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Abstract

In this thesis, three stochastic epidemic models for intervention for emerging diseases

are considered. The models are variants of real-time, responsive intervention, based

upon observing diagnosed cases and targeting intervention towards individuals they

have infected or are likely to have infected, be they housemates or named contacts.

These models are:

(i) a local tracing model for a disease spreading amongst a community of house-

holds, wherein intervention (vaccination and/or isolation) is directed towards

housemates of diagnosed individuals,

(ii) a contact tracing model for a disease spreading amongst a homogeneously-mixing

population, with isolation of traced contacts of a diagnosed individual,

(iii) a local tracing and contact tracing model for a disease spreading amongst a com-

munity of households, with intervention directed towards housemates of both

diagnosed and traced individuals.

These are quantified by deriving threshold parameters that determine whether the dis-

ease will infect a few individuals or a sizeable proportion of the population, as well as

probabilities for such events occurring.
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CHAPTER 1

Introduction

1.1 Overview

Emerging (i.e. in the early stages of an outbreak) infectious diseases are a major con-

cern to public health (e.g. SARS, Swine influenza) or agriculture (e.g. foot-and-mouth

disease), so it is of great importance to evaluate possible outcomes and potential meth-

ods for their control. Often there might not be a large pool of historical outbreaks to

use to directly make predictions, and carrying out experiments to create such data is

obviously unethical and contrary to the reasons behind wanting to anticipate the out-

come. Hence, mathematical modelling is a useful tool for quantifying the spread of a

potential epidemic, and examine the effectiveness of control strategies.

In this thesis, the focus is on stochastic models, but epidemics may also be modelled de-

terministically. The deterministic modelling of epidemics assumes that given the initial

conditions, the spread of the infection is determined entirely, and so, for instance, the

epidemic will infect a given number of individuals with certainty. Modelling stochas-

tically, we rather assume that, given the initial conditions, there is a probability of a

given individual being infected. This stochastic variability is inherent in real life, and

1
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the effect of this stochastic variability is particularly important in the initial stages of a

real-life outbreak. Further, the final outcome of the epidemic is random, and hence it

may be possible to calculate the probability that there will be a minor outbreak infect-

ing only a few individuals, or that there will be a major outbreak infecting a reasonably

deterministic proportion of individuals.

The main attention of this thesis is modelling responsive, targeted intervention, specif-

ically of two forms: (i) targeting intervention towards the housemates of a diagnosed

individual, and (ii) targeting intervention towards individuals a diagnosed individual

has been in contact with, by asking the diagnosed individual to name these contacts.

The intention of both of these forms is to direct intervention towards individuals who

are already infected or are more likely to be in the near future, and reduce their chances

of infection or the number of potentially-infectious contacts they make. The thesis

looks at three models: (i) with household-level intervention, (ii) with contact tracing

in a homogeneously-mixing population, and (iii) with household-level intervention,

and tracing of between-household contacts.

The remainder of this chapter is structured follows. Section 1.2 describes the so-called

standard SIR epidemic model, and some related models. Section 1.3 describes advances

in modelling diseases in household-based populations, and gives some examples of in-

tervention models exploiting such a structuring. Section 1.4 looks at some mathemati-

cal models for contact tracing, while Section 1.5 outlines the structure of the remainder

of the thesis, and motivates the models in this thesis in the context of other models.

2



CHAPTER 1: INTRODUCTION

1.2 The Standard SIR Epidemic

This section describes a particular continuous-time epidemic model, the standard SIR

epidemic model, and discusses some related models.

In the standard SIR epidemic model, at any given time each individual in the (fixed-

size) population is in one of three states: Susceptible, Infective or Removed. Initially

there arem infectives and n susceptibles. If a susceptible individual makes contact with

an infective individual in a manner described below, then the susceptible individual

becomes infective. Each infective individual remains infectious for a length of time,

referred to as their infectious period, which are independent and identically distributed

according to a random variable TI , with an arbitrary but specified distribution. At the

end of their infectious period, the infective individual is removed and plays no further

part in the spread of the epidemic. Throughout their infectious period a given infective

makes contacts with a given individual at the points of a Poisson process with rate

λ
n

. All Poisson processes are assumed independent of each other and the infectious

periods.

The case where TI ∼ Exp(γ), i.e. exponentially distributed with mean γ−1, is referred

to as the general stochastic epidemic, originated by McKendrick [37] and Bartlett [11].

The deterministic analogy of the general stochastic epidemic is the general deterministic

epidemic of Kermack and McKendrick [33], in which S(t), I(t) and R(t) (respectively,

the number of susceptible, infectious and removed individuals at time t) are governed

by the following equations:

S′(t) = −λS(t)I(t),

I ′(t) = λS(t)I(t)− γI(t),

3
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R′(t) = γI(t).

Kermack and McKendrick [33] also derived a threshold result for this model: the num-

ber of infectives is decreasing unless S(0) > γ
λ

(and I(0) > 0). It is a threshold result

in the sense that different initial conditions (S(0), I(0)) and parameter values (λ, γ) can

result in different behaviour, as determined by these inequalities.

There are other SIR epidemic models, such as the discrete-time model of Reed and Frost

(see, for example, Section 1.2 of Andersson and Britton [2]). The Reed-Frost model is

a so-called chain-binomial model of the SIR epidemic, in which the number of suscep-

tibles infected in the next discrete-time step has a binomial distribution with infection

probability dependent on the number of infectives, who are infectious for one time

step.

Modifications of the SIR epidemic include: the SI model, in which infected individ-

uals never become removed; the SIRS model, in which removed individuals can lose

their immunity and become susceptible again; and the SEIR model, in which infected

individuals experience an exposed or latent period before becoming infectious.

1.3 Household Epidemics

This section gives a brief history and some examples of modelling epidemics in popu-

lations with individuals partitioned into households, in which they have a higher rate

of mixing. This relates to the work in Chapters 2 and 4.

Many of the historical epidemic models have assumed that the population is composed

of homogeneous individuals (i.e. the spread of disease is not affected by personal fac-

tors such as age or sex) who mix uniformly. These assumptions do not hold in real life

4
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- factors such as age could affect a person’s susceptibility, while individuals are more

likely to come into contact with housemates, workmates or schoolmates than individ-

uals picked at random from the population-at-large. As well as describing the spread

of epidemics more accurately, departures from homogeneity in epidemic modelling

are important as they offer frameworks in which intervention methods exploiting the

heterogeneities can be considered (e.g. closing schools).

An early investigation of a heterogeneous model was by Rushton and Mautner [41],

who studied a deterministic epidemic without removal of infectives spreading amongst

a population divided into groups, with a higher infection rate within-groups than be-

tween. This model was extended to incorporate removals and considered in a deter-

ministic and stochastic framework by Watson [45], though in the latter case approx-

imations had to be made for tractability. Bartoszynski [12] modelled an epidemic as

a discrete-time branching process of household (‘family’) subepidemics (these subepi-

demics are described in fairly general terms), with infectives having a Poisson-distributed

number of contacts outside their households. This model is not strictly an epidemic

model, but it does correspond to a limiting process used by, for example, Ball et al. [9]

and in Chapters 2 and 4 of this thesis.

Important advances in household models were made concurrently by Becker and Dietz

[13], Becker and Hall [14] and Ball et al. [9], all of which also considered interventions

directed at household-level. Becker and Dietz [13] examined a highly infectious disease

spreading amongst households (i.e. an infection in a household renders all susceptibles

in that household infected) and consider strategies for vaccinating pre-outbreak. They

suggest that for households of equal sizes it is better to randomly vaccinate individu-

als than households, but for households of varying sizes it is better to vaccinate larger

5
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households. Becker and Hall [14] extended this to a population made up of differ-

ent types of individuals. Ball et al. [9] considered a model with two levels of mixing

(local and global, i.e. within-household and between-household respectively) and de-

fined R∗, a household threshold parameter (in that its value determines whether the

epidemic is certain to infect only a few households or a reasonably deterministic large

proportion of households) which is analogous to the reproduction number R0 (the ex-

pected number of secondary cases infected by a typical infective during their infectious

period in an otherwise susceptible population). They also examined circumstances un-

der which an equalizing vaccination strategy (one which leaves households with equal

numbers of susceptibles) is optimal. Considering pre-outbreak optimal vaccination

strategies has been treated as a linear programming problem by, for example, Becker

and Starczak [16, 17] and Ball and Lyne [6, 7].

These pre-outbreak intervention models have had focus in the literature, particularly

because they are easier to study than models in which the intervention is applied after

the start of the epidemic. With pre-outbreak intervention, the effect is usually to alter

the initial state of the epidemic and thereafter the epidemic will spread in a fairly stan-

dard manner. However, recent outbreaks such as that of SARS in 2002 and swine in-

fluenza in 2009 have shown that pre-outbreak intervention is not always possible, and

that real-time, responsive intervention methods are needed and important to study too.

Motivated by the SARS outbreak, Becker et al. [18] examined various intervention poli-

cies for an epidemic spreading amongst a community of households, with individuals

also separated into two types, school attendees and others, to account for increased mix-

ing between school attendees during school hours. It is assumed that the lengths of

latent and infectious periods are fixed, and that individuals are diagnosed at some

6
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fixed time after infection. Intervention methods considered include taking steps to

avoid exposure (e.g. wearing masks), isolating each case at diagnosis, closing schools,

quarantining affected households and contact tracing (the latter is described further in

Section 1.4). They found that quarantining affected households and contact tracing can

be particularly effective in reducing the spread of an epidemic.

Ball et al. [10] considered a household epidemic model with a different dynamic inter-

vention policy. Rather than vaccinate selected individuals before an outbreak, inter-

vention is targeted towards individuals who are likely to become infectious by vacci-

nating housemates of removed individuals, or isolating their households. The vaccine

is assumed to be perfect, in that it renders full immunity in all susceptibles (but has no

effect on individuals who have already been infected). They focused attention on the

exponential infectious period case, as this makes the household subepidemic process

Markovian and makes the model more analytically tractable. Under these assump-

tions, it is seen that threshold behaviour and the probability of a large epidemic are

independent of the latent period distribution. The effect of latent period length is stud-

ied for an infectious period distribution with increasing hazard rate (i.e. an individual

who has been infectious longer is more likely to be removed sooner), and it is seen

that longer latent periods reduce the spread. However, for an infectious period with

decreasing hazard rate, the opposite is concluded.

The effect of the household-level interventions of Becker et al. [18] and Ball et al. [10]

is to direct the intervention towards individuals who are more likely to be infected

or already are infected, which can be particularly effective, compared with randomly-

directed intervention, when within-household infection rates are high and latent peri-

ods are long. Other methods to direct intervention towards individuals with a higher
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risk of infection include contact tracing (which is discussed in the next Section) and

ring vaccination. Ring vaccination, which has been modelled by, for example, Müller

et al. [39], involves vaccinating all individuals in a certain physical neighbourhood of

a diagnosed individual, the bonus of which is that vaccinated individuals can form a

barrier between infected and susceptible individuals.

1.4 Contact tracing

This section describes some of the models for contact tracing.

A real-time, responsive form of intervention that has received attention in the literature

is contact tracing, in which, usually after diagnosis, individuals name a proportion of

the other individuals that they have been in contact with, and these contacts are then

traced and treated in some manner. The idea, of course, is to direct treatment towards

individuals who have already been infected, even though they have not already been

diagnosed. This relates to the work in Chapters 3 and 4.

Among other types of intervention (discussed in Section 1.3), Becker et al. [18] consid-

ered the following contact tracing model for an SEIR epidemic (with fixed-length latent

and infectious periods) spreading amongst a community of households, motivated by

SARS. When an individual is diagnosed (which is a fixed length of time after infec-

tion), their housemates are isolated, as are a fixed fraction of their infections outside

the household (whose housemates in turn are not isolated until the traced individual

is diagnosed). Note that the values of the time to diagnosis and latent and infectious

periods, determine whether individuals are diagnosed during their latent period or in-

fectious period, or after the end of their infectious period. They made the simplifying

assumption that the traced contacts occur at the beginning of the infector’s infectious
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period, underestimating the reduction in the reproduction number as a result. They

found that using a contact tracing strategy can be very successful in reducing transmis-

sion.

Pike [40] also considered a contact tracing model for a household-based population. At

the first removal in a household, all remaining members of that household are vacci-

nated and isolated. Additionally, on removal, an individual names each of their con-

tacts outside the household independently with fixed probability, and a named contact

experiences a service time (distributed according to an exponential random variableQ),

after which the named contact and their household are vaccinated. Infected individ-

uals experience two exponentially-distributed latent periods, and all individuals who

are susceptible or in their first latent period become immune when vaccinated (with

no effect on other individuals). For analytical tractability, it was assumed that the in-

fectious period is distributed according to an exponential random variable TI , but then

the model had to be approximated by assuming that contacts are named when they

are infected (rather than when their infector is removed) and that the service times are

distributed according to Q+TI . Simulations suggest that this approximation is reason-

able.

Klinkenberg et al. [34] considered a contact tracing model for an epidemic spreading

amongst a homogeneously-mixing population. Infected individuals undergo fixed-

length latent and infectious periods, while there is a detection time (from infection),

which has a Gamma distribution. As in Becker et al. [18], an infected individual may

be detected before, while or after they are infectious. In their analysis Klinkenberg et

al. directed attention to the cases of infectious periods that are long (i.e. infinite) or

short (i.e. all transmission occurs instantaneously upon becoming infective), and de-
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tection times that are exponentially distributed or fixed (a special case and limiting

case, respectively, of the Gamma distribution). Upon detection, an individual is iso-

lated and names each of their contacts with fixed probability, and after a (constant)

delay, the named contacts are isolated too. They assumed that tracing can be both

‘forwards’ (from infector to infectee) and ‘backwards’ (from infectee to infector). They

also considered that tracing can be ‘single-step’ (in which traced individuals can name

their own contacts only when they have been detected) and ‘iterative’ (in which traced

individuals can name their contacts as soon as they have been traced). In the single-

step case, they looked at the next-generation matrix (in which the element kij is the

expected number of type-j individuals infected by a typical type-i infective, where a

type-j individual is defined as having exactly j traceable ancestors in the transmission

tree). The matrix is of infinite size but for calculation purposes is truncated. In the

iterative tracing case they largely had to use simulations except in special cases. They

concluded that generally single-step and iterative tracing are almost equally effective,

except when the former has little effect at all.

Müller et al. [38] studied an SIRS epidemic (i.e. it is assumed that removed individu-

als can lose immunity and become susceptible again) with homogeneous mixing. The

infectious periods and time until loss of immunity are exponentially distributed. The

population is screened, and if an infected individual is detected they are treated and

become immune. Further, the individual will name each of their contacts with fixed

probability, and the named individual is traced and treated immediately (i.e. there is no

delay). As in Klinkenberg et al. [34], they assumed that tracing can be forwards, back-

wards or both (full tracing) and that the tracing is iterative. They define a generation-

based reproduction number, and study its asymptotic behaviour. They found that one

may only need to trace a few steps from the detected individual to reduce spread, and
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having longer chains of contacts may not be significantly more effective.

Shaban et al. [42] modelled contact tracing by using a network model for the social

structure. The social network is represented by a simple random graph with a spec-

ified degree distribution. Modelling an SIR epidemic (i.e. no latent period) on the

graph, after a delay time beginning at infection, an infected individual is detected

and each friend (i.e. connected individual) of the detected individual is located with

a fixed probability and vaccinated, with vaccination rendering susceptible individuals

immune. The delay time is assumed to incorporate the time to detect symptoms and

the delay in locating friends. A second model is considered in which the epidemic

model is adapted to assume that there is an upper bound to the number of infections

from a given infective and all friends of a detected individual are located. This model is

seen to be more effective in reducing spread as it reduces the effect of people with large

numbers of friends (‘superspreaders’). This model differs from others in that tracing

is directed towards individuals who are more likely to be infected, rather than have

already been infected, and as such is a bit closer to the household intervention models

discussed in Section 1.3.

Contact tracing has also been studied using simulation and deterministic models. For

a bioterrorist smallpox attack, Kaplan et al. [30] compared a traced vaccination scheme

against a mass vaccination scheme in a homogeneously-mixing population, with in-

fected individuals undergoing a vaccine-sensitive latent period and then a vaccine-

insensitive latent period prior to becoming infectious. In the traced vaccination scheme,

a certain number of individuals are named by a symptomatic individual with a fixed

fraction of true infectious contacts named, and enter a queue with a fixed number of

servers (i.e. vaccinators) serving at a fixed rate. In the mass vaccination scheme, every-
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one is placed in the queue immediately. These schemes are only initiated once a certain

amount of infected people have exhibited symptoms. A third scheme is considered

wherein traced vaccination is begun but mass vaccination is switched to after a fixed

period of time. They concluded that mass vaccination is the best scheme (under cer-

tain conditions). However, the model assumed that there is a specific window of time

during an individual’s infection cycle (i.e. their vaccine-sensitive latent period), before

vaccination of the individual is a waste of server time. This would not be so much the

case if contact tracing were able to prevent infectious individuals from making further

contacts (e.g. by isolating them) or if the tracing of an individual results in individuals

likely to have come in contact with them (e.g. their housemates) being vaccinated too.

Further if an epidemic is above threshold, a deterministic model assumes that there

will be a major outbreak, but a stochastic model allows there to be a chance that only

relatively few individuals are infected, in which case a mass vaccination could result in

a large waste of vaccine resources compared with traced vaccination (since under mass

vaccination a large number of individuals would be vaccinated whereas with traced

vaccination this would only be a few).

Further deterministic studies of contact tracing include Armbruster and Brandeau [3],

Eames [20], Eames and Keeling [21], Hyman et al. [29] and Tsimring and Huerta [44].

Armbruster and Brandeau [3] attached a cost to screening and contact tracing schemes,

and suggested that contact tracing is cost-effective when disease prevalence is low,

i.e. in the early stages of the epidemic. In the context of HIV, Hyman et al. [29] mod-

elled contact tracing whereby traced contacts of individuals found through screening

are counselled, which may or may not change their subsequent behaviour. They found

that contact tracing is most effective when the infectives are divided into groups ac-

cording to their infectiousness and infection is spread by a small group of highly in-
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fectious individuals (so-called ‘superspreaders’), rather than if infectives go through

several stages of infection, with varying infectiousness. Eames [20], Eames and Keeling

[21] and Tsimring and Huerta [44] considered contact tracing on a specified network-

structure (similarly to Shaban et al. [42]), the former two via a pairwise approximation

and the latter using a mean-field approach.

The simulation model for bioterrorist smallpox of Eichner [22] assumes that an indi-

vidual will have ‘close’ and ‘casual’ contacts (analogous to the two levels of mixing of

Ball et al. [9], but Eichner [22] assumed that the number of potential close contacts is

not depleted by actual contacts) in a ratio of 3 : 1. Detected individuals (there is a de-

tection time which decreases as the epidemic spreads) are isolated and name all their

close contacts and some of their casual contacts, who are then immediately vaccinated

and put under surveillance. If they become symptomatic, they are then also isolated. It

is seen that contact tracing is good at controlling the epidemic, with the vaccination of

close contacts being a contributing factor to this.

1.5 Structure of thesis

Here we briefly outline the remainder of the thesis.

Chapter 2 concerns a model for an epidemic spreading amongst a population parti-

tioned into households. Upon the first diagnosis in the household the remaining house-

hold members are vaccinated, with different models for the vaccine action considered,

including whether or not the vaccine affects an individual during their latent period.

A household may also be isolated after a diagnosis, with some probability. There is

no contact tracing, except in this local, within-household sense. This sort of invention

was studied by Ball et al. [10], but they focused on exponential infectious periods, and
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assumed that only susceptible individuals were vaccine-sensitive, and that the vaccine

is perfect in that it renders susceptibles immune with probability 1. In Chapter 2 differ-

ent infectious and latent period distributions are considered, it is assumed that latent

individuals may also be vaccine-sensitive and models for a non-perfect vaccine (such

as random vaccine response or a vaccine that only reduces susceptibility and infectivity)

is incorporated. The effects of these different assumptions are examined.

The model analysed in Chapter 3 is for an epidemic spreading amongst a homogeneously-

mixing population (no household structure) with a contact tracing scheme (recall that

other such contact tracing models include Müller et al. [38] and Klinkenberg et al. [34]).

It is assumed that a diagnosed individual may name each of their infectious contacts

independently with fixed probability, and then after some tracing delay the named con-

tacts are isolated. Unlike the tracing delay in the model of Klinkenberg et al. [34] (which

is of fixed length), in Chapter 3 individuals infected by the same infective are assumed

to experience independent delays. However, the difference between results from inde-

pendent and mutual delays is examined. There are two models for the contact tracing:

one in which traced individuals are not allowed to name their own contacts, and one

in which they are. The latter is like the ‘multi-step’ or ‘iterative’ tracing of Müller et al.

[38] and Klinkenberg et al. [34], but the former differs from their ‘single-step’ tracing

models.

In Chapter 4 a household-based epidemic is again modelled, this time incorporating a

contact tracing scheme (recall that Becker et al. [18] and Pike [40] also modelled contact

tracing for household-based populations). Upon the first diagnosis in the household

the remaining household members are vaccinated. It is also assumed that, with a fixed

probability, the household is isolated upon the first diagnosis within that household.
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This differs from the models of Becker et al. [18] and Pike [40], in which isolation upon

the first diagnosis in a household occurs for all households (the latter did assume that

there is a vaccination at the first removal, but the isolation means this vaccination has

no effect on the spread of the epidemic). Additionally, upon diagnosis an individual

names each of their infectious contacts outside the household with a fixed probability,

and after a tracing delay, these named individuals and their households are vaccinated

(unlike in the contact tracing model of Becker et al. [18], in which the traced individual

(and only the traced individual) is isolated). Infected individuals undergo two latent

periods, and it is assumed that all individuals vaccinated while susceptible or during

their first latent period become immune. Both Becker et al. [18] and Pike [40] made

simplifying approximations regarding the time between a named individual’s infec-

tion and their being named. The results in Chapter 4 are more exact, and different

distributions for the latent periods and tracing delays are considered.

Chapter 5 gives some general conclusions and extensions.
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Local tracing

2.1 Introduction

Many stochastic epidemic models assume homogeneously mixing populations. How-

ever in reality individuals mix heterogeneously, as a result of population structures

such as households, schools and workplaces. Further, there are outbreak control mea-

sures associated with these structures, such as vaccinating a whole school when a case

is detected in that school, that cannot be considered in a homogeneous mixing frame-

work. We focus on two-level mixing structures (see Ball et al. [9]) as a practically impor-

tant departure from homogeneously mixing models, so that we can obtain analytical

insights into the quantitative and qualitative behaviour of the models.

Ball et al. [10] considered an SEIR (susceptible → exposed → infective → removed)

epidemic spreading amongst a population partitioned into households, with respon-

sive vaccination and isolation policies. This model may be applicable to the outbreak

of a disease for which a vaccine is available (for example, the spread of smallpox af-

ter a bioterrorist attack, see Halloran et al. [24] and Kaplan et al. [30]). However, the

model of Ball et al. [10] has several limitations. First, only susceptible individuals are
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assumed vaccine-sensitive. Second, a vaccine is assumed to render a susceptible im-

mune with probability 1, i.e. it is a perfect vaccine. Third, the analysis focuses mainly

on exponential infectious periods. We aim to address these limitations as follows: (i)

we consider that latent individuals, as well as susceptibles, may be vaccine-sensitive;

(ii) instead of a perfect vaccine response, we consider two specific non-perfect vaccine

response models (all-or-nothing and non-random); and (iii) we consider both constant

and exponential infectious and latent periods.

Under the various assumptions discussed above, we obtain important threshold pa-

rameters which give conditions under which an epidemic can become established and

which can be used to determine whether or not a given intervention scheme necessar-

ily prevents a large outbreak. We also derive methods for calculating the probability

of a global epidemic (i.e. one that becomes established) under different possible inter-

vention strategies. The theory is illustrated by a numerical study, using parameters

previously estimated from data on an outbreak of variola minor, a virus which causes a

mild form of smallpox.

The intervention model involves taking action upon the appearance of diagnosed cases

in a household, by vaccinating and/or isolating the remaining members of that house-

hold, i.e. the intervention is directed towards the housemates of a diagnosed individ-

ual. Thus, we can consider this intervention to be a form of tracing on a local (within-

household) level. In this chapter, there is no contact tracing of the form wherein di-

agnosed individuals name some of their infectious contacts outside the household, to

whom intervention is then directed.

The chapter is structured as follows. In Section 2.2, the epidemic and vaccine action

models are introduced. The concept of infectious intensity is defined and its use in de-
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termining threshold behaviour is described. Some results from the theory of SIR (sus-

ceptible → infective → removed) epidemics needed in the sequel are also given. In the

following three sections the threshold parameter and probability of a global epidemic

are determined under various assumptions concerning the distributions of latent and

infectious periods: in Section 2.3, exponential latent and infectious periods; in Section

2.4, exponential latent and constant infectious periods; and in Section 2.5, constant la-

tent and infectious periods. Section 2.6 considers diseases which are highly infectious

within households, for which more explicit results can be obtained. Section 2.7 contains

some numerical illustrations of the theory, and Section 2.8 provides some concluding

comments.

2.2 Background

2.2.1 Model

Consider the following SEIR (susceptible → exposed → infective → removed) epidemic

model among a closed population of size N . At any time, each individual in the pop-

ulation is in one of four states: susceptible, exposed (i.e. latent), infective or removed.

Initially a small number of individuals are infectives and the rest are susceptible. A

susceptible individual becomes a latent individual if he/she makes contact with an in-

fective in a manner described below. A latent individual remains latent for a period

of time distributed according to a random variable TL, having an arbitrary but spec-

ified distribution (i.e. no assumption is made about the form of its distribution, but

the distribution has to be known), at the end of which he/she becomes infective. An

infective individual remains infectious for a period of time distributed according to a

random variable TI , having an arbitrary but specified distribution with finite moment-
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generating function (see Section 2.2.4), and then becomes removed. Once removed, an

individual no longer plays a part in the epidemic process. The epidemic ends when

there are no more latent or infective individuals left in the population.

The population of N individuals is partitioned into m households of size n. During

his/her infectious period, a given infective makes global contacts with any given sus-

ceptible in the population at times given by the points of a homogeneous Poisson pro-

cess with rate λG/N and, additionally, local contacts with any given susceptible in its

household at times given by the points of a homogeneous Poisson process with rate λL.

All of the Poisson processes, and the random variables describing latent and infectious

periods, are assumed to be mutually independent. Note that, for ease of exposition,

households are assumed to be of the same size, but the theory may be easily extended

to consider households of unequal size, the details of which are given in Section 2.8.

There are vaccination and isolation policies incorporated in the model. At the time

of the first removal within a household, all members of that household are vacci-

nated, with vaccine response described by the models in Section 2.2.2. Additionally,

for j = 1, 2, . . . , n − 1, at the time of the jth removal in a given household there is,

independently of all previous events, a probability pj of that household being isolated,

given that it has not already been isolated. After a household has been isolated, in-

fective individuals of that household cannot make any further global contacts. Special

cases of particular interest include pj = 0 for all j (i.e. no isolation) and p1 = 1 (i.e. iso-

lation at the first removal). Note that we use the word ‘isolation’ here to describe the

process of not just isolating the diagnosed case, but also quarantining their household.
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2.2.2 Vaccine action models

Two different assumptions as to which types of individual may be affected by the vac-

cine (i.e. are vaccine-sensitive) are considered: (i) only susceptible individuals, and (ii)

susceptible and exposed individuals. In both cases, infectives are considered vaccine-

insensitive.

Following Becker and Starczak [17], the response of an individual to the vaccine is de-

scribed by a random vector (A,B). Here, A is the relative susceptibility of a vaccinated

individual compared with an unvaccinated individual and B the relative infectivity

should he or she become infective. For example, the global contact rate between an

unvaccinated infective and a vaccinated susceptible with A = a is aλG/N and the local

contact rate between a vaccinated individual with B = b who becomes infected and an

unvaccinated susceptible in the same household is bλL. (The latter assumes implicitly

that a vaccinated individual’s infectivity is reduced (for b < 1, as is usual) by lower-

ing his/her infectious rate without changing the infectious period. However, the same

reduction could be achieved by keeping the infectious rate unchanged and shorten-

ing the infectious period. For simplicity we assume the former throughout the chapter

and indicate where the results would change if reduction in infectivity is modelled dif-

ferently.) Each individual responds independently. We consider two specific vaccine

response models, both of which are common in the literature.

The first model describes an all-or-nothing vaccine response (see Halloran et al. [25]),

where P (A = B = 0) = ε = 1 − P (A = B = 1), i.e. complete immunity is rendered

with probability ε, otherwise there is no effect. We denote the probability that the

vaccine renders a susceptible individual immune by εS , and (when latents are vaccine-

sensitive) a latent individual immune by εL.
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The other model describes a non-random vaccine response, with P (A = a,B = b) = 1

for some (a, b), so all vaccine-sensitive individuals respond identically. In this case,

after vaccination the epidemic becomes a two-type SEIR epidemic with types 1 and 2

corresponding to individuals who were vaccine-insensitive and vaccine-sensitive, re-

spectively, when they were vaccinated. Let ΛL =
[

λLij

]

be the matrix in which λLij

(i, j = 1, 2) is the rate at which a given type-i infective infects a given type-j suscepti-

ble locally. It follows that

ΛL =









λL aλL

bλL abλL









. (2.2.1)

2.2.3 Threshold behaviour and infectious intensity

If the number of households m is large and the number of initial infectives is small,

then during the early stages of an epidemic, there is only a small probability that a

global contact is made with an individual from a household containing at least one

non-susceptible individual. Thus, we can approximate the initial stages of the epi-

demic by a process in which all global contacts are made with individuals residing

in completely susceptible households. In this approximation, the process of infected

households follows a branching process.

Consider a single household epidemic: a completely susceptible household into which

a global contact introduces infection, and suppose that no further global contact into

the household occurs subsequently (thus initially there are n − 1 susceptibles and 1

infective). We call the number of global contacts emanating from this single household

epidemic R. Then R∗ = E[R] is a threshold parameter, since if R∗ ≤ 1 then a global

epidemic cannot occur (a global epidemic occurs if, in the limit m → ∞, the epidemic

infects infinitely many households in the branching process approximation). Let f(s) =
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E[sR] be the probability generating function of R. When R∗ > 1, and the epidemic is

started by one initial infective, the probability of a global epidemic, pG say, is 1 − τ ,

where τ is the root of f(s) = s in (0, 1). The parameter R∗ is a households model

equivalent of the basic reproduction number R0; for R0, see, for example, Heesterbeek

and Dietz [26].

In order to calculate R∗, we use the concept of infectious intensity, which we now de-

scribe. The amount of time an individual is infectious for, whilst the household is not

isolated, is called their active infectious period. An individual’s active infectious period

multiplied by their infectivity, relative to an unvaccinated individual, is called their ef-

fective infectious period. Specifically, if an individual’s active infectious period is t,

then their effective infectious period is t unless he/she is vaccine-sensitive with B = b,

in which case it is bt. Denote the sum of the effective infectious periods of all infected

individuals in a household by CA, which we refer to as the infectious intensity of the

single household epidemic. Define CB and CR as the infectious intensity generated

before and after the first removal, respectively, so that CA = CB + CR.

Global contacts are made by a given infective at rate λG during his/her effective in-

fectious period, so the total number of global contacts, R, emanating from a single

household epidemic has a Poisson distribution with random mean λGCA. Thus, R∗ =

λGE[CA] and f(s) = E
[

E
[

sR |CA

]]

= E [exp (−λGCA(1− s))] = ψ(λG(1 − s)), where,

for θ ≥ 0, ψ(θ) = E
[

e−θCA
]

. Unless specified otherwise, moment-generating functions

are defined for θ ≥ 0.
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2.2.4 Single-type SIR epidemics

Here we introduce notation and results we need from the theory of single-type SIR epi-

demics. Let E(ns, φ, φ1, β) be a single-type SIR epidemic with ns initial susceptibles,

who, if they become infectious, will have an infectious period distributed as T with

moment-generating function φ(θ) = E
[

e−θT
]

and 1 initial infective, whose infectious

period is distributed as T1 with moment-generating function φ1(θ) = E
[

e−θT1
]

(we as-

sume moment-generating functions are finite for θ ≥ 0). The individual-to-individual

contact rate is β. The severity of this epidemic, χ say, is the sum of the infectious periods

of all the individuals who become infected, including the initial infective.

We now present results for this epidemic, obtained by modifying results from Ball [5],

by (i) generalising results from β = 1 to the case of arbitrary but specified β ≥ 0 and

(ii) replacing equation (2.3) in Theorem 2.1 by equation (4.2) of Ball [5] and modifying

all the relevant results accordingly. Thus, the expected severity of E(ns, φ, φ1, β) is (by

modifying Corollary 2.2 of Ball [5]),

E[χ] = E [T1] + µ(ns, φ, φ1, β)E [T ] ,

where µ(ns, φ, φ1, β) is the mean number of susceptibles ultimately infected inE(ns, φ, φ1,

β), which, by modifying equation (2.25) of Ball [5], is given by

µ(ns, φ, φ1, β) = ns −
ns
∑

k=1

(

ns
k

)

αk (φ(βk))
ns−k φ1(βk), (2.2.2)

where α1, α2, . . . are defined recursively by

k
∑

ω=1

(

k

ω

)

αω (φ(βω))k−ω = k (k = 1, 2, . . .).

Let ψ(ns, φ, φ1, β, θ) = E
[

e−θχ
]

be the moment-generating function of the severity of
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E(ns, φ, φ1, β). Then, by modifying Theorem 2.5 of Ball [5],

ψ(ns, φ, φ1, β, θ) =

ns
∑

k=0

(

ns
k

)

ξk(θ) (φ(βk + θ))ns−k φ1(βk + θ), (2.2.3)

where ξ0(θ), ξ1(θ), . . . are defined by

k
∑

ω=0

(

k

ω

)

ξω(θ) (φ(βω + θ))k−ω = 1 (k = 0, 1, . . .).

We now describe how these results can be used here. Suppose there is no isolation

in the response model and immediately after vaccination there are i0 infectives, with

infective j (j = 1, 2, . . . , i0) having remaining infectious period distributed as T (j).

First suppose that the vaccine response is all-or-nothing, and immediately after vacci-

nation there are s0 susceptibles and l0 latents. Then CR is distributed as the severity of

an SEIR epidemic whose parameters depend on s0, l0, i0 and the T (j)s. Specifically, (i)

the severity of an SEIR epidemic is distributed as the severity of an SIR epidemic, so

initial latents may be regarded as initial infectives (see Section 4 of Ball [5]); (ii) more-

over, one can equivalently assume there is just one initial infective, whose infectious

period is equal to the sum of the infectious periods of all the initial latents and infec-

tives. Thus CR is distributed as the severity of E(s0, φ, φ1, λL), with φ(θ) = E
[

e−θTI
]

and φ1(θ) = (φ(θ))l0
∏i0

j=1 E
[

e−θT (j)
]

, where the product is 1 when i0 = 0.

Now suppose that the vaccine response is non-random, and that the vaccine is given

to s0 susceptibles (all vaccine-sensitive), l01 vaccine-insensitive latents and l02 vaccine-

sensitive latents immediately after vaccination (at least one of l01 and l02 will be zero).

By a similar argument to that above, CR is distributed as the severity of E(s0, φNR, φ1,

aλL), where φNR(θ) = E
[

e−bθTI
]

and φ1(θ) = (φ(θ))l01 (φNR(θ))
l02
∏i0

j=1 E
[

e−θT (j)
]

.

Note that here all latents are incorporated into the single initial infective, so the ensuing

epidemic is single-type.
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2.2.5 Notation

For the single household epidemic introduced in Section 2.2.3 and t ≥ 0, let X(t) =

(S(t), L(t), I(t), R(t)), where S(t), L(t), I(t) and R(t) are respectively the number of

susceptible, latent, infective and removed individuals at time t. For the non-random

vaccine model and i = 1, 2, let Si(t), Li(t) and Ii(t) be the numbers of susceptibles, la-

tents and infectives of type-i respectively at time t > tR, where tR is the time of the first

removal. Noting that S1(t) = 0 after vaccination, let XNR(t) = (S2(t), L1(t), L2(t), I1(t),

I2(t), R(t)), for t > tR.

Denote by 0 a row vector of zeros and by 1 a column vector of ones, the dimensions

of these being apparent from their context. Finally, let t− and t+ denote left and right

limit, respectively, for example, S(t−) = limu↑t S(u) and S(t+) = limu↓t S(u).

The most important parameters and functions appearing throughout this chapter are

listed in Table 2.1, along with brief definitions.

2.3 Exponential latent and infectious periods

2.3.1 General theory

In this section TL ∼ Exp(δ) and TI ∼ Exp(γ), i.e. TL and TI are exponentially dis-

tributed with means δ−1 and γ−1, respectively. Under these assumptions, we derive

expressions for the threshold parameter R∗ and the probability of a global epidemic

pG, for various intervention models. Since infectious and latent periods are exponen-

tially distributed, the single household epidemic model is Markovian.

For this case, there is a useful random time scale transformation of {X(t)} (cf. Watson

[46] and Ball et al. [10]). For t ≥ 0, let χ(t) =
∫ t

0 I(u)du be the severity of the household
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Table 2.1: List of important parameters and functions for Chapter 2.

parameter description

N number of individuals in the population

n number of individuals in each household

λL local (i.e. within-household) individual-to-individual contact rate

λG/N global (i.e. between-household) individual-to-individual contact rate

pj probability that a household is isolated at the jth removal, given that it is not

already isolated

εS all-or-nothing vaccine efficacy for susceptibles

εL all-or-nothing vaccine efficacy for latents

a non-random vaccine relative susceptibility

b non-random vaccine relative infectivity

γ rate parameter for exponentially distributed infectious period (i.e. mean= 1
γ

)

δ rate parameter for exponentially distributed latent period (i.e. mean= 1
δ

)

ι length of constant infectious period

η length of constant latent period

R∗ expected number of global contacts emanating from a typical single

household epidemic

pG probability of a global epidemic

CA infectious intensity of a single household epidemic

CB infectious intensity generated before the first removal in a single

household epidemic

CR infectious intensity generated after the first removal in a single

household epidemic

pS(i, u) probability that an all-or-nothing vaccine has no effect on u out of i susceptibles

pL(j, v) probability that an all-or-nothing vaccine has no effect on v out of j latents
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epidemic over [0, t], and let TA = χ(∞). For u ∈ [0, TA], let U(u) = min{t ≥ 0 : χ(t) =

u} and let X̃(u) = (S̃(u), L̃(u), Ĩ(u), R̃(u)) = X(U(u)). Thus the process {X̃(u)} =

{X̃(u) : 0 ≤ u ≤ TA} is a random time scale transformation of {X(t)}, obtained by

running the clock at rate I(t)−1 when I(t) > 0 and stopping the clock when I(t) = 0

(restarting it if and when I(t) > 0 again). In particular, time in {X̃(u)} corresponds to

severity in {X(t)}. In this transformed process we have that (i) removals occur at the

points of a homogeneous Poisson process with rate γ; (ii) the times of these removals

are the severity up until the corresponding removals in {X(t)}; and (iii) independently

of the removal process, susceptibles are infected independently at rate λL, provided

there is at least one infective.

Let T0 be the time of the first removal in {X̃(t)}. Then (i) above implies that T0 ∼

Exp(γ), and (ii) implies that CB = T0. By the lack-of-memory of the latent and infec-

tious period distributions, we can condition on the state of the household epidemic

when the first removal occurs (but before vaccination) to obtain the required results.

For this, we require only S̃(T0−) and L̃(T0−), because for t < T0, S̃(t)+ L̃(t)+ Ĩ(t) = n.

Also, for t < T0, Ĩ(t) ≥ 1 and R̃(t) = 0, thus
(

S̃(T0−), L̃(T0−)
)

takes values in the set

∆0 = {(i, j) : i = 0, 1, . . . , n− 1, j = 0, 1, . . . , n− i− 1}.

We now derive expressions for R∗ and the generating function required to obtain pG.

We have that

R∗ = λGE[CA] = λGE[T0 + CR] = λG

(

E[T0] + E
[

E
[

CR

∣

∣

∣
S̃(T0−), L̃(T0−)

]])

= λG





1

γ
+

n−1
∑

i=0

n−i−1
∑

j=0

πijHij



 , (2.3.1)

where, for (i, j) ∈ ∆0,

πij = P
(

S̃(T0−) = i, L̃(T0−) = j
)
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and

Hij = E
[

CR

∣

∣

∣
S̃(T0−) = i, L̃(T0−) = j

]

.

Further, for θ ≥ 0,

ψ(θ) = E
[

e−θCA

]

= E
[

e−θT0e−θCR

]

= E
[

E
[

e−θT0e−θCR

∣

∣

∣
S̃(T0−), L̃(T0−)

]]

=

n−1
∑

i=0

n−i−1
∑

j=0

E
[

e−θT01{S̃(T0−)=i,L̃(T0−)=j}
]

E
[

e−θCR

∣

∣

∣S̃(T0−) = i, L̃(T0−) = j
]

=
n−1
∑

i=0

n−i−1
∑

j=0

gij(θ)hij(θ), (2.3.2)

where 1A is the indicator function for the event A (i.e. if A occurs 1A = 1, otherwise

1A = 0), and, for (i, j) ∈ ∆0 and θ ≥ 0,

gij(θ) = E
[

e−θT01{S̃(T0−)=i,L̃(T0−)=j}
]

and

hij(θ) = E
[

e−θCR

∣

∣

∣S̃(T0−) = i, L̃(T0−) = j
]

.

In the following subsections expressions for πij ,Hij , gij(θ) and hij(θ) are derived under

various intervention schemes. Note that, since there is no intervention prior to the first

removal, πij and gij(θ) do not depend on the intervention model; calculation of these

quantities is described in Section 2.3.2. Calculation of Hij and hij(θ) under different

intervention schemes is described in Sections 2.3.3 to 2.3.5.

2.3.2 Pre-intervention infectious intensity

For t < T0,
{(

S̃(t), L̃(t), Ĩ(t)
)}

is governed by the following transition rates:
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from to rate

(i, j, n− i− j) (i− 1, j + 1, n− i− j) λLi

(i, j − 1, n− i− j + 1) δj
n−i−j

(i, j, n− i− j − 1) γ

Let ∆̃ =
{

(i, j, k) ∈ Z
3
+ : k ≥ 1, i+ j + k = n

}

be the set of possible transient states of
{(

S̃(t), L̃(t), Ĩ(t)
)

: 0 ≤ t < T0

}

, n′ be the cardinality (i.e. number of elements) of ∆̃

and h : ∆̃ → {1, 2, . . . , n′} be bijective (i.e. for every y in {1, 2, . . . , n′}, there is exactly

one x in ∆̃ such that h(x) = y). The time-transformed household epidemic prior to

the first removal can be represented by a process {Y (t) : 0 ≤ t ≤ T0}, where Y (t) =

h
(

S̃(t), Ĩ(t), L̃(t)
)

(0 ≤ t < T0) and Y (T0) = n′ + 1 (i.e. state n′ + 1 corresponds to all

states of
{

X̃(t)
}

in which at least one removal has occurred, and hence is absorbing).

The transition-rate matrix of {Y (t)} has the form:

Q =









Q0 −Q01

0 0









,

where Q0 is the matrix of transition rates among the transient states, which can be

obtained using the above transition table. Note that all entries in −Q01 (which gives

the absorption rates) are γ.

The time to absorption is T0 = min{u > 0 : Y (u) = n′ + 1}. For y = 1, 2, . . . , n′ and

t ≥ 0, let Fy(t) = P (T0 ≤ t and Y (T0−) = y|Y (0) = y0) and fy(t) = F ′
y(t). Then (see,

for example, Asmussen [4], page 83),

fy(t) =
(

eQ0t
)

y0,y
(−Q01)y = γ

(

eQ0t
)

y0,y
(t ≥ 0),

where eQ0t =
∑∞

k=0
tkQk

0
k! denotes the usual matrix exponential. Thus, for y = 1, 2, . . . , n′,

P(Y (T0−) = y|Y (0) = y0) =

∫ ∞

0
fy(t)dt =

∫ ∞

0
γ
(

eQ0t
)

y0,y
dt = −γ

(

Q−1
0

)

y0,y
. (2.3.3)
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Note that Q0 is non-singular since {1, 2, . . . , n′} is a transient class, so all the eigenval-

ues of Q0 have strictly negative real parts (see Asmussen [4], page 83). Further, for

θ ≥ 0

E
[

e−θT01{Y (T0−)=y}
∣

∣

∣
Y (0) = y0

]

= E
[

e−θT0P(Y (T0−) = y|Y (0) = y0, T0)
]

= E
[

e−θT0
(

eQ0T0
)

y0,y

]

=
(

E
[

e−θT0eQ0T0

])

y0,y

=

(∫ ∞

0
γe−γte−θteQ0tdt

)

y0,y

= γ
(

((θ + γ) I −Q0)
−1
)

y0,y
. (2.3.4)

For (i, j) ∈ ∆0, πij and gij(θ) are obtained by setting y = h(i, j, n− i− j) in (2.3.3) and

(2.3.4), respectively.

2.3.3 No isolation, vaccine-insensitive latents

In this case, intervention only affects individuals who are still susceptible when the

first removal occurs. Since intervention does not affect latents, the infectious intensity

of the household epidemic is invariant to the latent period distribution, and as a re-

sult, CR depends on X̃(T0−) only through S̃(T0−). Thus, for all j, Hij = Hi0, and

hij(θ) = hi0(θ). Recall that under the random time change described above, suscep-

tibles are infected independently at rate λL provided there is at least one infective.

Thus S̃(T0−)|T0 ∼ Bin(n − 1, e−λLT0), i.e. it has a binomial distribution with n − 1 tri-

als and success probability e−λLT0 . For i = 0, 1, . . . , n − 1, let πi• =
∑n−i−1

j=0 πij and

gi•(θ) =
∑n−i−1

j=0 gij(θ) (θ ≥ 0) (recall (2.3.1) and (2.3.2)). Recall also that T0 ∼ Exp(γ),
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so E
[

e−θT0
]

= γ
γ+θ

. Then,

πi• = P
(

S̃(T0−) = i
)

= E[P(S̃(T0−) = i|T0)]

= E
[(

n− 1

i

)

e−λLT0i
(

1− e−λLT0

)n−i−1
]

=

(

n− 1

i

)

E

[

n−i−1
∑

k=0

(−1)k
(

n− i− 1

k

)

e−λLT0ie−λLT0k

]

=

(

n− 1

i

) n−i−1
∑

k=0

(−1)k
(

n− i− 1

k

)

γ

γ + λL(i+ k)

and, for θ ≥ 0

gi•(θ) = E
[

e−θT01{S̃(T0−)=i}
]

= E
[(

n− 1

i

)

e−λLT0i
(

1− e−λLT0

)n−i−1
e−θT0

]

=

(

n− 1

i

)

E

[

n−i−1
∑

k=0

(−1)k
(

n− i− 1

k

)

e−λLT0ke−(λLi+θ)T0

]

=

(

n− 1

i

) n−i−1
∑

k=0

(−1)k
(

n− i− 1

k

)

γ

γ + (i+ k)λL + θ
.

These expressions are easier to compute than (2.3.3) and (2.3.4). Now (2.3.1) and (2.3.2)

yield

R∗ = λG

(

1

γ
+

n−1
∑

i=0

πi•Hi0

)

and ψ(θ) =
n−1
∑

i=0

gi•(θ)hi0(θ).

It remains to calculate Hi0 and hi0(θ) (i = 0, . . . , n− 1) for the two vaccine action mod-

els. First, the lack-of-memory property of the exponential distribution implies that the

remaining infectious periods of infectives just after the first removal follow indepen-

dent Exp(γ) random variables. Further, if S̃(T0−) = i, then L̃(T0) + Ĩ(T0) = n − i − 1,

so the combined remaining infectious periods of the n− i− 1 latents and infectives has

moment-generating function φ1(θ) =
(

γ
γ+θ

)n−i−1
.

All-or-nothing vaccine

We now assume the vaccine response is all-or-nothing, as defined in Section 2.2.2. Let

SV denote the number of susceptibles for whom vaccination has no effect. Let pS(i, u)
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be the probability that SV = u when i susceptibles are vaccinated. Thus,

pS(i, u) =

(

i

u

)

(1− εS)
uεi−u

S (u = 0, 1, . . . , i). (2.3.5)

If S̃(T0−) = i and SV = u, CR is distributed as the severity of E (u, φ, φ1, λL), with

φ(θ) = γ
γ+θ

and φ1 as above. Hence, for (i, j) ∈ ∆0,

Hij = Hi0 =
1

γ

i
∑

u=0

pS(i, u) (n− i− 1 + µ (u, φ, φ1, λL))

and

hij(θ) = hi0(θ) =
i
∑

u=0

pS(i, u)ψ (u, φ, φ1, λL, θ) (θ ≥ 0).

Non-random vaccine

Suppose now that the vaccine response is non-random, as defined in Section 2.2.2.

Given S̃(T0−) = i, the contributions to the severity after the first removal are dis-

tributed as those for E (i, φNR, φ1, aλL), where φNR(θ) = γ
γ+bθ

and φ1 as above, since

the infectious periods of vaccinated individuals are essentially changed by a factor b.

Hence, for (i, j) ∈ ∆0,

Hij = Hi0 =
1

γ
(n− i− 1 + bµ (i, φNR, φ1, aλL))

and

hij(θ) = hi0(θ) = ψ (i, φNR, φ1, aλL, θ) (θ ≥ 0).

These results are independent of the precise model used for reduction in infectivity.

2.3.4 No isolation, vaccine-sensitive latents

We assume now that latent individuals are vaccine-sensitive, and that the response

model does not include isolation.
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All-or-nothing vaccine

Let LV be the number of latents left immediately after vaccination and pL(j, v) be the

probability that the vaccine has no effect on v out of j latents. Then,

pL(j, v) =

(

j

v

)

(1− εL)
vεj−v

L (v = 0, 1, . . . , j). (2.3.6)

If S̃(T0−) = i, L̃(T0−) = j, SV = u and LV = v, then immediately after vaccination

there are u susceptibles, v latents and n− i− j−1 infectives. Hence CR is distributed as

the severity of E (u, φ, φ1, λL), where φ(θ) = γ
γ+θ

and φ1(θ) = (φ(θ))n−i−j−1+v. Thus,

for (i, j) ∈ ∆0,

Hij =
1

γ

i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v) (n− i− j − 1 + v + µ (u, φ, φ1, λL))

and

hij(θ) =

i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)ψ (u, φ, φ1, λL, θ) (θ ≥ 0).

Non-random vaccine

If S̃(T0−) = i and L̃(T0−) = j, then immediately after vaccination there are n− i−j−1

infectives, having independent remaining infectious periods each following an Exp(γ)

distribution. The effective infectious periods of the j vaccinated latents follow indepen-

dent Exp(γ
b
) distributions. Thus CR is distributed as the severity of E(i, φNR, φ1, aλL),

with φNR as in Section 2.3.3 and φ1(θ) = (φ(θ))n−i−j−1(φNR(θ))
j . Hence for (i, j) ∈ ∆0,

Hij =
1

γ
[n− i− j − 1 + b (j + µ (i, φNR, φ1, aλL))]

and

hij(θ) = ψ (i, φNR, φ1, aλL, θ) (θ ≥ 0).
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As in Section 2.3.3, these results do not depend on the precise model used for reduction

in infectivity.

2.3.5 Isolation

If p1 = 1 (i.e. isolation at the first removal), there is no infectious intensity generated

after the first removal (i.e. CR = 0), so CA = T0, whence R∗ = λG

γ
and ψ(θ) = γ

γ+θ
.

Moreover, these expressions hold for any arbitrary but specified latent period distribu-

tion, see Section 3.1 of Ball et al. [10].

If p1 < 1 then P(CR > 0) > 0 and, unless pj = 0 (j = 2, 3, . . . , n − 1), we can no longer

use results for SIR epidemics to calculate properties of CR as the household may be

isolated after the first removal. However, we can use a random-time transformation to

make CR the absorption time of a transient continuous-time Markov Chain, and use

results from the theory of phase-type distributions.

We now introduce notation and recall results for phase-type distributions used in the

sequel. Let {W (t) : t ≥ 0} be a continuous-time Markov chain with state space

{1, 2, . . . ,m + 1}, where states 1, 2, . . . ,m are transient and state m + 1 is absorbing,

so the transition-rate matrix of {W (t) : t ≥ 0} has the form

QW =









Q0W −Q0W1

0 0









,

where Q0W is the m×m matrix of transition rates among the transient states. Suppose

that W (0) = w0 and let T = min{t ≥ 0 : W (t) = m + 1} be the absorption time. Then

T has a phase-type distribution, denoted by PT(Q0W , w0), and from Proposition 4.1 on

page 83 of Asmussen [4],

E [T |W (0) = w0 ] = −
(

Q−1
0W

)

w0
1, (2.3.7)
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while

E
[

e−θT
∣

∣

∣
W (0) = w0

]

= −
(

(θI −Q0W )−1
)

w0

Q0W1 (θ ≥ 0), (2.3.8)

using the notation (A)i to represent the ith row of A.

All-or-nothing vaccine

Suppose first that latents are vaccine-sensitive. If there is no latent or infective left

after vaccination, then there is no contribution to the infectious intensity after the

first removal, i.e. CR = 0. Otherwise, if the household is not isolated at the first

removal, there may be further contribution. In this case, after the first removal we

use again the random-time transformation used before the first removal (running the

clock at rate (I(t))−1). Hence, if
(

S̃(T0+), L̃(T0+), Ĩ(T0+)
)

= (i, j, k), then for t > T0,
{(

S̃(t), L̃(t), Ĩ(t)
)}

is governed by the following transition table:

from to at rate

(u, v, w) (u− 1, v + 1, w) λLu

(u, v − 1, w + 1) δ v
w

(u, v, w − 1) (w > 1) (1− p2+i+j+k−u−v−w)γ

(u, v − 1, 1) (v > 0, w = 1) (1− p2+i+j+k−u−v−w)γ

(u, 0, 0) (v = 0, w = 1) (1− p2+i+j+k−u−v−w)γ

isolation p2+i+j+k−u−v−wγ

Note that
{(

S̃(t), L̃(t), Ĩ(t)
)}

terminates if v = w = 0. Also, if w = 1 and a removal

occurs in the untransformed process, then the clock stops in the transformed process

and, provided v > 0, starts again when an exposed individual becomes an infective in

the untransformed process.
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For i = 0, 1, . . . , n− 2, j = 0, 1, . . . , n− i− 2 and k = 1, 2, . . . , n− i− j − 1, let ∆̃i,j,k =

{

(u, v, w) ∈ Z
3
+ : u ≤ i, v ≤ i+ j − u, 1 ≤ w ≤ i+ j + k − u− v

}

be the set of possible

transient states of
{(

S̃(t), L̃(t), Ĩ(t)
)

: T0 < t ≤ CA

}

given that
(

S̃(T0+), L̃(T0+),

Ĩ(T0+)
)

= (i, j, k), let ni,j,k be the cardinality of ∆̃i,j,k and hi,j,k : ∆̃i,j,k → {1, 2, . . . ,

ni,j,k} be bijective. Suppose that there are i susceptible, j latent and k infective individ-

uals immediately after vaccination. Then this time-transformed household epidemic

post-vaccination can be represented by the process {Yi,j,k(t) : 0 ≤ t ≤ CR}, where

Yi,j,k(0) = hi,j,k(i, j, k), Yi,j,k(t) = hi,j,k

(

S̃(T0 + t), L̃(T0 + t), Ĩ(T0 + t)
)

(0 < t < CR)

and Yi,j,k(CR) = ni,j,k + 1. Recall that CR is the infectious intensity generated after

the first removal (i.e. after the household is vaccinated), so {Yi,j,k(t)} is absorbed in

state ni,j,k + 1 and CR is given by the corresponding time to absorption. Let Q0;i,j,k be

the matrix of transition rates among the transient states for {Yi,j,k(t)}, i.e. among states

1, 2, . . . , ni,j,k. Note that the elements of Q0;i,j,k can be obtained using the above tran-

sition table. Let µi,j,k = E
[

CR

∣

∣

∣
S̃(T0+) = i, L̃(T0+) = j, Ĩ(T0+) = k

]

and ψi,j,k(θ) =

E
[

e−θCR

∣

∣

∣S̃(T0+) = i, L̃(T0+) = j, Ĩ(T0+) = k
]

(θ ≥ 0). Then, using (2.3.7),

µi,j,k = −
(

Q−1
0;i,j,k

)

hi,j,k(i,j,k)
1

and, using (2.3.8),

ψi,j,k(θ) = −
(

(θI −Q0;i,j,k)
−1
)

hi,j,k(i,j,k)
Q0;i,j,k1.

Assuming that the household is not isolated when the first removal occurs, there is

further active severity if there is at least one individual who is infective or latent imme-

diately after the first removal. If there are only latents, under the random-time transfor-

mation, the clock will begin again when the next infective appears. So, in the vaccine-

sensitive latents case we have, for (i, j) ∈ ∆0 (note that here i and j represent S̃(T0−)
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and L̃(T0−), respectively, i.e. the numbers of susceptibles and latents immediately be-

fore the first removal, not, as above, immediately after),

Hij = (1− p1)

i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)
(

1{i+j<n−1}µu,v,n−i−j−1 + 1{i+j=n−1,v>0}µu,v−1,1

)

,

and, for θ ≥ 0,

hij(θ) = p1 + (1− p1)

i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)
(

1{i+j<n−1}ψu,v,n−i−j−1(θ)

+1{i+j=n−1,v>0}ψu,v−1,1(θ)
)

+ 1{i+j=n−1,v=0}
)

.

The above formulae reduce to the vaccine-insensitive latent case on setting εL = 0.

An alternative derivation of µi,j,k: a modified process

In this case, we have an alternative method for obtaining µi,j,k (the expected time to

absorption) by using the method of Hernández-Suárez and Castillo-Chavez [28], which

was extended to an epidemic framework by Ball and Lyne [6]. The main idea of the

method is to modify the (post-vaccination) process by removing the absorption state

and replacing transitions to this state with transitions to the state that the process was

in immediately after vaccination. Note that we use the same time-transformation as

before.

The process {Yi,j,k(t) : 0 ≤ t ≤ CR} has one absorption state, ni,j,k + 1. Thus we define

a modified process
{

YM
i,j,k(t) : t ≥ 0

}

, where the absorption state ni,j,k + 1 is removed,

and transitions to this state are replaced by transitions (at the same rate) to the initial

state, hi,j,k(i, j, k).

The modified process is irreducible and positively recurrent, and so it possesses an

equilibrium distribution, πi,j,k. Since CR was represented by the time to the absorption
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of {Yi,j,k(t) : 0 ≤ t ≤ CR}, and absorptions now correspond to
{

YM
i,j,k(t) : t ≥ 0

}

return-

ing to its initial state, CR can now be considered as the time this modified process takes

to return to the initial state. If αi,j,k is the vector representing the transition rates back

to the initial state, then the expected time for a return to the initial state is given by
(

π⊤
i,j,kαi,j,k

)−1
, and hence

µi,j,k =
(

π⊤
i,j,kαi,j,k

)−1
.

Non-random vaccine

If the vaccine response is non-random, there are two types of individual after the first

removal as described in Section 2.2.2. The derivation of Hij and hij(θ) proceeds simi-

larly to before, except that the clock-rate used for the time-change is (I1(t) + bI2(t))
−1.

Recalling the notation introduced in Section 2.2.5, let
{

X̃NR(t)
}

be the random time-

transformation of {XNR(t)}, obtained by running the clock at rate (I1(t) + bI2(t))
−1,

stopping the clock when there is no infective and starting again when a new infective

appears. Then, the times of the removals in
{

X̃NR(t)
}

give the infectious intensity up

until the corresponding removals in {XNR(t)}.

For t > T0, the process
{(

S̃2(t), L̃1(t), L̃2(t), Ĩ1(t), Ĩ2(t)
)}

is governed by the transition

table:
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from to at rate

(i, j1, j2, k1, k2) (i− 1, j1, j2 + 1, k1, k2) aλLi

(i, j1 − 1, j2, k1 + 1, k2) δ j1
k1+bk2

(i, j1, j2 − 1, k1, k2 + 1) δ j2
k1+bk2

(i, j1, j2, k1 − 1, k2) (k1 + k2 > 1) (1− pn−i−j1−j2−k1−k2+1)γ
k1

k1+bk2

(i, j1, j2, k1, k2 − 1) (k1 + k2 > 1) (1− pn−i−j1−j2−k1−k2+1)γ
k2

k1+bk2

(i, j1 − 1, j2, 1, 0) (1− pn−i−j1−j2)γ
j1

j1+j2

(j1 > 0, k1 = 1, k2 = 0)

(i, j1, j2 − 1, 0, 1) (1− pn−i−j1−j2)γ
j2

j1+j2

(j2 > 0, k1 = 1, k2 = 0)

(i, j1 − 1, j2, 1, 0) (1− pn−i−j1−j2)γ
j1

b(j1+j2)

(j1 > 0, k1 = 0, k2 = 1)

(i, j1, j2 − 1, 0, 1) (1− pn−i−j1−j2)γ
j2

b(j1+j2)

(j2 > 0, k1 = 0, k2 = 1)

(i, 0, 0, 0, 0) (1− pn−i−j1−j2)γ

(j1 = j2 = 0, k1 + k2 = 1)

isolation pn−i−j1−j2−k1−k2+1γ
k1+k2
k1+bk2

Let ∆̃NR =
{

(i, j1, j2, k1, k2, l) ∈ Z
6
+ : k1 + k2 ≥ 1, i+ j1 + j2 + k1 + k2 + l = n

}

be the

set of possible transient states of
{

X̃NR(t)
}

, n′1 be the cardinality of ∆̃NR and h1 :

∆̃NR → {1, 2, . . . , n′1} be bijective. Similarly to before, the post-vaccination, time-

transformed household process can be represented by the process {Y1(t) : 0 ≤ t ≤ CR},

where Y1(0) = h1

(

X̃NR(T0+)
)

, Y1(t) = h1

(

X̃NR (T0 + t)
)

(0 < t < CR) and Y1(CR) =

n′1 + 1. It then follows that CR

∣

∣

∣
X̃NR(T0+) ∼ PT

(

Q0,1, X̃NR(T0+)
)

, where Q0,1 is the

matrix of transition rates of {Y1(t)} among its transient states 1, 2, . . . , n′1, which can be
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obtained using the above transition table. Let µNR
i,j1,j2,k1,k2,l

= E
[

CR

∣

∣

∣X̃NR(T0+) = (i, j1,

j2, k1, k2, l)] and ψNR
i,j1,j2,k1,k2,l

(θ) = E
[

e−θCR

∣

∣

∣X̃NR(T0+) = (i, j1, j2, k1, k2, l)
]

(θ ≥ 0)

for i+ j1 + j2 + k1 + k2 + l = n. Then, using (2.3.7),

µNR
i,j1,j2,k1,k2,l

= −
(

Q−1
0,1

)

h1(i,j1,j2,k1,k2,l)
1

and, using (2.3.8),

ψNR
i,j1,j2,k1,k2,l

(θ) = −
(

(θI −Q0,1)
−1
)

h1(i,j1,j2,k1,k2,l)
Q0,11.

If S̃(T0−) = i and L̃(T0−) = j, where i+j < n−1, then if latent individuals are vaccine-

insensitive, X̃NR(T0+) = (i, j, 0, n− i− j − 1, 0, 1), while if they are vaccine-sensitive,

X̃NR(T0+) = (i, 0, j, n − i − j − 1, 0, 1). However if S̃(T0−) = i and L̃(T0−) = j > 0,

where i + j = n − 1 so there is no infective immediately after the first removal, then

the clock will only restart after the first removal when one of the j latents becomes

infectious and thus if latent individuals are vaccine-insensitive, X̃NR(T0+) = (i, j −

1, 0, 1, 0, 1), while if they are vaccine-sensitive, X̃NR(T0+) = (i, 0, j − 1, 0, 1, 1). Thus,

in the vaccine-insensitive latents case, for (i, j) ∈ ∆0,

Hij = (1− p1)
(

1{i+j<n−1}µ
NR
i,j,0,n−i−j−1,0,1 + 1{i+j=n−1,j>0}µ

NR
i,j−1,0,1,0,1

)

and, for θ ≥ 0,

hij(θ) = p1 + (1− p1)1{i+j<n−1}ψ
NR
i,j,0,n−i−j−1,0,1(θ)

+ (1− p1)1{i+j=n−1,j>0}ψ
NR
i,j−1,0,1,0,1(θ)

+ (1− p1)1{i=n−1},

while in the vaccine-sensitive latents case, for (i, j) ∈ ∆0,

Hij = (1− p1)
(

1{i+j<n−1}µ
NR
i,0,j,n−i−j−1,0,1 + 1{i+j=n−1,j>0}µ

NR
i,0,j−1,0,1,1

)
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and, for θ ≥ 0,

hij(θ) = p1 + (1− p1)1{i+j<n−1}ψ
NR
i,0,j,n−i−j−1,0,1(θ)

+ (1− p1)1{i+j=n−1,j>0}ψ
NR
i,0,j−1,0,1,1(θ)

+ (1− p1)1{i=n−1}.

Note that these expressions would change if the reduction in infectivity of vaccinated

individuals was modelled differently, as reducing infectious periods of vaccinated in-

dividuals would alter the times of removals.

An alternative derivation of µNR
i,j1,j2,k1,k2,l

: modified process

Once again we can obtain the mean absorption time also by using a modified process.

In this case, {Y1(t) : 0 ≤ t ≤ CR} is absorbed into state n′1+1, so we define our modified

process {YM
i,j1,j2,k1,k2,l

(t) : t ≥ 0} by removing state n′1 + 1 and replacing transitions to

this state with transitions (at the same rate) to the initial state, h1(i, j1, j2, k1, k2, l).

The modified process is irreducible and positively recurrent, and so it possesses an

equilibrium distribution, πNR
i,j1,j2,k1,k2,l

. Since CR was represented by the time to the ab-

sorption of {Y1(t) : 0 ≤ t ≤ CR}, and absorptions now correspond to {YM
i,j1,j2,k1,k2,l

(t) :

t ≥ 0} returning to its initial state, CR can now be considered as the time this modified

process takes to return to the initial state. If αNR
i,j1,j2,k1,k2,l

is the vector representing the

transition rates back to the initial state, then the expected time for a return to the initial

state is given by
(

(

πNR
i,j1,j2,k1,k2,l

)⊤
αNR

i,j1,j2,k1,k2,l

)−1

, and hence

µNR
i,j1,j2,k1,k2,l

=
(

(

πNR
i,j1,j2,k1,k2,l

)⊤
αNR

i,j1,j2,k1,k2,l

)−1
.
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2.4 Exponential latent and constant infectious periods

2.4.1 General theory

If TL ∼ Exp(δ) and TI ≡ ι (i.e. it is constant with value ι), the time of the first removal

is ι. Since latent periods are exponentially distributed, for t < ι (i.e. before the first

removal), {X(t)} is Markovian and {(S(t), L(t), I(t))} is governed by the transition

table:

from to at rate

(i, j, n− i− j) (i− 1, j + 1, n− i− j) λLi(n− i− j)

(i, j − 1, n− i− j + 1) δj

Define {Y2(t)} = {Y2(t) : 0 ≤ t < ι} to be a relabelling of {X(t) : 0 ≤ t < ι}, such that

Y2(t) = h0(S(t), L(t)), where h0 : ∆0 → {1, 2, . . . , n′} (note that for 0 ≤ t < ι, if S(t) = i

and L(t) = j, then I(t) = n− i− j). Thus, if Y2(0) = y0 = h0(n− 1, 0),

P (Y2(ι−) = y|Y2(0) = y0) =
(

eQ2ι
)

y0,y
,

where Q2 is the transition-rate matrix of {Y2(t)}. Thus,

R∗ = λGE [CA] = λGE [E [CA|S(ι−), L(ι−)]]

= λG

n−1
∑

i=0

n−i−1
∑

j=0

(

eQ2ι
)

y0,h0(i,j)
Gij ,

where, for (i, j) ∈ ∆0,

Gij = E [CA|S(ι−) = i, L(ι−) = j] ,

and, for θ ≥ 0,

ψ(θ) = E
[

e−θCA

]

= E
[

E
[

e−θCA

∣

∣

∣
S(ι−), L(ι−)

]]

=
n−1
∑

i=0

n−i−1
∑

j=0

(

eQ2ι
)

y0,h0(i,j)
φij(θ),
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where, for (i, j) ∈ ∆0 and θ ≥ 0,

φij(θ) = E
[

e−θCA

∣

∣

∣
S(ι−) = i, L(ι−) = j

]

.

Thus to calculateR∗ and ψ(θ) we need to calculateGij and φij(θ). Note that if S(ι−) = i

and L(ι−) = j, then I(ι) = n− i−j−1. If we label these infectives 1, 2, . . . , n− i−j−1,

then at time ι infective k will have a remaining infectious period, ιk say, which takes

some value in [0, ι], so the combined remaining infectious period of these infectives is

∑n−i−j−1
i=1 ιk. To proceed we introduce a reward process defined on a continuous-time

Markov chain, see for example, Keilson and Rao [31] or, closer to the present notation,

Ball et al. [8]. Define a reward process {Z(t) : 0 ≤ t ≤ ι} by letting Z(t) =
∫ t

0 I(u)du,

the total severity up until time t (so CB = Z(ι)). Then
∑n−i−j−1

k=1 ιk = (n− i− j)ι−Z(ι).

Thus, for 0 ≤ t < ι, if Y2(t) is in state h0(i, j), so there are n− i− j infectives, reward is

earned at rate ρh0(i,j) = n− i− j per unit time. Defining D = diag(ρ1, ρ2, . . . , ρn′), and

using Theorem 3.3 of Ball et al. [8] yields

E
[

e−θZ(t)
∣

∣

∣Y2(t) = h0(i, j)
]

=

(

e(Q2−θD)t
)

y0,h0(i,j)

P (Y2(t) = h0(i, j))

=

(

e(Q2−θD)t
)

y0,h0(i,j)

(eQ2t)y0,h0(i,j)

(θ ∈ R), (2.4.1)

which we use to obtain the results we need.

2.4.2 All-or-nothing vaccine, no isolation

Assume latent individuals are vaccine-sensitive. If S(ι−) = i, L(ι−) = j, SV = u and

LV = v, then, at the first removal, the total remaining infectious period of the v latents

and n − i − j − 1 infectives is vι +
∑n−i−j−1

k=1 ιk = (n − i − j + v)ι − Z(ι). Hence,

given Z(ι), CR is distributed as the severity of E (u, φ,Φ1, λL), where φ(θ) = e−ιθ and
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Φ1(θ) = (φ(θ))n−i−j+veθZ(ι). Thus, for (i, j) ∈ ∆0,

Gij =

i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)E [Z(ι) + CR|Y2(ι) = h0(i, j)]

=

i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)E [ ι (n− i− j + v + µ(u, φ,Φ1, λL))|Y2(ι) = h0(i, j)]

= ι
i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v) (n− i− j + v + µ(u, φ, φ1, λL)) ,

where the last equality follows by noting that µ(u, φ,Φ1, λL) is linear in Φ1 and

φ1(θ) = E [Φ1(θ)|Y2(ι) = h0(i, j)]

= (φ(θ))n−i−j+vE
[

eθZ(ι)
∣

∣

∣
Y2(ι) = h0(i, j)

]

= (φ(θ))n−i−j+v

(

e(Q2+θD)ι
)

y0,h0(i,j)

(eQ2ι)y0,h0(i,j)

,

and, for (i, j) ∈ ∆0 and θ ≥ 0,

φij(θ) =
i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)E
[

e−θCA

∣

∣

∣
S(ι−) = i, L(ι−) = j, SV = u, LV = v

]

=
i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)E
[

e−θZ(ι)ψ (u, φ,Φ1, λL, θ)
∣

∣

∣
Y2(ι−) = h0(i, j)

]

=

i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)

u
∑

k=0

(

u

k

)

ξk(θ)e
−(θ+λLk)(u+v+n−i−j−k)ι

× E
[

eλLkZ(ι)
∣

∣

∣Y2(ι−) = h0(i, j)
]

=

i
∑

u=0

j
∑

v=0

pS(i, u)pL(j, v)

u
∑

k=0

(

u

k

)

ξk(θ)e
−(θ+λLk)(u+v+n−i−j−k)ι

×
(

e(Q2+λLkD)ι
)

y0,h0(i,j)

(eQ2ι)y0,h0(i,j)

,

where ξ0(θ), ξ1(θ), . . . are defined by

k
∑

ω=0

(

k

ω

)

ξω(θ) (φ(λLω + θ))k−ω = 1 (k = 0, 1, . . .).

In the above, pS(i, u) and pL(j, v) are given by equations (2.3.5) and (2.3.6). Expressions

for the vaccine-insensitive latents case can be obtained by setting εL = 0.
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2.4.3 Non-random vaccine, no isolation

If S(ι−) = i and L(ι−) = j, then, given Z(ι), CR is distributed as the severity of

E (i, φNR,Φ1, aλL) if latents are vaccine-insensitive and E (i, φNR,Φ2, aλL) if they are

vaccine-sensitive, where (with φ(θ) as above) φNR(θ) = e−bιθ, Φ1(θ) = (φ(θ))n−ieθZ(ι)

and Φ2(θ) = (φ(θ))n−i−j(φNR(θ))
jeθZ(ι). Thus if latents are vaccine-insensitive, we

have (using similar arguments to the all-or-nothing case), for (i, j) ∈ ∆0,

Gij = ι [(n− i+ bµ(i, φNR, φ1, aλL)] ,

where

φ1(θ) = (φ(θ))n−i

(

e(Q2+θD)ι
)

y0,h0(i,j)

(eQ2ι)y0,h0(i,j)

,

and, for θ ≥ 0

φij(θ) =

u
∑

k=0

(

k

u

)

ξk(θ)e
−(θ+aλLk)(b(i−k)+n−i)ι

(

e(Q2+aλLkD)ι
)

y0,h0(i,j)

(eQ2ι)y0,h0(i,j)

,

while if latents are vaccine-sensitive, then for (i, j) ∈ ∆0,

Gij = ι [n− i− j + b (j + µ(i, φNR, φ2, aλL))] ,

where

φ2(θ) = (φ(θ))n−i−j(φNR(θ))
j

(

e(Q2+θD)ι
)

y0,h0(i,j)

(eQ2ι)y0,h0(i,j)

,

and, for θ ≥ 0

φij(θ) =

u
∑

k=0

(

k

u

)

ξk(θ)e
−(θ+aλLk)(b(i+j−k)+n−i−j)ι

(

e(Q2+aλLkD)ι
)

y0,h0(i,j)

(eQ2ι)y0,h0(i,j)

.

In both cases, ξ0(θ), ξ1(θ), . . . are defined by

k
∑

ω=0

(

k

ω

)

ξω(θ) (φNR(aλLω + θ))k−ω = 1 (k = 0, 1, . . .).
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2.4.4 Isolation at first removal

In this case, CA = Z(ι) and thus to calculate R∗, we need to obtain E [Z(ι)]. Note that

in {Y2(t)}, the state which corresponds to all individuals being infective is absorbing

(without loss of generality we shall assume that this is state n′), soQ2 is singular. States

{1, 2, . . . , n′ − 1} form a transient class, so Q2 has the form

Q2 =









QT −QT1

0 0









,

where QT is non-singular. Now if we let Z(ι) = ZT + Zn′ , where ZT is the reward

contribution from the transient states and Zn′ is the reward contribution from state n′,

and let ρT = (ρ1, ρ2, . . . , ρn′−1)
⊤, where ⊤ denotes transpose, then

E[ZT ] =

(∫ ι

0
eQTuρTdu

)

y0

=
(

Q−1
T (eQT ι − I)ρT

)

y0

and, conditioning on τ = min{t : Y2(t) = n′},

E[Zn′ ] = E[E[Zn′ |τ ]] =
(∫ ι

0
eQTu (−QT1) (ι− u)ρn′du

)

y0

=
((

ι1−Q−1
T

(

eQT ι − I
)

1
)

ρn′

)

y0
.

Thus,

R∗ = λGE [Z(ι)] = λGE ([ZT ] + [Zn′ ])

= λG
(

Q−1
T (eQT ι − I)ρT +

(

ι1−Q−1
T

(

eQT ι − I
)

1
)

ρn′

)

y0
(2.4.2)

= λG
(

Q−1
T (eQT ι − I)ρT +

(

ι1−Q−1
T

(

eQT ι − I
)

1
)

n
)

y0
,
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since ρn′ = n. Also, for θ ≥ 0,

ψ(θ) = E
[

e−θZ(ι)
]

= E
[

E
[

e−θZ(ι)
∣

∣

∣
Y2(ι−)

]]

=

n−1
∑

i=0

n−i−1
∑

j=0

(

eQ2ι
)

y0,h0(i,j)

(

e(Q2−θD)ι
)

y0,h0(i,j)

(eQ2ι)y0,h0(i,j)

=

n−1
∑

i=0

n−i−1
∑

j=0

(

e(Q2−θD)ι
)

y0,h0(i,j)

=
(

e(Q2−θD)ι
1

)

y0
.

It is difficult to make analytical progress for a general isolation scheme, since the times

of subsequent removals are not fixed.

2.5 Constant latent and infectious periods

2.5.1 Introduction

Assume now that latent and infectious periods are both constant, specifically TL ≡ η

and TI ≡ ι. If η < ι it is difficult to make analytical progress unless n is small since there

can be more than one infective before the first removal and the process is not Markov.

So, here we assume that, η ≥ ι, and note that in this case, there is one infective up until

the time of the first removal, i.e. I(t) = 1 for t ≤ ι. Hence, S(ι−) ∼ Bin
(

n− 1, e−λLι
)

and L(ι−) = n− 1− S(ι−).

Thus

R∗ = λGE [CA] = λG (ι+ E [CR]) = λG (ι+ E [E [CR|S(ι−)]])

= λG

(

ι+
n−1
∑

i=0

(

n− 1

i

)

e−λLιi
(

1− e−λLι
)n−i−1

Hi

)

,

where, for i = 0, 1, . . . , n− 1

Hi = E [CR|S(ι−) = i] ,
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while, for θ ≥ 0,

ψ(θ) = E
[

e−θCA

]

= E
[

e−ιe−θCR

]

= e−ιE
[

E
[

e−θCR

∣

∣

∣
S(ι−)

]]

= e−ιθ

(

n−1
∑

i=0

(

n− 1

i

)

e−λLιi
(

1− e−λLι
)n−i−1

hi(θ)

)

where, for i = 0, 1, . . . , n− 1 and θ ≥ 0,

hi(θ) = E
[

e−θCR

∣

∣

∣
S(ι−) = i

]

.

Note that if there is no isolation the latent period length η has no bearing on these

calculations, the point being that here CB is known explicitly, while CR is invariant

under changes of latent period.

As in Section 2.4, it is hard to make analytical progress for a general isolation scheme,

but in the isolation at the first removal case (p1 = 1), CA = ι, so R∗ = λGι and ψ(θ) =

e−ιθ.

2.5.2 All-or-nothing vaccine, no isolation

Suppose that latents are vaccine-sensitive. If SV = u and LV = v, then CR has the same

distribution as the severity of E(u, φ, φ1, λL), where φ(θ) = e−ιθ and φ1(θ) = (φ(θ))v.

Hence,

Hi = ι
i
∑

u=0

n−i−1
∑

v=0

pS(i, u)pL(n− i− 1, v) (v + µ(u, φ, φ1, λL))

and, for θ ≥ 0,

hi(θ) =

i
∑

u=0

n−i−1
∑

v=0

pS(i, u)pL(n− i− 1, v)ψ(u, φ, φ1, λL, θ).

In the above, pS(i, u) and pL(j, v) are given by equations (2.3.5) and (2.3.6). Corre-

sponding results for the vaccine-insensitive latent case are obtained by setting εL = 0.
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2.5.3 Non-random vaccine, no isolation

If the vaccine is non-random and S(ι−) = i, then CR is distributed as the severity

of E(i, φNR, φ1, aλL) if latents are vaccine-insensitive and E(i, φNR, φ̂1, aλL) if they are

vaccine-sensitive, where φNR(θ) = e−bιθ, φ1(θ) = (φ(θ))n−i−1 and φ̂1(θ) =

(φNR(θ))
n−i−1. Hence if latents are vaccine-insensitive,

Hi = ι (n− i− 1 + bµ(i, φNR, φ1, aλL))

and

hi(θ) = ψ(i, φNR, φ1, aλLθ) (θ ≥ 0),

while if they are vaccine-sensitive,

Hi = bι
(

n− i− 1 + µ(i, φNR, φ̂1, aλL)
)

and

hi(θ) = ψ(i, φNR, φ̂1, aλL, θ) (θ ≥ 0).

These results do not depend on the precise model used for reduction in infectivity.

2.6 Locally highly infectious diseases (λL → ∞)

2.6.1 Introduction

In this section we consider locally highly infectious diseases, i.e. we consider what hap-

pens as λL → ∞. In this limit, all the susceptibles in the single household epidemic are

infected immediately after time zero. Of course, the limiting values of R∗ and ψ(θ) can

be obtained by letting λL → ∞ in the expressions given in Sections 2.3-2.5. However,
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for many of these limits more direct and general arguments are available and these are

outlined below. The results are generally simpler than those in the previous sections,

and provide a useful approximation when λL is large. Highly infectious diseases have

previously been considered by, for example, Becker and Dietz [13].

Without intervention, or for any vaccine that only works on susceptibles (without iso-

lation in the response model), we simply have R∗ → λGnE[TI ], since everyone will

become infectious, and also therefore ψ(θ) →
(

E[e−θTI ]
)n. Thus now we look at re-

sponse models with vaccine-sensitive latents and/or isolation.

2.6.2 No isolation, vaccine-sensitive latents

We label the initial infective as 1 and the susceptibles as 2, 3, . . . , n. Let Xi and Yi be

respectively the latent and infectious periods of individual i. Therefore, X1 = 0, Xi ∼

TL (i = 2, 3, . . . , n) and Yi ∼ TI (i = 1, 2, . . . , n).

The contribution of individual 1 to the infectious intensity is Y1. For the other individ-

uals, their contribution depends on whether or not they are infective at the time of the

first removal. For i = 2, 3, . . . , n, individual i is latent at the time of the first removal

if minj 6=i (Xj + Yj) < Xi, otherwise they are infectious. Thus, the expected number of

latents at the time of the first removal is
∑n

i=2 P(minj 6=i(Xj + Yj) < Xi) = (n − 1)q,

by symmetry, where q = P (minj 6=2 (Xj + Yj) < X2). Thus if the vaccine response is

non-random,

R∗ → λGE[TI ] [1 + (n− 1)(bq + 1− q)] ,

while for the all-or-nothing vaccine, for i = 2, 3, . . . , n, individual i never becomes

infectious with probability P(minj 6=i(Xj + Yj) < Xi)εL, so, using a similar symmetry
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argument,

R∗ → λGE[TI ] [1 + (n− 1) (1− qεL)] .

Hence, given the distributions of TI and TL, it is sufficient to calculate q, which we do

now for the distributions considered earlier.

If TI ∼ Exp(γ) and TL ∼ Exp(δ), then for j 6= 1, 2,

P (Xj + Yj > t) = 1−
∫ t

0
δe−δu

(

1− e−γ(t−u)
)

du =















δ
δ−γ

e−γt − γ
δ−γ

e−δt if δ 6= γ;

(1 + γt)e−γt if δ = γ.

Thus

q = 1− P
(

min
j 6=2

(Xj + Yj) > X2

)

= 1−
∫ ∞

0
δe−δuP (Y1 > u) [P (X3 + Y3 > u)]n−2 du

=















1−
∫∞
0 δe−δue−γu

[

δ
δ−γ

e−γu − γ
δ−γ

e−δu
]n−2

du if δ 6= γ;

1−
∫∞
0 γe−2γu(1 + γu)n−2e−(n−2)γudu if δ = γ

=















1− 1
(δ−γ)n−2

∑n−2
k=0

(

n−2
k

)

(−1)k δn−k−1γk

δ(k+1)+γ(n−k−1) if δ 6= γ;

1−∑n−2
k=0

(n−2)!
(n−k−2)!n

−k−1 if δ = γ.

If TI ≡ ι, and TL ∼ Exp(δ), then minj 6=2 (Xj + Yj) = Y1 = ι, so

q = P(X2 > ι) = e−δι.

For ψ(θ), results can no longer be obtained via symmetry, since the fates of different

individuals are not independent. However, the distribution of the number of initial

susceptibles who become infectious before the first removal occurs, W say, is sufficient,

since in the all-or-nothing case

ψ(θ) →
n−1
∑

j=0

P(W = j)

n−j−1
∑

v=0

pL(n− j − 1, v)
(

E
[

e−θTI

])v+j+1

and in the non-random case

ψ(θ) →
n−1
∑

j=0

P(W = j)
(

E
[

e−θTI

])j+1 (

E
[

e−bθTI

])n−j−1
.
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If TI ≡ ι and TL ∼ Exp(δ), then W ∼ Bin
(

n− 1, 1− e−δι
)

.

If TI ∼ Exp(γ) and TL ∼ Exp(δ), then before the first removal, when there are k in-

fectives (and hence n − k latents) the probability that the next event will be a latent

becoming infective is (n−k)δ
(n−k)δ+kγ

, and that it will be a removal is kγ
(n−k)δ+kγ

. Hence,

P(W = j) =

(

j
∏

k=1

(n− k)δ

(n− k)δ + kγ

)

(j + 1)γ

(j + 1)γ + (n− j − 1)δ
(j = 0, 1, . . . , n− 1),

where the product is 1 if j = 0.

2.6.3 Isolation, vaccine-insensitive latents

In this case all the susceptibles will become infective at some point, though some or

all of their infectious period may be experienced while the household is isolated. If

TI ∼ Exp(γ), then using the random-time change used in Section 2.3, it follows that the

infectious intensity up until the kth removal is a sum of k independent Exp(γ) random

variables, i.e. it has a Gamma(k, γ) distribution (so it has mean kγ−1). (This holds for

an arbitrary but specified latent period distribution – see Section 3.1 of Ball et al. [10]).

The probability that the household is isolated at the kth removal is pk
∏k−1

j=1(1 − pj)

(where the product is 1 when k = 1), and, setting pn = 1 without loss of generality, the

probability that the household is never isolated is pn
∏n−1

j=1 (1− pj). Thus

R∗ →
λG
γ

n
∑

k=1

kpk

k−1
∏

j=1

(1− pj),

and, for θ ≥ 0,

ψ(θ) →
n
∑

k=1

pk

(

γ

γ + θ

)k k−1
∏

j=1

(1− pj) .
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2.6.4 Isolation, vaccine-sensitive latents

If TI ∼ Exp(γ) and TL ∼ Exp(δ), for the all-or-nothing vaccine we have, as above, that

the severity up until the kth removal has a Gamma(k, γ) distribution, but now, ifW = j

and LV = v, then there will be only v + j + 1 removals. Hence,

R∗ →
λG
γ





n−1
∑

j=0

P(W = j)

n−j−1
∑

v=0

pL(n− j − 1, v)

(

j+v
∑

k=1

kpk

k−1
∏

i=1

(1− pi)

+(j + v + 1)

j+v
∏

i=1

(1− pi)

)]

and, for θ ≥ 0,

ψ(θ) →
n−1
∑

j=0

P(W = j)

n−j−1
∑

v=0

pL(n− j − 1, v)

(

j+v
∑

k=1

pk

(

γ

γ + θ

)k k−1
∏

i=1

(1− pi)

+

(

γ

γ + θ

)j+v+1 j+v
∏

i=1

(1− pi)

)

.

If the vaccine response is non-random, then the random time-change cannot be used in

a similar way here, since the two types of infectious individuals contribute differently

to the infectious intensity. One can of course, though, use the results from Section 2.3.5,

changing the initial conditions to n− 1 latents and 1 infective.

2.6.5 Isolation at the first removal

Here we assume arbitrary but specified distributions for latent and infectious periods.

With isolation at the first removal the initial infective will contribute minj(Xj + Yj) to

the severity, while from the initial susceptibles, individual i will contribute minj(Xj +

Yj)−Xi if Xi < minj 6=i(Xj + Yj) and zero otherwise. Hence, by symmetry,

R∗ → λG

(

E
[

min
j

(Xj + Yj)

]

+ (n− 1)E
[(

min
j

(Xj + Yj)−X2

)

1{X2<minj 6=i(Xj+Yj)}
])

.

If TI ∼ Exp(γ) then note, from Section 2.3.5, that R∗ and ψ(θ) are independent of λL.
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In the TI = ι, TL ∼ Exp(γ) case we have that minj (Xj + Yj) = Y1 = ι, and hence

E [minj (Xj + Yj)] = ι, while

E
[(

min
j

(Xj + Yj)−X2

)

1{X2<minj 6=i(Xj+Yj)}
]

=

∫ ι

0
(ι− t)δe−δt dt

= ι− δ−1
(

1− e−δι
)

.

Further, since minj(Xj + Yj) = ι, the contributions of individuals to the infectious

intensity are independent, and hence by symmetry

ψ(θ) → e−ιθ
(

q + E
[

e−θ(ι−X2)1{X2<ι}
])n−1

,

where, as before, q = e−δι is the probability that a given susceptible is latent at the time

of the first removal, and, for θ ≥ 0,

E
[

e−θ(ι−X2)1{X2<ι}
]

=

∫ ι

0
e−θ(ι−t)δe−δtdt

=















δ
δ−θ

(

e−ιθ − e−ιδ
)

if δ 6= θ;

θιe−ιθ if δ = θ.

2.7 Numerical illustrations

In this section we illustrate the theory using some parameter estimates derived from

data on an outbreak of variola minor (a virus which causes a mild form of smallpox) in

São Paulo in 1956 (see Ball and Lyne [7]). Specifically, unless otherwise indicated, we

set λL = 0.3821, λG = 1.4159, a = 0.1182, b = 0.8712, γ = ι = 1 and δ = 1
η
= 1

4 (i.e.

E[TL] = 4E[TI ], a reasonable assumption for smallpox; see Kaplan et al. [30].)

Figure 2.1 shows the impact of different vaccine response models on the probability

of a global epidemic, pG. Here TI ∼ Exp(γ), TL ∼ Exp(14), the household size n = 5

(similar results hold for different n) and R∗ = 2 in the absence of intervention. The

parameters in the all-or-nothing and non-random vaccine models are matched using
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εS = 1−ab = 0.8970 and εL = 1− b = 0.1288, these equations arising respectively from

the vaccine efficacy measures 1 − E[AB] and 1 − E[AB]/E[A] which describe efficacy

in terms of susceptibility-infectivity and infectivity (see Becker et al. [19]). Six different

intervention models are considered: (i) no intervention, (ii) vaccine-insensitive latents

(VIL) without isolation, (iii) vaccine-sensitive latents (VSL) without isolation, (iv) VIL

with isolation (here we assume p1 = 0, p2 = 1, so isolation occurs at the second removal

within a household), (v) VSL with isolation and (vi) isolation at the first removal within

a household (p1 = 1).

All-or-nothing and non-random vaccine response models give similar results. A key point

to note from Figure 2.1 is that the differences between the plots for all-or-nothing and

non-random vaccine responses are minor. When compared with the perfect vaccine

there is a notable difference in the vaccine-sensitive latent models which arises because

εL = 1 for the perfect vaccine, but only 0.1288 for the imperfect vaccine. Figures 2.2 and

2.3 provide more comparisons of the all-or-nothing and non-random vaccine models,

again with n = 5 and with parameters matched as for Figure 2.1. Again TI ∼ Exp(1),

TL ∼ Exp(14), while latents are assumed to be vaccine-insensitive. Figure 2.2 illustrates

that the two models yield very similar values of R∗ when the all-or-nothing model is

chosen to match a given non-random model. Conversely, with εS fixed in the all-or-

nothing model and (a, b) chosen such that εS = 1 − ab, markedly different R∗ values

can be obtained as illustrated in Figure 2.3. However, it should be noted that such

discrepancies occur when b is small, so that a exceeds unity, which may be unrealistic

in many scenarios. Assuming constant infectious periods yields similar plots. Finally,

note that Figures 2.2 and 2.3 also give some indication of the impact of uncertainty

regarding the parameters of the vaccine action models. For example, the parameter b

is often hard to estimate precisely from outbreak data, but for the numerical examples
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Figure 2.1: pG as λL and λG vary so that R∗ = 2 without intervention.

presented here it is clear that small changes in the value of b do not have a substantial

impact on R∗.

A good isolation policy is more effective than vaccination. From Figure 2.1, we see that vacci-

nation can reduce pG and this is reduced further when latents are vaccine-sensitive, but

isolation is much more effective (and with isolation, it makes little difference whether

or not latents are vaccine-sensitive). The three plots in Figure 2.4 ((i) εL = 0, (ii)

εL = 1
2εS and (iii) εL = εS) illustrate such findings in more detail. We assume iso-
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Figure 2.2: R∗ varying with a and b, with matched efficacy all-or-nothing cases.
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Figure 2.3: R∗ varying with εS , with matched efficacy non-random cases.

lation at the ith removal (i = 1, 2, 3, 4), i.e. pi = 1 and pj = 0 for j 6= i. Note that

with vaccine-insensitive latents and isolation at the second removal, εS has no effect on

R∗, since TI is exponentially distributed. This is because a second removal will only

occur if there is at least one latent or infective immediately after the first removal, and

thus the occurrence of the second removal is independent of the vaccine. This fact,

combined with the Markov property, yields the flat curve. As isolation comes later, the

vaccine has more of an effect. On the other hand, the more effective the vaccine is, the

less difference isolation makes. However, it is clear that earlier isolation schemes offer

significant improvement.
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Figure 2.4: R∗ varying with εS for various isolation policies and assumptions about

εL.

Different infectious period distributions can yield materially different results. The effect of

the choice of infectious period distribution on the results is illustrated in Figure 2.5. We

compare exponential (E) and constant (C) infectious periods with the same mean (dis-

tributions are listed in the form latent period/infectious period). If latents are vaccine-

sensitive latents then we set εS = εL. We might expect that constant infectious peri-

ods generally mean the epidemic is ‘worse’ (since exponential distributions have more

probability mass below the mean than above it), but there is clearly a significant dif-

ference when we change the infectious period; particularly for pG. The difference is
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noticeable even as the household size gets much larger than 5, as it is here. The choice

of latent period distribution has much less of an effect.
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Figure 2.5: R∗ and pG varying with εS in VIL (εL = 0) and VSL (εL = εS) cases for

different latent/infectious period distributions.

R∗ alone is not sufficient to summarise the potential for an epidemic. The considerable vari-

ability seen in the plots of Figure 2.1 highlights the fact that R∗ alone does not ad-

equately summarise the epidemic model. Further, while with isolation we observe

monotone behaviour, in that R∗ decreases with increasing λL, this is not the case with-

out isolation for reasons we now outline. Consider first the case of no intervention. If

the mean of the offspring distribution of a branching process is held fixed then broadly

the extinction probability increases with the variance of the offspring distribution. This

phenomenon has been noted previously, see, for example, Becker and Marschner [15]

and Lloyd-Smith et al. [36]. Thus, for fixed R∗, pG is least when there is greatest vari-

ability in the infectious intensity generated by a single-household epidemic. From Fig-

ure 2.1, pG is least when λL ≈ 0.25, i.e. when the single-household epidemic is at its

‘internal’ threshold. This is intuitively plausible since when the single-household epi-

demic is well above its internal threshold most of the household will become infected

and when it is well below its internal threshold only the index case in the household is
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likely to become infected, both of which lead to less variability in infectious intensity.

Moreover, there is less variability in infectious intensity in the limit λL → ∞ than in the

limit λL → 0, since the whole household is infected in the former and only the index

case in the latter, which explains why pG is greatest in the limit λL → ∞. A similar

phenomenon is observed for the vaccination-only models. However, the behaviour of

the models with isolation is less affected by λL, so as λL increases the decrease in λG (so

that R∗ = 2) dominates and pG drops to 0. There are also clear qualitative differences

between the R∗ and pG plots of Figure 2.5, reinforcing the need for caution in relying

on only one of these quantities as a summary measure.

2.8 Concluding comments

We have derived expressions for R∗ and pG under various assumptions regarding the

choice of latent and infectious period distribution, vaccine response model and iso-

lation scheme. Our numerical illustrations indicate that R∗ and pG can be materially

affected by using exponential infectious periods (which are implicitly assumed in most

deterministic models) as opposed to constant infectious periods (which are often more

realistic in practice). Similarly, R∗ and pG can be affected by isolation schemes and a

vaccine which is effective for latent individuals. In contrast, suitably matched all-or-

nothing and non-random vaccine response models seem to yield similar values of R∗

and pG.

We have restricted attention to populations partitioned into households of equal size,

but the expressions obtained can be easily extended to unequal household sizes (cf. Ball

et al. [9]) as follows. Suppose that, for k = 1, 2, . . ., the proportion of households con-

taining k susceptibles at the start of an epidemic is αk. For k = 1, 2, . . ., the probability
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that a given global contact is with an individual residing in a household of size k is

α̃k = kαk/
∑∞

i=1 iαi, since such a contact is with an individual chosen uniformly at

random from the entire population. It then follows that for this model,

R∗ =
∞
∑

k=1

α̃kR
(k)
∗ , f(s) =

∞
∑

k=1

α̃kf
(k)(s),

where, for k = 1, 2, . . ., R(k)
∗ and f (k)(s) are R∗ and f(s), respectively, for a population

partitioned into households of equal size k. If the epidemic is initiated by one individ-

ual, chosen uniformly at random from the population, becoming infected then pG is

1 − τ , where τ is the smallest root of f(s) = s in [0, 1]. (Note that τ = 1 if R∗ ≤ 1). If

instead the initial infective is known to reside in a household of size k, conditioning on

the size of the first generation in the approximating branching process shows that the

pG is 1− f (k)(τ).

In this chapter, intervention has been considered only at a local level: when diagnosed

cases appear, intervention is taken only within the household of the diagnosed indi-

vidual. Such local intervention methods may not be sufficient to prevent a global epi-

demic, in which case we need to reduce λG. One such method is by contact tracing,

which involves directing intervention at named contacts of a diagnosed individual.

We consider this in a homogeneously-mixing population model in Chapter 3 and in a

household-based model in Chapter 4. Another extension one may consider is to have

the vaccination at a later removal, which would be analytically tractable in the case

of exponentially distributed infectious periods, but not for constant infectious peri-

ods. Further, in the models here there is one latent period, with latents being vaccine-

sensitive or vaccine-insensitive. The model and methods used here could be adapted to

incorporate individuals experiencing two latent periods after being infected: a vaccine-

sensitive period, followed by a vaccine-insensitive one. The assumption of instanta-
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neous vaccine response is perhaps unrealistic for most real-life vaccines, though it pro-

vides a bound by considering the best-possible scenario. A delay can be introduced

into the vaccine response but that would make the model less tractable. However, the

theory can be extended to consider other forms of intervention for which this assump-

tion is more reasonable, for example the use of antivirals.
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Contact tracing

3.1 Introduction

Contact tracing is a form of intervention in which diagnosed individuals name the

other individuals they have been in contact with and these named contacts are traced

and treated in some manner. The idea is that, rather than randomly directing inter-

vention, the treatment is given to individuals who are likely to have become infected,

before they have been diagnosed. It has been studied in a stochastic environment by,

for example, Becker et al. [18], Müller et al. [38] and Klinkenberg et al. [34]. However,

there are difficulties in making analytical progress with contact tracing, particularly

since infected individuals with the same infector do not act independently of one an-

other, as noted by Müller et al. [38]. Becker et al. [18] approximated by assuming that

the traced contact was infected at the beginning of their infector’s infectious period.

Except for a special case where individuals make their infectious contacts instanta-

neously, Klinkenberg et al. [34] used an infinite-size next generation matrix to obtain

the threshold parameter, having to truncate it to obtain numerical results, or they used

simulations. Müller et al. [38] had to study a reproduction number for the ith gener-
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ation (of infected individuals) and studied the behaviour as i → ∞. Generally, one

of the attractive outcomes of modelling epidemics stochastically, the ability to affix a

probability to the possibility of a major outbreak, is not examined due to the increased

difficulty.

In this chapter, we look at two contact tracing models, in which, on diagnosis, indi-

viduals name their infections, and a named individual is found and isolated; if they

have not ended their infectious period (i.e. they are not yet symptomatic) when this

happens they are considered traced. The first, which we refer to as single-step tracing,

assumes that traced individuals do not ever name contacts themselves. This differs

from the definition used by, for example, Klinkenberg et al. [34] - in their definition

of single-step tracing, a traced individual may name their contacts, but only once they

have been diagnosed. The second, which we refer to as iterative tracing, assumes that

traced individuals can name contacts, and that they do this immediately upon being

traced. As such, this is in line with the definition of iterative (or ‘recursive’) tracing

used by Klinkenberg et al. [34] and Müller et al. [38].

We derive results both with and without a delay in the tracing process. This delay

may be considered the amount of time it takes to find and isolate a traced individual.

The modelling of a specific tracing delay has been used by Klinkenberg et al. [34], who

assumed this delay is fixed, while others, such as Shaban et al. [42], assumed that the

time to detect an infected individual (from infection) incorporates a delay in tracing

their contacts. As such, an implicit assumption about these delays is that individuals

with the same infector experience a mutual delay. We assume that delays are indepen-

dent instead, although we do note when results still hold if these delays were assumed

to be the same.
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We examine the process of unnamed individuals embedded in the full process, and

use this to obtain RU , a threshold parameter that can be used to determine whether,

in a large population, the outbreak will be minor (infecting just a few individuals, ef-

fectively becoming ‘extinct’) or major (infecting a reasonably deterministic proportion

of the population). To calculate RU , an approach of looking at generations of named

individuals is used, akin to that used by Klinkenberg et al. [34]. We calculate this for

different distribution choices for infectious and latent periods and tracing delays. No-

tably, we show that in the iterative tracing case, without latent periods or delays, the

threshold parameter RU (and hence whether the process is super- or subcritical) de-

pends upon the infectious period only through its mean, and not through the specific

choice of distribution. Where possible, expressions for the probability of extinction

are obtained, otherwise the framework allows for simulations to be used. In the case

of Exponentially-distributed infectious periods, we suggest two approximations that

make infected individuals independent, one simple and another more sophisticated

(preserving the generational nature of named individuals), and examine the effect of

these approximations.

This chapter is structured as follows. In Section 3.2, the epidemic and contact tracing

models are introduced. Then, a modified birth-death process and how it is used to

determine the threshold behaviour are described. In the following two sections, the

threshold parameter is determined under single-step tracing, with constant infectious

periods in Section 3.4 and Exponential in Section 3.5. In Section 3.6, the threshold

parameter is obtained under iterative tracing without latent periods or tracing delays,

for an arbitrary infectious period. This is extended to include latent periods and delays

in the Exponential infectious period case in Section 3.7. Numerical results are used to

illustrate the theory in Section 3.8, with simulations also used to test the theory, and
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some concluding comments are given in Section 3.9.

3.2 Background

3.2.1 Epidemic and contact tracing models

We consider an SEIR (Susceptible → Exposed → Infective → Removed) epidemic spread-

ing amongst a homogeneously mixing closed population of size N , with a contract

tracing scheme applied to reduce spread. At any time, each individual in the popu-

lation is in one of four states: susceptible, exposed (i.e. latent), infective or removed.

Initially a small number of individuals are infectives and the rest are susceptible. A

susceptible individual becomes a latent individual if he/she makes contact with an in-

fective in a manner described below. A latent individual remains latent for a period of

time distributed according to a random variable TL, having an arbitrary but specified

distribution (i.e. no assumption is made about the form of its distribution, but the dis-

tribution has to be known), at the end of which he/she becomes infective. An infective

individual remains infectious for a period of time distributed according to a random

variable TI , having an arbitrary but specified distribution, and then becomes removed.

Contacts between two given individuals in the population occur at times given by the

points of a homogeneous Poisson process with rate λ
N

. Once removed, an individual

no longer plays a part in the epidemic process. The epidemic ends when there are no

more latent or infective individuals left in the population. All of the Poisson processes,

and the random variables describing latent and infectious periods, are assumed to be

mutually independent.

This epidemic incorporates a contact tracing scheme as follows. Upon removal, an indi-
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vidual (i.e. an infector) names each of the individuals they infected (i.e. their infectees)

independently with probability p, and named infectees are removed after a delay pe-

riod of time distributed according to a random variable TD, having an arbitrary but

specified distribution. An individual whose removal is a result of contact tracing (and

not the natural end of their infectious period) is considered traced. Note that an indi-

vidual is named, but not traced, if their infectious period ends during their infector’s

infectious period or the associated tracing delay. The naming process and random

variables describing delay periods are assumed independent of the Poisson processes,

and random variables describing latent and infectious periods. Generally, we assume

that the random variables describing the delay periods of all individuals with the same

infector (i.e. siblings) are mutually independent. However, in some cases it will be

shown that results hold also when siblings are assumed to have delay periods of the

same length. We consider two forms of tracing, (i) single-step, in which we assume

traced individuals can not name their contacts, and (ii) iterative, in which we assume

traced individuals can name their contacts.

3.3 Threshold behaviour and a modified birth-death process

If the population size N is large, then during the early stages of the epidemic, there is

only a small probability that an infective makes contact with an already-infected indi-

vidual. Thus we can approximate the early stages of the epidemic by a process in which

all of an infective’s contacts are made with susceptible individuals. In this approxima-

tion, the process of infected individuals follows a modified birth-death process.

This modified birth-death process, with births corresponding to new infections and

deaths corresponding to removals, is as follows. Individuals give birth at rate λ over
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their active lifetime which has a natural length distributed as TI , which begins after

a latent period distributed as TL. Further, when an individual dies naturally, each of

its offspring are named, independently and with probability p, and are traced after

some delay distributed as TD (the delays of siblings are independent of each other).

An individual who is still alive at the time they are traced dies unnaturally. Note that,

in the single-step case, offspring of individuals who die unnaturally necessarily die

naturally. In the epidemic context, active lifetimes correspond to infectious periods,

natural deaths correspond to untraced removals and unnatural deaths correspond to

traced removals.

The threshold behaviour of this modified birth-death process can be obtained by con-

sidering the embedded single-type discrete-time Galton-Watson process describing un-

named individuals, in which the offspring of a given individual are either (a) their im-

mediate unnamed offspring, or (b) unnamed descendants who are separated from the

given individual, in the family tree, only by named individuals.

To distinguish between the processes and for conciseness, we shall refer to the modified

birth-death process as the MBDP and the Galton-Watson process as the GWP.

Let a named individual who is separated from an unnamed individual in the family

tree of the MBDP by k − 1 named individuals be called a type-k individual. Hence,

type-1 individuals are the named immediate offspring of unnamed individuals, type-2

individuals are the named immediate offspring of the named immediate offspring of

unnamed individuals, and so on. Type-0 individuals are unnamed individuals. We

shall refer to the type-k individuals who are separated from a given unnamed individ-

ual in the family tree only by named individuals as that unnamed individual’s imme-

diate type-k descendants.
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(i)

11

2

(ii)

1

2 2

3

(iii)

1

k

= Type-0 (unnamed) individual

= Type-k (named) individual

Figure 3.1: Some example realizations of R.

In (i) R = 4, R1 = 2, R2 = 1, R(0) = 1, R(1) = 3, R(2) = 4.

In (ii) R = 5, R1 = 0, R2 = 1, R3 = 2, R(0) = 2, R(1) = 2, R(2) = 3, R(3) = 5.

In (iii) R = 2, R1 = 2, R(0) = 0, R(1) = 2.

To analyse the MBDP we focus attention on the offspring random variable, R say, in

the GWP, by obtaining expressions for its mean, RU = E[R], which we call a type-

reproduction number, following Heesterbeek and Roberts [27]. For some example re-

alizations of R, see Figure 3.1. Standard results from branching process theory tell us

that the GWP will die out with probability 1 if and only if RU ≤ 1, and that if RU > 1

the extinction probability of the GWP, pE say, is the smallest solution of s = H(s) in

(0, 1), where H(s) = E
[

sR
]

.

We obtain RU by considering a typical unnamed individual, A say, in the MBDP. Let

Ri be the total number of unnamed immediate offspring of all the immediate type-

i (i = 1, 2, . . .) descendants of A and RU,i = E [Ri]. Let R(k) be the total number of

unnamed immediate offspring of A and all of its immediate descendants of up to and
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including type-k, then for k = 1, 2, . . .,

R(k) = R(0) +
k
∑

i=1

Ri,

noting that R(0) is the number of unnamed immediate offspring of A. Examples of

Ri and R(k) are given in Figure 3.1. We have that R(k) ↑ R as k → ∞, and so by the

monotone convergence theorem,

RU = lim
k→∞

R
(k)
U ,

where R(k)
U = E

[

R(k)
]

.

Note that while we have shown that if R(k)
U has finite limit then this limit is RU , it

may be the case that as k → ∞, R(k)
U → ∞, in which case RU = ∞. In the sequel

we shall derive this threshold parameter under two different distributions for the life-

time/infectious period: (i) constant, and (ii) exponential. Further, we obtain necessary

and sufficient conditions for RU to be finite.

3.3.1 Notation

The most important parameters and functions appearing throughout this chapter are

listed in Table 3.1, along with brief definitions.

3.4 Single-step tracing, constant infectious period

Suppose that the infectious period has a fixed value ι, i.e. TI ≡ ι.

3.4.1 Calculation of RU

Consider again our typical unnamed individual in the MBDP, A, who gives birth to

unnamed individuals over their lifetime at rate λ(1−p). Thus,R(0) ∼ Poisson(λ(1−p)ι)
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Table 3.1: List of important parameters and functions for Chapter 3.

parameter description

N number of individuals in the population

λ/N individual-to-individual contact rate

p probability of a contact being named, given that the infector is allowed to

name contacts

ι length of constant infectious period

γ rate parameter for exponentially distributed infectious period (i.e. mean= 1
γ

)

ξ rate parameter for exponentially distributed tracing delay (i.e. mean= 1
ξ

)

φL(θ) moment-generating function of latent period (θ ≥ 0)

R offspring random variable of embedded Galton-Watson process of

unnamed individuals

RU expected value of R, type-reproduction number

R(k) total number of unnamed immediate offspring of an unnamed individual

and their immediate descendants of up to and including type-k

R
(k)
U expected value of R(k)

Ri total number of unnamed immediate offspring of all the immediate

type-i descendants of a unnamed individual

pE probability of extinction
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and

E
[

R(0)
]

= λ(1− p)ι.

Similarly, if the number of type-1 (i.e. named immediate) descendants of A is N1, then

N1 ∼ Poisson(λpι), and if the number of offspring contributed to
∑∞

i=1Ri by the ith

(unordered) type-1 descendant of A is Zi, then

∞
∑

i=1

Ri =

N1
∑

i=1

Zi,

where the sum on the right is zero if N1 = 0. Conditional on N1 = n, the birth times of

these n individuals can be obtained by sampling n independent U(0, ι) random vari-

ables, hence the Zi are independent and identically distributed with common distribu-

tion Z, say, and so

E

[ ∞
∑

i=1

Ri

]

=

∞
∑

n=0

P (N1 = n)nE [Z1]

= λpιE[Z].

Thus

RU = E[R] = λ(1− p)ι+ λpιE[Z], (3.4.1)

and it suffices to derive E[Z], which we do for separate cases in the later parts of this

subsection.

Note that the Zi depend upon the delays experienced by the corresponding name de-

scendants of A, but these have been assumed to be independent. If we were to assume

that these individuals all experience the same delay then the Zi would no longer be

independent, however the above results would be unchanged due to the linearity of

expectations, i.e. RU is the same whether sibling units experience independent (and

identically distributed) or the same delays.
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3.4.2 Calculation of extinction probability

If the number of immediate offspring of A is M , then M ∼ Poisson(λι). Conditional on

M = k, the birth times of these k individuals can be obtained by sampling k indepen-

dent U(0, ι) random variables, and hence the contributions to R of these k individuals

are independent and identically distributed. An unnamed individual (occurring with

probability 1−p) will contribute just themselves toR, while the ith (unordered) named

(probability p) offspring will have a contribution Zi distributed as Z, and hence

E
[

sR
∣

∣M = k
]

= E

[

k
∏

i=1

(1− p)s+ psZi

]

=
[

(1− p)s+ pE
[

sZ
]]k

= [(1− p)s+ pG(s)]k ,

since Zi are independent and identically distributed with common distribution Z, and

where G(s) = E
[

sZ
]

. Hence

H(s) =
∞
∑

k=0

e−λι(λι)k

k!
E
[

sR
∣

∣M = k
]

=
∞
∑

k=0

e−λι(λι)k

k!
[(1− p)s+ pG(s)]k

= e−λι
∞
∑

k=0

1

k!
[λι ((1− p)s+ pG(s))]k

= exp {−λι (1− (1− p)s− pG(s))} , (3.4.2)

which we can use to calculate pE , and it suffices to derive G(s), which we do for sepa-

rate cases in the remainder of this subsection.

Note that if the delays of sibling units were assumed to be the same, the Zi would

become dependent, and since they appear here in a nonlinear expression, the above

results would not hold.

73



CHAPTER 3: CONTACT TRACING

3.4.3 No latent period, no delay

Suppose first that TL ≡ TD ≡ 0, i.e. individuals experience neither a latent period nor

a delay.

In this case, all type-1 individuals must die unnaturally (since their parents necessarily

predecease them as the lifetimes are all equal), and hence all their immediate offspring

are unnamed (and therefore Ri = 0 for i > 1). Hence, if we consider a typical type-1

descendant, B, of A, born at a time V from the end of their parent’s lifetime, then

V ∼ U(0, ι)

and their contribution to R1 has a Poisson(λV ) distribution. Thus

E[Z] =
∫ ι

v=0

1

ι
λv dv

=
λι

2
,

and therefore, using Eqn. (3.4.1),

RU = λ(1− p)ι+
λ2pι2

2
,

while

G(s) =

∫ ι

0

1

ι

∞
∑

j=0

e−λv(λv)j

j!
sj dv

=

∫ ι

0

1

ι
e−λv(1−s) dv

=
1

λι(1− s)

(

1− e−λι(1−s)
)

,

and therefore, using Eqn. (3.4.2),

H(s) = exp

{

−λι
(

1− (1− p)s− p

λι(1− s)

(

1− e−λι(1−s)
)

)}

.
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3.4.4 With latent period and delay

Let the distributions of TL and TD be arbitrary. We revisit our typical unnamed indi-

vidual A and their typical named immediate offspring B, and recall that B is born at

time length V before the end of A’s lifetime. Suppose the latent period of B is TL,B and

the delay associated with B is TD,B .

The length of time after B’s birth that B can be traced is V + TD,B . However, for

the first time TL,B time units, B is not active, i.e. they cannot have offspring over this

period. After this latent period they are active until the end of their natural active

lifetime or they are traced, whichever comes first. Hence, B’s actual active lifetime is

min {ι,max {0, V + TD,B − TL,B}}. Note that if ι > V + TD,B − TL,B , then B is traced

and hence all their offspring are unnamed. On the other hand, if ι ≤ V + TD,B − TL,B ,

then B is not traced and hence lives a full active lifetime and can name individuals.

We shall now break this down into four cases: (i) TD,B−TL,B > ι, (ii) 0 ≤ TD,B−TL,B ≤

ι, (iii) −ι ≤ TD,B − TL,B < 0 and (iv) TD,B − TL,B < −ι.

In case (i), clearly V + TD,B − TL,B > ι, so B’s active lifetime is ended naturally, and

hence B can name contacts made over a full natural lifetime, hence B’s offspring has

the same distribution as that of a type-0 individual’s. We shall label the event that

TD,B − TL,B > ι as C1.

In case (ii), we have two subcases (a) V < ι − TD,B + TL,B , in which case B is traced

(we label this case as C2, and (b) V ≥ ι− TD,B + TL,B , in which case B is untraced and

has a full active lifetime (we label this case as C3).

In case (iii), V + TD,B − TL,B < ι so B is traced. We have two subcases (a) V ≥

TL,B − TD,B in which case B can have offspring (we label this case as C4), and (b)
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V < TL,B − TD,B in which case B has no offspring (we label this case as C5).

In case (iv), V + TD,B − TL,B < 0 so B can have no offspring. We label the event that

TD,B − TL,B < −ι as C6.

Let the effective delay be TD−L = TD − TL (i.e. the delay minus the latent period) and

let µD−L be the distribution measure of TD−L.

Putting this all together,

E[Z] =
4
∑

k=1

E [Z1Ck
] ,

and we have that

E [Z1C1 ] =

∫ ∞

x=ι

RU dµD−L(x)

= P (TD−L > ι)RU ,

E [Z1C2 ] =

∫ ι

x=0

∫ ι−x

v=0

1

ι
λ(v + x) dv dµD−L(x)

=
λι

2
P (0 ≤ TD−L ≤ ι)− λ

2ι
E
[

T 2
D−L1{0≤TD−L≤ι}

]

,

E [Z1C3 ] =

∫ ι

x=0
P(V > ι− x)RU dµD−L(x)

=
RU

ι
E
[

(TD−L) 1{0≤TD−L≤ι}
]

,

E [Z1C4 ] =

∫ 0

x=−ι

∫ ι

v=−x

1

ι
λ (v + x) dv dµD−L(x)

=
λ

2ι
E
[

(ι+ TD−L)
2 1{−ι≤TD−L≤0}

]

.

By using Eqn. (3.4.1), we then get an equation for RU of the form

RU = aRU + b,

76



CHAPTER 3: CONTACT TRACING

where

a = λpιP (TD−L > ι) + λpE
[

(TD−L) 1{0≤TD−L≤ι}
]

,

b = λ(1− p)ι+
λ2p

2

(

E
[

(ι+ TD−L)
2 1{−ι≤TD−L≤0}

]

+ ι2P (0 ≤ TD−L ≤ ι)

−E
[

T 2
D−L1{0≤TD−L≤ι}

])

.

Note that a is the expected number of named but untraced immediate offspring of a

typical unnamed individual. Since lifetimes are constant, these named but untraced im-

mediate offspring have offspring in the manner of unnamed individuals, which means

RU = b+ aRU

= b+ ab+ a2RU

...

=
k
∑

i=0

aib+ ak+1RU

and by letting k → ∞ in the above we can see that,

RU =
b

1− a

for a < 1, otherwise RU is infinite.

Meanwhile

G(s) =

6
∑

k=1

E
[

sZ1Ck

]

,

and we have that

E
[

sZ1C1

]

=

∫ ∞

x=ι

H(s) dµD−L(x)

= P (TD−L > ι)H(s),
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E
[

sZ1C2

]

=

∫ ι

x=0

∫ ι−x

v=0

1

ι
e−λ(v+x)(1−s) dv dµD−L(x)

=
1

λι(1− s)

{

E
[

eλ(s−1)(TD−L)1{0≤TD−L≤ι}
]

− eλι(s−1)P (0 ≤ TD−L ≤ ι)
}

,

E
[

sZ1C3

]

=

∫ ι

x=0
P(V > ι− x)H(s) dµD−L(x)

=
H(s)

ι
E
[

(TD−L) 1{0≤TD−L≤ι}
]

,

E
[

sZ1C4

]

=

∫ 0

x=−ι

∫ ι

v=−x

1

ι
e−λ(v+x)(1−s) dv dµD−L(x)

=
1

λι(1− s)

{

P (0 ≤ −TD−L ≤ ι)− E
[

eλ(s−1)(ι+TD−L)1{0≤−TD−L≤ι}
]}

,

E
[

sZ1C5

]

=

∫ 0

x=−ι

∫ −x

v=0

1

ι
s0 dv dµD−L(x)

=
1

ι
E
[

TD−L1{0≤−TD−L≤ι}
]

,

E
[

sZ1C6

]

=

∫ ι

x=−∞
s0 dµD−L(x)

= P (−TD−L > ι) ,

and H(s) follows using Eqn. (3.4.2).

3.5 Single-step tracing, Exponential infectious period

We now assume that TI ∼ Exp(γ), i.e. the infectious period of each individual is expo-

nentially distributed with mean 1
γ

.

3.5.1 Calculation of RU

Let T denote the lifetime of our typical unnamed individual in the MBDP, A, ( T ∼

Exp(γ)) and, for k = 0, 1, . . .,

hk(t) = E
[

R(k)|T = t
]

.
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Now, R(0) is just the number of unnamed immediate offspring. Hence,
(

R(0)|T = t
)

∼

Poisson(λ(1− p)t), so

E
[

R(0)
∣

∣

∣T = t
]

= λ(1− p)t.

Let N1 denote the number of named immediate (i.e. type-1) offspring of our typical

individual and, for i = 1, 2, . . . , N1, let Z(k)
i be the total number of descendants from

the ith such (arbitrarily ordered) individual that contribute to R(k). Thus

k
∑

i=1

Ri =

N1
∑

i=1

Z
(k)
i ,

where the sum on the right is zero if N1 = 0. Now N1|T = t ∼ Poisson(λpt) and con-

ditional upon N1 = n, T = t, the birth times of these n individuals can be obtained by

sampling n independent U(0, t) random variables, and hence the Z(k)
i are independent

and identically distributed, with common distribution Z(k), say. Thus

E

[

k
∑

i=1

Ri|T = t

]

=

∞
∑

n=0

P (N1 = n|T = t)nE
[

Z(k)|T = t
]

= λptgk(t),

where gk(t) = E
[

Z(k)|T = t
]

(k = 1, 2, . . .) and g0(t) = 0, and so, for k = 1, 2, . . .

hk(t) = λ(1− p)t+ λptgk(t) (t > 0) (3.5.1)

and h0(t) = λ(1− p)t.

In the later parts of this subsection, we obtain expressions for gk(t) and then use this to

obtain an expression for RU , first assuming no delays or latent periods, then assuming

exponentially-distributed delays and arbitrarily distributed latent periods.

In a similar fashion to Section 3.4.1, it can be shown that RU would be the same here if

it were assumed that sibling units experience the same delay.
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3.5.2 Calculation of extinction probability

Let

Ĥ(s, t) = E
[

sR
∣

∣T = t
]

.

If the number of immediate offspring of A is M , then M |T = t ∼ Poisson(λt). Con-

ditional on M = k and T = t, the birth times of these k individuals can be obtained

by sampling k independent U(0, t) random variables, and hence the contributions to R

of these k individuals are independent and identically distributed. An unnamed indi-

vidual (occurring with probability 1 − p) will contribute just themselves to R, while a

named individual (probability p) will have a contribution distributed as Z, and hence

E
[

sR
∣

∣M = k, T = t
]

=
[

(1− p)s+ pE
[

sZ
]]k

= [(1− p)s+ pG(s, t)]k ,

where G(s, t) = E
[

sZ
∣

∣T = t
]

, and so

Ĥ(s, t) =
∞
∑

k=0

e−λt(λt)k

k!
E
[

sR
∣

∣M = k, T = t
]

=

∞
∑

k=0

e−λt(λt)k

k!
[(1− p)s+ pG(s, t)]k

= e−λt
∞
∑

k=0

1

k!
[λt ((1− p)s+ pG(s, t))]k

= exp {−λt (1− (1− p)s− pG(s, t))} , (3.5.2)

while

H(s) =

∫ ∞

0
γe−γtĤ(s, t) dt,

which, if we can evaluate it, can be used to calculate pE

In a similar fashion to Section 3.4.2, it can be shown that H(s) would be different if it

were assumed that sibling units experience the same delay.
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3.5.3 No latent period, no delay

First we look at the case without latent periods or delays, i.e. TD ≡ TL ≡ 0.

For k = 1, 2, . . ., to compute E
[

Z(k)|T = t
]

, let V denote the excess lifetime of individ-

ual A when our typical named descendant of A, B, is born and TB denote the natural

lifetime of B. Then

V |T = t ∼ U(0, t).

Further if TB > V then none of B’s immediate offspring are named, so

E
[

Z(k)|V = v, TB > v
]

= λv,

whilst, if TB < V then B dies before A and so B can name individuals,

(Z(k)|V = v, TB = tB)
D
= R(k−1)|T = tB (tB < v).

Putting this all together yields

gk(t) =

∫ t

v=0

1

t

{

P(TB > v)λv +

∫ v

u=0
γe−γuhk−1(u)du

}

dv

=

∫ t

v=0

1

t

{

λve−γv +

∫ v

u=0
γe−γuhk−1(u)du

}

dv,

whence, using Eqn. (3.5.1),

hk(t) = λ(1− p)t+ λp

∫ t

0
λve−γv dv + λp

∫ t

v=0

∫ v

u=0
γe−γuhk−1(u) du dv

= λ(1− p)t+
λ2p

γ2
{

1− e−γt − γte−γt
}

+ λp

∫ t

v=0

∫ v

u=0
γe−γuhk−1(u) du dv,

(3.5.3)

for k = 1, 2, . . . , and h0(t) = λ(1− p)t.

For θ ≥ 0, let Lk(θ) =
∫∞
0 e−θthk(t) dt be the Laplace transform of hk(t). Taking the

Laplace transform of Eqn. (3.5.3) yields, for k = 1, 2, . . .,

Lk(θ) =
λ(1− p)

θ2
+

λ2p

θ(θ + γ)2
+
λpγ

θ2
Lk−1(γ + θ), (3.5.4)
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and L0(θ) =
∫∞
0 e−θtλ(1− p)tdt = λ(1−p)

θ2
.

Now, R(k)
U =

∫∞
0 γe−γthk(t) dt = γLk(γ), and setting θ = jγ (j = 1, 2 . . .) in Eqn. (3.5.4)

yields

Lk(jγ) =
λ(1− p)

j2γ2
+

λ2p

j(j + 1)2γ3
+

λp

j2γ
Lk−1((j + 1)γ). (3.5.5)

This gives L1(jγ) =
λ(1−p)
j2γ2 + λ2p

j(j+1)2γ3 +
λ2p(1−p)
j2(j+1)2γ3 . Suppose now that, for k = 1, 2, . . . , κ

and j = 1, 2, . . .,

Lk(jγ) =
λ(1− p)

j2γ2
+
λp

γ2

k
∑

i=1

λipi−1((1− p) + i+ j − 1)

γi[(i+ j)!]2/[(j − 1)!]2
, (3.5.6)

then using Eqn. (3.5.5),

Lκ+1(jγ) =
λ(1− p)

j2γ2
+

λ2p

j(j + 1)2γ3
+

λp

j2γ
Lκ((j + 1)γ)

=
λ(1− p)

j2γ2
+

λ2p

j(j + 1)2γ3

+
λp

j2γ

(

λ(1− p)

(j + 1)2γ2
+
λp

γ2

κ
∑

i=1

λipi−1((1− p) + i+ j)

γi[(i+ j + 1)!]2/[j!]2

)

=
λ(1− p)

j2γ2
+

λ2p

j(j + 1)2γ3
+

λ2p(1− p)

j2(j + 1)2γ3

+
λp

j2γ2

κ
∑

i=1

λi+1pi((1− p) + i+ j)

γi+1[(i+ j + 1)!]2/[j!]2

=
λ(1− p)

j2γ2
+

λ2p

j(j + 1)2γ3
+

λ2p(1− p)

j2(j + 1)2γ3

+
λp

j2γ2

κ+1
∑

i=2

λipi−1((1− p) + i+ j − 1)

γi[(i+ j)!]2/[j!]2

=
λ(1− p)

j2γ2
+
λp

γ2

κ+1
∑

i=1

λipi−1((1− p) + i+ j − 1)

γi[(i+ j)!]2/[(j − 1)!]2
,

hence Eqn. (3.5.6) holds for all k = 1, 2, . . .. Recall that R(k)
U = γLk(γ). Thus, setting

j = 1 in Eqn. (3.5.6) yields

R
(k)
U =

λ(1− p)

γ
+
λp

γ

k
∑

i=1

λipi−1((1− p) + i)

[(i+ 1)!]2γi
.
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Letting k → ∞ in the above expression gives

RU =
λ(1− p)

γ
+
λp

γ

∞
∑

i=1

λipi−1((1− p) + i)

[(i+ 1)!]2γi
.

Note that

λp

γ

∞
∑

i=1

λipi−1((1− p) + i)

[(i+ 1)!]2γi
<
λ

γ

∞
∑

i=1

(λp)i(i+ 1)

[(i+ 1)!]2γi

<
λ

γ

∞
∑

i=1

(λp)i

i!γi

<
λ

γ

∞
∑

i=0

(λp)i

i!γi

=
λ

γ
e

λp
γ

and hence the expression for RU is convergent. It can be rewritten as

RU =
λ(1− p)

γ

∞
∑

j=0

(λp)j

[(j + 1)!]2γj
+
λ2p

γ2

∞
∑

k=0

(k + 1)(λp)k

[(k + 2)!]2γk
. (3.5.7)

Now,

∞
∑

k=0

(k + 1)tk

[(k + 2)!]2
=

d

dt

[ ∞
∑

k=0

tk+1

[(k + 2)!]2

]

=
d

dt

[ ∞
∑

k=0

tk

[(k + 1)!]2
− 1

]

=
d

dt

[

1

t

∞
∑

k=0

tk+1

[(k + 1)!]2

]

=
d

dt

[

1

t

(

I0

(

2
√
t
)

− 1
)

]

=
1

t2

(√
tI−1

(

2
√
t
)

− I0

(

2
√
t
)

+ 1
)

,

where Ik(x) is the modified Bessel function of the first kind (and using equation 9.6.28

from Abramowitz and Stegun [1]: d
dx
I0(x) = I−1(x)).

Thus (setting δ =
√

λp
γ

),

RU =
1− p

p
{I0(2δ)− 1}+ 1

p
{δI−1 (2δ)− I0 (2δ) + 1}

= 1 +
δ

p
I−1 (2δ)− I0 (2δ) .
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Setting γ = 1 without loss of generality, and letting p→ 1 in the above yields

RU = 1 +
√
λI−1

(

2
√
λ
)

− I0

(

2
√
λ
)

.

Consider the extinction probability, pE , of the GWP. Recall that if TB > V , then none of

B’s immediate offspring are named, so

E
[

sZi
∣

∣V = v, TB > v
]

=
∞
∑

j=0

(λv)je−λv

j!
sj

= exp {λv (s− 1)} ,

whilst, if TB < V then B dies before A and

(

sZi
∣

∣V = v, TB = tB
)

=D sR
∣

∣T = tB (tB < v).

Hence,

G(s, t) =

∫ t

v=0

1

t

{

P (TB > v) eλv(s−1) +

∫ v

u=0
γe−γuĤ(s, u) du

}

dv

=
1

t

∫ t

v=0
eλv(s−1)e−γv dv +

1

t

∫ t

v=0

∫ v

u=0
γe−γuĤ(s, u) du dv,

whence

Ĥ(s, t) = exp

{

λ(1− p)st+ λp

∫ t

v=0
eλv(s−1)e−γvdv

+λp

∫ t

v=0

∫ v

u=0
γe−γuĤ(s, u) du dv − λt

}

.

Hence

log Ĥ(s, t) = λ((1− p)s− 1)t+ λp

∫ t

v=0
eλv(s−1)e−γvdv

+ λp

∫ t

v=0

∫ v

u=0
γe−γuĤ(s, u) du dv.

(3.5.8)

Differentiating the above twice (and rearranging) gives

d2Ĥ(s, t)

dt2
Ĥ(s, t)−

(

dĤ(s, t)

dt

)2

+ f1(s, t)
[

Ĥ(s, t)
]2

− f2(t)
[

Ĥ(s, t)
]3

= 0,
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where f1(s, t) = λp(λ(1 − s) + γ)e−(λ(1−s)+γ)t and f2(t) = λpγe−γt. This differential

equation appears to have a fairly simple form, but it is unfortunately very difficult to

solve. It may be possible to use solve it numerically, but Ĥ(s, t) is not the end result we

require, since we need to find H(s) =
∫∞
0 γe−γtĤ(s, t) dt.

Alternatively, if we differentiate Eqn. (3.5.8) once and let Y (s, t) =
∫ t

u=0 γe
−γuĤ(s, u)du,

we obtain

d2Y (s, t)

dt2
− λpY (s, t)

dY (s, t)

dt
+ f3(s, t)

dY (s, t)

dt
= 0,

where γ + λ− λ(1− p)s− λpe−(λ(1−s)+γ)t. Now we require H(s) = limt→∞ Y (s, t), but

unfortunately this differential equation is also difficult to solve, even if we just require

the asymptotic behaviour of its solution.

Note that later on in Section 3.8 we use simulations to obtain estimates for H(s) and

hence pE . However, an exact method would require much less computation time.

A simplifying approximation: independence of sibling units

The sort of contact tracing we are considering here is one such that individuals are

named and traced at the end of their parent’s lifetime, and hence sibling units co-

depend upon when their parent’s lifetime ends, in other words upon the size of their

parent’s lifetime. Note that when the lifetime is constant, then the sibling units become

independent, but what of the case where lifetimes are exponential? These inter-sibling

dependencies make the model harder to analyse, but how much of an effect do they

have?

Suppose that instead of being named at their end of their parent’s lifetime, individuals

(independently of their siblings) are named after a period of time beginning at their

birth, which has an Exp(γ) distribution. The lifetime of a named individual would
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then be the minimum of this naming period and their natural lifetime (both of which

are Exp(γ) random variables) and so has an Exp(2γ) distribution. Further, named in-

dividuals would be traced with probability 1
2 , otherwise they would be untraced.

Let us approximate then by assuming we have a two-type process of unnamed and

named individuals (which we shall refer to as type-U and type-N , respectively), with

respective lifetimes distributed according to TU ∼ Exp(γ) and TN ∼ Exp(2γ) with birth

rates represented by

Λ =









λUU λUN

λNU λNN ,









=









λ(1− p) λp

λ
2 + λ(1−p)

2
λp
2 ,









,

where λij is the rate of birth of type-j offspring by type-i parents (i, j = U,N ).

Then the matrix of mean offspring is

M =









λ(1−p)
γ

λp
γ

λ(2−p)
4γ

λp
4γ ,









.

The reproduction number,R0, is given by the largest eigenvalue ofM and is a threshold

parameter in that extinction occurs with probability 1 if and only if R0 ≤ 1. So, setting

γ = 1 without loss of generality,

R0 =
λ

8

(

4− 3p+
√

16− 8p+ 9p2
)

.

If fU (θ) and fN (θ) (θ ≥ 0 are the moment-generating functions of TU and TN , then qU =

fU (λUU (1− qU ) + λUN (1− qN )) and qN = fN (λNU (1− qU ) + λNN (1− qN )) (qU , qN ∈

(0, 1)), where qU and qN are the extinction probabilities given the is one initial individ-

ual who is unnamed and named, respectively. So, we get (setting γ = 1 without loss of
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generality)

qU =
1

1 + λ(1− p)(1− qU ) + λp(1− qN )
,

qN =
2

2 + λ
2 (2− p)(1− qU ) +

λp
2 (1− qN )

,

which we can solve for qU (which is the value of interest, since it is sensible to assume

we begin with an unnamed individual).

In particular, when p = 1, we get

qU =















3+
√

9+4(λ+λ2)

2(λ+λ2)
if λ > 8

1+
√
17

1 otherwise

We consider how this approximating, dependence-free model compares with the true

model in Section 3.8.

A heuristic derivation of the threshold parameter; a more sophisticated

approximation

Here we offer an alternative, non-rigorous derivation of RU by using an approxima-

tion that ignores the dependence of sibling units and incorporates lack-of-memory. In

our approximation, instead of assuming that the offspring of an individual are named

when the individual dies, we assume that the offspring (independent of each other) are

named after a period of time beginning at their birth which has the same distribution

as their parent’s lifetime (this lack-of-memory assumption makes sense when we see

that the resulting distributions are Exponential).

LetMij be the mean number of type-j offspring spawned by a type-i in this approxima-

tion. (Note that a type-i individual can only spawn type-0 or type-(i+ 1) individuals.

Clearly, a type-0 individual has a lifetime with distribution Exp(γ) and has offspring at
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rate λ throughout its lifetime, naming each one independently with probability p. So

M00 =
λ(1−p)

γ
and M01 =

λp
γ

.

Consider a typical named child, B say, of a typical unnamed individual, A say. B has

an Exp(γ) natural lifetime and under our approximation they will be named after a

period of time with a Exp(γ) distribution (the distribution of A’s excess lifetime after

giving birth to B), which we assume to be independent of the corresponding periods

of time for B’s siblings. B has a lifetime distributed as the minimum of these, i.e. it

has an Exp(2γ) distribution. Now, with probability 1
2 they die naturally (and hence can

name offspring), otherwise they die unnaturally (and cannot name offspring). Hence,

M10 =
λ(1−p)

4γ + λ
4γ and M12 =

λp
4γ .

Consider now a typical named child of B, C say. Then individual C is type-2. C has

an Exp(γ) natural lifetime and under our approximation they will be named after a

period of time with a Exp(2γ) distribution (the distribution of B’s excess lifetime after

giving birth to C), which we assume to be independent of the corresponding periods

of time for C’s siblings. C has a lifetime distributed as the minimum of these, i.e. it

has an Exp(3γ) distribution. Now, with probability 1
3 they die naturally (and hence can

name offspring), otherwise they die unnaturally (and cannot name offspring). Hence,

M20 =
λ(1−p)

9γ + 2λ
9γ and M23 =

λp
9γ .

Consider now a typical type-k individual. They have an Exp(γ) natural lifetime and

under our approximation they will be named after a period of time with a Exp(kγ)

distribution (the distribution of the type-(k − 1) individual’s excess lifetime after giv-

ing birth to the type-(k) individual), which we assume to be independent of the cor-

responding periods of time for the other type-k offspring. They have a lifetime dis-

tributed as the minimum of these, i.e. it has an Exp((k + 1)γ) distribution. Now, with
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probability 1
k+1 they die naturally (and hence can name offspring), otherwise they

die unnaturally (and cannot name offspring). Hence, Mk,0 = λ(1−p)
(k+1)2γ

+ kλ
(k+1)2γ

and

Mk,k+1 =
λp

(k+1)2γ
.

Then

RU =M00 +M01 (M10 +M12 (M20 +M23 (M30 + . . .)))

=M00 +M01M10 +M01M12M20 + . . .

=M00 +

∞
∑

k=1





k
∏

j=1

Mj−1,j



Mk0

=
λ(1− p)

γ
+

∞
∑

k=1

(λp)k

[k!]2γk

(

λ(1− p)

(k + 1)2γ
+

kλ

(k + 1)2γ

)

=
λ(1− p)

γ
+
λp

γ

∞
∑

k=1

λkpk−1((1− p) + k)

[(k + 1)!]2γk
,

which agrees with Eqn. (3.5.7).

We can obtain an estimate for the extinction probability, pE , by assuming a type-i in-

dividual has a lifetime distributed as Ti ∼ Exp((i + 1)γ), and that a type-i individual

gives birth to type-j individuals at rate λi,j over its lifetime, with

λi,j =































λ(i+1−p)
i+1 if j = 0

λp
i+1 if j = i+ 1

0 otherwise.

Let qj (j = 0, 1, 2, . . .) be the probability of extinction for an epidemic started by a type-j

individual. Calculating these using qk = E
[

e−
∑

i λki(1−qi)Tk
]

, where, for k = 0, 1, 2, . . .,

Tk ∼ Exp((k + 1)γ), λk0 = λ(1−p+k)
k+1 , λk,k+1 = λp

k+1 and λkj = 0 (j 6= 0, k + 1), gives the

system of equations

qk =
(k + 1)γ

(k + 1)γ + λ(1−p+k)
k+1 (1− q0) +

λp
k+1(1− qk+1)

(k = 0, 1, 2, . . .). (3.5.9)
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Solving this for q0 (the probability of extinction for an epidemic started by an unnamed

individual) gives the continued fraction equation

q0 =
a0

b0 −
a1

b1 −
a2

b2 −
a3

b3 − . . .

where

a0 = γ,

ak =
(k + 1)γλp

k
(k = 1, 2, 3, . . .),

bk = (k + 1)γ + λ− λ(1− p+ k)

k + 1
q0 (k = 0, 1, 2, . . .).

3.5.4 Exponential delay and arbitrary latent period

Now we let the delays be exponentially distributed with mean 1
ξ
, i.e. TD ∼ Exp(ξ), and

we let the latent period have some arbitrary distribution TL, with distribution measure

µL and known moment-generating function φL(θ) (θ ≥ 0).

We revisit our typical unnamed individualAwith lifetime T and individualB, a typical

named offspring ofA, with natural lifetime TB and born with time V left ofA’s lifetime.

Now, we let TB,D and TB,L be the tracing delay and latent period of B, respectively.

The delay and latent period have opposing effects on B. The latent period reduces the

amount of time that B could have offspring over before being traced, while the delay

increases this. We shall let W = max {0, V + TB,D − TB,L}.

Conditioning on T = t, TB,D = tD and TB,L = tL, we consider three cases: (i) tD > tL,

(ii) tD ≤ tL ≤ tD + t and (iii) tL > tD + t. In case (i), W is uniformly distributed
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over (tD − tL, t+ tD − tL). In case (ii), W has a probability mass of tL−tD
t

at 0 with the

remaining mass uniformly distributed over (0, t+ tD − tL). In case (iii), W = 0.

Further if TB > W then none of B’s immediate offspring are named, so

E
[

Z(k)|W = w, TB > w
]

= λw,

whilst, if TB < W then B is not traced and so

(Z(k)|W = w, TB = tB)
D
=
(

R(k−1)|T = tB

)

(tB < w).

Putting this all together yields

gk(t) =

∫ ∞

tD=0
ξe−ξtD

∫ tD

tL=0

∫ t+tD−tL

w=tD−tL

1

t
χ(w) dw dµL (tL) dtD

+

∫ ∞

tD=0
ξe−ξtD

∫ tD+t

tL=tD

∫ t+tD−tL

w=0

1

t
χ(w) dw dµL (tL) dtD,

(3.5.10)

where

χ(t) =

{

λte−γt +

∫ t

u=0
γe−γuhk−1(u)du

}

and multiplying Equation (3.5.10) by t gives

tgk(t) =

∫ ∞

tD=0
ξe−ξtD

∫ tD

tL=0

∫ t+tD−tL

w=tD−tL

χ(w) dw dµL (tL) dtD

+

∫ ∞

tD=0
ξe−ξtD

∫ tD+t

tL=tD

∫ t+tD−tL

w=0
χ(w) dw dµL (tL) dtD.

Let Lk(θ) =
∫∞
0 e−θthk(t)dt (θ ≥ 0), then using Eqn. (3.5.1),

Lk(θ) =

∫ ∞

0
e−θt (λ(1− p)t+ λptgk(t)) dt

=
λ(1− p)

θ2
+ λp

∫ ∞

0
e−θttgk(t) dt.

Noting that

∫ ∞

t=0
e−θt

∫ ∞

tD=0
ξe−ξtD

∫ tD

tL=0

∫ t+tD−tL

w=tD−tL

χ(w) dw dµL (tL) dtD dt

=

∫ ∞

t=0
e−θt

∫ ∞

tL=0

∫ ∞

tD=tL

ξe−ξtD

∫ t+tD−tL

w=tD−tL

χ(w) dw dtD dµL (tL) dt
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=

∫ ∞

t=0
e−θt

∫ ∞

tL=0
e−ξtL

∫ ∞

t′D=0
ξe−ξt′D

∫ t+t′D

w=t′D

χ(w) dw dt′D dµL (tL) dt

= φL(ξ)

∫ ∞

t=0
e−θt

∫ ∞

t′D=0
ξe−ξt′D

∫ t+t′D

w=t′D

χ(w) dw dt′D dt

= φL(ξ)

∫ ∞

t′D=0
ξe−ξt′D

∫ ∞

w=t′D

χ(w)

∫ ∞

t=w−t′D

e−θt dt dw dt′D

=
φL(ξ)

θ

∫ ∞

w=0
e−θwχ(w)

∫ w

t′D=0
ξe−(ξ−θ)t′D dt′D dw

=















ξφL(ξ)
θ(ξ−θ)

∫∞
w=0

(

e−θw − e−ξw
) {

λwe−γw +
∫ w

u=0 γe
−γuhk−1(u) du

}

dw if θ 6= ξ

φL(ξ)
∫∞
w=0we

−ξw
{

λwe−γw +
∫ w

u=0 γe
−γuhk−1(u) du

}

dw if θ = ξ

=















ξφL(ξ)
θ(ξ−θ)

{

λ
(θ+γ)2

− λ
(ξ+γ)2

+ γ
θ
Lk−1(θ + γ)− γ

ξ
Lk−1(ξ + γ)

}

if θ 6= ξ

φL(ξ)
{

2λ
(ξ+γ)3

− γ
ξ
L′
k−1(ξ + γ)

}

if θ = ξ,

and further that

∫ ∞

t=0
e−θt

∫ ∞

tD=0
ξe−ξtD

∫ tD+t

tL=tD

∫ t+tD−tL

w=0
χ(w) dw dµL (tL) dtD dt

=

∫ ∞

tD=0
ξe−ξtD

∫ ∞

tL=tD

∫ ∞

t1=0
e−θ(t1−tD+tL)

∫ t1

w=0
χ(w) dw dt1 dµL (tL) dtD

=

∫ ∞

tD=0
ξe−ξtD

∫ ∞

tL=tD

∫ ∞

w=0
χ(w)

∫ ∞

t1=w

e−θ(t1−tD+tL) dt1 dw dµL (tL) dtD

=
1

θ

∫ ∞

tL=0
e−θtL

∫ tL

tD=0
ξe−(ξ−θ)tD

∫ ∞

w=0
e−θwχ(w) dw dtD dµL (tL)

=
1

θ

∫ ∞

tL=0
e−θtL

∫ tL

tD=0
ξe−(ξ−θ)tD

(

λ

(θ + γ)2
+
γ

θ
Lk−1(θ + γ)

)

dtD dµL (tL)

=















ξ
θ(ξ−θ)

∫∞
tL=0

(

e−θtL − e−ξtL
)

(

λ
(θ+γ)2

+ γ
θ
Lk−1(θ + γ)

)

dµL (tL) if θ 6= ξ

∫∞
tL=0 tLe

−ξtL

(

λ
(ξ+γ)2

+ γ
ξ
Lk−1(ξ + γ)

)

dµL (tL) if θ = ξ

=















ξ(φL(θ)−φL(ξ))
θ(ξ−θ)

(

λ
(θ+γ)2

+ γ
θ
Lk−1(θ + γ)

)

if θ 6= ξ

−φ′L(ξ)
(

λ
(ξ+γ)2

+ γ
ξ
Lk−1(ξ + γ)

)

if θ = ξ,
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it follows that, for θ 6= ξ,

Lk(θ) =
λ(1− p)

θ2
+
λpξ (φL(θ)− φL(ξ))

θ(ξ − θ)

(

λ

(θ + γ)2
+
γ

θ
Lk−1(θ + γ)

)

+
λpξφL(ξ)

θ(ξ − θ)

{

λ

(θ + γ)2
− λ

(ξ + γ)2
+
γ

θ
Lk−1(θ + γ)− γ

ξ
Lk−1(ξ + γ)

}

=
λ(1− p)

θ2
+

λpξ

θ(ξ − θ)

{

λφL(θ)

(θ + γ)2
− λφL(ξ)

(ξ + γ)2
+
γφL(θ)

θ
Lk−1(θ + γ)

−γφL(ξ)
ξ

Lk−1(ξ + γ)

}

,

while

Lk(ξ) =
λ(1− p)

ξ2
− λpφ′L(ξ)

(

λ

(ξ + γ)2
+
γ

ξ
Lk−1(ξ + γ)

)

+ λpφL(ξ)

{

2λ

(ξ + γ)3

−γ
ξ
L′
k−1(ξ + γ)

}

=
λ(1− p)

ξ2
+ λp lim

θ→ξ

φL(θ)− φL(ξ)

ξ − θ

(

λ

(ξ + γ)2
+
γ

ξ
Lk−1(ξ + γ)

)

+ λpφL(ξ)

{

lim
θ→ξ

(

λ

(ξ − θ)(θ + γ)2
− λ

(ξ − θ)(ξ + γ)2

)

+
γ

ξ
lim
θ→ξ

Lk−1(θ + γ)− Lk−1(ξ + γ)

ξ − θ

}

= lim
θ→ξ

Lk(θ),

thus we can obtain Lk(θ) when θ = ξ by taking the limit θ → ξ. From now on we

assume that θ 6= ξ, and that ξ is non-integer. If ξ is an integer, we can obtain RU by

considering the limit as ξ approaches this integer value.

Setting γ = 1, without loss of generality, yields

Lk(θ) =
λ(1− p)

θ2
+

λpξ

θ(ξ − θ)

{

λφL(θ)

(θ + 1)2
− λφL(ξ)

(ξ + 1)2

+
φL(θ)

θ
Lk−1(θ + 1)− φL(ξ)

ξ
Lk−1(ξ + 1)

}

.

(3.5.11)

If yk,j = Lk(ξ + j) (k = 0, 1, . . ., j = 1, 2, . . .), then y0,j =
λ(1−p)
(ξ+j)2

and, for k = 1, 2, . . . and

93



CHAPTER 3: CONTACT TRACING

j = 1, 2, . . .,

yk,j = αj + ρ̂jyk−1,1 − βjyk−1,j+1, (3.5.12)

where

αj =
λ(1− p)

(ξ + j)2
+

λ2pξ

j(ξ + j)

(

φL(ξ)

(ξ + 1)2
− φL(ξ + j)

(ξ + j + 1)2

)

,

ρ̂j =
λpφL(ξ)

j(ξ + j)
,

βj =
λpξφL(ξ + j)

j(ξ + j)2
.

Let δ0 = 1 and δj =
∏j

i=1 βi (j = 1, 2, . . .).

Suppose that, for 1 ≤ κ ≤ k − 1,

yκ,k−κ+1 =

k−1
∑

i=k−κ

(−1)i−k+κ δi
δk−κ

(αi+1 + ρ̂i+1yk−i−1,1)

+ (−1)κ
δk
δk−κ

y0,k+1,

(3.5.13)

then using Eqn. (3.5.12),

yκ+1,k−κ = αk−κ + ρ̂k−κyκ,1 − βk−κyκ,k−κ+1

= αk−κ + ρ̂k−κyκ,1

− βk−κ

(

k−1
∑

i=k−κ

(−1)i−k+κ δi
δk−κ

(αi+1 + ρ̂i+1yk−i−1,1) + (−1)κ
δk
δk−κ

y0,k+1

)

= αk−κ + ρ̂k−κyκ,1 +

k−1
∑

i=k−κ

(−1)i−k+κ+1 δi
δk−κ−1

(αi+1 + ρ̂i+1yk−i−1,1)

+ (−1)κ+1 δk
δk−κ−1

y0,k+1

=

k−1
∑

i=k−κ−1

(−1)i−k+κ+1 δi
δk−κ−1

(αi+1 + ρ̂i+1yk−i−1,1) + (−1)κ+1 δk
δk−κ−1

y0,k+1,

hence Eqn. (3.5.13) is true for 1 ≤ κ ≤ k, and setting κ = k yields

yk,1 =

k−1
∑

i=0

(−1)iδi (αi+1 + ρ̂i+1yk−i−1,1) + (−1)kδky0,k+1.
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Now, let πj = yj,1 − yj−1,1 for j = 1, 2, . . ., then

πj =































α1 + ρ̂1y0,1 − δ1y0,2 − y0,1 for j = 1

(−1)j−1δj−1αj + (−1)jδjy0,j+1 − (−1)j−1δj−1y0,j

+(−1)j−1δj−1ρ̂jy0,1 +
∑j−2

i=0 (−1)iδiρ̂i+1πj−i−1

for j = 2, 3, . . .,

and we have that yk,1 = y0,1 +
∑k

j=1 πj for k = 1, 2, . . .. Now we can examine
∑∞

j=1 πj

to consider the limiting behaviour of yk,1 (since yk,1 is increasing in k, its limit exists,

whether finite or infinite):

∞
∑

j=1

πj =

∞
∑

j=1

(−1)j−1 (δj−1αj − δjy0,j+1 − δj−1y0,j + δj−1ρ̂jy0,1)

+

∞
∑

j=2

j−2
∑

i=0

(−1)iδiρ̂i+1πj−i−1

=

∞
∑

j=1

(−1)j−1 (δj−1αj − δjy0,j+1 − δj−1y0,j + δj−1ρ̂jy0,1)

+
∞
∑

i=0

(−1)iδiρ̂i+1

∞
∑

j=i+2

πj−i−1

=
∞
∑

j=0

(−1)j (δjαj+1 − δj+1y0,j+2 − δjy0,j+1 + δj ρ̂j+1y0,1)

+

∞
∑

i=0

(−1)iδiρ̂i+1

∞
∑

j=1

πj .

Letting y1 = limk→∞ yk,1,

y1 = y0,1 +
∞
∑

j=1

πj

= y0,1 +

∞
∑

j=0

(−1)j (δjαj+1 − δj+1y0,j+2 − δjy0,j+1 + δj ρ̂j+1y0,1)

+ (y1 − y0,1)
∞
∑

i=0

(−1)iδiρ̂i+1

= y0,1 +
∞
∑

j=0

(−1)jδjαj+1 −
∞
∑

j=0

(−1)jδj+1y0,j+2 −
∞
∑

j=0

(−1)jδjy0,j+1

+ y1

∞
∑

i=0

(−1)iδiρ̂i+1
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= y0,1 +
∞
∑

j=0

(−1)jδjαj+1 +
∞
∑

j=1

(−1)jδjy0,j+1 −
∞
∑

j=0

(−1)jδjy0,j+1

+ y1

∞
∑

i=0

(−1)iδiρ̂i+1

=

∞
∑

j=0

(−1)jδjαj+1 + y1

∞
∑

i=0

(−1)iδiρ̂i+1,

and so either y1 is infinite or

y1 =

∑∞
j=0(−1)jδjαj+1

1−∑∞
i=0(−1)iδiρ̂i+1

. (3.5.14)

Now, for k, j = 1, 2, . . ., setting θ = j in Eqn. (3.5.11) yields

Lk(j) =
λ(1− p)

j2
+

λ2p

j(ξ − j)

{

φL(j)

(j + 1)2
− φL(ξ)

(ξ + 1)2

}

− λpφL(ξ)

j(ξ − j)
Lk−1(ξ + 1) +

λpξφL(j)

j2(ξ − j)
Lk−1(j + 1).

If xk,j = Lk(j) (for k = 0, 1, . . ., j = 1, 2, . . .) then x0,j =
λ(1−p)

j2
, and, for j, k = 1, 2, . . .,

xk,j = aj − ρjyk−1,1 + bjxk−1,j+1, (3.5.15)

where

aj =
λ(1− p)

j2
+

λ2pξ

j(ξ − j)

(

φL(j)

(j + 1)2
− φL(ξ)

(ξ + 1)2

)

ρj =
λpφL(ξ)

j(ξ − j)

bj =
λpξφL(j)

j2(ξ − j)
.

Let c0 = 1 and cj =
∏j

i=1 bi (j = 1, 2, . . .).

By iterating Eqn. (3.5.15), we obtain

R
(k)
U = xk,1

=

k−1
∑

i=0

ci (ai+1 − ρi+1yk−i−1,1) + ckx0,k+1

=
k−1
∑

i=0

ci (ai+1 − ρi+1yk−i−1,1) + ck
λ(1− p)

(k + 1)2
.
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Note that for all (k, j), yk,j ≤ xk,j . Hence if yk,1 has infinite limit, then xk,1 must do too,

i.e. if y1 = ∞ then RU = ∞.

Suppose then that yk,1 has a finite limit. Note that as k → ∞, ckx0,k+1 → 0, and that

∑∞
i=0 ciai+1 is absolutely convergent, since |ci| ≤ 1

i!

(

λpξ
|ξ−[ξ]|

)i

and |ai| ≤ λ(1−p)+ λ2pξ
|ξ−[ξ]|

which implies

∞
∑

i=0

|ciai+1| ≤
(

λ(1− p) +
λ2pξ

|ξ − [ξ]|

) ∞
∑

i=0

1

i!

(

λpξ

|ξ − [ξ]|

)i

=

(

λ(1− p) +
λ2pξ

|ξ − [ξ]|

)

e
λpξ

|ξ−[ξ]| ,

and hence is convergent. Further, given that 0 ≤ yk−i−1,1 ≤ limk→∞ yk,1 = y1 and

|ρi| ≤ λp
|ξ−[ξ]| ,

∞
∑

i=0

|ciρi+1yk−i−1,1| ≤
λp

|ξ − [ξ]|y1
∞
∑

i=0

1

i!

(

λpξ

|ξ − [ξ]|

)i

=
λp

|ξ − [ξ]|y1e
λpξ

|ξ−[ξ]| ,

and hence
∑∞

i=0 ciρi+1yk−i−1,1 is convergent. Therefore, R(k)
U has finite limit. Hence,

when
∑∞

i=0 δiρ̂i+1 < 1,

RU = lim
k→∞

k−1
∑

i=0

ci (ai+1 − ρi+1yk−i−1,1)

otherwise RU = ∞.

Letting xj = limk→∞ xk,j , this limit exists for all j if
∑∞

i=0(−1)iδiρ̂i+1 < 1, since x1

exists and xk,j is decreasing in j for fixed k. Hence, if
∑∞

i=0 δiρ̂i+1 < 1, letting k → ∞

in Eqn. (3.5.15) gives us

xj = aj − ρjy1 + bjxj+1, (3.5.16)

which by iterating gives, when y1 <∞,

RU = x1

=
∞
∑

i=0

ci (ai+1 − ρi+1y1) . (3.5.17)
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Conditions for finiteness of RU

We have already ascertained thatRU is finite if and only if y1 is finite. Here we establish

stronger conditions.

First we consider a lower bound for RU in order to show that it is infinite for λ suffi-

ciently large. Recall that in the MBDP,R is the total number of unnamed immediate off-

spring of (a) an unnamed individual and (b) of all named descendants of this unnamed

individual, for whom the unnamed individual is their nearest unnamed ancestor. Con-

sider R−, a lower bound for R in which instead of counting the unnamed offspring

of all named descendants as described, we count only (a) the immediate unnamed off-

spring of the unnamed individual and (b) unnamed individuals who are separated in

the family tree from the unnamed individual by only named ancestors with a natural

lifetime in the region (12 , 1) and an associated delay 1 time unit greater than their latent

period. Clearly then, R− ≤ R, and if R−
U = E [R−], then R−

U ≤ RU .

Named individuals who have a natural lifetime in the interval (12 , 1) and who experi-

ence a delay 1 time unit greater than their latent period, must end their lifetime before

the delay ends, and hence are necessarily untraced. Therefore they produce named

offspring at rate λp over the length of their lifetime, and the probability that a typical

named offspring has a natural lifetime in the interval (12 , 1) and experience a delay 1

time unit greater than their latent period is
(

e−
1
2 − e−1

)

P (TD > TL + 1), and so these

particular named offspring are produced at rate λp
(

e−
1
2 − e−1

)

P (TD > TL + 1). Such

named individuals behave independently from one another, and hence are described

by a branching process. The expected offspring in this branching process is

λp

(

3

2
e−

1
2 − e−1

)

(

e−
1
2 − e−1

)

P (TD > TL + 1)
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and so the total progeny is infinite with positive probability if

λ >

[

p

(

3

2
e−

1
2 − e−1

)

(

e−
1
2 − e−1

)

P (TD > TL + 1)

]−1

.

So (and since these individuals have positive lifetimes and in the MBDP give birth to

unnamed individuals at rate λ(1−p)), for large enough λ,R−
U = ∞ and so alsoRU = ∞.

Now, RU is non-decreasing in λ, so if we define λ∗ = inf {λ : RU = ∞}, then for all λ ≥

λ∗, RU is infinite. However, if λ ∈ [0, λ∗) then RU is finite and is given by Eqn. (3.5.17),

while y1 must also be finite and so is given by Eqn. (3.5.14).

3.6 Iterative tracing, no latent period or delay

We now assume that traced individuals can also name contacts, that is that all individ-

uals name contacts when they are removed, and we begin by treating the case where

TL = TD = 0, for which we show that the type-reproduction number RU depends on

the infectious period distribution only through its mean (which we assume to be finite).

We do this by first assuming TI has finite support, then countable support and finally

assume that it has an arbitrary distribution.

3.6.1 Infectious period with finite support

Suppose that TI has finite support {t1, t2, . . . , tn}, where 0 < t1 < t2 . . . < tn, such that

P(TI = ti) = pi > 0 (i = 1, 2, . . . , n)

and

n
∑

i=1

pi = 1.
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To examine the offspring random variable of the GWP, we return to our typical un-

named individual in the MDBP, A, with lifetime T (so T
D
= TI ). We need to find

RU =
∑n

i=1 pih(ti), where h(t) = E [R|T = t] (0 ≤ t ≤ tn; while TI has finite support we

will require h(t) to have continuous support for the purposes of a renewal argument).

Recall that R = R(0) +
∑∞

i=1Ri, where R(0) is the number of unnamed immediate

descendants and
∑∞

i=1Ri is the remaining number of offspring in the GWP. Now,

R(0)|T = t ∼ Poisson(λ(1− p)t) and so,

E
[

R(0)
∣

∣

∣T = t
]

= λ(1− p)t.

Let N1 denote the number of named immediate (i.e. type-1) offspring of A and, for i =

1, 2, . . . N1 let Zi be the total number of descendants from the ith (arbitrarily ordered)

such individual that contribute to R. Thus

∞
∑

i=1

Ri =

N1
∑

i=1

Zi,

where the sum on the right is zero if N1 = 0. Now N1|T = t ∼ Poisson(λpt), and

conditional upon N1 = k, T = t, the birth times of these k individuals can be obtained

by sampling x independent U(0, t) random variables, and hence theZi are independent

and identically distributed, with common distribution, Z, say. Thus

E

[ ∞
∑

i=1

Ri

∣

∣

∣

∣

∣

T = t

]

=

∞
∑

x=0

P (N1 = k|T = t)xE [Z|T = t]

= λptg(t),

where g(t) = E [Z|T = t], and so

h(t) = λ(1− p)t+ λptg(t).

To obtain g(t), we return to our typical immediate named offspring ofA,B, who is born

V time units before A dies (i.e. V ∼ U(0, t) and has natural lifetime TB . Suppose that
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ti−1 < t ≤ ti, V = v and j = argmaxk {tk−1 : v ≥ tk−1} i.e. j is such that v ∈ [tj−1, tj)

for j = 1, . . . , i− 1 or v ∈ [ti−1, t] for j = i (letting t0 = 0). If TB ≥ v, then B dies when

A dies B’s actual lifetime is v, while if TB < v, B’s actual lifetime is TB . Hence

Z|TB = tk
D
=















R|T = tk (k < j)

R|T = v (k ≥ j),

and so

g(t) =

i−1
∑

j=1

∫ tj

tj−1

1

t





n
∑

k=j

pkh(v) +

j−1
∑

k=1

pkh(tk)



 dv

+

∫ t

ti−1

1

t

(

n
∑

k=i

pkh(v) +
i−1
∑

k=1

pkh(tk)

)

dv,

where sums are zero if vacuous.

Therefore, for ti−1 < t ≤ ti,

h(t) = λ(1− p)t+ λp

i−1
∑

j=1

∫ tj

tj−1





n
∑

k=j

pkh(v) +

j−1
∑

k=1

pkh(tk)



 dv

+ λp

∫ t

ti−1

(

n
∑

k=i

pkh(v) +
i−1
∑

k=1

pkh(tk)

)

dv,

and so,

h′(t) = λ(1− p) + λp

n
∑

k=i

pkh(t) + λp

i−1
∑

k=1

pkh(tk),

which can be solved to give

h(t)
n
∑

k=i

pk =
Ai

λp
eλpt

∑n
k=i pk − (1− p)

p
−

i−1
∑

k=0

pkh(tk).

From this we get

h(tn)pn =
An

λp
eλptnpn − (1− p)

p
−

n−1
∑

k=0

pkh(tk),

and so

RU =
An

λp
eλptnpn − (1− p)

p
.
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Now we shall show that h(t) is continuous. Note that h(t+∆t)−h(t) is bounded above

by the mean number of births in the untraced process (i.e p = 0) during [t, t+∆t], since

(a) not all births count towards h and (b) the tracing has the effect of reducing lifetimes,

and therefore the number of births. Since the mean number of births in the untraced

process during [t, t+∆t] tends to 0 as ∆t ↓ 0, then h(t+∆t)− h(t) → 0 as ∆t ↓ 0, and

so h(t) is continuous.

Since h(t) is continuous, the values of the constants Ai (i = 1, . . . , n) can be determined

by matching boundary values, and also by noting that h(0) = 0. Solving this, we get

Ai = λ(1− p)eλp
∑i−1

j=1 tjpj ,

and hence

RU =
1− p

p

(

eλp
∑n

i=1 tipi − 1
)

=
1− p

p

(

eλpE[TI ] − 1
)

.

3.6.2 Infectious period with countable support

Suppose now that TI has countable support {t1, t2, t3, . . .}, where 0 < t1 < t2 < t3 . . .,

such that

P(TI = ti) = pi > 0 (i = 1, 2, . . .)

and

∞
∑

i=1

pi = 1 and
∞
∑

i=1

piti <∞.

Similar to the finite support, we get, for ti−1 < t ≤ ti,

h(t)
∞
∑

k=i

pk =
(1− p)

p

(

eλp(
∑i−1

j=1 tjpj+t
∑∞

k=i pk) − 1
)

−
i−1
∑

k=0

pkh(tk),

102



CHAPTER 3: CONTACT TRACING

and hence

i
∑

k=0

pkh(tk) + h(ti)
∞
∑

k=i+1

pk =
(1− p)

p

(

eλp(
∑i

j=1 tjpj+ti
∑∞

k=i+1 pk) − 1
)

. (3.6.1)

Now let X be the random variable with mass function P (X = tk) = pk (k = 1, 2, . . .)

and for i = 1, 2, . . ., let Xi = min (X, ti). Then, we can rewrite Eqn. (3.6.1) as

E [h (Xi)] =
(1− p)

p

(

eλpE[Xi] − 1
)

.

Note that Xi ↑ X almost surely as i → ∞, so the Monotone Convergence Theorem

tells us that E [Xi] → E [X] = E [TI ] as i → ∞. Also, h(Xi) ↑ h(X) as i → ∞, so

the Monotone Convergence Theorem implies that RU = E [h(X)] = limi→∞E [h (Xi)].

Putting this together, we get

RU =
1− p

p

(

eλpE[TI ] − 1
)

.

3.6.3 Arbitrarily distributed infectious period

Suppose that TI has an arbitrary distribution, but with the requirement that E [TI ] <∞,

i.e. TI has finite mean.

For h > 0, let T−
h = h⌊TI/h⌋ and T+

h = T−
h + h. Then T−

h ≤ TI ≤ T+
h , and so

E
[

T−
h

]

≤ E [TI ] ≤ E
[

T+
h

]

= E
[

T−
h

]

+ h,

which gives us

E [TI ]− h ≤ E
[

T−
h

]

≤ E [TI ] ,

so as h ↓ 0, E
[

T−
h

]

→ E [TI ] and E
[

T+
h

]

→ E [TI ].

We let R−
h and R+

h be the type-reproduction numbers when the natural lifetime has

distribution T−
h and T+

h , respectively. By sampling shorter natural lifetimes for R−
h
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it is clear that less unnamed offspring are produced, and by sampling longer natural

lifetimes for R+
h it is clear that more unnamed offspring are produced. Hence,

R−
h ≤ RU ≤ R+

h .

However, T−
h and T+

h both have countable support, and hence

R−
h =

1− p

p

(

eλpE[T−
h ] − 1

)

R+
h =

1− p

p

(

eλpE[T+
h ] − 1

)

.

As h ↓ 0,

R−
h → 1− p

p

(

eλpE[TI ] − 1
)

R+
h → 1− p

p

(

eλpE[TI ] − 1
)

.

Therefore,

RU =
1− p

p

(

eλpE[TI ] − 1
)

.

If we let E [TI ] = 1 without loss of generality, then

RU =
1− p

p

(

eλp − 1
)

. (3.6.2)

3.6.4 A simpler derivation

Given that this model provides such a tidy expression for RU , we feel there should be a

tidier method of deriving it in a general case than the method which we have presented

here. To gain some insight into this we present a derivation for the constant infectious

period case.
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3.6.5 Constant infectious period

In the constant infectious period case (TI ≡ ι), we present an alternative derivation

which involves analysing the tree length of a pure birth process over [0, ι], enabling

us to obtain not only the correct expression for RU , but also the probability-generating

function of the offspring random variable GWP.

Consider again our typical unnamed individual in the MBDP, A, who has an active

lifetime of length ι. Recall that each individual gives birth to unnamed individuals

over their active lifetime at the points of a Poisson process (independently of all other

individuals) with rate λ(1 − p). A’s number of offspring in the MBDP therefore has

a Poisson(λ(1 − p)D) distribution, where D is the length of A’s family tree of named

individuals in the MBDP (i.e. the sum of the active lifetimes of A and all descendants

ofAwho are separated fromA by only named individuals), and soRU = λ(1−p)E[D].

Further, since all of the individuals who contribute to D live until the end of A’s life-

time, D is equivalent in distribution to the tree length of a pure-birth process (PBP)

with one initial individual and birth rate λp over [0, ι].

Consider the initial individual in the PBP, Â, say. We shall now analyse D by condi-

tioning back from time-ι to Â′s last birth. First note that since there are no births over

[0, ι] with probability e−λpι, in which case D = ι.

Conditioning on Â having a birth (which happens with probability 1− e−λpι), then the

amount of time this takes place before ι has an Exp(λp) distribution restricted to [0, ι].

Suppose that this last birth happens t units before ι (i.e. at time ι−t), then we know that

over [ι − t, ι] (i.e. a part of the tree of length t), Â has no births. The remainder of the

tree length is determined by the first ι − t time units of the Â’s lifetime, and the t time

units of the offspring’s lifetime (which begins at time ι− t). Since individuals give birth
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uniformly over their lifetimes, this is equivalent to just one individual with lifetime ι,

and hence the remaining tree length is independent of and identically distributed to D.

For an example of how this method works, see Figure 3.2.

(i) (ii)

(iii) (iv)

(v)

Figure 3.2: An example of the ‘conditioning-back’ method used for the constant infec-

tious period. In the tree, active lifetimes are represented by solid lines with

dashed lines indicating births. Each time we condition back to a birth from

(i) to (v), we add a length of time to the total counted (in red), but until

there are no more births, it is always possible to trace a full lifetime back

through the tree in black.

Putting this together we get

E[D] = ιe−λpι +

∫ ι

0
λpe−λpt(t+ E[D])dt

= ιe−λpι +
1

λp
− 1

λp
e−λpι − ιe−λpι +

(

1− e−λpι
)

E[D]

which on rearranging gives

E[D] =
1

λp

(

eλpι − 1
)

,
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and thus (setting ι = 1 without loss of generality)

RU =
1− p

p

(

eλp − 1
)

,

which is the same expression as Eqn. (3.6.2).

Further, we have that sinceR ∼ Poisson(λ(1−p)D),H(s) = E
[

sR
]

= ψ(λ(1−p)(1−s)),

where ψ(θ) = E
[

e−θD
]

and conditioning on the last birth as above, we have, for θ ≥ 0,

ψ(θ) = e−λpιe−θι +

∫ ι

0
λpe−λpte−θtψ(θ)dt

= e−(λp+θ)ι +
λp

λp+ θ

(

1− e−(λp+θ)ι
)

ψ(θ),

whence

ψ(θ) =
e−(λp+θ)ι

1− λp
λp+θ

(

1− e−(λp+θ)ι
) ,

and

H(s) =
e−λ(1−s+ps)ι

1− p
1−s+ps

(

1− e−λ(1−s+ps)ι
) .

The method of looking back along the tree in this manner has been used by, for ex-

ample, Lambert [35], who describes a contour process for a splitting tree, which moves

backwards along the tree until it hits a birth (of a different individual), at which point

it jumps to the death of the individual corresponding to that birth. It is also shown that

the coalescence levels (time back to the point of common ancestry) between consecutive

(in a linear order, which is defined, and which we are implicitly using here) individuals

alive at a certain time, are independent and identically distributed. This corresponds

here to the time lengths we are conditioning back to a birth being independent and

identically distributed.

Note further that we can also obtain the distribution of the number of descendants of

Â born in the PBP over [0, ι]: this is the number of times we have to condition back
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before we find no offspring, and hence this has a Geometric distribution with success

probability e−λpι. The Geometric nature of the size of a birth-death process at a specific

time has previously been noted by Kendall [32]. In an epidemics context, Trapman and

Bootsma [43] showed that the size of the appropriate approximating branching process

at the time of the first detection of an SIR epidemic with detections has a Geometric

distribution.

3.7 Iterative tracing, with latent period and delay

Here we see how the iterative tracing can extend to incorporate a latent period and

delay, in the case of Exponential infectious periods.

3.7.1 Exponential infectious period

Suppose that the infectious periods and delays are exponentially distributed (i.e. TI ∼

Exp(γ) and TD ∼ Exp(ξ), and that the latent periods have an arbitrary distribution TL,

with distribution measure µL and known moment-generating function φL(θ) (θ ≥ 0).

Recall that

hk(t) = E
[

R(k)
∣

∣

∣T = t
]

= λ(1− p)t+ λptgk(t),

where gk(t) = E
[

Z(k)
∣

∣T = t
]

, and Z(k) is the total number of descendants that con-

tribute to R(k) from a typical type-1 individual. As in the analogous single-step case

(see Section 3.5.4) we let TB,D and TB,L be the tracing delay and latent period of B,

respectively, and we let W = max {0, V + TB,D − TB,L}. Now, since both traced and
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untraced individuals can name offspring, we have that

(Z(k)|W = w, TB = tB) =
D















R(k−1)|T = tB (tB < w)

R(k−1)|T = w (tB ≥ w).

Putting this all together yields

gk(t) =

∫ ∞

tD=0
ξe−ξtD

∫ tD+t

tL=tD

∫ t+tD−tL

w=0

1

t
χ(w) dw dµL (tL) dtD

+

∫ ∞

tD=0
ξe−ξtD

∫ tD

tL=0

∫ t+tD−tL

w=tD−tL

1

t
χ(w) dwdµL (tL) dtD,

(3.7.1)

where

χ(w) =

{

e−γwhk−1(w) +

∫ w

u=0
γe−γuhk−1(u)du

}

,

and multiplying Equation(3.7.1) by t gives

tgk(t) =

∫ ∞

tD=0
ξe−ξtD

∫ tD+t

tL=tD

∫ t+tD−tL

w=0
χ(w) dw dµL (tL) dtD

+

∫ ∞

tD=0
ξe−ξtD

∫ tD

tL=0

∫ t+tD−tL

w=tD−tL

χ(w) dwdµL (tL) dtD.

We let Lk(θ) =
∫∞
0 e−θthk(t)dt, and noting that

∫ ∞

t=0
e−θt

∫ ∞

tD=0
ξe−ξtD

∫ tD+t

tL=tD

∫ t+tD−tL

w=0
χ(w) dw dµL (tL) dtD dt

=

∫ ∞

tD=0
ξe−ξtD

∫ ∞

tL=tD

∫ ∞

t1=0
e−θ(t1−tD+tL)

∫ t1

w=0
χ(w) dw dt1 dµL (tL) dtD

=

∫ ∞

tD=0
ξe−ξtD

∫ ∞

tL=tD

∫ ∞

w=0
χ(w)

∫ ∞

t1=w

e−θ(t1−tD+tL) dt1 dw dµL (tL) dtD

=
1

θ

∫ ∞

tL=0
e−θtL

∫ tL

tD=0
ξe−(ξ−θ)tD

∫ ∞

w=0
e−θwχ(w) dw dtD dµL (tL)

=
1

θ

∫ ∞

tL=0
e−θtL

∫ tL

tD=0
ξe−(ξ−θ)tD

(

Lk−1(θ + γ) +
γ

θ
Lk−1(θ + γ)

)

dtD dµL (tL)

=















ξ(θ+γ)
θ2(ξ−θ)

∫∞
tL=0

(

eθtL − e−ξtL
)

Lk−1(θ + γ) dµL (tL) if θ 6= ξ

ξ+γ
ξ

∫∞
tL=0 tLe

−ξtLLk−1(ξ + γ) dµL (tL) if θ = ξ

=















ξ(θ+γ)(φL(θ)−φL(ξ))
θ2(ξ−θ)

Lk−1(θ + γ) if θ 6= ξ

−xi+γ
ξ
φ′L(ξ)Lk−1(ξ + γ) if θ = ξ,
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and further that

∫ ∞

t=0
e−θt

∫ ∞

tD=0
ξe−ξtD

∫ tD

tL=0

∫ t+tD−tL

w=tD−tL

χ(w) dw dµL (tL) dtD dt

=

∫ ∞

t=0
e−θt

∫ ∞

tL=0

∫ ∞

tD=tL

ξe−ξtD

∫ t+tD−tL

w=tD−tL

χ(w) dw dtD dµL (tL) dt

=

∫ ∞

t=0
e−θt

∫ ∞

tL=0
e−ξtL

∫ ∞

t′D=0
ξe−ξt′D

∫ t+t′D

w=t′D

χ(w) dw dt′D dµL (tL) dt

= φL(ξ)

∫ ∞

t=0
e−θt

∫ ∞

t′D=0
ξe−ξt′D

∫ t+t′D

w=t′D

χ(w) dw dt′D dt

= φL(ξ)

∫ ∞

t′D=0
ξe−ξt′D

∫ ∞

w=t′D

χ(w)

∫ ∞

t=w−t′D

e−θt dt dw dt′D

=
φL(ξ)

θ

∫ ∞

w=0
e−θwχ(w)

∫ w

t′D=0
ξe−(ξ−θ)t′D dt′D dw

=















ξφL(ξ)
θ(ξ−θ)

∫∞
w=0

(

e−θw − e−ξw
) {

e−γwhk−1(w) +
∫ w

u=0 γe
−γuhk−1(u)du

}

dw if θ 6= ξ

φL(ξ)
ξ

∫∞
w=0we

−ξw
{

e−γwhk−1(w) +
∫ w

u=0 γe
−γuhk−1(u)du

}

dw if θ = ξ

=















ξφL(ξ)
θ(ξ−θ)

{

θ+γ
θ
Lk−1(θ + γ)− ξ+γ

ξ
Lk−1(ξ + γ)

}

if θ 6= ξ

− ξ+γ
ξ
φL(ξ)L

′
k−1(ξ + γ) if θ = ξ

,

it follows that, for θ 6= ξ

Lk(θ) =
λ(1− p)

θ2
+
λpξ(θ + γ) (φL(θ)− φL(ξ))

θ2(ξ − θ)
Lk−1(θ + γ)

+
λpξφL(ξ)

θ(ξ − θ)

{

θ + γ

θ
Lk−1(θ + γ)− ξ + γ

ξ
Lk−1(ξ + γ)

}

=
λ(1− p)

θ2
+

λpξ

θ(ξ − θ)

{

(θ + γ)φL(θ)

θ
Lk−1(θ + γ)− (ξ + γ)φL(ξ)

ξ
Lk−1(ξ + γ)

}

.

Note that it can be shown in a similar way to Section 3.5.4, that in the case where θ = ξ,

we can obtain Lk(ξ) by taking the limit θ → ξ. We assume now that θ 6= ξ and that

ξ is non-integer, while integer values of ξ can be considered by taking the limit as ξ

approaches the integer.

Setting γ = 1 without loss of generality,

Lk(θ) =
λ(1− p)

θ2
+

λpξ

θ(ξ − θ)

{

(θ + 1)φL(θ)

θ
Lk−1(θ + 1)− (ξ + 1)φL(ξ)

ξ
Lk−1(ξ + 1)

}

.
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If yk,j = Lk(ξ + j) (k = 0, 1, . . ., j = 1, 2, . . .), then y0,j =
λ(1−p)
(ξ+j)2

, and for k = 1, 2, . . .,

yk,j = αj + ρ̂jyk−1,1 − βjyk−1,j+1, (3.7.2)

where

αj =
λ(1− p)

(ξ + j)2

ρ̂j =
λp(ξ + 1)φL(ξ)

j(ξ + j)

βj =
λpξ(ξ + j + 1)φL(ξ + j)

j(ξ + j)2

and we shall let δ0 = 1, δj =
∏j

i=1 βi (j = 1, 2, . . .).

This is of the same form as Eqn. (3.5.12), and hence, either y1 = ∞ or y1 = y∗1 , where,

y∗1 =

∑∞
j=0(−1)jδjαj+1

1−
∑∞

i=0(−1)iδiρ̂i+1
.

Conditions for y1 to be finite can be obtained in the same fashion as in Section 3.5.4.

If xk,j = Lk(j) (for k = 0, 1, . . ., j = 1, 2, . . .) then x0,j =
λ(1−p)

j2
, and, for k = 1, 2, . . .,

xk,j = aj − ρjyk−1,1 + bjxk−1,j+1, (3.7.3)

where

aj =
λ(1− p)

j2

ρj =
λp(ξ + 1)φL(ξ)

j(ξ − j)

bj =
λpξ(j + 1)φL(j)

j2(ξ − j)
.

This is of the same form as Eqn. 3.5.15, and so, when y1 <∞,

RU = x1

=
∞
∑

i=0

ci (ai+1 − ρi+1y1) ,

where c0 = 1 and cj =
∏j

i=1 bi (j = 1, 2, . . .), otherwise RU is infinite.
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3.8 Numerical illustrations

In this section we simulate finite-size epidemics to examine the reliability of the branch-

ing process approximation used in this chapter, and then use numerical results to il-

lustrate the theory of this chapter and examine the effect of dependencies within the

model.

3.8.1 Comparison with simulations

While we consider the population size, n, to be large to enable us to use branching pro-

cess approximations to analyse our epidemic model, in real life n is always finite, and

often not ‘large’ in a mathematical sense. Hence, it is of interest to examine how quickly

the approximation becomes a valid description of the true epidemic model. Figures 3.3

(single-step case) and 3.4 (iterative case) show the final size (i.e. total number of re-

movals) distributions from 100, 000 simulations for population sizes 20, 50, 100 and

200 for the constant infectious period case (no latent period or delay), with λ = 2 and

p = 0.5. For the final size of an epidemic, we expect to see a bimodal distribution, with

one mode corresponding to minor outbreaks (i.e. a small proportion of the population

is infected) and a second corresponding to major outbreaks (i.e. a significant proportion

is infected). We see this behaviour even for n = 20, but there is not a clear distinction

between outbreaks minor and major until about n = 200.

As n→ ∞, the proportion of minor outbreaks should tend to the theoretical extinction

probability for the branching process approximation, pE . Thus, for n large enough we

estimate extinction probability as the proportion of outbreaks that are minor. In Figure

3.5 we plot these estimate extinction probabilities (p̂E) with confidence intervals given

as p̂E ± 2SE where the standard error is SE =
(

(1−p̂E)p̂E
n0

) 1
2 (n0 = 100, 000 is the num-
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Figure 3.3: Final size distributions from 100,000 simulations, when TI ≡ 1, λ = 2 and

p = 0.5 (single-step tracing)
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Figure 3.4: Final size distributions from 100,000 simulations, when TI ≡ 1, λ = 2 and

p = 0.5 (iterative tracing)
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ber of simulations). These estimates are obtained by plotting the final size distributions

of the simulations, determining a cut-off between major and minor outbreaks by sight,

and letting the proportion of outbreaks that are minor be our estimate. The extinction

probabilities in the limit n → ∞ are known to be 0.3236 in the single-step case and

0.4064 in the iterative case (which are represented on the plots by solid lines). In the

single-step case, 0.3236 is consistently in the confidence interval above n = 800, while

in the iterative case, 0.4064 is above n = 1600. This slower convergence to the limiting

behaviour in the iterative case may be less to do with the model and more to do with

a higher extinction probability here (λ was reduced in the single-step case to achieve

a similar extinction probability to the iterative case here and it was seen that conver-

gence was indeed slower). However, in both cases, even for n = 200 the estimates are

reasonably close to the asymptotic value. In the limit n→ ∞, there is always infinitely

many susceptibles, and thus infections do not affect a reduction in the number of sus-

ceptibles. For small n, infections noticeably reduce the number of susceptibles, and the

probability of new infections, and so there will be more minor outbreaks. This is why

we see the extinction probability being overestimated for small n.

3.8.2 Convergence of RU with delays

In the case where TI ∼ Exp(1), TD ∼ Exp(ξ) and TL has an arbitrary distribution

(Section 3.5.4), we showed how conditions for the finiteness of RU can be obtained.

Here we illustrate how this works in practice.

Figure 3.6 shows a plot of y∗1 varying with λ for TL ≡ 0 (note that no latent period gives

an upper bound for RU for arbitrary latent period distribution), p = 1 and ξ = 0.7. We

see that y∗1 increases monotonically before ‘blowing-up’ for the first time (this occurs at
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Figure 3.5: Estimated extinction probabilities (represented by asterisks) from 100, 000

simulations, when TI ≡ 1, λ = 2 and p = 0.5. Crosses represent two

standard errors above and below the estimate and solid lines represent the

true asymptotic extinction probabilities.

around λ = 1.9876). It then becomes negative, but y1 is non-negative and so must then

be ∞ (and so also is RU ). Since y1 is non-decreasing in λ, y1 must be infinite always

after this, even if y∗1 is positive (which it would appear is possible). So in this case, y1

and RU are finite if and only if λ ∈ [0, λ∞), where λ∞ ≈ 1.9876.

Figure 3.6 also shows a plot of RU varying with λ (note that we are assuming RU is

indeed finite for λ ∈ [0, 1.9876)). We see that RU blows up as it gets closer to 1.9876,

i.e. as y∗1 → ∞ for the first time. We get a similar occurrence with other parameter

values/latent period distributions.
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Figure 3.6: y∗1 and RU varying with λ, when TI ∼ Exp(1), TD ∼ Exp(0.7), TL ≡ 0 and

p = 1.

3.8.3 Analysis of model assumptions

We have derived expressions for a type-reproduction number, RU , which differs from

the more traditional reproduction number, R0, in that the counting of offspring is only

of those in an embedded process - many individuals are not directly being counted.

As such, it is less obvious how to interpret differing values of RU - if RU is twice as

large, does that necessarily mean the epidemic is twice as bad? However, recall that

the epidemic will die out with probability 1 if and only if RU < 1. Hence, to study the

model numerically, we do so by examining λcrit, the critical contact rate, i.e. the contact

rate which gives RU = 1.

How λcrit varies with the naming probability, p, is shown in Figure 3.7 for the no latent

period, no delay cases: single-step tracing with exponential and constant infectious pe-

riods, and iterative tracing (recall thatRU depends on the infectious period distribution

only through its mean, and hence so does λcrit). As we would expect, λcrit is higher
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when the infectious period distribution is Exponential, and the range of values of λ,

for which the Exponential case is supercritical while the constant case is subcritical,

increases with p.

As p → 1, λcrit → ∞ in the iterative case, since everyone is being named and so there

are no unnamed offspring. Note however, that we do still have extinction with proba-

bility 1 as the epidemic ends when the initial individual’s infectious period ends. We

can see that the effectiveness of iterative tracing over single-step tracing may be minor

for small p, but increases greatly as p does.
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Figure 3.7: λcrit varying with p, for single-step tracing (Exponential and Constant in-

fectious periods) and iterative tracing (arbitrary infectious period) when

E [TI ] = 1.

Figure 3.8 compares the single-step cases (constant and exponentially-distributed in-

fectious periods), by evaluating the extinction probability, pE , in the constant case at

the critical contact rate in the exponential case for the corresponding value of p (the

critical contact rate being the extreme-most value for which we know the extinction

probability, i.e. it is 1). We see that while for low values of p the extinction probabil-
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ity is close to 1, it drops down to 0.7008 when p = 1. This difference becomes even

more pronounced when there are k > 1 initial unnamed infectives, with an extinction

probability of 0.7008k.
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Figure 3.8: pE varying with p in the single-step constant infectious period case, evalu-

ated at λcrit for the single-step exponential infectious period case.

While we do not have an analytical expression for obtaining pE in subcritical exponen-

tial cases, we can estimate it by simulating the offspring random variable in the GWP

(though it is always more preferable to have analytical results since they are more ac-

curate and generally involve significantly less computation time). In Figure 3.9, we

examine how pE varies with λ, using the analytical values in the constant infectious

period cases and estimated values from simulations in the exponential infectious pe-

riod cases (any ‘wiggles’ exhibited in the curve arise from randomness, we would ex-

pect the true curve to be smoother). These estimates are obtained by simulating the

offspring random variable 100,000 times to obtain an empirical distribution for it, then

our estimate is given as the solution of H̄(s) = s in (0, 1) where H̄(s) is the empirical

pgf of the offspring random variable. There is a clear difference between the iterative
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and single-step cases when p = 1 (and pE = 1 in the iterative case), but this becomes

very small when p = 0.5. However, both when p = 0.5 and when p = 1, the difference

between the exponential and constant cases is pronounced.
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Figure 3.9: pE varying with λ, when E [TI ] = 1 and E [TD] = E [TL] = 0.

Figure 3.10 shows the effect of latent period distribution choice in the model, plotting

λcrit against the latent period mean for the latent period distributions: Exponential,

Gamma (with shape parameter κ = 2, 3, 5, 10) and Constant. Note that here we use

the definition for a Gamma distribution with shape parameter κ and mean µ here as

a distribution having moment-generating function
(

1 + µ
κ
θ
)κ for θ ≥ 0. The infectious

period has an Exp(1) distribution and the delay has an Exp(ξ) distribution. We can see

that the effects of choosing a different latent period distribution increase as the latent

period mean increases, as the delay mean decreases and as the naming probability in-

creases. The difference between Exponential and Constant latent periods (two extremes

of the Gamma distribution, κ = 1 and κ = ∞, respectively) is clearly distinct for given

values of the other parameters. As the latent period mean increases, λcrit increases.

We would expect this behaviour as a longer latent period increases the likelihood of an
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individual being traced, and further they serve less of their natural infectious period if

they are traced.
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Figure 3.10: λcrit varying with latent period mean for different latent period distribu-

tions, when TI ∼ Exp(1) and TD ∼ Exp(ξ).

Figure 3.11 shows the effect of delay distribution choice in the model, plotting λcrit

against the delay mean for the delay distributions: Exponential, Gamma (with shape

parameter κ = 2, 3, 5, 10) and Constant. The infectious period is constant (TI ≡ 1) and

the latent period has an Exp(µ) distribution. We can see that the effects of choosing a

different delay distribution increase as the delay mean increases from zero (though as

the delay mean tends to infinity, λcrit → 1, irrespective of the exact distribution), and as

the naming probability increases. It would appear that as the shape parameter κ of the
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Gamma distribution increases, there is much slower convergence of λcrit to that in the

constant case for smaller µ (i.e. longer latent periods). As delay mean increases, λcrit

decreases. We would expect this as a longer delay means an individual is less likely to

be traced, while if they are they serve more of their natural infectious period.
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Figure 3.11: λcrit varying with delay mean for different delay distributions, when

TI ≡ 1 and TL ∼ Exp(µ).

3.8.4 Effect of dependencies within the tracing model

In Figure 3.12 we compare the true tracing model with the two approximations dis-

cussed in Sections 3.5.3 (a 2-type approximation) and 3.5.3 (a multitype approxima-

tion), when TI ∼ Exp(1). The multitype approximation has the same critical contact

121



CHAPTER 3: CONTACT TRACING

rate as the true model, while the 2-type approximation is fairly close.

We can obtain the extinction probability numerically in the 2-type approximation by

letting
(

q
(0)
U , q

(0)
N

)

= (0, 0), and letting, for k ≥ 1,

q
(k)
U =

1

1 + λ(1− p)
(

1− q
(k−1)
U

)

+ λp
(

1− q
(k−1)
N

) ,

q
(k)
N =

2

2 + λ
2 (2− p)

(

1− q
(k)
U

)

+ λp
2

(

1− q
(k−1)
N

) ,

then the extinction probability is given by limk→∞ q
(k)
U .

In the multitype approximation, note that from Eqn. (3.5.9), we can see that as k → ∞,

qk → 1, and so we are able to solve for q0 numerically using a truncation method. We

let, for i = 1, 2, . . ., q(i,0)0 = 0 and q
(i,j)
i = 1 (for j = 0, 1, . . .), and then, for i = 1, 2, . . .,

j = 1, 2, . . . and k = 0, 1, . . . , i− 1,

q
(i,j)
k =

(k + 1)γ

(k + 1)γ + λ(1−p+k)
k+1

(

1− q
(i,j−1)
0

)

+ λp
k+1

(

1− q
(i,j−1)
k+1

) (k = 0, 1, 2, . . .).

and our extinction probability is given by limi→∞ limj→∞ q
(i,j)
0 .

For smaller supercritical values of λ the more sophisticated multitype approximation

is close to giving the true extinction probability (we have used an estimate obtained

from simulations as in Section 3.8.3), however it is not significantly better than the 2-

type approximation for larger λ. Generally the approximations are fairly reasonable,

though the extinction probabilities can be about 0.1 smaller.

With the 2-type approximation, named individuals have the same active lifetime dis-

tribution, no matter how far removed they are from an unnamed ancestor, so this is

the likely reason that it overestimates the spread of the true model, in which active

lifetimes are reduced as you go down the naming tree. We also see that the multitype

approximation overestimates the spread of the true model, so it seems the inter-sibling
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dependencies have an effect of reducing spread. This may be because if an individual

has a short active lifetime, then their siblings are more likely to, and, furthermore all

their named offspring are then more likely to have much shorter lifetimes and so on.
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Figure 3.12: Comparing the 2-type and multitype approximations with the full model,

with TI ∼ Exp(γ). Extinction probabilities are evaluated for p = 1.

3.8.5 Independent or mutual delays

While we have assumed that sibling units experience independent delays, it has been

seen that RU was unchanged by assuming instead that sibling units experience the

same delay. However, the probability of extinction would not be unchanged, so it

would be of interest to see how much it differs between the two delay assumptions.

Figure 3.13 shows how the extinction probabilities compare for independent and mu-

tual delays in the single-step case when p = 1 and TI ∼ Exp(1). This is done from

simulations of the offspring random variable of the GWP in a similar manner as for

3.11 in Section 3.8.3, with one slight difference: for longer delays, R is infinite with

non-zero probability; to circumvent this we assume that if the number of offspring is
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sufficiently large (here we consider this to mean at least 100), then it is infinite. The

results are shown for λ = 1.5 and TL ≡ 0, λ = 2.5 and TL ≡ 0, and λ = 1.5 and

TL ∼ Exp(1).

We see that there is no dramatic difference between the two delay assumptions, even

as we increase λ or introduce a latent period. In the latter case we can see at least that

the extinction probability is slightly higher for mutual delays, which concurs with the

findings of Section 3.8.4, that dependencies between sibling units increase the extinc-

tion probability.

Similar results were obtained when different assumptions were tested, such as constant

infectious periods, constant latent periods or iterative tracing.
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3.9 Concluding comments

In this chapter, a threshold parameter, RU , has been defined for the contact tracing

model, such that a major epidemic can occur if and only if RU ≥ 1. Expressions for

this parameter were obtained for varying assumptions about the tracing and epidemic

models, and then analysed numerically to gain insight in to their effects. It is clear

that choice of infectious period, latent period and tracing delay distributions has an

effect, increasingly so as it becomes more likely that individuals are traced. This also

increases the material difference between the single-step tracing (traced individuals

are not allowed to name their contacts) and iterative tracing (traced individuals are

allowed to name their contacts). In some cases, explicit expressions for determining

the probability the epidemic becomes extinct are obtained, and while generally it is

seen that we can use simulations to obtain an estimate, it is felt that explicit analysis is

better as it gives us more accurate values in less computation time. Analysis required

the approximating assumption that the at-risk population is large, and it is seen that

this approximation quickly becomes adequate as true population size increases.

We saw that whether an individual’s traced contacts experience the same or indepen-

dent (and identically distributed) delays does not have any impact on RU , nor does it

have a huge impact on the extinction probability. Generally then it would seem that

it is preferable to assume the delays are independent to reduce the dependencies of

sibling units, without fear that making this assumption to increase tractability will dra-

matically alter results.

Here we have only considered forward tracing, that is, that infectees may be traced

by being named by their infector, but not vice versa. Backward tracing assumes the

tracing goes in the other direction, while full tracing allows for an individual to name
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anyone they have been in contact with. These are generally more difficult to analyse

than forward tracing, but likely more effective at controlling an epidemic (certainly in

the full tracing case). Hence it would be of interest to see what progress, if any, can

be made considering either of these. We have not assumed any population structure

in this chapter beyond homogeneous mixing. We consider a model in Chapter 4 that

incorporates both the household-structured population of Chapter 2 and the contact

tracing of this chapter. We have also assumed that naming probability is fixed for all

individuals, it may be of interest to consider differing models for the naming proba-

bility for a given individual, wherein it may be random, and it may depend on the

individual’s infectious period length and number of contacts.
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Household contact tracing with local

tracing

4.1 Introduction

In Chapter 2 an intervention strategy was modelled for an epidemic spreading amongst

a population partitioned into households, in which, upon diagnosis of an infected in-

dividual, intervention is directed towards that individual’s household, by vaccinating

their housemates or isolating them. It was seen that, although this intervention can

reduce spread of the disease, it can not always guarantee to prevent a major outbreak,

particularly if a diagnosed individual is expected to have made at least one infectious

contact outside their household. Thus it is of interest to consider further intervention

to see if it can make major outbreaks an impossibility.

So, in this chapter we consider an intervention model which not only has the local trac-

ing element of Chapter 2, in that, upon diagnosis of an infected individual their house-

mates are vaccinated or isolated, but also a contact tracing element, as in Chapter 3. We

assume that diagnosed individuals can name the infectious contacts they have made

127



CHAPTER 4: HOUSEHOLD CONTACT TRACING WITH LOCAL TRACING

outside their household, and then a named contact and their household are vaccinated

after some tracing delay. The effect of this contact tracing is that an infected house-

hold may be vaccinated before anyone has been diagnosed. Further, it can prevent the

disease spreading within the infected household, or better still prevent anyone in an

infected household even becoming infectious. This is possible because we assume that

infected individuals experience two latent periods - during the first a vaccination will

prevent them from becoming infectious, while during the second it will not (this differs

from Chapter 2, in which it is assumed there is only one latent period, and whether or

not the vaccine had an effect on latent individuals was specified).

Kaplan et al. [30] suggested that a contact-traced vaccination scheme is not particularly

effective in a homogeneously-mixing population, under the two latent period assump-

tion we make here. Their reasoning was that there is a ‘race to trace’ - the infected

individual must be traced before they become vaccine-insensitive. In this chapter, we

are assuming that when an individual is traced, not only they, but also their entire

household, is vaccinated, and so the effect of tracing an individual is increased, partic-

ularly because the other household members are more likely to be vaccine-sensitive or

even, more specifically, susceptible.

Becker et al. [18] and Pike [40] also modelled contact tracing for epidemics spreading

amongst a community of households. Becker et al. [18] assumed that on diagnosis

an individual’s housemates are isolated and a fraction of infections outside the house-

hold are traced and isolated. The work in this chapter differs from theirs on four main

counts: (i) they made a simplifying assumption by assuming that infectious contacts

between households occur at the beginning of the infector’s infectious period, while

here results are more exact; (ii) here a household may be vaccinated instead of isolated,
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vaccination being possibly a less intrusive form of intervention; (iii) in their contact

tracing model, only the traced individual is treated, while here it is assumed that the

traced individual and all their housemates are treated, increasing the effect of the trac-

ing; and (iv) we incorporate a tracing delay. Pike [40] assumed that on diagnosis an in-

dividual’s housemates are vaccinated and isolated and a fraction of infections outside

the household are traced and the traced individual and their household is vaccinated.

The work in this chapter differs from his on two main counts: (i) he makes a simpli-

fying assumption to remove the interdependencies of sibling units, here by assuming

infectious periods are of fixed length the results are more exact; and (ii) in our model

the assumption of households being isolated is relaxed to assume there is a probabil-

ity of isolation of a household at the first removal within that household, which may

be considered a less intrusive intervention policy, but does allow infectious contacts

emanating from a household which has at least one diagnosed individual.

This chapter is structured as follows. In Section 4.2, the epidemic, vaccine and contact

tracing models are defined. The two-type branching process of named and unnamed

households and single household epidemic are introduced, and how these are used

to determine the threshold behaviour is described. Possible outcomes of the single

household epidemic are listed, and their contributions to the threshold parameter and

probability of a global epidemic are described. Expressions for these contributions

are derived for constant latent periods in Section 4.3 and for exponentially-distributed

latent periods in Section 4.4, with constant and exponentially-distributed delays con-

sidered in both sections. Section 4.5 contains some numerical illustrations of the theory,

and Section 4.6 provides some concluding comments.

129



CHAPTER 4: HOUSEHOLD CONTACT TRACING WITH LOCAL TRACING

4.2 Background and general theory

4.2.1 Model

Consider the following modified SEIR (susceptible → exposed → infective → removed)

epidemic model among a closed population of size N . At any time, each individual in

the population is in one of five states: susceptible, vaccine-sensitive latent, vaccine-

insensitive latent, infective or removed. Initially a small number of individuals are

infectives and the rest are susceptible. A susceptible individual becomes a vaccine-

sensitive latent individual if he/she makes contact with an infective in a manner de-

scribed below. A vaccine-sensitive latent individual remains vaccine-sensitive for a

period of time distributed according to a random variable TL,1, having an arbitrary but

specified distribution, at the end of which he/she becomes vaccine-insensitive latent.

A vaccine-insensitive latent individual remains latent for a period of time distributed

according to a random variable TL,2, having an arbitrary but specified distribution, at

the end of which he/she becomes infective. An infective individual remains infectious

for a period of time distributed according to a random variable TI , having an arbitrary

but specified distribution with finite moment-generating function, and then becomes

removed. Once removed, an individual no longer plays a part in the epidemic process.

The epidemic ends when there are no more latent or infective individuals left in the

population.

The population of N individuals is partitioned into m households of size n. During

his/her infectious period, a given infective makes global contacts with any given sus-

ceptible in the population at times given by the points of a homogeneous Poisson pro-

cess with rate λG/N and, additionally, local contacts with any given susceptible in its
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household at times given by the points of a homogeneous Poisson process with rate λL.

All of the Poisson processes, and the random variables describing latent and infectious

periods, are assumed to be mutually independent. Note that, for ease of exposition,

households are assumed to be of the same size, but the theory may be easily extended

to consider households of unequal size.

There are local and global contact tracing policies incorporated in the model. The local

tracing works at the within-household level. Upon the first removal within a house-

hold, all remaining members of the household are vaccinated, unless they have al-

ready been vaccinated as a result of the global tracing described below. We assume

that the vaccine is perfect, that is that if an individual is in either the susceptible or

vaccine-sensitive latent state when they receive the vaccine, then they are rendered en-

tirely immune (i.e. they will never become infectious), otherwise the vaccine has no

effect. Additionally, at the first removal (and only at the first removal) in a household,

the household is isolated (or quarantined) with probability pI . Once a household has

been isolated, members of that household can no longer make global contacts. While a

household is not isolated we call it active, and inactive while it is isolated.

The global tracing works at the between-household level. Additionally, when an in-

fectious individual becomes removed in an active household, they name each of their

global contacts, independently, with probability pc, and after a (independent) delay,

distributed according to a random variable TD (with an arbitrary but specified distri-

bution), a given named contact and their household are vaccinated, unless they have

already been vaccinated as a result of the local tracing described above, with the vac-

cine action being the same as that of the local tracing. Note that if a household is never

isolated, then all infectious individuals will be able to name global contacts when they
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are removed, while if the household is isolated, only the first removed individual will

be able to. Further, note that each infected household is vaccinated once, and only once.

4.2.2 Threshold behaviour

If the number of households m is large and the number of initial infectives is small,

then during the early stages of an epidemic, there is only a small probability that a

global contact is made with an individual from a household containing at least one non-

susceptible individual. Thus, we can approximate the initial stages of the epidemic by

a process in which all global contacts are made with individuals residing in completely

susceptible households.

A problem with making analytical progress in contact tracing models, is that sibling

units (i.e. households who are infected by the same individual) are not necessarily in-

dependent, and thus the process of infected households in the approximation does

not necessarily follow a branching process. Consider an infectious individual who is

asked to name global contacts. The time until vaccination from infection for these con-

tacts depends on (a) their delays (which are independent of one another) and (b) the

time that they are named in relation to when they were infected. The latter depends

upon the length of their infector’s infectious period, and thus these sibling units are

co-dependent.

From now on we will assume that the infectious periods all have fixed value ι (i.e. TI ≡

ι). In this case, if an infector (who can name global contacts) has k global contacts, then

since global contacts occur uniformly and at random over the length of the infectious

period, the time periods from infectious contact to the infector’s removal (and hence

the naming of contacts) can be sampled as k independent and identically distributed
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U(0, ι) random variables. Since the infectious period length is fixed, their is no co-

dependence for the sibling units, and hence the process of infected households in the

approximation does follow a branching process.

Consider a single household epidemic: a completely susceptible, typical household

into which a global contact introduces infection, and suppose that no further global

contact into the household occurs subsequently (thus initially there are n− 1 suscepti-

bles and 1 vaccine-sensitive latent). We call the number of global contacts emanating

from this single household epidemic R. Then R∗ = E[R] is a threshold parameter, since

if R∗ ≤ 1 then a global epidemic cannot occur (a global epidemic occurs if, in the limit

m → ∞, the epidemic infects infinitely many households in the branching process ap-

proximation). When R∗ > 1, the probability of a global epidemic, pG say, is non-zero.

4.2.3 Two-type process and active severity

There are two types of households in this branching process: unnamed and named,

which we will label type-0 and 1, respectively. For i, j = 0, 1, let Rij be the number of

type-j contacts emanating from a typical type-i household, and letMij = E [Rij ]. Then,

from standard branching process theory (e.g. Chapters 2 and 5 of Haccou et al. [23]),

R∗ is given by the largest eigenvalue of the matrix of mean offspring [Mij ], i.e.

R∗ =
M00 +M11 +

√

(M00 −M11)
2 + 4M01M10

2
,

and recall that when R∗ > 1, there is a positive probability of a global epidemic. So,

whenR∗ > 1, let pGi (i = 0, 1) be the probability of a global epidemic given that the epi-

demic is started by one infective in a type-i household, then (pG0, pG1) = (1− τ0, 1− τ1)
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where (τ0, τ1) is the solution for (s0, s1) in (0, 1)× (0, 1) of the system of equations

si = fi(s0, s1), (i = 0, 1)

where, for i = 0, 1, fi(s0, s1) = E
[

sRi0
0 sRi1

1

]

.

Consider an infective in the single household epidemic. They will experience part (or

all) of their infectious period while their household is active, which we refer to as their

active infectious period. We call the sum of all active infectious periods in a household,

the active severity of that household. We label the active severity of a type-i (i = 0, 1)

household as Xi. We can write this in the form, for i = 0, 1

Xi = X+
i +X−

i ,

where X+
i and X−

i are the sums of the active infectious periods of individuals who

can name contacts and who cannot name contacts, respectively (recall that the latter

can only occur in isolated households). Since global contacts are made by an infec-

tive at rate λG during his/her active infectious period, the numbers of unnamed and

named global contacts emanating from a type-i (i = 0, 1) household (i.e. Ri0 and Ri1,

respectively) have Poisson distributions with random means λG
(

(1− pc)X
+
i +X−

i

)

and λGpcX+
i , respectively. Therefore, for i = 0, 1,

Mi0 = λG
(

(1− pc)E
[

X+
i

]

+ E
[

X−
i

])

, (4.2.1)

Mi1 = λGpcE
[

X+
i

]

, (4.2.2)

while, for i = 0, 1,

fi (s0, s1) = ψi (λG {(1− pc) (1− s0) + pc (1− s1)} , λG (1− s0)) , (4.2.3)

where, for i = 0, 1 and θ1, θ2 ≥ 0, ψi (θ1, θ2) = E
[

e−(θ1X
+
i +θ2X

−
i )
]

.
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4.2.4 Subcases of the single household epidemic

Consider a global contact between an infector, A say, and an infectee, B say. Let the

remaining infectious period of A when B is infected be U . Then U ∼ U(0, ι). Let the

delay until vaccination for B’s household be W , so if B is named, B’s household is

vaccinated at time U +W after B is infected. Now, let B have vaccine-sensitive and

-insensitive latent periods TB,1 and TB,2 respectively.

We will set time-zero for B’s household to be the moment at which B begins his/her

infectious period, i.e. B is at time − (TB,1 + TB,2), becomes vaccine-insensitive at time

−TB,2 and is removed at time ι. We let S(t), L1(t), L2(t), I(t) and R(t) be the num-

ber of susceptible, vaccine-sensitive latent, vaccine-insensitive latent, infective and re-

moved individuals, respectively, in B’s household at time t. Further, we let Y (t) =

max {0, L2(t) + I(t) +R(t)− 1} be the number of B’s housemates (excluding B them-

selves) who are vaccine-insensitive at time t.

Let V be the time of the vaccination if B were named (note that if B is not named the

vaccination time is ι), then

V =















U +W − TB,1 − TB,2 if U +W − TB,1 − TB,2 < ι

ι otherwise

We now break this down into 6 possible cases, represented in Table 4.1.

Note that in the first two cases it does not matter whether or not the household is

isolated as there will be no infectives after B’s removal.

For j = 1, 2, . . . , 6, let qj be the probability of Cj given that B is named. From the
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Table 4.1: Subcases of the single household epidemic

Event Vaccination time if B named Household isolated

C1 −TB,1 − TB,2 ≤ V < −TB,2 yes or no

C2 −TB,2 ≤ V < 0 yes or no

C3 0 ≤ V < ι no

C4 0 ≤ V < ι yes

C5 V = ι no

C6 V = ι yes

information above,

q1 = P (U + TD < TL,1) ,

q2 = P (TL,1 ≤ U + TD < TL,1 + TL,2) ,

q3 = (1− pI)P (TL,1 + TL,2 ≤ U + TD < TL,1 + TL,2 + ι) ,

q4 = pIP (TL,1 + TL,2 ≤ U + TD < TL,1 + TL,2 + ι) ,

q5 = (1− pI)P (U + TD ≥ TL,1 + TL,2 + ι) ,

q6 = pIP (U + TD ≥ TL,1 + TL,2 + ι) .

Define, for j = 1, 2, . . . , 6 and θ1, θ2 ≥ 0,

G+
j = E

[

X+
1

∣

∣Cj

]

,

G−
j = E

[

X−
1

∣

∣Cj

]

,

Hj (θ1, θ2) = E
[

e−(θ1X
+
1 +θ2X

−
1 )
∣

∣

∣
Cj

]

.

We have (noting that an unnamed household is effectively the same as a named house-
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hold with V = ι)

E
[

X+
1

]

=
6
∑

j=1

qjG
+
j ,

E
[

X−
1

]

=

6
∑

j=1

qjG
−
j ,

E
[

X+
0

]

= (1− pI)G
+
5 + pIG

+
6 ,

E
[

X−
0

]

= (1− pI)G
−
5 + pIG

−
6 ,

ψ1 (θ1, θ2) =

6
∑

j=1

qjHj (θ1, θ2) ,

ψ0 (θ1, θ2) = (1− pI)H5 (θ1, θ2) + pIH6 (θ1, θ2) .

Now, we consider the outcomes in each event. Note that in all cases except C1, B will

experience a full active infectious period (i.e. of length ι).

4.2.5 Outcomes in the subcases of the single household epidemic

In event C1, the household is vaccinated before B becomes vaccine-insensitive latent

and hence no-one in B’s household ever becomes infectious, and so

G+
1 = G−

1 = 0,

while, for θ1, θ2 ≥ 0,

H1 (θ1, θ2) = 1.

In event C2, the household is vaccinated while B is vaccine-insensitive latent, and

hence only B will become infectious (and experience their full lifetime), and so

G+
2 = ι,

G−
2 = 0,
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while, for θ1, θ2 ≥ 0,

H2 (θ1, θ2) = e−θ1ι.

In event C3, the household is not isolated and the household is vaccinated while B

is infectious. In this case, if the number of vaccine-insensitive individuals when the

household is vaccinated is k (k = 1, 2, . . . , n), then X+
1 = kι and X−

1 = 0. This will

depend on the vaccination time in this case, i.e. V restricted to [0, ι). If U + TD and

TL,1 + TL,2 have probability measures µU+TD
and µTL,1+TL,2

, then V restricted to [0, ι)

has probability measure, for t ∈ [0, ι)

µ(t)

P (0 ≤ V < ι)
= (1− pI)

µ(t)

q3
,

noting that q3 = (1− pI)P (0 ≤ V < ι), and where, for t ∈ (0, ι),

µ(t) =

∫ ∞

0
µU+TD

(t+ τ) dµTL,1+TL,2
(τ). (4.2.4)

So, if we let

A3 =

∫ ι

0
E [Y (t)|V = t] dµ(t),

B3(θ) =

∫ ι

0
E
[

e−θιY (t)
∣

∣

∣V = t
]

dµ(t)

then

G+
3 = ι+

1− pI
q3

A3ι,

G−
3 = 0,

while, for θ1, θ2 ≥ 0,

H3 (θ1, θ2) =
1− pI
q3

e−θ1ιB3 (θ1) .
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In event C4 the household is isolated and the household is vaccinated while B is in-

fectious. In the isolation cases (C4 and C6) only B is allowed to name contacts, and so

X+
1 = ι, while X−

1 is the rest of the household’s active severity. Let Z(t) be the total

severity of the household excluding B themselves from time-zero up until time t, that

is, for t > 0

Z(t) =

∫ t

0
(I(τ)− 1) dτ.

In this case V restricted to [0, ι) has probability measure

µ(t)

P (0 ≤ V < ι)
= pI

µ(t)

q4
,

noting that q4 = pIP (0 ≤ V < ι), and where µ(t) is the same as in Eqn. (4.2.4). Let

A4 =

∫ ι

0
E [Z(ι)|V = t] dµ(t),

B4(θ) =

∫ ι

0
E
[

e−θZ(ι)
∣

∣

∣V = t
]

dµ(t)

then

G+
4 = ι,

G−
4 =

pI
q4
A4,

while, for θ1, θ2 ≥ 0,

H4 (θ1, θ2) =
pI
q4
e−ιθ1B4 (θ2) .

In event C5 the household is not isolated and the household is vaccinated when B has

been removed. In this case, if there are k vaccine-insensitive individuals immediately

when B is removed (including B), then X+
1 = kι and X−

1 = 0, and so if we let

A5 = E [Y (ι)|V = ι] ,

B5(θ) = E
[

e−θιY (ι)
∣

∣

∣
V = ι

]

(θ > 0),
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then

G+
5 = (A5 + 1) ι,

G−
5 = 0,

while, for θ1, θ2 ≥ 0,

H5 (θ1, θ2) = e−θ1ιB5 (θ1) .

Finally, in event C6, the household is isolated and is vaccinated at the first removal

(though the vaccination actually has no effect in this case). If we let

A6 = E [Z(ι)|V = ι] ,

B6(θ) = E
[

e−θZ(ι)
∣

∣

∣
V = ι

]

,

then

G+
6 = ι,

G−
6 = A6,

while, for θ1, θ2 ≥ 0,

H6 (θ1, θ2) = e−ιθ1B6 (θ2) .

Putting this all together

E
[

X+
0

]

= ι+ (1− pI)A5ι,

E
[

X−
0

]

= pIA6,

E
[

X+
1

]

= ι [1− q1 + (1− pI)A3 + q5A5] ,

E
[

X−
1

]

= pIA4 + q6A6,
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while for θ1, θ2 ≥ 0,

ψ0 (θ1, θ2) = e−θ1ι [(1− pI)B5 (θ1) + pIB6 (θ2)] ,

ψ1 (θ1, θ2) = q1 + e−θ1ι [q2 + (1− pI)B3 (θ1) + q5B5 (θ1) + pIB4 (θ2) + q6B6 (θ2)] .

Note that we do not explicitly need to determine q3 or q4. What remains then is to deter-

mine qi for i = 1, 2, 5, 6, and Ai and Bi(θ) for i = 3, 4, 5, 6. We obtain these for different

latent period and delay distributions in the sequel, but first we derive distributions for

U + TD for different delay period distributions.

4.2.6 Different delay period distributions

Suppose that the TD ≡ η, i.e. constant with value η, then U+TD has probability density

function

fU+TD
(t) =















1
ι

if η ≤ t ≤ η + ι

0 otherwise

and distribution function

FU+TD
(t) =































0 if t < η

t−η
ι

if η ≤ t ≤ η + ι

1 if t > η + ι

Suppose instead that TD ∼ Exp(ξ), i.e. exponentially distributed with mean 1
ξ
, then

U + TD has probability density function

fU+TD
(t) =















∫ t

0
1
ι
ξe−ξ(t−u)du if 0 ≤ t ≤ ι

∫ ι

0
1
ι
ξe−ξ(t−u)du if t > ι

=















1
ι

(

1− e−ξt
)

if 0 ≤ t ≤ ι

1
ι
e−ξt

(

eξι − 1
)

if t > ι
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and distribution function

FU+TD
(t) =















1
ι

(

t− 1
ξ

(

1− e−ξt
)

)

if 0 ≤ t ≤ ι

1− 1
ξι
e−ξt

(

eξι − 1
)

if t > ι

.

4.2.7 Notation

The most important parameters appearing throughout this chapter are listed in Table

4.2, along with brief definitions.

4.3 Constant latent periods

Let TL1 ≡ ν1 and TL2 ≡ ν2, where ν1 + ν2 ≥ ι (it is difficult to make analytical progress

when ν1 + ν2 < ι as this means that it is possible that multiple individuals may be

infectious before the first removal, and therefore the single household epidemic is non-

Markovian before the first removal, which is fairly problematic given that we are con-

cerned with the state of the single household epidemic up until the first removal).

Consider the isolation cases C4 and C6. Besides the original infected individual, B,

no other members of B’s household will be infectious before B’s removal (and the

household’s isolation). Thus,

A4 = A6 = 0,

while for θ ≥ 0,

B4(θ) =

∫ ι

0
dµ(t), B6(θ) = 1.

For the non-isolation cases C3 and C5, we need to obtain the distribution of Y (t), the

number of B’s housemates who are vaccine-insensitive at time t. Housemates of B
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Table 4.2: List of important parameters for Chapter 4.

parameter description

N number of individuals in the population

n number of individuals in each household

λL local (i.e. within-household) individual-to-individual contact rate

λG/N global (i.e. between-household) individual-to-individual contact rate

pI probability that a household is isolated at the first removal

pc probability that a global contact is named

ι length of infectious period (which is constant)

µ1 rate parameter for exponentially distributed vaccine-sensitive latent

period (i.e. mean= 1
µ1

)

µ2 rate parameter for exponentially distributed vaccine-insensitive latent

period (i.e. mean= 1
µ2

)

ν1 length of constant vaccine-sensitive latent period

ν2 length of constant vaccine-insensitive latent period

η length of constant tracing delay

ξ rate parameter for exponentially distributed tracing delay (i.e. mean= 1
ξ

)

R∗ expected number of global contacts emanating from a typical single

household epidemic

pG probability of a global epidemic

Mij expected number of type-j global contacts emanating from a typical type-i

household (type-0=unnamed, type-1=named)

Xi active severity of a type-i household

X+
i , X

−

i sum of active infectious periods in type-i household of individuals who

can name contacts (+)/can not name contacts (−)
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will be vaccine-insensitive at time t if they have been infected and ended their vaccine-

sensitive latent period before t, i.e. they have been infected before time t−ν1, provided

ν1 ≤ t (if ν1 > t, then none ofB’s housemates will be vaccine-insensitive at time t). Each

housemate ofB is infected before time t−ν1 (ν1 ≤ t) with probability 1−e−λL(t−ν1), in-

dependently of one another. Thus, for t ≥ ν1, Y (t)|V = t ∼ Bin
(

n− 1, 1− e−λL(t−ν1)
)

,

and so

E[Y (t)|V = t] =















0 if t < ν1

(n− 1)
(

1− e−λL(t−ν1)
)

if t ≥ ν1,

and thus

A3 =















0 if ι < ν1

(n− 1)
∫ ι

ν1

(

1− e−λL(t−ν1)
)

dµ(t) if ι ≥ ν1,

while

A5 = E[Y (ι)|V = ι] =















0 if ι < ν1

(n− 1)
(

1− e−λL(ι−ν1)
)

if ι ≥ ν1.

Further, for θ ≥ 0,

E
[

e−θιY (t)
∣

∣

∣
V = t

]

=















1 if t < ν1

(

e−λL(t−ν1) +
(

1− e−λL(t−ν1)
)

e−ιθ
)n−1

if t ≥ ν1,

and thus

B3(θ) =















∫ ι

0 dµ(t) if ι < ν1

∫ ν1
0 dµ(t) +

∫ ι

ν1

(

e−λL(t−ν1) +
(

1− e−λL(t−ν1)
)

e−ιθ
)n−1

dµ(t) if ι ≥ ν1,

while

B5(θ) =















1 if ι < ν1

(

e−λL(ι−ν1) +
(

1− e−λL(ι−ν1)
)

e−ιθ
)n−1

if ι ≥ ν1.

In the remainder of this section we determine qi (i = 1, 2, 5, 6), A3 and B3(θ) for differ-

ent delay distributions.
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Notation

For θ ≥ 0, γ ≥ 0 and a ≤ b, let

χ (θ, γ, a, b) =

∫ b

a

e−γt
(

e−λL(t−ν1) +
(

1− e−λL(t−ν1)
)

e−ιθ
)n−1

dt

= e−γν1

n−1
∑

k=0

(

n− 1

k

)

e−kιθ
k
∑

j=0

(

k

j

)

(−1)j

× e−(γ+λL(n+j−k−1))(a−ν1) − e−(γ+λL(n+j−k−1))(b−ν1)

γ + λL(n+ j − k − 1)
.

4.3.1 Exponential delay

Suppose that TD ∼ Exp(ξ), i.e. exponentially distributed with mean 1
ξ
.

The probability of event C1 given B’s is named is

q1 = P (U + TD < TL,1)

= FU+TD
(ν1)

=















1
ι

(

ν1 − 1
ξ

(

1− e−ξν1
)

)

if 0 ≤ ν1 ≤ ι

1− 1
ξι
e−ξν1

(

eξι − 1
)

if ν1 > ι,

while the probability of event C2 given B is named is

q2 = P (TL,1 ≤ U + TD < TL,1 + TL,2)

= FU+TD
(ν1 + ν2)− FU+TD

(ν1)

=















1− 1
ξι
e−ξ(ν1+ν2)

(

eξι − 1
)

− 1
ι

(

ν1 − 1
ξ

(

1− e−ξν1
)

)

if 0 ≤ ν1 ≤ ι

1
ξι
e−ξν1

(

1− e−ξν2
) (

eξι − 1
)

if ν1 > ι.
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To obtain A3 and B3(θ) we need to find the measure of V restricted to (0, ι), which is,

for t ∈ (0, ι)

µ(t) = fU+TD
(t+ ν1 + ν2)

=
1

ι
e−ξ(t+ν1+ν2)

(

eξι − 1
)

,

thus, for ι ≥ ν1,

A3 =
(n− 1)

ι
e−ξ(ν1+ν2)

(

eξι − 1
)

×
(

1

ξ

(

e−ξν1 − e−ξι
)

− 1

ξ + λL

(

e−ξν1 − e−(ξ+λL)ι+λLν1
)

)

while, for θ ≥ 0,

B3(θ) =















1
ξι
e−ξ(ν1+ν2−ι)

(

1− e−ξι
)2 if ι < ν1

1
ι
e−ξ(ν1+ν2)

(

eξι − 1
) (

1− e−ξν1
)

χ (θ, ξ, ν1, ι) if ι ≥ ν1

and

B4(θ) =
1

ξι
e−ξ(ν1+ν2−ι)

(

1− e−ξι
)2
.

The probability of event C5 given that B is named is

q5 = (1− pI)P (U + TD ≥ TL,1 + TL,2 + ι)

= (1− pI) (1− FU+TD
(ν1 + ν2 + ι))

=
1− pI
ξι

e−ξ(ν1+ν2)
(

1− e−ξι
)

while the probability of event C6 given that B is named is

q6 =
pI
ξι
e−ξ(ν1+ν2)

(

1− e−ξι
)

.
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4.3.2 Constant delay

Suppose that TD ≡ η, i.e. constant with value η.

The probability of event C1 given that B is named is

q1 = P (U + TD < TL,1)

= FU+TD
(ν1)

=































0 if ν1 < η

ν1−η
ι

if η ≤ ν1 ≤ η + ι

1 if ν1 > η + ι,

while the probability of event C5 given that B is named is

q2 = P (TL,1 ≤ U + TD < TL,1 + TL,2)

= FU+TD
(ν1 + ν2)− FU+TD

(ν1)

=



















































































0 if ν1 + ν2 < η

0 if ν1 > η + ι

1 if ν1 < η, ν1 + ν2 > η + ι

ν1+ν2−η
ι

if ν1 < η ≤ ν1 + ν2 ≤ η + ι

ν2
ι

if η ≤ ν1, ν1 + ν2 ≤ η + ι

η+ι−ν1
ι

if η ≤ ν1 ≤ η + ι < ν1 + ν2.

The measure of V restricted to (0, ι) is
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µ(t) = fU+TD
(t+ ν1 + ν2)

=















































0 if ν1 + ν2 > η + ι

0 if ν1 + ν2 + ι < η

1
ι

for η − ν1 − ν2 < t ≤ ι if ν1 + ν2 < η ≤ ν1 + ν2 + ι

1
ι

for 0 < t ≤ η + ι− ν1 − ν2 if η ≤ ν1 + ν2 ≤ η + ι

thus, for ι ≥ ν1,

A3 =



















































































































0 if ν1 + ν2 > η + ι

0 if ν1 + ν2 + ι < η

0 if η ≤ ν1 + ν2 ≤ η + ι < 2ν1 + ν2

n−1
ι

(ι+ ν1 + ν2 − η

− 1
λL

(

e−λL(η−2ν1−ν2) − e−λL(ι−ν1)
)

)

if 2ν1 + ν2 < η ≤ ν1 + ν2 + ι

n−1
ι

(

ι− ν1 − 1
λL

(

1− e−λL(ι−ν1)
)

)

if ν1 + ν2 < η ≤ 2ν1 + ν2

n−1
ι

(ι+ η − 2ν1 − ν2

− 1
λL

(

1− e−λL(η+ι−2ν1−ν2)
)

)

if 2ν1 + ν2 − ι ≤ η ≤ ν1 + ν2

while, for θ ≥ 0,

B3(θ) =



















































































0 if ν1 + ν2 > η + ι

0 if ν1 + ν2 + ι < η

η+ι−ν1−ν2
ι

if η ≤ ν1 + ν2 ≤ η + ι < 2ν1 + ν2

1
ι
χ (θ, 0, η − ν1 − ν2, ι) if 2ν1 + ν2 < η ≤ ν1 + ν2 + ι

1
ι
(2ν1 + ν2 − η + χ (θ, 0, ν1, ι)) if ν1 + ν2 < η ≤ 2ν1 + ν2

1
ι
(ν1 + χ (θ, 0, ν1, η + ι− ν1 − ν2)) if η ≤ ν1 + ν2 ≤ η + ι.
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and

B4(θ) =















































0 if ν1 + ν2 > η + ι

0 if ν1 + ν2 + ι < η

ι+ν1+ν2−η
ι

if ν1 + ν2 < η ≤ ν1 + ν2 + ι

ι+η−ν1−ν2
ι

if 2ν1 + ν2 − ι ≤ η ≤ ν1 + ν2,

The probability of event C5 given that B is named is

q5 = (1− pI)P (U + TD ≥ TL,1 + TL,2 + ι)

= (1− pI) (1− FU+TD
(ν1 + ν2 + ι))

=































1− pI if ν1 + ν2 + ι < η

(1− pI)
η−ν1−ν2

ι
if η ≤ ν1 + ν2 + ι ≤ η + ι

0 if ν1 + ν2 > η

while the probability of event C6 given that B is named is

q6 =































pI if ν1 + ν2 + ι < η

pI
η−ν1−ν2

ι
if η ≤ ν1 + ν2 + ι ≤ η + ι

0 if ν1 + ν2 > η.

4.4 Exponential latent periods

Suppose that TL,1 ∼ Exp (µ1) and TL,2 ∼ Exp (µ2), then TL,1 + TL,2 has probability

density function

fTL,1+TL,2
(t) =

∫ t

0
µ1e

−µ1uµ2e
−µ2(t−u)du

=















µ1µ2

µ1−µ2

(

e−µ2t − e−µ1t
)

if µ1 6= µ2

µ21te
−µ1t if µ1 = µ2

,
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and cumulative distribution function

FTL,1+TL,2
(t) =

∫ t

0
µ1e

−µ1uµ2e
−µ2(t−u)du

=















1− µ2

µ2−µ1
e−µ1t − µ1

µ1−µ2
e−µ2t if µ1 6= µ2

1− e−µ1t − µ1te
−µ1t if µ1 = µ2

.

We now look at the cases where V ≥ 0.

Let ∆ =
{

(i, j1, j2, k) ∈ Z
4
+ : i+ j1 + j2 + k = n, k ≥ 1

}

be the set of possible states of

{(S(t), L1(t), L2(t), I(t)) : 0 ≤ t ≤ ι}, n′ be the cardinality of ∆ and h : ∆ → 1, 2, . . . , n′

be bijective. Then the household epidemic process between B becoming infectious

and vaccination can be represented by a process {X(t) : 0 ≤ t ≤ V }, where X(t) =

h (S(t), L1(t), L2(t), I(t)) and X(0) = x0 = h(n− 1, 0, 0, 1). Let {X(t) : 0 ≤ t ≤ V } have

transition-rate matrix, Q, obtained by the following transition table for {(S(t), L1(t),

L2(t), I(t))}

from to rate

(i, j1, j2, n− i− j1 − j2) (i− 1, j1 + 1, j2, n− i− j1 − j2) λLi (n− i− j1 − j2)

(i, j1 − 1, j2 + 1, n− i− j1 − j2) µ1j1

(i, j1, j2 − 1, n− i− j1 − j2 + 1) µ2j2.

In case C3 (0 ≤ V < ι) and C5 (V = ι) we need only determine the expected number of

B’s housemates who are vaccine-insensitive at time V . If we let ω = (ω1, ω2, . . . , ωn′)⊤,

where ωh(i,j1,j2,k) = j2 + k − 1, and let x0 be a 1-by-n′ vector with the x0th entry being

1 and all other entries zero, then

A3 =

(∫ ι

0
eQt dµ(t)

)

x0

ω

= x0Â3ω

A5 = x0e
Qιω,
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letting Â3 =
∫ ι

0 e
Qt dµ(t) while, if we let e−ιθω =

(

e−ιθω1 , e−ιθω2 , . . . , e−ιθωn′
)⊤, then, for

θ ≥ 0,

B3(θ) = x0Â3e
−ιθω

B5(θ) = x0e
Qιe−ιθω.

In cases C4 (0 ≤ V < ι) and C6 (V = ι) we are interested in the total active severity

of the household up until the first removal. Noting that in {X(t) : 0 ≤ t ≤ V }, the

state which corresponds to all individuals being infective is absorbing (without loss of

generality we shall assume that this is state n′), so Q is singular. States {1, 2, . . . , n′− 1}

form a transient class, so Q has the form

Q =









QT −QT1

0 0









,

where QT is non-singular.

Note that {Z(t)|0 ≤ t ≤ V } is a reward process, similar to that used for the isolation at

the first removal case in Chapter 2, since Z(t) =
∫ t

0 I(u)−1 du is the total active severity

of B’s housemates up until time t. Thus, for 0 ≤ t < V , if X(t) is in state h(i, j1, j2, k),

so there are k infectives, reward is earned at rate ρh(i,j1,j2,k) = k − 1 per unit time. Let

ρT = (ρ1, ρ2, . . . , ρn′−1)
⊤, D = diag(ρ1, ρ2, . . . , ρn′) and x0T be a 1-by-n′ − 1 vector

with the x0th entry being 1 and all other entries zero. Then for 0 ≤ t ≤ V , adapting

Eqn. (2.4.2)

E [Z(t)] = x0T

(

Q−1
T (eQT t − I)ρT +

(

t1−Q−1
T

(

eQT t − I
)

1
)

(n− 1)
)

,

and, for θ ≥ 0,

E
[

e−θZ(t)
]

= x0e
(Q−θD)t

1.
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Therefore,

A6 = E [Z(ι)|V = ι]

= x0T

(

Q−1
T (eQT ι − I)ρT +

(

ι1−Q−2
T

(

eQT ι − I
)

QT1
)

(n− 1)
)

and, for θ ≥ 0,

B6(θ) = E
[

e−θZ(ι)
∣

∣

∣
V = ι

]

= x0

(

e(Q−θD)ι
1

)

x0

.

Suppose now that 0 ≤ V < ι (i.e. case C4). Then we let QV be the transition-rate matrix

of {X(t) : V ≤ t ≤ ι} , obtained by the following transition table for {(S(t), L1(t), L2(t),

I(t))},

from to rate

(i, j1, j2, k) (i, j1, j2 − 1, k + 1) µ2j2.

Now we have a set of absorbing states (which we assume to have cardinality ñ) corre-

sponding to j2 = 0, i.e. no vaccine-insensitive latents, while the remaining states form

a transient class. We assume without loss of generality that the set of absorbing states

is ∆A = {n′ − ñ+ 1, n′ − ñ+ 2, . . . , n′}. So, QV has the form

QV =









QV,T QV,A

0ñ,n′−ñ 0ñ









,

whereQV,T is non-singular, andQV,A is the matrix of transition rates from the transient

states to the absorbing states.

For 0 ≤ τ ≤ ι − V , let Z̃(τ) =
∫ V+τ

V
I(u) − 1 du (so Z(ι) = Z(V ) + Z̃(ι − V )). Then

{

Z̃(τ) : 0 ≤ τ ≤ ι− V
}

is a reward process where, for 0 ≤ τ ≤ ι− V , if X(V + τ) is in

state h̃ (i, j1, j2, k), then reward is earned at rate ρh(i,j1,j2,k) = k − 1 per unit of time.

152



CHAPTER 4: HOUSEHOLD CONTACT TRACING WITH LOCAL TRACING

The outcome in this case will depend on the state of the household at vaccination. We

have three contributions to Z̃(τ) consider: (i) Z̃1(τ), from the case of the household epi-

demic process being absorbed before or at vaccination; (ii) Z̃2(τ), from the household

epidemic process being in the transient class post-vaccination; and (iii) Z̃3(τ), from the

household epidemic process being in the absorbing states, having been absorbed post-

vaccination. So Z̃(τ) = Z̃1(τ) + Z̃2(τ) + Z̃3(τ).

If the single household epidemic has already been absorbed into state h(i, j1, 0, k), then

reward will thereafter been earned at rate k per unit time. If we let W1 be an n′-by-n′

diagonal matrix with the form

W1 =









0n′−ñ 0n′−ñ,ñ

0ñ,n′−ñ Iñ









,

then

E
[

Z̃1(τ)
∣

∣

∣V = t
]

= x0e
QtW1τρ.

Let W2 be an n′-by-n′ − ñ matrix with the form

W2 =









In′−ñ

0









.

Letting ρV,T = (ρ1, ρ2, . . . , ρn′−ñ)
⊤ and ρV,A = (ρn′−ñ+1, ρn′−ñ+2, . . . , ρn′)⊤, then

E
[

Z̃2(τ)
∣

∣

∣V = t
]

= x0e
QtW2

∫ τ

0
eQV,TuρV,T du

= x0e
QtW2Q

−1
V,T

(

eQV,T τ − I
)

ρV,T

To obtain E
[

Z̃3(τ)
∣

∣

∣V = t
]

, we condition on τA = min {τ : X(V + τ) ∈ ∆A|X(V ) /∈ ∆A}:

E
[

Z̃3(τ)
∣

∣

∣V = t
]

= E
[

E
[

Z̃3(τ)
∣

∣

∣V = t, τA

]]

= x0e
QtW2

∫ τ

0
eQV,TuQV,A(τ − u)ρV,A du

= x0e
QtW2

(

−τQ−1
V,T +Q−2

V,T

(

eQV,T τ − I
)

)

QV,AρV,A,
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so

E
[

Z̃(τ)
∣

∣

∣
V = t

]

= x0

(

eQtW1τρ+ eQtW2Q
−1
V,T

(

eQV,T τ − I
)

ρV,T

+eQtW2

(

−τQ−1
V,T +Q−2

V,T

(

eQV,T τ − I
)

)

QV,AρV,A

)

.

Putting this all together, we get

E [Z(ι)|V = t] = E [Z(t)|V = t] + E
[

Z̃(ι− t)
∣

∣

∣V = t
]

= x0T

(

Q−1
T (eQT t − I)ρT +

(

t1−Q−2
T

(

eQT t − I
)

QT1
)

(n− 1)
)

+ x0

(

eQtW1(ι− t)ρ+ eQtW2Q
−1
V,T

(

eQV,T (ι−t) − I
)

ρV,T

+eQtW2

(

−(ι− t)Q−1
V,T +Q−2

V,T

(

eQV,T (ι−t) − I
))

QV,AρV,A

)

.

Thus

A4 =

∫ ι

0
E [Z(ι)|V = t] dµ(t)

= x0T

(

Â4,1ρT + Â4,2(n− 1)
)

+ x0

(

Â4,3W1ρ+ Â4,4ρV,T + Â4,5ρV,A

)

,

where

Â4,1 =

∫ ι

0
Q−1

T (eQT t − I) dµ(t)

Â4,2 =

∫ ι

0
t1−Q−2

T

(

eQT t − I
)

QT1 dµ(t)

=

∫ ι

0
t1 dµ(t)− Â4,11

Â4,3 =

∫ ι

0
eQt(ι− t) dµ(t)

Â4,4 =

∫ ι

0
eQtW2Q

−1
V,T

(

eQV,T (ι−t) − I
)

dµ(t)

=

∫ ι

0
eQtW2Q

−1
V,T e

QV,T (ι−t) dµ(t)− Â3W2Q
−1
V,T

Â4,5 =

∫ ι

0
eQtW2

(

−(ι− t)Q−1
V,T +Q−2

V,T

(

eQV,T (ι−t) − I
))

QV,A dµ(t)

= −
(

Â4,3W2 + Â4,4

)

Q−1
V,TQV,A,
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while, for θ ≥ 0,

B4(θ) =

(∫ ι

0
e(Q−θD)te(QV −θD)(ι−t) dµ(t)1

)

x0

=
(

B̂4(θ)1
)

x0

,

where B̂4(θ) =
∫ ι

0 e
(Q−θD)te(QV −θD)(ι−t) dµ(t).

Notation

For square matrix Ω, k ≥ 0 and a < b, let

gk(Ω, a, b) =

∫ b

a

tkeΩt dt,

then,

gk(Ω, a, b) =

∞
∑

j=0

1

j!(j + k + 1)
Ωj
(

bj+k+1 − aj+k+1
)

.

Note that if Ω is non-singular,

gk(Ω, a, b) =
k
∑

i=0

k!

i!
(−1)k−iΩ−(k−i+1)

(

bieΩb − aieΩa
)

.

For square matrices Ω1 (size m1-by-m1) and Ω2 (size m2-by-m2), and matrix W (size

m1-by-m2), k ≥ 0 and a < b, let

hk (Ω1,W,Ω2, a, b) =

∫ b

a

tkeΩ1tWeΩ2t dt,

then,

hk (Ω1,W,Ω2, a, b) =

∞
∑

i=0

∞
∑

j=0

1

i!j!(i+ j + k + 1)
Ωi
1WΩj

2

(

bi+j+k+1 − ai+j+k+1
)

.
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4.4.1 Exponential delay

Suppose that TD ∼ Exp(ξ).

The probability of event C1 given that B is named is

q1 = P (U + TD < TL,1)

=

∫ ∞

0
fU+TD

(t)e−µ1tdt

=
ξ

µ1ι(µ1 + ξ)

(

1− e−µ1ι
)

while probability of event C5 given that B is named is

q5 = (1− pI)P (U + TD ≥ TL,1 + TL,2 + ι)

= (1− pI)

∫ ∞

ι

fU+TD
(t)FTL,1+TL,2

(t− ι) dt

=
(1− pI)µ1µ2

ξι (µ1 + ξ) (µ2 + ξ)

(

1− e−ξι
)

,

and the probability of event C6 given that B is named is

q6 = pIP (U + TD ≥ TL,1 + TL,2 + ι)

=
pIµ1µ2

ξι (µ1 + ξ) (µ2 + ξ)

(

1− e−ξι
)

.

We shall suppose now that µ1 6= µ2. The probability of event C2 given that B is named

is

q2 = P (TL,1 ≤ U + TD < TL,1 + TL,2)

=

∫ ∞

0
fU+TD

(t)
(

1− FTL,1+TL,2
(t)
)

dt− q1

=

∫ ι

0

1

ι

(

1− e−ξt
)

(

1− FTL,1+TL,2
(t)
)

dt

+

∫ ∞

ι

1

ι
e−ξt

(

eξι − 1
)

(

1− FTL,1+TL,2
(t)
)

dt− q1

=
ξ

ι (µ1 − µ2)

(

µ1
µ2 (µ2 + ξ)

(

1− e−µ2ι
)

− µ2
µ1 (µ1 + ξ)

(

1− e−µ1ι
)

)

− q1

=
ξ

ι (µ1 − µ2)

(

µ1
µ2 (µ2 + ξ)

(

1− e−µ2ι
)

− 1

(µ1 + ξ)

(

1− e−µ1ι
)

)

.

156



CHAPTER 4: HOUSEHOLD CONTACT TRACING WITH LOCAL TRACING

The measure of V restricted to (0, ι) is

µ(t) =

∫ ∞

0
fTL,1+TL,2

(τ)fU+TD
(τ + t) dτ

=

∫ ι−t

0
fTL,1+TL,2

(τ)
1

ι

(

1− e−ξ(t+τ)
)

dτ

+

∫ ∞

ι−t

fTL,1+TL,2
(τ)

1

ι
e−ξ(t+τ)

(

eξι − 1
)

dτ

=
1

ι

[

1− µ1µ2
(µ1 + ξ) (µ2 + ξ)

e−ξt

− ξµ1
(µ1 − µ2) (µ2 + ξ)

e−µ2(ι−t) +
ξµ2

(µ1 − µ2) (µ1 + ξ)
e−µ1(ι−t)

]

,

and so,

Â3 =

∫ ∞

0
eQtµ(t) dt

=
1

ι
g0(Q, 0, ι)−

µ1µ2
ι (µ1 + ξ) (µ2 + ξ)

g0(Q− ξI, 0, ι)

− ξµ1
ι (µ1 − µ2) (µ2 + ξ)

e−µ2ιg0 (Q+ µ2I, 0, ι)

+
ξµ2

ι (µ1 − µ2) (µ1 + ξ)
e−µ1ιg0 (Q+ µ1I, 0, ι)

while

Â4,1 =
1

ι
Q−1

T [g0 (QT , 0, ι)− ιI

− µ1µ2
(µ1 + ξ) (µ2 + ξ)

(

g0 (QT − ξI, 0, ι)− 1

ξ

(

1− e−ξι
)

I

)

− ξµ1
(µ1 − µ2) (µ2 + ξ)

e−µ2ι

(

1

µ2
(1− eµ2ι) I + g0 (QT + µ2I, 0, ι)

)

+
ξµ2

(µ1 − µ2) (µ1 + ξ)
e−µ1ι

(

1

µ1
(1− eµ1ι) I + g0 (QT + µ1I, 0, ι)

)]

,

Â4,2 =
1

ι

[

ι2

2
− µ1µ2
ξ2 (µ1 + ξ) (µ2 + ξ)

(

1− e−ξι(ξι+ 1)
)

− ξµ1
µ22 (µ1 − µ2) (µ2 + ξ)

(

e−µ2ι + µ2ι− 1
)

+
ξµ2

µ21 (µ1 − µ2) (µ1 + ξ)

(

e−µ1ι + µ1ι− 1
)

]

1

− Â4,11,
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Â4,3 =
eQι

ι
[g1 (−Q, 0, ι)

− µ1µ2e
−ξι

(µ1 + ξ) (µ2 + ξ)
g1 (ξI −Q, 0, ι)

− ξµ1
(µ1 − µ2) (µ2 + ξ)

g1 (−Q− µ2I, 0, ι)

+
ξµ2

(µ1 − µ2) (µ1 + ξ)
g1 (−Q− µ1I, 0, ι)

]

W1,

Â4,4 =
eQι

ι
[h0 (−Q,W2, QV,T , 0, ι)

− µ1µ2e
−ξι

(µ1 + ξ) (µ2 + ξ)
h0 (ξI −Q,W2, QV,T , 0, ι)

− ξµ1
(µ1 − µ2) (µ2 + ξ)

h0 (−Q− µ2I,W2, QV,T , 0, ι)

+
ξµ2

(µ1 − µ2) (µ1 + ξ)
h0 (−Q− µ1I,W2, QV,T , 0, ι)

]

Q−1
V,T

− Â3W2Q
−1
V,T ,

and, for θ ≥ 0,

B̂4(θ) =
e(Q−θD)ι

ι
[h0 (θD −Q, I,QV − θD, 0, ι)

− µ1µ2e
−ξι

(µ1 + ξ) (µ2 + ξ)
h0 (θD −Q+ ξI, I,QV − θD, 0, ι)

− ξµ1
(µ1 − µ2) (µ2 + ξ)

h0 (θD −Q− µ2I, I,QV − θD, 0, ι)

+
ξµ2

(µ1 − µ2) (µ1 + ξ)
h0 (θD −Q− µ1I, I,QV − θD, 0, ι)

]

.

Suppose now that µ1 = µ2, then the probability of event C2 given that B is named is

q2 =
ξ

ι (µ1 + ξ)

[

3µ1 + 2ξ

µ1 (µ1 + ξ)

(

1− e−µ1ι
)

− ιe−µ1ι

]

− q1

=
ξ

ι (µ1 + ξ)

[

2µ1 + ξ

µ1 (µ1 + ξ)

(

1− e−µ1ι
)

− ιe−µ1ι

]

.

The measure of V restricted to (0, ι) is

µ(t) =
1

ι

[

1− µ21
(µ1 + ξ)2

e−ξt − ξ (ξ + 2µ1)

(µ1 + ξ)2
e−µ1(ι−t) − ξµ1(ι− t)

µ1 + ξ
e−µ1(ι−t)

]

,
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and so,

Â3 =
1

ι
g0(Q, 0, ι)−

µ21
ι (µ1 + ξ)2

g0(Q− ξI, 0, ι)

− ξ (ξ + 2µ1)

ι (µ1 + ξ)2
e−µ1ιg0 (Q+ µ1I, 0, ι)−

ξµ1
ι (µ1 + ξ)

eQιg1 (−Q− µ1I, 0, ι) ,

while

Â4,1 =
1

ι
Q−1

T [g0 (QT , 0, ι)− ιI

− µ21
(µ1 + ξ)2

(

g0 (QT + ξI, 0, ι)− 1

ξ

(

1− e−ξι
)

I

)

− ξ (ξ + 2µ1)

(µ1 + ξ)2
e−µ1ι

(

1

µ1
(1− eµ1ι) I + g0 (QT + µ1I, 0, ι)

)

− ξµ1
µ1 + ξ

(

eQT ιg1 (−QT − µ1I, 0, ι)−
1

µ21

(

1− e−µ1ι (1 + µ1ι)
)

)]

,

Â4,2 =
1

ι

[

ι2

2
− µ21
ξ2 (µ1 + ξ)2

(

1− e−ξι(ξι+ 1)
)

− ξ (ξ + 2µ1 + µ1ι (µ1 + ξ))

µ21 (µ1 + ξ)2
(

e−µ1ι + µ1ι− 1
)

+
ξ

µ1 + ξ

(

ι2 − 2ι

µ1
+

2

µ21
− 2

µ21
e−µ1ι

)]

− Â4,11,

Â4,3 =
eQι

ι
[g1 (−Q, 0, ι)

− µ21e
−ξι

(µ1 + ξ)2
g1 (ξI −Q, 0, ι)

− ξ (ξ + 2µ1)

(µ1 + ξ)2
g1 (−Q− µ1I, 0, ι)

− ξµ1
µ1 + ξ

g2 (−Q− µ1I, 0, ι)

]

W1,
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Â4,4 =
eQι

ι
[h0 (−Q,W2, QV,T , 0, ι)

− µ21e
−ξι

(µ1 + ξ)2
h0 (ξI −Q,W2, QV,T , 0, ι)

− ξ (ξ + 2µ1)

(µ1 + ξ)2
h0 (−Q− µ1I,W2, QV,T , 0, ι)

− ξµ1
µ1 + ξ

h1 (−Q− µ1I,W2, QV,T , 0, ι)

]

Q−1
V,T

− Â3W2Q
−1
V,T ,

and, for θ ≥ 0,

B̂4(θ) =
e(Q−θD)ι

ι
[h0 (θD −Q, I,QV − θD, 0, ι)

− µ21e
−ξι

(µ1 + ξ)2
h0 (θD −Q+ ξI, I,QV − θD, 0, ι)

− ξ (ξ + 2µ1)

(µ1 + ξ)2
h0 (θD −Q− µ1I, I,QV − θD, 0, ι)

− ξµ1
µ1 + ξ

h1 (θD −Q− µ1I, I,QV − θD, 0, ι)

]

.

4.4.2 Constant delay

Suppose that TD ≡ η.

The probability of event C1 given that B is named is

q1 = P (U + TD < TL,1)

=

∫ ∞

0
fU+TD

(t)e−µ1tdt

=
1

µ1ι
e−µ1η

(

1− e−µ1ι
)

,

We shall suppose now that µ1 6= µ2. Then the probability of event C2 given that B is
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named is

q2 = P (TL,1 ≤ U + TD < TL,1 + TL,2)

=

∫ ∞

0
fU+TD

(t)
(

1− FTL,1+TL,2
(t)
)

dt− q1

=
1

ι (µ1 − µ2)

(

µ1
µ2
e−µ2η

(

1− e−µ2ι
)

− µ2
µ1
e−µ1η

(

1− e−µ1ι
)

)

− q1

=
1

ι (µ1 − µ2)

(

µ1
µ2
e−µ2η

(

1− e−µ2ι
)

− e−µ1η
(

1− e−µ1ι
)

)

.

The measure of V restricted to (0, ι) is

µ(t) =

∫ ∞

0
fTL,1+TL,2

(τ)fU+TD
(τ + t) dτ

=















∫ η+ι−t

η−t
fTL,1+TL,2

(τ)fU+TD
(τ + t) dτ if t ≤ η

∫ η+ι−t

0 fTL,1+TL,2
(τ)fU+TD

(τ + t) dτ if t > η

=
1

ι

[

1{t>η} +
1

µ1 − µ2

(

µ1e
−µ2(η−t)

(

1{t≤η} − e−µ2ι
)

−µ2e−µ1(η−t)
(

1{t≤η} − e−µ1ι
)

)]

,

and so,

Â3 =

∫ ι

0
eQtµ(t) dt

=
1

ι

[

1{ι>η}g0(Q, η, ι)

+
1

µ1 − µ2

(

µ1e
−µ2η

(

g0 (Q+ µ2I, 0,min(η, ι))− e−µ2ιg0 (Q+ µ2I, 0, ι)
)

−µ2e−µ1η
(

g0 (Q+ µ1I, 0,min(η, ι))− e−µ1ιg0 (Q+ µ1I, 0, ι)
))]

,
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while

Â4,1 =
Q−1

T

ι

[

1{ι>η} (g0 (QT , η, ι)− (ι− η) I)

+
1

µ1 − µ2

(

µ1e
−µ2η

(

g0 (QT + µ2I, 0,min(η, ι))− 1

µ2

(

eµ2 min(η,ι) − 1
)

I

−e−µ2ι

(

g0 (QT + µ2I, 0, ι)−
1

µ2
(eµ2ι − 1) I

))

− µ2e
−µ1η

(

g0 (QT + µ1I, 0,min(η, ι))− 1

µ1

(

eµ1 min(η,ι) − 1
)

I

−e−µ1ι

(

g0 (QT + µ1I, 0, ι)−
1

µ1
(eµ1ι − 1) I

)))]

,

Â4,2 =
1

ι

[

1{ι>η}
ι2 − η2

2

+
1

µ1 − µ2

(

µ1
µ22
e−µ2η

(

2 + eµ2 min(η,ι) (µ2min(η, ι)− 1)− µ2ι− e−µ2ι
)

−µ2
µ21
e−µ1η

(

2 + eµ1 min(η,ι) (µ1min(η, ι)− 1)− µ1ι− e−µ1ι
)

)]

− Â4,11,

Â4,3 =
eQι

ι

[

1{ι>η}g1 (−Q, 0, ι− η)

+
1

µ1 − µ2

(

µ1e
−µ2η (eµ2ιg1 (−Q− µ2I,max(0, ι− η), ι)

−g1 (−Q− µ2I, 0, ι))

− µ2e
−µ1η (eµ1ιg1 (−Q− µ1I,max(0, ι− η), ι)

−g1 (−Q− µ1I, 0, ι)))]W1,

Â4,4 =
eQι

ι

[

1{ι>η}h0 (−Q,W2, QV,T , 0, ι− η)

+
1

µ1 − µ2

(

µ1e
−µ2η (eµ2ιh0 (−Q− µ2I,W2, QV,T ,max(0, ι− η), ι)

−h0 (−Q− µ2I,W2, QV,T , 0, ι))

− µ2e
−µ1η (eµ1ιh0 (−Q− µ1I,W2, QV,T ,max(0, ι− η), ι)

−h0 (−Q− µ1I,W2, QV,T , 0, ι)))]Q
−1
V,T

− Â3W2Q
−1
V,T ,
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and, for θ ≥ 0,

B̂4(θ) =

∫ ι

0
e(Q−θD)te(QV −θD)(ι−t) dµ(t)

=
e(Q−θD)ι

ι

[

1{ι>η}h0 (θD −Q, I,QV − θD, 0, ι− η)

+
1

µ1 − µ2

(

µ1e
−µ2η (eµ2ιh0 (θD −Q− µ2I, I,QV − θD,max(0, ι− η), ι)

−h0 (θD −Q− µ2I, I,QV − θD, 0, ι))

− µ2e
−µ1η (eµ1ιh0 (θD −Q− µ1I, I,QV − θD,max(0, ι− η), ι)

−h0 (θD −Q− µ1I, I,QV − θD, 0, ι)))] .

The probability of event C5 given that B is named is

q5 = (1− pI)P (U + TD ≥ TL,1 + TL,2 + ι)

= (1− pI)

∫ η+ι

η

fU+TD
(t)FTL,1+TL,2

(t− ι) dt

=
(1− pI)

ι

[

min (η, ι)− 1

(µ1 − µ2)

(

µ1
µ2

(

min
(

1, e−µ2(η−ι)
)

− e−µ2η
)

−µ2
µ1

(

min
(

1, e−µ1(η−ι)
)

− e−µ1η
)

)]

,

while the probability of event C6 given that B is named is

q6 = pIP (U + TD ≥ TL,1 + TL,2 + ι)

= pI

∫ η+ι

ι

fU+TD
(t)FTL,1+TL,2

(t− ι) dt

=
pI
ι

[

min (η, ι)− 1

(µ1 − µ2)

(

µ1
µ2

(

min
(

1, e−µ2(η−ι)
)

− e−µ2η
)

−µ2
µ1

(

min
(

1, e−µ1(η−ι)
)

− e−µ1η
)

)]

,

Now suppose that µ1 = µ2. Then the probability of event C2 given that B is named is

q2 =
1

ι
e−µ1η

(

2

µ1
+ η −

(

2

µ1
+ η + ι

)

e−µ1ι

)

− q1

=
1

ι
e−µ1η

(

1

µ1
+ η −

(

1

µ1
+ η + ι

)

e−µ1ι

)

.
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The measure of V restricted to (0, ι) is

µ(t) =
1

ι

[

1{t>η} + 1{t≤η}e
−µ1(η−t) (1 + µ1(η − t))− e−µ1(η+ι−t) (1 + µ1(η + ι− t))

]

,

and so,

Â3 =
1

ι

[

1{ι>η}g0(Q, η, ι)

+ e−µ1η ((1 + µ1η) g0 (Q+ µ1I, 0,min(η, ι))− µ1g1 (Q+ µ1I, 0,min(η, ι))

−e−µ1ι ((1 + µ1(η + ι)) g0 (Q+ µ1I, 0, ι)− µ1g1 (Q+ µ1I, 0, ι))
)]

,

while

Â4,1 =
Q−1

T

ι

[

1{ι>η} (g0 (QT , η, ι)− (ι− η) I)

+ e−µ1η

(

(1 + µ1η)

(

g0 (QT + µ1I, 0,min(η, ι))− 1

µ1

(

eµ1 min(η,ι) − 1
)

I

)

− µ1g1 (QT + µ1I, 0,min(η, ι))

+
1

µ1

(

eµ1 min(η,ι) (µ1min(η, ι)− 1) + 1
)

I

)

− e−µ1(η+ι)

(

(1 + µ1η)

(

g0 (QT + µ1I , 0, ι)−
1

µ1
(eµ1ι − 1) I

)

−µ1g1 (QT + µ1I, 0, ι) +
1

µ1
(eµ1ι (µ1ι− 1) + 1) I

)]

,

Â4,2 =
1

ι

[

1{ι>η}
ι2 − η2

2

+ e−µ1η

((

1

µ1
+ η

)(

eµ1 min(η,ι)

(

min(η, ι)− 1

µ1

)

− ι+
1

µ1

(

2− e−µ1ι
)

)

−eµ1 min(η,ι)

(

min(η, ι)2 − 2min(η, ι)

µ1
+

2

µ21

)

+
2

µ21

(

2− e−µ1ι
)

+ ι2 − 2ι

µ1

]

1

− Â4,11,

Â4,3 =
eQι

ι

[

1{ι>η}g1 (−Q, 0, ι− η)

+ e−µ1(η−ι) ((1 + µ1(η − ι)) g1 (−Q− µ1I,max(0, ι− η), ι)

+µ1g2 (−Q− µ1I,max(0, ι− η), ι))

−eµ1η ((1 + µ1η) g1 (−Q− µ1I, 0, ι) + µ1g2 (−Q− µ1I, 0, ι))]W1,
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Â4,4 =
eQι

ι

[

1{ι>η}h0 (−Q,W2, QV,T , 0, ι− η)

+ e−µ1(η−ι) ((1 + µ1(η − ι))h0 (−Q− µ1I,W2, QV,T ,max(0, ι− η), ι)

+µ1h1 (−Q− µ1I,W2, QV,T ,max(0, ι− η), ι))

− e−µ1η ((1 + µ1η)h0 (−Q− µ1I,W2, QV,T , 0, ι)

+µ1h1 (−Q− µ1I,W2, QV,T , 0, ι))]Q
−1
V,T

− Â3W2Q
−1
V,T ,

and, for θ ≥ 0,

B̂4(θ) =
e(Q−θD)ι

ι

[

1{ι>η}h0 (θD −Q, I,QV − θD, 0, ι− η)

+ e−µ1(η−ι) ((1 + µ1(η − ι))h0 (θD −Q− µ1I, I,QV − θD,max(0, ι− η), ι)

+h1 (θD −Q− µ1I, I,QV − θD,max(0, ι− η), ι))

− e−µ1η ((1 + µ1η)h0 (θD −Q− µ1I, I,QV − θD, 0, ι)

+h1 (θD −Q− µ1I, I,QV − θD, 0, ι))] .

The probability of event C5 given that B is named is

q5 =
(1− pI)

ι

[

min (η, ι)−
(

min
(

1, e−µ1(η−ι)
)

(

2

µ1
+ 1{η>ι}(η−ι)

)

− ηe−µ1η

)]

,

while the probability of event C6 given that B is named is

q6 =
pI
ι

[

min (η, ι)−
(

min
(

1, e−µ1(η−ι)
)

(

2

µ1
+ 1{η>ι}(η−ι)

)

− ηe−µ1η

)]

.

4.5 Numerical illustrations

In this section we simulate finite-size epidemics to examine the reliability of the branch-

ing process approximation used in this chapter, and then use numerical results to illus-

trate the theory of the chapter.
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4.5.1 Comparison with simulations

In order to make analytical progress with this model, we assume that the number

of households, m, is large. This assumption enables us to approximate by assuming

that, in the early stages of the epidemic, infectives only make global contacts with en-

tirely susceptible households. In real life, m may not be so large, so it is useful to see

how quickly the branching process approximation describes the true behaviour of the

model, in which we can expect (i) infectives to make global contacts with already in-

fected individuals, and (ii) multiple members of a household being infected as a result

of (separate) global contacts. On the one hand we can expect the approximation to have

an underestimation effect on the spread of the epidemic as less global infectious con-

tacts will emanate from an infected household (as only one global infectious contact

can come into the household) but on the other hand there will be an overestimation

effect as more of these contacts will be with susceptible households.

To examine how quickly the approximation becomes reasonable we simulate the full

epidemic n0 = 10, 000 times for different values of m for three different intervention

models (all without isolation, i.e. pI = 0): (i) local tracing only, i.e. pc = 0, (ii) local

and global tracing (pc = 1), and (iii) global tracing only (pc = 1), i.e. vaccination is not

triggered by the first removal in a household. We have not derived analytical results for

model (iii) in this chapter, but to obtain results for the corresponding branching process

approximation, we use 100,000 simulations to estimate the final size distribution of a

named single household epidemic under this intervention model (analytic results for

an unnamed single household epidemic can be used from Ball [5]). We use n = 4,

TD ∼ Exp
(

1
3

)

and TI ≡ 1 (so time is relative to a unit-length infectious period). We also

use TL1 ∼ Exp(1) and TL2 ∼ Exp
(

3
8

)

(so, respectively, the latent period means are 1 and
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8
3 times the infectious period mean, as used for smallpox by Kaplan et al. [30]), while

λL = 0.3821 and λG = 1.4159 (as calculated by Ball and Lyne [7] for variola minor,

a virus which causes a mild form of smallpox). The theoretical asymptotic extinction

probabilities for the cases are (i) 0.7162, (ii) 0.5106 and (iii) 0.7444 (from simulations),

while the values of R∗ in the cases are (i) 1.9403, (ii) 1.0353 and (iii) 1.0740.

Figure 4.1 shows the final size outcomes for the local and global tracing model for

m = 100, 200, 300, 400, 500. There are several different final size interpretations of the

epidemic, we restrict attention to (i) the number of individuals who become infectious

in the epidemic, (ii)the number of individuals infected in the epidemic (recall that an

individual may be infected but not become infectious), and (iii) the number of house-

holds that are infected in the epidemic. We see the typical behaviour expected of final

size outcomes, with a bimodal shape. Further, we can see the convergence of the distri-

butions (to the theoretical approximating distribution), and that the different final size

interpretations result in similarly shaped distributions.

From these simulations we may obtain estimates for pG. In the branching process ap-

proximation, pG is the probability of a global epidemic, i.e. the probability that in-

finitely many households are infected. With the simulations we see that the true be-

haviour of the epidemic is that generally either only a few households are infected, or

a relatively large proportion is infected. The former case represents a minor epidemic,

while the latter case represents a major epidemic (which is analogous to the global epi-

demic). So our estimate, p̂G, is the proportion of simulations that result in a major

epidemic, and is obtained by examining the histogram of the number of households

infected and determining the cut-off between minor and major epidemics by sight. In

Figure 4.2 we plot these estimates (in relation to the asymptotic values) with confidence
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intervals given as p̂G ± 2SE where the standard error is SE =
(

(1−p̂G)p̂G
n0

) 1
2 .

It should be noted that there is a large degree of subjectivity in calculating the propor-

tion of major epidemics in the local tracing only case for m = 100, in the local and

global tracing case for m up to about 500 and the global tracing only case for m up

to about 300. We see that the asymptotic probability is within the confidence interval

consistently above m = 500 in the local tracing case and m = 700 in the global tracing

case, but only abovem = 1000 in the local and global tracing case. However, the slower

convergence in the local and global tracing case may be partly due to the asymptotic

value being 0.5106, i.e. an epidemic is almost as likely to go extinct as it is to blow up.

Thus, Figure 4.2 also shows what happens when λG is increased to 1.8 for this case (and

as a result the asymptotic probability of a global epidemic is 0.7205): the convergence

is much quicker, with the asymptotic value being consistently within the confidence

interval above m = 400. Overall though, even when convergence is relatively slow, the

asymptotic value is still fairly close to the empirical value for smaller values of m.

4.5.2 Analysis of model assumptions

Figures 4.3-4.6 show R∗ and pG varying with pc for differing intervention models.

These include the subcases pI = 0 and pI = 1 of the model considered in this chapter,

and for comparison, (i) isolation at the first removal in a household, without any vac-

cine (which is the best local intervention method whereby intervention is taken upon

diagnoses); details for this can be found in Section 2.4.4, and (ii) the global tracing-only,

vaccine-only policy as mentioned in Section 4.5.1, in which vaccination of a household

is not triggered by the first removal in that household; here we again use single house-

hold epidemic simulations to obtain results, but we let pc vary. Again, we use n = 4,
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Figure 4.1: Final size outcome histograms for the local and global tracing model (pc =

1, pI = 0) for 10,000 simulations, when n = 4, TI ≡ ι, TD ∼ Exp
(

1
3

)

,

TL1
∼ Exp(1), TL2

∼ Exp
(

3
8

)

, λL = 0.3821 and λG = 1.4159. These give

R∗ = 1.0353.

TI ≡ 1, E [TL1 ] = 1, E [TL2 ] =
8
3 , λL = 0.3821 and λG = 1.4159. In Figures 4.3 and 4.5

the latent periods are exponentially distributed, while in Figures 4.4 and 4.6 they are

constant. In Figures 4.3 and 4.4 E [TD] =
1
3 , while in Figures 4.5 and 4.6 E [TD] = 3.

One thing to note, is that with constant latent periods of the lengths here, isolation has

no effect on top of vaccination since, at the first removal, all other household mem-

bers will be vaccine-sensitive (with probability 1). Further, if the delay is constant and
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Figure 4.2: Estimates of global epidemic probabilities (represented by asterisks) from

10,000 simulations, when n = 4, TI ≡ ι, TD ∼ Exp
(

1
3

)

, TL1
∼ Exp(1),

TL2
∼ Exp

(

3
8

)

, λL = 0.3821 and λG = 1.4159 (unless stated otherwise).

Crosses represent two standard errors above and below the estimate and

solid lines represent the true asymptotic global epidemic probabilities.

sufficiently long (as in Figure 4.6), the global tracing has no effect on top of the lo-

cal tracing, because the named individual will be vaccine-insensitive when the delay

ends. These phenomena are not observed with exponentially distributed latent peri-

ods. Adding that the outbreak is reduced for constant latent periods (as to be expected;

longer latent periods mean intervention is more likely to occur when more individuals

are in vaccine-sensitive states), we can see that there is a clear qualitative difference for
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different latent period distributions.

We can see that for the smaller delay mean, the difference between exponentially-

distributed and constant delays is very slight, but it does become more noticeable for

the larger delay mean, especially with constant latent periods as discussed above. The

epidemic is ‘worse’ for a constant delay, as is expected.

The local and global tracing policies offer a decent improvement upon the global tracing-

only policy, and, as pc increases, quite quickly better the isolation at first removal with-

out global tracing case for small delay mean but for a larger delay mean they cannot

reduceR∗ to below 1. With exponentially-distributed latent periods, isolation combines

well with the vaccination to reduce R∗ as much as is possible within this model.

In Figure 4.6 (i.e. constant latent periods with a delay mean of 3), with the global

tracing-only policy R∗ is higher for an exponentially-distributed delay than a constant

one, even thought pG is lower in the exponential case. This differs from the other cases

in Figures 4.3-4.5, and is counterintuitive since usually we would expect the exponen-

tial distributed delay to result in lower R∗ (an exponential distribution has a median

below the mean, i.e. most of the distribution is below the mean). This model is not the

focus of this chapter, but it would be remiss not to explain this phenomenon. Consider

again our typical named household, with named contact B being the initial infective

within the household, and time-zero being the time at which they become infectious.

Consider first the constant delay case, in which case the vaccination will take place

during B’s vaccine-insensitive latent period, or during B’s infectious period (before

any other individual can be vaccine-insensitive), thus the final size of the named single

household epidemic (number of individuals in the household who become infectious)

must always be 1. However, if the delay is exponentially-distributed, the vaccination
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can occur at any time - during B’s vaccine-sensitive latent period, vaccine-insensitive

latent period or infectious period, or long after these - and so the final size can be any

value in {0, 1, 2, 3, 4}, and so for the value of λL, this must result in a mean final size of

the named single household epidemic being greater than 1. However, the probability

that the final size of the named single household epidemic is 0 must be sufficient that

the full epidemic is more likely to die out quickly than for the constant delay case. (We

are seeing that increased variance in offspring distribution results in a higher extinction

probability for the branching process, a previously noted phenomenon, see for exam-

ple Becker and Marschner [15] and Lloyd-Smith et al. [36].) It should be noted that this

behaviour is parameter-dependent, we do not observe it when the delay mean is 1
3 , nor

would we observe it when it is quite large (e.g. 20 here, so that a constant delay is long

enough so as to render the vaccine inert). When we introduce the local tracing into

the policy as well, the vaccination will occur in the exponential case at the latest at the

first removal, when (since the vaccine-insensitive latent period equals the infectious

period) B’s housemates are all almost surely vaccine-insensitive. Thus, the final size

is either 0 or 1, while in the constant delay case it is still always 1, and hence the epi-

demic with exponentially-distributed delays is statistically smaller than the epidemic

with constant delays when we have the combined local and global tracing policy.

4.5.3 Controlling the epidemic: critical delay length

The model of this chapter is informed by a need to control epidemics, so it is of interest

to know what efforts are needed to control under this model. In Figure 4.7 we again

compare the local and global tracing policy of this chapter (two cases: pI = 0 and

pI = 1) with the global tracing only, by showing how the critical delay mean (the delay

mean which achieves R∗ = 1) varies with pc. Again n = 4, λL = 0.3821, λG = 1.4159,
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Figure 4.3: R∗ and pG varying with pc when n = 4, TI ≡ 1, TL1
∼ Exp(1),

TL2
∼ Exp

(

3
8

)

, E [TD] = 1
3 , λL = 0.3821 and λG = 1.4159. Key to

legend: LT=local tracing only, GT=global tracing only, L&GT=local and

global tracing, V=vaccination only (pI = 0), I=isolation only (pI = 1),

V&I=vaccination and isolation (pI = 1), A=arbitrarily distributed delay,

C=constant delay, E=exponentially-distributed delay.

E [TL,1] = 1, E [TL,2] =
8
3 and TI ≡ 1. Note that where the critical delay mean may

appear to be zero, it is actually undefined because it is impossible to reduce R∗ to or

below 1.

We again see qualitative differences between latent period distributions: for constant

latent periods, you can control the epidemic more easily. We also see that the difference
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Figure 4.4: R∗ and pG varying with pc when n = 4, TI ≡ 1, TL1
≡ 1, TL2

≡ 8
3 , E [TD] =

1
3 , λL = 0.3821 and λG = 1.4159. For key to legend see Fig. 4.3. Isolation

has no effect on top of the vaccine.

between delay distributions is more pronounced in the constant latent period case.

It is clear that combining local tracing with global tracing can work to good effect.

In this example, λG = 1.4159, and so local tracing alone would not be sufficient to

reduce R∗ below 1. With global tracing only we can control the epidemic but only for

larger values of pc, while a global and local tracing policy can control the epidemic

even for values of pc less than 0.5. Note though that the longest critical delay mean is

around 1.35, which (noting the total latent period mean is 11
3 ) suggests the crucial time
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Figure 4.5: R∗ and pG varying with pc when n = 4, TI ≡ 1, TL1
∼ Exp(1), TL2

∼

Exp
(

3
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)

, E [TD] = 3, λL = 0.3821 and λG = 1.4159. For key to legend see

Fig. 4.3.

to vaccinate is before infection spreads within the household, as then at most only one

individual becomes infectious in the household.

4.6 Concluding comments

In this chapter, expressions for R∗ and pG have been obtained for a model with inter-

vention that works at both a local (vaccination/isolation at first removal in a house-

hold) and a global (contact tracing leading to vaccination of households) level. It has

175



CHAPTER 4: HOUSEHOLD CONTACT TRACING WITH LOCAL TRACING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

R
*

pc

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p G

pc

LT,I,A
GT,V,C
GT,V,E
L&GT,V,C
L&GT,V,E
L&GT,V&I,C
L&GT,V&I,E

Figure 4.6: R∗ and pG varying with pc when n = 4, TI ≡ 1, TL1
≡ 1, TL2

≡ 8
3 , E [TD] =

3, λL = 0.3821 and λG = 1.4159. For key to legend see Fig. 4.3. The cases

with constant delay and both local and global tracing match up with the

local tracing-only isolation case here. Isolation has no effect on top of the

vaccine.

been shown that this combined policy can have a great effect in reducing these such

values, when compared to related local tracing- or global tracing-only policies. Dif-

ferent distribution choices for the latent periods and the delays were considered. The

material differences between constant and exponential choices for these vary under

other assumptions, for instance as delay mean and the naming probability increase,

the effect of the choice of delay distribution becomes greater. Simulations of finite-size
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Figure 4.7: Critical delay means (i.e. that result inR∗ = 1) varying with pc when n = 4,

λL = 0.3821, λG = 1.4159, E [TL,1] = 1, E [TL,2] =
8
3 and TI ≡ 1. For key

to legend see Fig. 4.3. In the constant latent periods case isolation has no

effect on top of the vaccine.

epidemics showed that the approximating assumptions made to obtain R∗ and pG do

not lead to unreliable results.

It may be possible to extend the model from a constant infectious period to one with

finite support i.e. P (TI = ιk) = pk for k = 1, 2, . . . ,K such that
∑K

k=1 pk = 1. In this

case, to preserve a multitype branching process framework, one would have to replace

the solitary named households type with K types, where the kth type represents a
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household into which infection was introduced by global contact with an individual

with infectious period of length ιk. However, the single household epidemic becomes

more complicated, since now the time of the first removal within the household is not

fixed. To preserve some of the analytical properties we have used, one could assume

that all housemates have the same infectious period length (or at least that no-one in a

household has an infectious period shorter than the initially-infected individual within

that household), though in practice this would be a fairly unrealistic restriction.

In this model only a fixed naming probability has been considered. The theory of this

chapter can be extended to some random naming probability models. For instance,

suppose the probability of an individual (who can name) naming each of their global

contacts (with the same probability) is distributed according to a random variable Pc,

with finite support, i.e. P (Pc = pc,j) = πj for i = j, 2, . . . , J such that 0 ≤ pc,1 < pc,2 <

. . . < pc,J ≤ 1 and
∑J

j=1 πj = 1, then Eqns. (4.2.1) and (4.2.2) become

Mi0 = λG
(

(1− E [Pc])E
[

X+
i

]

+ E
[

X−
i

])

,

Mi1 = λGE [Pc]E
[

X+
i

]

,

while Eqn. (4.2.3) becomes

fi (s0, s1) =

J
∑

j=1

πjψi (λG {(1− pc,j) (1− s0) + pc,j (1− s1)} , λG (1− s0)) .

It may also be beneficial to study other, more complicated naming probability models,

in which the naming probability may be time-dependent or depend upon the number

of contacts made.

The contact tracing in this model is ‘forward’ in that infectees are named by infectors

(but not vice versa). If we assumed that ‘backward’ tracing were also possible (i.e. infec-

tors may be named by infectees), then all results in this chapter would be unchanged
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because a constant infectious period results in an infectee’s infectious period always

ending after their infector’s, by which time the infector’s household will have already

been vaccinated. However, including backwards tracing would have an effect if the

infectious period were not fixed.

The model in this chapter has been restricted to households of equal size, but the theory

can be extended to households of unequal size in a similar manner to that mentioned

in Section 2.8.

Attention has also been restricted to a perfect vaccine, i.e the vaccine renders all vaccine-

sensitive individuals immune. Other vaccine models could be considered: vaccines

that reduce susceptibility and infectivity of individuals, vaccines with random effects,

second applications of vaccines, the effects of vaccination being different for susceptible

and vaccine-sensitive latent individuals, or a combination of these and other assump-

tions.
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Conclusions and extensions

5.1 Conclusions

Three models for real-time, responsive intervention applied after the start of an epi-

demic have been considered.

In Chapter 2 an intervention scheme (incorporating vaccination and isolation) targeting

housemates of diagnosed individuals was modelled, and it was seen how different as-

sumptions about the vaccine action and distributions for latent and infectious periods

may or may not affect conclusions. It was seen that while this type of intervention can

be effective in reducing the spread of an epidemic, the reduction may be insufficient to

prevent a major outbreak if the between-household contact rate is large enough.

Chapter 3 looked at a contact tracing model for a homogeneously-mixing population

wherein traced individuals are isolated, considering that traced individuals may (it-

erative tracing) or may not (single-step tracing) be asked to name their own contacts.

As the naming probability increased their was a more pronounced difference between

the two subcases, there was also a greater difference in results between distribution

choices for the tracing delay and latent and infectious periods. It was seen that whether
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an individual’s traced contacts experienced the same or independent (and identically

distributed) delays did not have much of an impact on conclusions.

The model of Chapter 4 combined a local-tracing intervention scheme (as in Chap-

ter 2) with an additional vaccination triggered by tracing between-household contacts,

and vaccinating the traced individual’s household. This combination of contact tracing

with local-level intervention was seen to be effective, in concurrence with findings by

Becker et al. [18] and Eichner [22]. However, in their models, intervention is directed

towards only the traced individual themselves, and not their housemates or local con-

tacts. By vaccinating the household of a traced individual in the model of Chapter 4,

the effect of tracing is amplified. For tractability, it was assumed that the infectious

period is of a fixed length. However, different distributions for the tracing delay and

latent periods were considered.

Kaplan et al. [30] modelled a traced vaccination scheme and noted there was a ‘race to

trace’ - if a traced individual is vaccinated after they have become vaccine-insensitive,

the act of tracing and vaccinating that individual has been a waste. However, in the

models of Chapters 3 and 4, the urgency of the ‘race-to-trace’ is reduced: in the for-

mer, we isolate traced individuals, and so tracing an infectious individual reduces their

number of contacts; in the latter, we vaccinate the traced individual’s household, and so

while tracing a vaccine-insensitive individual may result in the waste of a vaccination,

their housemates may be vaccine-sensitive, and so the act of tracing this individual is

not a waste.
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5.2 Extensions

The targeted intervention schemes of Chapters 2 and 4 exploited the household struc-

ture of the model. It may be interesting to extend this into a model with more levels of

mixing, by assuming that intervention is directed towards not only the housemates of a

diagnosed or traced individual, but also their neighbours, schoolmates or workmates.

However, given that contact tracing and more sophisticated population structures tend

to reduce mathematical tractability, it may be difficult to make analytical progress.

For tractability, it was assumed in Chapter 4 that the infectious period is of a fixed

length. In real life the validity of this assumption will depend upon the disease. Fur-

ther, it was also assumed that only an infected individual who experiences their full

infectious period in the at-risk population may be allowed to name their contacts.

To relax these assumptions, it may be possible to apply some of the methodology of

Chapter 3 to the household environment, by considering the embedded process of un-

named households. However, this would be much more complicated analytically, due

to the increased variability of the outcome of a named household compared to that of

a named individual, but it might also enable us to consider whether there is little dif-

ference in results between assuming sibling units experience the same or independent

delays (as was the case in Chapter 3).

Throughout, the intervention models have implicitly assumed that all infected indi-

viduals become symptomatic, since treatment is given to contacts or housemates of an

infected individual after this individual has shown symptoms. It may be useful to in-

corporate asymptomatic carriers, who spread the disease without being detected, and

thus never trigger intervention. It would be interesting to see how this affects the ef-

fectiveness (in reducing spread) of the intervention methods, and, particularly in the
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household cases, how this affects the quality of the branching process approximations

used in this thesis.

It is also assumed that individuals are removed from the at-risk population when their

infectious period ends, and since this triggers intervention towards their contacts or

housemates, the end of their infectious period is when they are detected. It may be of

interest to consider a separate detection time beginning at infection. This would allow

display of symptoms to be independent of infectivity. It may also be a way of incor-

porating asymptomatic carriers by assuming that ‘detecting’ an individual after their

infectious period ends does not result in targeting intervention towards their contacts

or housemates.
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