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Abstract. 

The environmental wind tunnel at Nottingham University has been extended so that 

realistic mean hourly atmospheric boundary layers can be generated at sufficient scale 

to allow aerodynamic tests of sharp edged vehicles to be undertaken. 

A moving model rig owned by British Rail Research was installed perpendicular to the 

flow near the end of the working section. As part of this project an automatic refiring 

mechanism was developed allowing some 2000 transits of vehicles incorporating an 

internal balance and data logger to be made across the working section with a realistic 

mean hourly atmospheric boundary layer present. The quality of the data from the 

moving model rig was assessed. 

Moving model rig tests and static model tests of a 1/50th scale lorry and 1/45th railway 

container vehicles have been conducted and extreme value forces and moments 

relevant to the gust time that overturn a vehicle were calculated. These are the first 

measurements to have been made using a realistic mean hourly ABL and modelling 

the vehicle's movement. This thesis assesses the usefulness of the normalised extreme 

force parameter in determining the extreme forces that a full scale moving vehicle 

experiences. 

It was found that the normalised extreme force parameter remains invariant with model 

time scale for the range of times considered. Further for both the moving model rig 

tests and the static tests the value of unity that this parameter takes for yaw angles 

above 30 degrees implies quasi steady behaviour without additional body induced 

unsteadiness. At lower yaw angles, however, some body induced unsteadiness is 

evident. These conclusions are compared with predictions from existing numerical 

models and previous experimental tests. 

The measured lift force from the static tests compared with the moving model rig tests 

at 90 degrees yaw angle, i. e. with the moving model stationary, shows a large 

difference. This is not understood and two concerns are expressed: the effect of the 

slot, through which the supports of the moving model travel, beneath the vehicle, may 
be altering the pressure in this region; or it could be due to a Reynolds number effect 

caused by the small underbody height above the ground. 
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1. Introduction. 

Large ground vehicles are at risk from accidents from occasional very high cross winds. 

In the United Kingdom, hundreds of these vehicles, often moving, have been involved 

in accidents caused by extreme gusts present during short periods of relatively 

infrequent high mean wind speeds. For example 371 accidents of this kind happened, 

and were subsequently reported, within only a few hours on the 25th January, 1990 

(Baker and Reynolds (1990)) and the frequency of such events since, in the UK, of this 

magnitude has been at least once every year to date (1995). 

At some exposed sites such as on major span bridges the incidence of high wind speeds 

is much more common and traffic control is usually applied, consequently reducing the 

number of accidents. However accurate accident prediction methods are needed in 

order to set appropriate and not onerous traffic restrictions. 

This thesis is concerned with the determination of the extreme gust loads that large 

ground vehicles, such as high sided articulated lorries and trains moving through a high 

cross wind, are likely to experience. This information is needed in order to calculate the 

risk of a vehicle having an accident using either Wind Engineering techniques, for an 

overturning accident, or sophisticated numerical models specifically developed for 

ground vehicles. The latter models such effects as vehicle suspension and considers 

other types of accident, say, due to course deviation. 

The type of wind gusts mainly considered in this thesis are those due to the continuous 

turbulence of the Earth's atmospheric boundary layer and lack of convective currents. 
Other types of gusts that are important to these large vehicles, but not considered in 

detail in this thesis, are those due to vehicles passing large objects, e. g. bridge pillars, 

which in effect cause gusts on vehicles as they pass. In a high cross wind the resultant 

wind velocity is of a similar magnitude to the vehicle speed and therefore the vehicle 

experiences relatively high levels of turbulence intensity with a large resultant 

component perpendicular to the vehicle's direction of motion. This is distinct from the 

case of vehicles experiencing very common, low cross winds in which the main 

considerations are vehicle handling and more often passenger comfort criteria rather 

than safety. A vehicle travelling quickly through a low cross wind experiences a 

resultant low turbulence flow with only a small cross wind component. The assessment 

of likely loads on ground vehicles due to low cross winds are not considered in this 

thesis. 
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The determination of extreme forces and moments experienced by a ground vehicle 

moving through a particular environment is an important issue and therefore a common 

problem for engineers involved in either the design of new bridges and exposed roads as 

well as the vehicle designers. The accepted practice, to date, has been to conduct 

extreme value analysis of data obtained from a wind tunnel test of a strain gauged 

model vehicle in which the mean hourly atmospheric boundary layer (ABL) is modelled. 

There are three main practical difficulties in the application of such methods for ground 

vehicles 

1. Modelling both the ABL and the vehicle at the same scale due to the available 

wind tunnel size for the former and Reynolds number considerations for the 

latter. 

2. Modelling the vehicle movement - not only are the underbody flow and the 

development of vortices around the vehicle distorted, but from the frame of 

reference of the vehicle the approaching ABL is skewed, additionally the actual 

wind conditions seen by the vehicle are a function of both the vehicle speed and 

the wind conditions. 

3. The wind conditions encountered by vehicles vary across a wide range due to 

the terrain variations. 

Whilst these uncertainties may have an effect upon the known mean forces and 

moments, the effect upon their extreme values, which are means calculated over the 

short gust periods, could be much greater. Central to the problem is the determination 

of the model time scale which is used for determining the equivalent full scale gust time 

period for an atmospheric boundary layer modelled in the wind tunnel. Usually the 

magnitudes of these extreme values increase dramatically as the gust period decreases. 

Due to these difficulties, previous tests have not been undertaken successfully which 

cover all these criteria. These previous tests fall generally into the following categories: 

1. Large scale model wind tunnel tests with the vehicle mounted static in steady 
flow. 

Adequate modelling of the ABL, in an environmental wind tunnel, but with a 

small scale static vehicle mounted on a turntable. 
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3. Moving model tests, in a wind tunnel, with simple turbulence modelling of 
inadequate very small lengthscale. 

Ambitious large scale model or full scale tests, outside, using either the ambient 

wind conditions or the exhaust from gas turbine - ejector configurations of large 

area ratio. The former tests generally suffer due to lack of control and 
knowledge of the ambient conditions at the time of a test run and the latter tests 

suffer from inadequate high cross wind modelling characterised by extremely 

small turbulence length scales. 

This thesis describes the installation of a moving model rig, owned by British Rail 

Research, in Nottingham University's environmental wind tunnel perpendicular to the 

flow direction. The moving model rig was previously installed at Cranfield Institute of 
Technology and was built specifically for measuring the wind loads on a scale BR 

Advanced Passenger Train (Baker(1986b)). Static and moving model tests were 

conducted at Nottingham University including the simulation of a realistic mean hourly 

atmospheric boundary layer. Side and lift forces and pitching, yawing and rolling 

moments were measured on scale sharp edged high sided road and rail vehicles. The 

conventional static tests were conducted with the model mounted on a turntable and 
further moving model tests were conducted with a simulated 5m high escarpment with 

and without 3m high wind fences. 

The vehicle types tested were a 1/50th scale high sided articulated lorry, figure 1.1, and 

a 1/45th scale German Railway container mounted, but not fixed, to a railway wagon, 
figure 1.2. Consideration of the size, bluffness and weight of these vehicles show that 

these types of ground vehicles are at significant risk from high cross winds. Indeed this 

is demonstrated by the number of these vehicle types that experience accidents caused 
by high cross winds ((Baker and Reynolds (1990) and Peters (1992a). Further, these 

specific vehicle types were chosen because they have been the subject of previous wind 
tunnel tests and accident risk assessment and therefore there exists a wealth of 
information for comparison with the tests described in this thesis. These previous tests, 

conducted by many authors, have used a conventional static mounting arrangement 

with both steady and turbulence flow simulations using a range of scales and wind 
tunnels. 

The main aim of the work described in this thesis was as follows : 
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Determine the mean forces and moments and the extreme forces that a moving 

scale high sided bluff vehicle experiences for a few typical situations in a 

simulated realistic mean hourly atmospheric boundary layer typical of high 

winds. These would be the first such measurements to have been made. 

2. Investigate the effect of the realistic mean hourly ABL on these forces by 

comparison with previous results of the same vehicle types in tests using low 

turbulence and turbulence simulations characterised by small length scales. 

Determine the extreme loads for various model time scales and investigate the 

use of a normalised extreme force parameter for determining the full scale 

extreme loads for various vehicle speeds and geographical situations from 

limited wind tunnel test data. 

The work covered by this thesis is structured in the manner described in the following 

paragraphs. 

In order to understand the nature of the wind loads measured in these tests 

comparisons have been made with numerical models that had previously been 

developed, that predict in the time, amplitude and frequency domain, high cross wind 
forces on vehicles. In Chapter 2 these models are discussed and compared with the 

results from previous experimental tests. Two further sections deal with the results 
from the same vehicle types as tested in this thesis and also the results of previous tests 

undertaken by British Rail Research using the moving model rig on different vehicle 

types. 

Chapter 3 discusses the physical principles of the aerodynamic forces on a ground 

vehicle including a review of bluff body aerodynamics. Further, Chapter 3 includes a 

review of the currently available knowledge of the atmospheric boundary layer, 

particularly at small heights and discusses these with respect to moving ground 

vehicles. 

Chapter 4 describes the experimental equipment and in particular the development of 
the moving model rig and the extension of Nottingham University's environmental 

wind tunnel in order to accommodate the rig and increase the length of the upstream 
fetch. The latter was necessary in order to develop an atmospheric boundary layer 

characterised by large turbulence length scales. The methods used to analyse the results 
from these tests including Wind Engineering methods, are detailed in Chapter 5. Also 
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discussed is the interpretation of the mean hourly atmospheric boundary layer simulated 

in the wind tunnel and its relation to the available wind data recorded at sites in the UK. 

The development of the mean hourly atmospheric boundary layer simulation is 

described in Chapter 6 and the results compared with target values for an open 

countryside simulation at 1/50th scale. 

The static turntable tests are described in Chapter 7 of both vehicle types. Mean and 

extreme aerodynamic loads, the latter for a range of model time scales, are presented. 

The results are compared with previous static tests of these vehicle types by other 

authors. A first series of moving model tests again using both vehicle types are 
discussed in Chapter 8 in which problems of over prediction of extreme gust forces due 

to mechanical noise are highlighted. This led to a successful redevelopment of the 

moving model release mechanism and the mounting of both the live vehicle and the 

data acquisition equipment. 

Chapter 9 describes a second series of moving model tests, using the revised rig, in 

which the influence of the mechanical noise on both the aerodynamic mean and the 

extreme loads was investigated. Aerodynamic tests were conducted of the 1/50th scale 
lorry using the flat ground simulation and also a 5m full scale equivalent high 

escarpment simulation with and without slatted 3m high wind fences. The mean and 

extreme aerodynamic loads that the moving model vehicle experiences are determined 

for these tests. Further, the extreme aerodynamic loads are determined for a range of 

model time scales and the use of the normalised extreme force parameter assessed. The 

results of these tests are comprehensively examined and compared to the static tests of 

Chapter 7 and from tests undertaken by other authors. 

Chapter 10 lists the conclusions from the work presented in this thesis. 
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2. Review of Numerical Models and Experimental 

Testing Techniques. 

This chapter reviews the tests and numerical models undertaken in order to determine 

the risk of a vehicle accident due to high cross winds. Firstly section 2.1 reviews the 

numerical methods for analysing the extreme loads on such a vehicle and the methods 
for evaluating the nature and predicting the risk of a subsequent accident. These 

prediction methods require knowledge of the aerodynamic force and moments for a 

specific vehicle present at the extreme wind conditions. Section 2.2 reviews the 

attempts by many authors to acquire such data using a wide variety of test techniques 

and further, predictions using these analytical methods are compared with the 

experimental data. 

Central to discussing the gust loads on an object are the use of extreme values. In the 

context of this work an extreme value is the most likely maximum value for a given 

observation time of the calculated mean of a parameter over the time period of the 

gust. It is the convention to calculate extreme values corresponding to an observation 

time of one hour and this should be assumed throughout this thesis unless stated 

otherwise. For a ground vehicle, the gust time is taken to be the shortest time which 

corresponds to a gust that produces a correlated, and therefore, significant force on the 

vehicle and is usually around 1 to 5 seconds depending on the vehicle's size. 

The following definitions are used throughout this thesis. 

Referring to figure 2.1, for a vehicle moving at constant speed v, encountering a cross 

wind of mean wind speed i1 
, with a direction relative to it q), the resultant mean wind 

speed, V, experienced by the vehicle is given by : 

V= (i + v'` +2üvcosýo)v 2.1 

In this chapter the yaw angle V, defined to be that between the vehicle's track and the 

resultant wind direction - see figure 2.1, is used extensively. In a conventional wind 

tunnel test with the model vehicle mounted static on a turntable the yaw angle is simply 

that between the direction it is aligned relative to the wind tunnel's centre line as shown 
in figure 2.2. For a static wind tunnel test this is usually interpreted as a vehicle moving 

perpendicular to a cross wind and therefore corresponding to a vehicle speed to mean 

wind speed ratio defined by : 
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v= tan-'N 
) 

The definition of the resultant extreme wind speed, V, is given by : 

[ý=(it'+v`+2üvcosýo) 

2.2 

2.3 

where fi is the extreme wind velocity. This definition neglects the difference in the 
lateral turbulence structure compared to the stream wise direction but is used in much 

of the work reviewed in this thesis and is discussed further in Chapter 3. 

The mean and extreme force coefficients, CF and 
CF 

respectively, used in this chapter, 

for a moving ground vehicle, are defined as 

,F CF 
; pAU'` 

F 

zPAVZ 

2.4 

2.5 

where F and F are the corresponding mean and extreme force values on the vehicle of 

size characterised by its reference area, A and p is the density of the ambient air. There 

is no absolute convention for the vehicle's reference area but usually the frontal area is 

used. It should be assumed that this convention is used throughout this chapter unless it 

is stated otherwise. The definitions for the moment coefficients vary, depending upon 
the assumed point of rotation, and are defined for particular tests. 

The sign convention for the force and moment directions adhered to in all the work 
reviewed in this Chapter is shown in figure 2.3. 
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2.1 Vehicle high cross wind analysis methods. 

This section reviews the methods developed specifically for analysing the effects of 

high cross winds on ground vehicles and further those for calculating the subsequent 

accident risk. 

The accident prediction methods described here are those of Baker (1986a), Baker 

(1987), Baker (1988), Baker (1991 c) and Baker (1993). Also, reviewed in this section 

are the methods of analysing unsteady aerodynamic forces on ground vehicles which 

were developed in Cooper (1984) and Baker (1991b). 

Starting with Baker (1986a), this considered three accident criteria, defined as follows : 

1. Overturning accidents, when one wheel vertical reaction falls to zero. 

2. Side slip accidents, when the lateral deflection exceeds 0.5m. 

3. Rotational accidents, when the angular deflection exceeds 0.2 radians. 

Treating the vehicle as a rigid body including tyre - road friction but neglecting 

suspension and driver interaction effects, Baker developed a method for predicting the 

necessary aerodynamic force needed to cause each of the above accidents. This in turn 

was related to the oncoming wind and vehicle velocity by use of a set of correlations of 

the six aerodynamic force and moment coefficients as a function of yaw angle. In the 

worked example such parametric correlations were derived from the results of a set of 

low turbulence, static, 1/12th scale wind tunnel tests of a Leyland Atlantean double 

decker bus conducted at Cranfield Institute of Technology, Garry (1984). One of the 

limitations of this numerical model was that gusts had to be assumed to be sharp edged, 
i. e. sudden, so that the yaw angle did not vary as the vehicle entered the gust. Also it 

was assumed that the above accident criteria must be exceeded in the first 0.5s of 

entering a gust before the driver had time to apply a necessary corrective action to 

avoid an accident. By considering various wind and vehicle speeds Baker concluded 

that an overturning accident was much more likely than the other types for this vehicle 

type. Baker notes that the experimental data on which this model is calibrated were 

perhaps not too accurate due to Reynolds number effects observed during flow 

visualisation checks and that the predicted centre of pressure appeared to be higher 

than the bus's roof so that doubt was cast particularly on the side force and rolling 

moment coefficients. However as to be expected for this rear engined vehicle the centre 
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of pressure was above and in front of the vehicle's centre of gravity. At the time this 

was the only complete set of data available for a high sided vehicle. 

Baker (1988) calibrated the numerical model of Baker (1987) with experimental data 

from a range of 1/10th scale vehicle types from Stewart (1977). It should be pointed 

out that data were only available for a yaw angle of 30 degrees and so the correlations 

for the force coefficients with yaw angle were based on modifying the Atlantean bus 

data previously used so that it fitted Stewart (1977). Whilst again the calibration of the 

numerical model was in doubt the results proved interesting. These results, giving the 

first accident type to be predicted for the lowest accident wind speed for each vehicle 

type, for a range of vehicle speeds and wind directions are as follows : 

1. Cars - for yaw angles less than 45 degrees side slip accidents were predicted 

with rotation accidents taking over for the larger yaw angles. 

2. Coaches - for yaw angles less than 90 degrees overturning accidents were 

predicted with rotation accidents again taking over at larger yaw angles. 

3. Rigid large vans - overturning accidents were predicted for all yaw angles. 

Articulated tractor trailer combinations - again only overturning was predicted. 

Recommendations were produced from these results for operations across exposed 

road bridges for the various vehicle types. As was the current practice (Seven Bridge, 

Orwell Bridge) at the time, vehicle speeds were lowered when wind gusts exceeded 

certain levels and vehicles were stopped altogether at higher values. An important 

feature of these results was that they indicated that no account should be taken of wind 
direction, which was against the then current practice of setting limits based wind 
direction. It should be noted, though, that the predicted accident wind speeds from the 

numerical model were somewhat higher than those used in practice for traffic control. 

Baker (1988) extended the numerical model to include road curvature and camber and 

also to produce the results in terms of accident risk - the number of hours a year that 

the accident wind speed is exceeded. Additionally a model of driver interaction during 

the onset of a gust was included. Further, Baker undertook wind tunnel tests of a high 

sided lorry specifically for calibrating this numerical model. These tests are described in 

detail in section 2.2.1.1 but briefly all six mean forces and moments across the yaw 

angle range were measured on a 1/25th high sided articulated lorry in low turbulence 

11 



flow. Again it was found that for the high sided lorry entering a sharp edged gust only 

overturning accidents were predicted and also, as tentatively suggested in Baker 

(1987), their likelihood was not a strong function of the actual vehicle speed. 

Baker (1991b) reviews various analytic methods which describe the interaction 

between the wind force on a body in the frequency domain, from the field of Wind 

Engineering, that are applicable to the prediction of forces on ground vehicles in a high 

cross wind. Firstly considering the side force fluctuations, and considering the mean 

and fluctuating forces, F. and F, 
s'(t), to be due to similar mean and fluctuating 

components of the wind velocity, i1 and u'(t), i. e. buffeting by the turbulence in the 

wind, using the factor ks which is a function of yaw angle and vehicle geometry, 

FS+Fr(t)_; PAks[ Iii +u'(t)]ý 2.6 

the following expression can be derived: 

Ss(ýr) = 
41-s 

Su(n) 
ti 

2.7 

where SS(n) is the side force spectral density and S, (n)is the wind velocity spectral 

density. The expression in equation 2.7 is the quasi-steady case for wind induced bluff 

body forces. Further Baker notes that a similar equation could be written for the lift 

force but this may be inappropriate if additional effects are present which are known to 

exist for bluff bodies, e. g. vortex shedding (section 3.1). A complete description of the 

forces on bluff body therefore incorporates the aerodynamic admittance function, 

X(n), and is defined to be, considering the side force : 

SS(n) = IXS(rl)1 
4Fsý 

Su(n) 
tl 

2 2.8 

A similar expression may be written for the lift force, relating the lift force spectral 
density to the streamwise wind spectral density. 

From experimental test data the aerodynamic admittance can be found, and compared 

with the quasi - steady expression. Section 2.2 describes these comparisons for the test 

data under discussion. 
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Baker (1991b) also reviews the contributions described in Cooper (1984) which are as 

follows. 

Cooper (1984) developed correlations of the mean hourly boundary layer as 

experienced by a moving vehicle perpendicular to cross wind described in terms of the 

mean hourly atmospheric boundary layer. Briefly a random-process model was 

developed culminating in calculations of the following quantities for a range of yaw 

angles, vehicle speed / wind speed and length of the vehicle / streamwise turbulent 

lengthscale 

1. The resultant wind velocity spectrum, as experienced by the vehicle was 

calculated to be translated to higher frequencies as the vehicle's speed increased. The 

expression calculated, assuming that the lateral turbulence length scales were a factor 

of 0.42 of the stream wise component. 

t1S, (n) 
_ 

(4(nLu l Uýý 11 
+ 

ß' 
° 

(I+7o. 
8(fr, LIv)2) 

tt 
1-- 

V 

0.5+94.4(nLu / l'lz 

1+70.8(nLu/VýýI 
2.9 

where Lu is the compound turbulence lengthscale and is related to the longitudinal 

length scale 'Lu by : 

Lu = xLu 2.10 

This is considered further in Chapter 3 as part of the review of the required wind tunnel 

testing conditions for a moving ground vehicle. 

2. The side force aerodynamic admittance, for a vehicle of length L and height H 

was calculated to be of the following form : 

IXscft> 
ý 

-f 

(nL vH Lý 

L' xLu 

i 
2.11 

The results of the side force aerodynamic admittance for the side force using Cooper's 

theory are shown in figure 2.4 for a vehicle of characteristics L/H = 5.0, in fact similar 

to the dimensions of the lorry and DB container under discussion in this thesis. The 

13 



most noticeable general feature is that the aerodynamic admittance is attenuated at high 

frequencies which is due to the filtering effect of the vehicle's finite length. At the lower 

frequencies and for the lower values of L/xLu the aerodynamic admittance takes the 

value of unity. This corresponds to the quasi steady situation for gusts which are 

correlated across the vehicle's length. The frequency at which the attenuation is marked 

implies the minimum time duration of gusts that give rise to the quasi steady 

perturbations for gusts correlated across the vehicle. It is seen for all cases considered 

that, approximately, Ln/V = 0.1 and referring to Baker(1991b) this corresponds to gust 

periods of between 1 and 5 seconds for vehicle lengths varying between 4m (car) and 

20m (rail vehicle). Also referring to figure 2.4 it is seen that for high values of L/xLu 

that the aerodynamic admittance is less than unity showing the effect of lack of 

correlation across the vehicle's length. 

Comparisons of the calculated side force aerodynamic admittance with experimental 

data are discussed in detail in section 2.2. for a range of vehicle types but briefly this 

function compared favourably with the evaluated quantity from the only available 

experimental data at the time, the 1/5th scale moving model Advanced Passenger Train 

data of Cooper (1981). 

3. It was shown that for speeds of over 40m/s significant excitation of the vehicle's 

suspension may occur with the turbulence intensity increasing approximately with the 

square of the speed of the cross wind. 

Baker (1991b), also Baker and Robinson (1988), extends these methods further into 

the amplitude and time domains so that comparisons can be made with the model of 

Baker (1988). 

1. In the amplitude domain the relationship between the extreme force and mean 
force values that are usually of interest and the aerodynamic admittance calculated 

using Cooper's theory are developed using the methods of Greenway (1979). 

Considering the side force case in which the extreme value is formed from a gust time, t 

seconds, in an observation period of T seconds, the ratio of the extreme to mean values 

are given as : 

tl 6 ýi 

-=1+ °` [21n(vuTj 
ü tt 

r 
=1+ 

ý` ý21n(v, Tl /2 2.12 
Es 
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where a., and a� are the root mean square values of the ensemble of values formed 

over the gust times, that is filtering the data at a frequency of 1/t : 

Q= 
°" 

Sn 
sin(nntý12n 

Y2 

=m 
sin(nnZ) 

2 Y2 

.ýJ .ý nnt J' 
as, 

f Ssýn 
not 

d nj 
ý 

00 

also the zero crossing rates, v. and vs , of these ensemble of values are given by 

1 ,a2 

Y2 
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Jýý. ` 
2.14 
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It is seen therefore that the extreme wind and extreme side force values can be found 

from knowledge of the aerodynamic admittance and the mean values. Baker (1991b) 

undertakes this calculation for an observation time of one hour for the case of a typical 

large commercial vehicle which is characterised by LH = 5.0 and a gust time of around 
3 seconds. The resulting extreme side force and extreme wind velocities were presented 
in the following ways: 

a) Figure 2.5 shows the unsteady side force parameter calculated for various mean 

wind and vehicle speeds plotted against the ratio of the vehicle's length to the 

streamwise turbulence lengthscale, where, 

unsteady side force parameter ='s/; 2.15 

tI 

It is seen that for small values of UxL, u , this parameter takes a value approaching 2.0. 

This value of 2.0 can be shown to be that corresponding to the quasi steady case by 

repeating the calculation using a value of unity for the aerodynamic admittance across 

all frequencies. (Baker and Robinson (1988)). The results show that in order to 

replicate gusts of more than 3s on full scale vehicles which behave in a quasi - steady 

0 
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manner, then wind tunnel testing needs to be conducted with the streamwise turbulence 

length scale much larger than the vehicle's length. 

b) Figure 2.6 shows the results in terms of the normalised extreme side force 

parameter, where, 

normalised extreme side force parameter = 
CSCs 2.16 

Figure 2.6 shows that the normalised extreme side force parameter was relatively 

insensitive to values of L/ xLu taking values between 0.85 and 0.95. Further this 

suggests that measurements of this parameter in the wind tunnel may not be too 

sensitive to the streamwise turbulence length scale modelled. 

2. In the time domain, Baker developed Cooper's theory with and without 

corrections for vehicle length effects. In Cooper's theory it was assumed that the 

vehicle length must be much shorter than the streamwise turbulence lengthscale. 

Remembering that the intention was to compare this with work done earlier (Baker 

1986a, 1987 and 1988) and that if a model of a vehicle entering a sharp edged gust 

was required, this assumption in Cooper's theory would not hold. As a vehicle enters a 

sharp edged gust the wind velocity will change over the vehicle's length. The developed 

model appeared to give physically realistic results when compared to the previous 

analysis and further large pitching and yawing transients were predicted. 

Baker (1991c), using the various numerical methods, considers other effects that are 

due to the interaction of the aerodynamic forces and the vehicle system : 

1. Suspension excitation using the method of Cooper (1987), a development of 

Cooper (1984). 

2. Overturning using the methods of Baker (1987), Baker (1988) and Cooper 

(1987). 

3. Course deviation using the methods of Baker (1987 and Baker (1988). 

Also included in this paper are worked examples of calculating the accident risk using 

the methods of ESDU (1982) and Cook (1985). 
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In Baker (1993), a version of the same numerical model of Baker (1988) was 

developed considering the forces and wind in the frequency domain, using the methods 

developed from Wind Engineering in Cooper (1984), Baker (1991b) and Baker 

(1991 c). The force on the vehicles, described in the frequency domain as the force 

spectral density, was calculated from the streamwise wind velocity spectral density and 

the side force aerodynamic admittance. This latter quantity is determined from either a 

theoretical model or experimental data. A vehicle transfer function was then defined 

and used to predict the behaviour of the vehicle in terms vehicle displacement. The 

method is compared with the earlier time domain program of Baker (1988) by 

specifying a sharp edged gust as the wind spectrum. It was found that the method gave 

good agreement for cases where the centrifugal forces present in the calculation were 

not important, that is for cars and vans. One of the other main conclusions was that the 

method predicted similar results over a wide range of vehicle speeds as noted in Baker 

(1988). One of the shortcomings of this model, also present in the original time domain 

model, but more clearly seen in the frequency domain model, was that the only 

unsteady effect modelled was that of buffeting in the defined side force aerodynamic 

admittance. Therefore the possible interesting lateral oscillation due to vortex shedding 

was not included. Baker notes, though, that the mean lift forces are much smaller than 

the side force and therefore this omission may not be too important on the overall 

predictions. Comparisons of the aerodynamic admittance for the side and lift forces 

from experimental tests with Cooper's quasi - steady predictions are shown in section 

2.2. 

Finally it should be mentioned that established methods are available in the field of 

Wind Engineering in order to determine the extreme values that relate to the full scale 

case for a given geographical site and observation time, for either the wind velocity or 

the force on a static structure from wind tunnel experiments. Chapter 5 describes these 

methods. If the prime objective is the overturning of a ground vehicle, neglecting other 

effects, e. g. suspension or driver interaction, then these methods may be used directly. 

Noting that the numerical models of Baker, described in this section, predict 

overturning as the most likely for large high sided vehicles, these methods may be 

adequate for the vehicles being studied in this thesis. 
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2.2 Experimental techniques. 

This section describes the results from experimental tests conducted in order to 

determine the forces and moments on large high sided vehicles in high cross winds. The 

first two sections deal specifically with tests that this work may be considered a direct 

development and are as follows. Section 2.2.1. describes the results of tests that have 

used the same vehicle model or a scale replica as used for tests described in this thesis 

and therefore direct comparisons with the results of this thesis can be made. Section 

2.2.2 deals with a comprehensive set of tests undertaken of the BR Advanced 

Passenger Train during the late 1970s and early 1980s. These tests are considered 

important to the work of this thesis as they include tests of the British Rail Research 

moving model rig when sited at the College of Aeronautics, Cranfield Institute of 

Technology (now Cranfield University) for which the rig was specifically designed. 

Static conventional tests were undertaken at the same facility. Together with the results 

obtained from other scale tests of this vehicle using another moving model rig and 

other static wind tunnel turbulence simulations, these form a comprehensive set of data. 

In section 2.2.3, the results of tests, by many researchers, of other high sided vehicles 

are described. Finally section 2.2.4 reviews the results obtained from some of the exotic 

facilities that have been used for the low yaw angle low cross wind tests as these offer 

alternative approaches to the moving model rig used in this thesis. 

Further discussion of the results described in this chapter are included in Chapters 7,8 

and 9 where comparisons are made with the results of this thesis. 

2.2.1 Vehicle types tested and described in this thesis. 

2.2.1.1 The high sided lorry. 

Baker (1988) measured all forces and moments of a 1/25th scale replica of the 1/50th 

scale lorry in low turbulence using a6 component internal force balance. This was done 

with the vehicle mounted statically in British Rail Research's 1.4m by 1.1m wind tunnel 

situated at the Derby College of Higher Education. (This is now Derby University and 

the tunnel has been resited at the main London Road, Derby site of British Rail 

Research). The Reynolds number of these tests, based on the vehicle's height, were 2.4 

x 105 with a blockage of 6% at high yaw angles. The results of these were corrected 

using the MIRA blockage correction, ESDU (1980). 
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Coleman (1990) measured forces and moments on the same 1/50th scale lorry, using 

the 5 component force balance described in this thesis, both in low turbulence flow and 

with grid generated turbulence of longitudinal length scale 0.15m and a turbulence 

intensity of 10.5%. The Reynolds numbers of these tests were 0.85 - 0.88 x 105 based 

on the vehicle's height. The model was mounted on a bridge deck representing a3 lane 

motorway including a realistic 1.5 degree of road camber (sloping down towards the 

oncoming wind) in Nottingham University's 2.4m by 1.2m environmental wind tunnel. 

The results of this work were also described further in Coleman and Baker (1989,1992 

and 1994). 

The mean force and moment coefficients, using the vehicle's frontal area for the 

reference area, of Baker (1988) and Coleman (1990) are shown in figure 2.7. The mean 

side force coefficients show a general agreement regardless of the test conditions and 

turbulence simulation with the turbulence simulation producing slightly higher values at 

all yaw angles. Similarly the mean lift force coefficients show a similar trend but this 

time showing a large variation. Considering the results of Coleman (1990), the results 

of the tests using the turbulence simulation show much larger values than the low 

turbulence results at yaw angles. above 30 degrees, indicating the sensitivity of the lift 

force to the turbulence simulation. However the low turbulence tests of Baker (1988) 

show even greater values at yaw angles above 30 degrees being much larger than the 

similarly low turbulence results of Coleman (1990) and indeed larger than the results of 

Coleman (1990) using the turbulence simulation. In Coleman (1990) this was attributed 

to the difference in vehicle camber, as the tests in Coleman (1990) were with the 

vehicle tilting towards the wind at a camber of 1.5 degrees compared to the flat ground 

simulation of Baker (1988). Coleman (1990) further undertook some tests at zero 

camber and it was found that the magnitude of the lift force coefficients were up to 

80% of the values measured in Baker (1988). The rest of the difference between the lift 

coefficients, Coleman (1990) suggests, may be due to adverse camber in the mounting 

of the larger vehicle, Baker (1988). It was noted (Baker (1989)) that the mounting 

supports of this larger vehicle were prone to bending during wind tunnel tests. 

The moment coefficients for the lorry are defined to be about the vehicle's centre of 

gravity with the lorry's height used for the reference height and are therefore formed 

from the pure side and lift forces as well as the moments measured about the balance 

centre. Briefly, the mean moment coefficients showed that points of actions were aft 

and above the lorry's centre of gravity (in fact similar to the characteristics of an 

aeroplane - due to the large area of the tail fin). The differences between the mean 

moment coefficients of Baker (1988) and Coleman (1990) were large and only in part 
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explained by the differences in the side and lift force contributions. Further 

investigation showed that these moments were very sensitive to small differences in the 

points of action of the side and lift forces which show themselves as real differences in 

the moments measured about the balance centre. These differences in the actual 

moments about the centre of gravity of the vehicle are therefore probably real and 

indicate the sensitivity of these parameters to small differences in the experimental 

simulation. 

The normalised extreme side and lift coefficients and the unsteady side and lift force 

parameters calculated in Coleman (1990) for yaw angles of 60 and 90 degrees are 

shown in table 2.1. These were obtained using the time scaling based upon the vehicle 

scale and the ratio of the mean wind speed in the tunnel to a value of 30m/s, this being 

taken to be the full scale mean hourly extreme wind speed. The sampling period of 

0.12s was taken to be equivalent to a3 second gust. The effect of the factor of 8 in the 

mismatch the simulated turbulence longitudinal length scale between that in the wind 

tunnel and that of the Earth's atmospheric boundary layer was not included. It should 

be pointed out that the wind tunnel suffered from a low frequency oscillation thus 

giving two peaks in the wind velocity spectrum. The longitudinal length scale quoted in 

Coleman (1990) was based upon a best fit von Karman spectrum to the turbulence 

distribution created by the grid ignoring the sharper peak corresponding to a much 

larger lengthscale. This low frequency oscillation, however, may be more important 

when considering the correlation of the gusts across the vehicle and so little correction 

to the time scale may be needed for the effect of turbulence length scale mismatch. 

Referring to table 2.1 it is seen that the normalised extreme side force parameter takes 

a value of unity and the unsteady side force parameter takes a value just under 2.0 

indicating quasi steady unsteadiness according to Cooper's theory. However similar 

comparisons for the extreme lift force values indicate that only for a yaw angle of 60 

degrees is this true and that these values are much higher for the experiments at a yaw 

angle of 90 degrees, indicating that some extra unsteady force is present. Coleman 

(1990) investigated this further by examining the force measurements in the frequency 

domain. One of the main effects noted, for the yaw angle of 90 degrees only, was that 

the lift force spectrum was dominated by a peak at around 35Hz which corresponded 

to a Strouhal number similar to that expected for vortex shedding in the wake of a 

square cylinder (Vickery (1966)), see Chapter 3. This explains the departure from 

Cooper's quasi steady theory noted in the examination of the unsteady lift force 

parameters at this yaw angle. The aerodynamic admittance function for the lift and side 

forces at yaw angles of 30 and 90 degrees, shown in figures 2.8 and 2.9, demonstrate 
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this effect. It is seen that the aerodynamic admittance derived from the experimental 

tests agree with Cooper's theory, bearing in mind the experimental errors, except for 

the lift force aerodynamic admittance case at the yaw angle of 90 degrees. This had 

values greater than unity at some frequencies, in the spectrum, demonstrating the 
departure from the quasi steady state. 

Included in Coleman (1990) were tests in which various slatted wind fences were fitted 

to the bridge deck, shielding the lorry to some extent. These had a dramatic effect in 

reducing the mean force and moment coefficients and the normalised extreme forces 

were also reduced a little. (These results are presented in Chapter 9 and compared with 

the results the tests described in this thesis). It was noted from wind velocity and 

vehicle force spectral measurements that the effect of the slatted wind fences was to 

reduce the low frequency energy, due to the breaking up of the lateral correlation and 
increasing the high frequency energy across the range corresponding to the vehicle's 

suspension modes. Coleman included calculations of the accident risk for the various 
fences and compared the results with the numerical model of Baker (1991c); see 

section 3.3. These were also published in Coleman and Baker (1992). 

Coleman (1990) also undertook mean and unsteady static pressure measurements on 
the surface of the vehicle and flow visualisation tests in order to investigate the flow 

mechanisms that give rise to these effects. Due to the comprehensive nature of the tests 
Coleman was able to relate the results both to other experimental work in the general 
field of bluff body aerodynamics and also to the numerical models described in section 
2.1. Coleman (1990) develops a comprehensive description of the flow field around the 

vehicle and the mechanisms causing the macroscopically recorded forces and moments 
for both turbulent and smooth oncoming flow. 

2.2.1.2. The DB railway container. 

These tests concern forces and moments of containers loaded on railway wagons but 

not attached to them. The main objective was to find the maximum rolling moment 

about the lee bottom corner of the container, about which it may be caused to rotate, 
due to the resultant of the vehicle's motion and an extreme wind gust. The reference 
area and height for these vehicles were defined to be the container's frontal area and the 

container's width respectively with the container's length being used for the 

characteristic length in the Reynolds number definition. The rolling moment coefficient 
was defined to be about the lee bottom corner the container. The mean value was 
formed from the contributions of the mean side and lift forces and the rolling moment 
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measured about the balance centre. The extreme rolling moment was formed from 

extreme value analysis of the ensemble of rolling moments, each corresponding to a 

equivalent full scale 3 second gust, formed from the simultaneously measured side and 

lift forces and the rolling moment. 

Peters (1989) describes mean value measurements of all 6 forces and moments on static 

1/3rd scale railway container vehicles in the low turbulence using the 6m by 6m DNW 

facility (German - Dutch wind tunnel). The container and wagons tested were modelled 

on 3 (full scale dimensions) types; a 40 foot (12.2m) long container, 2.6m by 2.5m in 

section with and without 0.7m high side fences fitted to the truck and a similar 20 foot 

long container without side fences. Note that only the 40 foot container versions were 

used in the tests described in this thesis. These tests at DNW were conducted at high 

Reynolds numbers of between 13.9 and 30.9 x 106 but had a very large blockage of 

6% at high yaw angles but no correction appears to be have applied. In Peters (1992) 

these results are compared with further 1/7th scale low turbulence tests of the same 

vehicle using the 5.8m by 3.9m FKFS wind tunnel. (Forschungs-institut fur 

Kraftfahrzeugwesen and Fahrzeugmotoren, Stuttgart). Again the blockage was fairly 

high at 3% and no correction appears to have been applied. The Reynolds numbers of 

these tests varied between 5.4 x 106 and 8.7 x 106, a little lower than the DNW tests. 

Kronke and Sockel (1992) describes the mean and extreme force and rolling moment 

measurements of a statically mounted 1/75th scale railway vehicle with the 20 foot long 

container already described. This was chosen as the tests of Peters (1989) indicated 

that these were most at risk. Three different atmospheric boundary layer simulations 

using a 2m by 2m wind tunnel at MTI Arsenal, Vienna, with an available fetch of 8m, 

for boundary layer growth, before the 3m test length. One of the ABL simulations had 

no roughness blocks and therefore corresponded to a very smooth flow of turbulence 

intensity 5% and the results were similar to the previous low turbulence tests of Peters 

(1989 and 1992). The other two ABL simulations had a similar longitudinal integral 

length scale of 0.3m which is approximately half the full scale value at these model 

scales. The longitudinal turbulence intensities for these cases were 15% and 22% at a 

reference height of 0.05m, corresponding to a full scale value of 3.75m, near to the 

height of the roof of the vehicles. The area blockage of the rests was very small at 

0.16% but so was the Reynolds number of 2.5 x 104. A rather simple extreme value 

analysis of the results was conducted, based on the 99% fractile of the results gathered, 

using data filtered at 10Hz with the extreme values calculated for an equivalent full 

scale value of 3s using the resultant train - wind speed as the velocity scale and 
including the mismatch in integral longitudinal length scale (in the manner described in 
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Chapter 3 of this thesis). This was done for a comprehensive set of train and wind 

speeds. The accident criterion used here was that of the extreme rolling moment of a 

container should not exceed the value needed to lift the container at the windward side 

when it is empty. The results were then reinterpreted giving the maximum allowable 

train speed as a function of wind speed and turbulence intensity. 

Figures 2.10 and 2.11 show comparisons of the mean side and lift force coefficients for 

the 40 foot container mounted on a wagon fitted with side fences, from Kronke and 

Sockel (1992). The trends shown are representative of the tests with side fences and 

those using the model equivalent 20 foot container. Generally the mean side force 

coefficients agree with some possible systematic Reynolds number effect in the low 

turbulence results. The comparisons of the lift force coefficients show large variations. 

The low turbulence tests of Peters (1989) and (1992) show a systematic Reynolds 

number effect with the results of Kronke and Sockel (1992) being consistent with this. 

From Kronke and Sockel (1992) the mean and the extreme normalised lee botto 

corner container rolling moment coefficients from the equivalent 20 foot tests for 

three simulated atmospheric boundary layer are shown in figure 2.12 and 2.13. Th $ 

show results broadly similar to the results for the lorry tests described in section 2.4. 

a value of around 1.0 or less for the high yaw angles but a larger value is indicated for 

the lower yawing angles. However there seemed to be a trend of larger values with 
increasing roughness of the fetch and hence turbulence intensity at the reference height. 

The calculated maximum allowable train speed was found to be very much reduced for 

the higher turbulence simulations. 

These results are described further in Chapter 7 and compared with the results of the 

tests described in this thesis. 

2.2.2 The BR Advanced Passenger Train. 

The determination of accident risk for the BR Advanced Passenger Train (APT) was 

pursued vigorously by British Rail Research due to the low weight of these vehicles, 

made possible by its monocoque aluminium construction. Further, the leading and 

trailing coaches of the prototype and the intended (never built, as the project was 

scrapped by the UK Government) service types were unpowered passenger vehicles 

with a similar weight to the inner passenger vehicles. These vehicles, as well as the 

inner carriages, were therefore at risk from the wind. (The electric power cars of these 

trains were to be positioned, unusually, in the centre of the train). Unless stated, all 
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results described in this review concern the leading vehicle of the APT as this was 

identified to be at greater risk of overturning (Cooper(1977)). Figure 2.14 shows the 

leading vehicle of the service version, APT-S, although it should be noted that the 

profile of the initially built gas turbine powered leading vehicle of the experimental, 

APT-E, and the prototype, APT-P, were similar with only detail changes. 

The initial tests used conventional low speed wind tunnel tests. The first series were of 

the initial experimental vehicle, APT-E and were 1/24th scale (Rigby (1973)) at yaw 

angles of 40 degrees and 90 degrees and 1/5th (Cooper(1977)) for yaw angles up to 30 

degrees. More model tests were undertaken of the very similar APT-P or APT-S and, 

unless stated otherwise, for the yaw angle range of 0 to 90 degrees. For the APT-P 

these were 1/5th scale (Cooper(1978)) and 1/25th scale (yaw of 0 to 40 degrees tested, 

Cooper(1982)), plus for the APT-S, 1/50th scale (Baker(1981a)) and 1/35th 

(Baker(1983a)). The side and lift force coefficients and lee rail rolling moment 

coefficients were calculated and the agreement is good with the range of Reynolds 

numbers, based on vehicle height, ranging from 1.5 x 105 to 16 x 105 and are shown 

in figure 2.15. These comparisons were also described in Baker and Gawthorpe (1983). 

The first series of moving model tests were conducted on an outdoor test track nearly 
1km in length and a height of lm at the Proof and Experimental Establishment at 
Pendine, Wales. (Cooper (1979). The 1/5th scale model of the APT-P built from 

Kevlar was tested. This scale being chosen as it gave a match equivalent to a full scale 

rural mean hourly ABL based on the longitudinal turbulence length scale of around 7m 

measured from available wind data measured at the site at the model scale reference 
height. 

Due to the lack of control of the atmospheric conditions at the track height and 

vibration of the model travelling along the track, a large variation was found in the 

results but these dynamic tests always gave mean side and lift forces less than the static 

tests of Cooper (1978). However analysis of the side force aerodynamic admittance 
function was conducted and found to agree with the quasi unsteady theory of Cooper 

(1984), see figure 2.16. Cooper however points out that there was a large standard 

error (S. D. /mean) of 38% in the measured data and therefore much more reliable data 

is required to test the theory. 

After the analysis of the Pendine tests it was decided to design and build a high 

specification moving model rig for use with 1/50th scale APT-S models to be installed 

perpendicular and crossing the College of Aeronautics' 2.4m x 1.2m environmental 
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wind tunnel at Cranfield Institute of Technology in which a mean hourly atmospheric 

boundary layer was modelled (Johnson (1981)). This rig was the one now installed at 

Nottingham University and described in Chapter 4 of this thesis. The rig, principally 

designed by R. K. Cooper, was developed by means of building a short prototype track 

section (Harrison (1982)). The aim was to ensure that any mechanical noise present in 

the measured signal would be at a sufficiently high frequency that it could be removed 

by analogue filtering. Tests were conducted, between November 1980 and February 

1981, with the live vehicle taking each of the carriage positions, using both a flat 

ground and an embankment simulation - with and without slatted fences. Further static 

tests were conducted with the vehicles mounted on a turntable - using the same ABL. 

(Baker (1981a) and Baker (1986b)). Tests were conducted corresponding to the full 

yaw angle range. 

Typical time histories of the measured and filtered side and lift forces and all the three 

moments for a typical set of flat ground and embankment simulation using the moving 

model rig are shown in figures 2.17 and 2.18. It is noticed, particularly for the lift and 

pitch measurements, that for the embankment simulation aerodynamic equilibrium was 

not reached with these values still increasing as the vehicle reaches the end of the test 

section in the wind tunnel. This however was thought to be due to the non uniformity 

of the flow across the working section gap in the tunnel, all round the working section, 

to allow the vehicle and the data acquisition cord to pass, and that the embankment 

aided the non uniformity of an already diverging flow. The presence of the slot for the 

model supports to pass was also a concern and is discussed further in Chapter 4. 

Generally the operation of the rig was successful and provided high quality data from 

which the mechanical noise, present only above 50Hz, could be removed. However the 

interpretation of the ensemble of mean forces and moment coefficients averaged over 

each run was difficult due to the inadequate modelling of the mean hourly atmospheric 

boundary layer which was characterised by a longitudinal length scale some eight times 

too small. In Baker (1986b) the results are interpreted as an ensemble of means, each 

corresponding to approximately a3 second gust without any integral length scale 

correction but instead interpreting the atmospheric boundary layer generated as a gust 

simulation. In terms of the longitudinal length scale interpretation this was reasonable 

but the lateral correlation of the gusts was not considered. The Reynolds number, based 

on the vehicle's height was quite low, taking the value of 6x 104, and whilst this was 

of concern for these well rounded vehicles, specific Reynolds number tests did not 

show too much variation probably due to the turbulence present in the flow - see 

Chapter 3. 
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Next to be shown, from Baker (1981a), Baker (1986b) and Baker (1991a), are the 

mean side and lift forces and the calculated lee rail rolling moments from the ensemble 

of runs for these various tests. Figure 2.19 compares the level ground moving, the 

embankment moving and the equivalent flat ground static tests, using the simulated 

ABL, for the leading vehicle. It is seen that for the level ground simulation moving 

tests, the side force coefficient decreases, the lift force increases and the lee rail rolling 

moment remains similar when compared with the static tests. Further, comparing the 

moving embankment tests with the moving level ground tests showed that the side 

force and lee rail rolling moment coefficients tended to increase for the embankment 

simulation whilst the lift force coefficient remained similar. 

Due to the poor mean hourly atmospheric boundary layer simulation at Cranfield, a 

further static tests series was conducted of the 1/50th scale APT-S in Oxford 

University's environmental wind tunnel with a conventional mean hourly ABL with a 

relatively large turbulence length scale of L/ XLu = 0.9 and are described in Baker 

1983b. The Reynolds number, based on the vehicle's height for these tests was 5x 104, 

very similar to the Cranfield tests. Figure 2.20 shows these results compared to the 

static Cranfield tests with L/ xLu = 3.8 for the ABL modelled and an average of the 

much earlier steady flow tests, figure 2.15, of this vehicle. It is seen that, compared to 

the steady flow results, the longer turbulence length scale simulation tended to increase 

the values of all the coefficients whilst the short length scale simulation tended to 

decrease the coefficients. 

Robinson (1988) investigated the effect of turbulence length scale further by numerical 

modelling and wind tunnel tests using various grid turbulence simulations on a 1/50th 

scale idealised train shape, I. T., similar though to the APT's profile. The tests were 

conducted in Nottingham University's environmental wind tunnel and, as to be 

expected using the grid turbulence, the ratio of the vehicle's length to the longitudinal 

turbulence length scale was less than unity varying from L/CLu(H) = 3.2 to 6.3. The 

results however showed the same trend as the APT tests in turbulent flow compared to 

the steady flow results. Robinson further developed a numerical model that could 

reproduce a similar trend but not the absolute magnitudes. 

2.2.3 High cross wind tests of other high sided vehicles. 

Stewart (1977) undertook tests using a moving model rig of a range of 1/10th scale 

commercial vehicles with a sheared wind velocity profile present. The limitations of the 

tests, in terms of high cross wind conditions, were that the test condition corresponded 
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to a single yaw angle of 30 degrees and that the turbulence length scale modelled 

corresponded to xLu =0.15m, a factor of thirty too small. However all the moments as 

well as side and lift forces were measured. Mean coefficients were produced from the 

data that corresponded to steady state conditions after the initial transient of the vehicle 

entering the gust. The results for the articulated lorry agreed reasonably well with the 

tests of Baker (1988), see figure 2.7, considering the large differences in test condition. 

The largest differences being for the lift and rolling moment where Stewart's data 

predicted much lower values. The effect of rounding of the vehicle edges was also 

investigated and the results showed a large reduction of the side and lift force 

coefficients with rounding but that the yawing moment tended to increase. 

Garry and Cooper (1986) took static and 'moving' wind tunnel tests in steady flow of a 

range of commercial vehicles. The 'moving' tests were undertaken with the models 

rotating on a turntable at low and high rotation rates in an attempt to simulate the 

change of direction of the resultant wind as the vehicle encounters a gust. The 

quantities measured were side and drag force and yawing moment and interpreted from 

these were the phase lag of these quantities for different yaw rates. Of significance were 

the conclusions that showed that there existed significant phase lag even at the lowest 

turntable rotation speeds indicating that the forces on the vehicle do not respond in a 

quasi - steady manner to the wind fluctuations even at low frequency. However the 

magnitudes of the coefficients determined appeared to be independent of the yawing 

rate. 

Comperthwaite (1986) conducted conventional static low turbulence wind tunnel tests 

of a variety of tractor trailer combinations but for yaw angles only up to 20 degrees. 

However all six forces and moments were measured and the results were in reasonable 

agreement with Baker (1988). The effect of rounding of the vehicle corners was also 

investigated. 

Howell (1986) undertook static wind tunnel and moving model results for a short 

magnetically levitated (mag-lev) vehicle with a simple short turbulence lengthscale 

simulation. The results showed that the side and lift force coefficients for the moving 

tests were both lower than the static tests. The side force results therefore agree with 

the results of the British Rail Research APT tests at Cranfield, see section 2.3, but the 

lift force coefficients show the opposite trend. 

Tzeremopoulos (1981) and Coleman (1990) describe the results of measuring the 

forces and moments on each vehicle of a very common British Rail two car multiple 
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unit train of similar geometries with curved roofs and blunt noses at the front and rear. 

The tests of Tzeremopoulos were at 1/25th scale and of a Reynolds number of 2.5 x 

105 based on the vehicle's height, in British Rail Research's wind tunnel, already 

described in section 2.1, using steady flow. Coleman (1990) describes tests of 1/50th 

scale vehicles tested in the smooth and grid turbulence flow at identical conditions to 

the lorry tests described in detail in section 2.2. The Reynolds number of these tests 

were somewhat lower at around 0.8 x 105 based on the vehicle's height. In Coleman 

(1990) it was pointed out, that for the high yaw angle tests, that the separation line 

positions were not stable and exhibited large variations with change of geometries 

indicating a Reynolds number effect. However at the low yaw angles the results from 

all 3 simulations agreed reasonably well. 

2.2.4 Other cross wind test facilities. 

Bearman and Mullarkey (1994) describe results from a novel facility in which drag, side 

force and yawing moments were measured of various 1/8th scale car shapes in which 

an unsteady wind has been produced using a pair of oscillating aerofoils situated 

upstream of the model. Tests were limited to yaw angles up to 20 degrees. Spectral 

analysis of the longitudinal wind velocity showed that it had a spectrum of 

corresponding to a realistically sized turbulence length scale that a moving vehicle of 

the scale tested in the tunnel would encounter, with length scales ranging from 2 to 20 

times the vehicle's length. The advantage of this facility is that the tunnel need only be 

quite short and that large vehicle scales may be tested and hence realistic Reynolds 

numbers obtained. In these tests the working section of the tunnel was 0.91 mx0.91 m 

and had a length of 4.5m. A Reynolds number of 4.5 x 105 based on the vehicle length 

was obtained and the tunnel blockage was 1.1% based on the model frontal area. The 

short comings were that the oscillating aerofoils needed to be driven in resonance due 

to both the power available to drive them and the inertia of the system. The unsteady 

wind therefore consists of sinusoidal transverse gusts superimposed on a mean flow 

and therefore does not have the stochastic nature of a conventionally grown boundary 

layer. Tests were also conducted with the vehicle in steady flow and in turbulence using 

conventional grid methods, the latter though, as expected from such a facility, 

produced length scales very much less than the vehicle's length and with a characteristic 

turbulence lower than the Earth's ABL at small heights above the ground. 

From these tests, for these various gust simulations, the aerodynamic admittance 

functions were calculated for the side force and yawing moment data and compared 

with predictions form quasi - steady theory, described in section 2.1. It was found that 
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these aerodynamic admittance functions calculated for these scale car tests showed no 

significant amplification above the quasi - steady prediction, i. e. values above unity. 

Further the values of the aerodynamic admittance calculated for the lower frequency 

gusts were less and therefore in general agreement with Garry and Cooper (1986) for 

the lower frequency gusts. Therefore the phase lag of side force and yawing moment as 

a vehicle encounters a gust seem to produce a lower values for the magnitude of these 

quantities than predicted by quasi - steady theory. 

Finally described in the two remaining paragraphs are the progress on two facilities 

currently under development : 

Cairns (1994) undertook the design and building of a new moving model test rig 

situated on the site of the original British Rail Research's moving model test rig, 

perpendicular to the 2.4m x 1.2m environmental wind tunnel at Cranfield University. 

This facility was specifically for the testing of 1/5th scale cars, at speeds up to 20m/s, 

and only the velocity profile of the wind can be modelled with the turbulence scales 

being too small for a high cross wind simulation. To date there have been many 

problems concerning the rigidity of the track and the model vehicle, its mounting and 

the measurement system (Garry et al (1994)) due to the large scale of the vehicles 

being tested. The advantage of this facility is the large Reynolds numbers that can be 

simulated although questions regarding acquiring aerodynamic equilibrium of the 

measured forces and moments in the short number of vehicle lengths of the working 

section width, at this scale, remain unresolved. 

Dominy and Docton (1994) describes the results of a scale prototype of a proposed rig 

in which the cross wind is simulated by a cross jet at 30 degrees to the flow form the 

main jet simulating the vehicle's direction of travel. The static vehicle is situated at the 

intersection of the jets and by controlling the jets independently, transient effects, such 

as vehicles suddenly experiencing gusts due to passing a bridge pillar, can be simulated. 
To date the prototype has been used to simulate a vehicle entering a sharp edged gust. 

The positioning of the second jet means that this rig will be limited in producing 

resultant gust yaw angles of up to 30 degrees. The advantage of this rig is that it is 

relatively easy to operate, it can produce transient gusts at reasonably large Reynolds 

numbers, based on car length, of the order 6x 105. 
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Table 2.1 Full scale equivalent 3 second gust hourly extreme values for 1/50th 

scale high sided lorry in grid turbulence from Coleman (1990). 

Yaw angle 60 degrees 90 degrees 

Normalised extreme side 0.98 0.97 

force parameter. 

Unsteady side force 1.91 1.85 

parameter. 

Normalised extreme lift 1.15 1.53 

force parameter. 

Unsteady lift force 3.75 7.62 

parameter. 
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V 

Velocity of vehicle relative to the ground 

U 

Wind velocity 

relative to the ground Resultant wind velocity it 

relative to the ground 

Figure 2.1 Definition of yaw angle 'Y, for a cross wind acting on a moving 
vehicle. 

Direction of static vehicle 

Wind v 

Figure 2.2 Definition of yaw angle 'Y, for a static wind tunnel simulation. 

+ve Lift Force 

+ve SideForce 

+ve Pitching Moment 

Vehicles Direction of travel 

+ve Rolling Moment 

Figure 2.3 Relative force and moment sign convention. 

lp 

Wind velocity 
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Figure 2.17 Time histories averaged over 50 runs (analogue filtered at 50Hz 

prior to measuring) of the 1/50 th scale APT-S moving model tests. 
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Figure 2.18 Time histories averaged over 50 runs (analogue filtered at 50Hz 
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3. Review of the Model Scale Testing Requirements 

and the Full Scale Interpretation. 

Aerodynamic similarity between the model wind tunnel tests and the full scale situation 

is required in order for the forces measured on the model to be correctly scaled to 

those of the full scale case. 

3.1 Basic aerodynamic similarity considerations. 

The non dimensional Reynolds number Re, is essential to the understanding of 

aerodynamic similarity. This is defined, in terms of a characteristic length 1, and velocity 

u, to be the ratio of the inertial to the viscous forces present in a fluid : 

plu Re = 
At 

3.1 

where p is the density of the fluid and, u is the coefficient of absolute (or dynamic) 

viscosity of the fluid. 

In the absence of other significant forces acting on the fluid, e. g. gravity, 

electromagnetic etc., this number defines the flow conditions and therefore if this non 

dimensional value is identical for the full scale case and the model case then the 

structure of the flow around the bodies will be the same. 

The nature of the forces on the body are due the changes in the pressure distribution on 

its surface. For incompressible flow of relevance to these studies, Bernoulli's equation, 

Po=p + 2Pu2 3.2 

relates the fluid velocity u, and static pressure p, to the total pressure po . 
For an 

isentropic flow there is no loss in total pressure so, considering a fluid accelerating 

around a body the static pressure reduces as the fluid velocity increases according to 

equation 3.2. However the situation is much more complicated for real viscous fluids as 

the flow separates from the body as a large wake flow of recirculating eddies and high 

turbulence causing a reduction in total pressure. The static pressure is now difficult to 

calculate in this region as neither the velocity of the fluid or the total pressure is known 

near to the body. In practice experimental measurements are needed to measure either 
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the pressure distribution around the body or the net force on the body. In order to 

relate model scale results of such measurements to a full scale vehicle it is useful to 
define non dimensional coefficients for the physical quantities that are measured. Forces 

F, can be non dimensionalised by the product of the dynamic head of the fluid and a 

reference cross sectional area, A. The latter is chosen for convenience as the absolute 

magnitude of a coefficient so defined will in any case be a function of the geometric 

shape of the vehicle. Therefore force coefficients are defined as : 

C= 
F, 1 

pAu2 2 

3.3 

This coefficient may only be used for scaling purposes across ranges of body size and 

air speeds such that the flow characteristics remain unchanged. This is explained in the 
following paragraphs. 

Experimental investigation indicates that there exists several flow regimes as a function 

of Reynolds number, see Schlichting (1968) (pp 39 - 43) for many references and a full 

discussion. Of significance to the study of ground vehicles, due to their physical size 

and wind speeds they encounter, is the supercritical flow regime. In this flow regime 

the non dimensionalised drag characteristics are constant and the streamwise force 

coefficient takes its minimum value. This corresponds to a small wake diameter with 

the flow remaining attached for the largest length along the direction of the flow. (In 

some cases, depending on the detailed geometry of the body, a smaller wake diameter, 

and hence lower streamwise drag coefficient, can occur at a slightly lower Reynolds 

number if the flow reattaches to the body some distance after the initial separation. The 

final separation is therefore a longer distance from the front stagnation point). The 

mechanism for these different flow regimes is as follows. 

Considering a laminar boundary layer starting from the stagnation point of a bluff body, 

transition to a turbulent boundary layer occurs at a critical value of Reynolds number, 
based on the flow velocity and distance from the stagnation point. This means that as 
the speed of the flow increases, and also the Reynolds number based on a fixed 

characteristic diameter increases, the point of transition to turbulence moves towards 

the stagnation point. Noting also that a laminar boundary layer is more unstable than a 
turbulent boundary layer, then for low flow speeds (and low Reynolds numbers based 

on a constant diameter) that the point of separation is reached before the critical 
Reynolds number, based on distance from the stagnation point, for transition to 

turbulence and the subsequent wake is large. At higher flow speeds (and Reynolds 

F 
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numbers based on a constant diameter) a turbulent boundary layer is created before the 

laminar boundary layer separation point and so being more stable, the separation point 

moves further around the body causing a smaller wake. 

Transition of a laminar boundary layer to a turbulent boundary layer can be induced by 

roughening the body's surface upstream of the point of separation or by an oncoming 

turbulent flow so that for these conditions supercritical flow is reached at a 

correspondingly lower fluid speed and hence Reynolds number based on a fixed 

characteristic dimension. (Schlichting (1968) pp 509 - 515). Considering a laminar 

boundary layer present on the face of a smooth cylinder, the minimum Reynolds 

number based on the diameter of the cylinder, for supercritical flow is around 5x 105. 

However, for the turbulent boundary layer, aided by a rough surface or a turbulent air 

stream the value may possibly be up to a factor of 10 smaller depending upon the 

geometry of the body being tested. Another common technique used in the testing of 

more streamlined shapes, which works in the same way, is to fix a small wire to their 

surface near to the stagnation point which again causes the laminar boundary layer to 

become turbulent. The difference between the forces on a body between the laminar 

and turbulent boundary layers, due to skin friction, is negligible compared to that due 

the incorrect positioning of a flow separation line. 

It is apparent therefore that it is not necessary in a wind tunnel test of a scale model to 

achieve the full scale Reynolds number but rather an adequate value to ensure that the 

test is being undertaken in the correct flow regime. Further in the supercritical flow 

regime it is possible to scale model test results to full scale using equation 3.3 

Experimentalists undertaking scale wind tunnel tests, use this condition of constant 

force and moment coefficients at supercritical Reynolds numbers to check that the full- 

scale flow conditions have been reached. These tests are referred to as Reynolds 

number tests. The applicability of this assumption, for determining the forces on full 

scale vehicles from the results of model scale tests, i. e. across many magnitudes of 

supercritical Reynolds number, depends upon the flow to be dominated by inertial fluid 

effects. The critical Reynolds number value is much lower for very bluff and sharp 

edged bodies due to the high pressure gradients that exist caused by their sharp edges 

and these bodies therefore have well defined separation lines along their surfaces. 

Bearing in mind the general shape of the vehicles, model wind tunnel tests of square 

shaped lorries and trains can be undertaken at relatively low Reynolds numbers whilst 

vehicles with highly streamlined form (and certainly cars of complicated shape) need to 

be tested at much larger Reynolds numbers. 
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For vehicles which are not dominated by separated flow regimes the effect of surface 

detail will have a large effect on the forces on a vehicle. Indeed much attention has 

been given to the necessary detail on small scale model cars designed for the purpose of 

measuring the forces and moments in a wind tunnel such that the results are 

representative of the full scale version, see Good (1994) and Cooper et al (1994). 

A third characteristic of bluff body aerodynamics of use to this study involves the 

understanding of the flow in the frequency domain. Again Schlichting (1968) shows 

that at supercritical Reynolds numbers the flow downstream of a bluff body separates, 

in time, from alternate sides of the body forming large eddies, similar to the size of the 

body itself, that propagate downstream in the fluid forming a large wake. The non 

dimensional number associated with this behaviour is the Strouhal number St, that is 

invariant for a given body, which relates the frequency of vortex shedding n, to the 

physical diameter d and flow velocity u. 

St =nd 3.4 
U 

For a supercritical Reynolds number, for a circular cylinder St = 0.21, (Schlichting 

(1968)). More recently Vickery (1966) investigated this further for a square cylinder 

and obtained St = 0.12, relating this, by measurements, to the frequency of the vortex 

shedding in the wake of the cylinder. The effect was found to produce lateral forces on 

the cylinder due to the nature of the flow alternatively separating from each side of the 

cylinder. For a ground vehicle, if this phenomenon was present, this would correspond 

to alternate vortex shedding from the roof and the underside of the vehicle to produce 

such a corresponding frequency of oscillation in the measured lift force. 

The use of the Strouhal number, for a bluff body, enables the scaling of unsteady forces 

in the frequency domain between bodies of different sizes and in different air speeds. 

In summary, it is clear that any wind tunnel testing of scale vehicles must be conducted 

in a flow which yields a supercritical Reynolds number. In general any physical quantity 

which is a function of the general flow structure, if suitably non dimensionalised, can be 

measured in order to check this criterion. 

In practice the minimum scale of the vehicle that may be used in an experiment depends 

on the maximum wind tunnel wind speed. Previous experiments measuring forces on 

the 1/50th scale sharp edged lorry in Nottingham University's environmental wind 
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tunnel (Coleman (1990)) have shown that Reynolds numbers of 4x 104, based on 

vehicle height, are acceptable implying a mean wind speed of only 5m/s. 

3.2 The atmospheric boundary layer simulation. 

In the field of wind engineering, an accepted standard, for describing the characteristics 

of a mean hourly neutral stable strong wind near the ground are those from E. S. D. U. 

(1974a, b and 1975). A neutrally stable atmosphere is one which lacks convective 

currents. The characterisation of strong winds is described in terms of the time period 

of one hour due to the experimental evidence that little wind energy exists at 

frequencies corresponding to time periods between 3 and 0.5 hours, see van der Hoven 

(1957). The energies present at the in lower frequency range, not described by the one 

mean hourly, ABL correlations, are caused by global air movements which appear, in 

the context of shorter gusts, as the prevailing mean wind velocity. 

The relevant characteristics of the mean hourly atmospheric boundary layer as a 

function of height above the ground are expressed as the following correlations: 

Velocity profile: 

ü (z) 
_ 

log (z/zo) 

ü (H) log (H/zo) 

Turbulence intensity profile: 

Q(z) 
__ 

0.867 + 0.556 logz - 0.246 (logz)2 

ü (z) in (zlzo) 
. 

0.76/zoo. o' 

for zv < 0.02m 

Streamwise velocity spectrum, von Karman spectrum: 

nS (n, z) 
__ 

4( "LW (z) n/ü (z) ) 

Q 
(Z)2 (1 + 70.8 

(xL, (z) nlü 
(z))2 )V6 

np,, "` 
sL" (z) 

= 0.149 
ü 

3.5 

3.6 

3.7 

3.8 
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Streamwise turbulence length scale: 

_x 

25 Z0.35 
Lu (Z) 

Z 
0.063 

0 

3.9 

It should be noted that whist equations 3.5,3.7and 3.8 are non dimensional equations 

3.6 and 3.9 are not. Calculations using these latter equations therefore should be 

carried out with the full scale values using corresponding values of z and zo in metres. 

It is seen that equation 3.9 defines the streamwise length scale at a given height above 

the ground based on the characteristic roughness length, zo, of the upstream fetch. For 

example an open countryside simulation has a characteristic roughness length, zo = 

O. Olm which implies a streamwise turbulence length scale of 49m at a height of 3m 

above the ground. For a 1/50th scale simulation therefore a streamwise turbulence 

length scale of about 1m would be required for a height of 60mm. From equation 3.9 it 

is seen that the streamwise turbulence length scale is not very dependent on the value 
for the surface roughness length. 

Similar correlations of the atmospheric boundary layer are shown graphically in Cook 

(1985) and cover a larger range of surface roughness lengths. 

ESDU (1974a, b and 1975) and Cook (1985) express concern at the accuracy of all the 

correlations at small heights above the ground, say less than 10m. Hoxey and Richards 

(1992) shows the results of measurements in open countryside type terrain of these 

wind characteristics at lm, 3m and 10m above the ground. The major finding was that 

at the very small heights much of the turbulent energy in the wind velocity spectra was 

moved to higher frequencies giving a distorted spectrum, see figure 3.1, compared to 

the calculated von Karman spectrum of equation 3.7. Whilst it is difficult to determine 

the stream wise turbulence length scale associated with this distorted spectrum by 

spectral comparisons with the calculated von Karman spectrum it is seen that it is much 

reduced, probably by around a factor of 2 at a height of 3m. 

A concept utilised in the measurement of wind velocity characteristics is that of frozen 

turbulence and is known as Taylor's hypothesis. This asserts that the structure of the 

flow changes over time scales much longer than the time scales corresponding to the 

lengthscales of interest. Lappe and Davidson (1963) from full scale experiments found 

that this held for lengthscales less than 300m. This allows, for example, the calculation 
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of wind velocity spectra from measurements at a single point using either 

autocorrelation or Fourier techniques, see Chapter 5. 

The effect of the lateral wind characteristics also need to be considered. The turbulence 

of the wind has been shown to be close to isotropic (ESDU(1975)). Isotropic 

turbulence is characterised by having equal fluctuating velocity components but with 

the lateral turbulence components having a length scale of around half the streamwise 

value. These lateral components are often referred to as the semi length scales. The 

effect of isotropic turbulence on bluff bodies has been examined in Tielman and Atkins 

(1989). From experiments utilising long rectangular bars mounted perpendicular to the 

oncoming turbulent flow that corresponded to sizes much smaller and much larger than 

the characteristic turbulence length scales Tielman and Atkins showed that a critical 

streamwise length scale was reached such that the larger turbulence scales had little 

effect on the flow structure around bluff bodies. The critical streamwise length scale 

needed to obtain representative pressures on the bars was found to be twice the model 

scale of the bodies tested, in this case the body's cross section. Applied to a vehicle this 

implies that the streamwise turbulence length scale should be twice the vehicle's height, 

and also, since these tests were conducted with isotropic turbulence, the lateral 

turbulence semi length scale should be equal to the vehicle's height. The correlation of 

the gusts across the body is the condition for vortex shedding, discussed in section 3.1, 

which if present on a vehicle would cause large unsteady lift forces. 

For vehicles, the finite nature of their length also needs to be considered. Both the lorry 

and the DB container, tested in this thesis, have full scale equivalent lengths of 13.5m 

and 12m, approximately one quarter the streamwise turbulence length scale, (equation 

3.9, zo=O. Olm), i. e. LIL� = 0.25. Referring to figures 2.4 and 2.5, it is seen that the 

effect of the finite length of the vehicle is observed in theoretical predictions of the 

unsteady side force parameters and also the normalised extreme side force parameters 

(section 2.1). However it is seen that for values of LILU less than unity these 

discrepancies are reasonably small. Section 6.2.3 considers this further with reference 

to the turbulence length scales of the ABL simulated for the tests described in this 

thesis. 

3.3 The model time scale interpretation. 

In order to calculate the extreme force values, that is the mean force formed over the 

period that a vehicle may over turn as discussed in Chapter 1, it is necessary to define 

the model time period equivalent to a full scale gust. The concept of streamwise eddy 
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lengthscale is conventionally used in wind engineering for the purpose of determining 

equivalence between the model wind tunnel tests and the full scale scenario. 

It is apparent that the model time scale depends upon the velocity of both the vehicle 

and the wind, rather than merely their resultant wind speed and yaw angle. As an 

example, consider the full scale case of a lorry travelling at 30m/s experiencing, at the 

reference height, a perpendicular cross wind of 30m/s. Utilising the moving model rig 

in an environmental wind tunnel in which the atmospheric boundary layer has been 

simulated, this geometry can be represented with a 1/50th scale lorry travelling at 

8.5m/s perpendicular to the wind direction of speed 8.5m/s, at the equivalent reference 

height. The model time period (tm) corresponding to a full scale 3s gust QO at the 

reference height and can be calculated as follows: 

t= 
If 

x 
uf 

'" 50 U. 

For this example the model time scale = 0.21s. 

3.10 

Note that in order to conduct this calculation, only the streamwise wind velocities are 

needed. Referring to Cooper (1984) it is seen that the above discussion only holds for 

moving ground vehicles if the two lateral turbulence semi length scales are modelled, in 

the wind tunnel, in correct proportion to the streamwise length scale as in the full scale 

case. Experimental data shows that there is some variation in the known values of the 

lateral semi length scales, see table 3.1, but taking the following values for the lateral 

semi length scales; 

YLu/xLu = zLu/xLu = 0.42 3.11 

Cooper (1984) calculated the wind velocity spectra as experienced by a moving vehicle 

which are moved to higher frequencies as the vehicle's speed increased. For the vehicle 
A 

moving perpendicular to the wind direction the resultant extreme wind speed V, at the 

reference height, experienced by the vehicle was defined to be simply: 

v2 + u2 3.12 

The main effect that was predicted was due to the vehicle encountering the gusts 

quicker but additionally, also as the vehicle speed increases, with the semi length scales, 

which are smaller, also increasing the higher frequency energy levels. Figures 3.2 and 
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3.3 show the results of his calculation. Firstly figure 3.2 shows the overall effect of the 

resultant spectra, as seen by the vehicle, moving to higher frequencies as vehicle speed 

increases. Figure 3.3 shows the effect of normalising the spectra by the resultant wind 

speed experienced by the vehicle therefore showing the effect of the lateral semi length 

scales alone. 

For a direct wind tunnel simulation of a full scale case it is apparent that an additional 

time scale correction will be needed for any wind tunnel simulation not correctly 

modelling the full scale lateral semi length scales. 

The next two sections utilise this concept of eddy length scale to determine the model 

time scale for tests in which two common shortcomings are present. 

3.3.1 The effect on the model time scale of the incorrect modelling of the 

turbulence length scales. 

The lateral turbulence length scales for wind may be related to the streamwise 

turbulence lengthscale as this is approximately twice the magnitude of lateral 

components - indeed as in isotropic turbulence (E. S. D. U. (1975). If this is satisfied 

then the concept of eddy length scales may be employed to calculate the model time 

scale as follows. The model time period taken to be equal to the full scale gust is that in 

which the model experiences the same number of gusts at the correct energy level as 

the full scale vehicle. As an example, considering the case where the turbulence length 

scale of a simulated ABL is a factor of 2 too small, and rewriting equation 3.7 as, 

nS (n, z) 
=f( 

XL. 

(z) nl 
u(Z)z 

`ü (z) J 3.13 

physically this means that the energy levels of each part of the spectrum are assigned to 

a frequency twice that of the correct simulation. It is seen therefore that the effect of 

running a test with the scale turbulence length scale a factor of 2 too small is to move 

the eddies, at the correct energy at a given wind speed, twice as quickly across the 

model. The time scale of the model tests is therefore halved, and the model time period 

taken to be equal to the full scale gust is also reduced to half. This method also corrects 

the lateral unsteady components of the wind in the same way, so that their energies in 

the frequency domain are also preserved. 
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The shortcomings of this method is that at very low frequencies the turbulent energy of 

the wind is missing but this should be at much longer time scales than the gust times of 

interest and so should only have an effect similar to the mean wind. 

3.3.2 The effect on the model time scale of representing a moving vehicle scenario 

with a static test. 

Now consider using a conventional static wind tunnel test to determine the extreme 

forces on a moving vehicle. The modelled ABL in the wind tunnel represents the wind 

as experienced by the would be full scale moving vehicle. Using the results of Cooper 

(1984) the shift in frequency of the onset wind as experienced by the vehicle for 

different wind and vehicle velocities can be found. Using the stream wise eddy length 

scale concept as described in section 3.1 the model time scales can be found for any 

situation. 

In order to give some feel for the effect of using a static test for representing the 

moving vehicle in a cross wind the example given in section 3.1 is considered further. 

Positioning the lorry such that the oncoming wind was at the resultant of the vehicle's 

and the wind velocities, in this case at a yaw angle of 45 degrees, the resultant wind as 

seen by a full scale vehicle is simulated by the wind tunnel characteristics alone. In this 

example too small a modelled streamwise turbulence length scale could be seen to be 

an advantage as the too small streamwise turbulence length scale present in the 

modelled ABL is representative, in these terms, of that experienced by the vehicle at 

some speed, in the range of 10 to 30m/s according to the calculations in Cooper (1984) 

and shown in figure 3.2. As listed in Chapter 1 there are many other shortcomings with 

this simulation. 

3.4 The approach used in this thesis. 

From what has been said in sections 3.1 to 3.3 it is apparent that the problems in 

determining the extreme force that a lorry may experience, by detailed testing in the 

wind tunnel, are in two categories: 

1. The variations in environment and route terrain and exposure. 

2. Vehicle velocity relative to the wind velocity. 
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As discussed in section 3.3 inadequate simulations of the unsteady structure of the wind 

can be corrected for by choosing an appropriate model time scale but it is unclear as to 

whether this method is adequate due to the many other shortcomings discussed in 

Chapter 1. 

In order to make progress, this thesis shows the results of calculating the following 

normalised extreme force parameter from both the conventional static test data and 
from the moving model test data for a range of model time scales. Thus: 

A 
F 

CF 2pAV 
2 

CF F 

2 pAV 
2 

3.14 

where - and A indicate the mean and extreme values respectively. Note that the 

extreme resultant wind speed used in this equation, for a vehicle moving perpendicular 

to the wind velocity is that defined in equation 3.12. 

This thesis sets out to examine the use of this parameter for collapsing the results of 

1. Moving and Static model tests undertaken with a constant ABL simulation. 

2. Extreme values derived from a range of model time scales. 

It is seen that the normalised extreme force parameter, derived by model testing, can 

then be used for calculating the extreme force values for any vehicle velocity, terrain 

etc. using an appropriate value for the streamwise extreme wind value which can be 

obtained from Cook (1985) or E. S. D. U. (1974a) for various terrain and gust time 

scales. This parameter is very simple when compared to the complexity between the 

scenarios concerned and the purpose of this thesis is to test the adequacy of this 

parameter. 

Note that, referring to section 2.1, when this normalised extreme force parameter is 

unity then this is equivalent to the quasi steady case with no body induced unsteadiness. 
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One of the main shortcomings of this parameter is that no account is taken of effect of 

the shorter lateral semi length scales on the resultant extreme wind value as described 

in Cooper (1984). Referring to section 3.3 it was suggested that these shorter lateral 

semi length scales would move the wind spectra, as seen by the moving vehicle, further 

to the higher frequencies than by just the vehicle movement alone. 

The justification for using the simple definition for the resultant extreme wind speed lies 

in the fact that the effect of the smaller lateral semi lengthscales alone as shown in 

figure 3.3 is small compared to their presently known values for a particular 

environment, see table 3.1. This area needs further work. 

Table 3.1 Experimental estimates of lateral turbulence semi lengthscales. 

From full scale experiments estimates for the surface roughness length, zo = 0.03 at a 
height, z of 10m for strong winds. 

Reference YLu /XLit ZLu I XLu 

ESDU (1974a, b and 1975) 0.42 0.3 

Flay (1978) * 0.25 0.4 

Counihan (1975) 0.35 0.5 -0.6 

* This result is based on an estimated xLu value 30% larger than von Karman. 
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4. The Experimental Equipment. 

4.1 The wind tunnel. 

The Nottingham University environmental wind tunnel occupied the same building, on 

the university campus, for some 15 years prior to the commencement of these studies. 

Figure 4.1 shows the configuration of the wind tunnel at the start of the project. It is an 

open return tunnel occupying around half the height of the building and so allowing 

plenty of volume for the return flow to move at low velocities. 

The working section has a8 ft x4 ft (approx. 2.4m x 1.2m) inlet and the original 

configuration had a working section length of 20ft. The working section is unusual in 

that it is open but enclosed within a larger room allowing people to stand to the side of 

the tables of width 9ft which form the working section floor. This is very convenient as 

access to the working section is available, whilst testing is in progress, due to the 

relatively slow maximum speed of the wind tunnel of around 17m/s. The wind tunnel is 

powered by a 42bhp 3 phase electric motor coupled to a 5ft diameter fan of 6 variable 

pitch blades. The fan rotational speed is therefore controlled by the rotating magnetic 

field dictated by the 3 phase supply, with some slip depending on the load, i. e. the fan 

rotates a little slower than that dictated by the 3 phase frequency. The blade pitch is 

regulated by a vacuum supply such that the natural rest position of the blades with no 

vacuum, i. e. ambient, is that of full pitch and therefore full wind tunnel speed. As the 

wind tunnel is powered in this manner the actual maximum speed attainable is 

controlled by the amount of room leakage, rather than aerodynamic total pressure 

losses say due to tunnel roughness or intake / exhaust arrangement. That is, the fan 

motor simply draws more current and hence consumes increasing power until the 

motor has reached the rotational speed of the 3 phase supply. A maximum current trip 

is fitted in the motor control system to ensure that the maximum rated power of the 

motor is not exceeded. If this were reached then the amount of power drawn may be 

reduced by fitting an exhaust diffuser to the fan. 

Measurements of the ambient air temperature in the building that the tunnel occupied 

showed only an increase of around 0.5 Kelvin per hour of tunnel operation at maximum 

speed. 

As discussed in Chapter 1, one of the requirements of the project was to extend the 

length of the working section of the wind tunnel to enable a more realistic mean hourly 

atmospheric boundary layer to be simulated than that achieved during the original tests 
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at Cranfield Institute at Technology, (see Johnson (1981)). The working section of the 

tunnel was therefore extended to the maximum size dictated by the building. To give a 

reasonable distance for the fan exhaust, some 4m as in the original geometry, the 

working section was extended to 11.7m in length. Figure 4.2 shows the revised wind 

tunnel, including the installed moving model rig sited 2m from the end of the working 

section, The building had to be extended at either side to allow for the moving model 

rig to be incorporated. 

Referring to figure 4.2 the new configuration of the wind tunnel at Nottingham 

University incorporated a control room positioned so that the door to the working 

section, by the moving model rig, could be conveniently left open whilst the tunnel was 

operating. The control equipment for the wind tunnel was moved from near the fan 

outside the tunnel into this room. 

It was not expected that the incorporation of the side buildings containing the moving 

model rig would influence the flow quality or wind tunnel speed significantly providing 

that the roof and window was sufficiently sealed. As discussed, the losses due to the 

increase in ground board friction and the length of shear layer development between the 

open jet and the stationary air to the sides of the working section, manifested 

themselves in greater current being drawn by the fan. Indeed the current limiting trips 

had to be reset to allow the fan motor to achieve maximum speed with full blade pitch 

after the wind tunnel modification had been completed. 

It was found that the maximum wind tunnel speed, measured in the working section 

inlet had now being reduced to 14m/s from 17m/s in the original design, because of the 

small increase in leakage, particularly in the region round the moving model rig. The 

modified wind tunnel flow characteristics are described in Chapter 6. 

The very sturdy 2m diameter turntable present in the original tunnel was relocated 
immediately in front of the moving model rig. This could be moved to any location as it 

is interchangeable with the other working section tops. Another useful feature was that 

the working section could easily be raised or lowered by up to 300mm or completely 

removed. 

The development of the wind tunnel needed to be co-ordinated with the installation of 

the major elements of the moving model rig, namely the 2 tonne concrete blocks 

forming the track base which were aligned perpendicular to the flow direction using a 

theodolite. Figures 4.3 to 4.7 show the work in progress. These modifications to the 
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actual wind tunnel and the building took 8 months to complete. The revised wind 

tunnel was operational in January 1990. 

4.2 The moving model rig. 

The moving model rig used for these experiments is owned by British Rail Research. It 

was designed and developed in the late 1970's as a tool for studying the overturning 

risk of the Advanced Passenger Train, the results of which are described in section 

2.2.2. The rig was installed in the 2.4m x 1.2m environmental wind tunnel at the 

College or Aeronautics, Cranfield Institute of Technology. Prior to the 

commencement of the present studies the rig was still located at Cranfield although it 

had not been used since the original tests in 1981. Full details of this previous version 

of the moving model rig are described in Harrison (1982). 

The moving model rig consisted of a high quality guideway on which a trolley carrying 

the live vehicle and amplifier travelled via high quality bearings. In order to reduce low 

frequency mechanical vibration the guideway was mounted on a machined steel `I' 

beam which in turn was clamped at 200mm intervals on to eight 2m long concrete 

blocks. The track length was therefore 16m. The main consideration here was that the 

mechanical noise should be only significant at high frequencies and therefore could be 

separated from the relatively low frequency aerodynamic signal. With the live vehicle 

mounted on 6mm square supports the lowest frequency due to mechanical noise was 

around 125Hz and therefore acceptable as the highest aerodynamic signal of interest 

was around 70Hz. Figure 4.8 shows details of the live trolley, firing trolley and the 

track mounting arrangement. 

The live trolley was catapulted by a firing trolley by means of rubber bungees and 

braked using another set of bungees and the application of friction via spring steel 

hoops applied to brake linings fitted to the trolley sides. The data were captured during 

the tests by means of a cable hung high above the wind tunnel. A gap was placed in the 

working section of the tunnel at the moving model rig position to allow this cable to 

pass during the test. The rig was operated by 4 people with the rig fired and the live 

trolley retrieved manually. 

The next sections describe the installation of the rig at Nottingham University and its 

development in order to improve its performance compared to its original use at 

Cranfield. 
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4.2.1 The rig used for the first series of tests. 

The rig described in this section was used for the tests described in Chapter 8. The 

general layout of the rig is shown in figure 4.9. The components shown in figure 4.8 

were used as in their original arrangement at Cranfield. 

One of the compromises at Nottingham University was the necessary reduction in track 

length to 12m due to space considerations. Referring to figure 4.2 the out buildings 

added to the wind tunnel building were restricted in size due to the presence of a car 

park road at the firing end and another building at the braking end. Based upon the past 

experience of using the rig this was not expected to be a problem and this was borne 

out as adequate vehicle speeds were obtained. 

At Nottingham the entire moving model rig was in the same room as the working 

section which eliminated wind tunnel leakage at the slot needed for the model supports 

to traverse the ground board because there of the lack of static pressure difference 

between the working section and underneath its floor. Referring to Bernoulli's 

formulae, equation 3.2, the static pressure in a wind tunnel working section decreases 

due to the acceleration of the air through the tunnel inlet. This caused a problem with 

the original configuration at Cranfleld Institute of Technology as the moving model rig 

was situated underneath but outside the working section creating a strong jet through 

the slot when the balance and other model supports traversed the working section. This 

made the interpretation of the lift and pitch components difficult. 

The main developments of the rig for the first series of tests, reported in Chapter 8, 

were: 

1. The installation of an automatic firing and trolley retrieval mechanism. 

2. The fitting of an automatic data logging system. 

3. Improving the model mounting arrangement. 

The first modification enabled the running of the moving model rig to become a one 

person operation rather than four at Cranfield. One hundred runs of the rig were 

possible in one day's testing. 
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The second modification was really due to the advancement of portable light weight 

data loggers since the Cranfield tests. However this was of major benefit as the long 

cable used in the Cranfield tests was prone to snagging on the entry to the wind tunnel 

and further was subject to fatigue causing delays to testing. 

Referring to figure 4.9, the automatic retrieval system consisted of a continuous loop 

of steel wire which ran slowly along each side of the rig though a channel with an open 

slot on the outer face. The wire was fitted with steel lugs which provided the guidance 

and allowed the system to be powered by wheels at the firing end, into which these lugs 

fitted. Figure 4.10 shows this and the mechanism and electric motor which powered 

this retrieval / firing system. The motor powered the wheels independently at the firing 

end of the rig by means of commercially available V belts and pulley systems. These 

belts, which slipped if the load was too great, ensured that an equal load was 

experienced by the two steel loops either side of the track and applied to the trolley. 

This simple system worked very well with the belts under the tension recommended by 

the manufacturer. Two larger lugs were fitted, 180 degrees apart on the wire loops, 

which protruded through the slot of the channel which contained the wire designed to 

retrieve and fire the live trolley. The firing sequence is as follows, referring to figure 

4.9, with the live trolley at point A: 

1. The live trolley is retrieved and pushed against the firing trolley through which 

the bungees pass (figures 4.11 and 4.12). 

2. The live trolley is hauled back in turn pushing the firing trolley until released by 

the lugs moving downwards at the firing point as shown in figure 4.13. 

3. The firing trolley accelerating towards the working section pushes the live 

trolley until it reaches the working section when the light aluminium firing trolley is 

arrested by the tension in the bungees and the 10kg live trolley crosses the working 

section at near constant speed until arrested at point C as shown in figure 4.14. The 

trolley is retrieved quickly by the second set of lugs 180 degrees apart in the loop from 

the pair which fired the trolley. 

The cycle takes around 30 seconds. 

The data logging and control hardware, and the associated power source were fitted on 

to an aluminium platform hanging from the side of the live trolley as shown in figures 

4.11 and 4.13. This arrangement was chosen in order to keep the supports of the live 
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vehicle as short as possible so that the frequency of the mechanical noise would be kept 

high. Figure 4.15 shows the construction of the working section in the vicinity of the 

slot. 

Figure 4.16 shows the mounting of the live vehicle using 10mm high tensile threaded 

bar located through slots on 30mm by 30mm by 10mm thick aluminium angle. This 

enabled vehicles to be fitted much quicker than with the original design which was also 

tried (Harrison (1982)). Note that for the DB railway container vehicle shown in figure 

4.16, only the container was live and the truck beneath it was not touching the 

container and was supported separately using 2mm screw threaded bar. Figure 4.17 

shows a live vehicle, in this case the 1/50th scale lorry, traversing the working section. 

Figure 4.13 shows the steel notch that passes through the infrared sensor activating the 

on board data logger. The infrared sensor was mounted on the underside of the 

platform and can be seen in figure 4.13. Figure 4.12 shows one of two other notches 

that enable the position and the speed of the trolley to be calculated from the digital 

data recorded from the sensor. 

The shortcomings of this version of the rig, discussed in detail in Chapter 8, were : 

1. Low frequency mechanical vibration, despite the stiffening bars that were used, 

caused by the low natural frequency of the platform when supporting the data logger 

and control equipment. 

2. The release mechanism was far from smooth due to the slightly different timing 

of the release of the live trolley by the two lugs on the pull back mechanism fitted either 

side of the track. This caused two problems: 

a) The injection of a large mechanical impulse on the system just prior to release. 

b) The release mechanism jammed for trolley speeds above lOm/s, i. e. high 

tension, after one side of the trolley was released by the pull back mechanism. This left 

the live trolley stranded under tension at the firing position held by the lug on the other 

side of track. In this situation the friction was too great for the pull back mechanism to 

pull the trolley back and enable it to be released. 

Despite these problems the pull back mechanism worked reasonably reliably for trolley 

speeds less than 10m/s. The speed of the trolley was governed by the number and 
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tension of the bungees which were anchored to rails fitted to the sides of the moving 

model rig base. 

4.2.2 The rig used for the second series of tests. 

The rig was developed further in order to overcome the problems encounted during 

the first series of tests. The full characteristics of this rig are discussed in Chapter 9. 

Briefly the rig was improved as follows: 

1. The release mechanism was improved by the introduction of a third trolley 

which was used to release both the firing and live trolley smoothly from a single 

point. This trolley therefore was pulled back by two steel hoops and was only 

released after the other carriages had been released from it. This third trolley was 

therefore under low tension and was not released until after the data had been 

acquired from that particular run. 

2. The data logger and control equipment was mounted directly on top of the 

live trolley removing the low frequency resonance. In order to lift the live vehicle 

higher above the trolley because of this extra equipment mounted on the trolley an 

aluminium block was inserted between the live vehicle mounting already described 

in 4.2.2. This had a negligible effect on the frequency of mechanical vibration. 

This final version of the moving model rig is shown in figure 4.18. A description of 

the working of this rig, starting from point A with the third and firing carriage 

coupled, is as follows. 

1. The trolley is retrieved and pushed against the firing trolley through which the 

bungees pass, as shown in figures 4.19. As the live and the firing carriage are just 

pushed together the lugs on the retrieval system release the live trolley and continue 

past the firing trolley. Note that a spring loaded light magnet situated on the firing 

trolley ensures that these stay coupled. 

2. The lugs of the pull back mechanism engage the third trolley, see figure 4.20, 

and pulls this towards the firing point, see figure 4.21. The mechanism on the third 

trolley for holding the firing carriage, under increasing tension, was that used for 

releasing the trolley originally at Cranfield and is shown in figure 4.22. 
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3. The firing carriage is released when the handle on the release mechanism on the 

third carriage is pushed toward the other trolleys. The was done by fixing a post by the 

side of the track which encounted this handle as the trolley was moved towards it. This 

is seen in figure 4.23 which shows the situation shortly after the release of the firing 

and live carriage. 

4. Finally the third carriage is released by the lugs in the pull back mechanism by 

use of dips in their tracks and the third, light, virtually frictionless, carriage is brought 

back to the firing carriage by another very light bungee, as seen in 4.23. Another post 

pushes the release handle further in the direction of release, before this trolley is 

released, so that it does not interfere with the firing trolley release point and to aid its 

subsequent coupling to the firing trolley. 

5. As the jaws of the release mechanism are now fully open as it encounters the 

firing carriage a second post at the side of the track knocks the release handle to the 

locking position just after coupling as shown in figure 4.24. These carriages are ready 

then for the arrival of the live trolley which is done as described in the 4.2.2. 

Another minor improvement to the system included fitting a further two notches on 

the track that the infrared sensor mounted on the trolley could detect, therefore 

providing information for average speeds to be calculated across three sections, 

spanning the test section, of the rig. For three trolley speeds, with the wind tunnel 

operating at maximum speed these sample results are shown in table 4.1 and it can 

be seen that the deceleration of the live trolley is negligible. It was found that by 

marking the position of the firing trolley release point for the various trolley speeds 

tested, tests at repeat yaw angles could easily be conducted. 

4.3 Data acquisition equipment. 

The Polycorder (700 Series), manufactured by Omnidata International, was chosen 

as a suitable commercially available data logger. Its prime specification was that it 

could sample at a reasonably high rate - 2000Hz multiplexing. Thus for 5 channels 

the sample frequency was 400Hz for each channel. Also it could record a number of 

digital data channels at the 2000Hz sample rate simultaneously which was used for 

monitoring the position of the trolley using the infrared sensor arrangement. The 

first positioning point was at the release point and was used for triggering the 

logger. The data logger was programmed in machine code by the use of a user 
friendly utility program (Polytools) installed on the P. C. and downloaded to the 
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Polycorder via a RS232 cable. The logger had 12 bit resolution (4096 levels) and 

256KB RAM and could therefore store data from many runs. In practice 10 runs 

were conducted before downloading the data as this allowed regular checking of the 

data whilst the next batch of tests were being conducted. 

Five separate amplifiers were used to amplify the signals from the 5 component 

force balance prior to recording. These were as used in the Cranfield tests and are 

described in Harrison (1982). In order to avoid possible gain variations of these 

amplifiers due to temperature changes, the amplifiers were mounted in a wooden 

box. Wood having a low thermal conductivity would allow the amplifier 

temperatures to stabilise as the rate of heat flux is proportional to the thermal 

conductivity. This kept the amplifiers at near constant temperature, which would not 

be significantly be changed by the sudden ventilation around it caused by the 

intermittent quick movement of the live trolley. (For the tests at Cranfield the 

amplifiers were mounted within the body shell of a dummy vehicle. ) The variable 

gain resistors, included in the associated amplifier circuitry, were set to their 

maximum values, throughout these tests, in order that the output signal matched 

closely to the input range of 0 to 5V of the Polycorder. The measured signals were 

checked to ensure that the peaks of the measured unsteady forces and moments were 

not clipped by the maximum allowable input of 5V of the Polycorder. 

The power source for the energising of the force balance, the amplifier and the 

infrared sensor was done using a dry 12v battery. As the voltage requirements of 

these sources varied, the 12v supply from the battery was transformed to various 

outputs in an interchange box : 

Force balance amplifiers :+ 15v and -15v 

Force balance strain gauge energising :0 and 5v 

Infrared sensor :0 and 3v 

As the output from the force balance and the amplifier were proportional to the input 

voltage, the outputs from the interchange box were fitted with voltage regulators 

with LEDs displayed through the casing to indicate that the correct voltage was 

being supplied. (A check on battery condition). This interchange box was designed 

and manufactured by the Department of Civil Engineering. The battery powering 
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this system was of large enough capacity to enable some 10 hours of continuous use 

with this system and was charged overnight between the testing days. 

The Polycorder used its own internal battery, sufficient to allow one full day of 

testing. 

4.3.1 Data analysis and storage equipment. 

An IBM compatible PC was used for this purpose. This comprised of a 80286 

processor fitted with a maths co-processor and 1MB RAM with 40MB hard disk. 

The data was downloaded from the Polycorder to the PC in binary form via a RS232 

cable as shown in figure 4.25. The data was downloaded in separate files each 

corresponding to a single run of the rig. The Polycorder utility program installed on 

the PC was used for converting this into ASCII data files (. TBL) which were then 

pre-processed further as described in Chapter 5. 

4.3.2 Wind velocity measurements. 

These were made using TSI hot film anemometry equipment including the 

linearising of the output signal. The general purpose probe, model 1210, was used 

(figure 4.26) in the end flow mode and held rigidly in a simple manually operated 

traverse mechanism (Coleman (1990). 

4.3.3 Force balance. 

This was of the same type as used for the original Cranfield tests, (see Harrison 

1992). It was manufactured by NUTEM Ltd and was manufactured from 

Hiduminium 89, a material that was easy to machine and had a high strength to 

weight ratio. Figure 4.27 shows the balance and indicates the positions of the strain 

gauge elements. 

4.4 The aerodynamic models. 

The geometry of the model vehicles used are shown in figures 1.1 and 1.2. 

The 1 /50th scale lorry model had already been used before in Coleman (1990) for 

static tests and was manufactured from balsa wood. The square shape of the model 

undoubtedly helped in achieving a high rigidity. For measurements in the frequency 
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domain high rigidity and low mass are important to transmit the rapid aerodynamic 

fluctuations to the force balance. 

The 1/45th scale DB railway container vehicles were made using the same technique 

as for the lorry and were similar in shape. The scale of these vehicles was chosen to 

be 1/45th instead of 1/50th in order that the internal force and moment balance would 

fit in the slightly smaller model container. For the live vehicle, the container was only 

in contact with the force balance, the wagon beneath it being separately mounted. 

This was because only the forces and moments on the container were required as on 

the full scale version these containers are just mounted on vertical lugs, unsecured 

and are free to lift or rotate. 

4.5 Analogue filters. 

The following analogue filters were used for filtering the force data prior to 

digitising when recording data for subsequent extreme value analysis. 

1. Barr and Stroud EF5 Series. Filter type, 4 Pole Butterworth. Attenuation 

rate 48dB per Octave. 

2. DISI type 55D25. Unknown filter type. Attenuation rate approximately 24dB 

per Octave. 
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Table 4.1 Comparison of the moving model trolley mean speeds across the test 

section and their repeatability. 

Maximum wind tunnel speed = 8.5ms at the reference height of 60mm at moving 

model test position. 

Mean trolley speed calculated over Mean speed Mean speed Mean speed 

complete 1.5m test section. (m/s). across 1st across 2nd across 3rd 
0.5m section 0.5m section 0.5m section 

(Repeatability - S. D. over 100 runs. ) (m/s) (m/s) (m/s) 

3.10 (0.02) 3.15 3.10 3.06 

6.48 (0.03) 6.53 6.46 6.44 

11.15 (0.05) 11.23 11.13 11.09 
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Figure 4.5 Using a hydraulic jack to place the concrete blocks into position. 
Note that this was done whilst the original wind tunnel had been split in 

two halves prior to building the extension to the working section. 
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Figure 4.6 Placing the concrete blocks perpendicular to the wind tunnel flow 
direction using a theodolite. 
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Figure 4.12 The moving model rig used for the first test series. 
The live trolley pushing back the firing trolley towards the 
release point. 
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Figure 4.13 The moving model rig used for the first test series. 
The live trolley pushing back the firing trolley towards the 

release point (the dips in the retrieval system track). 
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Figure 4.19 The moving model rig used for the second test series. 
The live trolley, showing the data acquisition and control equipment, 
being retrieved prior to coupling to firing trolley. 
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Figure 4.21 The moving model rig used for the second test series. 
The 3rd release trolley pulling back the firing and live trolley prior 
to releasing the firing trolley. 

91 



a3i 
.ý 
ý 
ý a 

.ý 
aý 

b 
.ý Gn 

N 
N 

'w" 

92 



Figure 4.23 The moving model rig used for the second test series. 
After firing of the live trolley. The 3rd trolley about to be returned 
using the small bungee and recoupled to the firing trolley. 
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Figure 4.26 TSI model 1210 general purpose hot film probe. 
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Figure 4.27 5 Component strain gauge balance. 
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5. Data Acquisition and Analysis. 

The first section of this chapter describes the general principles of the numerical 

methods used for analysing the results shown in this thesis. The following sections deal 

with acquisition of the recorded data and the application of the numerical methods. The 

principles of the numerical methods are discussed first because the fundamental 

concepts of digital signal analysis and their consequences in the design of numerical 

data analysis methods need to be understood prior to considering the data from the 

experimental tests. 

The numerical methods used in this thesis were developed into a suite of programs 

written in Prospero FORTRAN, a commercially available 16 bit compiler for IBM 

compatible personal computers developed from FORTRAN77. Whilst the user runs 

these programs separately, they were designed to run in sequence with the data 

transferred via ASCII files complete with header blocks containing test information. 

Initial processing of the force data provided files which contain the raw test data, zero 

readings, test and data acquisition information. Subsequent analysis programs were 

designed to run from these files with the minimum of user input. 

Full details of the programs used and input/output data formats are given in Appendix 

1. Data analysis was conducted on IBM compatible 80286 (12MHz) and 80386 

(20MHz) processor machines fitted with a maths co-processor. 

5.1 The data analysis methods. 

Whilst measurements of both the force on the vehicle and the wind speed were 

analogue in nature, the Polycorder data logger (Chapter 4) used for recording both 

wind and force measurements sampled these signals at a user specified frequency and 

by means of its own analogue to digital converter subsequently stored them in time 

series digital form. 

5.1.1 Digital time series data. 

If information is required in the frequency domain the main concern in the digitising of 

an analogue signal is that of ailiasing. This phenomena is due to the inadequate 

sampling frequency of an analogue signal such that high frequency events are 

misrepresented in the sampled digital signal. As an example consider the case of a 

420Hz oscillation in an analogue signal which is sampled at 400Hz. The actual signal 
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seen in the digital output will be equal to 420Hz - 400Hz ie 20 Hz. Also if the sample 

frequency of 500Hz had been chosen, which is greater than the analogue variation then 

a signal of 500 - 420 ie 80Hz would be the resulting digital signal. The Nyquist 

theorem (Stearns (1975) or Brendat and Piersol (1977)) states that the sample 

frequency must be equal to or greater than twice the maximum frequency of any 

significant signal present in the analogue signal in order to represent it correctly as a 

digital signal. 

If possible an analogue low pass filter of half the sample frequency, allowing only 

oscillations up to this value to pass, should be used prior to digitisation of an analogue 

signal in order to ensure that ailiasing of the analogue signal does not take place. 

It may be thought that greater accuracy can be obtained by sampling at a frequency 

greater than the Nyquist theorem. However the bandwidth theorem, Wills (1991), 

demonstrates that an analogue signal can be reconstructed, in the time domain, 

providing the Nyquist theorem is satisfied and, further, the accuracy obtained is a 

function of the number of over sampling, in the reconstruction of the data, that is 

conducted, rather than sampling the data at a rate higher than that satisfied by the 

Nyquist theorem. This tool is often used to limit the amount of data, once filtered, that 

needs to be stored. 

5.1.2 Mean and standard deviations. 

If means are required from the digitised signals, Nyquist's theorem does not need to be 

adhered to. If low frequency signals are present in the data, repeat measurements 

should be made and their repeatability checked. These should then be averaged to 

further increase the repeatability for the final result. 

The standard deviation, or root mean square, similarly needs checking for repeatability 

if Nyquist's theorem is not satisfied. 

See Chapter 9 for further discussion of these parameters when the signals are 

contaminated by additional noise. 
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5.1.3 Power spectra calculation. 

The theory of the method employed is that given in Bendat and Piersol (1977) pp 322 

to 330, and was applied to the needs of this project as follows. 

1. Subtract the mean signal and calculate the standard deviation. 

2. Window the first and last 10% of the data using a cosine squared function. 

3. Forward Fourier transform the data. (see below for method used. ). Note that 

the routine used in either the forward or backward direction increases the magnitude of 

the data by the square root of the number of data. The data is thus divided by this 

factor after the transform is conducted. (It should be noticed that other conventions are 

often used such as only increasing the magnitude by the number of data when the 

backward transform is conducted). Note that the transformed data is composed of real 

and complex terms. These real and complex pairs of data points correspond to 

frequencies of 0Hz to half the sample frequency in steps equal to the sample frequency 

/ original number of data points. 

4. Calculate the magnitude of the data (square and add the real and complex 

terms). The phase information is not required. 

5. Divide all the data by 0.875 as a correction to the magnitude of the spectral 

density for applying the cosine squared window function to the first and last 10% of the 

data. 

6. Non dimensionalise the resulting data for plotting in semi log form by 

multiplying the data points by their corresponding frequency and divide by the standard 

deviation squared (known as the variance). 

This semi log plotting of the data is normally used by wind engineers as it allows for 

easy comparison of the data at the low frequency end of the spectrum which is often of 

most interest. The reason for multiplying the magnitude of the data by their frequency, 

in the calculation of the velocity spectrum, is to ensure that equal areas under the 

plotted spectrum correspond to equal energy. Sometimes log - log plotting of the data 

is used when the gradient of the decay part of the spectrum is required, usually to 

check whether it conforms to a gradient of -5/3 as implied by the correlations, equation 

3.7. In this case the calculated spectral density is plotted directly against their 
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corresponding frequencies. Figure 3.1 shows comparison of the same spectra plotted 

only using both these conventions. 

The Fourier transform employed in these routines is a version of the Cooley - Tukey 

fast Fourier transform method developed and coded by Norman Brenner, MIT Lincoln 

Laboratory and published in Brenner (1967). This has the following advantages over 

the majority of routines. 

1. It can deal with an arbitrary number of data points including prime. Most are 
limited to quantities of data that are 2N where N is integer. 

2. A quantity of data points, N, can be transformed in time N*log(N) for N not 

prime. Simpler methods take a time equal to N2. 

The first advantage is essential if spectra or digital filtering are to be conducted from 

data measured from the moving model rig where the number of data is dictated by the 

transit time of the vehicle across the wind tunnel working section and therefore cannot 

easily be controlled. The second advantage is also useful in the context of this project 

bearing in mind the some 2000 runs conducted on the moving model rig as the 

processing was done on IBM compatible PCs. Even PCs utilising a 386 processor of 

20MHz clock speed and fitted and with a maths co-processor are relatively slow for 

such calculations. 

5.1.4 Data filtering. 

There are two types of data filtering for use with the corresponding signal types, 

1. Analogue, usually electronic devices. 

2. Digital, usually in the form of a computer code. 

Note that ailiasing, as discussed in 5.1.1, is a feature of analogue to digital conversion 

of a signal. Only the analogue filter is suitable for ensuring the rejection of the high 

frequency component of the signal prior to digitisation. The digital filter is used for 

further analysis of part of the signal spectrum present in digitised data. 

Because of the location, or because of financial considerations, analogue filtering 

sometimes cannot be conducted, but it may be possible to reject the high frequency part 
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of the signal, using digital band pass filtering to remove the ailiased components. This is 

only really satisfactory if the high frequency components of the original analogue signal 

are very discrete in nature and can be identified. 

An ideal low pass filter would be one which transmits 100% of the signal up to the cut 

off frequency and then eliminates the rest. However all filters, either analogue or digital 

vary in performance. It is usual to define the cut off frequency to be at the point at 

which a MB reduction in signal has taken place. The rate of fall off of the filter's 

capability is also important if very high levels of energy need to be rejected and this 

attenuation is usually expressed, in log - log form, as dB per octave. 

The analogue filters used for the tests of this thesis are described in Chapter 4. 

The digital filtering technique employed for further analysis of data in this thesis was 

developed from the method used for the calculation of the power spectra described in 

5.1.3 utilising the non recursive method of Johnson (1978) and using the cosine 

squared window function for the data cut off. The method is described as follows: 

1. to 4. As steps I to 4 respectively for power spectrum method in 5.1.3. 

5. Apply a cosine squared window function to the frequency domain 

transformed data, both the real and complex terms, such that at the cut off frequency a 

3dB reduction, 50%, in signal strength is obtained. 

6. Reverse Fourier transform the data to obtain the time series variations. 

Note that this is done using both the real and complex terms of the output from the 

forward Fourier transform in order to preserve the phase information. Note that the 

routine used in either the forward or backward direction increases the magnitude of the 

data by the square root of the number of data. The data is thus divided by this factor 

after the transform is conducted. 

7. Note that the complex terms output from the FFT routine are negligible 

in magnitude, as defined in the original data input into the routine, and discard. 

g, Add the mean value of the data, initially removed in step 1. 

The performance of this digital filter is shown in figure 5.1. and has an attenuation rate 

of around 24dB per octave for the first octave past the cut off frequency. 
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5.1.5 Extreme value analysis. 

Extreme value analysis is the subject of statistically predicting the most likely extreme 

(largest) value in a given, usually longer, period from measurements made over limited 

periods. For example a civil engineering structure may need to be designed to 

withstand the maximum wind gust, of a given duration, likely to occur in its design life, 

say a period of 50 years. Measurements of the wind characteristics at the site over a 
limited time span would enable, with the aid of extreme value analysis, to determine 

this maximum likely wind gust over the structures design life, and similarly the 

corresponding extreme force experienced by the structure can be determined either 

from scale wind tunnel tests of a limited duration or available tables for standard 

designs. Cook (1985) details many extreme value analysis methods used in the field of 
Wind Engineering. 

Of relevance to the study of the overturning of large road vehicles and rail vehicles is 

the determination of a maximum gust of duration 1 to 3s, this being the typical 

overturning time for these vehicles, see Chapter 2. Overturning prediction methods, 
discussed in section 2.1, utilise knowledge of the extreme forces and moments formed 

from averaging data over the gust time periods considered relevant to the size of the 

vehicle and its environment. 

Wind Engineering design methods make use of the most likely extreme value, the 

mode, corresponding to an hourly extreme mean wind speed for a given time period. 

This hourly extreme mean wind speed for a given time period is that wind speed 

averaged over one hour that is only likely to be exceeded once in the given time period. 

For example ESDU (1974) shows the extreme mean hourly wind speed at a height of 

lOm that is only likely to be exceeded once in 50 years. The actual extreme wind speed 

value corresponding to the gust time depends on the terrain, the roughness length and 

the height above the ground but is derived from these extreme hourly mean wind 

speeds as described in ESDU (1974). 

The averaging period for the mean wind speed of one hour is used due to the spectral 

gap in the wind spectrum gathered over much longer time periods. This is known as the 

van der Hoven spectrum and indicates that all wind gusts in the Earth's atmospheric 

boundary layer are of a duration much less than one hour. See section 3.2 for a full 

discussion and further references. 
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In the context of the wind tunnel tests a method would be useful that allows the most 

likely extreme value corresponding to the extreme hourly mean value to be determined 

from a time period equivalent to a time scale less than one hour. Such a method is that 

of Cook and Mayne (1979) and makes use of the quantities mode and dispersion. The 

mode is the likely extreme calculated from an ensemble of, statistically independent, 

gust duration maxima. Each maxima is defined to be the maximum gust value from one 

set of continuously recorded data of a given time period, say 10minutes. The mode thus 

calculated would be the most likely extreme for a time period of 10 minutes. The 

dispersion describes the spread of the ensemble of gust duration maxima and using the 

following formula allows the mode to be extrapolated for longer time periods, say one 

hour. Thus, from Cook and Mayne (1979) : 

300) 
Model hour = Modet + 

1n( 

a` 
5.1 

In this thesis the mode and dispersion from the measured extreme values were 

calculated using the method of Lieblein (1974). This has the following advantages over 

Gumbel's original method, see Cook (1985) : 

1. Lieblein's analytical method can more accurately determine the mode and 

dispersion when only a short number of measured extremes are available; 

2. Lieblein's analytical method can easily be incorporated into a computer 

program. 

Lieblein's extreme value method, to obtain the mode and dispersion from a set of 

statistically independent recorded data is as follows: 

First determine the equivalent full scale time for the model scale tests using the 

methods described in section 3.3. The mean wind tunnel speed is taken to be equivalent 

to the full scale extreme hourly mean value for a given site. 

1. Split the continuous data record into a number of blocks. In what follows the 

model scale observation time is equal to the block time length. 

2. For each block calculate the mean values over the model gust periods, these 

corresponding to the equivalent full scale gust duration. 
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3. For each block extract the maximum value and rank them according to 

increasing value. 

4. In steps 5 and 6 these are weighted according to their rank by multiplying them 

by the appropriate value from a set of Best Linear Unbiased Estimators (BLUE 

numbers). Cook (1985) tabulates these BLUE numbers for blocks of data numbering 

10 to 24. 

5. For each rank (each block) the product of the corresponding BLUE A number 

and the maximum value are calculated and then summed to give the mode for the full 

scale equivalent gust and observation time. 

6. For each rank (each block) the product of the corresponding BLUE B number 

and the maximum value are calculated and then summed to give the dispersion. 

(Independent of observation time). 

This method in conjunction with equation 5.1 is demonstrated with worked examples in 

sections 5.2.1.3. 

As can be seen this method, in common with others (Cook (1985)), relies on the 

choosing of the equivalent model to full scale time scaling chosen. Section 3.3 has 

highlighted many of these difficulties which are due to both terrain variations, unknown 

wind characteristics close to the ground - or reasons of complicated terrain and vehicle 

movement. Due to these major concerns, the prime role of this thesis was to calculate 

the extreme values from wind tunnel tests for a range of time scales. 

5.2 Application of the methods and data acquisition considerations. 

5.2.1 Wind measurements. 

5.2.1.1 Mean velocity and turbulence intensity. 

The linearised voltage output from the hot film anemometer was calibrated, and 

checked at regular intervals, by comparison with the output of a pitot static probe 

connected to a standard N. P. L. design null-reading tilting U-tube micromanometer (see 

plate 5 of Bryer and Pankhurst (1971)) in the following manner. 
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Both the hot film anemometer and the pitot static probe were placed in the working 

section entrance, at 300mm height and spanwise separated by 100mm at positions 

where a constant reading was obtained with both instruments. The turbulence intensity 

at this position was 0.7% at full wind tunnel speed increasing to around 1.5% at half 

this speed indicating that the variance of the measurement signal, sometimes referred to 

as the turbulence level, was roughly constant. It is essential that the turbulence level is 

low at the calibration positions due to the mean pressure measured by the pitot static 

probe being sensitive to large scale turbulence as found downstream of the inlet of the 

environmental wind tunnel (Bryer and Pankhurst (1971). 

The dynamic head recorded by the pitot tube is related to the head of water given by 

the water manometer: 

I 
2PuZ =P. ßhw 5.2 

Also the linearised voltage output from the hot film anemometer is proportional to the 

mass flow rate per unit area, the product of the air velocity and density which is 

therefore the quantity to be calibrated. The product of the air velocity and density is 

determined by rearranging equation 5.2 : 

pu= 2pp, 
VShw 5.3 

Figure 5.2 shows a typical calibration used from which the calibration coefficients were 
determined. Note the deviation from linearity at very low wind speeds - not used for 

the tests described in this thesis. 

Measurements of the ambient temperature and ambient pressure are used to calculate 
the air density, using the equation of state, at the time of the data measurement. These 

were measured using a mercury barometer situated near the exterior of the wind tunnel 

and a mercury thermometer. 

Additionally a further correction to the output voltage was applied due to an additional 
variation with air temperature. This is recommended by the TSI Hot Film User Manual 

and is as follows: 

r tsensor - tcalibrodon 
Vcornded - vmearnred X 

tsanror 
- 

tmsasursnrnN 1 5.4 
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Note that the temperature used in equation 5.4 was the average of the ambient 

temperature in the wind tunnel measured before and after the tunnel was operated from 

a thermometer situated next to the mercury barometer in the building near to the wind 

tunnel inlet. Note that the probe experiences the total temperature of the air flow in the 

tunnel and which is equivalent to the static temperature of the near stationary air in the 

building, due to the flow from the working section inlet to the probe position in the 

working section being adiabatic. The static temperature of the flow, as it accelerates 

into the working section of the wind tunnel, falls proportionally with the static pressure 

as the air density is constant for these low speeds. The static pressure falls due to two 

effects: 

1. For a given total pressure, which is approximately constant for the flow into the 

working section the static pressure falls due to the increase in the dynamic head of the 

fluid as described by Bernoulli's formula, equation 3.2. 

2. The static pressure falls directly proportionally with the total pressure reduction 

due to friction losses. These are caused by the ground roughness and the mixing of the 

free jet at the sides and top of the flow as it passes through the working section. Again 

this simple relationship only holds for incompressible flow. In the absence of these 

losses the flow process would be described as isentropic and the total pressure of the 

flow in the working section would then be equivalent to the static pressure in the 

surrounding building. 

For the Nottingham University environmental wind tunnel with its maximum speed of 

1 Sm/s the ratio of the static to total quantities discussed above are in any case very near 

unity, to within 0.002%. 

Initial wind velocity measurements with the ABL simulation installed were conducted 

using sample frequencies of 1000Hz, 200Hz and 100Hz sampling from 4096 data 

points. It was found that 100Hz gave the most repeatable results for the mean value, no 
doubt due to the long streamwise turbulence length scale and the lack of energy above 

50Hz as shown by the wind spectrum. No analogue filter was employed. All wind 

measurements were conducted using 100Hz sample frequency for 4096 data points. 

This 41 second recording gave an accuracy of 0.3m/s for the mean wind speed and 1% 

for the turbulence intensity, these values being the likely error or standard deviation for 

a single measurement found by analysis of 5 repeat measurements. 
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5.2.1.2 Velocity spectra. 

As the spectra to be calculated are in the non dimensionalised form, and also due to the 

mean of the signal being removed prior to FFT, the linearised output from the hot film 

anemometer does not need to be calibrated or corrected for ambient conditions. 

These were calculated from an average of 14 individual spectra. Each of these was 

calculated from a sample of 4096 data points at a frequency at 500Hz utilising the 

Polycorder's in built low pass analogue filter at 100Hz. The resulting spectrum of 2048 

data points therefore extend to 250Hz with a sharp cut off at 100Hz. The resolution of 

the spectrum is thus 0.122Hz. 

The data for the 14 spectra was measured as a single continuous record of 57344 data 

points corresponding to a measurement time of 115 seconds. 

5.2.1.3 Extreme value analysis. 

The extreme wind speed corresponding to the gust time divided by the mean wind 

speed is known as the extreme gust value: 

G_ü 
_U 5.5 

Extreme gust values were calculated using Leiblien's method utilising 10 blocks of data. 

As the wind velocity squared is proportional to the aerodynamic force, in the definition 

of the force coefficient, extreme value analysis for the wind extreme gust values were 

conducted with these values squared. These 10 blocks were formed from a single 

measurement of 61440 data points at a sample frequency of 500Hz and analogue 
filtered at 100Hz. 

The methodology described in section 5.1.5 is demonstrated for the static model test 

position with a mean wind speed of 8.5m/s at an equivalent full scale reference height 

of 3m and a range of measurement (model) times taken to be equivalent to 3 seconds 
full scale. The full scale extreme mean hourly wind speed of 30m/s was chosen here as 

this is typical for the United Kingdom given in ESDU (1974). As this is a typical value 
it was decided not to correct this value for the difference in reference height between 

the 3m used in this thesis compared to the 10m used in ESDU (1974). The correction 
for this difference would only be approximate in any case due to the large variation in 

the wind characteristics at heights of less than lOm above the ground. However, if 
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applied, equation 3.5 shows that this correction would be less than 20% for which the 

methodology of extreme value analysis would not be very sensitive in the predicted 

extreme gust value. This will be demonstrated in the results obtained for ranges of 

model time scale varying by many factors. 

Considering just one block of data extracted from the continuous record, Table 5.1 

illustrates the number of data points that are used to form each gust value, the number 

of gust values and the equivalent full scale time period from which this maximum is 

formed. It is seen that this latter time period depends upon the model time period taken 

to be equal to the 3 second gust and the value of the full scale extreme mean hourly 

wind speed. Having chosen a model time period equivalent to a3 second gust, implying 

a certain full scale time period for the measurement time of a block, the maximum gust 

value is calculated for each block (in this case 10) from the continuous data record. 

Table 5.2 shows these maximum gust values ranked in ascending order with Leiblien's 

Blue numbers designated A and B indicated alongside. 

Table 5.3 continues the calculation first showing the most likely 3s extreme gust values 
(the mode) and the dispersion for the equivalent full-scale time period of one block of 
data. Finally 5.3 shows, using equation 5.1 and the calculated mode and dispersion, the 

3s extreme gust factor values extrapolated for the full scale time period of one hour. 

The actual extreme velocity values can be calculated using the extreme mean hourly 

wind speed. In the wind tunnel this is just the mean wind speed, as the ABL simulated 

corresponds the mean hourly correlations given in section 3.2. 

5.2.2 Force measurements. 

The mean force coefficients and moment coefficients were calculated using the 
definitions described in this section. 

The definition of the wind yaw angle and the relative directions of the forces and 

moments to the oncoming wind used for all tests reported in this thesis are shown in 

figure 5.3. Note that this sign convention is identical to those previously used for the 

tests of these vehicles described in sections 2.2.1.1. and 2.2.1.2., as shown in figure 

2.3. It should be noted that for the tests described in this thesis, due to the arrangement 

of the moving model rig, the vehicle was mounted such that the on coming wind 

approached the vehicle's starboard side rather than the port side as for the previous 

tests. This arrangement was adhered to for the static turntable tests. 
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For the DB railway container, it should be remembered that only the forces and 

moments on the container were measured, as it was mounted above and not touching 

the wagon below (Chapter 2). 

For the lorry and the railway container the mean side and lift force coefficients CS and 
CS, are defined as : 

CS S=2 
PAV 2 

CL 
-ý 

2/'. ý`i , ýd 
v2 5.6 

including the resultant mean wind speed 17, formed from the mean vehicle's speed v, 

and the mean wind speed W, at the reference height for a vehicle moving perpendicular 

to the wind direction, 

i 
V =rý2+v2)2 5.7 

Note that for the lorry the reference area was chosen to be the vehicle's profile frontal 

area whilst for the DB railway container the container's frontal area is used. These were 

chosen for consistency with previous tests (sections 2.2.1.1 and 2.2.1.2) and so the 

results of the previous tests of the same vehicle types could be directly compared. 

For the lorry the mean moments were calculated about the lorry's centre of gravity. 
These were calculated by translating and combining the forces and moments measured 

and calibrated relative to the centre of the balance to an unladen vehicle's centre of 

gravity. Considering the contributions due to the pure side and lift forces, the side and 
lift forces used in forming these coefficients were taken to be acting at the centre of the 

side and roof coincident with the centre of the force balance. Therefore in forming the 

pitching moment about the vehicle's centre of gravity, the moment arm used for 

translating the lift force contribution is from the centre of the balance to the centre of 
mass. No contribution due to the drag force on the vehicle is included due to this 

quantity not being measured. However this contribution should be small due to both 

the relatively low drag and the moment arm. For the yawing moment similarly the side 
force contribution is from the centre of the balance to the centre of gravity. In forming 

the rolling moment contributions due to the side and lift forces, only the side force 

contributes due to the lift force being assumed to be acting directly above the centre of 
the balance, thus giving a zero value for the moment arm, which is probably not the 

case. However the resultant error due to this would be expected to be small as both the 
lift force and the moment arm are much smaller than their side force values. 
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The mean pitch, yaw and rolling moment coefficients calculated about the lorry's centre 
of gravity C, 

, 
C, and CR 

, are formed in a similar manner to the force coefficients but 

including a reference length in order to non dimensionalise these moments. For the 

lorry the reference length used was the lorry's height h, as for the previous tests 

described in section 2.2.1.1, the moment coefficients are defined as : 

Cp= 
Mp2 

i 
Cy=_ 

My2 

º 
CR= 

MR 

5.8 
ipAV hc Z, Av hc iPAVZhc 

Also in this thesis, for the analysis of the aerodynamic moments acting on the lorry, the 

non dimensional point of action is defined for the various components, thus: 

horizontal non dimensional point of action for side force, 

xs 
_ 

Cr 
'Ys 

hC s 

vertical non dimensional point of action for side force, 

Ys=s=C 
hs 

horizontal non dimensional point of action for lift force, 

X. =xL=-CP Lh CL 

5.9 

5.10 

5.11 

Note that the vertical non dimensional point of action for the lift force could not be 

calculated as the drag force (acting in the opposite direction to the vehicle's travel) was 

not measured. 

For the railway container all the definitions were chosen for consistency with the 

previous tests of this vehicle type (section 2.2.1.2). The only moment calculated, for 

the tests described in this thesis, was the lee bottom corner rolling moment as the 

concern was the risk of the container rolling off the wagon on which it was laden. Note 

that this was formed from the measurement of the side and lift forces taken to be acting 

at the centre of the container's side and roof respectively (using the moment arm from 

the centre of the container perpendicular to the bottom corner of the container) and 

also the rolling moment measured about the container's centre by the balance. The 
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rolling moment coefficient used a reference height equivalent to the width of the 

container. (Almost identical to the height of the container (figure 1.2)). Again this was 

chosen for consistency with the results in section 2.2.1.2. The mean rolling moment for 

the DB railway container vehicle is defined as : 

MR 
CR 

2 pAYZh 
5.12 

The extreme side and lift force coefficients C. and CL, for both the lorry and the DB 

container were defined to be : 

FS 
CS= 

ZPAVZ 

A 

F 
CL ='L 

2PAVZ 
5.13 

including the resultant extreme wind speed V, formed from the mean vehicle's speed 

v, and the extreme wind speed ü, at the reference height for a vehicle moving 

perpendicular to the wind direction. 

V= (üz 
+ vz)Y2 5.14 

For most of the tests extreme value coefficients were only formed for the pure side and 
lift forces. It was assumed that these would be adequate to form extreme moment 

coefficients if needed due to the small contribution of the moments measured about the 
balance centre in the forming of the mean coefficients. This was checked for the tests 
described in Chapter 9, where, for the lorry, the extreme moment coefficients were 

calculated from coincident (at the same time) measured extreme forces and moments. 

The extreme lee bottom corner rolling moment for the DB container, for all the DB 

container tests, was calculated from the sum of the translated extreme side and lift 

forces and the extreme rolling moment measured simultaneously about the balance 

centre. The extreme moment coefficients were formed in the same manner as equation 
5.13 using both the extreme moment and resultant extreme wind speed. 

The use of the 5 component force balance is described in the next section and the 
details of the data acquisition and analysis for the static and moving tests are described 

in sections 5.3.2 and 5.3.3 respectively. 
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5.2.2.1 Using the five component force balance. 

The force balance and associated equipment were described in section 4.3.3. The 

response of the balance, in terms of voltage, is linear with forces and moments that are 

exerted on it. However the output of each channel includes the effects of other forces 

and moments, which are termed interactions. 

The force balance works in the following way: 

vi is the voltage on channel i. Li is the load ( force or moment) on channel i. 

Ai to Fi are the calibration factors. 

v1 =A1L1 +B1L2+C1L3+D1L4+E1L5 5.15 

v2=A2L1+B2L2+C2L3+D2L4+E2L5 5.16 

v3=A3L1+B3L2+C3L3+D3L4+E3L5 5.17 

v4=A4L1 +B4L2+C4L3+D4L4+E4L5 5.18 

v5=A5L1+B5L2+C5L3+D5L4+E5L5 5.19 

The leading diagonal of the matrix of calibration values, Al to E5, are the greatest in 

magnitude and all the others are termed the interactions. 

To calculate the loads from the voltages either the 5x5 matrix of calibration 

coefficients needs inverting for an exact solution or can be found to a specified level of 

accuracy by use iterative solution methods. 

An approximate solution can be made to this, and is often the one recommended by 

manufactures of such balances. Unfortunately this can only be made if BOTH the 
following assumptions are valid : 

1. If the loads on each channel are similar in magnitude e. g. for equation 5.15, L1 is 

similar in magnitude to values L2 to L5. 
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2. If the interactions are small e. g. for equation 5.15, B1 to E1 are much smaller than 

Al 

It is then possible to make the approximation of replacing the force terms in the 

interactions by a voltage neglecting further interactions e. g. For equation 5.15, L2 can 
be replaced, from equation 5.16 using : v2 = B2 L2, so that L2 = v2 / B2. Applying 

this approximate method to equations 5.15 to 5.19 gives: 

T1ýB, Ei- D, E, 
vi _ B2 V2 - 

r3 
V3 - 

D4 
V4 -E vs 

S 

4 

L4 

L5 

A_ C2 D2 EZ 
V2-Vi --V3- V4--V5 

B2 A C3 D4 E5 

-1ý 
A3 B3 D3 E3 

V3- -V, -B2 V2-D4 Va-E VS C3 At 
s, 

1 Aa Ba Ca E4 
V4 --Vt -V2 -V3 -Vs 

Da B2 C3 Es 

1 AS Bs C5 D5 
- Vs --Vi --V2--V3--Va 
ES A, B2 C3 Da 

, 

5.20 

5.21 

5.22 

5.23 

5.24 

As was stated earlier this is the standard method often recommended by balance 

manufacturers. The above equations would be simplified renaming the coefficients 

proceeding the voltages the 'interactions'. This method was used to calibrate the force 

balance for the tests described in Coleman (1990) and Baker (1986). In order to verify 

the adequacy of this method used for these previous tests, calculations of the static 
forces for the static lorry tests described in this thesis were undertaken using the 

previously used approximate method. Comparisons of these results with the method 

used in this thesis which solved equations 5.15 to 5.19 using the Gauss Elimination 

Method showed that the difference was less than 2% and therefore negligible in the 

context of these tests. 

The force balance was calibrated by hanging weights to various points on a yoke which 
fitted to the live side of the balance. Referring to equations 5.15 to 5.19 the voltages 

were measured on all the 5 channels whilst applying a range of positive and negative 
loads to only one channel. This process was repeated for all 5 channels in turn. The 
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values Ai to Ei were found from fitting the best straight line fit to manual plotting of 

these measured voltages against the loads applied. Table 5.4 shows the calibration 

matrix defined by equation 5.15 to 5.19. The amplifier for each channel was set to 

maximum gain prior to calibration and also zeroed for zero load on the balance. The 

actual voltage corresponding to zero load for each vehicle under test, noting that its 

self weight is small but measurable, was corrected for during post data acquisition 

analysis. 

During the calibration of the balance it was found that the measured voltages 

corresponding to all the channels responded linearly to the load on any channel thus 

verifying that equations 5.15 to 5.19 describe the characteristics of the balance 

adequately. This demonstrates that any combination of loads will be adequately 

described by the solution of these equations. Due to the linearity of these equations it is 

seen that in the post data acquisition processing for the determination of the mean and 

extreme forces over various time scales, the calibration can be conducted on the 

voltages for each channel that have been averaged over the corresponding time 

intervals, thus saving a significant amount of processing time. Further, this is essential 

for the multiplexing data gathering technique employed in these tests as the dominant 

high frequency noise due to the balance supports etc. may fluctuate over time periods 

similar or faster than the inter channel frequency of recording the data. This means that 

over very short time scales, unless this noise were adequately filtered, the voltages 
being measured on each channel may not be considered synchronous. 

The force balance was calibrated prior to the static tests described in Chapter 7 and 

again before and after the second series of moving model tests described in Chapter 9. 

It was found that the balance was extremely stable to the accuracy obtainable from this 

method of calibration, around 2% of the calibration values given in table 5.4. 

Coleman (1990) by measuring the transfer function for the balance demonstrated that 

the balance accurately responded both in magnitude and in the frequency domain to the 

relatively low frequency forces that were needed to be measured in this thesis. 
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5.2.2.2 Static tests. 

5.2.2.2.1 Mean forces and moments. 

These were calculated from multiplex recordings of all 5 channels at a sample 
frequency of 400Hz per channel. This high sample rate was chosen so that the natural 

frequency of the balance supports would be averaged out. The number of data recorded 

per channel was 12288 thus giving a recording time of 31 seconds. 

5.2.2.2.2 Extreme force values. 

These are calculated in the same manner as those described in section 5.2.1.3 for the 

extreme wind coefficients. Measurements were made for the side and lift forces only at 

a sample frequency of 125Hz and 45000 data points per channel. Analogue low pass 
filtering, using the equipment described in section 4.5, at a frequency of 50Hz of the 

measured signal was conducted for both channels prior to sampling. Due to wind 

tunnel occupancy time restrictions no other sample frequencies were tried and the long 

data records were chosen in order to ensure that the dispersion was suitably small. 
Table 5.5 summarises the calculation details. 

The calculation of the extreme values for each block was based on the mean wind 

speed and these were extrapolated to give the 1 hour extreme 3s values non 
dimensionalised by the extreme gust. From these the normalised extreme force 

parameter and also the unsteady parameters were derived. The data was calibrated 

using only the diagonal calibration elements for these two channels therefore ignoring 

any interaction. The calculated mean force coefficients using this method showed up to 

5% variation in those calculated using the full matrix of interactions as used for 

deriving the mean force values in section 5.2.2.2.1. However as the extreme force 

coefficients are normalised by the mean force coefficients also produced by this 

program (calibrated in the same manner from the same data), then this error on the 

normalised extreme force parameter and the unsteady force parameters are greatly 

reduced and should be considered negligible. 

5.2.2.3 Moving model tests. 

The data was recorded by the Polycorder data logger which was triggered to record 
1.5 seconds of data 0.5 seconds before the rig fired. This delay was necessary due to 

the time needed for the Polycorder to load the program and compile it prior to 
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recording the data. The data from each run was downloaded to the PC as a single file. 

A typical output from a single fire of the moving model rig in its final guise, used for 

the second series of tests, is shown in figure 5.4. This shows the digital output channel 

which is used to calculate the speed of the trolley and identify its position across the 

working section. Also shown at the end of the run is the part of the run used for the 

zero readings when the trolley has stopped, the mechanical noise being absent, with the 

live vehicle within a tunnel after exiting the working section. 

Output from the earlier test series was similar but did not contain the zero readings and 

only contained two markers of position on the digital channel. The zeros were taken at 
the beginning of a test gathering session and at the end (usually 50 runs) and an average 
taken. 

For the main test series only data for which the zeros of that run and the run prior 

remained similar, within prescribed limits, were accepted. 

After 10 runs of the moving model rig, the data for each run was downloaded into the 
PC and converted into ASCII text (. TBL file). The chosen test data relevant to the test 

section, with calculated zeros from the data at the end of the run, were then extracted 

and stored as an ASCII file for further processing (. RAW file). This file also included 

the mean force coefficients formed from this data and as a header block, the ancillary 
test data. The actual time histories recorded by the Polycorder were displayed on the 
PC's screen by the program that undertook this analysis and so each run was visually 

checked for major problems before being accepted. 

5.2.2.3.1 Mean and extreme forces and moments. 

Both the mean and extreme force and moment values are calculated from the same data 

due to discrete nature of gathering data. As discussed in section 3 it is apparent that the 

model time scales taken to be equivalent to the 3s full scale gust are similar to the 

transit time of the moving model rig or sub divisions of this time. Rather than calculate 

extreme values for model time scales of 0.1s, 0.2 and 0.4s etc. as for the static data it 

was decided that it would be more convenient to take as the time of the trolley transit 

time of the test section and subdivisions of i. e. half, third, quarter etc. 

Each run of the moving model rig lasted between 0.1 and 0.4s depending upon the 

moving model speed and was constrained by yaw angle and wind tunnel speed. In order 
to calculate extreme values for time periods comparable to those of the static tests, as 
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discussed in section 3.3, the data of each run must be split into a number of segments. 
A chosen segment number of 1 refers to using the data from one whole run, whilst a 

value of 4 would indicate that four values would be extracted from one run. Analysis 

was conducted in a similar manner to the static tests with different model time scales to 

form the extreme values, depending upon the yaw angle in question and thus the transit 

time of the live model 

The overall means and the extreme values for the given number of segments into which 

each was divided, were calculated from the ensemble of data corresponding to each 

run, each already pre-processed and stored as an individual data file (. RAW). In the 

processing of consecutive files of data the zero force measurements made at the end of 

each run were compared with those of the previous run and the file is only accepted in 

the analysis if the they were within 2%. 

The data could be filtered if required using the method of 5.1.4. Details of this are 

given with the results of each series of tests in Chapters 8 and 9. If required the 

software could provide additional mean zero corrections due to mechanical noise 
described in section 9.1 which is a function of trolley speed. The problem of mechanical 

noise and the likely error it induces on the mean and extreme results are discussed in 

section 9.1. 

5.2.2.3.2 Force spectra and aerodynamic admittance. 

The force spectrum for a particular yaw angle for the moving model tests were formed 

from the average of the force spectra calculated from the data form each individual run. 
These were determined in identical manner to the wind velocity spectra described in 

section 5.2.1.2. 

Whilst the aerodynamic admittance may be obtained by dividing the force spectra by 

the velocity spectra directly using equation 2.8, for such spectra shown in this thesis 

this would give a resulting aerodynamic admittance spectra which would be very spiky 

and difficult to interpret. The lack of smoothness of the force and wind velocity spectra 
is due to the relatively large turbulence length scales compared to the time taken to 

record the data, even though for the measurements were done over many minutes. 
Consideration was given to the simpler band pass filtering method in which a mean 

value of the spectral energy is obtained for each frequency band. Note this is simply the 

variance of the data averaged over the frequency interval and is the method used for the 

results shown in figures 2.8,2.9 and 2.16. Referring to Chapter 9, this method was not 
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pursued either due to the high level of mechanical noise present in the digital signal 

throughout the bandwidth of interest seen in the force spectra. This was due to the lack 

of analogue filtering in the of recording the moving model data resulting in aliasing of 

the high frequency noise to some other lower frequencies. 

If it had been possible to calculate the aerodynamic admittance accurately for the 

moving model tests then the extreme side and lift forces may have been calculated 

directly using equations 2.12 to 2.14. 
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Table 5.1 Wind gust extreme value analysis summary. 

Full scale extreme hourly mean value = 30m/s (3m). 

Mean wind tunnel reference speed = 8.5m/s at 60mm height = 3m full scale height. 

No of data points for 10 blocks =61440. Sample frequency = 500Hz. 

Model time period equivalent 

to 3s gust 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 

No of 3s gusts per block of 245 122 61 40 30 24 20 

data. 

Full scale time period 735 366 183 120 90 72 60 

equivalent of one block of 

data. 
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Table 5.2 Worked example of Leiblein's extreme value method. 

Static test position gust extreme value analysis based on 10 data blocks and the details 

in table 5.1. Note analysis conducted on the gust value squared as this is quantity 

required to non dimensionalise the force coefficient. 

Model time 

period 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 

Rank Max Gust Sqd Value (G2) A B 

1 1.904 1.729 1.597 1.459 1.288 1.221 1.204 0.2229 -0.3478 

2 1.931 1.745 1.604 1.464 1.287 1.221 1.207 0.1623 -0.0912 

3 1.943 1.761 1.611 1.469 1.287 1.222 1.209 0.1338 -0.0192 

4 1.943 1.774 1.619 1.472 1.286 1.223 1.211 0.1129 0.0222 

5 1.945 1.787 1.627 1.472 1.285 1.223 1.212 0.0956 0.0487 

6 1.961 1.802 1.634 1.473 1.285 1.224 1.214 0.0806 0.0661 

7 1.987 1.822 1.640 1.473 1.285 1.224 1.214 0.0670 0.0770 

8 2.011 1.842 1.642 1.474 1.284 1.226 1.215 0.0542 0.0828 

9 2.022 1.855 1.643 1.476 1.281 1.227 1.215 0.0417 0.0836 

10 2.023 1.856 1.643 1.477 1.288 1.229 1.215 0.0289 0.0779 

F. 0.9999 0.0001 
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Table 5.3 Worked example of Leiblein's extreme value method continued. 

Model time period 0.05 0.10 0.20 0.30 0.40 0.50 0.60 

quivalent to 3s gust (s 

Equivalent full scale 735 366 183 120 90 72 60 

time (s). 1 data block. 

s Mode 1.95 1.78 1.62 1.47 1.28 1.22 1.21 

EA. Max. G2) 

Dispersion 0.040 0.045 0.020 0.008 0.005 0.003 0.006 

EB. Max. G2) 

Extrapolated 3s mode 2.01 1.88 1.68 1.50 1.30 1.24 1.23 
or 1 hour of G2 value 

Table 5.4 Force balance calibration matrix. 

Coefficients as defined in equation 5.15 to 5.19. 

Channel i Ai Bi Ci Di Ei 

1 7.50 -0.23 0.13 0.01 -0.01 

2 0.21 7.93 0.13 0.00 0.02 

3 0.13 -0.03 55.0 0.00 -0.02 

4 -0.05 -0.44 -0.29 0.83 0.05 

5 0.00 -0.07 -0.36 -0.02 0.80 
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Table 5.5 Static lorry extreme value analysis summary. 

Full scale extreme hourly mean value = 30m/s (3m). 

Mean wind tunnel reference speed = 8.5m/s at 60mm height = 3m full scale height. 

No of data points for 10 blocks =45000. Sample frequency = 125Hz. 

Model time period 
equivalent to 3s gust 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 

No. of 3s gusts per block of 750 346 180 121 90 72 60 
data. 

Full scale time period 2250 1038 540 363 270 216 180 
equivalent of one block of 
data 
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Figure 5.1 Characteristics of low pass cosine squared cut off digital filter. 

From Johnson (1978). 

At cut off frequency fc, gain = -3dB 
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6. The Atmospheric Boundary Layer Simulation. 

The aim of the wind tunnel simulation was to achieve a mean hourly atmospheric 
boundary layer (ABL), typical of strong winds with a target roughness length 

corresponding to that of an open countryside. Section 3.2 describes the correlations 

between the streamwise velocity and turbulence intensity profiles and streamwise 

turbulence length scales used in this section for generating target values. Initial wind 

measurements were taken to gain experience of the extended wind tunnel and in the 

creation of a realistic atmospheric boundary layer (ABL). These tests, undertaken 
during April, 1990 are described in section 6.1. Described in section 6.2 is the final 

ABL, used for both the first and second series of model vehicle tests, obtained from 

tests during June and July, 1990. 

Using equations 3.5 to 3.8 the target ABL characteristics at model scale were 

calculated. These are based on a model scale of 1/50th and a wind tunnel velocity at 
0.2m above the surface of the working section floor (equivalent to 10m full scale) of 

lOm/s. This latter value was thought to be achievable based on the maximum wind 

tunnel speed of 14m/s with no roughness elements present. The full scale target 

roughness length, zo, for the open countryside simulation (Cook (1985)), was 0.01m. 

The target quantities calculated were those that would be measured in the wind tunnel 

and used in this thesis to assess the ABL generated : 

1. Streamwise velocity and turbulence intensity vertical profiles. 

2. Streamwise velocity spectrum. 

The target streamwise wind velocity vertical profile is shown in figure 6.1. It is seen 

that this gives a wind velocity of 8.3m/s at the reference height, equivalent to 3m full 

scale, that is used in this thesis. The vertical streamwise turbulence intensity profile is 

shown in figure 6.2. It is seen that the turbulence intensity is around 20% at the 

reference height nearly twice the value achieved in the experiments of Coleman (1990). 

Rearranging equation 3.5: 

"(Z) 
= constant (log, 

oz-log, ozo) W (H) 
6.1 
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so that when 
u (H) 

= 0, then z= zo. 

Referring to figure 6.3, a graph of 
a ýH) 

versus logloz, it is seen that zo can be found 

from the intercept on the z axis for data which behaves as equation 6.1. This graphical 

technique was used to determine zo, from measured streamwise wind velocity values at 

various heights above the wind tunnel working section floor described in section 6.1. 

Finally the streamwise velocity spectrum, shown in figure 6.4, corresponds to a 

streamwise lengthscale of lm, which is equivalent to 50m full scale. This value is some 
8 times larger than that modelled in Coleman (1990) and Johnson (1981). 

Note that the streamwise length scale is not a strong function of either the roughness 
length or the height above the ground, equation 3.8, and so during the initial 

experiments to determine an adequate ABL the streamwise lengthscale was only 
determined at one height, with reasonable confidence that it would not vary much for 

quite large changes in the roughness element height. This assumption would be checked 
for the final simulation as discussed in section 6.2. 

6.1 The initial experiments. 

The physical devices used for producing the experimental ABLs were as follows and 

are based on the advice in Cook (1978) : 

1. Arrays of 200mm, 100mm and 50mm cubes to a 12% plan density. For each 

size a fetch, of working section width, of 2.5m was constructed. See figures 6.5 and 
6.6. 

2. Gravel boards. 1.2m square of gravel size approximately 3mm diameter. 

3. A 70mm high barrier placed at the working section inlet. 

4. A grid shown in figure 6.7 for placing at the working section inlet. This was 

used as the turbulence generator for previous vehicle overturning studies described in 

Coleman (1990). 
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The fetch described is on the basis of the entire 9ft width of the working section being 

covered as shown in figure 6.5. Various combinations of the turbulence generators 

were tried as listed in table 6.1. 

The measurements were taken in the centre of the working section 50mm forward of 

the moving model rig. The results of the corresponding ABL parameters from this data 

are given in table 6.2. The actual measurements and corresponding spectra are shown 
in Humphreys (1990). 

It was found that the target velocity and turbulence intensity profiles, figures 6.1 and 
6.2, could be modelled quite easily but, as expected, the velocity spectrum was more 
difficult. This was due to the inadequate length of the available fetch. The best velocity 

spectrum was shifted to higher frequencies by a factor of 2 when compared with the 

target shown in figure 6.3. Note, however, that this spectrum is similar to that shown in 

Hoxey (1992) for measurements made at similar small heights above the ground. 

The wind velocity spectrum for all the simulations tried were dominated by a low 

frequency peak, around 2Hz. A low frequency contribution was expected because the 

wind velocity spectrum measured in the original wind tunnel had a similar feature, 

reported in Coleman (1990). Coleman traced this to the presence of a separation bubble 

in the roof of the collector section just forward of the fan. The presence of this low 

frequency oscillation in the flow actually aided the generation of a 1/50th scale velocity 

spectrum. This provided a low frequency component to the velocity spectrum that 

would not be possible to generate using conventional roughness elements over the 

relatively short fetch of the Nottingham University environmental wind tunnel. The 

normalising velocity relevant to the frequency of oscillation of the separation bubble 

(Strouhal number dependence) is that of the wind jet at the roof of the working section. 
As the wind speed at the roof of the tunnel is not very dependent on the ABL 

simulation it follows that the frequency of the low frequency component present in the 

measured spectra is roughly constant. It is seen, referring to the discussion in section 
3.2, that the streamwise turbulence length scale is proportional to the wind speed. In 

order to create the largest possible turbulence length scale near the floor of the working 

section it was therefore necessary to choose turbulence generating devices which did 

not reduce the maximum wind tunnel speed too greatly in this region of interest, i. e. the 
first 200mm above the ground. 

The horizontal streamwise velocity and turbulence intensity profiles along the length of 
the working section were initially investigated by Yang (1990) working on another 
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project. As was expected the horizontal profiles became worse down the length of the 

working section due to the mixing in the shear layer wind between the wind jet and the 

stationary air to the sides of the test room. The spanwise characteristics were improved 

by fitting some side walls and a secondary flow collector of height 600mm to the last 

6.6 metres of the working section spanning the moving model rig. 

6.2 The final atmospheric boundary layer simulation. 

The ABL simulation used for all the tests described in this thesis used the following 

devices: 

1.70mm high barrier of length 1.5m situated in the centre if the working section 
inlet. 

2. Two 1.2m x 1.2m gravel boards, average gravel size 3mm, placed in the centre 

of the working section 100mm forward of the test position, either the static position or 

the moving test slot. 

3. Inclusion of 600mm high side walls to the last 6.6m of the working section. 

Figure 6.8 shows the layout of the devices for the moving model experiments. 

6.2.1 Moving test position streamwise profiles. 

It was found that placing these devices only in the centre of the working section 

produced reasonably uniform horizontal profiles for the central 1.5m of the working 

section, and data analysis was constrained to data sampled from this central section. 

The initial 600mm that the moving model travelled through the wind, prior to the 

central 1.5m section from which the data was analysed, was thought to be useful as it 

may enable the flow pattern around the moving vehicle to stabilise. This was checked, 

see Chapter 9. The wind measurements were carried out 50mm forward of the working 

section slot needed for the moving model supports. Figures 6.9 and 6.10 show the 

spanwise velocity and turbulence intensity profiles for the moving model position. 

The reference height for the wind measurement position shown in this section was 

60mm, equivalent to 3m for a 1/50th scale model. Measurements at the moving model 

and static positions were made at the maximum attainable wind speed, 8.5m/s and the 

lowest used for the tests reported in this thesis, 5.0 m/s. 
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Figures 6.11 and 6.12 show the spanwise averaged streamwise velocity and turbulence 

intensity profiles compared to the target values based on a 1/50th scale simulation of a 
full scale roughness length, zo = 0.03m, and 3m reference height from Cook (1985). 

Note that the value of the target zo has been slightly changed as it better fits the 

attainable data but it is still representative of an open country simulation. Generally the 

comparisons are good and importantly the comparisons between the measured values 

and the target are independent of the wind speed considered, which demonstrates 

Reynolds number independence for the ABL. 

Next the streamwise velocity spectrum are compared with the target von Karman 

spectrum, equation 3.7. Figures 6.13 and 6.14 show the comparison for wind speeds of 
8.5m/s and 5.0m/s at the reference 3m full scale height. These show a consistent (i. e. 
Reynolds independence) mismatch by a factor of around 2, the measured length scale 
being about half that of the target. The length scale of the measured data is about 0.5m, 

rather than the target of lm, i. e. 1/50th of 50m full scale for zo = 0.03m. These spectra 
however are similar to those of Hoxey and Richards (1992), discussed in section 3.2, 

from measurements made at similar heights above the ground. 

Figures 6.15 and 6.16 show the spectral comparisons for measurement full scale 

equivalent heights of 1.5m and 10m at the working section centre, again showing the 

consistency between measurement and target. Similarly figures 6.17 to 6.19 show 

comparisons for measurements at the start and end of the data sampling region along 

the moving vehicle's test position. 

Figure 6.20 shows the average non dimensionalised longitudinal wind velocity 

spectrum from all the spectra measured at a height equivalent to 3m full scale, at 5 

positions spanwise along the moving model test position. As with all the spectral 

calculations in this thesis the spectrum at each position was averaged from 14 

calculated. This spectrum therefore was formed from 70 individually analysed spectra. 
This average spectrum is representative of that experienced by the moving vehicle over 

a large number of test runs. 

6.2.2 Static test position streamwise profiles. 

Figures 6.21 to 6.23 show the velocity, turbulence intensity and a streamwise velocity 

spectrum at the static test position. The comparisons between the measured and target 

profiles show the same relationship as those for the moving test positions, thus enabling 

valid comparisons to be made between moving and static tests. 
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6.2.3 Lateral wind characteristics. 

It was not possible to measure the lateral wind characteristics during the commissioning 

of the ABL described in this chapter due to the lack of suitable equipment. In order to 

measure the lateral length scales, a cross correlation has to be conducted of the signals 

from two anemometers (usually hot wires) positioned in the direction of the axis of the 

lateral component that is being measured. However it is known (Schlichting (1968) pp 

531 to 539) that a conventional zero pressure gradient turbulent boundary layer is 

characterised by lateral velocity components similar to the magnitude of the streamwise 

components and therefore approximate to isotropic turbulence. Further, ESDU (1975) 

notes that the Earth's ABL turbulence is near isotropic characterised by lateral 

turbulence semi length scales of around half the streamwise length scale. As the 

mechanism for the simulated ABL generated by the roughness blocks in the 

environmental wind tunnel is physically the same as these turbulent boundary layers it 

was expected that the simulated ABL would be characterised by turbulent semi length 

scales in the correct ratio to their streamwise component. As discussed in section 6.1, 

part of the ABL simulation described here was created, not by conventional roughness 

blocks, but by the low frequency streamwise oscillation due to separation in the roof of 

the tunnel. Fortunately this component would be expected to have high lateral spanwise 

correlation and therefore should serve to increase the lateral correlation across the 

length of the vehicle. 

Noting that the streamwise turbulence length scale, using the ABL modelled, is 0.5m it 

is seen that the semi length scales should be around 0.25m. The characteristic 

dimension that is important from the point of view of vortex shedding is the height of 

the vehicle. Both the model Lorry and the Container with wagon are around 0.08m 

high (4m full scale) and therefore the condition of Tielman and Atkins (1989) discussed 

in section 3.1, that the streamwise length scale modelled in a wind tunnel test should at 
be least twice the model scale of the bodies tested is satisfied. Note that the lateral 

length scales of the simulated ABL are roughly three times the height of the models 

tested. 

As the vehicles under study are 3 dimensional in nature and finite in length the 

condition of Tielman and Atkins may not be considered adequate to fully represent the 

unsteady effects on a vehicle. Referring to figures 2.4 and 2.5, it is seen that the effect 

of the finite length of the vehicle is observed in theoretical predictions of the unsteady 

side force parameters and also the normalised extreme side force parameters computed 
(section 2.1) for vehicle height to length ratios similar to those described and tested in 
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this thesis. Noting the ratio of the length of the vehicle to the streamwise length scale 
LI`L�, for the lorry I/LU = 0.54, and the DB container I/L,, = 0.53, these figures show 

that both extreme parameters obtained from these wind tunnel tests should be 

representative of such tests conducted with a much longer simulated turbulence scales. 

It is seen that the values of LtLU obtained for the vehicles tested in this thesis 

correspond to the condition of Tielman and Atkins applied to the length of the vehicle 

as well as its height. The semi lateral length scales are very nearly equal to the length of 

the vehicles and therefore the large scale turbulence is correlated across the length of 

these vehicles. 

The lateral length scales have since been measured in the environmental wind tunnel at 

the University of Nottingham (King (1994)). At a position near to the moving model 

rig and with the ABL simulation used in this thesis and the following ratios to the 

streamwise component were obtained, YL Lu = 0.35 and zLulxLu = 0.35. These 

verify that the condition of Tielman and Atkins, applied to both the height and the 

length of the vehicles tested in this thesis, was satisfied. The ABL modelled, for these 

vehicles tested, was therefore an adequate simulation of the full scale mean hourly ABL 

for the purpose of determining the gust loads on these vehicles in a high cross wind. 

Referring to the wind velocity measurements of Hoxey and Richards (1989), discussed 

in section 3.2, it may be that the ABL simulation obtained at Nottingham University is 

representative of the full scale mean hourly ABL at small heights, less than 10m. In this 

case, no additional streamwise length scale corrections would be necessary to the 

model time scale. Further, the lateral correlation of the gusts over the model in the 

wind tunnel are representative of the full scale situation. More full scale wind 

measurements are needed at these small heights. 

6.2.4 Extreme values and time scaling. 

One of the aims of this thesis is to explore the concept of time scaling for the moving 

model tests particularly with reference to an inadequately modelled ABL. Indeed, even 
for a static test, as discussed in section 3.4, the interpretation of the ABL simulation is 

needed in order to decide on the time scaling required to produce representative full 

scale 3 second extreme values. 

In order to explore this topic further a range of 1 hourly 3 second extreme wind speed 

values have been calculated from the same set of measured wind data by taking 
different model time periods equal to the 3s full scale values. The method was 
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described in 5.1.5 and an example given in 5.2.1.3. Figure 6.24 shows the calculated 

extreme values against the model time period taken equal to the 3 second full scale 

value for data measured at both the static and moving model test positions. 

6.3 Summary of the final atmospheric boundary layer simulation. 

1. The ABL simulations measured at the moving model and the static model 

positions are comparable. 

2. For the moving model tests the measured profiles and analysed spectra are 

reasonably uniform over the central 1.5m working section width. 

3. The mean measured vertical velocity and turbulence intensity profiles compare 

with accepted target correlations for a full scale roughness length of 0.03 m. 

4. The analysed velocity spectra from the measured wind data remain consistent 

compared to the target von Karman correlation for all the vertical, and in the case of 

the moving model tests, also for the spanwise measurements. In all cases the implied 

streamwise turbulence length scale, from the analysed spectra, is approximately half 

that predicted by the von Karman correlation. However the analysed spectra are similar 

to the recent results in Hoxey (1992) from measurements made at similar low heights. 

5. The atmospheric boundary layer generated for the tests reported in this thesis is 

a much better full scale representation than that achieved for the original version of this 

rig featuring the Advanced Passenger Train, Johnson (1981). The latter tests showed 

the streamwise turbulence length scale was a factor of 8 too small compared to the von 
Karman spectrum. 

6. The lateral turbulence length scales of the ABL simulated were around three 

times the height of the 1/50th scale vehicles tested and therefore adequate model the 

possible full scale unsteady forces due to vortex shedding in the wake of a vehicle. 

7. The lateral turbulence length scales of the ABL simulated were around the same 

order as the length of the vehicle. Therefore, this should enable the values of 

subsequently calculated normalised extreme value parameters and the unsteady 

parameters to be representative of much longer turbulence length scales. 
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TEST PROBE HEIGHT ABL SIMULATION 

FOR SPECTRA W CONFIGURATION 

Model scale Full scale 

SPEC1 0.24 12 Empty Wind Tunnel 

SPEC2 0.24 12 2 rows of 8" cubes 

SPEC3 0.24 12 2 rows of 8" cubes, 

2 rows of 4" cubes 

SPEC 4 0.24 12 2 rows of 8" cubes, 

2 rows of 4" cubes, 

2 rows of 2" cubes 

SPEC5 0.24 12 8ft gap, 

2 rows of 4"cubes 

SPEC6 0.80 40 Empty wind tunnel 

SPEC? 0.24 12 Grid 

SPEC8 0.24 12 Grid, 

2 rows of 8" cubes, 

2 rows of 4" cubes 

SPEC9 0.06 3 Grid 

SPEC1 0 0.06 3 8" cube placed in solid 

wall across working 

section inlet 

SPEC11 0.06 3 As SPEC 10 but 50% 

density wall. (Every 

other block removed 

SPEC12 0.06 3 0.07m wall at working 

section inlet, 6m gap, 2 

rows of 2" blocks, 1 row 

of ravel boards 

Table 6.1 Configurations of turbulence generating devices tested in order to 

produce the target atmospheric boundary layer. 
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Figure 6.1 Target vertical streamwise wind velocity profile. 
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Figure 6.2 Target vertical streamwise wind turbulence intensity profile. 
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Plan view. 

Figure 6.6 Pattern for cubes forming the 12.5% plan density roughness elements. 
Used for the 2,4, and 8 inch side length cubes. 
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Figure 6.10 Spanwise streamwise turbulence intensity profiles at the moving 
model test position. 
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Figure 6.11 Spanwise averaged vertical mean wind velocity profile compared 
with the target value at the moving model test position. 

 u=8.5 m/s 

A u=5m/s 

" target (zo = 0.03m fullscale equivalent ) 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
0 5 10 15 

a (%) 
U 

2D 25 30 

Figure 6.12 Spanwise averaged vertical streamwise turbulence intensity 
profile compared with the target value at the moving model test 
position. 
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Figure 6.16 Streamwise wind velocity spectrum compared with the target 
von Karman spectrum (smooth line) for aü (3m) = 8.5 m/s 
(full scale equivalent) at the centre of the moving model test 
position. Spectrum measurement height 30mm equivalent to 
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Figure 6.17b Streamwise wind velocity spectrum compared with the target 
von Karman spectrum (smooth line) for aü (3m) = 8.5 m/s (full 
scale equivalent) at the end of the moving model test position, 
0.75m after centre of working section. Spectrum measurement 
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Figure 6.18b Streamwise wind velocity spectrum compared with the target 
von Karman spectrum (smooth line) for aW (3m) = 8.5 m/s (full 
scale equivalent) at the end of the moving model test position. 
Anemometer height 200mm equivalent to 1 Om fullscale. 
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Fig 6.19b Streamwise wind velocity spectrum compared with the target 
von Karman spectrum (smooth line) for aü (3m) = 8.5 m/s (full 
scale equivalent height) at the end of the moving model test 
position. Anemometer height 30mm equivalent to 1.5m fullscale. 
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Figure 6.20 Average streamwise wind velocity spectrum from 5 spanwise 
positions along the moving model test position. 
Measurement height 60mm equivalent to 3m full scale. 
W (3m) = 8.5 m/s (full scale equivalent). 
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7. The Static Tests. 

Static tests were conducted with the 1/50th scale lorry and four configurations, see 

section 7.3, of the 1/45th railway container vehicles. These tests were undertaken 
during October and November 1990. 

The live model was situated in the centre of the turntable as shown in figure 7.1. All the 

models were mounted so that the wheels of the vehicle were 1mm above the ground 
surface. The reference wind speed was measured at an equivalent full scale height of 
3m above the ground; i. e. 60mm for the 1/50th scale lorry tests and 66mm for the 
1/45th scale railway container vehicles. All tests were conducted at maximum wind 
tunnel velocity giving a reference wind velocity of 8.5m/s for the lorry tests and 8.7m/s 
for the container vehicles. 

The yaw angle range tested was from 0 to 90 degrees, the turntable positioned at 15 
degree intervals. These were chosen as they were close to the intended yaw angles for 

the moving model tests, which needed to be limited in number due to the large number 

of runs required to acquire a representative data sample for each yaw angle. 

7.1 Reynolds number tests. 

These were conducted by measurement and analysis of mean side and lift forces from 

tests of the lorry at a range of wind tunnel speeds at yaw angles of 60 and 90 degrees. 

The results, in terms of force coefficients, are shown in figures 7.2 a and b. 

It is seen that, in general, both the side and lift force coefficients remain reasonably 

constant above Reynolds number of 3.0 x 104, based on the lorry's height. However 

the side and lift coefficient values at 3.7 x 104 show a marked deviation, which is 

difficult to explain. Suffice to say that this reading was taken in the middle of the test 

series so ruling out a possible calibration drift. Further, the side force coefficient at this 
Reynolds number has decreased whilst the lift force coefficient has increased therefore 
indicating that it may be a real effect. For example it could not be due to an error in the 

measurement or analysis of the corresponding normalising wind velocity as this would 
have affected both the side and lift results in the same manner. 

154 



7.2 The lorry results. 

The Reynolds number of these tests, based on the lorry's height and the reference wind 
speed (at equivalent full scale height of 3m), was 4.3 x 104. 

7.2.1 Mean forces and moments. 

Figures 7.3 to 7.7 show the analysed mean force and moment coefficients, the latter 

translated to the vehicles centre of mass compared with previous tests (Coleman 

(1990)) of the same model. In Coleman (1990) the model was mounted on a bridge 

deck in uniform flow with two turbulence simulations tested; low turbulence and grid 
turbulence of streamwise length scale, xLu = 0.15m and turbulence intensity of 10%. 

Comparison of the non dimensional force and moment coefficients between Coleman's 

experiments and these present tests was not straight forward due to the latter tests 
being conducted using an ABL. The magnitude of the calculated force coefficients from 

tests with an ABL present depends upon the reference height chosen for the wind 

velocity measurement. 

It is seen that the side force coefficient is not very sensitive to the turbulence simulation 

providing a suitable reference height is taken for the sheared ABL simulation. The plot 

of the lift force coefficient demonstrates the sensitivity of this parameter to the 

turbulence simulation, although the recent results compare favourably with the shorter 

turbulence length scale results of Coleman (1990). 

Before considering the mean moment coefficients alone it is instructive to consider also 
the non dimensional points of actions. Figures 7.8 to 7.10 show the non dimensional 

point of actions for the side and lift forces again compared with the results of Coleman 

(1990). Firstly it is seen that the point of action of both the side and lift forces are 
greatly affected by the turbulence simulation. Considering the yawing moment 
coefficient shown in figure 7.6 and the horizontal point of action of figure 7.8, it is seen 
that the yawing moment coefficient is greater for the recent tests compared to Coleman 
(1990), that is the centre of pressure moves further away from the vehicle's centre of 
mass towards the rear of the vehicle. This may not be surprising as in the most recent 
tests, with the simulated ABL, the rear part of the lorry, being higher, is exposed to a 
higher velocity flow than the front compared to the uniform flow tests of Coleman 
(1990). However the rolling moment coefficient of figure 7.7, for the recent tests is 

considerably less than that for the uniform flow tests, which is only in part due to the 
decrease in side force coefficient. The pitching moment coefficient of figure 7.5, shows 
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a similar character to the shorter turbulence lengthscale results of Coleman (1990) but 

again show a translation of the point of action towards the rear of the vehicle. 

7.2.2 Extreme force values. 

Tables 7.1 a to c show the calculated normalised extreme force parameters and the 

unsteady parameters for a number of reasonable model time periods taken to be equal 
to the full scale 3 second gust period for yaw angles of 15,60 and 90 degrees. These 

were calculated using the Lieblein's extreme value analysis method described in section 
5.1.5. A worked example is given in 5.2.2.2.2 

It is seen that the normalised force coefficients were reasonably independent of the 

model time scale chosen to represent the 3s gust, for the model gust values chosen. 
This demonstrates the correlation between the extreme force and the extreme 

streamwise wind velocity for the gust times relevant to the overturning of large ground 

vehicles. 

Due to the invariance of the normalised extreme force parameters with model gust time 

scale, and the length of time needed to undertake the analysis of each case, the analysis 
of the remaining yaw angle tests were undertaken for one model time scale. Table 7.2 

shows the normalised extreme force values and the unsteady parameters for the side 
and lift cases from analysis using a model, as measured, gust time of 0.2 seconds, this 
being taken to be equivalent to a full scale 3 second gust. It is seen that the quasi steady 

state (coefficients around unity) exists for most of the yaw angle range, that is both the 

side and lift normalised extreme force parameters taking the value of unity. Only at low 

yaw angles, demonstrated by the normalised extreme force parameters taking larger 

values than unity for 15 and 30 degrees, was there evidence of body induced 

unsteadiness of the side and lift forces. 

Figures 7.11 to 7.14 compare these results with those using uniform flow and grid 
turbulence as described in section 2.2.1.1. (Coleman 1990). It should be noticed that 

the time scaling used in Coleman (1990) was based upon the ratio of the wind speeds 

and model scale only neglecting the mismatch in turbulence lengthscale which was 

considerable for these tests of Coleman (1990). The grid turbulence produced a 

streamwise lengthscale, XLu = 0.15m compared with lm required for the 1/50th scale 

simulation. This means that the streamwise lengthscale was a factor of 8 too small so 
that the model gust time period ought to be reduced by this factor. This is noted in 

Coleman (1990) but was not applied in the analysis of the data. In any case with such a 
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disparity in lengthscales it is unlikely that the eddy lengthscale correction method would 
be valid, due to the corresponding magnitude of the modelled lateral semi lengthscales 

being much smaller than both the vehicle's height and length thus causing a poor 

correlation of the streamwise gusts across the vehicle for such small time scales. It is 

interesting therefore that, for this vehicle, the magnitude of the normalised extreme 
force parameters are similar for the recent tests compared with the grid turbulence of 
Coleman (1990). 

7.3 The DB railway container vehicle results. 

These vehicles were tested due to the interest in this project by the German State 

Railways (DB) and the vulnerability of such vehicles currently in operation. As part of 

this collaboration DB provided the results of detailed model 1/3rd scale tests of these 

vehicles undertaken in the DNW wind tunnel, Peters (1989). These tests were 

undertaken in low turbulence flow without the presence of a vertical wind velocity 

profile. The results of the tests at Nottingham University are compared initially with 
Peters (1989) in the following sections as was done at the time of the analysis of the 

results described in this thesis. Following these, further comparisons are then 

conducted with the results from the tests of Peters (1992) and Kronke and Sockel 

(1992), discussed in section 2.2.1.2. These latter tests were done around the same time 

as the Nottingham University tests but the results only became available after the 
Nottingham University project had been completed. 

For these railway vehicle tests the container, fastened to the tunnel floor via the internal 

balance mounted in the geometric centre of the container, was not touching the wagon 
beneath it. The wagon (figure 1.2) is of an open construction such that changes in 

pressure beneath the wagon will also affect the container to some extent. The container 

was mounted so that its base was 1mm clear of the top of the wagon. 

Various configurations, involving dummy vehicles were tested shown in figure 7.15. 

and labelled A to D. These configurations were: 

Configuration A: Isolated container on flat wagon with wagon side fence. 

Identical geometry to the container and wagon tested in 

Peters (1989). 

Configuration B: Isolated container on flat wagon with no side fence. 
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Configuration C: Container on flat wagon with no side fences with containers on 
wagons in front and behind. 

Configuration D: Container on flat wagon with no side fences, with container on 
wagon in front and empty wagon behind. 

Configurations C and D were intended to simulate a live vehicle situated well aft of the 
front of the train. Whilst only one vehicle aft of the live vehicle is probably adequate for 

such a simulation the effect of a vehicle travelling in front is more complicated. The 

sharp edged container in front of the live container would probably provide a large, 

unrealistic separation of the flow down the sides and over the roof of the live container. 
On a full scale train, the reduced pressure underneath the train tends to bleed the 
boundary layer in the gaps between the wagons. This results in wagons rear of the 
locomotive experiencing a similar flow field. In order to simulate the mid train position, 
in a simple manner, for configurations C and D, the front corners on the dummy 

container mounted fore of the live container were rounded with 10mm radii. 

In operation on the full scale railway these containers are not fastened to the wagons 
but are located by vertical pins at the corners. These tests were designed to evaluate the 
likely overturning risk of these containers from the wagon. Considering the mounting 
arrangement already discussed, the forces and moments derived from these tests refer 
to the container only. Further, the rolling moment of the container was redefined to be 

about the bottom leeward corner of the container. As defined in Chapter 5, this was 
calculated using both the moments formed from the action of the side and lift forces 

acting on the centre of the container and the rolling moment measured about the 

container's centre. The rolling moment calculated about the lee bottom corner of the 

container were therefore formed from nearly equal contributions of the side and lift 
forces, (noting that their perpendicular moment arms are very similar) and additionally 
the rolling moment measured about the balance centre. 

Whilst the mean rolling moment about the lee bottom corner of the container can be 

calculated from the overall mean values of the side and lift forces and rolling moment, 
more care is needed in the formation of the extreme rolling moment coefficients. The 

extreme rolling moment was calculated from extreme value analysis of values of the 

rolling moment, averaged over the gust periods, found from simultaneously measured 

side and lift force and the rolling moment values. 
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Section 5.2.2. defines the force and moment coefficients used for these tests. Briefly 

though, as with Peters (1989), these use the container end area as the reference area 

and the container width (almost identical to the height) for the reference vehicle height. 

As the containers are sharp edged and similar to the 1/50th scale lorry and of a very 

similar model size it was considered that the Reynolds number tests undertaken for the 

lorry discussed in section 7.1 were also adequate for these vehicles. The Reynolds' 

number of these tests, based on the container length, and the wind speed at the 

reference height (equivalent to 3m full scale) was 1.3 x 105. Note this is similar to the 

Reynolds number definition used in the other tests of this vehicle described in section 

2.2.1.2. Whilst there is no difference between the definitions used for the Nottingham 

University ABL tests and for the steady flow tests of Peters (1989) and Peters (1992), 

a slight discrepancy is present for the ABL tests of Kronke and Sockle (1992). In these 

tests the wind speed height used was that of the roof of the container, equivalent to 

3.9m full scale, a little higher than used for the Nottingham University tests. Referring 

to the wind velocity profiles shown in Chapter 6 this discrepancy is reasonably small in 

this context, around 5%. 

Pitching and yawing moments as well as the non dimensional points of action were not 

analysed for these tests due to time considerations. 

7.3.1 Mean forces and moments. 

Figures 7.16 and 7.17 compare the mean side and lift force results of the configuration 

A tests with the results of 1/3rd scale DNW low turbulence tests of the same 

configuration from Peters (1989). It can be seen that the results for the side force 

coefficient are in good agreement whilst the lift force coefficient for the smaller scale 

tests lie below the 1/3rd scale DNW tests. The agreement in the side force results 

should be viewed as being coincidental due to the large difference in the test conditions 

particularly that of the vertical wind profile present in these Nottingham University 

tests. The absolute magnitude of these coefficients therefore depend on the height 

chosen for the reference wind velocity used in the formation of these coefficients. The 

other important difference between the tests is the turbulence simulation. Coleman 

(1990) has already shown the large and complicated effect that the turbulence 

simulation has on the lift force of the, similar in geometry, lorry (figure 7.4. ). However 

undertaking side force measurements of vehicles using this ABL simulation, using a 3m 

equivalent reference height for the wind measurements, produces side force coefficients 

that are equivalent to those from tests in a uniform wind velocity. Further it could 
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therefore be argued that wind measurements with this ABL simulation at an equivalent 
3m height produces values equivalent to the value of a uniform wind velocity used in a 
low turbulence test. 

Figures 7.18 to 7.20 compare the mean side and lift force coefficients of all the four 

configurations tested. It is seen, from an initial comparison, that the form of all the 

results are similar. 

Comparing first the results from comparisons of the isolated container with the wagon 

with side fences configuration A, and without side fences configuration B it is seen that 

the side force coefficient, for those with the side fence on the wagon, are lower than 

those without the side fence. This is as expected as the area of the container exposed to 

the oncoming wind is reduced by the side fences for configuration A. Comparison of 

the lift forces between these two vehicles shows that the lift force is also reduced for 

configuration A. Speculatively this may be due to the effect of the fence, blocking the 
flow between the wagon and the underneath of the container. This flow when present, 
for configuration B, perhaps increases the pressure on the underside of the container 

and therefore a higher net increase in lift force, compared to configuration A. The flow 

over the roof of the container would be expected to be unaltered by these minor 

changes in the flow. Overall this results in the lee bottom corner rolling moment for the 

container on the wagon with side fences to be up to be 60% to 75%, depending on yaw 

angle, of the value when loaded on a wagon without the fences. 

Comparisons of the side and lift forces for various configurations of containers and 

wagons without wind fences, configurations B, C and D are more complicated. It is 

seen that the largest values of the side force coefficient occur at all yaw angles for the 
isolated container, configuration B. However at the larger yaw angles this difference is 

less and the side force coefficient is very similar for all the container configurations B, 
C and D. Comparisons of the lift force coefficients show that the configurations with 
the dummy container and wagon leading the live container C and D, have values that 

are similar and some 20% to 30% larger than the isolated container configuration B. 
Comparing the rolling moment coefficients it is seen that these resultant values for 

configurations B, C and D are similar with the largest value, at each yaw angle, 
occurring for configuration C, with the dummy containers loaded on wagons both in 
front and behind. 

Next to be described are the comparison of the results of these tests with those of 
Peters (1992) and Kronke and Sockle (1992), described in detail in section 2.2.1.2. In 
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these papers results are given of mean side and lift force coefficients from various tests 

of the isolated container and wagon fitted with side fences for a range of model scales 
and Reynolds numbers. In Peters (1992) these are from steady flow tests and the 
Reynolds number ranges from 1.7 x 105 to 1.0 x 106. From Kronke and Sockle (1992) 
in various turbulence flow simulations the Reynolds number was 2.5 x 104. Referring 

to figures 2.10 and 7.16 is seen that the side force coefficients all agree with each other 
as well as with the results from the Nottingham University tests, even though the 

container tested in Kronke and Sockle (1992) was of only half the full scale equivalent 
length (20 foot). Remembering that the lift force coefficient for the lorry model was 
very sensitive to the turbulence simulation, the results from Peters(1992) and Kronke 

and Sockel (1992) showed that the lift force coefficient was very similar between the 
turbulence simulations and the steady flow tests at a similar Reynolds number even 
though the container of the latter tests was only half the full scale equivalent length. 
Further these tests demonstrated, figure 2.11, a clear Reynolds number dependency 

with the lift force coefficient increasing with Reynolds number, independent of the 
turbulence simulation. Speculatively this may be a Reynolds number effect due to 

varying underbody flow conditions for which the local Reynolds number is sub critical. 
Comparing figure 7.17 with figure 2.11 it is seen that the Nottingham University tests 

of this same vehicle, configuration A, agree with the set of lift coefficient data for tests 

at a similar Reynolds number. 

7.3.2 Extreme force values. 

These results were analysed in the same manner as the static lorry tests discussed in 
7.2.2. but for only one model time period of 0.02s taken to be equivalent to the 

equivalent full scale 3s gust. Similarly these calculations used a full scale extreme 
hourly mean value of 30m/s at the reference height, equivalent to 3m full scale. 

As extreme force values were not available for the 1/3rd scale DNW tests 
(Peters(1989)) due to these tests being undertaken in low turbulence, extreme value 
analysis was not conducted for this configuration, with side fences fitted to the wagon 
(configuration A) of the Nottingham University tests. This configuration was indicated 

by DB to be not of primary interest but useful only for mean value comparisons with 
the larger scale DNW tests. Due to the large time needed to perform extreme value 

analysis this was only conducted at all the yaw angles tested for configuration B, the 
isolated container without side fences fitted to the wagon. For configurations C and D 

extreme value analysis was conducted for the yaw angles of 15,60 and 90 degrees 

only. 
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Figures 7.21 and 7.22 shows the normalised extreme side and lift force parameters for 

configurations B, C and D. Firstly it is seen that the results are similar for both the side 

and lift forces and also for all the configurations with configuration C having 

normalised extreme force parameters slightly higher than the other configurations. 

Therefore configuration C with the dummy containers for and aft is the most likely to 

cause a container to roll, slip or lift from its wagon. Generally, for all configurations, 

comparing the values of the normalised extreme force coefficients with unity, the value 

which signifies a quasi steady force on the container, it is seen that some evidence of 

unsteadiness is present at the lowest yaw angles. This is particularly in evidence for the 

isolated container wagon at 15 degrees, the only configuration for which these values 

were calculated. However configuration C also shows evidence of unsteadiness at the 

yaw angle of 30 degrees in the side and lift forces. The general conclusions are very 

similar to those of the lorry tests described in section 7.2.2. 

From Kronke and Sockle (1992), for the 20 foot long equivalent full scale isolated 

container, the only extreme values published were the extreme rolling moment 

coefficients calculated about the lee bottom corner of the container. Figure 2.13 shows 

these results, for a range of ABL simulations, normalised by the mean rolling moment 

coefficients also published. Note that the ABL simulation of Kronke and Sockle (1992) 

that most closely matches that ABL simulated at Nottingham University is that 

characterised by a turbulence intensity of 22% and a spectral decay power exponent of 

0.23. Figure 7.23 shows the extreme lee bottom corner rolling moments calculated 

from the Nottingham University measurements, for configurations B, C and D, 

conducted in an identical manner to those of Kronke and Sockle (1992) and described 

in section 5.2.2. The first conclusion is that the results are very similar for all the 

configurations tested and therefore do not follow the results of the mean rolling 

moment coefficients which showed that configuration C was most at risk. Kronke and 

Sockle (1992) limit their tests to the isolated container case (although only half the 

length) based on the fact that this was deemed to be most at risk from the results of 

steady flow tests of Peters (1992) and Peters (1989). Extreme lee bottom corner rolling 

moment comparisons of the isolated container test of Nottingham University, 

configuration B, with the results of Kronke and Socke (1992), with the similar ABL, 

show very good agreement. It is seen that the quasi - steady case is seen to exist at 

most of the higher yaw angles with a departure at the lower yaw angles, particularly 

below 20 degrees, where body induced unsteadiness is clearly seen. 
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Table 7.1 Static lorry hourly extreme values for various model time periods taken 
to be equivalent to a full scale 3s gust. 

Full scale extreme hourly mean value = 30m/s (3m). 

Mean wind tunnel reference speed = 8.5m/s at 60mm height = 3m full scale height. 

No of data points for 10 blocks =45000. Sample frequency = 125Hz. 

a) Yaw angle=l5 degrees 

Model time equivalent to full scale 3s gust (s). 
. 
05 

.1 .2 .4 .6 Unsteady side force parameter. . 
26 

. 
92 

. 
33 5.00 5.07 

Normalised extreme side force parameter. 1.38 1.31 1.18 1.31 1.26 
Unsteady lift force parameter. . 

20 
. 
11 

. 
00 

. 
34 

. 
24 

ormalised extreme lift force parameter. 1.37 1.15 1.12 1.13 1.19 

b) Yaw angle=60 degrees 
Model time equivalent to full scale 3s gust (s). 

. 
05 

.1 .2 .4 .6 Unsteady side force parameter. 1.84 1.84 1.42 1.84 1.82 
ormalised extreme side force parameter. . 

88 
. 
89 

. 
84 

. 
97 

. 
97 

nstead lift force parameter. . 
94 

. 
57 

. 
06 

. 
66 1.88 

Normalised extreme lift force parameter. 1.11 1.04 
. 
96 1.06 

. 
97 

c) Yaw angle=90 degrees 

Model time equivalent to full scale 3s gust s. . 
05 

.1 .2 .4 .6 Unsteady side force parameter. . 
80 

. 
80 

. 
90 

. 
61 3.35 

ormalised extreme side force parameter. 1.08 1.08 1.11 1.16 1.11 

. 
Unsteady lift force parameter. . 

81 
. 
50 

. 
68 

. 
87 

. 
80 

Normalised extreme lift force parameter. 1.50 1.22 1.07 1.08 1.15 

Table 7.2 Summary of static lorry hourly extreme values for a model time period 
of 0.2s taken to be equivalent to the full scale 3s gust. 

Full scale extreme hourly mean value = 30m/s (3m). 

Mean wind tunnel reference speed = 8.5m/s at 60mm height = 3m full scale height. 

No of data points for 10 blocks =45000. Sample frequency = 125Hz. 

Yaw angle 15 30 45 60 75 90 
Unsteady side force parameter. 3.33 2.28 1.85 1.42 1.64 2.90 
Normalised extreme side force parameter. 1.18 1.00 0.92 0.84 0.88 1.11 
Unsteady lift force parameter. 3.00 2.97 2.48 2.06 2.43 2.68 
Normalised extreme lift force arameter. 1.12 1.12 1.03 0.96 1.02 1.07 
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Figure 7.2a Mean side force coefficient. 
Reynolds number tests for static lorry. 
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Figure 7.2b Mean lift coefficient. 
Reynolds number tests for static lorry. 
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Figure 7.3 Mean side force coefficient. 
Static lorry tests. 
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Figure 7.4 Mean lift force coefficient. 
Static lorry tests. 

  Flat ground ABL simulation. 
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A Coleman (1990), Turbulence: "L. = 0.15m, Q= 10 % 
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Figure 7.5 Mean Pitching moment coefficient. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
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Figure 7.6. Mean yawing moment coefficient. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
A Coleman (1990), Turbulence: 'L. = 0.15m, ß= 10 % 
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Figure 7.7 Mean rolling moment coefficient. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
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Figure 7.8 Horizontal non-dimensional point of action of side forces. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
A Coleman (1990), Turbulence: XL. = 0.15m, Q= 10 % 
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Figure 7.9 Vertical non-dimensional point of action of side force. 
Static lorry tests. 

  Flat ground ABL simulation. 
o Coleman (1990), low turbulence. 
A Coleman (1990), Turbulence: "L� = 0.15m, a= 10 % 
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Figure 7.10 Horizontal non-dimensional point of action of lift force. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
A Coleman (1990), Turbulence: XL. = 0.15m, a= 10 % 
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Figure 7.11 Normalised extreme side force parameter. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
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Figure 7.12 Unsteady side force parameter. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
A Coleman (1990), Turbulence: XL,, = 0.15m, a= 10 % 
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Figure 7.13 Normalised extreme lift force parameter. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
A Coleman (1990), Turbulence: XL. = 0.15m, a= 10 % 
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Figure 7.14 Unsteady lift force parameter. 
Static lorry tests. 

  Flat ground ABL simulation. 
Q Coleman (1990), low turbulence. 
A Coleman (1990), Turbulence: "L� = 0.15m, a= 10 % 
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Figure 7.16 Mean side force coefficients for DB container. 
Configuration A. 
Static level ground simulation. 
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Figure 7.17 Mean lift force coefficients for DB container. 
Configuration A. 
Static level ground simulation. 

O Nottingham University, ABL simulation. 
" Peters (1992), steady flow, 1/3 scale DNW. 
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Figure 7.18 Mean side force coefficients for DB containers. 
Configurations A to D. 
Static level ground simulation with ABL. 
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Figure 7.19 Mean lift force coefficients for DB containers. 
Configurations A to D. 
Static level ground simulation with ABL. 

f config. A, 0 config. B, " config. C, V config. D. 
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Figure 7.20 Mean lee bottom corner rolling moment coefficients for DB 

containers. 
Configurations A to D. 
Static level ground simulation with ABL 
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Figure 7.21 Normalised extreme side force parameter for DB containers. 
Configurations B to D. 
Static level ground simulation with ABL. 

0 config. B, " config. C, 0 config. D. 

2.5 

2.0 

A 
1.5 

CL/CL 
1.0 

0.5 

0.0 

-- qý 1-1 

0 15 75 90 30 45 60 

YAW (DEGREES) 

Figure 7.22 Normalised extreme lift force parameter for DB containers. 
Configurations B to D. 

Static level ground simulation with ABL. 
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Figure 7.23 Normalised extreme lee bottom corner rolling moment parameter. 
Configurations B to D. 
Static level ground simulation with ABL. 
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8. The First Series of Moving Model Tests. 

These tests were undertaken in January and February 1991. The 1/50th scale lorry and 

various configurations of the 1/45th scale DB railway container vehicles were tested 

using the level ground simulation. 

Details of the moving model rig used for these tests are described in section 4.2.2 

including photographs of the live vehicles traversing the working section. Tables 8.1 to 

8.2 detail the moving model rig and wind speeds used for these tests. For each yaw 

angle 50 runs of the moving model rig was conducted. The zero force readings were 

conducted every 10 runs with the tunnel operating with the fan blades feathered, at 

zero wind speed and the live vehicle at the firing end of the rig i. e. not in the working 

section. 

For these moving model tests only data from the central 1.5m of the 2.7m working 

section width were extracted to ensure a reasonable consistency of the wind 

characteristics. Also all wind velocities used for calculating the non dimensionalised 

force and moment coefficients were averages of measurements made in 5 positions 

across the central 1.5m test section. The wind velocity measurements and the 

calculation of the average values used are described in Chapter 6. 

Analysis was conducted as described in section 5.2.2.3 for the mean and extreme force 

and moment coefficients, their non dimensional points of action and the extreme values. 

For these initial tests the model time period taken to be equivalent to a3s full scale gust 

was simply the transit time of the vehicle across the central 1.5m of the working 

section. The corresponding extreme wind speed was that calculated for the same 

sample time as described in Chapter 6 and the results shown in figure 6.20. The model 

time period obtained in this way varied between 0.1 and 0.4s which is of the correct 

order for a full scale gust of 3s as described using the scaling method described in 

section 3.3. Noting that the methods for extreme value analysis are only available for a 

continuous time series of measured data, the actual extreme force value was taken to 

be simply the largest of the ensemble of forces obtained from the 50 runs of the moving 

model rig. This was justified, without further analysis for this first test series, on the 

grounds that the dispersion of the extreme values formed from the static tests were 

very low. Therefore even a rigorous analysis should not return extreme values very 

different to the simple method. This was considered further for the data measured in 

the second moving model test series. 
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As it turned out, many problems concerning the quality of the data, due to mechanical 

noise, were encounted during the processing of the extreme values from these initial 

tests and therefore the analysis of the results was limited in favour of spending time on 

modifying the rig for the second series of tests. Further, no specific tests were 

undertaken to accurately assess the mechanical noise as it seem to dominate the signals 

recorded during the aerodynamic tests. After the initial analysis of the results presented 
in this chapter were completed, some further investigation of the moving model trolley 

was conducted: With a live model mounted and the trolley pushed along by hand, and 

the wind tunnel not operating, it was apparent that there was a large low frequency 

oscillation in the system that one could actually detect the in the live vehicle body 

simply by touching it. This was traced to the mounting arrangement of the data 

acquisition equipment as this resonated at a similar frequency. Also by tapping the data 

acquisition platform one could feel the oscillation transmitted to the live vehicle. This 

simple vibration check was repeated without the platform present and indeed the large 

amplitude low frequency component disappeared. 

This chapter describes the results of these tests discussing the effect of mechanical 

noise on the processed extreme values. Chapter 4 deals with the modifications 

undertaken afterwards prior to the second series of tests in which specific tests to 

determine the level of mechanical noise were undertaken. 

8.1 The lorry results. 

For this vehicle only the force data were analysed due to the problems with mechanical 

noise as it was decided to repeat the measurements with the improved rig, see Chapter 

9. 

8.1.1 Mean forces. 

Figures 8.1 and 8.2 show the analysed mean force coefficients compared with the static 

test results of Chapter 7. Included in these plots are the standard deviation of the force 

coefficients calculated for each run. The side force coefficients show excellent 

agreement at all yaw angles whilst the lift force coefficient for the moving model tests 

shows a much higher value including the value for the yaw angle of 90 degrees, i. e. the 

moving model stationary. This was investigated further by repeating the measurement 

during the second series of tests, see Chapter 9. 
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The standard deviation of both the side and lift force coefficients is seen to be very 
large. This is discussed further in the next section. 

8.1.2 Extreme force values. 

Figures 8.3 and 8.4 show the normalised extreme side and lift force parameters. It is 

seen that the values for the moving model tests are much larger than the static test 

results for all yaw angles as indicated by the standard deviations of the ensemble of 

extremes indicated in figures 8.2 and 8.3. This is especially apparent for the lift force 

coefficients at the lowest yaw angles. This is in agreement with the effect of mechanical 

noise as this will certainly increase as the moving model speed increases for the low 

yaw angle tests. The suspicion at this time was that the mechanical noise of the system 

was dominating the measured signals as discussed in the opening section of this 

chapter. 

8.2 The DB railway container vehicle results. 

Moving model tests were conducted of only configurations B, C and D that is the same 

wagon type without the side walls fitted as shown in Chapter 7. As for the static tests 

the means and extreme values were calculated for the side and lift forces and the rolling 

moment of the container about its leeward corner. These coefficients are defined in 

Chapter 5. 

8.2.1 Mean forces and moments. 

Figures 8.5 to 8.13 show the mean side and lift force and the lee bottom corner rolling 

moment coefficients for the configurations tested each configuration compared with the 

static test results. It can be seen that in general the side force coefficient values are 

similar at all yaw angles. The lift force coefficients are however generally larger for the 

moving model tests, particularly at the two lowest yaw angles. As with the lorry tests 

the standard deviations are large particularly for the lift force coefficients at the lowest 

yaw angles where the discrepancy seems to be the largest. This is discussed further in 

section 8.2.2. 

Figures 8.14 to 8.16 show the comparison between the moving model mean results for 

configurations B, C and D. These are very similar but with configuration C, as with the 

static tests, producing the largest values for the mean lee corner rolling coefficient. 
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8.2.2 Extreme force values. 

Figures 8.17 to 8.19 shows the normalised extreme force coefficients for all the 

configurations. As with the lorry tests, and as indicated by the large standard deviations 

of the ensemble of means formed for each run as shown in figures 8.5 to 8.13, these 

values are similar for each configuration tested and are extremely large particularly at 
the low yaw angles. Comparing these with the static test results shown in figure 7.23, it 

is only at the highest two yaw angles that the normalised extreme force coefficients are 

similar where the standard deviations are smaller. This indicates the increasing effect of 
the mechanical noise at the highest trolley speeds. 
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Table 8.1 Flat ground lorry moving model tests (1st test series). 

50 runs at each yaw angle. 

Moving 

model 
speed. (m/s) 

Reference 
Wind tunnel 

speed. (m/s) 

Yaw angle. 
(degrees) 

Model 

transit time. 
(s) 

Reynolds 

number. 

3.1 8.7 70 0.48 4.1 x 104 
6.8 8.7 52 0.22 4.9x 104 
8.4 7.2 41 0.18 4.9x104 
8.4 4.5 28 0.18 4.2x104 

Table 8.2 Flat ground DB container moving model tests (1st test series). 

50 runs at each yaw angle. 

Config - 
uration 

Moving 

model 
speed. (m/s) 

Reference 
Wind tunnel 
speed. (m/s) 

Yaw angle. 
(degrees) 

Model 

transit time. 
(s) 

Reynolds 

number. 

B, C &D 3.1 8.7 70 0.48 4.1x104 
B, C &D 6.8 8.7 52 0.22 4.9x 10 
C&D 8.4 7.7 43 0.18 5.0x 104 
B 8.4 7.2 41 0.18 4.9x 104 
B, C &D 8.4 4.5 28 0.18 4.2x 104 
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Figure 8.1 Mean side force coefficients for lorry. 
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Figure 8.2 Mean lift force coefficients for lorry. 
Level ground ABL simulation. 
o moving model tests, A static tests 
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Figure 8.8 Mean side force coefficient for DB container - config. C. 
Level ground ABL simulation. 
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Vertical bars indicate the standard deviation of the coefficients. 
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Figure 8.11 Mean side force coefficient for DB container - config. D. 
Level ground ABL simulation. 
" static tests, o moving model rig tests (1st series) 
Vertical bars indicate the standard deviation of the coefficients. 
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Figure 8.13 Mean lee bottom corner rolling moment coefficient for DB 
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Figure 8.14 Mean side force coefficient for first series of moving model DB 
containers. 
Level ground ABL simulation. 
0 config. B, " config. C, V config. D. 
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Figure 8.16 Mean lee bottom corner rolling moment coefficient for first 
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Level ground ABL simulation. 
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9. The Second Series of Moving Model Tests. 

These tests, using the modified moving model rig described in section 4.2.3, took place 

as a continuous test series which started in November 1991 and was completed at the 

end of January 1992. Four geometries, with the 1/50th scale lorry, were tested, all with 
the common upstream ABL as described in section 6.2, as follows: 

1. Flat ground as for the first test series and for direct comparison with the static 
test results. 

2. Escarpment, equivalent to a full scale height of 5m. 

3. Escarpment with a 50% porosity slatted fence upstream of moving model. 

The full results and details of the geometry and wind conditions at the test position for 

each of the above geometries are given in sections 9.2 to 9.5 respectively. Tables 9.1 

to 9.3 give details of the test conditions used for these geometries. 

Using the flat ground simulation some runs were conducted at repeat yaw angles using 
both a lower vehicle speed and a lower wind speed in order to validate the extreme 

value analysis method and check for Reynolds number effects by comparison of the 

mean values. (Table 9.1. ) 

For all the moving model tests only data from the central 1.5m of the 2.7m working 

section width were extracted to ensure a reasonable consistency of the wind 

characteristics. Also all wind velocities used for calculating the non dimensionalised 

force and moment coefficients were averages of measurements made in 5 positions 

across the central 1.5m test section. (Chapter 6). 

The effect of the mechanical noise, generated during the moving model tests, is 

discussed in section 9.1. and the likely errors due to this on the calculated overall mean 
forces and moments, and the extreme force values, are quantified. 

Analysis was conducted as described in section 5.3.3 for the mean force and moment 

coefficients, their non dimensional points of action, extreme values and unsteady 

parameters for a model time scale of around 0. Is, this time being taken to be 

equivalent to a 3s full scale gust. Note that this is not a precise value as it was decided 

to split the data from each run into an integer number of segments rather than waste 
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data. The extreme forces and unsteady parameters were calculated using the resultant 

extreme velocity for the corresponding model time period. For some of the level 

ground simulation tests where the duration of the run across the test section was an 

integer value longer than the nominal 0.1 Is, typically for the larger yaw angles, the 

extreme values and unsteady parameters were additionally calculated for these longer 

time scales. This was done in order to assess the sensitivity of these parameters with 

model time scale as discussed in section 3.4. Tables 9.1 to 9.4 indicate the number of 

segments the data of individual runs were divided into prior to the analysis and the 

corresponding model transit time across the central 1.5m of the working section. Note 

that the model gust time of 0.1 Is was not adhered to for the escarpment tests, see 

section 9.4. 

A full extreme value analysis procedure such as Liebliens', as used for the static tests 

and described in section 5.1.5, has not been developed for dealing with the discrete 

average values such as obtained from the moving model rig. Experience of calculating 

extreme values from the static test data described in Chapters 4 and 7 showed that in 

the engineering context of this research this was no detriment upon the accuracy of the 

hourly extreme values that were calculated because the dispersion of the analysed 

ensembles was found to be so low as to make such analysis unnecessary compared to 

the uncertainty due to the mechanical noise of the moving model rig. Both the data 

analysis method used and the justification for this simplified extreme value analysis 

method are described fully in section 9.2.2. 

9.1 Moving Model Rig Data Quality and Data Analysis Discussion. 

Figure 9.1 shows a typical set of raw data recorded from the 5 component balance 

during a run of the moving model rig with the wind tunnel operating at maximum 

speed. It is clear that the recorded signals were contaminated by high frequency 

mechanical noise. Figure 9.2 shows the results of transforming this sampled data into 

the frequency domain. Probably some of the low frequency energy shown in the 

spectra were ailiaised higher frequencies due to the relatively low, 400Hz, sample 
frequency of the data logger. Ideally these signals should be passed through an 

electronic low pass analogue filter before being digitally recorded. Unfortunately the 

Polycorder data logger could not do this and reliance was placed in designing the rig 

such that the mechanical noise was only present at very high frequencies so that it 

could be averaged out over the much longer time scales of interest. Post data 

acquisition digital filtering by computational methods was also tried in an attempt to 

remove some of this mechanical noise and this is also described in what follows. 
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It is clear that the shorter the time period for which the data was averaged the greater 

the influence of the relatively high frequency mechanical noise. For an actual mean 
force or moment calculation the signal for the relevant channel was averaged over 50 

or 100 runs whilst the extreme values, depending upon the chosen time scale were 

calculated from signals averaged over a quarter, a half or over one run. These extreme 

values were taken to be equivalent to a full scale gust of 3s. It is seen that in order to 

achieve a high signal to noise ratio for the calculated extreme values then it is 

important to ensure that the mechanical noise is only apparent at high frequencies, i. e. 

not only ensuring that the mechanical noise is present at high frequencies but also that 

the ailiaised components of these frequencies are also allocated to the high frequencies 

in the digitisation process. 

Tests were conducted with a box fitted around, but not touching, the live model, in 

order to determine the influence of the mechanical noise on the analysed data. These 

are referred to as the 'off wind' tests. Ten runs of the moving model rig were 

conducted at the 4 different trolley speeds that were used for the aerodynamic moving 

model tests. 

For each set of 10 'off wind' runs, at each of the 4 trolley speeds, the ensemble of 

equivalent 3s gust moment and force coefficients were formed for the different time 

scales required. The force and moment coefficients, the extreme force coefficients and 

the normalised extreme force parameters were calculated from this data. These 

coefficients were for direct comparison with the aerodynamic tests and so were formed 

for each of the resultant wind (mean and extreme values) and trolley speeds used in the 

aerodynamic tests. Further the mean and standard deviation of these calculated 

coefficients were formed. The calculated mean values are given in table 9.4. Two 

tables are shown for the calculated standard deviations; table 9.5 utilising a mean wind 

speed for the normalisation and table 9.6 utilising the extreme wind speed. The 

calculations made use of the zero, non moving, measurements taken at the end of the 

run and rejected data if a drift of 2% or greater was found as for the aerodynamic tests 
described in sections 9.2,9.3 and 9.4. 

The derivation of the means and standard deviations given in tables 9.4,9.5 and 9.6 

were repeated with the raw data that had been digitally filtered at 10Hz, this being the 
highest frequency of interest in the formation of the extreme values using the time 
domain method. However the means were only altered by up to 1% and the standard 
deviations lowered by less than 5%. This lack of significant improvement in the 

aerodynamic signal to mechanical noise ratio was due to the inevitable ailiasing in the 
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digitising of the original analogue signal. As the filtering program took several 

seconds, due to the forward and reverse FFT of 'unfriendly' numbers of data (i. e. not a 

power of 2 and sometimes prime, see section 5.3.3), the simpler analysis of averaging 

the data over the time periods of interest was considered adequate. This simple method 

was also used for the aerodynamic tests. 

The mechanical noise was quantified as a mean value and the standard deviation. The 

mean is an additional zero correction that should be applied to the aerodynamic test 

results. The standard deviation represents the likely error on the repeatability of a 

value. Note that both the mean and the standard deviation of a set of values calculated 

in the same manner, in this case a constant time scale, from a random set of data is 

independent of the number of values from which it is formed and so these values 

calculated from the 10 'off wind' tests, shown in tables 9.4 and 9.6, can be applied 

directly to the extreme value coefficients formed from the aerodynamic tests which 

took place over 50 or 100 runs. 

It should be noticed that whilst the means calculated for the mean force coefficients 

and the extreme force coefficients can be applied directly to the aerodynamic tests, 

only the standard deviation values for the extreme force coefficients, shown in table 

9.6, should be used directly as the likely error on the aerodynamic results due to 

mechanical noise. The mean force coefficients are formed from further averaging of all 

the test data and thus the likely error will be much lower. This is demonstrated by 

referring to table 9.5 where it is seen that the calculated standard deviations of the 

mean force coefficients from a given test series reduce as the number of segments a run 

is divided into reduces, i. e. the time scale increasing. Indeed this may be thought to 

apply to the calculated extreme value force coefficients derived over longer time 

periods. However the values of relevance here are those shown in table 9.6 where this 

effect is not noticeable due to the variation of the normalising extreme velocity. The 

extreme velocity reduces as the time period extends resulting in a fairly constant 

extreme value force coefficient standard deviation. 

The likely error, defined to be the standard deviation, due to mechanical noise of the 

mean force coefficients determined over runs of 50 to 100 runs can be calculated from 

the standard deviations already formed, shown in table 9.5, in the following manner: 

1N 

S. D. (N) ý 
; _, 

9.1 
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Noting that the standard deviation due to mechanical noise, for each yaw angle, for 

each run of the moving model run is a constant value, say S. D. (i=1), i. e. one value 
from table 9.5, then equation 9.1 can be written as: 

S. D. (N) =ý (S. D. (i =1)) 9.2 

Therefore it is seen that the standard deviation of the mechanical noise on mean force 

and moment values calculated over a number of runs falls inversely with the square 
root of the number of runs. Table 9.4 shows that the standard deviation for one run is 

generally less than 4% of the value of the mean force or moment and therefore the 
likely error will be less than 0.5% for calculations of mean values for 50 runs and over. 

Similarly this equation can be applied to calculate the likely error on the mean 

correction due to mechanical noise over the 10 runs for each trolley speed Again 

referring to table 9.5 it is seen that these errors will be similar in magnitude to the mean 

values given in table 9.4. Therefore as these mean force and moments due to 

mechanical noise lie within the likely error of their measurement they were not used for 

further correcting the aerodynamic data. 

9.2 Flat ground tests. 

One of the main problems of moving model tests is the attainment of aerodynamic 

equilibrium in the short transit time of the moving model across the wind tunnel 

working section. As described in section 9. the additional time that the model spends in 

the wind, along the 0.6m upstream length before data to be analysed is extracted, 
should aid this. Although the wind conditions in the region nearest the wind tunnel wall 
vary compared with those measured in the centre of the working section they are 
similar enough to enable the flow pattern around the moving vehicle to stabilise. 
Figures 9.3 and 9.4 show the calculated mean force coefficients, filtered at 50Hz over 
100 runs for the highest and lowest trolley speeds. It is seen that aerodynamic 
equilibrium has been reached prior to entry of the test section. 

In Chapter 6 it was shown that the measured characteristics of the ABL for the moving 

model tests are very similar to those provided for the static tests described in Chapter 7 

enabling comparisons to be made between the static tests and these moving model 
tests. 
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9.2.1 Mean forces and moments. 

Figures 9.5 to 9.9 show the mean forces and moments, the latter translated to the 

vehicles centre of mass, compared to the static results of Coleman (1990). These 
include the additional moving model tests indicated in table 1 as Reynolds number 
tests. The side force coefficient results show excellent agreement but a problem with 
the lift force coefficients is evident by their non agreement at the yaw angle of 900 
degrees, i. e. with the moving model stationary in the centre of the working section. 
Repeat measurements at these positions indicated that this was a real effect and may be 

therefore due to the effect of the slot through which the moving model supports travel. 
Although the moving model rig is also fully enclosed in the working section and so no 

pressure difference exists across the slot it could stop the development of a possible 
low pressure region under the floor of the vehicle and therefore allow the high suction 

above the vehicle's roof, to dominate and give rise to a greater lift force. The high 

suction on the roof of the lorry is caused by delta wing vorticies, starting from the 
front sharp edged windward corner of the container roof, for most of the yaw angle 
range, see Coleman(1990). Interestingly the high lift force coefficients, measured from 

the tests described in this thesis, are similar to those measured on a 1/25th scale 
identical vehicle type in uniform low turbulence flow at a much higher Reynolds 

number of 2.4 x 105, see Chapter 2 and Baker (1987). The low turbulence static tests 

of Coleman (1990), see Chapter 2, also show a much lower lift force compared to 
Baker (1987); Coleman (1990) offers a reasonable explanation of this discrepancy 

based on possible bending of the model's supports, with the effect of such vehicle 

camber experimentally demonstrating a very similar effect. However Peters (1993) 

shows the results of low turbulence static sharp edged container wagon tests, see 
Chapter 7, showing an increase in lift force with increasing wind speed and model size. 
Further Peters (1993) shows that the lift forces increases with increasing Reynolds 

number. Although satisfactory Reynolds number tests were conducted of the model 

vehicle for the tests described in this thesis the evidence suggests that the explanation 
for this poor agreement may be the very low local Reynolds number of the passage of 
air, attenuated in these tests by the modelling of a sheared flow, under the model 
vehicle. Comparisons of the moment coefficients for the static and moving tests also 
indicate something aerodynamically significantly different. As expected the pitching 

moment, which is calculated in part using the lift force value, is altered drastically. 

However the lift force does not contribute in the calculation of the yawing and rolling 

moment coefficients about the vehicle's centre of mass but for the moving model tests, 

the yawing moment is much reduced and the rolling moment reduced at low yaw 
angles and increased at high yaw angles. 
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Figures 9.10 to 9.12 show the non dimensional points of action for the side and lift 

forces compared with the static test results. These further illustrate the observations 

already made. For the moving model tests both the horizontal points of action of the 

side and lift forces are slightly (a few millimetres) nearer the vehicle's centre of gravity 

than found for the static tests. 

9.2.2 Extreme force values. 

Tables 9.9a and b lists the top 10 normalised extreme force values for the side and lift 

forces derived from the 100 runs of the moving model rig. Note that the equivalent full 

scale time of 100 runs is between 5 and 20 minutes depending on the number of 

segments each run is divided. (Each segment corresponding to 3s full scale gust). 

There are two points to note: 

1. The difference between the values for each channel is much less than those 

indicated from the mechanical noise standard deviation values shown in table 9.6. 

2. In the context of the extreme value analysis, the dispersion (defined in section 
5.1.5), as for the static tests in Chapters 7 and 8, was small. 

Therefore it is reasonable to merely take one of these values as the most likely extreme 

value, say the maximum, to be the mode corresponding to the total sample time. Thus 

no further extrapolation was used in the calculation of the hourly extreme value 
justified by the very low dispersion. In summary the hourly extreme values and the 

unsteady parameters were therefore obtained by simply taking the maximum value 
from the ensemble of 0.1 s values produced by the moving model rig. 

In the following sections of this chapter, in the description of the extreme force values 

analysed from the moving model tests, no difference between the measured extreme 

value, the mode corresponding to the sample time or the ensuing extreme value over 

one hour periods will be emphasised. All these extreme values will be similarly 
described. 

Tables 9.8a and b show the calculated normalised extreme force parameters and the 

unsteady parameters against model time periods, taken to be equal to the full scale 3 

second gust period. These were calculated for the yaw angles of 53 and 70 degrees 

only as these were the only yaw angles for which the trolley transit time was long 

enough to enable such an analysis to be conducted. (Section 9.1 and table 9.1. ) These 
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were calculated using the method of section 5.3.3.1 It is seen, as for the static tests 

described in Chapter 7, that the normalised extreme force parameter is independent of 

the model time scale, over the range shown, and the mechanical noise small in 

comparison. 

Table 9.9 shows the extreme values of the normalised extreme force parameters and 

the unsteady parameters for taking the full scale 3 second value to be equal to 0.12 

seconds for all yaw angles. This value of 0.12s was attainable for all yaw angles 

without the waste of any data. Also included in this table are the Reynolds number 

tests and the mechanical noise standard deviation from table 9.6 for the extreme force 

parameters. In interpreting the accuracy of the data, bearing in mind the many values 

similar to these maxima present in the distribution, it is probably safe to interpret these 

as an upper limit and that the true extremes are in the region of the value given minus 

up to one standard deviation. Figures 9.13 to 9.16 compare these results with those 

obtained from the static turntable simulation. For both the static and the moving tests 

the quasi steady state is seen to exist at most yaw angles except at the very lowest 

where some evidence of unsteadiness is apparent. 

It may be expected that the normalised extreme force parameters for the pitching 

moment about the lorry's centre of gravity would be similar to that of the lift force as 

the latter is the dominant contribution. Likewise the yawing and rolling moment 

normalised extreme values can be compared with those of the side force. Table 9.10 

shows the calculated normalised extreme values and the unsteady parameters for the 

moments for each yaw angle for a model time period of around 0.12s. Comparing the 

results with table 9.9 it is seen that, as expected, these normalised extremes are similar; 

to within the experimental error as suggested by the mechanical noise standard 

deviation which are also shown in these tables. Only the side and lift extreme force 

parameters were calculated for the other geometries tested. 

9.3 Escarpment tests without wind fences. 

The escarpment simulation, with the live model mounting arrangement, is shown in 

figure 9.17. This includes the wind fence position used for the tests to be described in 

section 9.4. Figure 9.18 shows a photograph of the simulated escarpment (with the 

wind fence in place). The escarpment is of an equivalent full scale height of 5m with a 
bank 5m full scale upstream of gradient 30°. The escarpment continues for an 

equivalent full scale distance of 50m behind the moving model and therefore gives a 

good representation of a typical 3 lane (in each direction) motorway embankment with 
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the lorry travelling in the nearest lane to the oncoming wind. One difference however is 

the lack of camber, usually provided for rain run off, on the full scale version. This will 
be discussed further in what follows. 

The geometry of the ABL devices were identical to that used for the flat ground tests 

and so the ABL modelled just upstream of the escarpment is similar to the flat ground 

simulation. Unless stated otherwise, the reference wind speed for calculating the 

resultant mean and extreme values are made from measurements at a height of 60mm, 

equivalent to 3m full scale, above the top of the escarpment at the moving model 

position. The wind characteristics at the moving model position are shown in figures 

9.19 to 9.24. All these values are measured and calculated in the same manner as those 

in Chapter 6. 

Note that the flow is more uniform, with height, compared to the level ground 

simulation shown in Chapter 6 and that the extreme wind velocity values are also much 

reduced. 

9.3.1 Mean forces and moments. 

Figures 9.25 to 9.29 show the mean forces and moments compared with the level 

ground moving results of section 9.2.1. Due to a problem with data collection on 

channel 1 which caused large fluctuations in the raw data the pitching moment data 

was calculated only using the lift force data. From knowledge of the contributions from 

the lift force and measured pitching moment towards the pitching moment about the 

centre of gravity for the static tests it is expected that the pitching moment about the 

C. of G. derived only from the lift data will be in error by less than 10%. Similarly the 

error in the calculation of the other force coefficients due to the lack of correction due 

to interaction of the balance with the pitch channel is less than 2%. 

Comparisons of the data with those of the level ground simulation show very similar 

results, the largest differences, being for the lift coefficient, the lift coefficient for the 

embankment tests increasing at lower yaw angles but reducing a little for the higher. 

This may be attributable to the likely change in flow direction that this simulation 

produces. The flow streamlines are likely to have some vertical component at the roof 

of the vehicle. 

Figures 9.30 and 9.31 show the non dimensional point of actions for the side forces 

again compared well with the level ground results. The non dimensional point of 
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actions for the lift force could not be calculated due to lack of accurate pitch 
information. 

9.3.2 Extreme force values. 

Figures 9.32 to 9.35 show the normalised extreme force values and the unsteady 

parameters for the side and lift forces compared with the level ground moving results. 
As for the level ground tests these extremes were calculated using a model gust time of 

around 0.12s. Comparisons of the values for the case without wind fences with those 

for the level ground simulation show excellent agreement. The quasi steady case for 

body induced unsteadiness is seen to exist at all yaw angles except at the lowest where 

some body unsteadiness is present. 

9.4 Escarpment with wind fence tests. 

The wind fence used for these tests is of a simple sharp edged slatted design of 50% 

porosity and it is situated at the top of the bank a distance of 5m upstream of the near 

side of the moving lorry. Figure 9.36 shows the geometrical details of the fence. The 

layout of the ABL simulation is identical to that described in section 9.3. 

The aim of these tests was to investigate the effect of the wind fence compared to that 

if there were no fence present and so the magnitude of the reference wind velocities are 

those defined in section 9.3, i. e. as if the wind fence were absent. Of course it was not 

possible to measure the wind velocity at this position accurately with the wind fence 

present or calibrate an anemometer at this position accurately to another reference 

anemometer due to its proximity to the wind fence. The detailed construction of the 

fence and its slatted nature caused the wind characteristics to vary enormously with 

small differences in the measurement position as shown in figure 9.37. Instead a 

calibration to the wind velocity measured in section 9.3, that is without the wind 
fences, in the centre of the working section at the moving model position, was 

provided by means of an additional anemometer reading at a height of 200mm and 
600mm forward of the embankment. The definition of yaw angle, also uses this wind 

velocity. See table 9.3 for the normalising mean wind speeds. The use of the force and 

moment coefficients calculated for the wind fence tests are limited to the direct 

comparison with the data without the fences. 

The measured wind speeds, turbulence intensity variations with height at the moving 

model position with and without the wind fences present are shown in figures 9.37 and 
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9.38. The wind speeds are not needed for the calculation of the results in this section, 
but nevertheless of interest to aid their understanding. Figures 9.39a to c shows the 

streamwise wind velocity spectra measured at the moving model test position with the 

fence present at a range of heights. It is seen that, comparing these figures with 9.23, 

without the wind fence present, the slatted wind fence breaks up the large, low 

frequency, eddies into much smaller high frequency components. Chapter 6 shows that 

the simulated ABL, without the fences present, did not vary very much with height 

above the ground over the range considered. 

Bearing in mind the 3D nature of turbulence, the spanwise lateral semi lengthscale will 

also be similarly reduced, possibly by a factor of 20, for these wind fences. This effect 

will break up the correlation of the fluctuating extreme forces on the lorry, as the lorry, 

behind the fence, will be of much larger dimensions than the characteristic eddy size. 
Consequently the effect of the wind fences on the extreme forces on a lorry may be 

marked. Indeed the extreme forces could well be reduced by amounts larger than that 

predicted from consideration of the mean forces alone. 

Due to the large reduction in wind speed caused by the wind fences, from Reynolds 

number considerations, only the yaw angles utilising the maximum wind tunnel speed 

were tested. 

9.4.1 Mean forces and moments. 

Figures 9.40 to 9.44 show the mean forces and moments compared with the results 

without the wind fence present described in section 9.3.1. Identical problems with the 

measured pitch channel as in section 9.3 were encountered which degrades the 

accuracy of the pitch channel about the lorry's C. of G. to 10% and the other forces 

and moments to 2%. See section 9.3.1 for further details. 

The presence of the wind fences reduce the side force coefficient and hence the rolling 

and yawing moment coefficients to values of only 20% of the value without the fences 

present. The lift force, and therefore the pitching moment also, are only reduced to 

around 50% of the value without the fences. This is to be expected as the lift forces are 
dominated by the roof flow, as discussed in section 2.2.1.1, which is above the height 

of the fence. 

Figures 9.45 and 9.46 show the non dimensional point of actions for the side forces 

again compared with the static test results. The non dimensional point of action for the 
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lift force is not shown due to the lack of accurate pitch information. It is seen that the 

non dimensional point of action of the side force is increased compared to the value 

without the wind fences which is expected due to the top part of the lorry being above 

the top part of the fence. The non dimensional horizontal point of action for the side 
force however is reduced a little at high yaw angles. 

Coleman (1990) also undertook similar measurements of this vehicle using wind fences 

of identical geometry as well as other wind fence types. In these tests the vehicle was 

mounted static on a bridge deck and experienced uniform flow with the grid turbulence 

characteristics described in section 2.2.1.1. As a comparison of these different testing 

techniques table 9.11 shows comparisons of the mean side and lift force coefficient 

reductions due to wind fences from Coleman (1990) and the moving model tests with 

the simulated ABL described in this thesis. Table 9.11 expresses the results in terms of 

the mean side or lift force coefficient ratio, defined to be the ratio of the mean force 

coefficient with the fences to the mean force coefficient without the fences. It is seen 

that the mean side force coefficient ratio between the tests are very similar but that the 

mean lift force reductions of the tests of Coleman (1990) show much larger reductions. 

The reduction in the mean lift force coefficient for the recent moving model tests, due 

to the wind fences, is around 40% whilst it is around 90% to 120%, i. e. producing 

negative lift, for the tests of Coleman (1990). 

9.4.2 Extreme force values. 

The normalised extreme force values and unsteady parameters taking the model gust 

time to be 0.12s are shown compared to the embankment results without the wind 
fence in figures 9.47 to 9.50. Note again that these extremes have been calculated 

using the wind velocities and the extreme / mean velocity ratio as if the wind fences 

were absent. The extreme / mean velocity ratio was therefore read from figure 9.23, 

which was also used for the results without the wind fence. 

The effect of the wind fence is seen to increase the normalised extreme side force 

parameter whilst this parameter for the lift force remains identical for the case without 

the wind fences present. Table 9.12 compares the extreme side and lift forces with and 

without the wind fences with those of Coleman (1990). Coleman's tests, for extreme 

value analysis, were limited to yaw angles of 60 and 90 degrees. Generally it is seen 

that the moving model escarpment tests with the ABL simulation show normalised 

extreme side and lift force parameters a little over unity compared to values slightly 

less from the uniform gird turbulence static bridge deck tests of Coleman (1990). 
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Considering the magnitude of the extreme side forces first, it is seen that the moving 
model escarpment tests with the ABL simulation give the larger results due to the 

similar results for the side forces between this test series without the fences present, 
referring to figures 7.3,9.5 and 9.13, and the similar reduction due to the fences 
including the geometry difference, table 9.11. However the actual magnitude of the 

extreme lift force values is complicated due to the differences between the mean values 
of the lift forces of these two test series. With the aid of figures 7.4,9.6 and 9.14, it is 

seen that the moving model tests produced unexpected large lift forces, compared to 
Coleman (1990) without the presence of the fences but referring to table 9.11 the tests 

of Coleman (1990) show large and difficult to explain reductions due to the fences. 
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Table 9.1 Flat ground moving model test series. 

100 runs at each yaw angle. 

Moving 

model 
speed. (m/s) 

Wind tunnel 
speed. (m/s) 

Yaw angle. 
(degrees) 

Model 
transit time. 
(s) 

Reynolds 

number. 
No. of 
segments 
for which 
analysis 
conducted. 

3.06 8.5 70.2 0.49 4. Ox 104 1,2,4 
6.40 8.5 53.0 0.24 4.8x 104 1,2 
10.51 8.5 39.0 0.14 6.3x104 1 
12.19 5.1 22.7 0.12 5.6x 104 1 
6.40 # 5.3 39.6 0.24 3.4x 104 2 
6.40 # 6.4 45.0 0.24 4.0x104 2 
3.06 # 6.4 64.4 0.49 2.5x10 4 
# These were extra tests conducted for Reynolds number checks and are of 50 runs. 
Extreme value analysis was limited to a single segment number chosen to correspond 
to a model time scale of around 0.12s. 

Table 9.2 Escarpment moving model test series. 

50 runs at each yaw angle. 

Moving Reference Yaw angle. Model Reynolds No. of 
model Wind tunnel (degrees) transit time. number. segments 
speed. (m/s) speed. (m/s) (s) for which 

analysis 
conducted. 

2.81 10.5 75.1 0.54 4.8x104 4 
6.15 10.5 59.8 0.24 5.4x 10 2 
10.79 1.0.5 44.1 0.14 6.7x 104 1 
10.95 7.2 33.5 0.14 54 x 10 1 

Table 9.3 Escarpment with wind fence moving model test series. 

50 runs at each yaw angle. 

Moving Reference Yaw angle. Model Reynolds No. of 
model Wind tunnel (degrees) transit time. number. segments 
speed. (m/s) speed. (m/s) (s) for which 

analysis 
conducted. 

3.02 10.5 74.2 0.50 4.8x 104 4 
6.05 10.5 53.0 0.25 5.4x 104 2 
10.71 10.5 44.1 0.14 6.6x 104 1 
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Table 9.4 Mean mechanical noise as a function of trolley speed. 

Mean force and moment mean coefficients from 10 runs at 4 trolley speeds. 
Calculations of the coefficients are given for normalising velocities identical to those of 
the aerodynamic tests given in tables 9.1 to 9.4. 

Moving 

model 
speed 
m/s 

Ref. wind 
speed (ref 
ht = 3m) 

m/s 

Pitching 

moment 
coefficient 

Yawing 

moment 
coefficient 

Rolling 

moment 
coefficient 

Side force 

coefficient 
Lift force 
coefficient 

3.06 8.5 -5.0x10-2 1.1x10'1 6.8x10-3 4.8x10-2 4.0x10' 
3.06 6.4 -7.4x10-2 1.2x10'1 5.2x10-3 5.3x10' 5.9x10' 
6.40 8.5 2.2x10-2 4.5x10'1 3.7x10-2 1.5x10'1 -1.7x10' 
6.40 6.4 5.9x10-2 4.5x10'1 3.9x10-2 1.5x10-1 -4.7x10' 
6.40 5.3 8.4x10-2 4.9x10-1 4.1x10-2 1.6x10'1 -6.6x10' 
10.51 8.5 2.4x104 5.8x104 8.7x10-2 1.7x10'1 -1.9x10-1 
12.19 5.1 -3.8x10'1 3.8x104 3.0x10-2 1.5x10-2 3.0x10' 

Table 9.5 Mechanical noise standard deviation normalised by the mean resultant 
wind speed as a function of trolley speed and analysis time scale. 

Coefficients given in this table are normalised by the mean resultant wind speed 
corresponding to the test case and segment number. i. e. that of the mean wind speed at 
the equivalent full scale reference height of 3m and the moving model speed. 

Moving 

model 
speed 
(m/s) 

Reference 

mean wind 
speed. (ref. 
ht. = 3m) 
(m/s) 

Number 

of 
segments 

Pitching 
moment 
coefficient 

Yawing 

moment 
coefficient 

Rolling 

moment 
coefficient 

Side force 
coefficient 

Lift force 
coefficient 

3.06 8.5 4 3.3x101 ' 3.2x101 ' 8.6x102 ' 1.9x101 ' 2.6x 10' 
3.06 8.5 2 2.3x10' 1.9x101 ' 4.6x10' 1.1x10- 1.8x10' 
3.06 8.5 1 2.1x10' 1.4x10' 3.5x10' 4.7x10' 1.6x10' 
3.06 6.4 4 3.7x101 ' 3.9x101 ' 9.0x102 ' 2.0x 10' 2.9x 10- 
3.06 6.4 2 2.5x10- 2.8x10' 4.8x10' 1.3x10- 1.9x10' 
3.06 6.4 1 2.8x10' 2.3x10' 3.7x10- 5.3x10- 1.8x10 
6.40 8.5 2 5.0x10- 3.8x10' 1.2x10' 2.1x10' 4.1x10' 
6.40 8.5 1 2.8x101 ' 2.5x101 ' 9.7x 10' 1.4x 10- 2.3x 10' 
6.40 6.4 2 5.5x10- 4.1x10- 1.2x10' 2.2x10- 4.3x10' 
6.40 6.4 1 3.5x10' 2.8x10' 9.9xIO-2 1.5x10' 2.5x10' 
6.40 5.3 2 5.5x10' 4.3x10' 1.2x10' 2.3x10' 4.4x1.0' 
6.40 5.3 1 3.2x10' 3.1x10' 1.0x10' 1.5x10- 2.8x10' 
10.51 8.5 1 2.4x10' 5.3x10' 1.1x10' 2.8x10' 1.9x10' 
12.19 5.1 1 3.9x10' 3.9x10- 6.4x10' 2.4x10' 3.1x10' 
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Table 9.6 Mechanical noise standard deviation normalised by the extreme 
resultant wind speed as a function of trolley speed and analysis time scale. 

Coefficients given in this table are normalised by the extreme resultant wind speed 
corresponding to the test case and segment number quantifying the model time scale. 
i. e. the extreme wind speed is calculated by taking the mean wind speed at the 
equivalent full scale reference height of 3m multiplying it by the gust factor given in 
figure 6.21 corresponding to the model time implied by the segment number previously 
shown in table 9.1. The normalising wind speed is calculated using the extreme wind 
speed and the moving model speed. These figures should be used for quantifying the 
likely error of the aerodynamic extreme value force and moment coefficients. 

Moving 

model 
speed. 
(m/s) 

Reference 

mean wind 
speed. (ref. 
ht. = 3m) 
(m/s) 

Number 

of 
segments 

Pitching 

moment 
coefficient 

Yawing 

moment 
coefficient 

Rolling 

moment 
coefficient 

Side force 

coefficient 

Lift force 

coefficient 

3.06 8.5 4 2. Ox10' 2.0x10- 5.2x10' 1.2x10' 1.6x10' 
3.06 8.5 2 1.7x 10' 1.3x101 ' 3.0x 10' 7.1 x 10' 1.2x 10' 
3.06 8.5 1 1.8x10' 1.1x10' 2.9x10' 3.8x10' 1.410' 
3.06 6.4 4 2.3x10' 2.4x10' 5.4x10' 1.2x10' 1.8x10' 
3.06 6.4 2 1.8x10' 2.1x10' 

- 
3.4x10- 9.0x10' 1.4x10' 

3.06 6.4 1 1.9x101 ' . 
9x 10' IMF 2.8x102 ' 4.1x102 ' 1.4x 10' 

6.40 8.5 2 3.5x10' 2.6x10' 8.0x10- 1.410' 2.8x10' 

6.40 8.5 1 2.2x10' 1.9x10' 7.5x10' 1.1x10- 1.8xl0' 

6.40 6.4 2 3.9x10' 3.0x10' 7.9x10' 1.6x10' 3.0x10' 
6.40 6.4 1 2.8x101 ' 2.5x 10' 7.8x102 ' 1.2x 10' 2-2-x10--r 
6.40 5.3 2 3.7x101 ' 2.8x101 ' 8.1x12-2 1.5x10' ' ' 2.9x10 
6.40 5.3 1 2.5x101 ' 2.2x101 ' 71O-2 1.1 x 10' 2.0x104 
10.51 8.5 1 1.9x101 ' 4.2x101 ' 8.6x 10' 2.2x 10 1.5x 10' 
12.19 5.1 1 3.5x10' 3.5x10' 5.7x10' 2.2x10' 2.8x10' 
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Table 9.7 The 10 maximum normalised extreme force parameters produced from 
100 runs of the moving model rig. 

All for equivalent full scale 3s gust. 

a) Normalised extreme side force parameters. 

Moving model 
speed m/s 

3.06 3.06 3.06 6.40 6.40 10.51 12.19 

Ref. wind 
speed m/s 

8.5 8.5 8.5 8.5 8.5 8.5 5.1 

No. of 
segments 

1 2 4 1 2 1 1 

1.05 0.94 0.95 0.95 0.99 1.11 1.30 
1.05 0.93 0.89 0.93 0.98 1.10 1.30 
1.02 0.91 0.88 0.91 0.92 1.10 1.23 
1.00 0.91 0.87 0.88 0.90 1.02 1.21 
0.99 0.90 0.84 0.87 0.89 1.01 1.21 
0.99 0.88 0.83 0.86 0.85 1.00 1.18 
0.99 0.88 0.82 0.83 0.85 1.00 1.18 
0.99 0.88 0.82 0.82 0.83 0.99 1.12 
0.98 0.88 0.82 0.81 0.79 0.97 1.10 
0.98 0.87 0.81 0.81 0.77 0.96 1.08 

b) Normalised extreme lift force parameters. 

Moving model 
speed m/s 

3.06 3.06 3.06 6.40 6.40 10.51 12.19 

Ref. wind 
speed m/s 

8.5 8.5 8.5 8.5 8.5 8.5 5.1 

No. of 
segments 

1 2 4 1 2 1 1 

1.04 1.00 1.10 1.09 1.15 1.10 1.42 
0.91 0.96 0.99 1.08 1.12 0.99 1.40 
0.85 0.95 0.99 1.04 1.09 0.82 1.37 
0.80 0.95 0.98 0.98 0.98 0.78 1.34 
0.78 0.89 0.98 0.92 0.92 0.76 1.31 
0.77 0.87 0.98 0.91 0.90 0.75 1.26 
0.75 0.87 0.98 0.88 0.89 0.73 1.20 
0.71 0.86 0.93 0.86 0.88 0.72 1.17 
0.63 0.84 0.89 0.83 0.88 0.66 1.17 
0.61 0.82 0.87 0.81 0.86 0.65 1.14 
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Table 9.8 Flat ground 3s equivalent full scale gust extreme values as a function of 
model time scale. 

Mean wind tunnel reference speed = 8.5m/s (60mm = 3m full-scale). 

a) Yaw angle = 53 degrees 
Model time scale equivalent to 3s gust. ). 12 ). 24 
Unsteady side force parameter. ). 72 ). 92 

Normalised extreme side force parameter. 
Mechanical noise S. D. . 

99 

. 
04 . 

95 

. 
03 

Unsteady lift force parameter. 1.88 1.68 

Normalised extreme lift force parameter. 
Mechanical noise S. D. 

1.15 

. 
13 

1.09 

. 
09 

b) Yaw angle = 70 degrees 

Model time scale equivalent 3s gust. (s) 
. 
12 

. 
24 

. 
49 

Unsteady side force parameter. . 
67 

. 
61 1.54 

Normalised extreme side force parameter. 
Mechanical noise S. D. 

. 
95 

. 
03 

. 
94 

. 
02 

1.05 

. 
01 

Unsteady lift force parameter. 1.42 1.08 1.38 

P! qormalised extreme lift force parameter. 
Mechanical noise S. D. 

1.10 

. 
07 

1.01 

. 
05 

1.04 

. 
05 

Table 9.9 Summary of flat ground extreme force values for a model time period 
of around 0.12s equivalent to a full scale 3s gust. 

Yaw angle (degrees) 26.9 39.0 39.6 45.0 53.0 64.4 70.2 
Unsteady side force 6.51 2.41 1.98 1.44 0.72 1.23 0.67 

parameter. 
_ Normalised extreme side 1.30 1.11 1.09 0.97 0.99 1.06 0.95 
force parameter. 
Mechanical noise S. D. 0.10 0.07 0.05 0.04 0.04 0.03 0.03 
Unsteady lift force 9.16 2.67 1.16 1.17 1.88 1.13 1.42 
parameter. 

_ Normalised extreme lift 1.42 1.10 1.24 1.10 1.15 1.13 1.10 
force parameter. 
Mechanical noise S. D. 0.31 0.11 0.20 0.17 0.13 0.08 0.07 
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Table 9.10 Summary of flat ground extreme moment values for a model time 
period of around 0.12s equivalent to a full scale 3s gust. 

Yaw angle (degrees) 26.9 39.0 39.6 45.0 53.0 64.4 70.2 
Normalised extreme 1.51 1.10 1.14 1.08 1.09 1.04 1.01 

pitching moment 
parameter. 
Mechanical noise S. D. 0.24 0.12 0.23 0.19 0.16 0.09 0.08 
Normalised extreme yawing 1.17 1.05 1.06 0.97 0.99 1.19 1.01 
moment parameter. 

Mechanical noise S. D. 0.10 0.09 0.07 0.06 0.05 0.05 0.04 
Normalised extreme rolling 1.29 1.08 1.15 1.11 0.95 1.13 0.95 
moment parameter. 

Mechanical noise S. D. 0.14 0.10 0.10 0.09 0.08 0.05 0.04 
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Table 9.11 Comparison of mean side and lift force coefficient ratio with and 
without fences with previous grid turbulence, uniform profile, tests of Coleman 
(1990). 

# These yaw angles are approximate as they are formed from repeat moving model test 
series with and without the fences present, see tables 9.2 and 9.3. (* Static test) 

Mean side force coefficient ratio. 

Moving model tests. 
Yaw angle (degrees) 44# 55# 75# 90.0* 

Mean side force coefficient 
ratio. 0.31 0.30 0.25 0.25 
Escarpment simulation. 

Coleman (1990). 

Yaw angle (degrees) 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

Mean side force coefficient 0.39 0.33 0.28 0.27 0.22 0.20 0.18 
ratio. 
Bridge deck simulation. 

Mean lift force coefficient ratio. 

Moving model tests. 
Yaw angle (degrees) 44# 55# 75# 90.0* 

Mean lift force coefficient 
ratio. 0.45 0.53 0.66 0.61 
Escarpment simulation. 

Coleman (1990). 

Yaw angle (degrees) 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

Mean lift force coefficient -0.20 -0.08 -0.02 0.03 0.13 0.01 -0.02 
ratio. 
Bridge deck simulation. 
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Table 9.12 Comparison of the normalised extreme side and lift force parameters 
for wind fence tests with previous grid turbulence, uniform profile, tests of 
Coleman (1990). 

All for equivalent full scale 3s gust. 

Moving model tests. 
Yaw angle (degrees) 44.1 53.0 74.2 

Normalised extreme side 
force parameter. 1.03 1.08 1.07 
Escarpment simulation. 

Coleman (1990). 
Yaw angle (degrees) 60.0 90.0 

Normalised extreme side 
force parameter. 0.93 0.79 
Bridge deck simulation. 

Moving model tests. 
Yaw angle (degrees) 44.1 53.0 74.2 

Normalised extreme lift 
force parameter. 1.50 1.30 1.20 
Escarpment simulation. 

Coleman (1990). 
Yaw angle (degrees) 60.0 90.0 

Normalised extreme lift 
force parameter. 1.00 0.84 
Bridge deck simulation. 
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Figure 9.1 Time history from 1 run of moving model rig. Lorry on flat ground 
simulation, v=3.06m/s, u (60mm) = 8.5m/s. 
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Model scale frequency - as measured (Hz). 
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Figure 9.7 Mean pitching moment coefficient. 
Flat ground simulation for moving and static lorry tests. 
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Figure 9.9 Mean rolling moment coefficient. 
Flat ground simulation for moving and static lorry tests. 
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Figure 9.10 Horizontal non-dimensional point of action of side force. 
Flat ground simulation for moving and static lorry tests. 

  Static Test, 0 Moving Test 

OD 

go 

222 



Ys 

Q3 

026 

02 

0.15 

Q1 

a05 

0 
0 10 

-, _ý Ii 

20 

ý 

3D 40 50 

Yaw angle (degrees) 

Figure 9.11 Vertical non-dimensional point of action of side force. 
Flat ground simulation for moving and static lorry tests. 
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Figure 9.13 Normalised extreme side force parameter. 
Flat ground simulation for moving and static lorry tests. 
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Flat ground simulation for moving and static lorry tests. 
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Figure 9.21 Streamwise wind velocity profile with height measured from 
escarpment surface at centre of test section. 
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Figure 9.22 Streamwise turbulence intensity profile with height measured 
from escarpment surface at centre of test section. 
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Figure 9.25 Mean side force coefficient. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.26 Mean lift force coefficient. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.27 Mean pitching moment. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.28 Mean yawing moment. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.29 Mean rolling moment. 
Flat ground and escarpment simulation for moving lorry tests. 

Q Flat Ground Simulation 

  Escarpment Simulation 

233 



2 

1.8 

1.6 

1A 
XS 

12 

I 
as 

0.6 

04 

0.2 

0 
0 10 2D 30 40 so 

Yaw angle (degrees) 

eo 70 OD 

Figure 9.30 Non-dimensional horizontal point of action of side force. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.31 Non-dimensional vertical point of action of side force. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.32 Normalised extreme side force parameter. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.33 Unsteady side force parameter. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.34 Normalised extreme lift force parameter. 
Flat ground and escarpment simulation for moving lorry tests. 
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Figure 9.37 Streamwise wind velocity profile with height measured from 

escarpment surface, l 00mm downstream of the wind fence at 
the centre of the moving model test section. 
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Figure 9.3 8 Streamwise turbulence intensity profile with height measured 
from escarpment surface, 100mm downstream of the wind fence 

at the centre of the moving model test section. 
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Figure 9.39a 40mm (equivalent to 2m full scale) above surface of escarpment. 
Streamwise wind velocity spectrum downstream of wind fence at 
centre of moving model test section. 
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Figure 9.40 Mean side force coefficient. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.41 Mean lift force coefficient. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.42 Mean pitching moment coefficient. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.43 Mean yawing moment coefficient. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.44 Mean rolling moment coefficient. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.45 Non-dimensional horizontal point of action of side force. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.46 Non-dimensional vertical point of action of side force. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.47 Normalised extreme side force parameter. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.48 Unsteady side force parameter. 
Escarpment simulation for moving lorry tests with and without 
fences. 
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Figure 9.49 Normalised extreme lift force parameter. 
Escarpment simulation for moving lorry tests with and without 
fences. 

o without fences,   with fences 

2.5 

FL 2 
FL 

u 
_1 

,. 6 

U 

1 

0.5 

0 
0 10 2D 3D 40 w 

Yaw angle (degrees) 

BD 70 so 

Figure 9.50 Unsteady lift force parameter. 
Escarpment simulation for moving lorry tests with and without 
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10. Conclusions. 

1. A mean hourly atmospheric boundary layer was simulated that was adequate for 

the determination of full scale representative normalised extreme force parameters and 

unsteady parameters from wind tunnel tests of 1/50th scale high sided sharp edged 

ground vehicles. 

2. The moving model rig was shown to produce data of a reasonably high quality 

adequate for the determination of both mean and extreme aerodynamic forces. 

3. The development of the automatic retrieval and firing mechanism was 

successful allowing one hundred runs of the rig to be undertaken in one day by one 

person. 

4. The normalised extreme force parameter appears to be independent of the 

model time scale for both the static and moving wind tunnel tests. 

5. For yaw angles above 30 degrees the normalised extreme force parameter takes 

the value of unity implying the quasi steady case for body induced unsteadiness. This 

was shown for the both the static and moving model tests on level ground and 

additionally the moving model tests on the escarpment. 

6. For yaw angles less than 30 degrees, body induced unsteadiness was implied 

with the normalised extreme force parameters taking values up to 1.3. Again this was 

shown for both the static and moving model tests on level ground and additionally the 

moving model tests on the escarpment. 

7. The side force coefficients for the static tests and both the flat ground and the 

escarpment moving model tests show excellent agreement. Additionally these values 

show similar trends with yaw angle as previous tests in low turbulence and simulated 

short turbulence length scale undertaken in uniform flow. The absolute values however 

depend upon the reference height chosen for the tests in which a vertical wind profile 
has been measured. 

8. The lift force coefficients were found to be very sensitive to changes in 

geometry and turbulence length scale. Of concern, was the much larger value of the lift 

force coefficient measured at the moving model position, but stationary i. e. 90 degrees, 

compared with the same geometry at the static test position. The reason for this is 
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unclear but suspicion is cast at the presence of the slot beneath the moving model 

which may alter the pressure beneath the vehicle. However reference to previous static 

higher Reynolds number tests may indicate that the fault could lie with the recent static 

tests for which the Reynolds number appropriate for the underbody gap may be 

inadequate. More work is needed in this area. 

9. The 50% porosity wind fences reduced the side force such that for some yaw 

angles its value is only 20% of the value without the fences. Such reductions of the lift 

force however were not found, the maximum being 50%, due to the top of the vehicle 

being above the height of the fence. 

10. The normalised extreme force parameters were calculated for tests behind the 

wind fence and provide useful data but caution should be taken in relating their values 

to states of body induced unsteadiness due to the unknown effects of the wind fence on 

the mean and extreme wind velocity values. 

11. The invariance of the normalised extreme force parameter with model time scale 

(over the range of concern) implies that it is possible to calculate full scale extreme 

force values based on this parameter and knowledge of the full scale extreme wind 

velocity. Further, whilst wind tunnel tests are needed to measure data in order to 

determine the magnitude of the normalised extreme force parameters, conclusions 4 

and 5 indicate that this parameter does not appear to be too sensitive to either the 

geometric or ABL simulation. This latter point is due to the agreement of both the 

static and moving tests. 

12. For a given full scale scenario, in general a static measured wind gust value at 

the site (at say 3m height) will provide an overestimated extreme wind velocity value, 
for calculating the extreme force based on a known normalised extreme force 

parameter, for a vehicle moving perpendicular to it. Indeed the results of these wind 

tunnel tests indicate, to the accuracy considered, that the extreme wind velocity to be 

used for a moving vehicle is the resultant of the vehicle's velocity and the wind velocity. 
Caution should be applied in using this result for the full scale case as differences in the 

lateral components of the ABL may be important. 

13. Recently Hoxey (1992) from measurements at heights of up to 10m above 

ground level has derived wind velocity spectra which were found to be distorted, with 

some energy transferred to the higher frequencies. This implies, therefore, a lower 

extreme wind velocity value than predicted by Cook (1985). This latter reference does 
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indicate the lack of knowledge of wind data at these small heights. Extreme force 

values calculated from use of the normalised extreme force parameter and the results of 

Cook (1985) for level ground situations ought to be conservative if the results of 

Hoxey (1992) are generally applicable. That is the effect of possibly over estimating the 

extreme streamwise wind speed due to using the results of Cook (1985) or E. S. D. U. 

(1974a, b and 1975), compared to the recent results of Hoxey and Richards (1992), 

leads to an over prediction to the extreme forces. 

14. If the prime aim of future tests, using the moving model rig and the existing 
hardware, is the determination of the aerodynamic admittance for the side and lift 

forces, it is recommended that these are recorded from separate tests. The Polycorder 

data logger can facilitate analogue filtering providing that only one channel is utilised 

and this would aid the reduction of the mechanical noise present at low frequencies. 

This noise may be mainly due to the ailiasing of the mechanical noise which dominates 

the high frequency part of the measured force spectra, as shown in this thesis. Further, 

the use of the Polycorder in this manner should also increase the accuracy of any 

extreme values calculated using the time domain method demonstrated in this thesis. 

15. Noting the problems with the measured lift force measurement, using the 

moving model rig, it is recommended that for subsequent tests, designed to measure 

this component, that the model be mounted in front of the slot through which the 
balance supports pass. For example, the balance support struts could pass through the 

lee ward side of the vehicle, before turning and passing through the slot which would 
be downstream of the vehicle's track. However these struts would have to be suitably 

rigid in order to keep the mechanical noise to the high frequency part of the force 

spectrum. For future side force measurements, the mounting arrangement used for the 

tests described in this thesis is adequate. 
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Appendix 1. Data Analysis Programs and Files. 

This appendix gives details of the programs written by the author used for the analysis 

of the data shown in this thesis. All programs were written in PROSPERO FORTRAN 

for use on IBM compatible PCs. Additionally many were modified for use on the 

Nottingham University Cripps Computing Centre VME mainframe and these versions 

were modified to use standard NAGRA library subroutines and the appropriate control 
language for user and file interface. The use of both sets of programs operate in a 

similar manner, with common input and output formats. All programs, unless stated, 

use files containing ASCII characters with the 'space' acting as the delimiter. Both 

formatted and unformatted files are used. Chapter 5 details the methods used in these 

programs. The programs are listed according to their application with many designed to 

be run in this order. 

For both the static and the moving model tests a common procedure was used for the 

recording of the raw test data and its subsequent storage for further processing. These 

files used the. TBL and. RAW format given in section A. 1.4 

The raw data was obtained in the format of a TBL file direct from Polytools, the PC 

software package for programming and downloading of data to / from the Polycorder 

data logger. The final processed data, for each individual test, was stored in the format 

of a RAW file for which further data analysis programs use. These files include full 

details of the test conditions as well as the extracted raw data corresponding to the test 

section. Mean forces and moments are also stored in this file. 

A. M. Wind analysis programs. 

MEANWIND. 

Calculates the mean wind speed and turbulence intensity using the method of 5.2.1.1. 

User Input: Ambient temperature and pressure. 

File Input:. TBL containing linearised voltage output from TSI hot film anemometer (1 

channel only). 

Program defined values: Hot film anemometer calibration coefficients A and B as 
defined in section 5.2.1.1. 
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Output to screen: mean wind speed and turbulence intensity. 

SPLITDAT. 

Splits one file into a user defined number of equal length shorter files. Used for creating 

a set of file for spectral analysis which will be subsequently used for creating average 

spectra. 

User Input: Number of files to be created, total number of data in original file and 

sample frequency. 

File Input: As MEANWIND. 

Output to user defined files: Number of data in file, sample frequency and data. 

CALCSPEC. 

Calculates non dimensional spectral density using method of section 5.1.3. Can be used 

with files output from SPLITDAT. 

File Input: Output files from SPLITDAT. 

File Output: Frequency and non dimensional spectra. 

This program was also used for calculating the force spectra. 

MEANSPEC. 

Calculates the mean of spectra created by CALCSPEC and also if requested the 

corresponding von Karman spectra. 

User input: Number of files to be input, each containing one spectra. If von Karman 

spectra requested then supply model scale height and wind velocity corresponding to 

wind velocity measurement height. 

File input: Output files from CALCSPEC. 

File output: Frequency, mean non dimensional spectra and von Karman spectra. 
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CONVSPEC. 

Creates file identical to that input but using ', ' as the delimiter between the columns of 
data suitable for reading by Microsoft EXCEL and subsequent plotting. 

File input: Output file from CALCSPEC. 

File output: Identical to input but using', ' as delimiter between columns. 

WINDEVAL. 

Divides a set of input data into a number of blocks and calculates gust values according 

to the user defined model time period of the gust. The maximum gust from each block 

is output. See section 5.1.5 and 5.2.1.3. 

User input: Number of data per gust, Number of blocks to be calculated. (These 

together imply a model time period for a gust). 

File Input: As for MEANWIND. 

Output to screen: Mean wind speeds for each block and the maximum gust value, for 

the implied time period, for each block. 

WINDMODE. 

Calculates the Mode and Dispersion of 10 extreme values using Leiblien's method, see 

section 5.1.5 and 5.2.1.3, for the time period corresponding to one block of data. The 

mode for 1 hour is extrapolated and output. 

User input: The 10 gust values corresponding to the maximum from each block, and 
the model time period corresponding to one block. 

Output to screen: The mode corresponding to the full scale time period of one block of 
data, the dispersion and the full scale hourly mode. 
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A. 1.2 Static force analysis programs. 

STATCOEF. 

Calculates the 5 mean force and moment coefficients and the non dimensional points of 

action using the definitions and methods of 5.2 and 5.2.2.2.1 

User input: Reference wind speed, ambient temperature and pressure. 

File input:. TBL file containing 5 channels of data from the amplifier and force balance 

in multiplex format (as measured), see A. 1.4 

Program defined values: Force balance calibration matrix, vehicle reference area and 

reference height. Relative position of centre of rotation relative to balance centre. (For 

the lorry this is the centre of mass and for the DB container this is the lee bottom 

corner). 

Output to screen : Mean force and moment coefficients (about the centre of the balance 

and the centre of rotation) and non dimensional points of action. 

SPROCESS. 

Reads one TBL file containing 5 channels of data from the amplifier and force balance 

in multiplex format. The data is saved in a . 
RAW file with other relevant test ancillary 

data input by the user including zero force corrections. Additionally some preliminary 

analysis is conducted and the results also saved. The output form of the RAW file is 

identical to that produced by the program MPROCESS which performs a similar pre 

processing task for the moving model data. 

User input: Reference wind speed, ambient temperature and pressure. 

File input:. TBL file. 

Program defined values: Force balance calibration matrix, vehicle reference area and 

reference height. Relative position of centre of rotation relative to balance centre. 

File out: RAW file. 
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STATEVAL. 

As WINDEVAL but for 2 channels. 

File input: RAW file containing two channels of force data. 

Output to screen: Mean force values and the normalised extreme force parameters for 

the implied time period, for each block. 

STATMODE. 

As WINDMODE but for two channels. (Only side and lift force usually required). 
Additionally calculates the unsteady parameters. 

A. 1.3 Moving force analysis programs. 

MPROCESS. 

Reads one . 
TBL file containing 5 channels of data from the amplifier and force balance 

in multiplex format and one continuous digital channel corresponding to the trigger 

channel (as measured). All channels are shown on the screen as shown in figure 5.4. 

The data from the central 1.5m test section is extracted, zero values are calculated from 

the data at the end of the run and saved in a RAW file with other relevant test ancillary 
data. Additionally some preliminary analysis is conducted and the results also saved. 

User input: Reference wind speed, ambient temperature and pressure. Also user selects 
the window of data for which the aerodynamic data and zero force and moment 
calibration are subsequently extracted. The aerodynamic data then automatically 

extracted from this window, one it has been checked visually, by reference to the 

markers present in the digital channel. 

File input:. TBL file. 

Program defined values: Force balance calibration matrix, vehicle reference area and 
reference height. Relative position of centre of rotation relative to balance centre. (For 
the lorry this is the centre of mass and for the DB container this is the lee bottom 

corner). 
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Screen output : All recorded data (5 channels and 1 digital channel). 

File output: RAW file. 

CALC 1. 

This calculates mean and extreme parameters from an ensemble of. raw files input into 

this program using the method of 5.2.2.3.1. 

User input: Number of files, extreme / mean wind speed for model time period 

corresponding to trolley transit time across the 1.5m test section. 

File input: ensemble of . 
RAW files. 

Output to screen: mean yaw angle, wind speed, extreme wind speed, average trolley 

speed, mean trolley transit time, overall mean force and moment coefficients (about the 

balance centre and the centre of rotation), standard deviation of these mean 

coefficients, standard deviation of the zero coefficient values, extreme force 

coefficients, non dimensional unsteady force parameters. 

TIMEHIST. 

This program is a developed version of CALC 1 and additionally: 

a) Filters the raw data to remove high frequency mechanical noise using the 

method of 5.1.4. 

b) As the files are read in to the program the zeros for each channel are compared 

c) Extremes are formed integral portions of the extracted data corresponding to 

the test section. This is in order to investigate the effect of changing the model time 

scale on the calculated extreme values. 

d) Provides additional mean zero corrections due to mechanical noise described in 

section 9.1 which is a function of trolley speed. 

e) Outputs to user specified files the overall averaged filtered time histories of for 

each force and moment channel. 
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f) Outputs to user specified files the overall averaged force and moment spectra 

formed from each channel. 

A. 1.4 File Formats. 

These files are used extensively in the transfer and storage of data. 

The TBL files are created by the Polytools (Polycorder software) program after 

downloading the data from the Polycorder. 

The Raw files are intended as a permanent record of the test data. These files include 

the processed force and moment data corresponding to the test section, all calibrations 

used and other test conditions. 

. 
TBL File Format (e. g. 5 analogue and 1_ digital channels). 

TIME(1) CH1(1) DIGITAL(1) 

TIME(2) CH2(1) DIGITAL(2) 

TINE(3) CH3(1) DIGITAL(3) 

TIME(4) CH4(1) DIGITAL(4) 

TIME(5) CH5(1) DIGITAL(5) 

TIME(6) CH 1(2) DIGITAL(6) 

TIME(7) CH2(2) DIGITAL(7) 

TIME(8) CH3(2) DIGITAL(8) 

Notes. TIME corresponds to the inter channel sampling frequency. CH1 to CH5 

represent the data digitised by the multiplex sampling of the strain gauge balance and 

DIGITAL is the continuously sampled digital channel used for control of the logger, 

and marking the position of the data record relative to the track. 
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. 
RAW File Format. 

NDATA AVESPEED SAMPFREQ WINDVEL AREF 

TAMB PAMB REFHT XREF ZREF 

A(1,1) A(2,2) A(3,3) A(4,4) A(5,5) 

CH 1(1), CH 1(2), CH 1(3 ), CH 1(4), CH 1(5), CH 1(6) _______________________________________ 
------------------------------------------------------------------------------------------------------ 

----------------------------------------------------------------------------------------------------- 

CH2(1), CH2(2), CH2(3), CH2(4), CH2(5), CH2(6) --------------------------------------- 
------------------------------------------------------------------------------------------------------ 

------------------------------------------------------------------------------------------------------ 

CH3(1), CH3(2), CH3 (3 ), CH3(4), CH3 (5 ), CH3(6) --------------------------------------- 
------------------------------------------------------------------------------------------------------ 

----------------------------------------------------------------------------------------------------- 

CH4(1), CH4(2), CH4(3), CH4(4), CH4(5), CH4(6) -------------------- ------------------- 
------------------------------------------------------------------------------------------------------ 

------------------------------------------------------------------------------------------------------ 

CH5(1), CH5(2), CH5(3), CH5(4), CH5(5), CH5(6) --------------------------------------- 
------------------------------------------------------------------------------------------------------ 

------------------------------------------------------------------------------------------------------ 

RHO 

AVEDATA (1 TO 5) 

AVEZERO (1 TO 5) 

RMEANCOEF (1 TO 8) 

ZEROCOEF (1 TO 8) 

-------------------------------------------------- 

Notes. This file may be considered to consist of two sections. The first section stores 
the test data, reference wind and ambient conditions. Also included are the main 
balance calibration factors so that the original calibration may be traced. The second 
section stores the calculated values from this input data. 
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Input data : 

NDATA is the number of data. AVESPEED is the mean speed of the trolley. 

SAMPFREQ is the sample frequency of the recorded data. WINDVEL is the reference 

wind velocity and PAMB and TAMB are the ambient pressure and temperature. AREF 

and REFHT are the reference area and reference height of the vehicle. XREF and 

ZREF are the co-ordinates of the centre of rotation of the vehicle relative to the 

balance centre. A(1,1) to A(5,5) give the diagonal (main) calibration factors of the 

force balance. CH1 to CH5 list the extracted data for each channel corresponding to 

the test section. 

Calculated values : 

RHO is the density of the air. AVEDATA gives the mean measured values for each 

recorded channel. AVEZERO gives the corresponding zero values previously 

calculated from the end of each run. RMEANCOEF gives the calibrated mean forces 

and moments (about the centre of the balance and the centre of rotation). ZEROCOEF 

gives the corresponding calibrated zeros of the mean forces and moments from the data 

previously calculated at the end of each run. 
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