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Abstract

The thesis presents logic-based formalisms for modelling and reasoning about resource-bounded

multi-agent systems. In the field of multi-agent system, it is well-known that temporal logics such

as CTL and ATL are powerful tools for reasoning about multi-agent systems. However, there is

no natural way to utilise these logics for expressing and reasoning about properties of multi-agent

systems where actions of agents require resources to be able to perform. This thesis extends logics

including Computational Tree Logic (CTL), Coalition Logic (CL) and Alternating-time Temporal

Logic (ATL) which have been used to reasoning about multi-agent systems so that the extended

ones have the power to specify and to reason about properties of resource-bounded multi-agent

systems. While the extension of CTL is adapted for specifying and reasoning about properties of

systems of resource-bounded reasoners where the resources are explicitly memory, communication

and time, the extensions of CL and ATL are generalised so that any resource-bounded multi-agent

system can be modelled, specified and reasoned about. For each of the logics, we describe the

range of resource-bounded multi-agent systems they can account for and axiomatisation systems

for reasoning which are proved to be sound and complete. Moreover, we also study the satisfiability

problem of these logics.
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CHAPTER 1

INTRODUCTION

Actions are costly. An action such as “purchase a Ferrari” can be performed only if there are suf-

ficient funds available. The aim of this thesis is to study logic-based formalisms for describing,

specifying, reasoning about, and ultimately verifying properties of multi-agent systems where ac-

tions of agents are associated with certain costs.

This chapter is devoted to discussing the motivation for establishing such formalisms and

the research objectives. At the end of the chapter is an outline of the remainder of the thesis.

1.1 Motivation

In the field of multi-agent systems, logic-based formalisms are powerful tools to specify multi-

agent systems and to reason about them. There have been many logics defined and developed either

for computational systems in general, such as LTL, CTL [Emerson, 1990] or specially for multi-

agent systems including CL [Pauly, 2001, Pauly, 2002] and ATL [Alur et al., 2002]. Most of those

formalisms are developed in the setting where agents are provided a number of actions and a system

moves from one state to another by the fact that every agent of the system decides to perform an

action. While logics such as LTL and CTL allow us to specify properties of multi-agent systems

which describe the behaviour of a system as a whole, CL and ATL enable the possibility to specify

properties relating to the power of agents or groups of agents.

However, these logics have failed to naturally model the effect of resource bounds on the

strategic abilities of individuals or groups of individuals in multi-agent systems. Let us consider

memory as a common resource in reasoning systems where it is refered to by other common termi-

nologies such as knowledge and beliefs. It has been captured well by epistemic logics [Hintikka,

1962] which notoriously lead to the problem of logical omniscience [Hintikka, 1978]. This problem
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means that there is no boundary on the memory which is used to store beliefs of agents described

by certain epistemic logics. In order to model beliefs of agents in dynamic systems, there have

been several works which extend temporal logics with epistemic modalities such as ATEL [van der

Hoek & Wooldridge, 2003]. However, agents specified by ATEL predictably suffer from the logical

omniscience problem. There have been other logics proposed for modelling memory bounds of

multi-agent systems where there are two common approaches to characterise the effects of mem-

ory bounds on agent abilities. The first one restricts strategic abilities by limiting the amount of

information which are available to agents about systems states and choices in the past. Examples

of logics following this approach are variants of ATL such as ATLIr, ATLir [Schobbens, 2004],

ATL-R∗ [Jamroga & van der Hoek, 2004], ATLBM [Ågotnes & Walther, 2009]. Another approach

is to interpret formula about beliefs by using syntactic structures [Fagin et al., 1995] such as in Lmin

and L◇min [Agotnes & Alechina, 2006], SSEL and DSEL [Ågotnes, 2004], BML [Alechina et al.,

2006a]. Nevertheless, memory is only one aspect of a long story of resource-bounded multi-agent

systems. There are many other resources which can be used by agents and affect significantly their

abilities such as processing power, communication bandwidth, time, electrical power, etc. This fact

gives rise to the need of a logical framework for modelling and reasoning about effects of bounds

of resources used by a system of multiple agents.

This thesis is an effort to provide logic-based formalisms for bounded-resource multi-

agent systems. We start by extending BML to the case of multi-agent systems where agents have

limited memory and communication. In this approach, the amount of resources available for every

agent in a system is recorded in each state. By moving from one state to another, the differences in

the amount of resources between those states reflect the cost of action that every agent performs to

make that move of the system. In other words, there is no need to attach costs to actions in the model

of multi-agent system as they can be inferred from the relation between states and the information

of resources encoded in each state. This approach has the following two disadvantages:

1. It can only use to model multi-agent systems where every agent is endowed with an initial

amount of resources and while these systems evolve, the amount of resources allocated to

every agent reduces gradually, that effectively makes models to shape like trees and increase

the number of states in a model.

2. Moreover, using CTL as the background of the formalism prevent us from expressing prop-

erties of individual agents and sub-groups of agents.

Therefore, the thesis also presents a converse approach where it does not require the information
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of available amount of resources in every state. Instead, costs are associated with every action and

we extend CL and ATL so that the resulting logic-based formalisms allow expressing the properties

about the abilities of individual agents or a sub-group of agents such as the following:

● Given an amount of resources, a sub-group of agents can cooperate to produce a certain result,

● A sub-group of agents can cooperate to maintain some condition until a certain result is

produced without spending more than an amount of resources,

● A sub-group of agents can cooperate to maintain some condition forever without spending

more than an amount of resources.

Such an approach is much different from those restricting strategic abilities in the fact that it can

naturally express properties of resource-bounded multi-agent systems, where, for logics restricting

strategic abilities such as ATLIr, ATLir and ATLBM, it is harder to determine the limitation of the

amount of information about system states and choices in the past to agents from the bounds on

memory.

1.2 Research objectives and contribution

The research objectives which are addressed in this thesis are listed below:

1. To extend the logic BML to the case of system of multiple agents which are memory-bounded

and communication-bounded.

2. To define computational models for the logics above.

3. To develop a logic-based formalism for resource-bounded multi-agent systems based on the

computational models for CL where costs are associated with actions in the models.

4. To develop a logic-based formalism for resource-bounded multi-agent systems based on the

computational models for ATL where costs are associated with actions in the models.

1.3 Outline of the thesis

The study of logic-based formalisms for computational models, especially multi-agent systems, has

been carried out since the beginning day of Computer Science. In the next chapter, we review some

of those formalisms. In Chapter 3, the extension of BML is presented. The resulting logic allows
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specifying properties of multi-agent systems with bounded memory and communication. After that,

in Chapter 4 and 5, we step-by-step introduce two logics which allow us to express properties of

abilities of sub-groups of agents under resource bounds. Finally, Chapter 6 completes the thesis by

some conclusions and some directions for future work. In the following, we give the summary of

the remaining chapters.

Chapter 2 - Background: This chapter provides a literature review of logic-based formalisms which

have been established for modelling computational models. We will pay attention to those for-

malisms which are used especially for the case of multi-agent systems such as normal modal

logics, CTL, CL and ATL.

Chapter 3 - Bounded Memory and Communication Logics: We study an extension of BML which

allows reasoning about systems of multiple agents under bounds on memory, time and com-

munication. In particular, we present the syntax and semantics of the resulting logics to-

gether with related results such as satisfiability problem, soundness and completeness. The

chapter is based on the results from [Alechina et al., 2008c] and partly on [Alechina et al.,

2008a, Alechina et al., 2008b, Alechina et al., 2009c].

Chapter 4 - Resource-bounded Coalition Logic: This chapter introduces a coalition logic for rea-

soning about multi-shot games in resource-bounded multi-agent systems. Besides the syntax

and semantics of the logical languages, we also look at satisfiability problem, sound and com-

plete results. The chapter is based on [Alechina et al., 2009b] and partly on [Alechina et al.,

2009a].

Chapter 5 - Resource-bounded ATL: This chapter studies an extension of ATL for the case of

resource-bounded multi-agent systems. We extend ATL to allow reasoning about strategies

of resource-bounded multi-agent systems. After introducing the syntax and semantics of the

logical language, we study the satisfiability problem and the sound and complete result. The

chapter is based on [Alechina et al., 2010a] and [Nguyen, 2010].

Chapter 6 - Conclusion and Future work: finally, this chapter finishes the thesis with some con-

clusions and points out some directions for the future work.
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CHAPTER 2

BACKGROUND

In this chapter, we review the literature of logic-based formalisms for specifying multi-agent sys-

tems. The chapter begins with a fundamental logic, namely modal logic, which has been used to

express many aspects of agents such as mental states, actions and time. Later in the chapter, we

concentrate on temporal logics. The content of this chapter is based on [Blackburn et al., 2002]

for modal logic, [Emerson, 1990] for CTL, [Pauly, 2002,Pauly, 2001] for coalition logic, and [Alur

et al., 2002, Goranko, 2001, Goranko & van Drimmelen, 2006] for ATL.

2.1 Modal logic

Originally, philosophers developed Modal Logic to study different levels of truth. Apart from true

and false, a fact is possibly true if there is a world on which it is evaluated to be true. In the field of

multi-agent systems, modal logic has been used to express many aspects of agents such as beliefs,

effects of actions and time. For example, an agent is said to believe a fact if the fact is true in every

world that the agent considers possible.

2.1.1 Syntax of modal logic

Formulas in modal logic are defined using the usual logical operators such as negation, conjunction

and disjunction together with modalities ◻ and ◇. Given a finite set Prop such as {p, q, . . .} of

propositional variables, the syntax of Modal Logics is as follows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ ◻ϕ

where p ∈ Prop. The cases of other logical operators are defined as follows: ⊺ ≡ ϕ ∨ ¬ϕ where

⊺ represents true, � ≡ ¬⊺ where � represents false, ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), ϕ → ψ ≡ ¬ϕ ∨ ψ,
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ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ) and ◇ϕ ≡ ¬ ◻ ¬ϕ.

As mentioned above, an application of modal logics is to characterise many aspects of

agents. For example, to express that an agent believes that p is true, we use the formula ◻p. In

the case of beliefs, the modality ◻ is usually renamed by B. Hence, the previous formula becomes

Bp. Let us consider another example which expresses the effect of action, we use the formula ◻p to

express that after the agent performs an action, p becomes true. If we know the name of the action,

such as a, then the formula is often rewritten as [a]p.

2.1.2 Semantics of modal logic

Formulas of modal logic are interpreted by means of Kripke models. A Kripke model M =

(S,R,V ) is composed of a non-empty set S of possible worlds (or we often call states), a binary

relation R over the set S and a truth mapping V ∶ Prop → 2
S which assigns for every propositional

variable a subset of possible worlds on which it is true. The truth of a formula in Modal Logic is

evaluated at a possible world w in a Kripke model M by induction on the structure of the formula

as follows:

● M,w ⊧ p iff w ∈ V (p),

● M,w ⊧ ¬ϕ iff M,w /⊧ ϕ,

● M,w ⊧ ϕ ∨ ψ iff M,w ⊧ ϕ or M,w ⊧ ψ,

● M,w ⊧ ◻ϕ iff for every w′ ∈ S such that (w,w′) ∈ R, M,w′ ⊧ ϕ.

In the last case, a formula ◻ϕ is true at a possible world w if ϕ is true at every possible world

w′ which is related to w by R, that is (w,w′) ∈ R. When Model Logic is used to reasoning about

beliefs of agents, the relationR specifies worlds that an agent considers possible. For example, from

the current world w, an agent considers that w1, w2 and w3 are possible, this situation is described

as (w,wi) ∈ R for every i ∈ {1,2,3}. If ϕ is true in all wi’s, i.e. M,wi ⊧ ϕ, then the agent believes

ϕ at the current world w, i.e. M,w ⊧ Bϕ.

A formula ϕ is satisfiable iff there exists a model M and a possible world w of M such

that ϕ is true at w, that is M,w ⊧ ϕ. A formula ϕ is valid in a model M iff ϕ is true at any possible

world w of M ; in this case, we shall write M ⊧ ϕ. A formula ϕ is valid in a class of models F

iff ϕ is valid in every model M ∈ F ; in this case, we shall write F ⊧ ϕ. A formula ϕ is valid

iff ϕ is valid in every model M ; in this case, we shall write ⊧ ϕ. In the next sections, we recall
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how to syntactically generate valid formulas of modal logics and how to determine if a formula is

satisfiable.

2.1.3 Axiomatisation systems

In Modal Logic, there is an interesting question: is there any syntactic way to generate all valid

formulas with respect to a class of models? It turns out that one way to answer is to define Hilbert-

like axiom systems which allow us to reason about those classes of models. Intuitively, all formulas

generated by an axiom system define a logic. Given such an axiomatisation system X , a generated

formula ϕ is called provable by the system, and we shall denote ⊢X ϕ.

The smallest system is K. It contains all propositional tautologies together with the fol-

lowing schema (K)

◻(ϕ→ ψ) → (◻ϕ→ ◻ψ) (K)

as axioms and two following inference rules

Modus Ponens: given ⊢K ϕ→ ψ and ⊢K ϕ, imply ⊢K ψ,

Generalisation: given ⊢K ϕ, imply ⊢K ◻ϕ.

In the following, we familiarise ourselves with some notions relating to axiomatisation

systems. A K-proof is a finite sequence of formulas each of which is either an axiom or the result

of applying an inference rule upon one or more formulas occurred previously in the sequence. A

formula ϕ is proved in K if it is the last element of some K-proof, written as ⊢K ϕ. The set of all

provable formulas in K is called the logic K. Sometimes, we call elements of K as K-theorems. A

formula ϕ is said to be K-consistent iff its negation is not provable, i.e. /⊢K ¬ϕ.

We say that an axiomatisation system is sound with respect to a class of models if formulas

provable by the system are valid in the class of models. Conversely, an axiomatisation system is

complete with respect to a class of models if any valid formula in the class of models is provable

by the system. In particular, K is sound and complete with respect to the class of Kripke models

(for example, see [Blackburn et al., 2002, p.33, p.193, p.199]). In order to prove the soundness, it is

not hard to show that (K) is valid in any Kripke models. Thinking of modality ◻ as characterising

beliefs, it is intuitive for (K) to be true. Let us consider the following schema:

B(ϕ→ ψ) → (Bϕ→ Bψ) (2.1)
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The schema (2.1) characterises a property of beliefs where if an agent believes ϕ → ψ and ϕ, it

also believes ψ is expressed. Whether we are interested in other properties of beliefs about which

we would like to reason? For example, it is intuitive to believe in what we already believe. This

property can be characterised by the following schema:

Bϕ→ BBϕ (2.2)

It is more interesting that there is a correspondence between (2.2) and the class of transitive Kripke

models, that is (2.2) is valid in a model iff the model is transitive. Similarly, there are other schemas

each of which corresponds to a class of models. In Table 2.1, we list other schemas and their

corresponding classes of models. The definition of each class of models in Table 2.1 is defined as

Name Schema Corresponding class

T ◻ϕ→ ϕ Reflexive Kripke models

D ◻ϕ→◇ϕ Serial Kripke models

4 ◻ϕ→ ◻◻ϕ Transitive Kripke models

5 ◇ϕ→ ◻◇ϕ Euclidean Kripke models

TABLE 2.1: Schemas and the corresponding classes of models

follows:

● A model M = (S,R,V ) is reflexive iff for every w ∈ S, (w,w) ∈ R.

● A model M = (S,R,V ) is serial iff for every w ∈ S, ∃w′ ∈ S such that (w,w′) ∈ R.

● A model M = (S,R,V ) is transitive iff for every w,w′,w′′ ∈ S, if (w,w′) and (w′,w′′) ∈ R
then (w,w′′) ∈ R.

● A model M = (S,R,V ) is euclidean iff for every w,w′,w′′ ∈ S, if (w,w′) and (w,w′′) ∈ R
then (w′,w′′) ∈ R.

From the correspondence between schemas and classes of models, it is straightforward to have the

soundness and completeness of logics which are extensions of K with a subset of schemas (T),

(D), (4) and (5). For example, the logic extending K with the schema (T) is sound and complete

with respect to the class of reflexive models. When a logic is composed of K and additional axiom

schemas Σ1, Σ2, . . . , Σn, it is usually given the name KΣ1Σ2 . . .Σn. Because some of them are so

widely used, they have been given special names such as T for KT, S4 for KT4, weak-S5 for KD5
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and S5 for KT5. A logic A is smaller than a logic B, written as A ⊆ B, iff theorems of A are also

theorems of B. It is worth noticing that the more axiom schemas a logic has, the larger the logic is.

In this sense, K is the smallest modal logic; we also have K ⊆ T ⊆ S4 ⊆ weak-S5 ⊆ S5.

2.1.4 The satisfiability problem of Modal Logic

The problem of determining whether a formula is satisfiable is called satisfiability problem. A

logic is decidable iff its satisfiability problem is decidable and the complexity of its satisfiability

problem is the complexity of the logic. It is well-known that K it is decidable and the complexity is

PSPACE-complete (see, for example, [Blackburn et al., 2002, p.392]).

2.1.5 The logical omniscience problem

As mentioned in Section 2.1.1, one application of modal logic is to describe and reason about beliefs

of agents, or more practically, about the contents of the memory of agents. Then, ◇ is rewritten as

B which stands for what an agent believes and a formula of the form Bϕ is interpreted as an agent

believes that ϕ is true, or ϕ is in its memory. In a model of this modal logic, a set of states to

which we have access to from an actual one can be characterised as a freezing moment which gives

us all the beliefs of the agent. Each state in the set is considered as a possible world and a belief

of the agent must be true at all of its possible worlds. However, axiom (K) gives us the problem

of logical omniscience [Hintikka, 1978] where logical consequences of the agent’s beliefs are also

what the agent beliefs. Only by considering logical tautologies, such amount of beliefs is already

unacceptable for an agent in real life. For example, by knowing about all the rules of the chess

game, anyone could have instantly known about a winning strategy, which is unrealistic.

In order to overcome the problem of logical omniscience, an approach is to interpret

formulas about beliefs of agents by using syntactic structure [Fagin et al., 1995] such as in Lmin and

L◇min [Agotnes & Alechina, 2006], BML [Alechina et al., 2006a], SSEL and DSEL [Ågotnes, 2004].

Since our first attempt in this thesis is inspired by this approach, let us briefly recall the definition

of Lmin which is simple enough but still fully describes it.

In Lmin, belief formulas (such as Bϕ) is considered as an atomic, and models for inter-

preting formulas are syntactic structures. Given a set of propositional variables Prop, the syntax of

Lmin is as follows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ Bϕ ∣min(n)
where p ∈ Prop and n ∈ N. The set of formulas of the form Bϕ is denoted as LB . A model of Lmin
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is a syntactic structure M = (S,V ) where S is a non-empty set of states and V ∶ S → ℘(Prop∪LB)
is a valuation mapping which determines what is true in a state. Given a M = (S,V ), let us denote

V B(s) = {ϕ ∣ Bϕ ∈ V (s)}; then, the truth of a formula ϕ of Lmin at a state s of M is defined by

induction on the structure of ϕ as follows:

● M,s ⊧ p iff p ∈ V (s),
● M,s ⊧ Bψ iff ψ ∈ V B(s),
● M,s ⊧min(n) iff ∣V B(s)∣ ≥ n,

● M,s ⊧ ¬ψ iff M,s /⊧ ψ,

● M,s ⊧ ϕ ∨ ψ iff M,s ⊧ ϕ or M,s ⊧ ψ.

It has been shown in [Agotnes & Alechina, 2006] thatLmin is sound and complete, and its satisfiabil-

ity problem is NP-complete. [Agotnes & Alechina, 2006] also proves that Lmin is expressive enough

to characterise the know-at-least and only-know modalities (△,∇) of SSEL [Ågotnes, 2004].

2.2 Computation Tree Logic

Computation Tree Logic (CTL) is a widely used logic for reasoning about concurrent programs.

As systems of multiple agents can be seen as a set of concurrent programs, CTL can also be used

for reasoning about multi-agent systems. Models of CTL are temporal structures where each state

corresponds to a time point and has several possible future states. Each state may be related to others

by transitions which correspond to the possible moves of the system. From this point of view, time

in CTL is branching to express the non-deterministic nature of systems such as multi-agent systems.

In a multi-agent system, each agent may have more than one action to perform at a time. Depending

on which action each agent decides to perform, the system may move to different states.

2.2.1 Syntax of CTL

CTL is an extended modal logic of which the modality ◻ describes the relationship with states in

the distance of one step of time. Moreover, there are also other modalities to express properties

overtime which span on more than one step of time. Given a finite set Prop = {p, q, . . .}, the syntax

of CTL is as follows.

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ AXϕ ∣ AϕUψ ∣ EϕUψ
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We also use other logical operators such as ∧ and → which are defined in a similar way as Modal

Logics. That is ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ) and ϕ → ψ ≡ ¬ϕ ∨ ψ. The modality AX is similar to the

modality ◻ in Modal Logic. Moreover, we also have EX in CTL which is defined like ◇, that is

EXϕ ≡ ¬AX¬ϕ. In the following, we also define other modalities in CTL as abbreviations:

AFϕ ≡ A⊺Uϕ
EFϕ ≡ E⊺Uϕ
AGϕ ≡ ¬EF¬ϕ
EGϕ ≡ ¬AF¬ϕ

Let us now informally explain the meaning of each modality in CTL. The formula AXϕ means that

whatever move a system makes, ϕ will be true in the next state. The modality EX is similar to ◇ in

Modal Logic where EXϕ is to say that there exists a move by the system so that in the next state,

ϕ is true. The other modalities speak about properties over longer future. The formula AϕUψ says

that for any sequence of moves by the system, ϕ is true until ψ is true. Likewise, the formula EϕUψ
says that there is a sequence of moves by system where ϕ is true until ψ is true. The formula AFϕ

means that for any sequence of moves, ϕ is eventually true. The formula EFϕ means that there is

a sequence of moves where ϕ is eventually true. The formula AGϕ means that for any sequence of

moves, ϕ is globally true. The formula EGϕ means that there is a sequence of moves where ϕ is

globally true.

2.2.2 Semantics of CTL

Semantics of CTL is defined by means of total Kripke structures which are Kripke structures with

an additional requirement where each state are related to at least one other in the binary relation of

the structure. The binary relation over set of states in a total Kripke structure now has a temporal

meaning, when two states are related in the binary relation; this means the system can make a move

from one state to another in one step of time. Then, the modalities AX and EX, which corresponds

to ◻ and ◇ in Modal Logic, respectively, are used to describe what happens after one step in the

future. The other modalities are for the case of longer future, their semantics are defined with the

help of the notion of paths in total Kripke structures.

Given a Kripke model M = (S,R,V ), a path in M is a (possibly infinite) sequence

λ = s0s1 . . . of states such that (si, si+1) ∈ R for any i ≥ 0. Given a path λ = s0s1 . . . of M , we
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denote λ[i] = si for any i ≥ 0 and λ[i, j] = sisi+1 . . . sj for any j ≥ i ≥ 0. Then, the truth of a CTL

formula ϕ at a state s ∈ S is defined by induction on the structure of ϕ as follows:

● M,s ⊧ p iff s ∈ V (p),

● M,s ⊧ ¬ϕ iff M,w /⊧ ϕ,

● M,s ⊧ ϕ ∨ ψ iff M,s ⊧ ϕ or M,s ⊧ ψ,

● M,s ⊧ AXϕ iff for every s′ ∈ S such that (s, s′) ∈ R, M,s′ ⊧ ϕ,

● M,s ⊧ AϕUψ iff for every path λ ofM such that λ[0] = s, there exists i ≥ 0 whereM,λ[i] ⊧
ψ and for every 0 ≤ j < i, M,λ[j] ⊧ ϕ,

● M,s ⊧ EϕUψ iff there exists a path λ of M where λ[0] = s such that there exists i ≥ 0 where

M,λ[i] ⊧ ψ and for every 0 ≤ j < i, M,λ[j] ⊧ ϕ.

As we can see from the definition of the semantics for the modality AX, it is just the same for the

case of the modality ◻ in Modal Logic. However, the last two cases of the semantics are different.

The first thing is that we need to make use of the notion paths in the models. Intuitively, a path from

one state represents a possible future of a system along time where the system travels from state to

state. The formulas AϕUψ says that for any future of the system starting from a state, the formula

ψ will be eventually true and at all the moments before that happens, ϕ remains true. Meanwhile,

the formula EϕUψ relaxes the condition as comparing to AϕUψ, it requires only the existence of a

future. For the other modalities, it is not hard to show the following:

● M,s ⊧ EXϕ iff there is a state s′ ∈ S such that (s, s′) ∈ R, and M,s′ ⊧ ϕ.

● M,s ⊧ AFϕ iff for every path λ ofM such that λ[0] = s, there exists i ≥ 0 whereM,λ[i] ⊧ ϕ.

● M,s ⊧ EFϕ iff there exists a path λ of M where λ[0] = s such that there exists i ≥ 0 where

M,λ[i] ⊧ ψ.

● M,s ⊧ AGϕ iff for every path λ of M and i ≥ 0, M,λ[i] ⊧ ϕ.

● M,s ⊧ EGϕ iff there exists a path λ of M such that for any i ≥ 0, M,λ[i] ⊧ ψ.

We say that a formula ϕ of CTL is satisfiable iff there exists a model M and a state s in

M such that M,s ⊧ ϕ. Similarly, a formula ϕ of CTL is valid iff for any model M and a state s in

M , we have M,s ⊧ ϕ.
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2.2.3 Axiomatisation system for CTL

We present in this section a sound and complete axiomatisation system for CTL. The axiomatisation

system allows us to generate any valid formula of CTL. Similar to Modal logic, it has a set of axiom

schemas each of which characterises the meaning of a temporal modality and inference rules. The

axiom schemas of CTL [Emerson, 1990] are listed as follows:

Ax1. All tautologies of Propositional Logic

Ax2a. EFϕ↔ E⊺Uϕ
Ax2b. AGϕ↔ ¬EF¬ϕ
Ax3a. AFϕ↔ A⊺Uϕ
Ax4. EX(ϕ ∨ ψ) ↔ EXϕ ∨ EXψ

Ax5. AX(ϕ) ↔ ¬EX¬ϕ
Ax6. EϕUψ↔ ψ ∨ (ϕ ∧ EXEϕUψ)
Ax7. AϕUψ↔ ψ ∨ (ϕ ∧AXAϕUψ)
Ax8. EX⊺ ∧AX⊺
Ax9a. AG(θ → (ψ ∧ EXθ)) → (θ → ¬AϕUψ)
Ax9b. AG(θ → (ψ ∧ EXθ)) → (θ → ¬AFψ)
Ax10a. AG(θ → (ψ ∧ (ϕ→ AXθ))) → (θ → ¬EϕUψ)
Ax10b. AG(θ → (ψ ∧AXθ)) → (θ → ¬EFψ)
Ax11. AG(ϕ→ ψ) → (EXϕ→ EXψ)
The two inference rules of CTL [Emerson, 1990] are listed as follows:

● Given ⊢CTL ϕ→ ψ and ⊢CTL ϕ, imply ⊢CTL ψ

● Given ⊢CTL ϕ, imply ⊢CTL AGϕ
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The above axiomatisation system for CTL has been proved to be sound and complete with respect

to total Kripke structures [Emerson & Halpern, 1982, Emerson, 1990]. Moreover, we have the

complexity result of CTL that the satisfiability problem of CTL is EXPTIME-complete [Emerson,

1990]. The model checking problem is to determine whether a given CTL formula is true or not at

a given state of a given model. From [Clarke & Emerson, 1982], we have the complexity result that

the model checking problem for CTL is in deterministic polynomial time.

2.3 Coalition Logic

CTL logic is a powerful logic for reasoning about the ability of a multi-agent system as a whole.

However, it is difficult to use CTL to reason about the ability of individuals or subsets of individuals

in a multi-agent system. In this section, we introduce coalition logic [Pauly, 2002] (or CL), which

allows us to do so. We first present concepts of Game Frame which are used to defined semantics

of CL. Later after that is the syntax and semantics of CL. At the end of the section, we recall some

results of axiomatisation system, complexity and model checking for CL.

2.3.1 Game Frames

Coalition logic allows reasoning about Game Frames which explicitly contain individual agents and

their abilities at every state of the frames. A Game Frame is defined as follows.

Definition 1. A Game Frame G is a tuple (N,{Σi ∣ i ∈ N}, S, T, o) in which

● N is a non-empty finite set of agents

● Σi is a non-empty set of actions for each agent i ∈ N
● S is a non-empty set of states

● T ∶ S ×N → ℘(⋃i∈N Σi) is a mapping which assigns the available actions for every agent

i ∈ N at a state s ∈ S and satisfies the following conditions:

1. T (s, i) ⊆ Σi

2. T (s, i) /= ∅
● o ∶ S×Πi∈NΣi → S is a partial mapping which assigns the outcome of a joint action (ai)i∈N ∈

Πi∈NΣi, where ai ∈ T (s, i), at a state s ∈ S.
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Let us discuss the definition of game frames. A game frameG = (N,{Σi ∣ i ∈ N}, S, T, o)
contains a non-empty set of states on which the system of multiple agents inN operates. The system

moves from one state to another by the fact that each agent decides an action which is available at

the starting state. The set of action available to each agent at a state is determined by the function

T . The first condition on T , saying that T (s, i) ⊆ Σi, means that actions available to an agent must

be among those belonging to the agent. Then, the second condition T (s, i) /= ∅ implies that at any

state, every agent must be able to perform some action. We can see that this condition is similar

to the total condition in models of CTL, so that systems never stuck at a state. After every agent

decides an action to perform, the destination state from the current one is determined by the partial

output mapping o. For convenience, we denote a joint action for a coalition C ⊆ N as aC = (ai)i∈C .

We also extend the function T for the case of coalitions as follows:

T (s,C) = {aC = (ai)i∈C ∣ ∀i ∈ N ∶ ai ∈ T (s, i)}

In CL, the property of interest to reason about is the ability of individual agents or groups of in-

dividual agents; that is whether there is an action for an individual agent or a joint action for a

group of agents to perform so that the systems moves to a state among those of interest without car-

ing about which actions all other agents perform. Formally, we state the property in the following

way: at a state s, can a coalition C ⊆ N be effective in achieving a set of states X ⊆ S? Given a

game frame G, the notion of effectivity for a coalition C can be captured by the effectivity function

EG ∶ S → ℘(N) → ℘(℘(S)) which is defined as follows:

X ∈ EG(s)(C) iff ∃aC ∈ T (s,C)∀aC̄ ∈ T (s, C̄) ∶ o(s, (aC , aC̄)) ∈X

In other words, EG(s)(C) contains all sets of states for which the coalition C is effective at state s.

We may notice for the extreme case, when C = ∅, it is straightforward to see thatEG(s)(∅) defines

all sets of states that is unavoidable for the system, that is given X ∈ EG(s)(∅), for any joint action

aN , the system will move to a state within X .

Given an effectivity function EG of a game frame G, we can easily find some trivial

properties of EG such as S ∈ EG(s)(C) for any s ∈ S and C ⊆ N . Apart from those, the effectivity

structure EG also has the following properties with given names:

● Outcome-monotonicity:

∀s ∈ S,∀C ⊆ N,∀X ⊆X ′ ⊆ S ∶X ∈ EG(s)(C) ⇒X ′ ∈ EG(s)(C)
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● Coalition-monotonicity:

∀s ∈ S,∀C ⊆ C ′ ⊆ N,∀X ⊆ S ∶X ∈ EG(s)(C) ⇒X ∈ EG(s)(C ′)

● C-Regularity:

∀s ∈ S,∀X ⊆ S ∶X ∈ EG(s)(C) ⇒ X̄ ∉ EG(s)(C̄)
EG is regular if it is C-regular for all C ⊆ N .

● C-Maximality:

∀s ∈ S,∀C ⊆ N,∀X ⊆ S ∶X ∉ EG(s)(C) ⇒ X̄ ∈ EG(s)(C̄)
EG is maximal if it is C-maximal for all C ⊆ N .

● Superadditivity:

∀s ∈ S,∀C1, C2 ⊆ N and C1 ∩C2 = ∅,∀X1,X2 ⊆ S ∶
X1 ∈ EG(s)(C1) and X2 ∈ EG(s)(C2) ⇒X1 ∩X2 ∈ EG(s)(C1 ∪C2)

It turns out that studying properties of effectivity functions originated from game frames is useful

for defining axiomatisation systems of CL. Given an effectivity function in general, i.e. an arbitrary

function E ∶ S → ℘(N) → ℘(℘(S)), we call it playable iff it has the following properties:

1. ∀C ⊆ N : ∅ ∉ E(C),
2. ∀C ⊆ N : S ∈ E(C),
3. N -maximality,

4. Outcome-monotonicity,

5. Super-additivity.

We have the following result about the correspondence between playable effectivity function and

game frames in [Pauly, 2002].

Lemma 1. 1 An effectivity functionE is playable iff it is the effectivity function of some game frame.

1Strictly speaking, Lemma 1 fails due to a flaw in Pauly’s proof. In fact, the definition of playable effectivity function

needs at least one more requirement which we shall call N -determinacy and present in Section 4.4.4.
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What Lemma 1 tells us is twofold. Firstly, playable effectivity functions and game frames

are interchangeable. As we will see later when defining semantics of CL, we use playable effectivity

functions to define models of CL instead of game frames. Secondly, the lemma also reveals axiom

schemas for the axiomatisation system of CL.

2.3.2 Syntax and semantics

CL contains modalities which have the form of [C] where C ⊆ N . A formula of the form [C]ϕ

expresses the property that the coalition C has a joint action to force ϕ true in the next state, in-

dependently on the decisions of other agents out of C. Given a finite set Prop of propositional

variables and a finite set N of agents, the syntax of CL is as follows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ [C]ϕ

where p ∈ Prop and C ⊆ N . The other logical operations are defined as usual: ϕ∧ψ ≡ ¬(¬ϕ∨¬ψ),
ϕ→ ψ ≡ ¬ϕ ∨ ψ, ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ).

Formulas of CL are interpreted by means of effectivity models. An effectivity model M

is a tuple (S,E,V ) where:

● S is a non-empty set of states,

● E ∶ S → ℘(N)→ ℘(℘(S)) is a playable effectivity function,

● V ∶ Prop → ℘(S) is a mapping which assigns truth of propositional variables at each state in

S.

Given a effectivity model M = (S,E,V ), the truth of a formula in CL is defined at a state

of the model by induction on the structure of the formula as follows:

● M,s ⊧ p iff s ∈ V (p),

● M,s ⊧ ¬ϕ iff M,s /⊧ ϕ,

● M,s ⊧ ϕ ∨ ψ iff M,s ⊧ ϕ or M,s ⊧ ψ,

● M,s ⊧ [C]ϕ iff {s′ ∣M,s′ ⊧ ϕ} ∈ E(s)(C).
In the definition of semantics for CL, the last case says that the formula [C]ϕ is true at a state s

iff it is effective for the coalition C to force the system to go to a state where ϕ is true. Using the
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effectivity function E in the model, this requirement is equivalent to the condition {s′ ∣ M,s′ ⊧
ϕ} ∈ E(s)(C). Because of Lemma 1, we can also define semantics of CL by means of game

models. A game model M is a pair (G,V ) where G = (N,{Σi}i∈N , S, T, o) is a game frame and

V ∶ Prop → ℘(S) is a mapping which assigns the truth of propositional variables at each state in S.

Then, the last case of the semantics is defined as follows:

● M,s ⊧ [C]ϕ iff ∃aC ∈ T (s,C) such that ∀aC̄ ∈ T (s, C̄): M,o(s, (aC , aC̄)) ⊧ ϕ
As usual, a formula ϕ in CL is satisfiable iff there exists an effectivity model M and a

state s such that M,s ⊧ ϕ. ϕ is valid in a model M iff M,s ⊧ ϕ for any state s of M . Then, ϕ is

valid iff it is valid in any effectivity model.

2.3.3 Axiomatisation system

Given a set N of agent, the axiomatisation system allows us to generate valid formulas of Coalition

Logic. This axiomatisation is defined by the following axiom schemas and inference rules:

Axioms

(�) ¬[C]�
(⊺) [C]⊺
(N) ¬[∅]ϕ→ [N]¬ϕ
(M) [C](ϕ ∧ ψ)→ [C]ϕ
(S) [C1]ϕ1 ∧ [C2]ϕ2 → [C1 ∪C2](ϕ1 ∧ϕ2) where C1 ∩C2 = ∅

Inference rules

Modus Ponens Given ⊢CL ϕ→ ψ and ⊢CL ϕ, imply ⊢CL ψ

Equivalence Given ⊢CL ϕ↔ ψ, imply ⊢CL [C]ϕ↔ [C]ψ

A formula ϕ is a theorem of CL iff ⊢CL ϕ. ϕ is consistent iff ¬ϕ is not a theorem of CL. We have

the result from [Pauly, 2002] that the above axiomatisation system of CL is sound and complete with

respect to effectivity models. The proof is done by constructing a canonical effectivity model of ϕ

and showing that the effectivity function embodied in the canonical model is playable. Moreover,
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also from [Pauly, 2002], we have the complexity result of CL that the satisfiability problem for CL

is PSPACE-hard.

2.4 Alternating-time Temporal Logic

Alternating-time Temporal Logic (ATL) [Alur et al., 2002] is an extension of CTL for modelling

multi-agent systems. The quantifiers over future paths in CTL are parametrised by sets of agents

in ATL for expressing the selective quantification over possible futures as a result of the interaction

between a coalition and its complement. In other words, ATL allows us to model the existence of

strategies for coalitions of agents in a system to achieve certain goals in short (one step computa-

tions) and long (many step computations) futures. When a system contains only one agent, ATL is

equivalent to CTL. Moreover, CL can also be seen as a fragment of ATL as CL only expresses the

existence of strategies for coalitions to achieve goals in one step futures.

Semantics of ATL is initially defined by means of Alternating-time Transition Systems

(ATS) which is later generalised to Concurrent Game Structures (CGS). It is worth noticing that

both ATSs and CGSs are equivalent to Game Frames and Effectivity Models which were used in the

previous section to define the semantics of CL. In this section, we briefly review ATL by looking

at the definition of CGS, then, the syntax and semantics of ATL. Finally, we recall some essential

results of ATL including the axiomatisation system for ATL, its complexity for the satisfiability

problem and the model-checking problem.

2.4.1 Concurrent Game Structures

A Concurrent Game Structure describes a multi-agent system where the system transits from one

state to another as the result of performing a joint action by all the agents in the systems. In this

section, we review the concept of CGSs together with related notions.

Definition 2. A Concurrent Game Structure S is a tuple (n,Q,Prop, V, d, σ) where

● n is the number of agents in the system. For convenience, the agents are identified with the

number 1,. . . ,n and we denote the set of agent by N = {1, . . . , n}.

● Q is a non-empty set of states.

● Prop is the set of propositional variables.
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● V ∶ Prop → ℘(Q) is a mapping which assigns the truth of propositional variables at each

state in Q.

● d ∶ Q ×N → N is a mapping which assigns the number of actions available to each agent at

every state of Q. It is required that d(q, i) ≥ 1 for all q ∈ Q and i ∈ N . For convenience, the

actions available to an agent i at a state q is identified with the numbers 1,. . . ,d(q, i). Then,

we write D(q) to denote the set Πi=1,n{1, . . . , d(q, i)} of all joint actions of agents in N .

● Given a state q ∈ Q and a ∈ D(q), σ(q, a) defines the result state when agents in N perform

the joint action a at q.

CGSs have a requirement on the mapping d which defines the number of actions available

for every agent that d(q, i) ≥ 1 where i ∈ N and q ∈ Q. It is similar to the requirement of Game

Frames on the mapping T which determines the set of actions available for every agent at a state

where the returning sets by the mapping T are non-empty. This means from any state in the system,

it is always possible to transit to another one by some joint action of every agent.

Given a CGS S , we denote the set of available actions for each agent at a state asD(q, i) =
{1, . . . , d(q, i)}. Similarly, we denote the set of joint actions of a coalition A ⊆ N at a state as

D(q,A) = Πi∈AD(q, i). When A = N , we simply write D(q) to denote the set of available joint

actions for all agents in the system.

We define that a state q ∈ Q is a successor of another state q′ ∈ Q iff there exists a joint

action a ∈D(q) such that σ(q, a) = q′. Then, a computation in S is an infinite sequence λ = q0q1 . . .

of states in Q where for every i ≥ 0 we have that qi+1 is the successor of qi. For convenience, we

denote λ[i] = qi, λ[i, j] = qi . . . qj for any j ≥ i ≥ 0.

Given an joint action aA ∈ D(q, a) of a coalition A at state q ∈ Q, we define the set of

possible outcomes by the action aA as follows:

out(q, aA) = {q′ ∈ Q ∣ ∃aĀ ∶ σ(q, (aA, aĀ) = q′}

The last concept we mention in this section is strategies. It is essential to define the

semantics of ATL. Given a CGS S , we define a strategy FA for a coalition A ⊆ N as a mapping

from the set Q+ of finite and non-empty sequences of states to an joint action for A such that

FA(λq) ∈ D(q,A). When the coalition A follows the strategy FA starting from some state q0,

agents in A decide to perform the joint action FA(q0). Because agents out of A may have many

actions available to perform, each joint action by the complement coalition of A can transit the
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system to a different state q1. From each state q1, agents in A decide to perform the joint action

FA(q0q1) and joint actions available to the complement coalition of A once again transit the system

to different states q2. This happens again and again to form a set of possible computations of the

strategy FA. Formally, we define the set of possible computations of a strategy FA, starting from a

state q0 ∈ Q, as follows:

out(q0, FA) = {q0q1 . . . ∣ ∀i ≥ 0 ∶ qi+1 ∈ out(qi, FA(q0 . . . qi))}

2.4.2 Syntax and Semantics of ATL

ATL is an extension of CTL to express properties of coalitional abilities in short and long time

futures. Given a finite set N of agents and a set Prop of propositional variables, the syntax of ATL

is defined as follows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ ⟪A⟫◯ϕ ∣ ⟪A⟫◻ϕ ∣ ⟪A⟫ϕUψ

where p ∈ Prop and A ⊆ N . As usual, other logical operators are defined as abbreviations: ϕ ∧ ψ ≡

¬(¬ϕ ∨ ¬ψ), ϕ→ ψ ≡ ¬ϕ ∨ ψ and ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ).
As we mentioned in the previous section, the semantics of ATL is defined by means of

CGSs. Given a CGS S = (n,Q,Prop, V, d, σ), the truth of a formula in ATL at a state of S is defined

inductively on the structure of the formula as follows:

● S, q ⊧ p iff s ∈ V (p).
● S, q ⊧ ¬ϕ iff M,s /⊧ ϕ.

● S, q ⊧ ϕ ∨ ψ iff M,s ⊧ ϕ or M,s ⊧ ψ.

● S, q ⊧ ⟪A⟫◯ϕ iff there exists a strategy FA for the coalition A such that for every λ ∈

out(q,FA), we have that S, λ[1] ⊧ ϕ.

● S, q ⊧ ⟪A⟫◻ϕ iff there exists a strategy FA for the coalition A such that for every λ ∈

out(q,FA) and for every i ≥ 0, we have that S, λ[i] ⊧ ϕ.

● S, q ⊧ ⟪A⟫ϕUψ iff there exists a strategy FA for the coalition A such that for every λ ∈

out(q,FA), there is a number i ≥ 0 where S, λ[i] ⊧ ψ and for any i > j ≥ 0, we have that

S, λ[j] ⊧ ϕ.
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For the formula ⟪A⟫◯ϕ, an equivalent way to define its semantics is to use joint actions.

That is S, q ⊧ ⟪A⟫◯ϕ iff there is a joint action aA ∈ D(q,A) such that for all q′ ∈ out(q, aA), we

have that S, q′ ⊧ ϕ. Therefore, one can see that the modality ⟪A⟫◯ is equivalent to the modality

[A] in CL. In the extreme case when A = ∅, the formula ⟪∅⟫◯ϕ expresses the property that it

is unavoidable that ϕ is true after the system transits to another state. That is for any joint action

available to the grand coalition N , ϕ is true in the next state.

The ◻ modality in ATL has the semantics which is similar to that of G operator in CTL.

A formula ⟪A⟫◻ϕ is true at a state of a CGS iff there exists a strategy for the coalition A such that

ϕ is true along any possible computation of the strategy. In the case when A is the empty coalition,

the formula ⟪∅⟫◻ϕ has the same meaning as the formula AGϕ in CTL, that is ϕ unavoidable for

the whole system. The last form of formula ⟪A⟫ϕUψ in ATL says that there exists a strategy for

the coalition A to keep ϕ true until ψ is eventually true.

As usual, a formula ϕ in ATL is satisfiable iff there exists a CGS and a state where ϕ is

true. ϕ is valid in a CGS iff it is true at any state of the CGS; and ϕ is valid iff it is valid in any CGS.

2.4.3 Axiomatisation system

An axiomatisation system to generate valid formulas of ATL has been introduced in [Goranko &

van Drimmelen, 2006]. We have mentioned that CL is a fragment of ATL, therefore there is no

surprise that axioms for CL also appears as axioms for ATL. In the following, we list all the axioms

and inference rules of the axiomatisation system for ATL. Notice that A,A1,A2 ⊆ N are arbitrary

coalitions of agents.

Axioms:

(PL) Tautologies of propositional variables

(�) ¬⟪A⟫◯�
(⊺) ⟪A⟫◯⊺
(N ) ¬⟪∅⟫◯ϕ→ ⟪N⟫◯¬ϕ
S ⟪A1⟫◯ϕ1 ∧ ⟪A2⟫◯ϕ2 → ⟪A1 ∪A2⟫◯(ϕ1 ∧ϕ2) where A1 ∩A2 = ∅
FP◻ ⟪A⟫◻ϕ↔ ϕ ∧ ⟪A⟫◯⟪A⟫◻ϕ
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GFP◻ ⟪∅⟫◻(θ → (ϕ ∧ ⟪A⟫◯θ)) → ⟪∅⟫◻(θ → ⟪A⟫◻ϕ)
FPU ⟪A⟫ϕUψ↔ ψ ∨ (ϕ ∧ ⟪A⟫◯⟪A⟫ϕUψ)
LFPU ⟪∅⟫◻((ψ ∨ (ϕ ∧ ⟪A⟫◯θ)) → θ) → ⟪∅⟫◻(⟪A⟫ϕUψ → θ)

Inference rules:

Modus Ponens: Given ⊢ATL ϕ→ ψ and ⊢ATL ϕ, implies ⊢ATL ψ

⟪A⟫◯-monotonicity: Given ⊢ATL ϕ→ ψ, implies ⊢ATL ⟪A⟫◯ϕ→ ⟪A⟫◯ψ

⟪∅⟫◻-necessitation Given ⊢ATL ϕ, implies ⊢ATL ⟪∅⟫◻ϕ

As usual, we have the notions of theorem and consistency in ATL. A formula ϕ is a the-

orem of ATL iff ⊢ATL ϕ. ϕ is consistent iff its negation is not a theorem of ATL, i.e. /⊢ATL ¬ϕ.

The soundness and completeness of the above axiomatisation system for ATL have been proved

in [Goranko & van Drimmelen, 2006]. In order to prove the completeness of ATL, the idea

in [Goranko & van Drimmelen, 2006] is to construct a tree-like model for a consistent formula

where each agent has a fix number of available actions at every state of the model. We also have the

result of the satisfiability problem for ATL in [Goranko & van Drimmelen, 2006] that the complexity

of ATL over a fixed and finite set of agents is EXPTIME-complete.
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CHAPTER 3

BOUNDED MEMORY-COMMUNICATION LOGIC

3.1 Introduction

This chapter presents a logic, namely Bounded Memory-Communcation Logic (BMCL), to model

and reason about systems of multiple reasoning agents whose resources of memory and communi-

cation are bounded. We extend the logic BML introduced in [Alechina et al., 2006a] which is for

reasoning about systems of a single memory-bounded reasoner to the case of systems of multiple

reasoning agents. Sometimes we also refer to reasoning agents as reasoners.

BML is used for reasoning about systems of single agents, the logic does not support

modelling communication as well as reasoning about the effects of communication bounds on the

abilities of the single agent. Since BMCL is an extension of BML where we take into account the

fact multiple reasoning agents in a system can communicate with each other to exchange infor-

mation. Communication between agents can be vital to them when some information, which they

cannot derive by themselves, is needed in the middle of their reasoning processes. In such systems,

communication is considered as a resource where the limitation on the total amount of exchanging

information can affect the ability of some agents, hence, the whole system.

By setting the limitation on both memory of reasoners in the systems, i.e. the amount of

information that each reasoner can hold in its memory at a time, and communication, i.e. the total

amount of information that each reasoner can send and receive from other agents in the system,

the logic BMCL, which is based on CTL, allows us to reason about the ability of the system to

derive certain results possibly within a restriction of time. This section is organised as follows. In

the next section, we discuss in more detail the models of systems of multiple reasoners. After that

are the syntax and the semantics of the logic BMCL. Then, we study the satisfiability problem of

BMCL. Although the problem of satisfiability of BML was missing in [Alechina et al., 2006a], the
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approach that we introduced in this chapter serves well for the case of BML. Finally, we introduce

an axiomatisation system for BMCL which is shown to be sound and complete. Since BMCL is

an extension of BML, this soundness and completeness result of BMCL also works well for the

counterpart of BML.

3.2 Systems of multiple reasoners

We begin this section by a motivating example. Assume that we are requested to deploy a safety-

critical system in a new building measuring environmental indexes such as temperature, humidity,

the amount of carbon dioxide gas and the amount of leaking household gas. The system consists

of multiple detecting agents (detectors) which are distributed within the building. For convenience,

each detector must be relatively small in size, and can perform some simple forms of reasoning such

as to infer the level of danger based on measurements of the environment. In order to increase the

effectiveness and sensitivity of the system, detectors can communicate with each other to exchange

their reasoning results. Because of the size requirement, each detector has a limitation on the mem-

ory to hold information, on the battery which leads to the limitation on how many messages they

can send and receive through communication. During the design phase of the system, it is important

to verify the correctness and effectiveness of the system such as how many detectors are necessary?

Can it operate correctly (raise alarm when and only when some measurement bypass a threshold of

safety)? How long can a detector operate without changing the battery?

In this section, we abstract such systems as systems of multiple reasoners about which the

logic BMCL reasons. Formally, a system of multiple reasoners consists of a finite number n ∈ N
of reasoners. Each reasoner has an internal memory and a set of inference rules for the purpose

of reasoning about new information. Moreover, each reasoner is associated with a knowledge base

whose size is considerably larger, so that it cannot fit into the internal memory. In order to derive a

goal, a reasoner fetches necessary premises from its knowledge base, then applies an inference rule

to derive the goal or intermediate results. If necessary, the reasoner repeats fetching more premises

from the knowledge base and performing other inference rules again and again until the goal is

achieved.

We have mentioned the size of the internal memory which holds formulas including

premises from the knowledge base, intermediate results and possibly goals of a reasoner. Intu-

itively, one may assume that each cell of an internal memory can store a single symbol used in

a formula, then the size of the internal memory is defined as the number of cells in the internal
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memory. In this situation, if we have a memory of 5 cells, it can hold only two formulas, p → q

which contains three symbols and p (which contains one symbol). One may also prefer having an

empty cell to separate these two formulas in the internal memory, hence, it is required that the total

number of cells used to store two formulas is exactly 5, i.e. the internal memory is full and cannot

hold another formula of any size. The internal memory cannot also hold two formulas p → q and

q → r because the number of symbols in both formulas is six which bypasses the size of the internal

memory. However, we take into account a simpler way to to calculate the size of a internal memory

where cells of the internal memory is defined in a different way. We assume that each cell of an

internal memory can hold one formula of arbitrary length. This means an internal memory of size 5

can hold at most 5 formulas. By using this definition of cell, the representation of any result relat-

ing to the logic BMCL is also technically simpler than the case when a cell can hold only a single

symbol. Therefore, we make an assumption in this chapter that each cell of the internal memory

of a reasoning agent can hold a formula of arbitrary length and the size of the internal memory is

the maximal number of formulas which it can hold at the same time, i.e. the number of cells of

the internal memory. It is worth noticing that the results of the logic BMCL where each cell of an

internal memory is defined to hold only a single symbol can be adapted from the results we present

in this chapter, however, the representation will be unnecessarily more complicated.

In a multi-agent system, agents have the ability to share reasoning results by exchanging

information with each other. Such a communication ability might help an agent to reduce time

for deriving a certain goal. For example, an agent i can carry out the derivation of a result which

is one of the intermediate requirements for another agent j to conclude its goal. Then, while the

agent j attempts to generate intermediate results, the agent i helps j to have one of them. This

reduces the amount of time j needs to conclude the goal in comparison with the situation when j

has to derive all the intermediate results by its own. To model the communication between agents,

the common approach is to define a protocol which specifies how agents establish the connection

between themselves and how to exchange information. A simple and usual way is to use the ask-tell

protocol as presented in [Alechina et al., 2006b]. In ask-tell protocol, an agent requests information

from another by sending an ask message where it specified the information that it would like to have.

Let us assume that this action cost one step of time. If the other agent are holding the requested

information, it simply replies to the asking agent a tell message where it the requested information

is confirmed. Again, the replying action is assumed to consume another step of time. Overall, a

successful communication by the ask-tell protocol requires at least two steps of time to complete.

We further simplify the ask-tell protocol by introducing the copy protocol where the actions of
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sending an ask message and replying a tell message, which span in two steps of time, are combined

into a single one. In the copy protocol, if an agent asks another for information and the other has

that information, it will reply immediately. The asking and replying are combined into one action,

namely copy, which can be carried out by an “asking” agent if and only if the requested information

is available in the internal memory of the agent to be asked. Although the copy protocol may reduce

the amount of time for an agent to derive a goal, it still can simulate the ask-tell protocol where

the ability of performing the copy action corresponds to a “reply” action replying the ask message

which could be sent some steps previously. When an agent is unable to perform the copy action,

this would mean the asked agent does not have an answer (because either it is deriving the answer

or it is impossible to do so) for an ask message which is sent some steps previously. Notice that

using the ask-tell protocol, it is usually required to have a buffer in the model of each agent to hold

the information which are requested by the others. However, it is not required when using the copy

protocol. Hence, using the copy protocol also simplify the model of agents and communication

between agents. Communication between agents can be restricted by setting a maximal amount

of information which can be exchanged. Similar to the case of memory, the maximal amount of

information can be understood as either the maximal number of symbols used to formalise formulas

exchanged between agents or, in a simpler approach, the maximal number of messages an agent can

send to others. In the case when we use the copy protocol to model communication between agents,

we set the limitation on communication by restricting the maximal number of times each agent can

perform a copy action.

In such a system of multiple reasoners, each reasoning agent has an internal memory

whose size is bounded by some number. We assume that each agent also has the following actions:

Read: An agent retrieves a premise from its knowledge base and places it in some cell of its internal

memory by using a read action. If the cell is not empty, the premise will overwrite the formula

stored in the cell.

Infer: An agent uses an infer action to apply some inference rule over some premises in its internal

memory. Similar to the read action, the resulting formula obtained by applying the inference

rule is placed into the internal memory which may overwrite some formula if the chosen cell

is not empty.

Copy: An agent performs a copy action if it wants to copy a formula which is stored in the internal

memory of another agent into its memory. Similar to two actions above, storing a formula
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may overwrite some formula in the internal memory of the agent which performs the copy

action if the chosen cell is not empty.

Idle: This action is given to every agent for the case when they do not want to do anything. When

an agent performs the idle action, its state, i.e. the content of the internal memory, remains

unchanged.

Let us consider an example of a system of two reasoning agents, namely agent 1 and agent

2. Each agent has an internal memory of size 2. The restriction on communication is 2, i.e. each

agent can perform the copy action at most twice. They have the ability to reason within propositional

logic and share the same set of inference rules which contains only conjunction introduction and

modus ponens. These two rules are defined as follows.

Conjunction introduction

ϕ1 ϕ2

ϕ1 ∧ϕ2

Modus ponens

ϕ1 → ϕ2 ϕ1

ϕ2

Informally, the conjunction introduction inference rule means that if an agent has two

formulas ϕ1 and ϕ2 in its memory, it concludes a new formula ϕ1∧ϕ2 and places ϕ1∧ϕ2 somewhere

in its internal memory. Similarly, an agent performs the modus ponens inference rule if it has two

formulas of the forms ϕ1 → ϕ2 and ϕ1, then the agent concludes ϕ2 and places it ϕ2 somewhere in

its internal memory.

Two agents also share the same knowledge base which contains the following formulas:

● A1, A2, A3, A4

● A1 ∧A2 → B1, A3 ∧A4 → B2

● B1 ∧B2 → C

The goal for the system of these two agents is to conclude that C is true. Intuitively, C should

be the case by implying B1 and B2 from A1, A2, A3 and A4 with the help of both inference

rules: conjunction introduction and modus ponens. However, with the restriction on the size of

the internal memory for both agents, it is impossible for one of them to imply C only by itself.

The problem is that, once an agent obtains either B1 or B2, it must reserve one cell in the internal

memory to hold this intermediate result. In order to imply C, the agent needs to have also the

other intermediate result, either B2 or B1, respectively. However, it is required to have two cells
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of memory to do so in order to load either A3 and A4 or A1 and A2, respectively, into the internal

memory. Nevertheless, with the cooperation of both agents, the system can conclude C. Figure 3.1

illustrates one of possible traces for the system to conclude C where each line describes the state of

Step Memory Op. Memory Op.

0 {} Read {} Read

1 {A3} Read {A1} Read

2 {A3,A4} Infer {A1,A2} Infer

3 {A3,A3 ∧A4} Read {A1 ∧A2,A2} Read

4 {A3 ∧A4 → B2,A3 ∧A4} Infer {A1 ∧A2,A1 ∧A2→ B1} Infer

5 {A3 ∧A4 → B2,B2} Copy {A1 ∧A2,B1} Idle

6 {B1,B2} Infer {A1 ∧A2,B1} Idle

7 {B1,B1 ∧B2} Read {A1 ∧A2,B1} Idle

8 {B1 ∧B2 → C,B1 ∧B2} Infer {A1 ∧A2,B1} Idle

9 {C,B1 ∧B2} {A1 ∧A2,B1}
FIGURE 3.1: Two agents cooperate to derive C.

the internal memory for each agent and actions which are chosen correspondingly to perform. The

result of these actions is the internal memory of two agents in the next line. At the initial step, i.e.

step 0, both agents have empty memories and decide to perform a read action where agent 1 and

2 read the formulas A3 and A1 from their knowledge bases, respectively. At step 1, they perform

another read action so that in the next step, A4 andA2 are added into the internal memory of agent 1

and 2, respectively. At this point, agent 1 and 2 perform the conjunction introduction inference rule

to produce A3 ∧A4 and A1 ∧A2, respectively. These intermediate results overwrite the formula A4

in the internal memory of agent 1 andA1 in the internal memory of agent 2, notice that the selection

of formulas to be overwritten is arbitrary. Then, two agents load the “rule” formulas A3 ∧A4 → B2

and A1 ∧A2 → B1 and apply the modus ponens inference rule to conclude B2 and B1, respectively.

At step 5, agent 1 performs a copy action to retrieve B1 from the internal memory of agent 2. Then,

it applies another conjunction introduction inference rule to obtain B1 ∧B2 at step 6. After that, it

loads the rule formulaB1∧B2 → C and performs the modus ponens inference rule to conclude C at

step 9. Notice that from step 5, agent 2 does nothing. It constantly performs the idle action and the

reasoning task of concluding C after step 5 is done only by agent 1. The above trace of computation

is one of possible traces for the system to conclude C, it is easy to draw another trace where both

agents or only agent 2 concludes C at the end.

In this example, it is easy to see that 9 steps of time is the minimal time required for the
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system to conclude C. This minimal time can change if we alter the restriction on memory and

communication. For example, if we forbid communication by setting the limitation of communi-

cation to 0, it is not possible for the system to conclude C as both agents do not have the ability

to conclude C on their own. We can relax the restriction on memory by increasing the size of the

internal memories to 3. In this configuration, the minimal time to conclude C also increases to 13

steps of time, as depicted in Figure 3.2.

Step Memory Op. Memory Op.

0 {} Read {} Idle

1 {A3} Read {} Idle

2 {A3,A4} Infer {} Idle

3 {A3,A3 ∧A4} Read {} Idle

4 {A3 ∧A4 → B2,A3 ∧A4} Infer {} Idle

5 {A3 ∧A4 → B2,B2} Read {} Idle

6 {A1,A3 ∧A4 → B2,B2} Read {} Idle

7 {A1,A2,B2} Infer {} Idle

8 {A1 ∧A2,A2,B2} Read {} Idle

9 {A1 ∧A2,A1 ∧A2 → B1,B2} Infer {} Idle

10 {A1 ∧A2,B1,B2} Infer {} Idle

11 {B1 ∧B2,B1,B2} Read {} Idle

12 {B1 ∧B2,B1 ∧B2 → C,B2} Infer {} Idle

13 {C,B1 ∧B2 → C,B2} {}
FIGURE 3.2: Agent 1 concludes C by itself.

In general, the ability of systems of reasoning agents varies depending on different settings

on the restriction of memory and communication. Hence, the trade-offs are possible between the

size of the internal memory, the restriction of communication and the required time for a derivation.

When the restriction of communication between agents is tighter, agents tend to operate by its

own and require more space for the internal memory to complete reasoning tasks. Furthermore,

this setting also increases the required time to complete derivations. When the size of the internal

memory decreases, agents often need help from others to produce intermediate results, which leads

to the increasing of messages exchanged between them. However, the cooperation between agents

helps their system to solve most problems faster, which reduces the required time to complete

derivations.
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3.3 Syntax and semantics of BMCL

In this section, we present a family of logics, namely, BMCL, each of which allows reasoning

about a system of multiple reasoners as described in the previous section. Let us assume a system

of multiple reasoners consisting of n agents, the set of agents in this system is denoted by N =

{1, . . . , n}. For simplicity, we also assume that all agents in the system agree on a logical language

L, which they use for reasoning, and a finite set IR of inference rules. For simplicity, we assume

that L is a finite set of of formulas. This assumption is reasonable since, in the context of resource

bounds, an agent should not be able to hold in its internal memory a formula of arbitrary length. If

we fix a maximal length for formulas, the language L must be finite. Each inference rule r ∈ IR is

defined as a pair (prer, conr) where:

● prer ⊆ ℘(L) is a set of subsets of required formulas for the rule to be applicable.

● conr ∶ prer → L is a function which specifies the conclusion when the rule r is applied.

We denote the memory bounds, the communication bounds and the knowledge bases for

agents in N by three mappings nmem, ncom and K, respectively, where

● nmem, ncom ∶ N → N are two mappings which specify the restrictions of memory and commu-

nication for each agent in N .

● K ∶ N → ℘(L) is a mapping which defines the knowledge base for each agent in N .

3.3.1 Syntax

The primitive formulas of BMCL are defined as follows:

● Formulas of the form Biα where α ∈ L and i ∈ N : the meaning of the formula Biα is that α

is one of the formulas which are held in the internal memory of the agent i. For convenience,

we define for each i ∈ N that Lmem(i) = {Biα ∣ α ∈ L}, and Lmem = ⋃i∈N Lmem(i).
● Formulas of the form cki where k ∈ N such that 0 ≤ k ≤ ncom(i) and i ∈ N : the meaning of

the formula cki is that the agent i has communicated (or performed the copy action) exactly

k times. For convenience, we define for every i ∈ N , Lcom(i) = {cki ∣ 0 ≤ k ≤ ncom(i)} and,

Lcom = ⋃i∈N Lcom(i). Then, Lcom is called the set of message counters.
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Let us now present the syntax of BMCL which is based on CTL.

ϕ ∶∶= ⊺ ∣ Biα ∣ cki ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ EXϕ ∣ E(ϕUψ) ∣ A(ϕUψ)
As usual, the cases of other logical operators are defined in terms of equivalence: ϕ ∧ ψ ≡ ¬(¬ϕ ∨
¬ψ), ϕ→ ψ ≡ ¬ϕ∨ψ and ϕ↔ ψ ≡ (ϕ→ ψ)∧(ψ → ϕ). Moreover, we also define other modalities

as in the case of CTL as follows:

AXϕ ≡ ¬EX¬ϕ
AFϕ ≡ A(⊺Uϕ) EFϕ ≡ E(⊺Uϕ)
AGϕ ≡ ¬EF¬ϕ EGϕ ≡ ¬AF¬ϕ

The formula AXϕ is the dual of EXϕ. Its meaning is that for any move a system performs,

ϕ is true in the next state of the system. In other words, this formula epxresses a property which is

unavoidable for the system. Similar to this formula, AFϕ also expresses an unavoidable property

of systems of multiple reasoners. A system has this propety iff for any execution, ϕ is finally true.

The formula EFϕ is used to express the ability of the whole system. It is true when all reasoners in

the system can cooperate so that ϕ is finally true. The last two formulas express properties which

are globally true. The formula AGϕ means ϕ is globally true in a system, for any execution of the

system, meanwhile the formula EGϕ is to express the property where all reasoners in the system

can cooperate to maintain ϕ true forever. Let us give some examples of properties expressed in

BMCL. We reconsider the example of the system of two agents which use conjunction introduction

and modus ponens for reasoning in page 28 of the previous section. We express the property that

the system can conclude C by the following formula:

EF(B1C ∨B2C)
Let us define the modality EXk where k ∈ N by the following equivalence:

EXkϕ ≡ ⋁
0≤i≤k

EX . . .EX´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i times

ϕ

Then, we can express the property for the restriction of 10 steps of time for the system to conclude

C by the following formula:

EX10(B1C ∨B2C)

From the example, we already knew that it is impossible for the system to conclude C in less than

9 steps of time. Therefore, the formula EX6(B1C ∨B2C) is not a property of the system.
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3.3.2 Semantics

Similar to CTL, semantics of BMCL is defined by Kripke structure.

Definition 3. A BMCL transition system is a triple M = (S,R,V ) where:

1. S is a non-empty set of states.

2. R is a total binary relation on S

3. V ∶ S ×N → ℘(L ∪Lcom).
Semantics of BMCL is defined by means of BMCL transition systems. A transitions

system contains three components: a non-empty set of states S, a set R of transition relations in S

and a mapping which assigns to each state in S and an agent i in N a subset of formulas from the

reasoning language L and message counters in Lcom(i). The subset of formulas is used to describe

the memory of the agent i and the message counters are used to record the number of copy actions

which the agent i has performed. For convenience, we denote Vmem(s, i) = V (s, i) ∩ L as the

memory of an agent i and Vcom(s, i) = V (s, i) ∩Lcom(i) as message counters for the agent i.

Given a BMCL transition system M = (S,R,V ), we define a path in M as an infinite

sequence (s0, s1, s2, . . .) where (si, si+1) ∈ R for all i ≥ 0. The truth of a formula at a state of the

BMCL transition system M is defined by induction as follows:

● M,s ⊧ ⊺.

● M,s ⊧ Biα iff α ∈ V (s, i) for any α ∈ L and i ∈ N .

● M,s ⊧ cki iff cki ∈ V (s, i) for any i ∈ N .

● M,s ⊧ ¬ϕ iff M,s /⊧ ϕ.

● M,s ⊧ ϕ ∨ ψ iff M,s ⊧ ϕ or M,s ⊧ ψ.

● M,s ⊧ EXϕ iff there exists s′ ∈ S such that (s, s′) ∈ R and M,s′ ⊧ ϕ.

● M,s ⊧ E(ϕUψ) iff there exists a path (s0 = s, s1, s2, . . .) in M and k ≥ 0 such that M,si ⊧ ϕ
for all i = 0, . . . , k − 1 and M,sk ⊧ ψ.

● M,s ⊧ A(ϕUψ) iff for any path (s0 = s, s1, s2, . . .) in M , there exists k ≥ 0 such that

M,si ⊧ ϕ for all i = 0, . . . , k − 1 and M,sk ⊧ ψ.
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Given a model M = (S,R,V ), for convenience, we write V (s) = {ϕ ∣ M,s ⊧ ϕ} to

denote the set of all formulas which are true at s of M .

A formula ϕ is satisfiable iff there exists a model M such that ϕ is true at some state of

M . ϕ is satisfiable in a class of models iff there exists a model M of this class where ϕ is true at

some state of M . ϕ is valid in a model M iff it is true at every state of the model. Finanlly, ϕ is

valid iff it is valid in any model.

3.3.3 Models for systems of multiple agents

To reason about systems of multiple reasoning agents, we are interested in formulas which are

valid in any model of systems of multiple reasoning agents. In this section, we present the class of

BMCL transition systems which correspond to systems of multiple reasoning agents as defined in

Section 3.2. In order to do so, we define several notions in a BMCL transition system to describe

bounds on memory and communication, actions and the applicability of an action.

Given a BMCL transition system M = (S,R,V ), the bounds of memory are defined by

restricting the cardinality of Vmem(s, i) for all agents i ∈ N and states s ∈ S. In other words, for each

agent i ∈ N , the bound of memory is expressed by the condition ∣Vmem(s, i)∣ ≤ nmem(i). Moreover,

at each state, there should be only one counter for each agent to record the number of times an agent

has performed the copy action. This condition is obtained by setting the constraint ∣Vcom(s, i)∣ = 1.

We define the set Act of actions for each agent i inN which contains the following actions

where α,β ∈ L and Γ ⊆ L.

● readi,α,β : Agent i loads a formula α from its knowledge base into its internal memory. The

formula β indicates which formula in the internal memory will be overwritten, especially in

the case when the internal memory is full. If β is not in the internal memory of the agent i, α

will be put into an empty cell of its memory.

● inferri,Γ,α,β: Agent i performs the inference rule r ∈ IR over the set of formulas Γ to conclude

α. Similar to the previous action, the formula β is overwritten by α if it is in the internal

memory of the agent i, otherwise α is loaded into an empty cell of the internal memory.

● copyi,j,α,β: Agent i copies a formula α from the internal memory of another agent j ∈ N

(i /= j). Similar to actions read and infer, the formula β is overwritten by α if it is the

memory of the agent j, otherwise α is loaded into an empty cell of the internal memory.

● Idlei: Agent i performs an idle action when it decides to not do anything.
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We define the set Acts,i of applicable actions for each agent i ∈ N at a state s ∈ S, assume

that α,β ∈ L and Γ ⊆ L.

● readi,α,β ∈ Acts,i iff α ∉ Vmem(s, i), α ∈Ki and if ∣Vmem(s, i)∣ ≥ nmem(i) then β ∈ Vmem(s, i).
● inferri,Γ,α,β ∈ Acts,i iff Γ ∈ prer, α = conr, α ∉ Vmem(s, i), Γ ⊆ Vmem(s, i) and if ∣Vmem(s, i)∣ ≥
nmem(i) then β ∈ Vmem(s, i).

● copyri,j,α,β ∈ Acts,i iff α ∉ Vmem(s, i), α ∈ Vmem(s, j) and if ∣Vmem(s, i)∣ ≥ nmem(i) then

β ∈ Vmem(s, i).
● Idlei is always in Acts,i.

Except the case of the action Idlei, which is available to all agents at any state of a system,

other actions require certain requirements to be applicable. The action readi,α,β is applicable when

α is available from the knowledge base of agent i. Moreover, when the internal memory of the agent

i is full, β must be one of the formulas in the internal memory of the agent so that it is replaced

with α. In the case of inferri,Γ,α,β , it is applicable when agent i has formulas required to fire the rule

r ∈ IR. It is also required β to be one of the formulas in the internal memory when it is full. Finally,

the action copyri,j,α,β is applicable when the agent j has α in the internal memory so that i can copy

α into its internal memory.

When an action is available for an agent to perform at a state of the system, the system

moves to another state where changes of the internal memory and the message counter of the agent

express the effect of the action. In the following, we define the effect of an action a by introducing

its corresponding binary relation Ra ⊆ S × S.

● (s, t) ∈ Rreadi,α,β
iff readi,α,β ∈ Acts,i and Vmem(t, i) = Vmem(s, i) ∖ {β} ∪ {α}.

● (s, t) ∈ Rinferri,Γ,α,β
iff inferri,Γ,α,β ∈ Acts,i and Vmem(t, i) = Vmem(s, i) ∖ {β} ∪ {α}.

● (s, t) ∈ Rcopyr
i,j,α,β

iff copyri,j,α,β ∈ Acts,i and Vmem(t, i) = Vmem(s, i) ∖ {β} ∪ {α} and

Vcom(t, i) = {cn+1i } where Vcom(s, i) = {cni }
● (s, t) ∈ RIdlei iff V (t, i) = V (s, i).

The action Idlei keeps the internal memory and message counter unchanged. Other ac-

tions only allow the formula α to be added into the internal memory of the agent, if β also appears

in the internal memory, it will be overwritten by α.
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Then, we define the class of models describing systems of multiple reasoning agents as

follows.

Definition 4. The class BMCM(Ki, nmem(i), ncom(i))i∈A of models describing systems of multi-

ple reasoning agents consists of BMCL transition systems M = (V,R,S) satisfying the following

conditions:

1. ∣Vmem(s, i)∣ ≤ nmem(i) and ∣Vcom(s, i)∣ = 1 for all i ∈ N and s ∈ S.

2. ∀(s, t) ∈ R, there exists an joint action (a1, . . . , an) where ai ∈ Acts,i for all i ∈ N such that

(s, t) ∈ Rai for all i ∈ N .

3. Conversely, for all s ∈ S and an joint action (a1, . . . , an) where ai ∈ Acts,i for all i ∈ N , there

exists t ∈ S such that (s, t) ∈ R and (s, t) ∈ Rai for all i ∈ A.

The definition of the class BMCM(K,nmem, ncom) requires that a BMCL transition sys-

tem is a model for a system of multiple reasoning agents when it satisfies three conditions. The first

condition establishes bounds on memory and communication for agents in the system. It requires

that the set of formulas which depicts the internal memory of an agent does not exceed the maximal

bound on the internal memory of the agent. Then, the model is required to have only one message

counter for each agent. The last two conditions are applied to the binary relation R. A state s ∈ S is

related to another state t ∈ S by R if there is a joint action by agents of the system such that t is the

resulting state of the joint action at state s. Moreover, models in the class are also required in the

last condition that for each joint action which is available for the agents, there must be another state

where the system will move to by performing the joint action.

In the remainder of this chapter, we present the satisfiability problem for formulas of

BMCL by which we show that BMCL is decidable and a sound and complete deductive system for

reasoning in BMCL about systems of multiple reasoning agents.

3.4 The satisfiability problem of BMCL

In this section, we present a procedure to decide the satisfiability of a formula of BMCL in the class

BMCM(K,nmem, ncom). The procedure bases on a characteristic of the class BMCM(K,nmem, ncom)
where there is a unique model used as a representative to determine the satisfiability of formulas.

Notice that it is still possible to make use of the procedure for the decidability of CTL [Emerson,

1990] with suitable extensions corresponding to requirements for models in BMCM(K,nmem, ncom).
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We omit this approach with the purpose to emphasise the characteristic which models in BMCM(K,
nmem, ncom) share.

3.4.1 The canonical model of BMCM(K,nmem, ncom)
Let us consider an arbitrary modelM = (S,R,V ) in BMCM(K,nmem, ncom). At a state s inM , the

mapping V describes the state of the internal memory and the message counter for each agent in the

system. Moreover, the definition of BMCM(K,nmem, ncom) determines path starting from s. That

is, in a different model M ′ = (S′,R′, V ′) of BMCM(K,nmem, ncom), if there is a state s′ which

replicates s, i.e. V (s, i) = V (s′, i) for all i ∈ N , we have the same set of paths starting from s′ as

those starting from s in M when we do not differentiate states with the same value of V and V ′,

respectively. This property of models in BMCM(K,nmem, ncom) suggests considering a canonical

model in the class BMCM(K,nmem, ncom) which “contains” all models in the class.

Definition 5. The canonical model CM is a triple (Sc,Rc, V c) where

1. Sc = Πi∈N(Li × {0, . . . , ncom(i)}) where Li = {Γ ⊆ L ∣ ∣Γ∣ ≤ nmem(i)}
2. V c((Γj , nj)j∈N , i) = Γi ∪ {cni

i } for all i ∈ N .

3. For all s, t ∈ Sc, (s, t) ∈ Rc iff there are ai ∈ Acts,i for all i ∈ N such that (s, t) ∈ Rcai for all

i ∈ N .

We firstly show that CM is in BMCM(K,nmem, ncom).
Lemma 2. CM is a model of the class BMCM(K,nmem, ncom).
Proof. The last two conditions in the definition of the class BMCM(K,nmem, ncom) follow directly

from the definition of CM. To complete the proof, we show the following:

By defintion, for any s ∈ Sc and i ∈ N , V c
mem(s, i) = Γ for some Γ ∈ Li. Hence,

∣Γ∣ ≤ nmem(i).
Similarly, for any s ∈ Sc and i ∈ N , V c

com(s, i) = {cni } for some i ∈ {0, . . . , ncom(i)}.

Obviously, we have ∣{cni }∣ = 1.

In the following, we prove that the satisfiability of a formula in BMCM(K,nmem, ncom)
can be determined by only checking the satisfiability of the formula on the canonical model CM.
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Lemma 3. A formula is satisfiable in BMCM(K,nmem, ncom) iff it is satisfied by the canonical

model CM.

Proof. Let ϕ be a formula, M = (S,R,V ) a modal in BMCM(K,nmem, ncom). For any state s of

M , assume that Vmem(s, i) = Γ
s
i and Vcom(s, i) = {cns

i

i } for all i ∈ N , we define sc = (Γsi , nsi )i∈N ∈

Sc and say that sc corresponds to s. To prove the lemma, we show by induction on the structure of

ϕ that for any s of M , we have M,s ⊧ ϕ iff CM, sc ⊧ ϕ.

● If ϕ = Biα, we have

M,s ⊧ Biα⇔ α ∈ Vmem(s, i) = Γ
s
i = V

c
mem(sc, i)

⇔ α ∈ V c
mem(sc, i)

⇔ CM, sc ⊧ Biα
● If ϕ = cki , we have

M,s ⊧ cki ⇔ cki ∈ Vcom(s, i) = {cki } = V c
com(sc, i)

⇔ cki ∈ V
c

com(sc, i)
⇔ CM, sc ⊧ cki

● If ϕ = ¬ψ, we have

M,s ⊧ ¬ψ⇔M,s /⊧ ψ
⇔ CM, sc /⊧ ψ by the induction hypothesis

⇔ CM, sc ⊧ ¬ψ
● If ϕ = ϕ1 ∨ϕ2, we have

M,s ⊧ ϕ1 ∨ϕ2 ⇔M,s ⊧ ϕ1 or M,s ⊧ ϕ2

⇔ CM, sc ⊧ ϕ1 or CM, sc ⊧ ϕ2 by the induction hypothesis

⇔ CM, sc ⊧ ϕ1 ∨ϕ2

● If ϕ = EXψ, we have

M,s ⊧ EXψ⇔∃t ∈ S ∶ (s, t) ∈ R and M, t ⊧ ψ
⇔ tc ∈ CM and (sc, tc) ∈ Rc and CM, tc ⊧ ψ

by the definition of CM and the induction hypothesis

⇒ CM, sc ⊧ EXψ
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For the reverse direction, let us assume that CM, sc ⊧ EXψ, this means ∃tc ∈ Sc ∶ (sc, tc) ∈
Rc and CM, tc ⊧ ψ. By the definition of CM, there are ai ∈ Actsc,i such that (sc, tc) ∈ Rcai for

all i ∈ N . However, this also implies that ai ∈ Acts,i for all i ∈ N and there exists t ∈ S such

that (s, t) ∈ Rai for all i ∈ N (hence, (s, t) ∈ R) and tc corresponds to t. Since CM, tc ⊧ ψ,

by the induction hypothesis, we have that M, t ⊧ ψ. Therefore, M,s ⊧ EXψ.

● If ϕ = E(ϕ1Uϕ2), we have

M,s ⊧ E(ϕ1Uϕ2) ⇔ ∃ a path (s0, . . . , sk, . . .) of M where

s0 = s,M, sk ⊧ ϕ2 and M,sj ⊧ ϕ1 for all 0 ≤ j < k

⇔ (sc0, . . . , sck, . . .) is a path of CM with

sc0 = s
c,CM, sck ⊧ ϕ2 and CM, scj ⊧ ϕ1 for all 0 ≤ j < k

by the definition of CM and the induction hypothesis

⇒ CM, sc ⊧ E(ϕ1Uϕ2)

For the reverse direction, let us assume that CM, sc ⊧ E(ϕ1Uϕ2), this means there exists

a path (sc0, . . . , sck) of CM where sc0 = s
c, (scj−1, scj) ∈ Rc for all 0 < j ≤ k, CM, scj ⊧ ϕ1

for all j < k and CM, sck ⊧ ϕ2. By the definition of CM, for each scj (where j < k), there

are aj,i ∈ Actsc
j
,i such that (scj , scj+1) ∈ Rcaj,i for all i ∈ N . However, this also implies that

a0,i ∈ Acts0,i (where s0 = s) for all i ∈ N and there exists s1 ∈ S such that (s0, s1) ∈ Ra0,i
for all i ∈ N (hence, (s0, s1) ∈ R) and sc1 corresponds to s1. Similarly, we prove that there

are also s2, . . . , sk where (sj−1, sj) ∈ Raj−1,i for all i ∈ N (hence, (sj−1, sj) ∈ R) and scj

corresponds to sj , for all 2 ≤ j ≤ k. Since CM, scj ⊧ ϕ1 for all j < k and CM, sck ⊧ ϕ2, by the

induction hypothesis, we have that CM, sj ⊧ ϕ1 for all j < k and CM, sk ⊧ ϕ2. Therefore,

M,s ⊧ E(ϕ1Uϕ2).
● If ϕ = A(ϕ1Uϕ2),M,s ⊧ A(ϕ1Uϕ2) iff for any path (s0, s1, . . .) starting from s (i.e. s0 = s),

there exists k ≥ 0 such that M,sk ⊧ ϕ2 and M,sj ⊧ ϕ1 for all 0 ≤ j < k.

We consider an arbitrary path (sc0, sc1, . . .) in CM starting from sc (i.e. sc0 = sc). Since

(sc0, sc1) ∈ Rc, there must be a state s1 of M such that (s0, s1) ∈ R and sc1 corresponds to

s1 according to the definition of BMCM(K,nmem, ncom). Repeating the same argument, we

have that for all j > 0, there exists sj ∈ S such that (sj−1, sj) ∈ R and scj corresponds to

sj . Figure 3.3 illustrates that there exists a path (s0, s1, . . .) in M corresponding to the path

(sc0, sc1, . . .) in CM. Then, (s0, s1, . . .) where s0 = s is a path in M , therefore we have hat
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FIGURE 3.3: Each path is CM has a corresponding path in M .

there exists k ≥ 0 such that M,sk ⊧ ϕ2 and M,sj ⊧ ϕ1 for all 0 ≤ j < k. By the induction

hypothesis, we also have CM, sck ⊧ ϕ2 and CM, scj ⊧ ϕ1 for all 0 ≤ j < k. As the path

(sc0, sc1, . . .) is arbitrary, we conclude that CM, sc0 ⊧ A(ϕ1Uϕ2).
For the reverse direction, let us assume that CM, sc ⊧ A(ϕ1Uϕ2), this means for any path

(sc0, sc1, . . .) of CM where sc0 = s
c, (scj−1, scj) ∈ Rc for all 0 < j ≤ k, there exists k ≥ 0 such

that CM, scj ⊧ ϕ1 for all j < k and CM, sck ⊧ ϕ2.

Consider an arbitrary path (s0, s1, . . .) in M starting from s0 = s. Since (sj , sj+1) ∈ R, we

much have scj corresponds to sj and (scj , scj+1) ∈ Rc for all j ≥ 0. Then, (sc0, sc1, . . .) is a path

of CM. Since we have that CM, scj ⊧ ϕ1 for all j < k and CM, sck ⊧ ϕ2 for some k ≥ 0, by the

induction hypothesis, we have that CM, sj ⊧ ϕ1 for all j < k and CM, sk ⊧ ϕ2. Therefore,

M,s ⊧ A(ϕ1Uϕ2).
Since we have shown that M,s ⊧ ϕ iff CM, sc ⊧ ϕ, the proof of the lemma is straightfor-

ward.

The proof of the above lemma shows that there is a bisimulation [Blackburn et al., 2002,

ch2.] between the canonical model CM and a model in BMCM(K,nmem, ncom). Lemma 3 sug-

gests us to use a model-checking algorithm for CTL to determine the satisfiability in the class

BMCM(K,nmem, ncom) where the canonical model and the candidate formula are inputs of the
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algorithm.

3.4.2 Checking satisfiability on CM

[Katoen, 1998] presented a model-checking procedure for CTL which decides whether a formula

ϕ0 is satisfied by a certain model. In principle, the procedure calculates the set of states satisfying

the formula and replies yes if and only if that set is non-empty. For the satisfiability problem of

BMCL, we utilise the model-checking algorithm procedure for CTL to determine the satisfiability

of a formula on the canonical model CM.

In order to make this section to be self-contained, we recall the decision procedure for the

model checking problem. For the correctness of this procedure, please refer to [Katoen, 1998]. Be-

cause we use the algorithm to check the satisfiability of ϕ only on the canonical model CM, CM is

placed directly into the procedure rather than be used as the input of the procedure. In the following,

we divide the algorithm into three sub-procedures. The Sat procedure is responsible for calculating

the set of states in CM which satisfy the input formula. When the input formula is primitive, the

procedure simply looks for states in CM where their valuation contains the input formula. When

the input formula is composed by logical operators such as negation (¬) and disjunction (∨), the

procedure calculates the set of state satisfying the sub-formulas of the input formula and uses the

corresponding set operators to produce the result. The last two cases for formulas of the forms

E(ϕ1Uϕ2) and A(ϕ1Uϕ2) are dealt with by using two sub-procedures SatEU and SatAU, respec-

tively.

The procedure Sat which calculates the set of states in Sc satisfying an input formula ϕ

is defined in Figure 3.4.

In the procedure Sat, the last two cases corresponding to formulas of the forms E(ϕ1Uϕ2)
and A(ϕ1Uϕ2), respectively, are dealt with the help of two sub-procedures SatEU and SatAU. The

procedure SatEU computes the set of states where ϕ2 is satisfied and other states each of which is

connected with one of the states satisfying ϕ2 by a path along which ϕ1 is satisfied before reaching

the state satisfying ϕ2. Figure 3.5 illustrates the procedure SatEU.

The procedure SatAU operates by collecting all states satisfying ϕ2 and others where ϕ1

is satisfied along any path starting from them satisfy before reaching a state satisfying ϕ2. SatAU is

presented in Figure 3.6.

As the procedure Sat calculates the set of states satisfying the input formula ϕ, we can

determine the satisfiability of ϕ by checking whether the output of the procedure Sat is not empty.
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input : A formula ϕ

output: The set of states in Sc satisfying ϕ

1 begin

2 switch ϕ do

3 case ⊺ return Sc;

4 case Biα return {sc ∈ Sc ∣ α ∈ V c
mem(sc, i)};

5 case cni return {sc ∈ Sc ∣ cni ∈ V c
com(sc, i)};

6 case ¬ψ return Sc ∖ Sat(ψ);
7 case ϕ1 ∨ϕ2 return Sat(ϕ1) ∪ Sat(ϕ2);
8 case EXψ return {sc ∈ Sc ∣ ∃tc ∈ Sat(ψ) ∶ (sc, tc) ∈ Sc};

9 case E(ϕ1Uϕ2) return SatEU(ϕ1, ϕ2);
10 case A(ϕ1Uϕ2) return SatAU(ϕ1, ϕ2);
11 endsw

12 end

FIGURE 3.4: The procedure Sat.

If it is not empty, ϕ is satisfied in the canonical model CM; by Lemma 3, ϕ is satisfiable in the class

BMCM(K,nmem, ncom). Before ending this section, let us discuss how difficult it is to solve the sat-

isfiability problem of BMCL. Using the more efficient procedure presented in [Clarke et al., 1986], it

is well-known that the time complexity of the model-checking problem for CTL isO(∣ϕ∣.(∣S∣+∣R∣))
where ϕ is the input formula and S and R are the set of states and the relation of the input model,

respectively. Therefore, we determine roughly the size of the canonical model in order to provide

an upper-bound for the time complexity of the satisfiability problem of BMCL. For simplicity, let us

assume that there are a fixed number n of agents, the size of the logical language is a fixed number

l, all agents have the same knowledge base of fixed size r. Moreover, we also assume that agents

share the same bounds m for memory and c for communication. Then, the cardinality of the set of

states in the canonical model is

(∑
k≤m

(k
l
) × c)n

Roughly, this number is bounded by cn × (ln)m. To estimate an upper-bound for the size of the

relation of the canonical models, we determine the maximal number of actions available for each

agent at every state. For reading a formula from the knowledge base, there are maximally r possible
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input : Two formulas ϕ1 and ϕ2

output: The set of states in Sc satisfying E(ϕ1Uϕ2)
1 begin

2 Q ∶= Sat(ϕ2);
3 Q′ ∶= ∅; while Q /= Q′ do

4 Q′ ∶= Q;

5 Q ∶= Q ∪ ({sc ∈ Sc ∣ ∃tc ∈ Q ∶ (sc, tc) ∈ Rc} ∩ Sat(ϕ1));
6 end

7 return Q;

8 end

FIGURE 3.5: The procedure SatEU.

formulas to read. For applying inference rules, each subset of the formulas in the internal memory

of the agent may trigger an inference rule (assume that for any inference rule applied on each

subset, there is only one possible conclusion), hence there are maximally 2
m possible ways to apply

inference rules. Finally, for the action Copy, there are at most (n−1)m different formulas which can

be copied from the internal memories of other agents, where n is the number of agents in the system,

which is assumed to be a fixed number. In total, there are maximally (r+2m+(n−1)×m) different

actions. However, we also need to take into account the fact each action also needs to choose which

formula in the memory to be deleted to reserve the space for the new coming formula; therefore,

the actual number of actions available for an agent is limited by (r + 2
m + (n − 1) × m) × m.

Then, from a state, there are maximally ((r + 2
m + (n − 1) × m) × m)n out-going transitions.

Roughly, we may estimate the upper-bound for the number of transitions in the canonical model as

cn×(ln)m×((r+2m+(n−1)×m)×m)n. As we assume that l, r and n are fixed numbers, this upper-

bound can be written as O((c ×m)n × ((2l)n)m). Overall, we set up an approximate upper-bound

for the time complexity of the satisfiability problem of BMCL as O(∣ϕ∣ × (c ×m)n × ((2l)n)m).

3.5 Axiomatisation for BMCL

In this section, we present a deductive system which allows us to reason about systems of multiple

reasoning agents. In a given system of n agents, the knowledge base, bounds on memory and

communication are characterised by the functionsK, nmem and ncom, respectively. We define a logic
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input : Two formulas ϕ1 and ϕ2

output: The set of states in Sc satisfying A(ϕ1Uϕ2)
1 begin

2 Q ∶= Sat(ϕ2);
3 Q′ ∶= ∅;

4 while Q /= Q′ do

5 Q′ ∶= Q;

6 Q ∶= Q ∪ ({sc ∈ Sc ∣ ∀tc ∈ Sc ∶ (sc, tc) ∈ Rc implies tc ∈ Q} ∩ Sat(ϕ1));
7 end

8 return Q;

9 end

FIGURE 3.6: The procedure SatAU.

BMCL(K,nmem, ncom) which allows reasoning about the above system. Because BMCL is based

on CTL, the axiomatisation for BMCL(K,nmem, ncom) contains all axioms and inference rules of

CTL. Moreover, it also contains axioms which correspond to properties of BMCM(K,nmem, ncom)

3.5.1 Axioms

Let us introduce some notations. For each state sc = (Γi, ni)i∈N ∈ Sc in the canonical model CM of

the class BMCM(K,nmem, ncom), we denote

⋀ sc ≡ ⋀
i∈N

( ⋀
α∈Γi

Biα ∧ ⋀
α∈L∖Γi

¬Biα ∧ cni

i )

This means the formula ⋀ sc is the conjunction of all primitive formulas in V c(sc). We write

Rc(sc) = {tc ∈ Sc ∣ (sc, tc) ∈ Rc} to denote the set of all states related to sc by the relation Rc.

The axiomatisation for BMCL(K,nmem, ncom) contains all axioms and inference rules of CTL (see

Section 2.2.3), together with the following additional axioms:

A1 ⋀α∈ΓBiα → ¬Biα′ for all i ∈ N , Γ ⊆ L and ∣Γ∣ > nmem(i), and α′ ∈ L.

A2a ⋁n∈{0,...,ncom(i)} c
n
i for all i ∈ N .

A2b cki → ¬ck′i for all i ∈ N , k, k′ ∈ {0, . . . , nC(i)} and k /= k′.
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A3a ⋀ sc → EX(⋀ tc) for every sc, tc ∈ Sc and (sc, tc) ∈ Rc.
A3b ⋀ sc → AX(⋁tc∈Rc(sc)(⋀ tc)) for every sc ∈ Sc.

It is worth noticing that the additional axioms correspond to exactly the requirements of

models in the class BMCM(K,nmem, ncom) and they will facilitate showing the soundness and com-

pleteness of the axiomatisation. In particular, the axiom A1 makes sure that any agent in the system

can hold in its internal memory maximally nmem(i) formulas. The axiom A2a states that there is a

message counter for each agent while the axiom A2b says that if there is a message counter for an

agent, the agent must not have another message counter. Hence, the axioms A2a and A2b together

make sure that there is exactly one message counter for each agent. The axiom A3a corresponds

to the requirement of models in the class BMCM(K,nmem, ncom) that for every joint action for the

agents in the system, there is move by the system to another state by performing this action. Sim-

ilarly, the axiom A3b is about the requirement of models in the class BMCM(K,nmem, ncom) that

for from a state, the system can move to another state only by performing a joint action which is

available for the agents.

As usual, we define that a formula ϕ is a theorem iff it can be proved in the axiomatisation,

written as ⊢BMCL ϕ. The logic BMCL(K,nmem, ncom) is defined to be the set of all theorems in

BMCL(K,nmem, ncom). Moreover, ϕ is consistent iff its negation is not proved, i.e. /⊢BMCL ¬ϕ.

We have the following result.

Theorem 1. The logic BMCL(K,nmem, ncom) is sound and complete with respect to the class

BMCM(K,nmem, ncom).
In the next of this section, we present the proof of Theorem 1.

3.5.2 The Soundness and Completeness of BMCL

We show the soundness of BMCL(K,nmem, ncom) by proving that all the additional axioms are

valid in the class BMCM(K,nmem, ncom). According to Lemma 3, a formula is satisfiable in

BMCM(K,nmem, ncom) iff it is satisfied in the canonical model CM. This is similar to say that

a formula is valid in BMCM(K,nmem, ncom) iff it is valid in the canonical model CM. Therefore,

we show that all additional axioms are valid by using the canonical model. In the following, we

show the validity of each additional axiom.

Let us consider the formula ϕ = ⋀α∈ΓBiα → ¬Biα′ where i ∈ N and α′ ∈ L, for some

Γ ⊆ L such that ∣Γ∣ > nmem(i). Let sc be an arbitrary state in Sc, as ∣V c
mem(sc, i)∣ ≤ nmem(i), there
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exists α ∈ Γ such that α ∉ V c
mem(sc, i). Hence, we have that CM, sc /⊧ Biα. This implies CM, sc /⊧

⋀α∈ΓBiα, hence CM, sc ⊧ ϕ. This means ϕ is true in any state of CM, i.e. ⋀α∈ΓBiα → ¬Biα′ is

valid in CM.

Let us consider the formula ϕ = ⋁k∈{0,...,ncom(i)} c
k
i where i ∈ N . Let sc be an arbitrary

state in Sc, as V c
com(sc, i) = {cki } for some k ∈ {0, . . . , ncom(i)}, CM, sc ⊧ cki , hence CM, sc ⊧

⋁k∈{0,...,ncom(i)} c
k
i . This means ϕ is true in any state of CM, i.e. ⋁k∈{0,...,ncom(i)} c

k
i is valid in CM.

Let us consider the formula ϕ = cki → ¬ck′i where i ∈ N , k, k′ ∈ {0, . . . , nC(i)} and

k /= k′. Let sc be an arbitrary state in Sc, if CM, sc ⊧ cki , we have that V c
com(sc, i) = {cki }. Hence,

ck
′

i ∉ V c
com(sc, i), which implies CM, sc ⊧ ¬ck′i . Therefore, CM, sc ⊧ cki → ¬ck′i . This means ϕ is

true in any state of CM, i.e. cki → ¬ck′i is valid in CM.

Let us consider the formula ϕ = ⋀ sc → EX(⋀ tc) where sc, tc ∈ Sc and (sc, tc) ∈ Rc.
Since only at state sc, CM, sc ⊧ ⋀ sc, CM, uc ⊧ ⋀ sc → EX(⋀ tc) for all uc /= sc. In the case of

sc, as (sc, tc) ∈ Rc and we have that CM, tc ⊧ ⋀ tc, this implies CM, sc ⊧ ⋀EXtc. Therefore,

CM, sc ⊧ ⋀ sc → EX(⋀ tc). This means ϕ is true in any state of CM, i.e. ⋀ sc → EX(⋀ tc) is valid

in CM.

Let us consider the formula ϕ = ⋀ sc → AX(⋁tc∈Rc(sc)(⋀ tc)) where sc ∈ Sc. Since

only at state sc, CM, sc ⊧ ⋀ sc, CM, uc ⊧ ⋀ sc → AX(⋁tc∈Rc(sc)(⋀ tc)) for all uc /= sc. In

the case of sc, for each uc ∈ Rc(sc), we have that (sc, uc) ∈ Rc and CM, uc ⊧ ⋀uc, this im-

plies CM, uc ⊧ ⋀⋁tc∈Rc(sc)(⋀ tc), hence CM, sc ⊧ ⋀AX(⋁tc∈Rc(sc)(⋀ tc)). Therefore, CM, sc ⊧
⋀ sc → AX(⋁tc∈Rc(sc)(⋀ tc)). This meansϕ is true in any state of CM, i.e. ⋀ sc → AX(⋁tc∈Rc(sc)(⋀ tc))
is valid in CM.

We have shown the validity of all additional axioms for BMCL(K,nmem, ncom).
In the following, we prove the completeness of the axiomatisation. The usual approach

to address the completeness (such as CTL [Emerson, 1990]) is to prove that any consistent formula

is satisfiable. However, as shown by Lemma 3, a formula is satisfiable if and only if it is satisfiable

in the canonical model CM. This suggests to us to show that any consistent formula is satisfiable in

the canonical model CM rather than build a model in the class BMCL(K,nmem, ncom) to satisfy it.

In order to show that a consistent formula of BMCL(K,nmem, ncom) is satisfiable in the

canonical model, we make use of the following result.

Lemma 4. For any formula ϕ and a state sc ∈ Sc, either ⋀ sc → ϕ or ⋀ sc → ¬ϕ is valid in the

class BMCM(K,nmem, ncom).
Proof. Let us prove this lemma by using the canonical model CM. Notice that, to show a formula ϕ
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is valid in the class BMCM(K,nmem, ncom), we only need to prove that ϕ is valid in the canonical

model CM.

Obviously, CM, tc /⊧ sc for any tc /= sc. Therefore, either ⋀ sc → ϕ or ⋀ sc → ¬ϕ is valid

if and only if one of them is true at sc.

Let us assume to the contrary that both formulas are not true at sc. That is CM, sc /⊧
⋀ sc → ϕ and CM, sc /⊧ ⋀ sc → ¬ϕ. This implies that CM, sc /⊧ ¬ϕ and CM, sc /⊧ ϕ, respectively,

which is a contradiction. Therefore, either ⋀ sc → ϕ or ⋀ sc → ¬ϕ is true at sc. Hence, either

⋀ sc → ϕ or ⋀ sc → ¬ϕ is valid in the canonical model CM.

The above lemma implies that the conjunction of primitive formulas at a state of the

canonical model contains enough information to conclude the truth of any formula, even those

which contain temporal modalities such as AX, EX and other where the truth also depends on the

truth of formulas at other states of the canonical model. This is not true in modal logic. For example,

if we consider Prop = {p, q} and a formula ◇p, then both formulas p ∧ q → ◇p and p ∧ q → ¬◇ p

are not valid by models M1 and M2, respectively, as depicted in Figure 3.7. In particular, we have

that M1, s /⊧ p ∧ q →◇p and M2, s /⊧ p ∧ q → ¬◇ p.

FIGURE 3.7: Models falsify p ∧ q →◇p and p ∧ q → ¬◇ p.

Furthermore, the validity of either⋀ sc → ϕ or⋀ sc → ¬ϕ suggests that either of them is a

theorem of BMCL(K,nmem, ncom) for any formula ϕ. If this can be proved, we have a consequence

that any maximally consistent set of BMCL(K,nmem, ncom) is determined by the primitive formulas

in the set. This means if there are two maximally consistent sets which share the same set of

primitive formulas, they must be the same. We show this by assuming to the contrary that this

two sets Γ1 and Γ2 are not the same. That is there is a formula ϕ such that ϕ ∈ Γ1 and ¬ϕ ∈ Γ2.

Because Γ1 and Γ2 share the same set of primitive formulas Γ, we have that either ⋀ψ∈Γψ → ϕ or

⋀ψ∈Γψ → ¬ϕ is a theorem. Without loss of generality, we assume that ⋀ψ∈Γψ → ϕ is the case,

which implies that ϕ ∈ Γ2 which contradicts to the fact that Γ2 is consistent. Therefore, Γ1 and Γ2

must be the same. Notice that the argument we have so far is based on the assumption that we can
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prove either ⋀ sc → ϕ or ⋀ sc → ¬ϕ is a theorem. If it is the case, we can select suitable states in

the canonical model to satisfy a consistent formula which completes the proof of completeness for

the logic BMCL(K,nmem, ncom). Before showing that, let us prove our desired result.

Lemma 5. For any formula ϕ and a state sc ∈ Sc, either ⋀ sc → ϕ or ⋀ sc → ¬ϕ is a theorem of

the logic BMCL(K,nmem, ncom).
Proof. The proof is done by the induction on the structure of the formula ϕ.

● Assume that ϕ is a primitive formula of the form Biα where i ∈ N and α ∈ L. If α ∈
V c

mem(sc, i), then Biα is one of the conjuncts in the formula ⋀ sc. Hence, by propositional

tautologies, we have that ⊢BMCL ⋀ sc → Biα.

Otherwise, α ∉ V c
mem(sc, i), then ¬Biα is one of the conjuncts in the formula ⋀ sc. Hence, by

propositional tautologies, we have that ⊢BMCL ⋀ sc → ¬Biα.

● Assume that ϕ is a primitive formula of the form cki where i ∈ N and k ∈ {0, . . . , ncom(i)}. If

cki ∈ V c
com(sc, i), then cki is one of the conjuncts in the formula ⋀ sc. Hence, by propositional

tautologies, we have that ⊢BMCL ⋀ sc → cki .

Otherwise, cki ∉ V c
com(sc, i), then ck

′

i for some k′ /= k is one of the conjuncts in the formula

⋀ sc. Hence, by axiom A2b and propositional tautologies, we have that ⊢BMCL ⋀ sc → ¬cki .

● Assume that ϕ is of the form ¬ψ. By the induction hypothesis, we have that either ⋀ sc → ψ

or ⋀ sc → ¬ψ is a theorem of the logic BMCL(K,nmem, ncom). If ⋀ sc → ¬ψ is a theorem,

the proof is immediate. If ⋀ sc → ψ is a theorem, then by propositional tautologies, we have

that ⋀ sc → ¬¬ψ is also a theorem.

● Assume that ϕ is of the form ϕ1 ∨ ϕ2. By the induction hypothesis, we have that either

⋀ sc → ϕ1 or ⋀ sc → ¬ϕ1 and either ⋀ sc → ϕ2 or ⋀ sc → ¬ϕ2 are theorems of the logic

BMCL(K,nmem, ncom).
If either ⋀ sc → ϕ1 or ⋀ sc → ϕ2 is a theorem, by propositional tautologies, we have that

⋀ sc → ϕ1 ∨ϕ2 is a theorem.

If both of ⋀ sc → ¬ϕ1 or ⋀ sc → ¬ϕ2 are theorems, by propositional tautologies, we have that

⋀ sc → ¬ϕ1 ∧ ¬ϕ2 is a theorem. This implies that ⋀ sc → ¬(ϕ1 ∨ϕ2) is a theorem.

● Assume that ϕ is of the form EXψ. By the induction hypothesis, we have that either ⋀ tc → ψ

or ⋀ tc → ¬ψ is a theorem where tc ∈ Rc(sc).
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If there exists tc ∈ Rc(sc) such that ⋀ tc → ψ is a theorem, we have the following proof:

1. ⊢BMCL ⋀ tc → ψ

2. ⊢BMCL EX⋀ tc → EXψ by 1 and CTL

3. ⊢BMCL ⋀ sc → EX⋀ tc by axiom A3a

4. ⊢BMCL ⋀ sc → EXψ by 2, 3 and propositional tautologies

If ⋀ tc → ¬ψ is a theorem for all tc ∈ Rc(sc), we have the following proof:

1. ⊢BMCL ⋀ tc → ¬ψ for all tc ∈ Rc(sc)
2. ⊢BMCL ( ⋁

tc∈Rc(sc)

(⋀ tc)) → ¬ψ by 1 and propositional tautologies

3. ⊢BMCL AX( ⋁
tc∈Rc(sc)

(⋀ tc)) → AX¬ψ by 2 and CTL

4. ⊢BMCL ⋀ sc → AX ⋁
tc∈Rc(sc)

(⋀ tc) by axiom A3b

5. ⊢BMCL ⋀ sc → AX¬ψ by 3, 4 and propositional tautologies

6. ⊢BMCL ⋀ sc → ¬EXψ by 5 and CTL

● Assume that ϕ is of the form E(ϕ1Uϕ2). In order to prove that ⋀ sc → E(ϕ1Uϕ2) is a

theorem, we attempt to construct a path which witnesses the fulfilment of E(ϕ1Uϕ2) from

sc. We start the construction from sc. By the induction hypothesis, we must know that

either ⋀ sc → ϕ1 or ⋀ sc → ¬ϕ1 and either ⋀ sc → ϕ2 or ⋀ sc → ¬ϕ2 are theorems. If

⊢BMCL ⋀ sc → ϕ2, sc is enough to conclude that ⊢BMCL ⋀ sc → E(ϕ1Uϕ2). Otherwise,

for ⋀ sc → E(ϕ1Uϕ2) to be a theorem, we must at least have that ⋀ sc → ϕ1 is a theorem and

pass the checking of the fulfilment for E(ϕ1Uϕ2) on some successors of sc (since we do not

know which successor is the right choice, we try all of them). For each successor, we repeat

the checking as we did with sc. The construction terminates when either we reach a state tc

where ⋀ tc → ϕ2 is a theorem or there is no successor to consider.

Let us consider an example of the construction as depicted in Figure 3.8. In this example,

we draw a state s as a circle to assume that ⋀ s → ϕ1 is a theorem and as a solid black

circle to assume that ⋀ s → ϕ2 is a theorem. States s where we assume both ⋀ s → ¬ϕ1 and

⋀ s→ ¬ϕ2 are theorems are marked with the symbol “x”. We start the construction at a state

s0. Since ⋀ s0 → ϕ1 is a theorem, we continue considering all successors of s0 which are
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FIGURE 3.8: The construction of a path for the fulfilment of E(ϕ1Uϕ2).

s01, s02, s03 and s04. Because only ⋀ s01 → ϕ1 and ⋀ s03 → ϕ1 are theorems, we continue

considering successors of s01 and s03 which are s011, s031 and s032. When we reach s032, the

construction terminates as ⋀ s032 → ϕ2 is a theorem. Let us define the construction formally

as follows. We say that a state sc ∈ Sc is potential for E(ϕ1Uϕ2) if either ⊢BMCL ⋀ sc → ϕ1

or ⊢BMCL ⋀ sc → ϕ2. Given a sub-set of states ∆ ⊆ Sc, we denote

REc(∆) = {tc ∈ Sc ∣ ∃uc ∈∆ ∶ and tc ∈ Rc(uc)}
Informally, REc(∆) determines the set of successor states of some state in ∆ according to

Rc. Let us construct the set REci(sc) of states where i ∈ N incrementally as follows.

REc0(sc) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{sc} if sc is potential for E(ϕ1Uϕ2)

∅ otherwise

REci+1(s
c) =REci(s

c) ∪ {tc ∈ Sc ∖ REci(s
c) ∣ tc ∈ REc(REci(sc)) and

tc ∈ Sc is potential for E(ϕ1Uϕ2)
}

At each step of the construction, we add into REci+1(sc) states which are potential to satisfy

E(ϕ1Uϕ2) and also related to some states in REci(sc). The construction terminates when

either there exists a state tc ∈ REci+1(sc) such that ⋀ tc → ϕ2 is a theorem or REci+1(sc) =
REci(sc) for some i ≥ 0. Since Sc is finite, the construction must terminate at some i = l ∈ N.

We define REc∗(sc) = REcl (sc).
For convenience, we define a binary relation

Ec(REc∗(sc)) = {(tc, uc) ∈ Rc ∣ ∃j < l ∶ tc ∈ REcj(sc) and uc ∈ REcj+1(sc) ∖ REcj(sc)}
The binary relation Ec(REc∗(sc)) is a subset of Rc over states in REc∗(sc) where loops are

eliminated. This fact facilitates the following argument. According to the definition of
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REc∗(sc), for any tc ∈ REc∗(sc), there must be a path s0s1 . . . sk in Ec(REc∗(sc)) such that

s0 = sc and sk = tc where (sj , sj+1) ∈ Ec(REc∗(sc)) for all j < k.

If there exists tc ∈ REc∗(sc) such that ⊢BMCL ⋀ tc → ϕ2 is a theorem, there must be a path

s0s1 . . . sk inEc(REc∗(sc))where s0 = sc and sk = tc, and hence we have the following proof:

1. ⊢BMCL ⋀ si → EX⋀ si+1 for all i ≤ k, by axiom A3a

2. ⊢BMCL ⋀ si → ϕ1 for all i < k

3. ⊢BMCL ⋀ sk → ϕ2

4. ⊢BMCL ⋀ sk → E(ϕ1Uϕ2) by 3 and CTL

5. ⊢BMCL EX⋀ sk → EXE(ϕ1Uϕ2) by 4 and CTL

6. ⊢BMCL ⋀ sk−1 → EX⋀ sk from 1

7. ⊢BMCL ⋀ sk−1 → EXE(ϕ1Uϕ2) from 5, 6 and propositional tautologies

8. ⊢BMCL ⋀ sk−1 → ϕ1 from 2

9. ⊢BMCL ⋀ sk−1 → ϕ1 ∧ EXE(ϕ1Uϕ2) from 7, 8 and propositional tautologies

10. ⊢BMCL ⋀ sk−1 → E(ϕ1Uϕ2) from 9 and CTL

⋮

11. ⊢BMCL ⋀ s0 → E(ϕ1Uϕ2) by repeating 4,. . . ,10 until s0, notice that s0 = sc

Hence, ⋀ sc → E(ϕ1Uϕ2) is a theorem.

If, for all tc ∈ REc∗(sc), ⊢BMCL ⋀ tc → ¬ϕ2 is a theorem, according to the definition of

REc∗(sc), we have that for every tc ∈ REc(REc∗(sc)) ∖ REc∗(sc), both ⊢BMCL ⋀ tc → ¬ϕ1

and ⊢BMCL ⋀ tc → ¬ϕ2 are theorems, otherwise tc must be in REc∗(sc). We denote θ1 ≡

⋁tc∈REc
∗(s

c)⋀ tc and θ2 ≡ ⋁tc∈REc(REc
∗(s

c))∖REc
∗(s

c)⋀ tc. Let θ ≡ θ1 ∨ θ2, for any tc ∈ REc∗(sc),
we have that Rc(tc) ⊆ REc∗(sc) ∪ REc(REc∗(sc)), hence ⋁uc∈Rc(tc)(⋀uc) → θ is a theorem.

We have the following proof:

1. ⊢BMCL ⋀ tc → ϕ1 for all tc ∈ REc∗(sc)
2. ⊢BMCL ⋀ tc → ¬ϕ2 for all tc ∈ REc∗(sc)
3. ⊢BMCL ⋀ tc → ¬ϕ1 for all tc ∈ REc(REc∗(sc)) ∖ REc∗(sc)
4. ⊢BMCL ⋀ tc → ¬ϕ2 for all tc ∈ REc(REc∗(sc)) ∖ REc∗(sc)
5. ⊢BMCL θ1 → ϕ1 by 1 and propositional tautologies
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6. ⊢BMCL θ1 → ¬ϕ2 by 2 and propositional tautologies

7. ⊢BMCL θ2 → ¬ϕ1 by 3 and propositional tautologies

8. ⊢BMCL θ2 → ¬ϕ2 by 4 and propositional tautologies

9. ⊢BMCL θ → θ1 ∨ θ2
10. ⊢BMCL (θ ∧ϕ1) → (θ1 ∧ϕ1) ∨ (θ2 ∧ϕ1) by 9 and propositional tautologies

11. ⊢BMCL (θ2 ∧ϕ1) → � by 7 and propositional tautologies

12. ⊢BMCL (θ ∧ϕ1) → (θ1 ∧ϕ1) by 10, 11 and propositional tautologies

13. ⊢BMCL (θ ∧ϕ1) → θ1 by 12 and propositional tautologies

14. ⊢BMCL ⋀ tc → AX( ⋁
uc∈Rc(tc)

(⋀uc)) for all tc ∈ REc∗(sc), by axiom A3b

15. ⊢BMCL ⋀ tc → AXθ for all tc ∈ REc∗(sc), by 14, CTL and propositional tautologies

16. ⊢BMCL θ1 → AXθ by 15 and propositional tautologies

17. ⊢BMCL (θ ∧ϕ1) → AXθ by 13, 16 and propositional tautologies

18. ⊢BMCL θ → (ϕ1 → AXθ) by 17 and propositional tautologies

19. ⊢BMCL θ → ¬ϕ2 by 6, 8 and propositional tautologies

20. ⊢BMCL θ → (¬ϕ2 ∧ (ϕ1 → AXθ)) by 18,19 and propositional tautologies

21. ⊢BMCL AG(θ → (¬ϕ2 ∧ (ϕ1 → AXθ))) by 20 and CTL

22. ⊢BMCL θ → ¬E(ϕ1Uϕ2) by 21 and CTL

23. ⊢BMCL ⋀ sc → θ by propositional tautologies

24. ⊢BMCL ⋀ sc → ¬E(ϕ1Uϕ2) by 22, 23 propositional tautologies

Hence, ⋀ sc → ¬E(ϕ1Uϕ2) is a theorem.

● Assume that ϕ is of the form A(ϕ1Uϕ2). In order to prove that ⋀ sc → A(ϕ1Uϕ2) is a

theorem, we attempt to construct a sub-graph of the canonical model starting from sc which

contains the prefixes of any path starting from sc in CM, and show that at all leaves s of the

sub-graph, we have ⋀ s → ϕ2 is a theorem and at other states t in the sub-graph, ⋀ t → ϕ1 is

a theorem. We start the construction from sc, by the induction hypothesis, we must know that

either ⋀ sc → ϕ1 or ⋀ sc → ¬ϕ1 and either ⋀ sc → ϕ2 or ⋀ sc → ¬ϕ2 are theorems. If ⋀ sc →
ϕ2, it is enough to conclude that ⋀ sc → A(ϕ1Uϕ2). Otherwise, for ⋀ sc → A(ϕ1Uϕ2)
to be a theorem, we must at least have that ⋀ sc → ϕ1 is a theorem and pass the checking
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of the fulfilment for A(ϕ1Uϕ2) on all successors of sc. For each successor, we repeat the

checking as we did with sc. The construction terminates when either we reach a state tc

where ⋀ tc → ¬ϕ1 and ⋀ tc → ¬ϕ2 are theorems or there is no successor to consider.

FIGURE 3.9: The construction of a sub-graph for the fulfilment of A(ϕ1Uϕ2).

Let us consider an example of the construction as depicted in Figure 3.9. Similar to the

example in Figure 3.8, we also draw a state s as a circle to assume that ⋀ s→ ϕ1 is a theorem,

and as a solid black circle to assume that ⋀ s → ϕ2 is a theorem. States s where we assume

both ⋀ s → ¬ϕ1 and ⋀ s → ¬ϕ2 are theorems are marked with the symbol “x”. We start

the construction at a state s0. Since ⋀ s0 → ϕ1 is a theorem, we continue considering all

successors of s0 which are s1, s2 and s3. Because only ⋀ s1 → ϕ2 is a theorem, we continue

considering successors of s2 and s3 which are s4, s5, s6 and s7. When we reach s7, the

construction terminates because both ⋀ s7 → ¬ϕ1 and ⋀ s7 → ¬ϕ2 are theorems. In fact, s7

can be used as a witness to prove that ⋀ s0 → ¬A(ϕ1Uϕ2) is a theorem.

We say that a state sc ∈ Sc is potential for A(ϕ1Uϕ2) if either ⊢BMCL ⋀ sc → ϕ1 or

⊢BMCL ⋀ sc → ϕ2. Given a sub-set of states ∆ ⊆ Sc, we define

∆ϕ1
= {tc ∈∆ ∣⊢BMCL ⋀ tc → ϕ1 and /⊢BMCL ⋀ tc → ϕ2}

RAc(∆) = {tc ∈ Sc ∣ ∃uc ∈∆ϕ1
∶ tc ∈ Rc(uc)}

The set RAc(∆) facilitates the construction by introducing candidate states at each step of the

construction. We contruct the set RAci(sc) of states where i ∈ N incrementally as follows.

RAc0(sc) ={sc}
RAci+1(sc) =RAci(sc) ∪ {tc ∈ Sc ∖ RAci(sc) ∣ tc ∈ RAc(RAci(sc))}
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The above construction terminates when either a state swhich is not potential for for A(ϕ1Uϕ2)
is added into RAci(sc) or RAci+1(sc) = RAci(sc). Since Sc is finite, the construction must ter-

minate at some step i = l ∈ N. We define RAc∗(sc) = RAcl (sc).
We define a binary relation

Ac(RAc∗(sc)) = {(tc, uc) ∈ Rc ∣ tc ∈ RAc∗(sc) and uc ∈ RAc∗(sc)}
According to the definition of RAc∗(sc), for any tc ∈ RAc∗(sc)), there must be a path s0s1 . . . sk

in RAc(RAc∗(sc)) such that s0 = sc and sk = tc where (sj , sj+1) ∈ Ac(RAc∗(sc)) for all j < k.

The distance from sc to tc is the length of the longest path from sc to tc.

We say that a path (s0, . . . , sk) in RAc∗(sc) is a ϕ1-cycle iff si ∈ RAc∗(sc) for all i ≤ k,

(si, si+1) ∈ Rc for all i < k, (sk, s0) ∈ Rc, ⊢BMCL ⋀ si → ϕ1 for all i ≤ k and ⊢BMCL ⋀ si →
¬ϕ2 for all i ≤ k.

If there is a ϕ1-cycle (t0, . . . , tk) in RAc∗(sc), according to the construction of RAc∗(sc), there

must be a finite path (s0, . . . , sl) for some l ∈ N where s0 = sc, sl = t0, (si, si+1) ∈ Rc
for all i < l, ⊢BMCL ⋀ si → ϕ1 for all i ≤ l and ⊢BMCL ⋀ si → ¬ϕ2 for all i ≤ l. Let

θ = ⋁i≤l(⋀ si) ∨ ⋁i≤k(⋀ ti). We have the following proof:

1. ⊢BMCL ⋀ si → ϕ1 for all i ≤ l

2. ⊢BMCL ⋀ si → ¬ϕ2 for all i ≤ l

3. ⊢BMCL ⋀ ti → ϕ1 for all i ≤ k

4. ⊢BMCL ⋀ ti → ¬ϕ2 for all i ≤ k

5. ⊢BMCL θ → ϕ1 by 1, 3 and propositional tautologies

6. ⊢BMCL θ → ¬ϕ2 by 2, 4 and propositional tautologies

7. ⊢BMCL ⋀ si → EX⋀ si+1 for all i < l, by axiom A3a

8. ⊢BMCL ⋀ si → θ for all i ≤ l, by propositional tautologies

9. ⊢BMCL EX⋀ si → EXθ for all i ≤ l, by 8 and CTL

10. ⊢BMCL ⋀ si → EXθ for all i < l, by 7, 9 and propositional tautologies

11. ⊢BMCL ⋀ ti → EX⋀ ti+1 for all i < k, by axiom A3a

12. ⊢BMCL ⋀ ti → θ for all i ≤ k, by propositional tautologies

13. ⊢BMCL EX⋀ ti → EXθ for all i ≤ k, by 12 and CTL

14. ⊢BMCL ⋀ ti → EXθ for all i < k, by 13 and propositional tautologies
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15. ⊢BMCL ⋀ tk → EX⋀ t0 by axiom A3a

16. ⊢BMCL ⋀ tk → θ by propositional tautologies

17. ⊢BMCL EX⋀ tk → EXθ by 16 and CTL

18. ⊢BMCL ⋀ tk → EXθ by 17 and propositional tautologies

19. ⊢BMCL ⋀ θ → EXθ by 10, 14, 18 and propositional tautologies

20. ⊢BMCL ⋀ θ → (ϕ1 → EXθ) by 19, 5 and propositional tautologies

21. ⊢BMCL ⋀ θ → ¬ϕ2 ∧ (ϕ1 → EXθ) by 20, 6 and propositional tautologies

22. ⊢BMCL ⋀ θ → ¬A(ϕ1Uϕ2) by 21 and CTL

If there is a state tc in RAc∗(sc) which is not potential for A(ϕ1Uϕ2), there must be a path

s0, . . . , sk, where s0 = sc and sk = tc, in Ac(RAc∗(sc)) such that for all i < k, ⋀ si → ¬ϕ2 is a

theorem (otherwise, tc cannot be in RAc∗(sc)). We have the following proof:

1. ⊢BMCL ⋀ sk → ¬ϕ1 since tc = sk is not potential for A(ϕ1Uϕ2)
2. ⊢BMCL ⋀ sk → ¬ϕ2 since tc = sk is not potential for A(ϕ1Uϕ2)
3. ⊢BMCL ⋀ sk → ¬ϕ1 ∨ ¬AXA(ϕ1Uϕ2) by 1 and propositional tautologies

4. ⊢BMCL ⋀ sk → ¬ϕ2 ∧ (¬ϕ1 ∨ ¬AXA(ϕ1Uϕ2)) by 2, 3 and propositional tautologies

5. ⊢BMCL ⋀ sk → ¬A(ϕ1Uϕ2) by 4 and CTL

6. ⊢BMCL ⋀EXsk → EX¬A(ϕ1Uϕ2) by 5 and CTL

7. ⊢BMCL ⋀ sk−1 → EX⋀ sk by axiom A3a

8. ⊢BMCL ⋀ sk−1 → EX¬A(ϕ1Uϕ2) by 6, 7 and propositional tautologies

9. ⊢BMCL ⋀ sk−1 → ¬AXA(ϕ1Uϕ2) by 8 and CTL

10. ⊢BMCL ⋀ sk−1 → ¬ϕ1 ∨ ¬AXA(ϕ1Uϕ2) by 10 and propositional tautologies

11. ⊢BMCL ⋀ sk−1 → ¬ϕ2

12. ⊢BMCL ⋀ sk−1 → ¬ϕ2 ∧ (¬ϕ1 ∨ ¬AXA(ϕ1Uϕ2)) by 10, 11 and propositional tautologies

13. ⊢BMCL ⋀ sk−1 → ¬A(ϕ1Uϕ2) by 12 and CTL

⋮

14. ⊢BMCL ⋀ s0 → ¬A(ϕ1Uϕ2) by repeating 5,. . . ,13 until s0, notice that s0 = sc

Hence, sc → ¬A(ϕ1Uϕ2) is a theorem.
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Let us now assume that there is no ϕ1-cycle and no state which is not potential for A(ϕ1Uϕ2)
in RAc∗(sc). We first show that there must be a state s ∈ RAc∗(sc) such that ⋀ s → ϕ2 is a

theorem. Assume to the contrary that there is no such state in RAc∗(sc). This means for all

states s ∈ RAc∗(sc) we have that ⋀ s → ϕ1 and ⋀ s → ¬ϕ2 are theorems. Let us consider an

arbitrary state tc ∈ RAc∗(sc), according to the construction of RAc∗(sc), there must be a path

(s0, . . . , sk) from sc to tc in RAc∗(sc) where s0 = sc and sk = tc. Since there is no ϕ1-cycle in

RAc∗(sc), no state occurs twice in the path (s0, . . . , sk). Since sk has at least one successor,

according to the construction of RAc∗(sc), the successor must be in RAc∗(sc). However, this

successor must not occur in the path (s0, . . . , sk) (otherwise, we have a ϕ1-cycle). Let us call

this successor as sk+1 and extend (s0, . . . , sk) to (s0, . . . , sk+1). Then we repeat considering

sk+1 as we did with sk. Finally, we end up with a path (s0, . . . , sk, . . . , sl) which traverses

every state in RAc∗(sc) at most once. Again, we consider sl which must have a successor.

This successor must be in RAc∗(sc), which implies that it is one of the states in the path

(s0, . . . , sk, . . . , sl). Hence, we encounter a ϕ1-cycle in RAc∗(sc), which is a contradiction.

Therefore, if there is no ϕ1-cycle and no state which is not potential for A(ϕ1Uϕ2) in

RAc∗(sc), there must be a state s ∈ RAc∗(sc) such that ⋀ s → ϕ2 is a theorem. Given a

state sc ∈ RAc∗(sc) where ⋀ s → ϕ2 is a theorem, we define the distance from a state sc to

ϕ2 is 0. Given a state sc ∈ RAc∗(sc) where ⋀ s → ¬ϕ2 is a theorem, we define the distance

from a state sc to ϕ2 is the length of the longest path from sc to some first state tc ∈ RAc∗(sc)
where ⋀ tc → ϕ2 is a theorem. Such a path must exist, otherwise, we can point out a ϕ1-

cycle in RAc∗(sc). Furthermore, the length of the path is finite because there is no ϕ1-cycle in

RAc∗(sc). In the following, we prove that, for every state tc ∈ RAc∗(sc), ⋀ tc → A(ϕ1Uϕ2) is

a theorem by the induction on the distance from tc to ϕ2.

– In the base case, the distance from tc to ϕ2 is 0, we have the following proof:

1. ⊢BMCL ⋀ tc → ϕ2

2. ⊢BMCL ⋀ tc → ϕ2 ∨ (ϕ1 ∧AXA(ϕ1Uϕ2)) by 1 and propositional tautologies

3. ⊢BMCL ⋀ tc → A(ϕ1Uϕ2) by 2 and CTL

– In the induction step, the distance from tc to ϕ2 is greater than 0, we must have that

⊢BMCL⋀ tc → ϕ1 (3.1)

⊢BMCL⋀ tc → ¬ϕ2 (3.2)
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According to the definition of RAc∗(sc), for every uc ∈ Rc(tc), we have uc ∈ RAc∗(sc).
Of course, the distance from tc to ϕ2 is greater than that from any uc ∈ Rc(tc). By the

induction hypothesis, we have that for all uc ∈ Rc(tc), ⋀uc → A(ϕ1Uϕ2) is a theorem.

We have the following proof:

1. ⊢BMCL ⋀uc → A(ϕ1Uϕ2) for all uc ∈ Rc(tc)
2. ⊢BMCL ⋁

uc∈Rc(tc)

⋀uc → A(ϕ1Uϕ2) by 1 and propositional tautologies

3. ⊢BMCL AX( ⋁
uc∈Rc(tc)

⋀uc) → AXA(ϕ1Uϕ2) by 2 and CTL

4. ⊢BMCL ⋀ tc → AX( ⋁
uc∈Rc(tc)

⋀uc) by axiom A3b

5. ⊢BMCL ⋀ tc → AXA(ϕ1Uϕ2) by 3, 4 and propositional tautologies

6. ⊢BMCL ⋀ tc → ϕ1 from (3.1)

7. ⊢BMCL ⋀ tc → (ϕ1 ∧AXA(ϕ1Uϕ2)) by 5, 6 propositional tautologies

8. ⊢BMCL ⋀ tc → ϕ2 ∨ (ϕ1 ∧AXA(ϕ1Uϕ2)) by 7 and propositional tautologies

9. ⊢BMCL ⋀ tc → A(ϕ1Uϕ2) by 8 and CTL

Since sc ∈ RAc∗(sc), we have that ⋀ sc → A(ϕ1Uϕ2) is a theorem.

The above lemma makes the proof of completeness for BMCL(K,nmem, , nmem) straight-

forward. Assume that ϕ is a consistent formula. This means there must be a maximally consistent

set Γ which contains ϕ. Since Γ is maximally consistent, for each i ∈ N , there must be Γi ∈ Li such

that Biα ∈ Γ for all α ∈ Γi and ¬Biα ∈ Γ for all α ∈ L ∖ Γi. Moreover, for each i ∈ N , there must

be also ni ∈ {0, . . . , ncom(i)} such that cni

i ∈ Γ and ¬cki ∈ Γ for all k ∈ {0, . . . , ncom(i)} and k /= ni.
Let sc = (Γi, ni)i∈N , we have that ⋀ sc ∈ Γ.

We show that ⋀ sc → ϕ is a theorem. Assume to the contrary that ⋀ sc → ϕ is not a

theorem, this implies by Lemma 5 that ⋀ sc → ¬ϕ is a theorem. Since ⋀ sc ∈ Γ and Γ is maximally

consistent, we have that ¬ϕ ∈ Γ which contradicts the fact that Γ is consistent. Hence, ⋀ sc → ϕ

is a theorem. Since BMCL(K,nmem, , nmem) is sound, ⋀ sc → ϕ is valid. Therefore, we have that

CM, sc ⊧ ⋀ sc and CM, sc ⊧ ⋀ sc → ϕ. This implies CM, sc ⊧ ϕ which means the consistent

formula ϕ is satisfied in CM at sc.
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3.6 Conclusion

In this chapter, we have introduced logics BMCL for each system of multiple reasoning agents.

Agents in such systems perform reasoning under bounds on memory and communication. Each

agent is equipped with a number of inference rules which allow them to derive new information

from what they have in the memory. For each system, we define a corresponding logic based on

CTL for reasoning about properties of the system under bounds on memory and communication.

The logic is specific for the characteristics of the system such as the number of agents in the system,

the knowledge bases of agents in the system and the bounds on memory and communication for

each agent in the system. The semantics is also defined by Kripke structures as in the case of

CTL, however, we are only interested in the class of models which describes systems of multiple

reasoning agents. In particular, the valuation at each state of such a model must comply with the

condition of bounds on memory and communication and a transition in a model must correspond to

a correct behaviour of the system.

We have investigated the satisfiability problem of BMCL where it was proved that the

logic is decidable. Rather than follow the approach for CTL, we utilise the characteristic of models

in the class describing systems of multiple reasoning agents so that an ordinary model-checking

algorithm for CTL can be used for solving the satisfiability problem. We also researched the sound-

ness and completeness of the deductive system for the logic. Once again, the characteristic of

models in the class describing systems of multiple reasoning agents is used to provide the proof of

the soundness and completeness.

Comparing to the result in [Alechina et al., 2006a], the extension from BML to BMCL

in this chapter not only introduces a logic for reasoning about the abilities of systems where mem-

ory and communication are bounded but also provides what has been missing in [Alechina et al.,

2006a] such as the proof for the soundness and the completeness of BML and the study of its sat-

isfiability problem. Nonetheless, BMCL has certain drawbacks. Although BMCL is for reasoning

about systems of multiple reasoning agents, it is not clear how to use it to describe arbitrary multi-

agent systems where resources available to agents in order to operate are bounded. Furthermore,

BMCL can only express properties of systems as a whole. For example, it is possible to formulate

a property where all agents in a system can cooperate to obtain a goal. However, it is impossible

to express another property where some agent or a sub-group of agents in the system has the power

to produce a certain result regardless of other agents. In a logic of BMCL, the bounds on memory

and communication are fixed. Changing the setting of such bounds will produce a different logic.



3. BOUNDED MEMORY-COMMUNICATION LOGIC 59

Moreover, the logic gets much complicated if we want to reason about multi-agent systems where

more types of resources except from memory, communication and time are involved. In order to

overcome such drawbacks, in the next two chapters, we investigate two logical languages which

extend CL and ATL, respectively.
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CHAPTER 4

RESOURCE-BOUNDED COALITION LOGIC

4.1 Introduction

In previous chapter, we have introduced the logics BMCL which are for reasoning about the abilities

of systems of multiple reasoning agents under a certain amount of resources. BMCL extends the

branching-time temporal logic CTL where bounds of memory and communication are hard-coded

into each of these logics. In other words, each of the logics BMCL allows us to reason about the

ability of a system of multiple reasoning agents under immutable bounds of memory and commu-

nication. This implies that BMCL cannot express nested abilities under bounded resources such

as agents in a system can cooperate to achieve a goal under some bound of resources, and then

continue cooperating to achieve another goal under another bound of resources. Moreover, we also

face the following drawbacks when working with BMCL:

● BMCL is designed for systems of multiple reasoning agents although it is possible to adapt

the logical language for other multi-agent systems. Nevertheless, how to adapt is not straight-

forward and requires changes in the axiomatisation system of the logics.

● BMCL is based on CTL, which only allows specifying and reasoning about properties of

systems as a whole. For instance, it is possible to formalise in BMCL the property that all

agents in the system can cooperate to achieve some goal. However, it is not possible to

use BMCL for formalising the properties about the abilities of individuals or a coalition of

individuals in a multi-agent system.

● Because bounds of resources are hard-coded into a logic of BMCL, it is not possible to reason

about the ability of a system of reasoning agents under different bounds of resource in the

same logic.
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Recently, there have been several studies on Coalition Logic (CL) such as [Pauly, 2001,

Pauly, 2002, Wooldridge et al., 2007, Ågotnes et al., 2008a, Ågotnes et al., 2008b, Ågotnes et al.,

2009a, Ågotnes et al., 2009b] which enables us to express many interesting properties about the

abilities of coalitions. For instance, CL allows us to express a property where a coalition of agents

in a system can cooperate to force a certain result regardless of the intervention from any agent

outside the coalition. Because the semantics of CL is based on Game Frames, the logic CL allows

expressing and reasoning about properties about coalitional abilities of multi-agent systems. Each

game frame describes a multi-agent system including possible states that the system may have,

actions available to agents in the system at each state as well as the outcome of a joint action by all

the agents in the system at each state. Because there is no cost associated with actions available to

agents, there is no natural way of expressing resource requirements in CL. For example, there is no

easy way to verify properties of the form ‘can a set of agents C cooperate to force a result without

spending no more than a given resource bound b’. Essentially, this is the successful coalition under

resource bound problem investigated by Wooldridge and Dunne in [Wooldridge & Dunne, 2006].

In this chapter, we extend CL with resource bounds in order to overcome problems with

BMCL where the extended logic allows expressing and reasoning about individual and coalitional

abilities under resource bounds. In particular, we expand the concept of Game Frames with sets of

resources which are required by actions as well as costs to actions. Then, we also extend the syntax

of CL with resource bounds for coalitions to express the ability of a coalition under a certain bound

of resources. Furthermore, unlike Wooldridge and Dunne, the extended logic also accounts for

multi-shot games where the agents need to perform a sequence of actions to achieve the goal. As a

running example, let us reconsider the system of two reasoning agents described on page 28. There

are two explicit resources required by agents in the system for operating which are memory and

communication. Each action requires a different amount of resources to perform. The action Read,

which loads some formula from the knowledge base into the internal memory, requires at least one

cell of memory where the resulting formula could be loaded into. The action Infer, which performs

the inference rule modus ponens, requires at least two cells of memory where the antecedents of

the inference rule are stored. Notice that both actions, Read and Infer, do not require any mount

of the resource communication. However, the action Copy does where in order to perform a copy

action, an agent needs to have at least one memory cell to store the resulting formula and one unit

of the resource communication to obtain the formula from the internal memory of other agents.

Apart from the two explicit resources, actions in this system also require another type of resource,

which is time. In other words, all those actions take one step of time to complete. Even though the
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action Idle, which means to do nothing, requires no memory and communication, one step of time

is essential for Idle to perform. In this example, it is assumed that the bound of memory for each

agent is two cells and the bound of communication is two messages, two reasoning agents in the

system need at least seven steps of time to derive the goal formula C. Particularly, under the bounds

of two cells of memory, two messages of communication and seven steps of time, the two reasoning

agents of the system are able to derive C. Moreover, when we alter the bounds of resources where

limitation of memory is increased to three cells, communication is forbidden and allowed time is

extended to ten steps of times, agent 1 has the power to derive C on its own.

In this chapter, we present in detail the extension of CL, namely Resource-Bounded Coali-

tion Logic (RBCL). In particular, we first discuss the notion of resources together with related ones

which are costs of action and resource bounds. After that, we describe the extension of Game

Frames with resources and costs of actions. Then, we give the definition of the syntax and seman-

tics of RBCL. In the remainder of the chapter, we introduce a sound and complete axiomatisation

of RBCL and study the satisfiability problem of RBCL.

4.2 Resources

In a multi-agent system, agents perform actions by spending certain amount of resources. For

instance, actions available to our reasoning agents in the example on page 28 require two explicit

resources which are memory and communication together with an implicit resource, namely time.

Each action costs a different amount of resources such as the cost of the action Read is 1 cells of

memory, 0 message of communication and 1 step of time. For convenience, we will write this cost

as as a tuple (1,0,1) where the first element of the tuple refers to the memory cost, the second to

the communication cost and the third to the time cost. Likewise, the costs of the actions Infer by

modus ponens and Copy are (2,0,1) and (1,1,1), respectively.

In the general case, we assume that each multi-agent system is associated with a set of

resources which are the fuel for actions of agents in the system to be able to perform. For the sake

of simplicity, we also make a further assumption where amounts of resources are expressed in terms

of units. Let us first define the set of resource bounds.

Definition 6. Given a finite set R of resources where R = {1, . . . , r}, the set of resource bounds is

defined as B = N
r.

There are two places where resource bounds are used. One the one hand, they can be used

as the available amount of resources for a coalition of agents in properties about the ability of the
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coalition; in other words, they are the resource bounds of the coalition. On the other hand, we also

use resource bounds to describe the cost of actions. We define the comparison over resource bounds

as usual. Given a resource bound b = (b1, . . . , br) ∈ B, we write bi to denote the ith component of b.

Then, given two resource bounds b, d ∈ B, we say that b ≤ d iff bi ≤ di for all 1 ≤ i ≤ r.

In this thesis, we generalise the way in which the resource requirements of complex ac-

tions are calculated. We argue that not all resource costs should be combined using the addition

operator. For example, if one of the resources is time and the agents execute their actions con-

currently, then, if each individual action costs one unit of time, the parallel combination of those

actions also costs one unit of time. If one of the resources is memory, one can argue that if action

a1 requires k units of memory and action a2 requires m units of memory, then executing actions

a1 and a2 sequentially requires max(k,m) units of memory. For generality, we introduce two cost

operators ⊕j and ⊗j for each resource j ∈ R to express how resource requirements are combined

in parallel and in sequence, respectively. These operators ⊕j and ⊗j are defined as mappings from

N×N to N. For both of them, we only require that for any k and m ∈ N, k ≤ k⊕jm and k ≤ k⊗jm,

for any j ∈ R. This requirement is natural since it makes sense to say that the combination of two

amounts of resource must be greater than or at least equal to each of them. Given two resource

bounds b = (b1, . . . , br) ∈ B and d = (d1, . . . , dr) ∈ B, we define that

b⊕ d = (b1 ⊕1 d1, . . . , br ⊕r dr)
b⊗ d = (b1 ⊗1 d1, . . . , br ⊗r dr)

Then, if two actions a1 and a2 cost Res(a1) and Res(a2), respectively, the cost of executing them

in parallel is Res(a1) ⊕Res(a2), and in sequence Res(a1) ⊗Res(a2).

4.3 Formalising single step strategies

We assume a set of agents N = {1, . . . , n} and a set of resources R = {1, . . . , r}. Agents can

perform actions from a set Σ = ∪i∈NΣi, where Σi is the set of actions that can be performed by the

agent i. Each action a ∈ Σ has an associated cost Res(a), which is a resource bound. A joint action

executed by a coalition C ⊆ N is a tuple of actions aC = (a1, . . . , ak) (we assume for simplicity

unless otherwise stated that C = {1, . . . , k} for some k ≤ n).
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4.3.1 Syntax

The language of RBCL1 is defined relative to the sets N and R and a set of propositional variables

Prop. A formula is defined as follows:

p ∣ ¬ϕ ∣ ϕ ∧ ψ ∣ [Cb]ϕ

where p ∈ Prop, C ⊆ N , and b ∈ Nr. The intuitive meaning of [Cb]ϕ for C /= ∅ is that coalition

C can force the outcome ϕ under the resource bound b, or, in other words, the agents in C have

a strategy costing at most b which enables them to achieve a ϕ-state no matter what the agents in

C̄ = N ∖ C do. For the empty coalition, [∅b]ϕ means that if the grand coalition N executes any

joint action which together costs at most b, then the system will end up in a ϕ state; that is, ϕ is

unavoidable if N acts within the resource bound b.

4.3.2 Semantics

We define models of RBCL1 as transition systems, where in each state agents execute actions in

parallel to determine the next state. These are essentially the same as the models for coalition logic

with the addition of costs of actions. First we define resource-bounded action frames which underlie

the models:

Definition 7. A resource-bounded action (RBA) frameF is a tuple (N,R,Σ = ∪i∈NΣi, S, T, o,Res)
where:

● N is a non-empty set of agents,

● R is a non-empty set of resources,

● Σ is the set of actions agents can perform,

● S is a non-empty set of states,

● T ∶ S ×N → ℘(Σi) assigns to each state the set of actions available to the agent i in this

state; there must be an action which requires the smallest cost (0, . . . ,0).

● o is the outcome function which takes a state s and a joint action aN and returns the state

resulting from the execution of aN by the agents in s.

● Res ∶ Σ→ N
r is the resource requirement function.
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In the case of joint actions, we generalise the function T as follows: a joint action aC ∈
T (s,C) iff ai ∈ T (s, i) for all i ∈ C. By Res(aC) we denote the combined cost of Res(ai) for

every i ∈ C, that is Res(aC) = ⊕i∈CRes(ai).
Definition 8. A single-step resource-bounded action (RBA) model M is a pair (F,V ) where F is

an RBA frame and V ∶ S → ℘(Prop) is an assignment function.

The truth definition for single-step RBA models is as follows:

● M,s ⊧ p iff p ∈ V (s)
● M,s ⊧ ¬ϕ iff M,s /⊧ ϕ
● M,s ⊧ ϕ ∧ ψ iff M,s ⊧ ϕ and M,s ⊧ ψ
● M,s ⊧ [Cb]ϕ for C /= ∅ iff there is aC ∈ T (s,C) with Res(aC) ≤ b such that for every

joint action aC̄ ∈ T (s, C̄) by the agents not in C, the outcome of the resulting tuple of actions

executed in s satisfies ϕ: M,o(s, (aC , aC̄)) ⊧ ϕ
● M,s ⊧ [∅b]ϕ iff the outcome of any joint action aN ∈ T (s,N) with Res(aN) ≤ b executed

in s satisfies ϕ: M,o(s, aN) ⊧ ϕ.

The notions of satisfiability and validity are standard. Let us call the set of all formulas

valid in single-step RBA models RBCL1 (where 1 refers to considering only one-step strategies, as

in Coalition Logic).

Theorem 2. RBCL1 is completely axiomatised by the following set of axiom schemas and inference

rules:

A0 All propositional tautologies

A1 [Cb]⊺
A2 ¬[Cb]�
A3 ¬[∅b]ϕ↔ [N b]¬ϕ
A4 [Cb](ϕ ∧ ψ)→ [Cb]ϕ
A5 [Cb]ϕ→ [Cd]ϕ where d ≥ b if C /= ∅ or d ≤ b if C = ∅
A6a [Cb]ϕ ∧ [Dd]ψ → [(C ∪D)b⊕d](ϕ ∧ ψ) where C and D are both disjoint and non-empty
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A6b [∅b]ϕ ∧ [Cb]ψ → [Cb](ϕ ∧ ψ) where C is either ∅ or N

MP ⊢ ϕ, ⊢ ϕ→ ψ⇒ ⊢ ψ
Equivalence ⊢ ϕ↔ ψ⇒ ⊢ [Cb]ϕ↔ [Cb]ψ

The notions of derivability and consistency are standard. Note that if we erase the resource

superscript in the axiomatisation above, we get the complete axiomatisation of Coalition Logic as

given in [Pauly, 2002], and a trivial formula resulting from A5. The rule of monotonicity (RM) is

derivable as in Coalition Logic, that is, if ⊢ ϕ→ ψ, then ⊢ [Cb]ϕ→ [Cb]ψ.

We omit the completeness proof here as it is a special case of completeness proof of

RBCL given in the next sections.

4.3.3 Example

As an illustration, we show how to express some properties of coalitional resource games from

[Wooldridge & Dunne, 2006] in RBCL1.

A coalitional resource game (CRG) Γ is defined as a tuple (N , G, R, G1, . . ., Gn, en,

req) where

● N = {1, . . . , n} is a set of agents,

● G = {g1, . . . , gm} is a set of goals,

● R = {r1, . . . , rt} is a set of resources,

● Gi ⊆ G is the set of goals for the agent i,

● en ∶ N ×R → N is the resource endowment function (how many units of a given resource is

allocated to an agent),

● req ∶ G×R → N is the resource requirement function (how many units of a particular resource

is required to achieve a goal). It is assumed that each goal requires a non-zero amount for at

least one resource.

In CRGs, the endowment of a coalition is equal to the sum of the endowments of its members:

en(C, r) = Σi∈Cen(i, r). Furthermore, the cost of performing actions in parallel is defined by

means of the sum operator.
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As an example, we give a simple CRG from [Wooldridge & Dunne, 2006], where N =

{1,2,3}; G = {g1, g2}; R = {r1, r2}; G1 = {g1}, G2 = {g2}, G3 = {g1, g2}; en(1, r1) = 2,

en(1, r2) = 0, en(2, r1) = 0, en(2, r2) = 1, en(3, r1) = 1, en(3, r2) = 2; req(g1, r1) = 3,

req(g1, r2) = 2, req(g2, r1) = 2, and req(g2, r2) = 1. In RBCL1, we can state properties such

as the coalition of agents 1 and 3 can achieve g1 under the resource bound corresponding to the sum

of their endowments: [1,3⟨3,2⟩]g1. More generally, a decision problem which is called coalition C

is successful under resource bound b in [Wooldridge & Dunne, 2006] can be expressed as

[Cb]⋀
i∈C

⋁
g∈Gi

g.

.

4.4 Formalising multi-step strategies and arbitrary resource combinators

In this section, we generalise the logic described in the previous section. In particular, we consider

multi-step strategies, as in Extended Coalition Logic with the [C∗] operator [Pauly, 2001], or as

in ATL. The reason for this is that we are interested in the resource requirements of strategies

which involve multiple steps. For example, suppose a coalition C can enforce ϕ in three steps:

[Cb1][Cb2][Cb3]ϕ. We can deduce from this that the agents have a strategy to achieve ϕ which

costs at most b1 ⊗ b2 ⊗ b3. However expressing the fact in this way is rather clumsy. Even worse,

to say that ‘C has some strategy which achieves ϕ in three steps which costs at most b’ in RBCL1,

we have to use a disjunction over all possible vectors of natural numbers b1, b2, b3 which sum up to

b: ∨b1⊗b2⊗b3=b[Cb1][Cb2][Cb3]ϕ. Hence we extend the set of actions, or strategies, with sequential

compositions of actions.

In the rest of the chapter, we assume the following:

● The last resource r in the set of resources R is always time.

● ⊕r is the max function.

● ⊗r is the + operator.

● Every action costs exactly one unit of time.

As every action requires at least one step of time to perform, the smallest cost is redefined as

(0, . . . ,0,1). We denote by t(b) the time component of cost vector b. In particular, t(Res(a)) = 1

for any a ∈ Σ. In the language, only operators [Cb] with t(b) ≥ 1 are allowed.
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4.4.1 Strategies and multi-step RBA models

Given an RBA frame F = (N,R,Σ, S, T, o,Res), a strategy for an agent i ∈ N is a function

fi ∶ S+ → Σi from finite non-empty sequences of states to actions, such that fi(λs) = a ∈ T (s, i),
where λs is a sequence of states ending in state s. Intuitively, fi says what action the agent i should

perform in state s given the previous history of the system. A strategy for a coalition C is a set

FC = {f1, . . . , fk} of strategies for each agent.

For a sequence λ = s0s1 . . . ∈ Sω, we denote λ[i] = si and λ[i, j] = si . . . sj . The set of

possible computations generated by a strategy FC from a state s0, out(s0, FC), is

{λ ∣ λ[0] = s0 ∧ ∀j ≥ 0 ∶ λ[j + 1] ∈ o∗(λ[j], (fi(λ[0, j]))i∈C)}

where o∗(s, aC) = {o(s, (aC , aC̄)) ∣ aC̄ ∈ T (s, C̄)}. Now we define the cost of a multi-step

strategy. Let λ ∈ out(s0, FC). The cost of FC over a prefix λ[0,m] where m > 0 is defined

inductively as follows:

cost(λ[0,1], FC) = ⊕i∈CRes(fi(λ[0])), where Res(fi(λ[0])) is the cost of action of the agent

i in λ[0], and ⊕i∈C is the operator for combining the costs of actions executed in parallel by

the agents in C;

cost(λ[0,m], FC) = cost(λ[0,m − 1], FC)⊗ (⊕i∈CRes (fi(λ[0,m − 1]))) for m > 1; this is the

cost of the previousm−1 steps in the strategy combined sequentially with the cost of themth

step.

In the following, we define the semantics of RBCL for the case of multi-step strategies.

Notice that we only provide the definition of formulas of the form [Cb]ϕ since the other cases are

still the same as before.

Definition 9. A multi-step resource-bounded action model M is a pair (F,V ) where F is an RBA

frame, and V ∶ S → ℘(Prop) is an assignment function, and the truth definition for the [Cb]

modality is

● M,s ⊧ [Cb]ϕ for C /= ∅ iff there is a strategy FC such that for all λ ∈ out(s,FC), there

exists m > 0 such that cost(λ[0,m], FC) ≤ b and M,λ[m] ⊧ ϕ,

● M,s ⊧ [∅b]ϕ iff for all strategies FN , computations λ ∈ out(s,FN), and m > 0 such that

cost(λ[0,m], FN) ≤ b, M,λ[m] ⊧ ϕ.
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Note that under this definition, the meaning of [Cb]ϕ (for non-empty C) becomes as

follows: C has a multi-step strategy to bring about ϕ, and the cost of this strategy is less than b. The

meaning of [∅b]ϕ is that the outcome of any strategy of the grand coalition N which costs less than

b, satisfies ϕ.

The set of all formulas valid in multi-step RBA models will be denoted by RBCL.

4.4.2 Example

As an illustration, we show how properties of coalitions of resource-bounded reasoners can be

expressed by, once again, considering the example presented in page 28. As depicted in Figure 3.1,

the system in this example has the ability to derive c under the resource bound 4 for memory, 1

for communication and 7 for time. In the logic BMCL, the resource bound (except time) is hard-

coded into the logic and we did not have a way of expressing coalitional abilities of agents. We can

however express in RBCL that, for example, reasoners 1 and 2 can derive c under such resource

bound by the formula [{1,2}(4,1,7)] B1c.

4.4.3 Effectivity structures

For proving completeness of RBCL, it is easier to work with an alternative semantics, given not in

terms of multi-step RBA models, but in terms of effectivity structures. These are closely related to

RBA models, and we will show that effectivity structures satisfying some natural properties give

rise to an alternative semantics for RBCL.

Let ℘(N)B = {Cb ∣ C ⊆ N, b ∈ Nr, t(b) ≥ 1}. Intuitively, this is the set of all possible

coalitions with all possible resource allocations. An effectivity structure is a function E ∶ S →
(℘(N)B → ℘(℘(S))) which describes, for each state in S, which subsets of S a coalition C can

force under resource bound b.

Given an RBA frame F, the effectivity structure corresponding to F is defined as follows:

● for C /= ∅, X ∈ E(s)(Cb) iff there exists a strategy FC such that for all λ ∈ out(s,FC), there

exists m > 0 such that cost(λ[0,m], FC) ≤ b and λ[m] ∈X;

● X ∈ E(s)(∅b) iff for all strategies FN , sequences of states λ ∈ out(s,FN), and m > 0 such

that cost(λ[0,m], FN) ≤ b, we have λ[m] ∈X .

In other words, X ∈ E(s)(Cb), where C is not the empty coalition, means that the coalition C has a

strategy to bring about X within the bound b. X ∈ E(s)(∅b) means that all strategies for the grand
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coalition which cost less b always result in a state in X , i.e., X is inevitable.

4.4.4 Characterising effectivity in RBA frames

Every RBA frame gives rise to an effectivity structure, but the reverse does not hold. In this section,

we characterise properties which an effectivity structure should satisfy to be an effectivity struc-

ture corresponding to an RBA frame. Following Pauly in [Pauly, 2002], we call such effectivity

structures playable (RB-playable, where RB stands for resource-bounded).

Below we state some useful properties of RB-playable effectivity structures. These are

very similar (apart from the resource bound) to the properties of playable effectivity structures listed

in [Pauly, 2002] and are given the same names:

● An effectivity structure E is outcome monotonic iff

X ∈ E(s)(Cb) ⇒X ′ ∈ E(s)(Cb) for all X ′ ⊇X

● An effectivity structure E is coalition monotonic iff

X ∈ E(s)(Cb) ⇒X ∈ E(s)(Db)
where C /= ∅ and D ⊇ C; and

X ∈ E(s)(∅b) ⇒X ∈ E(s)(N b)

● An effectivity structure E is N-maximal iff

X ∉ E(s)(∅b) ⇒X ∈ E(s)(N b)

● An effectivity structure E is N-minimal iff

X ∈ E(s)(N b) ∧ Y ∉ E(s)(N b) ⇒X ∖ Y ∈ E(s)(N b)
Note that N-minimality is not listed in [Pauly, 2002], but its analogue is derivable.

● An effectivity structure E is N -determinant1 iff

X ∈ E(s)(N b) ⇒ ∃t ∈X such that {t} ∈ E(s)(N b)
1Notice N -determinacy is also not listed in [Pauly, 2002], however, we need this property to prove Theorem 3 below

and also its analogue in [Pauly, 2002]. The problem with Pauly’s proof was pointed out to the author by Wojtek Jamroja,

Valentin Goranko and Paolo Turrini, but the fix was developed independently.
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We can also write this property in another way, that is E is N -determinant iff for any X ⊆ S,

if ∀t ∈X , {t} ∉ E(s)(N b) then we have X ∉ E(s)(N b).
● An effectivity structure E is regular iff for all coalitions C which are neither empty nor equal

to N

X ∈ E(s)(Cb) ⇒X ∉ E(s)(Cb′) for all t(b) = t(b′) = 1

In the case where the time component is greater than one, we also have a similar property to

regularity but for only the whole system (or the empty coalition). An effectivity structure E

is N-regular iff X ∈ E(s)(N b) ⇒X ∉ E(s)(∅b).
● An effectivity structure E is super-additive iff the following holds, for all b and d with t(b) =
t(d) = 1, and C ∩D = ∅:

– If C /= ∅ and D /= ∅, X1 ∈ E(s)(Cb) and X2 ∈ E(s)(Dd) ⇒

X1 ∩X2 ∈ E(s)((C ∪D)b⊕d)

– If C = ∅ and D = ∅ or N , X1 ∈ E(s)(∅d) and X2 ∈ E(s)(Dd) then X1 ∩ X2 ∈

E(s)(Dd)
We have two different cases in the definition of super-additivity because in the notation ∅b,
b is not the resource bound for the coalition it annotates but for its complement. Therefore,

it is not possible to combine the bounds as in the case when both coalition C and D are non

empty. Notice that super-additivity requires the time component of both resource bounds to

be equal to 1. When one of them is greater than one, such a property might not be true. We

also have a more general property that if one of the coalitions in the property is empty as

follows.

● An effectivity structureE is general super-additive iff it is super-additive andX1 ∈ E(s)(∅b)
and X2 ∈ E(s)(Cb) ⇒X1 ∩X2 ∈ E(s)(Cb) where C is either empty or the grand coalition.

We also have properties corresponding to sequential composition of strategies:

● An effectivity structure E is super-transitive iff the following holds for all C /= ∅: {s′ ∈
S ∣ X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1) ⇒ X ∈ E(s)(Cb1⊗b2) (if a set of states where X

is obtainable under b2 can be enforced under b1, then X can be enforced by the combined

strategy under b1 ⊗ b2).
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● An effectivity structureE is transitive iff for any bwith t(b) > 1 andC /= ∅: X ∈ E(s)(Cb) ⇒
∃b′ < b ∶ X ∈ E(s)(Cb′) (X can be achieved under a tighter bound b′) or ∃b1 ⊗ b2 = b ∶ {s′ ∈
S ∣ X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1) (X can be achieved by combining two strategies costing

b1 and b2 such that b1 ⊗ b2 = b).
Finally, the following property is specific to resource bounds:

● An effectivity structure E is bound-monotonic iff

X ∈ E(s)(Cb) ⇒X ∈ E(s)(Cd) for all d ≥ b if C /= ∅ or d ≤ b if C = ∅.

Bound-monotonicity is a very natural property: if a non-empty coalition can achieve something

under the bound b, then it can achieve it with a more generous resource allowance. For C = ∅,

this property means that if an outcome cannot be avoided when the grand coalition is restricted to

strategies which cost at most b, then it cannot be avoided ifN uses fewer resources (hence has fewer

strategies available).

It is easy to prove that the properties above are true for any effectivity structure obtained

from a RBA frame. Conversely, RB-playable effectivity structures defined below are effectivity

structures of an RBA frame.

Definition 10. An effectivity structure E ∶ S → (℘(N)B → ℘(℘(S))) is RB-playable iff, for every

s ∈ S, E has the following properties:

1. For all Cb ∈ ℘(N)B, S ∈ E(s)(Cb)
2. For all Cb ∈ ℘(N)B, ∅ ∉ E(s)(Cb)
3. Outcome-monotonicity

4. N -maximality

5. N -determinacy

6. N -regularity

7. Super-additivity

8. Super-transitivity

9. Transitivity
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10. Bound-monotonicity

It can be shown that RB-playability implies the other properties listed above.

Lemma 6. Let E be a RB-playable effectivity structure, then E has the following properties:

1. Coalition monotonicity

2. N -minimality

3. Regularity

4. General super-additivity

In the following, we provide the proof of the above lemma. First general super-additivity

is proved by induction on resource bounds using super-additivity. The proofs of the other properties

are based on general super-additivity.

Proof. By super-transitivity, we have that, for any b and b1 ⊗ b2 = b

{s′ ∣X ∈ E(s′)(N b2)} ∈ E(s)(N b1) ⇒X ∈ E(s)(N b1⊗b2)

Hence,

X ∉ E(s)(N b1⊗b2) ⇒ {s′ ∣X ∈ E(s′)(N b2)} ∉ E(s)(N b1)
By N -regularity and N -maximality, we have X ∈ E(s)(∅b1⊗b2) ⇒ X ∉ E(s)(N b1⊗b2) and

{s′ ∣ X ∈ E(s′)(N b2)} ∉ E(s)(N b1) ⇒ {s′ ∣ X ∈ E(s′)(∅b2)} ∈ E(s)(∅b1), respectively.

Therefore,

X ∈ E(s)(∅b1⊗b2) ⇒ {s′ ∣X ∈ E(s′)(∅b2)} ∈ E(s)(∅b1) (4.1)

We now prove general super-additivity by induction on the time component of b. The

base case follows directly from super-additivity. Let X ∈ E(s)(∅b) where the time component of

b is greater than 1. Assume that Y ∈ E(s)(Cb) where C is either ∅ or N . If Y ∈ E(s)(Cb′) for

some b′ < b, then bound-monotonicity for the empty coalition and induction hypothesis show that

X ∩ Y ∈ E(s)(Cb′). Hence, bound-monotonicity implies X ∩ Y ∈ E(s)(Cb). If Y ∉ E(s)(Cb′)
for all such b′, we have there exists b1 ⊗ b2 = b such that

{s′ ∣ Y ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)
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which follows from transitivity when C = N or from (4.1) with arbitrary b1 ⊕ b2 = b when C = ∅.

Note that we also have {s′ ∣ X ∈ E(s′)(∅b2)} ∈ E(s)(∅b1). Applying the induction hypothesis

twice together with outcome-monotonicity, we have the following result:

{s′ ∣X ∩ Y ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

Therefore, super-transitivity implies that X ∩ Y ∈ E(s)(Cb).

1. Assume that X ∈ E(s)(∅b). By RB-playability, we have S ∈ E(s)(N b). Apply general

super-additivity, we obtain X ∈ E(s)(N b).
Let ∅ /= C ⊂ N , we prove by induction on the time component of b that X ∈ E(s)(Cb) ⇒
X ∈ E(s)(Db) for any D ⊃ C.

In the base case, when time component of b is equal to 1, let C ′ = D ∖ C. We have S ∈

E(s)(C ′(0,...,0,1)), thus super-additivity implies that X =X ∩ S ∈ E(s)(Db).
Let us assume that time component of b is greater than 1. If X ∈ E(s)(Cb′) for some

b′ < b, then it is obvious by the induction hypothesis that X ∈ E(s)(Db′). Hence, bound-

monotonicity shows that X ∈ E(s)(Db). If X ∉ E(s)(Cb′) for any such b′, then we have by

transitivity that there exists b1 ⊗ b2 = b such that

{s′ ∣X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

By the induction hypothesis, we have

{s′ ∣X ∈ E(s′)(Cb2)} ∈ E(s)(Db1)

and

{s′ ∣X ∈ E(s′)(Cb2)} ⊆ {s′ ∣X ∈ E(s′)(Db2)}
Thus, outcome-monotonicity implies that

{s′ ∣X ∈ E(s′)(Db2)} ∈ E(s)(Db1)

Therefore, we have by super-transitivity that X ∈ E(s)(Db).
2. Assume that X ∈ E(s)(N b) and Y ∉ E(s)(N b). By N -maximality, we have Y ∈ E(s)(∅b).

Therefore, general super-additivity implies that X ∩ Y ∈ E(s)(N b).
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3. Assume that ∅ /= C ⊂ N and X ∈ E(s)(Cb) where the time component of b is equal to 1.

Furthermore, assume to the contrary that X ∈ E(s)(Cb′) where time component of b′ is also

equal to 1. Applying super-additivity, we have X ∩X ∈ E(s)(N b⊕b′) which contradicts the

fact that E is RB-playable. Therefore, in general, E is regular.

Furthermore, notice that N -determinacy is derivable from other properties of a RB-

playable effectivity structure E over a finite set S of states. From the proof of Lemma 6, we know

that any RB-playable effectivity structure has N -minimality. Given any finite subset X of states

where X ∈ E(s)(N b), we remove any state s ∈ X such that {s} ∉ E(s)(N b) and N -minimality

shows thatX ∖{s} ∈ E(s)(N b). We repeat the removal forX ∖{s} until no states can be removed.

Obviously, it must not happen that all s ∈X were removed as we would end up with ∅ ∈ E(s)(N b)
which violates the second requirement for a RB-playable effectivity structure. As X is finite, the

removal must terminate and for any state s remained, we have that {s} ∈ E(s)(N b); hence N -

determinacy is proved. In other words, this means that when proving an effectivity structure over a

finite set of states to be RB-playable, we shall omit proving N -determinacy.

Theorem 3. An effectivity structure is RB-playable iff it is the effectivity structure of some RBA

frame.

Proof. It is easy to check that effectivity structures obtained from RBA frames satisfy all properties

of RB-playability. As a running example, let us prove that the corresponding effectivity structure

EF of a given RBA frame F (over a set S of states) satisfies N -determinacy. Assume that X ∈
EF (s)(N b) where X ⊆ S, s ∈ S and b ∈ B. This means there is a strategy FN for the coalition N

such that for all λ ∈ out(s,FN), there exists m > 0 such that cost(λ[0,m], FN) ≤ b and λ[m] ∈X .

Obviously, we also implies that {λ[m]} ∈ EF (s)(N b) according to the definition of EF . Hence,

EF satisfies N -determinacy.

In order to prove the other direction for a given RB-playable effectivity structure E, we

need to construct a RBA frame such that its effectivity structure is identical to E.

Let E be an RB-playable effectivity structure. The construction of the RBA frame is

similar to that in Coalition Logic extended with costs for actions. First, we define the set of possible

actions for each agent at each state s ∈ S with their associated costs Res. Then the construction is

completed by defining the outcome function o.
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In order to make the following proof easy to follow, let us provide an informal sketch of

the argument. The main task of defining the RBA frame is to define actions available for each agent

at a particular state. We define these actions so that it facilitates the definitions of costs of actions

and the outcome function. Each action for an agent is a triple (g, t, h) where:

● g is a function which defines the preferred set of outcomes for each coalition where the agent

participates and is willing to contribute a certain amount of resources (then, the cost of this

action is this amount of resources). Given the actions of all agents, the component g of those

actions will define the coalitions where the agents participate, hence also the preferred set of

outcomes for each agent.

● t is a natural number which is used to determine which agent has the power to decide outcome.

● When we know which agent has the power to decide the outcome and its preferred set of

outcomes, h is a function which determines the only outcome among those in the preferred

set.

In the following, we present in detail how actions and outcomes of actions are defined.

For every i ∈ N , let b be a bound such that t(b) = 1, we define Cbi = {Cd ∣ i ∈ C ∧ t(d) =
1 ∧ d ≥ b} which is the set of all coalitions where i may participate and contribute b amount of

resources. Note that for all actions t(b) is always 1.

For every s ∈ S, we define

Γ(s, i) = {gb(s,i) ∶ Cbi → ℘(S) ∣ gb(s,i)(Cd) ∈ E(s)(Cd)}

Γ(s, i) is the set of option functions for an agent i at state s. Each option function in Γ(s, i) is a

mapping gb(s,i) where b is a resource bound such that t(b) = 1; gb(s,i) determines the outcome when

the agent i agrees to participate in a coalition. How an agent agrees to participate in a coalition will

be specified later when we define the outcome function.

Let H = {h ∶ ℘(S) → S ∣ h(X) ∈ X} be the set of choice functions, that is, if an agent

has the power to decide the outcome, it will use some h function to do so. We then define the set of

available actions for an agent i at a state s as follows:

T (s, i) = Γ(s, i) ×N ×H

Each action is a triple (gb(s,i), t, h) consisting of an option function gb(s,i), an index t (a

natural number) and a choice function h. Informally, option functions determine how the agents
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group together to form coalitions and then which outcome options they will choose. The index

determines which agent has the power to decide the outcome based on its associated h function. We

assign that Res((gb(s,i), t, h)) = b. Note that for any action, we have t(Res((gb(s,i), t, h))) = 1.

Let Σi = ⋃s∈S T (s, i). We now define the outcome of a joint action σ ∈ ΣN at a state

s. Assume that σ = {(gbi
(s,i)

, ti, hi) ∣ i = 1, . . . , n} where t(bi) = 1 for all i ∈ N . For any coalition

C ⊆ Σ, let bC = ⊕i∈Cbi and g = (gbi
(s,i)

)i∈N . We denote P (g,C) the coarsest partition ⟨C1, . . . , Cm⟩

of C such that:

∀l ≤m ∀i, j ∈ Cl ∶ gbi(s,i)(CbC) = gbj(s,j)(CbC)
We define how coalitions are formed based on g as follows:

P0(g) = ⟨N⟩

P1(g) = ⟨P (g,N)⟩ = ⟨C1,1, . . . , C1,k1⟩

P2(g) = ⟨P (g,C1,1), . . . , P (g,C1,k1)⟩

= ⟨C2,1, . . . , C2,k2⟩

⋮

Pη(g) = ⟨Cη,1, . . . , Cη,kη⟩

As N is finite, the above computation reaches some η such that Pη(g) = Pη+1(g). Let

P (g) = Pη(g) which shows how agents are grouped into coalitions.

Now, we define the core of the set E(s)(N b) containing all states which are the possible

outcomes from s where all agents in the system spends less than b amount of resources. The core

of E(s)(N b) is denoted as Eo(s)(N b) and we define that a state t ∈ S is in Eo(s)(N b) iff {t} ∈

E(s)(N b). Obviously, Eo(s)(N b) /= ∅ as otherwise, S ∉ E(s)(N b) according to the fact that E is

N -determinant. Moreover, as ∀t ∈ S∖Eo(s)(N b), {t} ∉ E(s)(N b), we have that S∖Eo(s)(N b) ∉

E(s)(N b). Thus, by N -maximality, we have that Eo(s)(N b) ∈ E(s)(∅b).

Assume that P (g) = ⟨C1, . . . , Cm⟩. For convenience, let g(Cl) = g
bi
(s,i)

(ClbCl ) for some

i ∈ Cl where l ≤m.

We define G(g) = ⋂
l≤m

g(Cl) ∩ (Eo(s)(N bN )). Let us show that G(g) /= ∅. By super-

additivity, we have that ⋂
l≤m

g(Cl) ∈ E(s)(N bN ). Moreover, we already have that Eo(s)(N bN ) ∈

E(s)(∅bN ). Apply super-additivity again, we obtainG(g) = ⋂
l≤m

g(Cl)∩(Eo(s)(N bN )) ∈ E(s)(N bN ).

As E is RB-playable, it is straightforward that G(g) /= ∅.

Let t0 = (∑i∈N ti mod n) + 1. The outcome function is defined as follows: o(s, σ) =

ht0(G(g)).
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Before continuing the proof, let us consider an example in order to illustrate how outcome

is determined for a given joint action as described above. For the sake of simplicity, we describe

a RB-playable effectivity structure by considering the following resource bounded game frame at

a state s0. Assume that we have three agents 1, 2 and 3 in a system which is associated with two

resources utility and time At s0, each agent can either perform a cooperate or a defect action. We

use C and D to denote these actions, respectively. While the cost of D for all the agents is (0,1),

that is 0 for utility and 1 for time, the cost of C varies depending on who performs C. In particular,

the cost of C for agent 1 is (1,1), for agent 2 is (2,1) and for agent 3 is (3,1). For convenience,

we shall write C(1,1) to denote that action C costs (1,1). Moreover, as all actions cost 1 unit of

time, we temporarily ignore the time component in the cost, hence C(1,1) is simply rewritten as

C1 which means that the action C costs 1 unit of utility. There are eight output states s1, . . . , s8

each is associated with a number which is the total of the utility contributed by every agent as

they pay for the actions in order to get the corresponding outcome. In Figure 4.1, we illustrate the

FIGURE 4.1: Outcomes from s0 and their associated numbers.

outcomes of each joint action. The first column contains actions performed by agent 1 together with

corresponding costs. Actions performed by agent 2 are depicted in the second row while the first

row is for describing actions of agent 3. In other cells, we define the outcomes of each joint action.

For example, the cell on the third row, second column which contains a state s1 and a number 6 says

that the outcome of the joint action (C1, C2, C3) is s1 and this state is associated with the number

6. For convenience, for each number k ∈ {0, . . . ,6}, we define a proposition (≥ k) which is true in

a state si where i ∈ {1, . . . ,8} iff n is smaller or equal to the number with which si is associated.

For instance, (≥ 4) is true at s2 and s3 but not in s5 and s6. Furthermore, by abusing the notation,

we also denote (≥ k) is the subset of {s1, . . . , s8} which contains only states where (≥ k) is true

at. Let us consider the effectivity structure E admitted by this example, at least at the state s0. We

consider the joint action a = ((g21,5, h1), (g
2
2,6, h2), (g

1,8, h1)) in T (s0,1) × T (s0,2) × T (s0,3)
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where three functions g31 , g22 and g13 are partially defined as follows:

g21({1}
2) =(≥ 1) g22({2}

2) =(≥ 2) g13({3}
1) =S

g21({1,2}
4) =(≥ 3) g22({1,2}

4) =(≥ 3) g13({1,3}
3) =S

g21({1,3}
3) =(≥ 3) g22({2,3}

3) =(≥ 2) g13({2,3}
3) =S

g21({1,2,3}
5) =(≥ 5) g22({1,2,3}

5) =(≥ 5) g13({1,2,3}
5) =S

Moreover, the function h1 (h2) is defined so that it returns a state si from a subset X ⊆ {s1, . . . , s8}

where i the smallest (greatest) index inX . For example, h1({s2, s3, s5}) = s2 while h2({s2, s3, s5}) =

s5. To determine the outcome of a at s0, we first compute P (g) as follows:

P0(g) = ⟨N⟩ where N = {1,2,3}

P1(g) = ⟨P (g,N)⟩ = ⟨{1,2},{3}⟩

P2(g) = ⟨P (g,{1,2}), P (g,{3})⟩ = ⟨{1,2},{3}⟩

Hence, we obtain P (g) = ⟨{1,2},{3}⟩ where g({1,2}) = (≥ 3) and g({3}) = S. Notice that

we have Eo(s0)(N5) = {s2, . . . , s8}. Then, we have that G(g) = (≥ 3) ∩ S ∩ Eo(s0)(N5) = (≥

3)∖{s1} = {s2, s3, s4, s5}. Furthermore, we have that t0 = (5+6+8) mod 3+1 = 2, which means

the function h2 is used to decide the outcome. Thus, the outcome of a is h2(G(g)) = s5.

Let us now turn back to the proof. Assume EF be the effectivity structure of the frame

constructed above. We claim that E = EF .

Firstly, we show the left-to-right inclusion by induction on bounds. In the base case,

assume X ∈ E(s)(Cb) where t(b) = 1. Choose the actions for agents in C = {1, . . . , k} as follows,

a1 = (gb1, t1, h1)

a2 = (g02, t2, h2)

⋮

ak = (g0k, tk, hk)

where gb1(D
d) = g0i (D

d) =X for all i = 2, . . . , k,D ⊇ C, d ≥ b. Notice that the choices of gb1, g02 , . . .,

g0k must exist because of bound-monotonicity and coalition-monotonicity. Moreover, the choices of

ti and hi, where i = 1, . . . , k, are arbitrary. Let σC = {(gb1, t1, h1), (g
0
2, t2, h2), . . . , (g

0

k, tk, hk)}.

Let σC be an arbitrary joint action for C. Let σ = (σC , σC) and let g be the set of the

option functions from σ. By the choice of σC , C must be a subset of a partition Cl in P (g). Then,

we have

o(s, σ) = ht0(G(g)) ∈ G(g) ⊆ g(Cl) =X



4. RESOURCE-BOUNDED COALITION LOGIC 80

Hence, X ∈ EF (s)(Cb).

For the induction step, let X ∈ E(s)(Cb) where t(b) > 1. If X ∈ E(s)(Cb
′
) for some

b′ < b, by the induction hypothesis, we have X ∈ EF (s)(Cb
′
). Therefore, bound-monotonicity

implies that X ∈ EF (s)(Cb).

If X ∉ E(s)(Cb
′
) for any b′ < b, by transitivity there are b1 ⊗ b2 = b such that

{s′ ∣X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

By the induction hypothesis, we have

{s′ ∣X ∈ E(s′)(Cb2)} ∈ EF (s)(Cb1)

and

{s′ ∣X ∈ E(s′)(Cb2)}

⊆ {s′ ∣X ∈ EF (s′)(Cb2)}

By outcome-monotonicity, we have

{s′ ∣X ∈ EF (s′)(Cb2)} ∈ EF (s)(Cb1)

Hence, by super-transitivity X ∈ EF (s)(Cb).

For the other direction, we consider two cases where C = N and C ⊂ N . Assume that

X ∉ E(s)(N b). By N -maximality, we obtain X ∈ E(s)(∅b). However, the previous proof implies

that X ∈ EF (s)(∅b). As EF is RB-playable, by regularity we have X ∉ EF (s)(N b).

For the case of C ⊂ N , the proof is done by induction on bounds. Assume that X ∉

E(s)(Cb) where t(b) = 1 and C ⊂ N , i.e. there is i0 ∈ N ∖C. Let σC = {(gbi
(s,i)

, ti, hi) ∣ i ∈ C} be

an joint action for C such that Res(σC) ≤ b. We choose a strategy σC = {(gbi
(s,i)

, ti, hi) ∣ i ∈ C} for

C such that:

● bi = 0 for all i > k

● gbi
(s,i)

(Dd) = S for all i ∈ C, D ⊇ C, d ≥ bi

● (∑i∈N ti mod n) + 1 = i0

● hi for i /= i0 is arbitrary, we will select hi0 shortly

As before, let σ = (σC , σC) and g the collection of option functions in σ. We use notation bD =

⊕i∈Dbi for any D ⊆ N .
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By the choice of option functions in σC , it follows that C is the subset of some partition

Cl of P (g). For other partitions, super-additivity shows that G(g) ∈ E(s)(Cl
b
Cl ). By coalition-

monotonicity and bound-monotonicity, we have that G(g) ∈ E(s)(Cb). As X ∉ E(s)(Cb), it

follows that G(g) /⊆X by outcome-monotonicity, i.e. there is some s0 ∈ G(g) ∖X . Select hi0 such

that hi0(G(g)) = s0, then

o(s, σ) = hi0(G(g)) = s0 ∉X

Hence, X ∉ EF (s)(Cb).

In the induction step, assume that X ∉ E(s)(Cb) where t(b) > 1. Bound-monotonicity

shows that for all b′ ≤ b, X ∉ E(s)(Cb
′
) and super-transitivity implies that for all b1 ⊗ b2 = b,

{s′ ∣X ∈ E(s′)(Cb2)} ∉ E(s)(Cb1)

By the induction hypothesis, we have that for all b′ < b, X ∉ EF (s)(Cb
′
) and for all b1 ⊗ b2 = b,

{s′ ∣X ∈ E(s′)(Cb2)} ∉ EF (s)(Cb1)}

and {s′ ∣ X ∈ E(s′)(Cb2)} = {s′ ∣ X ∈ EF (s′)(Cb2). Then, {s′ ∣ X ∈ EF (s′)(Cb2)} ∉

EF (s)(Cb1). Therefore, transitivity implies that X ∉ EF (s)(Cb).

4.5 Axiomatisation of RBCL

In this section we define models based on playable effectivity structures, and give a complete ax-

iomatisation for the set of validities in those models.

Definition 11. A resource-bounded effectivity model M = (S,E,V ) is a triple consisting of a non-

empty set of states, a RB-playable effectivity structure and a valuation function V ∶ Prop → ℘(S).

The truth definition for [Cb] modalities is as follows:

● M,s ⊧ [Cb]ϕ iff ϕM ∈ E(s)(Cb) where ϕM = {s′ ∣M,s′ ⊧ ϕ}
Notice that in the above definition, we do not define the truth for [Cb] modalities in

two separate cases, one for non-empty coalitions C and one for empty coalitions. This is because

the two cases have been covered by the RB-playable effectivity structure E, one may refer to the

correspondence of effectivity structures to RBA frames in Section 4.4.3 for more details.

For convenience, we also extend the definition of the function V for a given model M =

(S,E,V ) as follows, V (ϕ) = {s ∈ S ∣M,s ⊧ ϕ}.
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Theorem 4. The sets of formulas valid in multi-step RBA models and in resource-bounded effectivity

models are equal.

This follows from the correspondence between RBA frames and RB-playable effectivity

structures, and the correspondence between the two truth definitions. Therefore the next result also

provides an axiomatisation for RBCL.

Theorem 5. The following set of axiom schemas and inference rules provides a sound and complete

axiomatisation of the set of validities over all resource-bounded effectivity models:

A0-A5, MP and Equivalence given above

A6a [Cb]ϕ∧ [Dd]ψ → [(C ∪D)b⊕d](ϕ∧ψ) where C and D are both non-empty and disjoint, and

t(b) = t(d) = 1

A6b [∅b]ϕ ∧ [Cb]ψ → [Cb](ϕ ∧ ψ) where C is either ∅ or N

A7 [Cb1][Cb2]ϕ→ [Cb1⊗b2]ϕ for C /= ∅

A8 [Cb]ϕ→ ⋁b′<b[Cb′]ϕ ∨⋁b1⊗b2=b[Cb1][Cb2]ϕ for all C /= ∅ and t(b) > 1

Proof. The proof of soundness is straightforward. We prove completeness by first constructing a

canonical model. Let us denote by ⊢Λ derivability in the axiom system above. Let SΛ be the set

of all Λ-maximally consistent sets. For any formula ϕ, we denote ϕ̃ = {s ∈ SΛ ∣ ϕ ∈ s}. Then, we

define the canonical valuation function V Λ(p) = p̃.

We define the canonical effectivity structure EΛ by induction on b as follows:

● For all b such that t(b) = 1 and C /= N , X ∈ EΛ(s)(Cb) iff ∃ϕ̃ ⊆X ∶ [Cb]ϕ ∈ s.

● For all b such that t(b) = 1, X ∈ EΛ(s)(N b) iff X ∈ EΛ(s)(∅b).

● For all b such that t(b) > 1 and C /= ∅, X ∈ EΛ(s)(Cb) iff X ∈ EΛ(s)(Cb
′
) for some b′ < b

or there are b1 ⊗ b2 = b such that {s′ ∣X ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1).

● For all b such that t(b) > 1, X ∈ EΛ(s)(∅b) iff X ∉ EΛ(s)(N b).

The following property (∗) is crucial for the proof:

(∗) ϕ̃ ∈ EΛ(s)(Cb) iff [Cb]ϕ ∈ s



4. RESOURCE-BOUNDED COALITION LOGIC 83

We prove it by induction on the bounds. In the base case, assume that ϕ̃ ∈ EΛ(s)(Cb) for some

t(b) = 1. For C /= N , ϕ̃ ∈ EΛ(s)(Cb) iff ∃ψ̃ ⊆ ϕ̃ ∶ [Cb]ψ ∈ s. Then we have ψ → ϕ ∈ s; together

with RM, it is implied that [Cb]ϕ ∈ s. In the inverse direction, [Cb]ϕ ∈ s implies directly that

ϕ̃ ∈ EΛ(s)(Cb) by definition of EΛ.

If C = N , we have ϕ̃ ∈ EΛ(s)(N b) iff ¬̃ϕ ∉ EΛ(s)(∅b) iff ¬[∅b]¬ϕ ∈ s (as just proved)

iff [N b]ϕ ∈ s (by axiom A3).

For the induction step, assume that ϕ̃ ∈ EΛ(s)(Cb) where t(b) > 1. For C /= ∅, there are

two cases to consider. (1) ϕ̃ ∈ EΛ(s)(Cb
′
) for some b′ < b. By the induction hypothesis, we have

[Cb
′
]ϕ ∈ s. Then, axiom A5 implies that [Cb]ϕ ∈ s. (2) There are b1 ⊗ b2 = b such that

{s′ ∣ ϕ̃ ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1).

Let ψ = [Cb2]ϕ, by the induction hypothesis, we have ψ̃ = {s′ ∣ ϕ̃ ∈ EΛ(s′)(Cb2)}, thus, ψ̃ ∈

EΛ(s)(Cb1). Again, induction hypothesis gives us [Cb1][Cb2]ϕ ∈ s. Therefore, by axiom A7, we

have [Cb]ϕ ∈ s.

For the inverse direction, assume that [Cb]ϕ ∈ s for some t(b) > 1. By axiom A8, there

are two cases to consider. If [Cb
′
]ϕ ∈ s for some b′ < b, then the induction hypothesis implies that

ϕ̃ ∈ EΛ(s)(Cb
′
). Hence, by the definition of EΛ, we have ϕ̃ ∈ EΛ(s)(Cb). In the second case,

there are b1 ⊗ b2 = b such that [Cb1][Cb2]ϕ ∈ s. Similar to the proof above, let ψ = [Cb2]ϕ, the

induction hypothesis implies that ψ̃ ∈ EΛ(s)(Cb1). As we have that ψ̃ = {s′ ∣ ϕ̃ ∈ EΛ(s′)(Cb2)},

this shows

{s′ ∣ ϕ̃ ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1).

By the definition of EΛ, we obtain ϕ̃ ∈ EΛ(s)(Cb).

If C = ∅, we have ϕ̃ ∈ EΛ(s)(∅b) iff ¬̃ϕ ∉ EΛ(s)(N b) iff ¬[N b]¬ϕ ∈ s (as just proved)

iff [∅b]ϕ ∈ s (by axiom A3).

Let us prove that EΛ satisfies properties of RB-playability except N -determinacy by ex-

ploiting the property (∗), the definition of EΛ and the axioms of Λ.

1. As [Cb]⊺ ∈ s for all s ∈ SΛ, it means by (*) that SΛ = ⊺̃ ∈ EΛ(s)(Cb).

2. Similarly, [Cb]� ∉ s for all s ∈ SΛ, it implies by (*) that that ∅ = �̃ ∉ EΛ(s)(Cb).

3. We prove outcome-monotonicity by induction on bounds. Assume that X ∈ EΛ(s)(Cb).
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● If t(b) = 1 andC /= N ,X ∈ EΛ(s)(Cb) iff there existsϕ such that ϕ̃ ⊆X and [Cb]ϕ ∈ s.

Hence, for all X ′ ⊇ X , we have that ϕ̃ ⊆ X ′. This implies by the definition of EΛ that

X ′ ∈ EΛ(s)(Cb)

● If t(b) = 1, X ∈ EΛ(s)(N b) iff X ∉ EΛ(s)(∅b). Let X ′ ⊇ X , it implies that X ′ ⊆ X .

Assume to the contrary that X ′ ∉ EΛ(s)(N b). Then, X ′ ∈ EΛ(s)(∅b). As X ′ ⊆ X ,

this implies that X ∈ EΛ(s)(∅b) which is a contradiction.

● If t(b) > 1 and C /= ∅. If X ∈ EΛ(s)(Cb
′
) for some b′ < b, the induction hypothesis

shows that X ′ ∈ EΛ(s)(Cb
′
) for all X ′ ⊇ X . Then, by the definition of EΛ we have

X ′ ∈ EΛ(Cb)(s). If X ∉ EΛ(s)(Cb
′
) for all b′ < b. By the definition of EΛ, there are

b1 ⊗ b2 = b and

{s′ ∣X ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1)

Let X ′ ⊇X , by the induction hypothesis we have

{s′ ∣X ∈ EΛ(s′)(Cb2)} ⊆ {s′ ∣X ′ ∈ EΛ(s′)(Cb2)}

⇒ {s′ ∣X ′ ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1)

By the definition of EΛ, we have X ′ ∈ EΛ(s)(Cb).

● If t(b) > 1, X ∈ EΛ(s)(∅b) iff X ∉ EΛ(s)(N b). Let X ′ ⊇ X , assume to the contrary

that X ′ ∉ EΛ(s)(∅b). This implies that X ′ ∈ EΛ(s)(N b). By the previous proof, we

have X ∈ EΛ(s)(N b) as X ′ ⊆X , which is a contradiction.

4. N -maximality follows directly from the definition of EΛ for N when t(b) = 1 and ∅ when

t(b) > 1.

5. Similarly, N -regularity also follows directly from the definition of EΛ for N when t(b) = 1

and ∅ when t(b) > 1.

6. In order to show super-additivity, we consider the following three different cases. Let t(b) =

t(d) = 1, C ∩D = ∅ with X ∈ EΛ(s)(Cb) and Y ∈ EΛ(s)(Dd).

● If both C and D are not empty by the definition of EΛ, we have that there are ϕ and

ψ such that ϕ̃ ⊆ X , ψ̃ ⊆ Y , [Cb]ϕ and [Dd]ψ ∈ s. According to axiom A6a, we have

[(C∪D)b⊕d](ϕ∧ψ) ∈ s. Obviously, ϕ̃∩ψ̃ ⊆X∩Y , henceX∩Y ∈ EΛ(s)((C∪D)b⊕d).

● If C = ∅, b = d and D = ∅, the proof is similar to the one above except that axiom A6b

gives us [Dd](ϕ ∧ ψ) ∈ s. Hence, X ∩ Y ∈ EΛ(s)(Dd).
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● If C = ∅, b = d and D = N , we need to show that X ∩ Y ∈ EΛ(N b)(s). As-

sume to the contrary that X ∩ Y ∉ EΛ(N b)(s), then N -maximality, which has been

proved above, implies that X ∩ Y ∈ EΛ(∅b)(s). Then, by the previous case of super-

additivity, we have X ∩Y ∈ EΛ(∅b)(s). As we already showed outcome-monotonicity,

Y ∈ EΛ(∅b)(s). However, by N -regularity, we have Y ∉ EΛ(N b)(s) which is a con-

tradiction.

7. Super-transitivity follows directly from the definition of EΛ when t(b) > 1.

8. Similarly, transitivity follows directly from the definition of EΛ when t(b) > 1.

9. Finally, we show that EΛ is indeed bound-monotonic. Let us assume that X ∈ EΛ(s)(Cb).

● If t(b) = 1 and C /= N , X ∈ EΛ(s)(Cb) iff there exists ϕ such that ϕ̃ ⊆ X and

[Cb]ϕ ∈ s. By axiom A5, we have for any d ≥ b or d ≤ b if C /= ∅ or otherwise,

respectively, [Cd]ϕ ∈ s. Then, by the definition of EΛ, X ∈ EΛ(s)(Cd).

● If t(b) = 1 and C = N , X ∈ EΛ(s)(N b) iff X ∉ EΛ(s)(∅b). Then, axiom A5 implies

that X ∉ EΛ(s)(∅d) for any d ≥ b. Once again, by the definition of EΛ, we have

X ∈ EΛ(s)(Nd).

● If t(b) > 1 and C /= ∅, it is straightforward from the definition of EΛ that X ∈

EΛ(s)(Cd) for any d ≥ b.

● If t(b) > 1 and C = ∅, X ∈ EΛ(s)(∅b) iff X ∉ EΛ(s)(N b). By the proof of the

previous case, we have X ∉ EΛ(s)(Nd) for any d ≤ b. Hence, X ∈ EΛ(s)(∅d).

Since we have already shown (*), the following truth lemma is straightforward:

(∗∗) MΛ, s ⊧ ϕ iff ϕ ∈ s

As usual, we show (**) by induction on the structure of ϕ. The cases for proposition

variables and usual Boolean connectives are trivial, so we omit them here.

● If ϕ = [Cb], then,

MΛ, s ⊧ [Cb]ψ ⇔ ψM
Λ

∈ EΛ(s)(Cb)

⇔ ψ̃ ∈ EΛ(s)(Cb) by the induction hypothesis

⇔ [Cb]ψ ∈ s by (*)



4. RESOURCE-BOUNDED COALITION LOGIC 86

By showing (**), it is obvious that for any consistent formula ϕ, there is a state s0 ∈ SΛ

such that ϕ ∈ s, hence MΛ, s0 ⊧ ϕ. In other words, ϕ is satisfiable in the canonical model MΛ;

however, notice that EΛ is not proved to be RB-playable. Therefore, in order to provide a model

which has an RB-playable effectivity structure and satisfies ϕ, we present the notion of filtration as

for the case of CL [Hansen & Pauly, 2002].

Let M = (S,E,V ) be a resource-bounded effectivity model and Γ be a set of formulas,

we define the equivalent relation ≡Γ over Γ on S as follows: for any s, t ∈ S, s ≡Γ t iff ∀ϕ ∈ Γ,

M,s ⊧ ϕ iff M, t ⊧ ϕ.

For convenience, we shall denote ∣s∣ = {t ∈ S ∣ s ≡Γ t}, then ∣X ∣ = {∣s∣ ∣ s ∈ X} where

X ⊆ S.

We define the notion of filtration for resource-bounded effectivity models, where the ef-

fectivity structure has all properties of RB-playability except N -determinacy, as follows.

Definition 12. Given a resource-bounded effectivity model M = (S,E,V ) and a sub-formula

closed set Γ of formulas, a model M
f
Γ
= (Sf ,Ef , V f) is a filtration of M over Γ iff the follow-

ing conditions hold:

1. Sf = ∣S∣,

2. For any C ⊆ N and b ∈ B where t(b) = 1, ∀ϕ ∈ Γ: ϕM ∈ E(s)(Cb) implies ∣ϕM ∣ ∈

Ef(∣s∣)(Cb),

3. For anyC ⊆ N and b ∈ B where t(b) = 1, ifX ∈ Ef(∣s∣)(Cb) then ∀ϕ ∈ Γ: {t ∣ ∣t∣ ∈X} ⊆ ϕM

implies ϕM ∈ E(s)(Cb),

4. For any C /= ∅ and b ∈ B where t(b) > 1, X ∈ Ef(∣s∣)(Cb) iff X ∈ Ef(∣s∣)(Cb
′
) for some

b′ < b or there are b1 ⊗ b2 = b such that {∣s′∣ ∣X ∈ Ef(∣s′∣)(Cb2)} ∈ Ef(∣s∣)(Cb1),

5. For any b ∈ B where t(b) > 1, X ∈ Ef(∣s∣)(∅b) iff X̄ ∉ Ef(∣s∣)(∅b),

6. V f(p) = ∣V (p)∣ for all p ∈ Prop.

We have the following result of truth preservation through filtration.

Lemma 7. Given M
f
Γ
= (Sf ,Ef , V f) to be a filtration of M = (S,E,V ), for all ϕ ∈ Γ and s ∈ S,

we have that:

M,s ⊧ ϕ iff M
f
Γ
, ∣s∣ ⊧ ϕ
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Proof. The proof is done by induction on the structure of ϕ:

● If ϕ = p where p ∈ Prop, M,s ⊧ p iff s ∈ V (p) iff ∣s∣ ∈ ∣V (p)∣ iff M
f
Γ
, ∣s∣ ⊧ p.

● If ϕ = ¬ψ, M,s ⊧ ¬ψ iff M,s /⊧ ψ iff M
f
Γ
, ∣s∣ /⊧ ψ (by the induction hypothesis) iff M

f
Γ
, ∣s∣ ⊧

¬ψ.

● If ϕ = ψ1 ∨ ψ2, M,s ⊧ ψ1 ∨ ψ2 iff M,s ⊧ ψ1 or M,s ⊧ ψ2. Without loss of generality, we

assume that M,s ⊧ ψ1 iff M
f
Γ
, ∣s∣ ⊧ ψ1 (by the induction hypothesis) iff M

f
Γ
, ∣s∣ ⊧ ψ1 ∨ ψ2.

● If ϕ = [Cb]ψ, where t(b) = 1, M,s ⊧ [Cb]ψ iff ψM ∈ E(s)(Cb) iff ∣ψM ∣ ∈ Ef(∣s∣)(Cb) (by

the definition of Ef ) iff M
f
Γ
, ∣s∣ ⊧ [Cb]ψ.

● The last case when ϕ = [Cb]ψ, where t(b) > 1, can be done similarly by using the definition

of Ef and the induction hypothesis.

Given a formula ϕ, we define sub(ϕ) to be set of all sub-formulas of ϕ including itself,

and esub(ϕ) to be the boolean closure (closed under negations and disjunctions) of sub(ϕ) upto

tautology equivalence. Firstly, esub(ϕ) is finite since ∣sub(ϕ)∣ ≤ ∣ϕ∣; hence the cardinality of

esub(ϕ) is no more than 2
2
∣ϕ∣

. We define the filtration of a resource-bounded effectivity model for

a formula ϕ as follows:

Definition 13. Given a resource-bounded effectivity model M = (S,E,V ) and a formula ϕ, the

filtration model Mϕ = (Sϕ,Eϕ, V ϕ) of M for ϕ is defined as follows:

1. Γ = esub(ϕ),

2. Sϕ = ∣S∣ (then, Sϕ has at most 22
2
∣ϕ∣

states),

3. For any C /= N and b such that t(b) = 1, X ∈ Eϕ(∣s∣)(Cb) iff ∃ϕ ∈ Γ such that ϕM ⊆ {t ∣ ∣t∣ ∈

X} and ϕM ∈ E(s)(Cb),

4. For any b such that t(b) = 1, X ∈ Eϕ(∣s∣)(N b) iff X̄ ∉ Eϕ(∣s∣)(∅b),

5. For any C /= ∅ and b ∈ B where t(b) > 1, X ∈ Eϕ(∣s∣)(Cb) iff X ∈ Eϕ(∣s∣)(Cb
′
) for some

b′ < b or there are b1 ⊗ b2 = b such that {∣s′∣ ∣X ∈ Eϕ(∣s′∣)(Cb2)} ∈ Eϕ(∣s∣)(Cb1),

6. For any b ∈ B where t(b) > 1, X ∈ Eϕ(∣s∣)(∅b) iff X̄ ∉ Eϕ(∣s∣)(∅b),
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7. V ϕ(p) = ∣V (p)∣ for all p ∈ Prop.

Let us show the following result.

Lemma 8. Mϕ = (Sϕ,Eϕ, V ϕ) is a filtration.

Proof. The proof is straightforward. According to the definition of a filtration and Mϕ, we only

need to show that Mϕ satisfies the second and third requirements in Definition 12.

● Let C /= N , assume that ψ ∈ esub(ϕ) and ψM ∈ E(s)(Cb), it follows directly from the

definition of Mϕ that ∣ψM ∣ ∈ E(∣s∣)(Cb).

● Assume that ψ ∈ esub(ϕ) and ψM ∈ E(s)(N b), we need to prove that ∣ψM ∣ ∈ Eϕ(∣s∣)(N b).

Assume to the contrary that ∣ψM ∣ ∉ Eϕ(∣s∣)(N b), this implies ∣¬ψM ∣ ∈ Eϕ(∣s∣)(∅b); thus,

∃ψ′ ∈ esub(ϕ) such that ψ′M ⊆ {t ∣ ∣t∣ ∈ ∣¬ψM ∣} and ψ′M ∈ E(s)(∅b). Then, ψ′M ⊆ ¬ψM ,

hence, ¬ψM ∈ E(s)(∅b) as E is outcome-monotonicity. By N -regularity, we obtain ψM ∉

E(s)(N b) which is a contradiction.

● Let C /= N , assume that X ∈ Eϕ(∣s∣)(Cb) and ψ ∈ esub(ϕ) such that {t ∣ ∣t∣ ∈X} ⊆ ψM . We

have by the definition of Mϕ that ∃ψ′ ∈ esub(ϕ): ψ′M ⊆ {t ∣ ∣t∣ ∈ X} and ψ′M ∈ E(s)(Cb).

Thus, ψ′M ⊆ ψM ; and by outcome monotonic, we obtain ψM ∈ E(s)(Cb).

● Assume that X ∈ Eϕ(∣s∣)(N b) and ψ ∈ esub(ϕ) such that {t ∣ ∣t∣ ∈ X} ⊆ ψM . We have by

the definition of Mϕ that X̄ ∉ Eϕ(∣s∣)(N b) iff for all ψ′ ∈ esub(ϕ), if ψ′M ⊆ {t ∣ ∣t∣ ∈ X̄}

then ψ′M ∉ E(s)(∅b). As {t ∣ ∣t∣ ∈ X} ⊆ ψM , we have that {t ∣ ∣t∣ ∈ X̄} ⊇ ¬ψM ; hence

¬ψM ∉ E(s)(∅b). By N -regularity, we obtain ψM ∈ E(s)(N b).

Finally, we have the following result.

Lemma 9. The effectivity structure Eϕ of the filtration Mϕ is RB-playability.

The proof of the above lemma proceeds by first showing that Eϕ has all properties of RB-

playability except N -determinacy. We omit the proof as it is similar to that of showing EΛ has all

properties of RB-playability exceptN -determinacy. Since Sϕ is finite,N -determinacy follows from

the others properties of RB-playability. Therefore, Eϕ is RB-playable. This result also implies the

finite model property of RBCL where we have that any satisfiable formula in RBCL is also satisfied

in a finite model.
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We complete the proof of completeness for RBCL as follows. Let MΛ,ϕ be the filtration

model of MΛ, we have by Lemma 7 that MΛ,ϕ, ∣s0∣ ⊧ ϕ. Let /⊢Λ ϕ, i.e. ¬ϕ is consistent. Hence,

¬ϕ is satisfiable. Therefore, ϕ is not valid.

4.6 Satisfiability problem

The last result about the finite model property of RBCL in the previous section suggests an ex-

hausted way to search for a finite model to satisfy a given formula. In this section we give an

alternative proof of decidability for RBCL, which is more efficient than the exhausted search, by

providing an algorithm which determines the satisfiability of a given formula ϕ. Similar to Coali-

tion Logic, our algorithm is developed by adopting the approach presented in [Vardi et al., 1989]. In

principle, the algorithm will try to guess a suitable valuation for the set of more-or-less sub-formulas

generated by ϕ which satisfies a number of conditions. Such existing valuation will help construct

a model for ϕ, or in other words, assure the satisfiability of ϕ.

Given a formula ϕ, we define a set sub(ϕ) inductively as follows.

● sub(p) = {p} for any propositional variable p

● sub(¬ψ) = {¬ψ} ∪ sub(ψ)

● sub(ψ1 ∨ ψ2) = {ψ1 ∨ ψ2} ∪ sub(ψ1) ∪ sub(ψ2)

● sub([Cb]ψ) = {[Cb]ψ} ∪ sub(ψ) for t(b) = 1 and C /= N

● sub([N b]ψ) = {[N b]ψ} ∪ sub(¬[∅b]¬ψ) for t(b) = 1

● sub([Cb]ψ) = {[Cb]ψ} ∪⋃b′<b sub([Cb
′
]ψ) ∪⋃b1⊗b2=b sub([C

b1][Cb2]ψ)

for t(b) > 1 and C /= ∅

● sub([∅b]ψ) = {[∅b]ψ} ∪ sub(¬[N b]¬ψ) for t(b) > 1

It is easy to show that sub(ϕ) is finite. Then, we define the closure cl(ϕ) of a given

formula ϕ as follows.

cl(ϕ) = {ψ,¬ψ ∣ ψ ∈ sub(ϕ)}∪

{[∅b]¬ψ,¬[∅b]¬ψ ∣ [N b]ψ ∈ sub(ϕ)}∪

{[N b]¬ψ,¬[N b]¬ψ ∣ [∅b]ψ ∈ sub(ϕ)}
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Notice that we identify ¬¬ψ as ψ. We have the following definition of valuations. Moreover, we

denote 0̄ as the smallest bound of which all components are 0 except for the time component which

is 1.

Let us consider an example. Assume that N = {1,2} (i.e. there are two agents in the

system) and ∣R∣ = 1 and one of the resources in R is time. We consider the following formula

¬[{1,2}(2,1)]p ∧ [{2}1,2]p. Then, the set cl(¬[{1,2}(2,1)]p ∧ [{2}1,2]p) contains the following

positive sub-formulas (apart from ¬[{1,2}(2,1)]p ∧ [{2}1,2]p):

[{1,2}(2,1)]p [∅(2,1)]¬p [{2}0,1][{2}0,1]p

[{2}(0,1)]p [{2}1,1]p [{2}1,1][{2}0,1]p

[{2}0,2]p [{2}1,2]p [{2}0,1][{2}1,1]p

p

Then, cl(¬[{1,2}(2,1)]p ∧ [{2}1,2]p) contains the above formulas together with their negations.

Definition 14. A valuation for a given formula ϕ is a mapping v ∶ cl(ϕ) → {0,1} which satisfies

the following conditions:

1. v(ϕ) = 1

2. v(⊺) = 1

3. v(¬ψ) = 1 − v(ψ)

4. v(ψ1 ∨ ψ2) =max(v(ψ1), v(ψ2))

5. v([∅b]ψ) = v(¬[N b]¬ψ)

6. v([Cb]ψ) ≤ v([Cd]ψ) where b ≤ d if C /= ∅ or b ≥ d otherwise

7. v([Cb]ψ) = max{⋃b′<b{v([Cb
′
]ψ)} ∪ ⋃b1⊗b2=b{v([C

b1][Cb2]ψ)}} where t(b) > 1 and

C /= ∅

For instance, Figure 4.2 depicts a valuation for the formulas in the set cl(¬[{1,2}(2,1)]p∧

[{2}1,2]p). Notice that we only provide the valuation for the positive formulas in cl(¬[{1,2}(2,1)]p∧

[{2}1,2]p) since the negation ones can be determined by the definition v(¬ψ) = 1 − v(ψ).

In the following lemma, we determine when such a valuation is qualified as a starting

point to help building up a model for ϕ.
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ϕ v(ϕ) ϕ v(ϕ) ϕ v(ϕ)

[{1,2}(2,1)]p 0 [∅(2,1)]¬ p 1 [{2}0,1][{2}0,1]p 0

[{2}(0,1)]p 0 [{2}1,1]p 0 [{2}1,1][{2}0,1]p 0

[{2}0,2]p 0 [{2}1,2]p 1 [{2}0,1][{2}1,1]p 1

p 0

FIGURE 4.2: A valuation for cl(¬[{1,2}(2,1)]p ∧ [{2}1,2]p).

Lemma 10. A formula ϕ is satisfiable if and only if there exists a valuation v for ϕ such that

1. If there are [Cb1
1
]ψ1, . . . , [C

bk
k
]ψk ∈ cl(ϕ) for some k > 0 such that:

● t(bj) = 1 for all j ≤ k

● C1, . . . , Ck are pairwise disjoint

● for any [C
bj
j ]ψj such that Cj = ∅, bj ≥ ⊕Cj′ /=∅

bj′

● v([C
bj
j ]ψj) = 1 for all j ≤ k

then ∧j≤kψj is satisfiable.

2. If there are [Cb1
1
]ψ1, . . . , [C

bk
k
]ψk ∈ cl(ϕ) for some k > 0 such that:

● t(bj) = 1 for all j ≤ k

● C1, . . . , Ck−1 are pairwise disjoint and all non-empty

● ⋃j<kCj ⊆ Ck

● ⊕j<kbj = bk
● v([C

bj
j ]ψj) = 1 for all j < k

● v([Cbk
k
]ψk) = 0

then ∧j<kψj ∧ ¬ψk is satisfiable.

Proof. Firstly, we prove the left-to-right direction by defining a valuation based on the model satis-

fying the formula ϕ. In particular, let us assume that ϕ is satisfiable by a model M = (S,E,V ) at

some state s ∈ S. We define a valuation v for cl(ϕ) as follows:

v(ψ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if M,s ⊧ ψ

0 otherwise



4. RESOURCE-BOUNDED COALITION LOGIC 92

Based on the definition of the semantics for RBCL, it is straightforward to show that the defined

valuation v satisfies all conditions listed in Definition 14. What remains is to prove that it also has

the two properties listed in the lemma.

1. Assume that there are [Cb1
1
]ψ1, . . . , [C

bk
k
]ψk ∈ cl(ϕ) for some k > 0 such that:

● t(bj) = 1 for all j ≤ k

● C1, . . . , Ck are pairwise disjoint

● for any [C
bj
j ]ψj such that Cj = ∅, bj ≥ ⊕Cj′ /=∅

bj′

● v([C
bj
j ]ψj) = 1 for all j ≤ k

That is M,s ⊧ [Cbjj ]ψj for all j ≤ k.

If there is some non-emptyCj then, by super-additivity, we have thatM,s ⊧ [Cb](∧j≤k,Cj /=∅ψj)

where C = ⋃j≤kCj and b = ⊕j≤k,Cj /=∅bj . By coalition monotonicity, we have that M,s ⊧

[N b](∧j≤k,Cj /=∅ψj). Furthermore, super-additivity implies that, for all Cj = ∅, M,s ⊧

[N b](∧j≤kψj). Because of playability, ∅ ∉ E(s)(N b), thus V (∧j≤kψj) /= ∅. Therefore,

there exists s′ ∈ V (∧j≤kψj) and it is straightforward that M,s′ ⊧ ∧j≤kψj .
If there is no non-empty Cj then super-additivity gives us directly that M,s ⊧ [∅b](∧j≤kψj)
where b =min{bj ∣ j ≤ k}. Apply the same argument for playability, we have that there exists

s′ ∈ V (∧j≤kψj) and it is straightforward that M,s′ ⊧ ∧j≤kψj .
2. Assume that there are [Cb1

1
]ψ1, . . . , [C

bk
k
]ψk ∈ cl(ϕ) for some k > 1 such that:

● t(bj) = 1 for all j ≤ k

● C1, . . . , Ck−1 are pairwise disjoint and all non-empty

● ⋃j<kCj ⊆ Ck

● ⊕j<kbj ≤ bk
● v([C

bj
j ]ψj) = 1 for all j < k

● v([Cbk
k
]ψk) = 0

That is M,s ⊧ [Cbjj ]ψj for all j < k and M,s /⊧ [Cbk
k
]ψk. By super-additivity, we have that

M,s ⊧ [Cb](∧j<kψj) where C = ⋃j<kCj and b = ⊕j<kbj . That is V (∧j<kψj) ∈ E(s)(Cb).
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By coalition monotonicity and bound monotonicity, we have V (∧j<kψj) ∈ E(s)(C
bk
k
). More-

over, we already have M,s /⊧ [Cbk
k
]ψk, thus, V (ψk) ∉ E(s)(C

bk
k
). Then, outcome mono-

tonicity implies that V (ψk) /⊇ V (∧j<kψj). Since V (∧j<kψj) /= ∅, there must exist s′ ∈

V (∧j<kψj) ∖ V (ψk) and it is straightforward that M,s′ ⊧ ∧j<kψj ∧ ¬ψk.

In the case when k = 1, the proof is slightly different from above as we do not have the set

V (∧j<kψj). However, we make the use of the first requirement of playability which states

that S ∈ E(s)(Cbk
k
), therefore, V (ψk) /= S. Hence, there also exists s′ ∈ S ∖ V (ψk) and it is

obvious that M,s′ ⊧ ¬ψk.

Let us now prove the right-to-left direction of the lemma. The idea is that we construct a

model satisfying the formula ϕ by collecting models which witness the satisfaction of the formulas

in the two conditions of the lemma. That is for any tuple ([C
bj
j ]ψj)j≤k of cl(ϕ) which corresponds

to one of the two conditions of the lemma, as ∧i≤kψj (or ∧i<kψj ∧ ¬ψk) is satisfiable, there is a

model M ′ which satisfies ∧i≤kψj (or ∧i<kψj ∧ ¬ψk) at some state s′ of M ′. The model M we

construct to satisfy ϕ will be the union of all such witnessing models M ′ together with a new state

s0 at which ϕ will be satisfied. We define the assignment function and the effectivity structure at

a state of M by using the valuation function if the state is s0 or the assignment function and the

effectivity structures of the witness models if otherwise. After constructing the model M , we also

have to show that the effectivity structure of M is RB-playable so that M then is a qualified model

for ϕ. In the following, we detail the construction of M .

For each tuple of formulas ([C
bj
j ]ψj)j≤k of cl(ϕ) which corresponds to one of two cases

in the lemma, there is a finite model which satisfies its corresponding formula in form of either

∧i≤kψj or ∧i<kψj ∧ ¬ψk. Let M1, . . . ,Mn be the enumeration of the above witnessing models

where Mi = (Si,Ei, Vi) such that, without loss of generality, all Si’s are assumed to be pairwise

disjoint.

We construct a finite model M = (S,E,V ) as follows. The set of states S is the set

⋃i≤n Si ∪ {s0} where s0 is a new state; hence S is finite. In order to define V , we firstly introduce

a mapping V0 ∶ cl(ϕ)→ ℘({s0}) where

V0(ψ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{s0} if v(ψ) = 1

∅ otherwise

Then, we define an assignment U ∶ cl(ϕ) → ℘(S) by U(ψ) = ⋃i=0,...,n Vi(ψ). Note that by the

construction, we have U(¬ψ) = S ∖ U(ψ), U(ψ1 ∨ ψ2) = U(ψ1) ∪ U(ψ2). Now, we define the
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mapping V forM by the projection of U on the set of propositional variables p, that is V (p) = U(p)

(without loss of generality, we can assume that all propositional variables are contained in cl(ϕ)).

Finally, we define the effectivity structure E in a way which is similar to that of the

completeness proof.

For C /= N and b such that t(b) = 1, we put X ⊆ S in E(s)(Cb) if and only if X = S or

there are [Cb1
1
]ψ1, . . . , [C

bk
k
]ψk ∈ cl(ϕ) for some k > 0 such that:

● t(bj) = 1 for all j ≤ k

● C1, . . . , Ck are pairwise disjoint, and all non-empty if C is not empty

● ⋃j≤kCj ⊆ C

● ⊕j≤kbj ≤ b if C /= ∅ or b ≤ bj for all j ≤ k otherwise

● ⋂j≤k U(ψj) ⊆X for all j ≤ k

● v([C
bj
j ]ψj) = 1 for all j ≤ k if s = s0

● Mi, s ⊧ [C
bj
j ]ψj for all j ≤ k if s ∈ Si for some i ≤ n

For t(b) = 1, X ∈ E(s)(N b) if and only if X ∉ E(s)(∅b). For the case when t(b) > 1

and C /= ∅, we define E(s)(Cb) inductively as follows: X ∈ E(s)(Cb) iff one of the following

conditions holds,

1. There is b′ < b such that X ∈ E(s)(Cb)

2. There are b1 ⊕ b2 = b such that {s′ ∣X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

Then, we define for t(b) > 1, X ∈ E(s)(∅b) iff X ∉ E(s)(N b).

Before proving that the model M which we just construct is indeed a model for ϕ, it is

required to show that E is an RB-playable effectivity structure.

Claim 1. The effectivity structure E is RB-playable.

Proof. ● We show the first two properties of RB-playability by induction on bounds.

Let t(b) = 1 and C /= N . The definition of E implies directly that S ∈ E(s)(Cb).

Moreover, S ∈ E(s)(∅b) implies that ∅ ∉ E(s)(N b) also by the definition of E.

Let t(b) = 1 and C /= N . Assume to the contrary that ∅ ∈ E(s0)(Cb). Hence, there are

[Cb1
1
]ψ1, . . . , [C

bk
k
]ψk ∈ cl(ϕ) for some k > 0 such that:
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– t(bj) = 1 for all j ≤ k

– C1, . . . , Ck are pairwise disjoint, and all non-empty if C is not empty

– ⋃j≤kCj ⊆ C

– ⊕j≤kbj ≤ b if C /= ∅ or b ≤ bj for all j ≤ k otherwise

– ⋂j≤k U(ψj) ⊆X for all j ≤ k

– v([C
bj
j ]ψj) = 1 for all j ≤ k if s = s0

– Mi, s ⊧ [C
bj
j ]ψj for all j ≤ k if s ∈ Si for some i ≤ n

Then, ∧j≤kψj ≡ � which contradicts the first condition of the lemma where � is required to

be satisfiable.

Similarly to the case when s /= s0, we can show that ∅ ∉ E(s)(Cb) for C /= N .

Then, ∅ ∉ E(s)(∅b) implies that S ∈ E(s)(N b), by the definition of E, again.

In the induction step, let t(b) > 1 and C /= ∅, we directly have that S ∈ E(s)(Cb) as

S ∈ E(s)(Cb
′
) for any b′ < b and t(b′) = 1. S ∈ E(s)(N b) also implies that ∅ ∉ E(s)(∅b).

Moreover, by the induction hypothesis, we have that ∅ ∉ E(s)(Cb
′
) for any b′ < b. Further-

more, for any b1 ⊗ b2 = b, we have that {s′ ∣ ∅ ∈ E(s′)(Cb2)} = ∅ and ∅ ∉ E(s)(Cb1) also

because of the induction hypothesis. By the definition of E, it follows that ∅ ∉ E(s)(Cb).

Once agent, ∅ ∉ E(s)(N b) implies that S ∈ E(s)(∅b).
● Let us now show outcome monotonicity.

Let t(b) = 1 and C /= N . Assume that X ∈ E(s)(Cb) where X ⊂ S. By the definition of E,

there are [Cb1
1
]ψ1, . . . , [C

bk
k
]ψk ∈ cl(ϕ) for some k > 0 such that:

– t(bj) = 1 for all j ≤ k

– C1, . . . , Ck are pairwise disjoint, and all non-empty if C is not empty

– ⋃j≤kCj ⊆ C

– ⊕j≤kbj ≤ b if C /= ∅ or b ≤ bj for all j ≤ k otherwise

– ⋂j≤k U(ψj) ⊆X for all j ≤ k

– v([C
bj
j ]ψj) = 1 for all j ≤ k if s = s0

– Mi, s ⊧ [C
bj
j ]ψj for all j ≤ k if s ∈ Si for some i ≤ n
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It is straightforward that for any X ′ ⊇ X , we have ⋂j≤k U(ψj) ⊆ X ⊆ X ′. Hence, X ′ ∈

E(s)(Cb).

In the case of the grand coalition, assume that X ∈ E(s)(N b). By the definition of E, we

have X̄ ∉ E(s)(∅b). Assume to the contrary that X ′ ∉ E(s)(N b) for some X ′ ⊇ X . It

follows that X̄ ′ ⊆ X̄ . X ′ ∉ E(s)(N b) implies that X̄ ′ ∈ E(s)(∅b), hence, X̄ ∈ E(s)(∅b)

which is a contradiction.

Now, we provide a proof of outcome monotonicity for the case when t(b) > 1. It is easy to

notice that it is similar to the proof of completeness of RBCL.

Let t(b) > 1 and C /= ∅. . If X ∈ E(s)(Cb
′
) for some b′ < b, induction hypothesis shows that

X ′ ∈ E(s)(Cb
′
) for all X ′ ⊇ X . Then, by the definition of E, we have X ′ ∈ E(Cb)(s). If

X ∉ E(s)(Cb
′
) for all b′ < b. By the definition of E, there are b1 ⊗ b2 = b and

{s′ ∣X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

Let X ′ ⊇X , by the induction hypothesis we have

{s′ ∣X ∈ E(s′)(Cb2)} ⊆ {s′ ∣X ′ ∈ E(s′)(Cb2)}

⇒ {s′ ∣X ′ ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

By the definition of E, we have X ′ ∈ E(s)(Cb).

If t(b) > 1, X ∈ E(s)(∅b) iff X ∉ E(s)(N b). Let X ′ ⊇ X , assume to the contrary that

X ′ ∉ E(s)(∅b). This implies that X ′ ∈ E(s)(N b). By the previous proof, we have X ∈

E(s)(N b) as X ′ ⊆X , which is a contradiction.

● N -maximality and regularity follow directly from the definition of E for ∅ when t(b) = 1

and also t(b) > 1. Therefore, we omit the proof here.

● Since S is finite, we ignore proving N -determinacy as it is derivable by other properties of

RB-playability.

● Let us now prove super-additivity. Let t(b) = t(d) = 1, C ∩D = ∅ with X ∈ E(s)(Cb) and

Y ∈ E(s)(Dd).

– If bothC andD are not empty. Assume that bothX and Y are not equal to S. By defini-

tion ofE, we have there are [Cb1
1
]ψ1, . . . , [C

bkC
kC
]ψkC ∈ cl(ϕ) and [Dd1

1
]ψ′1, . . . , [D

dkD
kD
]ψ′kD ∈

cl(ϕ) for some kC > 0 and kD > 0 such that:



4. RESOURCE-BOUNDED COALITION LOGIC 97

∗ t(bj) = 1 for all j ≤ kC

∗ t(dj) = 1 for all j ≤ kD

∗ C1, . . . , CkC are pairwise disjoint, and all non-empty

∗ D1, . . . ,DkD are pairwise disjoint, and all non-empty

∗ ⋃j≤kC Cj ⊆ C

∗ ⋃j≤kD Dj ⊆D

∗ ⊕j≤kC bj ≤ b
∗ ⊕j≤kDdj ≤ d
∗ ⋂j≤kC U(ψj) ⊆X for all j ≤ kC

∗ ⋂j≤kD U(ψ
′
j) ⊆ Y for all j ≤ kD

∗ v([C
bj
j ]ψj) = 1 for all j ≤ kC if s = s0

∗ v([D
dj
j ]ψ

′
j) = 1 for all j ≤ kD if s = s0

∗ Mi, s ⊧ [C
bj
j ]ψj for all j ≤ kC if s ∈ Si for some i ≤ n

∗ Mi, s ⊧ [D
dj
j ]ψ

′
j for all j ≤ kD if s ∈ Si for some i ≤ n

Then, it is straightforward that X ∩ Y ⊇ ⋂j≤kC U(ψj) ∩⋂j≤kD U(ψ′j). It follows that

X ∩ Y ∈ E((C ∪D)b⊕d).
In the case when Y is S, the proof is similar to above with the notice that C ⊆ C ∪D
and b ≤ b⊕ d.

– If C =D = ∅ and b = d, we apply the same argument as the case above.

– If C = ∅, b = d and D = N , we need to show that X ∩ Y ∈ E(N b)(s). Assume to the

contrary that X ∩ Y ∉ E(N b)(s), then N -maximality, which has been proved above,

implies thatX ∩ Y ∈ E(∅b)(s). Then, by the previous case of super-additivity, we have

X ∩ Y ∈ E(∅b)(s). As we already showed outcome-monotonicity, Y ∈ E(∅b)(s).
However, by N -regularity, we have Y ∉ E(N b)(s) which is a contradiction.

● Super-transitivity follows directly from the definition of E when t(b) > 1.

● Similarly, transitivity follows directly from the definition of E when t(b) > 1.

Therefore, E is RB-playable. In order to show that M satisfies ϕ, we prove the following

two claims.
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Claim 2. For any [Cb]ψ ∈ cl(ϕ), U(ψ) ∈ E(s)(Cb) iff v([Cb]ψ) = 1 if s = s0 or Mi, s ⊧ [Cb]ψ if

s ∈ Si for some i ≤ n.

Proof. The direction from right to left is straightforward according to the definition of E. Hence,

we provide here only a proof for the other direction.

A trivial case is when U(ψ) = S, therefore we ignore it here. We prove the claim also by

induction on the resource bounds.

Let t(b) = 1 and C /= N . As U(ψ) ∈ E(s)(Cb), there are [Cb1
1
]ψ1, . . . , [C

bk
k
]ψk ∈ cl(ϕ)

for some k > 0 such that:

● t(bj) = 1 for all j ≤ k

● C1, . . . , Ck are pairwise disjoint, and all non-empty if C is not empty

● ⋃j≤kCj ⊆ C

● ⊕j≤kbj ≤ b if C /= ∅ or b ≤ bj for all j ≤ k otherwise

● ⋂j≤k U(ψj) ⊆ U(ψ) for all j ≤ k

● v([C
bj
j ]ψj) = 1 for all j ≤ k if s = s0

● Mi, s ⊧ [C
bj
j ]ψj for all j ≤ k if s ∈ Si for some i ≤ n

Suppose s ∈ Si for some i ≤ n. As Mi, s ⊧ [C
bj
j ]ψj for all j ≤ k, super-additivity implies that

Mi, s ⊧ [⋃j≤kC
⊕j≤kbj
j ](∧j≤kψj) if C /= ∅ or directly, Mi, s ⊧ [Cb](∧j≤kψj) otherwise. In the

former case, coalition monotonicity gives us Mi, s ⊧ [Cb](∧j≤kψj). Then, in both cases, we can

conclude by outcome-monotonicity that Mi, s ⊧ [Cb](ψ).

When s = s0, assume by contradiction that v([Cb]ψ) = 0. Then there is a witnessing

model Mi and s′ ∈ Si such that Mi, s
′ ⊧ ∧j≤kψi ∧ ¬ψ which contradicts the fact that ⋂j≤k U(ψj) ⊆

U(ψ).

Let t(b) = 1 and C = N . By the definition of E, U(ψ) ∈ E(s)(N b) iff U(¬ψ) ∉
E(s)(∅b). By the proof above, U(¬ψ) ∉ E(s)(∅b) iff v([∅b]¬ψ) = 0 if s = s0 or Mi, s /⊧ [∅b]¬ψ
if s ∈ Si for some i ≤ n. By the definition of v, we have that v([∅b]¬ψ) = 0 implies v([N b]ψ) = 1.

Moreover, by N-maximality, we also have Mi, s /⊧ [∅b]¬ψ implies that Mi, s ⊧ [N b]ψ.

Let t(b) > 1 and C /= ∅. We have that U(ψ) ∈ E(s)(Cb) iff U(ψ) ∈ E(s)(Cb
′
) for

some b′ < b or there are b1 ⊗ b2 = b such that {s′ ∣ U(ψ) ∈ E(s)(Cb2)} ∈ E(s)(Cb1). If U(ψ) ∈

E(s)(Cb
′
), by the induction hypothesis, v([Cb

′
]ψ) = 1 if s = s0 or Mi, s ⊧ [Cb

′
]ψ if s ∈ Si for
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some i ≤ n. By the definition of v, v([Cb
′
]ψ) = 1 implies that v([Cb]ψ) = 1. By RB-playability,

Mi, s ⊧ [Cb
′
]ψ implies Mi, s ⊧ [Cb]ψ.

If there are b1⊗b2 = b such that U([Cb2]ψ) = {s′ ∣ U(ψ) ∈ E(s)(Cb2)} ∈ E(s)(Cb1), by

the induction hypothesis, v([Cb1][Cb2]ψ) = 1 if s = s0 or Mi, s ⊧ [Cb1][Cb2]ψ if s ∈ Si for some

i ≤ n. By the definition of v, v([Cb1][Cb2]ψ) = 1 implies that v([Cb]ψ) = 1. By RB-playability,

Mi, s ⊧ [Cb1][Cb2]ψ implies Mi, s ⊧ [Cb]ψ.

Let t(b) > 1 and C = ∅. By the definition of E, U(ψ) ∈ E(s)(∅b) iff U(¬ψ) ∉

E(s)(N b). By the proof above, U(¬ψ) ∉ E(s)(N b) iff v([N b]¬ψ) = 0 if s = s0 or Mi, s /⊧

[N b]¬ψ if s ∈ Si for some i ≤ n. By the definition of v, we have that v([N b]¬ψ) = 0 im-

plies v([∅b]ψ) = 1. Moreover, by N-maximality, we also have Mi, s /⊧ [N b]¬ψ implies that

Mi, s ⊧ [∅b]ψ.

Claim 3. V and U agree on cl(ϕ).

Proof. In the base case, the proof is trivial as according to the definition of V , they already agree

on the set of propositions in cl(ϕ). The proof for propositional connectives is also straightforward

as we know that U(¬ψ) = S ∖ U(ψ) and U(ψ1 ∨ ψ2) = U(ψ1) ∪ U(ψ2), and similarly for V . For

the case of [Cb]ψ, the proof is done by induction on the resource bounds.

Assume that s ∈ U([Cb]ψ), then by the definition of U , v([Cb]ψ) = 1 if s = s0 or

Mi, s ⊧ [Cb]ψ if s ∈ Si for some i ≤ n.

If t(b) = 1 and C /= N , then in both above cases, by the definition of E, we have that

U(ψ) ∈ E(s)(Cb). By the induction hypothesis, U(ψ) = V (ψ), hence V (ψ) ∈ E(s)(Cb), there-

fore M,s ⊧ [Cb]ψ.

If t(b) = 1 and C = N , then we have v([∅b]¬ψ) = 0 if s = s0 or Mi, s /⊧ [∅b]¬ψ if s ∈ Si

for some i ≤ n. In both cases, by the definition of E, we have that U(¬ψ) ∉ E(s)(∅b), otherwise,

U(¬ψ) ∈ E(s)(∅b) will contradict Claim 2. Hence, U(ψ) = V (ψ) ∈ E(s)(N b) because E is

RB-playable. Then, M,s ⊧ [N b]ψ. Therefore s ∈ V ([N b]ψ).

Assume t(b) > 1 and C /= ∅. If s = s0 and v([Cb]ψ) = 1, then either v([Cb
′
]ψ) = 1 for

some b′ < b or there are b1 ⊗ b2 = b such that v([Cb1][Cb2]ψ) = 1. In both cases, by the induction

hypothesis together with the definition of E, we imply that s ∈ V ([Cb]ψ). Similarly, if s ∈ Si

and Mi, s ⊧ [Cb]ψ, either Mi, s ⊧ [Cb
′
]ψ or Mi, s ⊧ [Cb1][Cb2]ψ. Again, in both cases, by the

induction hypothesis together with the definition of E, we imply that s ∈ V ([Cb]ψ).

If t(b) > 1 and C = ∅, then we have v([N b]¬ψ) = 0 if s = s0 or Mi, s /⊧ [N b]¬ψ if

s ∈ Si for some i ≤ n. In both cases, by the definition of E, we have that U(¬ψ) ∉ E(s)(N b),
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otherwise, U(¬ψ) ∈ E(s)(N b) will contradict Claim 2. Hence U(ψ) = V (ψ) ∈ E(s)(∅b) because

E is RB-playable. Then, M,s ⊧ [∅b]ψ. Therefore s ∈ V ([∅b]ψ).

Assume that s ∈ V ([Cb]ψ), that isM,s ⊧ [Cb]ψ. Therefore, V (ψ) = U(ψ) ∈ E(s)(Cb).

By the above claim, we have v([Cb]ψ) = 1 if s = s0 or Mi, s ⊧ [Cb]ψ if s ∈ Si for some i ≤ n. In

both cases, the definition of U gives us s ∈ U([Cb]ψ).

Finally, we complete the proof for Lemma 10. Since v(ϕ) = 1, s0 ∈ U(ϕ). Therefore, by

Claim 3, we have s0 ∈ V (ϕ), hence, M,s0 ⊧ ϕ. In other words, ϕ is satisfiable.

We now return to the example. We have already computed the set cl(¬[{1,2}(2,1)]p ∧

[{2}1,2]p) as well as a valuation v as depicted in Figure 4.2. Let us consider any subset of formulas

from cl(¬[{1,2}(2,1)]p ∧ [{2}1,2]p) which satisfy either the first or the second case of Lemma 10.

For example, the set Γ = {[{2}(0,1)][{2}(1,1)]p, [∅(2,1)]¬p, [{1,2}(2,1)]p,} which fits into the

second case of Lemma 10, then is the formula [{2}(1,1)]p ∧ ¬p satisfiable? In order to answer

this question, one possible way is to routinely compute the set cl([{2}(1,1)]p ∧ ¬p) and guess a

valuation for it. However, the formula is simple enough for us to guess a model, which is illustrated

in Figure 4.3. In Figure 4.3, only actions for agent 2 are drawn. For agent 1, there is only one

makep(1,1)

idle(0,1) idle(0,1)

FIGURE 4.3: A model satisfies [{2}(1,1)]p ∧ ¬p.

action at both states which is idle(0,1) which costs only one unit of time. Each transition drawn in

Figure 4.3 defines the outcome of each joint action for both agents. A joint action in our example

is a pair of idle(0,1) (performed by agent 1) and an action attached to the transition (performed by

agent 2).

Beside the set Γ which we already considered above, there are also others sub-sets of

formulas from cl(¬[{1,2}(2,1)]p ∧ [{2}1,2]p) which can be used in the first or the second case of

Lemma 10. Let us list them as follows:

● Γ = {[{2}(0,1)][{2}(1,1)]p, [{2}(1,1)]p,}

● Γ = {[{2}(0,1)][{2}(1,1)]p, [{2}(0,1)]p,}
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● Γ = {[{2}(0,1)][{2}(1,1)]p, [{2}(1,1)][{2}(0,1)]p,}

● Γ = {[{2}(0,1)][{2}(1,1)]p, [{2}(0,1)][{2}(0,1)]p,}

We can also routinely consider each case by computing the closure of their conjunction formulas and

guessing the corresponding valuation. However, it is not difficult to see that they are also satisfied by

the model depicted in Figure 4.3. In other words, Lemma 10 implies that ¬[{1,2}(2,1)]p∧[{2}1,2]p

is satisfiable.

As a consequence of the lemma, we finish this section by providing an algorithm for de-

ciding the satisfiability problem of RBCL. Let us introduce some notation. As defined above, given

a closure cl(ϕ), let CON(ϕ) be the set of all finite nonempty subsets {[Cb1
1
]ψ1, . . . , [C

bk
k
]ψk} ⊆

cl(ϕ) which appear in either the first or the second condition of Lemma 10. Moreover, each set

Γ = {[Cb1
1
]ψ1, . . . , [C

bk
k
]ψk} ∈ CON(ϕ) is associated with a formula, denoted ϕΓ, which is in

the form of either ∧i≤kψi or ∧i<kψi ∧ ¬ψk, depending on whether Γ is for the first or the second

condition of Lemma 10, respectively. Then, the algorithm for the satisfiability problem, given a

formula ϕ, is as follows.

1. Non-deterministically select a valuation v for cl(ϕ).

2. For every set Γ ∈ CON(ϕ), recursively check that ϕΓ is satisfiable.

Note that if we measure the size of the input to the algorithm (the formula ϕ) assuming that the

resource bounds are written in unary, then the algorithm is PSPACE (since in this case the size of

cl(ϕ) is polynomial in ∣ϕ∣). However, if the resource bounds are written in binary, then ∣cl(ϕ)∣ is

exponential in ∣ϕ∣ and hence the algorithm requires exponential space to record the valuation.

4.7 Conclusion

In this chapter, we have introduced the logic RBCL (and its simplified version, RBCL1) which

allows us to reason about the ability of coalitions of agents under resource bounds in systems of

multiple agents where every action is associated with a certain cost of resources. RBCL1 is for

reasoning about single step strategies of resource-bounded multi-agent system, which helps us to

determine whether a coalition of agents could cooperate in one step of time in order to obtain a

certain goal under a resource bound. We generalise the logic to RBCL for reasoning about multi-step

strategies of coalitions of agnets under resource bounds. Rather than look at single step cooperation,
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we consider the case when agents in a coalition cooperate in a sequence of consecutive steps in order

to force a desired result without spending more than a certain amount of resources.

Similar to the case of Coalition Logic, we study the soundness and completeness of RBCL

by considering the notions of effectivity structures of resource-bounded concurrent game frames and

resource-bounded playability. Apart from that, the chapter also discusses the satisfiability problem

of RBCL where we have shown that RBCL is decidable.

Finally, let us remark on the relationship between RBCL and CL. Comparing to CL,

RBCL is an extension where modalities of CL are attached with resource bounds in order to express

abilities of a coalition of agents under such resource bounds. Although RBCL allows reasoning

about multi-step strategies of coalitions, the approaches used in this chapter for results of RBCL are

not proved to be applicable for the case of ECL [Pauly, 2002]. Moreover, the fact that every resource

bound in a formula of RBCL contains only concrete numbers shows that RBCL is intuitively not

expressive enough to define the modalities [C∗] and [C×] of ECL where the formula [C∗]ϕ in ECL

sets no time limitation on the strategy of the coalition C to force ϕ and the formula [C×]ϕ in ECL

says that the coalition C can maintain ϕ indefinitely.
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CHAPTER 5

RESOURCE-BOUNDED

ALTERNATING-TIME TEMPORAL LOGIC

5.1 Introduction

When we use RBCL to reason about coalitional ability under resource bounds in a multi-agent

system, the formula of the form [Cb]ϕ expresses the case that the coalition C has the ability to

bring about ϕ under the resource bound b. In other words, RBCL is a logic which allows us to

reason about coalitional ability to obtain certain goals under an explicit resource bound. Naturally,

the logic is not expressive enough to specify other coalitional abilities of resource-bounded multi-

agent systems. For instance, it is not possible the express the following properties in RBCL:

● A coalition C has the ability to maintain a condition under a resource bound b.

● A coalition C has the ability to maintain a condition until it obtains another goal under a

resource bound b.

Without speaking about resource bounds, we also face a similar problem with Coalition Logic where

the more expressive logic ATL is taken into account in order to express such properties with the

help of temporal operators such as global (◻) and until U . Therefore, we present in this chapter a

logic, namely resource-bounded alternating-time temporal logic (RB-ATL) which is an extension of

ATL with resource bounds. The purpose of having RB-ATL is to have a more expressive logic for

specifying and reasoning about properties of resource-bounded multi-agent systems. Furthermore,

for a more flexible logic, we extend the notion of resource bounds in order to express properties

where bounds do not need to cover for all resources used in a multi-agent system. Therefore, we

could flexibly express properties such as a coalition C has the ability to maintain a condition ϕ
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without spending more than an explicit amount of a resource r in the set of resources used by the

multi-agent system. It is worth noticing that in this property, the usage of the resource r by the

coalition C is explicitly limited while there are no bounds for all other resources of the multi-agent

system. Therefore, the bound on the coalition C only covers the resource r and the coalition can

spend an unlimited amount of other resources in order to maintain the condition ϕ.

The chapter is organised as follows. First, we introduce the extensions of notions of

resource bounds and concurrent game structures. After that, the syntax and the semantics of the

logic are presented. Then, we study the soundness and completeness of the logic. Finally, we

investigate the satisfiability problem of the logic.

5.2 Extended resource bounds

In the previous chapter, we have defined the set of resource bounds B over a given finite set R of

resources as B = N
r where r is the cardinality of R. This definition means that a resource bound

b = (b1, . . . , br) determines the bounds on every resource in R.

Therefore, we could only express properties in RBCL such as [Cb]ϕ where the bound

b covers all resources used by a multi-agent system. For instance, let us return to the example on

page 28. In this example, the system of two reasoning agents uses explicitly two resources: memory

and communication and an implicit resource time. As we already knew, it is possible to express in

RBCL the property that Agents 1 and 2 can enforce C to become true without using more than

4 units of memory and 2 units of network bandwidth in maximally 7 steps of time by the formula

[{1,2}(4,2,7)]C. However, if we would like to express the same property but we do not want to

set a bound on how many messages can be exchanged between two agents (i.e. there is no limit

on communication between them), it is not possible to do so in RBCL unless the language allows

infinite disjunction. This is because the property can only be written as ⋁n≥0[{1,2}(4,n,7)]C. In

order to allow expressing such properties, we extend the notion of resource bounds by allowing the

inclusion of an extra symbol ∞. The idea is that whenever no limit is required over a resource,

we set the bound for this resource as ∞. Then, the previous property can be expressed by the

formula [{1,2}(4,∞,7)]c where ∞ means that there is no bound on communication while we still

set limitations on the resources memory and time.

Let us formally define the set of extended resource bounds in the following.

Definition 15. Given a finite set R of resources where R = {1, . . . , r}, the set of extended resource

bounds is defined as B∞ = (N ∪ {∞})r.
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In the previous chapter, we have mentioned that there are two places where resource

bounds can be used. First, resource bounds b are used as the bounds in the formulas of the form

[Cb]ϕ. Then, resource bounds are used to specify the cost of actions. However, it is not the case for

extended resource bounds where the cost of actions must be concrete numbers rather than a symbol

∞. Therefore, we only use extended resource bounds as the limitation of resources in formalising

properties of resource-bounded multi-agent systems. In other words, the set of resource bounds are

still used to specify the cost of actions in models that are used to define the semantics of the logic

RB-ATL.

The comparison operator between extended resource bounds are defined as usual. Given

two extended resource bounds b and d, we say that b ≤ d iff bi ≤ di for all 1 ≤ i ≤ r where the

comparison involving ∞ is defined as follows.

n ≤∞ for all n ∈ N

∞ ≤∞

This means ∞ is greater than any natural number in N. For the sake of simplicity, we also assume

that both resource bound sequence and parallel operators ⊗ and ⊕, which are presented in the

previous chapter, are defined by means of the addition operator. The addition operator where ∞ is

involved is defined as follows:

n +∞ = ∞+ n =∞ for all n ∈ N

∞+∞ =∞

Then, when we add ∞ with any natural number, we also obtain ∞.

In this chapter, we denote the smallest (extended) resource bound by the symbol 0̄ where

0̄ = (0, . . . ,0), i.e. all components of 0̄ are 0.

5.3 Resource-bounded concurrent game structure

In this section, we present the extension of concurrent game structures [Alur et al., 2002] which

will be used to define the semantics of the logic RB-ATL. Similar to the case of resource-bounded

action frame defined in Section 4.3.2, we extend the concept of concurrent game structures by ac-

companying each of them a finite set of resources. Moreover, actions in concurrent game structures

are also associated with costs each of which is a resource bound from B.
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In particular, we define the notion of resource-bounded concurrent game structures (RB-

CGS) as follows.

Definition 16. A Resource-bounded Concurrent Game Structure (RB-CGS) is a tuple

S = (n,R,Q,Prop, π, d, c, δ)

where:

● n ≥ 1 is the number of players (agents) in a resource-bounded multi-agent system, we denote

the set of players {1, . . . , n} by N

● R is a finite set of resources where ∣R∣ = r.

● Q is a non-empty set of states

● Prop is a set of propositional variables

● π ∶ Q → ℘(Prop) is a mapping which assigns each state in Q a subset of propositional

variables

● d ∶ Q ×N → N is a mapping to indicate the number of available moves (actions) for each

player a ∈ N at a state q ∈ Q such that d(q, a) ≥ 1. At each state q ∈ Q, we denote the set of

joint moves available for all players in N by D(q) as follows:

D(q) = {1, . . . , d(q,1)} × . . . × {1, . . . , d(q, n)}

● c ∶ Q×N ×N→ B is a mapping to indicate the cost of resources required by each move avail-

able to each agent at a state. Furthermore, we require that among actions {1, . . . , d(q, a)}

available to an agent a ∈ N at a state q ∈ Q, there is at least one action j ∈ {1, . . . , d(q, a)}

where the cost of j is the minimal value 0̄.

● δ ∶ Q × N
n → Q is a mapping where δ(q,m) is the next state from q if all players opt the

corresponding move in m ∈D(q).

In the above definition, it is worth noticing that the extra requirement for the cost function

c is to make the structure S to be total. That is there are always possible actions for agents so that

the system can move forward without spending any amount of resources.

In the following, let us consider an example of an RB-CGS as depicted in Figure 5.1. We

describe in this example possible ways for an agent to go from Nott (which stands for Nottingham)
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to Ams (Amsterdam) by train and by air. On the ways, the agent may have to get to intermediate

destinations which are Lond (London) and Paris. There are two agents in this example, one is the

agent that wants to go from Nott to Ams, and the other is an agent which tries to disrupt the trip

of the first agent. If a trip is disrupted by the second agent, it causes the first agent to arrive the

destination of the trip late as long as the first agent travels by air. We could think of the second

agent as external factors which can delay trips by air such as bad weather or the strong activity of

volcano. We assume that it is not likely to be disrupted when travelling by train, and hence, train

is always on time. In this example, we assume that there are two resources which are the numbers

Nott Lond

Paris Ams

Paris
Late

Ams
Late

trainLd(0,2),-(0,0)
trainP(0,3) ,-(0

,0)

trainA(0,3),-(0,0)

trainA(0,3),-(0,0)

  flyP(1,0),disrupt (0,0)

  fl
yP

(1,0) ,null(
0,0)

flyA (2,0),disrupt (0,0)

   
   

   
   

   
  fl

yA
(2

,0) ,null(
0,0)

null(0,0),-(0,0)

null(0,0),-(0,0)

null(0,0),-(0,0)

null(0,0),-(0,0)

null(0,0),-(0,0)

null(0,0),-(0,0)

q
1

q2

q3

q4

q5

q6

FIGURE 5.1: Possible ways to go from Nott to Ams.

of hours the first agent spends on a trip from one place to another by air and by train, respectively.

From every state, each agent can perform a “null” action which costs no hour by air and by train,

i.e. the cost of null is 0̄. Also from any state, the second agent can perform the disrupt action of

which cost is also 0̄. From q1, the first agent can perform the action trainLd which stands for going

to London by train, hence, costs no hour by air but two hours by train. Similarly, from the state q2,

the first agent can go to Paris either by air or by train and only to Ams by air. The action flyA which

means to go to Ams by air costs two hours on the flight but no hour by train. The action flyP is for

going to Paris by air which costs one hour on the flight and no hour by train. The action trainP is for

going to Paris by train; therefore, it costs no hour on the flight but three hours by train. Then, from

Paris, the first agent can only go to Ams by train by performing the action trainA which costs no

hour by air and three hours by train. In Figure 5.1, each transition from one state to another is the
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result of a joint action of both agents which is drawn next to the transition. An action in the figure

is written in the form of act(x,y) to indicate that the action act costs x hours by air and y hours by

train. We write −(0,0) to denote either the actions null(0,0) or disrupt(0,0). Notice that when the

first agent performs an action flyX to go to the destination X by air and the second agent performs

the action disrupt, we arrive at a state where the proposition Late is true to indicate that the action

disrupt has caused delay to the trip of the first agent.

Then, we list in the following several properties of the system depicted in Figure 5.1:

● At q1, the first agent cannot get to Ams on time (i.e. not late) without spending more than

three hours by train and five hours by air.

● At q1, the first agent can get to Ams on time without spending more than ten hours only by

train.

● At q1, the first agent cannot get to Ams on time without spending more than ten hours only

by air.

● At q1, the first agent can get to Ams on time, i.e. allowing spending any number of hours by

air or by train.

● At q1, the first agent can get to Ams on time only by train, i.e. there is no limitation on the

number of hours spent on the train.

● At q1, the first agent cannot get to Ams on time only by air, i.e. there is no limitation on the

number of hours spent on the flight.

● At q1, the first agent cannot get to Ams on time by spending no more than three hours by train

and any number of hours by air.

In order to formalise and reason about the above properties, we present the logical lan-

guage RB-ATL in the next section.

5.4 The language RB-ATL

In this section, we define the syntax and the semantics of RB-ATL. Moreover, we also present the

normal form of RB-ATL which will be useful for us to investigate RB-ATL including the soundness

and completeness problem of RB-ATL, and then the decidability of RB-ATL.
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5.4.1 Syntax of RB-ATL

Assume we have a finite set N of agents where N = {1, . . . , n}, a finite set R of resources where

∣R∣ = r, the set B∞ of extended resource bounds, and a set of propositional variables Prop. We shall

write A to denote a non-empty coalition of agents, that is A ⊆ N and A /= ∅. Then, we define the

syntax of RB-ATL as follows.

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ ⟪Ab⟫◯ϕ ∣ ⟪Ab⟫◻ϕ ∣ ⟪Ab⟫ϕUψ

where p ∈ Prop, A is a coalition and b ∈ B∞.

Let us discuss the informal meaning of temporal formulas of RB-ATL which are quite

similar to those of ATL. The formula ⟪Ab⟫◯ϕ means that agents in the coalition A have a strategy

to force ϕ to become true in the next step without spending more than b amount of resources. Then,

the formula ⟪Ab⟫◻ϕ means that the coalition A has a strategy to make ϕ true forever without

spending more than b amount of resources. Finally, the formula ⟪Ab⟫ϕUψ is to say that the coalition

A has a strategy to keep ϕ true until ψ is eventually true without spending more than b amount of

resources. For the case of the empty coalition, we shall write ⟪∅b⟫◯ϕ to say that for any strategy

of the grand coalition N which spends at most b amount of resources, ϕ is true in the next step. In

other words, ϕ is unavoidable for the system if it is not allowed to spend more than b amount of

resources. Similarly, the formula ⟪∅b⟫◻ϕ describes that if the system can only spend no more than

b amount of resources, ϕ is true forever. Then, ⟪∅b⟫ϕUψ means that if the system can only spend

no more than b amount of resources, ϕ keeps being true until ψ is true. We define these temporal

operators for the case of the empty coalition in terms of equivalences as follows:

⟪∅b⟫◯ϕ ≡ ¬⟪N b⟫◯(¬ϕ)

⟪∅b⟫◻ϕ ≡ ϕ ∧ ¬⟪N b⟫⊺U¬ϕ

⟪∅b⟫ϕUψ ≡ ¬(⟪N b⟫¬ψU¬(ϕ ∨ ψ) ∨ ⟪N b⟫◻¬ψ)

Before defining the semantics of RB-ATL, let us give some examples of formulas of RB-

ATL. We turn back to the example in the previous section where the listed properties of the system

depicted in Figure 5.1 can be written by the following formulas: ¬⟪{1}(5,3)⟫⊺U(Ams ∧ ¬Late),

⟪{1}(0,10)⟫⊺U(Ams∧¬Late), ¬⟪{1}(10,0)⟫⊺U(Ams∧¬Late), ⟪{1}(∞,∞)⟫⊺U(Ams∧¬Late),

⟪{1}(0,∞)⟫⊺U(Ams ∧ ¬Late), ¬⟪{1}(∞,0)⟫⊺U(Ams ∧ ¬Late), and ¬⟪{1}(∞,3)⟫⊺U(Ams ∧

¬Late), respectively.
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5.4.2 Semantics of RB-ATL

As we have already mentioned, the semantics of RB-ATL is defined by means of resource-bounded

concurrent game structures. Given a RB-CGS S = (n,R,Q,Prop, π, d, c, δ), let us define the notion

of moves, strategies and b-strategies where b ∈ B∞.

Firstly, given a RB-CGS S, we denote the set of infinite sequences of states by Qω as

usual. Let λ = q0q1 . . . ∈ Qω, we denote λ[i] = qi and λ[i, j] = qi . . . qj for any i, j ∈ N such that

0 ≤ i ≤ j.

Then, we define the notion of moves as follows.

Definition 17. Given a RB-CGS S and a state q ∈ Q, a move for a coalition A ⊆ N is a tuple

σA = (σa)a∈A such that 1 ≤ σa ≤ d(q, a).

For convenience, we denote DA(q) to be the set of all moves for A at q. Furthermore,

given m ∈ D(q), we denote mA = (ma)a∈A. Then, we define the set of all possible outcomes by a

move σA ∈DA(q) at a state q as follows

out(q, σA) = {q′ ∈ Q ∣ ∃m ∈D(q) ∶mA = σA ∧ q′ = δ(q,m)}

The cost of a move σA ∈DA(q) then is defined as cost(q, σA) = Σa∈Ac(q, a, σa).

Let us come back to the example in Figure 5.1. At state q2, flyP is a move of the coalition

{1} which contains only the first agent. The cost of this move is simply the cost of the action flyP ,

i.e. (1,0). The set of possible outcomes of this move is out(q2, (flyP )) = {q3, q5}. Let us consider

another move (flyA,null) of the coalition {1,2} which consists of both agents where fltyA is the

action of the first agent and null of the second one. The cost of this action is (2,0)+ (0,0) = (2,0).

Then, the set of possible outcomes of this move is out(q2, (flyA,null)) = {q4}.

From the notion of moves, let us now define strategies.

Definition 18. Given a RB-CGS S, a strategy for a coalition A ⊆ N is a mapping FA which

associates each sequence λq ∈ Q+ to a move in DA(q).

A computation λ ∈ Qω is consistent with FA iff for all i ≥ 0 we have that

λ[i + 1] ∈ out(λ[i], FA(λ[0, i]))

We denote out(q,FA) the set of all sequences λ consistent with FA which start from q, i.e. q =

λ[0]. Given a bound b ∈ B∞, a computation λ ∈ out(q,FA) is b-consistent with FA iff, for every
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i ≥ 0, ∑i
j=0 cost(λ[i], FA(λ[0, i])) ≤ b. We denote out(q0, FA, b) the set of all such b-consistent

sequences with FA. A strategy FA is a b-strategy iff out(q,FA) = out(q,FA, b) for any q ∈ Q.

For example, let us consider some strategies of the system in Figure 5.1. Below is a

strategy F{1} for the first agent to get to Ams on time:

● F{1}(q1) = trainLd

● F{1}(q1q2) = trainP

● F{1}(q1a2q3) = trainA

● F{1}(q1a2q3q4q
∗
4) = null

Then, it is easy to see that this strategy has only a single consistent computation, we have that

out(q1, F{1}) = {q1q2q3q4q4 . . .}. Moreover, we also have that F{1} is a (0,8)-strategy.

Let us consider another strategy F ′
{1}(λ) also for the first agent to get to Ams as follows:

● F ′
{1}(q1) = trainLd

● F ′
{1}(q1q2) = flyA

● F ′
{1}(q1a2q4q

∗
4) = null

● F ′
{1}(q1a2q6q

∗
6) = null

Then, we have that out(q1, F
′
{1}) = {q1q2q3q4q4 . . . , q1q2q3q6q6 . . .} and F ′

{1} is a (2,2)-strategy.

Using the notions of moves and strategies, let us define the semantics of RB-ATL. Given

a RB-CGS S = (n,R,Q,Prop, π, d, c, δ), the truth of a RB-ATL formula is defined inductively as

follows:

● S, q ⊧ p iff p ∈ π(q)

● S, q ⊧ ¬ϕ iff S, q /⊧ ϕ

● S, q ⊧ ϕ ∨ ψ iff S, q ⊧ ϕ or S, q ⊧ ψ

● S, q ⊧ ⟪Ab⟫◯ϕ iff there exists a b-strategy FA such that for all λ ∈ out(q,FA), S,λ[1] ⊧ ϕ

iff there is a move σA ∈DA(q) such that for all q′ ∈ out(q, σA), S, q′ ⊧ ϕ

● S, q ⊧ ⟪Ab⟫◻ϕ iff there exists a b-strategy FA such that for all λ ∈ out(q,FA), S,λ[i] ⊧ ϕ

for all i ≥ 0
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● S, q ⊧ ⟪Ab⟫ϕUψ iff there exists a b-strategy FA such that for all λ ∈ out(q,FA), there is a

position i ≥ 0 such that S,λ[i] ⊧ ψ and S,λ[j] ⊧ ψ for all j ∈ {0, . . . , i − 1}

Before the end of this section, let us consider the truth of some properties we have listed

for the example in Figure 5.1. For convenience, let S be the name of the transition system depicted

in Figure 5.1. We have that S, q1 ⊧ ⟪{1}(0,∞)⟫⊺U(Ams ∧ ¬Late) since the first agent can apply

the strategy F{1}, then out(q1, F{1}) = {q1q2q3q4q4 . . .} and we have that S, q4 ⊧ Ams ∧ ¬Late.

As we know that F{1} is a (0,8)-strategy and (0,8) ≤ (0,∞), which means that F{1} is also a

(0,∞)-strategy.

5.5 Normal form RB-ATL

For the sake of simplicity when dealing with the soundness and completeness of RB-ATL, as well

as the satisfiability problem of RB-ATL, we work with normal form formulas rather than arbitrary

ones of RB-ATL. In this section, we present the syntax and semantics of the normal form RB-ATL.

5.5.1 Syntax of normal form RB-ATL

A formula of RB-ATL is said to be in normal form iff the negation symbol can only appear in front of

a propositional variable or a temporal operator. Given a finite setN of agents whereN = {1, . . . , n},

a finite set R of resources where ∣R∣ = r, the set B∞ of extended resource bounds, and a set of

propositional variables Prop, we formally define the syntax of normal form RB-ATL as follows.

ϕ ∶∶= p ∣ ¬p ∣ ϕ∨ψ ∣ ϕ∧ψ ∣ ⟪Ab⟫◯ϕ ∣ ¬⟪Ab⟫◯ϕ ∣ ⟪Ab⟫◻ϕ ∣ ¬⟪Ab⟫◻ϕ ∣ ⟪Ab⟫ϕUψ ∣ ¬⟪Ab⟫ϕUψ

where p ∈ Prop, A is a non-empty coalition and b ∈ B∞.

It is clear that any formula of RB-ATL can be equivalently converted into normal form by

applying the De Morgan’s law where ¬(ϕ ∧ ϕ) ≡ ¬ϕ ∨ ¬ϕ and ¬(ϕ ∨ ϕ) ≡ ¬ϕ ∧ ¬ϕ. For a normal

form formula ϕ, we denote ∼ϕ as the equivalent normal form formula of ¬ϕ.

Before defining the semantics of normal form RB-ATL, we need more definitions about

the counterpart of moves and strategies from RB-ATL in order to define the semantics for formulas

of the forms ¬⟪Ab⟫◯ϕ, ¬⟪Ab⟫◻ϕ and ¬⟪Ab⟫ϕUψ where the negation symbol appears in front of

a temporal operator. In the following, we define the notion of co-moves.

Definition 19. Given a RB-CGS S and a state q ∈ Q, a co-move for a coalition A ⊆ N is a mapping

σcA ∶DA(q)→ Q such that σcA(σA) ∈ out(q, σA) for any σA ∈DA(q).
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Let Dc
A(q) denote the set of all co-moves for A at a state q ∈ Q. A state q′ is consistent

with a co-move σc iff there is some move σA such that σc(σA) = q′. We define the set of consistent

outcomes for a co-move σc by

out(q, σc) = {q′ ∈ Q ∣ q′ is consistent with σc}

Given a bound b ∈ B∞, a state q′ is b-consistent with a co-move σc at q iff there is some

move σA ∈ DA(q) with cost(q, σA) ≤ b such that σc(σA) = q′. We denote the set of b-consistent

outcomes for a co-move σc by

out(q, σc, b) = {q′ ∈ Q ∣ q′ is b-consistent with σc at q}

Then, we define the notion of co-strategy as follows.

Definition 20. Given a RB-CGS S, a co-strategy for a subset of players A ⊆ N is a mapping F cA

which assigns each sequence λq ∈ Q+ to a co-move in Dc
A(q).

We say a computation λ ∈ Qω is consistent with F cA iff, for all i ≥ 0, λ[i + 1] ∈

out(λ[i], F cA(λ[0, i])). Let us define out(q,F cA) to be the set of all such consistent computations

where λ[0] = q.

Given a bound b ∈ B
∞, we say a computation λ ∈ out(q,F cA) is b-consistent with F cA

iff there is an infinite sequence of moves (σiA)i≥0 for the coalition A where σiA ∈ DA(λ[i]) and

λi+1 = F cA(λ[0, i])(σ
i
A) for all i ≥ 0, such that ∑j cost(λ[j], σ

j
A) ≤ b for all j ≥ 0. Let us denote

out(q,F cA, b) be the set of all such b-consistent computations where λ[0] = q.

5.5.2 Fixed-point characterisations of temporal operators

In this section, we study fixed-point characterisations of temporal operators in RB-ATL, which

will reveal how useful the notions of co-moves and co-strategies are for defining the semantics of

normal form RB-ATL. Furthermore, fixed-point characterisations also suggest key axioms for the

axiomatisation of RB-ATL.

Given a RB-CGS S, we define ∥ϕ∥ = {q ∈ Q ∣ S, q ⊧ ϕ}, i.e. the set of states where ϕ is

true. Let us first have the following definition.

Definition 21. The function [⟪Ab⟫◯] ∶ ℘(Q)→ ℘(Q) is defined as

[⟪Ab⟫◯](X) = {q ∣ ∃σ ∈DA(q) ∶ cost(σ) ≤ b ∧ out(q, σ) ⊆X}
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Informally, [⟪Ab⟫◯](X) where X ⊆ Q is the set of all states q where agents in the

coalitionA have a move costing at most b so that the outcome is withinX; in this situation, we shall

say that the coalition A is b-effective for X at q. Obviously, we have that:

[⟪Ab⟫◯](∥ϕ∥) = ∥⟪Ab⟫◯ϕ∥

Similarly, we also define the following function.

Definition 22. The function [¬⟪Ab⟫◯] ∶ ℘(Q)→ ℘(Q) is defined as

[¬⟪Ab⟫◯](X) = {q ∣ ∃σc ∈Dc
A(q) ∶ out(q, σ

c, b) ⊆ Q ∖X}

In contrast to [⟪Ab⟫◯], the function [¬⟪Ab⟫◯](X) defines the set of states q where A

is not b-effective for X . It is straightforward that:

[¬⟪Ab⟫◯](∥ϕ∥) = Q ∖ [⟪Ab⟫◯](∥ϕ∥) = ∥¬⟪Ab⟫◯ϕ∥

Before discussing fixed-point characterisations in more details, let us define some notions.

Given three bounds b, d, e ∈ B∞, we say that b +∞ d = e iff for every i = 1, . . . , r,

bi + di = ei if ei /= ∞

bi = di = ∞ if ei = ∞

Then, +∞ only allows performing addition over natural numbers rather than the infinity symbol ∞.

Then, given a bound e ∈ B∞, the set {(b, d) ∈ B∞×B∞ ∣ b+∞d = e}must be finite. For example, let

us consider the bound (1,2,∞), the set of (b, d) ∈ B∞ ×B
∞ where b +∞ d = (1,2,∞) contains the

following pairs: (1,2,∞) and (0,0,∞), (0,2,∞) and (1,0,∞), (1,1,∞) and (0,1,∞), (1,0,∞)

and (0,2,∞), and the last one (0,0,∞) and (1,2,∞).

Furthermore, we define a projection db of bound d ∈ B∞ with respect to a bound b in B
∞

as follows, for all i = 1, . . . , ∣r∣

(db)i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

di if bi /= ∞

∞ otherwise

For example, we have that 0̄(1,2,∞) = (0,0,∞), (3,3,1)(1,2,∞) = (3,3,∞) and (∞,3,1)(1,2,∞) =

(∞,3,∞).
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Then, we define the following macros for lengthy formulas:

⟪Ab⟫◯◻ϕ = ⋁b1+∞b2=b
b1/=0̄b

⟪Ab1⟫◯⟪Ab2⟫◻ϕ

¬⟪Ab⟫◯◻ϕ = ⋀b1+∞b2=b
b1/=0̄b

¬⟪Ab1⟫◯⟪Ab2⟫◻ϕ

⟪Ab⟫◯ϕUψ = ⋁b1+∞b2=b
b1/=0̄b

⟪Ab1⟫◯⟪Ab2⟫ϕUψ

¬⟪Ab⟫◯ϕUψ = ⋀b1+∞b2=b
b1/=0̄b

¬⟪Ab1⟫◯⟪Ab2⟫ϕUψ

We have the following result.

Lemma 11. For all q ∈ Q, the following fixed-point characterisations hold:

1. q ∈ ∥⟪Ab⟫◻ϕ∥ iff q ∈ νX.∥ϕ∥∩ (∥⟪Ab⟫◯◻ϕ∥∪ [⟪A0̄b⟫◯](X)) iff there is a b-strategy FA

for A such that for all λ ∈ out(q,FA), λ[i] ∈ ∥ϕ∥ for all i ≥ 0

2. q ∈ ∥⟪Ab⟫ϕUψ∥ iff q ∈ µX.∥ψ∥ ∪ (∥ϕ∥ ∩ (∥⟪Ab⟫◯ϕUψ∥ ∪ [⟪A0̄b⟫◯](X))) iff there is a

b-strategy FA for A such that for all λ ∈ out(q,FA), there exists i ≥ 0 such that λ[i] ∈ ∥ψ∥

and λ[j] ∈ ∥ϕ∥ for all j ≤ i

Proof. We will only provide the proof for the first case as the second can be done in a similar

way. For convenience, let us denote f(X) = ∥ϕ∥ ∩ (∥⟪Ab⟫◯◻ ϕ∥ ∪ [⟪A0̄b⟫◯](X)). We firstly

show that f(X) is monotone. Let X1 ⊆ X2 ⊆ Q. Let q ∈ f(X1), then q ∈ ∥ϕ∥ and either q ∈

∥⟪Ab⟫◯◻ϕ∥ or q ∈ [⟪A0̄b⟫◯](X1). According to definition of [⟪A0̄b⟫◯](), it is easy to see that

q ∈ [⟪A0̄b⟫◯](X2) if q ∈ [⟪A0⟫◯](X1), hence q ∈ f(X2).

Therefore, f(X) is monotone and there is the greatest fixed point νX.f(X). We now

show that Y = ∥⟪Ab⟫◻ϕ∥ is a post-fixed point of f(X), i.e. f(Y ) ⊆ Y . Let q ∈ Y , by the semantics

definition, we have that there is a b-strategy FA such that for any λ ∈ out(q,FA), λ[i] ∈ ∥ϕ∥

for all i ≥ 0. Then, q = λ[0] ∈ ∥ϕ∥. Assume that b′ = cost(q,FA(q)), let b′′ be an extended

resource bound such that b′b +
∞ b′′ = b. For every q′ ∈ out(q,FA(q)), we define a b-strategy F ′

A

which is the remainder of FA from q′ as follows, F ′
A(κ) = FA(qκ) for all κ ∈ Q+ starting at

q′. Then, for all κ ∈ out(q′, F ′
A), we have that qκ ∈ out(q,FA). It is straightforward that any

computation in out(q′, F ′
A) costs at most b′′. Then, for all i ≥ 0, we have that κ[i] ∈ ∥ϕ∥, hence

q′ ∈ ∥⟪Ab
′′
⟫◻ϕ∥. Thus, q ∈ [⟪Ab

′
⟫◯](∥⟪Ab

′′
⟫◻ϕ∥). If b′ /= 0̄, we have that q ∈ ∥⟪Ab⟫◯◻ ϕ∥,

otherwise q ∈ [⟪A0̄b⟫◯](∥⟪Ab⟫◻ϕ∥). This means that q ∈ f(∥⟪Ab⟫◻ϕ∥).

In order to show that Y = ∥⟪Ab⟫◻ϕ∥ is, in fact, the greatest fixed point of f(X), we

show that for every post-fixed point Z, Z ⊆ Y . Considering that b is the projection of a bound d ∈ B

and b, we show the inclusion by induction on d.
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The base case:

In the base case, d = 0̄, we have f(X) = ∥ϕ∥ ∩ [⟪A0̄b⟫◯](X). Assume q ∈ Z, then q ∈ ∥ϕ∥ ∩

[⟪A0⟫◯](Z) as Z is a post-fixed point of f(X). We now define a 0̄b-strategy FA which will

maintain ϕ for any consistent computation. The definition proceeds by induction on the length of

inputs for FA. Moreover, we only define FA for inputs which will be used later for the coalition

to determine which joint action to perform in order to maintain ϕ. Let Λn denote the set of such

inputs of length n. Initially, Λ1 = {q}. We will define FA and Λ
i+1 inductively on i such that the

last element of any member of Λi+1 is always in Z.

● When i = 1, we have that q ∈ ∥ϕ∥ and there is a move σA ∈ DA(q) with cost(q, σA) = 0̄b

such that out(q, σA) ⊆ Z. Let FA(q) = σA and Λ
2 = {qq′ ∣ q′ ∈ out(q,FA(q))}. For all such

states q′, we have q′ ∈ Z ⊆ f(Z).

● When i > 1, for any λ ∈ Λi, we have that λ[i−1] ∈ Z ⊆ f(Z) by the induction hypothesis. We

have that λ[i − 1] ∈ ∥ϕ∥ and there is a move σA ∈DA(λ[i − 1]) with cost(λ[i − 1], σA) = 0̄b

such that out(λ[i − 1], σA) ⊆ Z. Let FA(λ) = σA and Λ
i+1(λ) = {λq′ ∣ q′ ∈ out(λ[i −

1], FA(λ))}.

Finally, we define Λ
i+1 = ⋃λ∈Λi Λ

i+1(λ). By the definition of Λi+1(λ), it is easy to see that

for any λ′ ∈ Λi+1, λ′[i] ∈ Z ⊆ f(Z).

After defining FA, we have that for any λ ∈ out(q,FA) and i ≥ 0, λ[0, i] ∈ Λi+1, hence λ[i] ∈ Z ⊆

f(Z). Therefore, λ[i] ∈ ∥ϕ∥. This shows that q ∈ Y .

The induction step:

In the induction step, d > 0̄, we have f(X) = ∥ϕ∥ ∩ (∥⟪Adb⟫◯◻ ϕ∥ ∪ [⟪A0̄b⟫◯](Z)). Assume

q ∈ Z, then q ∈ ∥ϕ∥ and either q ∈ ∥⟪Adb⟫◯◻ϕ∥ or q ∈ [⟪A0̄b⟫◯](Z). Similar to the base case, we

also define a db-strategy FA which will maintain ϕ for any consistent computation. The definition

will proceed by induction on the length of inputs for FA. Moreover, we only define FA for inputs

which will be used later for the coalition to determine which joint action to perform in order to

maintain ϕ. Let Λn denote the set of such inputs of length n. Initially, Λ1 = {q}. We will define

FA and Λ
i+1 inductively on i such that the last element of any member of Λi+1 is always either in

∥⟪Ab2⟫◻ϕ∥ if the accumulated cost along that member is no more than b1 for some b1 +∞ b2 = db

or in Z if the same cost is less than 0̄b.
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● When i = 1, we have that q ∈ ∥ϕ∥ and either q ∈ ∥⟪Adb⟫◯◻ϕ∥ or q ∈ [⟪A0̄b⟫◯](Z).

If q ∈ ∥⟪Adb⟫◯◻ϕ∥, there is b1 +∞ b2 = db such that q ∈ [⟪Ab1⟫◯](∥⟪Ab2⟫◻ϕ∥). Then,

there is a move σA ∈ DA(q) with cost(q, σA) ≤ b1 such that out(q, σA) ⊆ ∥⟪Ab2⟫◻ϕ∥.

By the induction hypothesis, for any q′ ∈ out(q, σA), there is another b2-strategy F ′
A from

q′ to maintain ϕ, we define FA(qq
′λ) = F ′

A(q
′λ) for all λ ∈ Q∗. Let FA(q) = σA and

Λ
2 = {qq′ ∣ q′ ∈ out(q, σA)}. It is obvious that all such states q′ ∈ ∥⟪Ab2⟫◻ϕ∥ and the cost

along qq′ is at most b1.

If q ∈ [⟪A0̄b⟫◯](Z), there is a move σA ∈DA(q)with cost(q, σA) ≤ 0̄b such that out(q, σA) ⊆

Z. Let FA(q) = σA and Λ
2 = {qq′ ∣ q′ ∈ out(q, σA)}. It is obvious that all such q′ ∈ Z and

the cost along qq′ is less than 0̄b.

● When i > 1, for any λ ∈ Λi, we have that either λ[i − 1] ∈ ∥⟪Ab2⟫◻ϕ∥ if

∑
j<i−1

cost(λ[j], FA(λ[0, j])) ≤ b1

for some b1 +∞ b2 = db or λ[i − 1] ∈ Z ⊆ f(Z) if

∑
j<i−1

cost(λ[j], FA(λ[0, j])) = 0̄b

by the induction hypothesis.

– If λ[i−1] ∈ ∥⟪Ab2⟫◻ϕ∥, then FA has been defined. Let Λi+1(λ) = {λq′ ∣ q′ ∈ out(λ[i−

1], FA(λ[0, i− 1]))}. Assume that b′ = cost(λ[i− 1], FA(λ[0, i− 1])) and let b′′ ∈ B∞

such that b′d + b
′′ = b2. By the induction hypothesis, as b2 < b, we have that all such

q′ ∈ ∥⟪Ab
′′
⟫◻ϕ∥ and ∑j<i cost(λ[j], FA(λ[0, j])) ≤ b1 + b

′
d.

– If λ[i − 1] ∈ Z ⊆ f(Z), then λ[i − 1] ∈ ∥ϕ∥ and either λ[i − 1] ∈ ∥⟪Adb⟫◯◻ϕ∥ or

λ[i − 1] ∈ [⟪A0̄b⟫◯](Z).

∗ If λ[i − 1] ∈ ∥⟪Adb⟫◯◻ϕ∥, there exists b1 +∞ b2 = db such that

λ[i − 1] ∈ [⟪Ab1⟫◯](∥⟪Ab2⟫◻ϕ∥)

Then, there is a move σA ∈ DA(λ[i − 1]) with cost(λ[i − 1], σA) ≤ b1 such

that out(λ[i − 1], σA) ⊆ ∥⟪Ab2⟫◻ϕ∥. By the induction hypothesis, for any q′ ∈

out(λ[i], σA), there is another b2-strategy from q to maintain ϕ, we define

FA(λq
′κ) = F ′

A(q
′κ)
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for all κ ∈ Q∗. Let FA(λ) = σA and Λ
i+1(λ) = {λq′ ∣ q′ ∈ out(λ[i−1], σA)}. Then,

for all such states q′ we have q′ ∈ ∥⟪Ab2⟫◯◻ϕ∥ and∑j<i cost(λ[j], FA(λ[0, j])) ≤

b1.

∗ If λ[i − 1] ∈ [⟪A0̄b⟫◯](Z)), there is a move σA ∈ DA(λ[i − 1]) with cost(λ[i −

1], σA) ≤ 0̄b such that out(λ[i − 1], σA) ⊆ Z. Let FA(λ) = σA and Λ
i+1(λ) =

{λq′ ∣ q′ ∈ out(λ[i − 1], σA)}. Then, for all such q′, we have that q′ ∈ Z and

∑j<i cost(λ[j], FA(λ[0, j])) ≤ 0̄b.

Then, Λi+1 = ⋃λ∈Λi Λ
i+1(λ).

After defining FA, we have that for any λ ∈ out(q,FA) and i ≥ 0, λ[0, i] ∈ Λ
i+1, hence

λ[i] ∈ Z ⊆ f(Z). Therefore, λ[i] ∈ ∥ϕ∥. This shows that q ∈ Y .

Therefore, Y is the greatest post-fixed point of f(X), hence also the greatest fixed point

of f(X).

Similarly, we also have the following result.

Lemma 12. For all q ∈ Q, the following fixed-point characterisations hold:

1. q ∈ ∥¬⟪Ab⟫◻ϕ∥ iff q ∈ µX.∥ ∼ϕ∥ ∪ (∥¬⟪Ab⟫◯◻ ϕ∥ ∩ [¬⟪A0̄b⟫◯](Q ∖X)) iff there is a

co-strategy F cA such that for all λ ∈ out(q,FA, b), λ[i] ∈ ∥¬ϕ∥ for some i ≥ 0

2. q ∈ ∥¬⟪Ab⟫ϕUψ∥ iff q ∈ νX.∥ ∼ψ∥ ∩ (∥ ∼ϕ∥ ∪ (∥¬⟪Ab⟫◯ϕUψ∥ ∩ [¬⟪A0̄b⟫◯](Q ∖X)))

iff there is a co-strategy FA such that for all λ ∈ out(q,FA, b), if there is i ≥ 0 such that

λ[i] ∈ ∥ψ∥, then there exists j < i such that λ[j] ∈ ∥¬ϕ∥

Proof. Similar to the previous lemma, we only show the first case, others can be also done in a

similar way.

We have that

∥¬⟪Ab⟫◻ϕ∥ = Q ∖ ∥⟪Ab⟫◻ϕ∥

= Q ∖ νX.∥ϕ∥ ∩ (∥⟪Ab⟫◯◻ϕ∥ ∪ [⟪A0̄b⟫◯](X))

= µX.∥ ∼ϕ∥ ∪ (∥¬⟪Ab⟫◯◻ϕ∥ ∩ [¬⟪A0̄b⟫◯](Q ∖X))

Let f(X) = ∥ ∼ϕ∥ ∪ (∥¬⟪Ab⟫◯◻ ϕ∥ ∩ [¬⟪A0̄b⟫◯](Q ∖X)). Let Z ⊆ Q be the set of

states q where there is a co-strategy F cA such that for every λ ∈ out(q,F cA, b), λ[i] ∈ ∥ ∼ϕ∥ for some

i ≥ 0. Let us now show that Z is a pre-fixed point of f(X), i.e. f(Z) ⊆ Z.
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Assume q ∈ f(Z). If q ∈ ∥ ∼ϕ∥, then for any co-strategy F cA, every computation λ ∈

out(q,F cA) from q has that λ[0] ∈ ∥ ∼ϕ∥. If q ∈ ∥¬⟪Ab⟫◯◻ϕ∥ ∩ [¬⟪A0⟫◯](Q ∖Z), we continue

the proof by induction on components of a bound b which are not ∞. In order to do so, the proof

proceeds by induction on the projection db of a bound b ∈ B and an arbitrary bound d ∈ B∞.

The base case:

Let d = 0̄, then q ∈ [¬⟪A0̄b⟫◯](Q ∖ Z). This means there is a co-move σc ∈ Dc
A(q) such that

outc(q, σc, 0̄b) ⊆ Q ∖ (Q ∖Z) = Z. Then, for each q′ ∈ outc(q, σc, 0̄b), we have a co-strategy F cA,q′

such that for each computation λ ∈ outc(q′, F cA,q′ , 0̄b), λ[i] ∈ ∥ ∼ϕ∥ for some i ≥ 0. We just need to

define a strategy F cA(q) = σ
c and F cA(qq

′κ) = F c(q′κ) for all such states q′ and κ ∈ Q∗. It is easy

to see that for any λ ∈ outc(q′, F cA′ , 0̄b), λ[i] ∈ ∥ ∼ϕ∥ for some i ≥ 1.

The induction step:

Let d > 0̄, then we have both q ∈ ∥¬⟪Adb⟫◯◻ϕ∥ and q[¬⟪A0̄b⟫◯](Q ∖Z)).

● Since q ∈ ∥¬⟪Ab⟫◯◻ ϕ∥, then for every pair of extended resource bounds b1 and b2 such

that b1 +∞ b2 = b, we have q ∈ [¬⟪Ab1⟫◯](∥⟪Ab2⟫◻ϕ∥)). This means there is a co-move

σcb1 ∈D
c
A(q) such that outc(q, σcb1 , b1) ⊆ ∥¬⟪A

b2⟫◻ϕ∥. Let us pick a co-move σc ∈Dc
A(q) as

follows, for each σ ∈ DA(q) such that cost(q, σ) = b1 ≤ b, σc(σ) = σcb1(σ). Then, we define

F cA(q) = σ
c. For each q′ ∈ outc(q, σc, b) where q′ = σc(σ) for some cost(q, σ) = b1 ≤ b, by

the induction hypothesis, there is a co-strategy F cA,q′ such that for all λ ∈ out(q′, F cA,q′ , b2),

λ[i] ∈ ∥ ∼ϕ∥ for some i ≥ 0. Let F cA(qq
′κ) = F cA,q′(q

′κ) for all such q′ and κ ∈ Q∗. Then, it

is easy to see that for every λ ∈ out(q,F cA, b), λ[i] ∈ ∥ ∼ϕ∥ for some i ≥ 1.

● Since q ∈ [¬⟪A0̄b⟫◯](Q ∖Z)), the proof can proceed similarly to the base case.

In order to prove that Z is in fact the least fixed point of f(X), we show that Z is included

in all pre-fixed points of f(X). Assume that Y is a pre-fixed point of f(X), i.e. Y ⊇ f(Y ), we

now prove for every q ∉ Y that q ∉ Z.

Let us consider b as the projection of a bound d ∈ B and b ∈ B∞. Then, the proof is done

by induction on d. In the following, the base case is included in the second case of the argument.

As q ∉ Y , hence q ∉ f(Y ), then q ∉ ∥ ∼ϕ∥ and q ∉ ∥¬⟪Adb⟫◯◻ ϕ∥ ∩ [¬⟪A0̄b⟫◯](Q ∖ Y ). Then,

either q ∉ [¬⟪Ab1⟫◯](∥⟪Ab2⟫◻ϕ∥) for some b1 +∞ b2 = db or q ∉ [¬⟪A0̄b⟫◯](Q ∖ Y ). Let us

consider an arbitrary co-strategy F cA. Assume that F cA(q) = σ
c for some σc ∈Dc

A(q).
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● If q ∉ [¬⟪Ab1⟫◯](∥⟪Ab2⟫◻ϕ∥) for some b1 +∞ b2 = db, we have that for any co-move

σc ∈Dc
A(q)

outc(q, σc, b1) /⊆ ∥¬⟪Ab2⟫◻ϕ∥

Therefore, there exists a state q1 ∈ outc(q, σc, b1) such that q1 ∈ ∥⟪Ab2⟫◻ϕ∥. Then, by the

previous lemma, there is a b2-strategy FA such that for every computation λ ∈ out(q1, FA),

λ[i] ∉ ∥ ∼ϕ∥ for all i ≥ 0. Consider a computation λ ∈ Qω defined such that λ[0] = q1 and

λ[i + 1] = F cA(λ[0, i])(FA(λ[0, i])) for all i ≥ 0. It is straightforward that λ ∈ out(q1, FA)

and outc(q1, F
c
A, b2). This implies λ[i] ∉ ∥ ∼ϕ∥ for all i ≥ 0. Hence, we have a computation

λ′ = qλ ∈ outc(q, σc, db) where λ′[i] ∉ ∥ ∼ϕ∥ for all i ≥ 0.

● If q ∉ [¬⟪A0̄b⟫◯](Q ∖ Y ), by a similar argument, we have a state q1 ∈ outc(q, σc, 0̄b)

such that q1 ∉ Y . Hence, q1 ∉ ∥ ∼ϕ∥. By proceeding in the same manner, we can find a

successor q2 ∉ ∥ ∼ϕ∥ of q1. In this way, we construct a computation λ = qq1q2 . . . which is in

outc(q,F cA, db) and satisfies λ[i] ∉ ∥ ∼ϕ∥ for all i ≥ 0.

In summary, we have shown that for any co-strategy F cA, there exists a computation λ ∈

outc(q,F cA, db) such that λ[i] ∉ ∥ ∼ϕ∥ for all i ≥ 0. Thus, q ∉ Z as well.

5.5.3 Semantics of normal form RB-ATL

Provided the fixed-point characterisations of temporal operators in RB-ATL which have been shown

in the previous section, we present the semantics for normal form RB-ATL which is also equivalent

to that of RB-ATL.

Given a RB-CGS S = (n,R,Q,Prop, π, d, c, δ), the truth of a normal form RB-ATL

formula is defined inductively as follows:

● S, q ⊧ p iff p ∈ π(q)

● S, q ⊧ ¬p iff p ∉ π(q)

● S, q ⊧ ϕ ∨ ψ iff S, q ⊧ ϕ or S, q ⊧ ψ

● S, q ⊧ ϕ ∧ ψ iff S, q ⊧ ϕ and S, q ⊧ ψ

● S, q ⊧ ⟪Ab⟫◯ϕ iff there exists a b-strategy FA such that for all λ ∈ out(q,FA), S,λ[1] ⊧ ϕ

iff there is a move σA ∈DA(q) such that for all q′ ∈ out(σA), S, q′ ⊧ ϕ
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● S, q ⊧ ¬⟪Ab⟫◯ϕ iff there exists a co-strategyF cA such that for all λ ∈ out(q,FA, b), S,λ[1] ⊧∼

ϕ iff there is a co-move σc ∈ Dc
A(q) such that for all σA ∈ DA(q) and cost(σA) ≤ b,

S,σc(σA) ⊧∼ϕ

● S, q ⊧ ⟪Ab⟫◻ϕ iff there exists a b-strategy FA for any λ ∈ out(q,FA), S,λ[i] ⊧ ϕ for all

i ≥ 0

● S, q ⊧ ¬⟪Ab⟫◻ϕ iff there exists a co-strategy F cA for any λ ∈ out(q,F cA, b), S,λ[i] ⊧ ϕ for

all i ≥ 0

● S, q ⊧ ⟪Ab⟫ϕUψ iff there exists a b-strategy FA such that for all λ ∈ out(q,FA), there is a

position i ≥ 0 such that S,λ[i] ⊧ ψ and S,λ[j] ⊧ ψ for all j ∈ {0, . . . , i − 1}

● S, q ⊧ ¬⟪Ab⟫ϕUψ iff there exists a co-strategy F cA such that for all λ ∈ out(q,FA, b), either

S,λ[i] ⊧ ψ for all i ≥ 0 or if there is a position i ≥ 0 such that S,λ[i] ⊧ ψ then there exists

0 ≤ j < i such that S,λ[j] ⊧∼ϕ

5.6 Axiomatisation of RB-ATL

In this section, we present an axiomatisation system for RB-ATL. Then, we prove that the logic

generated by the axiomatisation system for RB-ATL is sound and complete.

5.6.1 Axiomatisation of RB-ATL

The axiomatisation system for RB-ATL consists of the following axioms and inference rules. Let A

be a non-empty coalition (A ⊆ N ), and b, d, b1, b2 extended resource bounds, i.e. in B
∞.

Axioms

(PL) Tautologies of Propositional Logic

(�) ¬⟪Ab⟫◯�

(⊺) ⟪Ab⟫◯⊺

(B) ⟪Ab⟫◯ϕ→ ⟪Ad⟫◯ϕ

where b ≤ d
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(S) ⟪Ab1
1
⟫◯ϕ ∧ ⟪Ab2

2
⟫◯ψ → ⟪(A1 ∪A2)b1+b2⟫◯(ϕ ∧ ψ)

where both A1 ⊆ N and A2 ⊆ N are non-empty and A1 ∩A2 = ∅

(S∅) ⟪∅b⟫◯ϕ ∧ ⟪∅b⟫◯ψ → ⟪∅b⟫◯(ϕ ∧ ψ)

(SN ) ⟪N b⟫◯ϕ ∧ ⟪∅b⟫◯ψ → ⟪N b⟫◯(ϕ ∧ ψ)

(FP◻) ⟪Ab⟫◻ϕ↔ ϕ ∧ (⟪Ab⟫◯◻ϕ ∨ ⟪A0̄b⟫◯(⟪Ab⟫◻ϕ))

(FPU ) ⟪Ab⟫ϕUψ↔ ψ ∨ (ϕ ∧ (⟪Ab⟫◯ϕUψ ∨ ⟪A0̄b⟫◯(⟪Ab⟫ϕUψ)))

(N◯) ⟪∅b⟫◯ϕ↔ ¬⟪N b⟫◯(¬ϕ)

(N◻) ⟪∅b⟫◻ϕ↔ ϕ ∧ ¬⟪N b⟫⊺U¬ϕ

(NU ) ⟪∅b⟫ϕUψ↔ ¬(⟪N b⟫¬ψU¬(ϕ ∨ ψ) ∨ ⟪N b⟫◻¬ψ)

Inference rules

(MP)
ϕ,ϕ→ ψ

ψ

(⟪Ab⟫◯-Monotonicity)
ϕ→ ψ

⟪Ab⟫◯ϕ→ ⟪Ab⟫◯ψ

(⟪∅b⟫◻-Necessitation)
ϕ

⟪∅b⟫◻ϕ

(⟪Ab⟫◻-Induction)
θ → (ϕ ∧ (⟪Ab⟫◯◻ϕ ∨ ⟪A0̄b⟫◯θ))

θ → ⟪Ab⟫◻ϕ

(⟪Ab⟫U-Induction)
(ψ ∨ (ϕ ∧ (⟪Ab⟫◯ϕUψ) ∨ ⟪A0̄b⟫◯θ)))→ θ

⟪Ab⟫ϕUψ → θ

As usual, we define that a formula ϕ is a theorem of RB-ATL iff it is derivable from the

above axiomatisation system, denoted as ⊢RB-ATL ϕ. Then, a formula ϕ is consistent if its negation

¬ϕ is not a theorem, i.e. /⊢RB-ATL ϕ.

In the rest of this section, we prove the soundness and completeness of the above axioma-

tisation system. As usual the soundness is omitted as it is straightforward. In the following, we

present the proof of completeness. We show that by constructing a RB-CGS for each consistent

formula ϕ0 such that ϕ0 is satisfied in the RB-CGS. Each RB-CGS structure is in the form of tree

models. We formally define them in the following. The approach of the proof is based on the idea

from [Goranko & van Drimmelen, 2006], but extends it for resource bounds.
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5.6.2 Labelled tree models

Given a finite alphabet Θ, we denote the sets of finite words and infinite words of Θ by Θ
∗ and Θ

ω,

respectively.

Definition 23. A tree T is a subset of N∗ where for any x ⋅ c ∈ T , where x ∈ N∗ and c ∈ N:

● x ∈ T

● x ⋅ c′ ∈ T for all 0 ≤ c′ ≤ c

Given a tree T , ǫ is the root of T . Nodes of T are elements of T . We define succ ∶ T → 2
T

as a function to return the successors of a node x ∈ T . Formally, succ(x) = {x ⋅ c ∈ T ∣ c ∈ N}. The

degree d(x) of a node x is defined as the cardinality of succ(x), i.e. d(x) = ∣succ(x)∣. A node x is

a leaf iff d(x) = 0. A node x is an interior node iff d(x) > 0.

Definition 24. Given a set Θ, a Θ-labelled tree is a pair (T,V ) where T is a tree and V ∶ T → Θ

is a mapping which labels each node of T with an element of Θ.

Given a finite set of agents N = {1, . . . , n}, for the purpose of constructing models for

consistent formulas of RB-ATL, we are interested in a special form of Θ-labelled trees (T,V )where

Θ is the set 2Prop of subsets of propositions and the degree of every node of T is fixed by some given

number k ∈ N, i.e. deg(x) = kn for all x ∈ T . Then, a 2
Prop-labelled tree (T,V ) with a fixed degree

kn can be considered as the skeleton of a model for RB-ATL formulas. We call a tree with a fixed

degree kn as a kn-tree. Informally, each node of T is considered as a state. From each state x ∈ T ,

there are kn transitions to its successors, namely from x ⋅0 to x ⋅kn−1. We can name each transition

from x to x ⋅ c by a tuple (a1, . . . , an) where

1. 1 ≤ ai ≤ k

2. encode((a1, . . . , an)) = c

Where encode ∶ {1, . . . , k}n → {0, . . . , kn − 1} is a bijective function which is defined as

encode((x1, . . . , xn)) = (x1 − 1)kn−1 + (x2 − 1)kn−2 + . . . + (xn − 1)

For convenience, we call the inverse function of encode as decode. Then, each transition from x

to x ⋅ c can be considered as the effect of the joint action of n agents in N where agent i performs

the action ai for all i ∈ {1, . . . , n} and (a1, . . . , an) = decode(c). Moreover, to become a model
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for RB-ATL formulas, we need to supply for each 2
Prop-labelled kn-tree (T,V ) a costing function

which defines the cost of each action of an agent at a node on the tree. We have the following

definition.

Definition 25. A 2
Prop-labelled kn-costed-tree is a tuple (T,V,C) where (T,V ) is a 2

Prop-labelled

kn-tree and C ∶ T ×N × {1, . . . , k}→ B is a costing function.

Given a 2
Prop-labelled kn-costed-tree (T,V,C), we define the corresponding RB-CGS

S(T,V,C) = (n,T,Prop, V, d,C, δ)

where d(x, i) = k for all x ∈ T and i ∈ N and δ(x, (a1, . . . , an)) = x ⋅ encode((a1, . . . , an)). It is

straightforward that S(T,V,C) is well-defined. We shall write (T,V,C), x ⊧ ϕ for S(T,V,C), x ⊧ ϕ
and (T,V,C) ⊧ ϕ for (T,V,C), ǫ ⊧ ϕ. Furthermore, we also have that in S(T,V,C), the available

joint actions for any coalition A at any state are the same, i.e. DA(x) = DA(x′) for any x,x′ ∈ T ,

hence we shall write ∆A for DA(x). For convenience, the cost of a joint action σ ∈ ∆A at a state

t ∈ T is defined as C(t, σ) = ∑i∈A σi. Similarly, we also have that out(x,σ) = out(x′, σ) for all

σ ∈∆A and x,x′ ∈ T (i.e. the outcomes of the same action are the same at any state), we shall write

out(σ) instead of out(x,σ) for simplicity.

Notice that when constructing the tree model for a consistent formula, we build kn-costed-

trees which are labelled by subsets of formulas rather than only a subset of propositional variables.

However, we can consider them as models for RB-ATL formulas by restricting the labeling function

V over the set of propositions, i.e. V (t) ∩ Prop. Finally, we define a simple tree as a tree which

consists of only a root and its children.

5.6.3 Completeness of RB-ATL

In this section, we present the proof for the completeness of the logic RB-ATL.

Firstly, we define the closure cl(ϕ0) of a given consistent formula ϕ0 which provides the

ingredients for labelling nodes of the tree model during the construction.

Definition 26. The closure cl(ϕ0) is the smallest set of formulas that satisfies the following condi-

tions:

● All sub-formulas of ϕ0 including itself are in cl(ϕ0)

● If ⟪Ab⟫◻ϕ is in cl(ϕ0), then so are ⟪Ab1⟫◯⟪Ab2⟫◻ϕ for all b1 +
∞ b2 = b and also

⟪A0b⟫◯⟪Ab⟫◻ϕ
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● If ⟪Ab⟫ϕUψ is in cl(ϕ0), then so are ⟪Ab1⟫◯⟪Ab2⟫ϕUψ for all b1 +∞ b2 = b and also

⟪A0b⟫◯⟪Ab⟫ϕUψ

● If ϕ is in cl(ϕ0), then so is ∼ϕ

● cl(ϕ0) is also closed under finite positive boolean operators (∨ and ∧) up to tautology equiv-

alence.

Obviously, cl(ϕ0) is finite as its cardinality is bounded by 2
2
mr×∣ϕ∣

wherem is the maximal

bound of any resource appearing in ϕ0 and r is the number of resources. We denote cl(ϕ0)◯ to be

the set of all formulas of form ⟪Ab⟫◯ϕ or ¬⟪Ab⟫◯ϕ in cl(ϕ0).

Then, the following three lemmas describe each step of the construction of the tree model.

We only provide the proof of the last lemma.

Lemma 13. Let Φ = {⟪Ab1
1
⟫◯ϕ1, . . . ,⟪A

bk
k
⟫◯ϕk,¬⟪Ab⟫◯ϕ} be a consistent set of formulas

where:

● All Ai are both non-empty and pair-wise disjoint

● ⋃iAi ⊆ A

● ∑i bi ≤ b

We have Ψ = {ϕ1, . . . , ϕk,∼ϕ} is also consistent.

Proof. Let A′ = ⋃iAi, b′ = ∑i bi and ϕ′ = ⋀iϕi.

By axiom (S), we have ⊢ ⋀i⟪A
bi
i ⟫◯ϕi → ⟪A′b

′

⟫◯ϕ′. As A′ ⊆ A and b′ ≤ b, we have

that

⊢⋀
i

⟪Abii ⟫◯ϕi → ⟪Ab⟫◯ϕ′ (5.1)

Now, let us assume that Ψ is inconsistent, that is ⊢ ϕ′ → ϕ. Then, applying ⟪Ab⟫◯-

monotonicity, we have that ⊢ ⟪Ab⟫◯ϕ′ → ⟪Ab⟫◯(ϕ).

By (5.1), we have that

⊢⋀
i

⟪Abii ⟫◯ϕi → ⟪Ab⟫◯ϕ

Hence Φ ∪ {⟪Ab⟫◯ψ} is consistent, which is a contradiction

Similarly, we can prove the following lemma.
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Lemma 14. Let Φ = {⟪Ab1
1
⟫◯ϕ1, . . . ,⟪A

bk
k
⟫◯ϕk,⟪∅e1⟫◯χ1, . . . ,⟪∅em⟫◯χm} be a consistent

set of formulas where:

● All Ai are both non-empty and pair-wise disjoint

● ∑i bi ≤ ej for all j

We have Ψ = {ϕ1, . . . , ϕk, χ1, . . . , χm} is also consistent.

We now use the above lemma to construct a simple tree which is locally consistent for a

consistent set of formulas.

Definition 27. A tree (T,V,C) is locally consistent if and only if for any interior node t ∈ T :

1. If ⟪Ab⟫◯ϕ in V (t), then there is a move σA such thatC(t, σA) ≤ b and for any c ∈ out(t, σA)

we have ϕ ∈ V (c)

2. If ¬⟪Ab⟫◯ϕ in V (t), then for any move σA with C(t, σA) ≤ b, there exists c ∈ out(t, σA)

where ∼ϕ ∈ V (c)

Lemma 15. Let Φ be a finite consistent set of formulas, Φ◯ the subset of Φ which contains all

formulas of the forms ⟪Ab⟫◯ϕ or their negations from Φ and k some number where ∣Φ◯∣ < k,

there is a simple kn-costed-tree (T,V,C) which is locally consistent such that V (ǫ) = Φ.

Proof. Firstly, we have ¬⟪N b⟫◯ϕ and ¬⟪∅b⟫◯ϕ are equivalent to ⟪∅b⟫◯ ∼ϕ and ⟪N b⟫◯ ∼ϕ,

respectively. Therefore, we only consider the case when Φ◯ does not contain formulas of the form

¬⟪N b⟫◯ϕ and ¬⟪∅b⟫◯ϕ.

Assume that

Φ◯ = {⟪Ab1
1
⟫◯ϕ1, . . . ,⟪Abmm ⟫◯ϕm}∪

{¬⟪Bd1
1
⟫◯ψ1, . . . ,¬⟪B

dl
l
⟫◯ψl}∪

{⟪∅e1⟫◯χ1, . . . ,⟪∅eh⟫◯χh}

where all Ai’s are non-empty, all Bi’s are both non-empty and not equal to the grand coalition

N . We define a bound max ∈ B where each component of max is the maximal bound other than

the infinity infinity symbol of the corresponding resource appearing in Φ◯. In the case that there

is no maximal bound, then the component of max is set to 0. For example, assume that ∣r∣ = 2

and Φ◯ = {¬⟪{1,2}(2,2)⟫◯p,⟪{1}(3,∞)⟫◯p}, then max = (3,2); in another case, if Φ◯ =

{⟪{1}(3,∞)⟫◯p} then max = (3,0).
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Then, we define a function deinf ∶ B∞ → B which removes infinity from a bound as

follows: deinf(b) = b′ where for all i = 1, . . . , ∣r∣

b′i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

bi if bi /= ∞

maxi +1 otherwise

Let e be a bound of resources such that e > deinf(ei) for all i ∈ {1, . . . , h}.

We construct a tree with a root labelled by Φ and kn children, each is denoted by c =

encode(a1, . . . , an) where ai ∈ {1, . . . , k}. Intuitively, we allow each agent i to perform k different

actions and the special action k for each agent will be considered as the costless idle-action. We

shall denote c(i) = ai for the action performed by agent i with the corresponding outcome c. In the

following, we define the labelling function V (c) for each node c and the cost function C(ǫ, i, a) for

each agent i and action a ∈ {1, . . . , k}.

For each ⟪Abpp ⟫◯ϕp ∈ Φ◯ where Ap /= ∅, ϕp is added to V (c) whenever c(i) = p for

all i ∈ Ap. Let minAp be the smallest number in Ap, we assign the cost of action p performed by

minAp to be bp, i.e. C(ǫ,minAp , p) = deinf(bp). For actions of other agents i in Ap, we assign

C(ǫ, i, p) = 0̄.

After considering all ⟪Abpp ⟫◯ϕp ∈ Φ◯, for all other unassigned-cost actions, i.e. actions

a > m but a < k for all agents, we simply set their costs to be e. The action k performed by all

agents is defined to associate with the cost 0̄. We denote C(c) = ∑i∈N C(ǫ, i, c(i)). Then, for each

⟪∅epp ⟫◯χp ∈ Φ◯, χp is added to V (c) whenever C(c) ≤ ep.

Finally, we will add at most one formula from the negation formulas of Φ◯ to V (c). We

denote C(c,A) = ∑i∈AC(ǫ, i, c(i)). For each c, let Φ−
◯(c) = {¬⟪B

d⟫◯ψ ∈ Φ◯ ∣ C(c,B) ≤ d} =

{¬⟪B
di1
i1
⟫◯ψi1 , . . . ,¬⟪B

dlc
ilc
⟫◯ψlc} where i1 < i2 < . . . < ilc . Let I = {i ∣ m < c(i) ≤ m + lc} and

j = ∑i∈I(c(i) − 1 −m) mod lc + 1. Consider ¬⟪B
dij
ij
⟫◯ψij : if N ∖Bij ⊆ I , then ∼ψij is added

into V (c).

We now need to show that our simple tree is locally consistent. In the first step, we show

that all labels are consistent. It is obvious that V (ǫ) = Φ is consistent.

Let us firstly consider every child c of the root where ∼ψq ∈ V (c) from some negation

formula in Φ◯. This will imply that there will be no χ ∈ V (c) from the formulas of the form

⟪∅b⟫◯χ in Φ◯. The reason is that because some ∼ψq ∈ V (c), there must be some agent performing

an action a ∈ {m + 1, . . . ,m + lc} as otherwise I = ∅ and the condition N ∖ Bij ⊆ I fails since

Bij /= N . We know that the cost of this action is e, then C(c) ≥ e, therefore, no χ will be added into

V (c).
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When there is no ϕ ∈ V (c) from the formulas of the form ⟪Ab⟫◯ϕ in Φ◯, the proof is

trivial as there is only one ∼ψq ∈ V (c). If there are some ϕp ∈ V (c) where ⟪Abpp ⟫◯ϕp ∈ Φ◯, then

for each p, c(i) = p < m for all i ∈ Ap. Hence, all Ap are pair-wise disjoint. Moreover, we have

that N ∖Bq ⊆ I where I = {i ∈ N ∣ m < c(i) ≤ m + lc}. Then, Bq ⊇ N ∖ I ⊇ {i ∈ N ∣ c(i) ≤ m},

which implies that ⋃ϕp∈V (c)Ap ⊆ Bq. This simply shows that the set of ⟪Abpp ⟫◯ϕp ∈ Φ◯ where

ϕp ∈ V (c) and ∼⟪Bbq
q ⟫◯ψq satisfies the conditions of Lemma 13. Therefore, V (c) is consistent.

Now, we consider every child c of the root where there is no ∼ψ ∈ V (c) from some

negation formula in Φ◯.

When there is no ϕ ∈ V (c) from the formulas of the form ⟪Ab⟫◯ϕ in Φ◯, the proof is

trivial as there are only some χq ∈ V (c). If there are some ϕp ∈ V (c) where ⟪Abpp ⟫◯ϕp ∈ Φ◯ and

Ap /= ∅, then for each p, c(i) = p < m for all i ∈ Ap. Hence, all Ap are pair-wise disjoint. For any

χq ∈ V (c) by some ⟪∅eq⟫◯χq ∈ Φ◯, we have that eq ≥ C(c) ≥ ∑p bp. This simply shows that the

set of ⟪Abpp ⟫◯ϕp ∈ Φ◯ where ϕp ∈ V (c) and ⟪∅eqq ⟫◯χq satisfies the conditions of Lemma 14.

Therefore, V (c) is consistent.

Let us now check the conditions of local consistency on the newly built tree.

For ⟪Abpp ⟫◯ϕp ∈ Φ◯, it is straightforward that the move σAp where all agents in Ap

performs action p ≤m which cost no more than bp and for any c ∈ out(σAp), ϕp ∈ V (c).

For ¬⟪Bdp
p ⟫◯ψp ∈ Φ◯ and σ being an arbitrary move of agents in Bp of which cost is

at most equal to dp, we will point out an output c ∈ out(ǫ, σ) where ∼ψ ∈ V (c) and the actions of

agents out of Bp are within m+1 and m+ l, which always cost e amount of resources. Even though

we do not know the exact actions of agents out of Bp, the costs of those unspecified actions are

known to be e. Hence, we can determine the set Φ−
◯(c) = {¬⟪B

di1
i1
⟫◯ψi1 , . . . ,¬⟪B

dilc
ilc

⟫◯ψilc}

as well as lc. It is obvious that ¬⟪Bdp
p ⟫◯ψp ∈ Φ

−
◯(c), then p = ir for some 1 ≤ r ≤ lc. Let σi

be the action performed by agent i in Bp, we define c(i) = σi for all i ∈ Bp. Let I ′ = {i ∈ Bq ∣

m < c(i) ≤ m + lc} and j′ = ∑i∈I′(c(i) − 1 −m)) mod lc. We select an arbitrary i′ ∉ Bp and set

c(i′) =m+(r−1−j′) mod lc+1. For all other i ∉ Bp, let c(i) =m+1. Then, we have I = {i ∣m <

c(i) ≤m+ lc} = (N ∖Bp)∪I ′. Therefore, ∑i∈I(c(i)−1−m) mod lc+1 = ∑i∈I′∪{i′}(c(i)−1−m)

mod lc + 1 = (j′ + c(i′) − 1 −m) mod lc + 1 = (r − 1) mod lc + 1 = r, and N ∖Bp ⊆ I because

I = (N ∖Bp) ∪ I ′. By choosing such outcome c, according to the construction of the simple tree

model, we must have that ∼ψp ∈ V (c).

Let us consider an example of building such a locally consistent tree. Consider a system
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of 2 agents, i.e. N = {1,2}, 1 resource, i.e. ∣r∣ = 1, and the following set Φ◯ of RB-ATL formulas.

Φ◯ = {⟪11⟫◯p,⟪2∞⟫◯(p→ q),¬⟪12⟫◯q,¬⟪22⟫◯p,⟪∅2⟫◯(¬q)}

It is easy to see that max = 2 and we can pick e = 3. We now construct a simple tree which is locally

consistent and the root is labelled by Φ◯. As ∣Φ◯∣ = 5, let us consider the number of actions for

each agent k = 6. Then, the set of outcomes is O = {(i, j) ∣ 1 ≤ i, j ≤ 6}.

Consider the formula ⟪11⟫◯p ∈ Φ◯, we add to the label of every V ((1, j)) the formula

p, for any 1 ≤ j ≤ 6. The cost of action 1 of agent 1 is 1.

Consider the formula ⟪2∞⟫◯(p → q) ∈ Φ◯, we add to the label of every V ((i,2)) the

formula p→ q, for any 1 ≤ i ≤ 6. The cost of action 2 of agent 2 is max+1 = 3.

As we mean the action 6 for both agents to be the idle action, we simply assign the cost

0 for 6 of both agents. Then we assign the cost e = 3 for all cost-unassigned actions of both agents.

After this step, we add ¬q to every outcome (i, j) of which the total cost of i and j is no more than

2.

We have the assignment of labels V ((i, j)) for every 1 ≤ i, j ≤ 6 so far as in Figure 5.2

where each column (row) corresponds to an action of agent 1 (2) together with its cost.

AC 1
1

2
3

3
3

4
3

5
3

6
0

1
3 {p} {} {} {} {} {}
2
3 {p, p→ q} {p→ q} {p→ q} {p→ q} {p→ q} {p→ q}
3
3 {p} {} {} {} {} {}
4
3 {p} {} {} {} {} {}
5
3 {p} {} {} {} {} {}
6
0 {p,¬q} {} {} {} {} {¬q}

FIGURE 5.2: The assignment of labels V ((i, j)) for every 1 ≤ i, j ≤ 6.

Let us consider the negation formulas in Φ◯. We take each outcome into account to

decide whether one of the sub-formulas of the negation formulas in Φ◯ is included in the label of

the outcome.

We consider the outcome c = (11,13), then Φ◯(c) = {¬⟪12⟫◯q}. Then lc = 1, I = {i ∣

2 < c(i) ≤ 2 + 1} = ∅. Therefore, as N ∖ {1} /⊆ I , ¬q is not included in V (c).

We consider the outcome c = (11,33), then Φ◯(c) = {¬⟪12⟫◯q}. Then lc = 1, I = {i ∣

2 < c(i) ≤ 2 + 1} = {2}. Therefore, as N ∖ {1} ⊆ I , ¬q is included in V (c).
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We consider the outcome c = (33,60), then Φ◯(c) = {¬⟪22⟫◯p}. Then lc = 1, I = {i ∣

2 < c(i) ≤ 2 + 1} = {1}. Therefore, as N ∖ {2} ⊆ I , ¬p is included in V (c).

We can apply similar argument, and obtain the final assignment of labels as shown in

Figure 5.3.

AC 1
1

2
3

3
3

4
3

5
3

6
0

1
3 {p} {} {} {} {} {}
2
3 {p, p→ q} {p→ q} {p→ q} {p→ q} {p→ q} {p→ q}
3
3 {p,¬q} {} {} {} {} {¬q}
4
3 {p} {} {} {} {} {}
5
3 {p} {} {} {} {} {}
6
0 {p,¬q} {} {¬p} {} {} {¬q}

FIGURE 5.3: The final assignment of labels V ((i, j)) for every 1 ≤ i, j ≤ 6.

In the following, Γ is the finite set of all maximal consistent sets of formulas from cl(ϕ0).

As cl(ϕ0) is finite, Γ is also finite. We extend the construction for satisfying eventuality formulas

which are in forms of ⟪Ab⟫ϕUψ and ⟪Ab⟫◻ϕ by the following lemma. We also omit the proof.

Firstly, we say that a formula ⟪Ab⟫ϕUψ (¬⟪Ab⟫◻ϕ) is realised from a node t of a Γ-

labelled tree (T,V,C) if there exists a strategy (co-strategy) FA such that for all λ ∈ out(t, FA, b)

(λ ∈ out(t, F cA, b)), there is some i such that ψ ∈ V (λ[i]) and ϕ ∈ V (λ[j]) for all j ∈ {0, i − 1}

(∼ϕ ∈ V (λ[i])).

Definition 28. A formula ⟪Ab⟫ϕUψ is realised from a node t of a Γ-labelled tree (T,V,C) if there

exists a strategy FA such that for all λ ∈ out(t, FA), there is some i such that cost(λ[0, i], FA) ≤ b,

ψ ∈ V (λ[i]) and ϕ ∈ V (λ[j]) for all j ∈ {0, i − 1}.

Lemma 16. For any subset Y ⊆ Γ, there is a formula χY ∈ cl(ϕ0), called the characterised formula

of Y , such that for every y ∈ Γ, χY ∈ y iff y ∈ Y .

Proof. The proof is a repetition of that of a similar lemma in [Goranko & van Drimmelen, 2006].

For any y ∈ Y , we define χ{y} = ∧y = ⋀{ϕ ∣ ϕ ∈ y}.

Note that χ{y} ∈ cl(ϕ0) as cl(ϕ0) is closed under finite conjunctions. Then, χ{y} is the

characterised formula of {y}. For any other y′ ∈ Y , as both y and y′ are maximal consistent set

of formulas from cl(ϕ0), there is a formula θ ∈ cl(ϕ0) such that θ ∈ y but ¬θ ∈ y′. Then, θ is a

conjunction of χ{y} and then χ{y} ∧ ¬θ is inconsistent. Hence, χ{y} ∉ y′ as y′ is consistent.
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For any Y ∈ Γ, we define χY = ⋁{χ{y} ∣ y ∈ Y }. Then, for any y ∈ Y , we have

⊢ χ{y} → χY , that is χY ∈ y. Conversely, for any y′ ∉ Y , χ{y} ∉ y′ for any y ∈ Y , hence

χY ∉ y′.

Lemma 17. For each formula ⟪Ab⟫ϕUψ and x ∈ Γ, there is finite Γ-labelled kn-costed-tree

(T,V,C) where:

● k = ∣Ψ◯∣ + 1

● (T,V,C) is locally consistent

● V (ǫ) = x

● If ⟪Ab⟫ϕUψ ∈ x then (T,V,C) realises ⟪Ab⟫ϕUψ from ǫ

Proof. Most of the proof is based on that of the similar lemma in [Goranko & van Drimmelen,

2006].

For the sake of readability, we refer to finite Γ-labelled kn-costed-trees by finite trees.

Consider a specific formula ⟪Ab⟫ϕUψ. Let Z ⊆ Γ be a set of maximal consistent sets of

formulas where for every x ∈ Z, there is a finite tree obeying the conditions of the lemma. Hence,

we prove the lemma by showing that Z = Γ. If x ∈ Γ does not contain ⟪Ab⟫ϕUψ, we just need to

construct a tree (T,V,C) which has only a single root with label V (ǫ) = x. Obviously, x ∈ Z.

Let us now consider the more interesting case, where ⟪Ab⟫ϕUψ ∈ x. As we want to show

that x ∈ Z, it suffixes to prove that ⟪Ab⟫ϕUψ → χZ is a theorem. This is because ⟪Ab⟫ϕUψ ∈ x,

hence χZ ∈ x, i.e. x ∈ Z by Lemma 16. However, to show ⟪Ab⟫ϕUψ → χZ is a theorem, we only

need to show

(ψ ∨ (ϕ ∧ (⟪Ab⟫◯ϕUψ ∨ (⟪A0̄b⟫◯χZ))))→ χZ (5.2)

is also a theorem. If it is the case, then by ⟪Ab⟫U-induction, we have that ⟪Ab⟫ϕUψ → χZ is a

theorem as well.

We prove (5.2) being an theorem by showing that it belongs to every maximal consistent

set q (not only formulas from cl(ϕ0)). Note that χZ ∈ q iff q ∩ cl(ϕ0) ∈ Z.

Let us consider the first two easy cases, when either ⟪Ab⟫ϕUψ ∉ q or (ψ∨(ϕ∧(⟪Ab⟫◯ϕUψ∨

(⟪A0⟫◯χZ)))) ∉ q.

If ⟪Ab⟫ϕUψ ∉ q, it is straightforward for us to construct a tree containing only a single

root. Hence, q∩cl(ϕ0) ∈ Z. Then, χZ ∈ q and we must have (5.2) ∈ q. If (ψ∨(ϕ∧(⟪Ab⟫◯ϕUψ∨

(⟪A0⟫◯χZ)))) ∉ q, it is even easier for us as we directly have (5.2) ∈ q.
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In the last case, consider that b is the projection of a bound d ∈ B with b, the proof

proceeds by induction on the bound d ∈ B. Let us consider the base case where d = 0̄. Assume that

both ⟪A0̄b⟫ϕUψ and (ψ∨(ϕ∧⟪A0̄b⟫◯χZ)) ∈ q. We show (5.2) ∈ q by proving that q∩cl(ϕ0) ∈ Z.

As (ψ ∨ (ϕ ∧ ⟪A0̄b⟫◯χZ)) ∈ q, there are two cases to consider:

(a) ψ ∈ q, then we just need to construct a tree (T,V,C) with only a single root and V (ǫ) =

q ∩ cl(ϕ0). It is straightforward that ⟪A0̄b⟫ϕUψ is realised at ǫ as ψ ∈ V (ǫ).

(b) ϕ ∧ ⟪A0̄b⟫◯χZ ∈ q, we construct a tree with a root with the label q ∩ cl(ϕ0) and kn children

defined as follows.

Let Φ′ be the set containing all formulas of the form ⟪Ab⟫◯φ or ¬⟪Ab⟫◯φ from q ∩ cl(ϕ0)

and also the formula ⟪A0̄b⟫◯χZ . Then, ∣Φ′∣ ≤ k + 1, by Lemma 15, we have a locally

consistent tree (T ′, V ′, C ′) of branching degree kn with V ′(ǫ) = Φ
′.

For each child c < kn, we assign V (c) be an arbitrary set from Γ such that V (c) ⊇ V ′(c).

This preserves the local consistency at ǫ according to Lemma 15.

For every child c < kn such that χZ ∈ V (c), we have that V (c) ∈ Z. This means there is a

locally consistent tree (Tc, Vc, Cc) satisfying conditions of the lemma. Then, we replace c by

(Tc, Vc, Cc). The result tree (T,V,C) is also locally consistent and of branching degree kn.

We now show that (T,V,C) realises ⟪A0̄b⟫ϕUψ at ǫ. Let σ be the move generated because

of ⟪A0̄b⟫◯χZ ∈ V ′(ǫ) according to Lemma 15. Then, for every c ∈ out(σ), we have that

χZ ∈ V (c), hence V (c) ∈ Z. This is also means that there is a strategy FA,c which realises

⟪A0⟫ϕUψ from c. Let us consider a strategy FA such that FA(ǫ) = σ and FA(cλ) = FA,c(λ).

It is straightforward that FA realises ⟪A0⟫ϕUψ from the root ǫ.

In the induction step, where b > 0̄, the proof proceeds in the similar manner. Assume that

both ⟪A0̄b⟫ϕUψ and (ψ ∨ (ϕ ∧ (⟪Adb⟫◯ϕUψ ∨ (⟪A0̄b⟫◯χZ)))) ∈ q. Similar to the base case,

there are also three cases to consider:

(a) ψ ∈ q, the proof is the repetition of that for the base case.

(b) ϕ and ⟪A0̄b⟫◯χZ ∈ q, the proof is the repetition of that for the base case.

(c) ϕ and ⟪Ab1⟫◯⟪Ab2⟫ϕUψ ∈ q for some b1 +∞ b2 = db where b2 < db, we construct a tree with

a root with the label is q ∩ cl(ϕ0) and kn children defined as follows.
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Let Φ′ be the set containing all formulas of the form ⟪Ab⟫◯φ or ¬⟪Ab⟫◯φ from q∩cl(ϕ0).

Notice that one of them is ⟪Ab1⟫◯⟪Ab2⟫ϕUψ. It is obvious that ∣Φ′∣ < k + 1, by Lemma 15,

we have a locally consistent tree (T ′, V ′, C ′) of branching degree kn with V ′(ǫ) = Φ
′.

For each child c < kn, we assign V (c) be an arbitrary set from Γ such that V (c) ⊇ V ′(c).

This preserves the local consistency at ǫ according to Lemma 15.

For every child c < kn such that ⟪Ab2⟫ϕUψ ∈ V (c), as b2 < db, by the induction hypothesis,

there is a locally consistent tree (Tc, Vc, Cc) realising ⟪Ab2⟫ϕUψ that its root. Then, we

replace c by (Tc, Vc, Cc). The result tree (T,V,C) is also locally consistent and of branching

degree kn.

We now show that (T,V,C) realises ⟪Adb⟫ϕUψ at ǫ. Let σ be the move generated because

of ⟪Ab1⟫◯⟪Ab2⟫ϕUψ ∈ V ′(ǫ) according to Lemma 15, hence cost(σ) ≤ b1. Then, for

every c ∈ out(σ), we have that ⟪Ab2⟫ϕUψ ∈ V (c). By the induction hypothesis, ⟪Ab2⟫ϕUψ

is realised at c. This is also means that there is a strategy FA,c which realises ⟪Ab2⟫ϕUψ

from c which spends at most b2 amount of resources. Let us consider a strategy FA such that

FA(ǫ) = σ and FA(cλ) = FA,c(λ). It is straightforward that FA realises ⟪A0⟫ϕUψ from the

root ǫ which costs at most b1 + b2 = db.

In the following, we extend the notions of realisation to other types of formulas.

Definition 29. A formula ¬⟪Ab⟫◻ϕ is realised from a node t of a tree (T,V,C) over Γ if there

exists a co-strategy F cA such that for all λ ∈ out(t, F cA, b), there is some i such that ¬ϕ ∈ V (λ[i]).

Definition 30. A formula ⟪Ab⟫◻ϕ is realised from a node t of a tree (T,V,C) over Γ if there exists

a b-strategy FA such that for all λ ∈ out(t, FA), ϕ ∈ V (λ[i]) for all i.

Definition 31. A formula ¬⟪Ab⟫ϕUψ is realised from a node t of a tree (T,V,C) over Γ if there

exists a co-strategy F cA such that for all λ ∈ out(t, F cA, b), if there is some i such that ψ ∈ V (λ[i]),

then there is some j < i such that ¬ϕ ∈ V (λ[j]).

Lemma 18. For each formula ¬⟪Ab⟫◻ϕ and x ∈ Γ, there is finite tree (T,V,C) over Γ such that:

● (T,V,C) is of fixed branching degree kn where k = ∣Ψ◯∣ + 1

● (T,V,C) is locally consistent
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● V (ǫ) = x

● If ¬⟪Ab⟫◻ϕ ∈ x then (T,V,C) realises ¬⟪Ab⟫◻ϕ from ǫ

Proof. The proof is also done in a similar manner to that of the previous lemma.

Consider a specific formula ¬⟪Ab⟫◻ϕ. Let Z ⊆ Γ be a set of maximal consistent sets of

formulas where for every x ∈ Z, there is a finite tree obeying the conditions of the lemma. Hence,

we prove the lemma by showing that Z = Γ. If x ∈ Γ does not contain ¬⟪Ab⟫◻ϕ, we just need to

construct a tree (T,V,C) which has only a single root with label V (ǫ) = x. Obviously, x ∈ Z.

Let us now consider the more interesting case, where ¬⟪Ab⟫◻ϕ ∈ x. As we want to show

that x ∈ Z, it suffices to prove that ¬⟪Ab⟫◻ϕ→ χZ is a theorem. This is because if ¬⟪Ab⟫◻ϕ ∈ x,

then χZ ∈ x, i.e. x ∈ Z. However, to show ¬⟪Ab⟫◻ϕ→ χZ is a theorem, we only need to show

(¬ϕ ∨ (¬⟪Ab⟫◯◻ϕ ∧ ¬⟪A0̄b⟫◯¬χZ))→ χZ (5.3)

is also a theorem. If it is the case, then by ⟪Ab⟫◻-induction, we have that ¬⟪Ab⟫◻ϕ → χZ is a

theorem as well.

By considering b as the projection of a resource bound d ∈ B and b, we prove (5.3) being a

theorem by showing inductively on d that (5.3) belongs to every maximal consistent set q (not only

formulas from cl(ϕ0)). Note that χZ ∈ q iff q ∩ cl(ϕ0) ∈ Z.

The base case:

Assume that d = 0̄, let us consider the first two easy cases, when either ¬⟪A0̄b⟫◻ϕ ∉ q or ¬ϕ ∨

(¬⟪A0̄b⟫◯¬χZ) ∉ q. In the first case, we just need to consider a trivial tree containing only a root.

In the later case, it is straightforward that (5.3) ∈ q

Let us now assume that both ¬⟪A0̄b⟫◻ϕ and ¬ϕ ∨ (¬⟪A0̄b⟫◯¬χZ) ∈ q.

● If ¬ϕ ∈ q, we construct a tree containing only a root ǫ with the label V (ǫ) = q ∩ cl(ϕ0). As

¬ϕ ∈ q, it is straightforward that ¬⟪A0̄b⟫◻ϕ is realised at the root ǫ.

● If ¬⟪A0̄b⟫◯¬χZ ∈ q, let us construct a tree (T,V,C) as follows. Let Ψ′ be the set of all for-

mulas of form ⟪Ab⟫◯ϕ or ¬⟪Ab⟫◯ϕ from q ∪ cl(ϕ0) and also the formula ¬⟪A0̄b⟫◯¬χZ .

We have that ∣Ψ′∣ ≤ k + 1 where k = ∣Ψ◯∣ + 1. By Lemma 15, there is a locally con-

sistent simple tree (T ′, V ′, C ′) of branching degree kn such that V ′(ǫ) = Ψ
′. Moreover,

because ¬⟪A0̄b⟫◯¬χZ ∈ Ψ′, for every σ ∈ ∆A where C(ǫ, σ) ≤ 0̄b, there is at least a child

cσ ∈ out(ǫ, σ) such that ¬¬χZ = χZ ∈ V (cσ). Now, let us define kn children for the root of



5. RESOURCE-BOUNDED ALTERNATING-TIME TEMPORAL LOGIC 135

(T,V,C) of which each successor c < kn is labelled such that V (c) is some set in Γ which

contains V ′(c). This still maintains the local consistency of (T,V,C). For every child c, if

χZ ∈ V (c), then V (c) ∈ Z. Hence, there is a tree (Tc, Vc, Cc) satisfying the conditions of the

lemma. Replace the child c in (T,V,C) with the tree (Tc, Vc, Cc).

We also need to show that ¬⟪A0̄b⟫◻ϕ is realised from the root of (T,V,C). We define a

co-strategy F cA for A with, initially, F cA(ǫ) = σ
c where the co-move σc is defined so that for

every σ ∈ ∆A such that c(c, σ) ≤ 0̄b, σ
c(σ) = cσ. Notice that according to the construction

in Lemma 15, we have that χZ ∈ V (cσ). Then, for every c ∈ outc(ǫ, σc, 0̄b), we have that

χZ ∈ V (c). As (Tc, Vc, Cc) satisfies the conditions of the lemma, there is a co-strategy F ′c
A

in (Tc, Vc, Cc) realising ¬⟪A0̄b⟫◻ϕ at c. We define F cA(cλ) = F
′c
A(λ) for all λ ∈ Q∗. It

follows from this construction of F cA that ¬⟪A0⟫◻ϕ is realised in (T,V,C) from the root ǫ.

The induction step

Assume that d > 0̄, let us consider the first two easy cases, we repeat the argument as for the base

case, when either ¬⟪Ab⟫◻ϕ ∉ q or ¬ϕ∨(¬⟪Adb⟫◯◻ϕ∧¬⟪Adb⟫◯¬χZ) ∉ q. In the first case, we

just need to consider a trivial tree containing only a root. In the later case, it is straightforward that

(5.3) ∈ q

Let us now assume that both ¬⟪Adb⟫◻ϕ and ¬ϕ∨(¬⟪Adb⟫◯◻ϕ∧¬⟪A0̄b⟫◯¬χZ) ∈ q.

● If ¬ϕ ∈ q, we construct a tree containing only a root ǫ with the label V (ǫ) = q ∩ cl(ϕ0). As

¬ϕ ∈ q, it is straightforward that ¬⟪Adb⟫◻ϕ is realised at the root ǫ.

● If (¬⟪Adb⟫◯◻ ϕ ∧ ¬⟪A0̄b⟫◯¬χZ) ∈ q, let us construct a tree (T,V,C) as follows. Let Ψ′

be the set of all formulas of form ⟪Ab⟫◯ϕ or ¬⟪Ab⟫◯ϕ from q ∪ cl(ϕ0) and notice that

it also contains the formula ⟪A0̄b⟫◯χZ . We have that ∣Ψ′∣ ≤ k + 1 where k = ∣Ψ◯∣ + 1.

By Lemma 15, there is a locally consistent simple tree (T ′, V ′, C ′) of branching degree kn

such that V ′(ǫ) = Ψ
′. Moreover, because ¬⟪A0̄b⟫◯¬χZ ∈ Ψ

′, for every σ ∈ ∆A where

C(ǫ, σ) ≤ 0̄b, there is at least a child cσ ∈ out(ǫ, σ) such that ¬¬χZ = χZ ∈ V (cσ). Similarly,

¬⟪Ab1⟫◯⟪Ab2⟫◻ϕ ∈ Ψ′ where b1+∞ b2 = db and b2 < db, for every σ ∈∆A where C(ǫ, σ) ≤

b̄1, there is at least a child cσ ∈ out(ǫ, σ) such that ¬⟪Ab2⟫◻ϕ ∈ V (cσ). Now, let us define kn

children for the root of (T,V,C) of which each successor c < kn is labelled such that V (c) is

some set in Γ which contains V ′(c). This still maintains the local consistency of (T,V,C).

– For every child c, if χZ ∈ V (c), then V (c) ∈ Z. Hence, there is a tree (Tc, Vc, Cc)
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satisfying the conditions of the lemma. Replace the child c in (T,V,C) with the tree

(Tc, Vc, Cc).

– For every child c, if ¬⟪Ab2⟫◻ϕ ∈ V (c) for some b2 < db. By the induction hypothesis,

there is there is a tree (Tc, Vc, Cc) satisfying the conditions of the lemma. Replace the

child c in (T,V,C) with the tree (Tc, Vc, Cc).

We also need to show that ¬⟪Ab⟫◻ϕ is realised from the root of (T,V,C). We define a

co-strategy F cA for A with, initially, F cA(ǫ) = σ
c where the co-move σc is defined so that for

every move σ where c(ǫ, σ) ≤ db:

– If c(ǫ, σ) ≤ 0̄b, we assign σc(σ) = cσ where, according to the construction in Lemma 15,

we have that χZ ∈ V (cσ),

– If c(ǫ, σ) ≤ b̄1 for some b1 +∞ b2 = db with b2 < db, we assign σc(σ) = cσ where,

according to the construction in Lemma 15, we have that ¬⟪Ab2⟫◻ϕ ∈ V (σ).

Then, for every c ∈ outc(ǫ, σc, db), we have that either χZ or ¬⟪Ab2⟫◻ϕ ∈ V (c) for some b2 <

db. Therefore, as (Tc, Vc, Cc) satisfies the conditions of the lemma, there is a co-strategy F ′c
A

in (Tc, Vc, Cc) realising ¬⟪Adb⟫◻ϕ or ¬⟪Ab2⟫◻ϕ at c, respectively for each case. We define

F cA(cλ) = F
′c
A(λ) for all λ ∈ Q∗. It follows from this construction of F cA that ¬⟪Ab⟫◻ϕ is

realised in (T,V,C) from the root ǫ.

The above lemmas give us the ingredients to finally construct the model for the considered

consistent formula ϕ0. In more detail, for each consistent set x in Γ and an eventual formula ϕ of

cl(ϕ0), we have a finite tree (Tx,ϕ, Vx,ϕ, Cx,ϕ) which realises ϕ with the root having label x. Let

the eventual formulas in cl(ϕ0) be listed as ϕe0, . . . , ϕ
e
m. In the following, we have the definition of

the final tree.

Definition 32. The final tree (Tϕ0
, Vϕ0

, Cϕ0
) is constructed inductively as follows.

● Initially, select an arbitrary x ∈ Γ such that ϕ0 ∈ x. As the formula ϕ0 is consistent, such a

set exists. Let (Tx,ϕe
0
, Vx,ϕe

0
, Cx,ϕe

0
) be the initial tree.

● Given the tree constructed so far and the last used eventual formula ϕei . Then, for ev-

ery leaf labelled by y ∈ Γ of the currently constructed tree, we replace it with the tree

(Ty,ϕe
j
, Vy,ϕe

j
, Cy,ϕe

j
) where j = i + 1 if i <m or j = 0 if otherwise.
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Before proving the truth lemma for the final model, we show the following lemmas which

confirm the realisation of eventual formulas.

Lemma 19. If ⟪Ab⟫ϕUψ or ¬⟪Ab⟫◻ϕ is in the label of some node t of (Tϕ0
, Vϕ0

, Cϕ0
), it is

realised from t.

Proof. Let us consider the first case whenϕei = ⟪A
b⟫ϕUψ ∈ V (t)where t is a node of (Tϕ0

, Vϕ0
, Cϕ0

).

● If t happens to be the root of the sub-tree (Tt,ϕe
i
, Vt,ϕe

i
, Ct,ϕe

i
), then the proof is done as ϕei is

realised within this sub-tree at t, hence also in the final tree.

● If it is not that case, we consider b as the projection of a bound d ∈ B and b and define

inductively on d a db-strategy as follows.

Base case

Assume that d = 0, since ⟪A0̄b⟫ϕUψ ∈ V (t), as V (t) is a maximally consistent set, we have

that ψ ∨ (ϕ ∧ ⟪A0̄b⟫◯⟪A0̄b⟫ϕUψ) ∈ V (t).

– If ψ ∈ V (t), the proof is done as ⟪A0̄b⟫ϕUψ is immediately realised at t.

– Otherwise, we have ϕ∧⟪A0̄b⟫◯⟪A0̄b⟫ϕUψ ∈ V (t). Then ϕ ∈ V (t) and by Lemma 15,

there is a move σ ∈ ∆A which costs no more than 0̄b such that, for all c ∈ out(t, σ),

we have ⟪A0̄b⟫ϕUψ ∈ V (tc). Let FA(t) = σ. Then, we can continue with the same

argument to define the strategy FA until a node t′ in (Tϕ0
, Vϕ0

, Cϕ0
) is reached. Such a

node must exist because of the construction of the (Tϕ0
, Vϕ0

, Cϕ0
), we add the sub-tree

such that eventual formulas in cl(ϕ0) are used in a circle order.

Induction Step

Assume that d > 0, since ⟪Adb⟫ϕUψ ∈ V (t), and V (t) is a maximally consistent set, we

have that ψ ∨ (ϕ ∧ (⟪Adb⟫◯ϕUψ ∨ ⟪A0̄b⟫◯⟪Adb⟫ϕUψ)) ∈ V (t).

– If ψ ∈ V (t), the proof is done as ⟪Adb⟫ϕUψ is immediately realised at t.

– If ϕ and ⟪Ab1⟫◯⟪Ab2⟫ϕUψ ∈ V (t) for some b1 +∞ b2 = db with b2 < db, we have that

ϕ ∈ V (t) and by Lemma 15 and there is a move σ ∈ ∆A which costs no more than b1

such that, for all c ∈ out(t, σ), we have ⟪Ab2⟫ϕUψ ∈ V (tc). Let FA(t) = σ. As b2 < db,
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by the induction hypothesis, there is a strategy FA,c which realises ⟪Ab2⟫ϕUψ from tc.

Hence, we just need to define FA(tcλ) = FA,c(cλ). This simply gives us a b-strategy

which realises ⟪Ab⟫ϕUψ from t.

– Otherwise, we have ϕ and ⟪A0̄b⟫◯⟪Adb⟫ϕUψ ∈ V (t). Let us repeat the argument in

the base case where ϕ ∈ V (t) and by Lemma 15 and we have that there is a move σ ∈∆A

which costs no more than 0̄b such that, for all c ∈ out(t, σ), we have ⟪Ab⟫ϕUψ ∈ V (tc).

Let FA(t) = σ. Then, we can continue with the same argument to define the strategy

FA until a node t′ in (Tϕ0
, Vϕ0

, Cϕ0
) is reached. Such a node must exist because of the

construction of the (Tϕ0
, Vϕ0

, Cϕ0
), we add the sub-tree such that eventual formulas in

cl(ϕ0) are used in a circle order.

The proof for the case of ϕei = ¬⟪A
b⟫◻ϕ is also done similarly as that of the previous

case. However, we construct a co-strategy F cA instead. If t happens to be the root of the sub-tree

(Tt,ϕe
i
, Vt,ϕe

i
, Ct,ϕe

i
), then the co-strategy is the one which realised ϕei within (Tt,ϕe

i
, Vt,ϕe

i
, Ct,ϕe

i
) at

t. Otherwise, we proceed the construction along the tree by choosing co-moves, which confirms the

condition of local consistency of ¬ϕ ∨ (¬⟪Ab⟫◯◻ ϕ ∧ ¬⟪A0⟫◯⟪Ab⟫◻ϕ) as done in Lemma 15

until we reach the root of a sub-tree which belongs to the eventual formula ¬⟪Ab⟫◻ϕ.

Lemma 20. If ¬⟪Ab⟫ϕUψ or ⟪Ab⟫◻ϕ is in the label of some node t of (Tϕ0
, Vϕ0

, Cϕ0
), it is

realised from t.

Proof. Let us firstly consider the case when ⟪Ab⟫◻ϕ ∈ V (t). By considering b as the projection

of a bound d ∈ B and b, the proof below is done by induction on d where we construct a db-strategy

FA also by induction on the length of the input.

The base case:

Assume that d = 0̄. As ⟪A0̄b⟫◻ϕ ∈ V (t) and V (t) is a maximally consistent set, we have that ϕ

and ⟪A0̄b⟫◯⟪A0̄b⟫◻ϕ ∈ V (t). By Lemma 15, there is a move σ ∈ ∆A which costs no more than

0̄b such that for all c ∈ out(t, σ), ⟪A0̄b⟫◻ϕ ∈ V (tc). We define FA(t) = σ.

Assume that we already construct FA for all inputs λ ∈ Q∗ of length i ≥ 1. We now

need to define FA for all inputs λc where c ∈ out(λ[i − 1], FA(λ)). The resource we spend so

far no more than 0̄b. As ⟪A0̄b⟫◻ϕ ∈ V (λc), repeating the above argument, we have that ϕ and
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⟪A0̄b⟫◯⟪A0̄b⟫◻ϕ ∈ V (λc). By Lemma 15, there is a move σ ∈ ∆A which costs no more than 0̄b

such that for all c′ ∈ out(c, σ), ⟪A0̄b⟫◻ϕ ∈ V (λcc′). We define FA(λc) = σ.

This construction also shows inductively on the length of input that for any λ ∈ out(t, FA),

ϕ ∈ V (λ[0, i]) for all i ≥ 0.

The induction step:

Assume that d > 0̄. As ⟪Adb⟫◻ϕ ∈ V (t) and V (t) is a maximally consistent set, ϕ and either

⟪Ab1⟫◯⟪A2⟫◻ϕ for some b1 +∞ b2 = db with b2 < db or ⟪A0̄b⟫◯⟪Adb⟫◻ϕ ∈ V (t).

● If ⟪Ab1⟫◯⟪Ab2⟫◻ϕ ∈ V (t), by Lemma 15, there is a move σ ∈ ∆A of cost no more than

b1 such that for all c ∈ out(t, σ), ⟪Ab2⟫◻ϕ ∈ V (t). We define FA(t) = σ. Moreover, as

b2 < b, by the induction hypothesis, we have a b2-strategy FA,c which realises ⟪Ab2⟫◻ϕ at

tc. Then, we simply define FA(tcλ) = FA,c(cλ) for all λ ∈ Q∗. It is straightforward that for

any λ ∈ out(t, FA), ϕ ∈ V (λ[0, i]) for all i ≥ 0.

● If ⟪A0̄b⟫◯⟪Adb⟫◻ϕ ∈ V (t), by Lemma 15, there is a move σ ∈ ∆A which costs no more

than 0̄b such that for all c ∈ out(t, σ), ⟪Adb⟫◻ϕ ∈ V (tc). We define FA(t) = σ.

Assume that we already constructed FA for all inputs λ ∈ Q∗ of length i ≥ 1. We now need

to define FA for all inputs λc where c ∈ out(λ[i − 1], FA(λ)). The resource we spend so far

no more than 0̄b. As ⟪Ab⟫◻ϕ ∈ V (λc), repeating the above argument, we have that ϕ and

either ⟪Ab1⟫◯⟪Ab2⟫◻ϕ for some b1 +∞ b2 = db or ⟪A0̄b⟫◯⟪Adb⟫◻ϕ ∈ V (λc).

– If ⟪Ab1⟫◯⟪Ab2⟫◻ϕ ∈ V (λc). By Lemma 15, there is a move σ ∈ ∆A of cost no more

than b1 such that for all c′ ∈ out(λc, σ), ⟪Ab2⟫◻ϕ ∈ V (λcc′). We define FA(λc) = σ.

Moreover, as b2 < b, by the induction hypothesis, we have a b2-strategy FA,c which

realises ⟪Ab2⟫◻ϕ at λcc′. Then, we simply define FA(λcc
′κ) = FA,c(c

′κ) for all

λ ∈ Q∗. Then, it is straightforward that for any λ ∈ out(t, FA), ϕ ∈ V (λ[0, i]) for all

i ≥ 0.

– If ⟪A0̄b⟫◯⟪Adb⟫◻ϕ ∈ V (λc). By Lemma 15, there is a move σ ∈ ∆A which costs

no more than 0̄b such that for all c′ ∈ out(λc, σ), ⟪Adb⟫◻ϕ ∈ V (λcc′). We define

FA(λc) = σ. This construction also shows inductively on the length of input that for

any λ ∈ out(t, FA), ϕ ∈ V (λ[0, i]) for all i ≥ 0.

The proof for the case of ¬⟪Ab⟫ϕUψ is done in the similar way as that of the previous

case. However, we construct a co-strategy F cA instead. As ¬⟪Ab⟫ϕUψ ∈ V (t), we also have that
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¬ψ, ¬⟪A0⟫◯⟪Ab⟫ϕUψ and ¬⟪Ab1⟫◯⟪Ab2⟫ϕUψ ∈ V (t) for all b1+∞ b2 = b. Then, the construc-

tion ofF cA is done from the co-moves implied by ¬ψ, ¬⟪A0⟫◯⟪Ab⟫ϕUψ and ¬⟪Ab1⟫◯⟪Ab2⟫ϕUψ ∈

V (t) for all b1 +∞ b2 = b. Moreover, the construction may end for a given computation if we reach

a node t′ where ∼ϕ ∈ V (t′).

Let Sϕ0
be the model which is based on (Tϕ0

, Vϕ0
, Cϕ0

).

Finally, we show the following truth lemma.

Lemma 21. For every node t of (Tϕ0
, Vϕ0

, Cϕ0
) and every formula ϕ ∈ cl(ϕ0), if ϕ ∈ Vϕ0

(t) then

Sϕ0
, t ⊧ ϕ.

Proof. The proof is done by induction on the structure of ϕ.

● For the cases of propositions, negations and disjunctions, the proofs are trivial.

● Assume ϕ = ⟪Ab⟫◯ψ, Lemma 15 makes sure that there is a move σ ∈ ∆A of cost at most b

such that for all c ∈ out(t, σ), we have ψ ∈ V (tc). Then by the induction hypothesis, we have

that Sϕ0
, tc ⊧ ψ. Then, Sϕ0

, t ⊧ ⟪Ab⟫◯ψ

● Assume ϕ = ¬⟪Ab⟫◯ψ, Lemma 15 makes sure that there is a co-move σ ∈ ∆A such that

for all c ∈ out(t, σ, b), we have ∼ψ ∈ V (tc). Then by the induction hypothesis, we have that

Sϕ0
, tc ⊧∼ψ. Then, Sϕ0

, t ⊧ ¬⟪Ab⟫◯ψ

● For the cases of ⟪Ab⟫ϕUψ, ¬⟪Ab⟫◻ϕ, ¬⟪Ab⟫ϕUψ and ⟪Ab⟫◻ϕ, the proofs are trivial with

the help of the two previous lemmas.

Finally, we have the following proposition.

Proposition 1. The axiomatisation system for RB-ATL is sound and complete.

We have the following corollary which is useful for the satisfiability problem of RB-ATL.

Corollary 1. Every satisfiable RB-ATL formula is satisfied by a fixed-branching degree tree model

where the cost of any action in the model is limited by some resource bound which only depends on

the formula.
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Proof. It follows from the soundness of RB-ATL that every satisfiable RB-ATL formula ϕ is a

consistent formula. Therefore, according to the completeness of RB-ATL, there is a tree model

satisfying ϕ. This tree model has a fixed-branching degree which is kn where k = ∣cl(ϕ)◯∣ + 1. Let

b0 be defined as follow, the i-th component of b0 is define to be the maximal i-th component of all

bounds appearing in ϕ for all 1 ≤ i ≤ r plus one. According to the assignment of costs for actions

presented in Lemma 15, it is possible to assign e = b0. Thus, it is straightforward that no action has

cost more than b0.

5.7 Satisfiability of RB-ATL

Similar to the satisfiability problem of ATL, we also apply the automaton-based approach as pre-

sented in [Goranko & van Drimmelen, 2006] to determine the satisfiability of a RB-ATL formula

ϕ0. The proof of the correctness of the decision procedure introduced in this section is based on

its counterpart for ATL in [Goranko & van Drimmelen, 2006] with the extension for dealing with

resource bounds. Firstly, we recall the notion of Alternating Büchi Tree Automata. Then, we de-

fine for each RB-ATL formula an alternating Büchi tree automaton which only accepts a class of

fixed-branching degree models satisfying the formula. Therefore, the algorithm for deciding the

emptiness of alternating Büchi tree automata gives us a procedure for the satisfiability of RB-ATL,

given that the number of resources and the number of agents are fixed.

5.7.1 Alternating Büchi tree automata

Firstly, we recall the notion of positive Boolean formulas which will be used later to define transi-

tions of the automata.

Definition 33. Given a set X , B+(X) is the set of positive formulas which are defined inductively

from elements of X in the following way:

● ⊺, � and any element of X are positive formulas,

● If θ1 and θ2 are positive formulas, so are θ1 ∧ θ2 and θ1 ∨ θ2.

A set Y ⊆ X satisfies a formula θ ∈ B+(X) iff assigning true to every element in Y and false to

every element in Y ∖X makes θ true.

Note that if Y1 satisfies θ1 and Y2 satisfies θ2, then Y1∪Y2 satisfies θ1∧θ2. In the following,

we give the definition of alternating Büchi tree automata.
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Definition 34. A (finite) alternating Büchi automaton (ATA) is a tupleA = (Θ, k, S, s∗, ρ, F )where:

● Θ is a finite alphabet,

● k is a finite branching degree,

● S is a finite set of states,

● s∗ ∈ S is an initial state,

● ρ ∶ S ×Θ→ B+({0, . . . , k − 1} × S) is a partial transition function, and

● F ⊆ S is a set of acceptance states.

Inputs of ATA automata are Θ-labelled leafless k-trees (T,V,C). A run of an ATA au-

tomaton over a tree (T,V,C) is also a tree (Tr, r) where nodes are labelled by elements of N∗ ×S.

The label of a node on (Tr, r) and its children have to satisfy the following conditions:

1. r(ǫ) = (ǫ, s∗),

2. If y ∈ Tr, r(y) = (x, s) and ρ(s, V (x)) = θ, there is a set Q = {(c0, s0), . . . , (cp, sp)} ⊆

{0, . . . , k − 1} × S such that:

● Q satisfies θ and

● For any 0 ≤ i ≤ p, we have that y ⋅ i ∈ Tr and r(y ⋅ i) = (x ⋅ ci, si).

Given a path λ in a run (Tr, r), inf(λ) denotes the set of all states which appear infinitely

often on λ. A run is accepting if every infinite path λ of the run satisfies inf(λ)∩F /= ∅, i.e. there is

at least a state in F appearing infinitely often on λ. An input tree (T,V,C) is accepted by an ATA

automaton iff it has an accepting run. We denote the set of all trees which are accepted by an ATA

automaton A by Tω(A).

5.7.2 ATA automata for RB-ATL formulas

Given a RB-ATL formula ϕ0, we have the closure cl(ϕ0) and k = ∣cl(ϕ0)◯∣+1. Let b0 be the limited

bound as defined in the proof of Corollary 1 with respect to ϕ0. For the definition of the transition

function, we introduce a notation ca(∆) which denotes the set of all possible cost assignments for

actions in ∆. Recall that given k, ∆ = {{1, . . . , k}n} is the set of all joint actions for agents in N .

Each assignment a in ca(∆) defines the cost of each action 1 ≤ j ≤ k for every agent i to be some
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value between 0̄ and b0. We denote this assignment as a(j, i). We define an ATA automaton Aϕ for

ϕ0 as follows.

Definition 35. Let ϕ0 be a RB-ATL formula over a set of propositions Prop and N be the set of

agents with ∣N ∣ = n, the corresponding ATA automaton Aϕ0
of ϕ0 is defined as Aϕ0

= (℘(Prop) ×

ca(∆), kn, cl(ϕ0), ϕ0, ρ, F ) where:

● The transition function ρ is defined as follows:

– ρ(p, (π, a)) = ⊺ if p ∈ π

– ρ(p, (π, a)) = � if p ∉ π

– ρ(¬p, (π, a)) = � if p ∈ π

– ρ(¬p, (π, a)) = ⊺ if p ∉ π

– ρ(ϕ1 ∧ϕ2, (π, a)) = ρ(ϕ1, (π, a)) ∧ ρ(ϕ2, (π, a))

– ρ(ϕ1 ∨ϕ2, (π, a)) = ρ(ϕ1, (π, a)) ∨ ρ(ϕ2, (π, a))

– ρ(⟪Ab⟫◯ϕ, (π, a)) =

⋁σ∈∆A∶∑i∈A a(σi,i)≤b
(⋀c∈out(σ)(c,ϕ))

– ρ(¬⟪Ab⟫◯ϕ, (π, a)) =

⋀σ∈∆A∶∑i∈A a(σi,i)≤b
(⋁c∈out(σ)(c,∼ϕ))

– ρ(⟪Ab⟫◻ϕ, (π, a)) =

ρ(ϕ, (π, a))∧

⋁b1+∞b2=b(ρ(⟪Ab1⟫◯⟪Ab2⟫◻ϕ, (π, a)))

– ρ(¬⟪Ab⟫◻ϕ, (π, a)) =

ρ(∼ϕ, (π, a))∨

⋀b1+∞b2=b(ρ(¬⟪Ab1⟫◯⟪Ab2⟫◻ϕ, (π, a)))

– ρ(⟪Ab⟫ϕ1Uϕ2, (π, a)) =

ρ(ϕ2, (π, a)) ∨ (ρ(ϕ1, (π, a))∧

⋁b1+∞b2=b(ρ(⟪Ab1⟫◯⟪Ab2⟫ϕ1Uϕ2, (π, a))))

– ρ(¬⟪Ab⟫ϕ1Uϕ2, (π, a)) =

ρ(∼ϕ2, (π, a)) ∧ (ρ(∼ϕ1, (π, a))∨

⋀b1+∞b2=b(ρ(¬⟪Ab1⟫◯⟪Ab2⟫ϕ1Uϕ2, (π, a))))



5. RESOURCE-BOUNDED ALTERNATING-TIME TEMPORAL LOGIC 144

● The set F of final state is defined as

F = {⟪Ab⟫◻ϕ ∈ cl(ϕ0)} ∪ {¬⟪Ab⟫ϕ1Uϕ2 ∈ cl(ϕ0)}

We have the following theorem.

Lemma 22. Given a RB-ATL formula ϕ0, then Tω(Aϕ0
) is exactly the set of tree models of ϕ0

where it has a fixed branching degree kn and no action costs more than b0 amount of resources.

Proof. In the following, we show that the automaton Aϕ0
accepts exactly the set Tree(kn, b0) of

tree models of ϕ0 where each model has a fixed branching degree kn and no action costs more than

b0 amount of resources. For convenience, we extend the definition of the function V in a model

(T,V,C) ∈ Tree(kn, b0) such that V (x) = (π,C(x)) where π ⊆ Prop is the set of propositions

labeling x (that is exactly V (x) as before) and C(x) is the cost assignment for actions in ∆ at x,

that is C(x)(j, i) = C(x, i, j) for all 1 ≤ j ≤ k and 1 ≤ i ≤ n. This extension allows the labels

on those tree models of Tree(kn, b0) are members of the alphabet of the automaton Aϕ0
so that it

makes sense to run the tree models on Aϕ0
.

In the first part of the proof, we show the direction where if a tree model (T,V,C) ∈

Tree(kn, b0) has a successful run (Tr, r) on Aϕ0
, then it satisfies ϕ0.

Firstly, we introduce the notion of sub-tree models and sub-runs.

Given a node x ∈ T , a sub-tree model of (T,V,C) at x, denoted as (T x, V x, Cx), is

defined as follows:

● T x = T

● V x(x′) = V (x ⋅ x′)

● Cx(x′) = C(x ⋅ x′)

Intuitively, the sub-tree model (T x, V x, Cx) is the sub-tree of (T,V,C) which starts from the node

x in T .

We define the notion of sub-runs of (Tr, r) as follows. For a node y ∈ Tr and a formula

ϕ ∈ cl(ϕ0) such that r(y) = (x,ϕ), we define a sub-runs (T y,ϕr , ry,ϕ) where

● z ∈ T y,ϕr iff y ⋅ z ∈ Tr and

● ry,ϕ(z) = (x′, s′) iff r(y ⋅ z) = (x ⋅ x′, s′).
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We also define A
ϕ
ϕ0

as Aϕ0
with the initial state replaced by ϕ.

We have the following claim.

Claim 4. Given y ∈ Tr and r(y) = (x,ϕ), (T y,ϕr , ry,ϕ) is an accepting run of (T x, V x, Cx) on

A
ϕ
ϕ0

.

Proof. The proof is straightforward. Firstly, we have that ry,ϕ(ǫ) = (ǫ,ϕ) as r(y ⋅ ǫ) = (x ⋅ ǫ,ϕ).

Moreover, let us consider any z ∈ T y,ϕr , we have that ry,ϕ(z) = (x′, ϕ′) where r(y ⋅ z) = (x ⋅

x′, ϕ′). As (Tr, r) is a successful run on Aϕ0
, we have that ρ(ϕ′, V (x ⋅ x′)) = θ is satisfied by

some subset Q = {(c0, ϕ0), . . . , (cp, ϕp)} ⊂ {0, . . . , kn − 1} × cl(ϕ0). However, because of the

definition of (T x, V x, Cx), we also have that ρ(ϕ′, V (x ⋅x′)) = ρ(ϕ′, V x(x′)), thenQ also satisfies

ρ(ϕ′, V x(x′)). Moreover, we also have that y ⋅ z ⋅ i ∈ Tr and r(y ⋅ z ⋅ i) = (ci, ϕi) for all 0 ≤ i ≤ p,

thus z ⋅ i ∈ T y,ϕr and ry,ϕ(z ⋅ i) = (ci, ϕi) for all 0 ≤ i ≤ p. Therefore, (T y,ϕr , ry,ϕ) is an accepting

run of (T x, V x, Cx) on A
ϕ
ϕ0

.

Notice that (T ǫ,ϕ0

r , rǫ,ϕ0) = (Tr, r) and A
ϕ0

ϕ0
= Aϕ0

.

We are going to prove the following claim.

Claim 5. For any y ∈ Tr with r(y) = (x,ϕ), if (T y,ϕr , ry,ϕ) is an accepting run of (T x, V x, Cx) on

A
ϕ
ϕ0

, then (T,V,C), x ⊧ ϕ.

Proof. The proof is done inductively on the structure of ϕ.

● Assume that ϕ is a proposition p. As (T y,pr , ry,p) is an accepting run on A
p
ϕ0

, we must

have ρ(p, V (x)) = ⊺. Then, assume that V (x) = (π, a), we must have p ∈ π. Hence,

(T,V,C), x ⊧ p.

● Assume that ϕ is a proposition ¬p. As (T y,¬pr , ry,¬p) is an accepting run on A
¬p
ϕ0

, we must

have ρ(¬p, V (x)) = ⊺. Then, assume that V (x) = (π, a), we must have p ∉ π. Hence,

(T,V,C), x ⊧ ¬p.

● Assume that ϕ is ϕ1∧ϕ2. As (T y,ϕ1∧ϕ2

r , ry,ϕ1∧ϕ2) is an accepting run on A
ϕ1∧ϕ2

ϕ0
, there must

be a set Q ⊆ {0, kn −1}× cl(ϕ0) satisfying ρ(ϕ1 ∧ϕ2, V (x)) = ρ(ϕ1, V (x))∧ρ(ϕ2, V (x)).

Then, Q satisfies both ρ(ϕ1, V (x)) and ρ(ϕ2, V (x)). Using Q as a set which satisfies

ρ(ϕ1, V (x)) and repeat the proof of Claim 4, we imply that (T y,ϕ1

r , ry,ϕ1) is an accepting

run of (T x, V x, Cx) on A
ϕ1

ϕ0
. By the induction hypothesis, we have that (T,V,C), x ⊧ ϕ1.
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Apply the same argument as above, we also have that (T,V,C), x ⊧ ϕ2. Therefore, (T,V,C), x ⊧

ϕ1 ∧ϕ2.

● Assume that ϕ is ϕ1∨ϕ2. As (T y,ϕ1∨ϕ2

r , ry,ϕ1∨ϕ2) is an accepting run on A
ϕ1∨ϕ2

ϕ0
, there must

be a set Q ⊆ {0, kn −1}× cl(ϕ0) satisfying ρ(ϕ1 ∨ϕ2, V (x)) = ρ(ϕ1, V (x))∨ρ(ϕ2, V (x)).

Then, Q satisfies either ρ(ϕ1, V (x)) or ρ(ϕ2, V (x)). Without loss of generality, let us as-

sume that Q satisfies ρ(ϕ1, V (x)). Using Q as a set which satisfies ρ(ϕ1, V (x)) and repeat

the proof of Claim 4, we imply that (T y,ϕ1

r , ry,ϕ1) is an accepting run of (T x, V x, Cx) on

A
ϕ1

ϕ0
. By the induction hypothesis, we have that (T,V,C), x ⊧ ϕ1. Therefore, (T,V,C), x ⊧

ϕ1 ∧ϕ2.

● Assume that ϕ is ⟪Ab⟫◯ψ. As (T y,⟪A
b⟫◯ψ

r , ry,⟪A
b⟫◯ψ) is an accepting run of (T x, V x, Cx)

on A
⟪Ab⟫◯ψ
ϕ0

, there must be a set Q ⊆ {0, kn − 1} × cl(ϕ0) satisfying

ρ(⟪Ab⟫◯ψ,V (x)) = ⋁σ∈∆A∶∑i∈AC(x,i,σi)≤b
(⋀c∈out(σ)(c,ψ))

Then, there exists a move σ ∈ ∆A with the cost ∑i∈AC(x, i, σi) ≤ b such that for all c ∈

out(σ), (c,ψ) ∈ Q. Let us denote the index of each (c,ψ) ∈ Q by ic, then y ⋅ ic ∈ Tr and

r(y ⋅ ic) = (x ⋅ c,ψ). Then, by Claim 4, we have that (T y⋅ic,ψr , ry⋅ic,ψ) is an accepting run of

(T x⋅c, V x⋅c, Cx⋅c) on A
ψ
ϕ0

. By the induction hypothesis, we have that (T,V,C), x ⋅ c ⊧ ψ for

all c ∈ out(σ). As the cost∑i∈AC(x, i, σi) of σ is no more than b, we have that (T,V,C), x ⊧

⟪Ab⟫◯ψ.

● Assume thatϕ is ¬⟪Ab⟫◯ψ. As (T y,¬⟪A
b⟫◯ψ

r , ry,¬⟪A
b⟫◯ψ) is an accepting run of (T x, V x, Cx)

on A
¬⟪Ab⟫◯ψ
ϕ0

, there must be a set Q ⊆ {0, kn − 1} × cl(ϕ0) satisfying

ρ(¬⟪Ab⟫◯ψ,V (x)) = ⋀σ∈∆A∶∑i∈AC(x,i,σi)≤b
(⋁c∈out(σ)(c,∼ψ))

Then, for every move σ ∈ ∆A with the cost ∑i∈AC(x, i, σi) ≤ b, there is an outcome cσ ∈

out(σ) such that (cσ,∼ψ) ∈ Q. Let us denote the index of each (cσ,∼ψ) ∈ Q by icσ , then

y ⋅ icσ ∈ Tr and r(y ⋅ icσ) = (x ⋅ cσ,∼ψ). Then, by Claim 4, we have that (T y⋅icσ ,ψr , ry⋅icσ ,ψ) is

an accepting run of (T x⋅cσ , V x⋅cσ , Cx⋅cσ) on A
∼ψ
ϕ0

. By the induction hypothesis, we have that

(T,V,C), x ⋅ cσ ⊧∼ψ for all σ ∈ ∆A with the cost ∑i∈AC(x, i, σi) ≤ b. In other words, we

have that (T,V,C), x ⊧ ¬⟪Ab⟫◯ψ.

● Assume that ϕ is ⟪Ab⟫ϕ1Uϕ2. As (T y,⟪A
b⟫ϕ1Uϕ2

r , ry,⟪A
b⟫ϕ1Uϕ2) is an accepting run of
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(T x, V x, Cx) on A
⟪Ab⟫ϕ1Uϕ2

ϕ0
, there must be a set Q ⊆ {0, kn − 1} × cl(ϕ0) satisfying

ρ(⟪Ab⟫ϕ1Uϕ2, V (x)) =

ρ(ϕ2, V (x)) ∨ (ρ(ϕ1, V (x)) ∧⋁b1+∞b2=b(ρ(⟪Ab1⟫◯⟪Ab2⟫ϕ1Uϕ2, V (x))))

Let us construct a b-strategy for A to satisfy ⟪Ab⟫ϕ1Uϕ2. We consider b as in the projection

of a bound d ∈ B and b and the construction is done by induction on d.

The base case:

When d = 0̄, we have that

ρ(⟪A0̄b⟫ϕ1Uϕ2, V (x)) =

ρ(ϕ2, V (x)) ∨ (ρ(ϕ1, , V (x)) ∧ ρ(⟪A0̄b⟫◯⟪A0̄b⟫ϕ1Uϕ2, V (x)))

We define a subtree G of (T,V,C) rooted at x on which the strategy is based. A node z ∈ G

is called internal if there is a node z ⋅ c ∈ G for some c ∈ {0, kn − 1}, otherwise it is called

external. Then, we define G inductively as follows.

– Initially, G contains only x,

– In the base case, we consider the external node x ∈ G

∗ IfQ satisfies ρ(ϕ2, V (x)), applying the proof of Claim 4, we have that (T y,ϕ2

r , ry,ϕ2)

is an accepting run of (T x, V x, Cx) on A
ϕ2

ϕ0
. By the induction hypothesis, we have

(T,V,C), x ⊧ ϕ2.

∗ Otherwise, Q must satisfy

ρ(ϕ1, V (x)) ∧ ρ(⟪A0̄b⟫◯⟪A0̄b⟫ϕ1Uϕ2, V (x))

Then applying the same argument as the previous case, we have (T,V,C), x ⊧

ϕ1. Moreover, applying the same argument as in the case of ⟪Ab⟫◯ψ, there is

a move σ ∈ ∆A which costs no more than 0̄b at x such that for all c ∈ out(σ),

(c,⟪A0̄b⟫ϕ1Uϕ2) ∈ Q. We denote the index of (c,⟪A0̄b⟫ϕ1Uϕ2) in Q by ic, then

r(y ⋅ ic) = (x ⋅ c,⟪A0̄b⟫ϕ1Uϕ2). We add every x ⋅ c where c ∈ out(σ) into G. We

also assign σx⋅c = σ.

– In the induction step, we consider an external node x ⋅ c1⋯cm where r(y ⋅ ic1⋯icm) =

(x ⋅ c1⋯cm,⟪A0̄b⟫ϕ1Uϕ2). Then, there is a subset Q′ ⊆ {0, . . . , kn − 1} × cl(ϕ0)

satisfying ρ(⟪A0̄b⟫ϕ1Uϕ2, V (x ⋅ c1⋯cm)).
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∗ If Q′ satisfies ρ(ϕ2, V (x ⋅ c1 . . . cm)), we have that

(T
y⋅ic1⋯icm ,ϕ2

r , ry⋅ic1⋯icm ,ϕ2)

is an accepting run of (T x⋅c1...cm , V x⋅c1...cm , Cx⋅c1...cm) on A
ϕ2

ϕ0
. By the induction

hypothesis, we have (T,V,C), x ⋅ c1⋯cm ⊧ ϕ2.

∗ Otherwise, Q′ must satisfy

ρ(ϕ1, V (x ⋅ c1 . . . cm)) ∧ ρ(⟪A0̄b⟫◯⟪A0̄b⟫ϕ1Uϕ2, V (x ⋅ c1 . . . cm))

Then, we have (T,V,C), x ⋅ c1⋯cm ⊧ ϕ1 and there is a move σ ∈ ∆A which costs

no more than 0̄b at x ⋅ c1⋯cm such that for all c ∈ out(σ), (c,⟪A0̄b⟫ϕ1Uϕ2) ∈ Q′.

We denote the index of (c,⟪A0̄b⟫ϕ1Uϕ2) in Q′ by ic, then r(y ⋅ ic1⋯icm ⋅ ic) =

(x ⋅ c1⋯cm ⋅ c,⟪A0̄b⟫ϕ1Uϕ2). We add every x ⋅ c1⋯cm ⋅ c into G. We also assign

σx⋅c1⋯cm⋅c = σ.

The construction of G terminates when no new node is added. G must be finite as otherwise,

there is an infinite path λ = x,x ⋅ c1, x ⋅ c1 ⋅ c2, . . . in G such that r(y ⋅ ic1⋯icm) = (x ⋅

c1⋯cm,⟪A0̄b⟫ϕ1Uϕ2) for all m ≥ 0. Then, inf(λ) ∩ F = ∅ which contradicts the fact

that (Tr, r) is an accepting run. Then we define a strategy FA by assigning FA((x) . . . (x ⋅

c1⋯cm)) = σx⋅c1⋯cm+1 for every path (x) . . . (x ⋅c1⋯cm) where (x ⋅c1⋯cm) ∈ G for allm ≥ 0

and there is some x ⋅ c1⋯cm+1 ∈ G. For all other inputs of FA, we simply define the output as

idle actions for all agents in A which cost 0̄.

By defining such FA, we have that for every λ ∈ out(x,FA) whose cost for agents in A is

always 0̄b, there is a prefix which is a finite path in G and ending with an external node in

G such that ϕ1 is satisfied on all internal nodes of G on this prefix and ϕ2 is satisfied on the

external node of G at the end of the prefix. In other words, (T,V,C), x ⊧ ⟪A0̄⟫ϕ1Uϕ2.

The induction case:

When d > 0̄, we have that

ρ(⟪Adb⟫ϕ1Uϕ2, V (x)) =

ρ(ϕ2, V (x)) ∨ (ρ(ϕ1, V (x)) ∧⋁b1+∞b2=db(ρ(⟪A0̄b⟫◯⟪A0̄b⟫ϕ1Uϕ2, V (x))))

We also define a subtree G of (T,V,C) rooted at x on which the strategy is based. G is

defined inductively as follows.
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– Initially, G contains only x,

– In the base case, we consider the external node x ∈ G

∗ If Q satisfies ρ(ϕ2, V (x)), applying Claim 4, we have that (T y,ϕ2

r , ry,ϕ2) is an

accepting run of (T x, V x, Cx) on A
ϕ2

ϕ0
. By the induction hypothesis, we have

(T,V,C), x ⊧ ϕ2.

∗ Otherwise, if Q satisfies

ρ(ϕ1, V (x)) ∧ ρ(⟪Ab1⟫◯⟪Ab2⟫ϕ1Uϕ2, V (x))

for some b1 +∞ b2 = db where b2 < db, then we have (T,V,C), x ⊧ ϕ1. More-

over, there is a move σ ∈ ∆A costing at most b1 at x such that for all c ∈ out(σ),

(c,⟪Ab2⟫ϕ1Uϕ2) ∈ Q. We denote the index of (c,⟪Ab2⟫ϕ1Uϕ2) in Q by ic, then

r(y ⋅ ic) = (x ⋅ c,⟪Ab2⟫ϕ1Uϕ2). We add every x ⋅ c into G. We also assign σx⋅c = σ.

∗ Otherwise, Q must satisfy

ρ(ϕ1, V (x)) ∧ ρ(⟪A0̄b⟫◯⟪Adb⟫ϕ1Uϕ2, V (x))

Then we have (T,V,C), x ⊧ ϕ1. Moreover, there is a move σ ∈∆A which costs no

more than 0̄b at x such that for all c ∈ out(σ), (c,⟪Adb⟫ϕ1Uϕ2) ∈ Q. We denote

the index of (c,⟪Adb⟫ϕ1Uϕ2) in Q by ic, then r(y ⋅ ic) = (x ⋅ c,⟪Adb⟫ϕ1Uϕ2).

We add every x ⋅ c into G. We also assign σx⋅c = σ.

– In the induction step, we consider an external node x ⋅ c1⋯cm at which r(y ⋅ ic1⋯icm) =

(x ⋅ c1⋯cm,⟪Adb⟫ϕ1Uϕ2). Then, there is a subset Q′ ⊆ {0, . . . , kn − 1} × cl(ϕ0)

satisfying ρ(⟪Adb⟫ϕ1Uϕ2, V (x ⋅ c1⋯cm)).

∗ IfQ′ satisfies ρ(ϕ2, V (x⋅c1 . . . cm)), by Claim 4, we have that (T
y⋅ic1⋯icm ,ϕ2

r , ry⋅ic1⋯icm ,ϕ2)

is an accepting run of (T x⋅c1...cm , V x⋅c1...cm , Cx⋅c1...cm) on A
ϕ2

ϕ0
. By the induction

hypothesis, we have (T,V,C), x ⋅ c1⋯cm ⊧ ϕ2.

∗ Otherwise, if Q′ satisfies

ρ(ϕ1, V (x ⋅ c1 . . . cm)) ∧ ρ(⟪Ab1⟫◯⟪Ab2⟫ϕ1Uϕ2, V (x ⋅ c1 . . . cm))

for some b1 +
∞ b2 = db where b2 < db, then we have (T,V,C), x ⋅ c1⋯cm ⊧ ϕ1 and

there is a move σ ∈∆A costing at most b1 at x ⋅ c1⋯cm such that for all c ∈ out(σ),

(c,⟪Ab2⟫ϕ1Uϕ2) ∈ Q′. We denote the index of (c,⟪Ab2⟫ϕ1Uϕ2) in Q by ic, then

r(y ⋅ ic1⋯icm ⋅ ic) = (x ⋅ c1⋯cm ⋅ c,⟪Ab2⟫ϕ1Uϕ2). We add every x ⋅ c1⋯cm ⋅ c into

G. We also assign σx⋅c1⋯cm⋅c = σ.
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∗ Otherwise, Q′ must satisfy

ρ(ϕ1, V (x ⋅ c1 . . . cm)) ∧ ρ(⟪A0̄b⟫◯⟪Adb⟫ϕ1Uϕ2, V (x ⋅ c1 . . . cm))

Then we have (T,V,C), x ⋅ c1⋯cm ⊧ ϕ1 and there is a 0̄b-cost move σ ∈ ∆A at x ⋅

c1⋯cm such that for all c ∈ out(σ), (c,⟪Adb⟫ϕ1Uϕ2) ∈ Q. We denote the index of

(c,⟪Adb⟫ϕ1Uϕ2) inQ by ic, then r(y ⋅ic1⋯icm ⋅ic) = (x⋅c1⋯cm ⋅c,⟪A
db⟫ϕ1Uϕ2).

We add every x ⋅ c1⋯cm ⋅ c into G. We also assign σx⋅c1⋯cm⋅c = σ.

The construction of G terminates when no new node is added. G must be finite as other-

wise, there is an infinite path λ = x,x ⋅ c1, x ⋅ c1 ⋅ c2, . . . in G such that r(y ⋅ ic1⋯icm) =

(x ⋅ c1⋯cm,⟪Ab⟫ϕ1Uϕ2) for all m ≥ 0. Then, inf(λ) ∩ F = ∅ which contradicts the fact

that (Tr, r) is an accepting run. Then we define a strategy FA by assigning FA((x) . . . (x ⋅

c1⋯cm)) = σx⋅c1⋯cm+1 for every path (x) . . . (x ⋅ c1⋯cm) where (x ⋅ c1⋯cm) ∈ G for all

m ≥ 0 and there is some x ⋅ c1⋯cm+1 ∈ G. For external nodes x ⋅ c1⋯cm of G where

r(y ⋅ ic1⋯icm) = (x ⋅ c1⋯cm,⟪Ab2⟫ϕ1Uϕ2) for some b2 < db, by the induction hypoth-

esis, there is a b1-strategy F ′A at x ⋅ c1⋯cm for A which makes ⟪Ab2⟫ϕ1Uϕ2 true. We

simply define FA((x) . . . (x ⋅ c1⋯cm)λ) = F ′A(λ). It is also straightforward to prove that

∑i≤m cost(σx⋅c1⋯ci) ≤ b1 where b1 +
∞ b2 = db. For all other input of FA, we simply define

the output as idle actions for all agents in A which cost 0̄.

By defining such FA, we have that for every λ ∈ out(x,FA) whose cost for agents in A

is always no more than db, there is a prefix which is a finite path in G and ends with an

external node in G such that ϕ1 is satisfied on all internal nodes of G on this prefix and ϕ2 or

⟪Ab2⟫ϕ1Uϕ2 where b1+
∞ b2 = db and b2 < db is satisfied on the external node ofG at the end

of the prefix. In the later case, i.e. the external node satisfies ⟪Ab2⟫ϕ1Uϕ2, by the induction

hypothesis, there is a b1-strategy for A at the external node to make ⟪Ab2⟫ϕ1Uϕ2 while the

total cost of actions from x leading to this external node is no more than b1. In other words,

(T,V,C), x ⊧ ⟪Ab⟫ϕ1Uϕ2.

● Proofs are similar for the case of ¬⟪Ab⟫ϕ1Uϕ2, ⟪Ab⟫◻ψ and ¬⟪Ab⟫◻ψ.

Therefore, the result of Claim 5 shows us that (T,V,C), ǫ ⊧ ϕ0.

Let us now prove the other direction of the lemma. We show that for every tree model in

Tree(kn, b0) which satisfies the formula ϕ0, there is an accepting run on the automaton Aϕ0
.
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Assume that we have a tree model (T,V,C) ∈ Tree(kn, b0) where (T,V,C), ǫ ⊧ ϕ0. We

now construct an acceptance run (Tr, r) on Aϕ0
. The construction is done inductively as follows.

Initially, we add ǫ to Tr and assign r(ǫ) = (ǫ,ϕ0). We continue adding nodes to the run

and always make sure that if y is added into Tr with r(y) = (x,ϕ), we must have (T,V,C), x ⊧ ϕ.

It is straightforward to see that this property holds for the root ǫ of Tr.

We now consider a leaf y in Tr with r(y) = (x,ϕ) and (T,V,C), x ⊧ ϕ. We will prove

the following:

● There exists a set Q ⊆ {0, kn −1}× cl(ϕ0) which satisfies the formula ρ(ϕ,V (x)). Then, we

expand Tr as follows. For every (c,ϕc) ∈ Q, let ic be the index of c in Q, we add ic as a child

of y and assign r(y ⋅ ic) = (x ⋅ c, (ϕc, dc)).

● (T,V,C), x ⋅ c ⊧ ϕc.

The proof proceeds by induction on the structure of ϕ.

● If ϕ is p, as (T,V,C), x ⊧ p, let V (x) = (π,C(x)), we must have p ∈ π. Therefore,

ρ(p, V (x)) is satisfied by an empty Q.

● If ϕ is ¬p, as (T,V,C), x ⊧ ¬p, let V (x) = (π,C(x)), we must have p ∉ π. Therefore,

ρ(p, V (x)) is also satisfied by an empty Q.

● If ϕ = ϕ1 ∧ϕ2, then (T,V,C), x ⊧ ϕ1 ∧ϕ2 implies that (T,V,C), x ⊧ ϕ1 and (T,V,C), x ⊧

ϕ2. By the induction hypothesis, there are two setsQ1 andQ2 which satisfy ρ(ϕ1, V (x)) and

ρ(ϕ2, V (x)), respectively. Moreover, for every (c,ϕc) ∈ Q1 orQ2, we have that (T,V,C), x⋅

c ⊧ ϕc. Because ρ(ϕ1 ∧ ϕ2, V (x)) = ρ(ϕ1, V (x)) ∧ ρ(ϕ2, V (x)) is a positive Boolean

formula, we have that Q = Q1 ∪Q2 satisfies ρ(ϕ1 ∧ϕ2, V (x)).

● If ϕ = ϕ1∨ϕ2, then (T,V,C), x ⊧ ϕ1∨ϕ2 implies that (T,V,C), x ⊧ ϕ1 or (T,V,C), x ⊧ ϕ2.

Without loss of generality, let us assume that (T,V,C), x ⊧ ϕ1. By the induction hypothe-

sis, there is a set Q which satisfy ρ(ϕ1, V (x)) and for every (c,ϕc) ∈ Q, we have that

(T,V,C), x ⋅ c ⊧ ϕc. It is also straightforward that Q satisfies ρ(ϕ1 ∨ϕ2, V (x)).

● If ϕ = ⟪Ab⟫◯ψ, (T,V,C), x ⊧ ⟪Ab⟫◯ψ implies that there is a move σ ∈ ∆A with the

cost ∑i∈AC(x, i, σi) ≤ b such that for every c ∈ out(σ), (T,V,C), x ⋅ c ⊧ ψ. We define

Q = {(c,ψ) ∣ c ∈ out(σ)}. It is straightforward that Q satisfies ρ(⟪Ab⟫◯ψ,V (x)).
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● If ϕ = ¬⟪Ab⟫◯ψ, (T,V,C), x ⊧ ¬⟪Ab⟫◯ψ implies that for any move σ ∈ ∆A with the

cost ∑i∈AC(x, i, σi) ≤ b, there exists an outcome cσ ∈ out(σ), (T,V,C), x ⋅ cσ ⊧∼ψ. We

define Q = {(cσ,∼ψ) ∣ σ ∈ ∆A ∶ ∑i∈AC(x, i, σi) ≤ b}. It is straightforward that Q satisfies

ρ(¬⟪Ab⟫◯ψ,V (x)).

● If ϕ = ⟪Ab⟫ϕ1Uϕ2, then (T,V,C), x ⊧ ⟪Ab⟫ϕ1Uϕ2. This implies that either (T,V,C), x ⊧

ϕ2 or (T,V,C), x ⊧ ϕ1 ∧ ⟪Ab1⟫◯⟪Ab2⟫ϕ1Uϕ2 for some b1 +
∞ b2 = b.

In the first case, by the induction hypothesis, there is a set Q which satisfies ρ(ϕ2, V (x)).

In the second case, firstly, by the induction hypothesis, there must be a set Q1 which satisfies

ρ(ϕ1, V (x)). Secondly, during the construction Tr, we may attach to a node y ∈ Tr a strategy.

The reason of this attachment will be explained later. If y has not been attached with a b-

strategy, because (T,V,C), x ⊧ ⟪Ab⟫ϕ1Uϕ2, there must be a b-strategy FA for coalition A

to make ⟪Ab⟫ϕ1Uϕ2 true at x. Let b′ be the cost of σ = FA(x) and b2 ∈ B
∞ such that

b′b +
∞ b2 = b. If y is already attached with b-strategy FA, similarly, let b′ be the cost of

σ = FA(x) and b2 ∈ B∞ such that b′b +
∞ b2 = b.

Then, for every c ∈ out(σ), we have that (T,V,C), x ⋅ c ⊧ ⟪Ab2⟫ϕ1Uϕ2. We define

Q2 = {(c,⟪Ab2⟫ϕ1Uϕ2) ∣ c ∈ out(σ)}. We simple choose Q = Q1 ∪ Q2, then Q satis-

fies ρ(⟪Ab⟫ϕ1Uϕ2, V (x)). Moreover, for every c ∈ out(σ) where (c,⟪Ab2⟫ϕ1Uϕ2) has the

index ic in Q, by the construction of Tr, ic is added into Tr as a child of y with the assign-

ment r(y ⋅ ic) = (x ⋅ c,⟪Ab2⟫ϕ1Uϕ2), we attach a b2-strategy F ′
A to y ⋅ ic which is defined

as F ′
A(λ) = FA(x ⋅ λ). The idea of attaching a strategy to a node in the run Tr is that when

the construction continues at y ⋅ ic, we still follow the strategy FA which has been chosen at y

to satisfy the eventually formula ⟪Ab⟫ϕ1Uϕ2. As this formula is satisfied in the model, fol-

lowing a fixed strategy helps us to not generate a formula in the form ⟪Ab
′′
⟫ϕ1Uϕ2 infinitely

often along some specific branch of the run Tr.

● The case when ϕ = ¬⟪Ab⟫◻ψ is treated in a similar way as for the above case. However,

instead of using strategies, we can make use of the co-strategies. Because of the similarity,

we omit the proof here.

● The cases when ϕ = ⟪Ab⟫◻ψ and ϕ = ¬⟪Ab⟫ϕ1Uϕ2 is also treated in a similar ways

as for the above cases. However, making use of strategies (or co-strategy, respectively)

will produce on the run Tr infinite branches on which states of the form (⟪Ab⟫◻ψ, d) (or
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(¬⟪Ab⟫ϕ1Uϕ2, d), respectively) appear infinitely often. This fact satisfies the condition for

accepting the run Tr on infinite branches.

We have the following decidability result.

Proposition 2. RB-ATL is decidable.

The proof is rather straightforward. Given a formula ϕ in RB-ATL, we construct the cor-

responding alternating-tree automaton as described above. Then, the decidability of the satisfiability

of ϕ is determined by deciding whether the corresponding alternating-tree automaton is non-empty.

As this problem is decidable, hence RB-ATL is decidable. We already know from the definition

of cl(ϕ0) that the size of cl(ϕ0) is bounded by 2
2
mr×∣ϕ0 ∣

, where m is the maximal bound of any

resource appearing in ϕ0 and r is the number of resources. Moreover, from [Goranko & van Drim-

melen, 2006] we have that the emptiness problem for ATA automata is decidable in exponential

time with respect to the size of the input automaton. Therefore, the algorithm for deciding the emp-

tyness problem of ATA automata gives us an triple exponential time procedure for the satisfiability

problem of RB-ATL.

5.8 Conclusion

In comparison with BMCL and RBCL, RB-ATL is the most fully-fledged logic so far for specifying

and reasoning about resource-bounded multi-agent systems. The logic RB-ATL is an extension of

ATL where resource bounds are attached to every coalition appearing in a formula of ATL. Similar

to the case of RB-CL, resource bounds attached to a coalition restrict the abilities of the coalition

where the greater resource bounds are attached, the more abilities a coalition may have. Moreover,

we also introduce the symbol ∞ in resource bounds in order to remove the limitation of particular

resources. Rather than always set a concrete bound on every resource like RBCL, the extension

of the set of resource bounds in RB-ATL enables us to reason about more properties of resource-

bounded multi-agent systems. For example, the formula ⟪A(x,∞,y,∞)⟫⊺Uϕ where x, y are some

natural numbers allows us to reason about the ability of the coalition A when there is no restriction

on the usage of particular resources (those have the bound ∞, respectively). Similarly, RB-ATL

also allows us to investigate the importance of resources when a coalition does not have an expected

ability when it is not allowed to spend any of such resources while other resources have no restriction
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on usage. Then, we could use the formula ⟪A(0,∞,0,∞)⟫⊺Uϕ where 0’s are the bounds for resources

which are considered to be investigated.

In this chapter, we have defined the syntax and semantics of RB-ATL. In order to simplify

the proof of the soundness and completeness of the logic, as well as the satisfiability of RB-ATL, we

also presented the normal form RB-ATL where negation can only appear in front of a propositional

variables or temporal operators. Then, to define the semantics of the normal RB-ATL, apart from

the notions of moves and strategies as in the semantics of RB-ATL, we presented the notions of

co-moves and co-strategies which help the definition of semantics for formulas where negation is in

front of temporal operators.

Before ending this chapter, let us briefly discuss the relationship between RBCL and RB-

ATL. Firstly, RB-ATL allows modelling more types of coalitional strategies through the help of until

(U) operator. Therefore, the statements such as a coalition can maintain a certain condition until it

achieves some goal under a resource bound is not expressible in RBCL. Furthermore, RBCL does

not allow modelling coalitional abilities with unbounded conditions for some resources. However,

RB-ATL is defined for reasoning about resource-bounded multi-agent systems where combined

costs are defined only by means of addition operator. Therefore, the question of whether the re-

sults of RB-ATL that we have in this chapter are still hold for the case of general cost-combining

operators, as defined for RBCL, is still open.
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CHAPTER 6

CONCLUSION

In this thesis we have discussed logic-based formalisms for specifying and reasoning about resource-

bounded multi-agent systems. In our models of resource-bounded multi-agent systems, in order to

perform a particular action, each agent has to pay a certain amount of resources. The bounds on

the amount of resources which can be used by agents in the system effectively limit the abilities of

each agent or group of agents. The thesis has presented a series of logic-based formalisms which

allow us to specify and reason about the abilities of agents or groups of agents in resource-bounded

multi-agent systems under resource bounds.

6.1 Review of the chapters

The first logic for modelling resource-bounded multi-agent systems presented in Chapter 3 of this

thesis is named Bounded Memory Communication Logic (BMCL). The logic, which is an extension

of CTL, allows reasoning about the ability of systems of multiple reasoning agents. Agents in

those systems are assumed to operate by using only two types of resources, namely memory and

communication. In the semantics of BMCL, each model is associated with a fixed resource bound

for each resource and the usage of every resource is recorded at each state so that actions available

for each agent at a state are limited by the cost of the action, the fixed resource bound and the

recorded usage of the resources at that state. In other words, BMCL allows reasoning about the

ability of a system of multiple reasoning agents under a certain resource bound where the only

resources are memory and communication. Moreover, as BMCL is based on CTL, we cannot reason

about the properties of individual agents or groups of agents in the system.

In order to overcome the drawbacks of BMCL, we have introduced Resource-Bounded

Coalition Logic (RBCL) and Resource-Bounded Alternating-time temporal logic (RB-ATL) in Chap-
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ter 4 and Chapter 5, respectively. As its name suggests, RBCL is an extension of Coalition Logic

where each coalitional modality is extended with a resource bound determining the maximal amount

of resource agents in a coalition can use. In the semantics of RBCL, a model associates each action

with a finite set of resources that the agents in the system must use when performing this action.

Rather than record the amount of resources which has been used by agents from state to state, we

define for each action a certain cost. Then, the question whether an agent can perform an action from

a state is answered by comparing the cost of the action with the resource bound of the agent. Fur-

thermore, RBCL not only allows reasoning about single strategies under resource bounds but also

enables us to reason about multi-step strategies for an individual agent or a group of agents under

resource bounds for obtaining a certain goal. As usual, we study the soundness, the completeness

and the satisfiability problems of RBCL in Chapter 4.

In Chapter 5, we have presented a more expressive logic for reasoning about resource-

bounded multi-agent systems, namely RB-ATL. Because of basing on ATL, RB-ATL enables the

reasoning about strategies for an individual agent or a coalition of agents under resource bounds

where strategies are not only for obtaining a certain goal but also for maintaining a condition. Fur-

thermore, we introduce the unlimited symbol (∞) in resource bounds so that bounds on certain

resources can be ignored while reasoning about the ability of a coalition. Therefore, RB-ATL al-

lows more properties to be formalised. We have also shown in Chapter 5 the soundness and the

completeness of RB-ATL, and that RB-ATL is decidable.

6.2 Future work

The thesis has presented a theoretical framework for reasoning about resource-bounded multi-agent

systems. For each logic introduced in the thesis, we concentrated on theoretical results which are

sound and complete axiomatisation systems for these logics and their satisfiability problems. In

the case of BMCL, practical results in the model-checking problem of BMCL have been presented

in [Alechina et al., 2008c,Alechina et al., 2008b]. Although the model-checking algorithms for both

RBCL and RB-ATL have been presented in [Alechina et al., 2009b,Alechina et al., 2010b], there is

no implementation for them yet. Therefore, in the future, one direction is to devote more effort to

more practical results on the work with resource-bounded multi-agent systems where a framework

for verifying properties of resource-bounded multi-agent systems is developed by implementing

model-checking algorithms for RBCL and RB-ATL.

For the future work, there is also other direction to extend the current theoretical results
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of the thesis. In this thesis, we have presented logic-based formalisms for modelling and reasoning

about resource-bounded multi-agent systems. In these systems, agents only spend resources rather

than produce them. In the consequence, logical languages presented in this thesis only allow us

to work with multi-agent systems where agents do not have the ability to produce resources. The-

oretical work on such systems have been initiated in [Bulling & Farwer, 2009] where the authors

has extended CTL and CTL∗ for formalising properties of those system. However, they have not

had axiomatisation and decidability results where the model-checking problem is only solved in for

a limited sub-logic. In other words, the questions of modelling and reasoning about such systems

where agents can both consume and produce resource are still open and a direction for the future

work is to extend our current results (particularly, RBCL and RB-ATL) to cover those systems. Fur-

thermore, we would also like to study the relationship between RB-ATL with other derivations of

ATL such as ATLBM [Ågotnes & Walther, 2009] (Alternative-time Temporal Logic with Bounded

Memory) where bounded memory means that the size of agents’ strategies is limited and agents

have bounded recall.
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