the value of ARp. 

 

Effect of Applied Load 

 
In the previous section, the effect of changes in the sample hardness were 

considered, with no assessment of what was occurring at the rubber wheel–

particle interface (since it was assumed that since situations of constant load were 

being considered, changes at the particle–rubber interface would be limited to 

effects of changes in the lateral force). However, it was clear from Fig. 4.27 that 

the observed friction coefficient would increase with increasing load per particle. 

Fig. 4.30 shows the calculated values of observed coefficient of friction (>p) for 

the lowest and highest values of hardness of the steels examined over the range of 
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applied load per particle employed in the experiments (see Tables 4.5 and 4.7). As 

in Fig. 4.27, the data are presented for two values of R (see Fig. 4.26), namely 126 

]m and 12.6 ]m. The reasons for the trends observed are the same as they were 

for the trends in hardness, namely that for a spherical indenter, the ploughing 

friction coefficient increases as the depth of indentation increases. A similar 

increase in observed coefficient of friction (>p) with increasing applied load has 

been observed in the DSRW tests reported by Dube  and Hutchings [178]. 

 
Since it has been argued that low observed coefficients of friction favour particle 

sliding (grooving), particle sliding is thus shown to be favoured by low applied 

loads per particle. This prediction is in contrast to the observed phenomena, where 

quite the opposite is observed, namely that for low applied loads, particle rolling 

becomes more favoured. These apparent inconsistencies can be resolved by 

consideration of the equation which governs the transition between sliding 

(grooving) and rolling behaviour (Eq. 4.9). Sliding will occur when the observed 

friction coefficient (>p) is less than that of the ratio (e/h) as shown in Fig. 4.25. As 

the observed friction coefficient for particle sliding (>p) increases with applied 

load, then this implies that the ratio (e/h) must be increasing with load more 

quickly so that the transition between rolling at low load and sliding at high load 

observed for the lower hardness steels in Fig. 4.11 can be rationalised. 

 

It has been shown that when there is adhesion between a rubber and a rigid body 

with tangential motion between them, there will be a non�symmetric distribution 

of contact forces across the contact area [184]. Such asymmetry of contact 

between a stiff sphere and a rubber surface in sliding has also been shown by a 
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number of workers [185�190]. Fig. 4.31 (adapted from Barquins [187]) shows the 

type of asymmetrical contact that might be expected. With this in mind, as the 

load is increased, it can be seen that e increases in size and that h�decreases in 

size, both of which result in an increase in the ratio (e/h). This increase in (e/h) 

with load must be more rapid than the increase in >p�with load, and as such the 

observation of particle motion changing from rolling at low loads to sliding at 

high loads can be qualitatively understood. However, the change in shape of the 

contact with applied load (as shown schematically in Fig. 4.31) needs to be 

described quantitatively to allow a fuller understanding of the particle motion in 

such contacts to be developed. 

 

The change in shape of the contact between the particle and the rubber wheel 

associated with increases in load may be more significant than might be expected 

by a consideration of the loads themselves due to temperature effects in the 

rubber. Fig. 4.15 shows the steady temperature of sample during abrasive wear 

test which increase with increasing load. Increasing sample temperature will be 

associated with increases in the temperature of the rubber (Table 4.6). The 

increase in temperature of the rubber will cause a decrease in the measured rubber 

hardness [63], and thus to a decrease in elastic moduli [172] and to higher strains 

associated with the lateral and normal forces on the particles as shown in Fig.4.31. 

 

General Observations 

 
Using a range of steels with a wide range of hardness has shown that under a 

standard set of conditions, particle motion through the rubber wheel–testpiece 

contact depends upon the testpiece properties. Such a dependence must be of 
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concern to users of the test, since a robust test methodology will expose all 

materials to the same conditions which themselves are independent of the material 

properties. In light of this, it is recommended that observation of wear scars 

following exposure to the DSRW test and identification of the mode of particle 

motion through the contact is a routine part of this test methodology. 

 

Having highlighted the differences in the motion of particles, it is also noted that 

the wear coefficients observed are not strongly dependent upon the mode of 

particle motion through the contact. This is in contrast to the very different wear 

coefficients associated commonly associated with three�body abrasion and two�

body abrasion, with the latter producing wear coefficients an order of magnitude 

higher than the former. In the DSRW test, even if the particles groove through the 

contact, they are able to orient themselves so that their attack angles on the 

testpiece are not high, thus resulting in ploughing and wedging. This is in contrast 

to two�body abrasion with fixed abrasives (such as abrasive papers) where some 

of the particles will have very high attack angles on the testpiece, producing 

cutting wear with its associated high wear coefficients. As such, there is a need to 

distinguish between “fixed�particle grooving abrasion” and “free�particle 

grooving abrasion”. 

 

4.3.2.3 Effect of Silica Particle Size and Shape on Wear 

 
Fig. 4.32 shows comparison of two different sizes of silica sand in wear rate. The 

results indicate that the smaller abrasives cause more wear than the larger. 

Moreover, the SEM images of the C12 sample following wear with silica 180�250 

]m and 300�600 ]m under the highest load (shown in Fig. 4.11e and Fig. 4.12b 
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respectively) indicate that rolling of particles occurs for the larger abrasive, 

whereas sliding (grooving) effects are evident for the smaller abrasive. 

 

However, despite the fact that the hardness of silica 300�600 ]m abrasive is 

slightly higher than that of silica 180�250 ]m (Table 4.1), and also that the 

particle size of silica 300�600 ]m is considerably larger than that of silica 180�250 

]m (Fig. 4.1b and 4.1c), the wear rates with the former are lower and a rolling 

wear mechanism can be observed for this abrasive more than that for the silica 

180�250 ]m in the corresponding samples (see Fig. 4.11 and 4.12).  

 

There is a size effect in abrasion which leads to decreasing wear rate with 

decreasing particle size [176], although for particles larger than about 100 ]m 

wear rates are often found to be independent of size [191]. The distribution size of 

the abrasive particle in this work (180�250 ]m and 300�600 ]m) is above of the 

critical size (~100 ]m) and therefore, the size of abrasive particles is not expected 

to affect the wear rate.   

 

The shape of abrasive particles has an important role in determining the wear 

mechanism and wear rate. SEM images of the particles indicate different 

morphologies of the abrasives. Figs. 4.33a and 4.33b show a typical particle 

micrograph of silica 180�250 ]m and silica 300�600 ]m respectively. It is clear 

that silica 180�250 ]m are angular in contrast with silica 300�600 ]m particles. 

The shape of the particle protrusions contributes to the severity of wear. ‘Sharp’ 

protrusions promote rapid material removal. Both theoretical predictions and 

experimental results confirm that the abrasive particle shape has an effect on the 
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rate of wear [38]. It has been confirmed in laboratory tests by many researchers 

that increase in particle angularity results in a significant increase in abrasive or 

erosive wear rates, although it is difficult to define a quantity which describes 

particle shape well in this context. It is generally true that the more sharp and 

angular the particles are, the greater the wear rate will be.  

 

Moore and Swanson [38] indicated that abrasive particle angularity can produce 

significant differences between the relative wear resistance determined under 

fixed and loose abrasive conditions. The differences are only minor when rounded 

abrasive are used. Fig. 2.5 shows a comparison of the wear rate obtained in 

abrasive wear test for steel against two types of abrasive sands; rounded and 

crushed silica sands. Both sands have the same particle size distribution and differ 

in their shape. 

 

Swanson  and Klann [41] studied abrasive wear behaviour of five different type of 

steels using the dry sand rubber wheel abrasion test. They used AFS 50/70 test 

silica sand and a crushed quartz sand with a more angular shape but 

approximately the same particle size distribution. They found that particle shape 

had a significant effect on the abrasive wear rate. The more angular abrasive not 

only produced more wear but also affected the relative wear resistances of the 

steels. 

 

Kašparová et al. [88] studied the effect of particle angularity on carbon steel in the 

term of abrasive efficiency. They evaluated the wear resistance of the steel using 

dry sand rubber wheel test with silica and alumina sands. The abrasive particles 
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used in the first test were employed for next test and so on.  They showed that the 

wear rate decreased significantly after first test. Comparing the SEM images of 

the used sands in the different tests indicated that the particles lost their high 

abrasive ability and their abrasive efficiency decreased rapidly; however, further 

use has no considerable effect on their abrasive efficiency. This result shows the 

effect of angularity of abrasive particles on abrasive wear rate for the same 

particles. 

 

In summary, abrasion of steels in the DSRW test has shown that not only the ratio 

of abrasive to sample hardness is a significant factor in controlling the wear rates, 

the fracture of the abrasive particles can also influence wear rates. Abrasion of the 

steels with an ash from a biomass�fired power station showed that significant 

fragmentation of the ash abrasive was observed during the wear test which seems 

to be almost independent of the applied load in the wear test. In another work, the 

abrasion of a range of steels with conventional silica sand showed that the 

movement patterns of abrasive particles through the gap in the DSRW test is a 

function of both applied load and hardness of the material under test. A model of 

the particle motion in the contact was proposed which well predicted the effect of 

hardness on particle motion. 
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Table 4.1 Vickers hardness of the abrasive materials.  

 

Abrasive 

Range of size 

(Dm) 
Hardness 

(kgf mm
�2

) 

Indentation load 

(kgf) 

Silica 180�250 1116 ± 46  300 

Silica  300�600  1151 ± 59   300 

Bottom�Ash 0�850 550 � 720 50 

 

 
 

Table 4.2 Average fracture load of the bottom ash (0�850]m), Silica sand (180�
250 ]m) and, silica sand (300�600 ]m) for different ranges of particle size. 

 

Range of size 

(Dm) 

Bottom Ash  

(0�850Dm) 

Silica 

(180�250 Dm) 

Silica 

(300�600 Dm) 

First peak 

(N) 

Max. Load 

(N) 

Max. Load 

(N) 

Max. Load 

(N) 

180�212 0.45 0.84 6.47 � 

212�250 0.97 2.66 7.18 � 

250�300 0.79 1.72 � � 

300�355 1.45 1.89 � 7.72 

355�425 0.91 1.51 � 14.05 

425�500 1.51 2.64 � 20.12 

500�600 2.49 4.64 � 24.78 

600�850 1.26 1.70 � � 
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Table 4.3 Mean diameter, bulk and real densities of silica (180�250 ]m) and silica 
(300�600 ]m) sands. 
  

Abrasive 

particle 

Mean 

diameter 

(Dm) 

Real density, ρr 

(g cm
�3

) 

[88] 

Bulk density, 

ρb 

(g cm
�3

) 

ρb / ρr 

Silica sand 
(180�250 ]m) 

 
215 

 
2.65 

 
1.68 

 
0.63 

Silica sand 
(300�600 ]m) 

 
450 

 
2.65 

 
1.72 

 
0.65 

 

Table 4.4 Chemical analysis of the five steels examined (results given in wt %). 

Steel Fe C Si Mn Cr Mo Ni Cu 

C02 Bal. 0.020 <0.005 0.046 0.012 0.006 0.020 0.012 

C04 Bal. 0.047 <0.005 0.17 0.020 0.007 0.020 0.007 

C12 Bal. 0.12 0.22 0.77 0.067 0.021 0.113 0.373 

C18 Bal. 0.18 0.32 1.20 0.227 <0.005 0.009 0.006 

C99 Bal. 0.99 0.27 1.09 0.485 0.160 0.524 0.162 
 

 

Table 4.5 Vickers hardness of the steels employed in the wear tests. 

Sample Hardness 

(kgf mm
�2

) 

Indentation load 

(kgf) 

C02 80 10 

C04 117 10 

C12 242 30 

C18 473 30 

C99 830 30 
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Table 4.6   Temperature of rubber wheel immediately after the abrasive wear tests  
of C12 and C99 steels with silica 180�250 Gm abrasive. 

Sample C12 C12 C12 C12 C99 C99 C99 

Load (N) 19.6 68.6 98 127.5 19.6 68.6 127.5 

Rubber wheel 
Temp. (oC) 

31.9 42.3 69.0 72.0 26.2 35.8 41.3 

Specimen 
Temp. (oC) 

42 98 136 167 36 87 108 

 

Table 4.7 Particle parameters associated with wear of C12 steel with silica 180�
250 Gm abrasive as a function of applied load; applied load, Papp; measured 
wheel�specimen contact length, Lc; flow fraction, f; number of particles in contact 
zone, N; average load per particle in the contact zone, Pp; particle packing fraction 
in contact zone, fpack. 

Papp (N) Lc   (mm) f N Pp   (mN) fpack 

19.6 20 0.8 745 26.3 0.097 

49.1 25 0.71 826 59.4 0.086 

68.7 27 0.71 893 76.9 0.086 

98.1 30 0.67 936 104.8 0.081 

127.5 32 0.45 670 190.2 0.054 

 

 

Table 4.8 Estimates of the load carried per particle within each size range for 
abrasion with bottom ash under an applied load of 68.7 N. 

Size 

fraction 

(Dm) 

850�

710 

710�

600 

600�

500 

500�

425 

425�

300 

300�

212 

212�

106 

106�

53 

53�0 

d  (]m) 780 655 550 462.5 362.5 256 159 79.5 26.5 

Ns 3.01 3.66 6.95 8.61 37.4 71.7 251 1060 12900 

Pp   (N) 22.8 18.7 9.9 8.0 1.8 0.96 0.27 0.065 0.0053 



Chapter 4  ………………………………………………………………  Abrasive Wear of Steels 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  135 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 4.1 SEM morphology images of the abradants employed for abrasion testing 
on steels; (a) bottom ash 0�850]m; (b) silica sand 180�250 ]m; (c) silica sand 
300�600 ]m. 
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(a) 

 
(b) 

 

Fig. 4.2 SEM images of a particle: (a) ash (spongy and agglomerate) and (b) 
silica. 
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(a) 

 

(b) 

 

Fig. 4.4 Typical graph obtained by compression strength test on (a) silica sand 
and; (b) bottom ash particles. 

 

 
Fig. 4.5 Average fracture loads of the abrasive particles employed as a function of 
particle size. For bottom ash, both first fracture and maximum load are shown; for 
silica sands, the first fractures were always at the maximum load. 
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Fig. 4.6 Plot of mass loss of steel against sliding distance for the C99 steel with 
ash under 127.5 N load. 
 

 

 

 

 
 

 

 Fig. 4.7 Mass loss of C18 steel as a function of distance for abrasion with 
bottom�ash as a function of applied load. 
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(a) 

 
(b) 

 
(c) 

 

Fig. 4.8 Steady state wear rates as a function of applied load with: (a) silica 180�
250]m; (b) silica 300�600]m; and (c) the bottom ash particles. 
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(a) 

 

(b) 

 

Fig. 4.9 Depth of wear on the worn surfaces of C12 sample with (a) silica 180�
250 ]m and (b) the bottom ash particle abrasives. 
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(a) (b) 

(c) (d) 

 

 
(e) 

 

Fig. 4.10 SEM plan view image of the five grades steel before abrasion; (a) C02, 
(b) C04, (c) C12, (d) C18, (e) C99. 
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19.6 N 127 N 

(a) (b) 

(c) (d) 

(e) (f) 

 
Fig. 4.11 SEM micrographs of the central regions of the wear scars on the five 
grades of steel with Silica 180�250 ]m for both the minimum and the maximum 
applied loads: (a) and (b) C02; (c) and (d) C04; (e) and (f) C12. 
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19.6 N 127 N 

(g) (h) 

(i) (j) 
 
Fig. 4.11 (continued) SEM micrographs of the central regions of the wear scars on 
the five grades of steel with Silica 180�250 ]m for both the minimum and the 
maximum applied loads: (g) and (h) C18; (i) and (j) C99. 
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19.6 N 98 N 

(a) (b) 

(c) (d) 

 
Fig. 4.12  SEM images of the worn surfaces of the two steels following wear test 
with silica  300�600 ]m under two lowest and highest applied loads as indicated: 
(a) and (b) C12; and (c) and (d) C18. 

 

 

 

 

 

 

 

 



Chapter 4  ……………

 

Abrasive Wear Behavi

 
19.6

 
Fig. 4.13 SEM imag
with bottom ash un
(b) C12; (c) and (d)
 

………………………………………………………  Abra

haviour of Steels and Advanced HVOF�Sprayed WC�M

19.6 N 127 N

(a) (b)

(c) (d)

(e) (f)

 images of the worn surfaces of the three steels f
sh under the lowest and highest applied loads as 

nd (d) C18; and (e) and (f) C99. 

brasive Wear of Steels 

M Coatings  146 

127 N 

(b) 

(d) 

(f) 

teels following abrasion 
ds as indicated: (a) and 



Chapter 4  ………………………………………………………………  Abrasive Wear of Steels 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  147 

(a) 

 
(b) 

 
(c) 

 
 
Fig. 4.14 Changing of sample temperature during the abrasion wear test: (a) C12 
with silica 180�250]m; (b) C99 steel with silica 180�250]m; and (c) C12 with the 
bottom ash particles. 
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(a) (b) 
 

Fig. 4.15 SEM images of (a) the bottom ash under 19.6 N applied load and (b) the 
silica 180�250 Gm under 127.5 N applied load after passing through the contact 
zone following abrasion of the C12 Steel. 
 
 
 
 
 

(a) (b) 
 
Fig. 4.16 High magnification of the bottom�ash SEM images: (a) spongy nature of 
the particles and; (b) fine agglomerated particles. 
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Fig. 4.17 Particle size analysis (plotted as cumulative weight percentage under a 
given particle size) of the bottom ash. Ash particle size distributions plotted for 
the as�sieved ash (before abrasion testing) and then following abrasion of C99 at 
the two applied loads indicated. 
 
 
 
 

       
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
Fig. 4.18 Particle size analysis (plotted as weight percentage in a particular 
particle size range) of the bottom�ash. Ash particle size distributions plotted for 
the as�sieved ash (before abrasion testing) and then following abrasion of C99 
under a 19.6N load. 
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Fig. 4.19 Fraction of the bottom�ash particles passing into wear contact during 
abrasion of C18 steel as a function of applied load. 
 
 

 

 

 
Fig. 4.20 Measured average contact length of rubber wheel and steel sample as a 
function of applied load. 
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Fig. 4.21 The load per particle for bottom ash abrasive versus particle size 
obtained by Equation 7.6 and Table 7.8 (the total load is 68.6 N).  
 

 
Fig. 4.22 Ratio of wear rates with silica 180�250]m and ash abrasives as a 
function of applied load and test material type. 
 

 

Fig. 4.23 Illustration of contact between a grit particle under normal load and a 
plane surface. (a) Hard particle and (b) soft particle [3]. 
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Fig. 4.24 Ratio of the load per particle, Pp and maximum load to fracture, Pf for 
bottom ash abrasive particles versus particle size. The load per particle was 
obtained by Equation 7.6 and Table 7.8 (the total load is 68.6 N). The maximum 
load to fracture was obtained by Fig. 4.5. 
 

 
Fig. 4.25 Model of forces on particle in contact. 

 
 

 
 
Fig. 4.26 Schematic diagram showing the various geometrical features of a hard 
rigid sphere being loaded against a plastic counterbody. 
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(a) 

 

(b) 

 
Fig. 4.27 Observed coefficient, >p, of friction as a function of metal surface 
hardness for a sphere grooving through a metallic surface for two applied loads as 
shown; (a) tip radius = 126 �m; (b) tip radius = 12.6 �m. >a assumed to be 0.4 in 
all cases. 
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Fig. 4.28 The ratio of the maximum Feret diameter to the minimum Feret 
diameter of particle was defined the particle aspect ratio (ARp). 
 
 
 
 

 

 
 
Fig. 4.29 Optical micrograph of the silica 180�250 ]m particles for assessment of 
particle shape. 
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(a) 

 
(b)          

 
Fig. 4.30 Observed coefficient, >p, of friction as a function of applied load for a 
sphere grooving through a metallic surface for two metal surface hardnesses as 
shown; (a) tip radius = 126 �m; (b) tip radius = 12.6 �m. >a assumed to be 0.4 in 
all cases. As the particle size increases, the load per particle increases which 
promotes rolling. 
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Fig. 4.31 Schematic diagram of the shape of the contact between a rubber and a 
hard sphere in the presence of a tractional load; (a) low load per particle; (b) high 
load per particle. 
 

 

 
 
Fig. 4.32 Effect of abrasive particle size on wear rate of two types of steel (C12 
and C18) under lowest and highest loads for silica abrasive. 
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(a) 

 
(b) 

 

Fig. 4.33 Typical micrograph of (a) silica 180�250 ]m and (b) silica 300�600 ]m. 
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Chapter   5 
 

 

Characterisation of Coatings: 

 Results and Discussion 

 
 

 
 
 

5.1�Introduction  
 
Five different WC�metal cermet powders were used as feedstock materials in this 

study. These powders had different average carbide grain sizes and binder 

compositions as follows: WC�15% nickel alloy (NiMoCrFeCo), WC�15% iron 

alloy (FeCrAl) and three types of WC�17% Co with different carbide grain sizes. 

The materials have been labelled Ni, Fe, Co�I, Co�II and Co�III (the Ni, Fe and Co 

respectively indicating the basic elements in the binders). The mean grain size of 

WC in the Ni, Fe, Co�I, Co�II and Co�III powders were 0.7, 0.5, 1.0, 0.9, and 0.5 

]m respectively. All powders were agglomerated and sintered spheroid shapes in 

the size range from 15 to 45 ]m. The powders were sprayed using a Praxair/UTP 

Top�Gun HVOF spray system on to mild steel substrates. The spray parameters 

for all coatings are shown in Table 3.3. A wide range of methods were used for 

characterising the powders and their sprayed coatings. This chapter describes the 

characterisation of these powders and coatings and compares the results.  
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5.2�Results   

5.2.1�Characterisation of Powders 

5.2.1.1 Chemical Analysis 

 
The chemical composition of the feedstock powders quoted by the manufacturers 

is shown in Table 3.2. The X�ray diffraction patterns of the powders are shown in 

Fig. 5.1. It can be seen that for all coatings, the main peaks correspond to the WC 

phase while other peaks correspond the metallic binder phases for each powder. 

The XRD pattern did not indicate the presence of any other carbide phases such as 

W2C which may be seen in some feedstock powders. Therefore it can be assumed 

that all the tungsten content existed in the form of the WC phase. Having made 

this assumption, the composition of elements in the binder phases for each coating 

can be deduced from the overall powder composition shown in Table 3.2. The 

results for the binder of the feedstock powders are presented in Table 5.1.  

 

5.2.1.2 Morphology and Particle Size Analysis 

 
Fig. 5.2 shows the result of powder size distribution analysis for the powders 

measured using the laser diffractometery technique. The median sizes of particles 

(d50%) and the size distribution ranges (d5% � d95%) for all powders are presented in 

Table 5.2. It can be seen that there are only small differences in the size range and 

median size of particles among the powders.  

 

SEM images of the powders at two different magnifications are shown in Fig. 5.3. 

As shown in the images, agglomerated and sintered particles in the all powders 
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have spherical morphology and are highly porous, with large holes within the 

spherical particles. 

 

5.2.1.3 Microstructure and Phase Analysis 

 
Fig. 5.4 shows BSE cross�sectional images of the powder particles at high 

magnification. Two phases with different contrasts are visible: the WC particles 

(light contrast) and the metallic binder phases (dark contrast). The blocky shape of 

the WC grains in all three types of the WC�Co powders are clear (Figs. 5.4c, 5.4d 

and 5.4e) whereas in the Ni and Fe powders, the WC grains seems to be more 

rounded (Figs. 5.4a and 5.4b). The large size of the WC grains in the powder 

particle for the Co�I and Co�II compared with the Ni, Fe and Co�III is also 

apparent.  

 

Carbide grain size and volume fraction of the phases measured on the cross�

section BS images of the powders (utilising the line analysis method) are given in 

Table 5.3. Table 5.3 also shows the calculated volume fraction from the basis of 

mass fractions quoted by the manufacturers (Table 3.2) and assuming WC density 

of 15.63 g cm�3 [192] and binder densities of 8.87 g cm�3 for the Ni powder 

(density of Hastelloy with similar composition [193]), 7.2 g cm�3 for the Fe 

powder (density of Kanthal with similar composition [194]) and 8.90 g cm�3 for 

the cobalt binder powders. The results from this estimate and from the measured 

area fractions compare reasonably and accordingly, confirm their accuracy.  
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5.2.2�Characterisation of As�Sprayed Coating 

5.2.2.1 Chemical Analysis 

 
Tables 5.4�5.8 present chemical analysis results of the starting powder and as�

sprayed coating for all material samples. It can be seen that there has been a 

considerable loss of carbon upon spraying process for all coatings. Table 5.9 

exhibits the carbon loss percentage of the coatings during spraying from Tables 

5.4�5.8. Whilst the highest carbon loss was observed for the Co�I (42%) and Ni 

(36%), the carbon loss for the Fe (16%), Co�II (30%) and Co�III (29%) were 

significantly lower. In addition, there has been no significant pick�up of oxygen 

for the Co coatings; however, a small increase (0.14%) of oxygen was observed 

following spraying of the Ni coating, with a large increase of 0.46% for the Fe 

coating. 

 

5.2.2.2 Microstructure and Phase Analysis 

 
Fig. 5.5 shows comparative X�ray diffraction patterns of the coatings sprayed 

under the conditions given in Table 3.3 for the five powders. It is clear that the 

decomposition of tungsten carbide occurred during the spray process with all type 

of powders. However, the degree of decomposition of carbide is different. The 

tungsten carbide has dissolved in the molten binder during spraying; some of 

dissolved carbon reacted with oxygen in gas stream of HVOF flame and is lost as 

carbon monoxide; some of the remaining dissolved W and C have recrystallized 

as W2C and W during solidification with the remainder being retained in the 

binder. For the all coatings, XRD peaks corresponding to the phases W2C and W 

which formed during deposition are detected. Fig. 5.5 reveals that in the Co 

coatings there are small amounts of W2C compared to that in the Fe coating; the 
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highest level of W2C is observed in the Ni coating. There is a broad diffraction 

halo between 2θ values of approximately 37 and 47o for each coating which 

indicates the presence of an amorphous phase in the deposits. Although this broad 

halo exists for the all coatings, it is narrower and less high for the Fe and Ni 

coatings in contrast with that in the Co coating. In none of the coatings are 

crystalline peaks corresponding to the binder phases apparent.  

 

The average diameter of WC grains and the volume fraction of the binder were 

measured on the all coating cross�sections by the metallographic technique of line 

analysis. The mean free path of the binder (λ) was also measured from the BSE 

images using the following equation [195]:  

( )
LN

f−
=

1
λ                                                                                                          (5.1) 

where NL is the number of  non�continuous grains intersected on a metallographic 

plane by a line of unit length and f the volume fraction of dispersed phase. For 

each coating, the results from 5 measurements were averaged to obtain an average 

value. Table 5.10 presents the result of the mean volume fractions of binders, WC 

grain sizes and mean free paths of the binders for the all coatings. The results 

indicate that the Co�I coating has the lowest amount of carbide phase and the 

highest value of mean free path. The results for other coatings are approximately 

comparable. Table 5.11 shows the grain size and volume fraction of carbides in 

both the powders and coatings. Table 5.11 indicates that the most significant 

change in carbide phase volume fraction (51%) occurs during spraying of Co�I 

while the least significant change (18%) is observed for Co�II. The results also 

show that at lower degrees of carbide phase reduction for the Co�II (18%), Ni 

(19%) and Fe (25%) with increasing decomposition, there was the greatest 
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decrease in carbide grain size while at higher degrees of carbide phase reduction, 

for the Co�I (51%) and Co�III (33%), the average size of carbides remained 

approximately constant (0% for the Co�III) or even slightly increase (10% for Co�

I). this may result from whole decomposition of small carbide grains during spray 

process which leads to elimination of those grains and thus to an increase the 

value of the average carbide grain size. 

 

Fig. 5.6 shows the BS cross�section microstructural images of the sprayed 

coatings. The images exhibit typical splat�like microstructures associated with 

thermal spraying with dark and bright contrast matrix layers, corresponding to 

regions of lower and higher mean atomic number respectively. In the darker 

matrix areas of the all coatings, angular particles (WC) can be seen whereas in the 

brighter regions, the tungsten carbide particles have a more rounded appearance 

and are often partially or wholly enclosed by bright contrast shells or fringes of 

another phase. The different levels of dissolved W are primarily responsible for 

the different contrast levels of the matrices. Although the size of the shells 

surrounding WC particles precluded accurate SEM/ EDX analysis, it is clear that 

they had significantly lower carbon levels than the particle centres (higher mean 

atomic number as observed in BSE imaging). It is probable therefore that the 

shells around the WC particles are the W2C and W phases identified by XRD. 

There is evidence that bright shells surrounding WC grains are much more 

prevalent for the Ni coating (Fig. 5.6a) while, the amorphous (high tungsten) 

regions of binder are much high for the Co�I coating which exhibited the greatest 

of reduction in carbide content. Moreover, it can be seen that the number of WC 

particles in the coatings were very different; the carbide grain sizes in the Fe, Ni 



Chapter 5 …………………………………………………………  Characterisation of Coatings 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  164 

and Co�III are small compared with that in the Co�I and Co�II as they were in the 

powders. In addition, carbide grains in the Ni, Fe and Co�III are numerous and 

dispersed within the coatings (Fig. 5.6a, 5. 6b and 5.6e) while in the Co�I and Co�

II there are some large regions in the bright matrices with no carbides (Fig. 5.6c 

and 5.6d). It is obvious that significant amounts of the bright phase (W2C) in the 

form of fringes form and small round grains can be seen in the Ni and Fe coatings 

in comparison with the Co coatings. The carbide grains in the Co coatings are 

mostly angular whereas the grains in the Ni and Fe coatings have a more rounded 

morphology; this observation was also made for the powders (Fig. 5.4) indicating 

that it is a feature of the precipitation processes in the different binder phases. The 

micrographs corresponding to the Co coatings show evidence of a greater degree 

of particle melting and flow after impact than those corresponding to the Ni and 

Fe coatings since a more splat�like microstructure is observed.  

 

The deposit porosity of the coatings was measured using image analysis of BSE 

micrographs of the coating cross�sections. Fig. 5.7 shows a typical image of the 

coating cross�section following porosity analysis for all coatings. Table 5.12 also 

presents the volume fraction of the porosity along with the mean pore size of the 

coatings obtained from the analysis. It can be seen that the highest level of 

porosity occurs in the Fe coating with 5.1 vol%. The porosities of the three Co 

coatings are similar, with lower values than those of the Ni and Fe coatings. This 

is in accord with the higher degree of melting and flow of splats observed in the 

Co coatings in Fig. 5.6. 
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5.2.2.3 Mechanical properties 

 
The hardnesses of the coatings measured by using a Vickers microhardness tester 

are shown in Table 5.13. The hardness of the Co�III coating was found to be the 

lowest while the hardness for the Fe coating with similar WC grain size was the 

highest. The microhardnesses of the three Co coatings were very different. There 

was also a considerable difference between hardnesses of the Fe and Ni.  

 
The fracture toughness values of the coatings were calculated by measuring the 

indentations from Vickers hardness tester under 5 kgf load by using the equation 

of Evans and Wilshaw [196] (section 3.1.4.7). For each coating, the measured 

fracture toughness was ordered from low toughness (long cracks) to high 

toughness (short cracks). It was supposed that for any indentations where cracking 

was not observed, the toughness value was above that of the highest toughness 

measured for that coating. Fig. 5.8 shows the plots of the cumulative distribution 

of the fracture toughness data for the coatings that were obtained by using this 

approach. The results indicate that fracture toughness of the five coatings can be 

classified in two groups; the Co coatings with high fracture toughness and the non 

Co coatings (Fe and Ni) having low fracture toughnesses. To quantify these 

differences, the median values of fracture toughnesses for the all coatings were 

determined and the values are displayed in Fig. 5.9. 

 

5.3�Discussion  

5.3.1�Characterisation of Powders  

 
SEM and XRD results of the five powder feedstocks indicated that all powders 

consisted solely of tungsten carbide grains in a binder matrix (Figs. 5.1 and 5.4). 
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The XRD pattern did not indicate the presence of W2C phases in the any of the 

feedstock powders; however, it did indicate detected different crystal phases for 

each powder structures; NiCrFe and Mo for the Ni powder with Ni base Hastelloy 

binder, AlFe and Fe3W3C for the Fe with FeCrAl alloy binder and Co with crystal 

structure of fcc for the cobalt powders. SEM images of the all powders show that 

the agglomerated and sintered particles in the all powders have similarly spherical 

morphology and seem to be highly porous (Fig. 5.3). The size distribution 

analysis results for the powders (Fig. 5.2) shows some differences in the size 

range and median size of particles among the powders (Table 5.2). These results 

indicate similarity of the powders in morphology and particle size although they 

have different binder phase and/or carbide grain size. 

 

5.3.2�Characterisation of As�Sprayed Coating 

 
Despite the similarity of the feedstock powders in morphology and particle size 

(section 4.3.1) and the similar conditions of the spraying process for all materials 

(Table 3.3), a range of considerable differences can be seen in the microstructures 

and mechanical properties of the coatings. 

 

SEM images of the all powders at high magnification show that the carbide grains 

were completely surrounded by metallic binders (e.g. see Fig. 5.10). During 

spraying, the metallic binder melts and wet the carbide grains and thus the oxygen 

in the HVOF flame cannot react directly on the carbides resulting in the 

decomposition of carbide phase under the second mechanism (section 2.1.4.2). In 

this circumstance, the formation of the coatings can be described in the following 

stages: 
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1. Melting of Binder 

When the powder particles are exposed to the hot gas jet, the temperature of 

particles increase until the metallic binder phase reaches to its melting point. 

Melting point of tungsten carbide is 3143 K while the melting point of a 

metallic binder, for example Co, is 1768 K. The temperature of gas jet in 

HVOF system is around 2000 K (Fig. 2.2).  

 

2. Dissolution of WC in the Binder Phase  

At this stage, carbides begin to be dissolved by the molten binder phase and 

the metallic matrix increases the carbon and tungsten percentage present in the 

liquid phase. The binder phase of sprayed coatings shows a wide range of 

compositions depending on the temperature reached by the powder particles.  

 

3. Decarburization 

At the same time, due to the high temperature involved in the spraying 

process, oxygen diffuses quickly through out the melting phase and reacts 

with the carbon to form CO2. Carbon will be removed from the melt either by 

reaction with oxygen at the melt/gas interface or through oxygen diffusion 

into the rim of the molten particle, leading to CO formation. 

 

4. Solidification  

Final stage is rapid solidification of sprayed particle. It may occur during the 

particle flight, when the particles are near to the substrate or when the particles 

reach the substrate. When the temperature decreases, new phases precipitate 

due to the decreasing solubility of tungsten in the binder liquid phase. As the 
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total amount of carbon has been reduced by oxidising reactions in the previous 

stage, it is only possible to form new phases with a lower amount of carbon 

(W2C, W) and also nanocrystalline/amorphous phase of the binder (W, C). 

Growth of pre�existing WC grains would be most likely for melt compositions 

in the core which had not suffered carbon loss. Clearly, though, carbon loss 

brings the melt composition much closer to the W2C (and/or W) phase field. 

Nucleation of W2C and subsequent W2C growth might well be kinetically 

favoured particularly if WC acted as an efficient nucleation substrate for W2C. 

Therefore, the coating structure includes retained WC grains which remained 

in solid state during spraying, new precipitated phases (WC, W2C and W) 

depending on the local composition of binder, along with the formation of a 

nanocrystalline/amorphous binder phase containing dissolved W and C.   

 

Table 5.9 exhibits the carbon loss percentage for the all coatings indicating the 

highest value of decarburisation for the Co�I (42%) and Ni (36%). The high value 

of decarburisation in these coatings is due to high degree of decomposition of WC 

by its dissolution into the molten binder phase and the reaction of a significant 

fraction of dissolved carbon with oxygen resulting in high decarburisation. Larger 

amount of W and C dissolution was due to higher temperatures of particle in�

flight. Since the spray parameters for the all coatings were nearly the same (Table 

3.3), the size of the powder particles may be responsible for that. Fig. 2.23b 

illustrates the temperature of particles in�flight during HVOF spryaing indicating 

higher temperatures being attained for smaller particles. Fig. 5.2 and Table 5.2 

also show the size distribution and median size of the feedstock powders 

respectively revealing the smallest size of 32 Gm for the Ni and Co�I powders.   
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Table 5.11 on the other hand, shows the most significant change in carbide phase 

volume fraction (51%) on deposition of Co�I while a much smaller change (19%) 

is observed for the Ni. The results show that the Ni and Co�I had the same 

behaviour in the highest dissolution of W and C into their binders and the highest 

carbon removal from the binders but different behaviour in the solidification 

stage. In solidification, when the temperature decreases, new phases are formed 

due to the decreasing solubility of tungsten and carbon in the binder liquid phase. 

The higher volume fraction of carbide phase in the Ni compared with that in the 

Co�I coating must result from easier crystallisation of new carbide phases in the 

Ni due either to lower solubility of W and C in this binder or to more rapid 

crystallisation kinetics. Shaw et al. [150] compared HVOF sprayed WC cermet 

coatings with Co and NiAl binders and reported lower solubility of WC in the 

NiAl in contrast with that in the Co binders. Their results also showed greater 

extent of W2C and W formation in the WC�NiAl coating than that for WC�Co 

coating; this lower solubility was cited as the reason for its easier precipitation at 

higher temperature on coating.  

 

A cross�sectional BSE image of the Ni coating in Fig. 5.11 shows the formation of 

new phases as fringes around WC grains acting as an efficient nucleation 

substrate. On the other hand, higher solubility of W and C in the Co binder after 

cooling results in the binder phase rich in W and C in a solution state and 

consequently, the precipitation of new carbide phases will be insignificant.  Table 

5.14 shows the ratio of W2C/WC for the all coatings indicating that in the Co 

coatings there are small amounts of W2C compared that in the Ni coating, with the 

latter having much the highest level of W2C (Fig. 5.5). The BSE cross�section 
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microstructural images of the sprayed coatings also show that bright shells 

surrounding WC grains are much more prevalent for the Ni coating (Fig. 5.6a) 

while, the amorphous (high tungsten) regions of binder are much high for the Co�I 

coating (Fig. 5.6c).  

 

The volume fraction of porosity along with the mean pore size of the coatings is 

shown in Table 5.12. It can be seen that the highest level of porosity occurs in the 

Fe coating while the porosities of the other coatings are more similar. Table 5.9 

presents the carbon loss percentage for the coatings indicating the lowest 

decarburisation degree for the Fe. This implies the lowest extent of dissolution of 

W and C into the binder probably due to lower temperature of the particle in�

flight. Under such a circumstance, the binder had no chance to be wholly melted 

(melting point of the binder is equal or above that of the particle temperature) and 

consequently the porosity significantly increases as can be seen for the Fe coating 

(Fig. 5.7 and Table 5.12). The XRD pattern for the Fe coating indicates lower 

extent of W2C compared with that for the Ni and also a narrower and less high 

broad halo (indicating only a minor presence of amorphous phase in the deposits) 

in contrast with other coatings.  

 

The fracture toughness values of the coatings were calculated by measuring the 

indentations and associated cracking analysed by the method of Evans and 

Wilshaw [196] from Vickers hardness indentations. In HVOF coatings, cracks 

mostly propagate parallel to the substrate, because weak intersplat interfaces are 

preferred crack propagation paths. Depending on the microstructural 

characterisations of binder, cracks typically propagate in the metal matrix, going 
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round carbide particles. The amorphous metal matrix is therefore the preferential 

propagation path, probably because it is embrittled by WC dissolution [105]. A 

weak cohesion in the metal�carbide interface also can cause cracks to propagate in 

coating [197]. The median fracture toughness of the all coatings is presented in 

Fig. 5.9 showing two distinct groups of coatings; the non�cobalt group with low 

fracture toughness and the cobalt coatings having high fracture toughness. Higher 

cohesion between the WC grains and binder and strong intersplat interfaces in the 

cobalt coatings appear to be responsible for this significant difference. This is 

probably due to a good wetting property of cobalt binders with WC grains 

compared with those for the Ni and Fe coatings [198]. Cobalt is the most 

commonly used binder because it has excellent carbide wetting and adhesion 

properties [138, 199] . High WC wettability of cobalt binders in thermally sprayed 

WC�Co coatings results in improvement of their mechanical properties [200]. The 

micrographs corresponding to the Co coatings also show evidence of a greater 

degree of particle melting and flow after impact than those corresponding to the 

Ni and Fe coatings since a more splat�like microstructure is observed (Fig. 5.6).  

 

The hardness of the thermally sprayed WC cermet coatings depends on the 

volume fraction of retained hard phase of WC, the volume fraction of new phases 

(e.g., W2C and W), the hardness of binder phase and microstructural properties of 

coating ( i.e., porosity, mean free path of binder and WC grain size). From the 

measured hardness of the five coatings presented in Table 5.13, it can be seen that 

although the extents of coating hardnesses are in a high level of hardness in 

contrast with the other works (section 2.1.4.4), some variations in hardness values 

within the coatings are evident. The Ni and Fe coatings both with the high volume 
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fraction of carbide phases (Table 5.10) have different hardness.  The ratio of 

W2C/WC peaks for the Ni was significantly higher than that for the Fe coating 

(Table 5.14). This reveals that the volume fraction of carbide in the Ni includes 

retained WC and newly crystallised W2C phases, whereas for the Fe coating with 

the lowest decarburisation (Table 5.9) and a low amount of W2C (Table 5.14), the 

volume fraction of carbide phase is mostly associated to the retained WC phase 

from starting powder. The important role of the retained carbide phase in 

determining the hardness of thermally sprayed WC cermet coatings is well known 

and thus efforts have been exerted to control the decomposition of the carbide 

phase during spraying process. Many investigators reported that a decrease of the 

decomposition enhances hardness of thermally sprayed WC cermet coatings [112, 

113]. Usmani et al. [102] showed that an increase of W2C phase in an HVOF 

sprayed WC cermet coatings goes alongside a decrease in the hardness of coating. 

The formation of the more hard and brittle W2C phase surrounding the WC grains 

produces a cohesion decrease in the WC particles within the coating and 

consequently a decrease in mechanical properties like hardness [115, 116]. 

 

In contrast, more decomposition of tungsten carbide during spraying can result in 

an enrichment of the binder phase in W and C. This is due to high solubility of 

these elements in the binder phase during rapid solidification [150]. This 

enrichment results in enhancement of both the hardness and brittleness of coating. 

Although decarburization decreases the volume fraction of the carbides, its 

detrimental effect on the hardness is compensated by the hardening of the cobalt 

matrix due to the solution of tungsten and carbon into the binder phase [118]. This 

is what occurred for the Co�I coating with a high degree of hardness (Table 5.13). 
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The highest decarburisation and a low W2C fraction for the Co�I imply the high 

enrichment of W and C in the binder and the increase in the hardness of coating. 

A cross�section BSE image of the Co�I coatings (Fig. 5.6c) exhibits large gray 

regions within the binder phase indicating the high enrichment W in the matrix.  

 

In the cobalt coating group, the Co�II and Co�III with the approximately same 

degree of decarburization (Table 5.9) exhibit different hardnesses. The volume 

fraction of carbide for the Co�II is higher than that for the Co�III (Table 5.3) while 

its ratio of W2C/WC is lower than that for the Co�III (Table 5.14) indicating more 

retained carbide phase for the Co�II coating compared with the Co�III coating. 

This may be responsible for the difference in their hardnesses.  

 

In summary, since the oxygen in the HVOF flame cannot react directly on the 

carbide grains, the formation of the coatings can be described in the following 

four stages: i) melting of binder in the hot gas jet, ii) dissolution of WC in the 

molten binder phase, iii) decarburization of binder and iv) precipitation of new 

phases (W2C and W) and formation of amorphous phase of the binder during 

rapid solidification. High decarburisation of the Ni and Co�I coatings was likely 

due to their smaller powder feedstock particle. The results show different 

solubility of W and C in binders for coatings in the Co and non�Co groups during 

the solidification stage. in the Co coatings, higher solubility of W and C after 

cooling results in the binder phase rich in W and C in a solution state while in the 

non�Co coatings lower solubility of W and C leads to precipitate significant  new 

carbide phases. The fracture toughness testing results presents low fracture 

toughness for the non�Co coatings and high fracture toughness for the Co 
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coatings. This is because higher cohesion between the WC grains and binder and 

strong intersplat interfaces in the cobalt coatings probably due to a good wetting 

property of cobalt binders with WC grains compared with those for the Ni and Fe 

coatings. The results also imply that two important factors results in enhancement 

of the hardness of the coatings are the volume fraction of retained hard phase of 

WC (e.g. for the Fe coating) and enrichment of the binder phase in W and C (e.g. 

for the Co�I coating). 
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Table 5.1 Estimated composition of elements in the binders of the powder 
feedstocks using Table 3.2 and assuming all carbides are in the form of WC. 

 

Designation 

Composition of binder (starting powder stock) (wt%) 

Ni Mo Cr Fe Co Al C O 

Ni 57.31 15.14 14.53 5.67 4.05 � 2.87 0.004 

Fe � � 21.75 68.94 � 6.57 2.74 0.01 

Co�I � � � 0.3 99.70 � � � 

Co�II � � � 0.24 99.37 � 0.39 � 

Co�III � � � 0.18 99.70 � 0.12 � 

 

 

 

Table 5.2 Particle median size of the powders resulted from laser particle size 
analyser.  

Powder Median size of powder 

particle, d50% (Dm) 

Particle size distribution 

range, d5%�d95% (Dm) 

Ni 32 15�65 

Fe 36 18�65 

Co�I 32 17�58 

Co�II 38 22�59 

Co�III 34 17�55 
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Table 5.3 WC grain size with volume fraction of WC phases in the powders 
measured both by line analysis and calculated from the chemical composition of 
the powders. 

 

Powder 

Measured volume 

fraction of  WC 

(%) 

Calculated volume 

fraction of  WC 

(%) 

WC 

Grain size 

(Dm) 

Ni 73 76 0.7 

Fe 77 71 0.5 

Co�I 72 74 1.0 

Co�II 67 74 0.9 

Co�III 71 73 0.5 

 

Table 5.4 Measured chemical composition of the Ni powder and as sprayed 
coating. 

 

WC�Ni  

Composition (wt %)  

W Ni Mo Cr Fe Co C O 

Powder 79.98 8.48 2.24 2.15 0.84 0.6 5.65 0.06 

Coating 81.58 8.65 2.28 2.20 0.86 0.61 3.61 0.2 

 

Table 5.5 Measured chemical composition of the Fe powder and as sprayed 
coating. 
 

 

WC�Fe  

Composition (wt %)  

W Fe Cr Al C O 

Powder 79.16 10.81 3.41 1.03 5.59 0.16 

Coating 79.44 10.80 3.42 1.03 4.69 0.622 
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Table 5.6 Measured chemical composition of the Co�I powder and as sprayed 
coating. 

 

WC�Co (I)  

Composition (wt %) 

W Co Fe C O 

Powder 78.14 16.83 0.05 5.03 � 

Coating 79.84 17.16 0.05 2.89 0.071 

Table 5.7 Measured chemical composition of the Co�II powder and as sprayed 
coating. 

 

WC�Co (II)  

Composition (wt %) 

W Co Fe C O 

Powder 78.01 16.83 0.04 5.16 � 

Coating 79.23 17.09 0.04 3.61 0.063 

Table 5.8 Measured chemical composition of the Co�III powder and as sprayed 
coating. 

 

WC�Co (III)  

Composition (wt %) 

W Co Fe C O 

Powder 77.88 17.02 0.03 5.10 � 

Coating 78.99 17.29 0.03 3.63 0.050 

Table 5.9 Carbon loss percentages after spraying obtained from Tables 5.4 
through 5.8. 

Coating Carbon loss (%) 

Ni 36 

Fe 16 

Co�I 42 

Co�II 30 

Co�III 29 
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Table 5.10 Volume fractions of carbide, WC grain sizes and mean free paths of 
the binders for the all coatings by use of a line analysis method on the BS cross�
section images. 

Coating Volume fraction 

of WC (%) 

WC grain size 

(Dm) 

Mean free path 

(Dm) 

Ni 59 ~0.6 0.40 

Fe 58 ~0.4 0.31 

Co�I 35 ~1.1 2.03 

Co�II 55 ~0.8 0.68 

Co�III 49 ~0.5 0.54 

 

 

 

Table 5.11 Comparison of volume fractions and grain size of carbide in the 
powder and coating. 

Material 
Volume fraction 

of Carbide phase (%) 

Carbide grain size 

(Dm) 

Powder Coating Changes Powder Coating Changes 

Ni 73 59 19 % 0.7 0.6 14 % 

Fe 77 58 25 % 0.5 0.4 20 % 

Co�I 72 35 51 % 1.0 1.1 �10 % 

Co�II 67 55 18 % 0.9 0.8 11 % 

Co�III 71 49 33 % 0.5 0.5 0 % 

 

 

 



Chapter 5 …………………………………………………………  Characterisation of Coatings 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  179 

Table 5.12 Deposit porosity and mean pore size of the coatings measured by 
image analysis on BS micrographs of the coating cross�sections. 

Coating Average Size (Dm) Porosity (vol %) 

Ni 0.30 2.2 

Fe 0.25 5.1 

Co�I 0.27 1.6 

Co�II 0.36 1.8 

Co�III 0.42 1.2 

Table 5.13 Vickers microhardness of the coatings.  

Coating Micro hardness (kgf mm
�2

) 

Ni 1255± 38 

Fe 1499±82 

Co�I 1418±61 

Co�II 1306±71 

Co�III 1203±57 

 

Table 5.14 The ratio of W2C to WC XRD�peak height for the all coatings (W2C 
peak at d= 2.275 Å and WC peak at d= 1.882 Å). 

Coating XRD peak height ratio 

(W2C/WC) × 100 

Ni 40.42 

Fe 12.48 

Co�I 15.58 

Co�II 9.14 

Co�III 14.96 
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(a) (b) 

(c) (d) 

 

 
(e) 

Fig. 5.3 Feedstock powder morphologies of: (a) Ni, (b) Fe, (c) Co�I, (d) Co�II, and 
(e) Co�III 
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(a) (b) 

(c) (d) 

 

 
(e) 

Fig. 5.4 BSE feedstock powder cross�sections of: (a) Ni, (b) Fe, (c) Co�I, (d) Co�
II, and (e) Co�III. 
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(a) (b) 

(c) (d) 

 

 
(e) 

 
Fig. 5.6 Cross�section BS images of the sprayed coatings of: (a) Ni, (b) Fe, (c) 
Co�I, (d) Co�II, and (e) Co�III. 
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Fig. 5.9 Median fracture toughness of the five coatings measured by use of 
Vickers indenter under 5kgf load. 

 

 

Fig. 5.10 SEM image of the Co�I powder in high magnification (×30000). 
 
 

 
 
Fig. 5.11 Cross�section BSE image of the Ni coating shows the formation of new 
phases as fringe shape around WC grain as an efficient nucleation substrate.
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Chapter   6 
 

 
Abrasive Wear of HVOF Sprayed 

Coatings:  

Results and Discussion 
 
 

 
 

6.1�Introduction  
 
Five different types of tungsten carbide cermet powders with different binders and 

carbide grain sizes were sprayed using an HVOF system and their abrasion 

behaviour was investigated. The details of the starting powders, spray parameters 

and coating properties are presented in chapter 5. To evaluate the abrasive wear 

performance of the coatings, the dry sand–rubber wheel test method (a variant on 

ASTM G65), described in section 3.2.2, was employed. The parameters used in 

the wear test were the same as were employed for the steels samples (section 

3.2.2). Two abrasive particles, namely alumina and silica with the particle size 

ranges of 212�300 ]m and 180�250 ]m respectively were used as abrading media. 

The wear experiments were done with loads of 19.6, 49, 98, and 127.5 N. Finally, 

the abrasive wear behaviour of coatings with the two different abrasives was 

compared, and understood in terms of their mechanical and microstructural 

properties presented previously (chapter 5). 

 



Chapter 6  ………………………………………  Abrasive Wear of HVOF Sprayed Coatings 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  188 

6.2�Results 

6.2.1�Characterisation of Abrasive Particles 

6.2.1.1 Abrasive Materials 

 
In order to assess the wear behaviour of the coatings, two types of abrasive 

particles were employed. The abrasive particles used in this work were rounded 

silica (The David Ball Company, Bar Hill, UK) and angular alumina (Abrasive 

Developments, Henley�in�Arden, UK). The abrasive size used for silica was F70 

grit size (180�250 Gm) and for alumina was F60 grit size  (212�300 ]m), both 

obtained by a sieving technique.  

 

6.2.1.2 Morphology and Particle Size Analysis  

 
Fig. 6.1 shows the morphology of the abrasive particles. The micrographs of the 

particles show rounded silica abrasive particles in contrast to the angular shapes of 

the alumina particles.  

 

The size distributions of the abrasive particles were measured by passing the 

abrasives through a stack of wire�mesh sieves on a mechanical sieve shaker. Fig. 

6.2 shows the size distribution for each particle type. The results indicate that for 

silica 70 and alumina 60 the distribution sizes are similar, although the alumina 

abrasive had a larger fraction of larger particles. The particle diameter, dp, below 

which 50% of the volume lay was taken as the nominal particle diameter of the 

particles in any further analysis. This is ~190 ]m for silica 70 and ~200 ]m for 

alumina 60. 
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6.2.1.3 Hardness 

 
The Vickers hardnesses of the silica 70 and alumina 60 abrasives were measured 

on polished cross�sections with a 300 gf indentation load and are 1116±46 kgf 

mm�2 and 2103±25 kgf mm�2 respectively. 

 

6.2.2�Characterisation of Worn Surfaces 

6.2.2.1 Abrasion of Coatings 

 
The wear rates of the coatings were measured using the dry sand rubber wheel 

abrasion test (DSRW) technique. Two types of abrasives under four different 

loads were employed for wear testing. Fig. 6.3 shows examples of the raw data for 

the abrasive wear tests performed on one of the coating materials, namely the 

mass loss of the Co�I coating as a function of abrasion distance (with silica 70 

abrasive) for four applied loads. It can be seen that for all four loads, the progress 

of mass loss was linear with abrasion distance. Also, it is notable that in general, 

the rate of wear increases as the applied load increases. Table 6.1 exhibits the 

parameters of abrasive wear test for the five coatings along with the wear rate at 

each applied load for each series of coating�abrasive tests.  

 

The wear rate has been determined from a least squares fit of the data that is in the 

linear� �steady state) regime. Steady state wear rates of coatings were measured 

under four applied loads of 19.6, 49, 98, and 127.5N with both silica and alumina 

abrasives. Steady state wear rates with silica 70 and alumina 60 abrasives for each 

coating type as a function of load are shown in Figs. 6.4 and 6.5 respectively. In 

all cases, the wear rates of the coatings are observed to be significantly higher 
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with alumina 60 than silica 70 abrasive. It can be seen that the wear rate with the 

alumina abrasive is nearly between ~1.2 and 7.8 times larger than that with the 

silica abrasive. The wear rate is sensitive to the ratio of abrasive hardness Ha to 

the surface hardness Hs. Abrasion under conditions where Ha/Hs > 1.2 is 

sometime termed “hard abrasion”, in contrast to “soft abrasion” when Ha/Hs < 1.2 

[3]. Fig. 6.6 shows the values of Ha/ Hs for each coating�abrasive combination. It 

is evident that for all coatings, the abrasive wear with alumina should be “hard” 

abrasion whereas that with silica should be “soft” abrasion.  

 

Figs. 6.4 and 6.5 also indicate that for coatings with high wear rates, increasing 

applied load results in a significant increase in wear rate, whereas for coatings 

with low wear rates, the effect of applied load on wear rate is less. For example, 

wear rate with silica (Fig. 6.4) is highest for the Co�II coating and lowest for the 

Fe coating. The wear rate observed under 98 N load compared to that under 19.6 

N for the Co�II coating is about 4 times as much whereas for the Fe coating is 

around 1.5 times. Similar behaviour is observed for wear with the alumina 

abrasive. 

  

The wear test results with silica (Fig. 6.4) can be classified into two groups; the 

Co coatings with high wear rate and the non�Co coatings with low wear rate. On 

the other hand, the wear test results with alumina (Fig. 6.5) show that the highest 

wear rate is associated with the Co�III coating, whilst the Co�I coating had the 

lowest wear rate.  
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6.2.2.2 Wear Scar Investigation 

 
After abrasive wear testing, the worn surfaces of all samples were examined by 

optical and SEM microscopies. Images of the central zone of the worn areas at the 

lowest and highest applied loads utilised were chosen. Fig. 6.7 shows optical 

microscopy images of the Fe coating following wear with silica 70. The surfaces 

show evidence typical of particle� rolling, with significant indentation of the 

surface. In contrast, Fig. 6.8 shows evidence typical of particle�sliding (grooving) 

and also evidence typical of small particle rolling across the surface of the sample 

following abrasion with the alumina particles. Optical microscopy images of all 

the coatings indicated that in the all cases and under all applied loads, silica 70 

abrasive resulted in evidence of particle rolling while with alumina 60 abrasive 

resulted in grooving. Figs. 6.7 and 6.8 also show that the size of indentations and 

grooves increase with increasing applied load.  

 

Figs. 6.9 through 6.18 present the plan view and cross�sectional micrographs of 

the wear scars for the five coatings following abrasive wear with silica 70 and 

alumina 60 abrasives under the lowest and the highest applied loads.  

 

The Ni Coating 

Fig. 6.9 shows the SEM images of the central zone of the wear scars on the Ni 

coating following abrasion with silica 70. The plan view images under the lowest 

and highest applied load (19.6 N and 127.5 N) are exhibited in Fig. 6.9a and 6.9b 

respectively, with the cross�sectional image of the worn surface at the highest load 

being shown in Fig. 6.9c. Carbide cracking and pullout can be seen in both top 

views of the worn surfaces. The metal matrix seems to wear at a higher rate 



Chapter 6  ………………………………………  Abrasive Wear of HVOF Sprayed Coatings 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  192 

leaving unprotected carbide particles obviously visible in the plan view of wear 

scar at the higher load (Fig. 6.9b). Also there is some carbide pull out despite the 

small size of some of the carbide grains. The cross�sectional image (Fig. 6.9c) 

shows sub�surface cracking which will result in the formation of large pits. 

However, good adhesion of carbide grains at the wearing surface is evident. SEM 

images of the Ni coating abraded with alumina 60 are presented in Fig. 6.10. The 

plan view images under 19.6 N and 127.5 N loads show cutting and grooving of 

both the binder and carbide uniformly, with the grooves being larger and deeper 

under the higher load condition. Moreover, large material loss can be seen in the 

worn surface as dark regions under the higher applied load. The cross�sectional 

image of the worn surface (Fig. 6.10c) shows sub�surface cracking propagating 

through the binder phase. Vertical cracks can also be seen within the coating.  

 

The Fe Coating 

Figs. 6.11a and 6.11b show the SEM plan view images of the central zone of the 

wear scars on the Fe coating following abrasion with silica 70 at the lowest and 

highest applied loads (19.6 N and 127.5 N ) respectively. Large cracks and a large 

amount of voiding are evident on the worn surface under both applied loads. 

Because of high level of the porosity in the coating, the pullout process cannot be 

distinguished easily. The metal matrix also seems to wear at a very slightly higher 

rate leaving unprotected carbide particles visible in the plan view image (Figs. 

6.11a and 6.11b). A cross�sectional image of the worn surface at the highest load 

is shown in Fig. 6.11c. Sub�surface cracks can be seen propagating through the 

coating with high level of porosity within the coating. However, good adhesion of 

carbide grains and matrix is apparent. Figs. 6.12a and 6.12b show SEM plan view 
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images of the Fe coating abraded with alumina 60 under 19.6 N load and 127.5 N 

loads respectively. Grooves with large voids are apparent under both loads but at 

the higher load; the grooves are larger and deeper along with some cracks and a 

number of small holes probably due to material loss or open porosity on the 

coating surface (Fig. 6.12b). A cross�section of the worn surface under the highest 

load is shown in Fig. 6.12c. Sub�surface lateral cracking with a number of vertical 

cracks running through the coating and also a large area of porosity can be seen. 

 

The Co�I Coating 

The plan view images of the wear scars on the Co�I coating after abrasion with 

silica 70 at the lowest (19.6 N) and highest (127.5 N) applied load are shown in 

Fig. 6.13a and 6.13b respectively. Wear scars produced under the both loads 

exhibited removal of matrix at a higher rate leaving unprotected carbide particles, 

along with carbide cracking and pullout which are more significant under higher 

applied load. The cross�sectional image under the highest load (Fig. 6.13c) 

although revealing no significant sub�surface cracking, shows the carbide grains 

are standing proud of the matrix indicating preferential wear of the matrix phase. 

Carbide cracking and voids due to pullout of carbide grains are also evident. Fig. 

6.14a and 6.14b show SEM plan view images of the Co�I coating abraded with 

alumina 60 under 19.6 N and 127.5 N applied load respectively. Two distinct 

regions, one with a high density of carbide grains and one with a lower density of 

carbides are apparent under both loads. Fractured carbide grains and voids due to 

pullout carbide also can be seen. Under the higher load, more voids and cracked 

carbides can be seen (Fig. 6.14b). Fig. 6.14c shows a cross�sectional image of the 
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worn surface of the coating under the highest load. This exhibits some small 

surface pits; however, no sub�surface cracks can be seen. 

 

The Co�II Coating 

SEM plan view images of the wear scars on the Co�II coatings following abrasion 

with silica 70 at the lowest (19.6 N) and the highest (127.5 N) applied loads are 

shown in Figs. 6.15a and 6.15b respectively.  These wear scars exhibit three 

distinct features: regions with a high density of carbide grains; regions with a low 

density of carbide grains, and carbide pull out voids which appear as dark regions. 

At higher load (Fig. 6.15b), cracking of some carbides and a number of furrows 

due to removal of matrix leaving carbides unprotected can be seen. The cross�

sectional image of the wear surface under the highest load (Fig. 6.15c) shows no 

sub�surface cracks propagating through the coating. Figs. 6.16a and 6.16b show 

SEM plan view images of the Co�II coating following abrasion with alumina 60 

under 19.6 N and 127.5 N loads respectively. Carbide pull out voids and a number 

of furrows due to removal of matrix can be observed. Under the higher load, 

cracked carbides and a higher density of voids can be seen. Fig. 6.16c shows a 

cross�sectional image of the worn surface revealing apparently no sub�surface 

cracking in the coating.   

 

The Co�III Coating 

Figs. 6.17a and 6.17b show the plan view images of the central zone of the wear 

scars on the Co�III coating after  abrasion with silica 70 at the lowest and highest 

applied loads (19.6 N and 127.5 N) respectively.  The wear scars include; regions 

with a high density of carbide grains, regions with low density of carbide grains 
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and a small number of voids due to carbide pull out.  Moreover, a number of 

furrows by the sides of carbide grains due to removal of matrix at a higher rate are 

evident. A BSE cross�sectional image following wear at the highest load (Fig. 

6.17c) shows sub�surface cracks propagating through of the bright binder phase. 

Also, unprotected carbide grains due to preferential wear of the binder are evident 

at the surface.  SEM plan view images of the Co�III coating following abrasion 

with alumina 60 at the lowest (19.6 N) and highest (127.5 N) applied loads are 

shown in Figs. 6.18a and 6.18b respectively. The worn surfaces produced by 

alumina under both applied loads show two distinct regions of high and low 

density of carbide grains and with a low applied load (Fig. 6.18a), a large number 

of scratches and some narrow grooves in different directions are visible while at 

the highest applied load (Fig. 6.18b), wide and deep grooves along the direction of 

sliding flow are evident. The cross�sectional image of the worn surface under the 

highest load (Fig. 6.18c) shows sub�surface cracking with cracks running in the 

bright binder phase region. 

 

6.3�Discussion  

6.3.1�General Observations 

 
The abrasive wear test results of the five coatings exhibited increases in wear rate 

with applied load when abraded with both silica and alumina sands (Figs. 6.4 and 

6.5). There is an exception for wear rate under 127.5N load for some coating 

cases, where the wear rate unexpectedly reduced. In the DSRW test, both the 

sample and wheel temperatures increase during testing. The magnitude of these 

increases under a given test parameters, depend on abrasive type, sample material 
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and applied load [201]. Increasing the rubber temperature will result in a decrease 

in its hardness. Accordingly, it may result in a decrease in wear rate as the applied 

load is increased [63].  

 

The ratio of abrasive particle hardness to coating hardness indicates that for all 

coatings, the abrasive wear by alumina is “hard” compared to that by silica which 

is “soft” (Fig. 6.6). For all the coatings and test conditions examined, the wear rate 

with the silica particle was significantly lower than that by the alumina particle. 

Low magnification optical microscopy images of all the coatings (Figs. 6.7 and 

6.8) also indicate that in all the cases, silica 70 abrasive showed evidence for  

particle rolling with significant indentation of the surface while with alumina 60 

abrasive, grooves along the direction of abrasive flow are apparent. Increasing 

applied load leads to an increase in the size of indentations and grooves (Figs. 

6.7b and 6.8b). The angular nature of the alumina, in comparison with the more 

rounded silica particles (Fig. 6.1) and its greater hardness are the cause of these 

very significant differences in wear behaviour for the all coatings.  

 

The results show that the wear rates of the coatings did not necessarily decrease 

with coating hardness. Figs. 6.19a and 6.19b display the wear rate of the five 

coatings with silica 70 and alumina 60 abrasives under different applied loads 

versus the coating hardness respectively. It can be seen that in some cases, 

coatings with higher hardness also exhibit higher wear rate compared with 

coatings with lower hardness. This is because of the complicated mechanism of 

abrasive wear in thermally sprayed cermet coatings and importance of other 

parameters.  
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The five coatings can be classified in to two groups of Co and non�Co with 

distinct characteristics. The coatings in each group have a number of similar 

properties in the feedstock powder and in the coatings after spraying process. In 

the starting powders, the WC content is 85 wt% for non�Co coatings compared 

with 83 wt% for the Co coatings (Table 3.1). Also, the carbide shape in the non�

Co group seems to be rounded compared with angular carbide grains in the Co 

group (Fig. 4.4) and finally, the binder material in the starting powder is a pure 

metal (cobalt) for Co group whereas in the non�Co group there were two 

complicated alloys (Hastelloy type C for the Ni and Kanthal for the Fe coating) as 

binder materials (Table 3.2, see also section 4.2.3). For the coatings, the similar 

properties in each group are: i) low fracture toughness in non�Co coatings and 

high fracture toughness for the Co coatings (Fig. 6.20), ii) high porosity for the 

non�Co and low porosity for the Co coatings (Fig. 4.11), iii) higher amounts of 

W2C and less amorphous  phases in the non�Co and lower fractions of W2C with 

more amorphous phases for the Co coatings (Fig. 4.5), iv) low mean free path for 

the non�Co and higher mean free path for the Co coatings (Table 4.9), and v) the 

high volume fractions of the carbide phase for non�Co and lower carbide volume 

fractions for the Co coatings (Table 4.9).  The above data are summarized in 

Tables 6.3 and 6.4.  These significant differences in the material properties of the 

two groups imply that the comparison of abrasive wear behaviour of the two 

groups in detail is difficult.  

 

6.3.2�Abrasive Wear with Silica 

  
The hardness of silica 70 particles (1116 ± 46 kgf mm�2 ) is lower than all the five 

coatings examined (Fig. 6.21). This abrasive particle exhibits a rounded 
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morphology (Fig. 6.1) and a narrow size range (Fig. 6.2). Moreover, as can be 

seen from Fig. 6.6, the ratios of abrasive hardness Ha to the hardness of coating 

surfaces Hs for all coatings are less than 1.2 indicating “soft wear” regime and, as 

such, particle blunting is likely during abrasion which will result in a lower rate of 

wear under three�body (rolling) abrasion mechanism (Fig. 6.7) than might be 

observed with a harder abrasive particle.  

 

The selective binder phase removal from the near�surface layers seems to be an 

important step in wear process of composite materials by soft abrasives  [93]. 

Cyclic indenting contact of abrasive particles during three�body abrasion process 

causes compressive stresses in the surface of coating. The binder is initially 

compressed out of the surface by these stresses ahead of and to the sides of the 

indenter. The next stage is probably damage to those WC grains which are in 

heavily loaded locations because the binder has flowed plastically. The WC grains 

break into small fragments and are gradually pulled out from the surface. The WC 

grains which are at the edge of a defect (a crack or an area of surface damage) will 

experience greater load as the abrasive particles indent than will grains away from 

the defect. These grains will be the first to be damaged, resulting in growth of the 

defect. Microcracks form around the pits and propagate through the coating 

preferentially in the tungsten rich binder phase or along splat boundaries. Elastic�

plastic indentation of the abradant into the coating can also cause sub�surface 

cracks to form close to surface of the coating resulting in detachment of fragments 

of the surface material [75]. The BSE cross�section images of the coatings clearly 

show that generally cracking starts at the end of an empty space resulting from 
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removal of binder material or carbide grains and then propagates through the 

coating (e.g., Fig. 6.17c).  

 

From SEM plan view images of wear scars of the all coatings (Figs. 6.9, 6.11, 

6.13, 8.15 and 8.17) it can be seen that the metal matrix wears at a higher rate 

leaving unprotected carbide particles. For the all coatings, removal of matrix can 

be seen to be more extensive under higher applied load (Figs. 6.13b, 8.15b and 

8.17 b) with micro�grooves being formed by the sides of carbide grains and also, a 

number of fragmented carbide grains and voids due to pulling out of the carbides 

which are significantly higher for the cobalt coatings. Cross�section images of 

wear scars show also sub�surface cracking close to the surface (Figs. 6.9c, 6.11c 

and 6.17c) although this effect for the Co�III is low (Fig. 6.17c) and for the Co�I 

and Co�II is not significant (Figs. 6.13c and 6.15c). Finally, the wear scar images 

show that the preferential wear mechanism followed by WC fragmentation and 

pullout is predominant wear mechanism for the all coatings although, sub�surface 

cracking has also been observed as a mechanism for removal of materials in some 

cases (Figs. 6.9c and 6.11c). In these cases the removal of material occurs by both 

preferential removal matrix phase and sub�surface cracking processes. Pullout of 

the carbide grains is promoted by preferential wear of the softer phase (matrix) 

which exposes the already fractured carbides. Carbide cracking in the Co group of 

coatings was observed following abrasion under both loads especially near the 

surfaces within the carbide phase and along the splat boundaries whereas in the 

non�Co group coatings, the sub�surface cracking, induced primarily by elastic 

contact is the main mechanism of removal of materials.  
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The abrasive wear results of the Co group and non�Co group coatings showed two 

distinct wear behaviours with silica particles; the wear resistance for non�cobalt 

group is considerably higher than that for cobalt group. For the cemented 

materials, it has been shown that there is a correlation between abrasion resistance 

and the mean free path in the binder phase between the carbide grains; a short 

mean free path, due to a high volume fraction of fine carbide grains, gives the 

highest abrasion resistance [91]. A similar result has been reported for HVOF 

thermally sprayed WC coatings when abraded using the DSRW test showing the 

best abrasion resistance among the coatings tested for coating with lowest mean 

free path [122]. Comparison of the cross�section BSE images (Fig. 4.6) and the 

measured extent of WC volume fraction, the WC grain size and mean free path 

for the five coatings (Table 5.10) shows a lower mean free path for the non�Co 

coatings compared with that for the Co coatings.  This considerable difference 

may be responsible of difference in wear behaviour of these two groups of 

coatings. 

 

In the Co group coatings, similar wear rates are observed until higher applied 

loads are reached (Fig. 6.4). In this group, the Co�I coating with largest WC grains 

and low volume fraction of carbide phase (due to high degree of decomposition 

during spray process) has a high mean free path. In spite of that, the wear rate of 

the Co�I coating is lower than that for the Co�II and Co�III probably because of 

higher degree of its bulk hardness (1418 ±61 kgf mm�2) compared with that for the 

Co�II (1306 ±71 kgf mm�2) and Co�III (1203 ±57 kgf mm�2) (see Table 4.12). The 

high hardness of a thermally sprayed composite carbide with relatively low 

carbide content results from the high hardness of the brittle amorphous phase 
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formed after spraying. The higher hardness of the binder in abrasion results in its 

preferential wear to be limited, causing a decrease the wear rate. Lee and Gurland 

[130] suggested an equation to estimate the hardness of binder phase in cemented 

WC materials. The following equation is a simplified form of that equation which 

has been used to estimate binder hardness of thermally sprayed WC coatings 

[126]:  

�� � ���0�� � �121 � 0��4                                                                          (6.1) 

where HC, HWC and Hb are the hardnesses of the composite, carbide and binder 

respectively and VWC is volume fraction of carbide phase. Assuming that the 

hardness of the WC phase (1800 kgf mm�2) is the same for the all materials, the 

hardness of binder can be calculated to be 1212, 702 and 629 kgf mm�2 for the Co�

I, Co�II and Co�III respectively. These values are an estimate and only useful for 

comparing the binder hardnesses of materials with similar characteristics; a 

significantly higher hardness of binder phase is estimated for the Co�I coating.  

 

In the non�Co group, although abrasive wear behaviour of the both Ni and Fe 

coatings with silica 70 lay in the soft wear regime with low wear rates, the Ni 

wore more quickly than the Fe coating. The lower mean free path (Table 4.9) and 

higher hardness (Table 4.12) of the Fe coating compared with those for the Ni 

coating probably is main reason for this difference. 

 

 A comparison of the rate of wear for the five steels (chapter 4) and the five 

coatings with silica 70 is shown in Fig. 6.22. From Fig. 6.22 it is notable that in 

general, for all the materials the rate of wear increases as the applied load 

increases. The wear rates of the steels are observed to be significantly higher than 
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that for the coatings. There is an exception for wear rate of the C99 steel where 

the wear rate was the lowest. This was close to the wear rate of the Co�II coating. 

Fig. 6.22 also indicates that for steels with high wear rates, increasing applied load 

results in a significant increase in wear rate, whereas for all the coatings and the 

C99 steel with low wear rates, the effect of applied load on wear rate is less. This 

is due to different wear mechanisms of the steels and coatings. 

 

6.3.3�Abrasive Wear with Alumina 

 
The hardness of alumina 60 particles (2103 ± 25 kgf mm�2) is higher than all the 

five coatings examined (Fig. 6.21). This abrasive particle exhibits an angular 

morphology (Fig. 6.1b) and a narrow size range (Fig. 6.2). Moreover, as can be 

seen from Fig. 6.6, the ratios of abrasive hardness Ha to the hardness of the 

coating surfaces Hs for all coatings are more than 1.2 indicating the “hard wear” 

mechanism. Under hard abrasive conditions, plastic deformation can be caused by 

abrasive particles; this plastic deformation occurs mostly by plastic ploughing and 

cutting and followed by some local associated fracture in the more brittle 

composites [3].  

 

The wear scars on the all coating surfaces produced by alumina abrasive (Figs. 

6.10, 6.12, 6,13, 6.16 and 6.18) show grooving, pitting and cutting of the coating 

surfaces. Cross�sectional images of the wear scars also reveal significant sub�

surface cracking for the Ni and Fe coatings (Figs. 6.10c and 6.12c) while for the 

Co coatings no significant cracking (for the Co�I and Co�II coatings) or a small 

number of shallow cracks (for the Co�III coating) can be seen (Figs. 6.14c, 6.16c 

and 6.18c). This latter effect is due to high fracture toughness of the Co coatings 
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in contrast with low fracture toughness of the non�Co coatings (Fig.6.20). These 

results imply that two main wear mechanisms are involved in material removal 

namely plastic deformation and fracture. The passage of the hard and sharp 

abrasive causes plastic deformation of the surface, resulting in the formation of 

grooves with material pile up at the groove edges in the first stage. Fatigue of the 

surface layers most probably occurs through mechanical deformation of those 

layers and results in a spalling type of failure, while sub�surface material 

deformation leads to cracking, which propagate into the coating as can seen for 

some cases at the second stage (for example see Fig. 6.10c). 

 

In the wear scars from the all coatings abraded with the alumina, two�body 

abrasion can be clearly observed. The optical microscopy images of the wear 

scars show grooves with an average width of around 50 ]m (Fig. 6.8) while the 

high magnification BSE images show grooves with average width of about 5 ]m 

(e.g. see Fig. 6.10b). Fig. 6.23 displays profiles of wear tracks across the wear 

scratch, perpendicular to the wear direction for the Ni coating following wear by 

alumina 60 under the highest load. The two scales of grooving can be observed in 

Fig. 6.23b and 6.23c. Since the carbide grain sizes in the five coatings are in the 

range of 0.4 and 1.1 ]m (see Table 5.9), in the first group of grooves (named 

macro�grooves), the dimension of deformation caused by individual abrasive 

particle is substantially greater than the size of the carbide grains whereas in the 

second group (named micro�grooves), the carbide grains are comparable in size 

with the scale of the abrasion damage or larger. In the first group, the behaviour of 

coatings against deformation is very much like a homogeneous solid while in the 
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second, the coatings respond heterogeneously [49]. Fig. 6.24 shows schematic 

image of these two modes of deformation for cobalt and non�cobalt groups.  

 

In the macro�scale mode, when the coating behaves homogeneously (like a solid 

material), plastic deformation of the both matrix and carbide phases occurs 

simultaneously, with macro�grooves being formed parallel to the sliding direction 

(see Fig. 6.8). The displacement and removal of material in this mode depends on 

the depth of grooves and consequently the bulk hardness of the coatings. To 

remove material by abrasion, penetration of abrasives into the material and high 

enough shear force (parallel to the surface) acting on the penetrating particle are 

necessary. 

  

In the micro�scale mode, where the coatings respond heterogeneously during 

abrasion, grooves were formed parallel to the sliding direction in the micro�scale 

mode for the all coatings (Figs. 6.10, 6.12, 6.14, 6.16 and 6.18). Although wear 

under both loads is generally by a cutting mode, the obvious clean cutting across 

the carbide particle and metal matrix together with some cracks, delamination and 

large grooves are seen in the higher load whilst the lowest load shows less 

effective cutting (Figs. 8.10 and 8.12). SEM plan view of wear scars for the Co 

coatings also reveals a number of fragmented carbides and voids resulting from 

pull out of carbide grains (Fig. 6.25).  

 

Porosity has an important role in formation of grooves and consequent removal of 

material by the micro�scale mode. In the case of hard abrasive particles moving in 

between the soft rubber wheel and hard coating surfaces, entrapment of the corner 
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of an abrasive particle (which is sharp) into the surface pores can occur [123] or 

coating collapse may take place near the pores [125]. In these cases, a corner of 

abrasive particle can start to scratch from a deep indentation (Fig. 6.26). 

Therefore, open surface pores will serve as origins for wear scratches made by 

individual abrasive particles. However, penetration of abrasive particle into the 

dense region of coating will be more difficult. Thus, a bigger portion of pores 

leads to more grooves and results in a higher wear rate. Formation of grooves in 

the Fe coating (Figs. 6.12b) with much smaller width than the actual abrasive 

particle size (average groove width 5 �m, median abrasive particle size 368 �m) 

provides evidence of the suggested mechanism which is based on entrapment of a 

corner of abrasive particle into the surface open porosities. Table 5.11 shows the 

porosity percentage of the coatings measured by the image analysis software 

(Image J 1.41) on the BSE cross�sectional images, indicating higher porosity for 

the non�cobalt coatings compared with that for the cobalt coatings. Higher 

porosity leads to more grooves which are apparent in Figs. 6.10b and 6.12.b for 

the Ni and Fe coatings respectively. Fig. 6.27 shows measured profiles of wear 

tracks with alumina under the highest applied load across the wear track for all 

coatings indicating that the Fe coating with the highest magnitude of porosity has 

the highest number of deep grooves. Higher loads cause an increase in both the 

number of grooves emanating from porosity and also depth of those grooves.  

 

In the second stage of the wear, fracture is the predominant source of material 

degradation. At the first stage of wear when a sharp particle embeds into the 

surface and slides, a plastic groove forms. The penetration of the surface by the 

abrasive particles is observed to be different for each coating. Lateral cracks grow 
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upwards to the free surface from base of the surface indented region, driven by the 

residual stresses associated with the deformation. SEM cross�sectional images of 

the wear scars for the coatings (except the Co�I and Co�II) along the direction of 

abrasive flow reveal that sub�surface cracks propagate parallel to the coating top 

surface, through the coatings �Figs. 6.10c, 6.12c and 6.18c). In the Ni and Fe 

coatings with low fracture toughness, BSE micrographs of cross�sections of wear 

scars with alumina particles show a number of vertical cracks along with the 

horizontal cracks. As seen in Figs. 6.10c and 8.12c, two types of cracks are 

formed: lateral cracks parallel to the surface, and median cracks perpendicular to 

the surface. Stewart et al. [75] argued that formation of the vertical cracks is the 

initial stage of the material loss procedure and is caused by the indentation of the 

abradant into the coating. These cracks run down through the coating and end 

when they reach either a region of tungsten�rich binder phase or a splat boundary. 

Immediately after, they propagate parallel to the coating surface until they find a 

path that leads back to the surface. Generally this process results in a high 

material removal rate in the coatings with low fracture toughness. Fig. 6.20 

presents the median fracture toughness of the coatings showing significantly 

higher value of the toughness for the Co group coatings compared with the non�

Co coatings while in each group the magnitude of the toughness is nearly the 

same. Therefore, it seems that at the second stage of wear, the fracture mechanism 

has a significant role in wear of the non�cobalt coatings in contrast with the cobalt 

coatings. 

 

Although plastic deformation and fracture are the primary material removal 

mechanisms with alumina abrasive, the wear mechanisms for the all coatings are 
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not the same. Since the hardness of the alumina particles is higher than that all of 

the coatings, plastic deformation is the dominant wear mechanism in the first 

stage of abrasion. Under two�body abrasion (when abrasive particles temporarily 

embedded in the rubber wheel), ploughing and grooving marks appear. The depth 

of the grooves depends on the bulk hardness of the coating. At this stage, the 

penetration degree of abrasive into the coating is important. For the Co group of 

coatings, wear was observed to involve plastic deformation of the surface along 

with fracture of large carbide grains and carbide skeleton. The material loss is 

caused by the material displaced from the grooves and pullout of small carbide 

grains or fragments of larger fractured carbide grains. For the non�Co group of 

coatings, wear was observed to be plastic deformation followed by sub�surface 

cracking. In the first stage of wear, the higher porosity of the coatings has an 

important role in creating more grooves and consequently more material removal. 

The second stage of wear is the formation of sub�surface cracks followed by 

delamination of the surface layers. In this stage, fracture toughness of coating is 

much more important. For the Ni and Fe coatings, the low fracture toughness 

results in a high rate of material removal.  While the bulk hardness controls wear 

rate in the first stage, the fracture toughness has significant role in the final stage 

of the wear.  

 

In this work, the wear rate of the Co�I coating with highest level of decomposition 

and the largest carbide grain size is minimum. This is due to its high hardness, 

high fracture toughness and low porosity. There is no evidence of cracking in the 

BS cross�section of the coating indicating that no fracture mechanism has 

operated for this coating. Moreover, the high hardness of coating causes a 
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decrease in the rate of wear under the first stage of abrasion. The low porosity also 

protects the coating surface from grooving. 

 

The characterisations of the Co�II coating are similar to those in the Co�I with a 

slight decrease in the hardness and increase in the fracture toughness. The 

prediction is for higher material removal during plastic deformation in the first 

stage of wear in comparison with the Co�I coating due to the lower hardness. 

 

The Co�III, despite exhibiting high fracture toughness and a low degree of 

porosity has the highest wear rate by a large factor. This high wear rate can be 

associated with the very low hardness of this coating. Fig. 6.28 shows the optical 

microscopy plan view images of wear scars of the all coatings following abrasive 

wear with alumina 60. From Fig. 6.28e and also from SEM images of the wear 

scar (Fig. 6.18) along with profile of the wear tracks (Fig. 6.27), it can be seen 

that the worn surface of the Co�III with alumina is characterized by a huge 

number of deep parallel grooves, which are formed as the abrasive particles 

plough across the surface and eventually remove or push material into ridges 

along the sides of the grooves.  

 

For the Ni coating, the low hardness results in wear in the first stage and the low 

fracture toughness results in a high rate of wear in the second stage. High porosity 

causes an increase in the wear rate at the first stage. In spite of the similar 

hardness in the Ni (1255± 38) and Co�III (1203±57) coatings, their wear rates 

were very different; the wear rate of the Co�III under 127.5 N load is 

approximately four times more than that of the Ni coating. Due to high porosity of 
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the Ni, the measured microhardness is less than its real hardness. Therefore, the 

real resistance of the Ni coating to deformation during first stage of wear is 

significantly more than that in the Co�III coating. 

 

The Fe coating, despite its high hardness, has much higher level of porosity and 

low fracture toughness which results in a large number of grooves in the first 

stage and a high level of cracking in the second stage and consequently higher 

wear rate. 

 

In summary, the angular nature of the alumina and its greater hardness in 

comparison with the more rounded silica particles result in significant differences 

in wear behaviour for the all coatings. The five coatings can be categorized in to 

two groups of Co and non�Co with distinct characteristics. With silica particles, 

the wear resistance for non�cobalt group is considerably higher than that for cobalt 

group. A considerable lower mean free path for the non�Co coatings compared 

with that for the Co coatings may be responsible of difference in wear behaviour 

of these two groups of coatings. The wear scars of the all coatings with alumina 

show two�body abrasion in two micro and macro�scales. The wear results with 

alumina also imply that two main wear mechanisms are involved in material 

removal namely plastic deformation and fracture, thus while the bulk hardness 

control wear rate in the first stage, the fracture toughness has significant role in 

the final stage of the wear. Porosity has also an important role in formation of 

grooves and consequent removal of material by the micro�scale mode. In 

comparison with the Co coatings, the higher porosity and low fracture toughness 
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of non�Co coatings are generally the cause of their high material removals during 

the two wear stages. 
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Table 6.1 Result of abrasive wear test for the five coatings. 

 

Coating Abrasive 
Load 

(N) 

Total 

distance 

(m) 

Total  

mass loss 

(mg) 

Wear rate 

(mg m�1) 

Ni 

Silica 
70 

19.6 2721.6 23 0.007 
49 2721.6 34 0.0107 
98 2721.6 52 0.0158 

127.5 2721.6 50 0.0129 

Alumina 
60 

19.6 2721.6 136 0.0423 
49 2721.6 188 0.0568 
98 2721.6 229 0.0698 

127.5 2721.6 202 0.0573 

Fe 

Silica 
70 

19.6 2695.2 19 0.0069 
49 2674.8 28 0.0088 
98 2674.8 49 0.0116 

127.5 2695.2 45 0.0104 

Alumina 
60 

19.6 2674.8 117 0.0374 
49 2674.8 201 0.0573 
98 2674.8 277 0.0804 

127.5 2674.8 256 0.0815 

Co�I 

Silica 
70 

19.6 2695.2 30 0.0091 
49 2674.8 66 0.0217 
98 2674.8 122 0.0327 

127.5 2721.6 85 0.0239 

Alumina 
60 

19.6 2674.8 78 0.0245 
49 2674.8 112 0.0348 
98 2674.8 153 0.0404 

127.5 2674.8 143 0.0417 

Co�II 

Silica 
70 

19.6 1314 18 0.0114 
49 1314 32 0.0209 
98 1314 70 0.0449 

127.5 1314 80 0.0449 

Alumina 
60 

19.6 2628 102 0.0339 
49 2628 168 0.054 
98 2628 175 0.0546 

127.5 2628 167 0.0512 

Co�III 

Silica 
70 

19.6 1314 26 0.016 
49 1314 33 0.0228 
98 1314 55 0.035 

127.5 1314 67 0.0415 

Alumina 
60 

19.6 2102.4 150 0.0628 
49 1314 216 0.1484 
98 1314 276 0.1865 

127.5 1314 281 0.191 
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Table 6.2 General comparison of the non�Co and Co powder characterisations. 

Powder 

characterisation 

Non�Co Co Ref. 

WC content 85 wt% 83 wt% Table 3.1 

WC shape Rounded Angular Fig. 4.4  

Binder material Alloy Pure metal Table 3.2 

 

 
 

 

 
 

Table 6.3 General comparison of the non�Co and Co coatings properties. 

 
Coating property Non�Co Co Ref. 

Fracture toughness Low High Fig. 6.25 

Porosity High Low Fig. 4.11  

W2C phase High Low Fig. 4.5 

Mean free path Low High Table 4.9 

WC content High Low Table 4.9 
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(a) 

 

(b) 

 
   
Fig. 6.1 SEM micrograph of (a) silica 70 and (b) alumina 60 abrasive particles. 
 
 
 

 
Fig. 6.2 Size distribution results for silica  70  and alumina 60 particles. 
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Fig. 6.3 Mass loss of the Co�I coating as a function of distance with silica 70 
under different applied loads. 
 
 

 
 
 

 
 

 
 

Fig. 6.4 Wear rates of the coatings with silica 70 as a function of applied load. 
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Fig. 6.5 Wear rates of the coatings with alumina 60 as a function of applied load. 
 

 

 
Fig. 6.6 Plot showing transition between “hard” and “soft” wear mechanisms 

(
56
57

� 1.2) for the coatings with silica 70 and alumina 60 abrasives. 
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(a) 

 

(b) 

 
 
Fig. 6.7 Optical microscopy plan view images of wear scars of the Fe coating 
following abrasive wear test by silica 70 at (a) the lowest load (19.6N) and (b) 
highest load (127.5N).  
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(a) 

 

(b) 

 
 
Fig. 6.8 Optic Microscopy plan view images of wear scars of the Fe coating 
following abrasive wear test by alumina 60at (a) the lowest load (19.6N) and (b) 
highest load (127.5N). 
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(a) 

 
(b) 

 
 

Fig. 6.19 Wear rate of the coatings with (a) silica 70 and (b) alumina 60 under 
different applied loads as a function of the coating hardnesses. 
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Fig. 6.20 Fracture toughness of the coatings. 
 
 
 
 
 

 
Fig. 6.21 Microhardness of the sprayed coatings. 
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Fig. 6.22 Comparison of the rate of wear for the five steels and the five coatings 
with silica 70. 
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�
� �

�

 
 
Fig. 6.25 Cross�section BSE image of the Co�I following wear test with the silica 
abrasive showing preferential wear of the binder phase with fractured carbides, 
Carbide cracking and empty space of carbide grains after pulling out (F: fractured 
carbide, C: cracking of carbide, and P: pulled out carbide void).  

 
 
 

 

  

Fig. 6.26 Starting point a single scratch from a surface open porosity in the wear 
area of the Fe coating following abrasion by alumina 60. 

 



Chapter 6  ………………………………………  Abrasive Wear of HVOF Sprayed Coatings 

 

Abrasive Wear Behaviour of Steels and Advanced HVOF�Sprayed WC�M Coatings  234 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
�

Fig. 6.27 Measured profiles of the wear tracks following abrasion with alumina at 
the highest applied load across the wear scratch for: a) Ni, b) Fe, c) Co�I, d) Co�II, 
and e) Co�III coatings. 
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(a) (b) 

(c) (d) 
 

 
(e) 

Fig. 6.28 Optic microscopy plan view images of wear scars following abrasive 
wear with alumina 60 for: (a) Ni, (b) Fe, (c) Co�I, (d) Co�II, and (e) Co�III. 
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Chapter   7 
 

 
Conclusions 

 
 
 

 

7.1�Abrasion of Steel Substrates 
 
In this part of the work, abrasive wear tests were carried out in two groups; firstly 

the abrasion of three steels with a bottom�ash from a biomass�fired power station 

and, secondly the abrasive wear of five steels with conventional silica sand. 

 

Abrasion of three steels of significantly different hardness in the dry�sand rubber�

wheel test has shown that as well as the ratio of abrasive to sample hardness being 

a significant factor in controlling the wear rates observed, the fracture of the 

abrasive particles can also influence wear rates. A silica sand was employed as an 

abrasive; the silica was a strong particle and fracture was not seen under the test 

conditions employed. The behaviour of the three steels under test was as expected, 

with the wear rate increasing with load for each material, and with the wear rates 

of the steels decreasing with increasing hardness. A substantial increase in wear 

resistance was observed as the sample hardness became greater than the 5/6 of the 

abrasive hardness, associated with the localisation of plastic flow in the abrasive 

particle itself under these conditions. 
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An ash from a biomass�fired power station with a wide particle size distribution 

was also employed as an abrasive with the same three steels. Due to the relatively 

low hardness of the abrasive compared to the two harder steels (the Hardox and 

GFS), the wear rates were much lower for these materials than those observed 

with the silica abrasive, despite the fact that the ash was an angular abrasive and 

the silica was a rounded abrasive. Significant fragmentation of the ash abrasive 

was observed during the wear test. The fragmentation was primarily of the large 

particles in the distribution, and fragmentation of the abrasives was shown to be 

almost independent of the applied load in the wear test. Through single particle 

crushing tests and estimates of the loads per particle during the abrasion tests, it 

was shown that the particles above 425Gm are likely to be crushed during the 

abrasion tests, and evidence for this was presented from sieve analysis of used 

abrasives. It is concluded that the large particles dominate the wear of the steels 

for this soft abrasive, and that the loads applied to these particles are controlled by 

the crushing strength of the particles rather than the overall applied load, resulting 

in the anomalous result that the wear rates of the steels are not proportional to 

applied load. 

 

 
In the second group, the abrasion of five different grades of steels with 

conventional silica sand was studied.  The results from this work have shown that 

the movement patterns of abrasive particles through the gap in the DSRW test are 

a function of both applied load and hardness of the material under test. It has been 

shown that particle sliding (grooving) is favoured by high applied loads and by 

high substrate hardness. A model of the particle motion in the contact has been 

developed, based upon the work of Fang et al. [10]. The effect of hardness on 
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particle motion is well predicted by the model; however, the effect of the applied 

load on particle motion is counter to that which is produced by the model, where 

the experiments show that sliding (grooving) was favoured by high loads. 

 

7.2�HVOF�Sprayed WC Cermet Coatings 
 
Five different WC�metal cermet powders were deposited to form coatings under 

the same spray conditions using a Top Gun HVOF spraying system on the mild 

steel substrates. These powders had different average carbide grain sizes and 

binder compositions. Characterisation of the coatings by a range of techniques 

showed that the five coatings contained retained WC and reaction products such 

as W2C and W and an amorphous binder phase containing tungsten and carbon, 

while the starting powders of the all coatings showed only presence of WC and 

crystalline phase of metallic binder with no evidence of any other carbides. 

Chemical analysis also revealed that all the coatings had a lower overall carbon 

content than the powder from which they were sprayed. Although the Ni and Co�I 

coatings both exhibited high carbon losses, the Ni coating has the highest W2C 

phase fraction and the Co�I with the lowest volume fraction of carbide has high 

dissolution of tungsten in the binder. This shows that solubility of W and C in the 

cobalt binders is higher than that in the non�cobalt binders resulting in higher 

W2C phase fraction in the non�cobalt coatings and higher W saturated amorphous 

binder fraction in the cobalt coatings.  

 

Fracture toughness of the coatings indicates two distinct groups; the non�cobalt 

group with low fracture toughness and the cobalt coatings having high fracture 
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toughness. Higher cohesion of the WC grains and binder and strong intersplat 

interfaces in the cobalt coatings seem to be responsible for this significant 

difference. This can be due to more melting during spraying and also good 

wetting of the carbide grains with the cobalt binders compared with those for the 

Ni and Fe coatings. 

 

The hardness of thermally sprayed WC cermet coatings depends on the volume 

fraction of remaining hard phase of WC, the hardness of the binder phase and the 

microstructural properties such as porosity of coating, mean free path of the 

binder and WC grain size. Although the result from the hardness test shows a 

relatively high level of hardness for the all coatings, some differences within the 

hardness of coatings are evident. The Fe coating with the lowest carbon loss and 

the high volume fraction of carbide also has the highest fraction of retained WC 

phase resulting in the highest level of hardness. The Co�I coating with the highest 

carbon loss exhibits high dissolution of W in the binder resulting in a binder with 

higher hardness. The hardening of the cobalt matrix due to the solution of 

tungsten and carbon into the binder phase compensated the detrimental effect of 

decreases in the volume fraction of the carbides due to decarburization on the 

hardness. 

 

7.3�Abrasion of the WC Cermet Coatings 
 
Three body abrasive wear tests were performed using a modified dry sand rubber 

wheel apparatus with alumina and silica abrasives under a range of applied loads 

to assess the wear resistance of the five coatings. It was generally found that:  
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i)� The five coatings exhibited increases in wear rate with applied load when 

abraded with both silica and alumina abrasives. 

ii)� The ratio of abrasive particle hardness to coating hardness indicated that 

for all coatings, the abrasive wear by alumina is “hard” compared to that 

by silica which is “soft”. 

iii)�For all the coatings, the silica abrasive showed evidence for particle rolling 

with significant indentation of the surface (three�body abrasion) while 

with the alumina abrasive, grooves along the direction of abrasive flow are 

apparent (two�body abrasion). 

 

Abrasive Wear with Silica 

The wear results of all the coatings with silica abrasive show that the preferential 

wear followed by WC fragmentation and pullout observed as wear mechanism for 

the all coatings, although sub�surface cracking has also been observed as a 

mechanism for removal of material in the Ni and Fe cases. In these cases the 

removal of material occurs by both preferential removal matrix phase and a sub�

surface cracking process. 

 

The abrasive wear results with silica particles showed two distinct wear 

behaviours of the cobalt group and non�cobalt group coatings; the wear resistance 

for the non�cobalt group is considerably higher than that for cobalt group. Lower 

mean free path for the non�cobalt coatings compared with that for cobalt coatings 

may be responsible for this difference in wear behaviour of these two groups of 

coatings. 
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In the cobalt group coatings, the wear rate of the Co�I coating is lower than that 

for the Co�II and Co�III probably because of the higher degree of its bulk hardness 

due to the high hardness of its binder (high enrichment of W in the binder). In the 

non�cobalt group, the Ni had a higher wear rate than the Fe coating. The lower 

mean free path and higher hardness of the Fe compared with those for the Ni 

coating are probably the main reasons for this difference. 

 

Abrasive Wear with Alumina 

The wear testing results of all the coatings with alumina abrasive show that two 

main wear mechanisms are involved in material removal from the coatings, 

namely plastic deformation and fracture. In the first stage of the wear, the passage 

of the hard and sharp abrasive particles causes plastic deformation of the surface, 

resulting in the formation of grooves. The displacement and removal of material 

in this mode depends on the depth of grooves and consequently the bulk hardness 

of the coatings. At the second stage, sub�surface material deformation leads to 

cracking, which propagates into the coating. In this stage, fracture is the 

predominant source of material degradation. This mechanism results in a high 

material removal rate in the coatings with low fracture toughness.  

 

Porosity has an important role in formation of grooves and consequently removal 

material by the micro�scale mode. Open surface pores will serve as origins for 

wear scratches made by individual abrasive particles. Thus, a higher fraction of 

pores leads to more grooves and results in a higher wear rate; the Fe coating with 

the highest magnitude of porosity has the highest number of deep grooves. 
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At the first stage of the wear, for the cobalt group of coatings, wear was observed 

to occur by plastic deformation of the surface along with fracture of large carbide 

grains and the carbide skeleton. For the non�cobalt group of coatings, wear was 

observed to occur by plastic deformation followed by sub�surface cracking. In this 

stage, the higher porosity of the coatings has an important role in creating more 

grooves and consequently more material removal. The second stage of wear is the 

formation of sub�surface cracks followed by delamination of the surface layers. In 

this stage, the fracture toughness of the coating is much more important. For the 

Ni and Fe coatings, the low fracture toughness results in a high rate of material 

removal.  While the bulk hardness controls wear rate in the first stage, the fracture 

toughness has significant role in the final stage of the wear. 

 

7.4�Industrial Aspects  
 
Applications of thermally sprayed wear resistant WC cermet coatings for 

industrial parts and tools surface have been widely developed. Depending on the 

purpose of these coatings and their operation conditions, different requirements to 

mechanical properties and microstructural characteristics of a coating are 

established. Therefore, it is important to investigate effect of technological 

spraying parameters and material compositions on the coating properties. 

 

In this work, it has been observed that the reaction during spraying, the solubility 

of the WC in binder phase and adhesion between binder and carbides influence 

the mechanical properties and wear performances of thermally sprayed WC 

cermet coatings. Porosity has also an important role in formation of grooves and 
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consequently removal material under the hard abrasion. Furthermore, the mean 

free path parameter which is associated with WC grain size and binder content, 

has important role in wear resistance of thermally sprayed WC composite coatings 

under the soft abrasion. In summary, the important parameters need to be 

considered in using thermally sprayed WC composite coatings are: 

 

�� Predominant wear regime such as soft abrasion and hard abrasion.  

�� Thermal history of particle during spraying process. It can be controlled by 

spay parameters such as fuel type, fuel/oxygen ratio and gun design. 

��  Starting powder feedstock characteristics such as WC grain size, binder 

composition and binder content. 
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Chapter   8 
 

 
Future Work 

 
 

 
 
 

Modelling of particle Motion 

The mechanics of the contact between the particle and the rubber wheel in the 

DSRW has been addressed by modifying the model to consider the effect of 

increased applied load (and thus friction) on the moment equations upon which 

the model is built. This modification to the model is qualitative in nature, and it is 

recommended to develop a robust model which describes the motion of particles 

in the contact which in particular addresses the detail of the particle–rubber wheel 

contact mechanics. 

 

Thermal spray parameters 

The thermal spray system or spraying parameters for all the coatings were the 

same in this study. To validate the effect of solubility of W and C in different 

binders on the characteristics of the deposited coatings, it is suggested that 

coatings are deposited with variations in the spray parameters or even the spray 

process. This will produce coatings with different degrees of reaction resulting in 

different microstructural and mechanical properties. Also measuring the 

temperature and velocity of particle in�flight during spraying process for each 
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coating would help to understand the development of microstructure of coatings 

after spraying. 

 
Characterisation of Coatings 

An important suggestion is measuring the microhardness of the binders for all the 

coatings, since it can help to provide an understanding of the effect of 

microstructural developments on the binder hardness and as such, on the bulk 

hardness of the coatings. Since the binder phase is physically small, nanoscale 

indentation will be required. 

 

TEM analysis 

Different decomposition degree of particles during spraying along with different 

binder compositions cause to occur various type and amount of crystallised 

carbide phases. It is recommended that TEM work (with EDS analysis of as�

sprayed coatings to get a diffraction pattern) is carried out. These patterns can be 

compared with the pattern obtained with XRD results to determine nature of the 

carbides present in the structure of the coatings. 

 

Abrasive Wear Test 

DSRW tests were performed under different applied loads with two types of 

abrasive particles. It is suggested to study the wear behaviour with other types of 

abrasives and/or the same abrasives with different range of particle sizes. This can 

provide a more detailed understanding of the effect of abrasive particle 

characteristics on the wear mechanism and wear rate of these group of coatings. 
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