
Shah, Azhar Ali (2011) Studies on distributed 
approaches for large scale multi-criteria protein structure 
comparison and analysis. PhD thesis, University of 
Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/11735/1/thesis-corrected-final.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


Studies on Distributed Approaches for Large Scale
Multi-Criteria Protein Structure Comparison and

Analysis

Azhar Ali Shah, MPhil

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

September 2010



Abstract

Protein Structure Comparison(PSC) is at the core of many important structural biology problems.
PSC is used to infer the evolutionary history of distantly related proteins; it canalso help in the
identification of the biological function of a new protein by comparing it with other proteins whose
function has already been annotated; PSC is also a key step in protein structure prediction, because
one needs to reliably and efficiently compare tens or hundreds of thousands of decoys (predicted
structures) in evaluation of ’native-like’ candidates (e.g.Critical Assessment of Techniques for
Protein Structure Prediction(CASP) experiment). Each of these applications, as well as many
others where molecular comparison plays an important role, requires a different notion of similar-
ity, which naturally lead to the Multi-Criteria Protein Structure Comparison (MC-PSC) problem.
ProCKSI (www.procksi.org), was the first publicly available server to provide algorithmic solutions
for the MC-PSC problem by means of an enhanced structural comparison that relies on the princi-
pled application of information fusion to similarity assessments derived from multiple comparison
methods (e.g. USM, FAST, MaxCMO, DaliLite, CE and TMAlign). Current MC-PSC works well
for moderately sized data sets and it is time consuming as it provides public service to multiple
users. Many of the structural bioinformatics applications mentioned above would benefit from the
ability to perform, for a dedicated user, thousands or tens of thousands of comparisons through
multiple methods in real-time, a capacity beyond our current technology.

This research is aimed at the investigation of Grid-styled distributed computing strategies
for the solution of the enormous computational challenge inherent in MC-PSC. To this aim a novel
distributed algorithm has been designed, implemented and evaluated with different load balancing
strategies and selection and configuration of a variety of software tools, services and technologies
on different levels of infrastructures ranging from local testbeds to production level eScience in-
frastructures such as theNational Grid Service(NGS). Empirical results of different experiments
reporting on the scalability, speedup and efficiency of the overall system are presented and discussed
along with the software engineering aspects behind the implementation of a distributed solution to
the MC-PSC problem based on a local computer cluster as well as with a GRID implementation.
The results lead us to conclude that the combination of better and faster paralleland distributed
algorithms with more similarity comparison methods provides an unprecedented advance on pro-
tein structure comparison and analysis technology. These advances might facilitate both directed
and fortuitous discovery of protein similarities, families, super-families, domains, etc, and also help
pave the way to faster and better protein function inference, annotation and protein structure predic-
tion and assessment thus empowering the structural biologist to do a science that he/she would not
have done otherwise.
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CHAPTER 1

I NTRODUCTION

This thesis presents the outcome of the exploratory and investigativeStudies on Distributed Ap-

proaches for Large Scale Multi-Criteria Protein Structure Comparison andAnalysisin ten self-

contained chapters. This chapter being the first one sets the stage by introducing the research topic

and explaining why this topic was chosen for study. Besides introducing theresearch topic, this

chapter also provides a succinct overview of the research objectives, methodology and the structure

of the thesis.

1.1 Introduction

"The organic substance which is present in all constituents of the animal body, also as
we shall soon see, in the plant kingdom, could be named ’protein’ from a Greek word
’proteios’ meaning ’of primary importance’" [1].

In 1839 the above words first appeared in an article authored byGerardus Johannes Mul-

der (1802-1880), a Dutch organic chemist [1]. Mulder wrote these words after correspondence with

Jons Jakob Berzelius(1779-1848), a Swedish chemist who originally coined the termProteinbased

on Mulder’s observations that’all proteins have same empirical formula and are composed of a

single type of molecule’. Since this time proteins have remained among the most-actively studied

molecules in biochemistry and the understanding of their structure and functionhas remained an es-
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sential question. It was only in 1955 that a British biochemistFrederick Sanger(1918) introduced

an experimental method to identify the sequence (primary structure) of a protein namedinsulin’ [2].

This achievement entitled Sanger to win his first Noble Prize in 1958. This discovery was followed

by another breakthrough bySir John Cowdery Kendrew(1917-1997), an English biochemist and

crystallographer andMax Perutz(1914-2002), an Austrian-British molecular biologist who discov-

ered the three-dimensional structure (Tertiary structure) of two proteins named’myoglobin’ [3] and

’hemoglobin’ [4] respectively and were co-awarded the 1962 Noble Prize in chemistryfor these

achievements. It was exactly at this time thatChristian Anfinsen(1916-1995), an American bio-

chemist, had developed his theory of protein folding, which explains the process by which a protein

sequence coils (folds) into a more stable and unique three-dimensional structure (native conforma-

tion) [5–7]. Anfinsen’s theory of protein folding provided the basis for protein structure prediction

and also raised the need for structure-based comparison and analysis ofproteins [8–10]. He was

awarded the 1972 Noble Prize for this work. A few years later, in 1977, Sanger became success-

ful in sequencing the complete genome ofPhage Phi X 174, a virus (bacteriophage) that infects

bacteria [11]. This provided the basis forHuman Genome Project(HGP) [12] and hence entitled

Sanger to share his second Noble Prize in chemistry in 1980 with two American biochemists named

Walter Gilbert (1932) andPaul Berg(1926). The successful completion of HGP in 2003 lead to

various world wide structural genomic and proteomic initiatives such as theStructural Genomics

Consortium(SGC) [13], theProtein Structure Initiative(PSI) [14] , and theHuman Proteome Or-

ganization(HUPO) [15] amongst others. These initiatives are targeted at lowering thecost and

enhancing the efficiency for the experimental determination or computational prediction of novel

protein 3D structures. As a consequence, there is an exponentially growing number of protein se-
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quences and 3D structures being deposited in publicly available databasessuch as theUniversal

Protein Resource(UniProt) [16, 17] andProtein Data Bank(PDB) [18] respectively. In order for

this data to be analyzed, understood and utilized properly, the need of automated, efficient and reli-

able software tools and services especially for determining thestructural similarities/dissimilarities

among all known structure becomes indispensable. The knowledge of structural (dis)similarities

obtained from the comparison of protein structures is mainly used in core biomedical research ac-

tivities including structure-based drug design [19], protein structure prediction/modeling [20–22],

classification [23,24], molecular docking algorithms [25] and other structuralbioinformatics appli-

cations.

Several methods and tools have been developed to investigate the (dis)similarities among

protein structures [26]. Not surprisingly, there is no agreement on howto optimally definewhat

similarity/distance means as different definitions focus on different biologicalcriterion such as se-

quence or structural relatedness, evolutionary relationships, chemical functions or biological roles

etc and these are highly dependent on the task at hand. This observation calls for an explicit identifi-

cation and understating of the various stages involved in the assessment of proteins’ similarities. As

illustrated in Figure 1.1, the first four stages, which have dominated the research in protein structure

comparison so far, are: similarity conception, model building, mathematical definition and method

implementation. Interestingly, the fifth stage, where one would seek to leverage the strength of a

variety of methods by using appropriate consensus and ensemble mechanismshas barely been in-

vestigated. One such approach has recently been introduced by means of the Protein (Structure)

Comparison, Knowledge, Similarity and Information(ProCKSI) web server [27]. Using a set of

modern decision making techniques, ProCKSI automatically integrates the operation of a number
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of the most popular comparison methods (as listed in Table 1.1) and provides an integrated con-

sensus that can be used to obtain more reliable assessment of similarities for protein datasets. The

consensus-based results obtained from ProCKSI take advantage of the ’collective wisdom’of all the

individual methods (i.e, the biases and variances of a given method are compensated by the other

methods biases and variances) and minimizes the chances of falsely attributing similarity to (sets

of) proteins. That is, false positives are more frequent at individual method level because usually

most of globally different proteins still share some common substructures.

While trying to cope with the above mentionedscientific challenge(Figure 1.1) in the

field of computational molecular biology, the performance of ProCKSI becomes the bottleneck

for moderately large and very large instances of datasets (section 1.2 provides further details of this

computational challenge). A thorough survey of the related literature revealsthat in order to improve

the overall performance, three routes are usually followed [28]: (a) the development of new algo-

rithms or the redesign/modification of existing ones based on fasterheuristic techniques [29, 30];

(b) development of special purpose ROM based hardware chips [31,32]; and (c) the use of parallel

and distributed computing. Routes (a) and (b) can only be applied in very specific cases as they re-

quire considerable in-depth knowledge of a problem or substantial economic resources respectively.

The third alternative, the utilization of distributed and parallel computation is becominga more

ubiquitous approach as in some cases distributed/parallel solutions in one problem can be reused

(with slight modifications) in other problems. Moreover, due to ongoing advances in processor and

networking technologies, the scope of parallel computing is also extending from traditional super-

computers to massively parallel computers, clusters of workstations (COW) andeven crossing the

boundaries in the form of clusters of clusters i.egrid computing[33–35]. This paradigm shift in the
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provision of parallel computing facilities afford scalability at very low cost. Furthermore, in terms

of code maintenance and code portability, as compared to traditional super computers, distributed

computing fares better and several successful applications to bio-sciencesare discussed in [36–44].

Notwithstanding the above successes, grid computing has no magic applicability formula

and many different distribution/parallelization solutions might exists for a given problem. Which of

these strategies would be the best one to use will depend to a large extent not only on the specific

problem structure but also on factors such as the choice/availability of particular hardware, software,

interconnection types, security protocols and human resources etc. This thesis investigates several

approaches that could provide the solution to the computational challenge for MC-PSC using vari-

ous distributed approaches as described in chapter 4. The theoretical and empirical results of these

investigations are discussed in the successive chapters as outlined in section 1.5.

1.2 Challenges of MC-PSC

As described above,ProCKSIis an online automated system that implements a protocol for MC-

PSC. In particular, it allows the user to submit a set of protein structures and perform eitherall-

against-allor target-against-allprotein comparisons with the methods listed in Table 1.1. ProCKSI

combines the results of pairwise comparisons delivered by the various available methods, nor-

malizes them and presents a consensus form of the results through an intuitive web-based visual

interface. Furthermore, it gathers information about the proteins being compared through hyper

links to external sources of information e.g.Information Hyperlinked Over Protein(IHOP) [51],

Structural Classification of Proteins(SCOP) [52], andClass Architecture Topology and Hierar-

chy(CATH) [53]. As demonstrated in [27], and previously suggested in [54]and [55], the ensemble
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FIGURE 1.1: Stages in the derivation of a protein’s classification: (1) Decide what “similarity” means,
which is a declarative and problem-dependent step. (2) Heuristically build a model of similarity based on1.
This new similarity/distance conception will have its own bias, variance and outliers. (3) Decide whether this
idealized model will be instantiated as a distance/similarity measure or metric. (4) One or more algorithms
are implemented in order to calculate3, which can be solved exactly and in polynomial time only in the sim-
plest of cases. The more interesting similarity definitions, however, give rise to complex problems requiring
heuristics/approximate algorithms for their solution. (5) Combining many different methods with different
views of similarity produces a multi-competence pareto-front, from which a consensus picture might be de-
rived. In turn, this allows the structural biologist to (6) cluster and classify proteins reliably. Furthermore, in
order to provide most efficient (real-time) results based onthe philosophy of (5), the need for the data and
computation to be distributed and executed in a grid environment becomes indispensable.

and consensus based approach adopted by ProCKSI yields more reliableresults of biological signif-

icance as compared to the results obtained with any single structure comparison method developed

so far. However, the integration of multiple methods for protein structure comparison, on the one

hand, coupled with a rapidly growing number of 3D structures in the Protein Data Bank (PDB),

on the other hand, gives rise to a computational challenge that is far beyond the capabilities of a
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TABLE 1.1: Building Blocks for Multi-Criteria Protein Structure Comparison. The name and references for
each of the method is shown in column “Method”, followed by the column “Notion of similarity” where the
specific notions that each method uses to determine (di)similarity are mentioned. Columns “Computational
techniques” and “Resulting measures/metrics” summarize how each similarity is computed and in what form
it is returned. The last column gives an indication of relative computational requirements (time) for the
different methods.Key: AL = Number of Alignments;OL = Number of Overlaps;Z = Z-Score;TMS= TM-
align Score;SN= Normalized Score.∗ The average CPU time for a single pair of protein structures on a
standard P4 (1.86 GHz, 2GB RAM) dual-core machine. Thus the total average execution time taken by all
six methods (with a total of 15 different similarity measures/metrics) for the comparison of a single pair of
protein structures is 8.54 secs plus some additional time for performing I/O.

Method Notion of similarity Computational techniques Resulting measures/metrics Time∗ [sec]

DaliLite [45] intramolecular distances distance matrices, AL,Z, RMSD 3.33

combinatorial,

simulated annealing

MaxCMO [46] overlap between contact mapsVariable Neighborhood Search AL, OL 3.32

CE [47] inter-residue distances heuristics, AL, Z, RMSD 1.27

rigid body superposition dynamic programming

USM [48] Kolmogorov complexity compression utilities USM-distance 0.34

TM-align [49] inter-atomic distances rotation matrix, AL, RMSD,TMS 0.21

dynamic programming

FAST [50] inter-residue distances heuristics, RMSD, AL, SN 0.07

dynamic programming

single standard workstation or a small group of workstations, specially if one would like to perform

a multi-criteria comparison for very large datasets in real-time. That is, as the number of protein

structures being compared increases, the corresponding number of pairwise comparison jobs, I/O

files and directories, computational time and memory required for each comparison method and

associated pre-processing (e.g. data extraction and contact map preparation) and post-processing

(e.g. consensus generation, clustering and result visualization) methods alsoincreases. An estimate

of some of these complexities is presented in the following sections.
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Job Complexity

Job complexity for protein structure comparison depends on the size (i.e numberof structures) of the

dataset/database in hand as well as the mode of comparison. As of writing of this dissertation, there

are64,036protein structures in the PDB and this number grows steadily. If we compare a particular

protein against all the proteins in a given dataset (e.g. PDB), this is referred to astarget-against-all

mode of comparison. While being the simplest mode, it is usually used to compare a protein of

unknown function but known structure with those whose structures and functions are known. The

results of comparison would provide clues regarding the function of the query protein. The number

of pairwise comparison jobs in this mode is directly related to the number of structuresin the target

dataset. For example, given the current holdings of PDB, there will be64,036comparison jobs while

using target-against-all mode of comparison. However, in the case of multi-criteria comparison the

actual number of jobs will be the number of target structures× the number of methodsbeing used

for multi-comparison.

Another mode of comparison is the one in which we compare all the elements of a par-

ticular dataset among itself or with all the elements of another dataset. This mode is referred as

all-against-allcomparison and is mostly used to cluster/classify a group of structures. The resulting

clustering/classification is aimed to reveal the functional and evolutionary similaritiesamong the

proteins. The number of pairwise comparison jobs in this mode is proportional to the square of the

number of protein structures involved in the comparison1 × the number of methods. For example,

the comparison jobs for current holdings of PDB using all-against-all mode withonly one method

will be:
1Please note that some methods return different similarities for the comparison of Pi with Pj and the reverse

comparison
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Nj = n2 = 640362 = 4,100,609,296

Where,N j represents the number of pairwise comparison jobs, whilen being the current

number of protein structures available in the PDB.

As mentioned above the actual number of jobs will be4,100,609,296× the number of

methodsbeing used. Therefore, it will require an optimal way to distribute all these jobs in the

form of some smaller subsets (working packages) that could be submitted for parallel/distributed

execution. Needless to say, this complexity calls for a high performance computing solution. Please

note that protein structure prediction methods, e.g. Robetta [56] and I-TASSER [57], often sample

thousands of “decoys” that must be compared and clustered together at each iteration of the algo-

rithm as to obtain a centroid structure. Thus comparing thousands or ten of thousands of protein

structures is not limited to assessing the PDB only but actually occurs as a sub-problem in many

other structural bioinformatics activities.

Time Complexity

Different protein structure comparison algorithms have different time complexitiesand run time

profiles. Table 1.1 provides an indicative comparison between the times taken by the algorithms

we used in our experiments for a typical protein pair. Arguably, depending on the length of the

members of a protein pair, the times mentioned in the table would change. However, these can be

use to give a rough estimate2 of the run time profile that can be expected from these algorithms:

2More detailed analysis of run times is provided in later chapters
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target-against-all: for a given protein structure compared against the64,036structures in the

PDB (assuming only one chain per PDB file), a Multi-Criteria comparison with the methods

available in Table 1.1 consuming the time mentioned in the fifth column, would take, on a P4

(1.86GHz, 2GB RAM) dual-core workstation37.98days.

all-against-all: if one were to execute this type of comparison for the entire PDB, this will

result on2,798,939,025pairwise comparison jobs (assuming again one chain per PDB file)

and it would take about6662.71years for all jobs to finish on a single machine.

Space Complexity

Executing potentially millions of pairwise protein structure comparison jobs has strictrequirements

in terms of memory and bandwidth allocation. MC-PSC jobs generate a very large number of

output data files that need to be parsed and summarized in a way that enablesthe execution of the

normalization and consensus steps but also that falls within the memory constraints of the available

computational infrastructure. With the current number of proteins structures inPDB, and the total

number of comparison measures/metrics for all six methods (Table 1.1) there may be as many data

items in the resultant di(similarity) matrix as:

n2 × (Nmt + 2) =64,0362 × 17= 69,710,358,032

Wheren again represents the current number of protein structures in PDB,Nmt represents

the total number of measures/metrics (see Table 1.1) and the additional2 accounts for the two

protein IDs involved in each comparison. Using a minimum of 5 digits/characters tohold each data

item it may require about 348 GB to hold the matrix. Given the size of this matrix, it becomes

indispensable to compute and hold its values in a distributed environment and usesome parallel I/O
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techniques to assemble each distributed portion directly at an appropriate storage location.

The above back-of-the-envelope calculations point to the need for a high-performance

solution to the MC-PSC problem as described in the next section.

1.3 Research Objectives

Based on the above mentioned problem description, this dissertation seeks to provide a step change

in computing capabilities through a suite of grid-styled distributed computing technologies by par-

allelizing the existing code to bring closer the dream of real-time multi-comparisons of very large

protein structures datasets. The dissertation also aims at providing a reflectionon the software

engineering aspects behind the implementation of a distributed solution to the MC-PSCproblem

based on local computer cluster as well as with a Grid implementation. The investigationof sev-

eral computational strategies, approaches and techniques is aimed to substantially improve the ways

to enhance the ProCKSI’s functionality and interoperability with other services thus extending its

applicability to a wider audience. The combination of better and faster parallel and distributed algo-

rithms with more similarity comparison methods is deemed to represent an unprecedented advance

on protein structure comparison technology. Thus, the advances that arepresented through this

thesis might allow both directed and fortuitous discovery of protein similarities, families, super-

families, domains, etc, on one hand and help pave the way to faster and betterprotein function

inference, annotation and protein structure prediction and assessment, on the other hand.

1.4 General Methodology

The work presented in this dissertation follows several methodologies, namely,
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1. Wide and deep literature survey and analysis:there is a plethora of literature available

on the use of parallel and distributed approaches for a variety of applications in the field of

life sciences. The comprehensive survey and analysis of these approaches provides not only

the state-of-the-art knowledge in terms of the technological development but also helps in

learning the lessons from others experiences and selecting the proved approaches for further

investigation.

2. An engineering approach to distributed and Grid computing: this type of methodology

provides the insight in terms of setting-up the distributed and grid computing infrastructure

based on the lessons learned from the first methodology. Starting from the infrastructure of

a local cluster and testing it with a variety of options to working on a National Grid Service

requires all the nitty gritty technical skills of engineering the Grid.

3. An experimental approach for evaluating the implementations: the implementations of

the proposed parallel and distributed approaches for the solution of MC-PSC problem are

evaluated based on the results of the the experiments by using standard measures and metrics

being used in the community.

4. A self-reflective commentary on the easiness or otherwise of working with the Grid: the

design, implementation, and evaluation of each approach is discussed under relative sections

in terms the complexity of working with the Grid.

1.5 Thesis Organization

The design, implementation and evaluation of the newly built distributed architecturealong with

related case studies and background material is presented in the form of self-contained chapters as
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outlined bellow:

Chapter 2: Survey of Web and Grid Technologies in Life Sciences

This chapter provides a broad survey of how the life science community as awhole has benefited

from the proliferation of web and grid technologies. The reason that the study of theworld wide

web(www) or simply thewebis carried out along with the grid technology lies in the fact that the

direction of current development in both of these technologies is coalescingtowards an integrated

and unifiedWeb-based grid serviceor Grid-based web serviceenvironment [58]. That is, proper

understanding of the current state-of-the-art in grid computing requires athorough understanding

of many concepts, standards and protocols related to web technologies. Therefore, this chapter

reports on the developments in both of these technologies as they pertain to thegeneral landscape of

Life Sciences. As many of the problems pertaining to different fields of life sciences usually share

a common set of characteristics in terms of their computational requirements, this broad survey

was essential for investigating the most common technological solution to the problemdiscussed

in section 1.2. The major focus of this technological review was to collate up-todate information

regarding the design and implementation of various bioinformatics Webs, Grids,Web-based grids

or Grid-based webs in terms of their infrastructure, standards, protocols, services, applications and

other tools. The review, besides surveying the current state-of-the-art, also provides a road map

for future research and open questions. However, due to the flood of literature prevailing under

the heading of this chapter the need for another chapter focusing specially on the narrow field of

structural proteomics aroused, as described in the next section.
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Chapter 3: Overview of the Grid and Distributed Computing for Structural Proteomics

This chapter aims to provide a distilled overview of some of the major projects, technologies and re-

sources employed in the area of structural proteomics. The major emphasis is to comment on various

approaches related to the gridification and parallelization of some flagship legacy applications, tools

and data resources related to key structural proteomics problems such asprotein structure predic-

tion, folding and comparison. The comments are based on theoretical analysis of some interesting

parameters such as performance gain after gridification, user level interaction environments, work-

load distribution and the choice of deployment infrastructure and technologies. Furthermore, this

chapter also provides the detailed description of the ProCKSI server’s existing architecture which

is essential for the comprehensive understanding of the major contribution ofthis dissertation as

presented in the following chapters.

Chapter 4: Materials and Methods

This chapter provides the description of some basic principles and procedures that have been used to

carry out this research. In particular it explains the representation of theproblem space and various

approaches used for its partitioning. It also provides the description of different infrastructures and

datasets used for the experimental analysis of the newly proposed architecture.

Chapter 5: High-throughput Distributed Framework for MC-PSC

This chapter describes the design and implementation of a high-throughput distributed re-implementation

of ProCKSI for very large data sets. The core of the new framework liesin the design of an innova-

tive distributed algorithm that runs on each compute node in a cluster/grid environment to perform
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structure comparison of a given subset of input structures using some ofthe most popular PSC

methods (e.g. USM, MaxCMO, Fast, DaliLite, CE and TMalign). This is followed by the proce-

dure of distributed consensus building. Thus the new algorithms proposed here achieves ProCKSI’s

similarity assessment quality but with a fraction of the time required by it. Experimental results

show that the proposed distributed method can be used efficiently to comparea) a particular protein

against a very large protein structures data set (target-against-all comparison),b) a particular very

large scale dataset against itself or against another very large scale dataset (all-against-all compar-

ison). The overall speedup and efficiency of the system is further optimized with different load

balancing strategies that reduce the percentage of load imbalance on eachnode. A comparative

picture of these load balancing strategies is also described in full details along with their empirical

results. Performance evaluation of the new system with different alternative Local Resource Man-

agement System (LRMS)’s and MPI implementations was also carried out in order to choose the

right enabling technologies from several different alternatives as described in the next chapter.

Chapter 6: Performance Evaluation under Integrated Resource Management Environment

This chapter evaluates the effect on the performance of MC-PSC jobs when the MPI environment

is integrated with a Local Resource Management System (LRMS) such as Sun Grid Engine (SGE)

and Portable Batch System (PBS) using different implementations of MPI standard such as MPICH

and OpenMPI. Experiments with different ways of integration provide a comparative picture of the

possible approaches with the description of resource usage information foreach parallel job on each

processor. Understanding of different ways of integration sheds light on the most promising routes

for setting up an efficient environment for very large scale protein structure comparisons.
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Chapter 7: On the Scalability of the MC-PSC in the Grid

Based on the lessons learned in previous chapters by evaluating the performance of the high-

throughput distributed framework for MC-PSC, the next step would be to make use of the Grid

computing to overcome the limitations of a single parallel computer/cluster. It is also a fact that

the use of the Grid computing also introduces additional communication overhead which needs to

be taken into consideration. This chapter describes the experiments performed on the UK National

Grid Service (NGS), to evaluate the scalability of the distributed algorithm across multiple sites. The

results of the cross-site scalability are compared with single-site and single-machine performance

to analyze the additional communication overheard in a wide-area network.

Chapter 8: On the Storage, Management and Analysis of (Multi) Similarity Data for Large Scale

Protein Structure Datasets in the Grid

This chapter briefly describes some of the techniques used for the estimation of missing/invalid val-

ues resulting from the process of multi-comparison of very large scale datasetsin a distributed/grid

environment. This is followed by an empirical study on the storage capacity andquery processing

time required to cope with the results of such comparisons. In particular storage/query overhead of

two commonly used database technologies such as theHierarchical Data Format(HDF) (HDF5)

andRelational Database Management System(RDBMS) (Oracle/SQL) is investigated and com-

pared. These experiments were conducted on the National Grid Service (NGS), UK.
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Chapter 9: Consensus based Protein Structure Similarity Clustering

This chapter compares the results of two competing paradigms for consensus development i.e., the

Total evidenceand theTotal consensus. It uses the Protein Kinase Dataset to perform the classifica-

tion with both of these approaches and discuses the pros and cons of eachapproach.

Chapter 10: Conclusions and Future Work

This chapter builds on the aggregation of individual conclusions from all ofthe chapters and pro-

vides a holistic view of the overall conclusions of this thesis. It also provides some directions for

the future work.

1.6 List of Contributions

This thesis is a direct contribution to the field of bio-sciences in general and Multi-Criteria Protein

Structure Comparison and Analysis in particular. It focuses on the development of a novel compu-

tational framework for MC-PSC based on grid-styled distributed computing strategies. To this end,

a number of contributions were made, which are listed bellow:

• State-of-the-art literature review

Technological evolution has brought upon converging effects in computing and hence a thor-

ough understanding of one paradigm requires the knowledge and understanding of many other

paradigms which are interrelated and are interweaving to form a single whole. The scope of

distributed computing is broadening from parallel to Grid computing on one hand, and, on

the other hand the architecture of the Grid computing is moving towards integration with the

world wide web to form what is called theWorld Wide Grid. This dissertation contributes
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in presenting a comprehensive survey of the scholarly articles, books, and other resources

related to the evolution and application of the Grid/distributed computing in the field of bio-

sciences in general and structural proteomics in particular. Besides identifying the areas of

prior scholarship, this review also points the way forward for future research.

• Design, implementation and evaluation of a novel distributed framework for MC-PSC

The solution framework for the enormous computational challenge inherent in the nature of

MC-PSC is the major contribution of this dissertation. The framework is based on anovel dis-

tributed algorithm that scales to any number of available nodes in a cluster/grid environment.

It uses the local storage/memory of each node to store the multi-similarity data in a distributed

environment and hence tackles both data and compute intensive nature of MC-PSC and makes

the processing of large scale datasets possible.

• Empirical analysis of different load balancing strategies for MC-PSC

Given the fact that the size/length of protein structures varies from a fewtens of amino acids

to several hundreds, the execution time is hugely different for differentpairwise comparisons.

This variation in the execution time renders the simple decomposition based on the equal

number of pairwise comparisons per node inefficient due to heavy load imbalance. This

thesis presents an empirical analysis of this load imbalance and proposes an efficient load

balancing strategy that distributes the load based on the number of residues.

• Studies on the integration of parallel and local resource management environments

In order to reflect on the engineering aspects of the distributed environment, this dissertation

provides an empirical analysis of different integrated environments for parallel and local re-

source management systems. The results of this analysis would significantly contribute in the
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design and implementation of an optimal distributed computing infrastructure needed for the

execution of distributed algorithms/applications.

• Grid scalability evaluation for distributed MC-PSC

The deployment of the distributed application on the UK’s National Grid Service (NGS)

infrastructure and evaluation of its scalability across multiple clusters provides large scale

analysis of the effect of gridification. This analysis provides insights on how to overcome

the limitations of a single site/cluster and further enhance the performance of thesystem by

leveraging the resources from multiple sites.

• Comparison and evaluation of different database technologies for proposed MC-PSC

science center

The proposal of a science center for MC-PSC based on the pre-computed results of multi-

similarity data is another contribution of this dissertation. To this aim, a survey, analysis and

evaluation of different database technologies is presented in the context of MC-PSC.

• Comparison and evaluation of different consensus-based approaches for MC-PSC

The overall goal of the MC-PSC is to provide a consensus-based view of the protein structure

similarity. Since, there are many different approaches for building the consensus, this disser-

tation contributes in providing a comparative picture of the two most widely used paradigms

i.e. Total Evidence(TE) andTotal Consensus(TC).

1.7 Publications

During the course of this thesis, the following peer reviewed publications were also contributed:

Peer Reviewed Conference Papers:



1. INTRODUCTION 20

1. G. Folino,A. A Shah, and N. Krasnogor.: On the Scalability of Multi-Criteria Protein Struc-

ture Comparison in the Grid, In: Proceedings of The Euro-Par 2010 Workshop on High Per-

formance Bioinformatics and Biomedicine ( HiBB), August 31-Sep 3, 2010 ,Ischia, Naples,

Italy.

2. G. Folino,A. A Shah, and N. Krasnogor.:On the Storage, Management and Analysis of

(Multi) Similarity for Large Scale Protein Structure Datasets in the Grid, In: Proceedings

of IEEE CBMS 2009, the 22nd IEEE International Symposium on Computer-Based Medical

Systems, August 3-4, 2009, Albuquerque, New Mexico, USA.

3. A. A Shah, G. Folino, D. Barthel and N. Krasnogor.:Performance Evaluation of Protein

(Structure) Comparison Algorithms under Integrated Resource Environment for MPI Jobs,

In: Proceedings of International Symposium on Parallel and Distributed Processing with Ap-

plications (ISPA ’08), ISBN: 978-0-7695-3471-8, pp. 817-822, IEEE Computer Society,

2008.

4. A.A. Shah, D. Barthel and N. Krasnogor.:Grid and Distributed Public Computing Schemes

for Structural Proteomics. In: P. Thulasiraman et. al. (Eds.): Frontiers of High Performance

Computing and Networking ISPA 2007 Workshops, Lecture Notes in Computer Science, Vol.

No. 4743, pp. 424-434, Springer-Verlag Berlin Heidelberg, 2007.

5. A.A. Shah, D. Barthel and N. Krasnogor.: Protein Structure Comparison, Clusteringand

Analysis: An overview of the ProCKSI decision support system. In: Proceedings of Inter-

national Symposium on Biotechnology (ISB2007), University of Sindh, Pakistan, Nov 4-8,

2007



1. INTRODUCTION 21

Peer Reviewed Journal Papers:

1. A. A Shah, G. Folino, and N. Krasnogor.:Towards a High-Throughput, Multi-Criteria Pro-

tein Structure Comparison, IEEE Transactions on NanoBioscience, Vol. 9(2), pp.144-155,

2010. [doi:10.1109/TNB.2010.2043851]
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1.8 Conclusions

This chapter provided the general introduction to the thesis. It started with thebackground of the

MC-PSC and described in detail the dimensions of the problem (computational challenge) that it

faces and the main objectives of this research. The general methodologyfor the proposed solution

has been described along with the outline and scope of the material presentedin the rest of the

thesis. The chapter also mentions some key contributions of this dissertation along with list of

publications. The next couple of chapters provide the comprehensive survey/review of the literature

which becomes foundations for the building of successive chapters.

http://dx.doi.org/10.1109/TNB.2010.2043851
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CHAPTER 2

SURVEY OF WEB AND GRID TECHNOLOGIES IN L IFE

SCIENCES

Chapter 1 provided a succinct description of the research topic and also explained the objectives

and structure of the thesis in general. This chapter and the one that followsthis would review the

relevant literature. The review presented in these two chapters starts from a wide perspective of

the field and finally converges and focuses on the specific topic of the research and summaries the

potential findings that could help in conducting the research.

This chapter was published as a peer reviewed journal article inCurrent Bioinformatics,

Vol. 3(1), pp.10-31, 2008. [doi:10.2174/157489308783329850].

2.1 Introduction

"The impact of computing on biology can fairly be considered a paradigm change as bi-
ology enters the 21st century. In short, computing and information technology applied
to biological problems is likely to play a role for 21st century biology that is in many
ways analogous to the role that molecular biology has played across all fieldsof bio-
logical research for the last quarter century and computing and information technology
will become embedded within biological research itself" [59].

As an example of the above referred conclusion regarding the embedding ofcomputing

http://www.ingentaconnect.com/search/article?title=web+and+grid&title_type=tka&author=Krasnogor&journal=current+bioinformatics&journal_type=words&volume=3&issue=1&year_from=2003&year_to=2008&database=1&pageSize=20&index=1
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and information technology (IT) in biological research, one can look at thestate-of-the-art in web

and grid technologies as applied to bioinformatics, computational biology and systems biology.

The World Wide Web or simply the web has revolutionized the field of IT, and related disciplines,

by providing information-sharing services on top of the internet. Similarly grid technology has

revolutionized the field of computing by providing location-independent resourcesharing-services

such as computational power, storage, databases, networks, instruments, software applications and

other computer related hardware equipment. These information and resource-sharing capabilities

of web and grid technologies could upgrade a single user computer into a global supercomputer

with vast computational and communication power, storage capacity. Access to very large-scale

datasets, application programs and tools are also some of the benefits of web and grid. The so called

upgraded web and grid-enabled global super computer would make itself a potential candidate to

be used in resource-hungry computing domains. For example, it could be usedto efficiently solve

complex calculations such as parameter sweep scenario with Monte Carlo simulation and modeling

techniques, which would normally require several days, months, years oreven decades of execution

time on a traditional single desktop processor.

A quick look at the literature reveals that web and grid technologies are continuously be-

ing taken up by the biological community as an alternate to traditional monolithic high performance

computing mainly because of the inherent nature of biological resources (distributed, heterogeneous

and CPU intensive), smaller financial costs, better flexibility, scalability and efficiency offered by

the web and grid-enabled environment. An important factor that provides the justification behind

the ever growing use of web and grid technologies in life sciences is the continuous and rapid in-

crease in biological data production. It is believed thata typical gene laboratory can generate
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approximately 100 terabytes of information in a year[60], which is considered to be equivalent to

about 1 million encyclopedias. The problem of managing these rapidly growinglarge datasets is

further compounded with their heterogeneous and distributed nature (varying in terms of storage

and access technologies). Currently there are no uniform standards (or at least not yet been adopted

properly by the biological community as a whole) to deal with the diverse nature, type, location

and storage formats of this data. On the other hand, in order to obtain the most comprehensive

and competitive results, in many situations, a biologist may need to access severaldifferent types

of data which are publicly available in more than 700 [61] biomolecular databases. One way to

handle this situation is to convert the required databases into a single format andthen store it on a

single storage device with extremely large capacity. Considering the tremendous size and growth of

data this solutions is infeasible, inefficient and very costly. The application of Web and Grid tech-

nology provides an opportunity to standardized the access to these data in an efficient, automatic

and seamless way by providing an intermediary bridge architecture as shown in Figure 2.1. The so

called intermediary bridge makes use of appropriate web and grid technologies and standards such

as grid middleware specific Data Management Service (DMS), distributed storage environments

such as Open Grid Service Architecture-Data Access and Integrator (OGSA-DAI) (http://www.

ogsadia.org) with Distributed Query Processor (DQP), Storage Resource Broker (SRB) [62] and

IBM DiscoveryLink [63] middleware etc.

Furthermore, it is also very common for a typical biological application that involves

very complex analysis of large-scale datasets and other simulation related tasksto demand for high

throughput computing power in addition to seamless access to very large biological datasets. The

traditional approach towards this solution was to purchase extremely costly special-purpose super

http://www.ogsadia.org
http://www.ogsadia.org
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FIGURE 2.1: Major architectural components of a biological DataGrid environment (reproduced from [64]
and annotated). The middle layer, which consists of grid andweb technologies, provides interoperatibility
between biological applications and various types of data.

computers or dedicated clusters. This type of approach is both costly somewhat limited as it locks

the type of computing resources. Another problem associated with this approach would be that of

poor utilization of very costly resources, i.e. if a particular application finishesits execution then

the resources could remain idle.

Grid technology on the other hand provides more dynamic, scalable and economical way

of achieving as much computing power as needed through computational grid infrastructures con-

nected to a scientist’s desktop machine. There are many institutional, organizational, national and

international Data/Computational/Service Grid testbeds and well established production grid en-

vironments which provide these facilities free of charge to their respectivescientific communi-

ties. Some of these projects include Biomedical Research Informatics Delivered by Grid Enabled

Services (BRIDGES)http://www.brc.dcs.gla.ac.uk/projects/bridges, EGEE( http://public.eu-

egee.org) [65], Biomedical Informatics Research Network (BIRN) (http://www.nbirn.net), Na-

tional Grid Service UK [66], OpenBioGrid Japan [64], SwissBioGrid [67], Asia Pacific BioGrid

http://www.brc.dcs.gla.ac.uk/projects/bridges
http://www.nbirn.net
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(http://www.apgrid.org), North Carolina BioGrid (http://www.ncbiotech.org), etc. All

these projects consist of an internet based interconnection of a large number of pre-existing in-

dividual computers or dedicated clusters located at various distributed institutional and organiza-

tional sites that are part of the consortium. Figure 2.2 illustrates some major architectural com-

ponents for such a computational setup. Each grid site in the network has usually a pool of

compute elements managed by some local resource managing software such asSun Grid En-

gine (SGE: http://gridengine.sunsource.net), (PBS:http://www.openpbs.org), (Load Sharing

Facility (LSF):www.platform.com/Products/Platform.LSF) and Condor (www.cs.wisc.edu/

condor) etc. Similarly grid storage elements are accessed via data management services and proto-

cols such as GridFTP, Reliable File Transfer Protocol (RFTP) and OGSA-DAI etc.

FIGURE 2.2: Computational grid architecture: internet-based interconnection of heterogeneous and dis-
tributed individual workstations, dedicated clusters, high performance computing (HPC) servers and clusters
of distributed PCs (Desktop PC Grid)

Some other large scale bioinformatics grid projects have provided a platformwhere a

biologist can design and run complexin-silico experiments by combing several distributed and het-

erogeneous resources that are wrapped as web-services. Examplesof these are myGrid [68, 69],

http://www.apgrid.org
http://www.ncbiotech.org
http://www.openpbs.org
www.platform.com/Products/Platform.LSF
www.cs.wisc.edu/condor
www.cs.wisc.edu/condor
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BioMOBY [70–72], Seqhound (http://www.blueprint.org/seqhound) and Biomart (http://

www.biomart.org) etc., which allow for the automatic discovery and invocation of many bioin-

formatics applications, tools and databases such as European Molecular Biology Open Software

Suite (EMBOSS) [73] suite of bioinformatics applications and some other publiclyavailable ser-

vices from the National Center for Biomedical Informatics (NCBI) (http://www.ncbi.nlm.nih.

gov) and European Bioinformatics Institute (EBI) (www.ebi.ac.uk). These projects also provide

some special toolkits with necessary application programming interfaces (APIs), which can be used

to transform any legacy bioinformatics application into a web-service that canbe deployed on their

platforms.

The availability of these BioGrid projects brought into sharp focus the needfor better user

interfaces as to provide the biologist with easier access to these web/grid resources. This has led to

the development of various web based interfaces, portals, workflow management systems, problem

solving environments, frameworks, application programming environments, middleware toolkits,

data and resource management approaches along with various ways of controlling grid access and

security. Figure 2.3 provides a pictorial view of these technologies in the context of the BioGrid

architecture. This review attempts to provide an up-to-date coherent and curated overview of the

most recent advances in web and grid technologies as they pertain to life sciences. The review aims

at providing a complementary source of additional information to some previous reviews in this

field such as [74,75].

Among the many advances that the computational sciences have provided to the lifesci-

ences the proliferation of web and grid technologies is one of the most conspicuous. Driven by

the demands of biological research these technologies have moved from their classical and some-

http://www.blueprint.org/seqhound
http://www.biomart.org
http://www.biomart.org
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
www.ebi.ac.uk
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FIGURE 2.3: Major components of a generic BioGrid infrastructure: there are three main layers; the ap-
plication, the middleware and the physical layer. The application layer focuses on APIs, Toolkits, Portals,
Workflows etc., the middleware layer focuses on the application, data and resource management and services
while the physical layer provides the actual compute and data resources.

what static architecture to more dynamic and service-oriented architecture. The direction of current

development in these technologies is coalescing towards an integrated and unified Web-based grid

service [58] or Grid-based web service environment as shown in Figure 2.4. Accompanying this

rapid growth, a huge diversity of approaches to implementation and deployment routes have been

investigated in relation to the use of various innovative web and grid technologies for the solution

of problems related to life sciences. The following sections provide an overview of some of these

works as per orgnaziation of Figure 2.5; sections 2.2 and 2.3 present a comprehensive review of

the web and grid technologies respectively; section 2.4 describes the architecture, implementation

and services provided by a selection of flagship projects. Finally, section 2.5presents concluding

remarks on the reviewed literature with a clear indication of certain key open problems with the

existing technological approaches and provides a road-map and open questions for the future.
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FIGURE 2.4: Review of technological infrastructure for life sciences:classical HTML based web started
in 1991 and traditional Globus based grid was introduced by Ian Foster in 1997. With the introduction
and development of semantic web, web-services and web agents in and after 2001, the new web and grid
technologies are being converged into a single uniform platform termed as ’service-oriented autonomous
semantic grid’ that could satisfy the needs of HT (high throughput) experimentations in diverse fields of life
sciences as depicted above.

2.2 Web Technologies

2.2.1 Semantic Web Technologies

One of the most important limitations of the information shared through classical web technology is

that it is only interpretable by human and hence it limits the automation required for more advanced

and complex life science applications that may need the cascaded execution of several analytical

tools with access to distributed and heterogeneous databases. The basic purpose of semantic web
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FIGURE 2.5: Hierarchical organization of the state-of-the-art overview of web and grid technologies. The
number in brackets point to related references that has beenreviewed.

technology is to eliminate this limitation by enabling the machine (computer) to interpret/under-

stand the meaning (semantics) of the information and hence allow artificial intelligence based ap-

plications to carry out decisions autonomously. It does so by adding some important features to the

basic information-sharing service provided by the classical web technology. These features provide

a common format for interchange of data through some standard languagesand data models such as

eXtensible Markup Language (XML), Resource Description Framework (RDF) along with several

variants of schema and semantic based markup languages such as, Web Ontology Language (OWL)

and Semantic Web Rules-Language (SWRL) etc. Wang et al. [76] arguesthat although initially

XML was used as a data standard for platform independent exchange and sharing of data, because

of its basic syntactic and document-centric nature, it was found limited, especially for the rep-
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resentation of rapidly increasing and diverse ’omic’ data . Therefore, currently RDF along with

some new variants of OWL such as OWL-Lite, OWL-DL and OWL-Full are being adopted as to

implementation shown in Figure 2.6. Various attempts towards the use of semantic web for life

sciences have been reported in the literature mainly focusing on data/application integration, data

provenance, knowledge discovery, machine learning and mining etc. Forexample, Satya et al. [77]

discusses the development of a semantic framework based on publicly available ontologies such as

GlycO and ProPreO that could be used for modeling the structure and function of enzymes, gly-

cans and pathways. The framework uses a sublanguage of OWL called OWL-DL [78] to integrate

extremely large ( 500MB) and structurally diverse collection of biomolecules. One of the most

important problems associated with the integration of biological databases is thatof their varying

degree of inconsistencies. Because of this, there have also been certain efforts for providing some

external semantic-based tools for the measurement of the degree of inconsistencies between differ-

ent databases. One such effort is discussed in [79], which describes an ontology-based method that

uses a mathematical function to determine the compatibility between two databases basedon the

results of semantically matching the reference.

The autonomous and uniform integration, invocation and access to biological data and

resources as provided by semantic web have also created an environment that supports the use of

in-silico experiments. Proper and effective use of In-silico experiments requires the maintenance

of user specific provenance data such as record of goals, hypothesis, materials, methods, results

and conclusions of an experiment. For example, Zhao et al. [81] showcases the design of a RDF

based provenance log for a typical in-silico experiment that performs DNA sequence analysis as

a part of myGrid [68, 69] middleware services. The authors have reported the use of Life Sci-
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FIGURE 2.6: A biologist’s view of classical and semantic web. The classical web does not provide the
automated (computational) integration and interoperatibility between various sources of data/application-
s/services and the biologist needs to do all of this manually. The semantic web on the other hand frees the
biologist from lot of manual work. (Reproduced from [80]).

ence Identifiers (LSID) for achieving location-independent access to distributed data and meta-data

resources, RDF and OWL have been used for associating uniform semantic information and re-

lationships between resources, while Haystack [82], a semantic web browser, has been used for

delivering the provenance-based web pages to the end-user. The use of RDF model as compared

to XML provides more flexible and graph-based resource description with location independent

resource identification through URIs (Universal Resource Identifier).

There are various other significant contributions that illustrate the use of semantic web

technology for the proper integration and management of data in the context of bioinformatics,

computational biology and systems biology. For example, The Gene Ontology Consortium [83,84],

make use of semantic web technologies to provide a central gene ontology resource for unification
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of biological information. [85,86] uses OWL-DL to develop a data exchange format that facilitates

integration of biological pathway knowledge. [87, 88] uses semantic web to provide a resource for

the development of tools for microarray data acquisition and query according to the concepts spec-

ified in Minimum Information About a Microarray Experiment (MIAME) a standard [89]. Further

information about some semantic web and ontology based biological applications and tools for life

sciences is provided in Table 2.1.

TABLE 2.1: Semantic-web and ontology based resources for life science

Semantic web based application/tool Usage

Biological Pathway Exchange Data exchange format for biological pathway data

(BioPAX [82,83]) http://www.biopax.org/

Microarray for Gene Expression Data Data standard for Systems Biology

(MGED [84,85]) http://www.mged.org/

Transparent Access to Multiple Bioinformatics Biological Data Integration

Information Sources ( TAMBIS [86]) http://img.cs.man.ac.uk/tambis

Software Development Kit for cancer informaticsSemantically integrated bioinformatics software system

(caCORE SDK [87]) http://ncicb.nci.nih.gov/infrastructure/cacoresdk

AutoMatic Generation of Mediator Tools for Tools for assisting transformation and integration of

Data Integration (AutoMed Toolkit [88]) distributed datahttp://www.doc.ic.ac.uk/automed/

Gaggle [90] An integrated environment for systems biology

http://gaggle.systemsbiology.org/docs/

Encyclopedia of Escherichia coli K-12 Genes Molecular catalog of the E. coli cell

and Metabolism (EcoCyc [91]) http://ecocyc.org

Systems Biology Markup Language Computer-readable models of biochemical reaction networks.

(SMBL [92]) http://sbml.org/index.psp

Cell Markup Language Storage and exchange of computer-based mathematical models

(CellML [93]) for biomolecular simulations (http://www.cellml.org/)

Open Biomedical Ontology (OBO [90]) Open source controlled-vocabularies for

(OBO [90]) different biomedical domains (http://obo.sourceforge.net)

Gene Ontology (GO [68]) Controlled-vocabulary for genes

Gene Ontology (GO [68]) http://www.geneontology.org/

Generic Model Organism Database An integrated organism database

(GMODS [94]) http://www.gmod.org/home

Proteomics Standards Initiative: Data standard for proteomics

Molecular Interactions (PSI-MI [95]) http://psidev.sourceforge.net

http://www.biopax.org/
http://www.mged.org/
http://img.cs.man.ac.uk/tambis
http://ncicb.nci.nih.gov/infrastructure/cacoresdk
http://www.doc.ic.ac.uk/automed/
http://gaggle.systemsbiology.org/docs/
http://ecocyc.org
http://sbml.org/index.psp
http://www.cellml.org/
http://obo.sourceforge.net
http://www.geneontology.org/
http://www.gmod.org/home
http://psidev.sourceforge.net
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2.2.2 Web Service Technologies

Web-service technology further extends the capabilities of classical weband semantic web by al-

lowing information and resources to be shared among machines even in a distributed heterogeneous

environment (such as a grid environment). Therefore, applications developed as web services can

interoperate with peer applications without taking care of particular language,file system, oper-

ating system, processor or network. Web services are defined through Web Service Description

Language (WSDL) and deployed and discovered through UniversalDescription, Discovery and

Integration (UDDI) protocol. They can exchange XML based messages through Simple Object Ac-

cess Protocol (SOAP) over different computer platforms. Furthermore, with the introduction of Web

Service Resource Framework (WSRF), now web services have becomemore capable of storing the

state information during the execution of a particular transaction. These features of web-services

have made them extremely important to be applied to life science domain.

Today many life science applications are being developed as web services.For exam-

ple, the National Center for Biotechnology Information (NCBI) provides a wide range of biological

databases and analytical tools as web services such as all the Entrez e-utilities including EInfo, ES-

earch, EPost, ESummary, EFetch, ELink, MedLine, and PubMed. Similarly,the EBI provides many

biological resources as web services such as SoapLab, WSDbfetch,WSfasta, WSBLast, WSInter-

ProScan, EMBOSS amongst others. A comprehensive list of all publicly available and accessible

biological web services developed by different organizations, institutions and groups can be found

at myGrid website (http://taverna.sourceforge.net).

All these web services can be used as part of complex application specific programs. IBM

provides WebSphere Information Integrator (WS II) as an easy way fordevelopers to integrate indi-

http://taverna.sourceforge.net
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vidual web-service components into large programs. As an example, North Carolina BioGrid [96]

in collaboration with IBM uses web services to integrate several bioinformaticsapplications to

high performance grid computing environment. This BioGrid also provides a tool(WSDL2Perl)

to facilitate the wrapping of Perl based legacy bioinformatics applications as web services. Other

open source projects that provide registry, discovery and use of webservices for bioinformatics,

computational biology and systems biology include myGrid [68, 69], BioMOBY [70–72], and

caBIG(https://cabig.nci.nih.gov/) etc. The integration and interoperatibility of distributed

and heterogeneous biological resources through web services has opened an important niche for data

mining and knowledge discovery. For example, Hahn U et al. [97] introduces web based reusable

text mining middleware services for bio-medical knowledge discovery. Themiddleware provides a

Java based API for clients to call searching and mining services. Similarly, Hong et al. [98] uses

web services for the implementation of a microarray data mining system for drug discovery.

Due to the success of web services to provide flexible, evolvable and scalable architectures

with interoperability, between heterogeneous applications and platforms, the grid middleware is also

being transformed from its pre-Web Service versions to the new ones based on Web Services. There

are several initiatives in this direction such as Globus [34, 35], an open source grid middleware,

has adopted web service architecture in its current version of Globus Toolkit 4, the EGEE project

is also moving from its pre-web service middleware LHC Computing Grid (LCG2) to anew web

service based middleware gLite (http://glite.web.cern.ch/glite/) [65], and similarly ICENI [99] and

myGrid which are also adopting the web services through the use of Jini, OGSI,JXTA and other

technologies [100].

https://cabig.nci.nih.gov/
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2.2.3 Agent-based Semantic Web Services

Agents are described as software components that exhibit autonomous behavior and are able to

communicate with their peers in a semantically defined high-level language suchas FIPA-ACL

(Foundation of Intelligent Physical Agents- Agents Communication Language).Since the main

focus of agent technology is to enable the software components to performcertain tasks on behalf

of the user, this somewhat relates and supports the goals of web-services technology and hence

the two technologies have started converging towards the development of more autonomous web-

services that exhibits the behavior of both web-services as well as agents.

There have been many attempts regarding the use of agents in bioinformatics, computa-

tional biology and systems biology. Merelli et al. [101], reports the use of agents for the automation

of bioinformatics tasks and processes, Phylogenetic analysis of diseases, protein secondary structure

prediction, stem cell analysis, and simulation among others. In their paper, the authors also high-

light key open challenges in agents research: analysis of mutant proteins, laboratory information

management system (LIMS), cellular process modeling, formal and semi-formalmethods in bioin-

formatics. Similarly the use of mobile agents for the development of a decentralized, self-organizing

peer-to-peer grid computing architecture for computational biology has been demonstrated in [97].

Another important use of agents in combination with semantic web and web serviceslies

in the provision of service-oriented semantic grid middleware. For example, Luc et. al. [102],

suggests the use of agents inmyGrid [68, 69] middleware in order to best fit the ever-dynamic and

open nature of biological resources. In particular they propose the use of agents for ’personaliza-

tion, negotiation and communication’. The personalization agent can act on behalfof the user to

automatically provide certain preferences such as the selection of preferred resources for a work-
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flow based in-silico experiment and other user related information. The user-agent can store these

preferences and other user related information from previously conducted user activities and thus

freeing the user from tedious repetitive interactions. The user-agent could also provide a point of

contact for notification and other services requiring user interaction duringthe execution of a par-

ticular experiment. Other experiences related to the use of agents for biological data management

and annotations have been discussed in [103,104].

2.3 Grid Technologies

Right from its inception, the main focus of grid technology has been to provideplatform independent

global and dynamic resource-sharing service in addition to co-ordination, manageability, and high

performance. In order to best satisfy these goals, its basic architecturehas undergone substantial

changes to accommodate other emergent technologies. As shown in Figure 2.4, the grid has moved

from its initial static and pre-web service architecture to a more dynamic Web Service Resource

Framework(WSRF) based Open Grid Service Architecture (OGSA) [105] that combines existing

grid standards with emerging Service Oriented Architectures(SOAs), innovative web technologies

such as the semantic web, web services and web agents. This organic maturation of the grid seeks

a unified technological platform that is known as service-oriented semanticgrid.

The main characteristics of this service-oriented semantic grid would be to maintain in-

telligent agents that act as software services (grid services) capable ofperforming well-defined

operations and communicating with peer services through uniform standard protocols such as used

for web services (XML, SOAP, WSDL, UDDI, etc.). This paradigm shiftin the grid’s architecture

is gaining relevance due to its impact on the usability of bioinformatics, computationalbiology and
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systems biology. We find various successful demonstrations of the gridificatitonof biological re-

sources indicating the effect and power of grid-based execution of various life science applications

with different technological approaches. For example, Jacq et. al. [106] reports the deployment of

various bioinformatics applications on the European Data Grid (EDG) testbed project. One of the

deployed applications was PhyloJava, a Graphical User Interface (GUI) based application that calcu-

lates the polygenetic trees of a given genomic sequence using fastDNAml [107] algorithm that uses

bootstrapping (a reliable albeit computationally intensive technique that calculates a consensus from

a large number of repeated individual tree calculations (about 500-1000 repeats). The gridification

of this application was carried out at a granularity of 50 for a total of 1000 independent sequence

comparison jobs (20 independent packets of 50 jobs each) and then merging the individual job re-

sults to get the final bootstrapped tree. The selection of the appropriate value of granularity depends

upon the proper consideration of the overall performance because highly parallelized jobs can be

hampered by resource brokering and scheduling times whereas poorly parallelized jobs would not

give significant CPU time gain [106]. The execution of this gridified applicationon the EDG testbed

required the installation of a Globus [34,35] based EDG user interface on aLinux RedHat Machine,

the use of Job Description Language (JDL) and the actual submission of theparallel jobs through

Java Jobs Submission Interface (JJSI). It is reported that the gridifiedexecution of this application

provided 14 times speedup compared against a non-grid based standaloneexecution. The deviation

in gain from ideal (speed up of 20) is considered to be the effect of network and communication

overhead (latencies). Similarly, the gridification of other applications such as agrid-enabled bioin-

formatics portal for protein sequence analysis, grid-enabled method forsecurely finding unique

sequences for PCR primers, and grid-enabled BLAST for orthology rules determination has also
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been discussed in [106] with successful and encouraging results.

The gridification of biological databases and applications is also motivated by the fact

that the number, size and diversity of these resources are continuously (and rapidly) growing. This

makes it impossible for an individual biologist to store a local copy of any major databases and

execute either data or computer-intensive application in a local environment even if supported with

a dedicated cluster or high performance computing resources. This inability oflocality demands for

the grid-enablement of the resources. However, an important factor that hinders the deployment of

existing biological applications, analytical tools and databases on grid-basedenvironments is their

inherent pre-grid design (legacy interface). This is so because the design suits the requirements

of a local workstation environment in terms of input/output capabilities and makes itvery difficult

for these applications to be gridified. The gridification of such applications requires a transparent

mechanism to connect local input/output with a grid-based distributed input/output through some

intermediatary tools such as grid middleware specific DMS and distributed storage environments.

One such mechanism, discussed in [108], provides a transparent interface for legacy bioin-

formatics applications, tools and databases to be connected to computational grid infrastructures

such as EGEE [65], without incurring any change in the code of these applications. Authors have

reported the use of modified Parrot [109] as a tool to connect a legacy bioinformatics application to

the EGEE database management system. The EGEE database management system enables location

and replication of databases needed for the management of very large distributed data reposito-

ries. With Parrot-based connection, the user is freed from the overheadof performing file staging

and specifying in advance an application’s data need. Rather, an automatedagent launched by

the Parrot takes care of replicating the required data from the remote site and supplying it to the
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legacy application as it would have been accessing data with local input/output capabilities. The

agent resolves logical file name to the storage file name, selects the best location for replication and

launching the program for execution on the downloaded data. For the purpose of demonstration, au-

thors have reported the deployment (virtualization) of some biological databases such as Swiss-Prot

and TrEMBL [110] by registering these databases with the replica management service (RMS) of

EGEE. Similarly, programs for protein sequence comparison such as BLAST[111], FASTA [112],

ClustalW [113] and SSearch [114] have been deployed by registering them with the experiment

software management service (ESM). The deployed programs were runon a grid environment and

their access to the registered databases was evaluated by two methods: replication (by copying the

required database directly to the local disk) and remote input/output (attaches the local input/out-

put stream of the program to the copied data in cache or on-the-fly mode). The evaluation of these

methods show that both methods perform similarly in terms of efficiency e.g. on adatabase of about

500,000 protein sequences (205 MB) each method takes about 60 seconds for downloading from

any grid node and about four times less than this time in case the data node is near the worker node.

It is important to note, however, that the replication method creates an overhead in terms of free

storage capacity on the worker node. This problem may be particularly if thesize of the database to

be replicated is too high or if the worker node has many CPUs sharing the samestorage and each ac-

cessing a different set of databases. This is the reason why remote input/output method overweighs

the replication method for accessing large distributed biological databases. Again the real selection

depends on the nature of program (algorithm). For compute-intensive programs such as SSearch

remote input /output is always better (as it works on copying progressivefile blocks) where as for

data-intensive programs such as BLAST and FASTA the replication method maywork better [108].
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In fact there are a very large number of contributions that report the experiences of using

grid technology for bioinformatics, computational biology and systems biology. We have tried

to summarize the findings of some of these contributions under the relevant categories of large

projects including BioGrid infrastructure, middleware, local resource management systems, data

management, application programming environments, toolkits, problem solving environments and

workflow management systems and are presented in the following sections.

2.3.1 BioGird Infrastructure

Mostly BioGrid infrastructure is based on the simple idea of cluster computing and isleading to-

wards the creation of a globally networked massively parallel supercomputing infrastructure that

connects not only the computing units along with their potential hardware, software and data re-

sources, but also expensive laboratory and industrial equipment, andubiquitous sensor device in

order to provide unlimited computing power and experimental setup required formodern day bio-

logical experiments. Moreover, this infrastructure is also being customizedin a way that it becomes

easily accessible by all means of an ordinary general purpose desktop/laptop machine or any type

of handheld devices. Some of the major components of a generic BioGrid infrastructure has been

illustrated in Figure 2.3. The overall architectural components are organizedat three major levels

(layers) of services. The focus of application layer services is to provide user-friendly interfaces to

a biologist for carrying out the desired grid-based tasks with minimum steps of usability and inter-

action (enhanced automation and intelligence). Similarly the focus of grid middlewareservices is

to provide seamless access and usability of distributed and heterogeneousphysical layer resources

to the application layer services. In the following sections we discuss various contributions related

to the development and use of some of these services at both application and middleware level.
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The design and implementation of a typical BioGrid infrastructure varies mainly in terms

of the availability of resources and demands of the biological applications thatare supposed to

use that particular grid. There are many infrastructures starting from an institutional/organizational

grids consisting of simple PC based clusters or combination of clusters [115, 116] to national and

international BioGrid projects with different architectural models such as Computing Grid architec-

ture (providing basic services for task scheduling, resource discovery, allocation and management

etc), Data Grid architecture (providing services for locating, accessing,integrating and management

of data ), Service Grid architecture (services for advertising, registering and invocation of resources)

and Knowledge Grid architecture (services for sharing collaborative scientific published or unpub-

lished data). The infrastructure details of some major BioGrid projects are presented in Table 2.2.

It may be observed that the same infrastructure may be used to serve more than one application

models based on the availability of some additional service and resources. Forexample a compute

grid with the help of some additional services and resources can be set to work as a data grid.

2.3.2 Grid-enabled Applications and Tools

As discussed in the following sections, there have been some efforts for thedevelopment of bioin-

formatics specific grid programming and problem solving environments, toolkits, frameworks and

workflows that can help to develop grid-enabled applications easily and efficiently; however they

are still, to a degree, in a prototype or demonstration state. The actual processof developing (writing

the code), deploying (registering, linking and compiling), testing (checking the results and perform-

ing debugging if necessary) and executing (scheduling, coordinating and controlling) an application

in a grid-based environment is far from trivial. Mainly, the difficulties faced by developers arise

because of incapability of traditional software development tools and techniques to support the de-
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TABLE 2.2: BioGrid infrastructure projects

BioGrid project Grid Infrastructure Main applications

Asia Pacific BioGrid Globus1.1.4 FASTA, BLAST, SSEARCH, MFOLD

http://www.apgrid.org Nimrod/G, LSF. SGE. Virtual Lab DOCK, EMBASSY,

5 nodes, 25+ CPUs, 5 sites. PHYLIB and EMBOSS.

Open BioGrid Japan Globus 3.2. Workflow based distributed

OBIGRID Japan [64] Ipv6 for secure communication. bioinformatics environment.

http://www.obigrid.org VPN over internet for BLAST search service.

connecting multiple sites. Genome annotation system.

363 nodes, 619 CPUs, 27 sites. Biochemical network simulator.

Swiss BioGrid [67] NorduGrid’s ARC and GridMP. High throughput compound docking

http://www.swissbiogrid.org heterogeneous hardware platforms into protein structure binding

including both clusters and sites and analysis of

Desktop-PC grids proteomics data

Enabling Grids for E- gLite middleware. WISDOM: drug discovery.

sciencE (EGEE) [65] 30,000 CPUs and 20 Petabytes storage.GATE: radio therapy planning.

http://www.eu-egee.org 20,000 concurrent jobs on average. SiMRI3D: parallel MRI simulator.

90 institutions in 32 countries. GPS@: Grid Protein Sequence

@Analysis and other applications

North Carolina BioGrid Avaki data grid middleware Bioinformatics datasets and

http://www.ncbiotech.org and Virtual File System applications installed on native file

across grid nodes. system and shared across the grid.

velopment of some sort of virtual application or workflows, whose components can run on multiple

machines within heterogeneous and distributed environment. Despite of these difficulties there are

several grid-enabled applications for life sciences [75], mostly developedby using either standard

languages such as Java along with message passing interfaces (e.g. MPICH/G) or web services.

A brief description of some major grid-enabled applications is presented in Table2.3. Still there

might be many legacy applications that could take advantage of grid based resources; however, the

migration of these applications to grid environment requires more sophisticated toolsthan what is

currently available [117].

http://www.apgrid.org
http://www.obigrid.org
http://www.swissbiogrid.org
http://www.eu-egee.org
http://www.ncbiotech.org
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TABLE 2.3: Some Major Grid-enabled Applications related to life sciences with the effect of gridificatiton

Grid-enabled application Grid middleware tools, Effect of gridification

Task and source services and languages

GADU/GNARE [118] Globus Toolkit and Condor/G for Analysis of 2314886 sequences on a

Task: Genome Analysis and distributing DAG based workflows. single 2GHz CPU can take 1061 days

Database Update GriPhyN Virtual Data System for A grid with an average of 200

http://compbio.mcs.anl.gov workflow management. nodes took only 8 days and 16

User interface to standard databases hours for the above task.

(NCBI, JGI etc.) and analysis tools

(BLAST, PFAM etc.)

MCell [119] Globus GRAM, SSH, NetSolve, PBS A typical r_disk MCell simulation on

Task: Computational biology for remote job starting/monitoring. a single 1.5 GHz CPU can take 329 days

simulation framework based on GrdiFTP and scp for moving A grid with an average of 113 dual

Monte Carlo algorithm application data to grid. CPU nodes took only 6 days and 6

http://www.mcell.cnl.salk.edu/ Java based GUI, Relational Databasehours for the above task.

(Oracle), Adoptive scheduling.

Grid Cellware [120] Globus, Apache Axis, GridX-Meta Different stochastic (Gillespie,

Task: Modeling and Simulation for Scheduler. Gibson etc.), deterministic (Euler

systems biology GUI based jobs creation editor Forward, Runge-Kutta) and MPI

http://www.cellware.org Jobs mapped and submitted as web based swarm algorithms have been

services. successfully implemented in a way to

distribute their execution on grid.

2.3.3 Grid-based BioPortals

As mentioned earlier, the actual process of developing and deploying an individual application on

grid requires significant level of expertise and considerable period oftime. This issue hinders the

usage of available grid infrastructures. Therefore, in order to enhance the use of different grid infras-

tructures, some individuals, groups, institution and organizations have startedto provide the most

frequently used and standard domain specific resources as grid-enabled services which can be ac-

cessed by any or authenticated researcher through a common browser based single-point-of-access,

without the need of installing any additional software. In this context a grid portal is considered to

be an extended web-based application server with the necessary software capabilities to communi-

http://www.mcell.cnl.salk.edu/
http://www.cellware.org
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cate with the backend grid resources and services [121]. This type of environment provides full level

of abstraction and makes it easy to exploit the potential of grid seamlessly. Grid-based portals are

normally developed using some publicly available grid portal construction toolkitssuch as GridPort

Toolkit [122, 123], NinF Portal Toolkit [121], GridSphere (http://www.gridsphere.org), IBM

WebSphere (www-306.ibm.com/software/websphere) etc. Most of these toolkits follow the Java

portlet specification (JSR 168) standard and thus make it easy for the developer to design the portal

front-end and connect it to the backend resources through middlewareservices.

For example, [121] enables the developer to specify the requirements of theportal front-

end (e.g. authentication, user interaction fields, job management, resources etc) in terms of a XML

based file which automatically generates a JSP file (through Java based XMLparser), that provides

an HTML based web page for front-end and a general-purpose JavaServlets that can communi-

cate to grid-enabled backend applications and resources though Globus [34, 35] based GridRPC

mechanism. The toolkit also helps the developer for the gridification of applications and resources

needed at the backend. It is because of this level of ease for the creation of grid-based portals that

in [124] it is claimed that portal technology has become critical for future implementation of the

bioinformatics grids.

Another example is that of BRIDGES (http://www.brc.dcs.gla.ac.uk/projects/

bridges) project which provides portal-based access to many biological resources (federated databases,

analytical and visualization tools etc) distributed across all the major UK centerswith appropriate

level of authorization, convenience and privacy. It uses IBM WebSphere based portal technology,

because of its versatility and robustness. The portal provides a separate workspace for each user that

can be configured by the user as per requirements, and the configuration settings are stored using

http://www.gridsphere.org
www-306.ibm.com/software/websphere
http://www.brc.dcs.gla.ac.uk/projects/bridges
http://www.brc.dcs.gla.ac.uk/projects/bridges
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session management techniques. This type of environment can help in many important fields of life

sciences such as the field of exploratory genetics that leads towards the understanding of complex

disease phenotypes such as heart disease, addiction and cancer on thebasis of analysis of data from

multiple sources (e.g. model organism, clinical drug trials and research studies etc). Similarly [125],

presents another instance of system that is easy to use, scalable and extensible, providing among

others, secure, and authenticated access to standard bioinformatics databases and analysis tools such

as nucleotide and protein databases, BLAST, CLUSTAL etc.

A common portal engine was developed with the reusable components and services from

Open Grid Computing Environment Toolkit (OGCE) [126] that combine the components of three in-

dividual grid portal toolkits such as CompreHensive CollaborativeE Framework (CHCEF) (http://

adsabs.harvard.edu/abs/2002AGUFMOS61C..13K), Velocity Toolkit (http://jakarta.apache.

org/velocity) and JetSpeed Toolkit (http://portals.apache.org/jetspeed-1). This com-

mon portal engine was integrated with a biological application frame work by usingPISE [127]

(web interface generator for molecular biology). The portal provides access to around 200 applica-

tions related to molecular biology and also provides the way to add any other application through

the description of a simple XML based file.

2.3.4 BioGrid Application Development Toolkits

Although some general purpose grid toolkits such as Globus [34, 35] , COSM (http://www.

mithral.com/projects/cosm) and GridLab (http://www.gridlab.org), provide certain tools

(APIs and run time environments) for the development of grid-enabled applications, they are pri-

marily aimed at the provision of low level core services needed for the implementation of a grid

infrastructure. Therefore, it seems to be difficult and time consuming for an ordinary programmer

http://adsabs.harvard.edu/abs/ 2002AGUFMOS61C..13K
http://adsabs.harvard.edu/abs/ 2002AGUFMOS61C..13K
http://jakarta.apache.org/velocity
http://jakarta.apache.org/velocity
http://portals. apache.org/jetspeed-1
http://www.mithral.com/projects/cosm
http://www.mithral.com/projects/cosm
http://www.gridlab.org
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to go through the actual process of developing and testing a grid enabled application using these

toolkits; instead there are some simulation based environments such as EDGSim (http://www.

hep.ucl.ac.uk/~pac/EDGSim), extensible grid simulation environment [128] ,GridSim [129] and

GridNet [130], that could be used at initial design and verification stage.

As different application domains require certain specific set of tools that could make the

actual process of grid-enabled application development life-cycle (development, deployment, test-

ing and execution) to be more convenient and efficient. One such proposalfor the development of

a Grid Life Science Application Developer (GLAD) was presented in [131].This publicly avail-

able toolkit works on top of the ALiCE (Adaptive scaLable Internet-basedComputing Engine), a

light weight grid middleware, and provides a Java based grid application programming environment

for life sciences. It provides a list of commonly used bioinformatics algorithms and programs as

reusable library components along with other software components needed forinteracting (fetching,

parsing etc) with remote distributed and heterogeneous biological databases. The toolkit also assists

in the implementation of task level parallelism (by providing effective parallel execution control

system) for algorithms and applications ranging from those having regular computational structures

(such as database searching applications) or irregular patterns (such as phylogenetic tree) [28]. Cer-

tain limitations of GLAD include the non-conformance of AliCE with OGSA standard and the use

of socket based data communication which might not be good for performance critical applications.

Another grid application development toolkit for bioinformatics that provides high level

user interface with a problem solving environment related to biomedical data analysis has been

presented in [132]. The toolkit provides a Java based GUI that enablesthe user to design a Direct

Acyclic Graph (DAG) based workflow selecting a variety of bioinformatics tools and data (wrapped

http://www.hep.ucl.ac.uk/~pac/EDGSim
http://www.hep.ucl.ac.uk/~pac/EDGSim
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as java based JAX-RPC web services) with appropriate dependencies and relationships.

2.3.5 Grid-based Problem Solving Environments

The Grid-based Problem Solving Environment (PSE) is another way of providing a higher level of

interface such as graphical user interface or web interface to an ordinary user so that he/she could

design, deploy and execute any grid-enabled application related to a particular class of specific do-

main and visualize the results without knowing the underlying architectural andfunctional details

of the backend resources and services. In fact grid-based PSE brings the grid application program-

ming at the level of drawing, that is, instead of writing the code and worrying about the compiling

and execution, the user can just use appropriate GUI components providedby the PSE to compose,

compile and run the application in a grid environment. PSEs are developed using high level lan-

guages such as Java and are targeted to transforms the user designed/modeled application into an

appropriate script (distributed application or web service) that could be submitted to a grid resource

allocation and management service for execution and on completion of the execution theresults are

displayed through appropriate visualization mechanism.

There are several different grid-based PSEs available for bioinformatics applications e.g.

[133] describes the design and architecture of a PSE (Proteus) that provides an integrated environ-

ment for a biomedical researchers to search, build and deploy distributedbioinformatics applica-

tions on computational grids. The PSE uses semantic based ontology (developedin DAMIL+OIL

language (http://www.daml.org)) to associate the essential meta-data such as goals and require-

ments to three main classes of bioinformatics resources such as data sources (e.g SwissProt and

PDB database), software components (e.g BLAST, SRS, Entrez and EMBOSS an open source suite

of bioinformatics applications for sequence analysis) and tasks/processes (e.g. sequence alignment,

http://www.daml.org
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secondary structure prediction and similarity comparison) and stores this information in a meta-

data repository. The data sources are specified on the basis of kind of biological data, its storage

format and the type of the data source. Similarly, the components and tasks aremodeled on the

basis of the nature of tasks, steps and order in which tasks are to be performed, algorithm used,

data source and type of the output etc. On the basis of this ontology the PSE provides a dictionary

(knowledge-base) of data and tools locations allowing the users to compose their applications as

workflows by making use of all the necessary resources without worrying about their underlying

distributed and heterogeneous nature. The modeled applications are automatically translated into

grid execution scripts corresponding to GRSL (Globus Resource Specification Language) and are

then submitted for execution on grid through GRAM (Globus Resource Allocation Manager). The

performance of this PSE was checked with a simple application that used TribeMCL (http://www.

ebi.ac.uk/research/cgg/tribe), for clustering human protein sequences which were extracted

from SwissProt database by using seqret program of the EMBOSS suiteand compared all against

all for similarity though BLAST program. In order to take advantage of the grid resources and en-

hance the performance of similarity search process the output of seqretprogram was split into three

separate files in order to run three instances of BLAST in parallel. The individual BLAST outputs

were concatenated and transformed into a Markov Matrix required as input for TribeMCL. Finally

the PSE displayed the results of clustering in a opportune visualization format. It was observed that

total clustering process on grid took 11h50’53” as compared to 26h48’26’ on standalone machine.

It was also noted on the basis of another experimental case (taking just 30protein sequences for

clustering) that the data extraction and result visualization steps in the clusteringprocess are nearly

independent of the number of protein sequences (i.e. approximately same time was observed in the

http://www.ebi.ac.uk/research/cgg/tribe
http://www.ebi.ac.uk/research/cgg/tribe
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case of all protein Vs 30 protein sequences). Another PSE for bioinformatics has been proposed

in [134]. It uses Condor/G for the implementation of PSE that provides an integrated environment

for developing component based workflows through commonly used bioinformatics applications

and tools such as Grid-BLAST, Grid-FASTA, Grid-SWSearch, Grid-SWAlign and Ortholog-Picker

etc. Condor/G is an extension to grid via Globus and it combines the inter-domain resource man-

agement protocols of Globus Toolkit with intra-domain resource managementmethods of Condor

to provide computation management for multi-institutional grid. The choice of Condor/G isjusti-

fied on the basis of its low implementation overhead as compared to other grid technologies. The

implementation of a workflow based PSE is made simple by the special functionality of Condor

meta-scheduler DAGMan (Directed Acyclic Graph Manager) which supports the cascaded execu-

tion of programs in a grid environment. The developed prototype model was tested by integrated

(cascaded) execution of the above mentioned sequence search and alignment tools in grid environ-

ment. In order to enhance the efficiency, the sequence databases and queries were split into as much

parts as the number of available nodes, where the independent tasks wereexecuted in parallel.

2.3.6 Grid-based Workflow Management Systems

As already discussed in the context of PSE, a workflow is a process of composing an application

by specifying the tasks and their order of execution. A grid-based workflow management system

provides all the necessary services for the creation, execution and visualization of the status and

results of the workflow in a seamless manner. These features make workflows ideal for the design

and implementation of life science applications that consists of multiple steps and requirethe in-

tegrated access and execution of various data and application resources.Therefore one can find

various domain specific efforts for the development of proper workflowmanagement systems for



2. SURVEY OF WEB AND GRID TECHNOLOGIES IN LIFE SCIENCES 51

life sciences (Table 2.4). There have been several important demonstrations of different types of

life science applications on grid-based workflow management systems. For example, the design

and execution of a tissue-specific gene expression analysis experiment for human has been demon-

strated in a grid-based workflow environment called ’WildFire’ [135]. Theworkflow takes as an

input 24 compressed GeneBank files corresponding to 24 human chromosomes and after decom-

pression it performs exon extraction (through exonx program) from each file in parallel resulting in

24 FASTA files. In order to further increase the level of granularity each FASTA file is split into

five sub-files (through dice script developed in Perl), making a total of 120 small files ready for par-

allel processing with BLAST against a database of transcripts (’16, 385transcripts obtained from

Mammalian Gene Collection’). The execution of this experiment on a cluster of 128Pentium III

nodes took about 1 hour and 40 minutes, which is reported to be 9 times less than the time required

for the execution of its sequential version. The iteration and dynamic capabilitiesof WildFire has

also been demonstrated through the implementation of a swarm algorithm for parameter estimation

problem related to biochemical pathway model based on 36 unknowns and 8 differential equations.

Similarly, the effectiveness of Taverna [136] workflow has been demonstrated by construction of a

workflow that provides genetic analysis of the Graves’ disease. The demonstrated workflow makes

use of Sequence Retrieval System (SRS), mapping database service and other programs deployed as

SoapLab services to obtain information about candidate genes which have been identified through

Affymetrix U95 microarray chips as being involved in Graves’ disease. The main functionality of

the workflow was to map a candidate gene to an appropriate identifier corresponding to biological

databases such as Swiss-Prot and EMBL in order to retrieve the sequence and published literature

information about that gene through SRS and MedLine services. The result of tBLAST search
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against the PDB provided identification of some related genes where as the information about the

molecular weight and isoelectric point of the candidate gene was provided bythe Pepstat program

of EMBOSS suite. Similarly, Taverna has also been demonstrated with the successful execution of

some other workflows for a diversity of in-silico experiments such as pathway map retrieval and

tracking of data provenance.

TABLE 2.4: Examples of commonly used Grid-based workflow management systems for life sciences

Workflow management system Supported grid middleware Main features

technologies and platforms

Wildfire [135] Condor/G, SGE, PBS, LSF GUI-based drag-and-drop environment.

http://wildfire.bii.a-star.edu.sg/ Workflows are mapped into Grid Workflow construction by EMBOSS.

Execution Language (GEL) script. Complex operations (iteration

Open source and extensible. and dynamic parallelism).

Runs on Windows and Linux.

Taverna [136] myGrid middleware GUI-based workbench.

http://taverna.sourceforge.net/ SCULF language for workflows. In-silico experiments using

Workflows mapped to web services EMBOSS, NCBI, EBI,

Open source and extensible. DDBj, SoapLab, BioMoby

Cross platform. and other web services.

ProGenGrid [137] Globus Toolkit4.1 UML-based editor.

http://www.cact.unile.it/projects/ GridFTP and DIME for data. RASMOL for visualization.

iGrid information service for AutoDoc for drug design.

resource and web service discovery.

Java Axis and gSOAP Toolkit.

2.3.7 Grid-based Frameworks

In software development, a framework specifies the required structure of the environment needed for

the development, deployment, execution and organization of a software application/project related

to a particular domain in an easy, efficient, standardized, collaborative, future-proof and seamless

manner. When becoming fully successful and widely accepted and used,most of these frame-

http://www.cact.unile.it/projects/
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works are also made available as Toolkits. There are some general frameworks for grid-based

application development such as Grid Application Development Software (GrADS) [138], Cac-

tus [139] and IBM Grid Application Development Framework for Java (GAF4J (http://www.

alphaworks.ibm.com/tech/GAF4J)). Similarly, some specific grid-based frameworks for life sci-

ences have also been proposed and demonstrated such as Grid Enabled Bioinformatics Application

Framework (GEBAF) [140], that proposes an integrated environment for grid-enabled bioinformat-

ics application using a set of open source tools such as Bioperl Toolkit [141], Globus Toolkit [34,35],

Nimrod/G [142] and Citrina (database management tool (http://www.gmod.org/citrina)). The

framework provides a portal based interface that allows the user to submita query of any number of

sequences to be processed with BLAST against publicly available sequence databases. The user op-

tions are stored in a hash data structure by creating a new directory for eachexperiment and a script

using the BioPerl::SeqIO module divides the user query into sub-queries eachconsisting of just a

single sequence. The distributed query is then submitted through Nimrod/G planfile for parallel

execution on the grid. Each grid node maintains an updated and formatted version of the sequence

database through Citrina. The individual output of each sequence query is parsed and concatenated

by another script that generates the summary of the experiment in the form of an XML and Comma

Separated Value (CSV) files containing the number of most significant hits fromeach query. The

contents of these files are then displayed through the result interface. A particular demonstration for

BLAST was carried out with 55,000 sequences against SwissProt database.

With 55,000 parallel jobs the grid has been fully exploited within the limits of its free

nodes and it has been observed that the job management overhead was low as compared to the

actual search time for BLASTing of each sequence. Although summarizing thousands of results

http://www.alphaworks.ibm.com/tech/GAF4J
http://www.alphaworks.ibm.com/tech/GAF4J
http://www.gmod.org/citrina
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is somewhat slow and nontrivial, its execution time remains insignificant when compared with the

experimenting time itself. The developed scripts were also tested for reusability with other similar

applications such as ClustalW and HMMER, with little modification. A web service interface has

been proposed for future development of GEBAF in order to make use ofother bioinformatics

services such as Ensemble. Similarly, for better data management Storage Resource Broker (SRB)

middleware is also proposed as an addition for the future.

GEBAF is not the only grid-enabling framework available. For example, Asim etal. [143]

describes the benefits of using the Grid Architecture Development Software (GrADS) framework

for the gridification of bioinformatics applications. Though there already existed an MPI-based

master-slave version of the FASTA but it used a different approach: itkept the reference database

at the master side and made the master responsible for equal distribution of database to slaves and

the subsequent collection and concatenation of the results. In contrast to that, GrADS based im-

plementation makes reference databases (as a whole or as a portion) availableat some or all of the

worker nodes through database replication. Thus the master at first sends a message to workers

for loading their databases into memory and then it distributes the search queryand collects the

results back. This type of data-locality approach eliminates the communication overhead associ-

ated with the distribution of large scale databases. Furthermore, through the integration of various

software development and grid middleware technologies (such as Configurable Object Program,

Globus Monitoring and Discovery Service (MDS) and Network Weather Service (NWS)), GrADS

framework provides all the necessary user, application and middleware services for the compo-

sition, compilation, scheduling, execution and real time monitoring of the applications on a grid

infrastructure in a seamless manner.
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2.3.8 BioGrid Data Management Approaches

Most of the publicly available biological data originates from different sources of information, i.e.

it is heterogeneous and is acquired, stored and accessed in differentways at different locations

around the world, i.e. it is distributed. The heterogeneity of data may be syntactic i.e. difference

in file formats, query languages and access protocols etc, semantic i.e. genomic and proteomic

data etc, or schematic i.e. difference in the names of database tables and fields etc. In order

to make an integrative use of these highly heterogeneous and distributed data sources in an easy

and efficient way, an end-user biologist can take advantage of some specific Data Grid infrastruc-

ture and middleware services such as BRIDGES (http://www.brc.dcs.gla.ac.uk/projects/

bridges), BIRN (http://www.nbirn.net) and various other European Union Data Grid projects

e.g. EU-DataGrid (http://www.edg.org/) and EU-DataGrid for Italy (http://web.datagrid.

cnr.it/Tutorial_Rome) etc. These Data Grid projects make use of standard middleware tech-

nologies such as Storage Resource Broker (SRB), OGSA-DAI and IBM Discovery Link.

2.3.9 Computing and Service Grid Middleware

In the same way that a computer operating system provides a user-friendly interface between user

and computer hardware similarly Grid middleware provides important services needed for easy,

convenient and proper operation and functionality of grid infrastructure.These services include

access, authentication, information, security and monitoring services as well as data and resource

description, discovery and management services. In order to further reduce the difficulties involved

in the process of installation, configuration and setting-up of grid middleware, there have also been

proposals for the development of Grid Virtual Machines (GVM) and Grid Operating Systems [144–

http://www.brc.dcs.gla.ac.uk/projects/bridges
http://www.brc.dcs.gla.ac.uk/projects/bridges
http://www.nbirn.net
http://www.edg.org/
http://web.datagrid.cnr.it/Tutorial_Rome
http://web.datagrid.cnr.it/Tutorial_Rome
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148]. The development of specific grid operating systems or even embeddinggrid middleware as a

part of existing operating systems would greatly boost-up the use of grid computingin all computer

related domains, but this is yet to be seen in the future. The important features of currently used

computing and service grid middleware are listed in Table 2.5.

TABLE 2.5: Commonly used computing and service grid middleware

Grid middleware Brief description of architecture and services

Globus Toolkit GT4 [34,35] OGSA-WSRF based architecture

Goal: To provide a suit of services Credential management services (MyProxy, Delegation, SimpleCA)

for job, data, and resource mgt. Data management services (GridFTP, RFT, OGSA-DAI, RLS, DRS)

Developer: Argonne National Resource management services (RSL and GRAM)

Laboratory, University of Chicago Information and monitoring services (Index, Trigger and WebMDS)

http://www.globus.org/ Instrument management services (GTCP)

LCG-2/ gLite LCG-2: a pre-web service middleware based on Globus 2

Goal: To provide Large scale data gLite: an advanced version of LCG-2 based on web services architecture

handling and compute power infrastructure.Authentication and security services (GSI, X.509, SSL, CA)

Developer: EGEE project in Information and monitoring services (Globus-MDS, R-GMA, GIIS, BDII)

collaboration with VTD, US and partners. Resource management services (GUID, SURL)

http://glite.web.cern.ch/glite/ Data management services (WMS, SLI)

Platform: Linux and Windows

UNICORE UNICORE: a pre-web service grid middleware based on OGSA standard

Goal: Light weight grid middleware. UNICORE 6: based on web service and OGSA architecture.

Security services (X5.09, CA, SSL/TLS)

Developer: Fujitsu Lab EU Execution management engine (XNJS)

and UniGrid. Platform: Unix/Linux platform

http://www.unicore.eu/ Data management services (WMS, SLI)

Platform: Linux and Windows

2.3.10 Local Resource Management System (LRMS)

The grid middleware interacts with different clusters of computers through Local Resource Man-

agement System (LRMS) also known as Job Management System (JMS). The LRMS (such as Sun

Grid Engine, Condor/G and Nimrod/G) is responsible for submission, scheduling and monitoring

of jobs in a local area network environment and providing the results and status information to the

http://www.globus.org/
 http://glite.web.cern.ch/glite/
http://www.unicore.eu/


2. SURVEY OF WEB AND GRID TECHNOLOGIES IN LIFE SCIENCES 57

grid middleware through appropriate wrapper interfaces. Some of the important features [149] of

commonly used LRMS software are listed in Table 2.6.

TABLE 2.6: Commonly used Job Management Systems (Local Resource Management Systems (LRMS))

Local Resource Manager General features Job support

Platform, GUI and APIs description, type and MPI support

Sun Grid Engine 6 Platform: Solaris, Apple Macintosh, Shell scripts for job description.

Sun Micro Systems Linux and Windows Standard and complex job types.

gridengine.sunsource.net User friendly GUI, portal and DRAMA API. Integration with MPI.

Open source and extensible. 5 Million jobs on 10,000 hosts.

Integration with globus through GE-GT Adopter

Condor-G Platform: Solaris, Apple Macintosh, Job description: Classified Advertisements

University of Wisconsin Linux and Windows Standard and complex job types

www.cs.wisc.edu/condor DRAMA and Web-service interface Integration with MPI

Open source and extensible.

Globus-enabled.

Nimrod-G 3.0.1 Platform: Solaris, Linux, Job description: Nimrod Agent Language

Monash University Mac with x86 and sparc architecture GRAM interfaces to dispatch

www.csse.monash.edu.au/ web portal and API jobs to computers.

Open source and extensible.

Globus-enabled.

2.3.11 Fault Tolerant Aproaches in the Context of BioGrid

Like any other Grid computing infrastructure, the BioGrid environment is considered to be dy-

namic [150]. In the context of a dynamic BioGrid infrastructure, the availability and constraints of

resources keeps changing with respect to time. The capability of the application and the system as

a whole to withstand the effect of change in the state of resources and continue its normal func-

tionality/execution is known asfault tolerance. Though initially fault tolerance was not addressed

much in the context of BioGrid as the very idea of Grid itself was under the phase of ’proof of con-

cept’. However, now that the Grid has moved towards the era of robust standardization (post 2005

gridengine.sunsource.net
www.cs.wisc.edu/condor
www.csse.monash.edu.au/
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web-service based architecture), one could find many approaches for the implementation of fault

tolerance at different levels of BioGrid infrastructure. For example, YingSun et. al. [151], make

use ofbackup taskmechanism to add fault tolerance to their application for bioinformatics com-

puting grid (ABCGrid). Thebackup taskapproach takes its inspiration from Google’s MapReduce

Model [152], and performs monitoring of all the tasks in progress. It usesthe results of monitoring

to determine if any task has not finished in its normal (expected) time on any node (due to fail-

ure/poor performance of that node/resource) and assigns the same task (as a backup task) to other

node. When the task returns its results (either from the primary execution or thebackup execution),

the task’s status gets changed to ’completed’ and all remaining backup executions get terminated.

The authors demonstrate evaluation of their application (using bioinformatics tools such as NCBI

BLAST, Hmmpfam and CE [47]) on a testbed consisting of 30 workstations connected in a local

environment. They mainly report on the speedup of the application and do notpresent/discuss any

results in terms of fault tolerance. It should also be noted that though the authors label their appli-

cation with the term ’Grid’ but they do not report any use of the Grid. Also, the method they use for

fault tolerance could not be applied in general because because of twoconcerns. First this approach

requires that the normal execution time of the tasks be known in advance, which might not be the

case in many applications which either use heuristic based computational techniquesor make use

of data with varying size etc. Second, though this approach might be appropriate for fine-grained

tasks but for heavily coarse-grained tasks whose normal execution may take very long, such a ap-

proach would result in very poor performance. Nevertheless, this approach might be tested in a real

grid environment with different applications. Stockinger H. et. al. [153] also use similar approach

but no statistics on the quality of fault tolerance is reported. For workflow based applications, the
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myGrid [69] project provides checkpoint/rollback interfaces which could beimplemented to de-

velop applications/services with inherent fault tolerant support. Similarly, for applications based on

parallel programming model, various MPI implementations provide mechanism for theimplemen-

tation of fault tolerance e.g., MPICH-V [154], MPI-FT [155], and Berkeley Lab Checkpoint/Restart

(BLCR) [156] etc. All of these implementations provide some sort of checkpointing and message

logging mechanism which could be used by the applications to migrate/restart anyfailed process/-

task. The message logging enables the application to restart the computation from the previous

fault-safe state and hence not causing much overhead in terms of failure.

2.4 Some Flagship BioGrid Projects

We present here some selected flagship case studies which have elicited a positive public response

from bio-scientists for their special role and contribution to the life science domain. The description

of most important implementation strategies along with some main services is provided withthe

help of appropriate illustrations.

2.4.1 EGEE Project

The EGEE project was initially named as Enabling Grid for E-science in Europeand then it was

renamed as Enabling Grid for E-scienceE) in order to enhance its scope from European to inter-

national level [65]. This project builds on its predecessor EDG project (European Data Grid)

and provides an international level grid infrastructure for multi-science andindustry community

ranging from high-energy physics to life sciences and nanotechnology.The overall infrastructure

consists of more than 30,000 CPUS with 20 petabytes of storage capacity provided by various

academic institutes and other organizations and industries around the world in theform of high-
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speed and high-throughput compute clusters which are being updated andinteroperated through its

web-service based light-weight, more dynamic and inter-disciplinary grid middleware named gLite.

Like EGEE, gLite also builds on a combination of various other grid middleware projects such as

LCG-2 (http://cern.ch/LCG), DataGrid (http://www.edg.org), DataTag (http://cern.ch/datatag),

Globus Alliance (http://www.globus.org), GriPhyN (http://www.griphyn.org) and iVDGL

(http://www.ivdgl.org). Several bio-applications have been implemented on top of EGEE plat-

form [108] and various other resource-hungry biological projects (such as BioInfoGrid (http://

www.bioinfogrid.eu/), Wide In Silico Docking On Malaria (WISDOM) (http://wisdom.eu-egee.fr)

and European Model for Bioinformatics Research and Community Education (EMBRACE) (http://

www.embracegrid.info)) are also continuously making use of EGEE infrastructure. In order to

provide an illustration and understanding of how to make use of EGEE grid infrastructure and ser-

vices for life sciences, we provide here an overview of the latest version of its grid middleware.

Authentication and Security Services:

EGEE uses Grid Security Infrastructure (GSI) for authentication (through digital X.509 certificate)

and secure communication (through SSL: Secure Socket Layer protocolwith enhancements for

single sign-on and delegation). Therefore, in order to use the EGEE grid infrastructure resources,

the user has to register first and get a digital certificate from appropriateCertificate Authority (CA).

When the user signs in with the original digital certificate which is protected with aprivate key

and a password, the system then creates another passwordless temporary certificate called proxy

certificate that is then associated with every user request and activity. Inorder to maintain the user

security at high level, the proxy certificates are kept valid for small intervals (default 12 hours),

however, if user jobs require more time then appropriate age of the proxy certificate can also be set

http://www.edg.org
http://www.globus.org
http://www.griphyn.org
http://www.ivdgl.org
http://www.bioinfogrid.eu/
http://www.bioinfogrid.eu/
http://www.embracegrid.info
http://www.embracegrid.info
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though My Proxy Server.

Information and Monitoring Services:

The gLite 3 uses Globus MDS (Monitoring and Discovery Service) for resource discovery and status

information. Additionally, it uses Relational Grid Monitoring Architecture (R-GMA) for accounting

and monitoring. In order to provide more stable information services, the gLite Grid Information

Indexing Server (GIIS) uses BDII (Berkeley Database Information Index Server) that stores data in

more stable manner than original Globus based GIIS.

Data Management Services:

Like in traditional computing the primary unit of data management in EGEE grid is also thefile.

gLite provides a location independent way of accessing files on EGEE grid through use of Unix

based hierarchical logical file naming mechanism. When a file is registered for the first time on

the grid it is assigned a GUID (Grid Unique Identifier that is created from User Unique Identifier;

MAC address and a time stamp) and it is bound with an actual physical location represented by

SURL (Storage URL). Once a file is registered on the EGEE grid it cannot be modified or updated

because the data management system creates several replicas of the file inorder to enhance the

efficiency of subsequent data access. Thus, updating any single file would create the problem of

data inconsistency which has not as yet been solved in EGEE.

Workload Management System (Resource Broker):

The new gLite based work load management system (WMS or resource broker) is capable of re-

ceiving even multiple inter-dependent jobs described by Job Description Language (JDL) and it
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dispatches these jobs to most appropriate grid sites (selection of appropriate grid site is based on

the dynamic process of match-making) and then keeps tract of the status of the jobs and retrieves

the results back when jobs are finished. While dispatching the jobs the resource broker uses Data

Location Interface (DLI) service to supply input files along with job to the worker node. The flow

of job is illustrated in Figure 2.7.

FIGURE 2.7: Job flow in the EGEE grid. The user request goes to the resourcebroker node (RB node)
which assigns the job to a particular node based on the results of the match maker, work load manager and
other status information. (reproduced fromhttp://glite.web.cern.ch/

2.4.2 Organic Grid: Self Organizing Computational Biology on Desktop Grid

The idea of Organic Grid [157] is based on the decentralized functionality and behavior of self or-

ganizing, autonomous and adaptive organisms (entities) in natural complex systems. The examples

of natural complex systems include functioning of biological systems and behavior of social insects

http://glite.web.cern.ch/
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such as ant and bees. The idea of the organic grid leads towards a novel grid infrastructure that

could eliminate the limitations of traditional grid computing. The main limitation of traditional grid

computing lies in their centralized approach. For example, a Globus based computational grid may

use a centralized meta-scheduler and thus it would be limited to smaller number of machines only.

Similarly, Desktops Grid Computing based on distributed computing infrastructure such as BOINC

may use centralized master/slave approach and thus would be only suitable for coarse-grained in-

dependent jobs only. The idea of Organic Grid is to provide a ubiquitous type peer-to-peer grid

computing model capable of executing arbitrary computing tasks on a very large numberof ma-

chines over network of any quality, by redesigning the existing desktop computing model in a way

that it supports distributed adaptive scheduling through the use of mobile agents. In essence it

means that, a user application submitted on such type of architecture would be encapsulated in

some type of a mobile agent containing the application code along with the scheduling code. After

encapsulation, the mobile agent can decide itself (based on its scheduling code and the network

information) to move to any machine that has appropriate resources needed for the proper execu-

tion of the application. This type of mechanism provides the same type of user-level abstractness

as provided by traditional Globus-based grid but additionally it builds on decentralized schedul-

ing approach that enables the grid to span to very large number of machines ina more dynamic

peer-to-peer computing model. The use of mobile agents (which are based on RMImechanism

that is built on top of client/server architecture) as compared to their alternate service based archi-

tecture, provides higher level of ease and abstractedness in terms of validation (experimentation)

of different types of scheduling, monitoring and migration schemes. Although the project uses

a scheduling scheme that builds on tree-structured overlay network, it is madeadaptive based on
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some value of application specific performance metric. For example, the performance metric for a

data-intensive application such as BLAST would give high consideration to bandwidth capacity of

the communication link before actually scheduling the job on a particular node. Similarly, it will

select a high-speed node for another application that comes under the class of compute-intensive

applications. Furthermore, in order to provide uninterrupted execution with dynamic and transpar-

ent migration features the project makes use of strongly mobile agents instead oftraditional weakly

mobile agents (Java based mobile agents that cannot access their state information). Following the

common practice in grid computing research, the proof-of-concept has been demonstrated with the

execution of NCBI BLAST (that falls in the class of independent task application) on a cluster of 18

machines with heterogeneous platform and ranked under the categories of fast, medium and slow

through the introduction of appropriate delays in the application code. The overall task required the

comparison of a 256 KB sequence against a set of 320 data chunks eachof size 512 KB. This gave

rise to 320 sub tasks, each responsible for matching the candidate 256 KB sequence against one

specific 512 KB data chunk. The project successfully carried out the execution of these tasks and

it has been observed that by adopting the scheduling according to the dynamics of the architecture

greatly improves performance and quality of results. The project is being further extended to pro-

vide the support for different categories of applications and enabling the user to configure different

scheduling schemes for different applications through some easy to use APIs.

2.4.3 Advancing Clinico-Genomic Trials on Cancer (ACGT)

ACGT is a Europe wide integrated biomedical grid for post-genomic research on cancer (http://

www.eu-acgt.org) [158]. It intends to builds on the results of other biomedical grid projects

such as caBIG, BIRN, MEDIGRID and myGrid. The project is based on open source and open

http://www. eu-acgt.org
http://www. eu-acgt.org
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access architecture and provides basic tools and services required for medical knowledge discovery,

analysis and visualization. The overall grid infrastructure and services are aimed to provide an

environment that could help scientists to: a) Reveal the effect of genetic variations on oncogenesis b)

Promote the molecular classification of cancer and development of individual therapies c) Modeling

of in-silico tumor growth and therapy response. In order to create the required environment that

supports the implementation of these objectives, ACGT focuses on the development of a virtual

web that interconnects various cancer related centers, organizations and individual investigators

across the Europe through appropriate web and grid technologies. Mainly, it uses semantic web and

ontologies for data integration and knowledge discovery and Globus toolkit with its WS-GRAM,

MDS and GSI services for cross organization resource sharing, job execution, monitoring and result

visualization. Additionally, ACGT also uses some higher level grid services from Gridge framework

developed at Poznan Supercomputing and Networking Centre (PSNC) [159]. These services include

GRMS (Grid Resource Management System), GAS (Grid Authorization System)and DMS. These

additional services provide the required level of dynamic and policy-based resource management;

efficient and reliable data handling; and monitoring and visualization of results. Figure 2.8 provides

a usage scenario of these services in the context of ACGT environment.

2.5 Conclusions

This part of the review has presented a scrupulous analysis of the state-of-the-art in web and grid

technology for bioinformatics, computational biology and systems biology in a manner that provides

a clear picture of currently available technological solutions for a very widerange of problems.

While surveying the literature, it has been observed that there are many grid-based PSEs, Workflow
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FIGURE 2.8: ACGT integrated environment usage scenario. The system goes from step 1 to 13 in order to
run a particular job. (reproduced from [158])

Management Systems, Portals and Toolkits under the name of Bioinformatics but not as many for

Systems or Computational Biology. However, in each case a mix of projects and applications has

been found overlapping from bioinformatics to computational and systems biology. Based on the

analysis of the state-of-the-art we identify bellow some key open problems can be distinguished:

• The use of semantic web technologies such as domain ontologies for life sciences is still not

at its full level of maturity, perhaps because of semi-structured nature ofXML and limited

expressiveness of ontology languages [68].

• Biological data analysis and management is still quite a difficult job because ofthe lack of

development and adaptation of optimized and unified data models and query engines.

• Some of the existing bioinformatics ontologies and workflow management systems are simply
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in the form of Directed Acyclic Graphs (DAGs) and their descriptions are lacking expressive-

ness in terms of formal logic [135].

• Lack of open-source standards and tools required for the development of thesaurus and meta-

thesaurus services [77].

• Need of appropriate query, visualization and authorization mechanism for themanagement

of provenance data and meta-data in in-silico experiments [68,135].

• Some of the BioGrid projects seem to be discontinued in terms of information updating.This

might arise from funding problems or difficulties associated with their implementation.

• There is a lack of domain specific mature application programming models, toolkits and APIs

for grid-enabled application development, deployment, debugging and testing.

• Still there seems to be a gap between the application layer and middleware layer ofa typ-

ical BioGrid infrastructure because existing middleware services do not fully facilitate the

demands of applications such as there is no proper support in any grid middleware for auto-

matic application deployment on all grid nodes.

• It is not trivial to deploy existing bioinformatics applications on available grid testbed (such

as NGS, EGEE etc), as this requires the installation and configuration of specific operating

system and grid middleware toolkits, which is not at least easy from a biologist end-user point

of view.

• It has been observed that there are still many issues with grid based workflow management

systems in terms of their support for complex operations (such as loops), legacy bioinformat-

ics applications and tools, use of proper ontology and web services etc. [135].
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• The job submission process on existing grid infrastructures seems to be quite complex be-

cause of inappropriate maturity of resource broker services.

• Lack of appropriate implementation initiative regarding knowledge grid infrastructure for life

sciences.

Some of the key lessons/findings learned from the review presented in this chapter appli-

cable in the context of MC-PSC are:

• Identification of the availability of resources at national and international level.For example,

the successful deployment of several bioinformatics related applications on the UK National

Grid Service (NGS) and the European Grid for EScience-E (EGEE) provided an impetus that

these resources could also be used for the case of MC-PSC. This reallyhelped in getting

access to NGS through its various training programs target at grid-basedapplication develop-

ment.

• Identification of several methods and tools for setting up a local, national or international grid

infrastructure. The review provided a comprehensive picture of the available technological

avenues which could be selected for further analysis with MC-PSC. In thisregard different

resource management and parallel environments were taken as a case study for evaluation

with MC-PSC as reported in the following chapters.

• Identification of the key features/characteristics for the development, deployment and evalua-

tion of grid-enabled application. For example, the literature presented in this chapter explains

the pros and cons of the level of granularity in terms of work load distribution and corre-

sponding communication overhead. It also helps in identifying the key performance measures
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which could be used for the evaluation of distributed approaches for MC-PSC.

• Identification of appropriate web technologies which could be used in futureto develop user-

friendly web interfaces for the analysis and visualization of the MC-PSC similarity results.

Because of the wide scope of this review, the literature that has been reported in this

chapter is not yet complete, and therefore, the next chapter provides a more focused review/survey

of the literature that is closely related to the field of structural proteomics and hence informs more

on the subject of this thesis.
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CHAPTER 3

OVERVIEW OF GRID AND DISTRIBUTED PUBLIC

COMPUTING SCHEMES FOR STRUCTURAL PROTEOMICS

As described in the previous chapter, grid and distributed computing (such aspublic computing

schemes) has become an essential tool for many scientific fields including bioinformatics, compu-

tational biology and systems biology. The adoption of these technologies has given rise to a wide

range of projects and contributions that provide various ways of setting up these environments and

exploiting their potential resources and services for different domains ofapplications. This chapter

aims to further extend the survey presented in previous chapter by specifically focusing on some

of the major projects, technologies and resources employed in the area ofStructural Proteomics.

The major emphasis would be to briefly comment on various approaches relatedto the gridifica-

tion and parallelization of some flagship legacy applications, tools and data resources related to key

structural proteomics problems such as protein structure prediction, folding, and comparison. The

comments are based on theoretical analysis of some interesting parameters such as performance

gain after gridification, user level interaction environments, workload distribution and the choice

of deployment infrastructure and technologies. The study of these parameters would provide a ba-
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sis for some motivating justification needed for further research and development on the subject of

this thesis i.e., the case ofProtein (Structure) Comparison, Knowledge, Similarity and Information

(ProCKSI).

Parts of this chapter were published as a peer reviewed conference paper in theProceed-

ings of the Frontiers of High Performance Computing and Networking ISPA 2007 Workshops, LNCS

Vol.4743 pp.424-434, 2007. [doi:10.1007/978-3-540-74767-3_44]

3.1 Introduction

It is believed that, the rapidly evolving field of Structural Proteomics have played a role in the 1st

decade of 21st century in terms of protein 3D structure determination and analysis that is quite

equivalent to the role played by theHuman Genome Project(HGP) in the last decade of 20th

century, in terms of sequence determination and analysis [160]. This is mainly because a very

large number of protein primary structures (sequences) are known but the number of their corre-

sponding 3D-structures (secondary or tertiary structures) is lagging far behind. For example, as of

writing of this dissertation there are 12,347,303 known protein sequences (UniProtKB/TrEMBL

entries) as compared to just 64,036 protein structures (PDB holdings). The reason behind this

sequence-structure gap is due to the difficulties associated with experimental structure determi-

nation methods such as X-ray crystallography and NMR spectroscopy. As secondary and ter-

tiary structures are more helpful in tracing the evolution and function of the protein as well as

in rational drug design, in order to reduce the gap between known sequences and known struc-

tures, computational approaches have been proposed for the prediction of these structures from a

given protein sequence. As all these approaches are based on some form of modeling (such as

http://www.springerlink.com/content/90n46423p200502r/
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ab-initio or de-novo protein modeling and comparative protein modeling techniques such as ho-

mology modeling and protein threading etc ) and rely on multi-scale optimization techniques to

optimize various model parameters (e.g. energy minimization), the availability of powerful com-

puting facilities is essential. That is, structural proteomic methodologies requirehuge computational

power and reliable access to various distributed and (often) heterogeneous biological databases and

analytical tools in order to properly and accurately predict the structure from a given sequence

or compare thousands of models against a target structure. Therefore, many research groups in

this field such as Baker Laboratory at University of Washington (http://depts.washington.

edu/bakerpg/), The Scripps Research Institute (TSRI) at California (http://www.scripps.edu/

e_index.html), Pande Group at Stanford University (http://folding.stanford.edu/Pande/

Main), High Throughput Computing Group at Osaka University [64] and othershave started to make

use of the Grid and distributed computing environments. While the grid-based projects make use of

standard middleware services and institutionally-owned resources, the projects based on distributed

public computing schemes build their infrastructure setup around publicly-owned unused computing

resources which are voluntarily provided throughout the world such asthe World Community Grid

(http://www.worldcommunitygrid.org/) that supports the Human Proteome Folding Project,

Folding@Home [161], Predictor@Home [162] and Rosseta@Home (http://boinc.bakerlab.

org/rosetta/) etc.

This chapter focuses on some of these projects in order to find out and compare various

approaches related to the gridification/parallelization of some flagship legacy applications, tools

and data resources by analyzing key parameters such as job/data distribution and management,

user level interaction environments, deployment technologies and infrastructures, and the effect of

http://depts.washington.edu/bakerpg/
http://depts.washington.edu/bakerpg/
http://www.scripps.edu/e_index.html
http://www.scripps.edu/e_index.html
http://folding.stanford.edu/Pande/Main
http://folding.stanford.edu/Pande/Main
http://www.worldcommunitygrid.org/
http://boinc.bakerlab.org/rosetta/
http://boinc.bakerlab.org/rosetta/
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gridification on overall performance of the system.

The organization of this chapter is as follows: sections 3.2 and 3.3 provide somede-

tailed overview in the fields of protein folding and prediction respectively; while section 3.4 besides

presenting the review of the literature, discusses in detail the main topic of this dissertation i.e.,

Protein Structure Comparison, its current state and future directions in terms of the "The ProCKSI

Server: a decision support system for Protein (Structure) Comparison,Knowledge, Similarity and

Information"; finally, section 3.5 concludes this chapter.

3.2 Protein Folding

The process of folding, first described by Anfinsen [5–7], is a thermodynamically driven process

taking a few micro seconds, in which a protein adopts its native state. Failure ofthis process re-

sults in several lethal diseases in human and animal [163–165]. A properunderstanding of this

process sheds light into many issues at the core of biotechnology, such asthe design of new proteins

with a desired functionality, the understanding of some incurable diseases such as cancer or neu-

rodegenerative diseases (e.g. Alzheimer’s, Creutzfeldt-Jakob disease(CJD), Cystic fibrosis (CF),

Huntington disease (HD) and many other practical implementations of nanotechnology. To this

aim, several models have been established. These models make use of simulation based compu-

tational techniques that require extremely high computational power, far beyond the limits of any

single traditional super computer or local cluster. It has been demonstrated in the Folding@Home

project [161] that this requirement can be met with a world wide distributed public-resource com-

puting network that interconnects thousands of loosely coupled heterogeneous publicly-owned and

voluntarily devoted PCs. Folding@Home uses an ’ensemble dynamics’ algorithmthat performs
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M independent simulations with the same amino acids coordinates but with different velocities on

M distributed processors such that each simulation starts with a slightly different initial condition

and pushes the system through a free energy minimization process. This algorithm gives an M

times speedup for the simulation of folding dynamics and thus avoids the overall waiting in free

energy minima. Similarly, the process can be repeated in order to effectivelyhandle multiple free

energy barriers (multiple translations for complex folding dynamics). Using a modifiedversion of

the Tinker molecular dynamics code,β -hairpin and villin were simulated and their folds success-

fully determined. Based on the diversity of the simulation results for a variety ofmolecules (from

the non-biological PPA helices to the 36-residue villin headpiecea [166]) ithas been observed that

there is no single universal folding process and even sequences which fold to the same structure

may have different folding processes. Further details on a selection of grid-enabled protein folding

applications are presented in Table 3.1.

3.3 Protein Structure Prediction

Based on Anfinsen theory of protein folding [7], the aim of protein structure prediction is to predict

the native conformation (tertiary structure) of a protein from its primary structure (sequence). It

has remained an open problem in the field of structural proteomics [169]. New methods are being

explored and investigated at various research institutes and groups throughout the world. Evalu-

ation of the quality and performance of these methods is carried out every twoyears through the

Critical Assessment of Techniques for Protein Structure Prediction (CASP) competition. In order to

provide best predicted results for a target protein, the use of grid and distributed computing public

schemes has been successfully demonstrated through various projects. For example, researchers at
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TABLE 3.1: Grid-enabled applications for protein folding

Project/Application Grid Technologies Distribution techniques

and Speedup

CHARMM [167] Legion grid operating system 400 CHARM jobs

(Chemistry at HARvard that provides process, distributed with different

Molecular Mechanics) files system, security initial conditions over

services and resource management.1020 grid nodes.

Simple command line 15% speedup in

interface with basic computational time.

commands for job submission,

monitoring and result

visualization.

CHARM [168] United Devices (UD) The Task: folding of src-SH3 protein

MetaProcessor (MP) with different algorithms(

platform for DesktopGrid. best-first, depth-first and breadth-first).

Master (MP Server) controls Job distributed into 50 work units;

and manages all the tasks each work-unit having 100,000

and uses IBM DB2 for storage. simulation steps.

Each worker runs a UD Agent Experiments performed on

with task API to run the heterogeneous platform of 45

task module and communicate desktop machines.

with the server.

TSRI (The Scripps Research Institute) have developed a distributed publiccomputing based protein

structure prediction super computer (Predictor@Home) [162] using BerkleyOpen Infrastructure for

Network Computing (BOINC) software. The predictor itself consists of a set of complex protocols

with increasingly sophisticated models that rely on standard software tools such as BLAST, SAM-

T02, PSIPRED, MFOLD simulation (for conformational sampling) and CHARMM (for molecular

simulations). It is reported that during the 6th Critical Assessment of Protein Structure Prediction

Methods (CASP) competition 6786 users participated in the Predictor@Home project and con-

tributed a total compute time of about 12 billion seconds, the equivalent of about 380 years of

computation on a single desktop machine, within just 3 months time. This computation power had

been exploited for appropriate conformational sampling and refinement of the predicted structures
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of 58 CASP6 targets.

The quality of the predicted structures utilizing the public computing infrastructurewas

compared with results using a dedicated local cluster (64 nodes, 2.4 GHz Pentium Xeon processors,

1GB RAM, 1GB Ethernet network). The results of the comparison indicate that the vastly larger

distributed computing power afforded by the BOINC implementation resulted in far better predic-

tions than using the dedicated cluster. A similar grid based approach that enhances the quality

and performance of structure prediction has been demonstrated in [64]. Itbuilds on the standalone

web server named ROKKY (designed at Kobe University) that was ranked 2nd best prediction web

server in the fold recognition category of CASP6 experiment. ROKKY uses acombination of stan-

dard analysis tools (PSI-BLAST and 3D-Jury) and the Fragment Assembly Simulated Annealing

(FASA) technique using the SimFold [170] software package. In order tofurther enhance the qual-

ity of prediction and performance, a grid-based workflow design and control tool was added that

allows the end-user to create/design a structure prediction experiment and submit it for execution on

the Grid. That is, the user can modify input parameters and/or methods based onthe real-time in-

spection/monitoring of the current predicted results. It has been reported [64] that for target T0198,

the workflow-based prediction gave a faster result that was closer to to thetarget structure compared

to employing a non-workflow based prediction, which uses simple batch files forjob submission.

This illustrates the importance of allowing the user to dynamically interact with the "production

pipeline" even when the software is being distributed across the grid.

Another ambitious project, Encyclopedia of Life (EoL), attempts to predict structural in-

formation for all the proteins in all known organisms. The estimated computation time required

for annotation of about 1.5 million sequences (as of 2003) using a pipeline of computational tools
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(such as TMHMM, PSORT, SignalP, WU-BLAST, PSI-BLAST and 123D)has been approximated

to be 1.8 Million CPU hours (more than 300 years!) on a single 1.8 GHz CPU. In order to facilitate

this task, a grid-based workflow management systems has been proposedand demonstrated [171],

which builds on the AppLeS Parameter Sweep Template (APST) technology providing an appro-

priate application deployment logistic and an adoptive scheduling and execution environment. The

workflow was tested by running more than 54,000 proteome annotation jobs requiring 13670.5

CPU hours during the four days of the Super Computing Conference (SC03) on a grid testbed. This

consisted of 215 CPU nodes managed at ten different sites having different operating systems and

local resource management software. Further details of some grid-based protein structure prediction

applications are presented in Table 3.2.

TABLE 3.2: Grid-based applications for protein structure prediction

Project/Application Grid Technologies Distribution techniques

and Speedup

ProtFinder [172,173] Globus based GridWay Framework Prediction of 88 sequences

that uses adaptive scheduling was carried out in parallel by

for dynamic grids. submitting an array job with 88

Condor/G based GRAM. parallel tasks specified in a

GIIS Server for resource discovery, Job Template File.

GASS and GridFTP for data handling. The entire experiment took

User interaction with job about 43 minutes on 64

submission agent through heterogeneous nodes.

API or command line.

PSA/GAc [174] NetSolve based client-server Simulated annealing distributed

(Parallel Simulated application model on NetSolve servers.

Annealing using through GridRPC API. GA crossover performed at

Genetic Crossover) API for user interaction. the client side to reduce

the communication delays.
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3.4 Protein Structure Comparison

The comparison of protein three-dimensional structures based on a varietyof similarity measures

is a key component of the most challenging structural proteomic tasks, such asunderstanding the

evolution of protein networks, protein function determination and, of course, protein folding and

protein structure prediction. These structures are determined through experimental techniques such

as X-ray crystallography or NMR spectroscopy as well as through various computational techniques

involved in the process of protein structure prediction. The atomic coordinates of each structure are

stored in publicly available database repositories such as Protein Data Bank (PDB) (www.pdb.org).

PDB stores the information about each structure in a separate file. It uses different file formats

such as PDB, PDBML/XML, mmCIF and FASTA among others. Each file is named with four

lettered alphanumeric identifier and its contents consist of so many records and fields. Each record

in the file may consist of single or multiple lines. With current number of structures it takes about

22 hours to download the complete database (www.pdb.org/pdb/statistics/holdings.do) on a local

machine and it requires more than 36 GB of free disk space for its storage. The size (length) of each

protein structure could be as simple as consisting of 40-50 residues or as complex as consisting

of several thousand residues (e.g. in multi-functional proteins). Polymers having less than 40

residues are referred as peptide rather than protein. However, the average protein structure length

is estimated to be around 300 amino acids (residues) per structure. In order to be comparable,

protein tertiary structures as available in the PDB are usually further processed to be represented

in some coordinate-independent space. The choice of suitable representation plays an important

role in the development of an efficient and reliable protein structure comparison algorithm. Most

commonly used coordinate-independent representations include Distance Matrix (DM), Contact
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Map (CM), Absolute Contact (AC), Relative Contact (RC), and ContactNumber (CN). There are

several different methods (e.g., see Appendix .1), that use one of these representations to provide

several measures of similarity /divergence between pairs of protein structures.

Though the process of comparison of a single pair of protein structures has been found

to be solvable in polynomial time [175], but every individual method takes different time based

on its individual complexity. Furthermore, as the number of known protein structures grows the

size of their corresponding databases (such as PDB) also increases and hence, the process of struc-

ture comparison requires more efficient algorithms, which could exploit the power of web and grid

computing technologies to provide accurate and optimal results with enhanced reliability and fault

tolerance. One such approach has been demonstrated in [176], which employs a distributed grid-

aware algorithm with indexing techniques based on geometric properties. It used a Globus and

MPICH based Grid testbed consisting of four nodes (each with 300 MHz CPU). Experiments were

performed comparing a target against 19,500 PDB structures in about 19 seconds. Another related

approach is presented in [27] describing a meta-server for Protein Comparison, Knowledge, Simi-

larity, and Information (ProCKSI), integrating multiple protein structure comparison methods such

as the Universal Similarity Metric (USM), the Maximum Contact Map Overlap (MaxCMO), and

an algorithm for the alignment of distance matrices (DALI), amongst others. Additionally, it pro-

duces a consensus similarity profile of all similarity measures employed. The application runs on a

mini-cluster and provides a web-based interface (http://www.procksi.net/) for job submission

and result visualization. As the study of this dissertation is based on the philosophy of ProCKSI,

its further details are provided in section 3.4.1. Some other grid-enabled applications for protein

structure comparison are presented in Table 3.3.

http://www.procksi.net/
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TABLE 3.3: Grid-based protein structure comparison

Project/Application Grid Technologies Distribution techniques

and Speedup

FROG [177,178] Ninf Grid RPC based Master generates the initial

Fitted Rotation and master/slave model. population and then copies

Orientation of protein Asynchronous parallel programming three non-redundant parents

structure by means of in C language. on each node in the grid repeatedly.

real-coded Genetic algorithm. Web based GUI through Speed-up of 5.70 was achieved

NinfCalc tool. for the comparison of a single pair

of proteins on a grid testbed of

16 nodes.

PROuST [179] PROTEUS problem solving The PROuST application is divided

Ontology and workflow based environment with into three independent phases:

grid-enablement of PROuST Globus-based grid infrastructure. pre-processing, similarity search

application for protein UML-based GUI for workflow and structural alignment.

structure comparison. composition, browsing, selection Each phase is implemented as

and result visualization. an independent sub-workflow/component.

3.4.1 ProCKSI

ProCKSI is an online automated expert system that aims at helping an end-user biologist to compare

any given set of protein structures using an ensemble of structure comparison methods (e.g. as

listed in Table 1.1) and to visually analyze the consensus based relationship among the compared

structures with a variety of heuristics and statistical clustering methods such as the Unweighted Pair

Group Method with Arithmetic mean(UPGMA) [180] and the Wards Minimum Variance(WMV)

method [181], all using an easy, intuitive and unified web interface as shown in Figure 3.1.

ProCKSI’s web interface also works as a gateway and a knowledgebase of the entire pro-

tein universe as it provides hyper links to further important and most-often used sources of informa-

tion needed for the exploration of specific details of any individual structure. These sources include

various links to IHOP (Information Hyperlinked Over Protein) [51], SCOP (Structural Classifica-
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tion of Proteins) [52], and CATH (Class Architecture Topology and Hierarchy) [53].

FIGURE 3.1: Flow diagram of ProCKSI’s front-end. Initially the user types the URL (www.procksi.net),
ProCKSI responds with a welcome page prompting for startingnew experiment. The experiment requires
the use to select the comparison mode and methods to be used for comparison; provide the data and select
the models and chains from the list of new files extracted by ProCKSI. Finally ProCKSI asks for notification
options and email address of the user for sending the notification regarding the results. The experiment is
performed at ProCKSI’s back-end [27] and web-based resultslinked with clustering and visualization tools
are made available at the front-end
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As demonstrated in [27], and previously suggested in [54] and [55], the ensemble and

consensus based approach adopted by ProCKSI yields more reliable results of biological signifi-

cance as compared to the results obtained with any single structure comparison method developed

so far. This is mainly because previously developed methods used to be good in dealing with either

very divergent structures or very similar structures; however, the integrated approach of ProCKSI

enables it to deal well with both types of structures simultaneously. For example, to deal with the

divergent structures ProCKSI uses the top level of its protocol (Figure 3.2), namely, theUniversal

Similarity Metric (USM) [48]. This method uses the contact map representation of two protein

structures, say,S1 andS2, to heuristically approximate the Kolmogorov complexity by using any

compression algorithm such ascompress, gzip, bzip etc). It then uses theNormalized Compres-

sion Distance(NCD) (see equation 3.1) to express the pairwise similarities among the compared

proteins. NCD, being an effective and problem-domain independent similarity metric works well

particularly for divergent protein structures [48] and sequences [182].

NCD(s1,s2) =
max{K(s1|s2),K(s2|s1)}

max{K(s1),K(s2)}
, (3.1)

where K(si) is the Kolmogorov complexity of object si and K(si |sj) is the conditional com-

plexity.

On the other hand, for more similar structures, ProCKSI uses a more refined method

namely, theMaximum Contact Map Overlap(MaxCMO) method [46], which is able to detect the

topological similarities among the compared proteins. This method employees metaheuristic to

count the number of equivalent residues (alignment) and contacts (overlap) in the contact map rep-
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FIGURE 3.2: ProCKSI’s multi-method protocol and workflow: ProCKSI withits multiple similarity com-
parison methods: Universal Similarity Metric (USM), Maximum Contact Map Overlap (MaxCMO), and
other local and external methods. Currently, these are the DaliLite and TM-align methods, the Combinatorial
Extension (CE) of the optimal path, and the FAST Align and Search Tool (FAST): extracted from: [27]

.

resentation of a given pair of structures in the following way:

"An amino acid residuea1 from one protein is aligned to an amino acid residuea2

from a second protein if a contact ofa1 in the first protein(C(a1)) can also be aligned
to a contact ofa2 in the second protein(C(a2)) closing a cycle of size 4 in the graph
representation of the contact map. A further restriction for the overlaps is that they
should not produce crossing edges. That is, ifa1 is aligned toa2, C(a1) is aligned to
C(a2) and, without loss of generality,a1 < C(a1) (i.e. the atom or residue a1 appears
before thanC(a1) in the sequence) thena2 < C(a2). Thus, an overlap in this model is
a strong indication of topological similarity between the pair of proteins as it takesinto
consideration the local environment of each of the aligned residues" [27].

A Fuzzy Sets based generalization of contact map has been proposed in [183] and methods

of comparing proteins based on them in [184,185]. However, this work is based on only the discrete

version. As each additional method complements the results of other methods, ProCKSI uses some

other external methods such as the Distance Alignment (DaliLite) method [45], the Combinatorial
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Extension (CE) method [47], the TM-align method [49], and the FAST method [50], in order to

develop more robust and reliable consensus.

Following subsection provides an overview of major functional activities (tasks) carried

out by ProCKSI for each user request in terms of its existing architecturaldesign and infrastructure

resources.This description is mainly aimed to provide an overall functional complexity of the system

and hence to better understand the major challenges whose solution is explored through the rest of

this dissertation.

3.4.2 ProCKSI’s Existing Architecture and Limitations

Currently ProCKSI runs on a PBS (Portable Batch System) based mini-clusterconsisting of 5 nodes

(one head and 4 compute) with 14 cpu slots in total (Figure 3.3(a)) and many software services as

illustrated in Figure 3.3(b). When a new request is submitted through the simple steps as illustrated

in Figure 3.4(a), the request is registered in the database and is assigneda unique ID. The registration

of the request also involves the registration of tasks and structures specified by the user in his/her

request (see Figure 3.4(b)). With current setup user could specify as many as 8 different tasks

(methods as listed in Table 1.1) and as many as 250 protein structures (with maximum size of

100 MB) to be compared and analyzed. The specified structures need to beeither uploaded from

users local machine or downloaded from the PDB repository (which further limits the number of

structures down to 50 so as to avoid prolonged latency involved in Internetbased communication

with PDB server). These structures are further extracted into models and chains as per users choice.

Once the request is registered it is further processed by a software component calledTask

Manager that runs on the master node of the cluster. The main role of the Task Manager is to

extract the information from request and prepare individual tasks for submission to queuing system
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(PBS). In its current architecture, the Task Manager of ProCKSI, prepares a separate task for each

comparison method to be executed on a single processors using complete dataset as specified by the

user. Depending on the load of the queuing system, the task (or job in terms ofqueuing system)

might have to wait for some time before getting started on any slave node. Once the jobs gets started

on the slave node, it might go through a long execution time depending on the sizeof dataset and the

speed of particular structure comparison method (executable) as it runs only on a single processor.

It is therefore, the current distribution mechanism of the Task Manager needs to be scaled

to some optimal fine-grained level, so as to allow more efficient comparison beyond the current lim-

itations of 250 protein structures. The change in the distribution mechanism of theTask Manager

would also have to take into account the computational load of pre/post-processing and result visu-

alization that is currently being carried out only on the master node (see Figures 3.5(a) and (b)). The

post-processing involves the complex and time consuming process of standardization (conversion

of all results into a single format and normalization of all the values) and preparation of clusters to

be visualized with different software for understanding the relationship among the compared set of

proteins.
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(a)

(b)

FIGURE 3.3: ProCKSI’s current a) hardware infrastructure consists of 2dual processor and 3 dual processor
dual core (i.e., total of 12 cores) of which one node serves ascluster head and the rest 4 work as compute
nodes) ; b) List of software services in terms of user, masterand slave (compute) nodes. (Diagram courtesy
of Daniel Barthel)
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(a)

(b)

FIGURE 3.4: ProCKSI’s a) request submission goes through 5 main stages for its completion. b) scheduling
flowchart illustrates the main steps the data (application and status related) goes through in terms of request,
task and job scheduling. (Diagram courtesy of Daniel Barthel)
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(a)

(b)

FIGURE 3.5: ProCKSI’s a) pre/post-processing (PPP) currently runs on the head-node while the data gets
transferred from the storage (compute) node b) result retrieval flowchart illustrates the node interaction for
sharing the request status and data. (Diagram courtesy of Daniel Barthel)
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3.5 Conclusions

It has been observed from the reviewed literature that both Grid and distributed public computing

schemes have been used successfully in the field of structural proteomicsfor both compute and data

intensive applications. The former is powered by standard grid middleware technologies such as

Globus, Legion, NetSolve, Ninf, myGrid, Condor/G, etc., whereas the latter ispowered by BOINC,

UD MetaProcessor etc. In fact, the diversity of enabling technologies forgrid and distributed com-

puting makes it difficult for the developer to select most appropriate technological infrastructure

with proved technological standards and tools. Various demonstrations reviewed in this chapter are

aimed at providing a road map in this dilemma.

It has been observed that selection of an appropriate grid/distributed computing approach

mainly depends on the nature of the application. For example, applications with an independent

and parallel nature of jobs are more suitable for distributed computing based on publicly-owned

resources. For example, majority of the projects based on the investigation of protein folding pro-

cess and protein structure prediction use this type of infrastructure as it provides huge number of

resources free of cost. The availability of huge resources contribute tothe better predicted results

of the simulations as compared to results obtained on the limited resources available on a dedicated

cluster or grid environment.

However, on the other hand, if the application involves some sort of interprocess com-

munication along with huge amount of I/O data then organizational or cross-organizational grid in-

frastructure with above mentioned standard middleware would serve in a betterway. This is mainly

because, the interprocess communication and I/O overhead in terms of distributed public comput-

ing schemes would be very large owing to significant latencies over loosely coupled networks. In



3. OVERVIEW OF GRID AND DISTRIBUTED COMPUTING FOR STRUCTURAL PROTEOMICS 90

the case of MC-PSC, though, there is no interprocess communication during the initial phase of

comparison but the subsequent phase of standardization and normalization of results requires some

data to be shared among all the processes. In addition to the requirement for interprocess commu-

nication, the MC-PSC also involves distribution and collection of significantly huge amount of I/O

data. Therefore, in the light of the material presented in this chapter, it has been identified that the

later approach (i.e., the organizational or cross-organizational grid infrastructure with standard grid

middleware) would be more appropriate in the case of MC-PSC. Interestingly, though not required

but almost all of the single method based protein structure comparison approaches reviewed in this

chapter are also based on the use of standard grid and parallel programming environments. Build-

ing on this knowledge the next chapter provides further details of actual technology used for the

solution of MC-PSC problem.
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CHAPTER 4

M ATERIALS AND M ETHODS

Chapters 2 and 3 provided the comprehensive review of the literature startingfrom the wide per-

spective of the field to more specific perspective of the research topic. The purpose of this chapter

is to address the questions such as "how this research is designed?" and "which methodology will

be used for the implementation and evaluation of the proposed solution?".

4.1 Introduction

The problem of large scale multi-criteria protein structure comparison (MC-PSC) and analysis could

be represented as a 3D cube (Figure 4.1). Thex andy axis of the cube representing the different

proteins being compared, while thez axis representing different comparison methods being used.

While processed, each cell of this 3D cube holds the output of each comparison method in terms

of different measures and metrics. That is, each cell of the 3D cube represents both the processing

as well as the storage perspective of the problem space while cell boundaries specify the communi-

cation overhead. Given the ever growing number of protein structure comparison methods as well

as the number of protein structures being deposited in the PDB; the dimensions of this cube go on
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increasing and making its computation, in our opinion, to be one of the Grand Challenge Appli-

cations (GCAs) in the field of structural biology. GCAs are defined as "fundamental problems in

science and engineering with great economic and scientific impact, whose solution is intractable

without the use of state-of-the-art parallel/distributed systems " [186]. Manyexamples of the use

of parallel/distributed systems for the solution of GCAs in the field of life sciences ingeneral and

structural proteomics in particular have been showcased in previous two chapters. Based on the

lessons learned from these examples, we propose a distributed frameworkas a solution to the grand

challenge of MC-PSC. This chapter provides the description of the methodological approach that

we used for the design of proposed distributed framework (section 4.2) along with the description of

the programming environment used for its implementation (section 4.3), testbed for experimentation

(section 4.4), datasets (section 8.1) and the performance measures/metrics used for the evaluation

of the proposed system (section 4.6) .

FIGURE 4.1: 3D-cube representation of the MC-PSC problem space. Each differently colored cube illus-
trate the comparison of a set of structures with itself (or another set of structures) using a particular algorithm
(method).



4. MATERIALS AND METHODS 93

4.2 Methodological Approach

It is believed that most of the GCAs may have several parallel solutions; therefore, a methodological

approach based on an exploratory nature will help in finding the best available solution [187]. An

example of such approach that is widely used for the design of parallel anddistributed algorithms

is the PCAM (Partitioning, Communication, Agglomeration, and Mapping) distributed problem

solving strategy as illustrated in figure 4.2.

FIGURE 4.2: "PCAM: a design methodology for parallel programs. Starting with a problem specification,
we develop a partition, determine communication requirements, agglomerate tasks, and finally map tasks to
processors" [187]

Introduced by Ian Foster in his book "Designing and Building Parallel Programs" [187]],

the beauty of this approach is that it enables the designer to consider the machine-independent issues
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(e.g. concurrency, scalability and communication) first and machine-specific issues (e.g granularity

and load-balancing) later in the design process. This strategy consists offour main stages which are

summarized bellow:

Partitioning: The focus of this stage lies in exposing the opportunities for parallel execution

in order to decompose the problem into large number offine-grainedtasks. The partitioning

could be applied to decompose thecomputation(i.e functional decomposition) and/or the

data (i.e domain decomposition). Different options were considered for both thedomainand

functionaldecomposition strategies to partition the 3D cube and analyze the pros and cons of

each partition in terms of efficiency and scalability. The outcome of this stage asapplied to

our problem of MC-PSC is explained in section 5.3.

Communication: This stage determines the need of information to be exchanged among the

parallel process resulting from the partitioning. It also specifies if there are any dependen-

cies among the processes and if synchronization and dynamic communication strategies are

needed. Appropriate communication structure is selected and theoretical cost analysis is per-

formed in order to obtain the optimal solution. The analysis of the communication involved

in sharing the input/output and other local/global data needed in the process ofnormalization

as applied to MC-PSC problem is discussed in section5.3.

Agglomeration : The theoretical cost evaluation of the partitioning and communication

stages would suggest if there is any way of grouping the fine-grained tasks in order to make the

system more optimal. This stage focuses on the different options for groupingand finding out

the best working model. Different methods of agglomeration for MC-PSC are are explained

in section 5.3.
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Mapping: This stage considers the assignment of processes/tasks for execution oneach

processor in a way to enhance the overall processor utilization and reduce the communication

overhead. Depending upon the number of available processors this stagecould suggest to

adjust the agglomeration and introduce some load balancing approaches to assign same unit

of work to each processor/node.

4.3 Programming Environment

Table 4.1 provides an overview of some commonly used systems for the implementation of parallel

algorithms. Each of these tools serves different purpose and hence is used for a particular class of

applications. We selected theMessage Passing Interface(MPI) model of parallel programming as

it is particularly used for the applications having the structure of eitherSingle Program Multiple

Data (SPMD) orMultiple Program Multiple Data(MPMD). The MPI itself is a library of stan-

dard functions for exchanging messages and performing collective operations ( i.e operations which

send/receive data from many nodes simultaneously e.g.broadcast(to send same data to all nodes),

gather(to collect data from all nodes), andscatter(to divide the data into pieces and send a different

piece on all node)) (see Table 4.2 for the list of commonly used MPI functions). The standards for

MPI are defined and maintained byMPI Forum, which is an open group consisting of representa-

tives from many organizations (http://www.mpi-forum.org/). MPI Forum introduced the very

first standard (MPI 1.0 / MPI-1) on May 5, 1994 and the second (enhanced) standard (MPI-2) on

July 18, 1997. Some of the major features introduced in MPI-2 include one-sided communications

operations (e.g. Put, Get, and Accumulate etc.), Collective extensions (e.g.MPI_Alltoallw and

MPI_Exscanetc.), and Dynamic process management (e.g.MPI_Comm_spawn, MPI_Comm_join,

http://www.mpi-forum.org/
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andMPI_Comm_accept/MPI_Comm_connectetc.). Table 4.3 provides the list of both free available

and vendor-supplied implementations of MPI standards. We tested the implementationof our appli-

cation using three freely available implementation namely, MPICH2 [188] [189], Open MPI [190]

and MPIg [191,192].

TABLE 4.1: Overview of commonly used systems for parallel programming. Note: * indicates that this
variant has become ade-factostandard in the community.

System Available Variants Purpose

Parallel C++ Compositional C++ (CC++)* [193], All these languages and tools are extensions

parallel C++ (pC++) [194], to C++. These extensions provide basic

Concurrent Object-Oriented Language (COOL) [195],parallel programming features and

Mentat [196], High-Performance C++ (HPC++) [197].abstractions. Used for algorithms requiring

dynamic task creation and having irregular

computation/communication patterns.

Fortran Fortran M (FM)* [198] [199], Fx [200], These languages provide all the

programming constructs for ’task parallelism,

deterministic execution, and modularity’.

HPF High Performance Fortran (HPF)* [201], These are data parallel languages.

Connection Machine Fortran (CM Fortran) [202], They provide array operations to express parallelism.

Data Parallel Fortran (Fortran D) [203] Mostly used for numeric algorithms.

Message Passing Message Passing Interface (MPI)* [204], p4 [205] These systems provide standard functions for

Portable Instrumented Communication Library [206], sending/receiving messages and are

Parallel Virtual Machine (PVM) [207] particularly used for algorithms having

regular SPMD/MPMD structures.

4.4 Testbed and Production Level eScience Infrastructure

Experiments were run on three different levels of infrastructures: thefirst one being a simple testbed

comprising of a singleBeowulfcluster consisting of 6 nodes(with a total of 9 slots) connected

through Gigabyte Ethernet. As this testbed was self-built and under our full administrative control

we were able to configure and install different LRMS’s e.gSun Grid Engine(SGE),Portable Batch

System(PBS) andLoad Sharing Facility(LSF) along with different implementations of MPI such
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MPI Routine Description

MPI_Init Initializes the MPI environment

MPI_Comm_rank Determines the rank of the calling process within a group

MPI_Comm_size Determines the size of the group

MPI_Bcast Broadcasts a message from "root" process to all other processes

MPI_Send Sends messages

MPI_Recv Receives messages

MPI_Status Provides information about received message in terms of error codes.

MPI_Barrier Blocks until all process have reached this routine

MPI_Allreduce Combines values from all processes and distribute the resultback to all

MPI_Finalize Terminates the MPI environment

TABLE 4.2: Description of MPI Routines

TABLE 4.3: Overview of commonly used MPI implementations

Implementation Description

MPICH/MPICH2 [208,209] Developed by Argonne National Laboratory and Mississippi State University,

MPICH/MPICH2 is the freely available and portable implementation of

MPI-1/MPI-2 standard for most of the flavors of Unix and MS Windows.

SCore MPI [210] Originally developed by Real World Computing (RWC); SCore is now

taken care by PC Cluster Consortium and is freely available for many different platforms.

MPI.NET [211] Developed at Indiana University; the MPI.NET is an open source

implementation that allows parallel programming in .NET technologies such as

C# and the Common Language Infrastructure (CLI).

Platform MPI [212] Platform MPI (aka Scali MPI and HP-MP) is a commercial implementation

of MPI developed by Platform Computing Inc. It claims to provide better performance

as compared to open source or other commercial counterparts.

Open MPI [213] Open MPI as the name reflects is an open source MPI developed as aresult

of taking best ideas from several other MPI implementations e.g.

FT-MPI (University of Tennessee), LA-MPI (Los Alamos National Laboratory),

LAM/MPI f (Indiana University), and PACX-MPI (University of Stuttgart).

It is widely used by many TOP500supercomputers across the globe.

MacMPI [214] MacMPI is the implementation of MPI by Dauger Research, Inc. that provides

parallel programming environment for Macintosh.

MPJ Express [215] MPJ Express is developed at the Centre for Advanced Computingand Emerging

Technologies (ACET). It provides an environment to develop parallel programs in Java.

as MPICH, MPICH-G2, MPIg and OpenMPI in order to evaluate different possible alternatives.

Furthermore, we also used this testbed to configure and install Globus Toolkit[34, 35], in order to



4. MATERIALS AND METHODS 98

confirm the operation of our application before deploying it on production level infrastructure. The

secondlevel of infrastructure comprised of a production levelHigh Performance Computing(HPC)

Linux cluster, namedspaci and placed at ICAR-CNR institute in Italy, with 64 dual-processors

Itanium2 1.4GHz nodes each having 4GB of main memory and being connected by a Qsnethigh

performance network. The main purpose for using this infrastructure was to foster the collaborative

relationship between Nottingham and ICAR-CNR in order to mutually share the skills and expertise

needed at the interface of two complicated and inter-disciplinary subjects of Bioinformatics and Grid

Computing. Thethird level of infrastructure consisted of theeScienceinfrastructure provided to all

United Kingdom(UK) scientists free of cost byNational Grid Service(NGS), UK [66]. In this

case we used Globus-based MPIg [191,192] (grid-based implementation of MPI) to spawn the jobs

across two NGS sites; one at Leeds and the other at Manchester. Each of these sites have 256 cores

(AMD Opterons) with 2.6GHz and 8GB of main memory. Succinct description of the software tools

and services used for each of these infrastructures along with schematicdiagrams are presented in

the corresponding chapters that report on the empirical results for different cases.

4.5 Datasets

Different datasets were used to perform experiments. These datasets were previously used in the

literature [27, 48, 185, 216–220] e.g. Chew-Kedem (CK34) dataset [221] , Rost and Sander dataset

(RS119) [222], and Kinjo et al. [223] and because our group has experience using these datasets.

The first two of these datasets i.e CK34 and RS119 were used as an example of small datasets

consisting of 34 and 119 protein structures respectively, while the third dataset i.e Kinjo et al. was

used as an example of large dataset consisting of 1012 protein structures. Some other datasets
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were also prepared for the sake of different case studies. These include three datasets consisting

of regularly increasing number of proteins i.e. SFBK-250, SFBK-500, SFBK-1000 datasets having

250, 500 and 1000 protein structures which were randomly selected and downloaded from the PDB.

The main purpose for the preparation of these datasets was to investigate the effect of the increasing

number of proteins on the overall execution time. Lastly,PDB_SELECT30dataset was prepared

and used as an example of biologically significant dataset. It is a representative dataset (subset

of PDB) consisting of all non-redundant protein structures having chainlength greater than 50

and sequence identity less than 30%. This dataset has been prepared byusing thePDB_SELECT

algorithm designed by Uwe Hobohm and Chris Sander [224]. All the PDB structures of these

datasets were parsed into simple files containing single PDB chains and their contact map (CM)

counterparts.

4.6 Performance Metrics

Two metrics are usually used for testing the computational scalability of a parallel/distributed sys-

tem: the speedupSand the efficiencyE.

Speedup:

The speedup of a parallel algorithm is the ratio between the time taken by the bestsequential imple-

mentation of an application measured on one processorTs and the execution time taken by the same

applicationTp running onp processors.

S=
Ts

Tp
(4.1)
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The optimal case is given by a linear speedup, i.e. If we run the same applicationon p

processors, then we can expect at best a reduction in time ofp, and therefore that the speedup will

be at mostp. In fact, this is only a theoretical condition because the parallel algorithm introduces an

overhead, mainly due to the communication times among different processors. Ifthe problem is not

sufficiently complex, and the communication times are not negligible with respect to computational

time, then the speedup might be noticeably smaller. Another factor that limits the speedup lies in the

level of granularity of a particular piece of the program that Can’t be further parallelized. This fact

is known as Amdahl’s law and it states that if the proportion of a program that can be parallelized

is P and the proportion that can not be parallelized (i.e., remains serial) is(1−P) then the speedup

on N processors is limited as per following expression, no matter how much value ofN is further

increased:

1

(1−P)+ P
N

(4.2)

Equation 4.2 shows that as the value ofN tends towards infinity, the maximum speedup

will be limited to 1
1−P and hence the benefit of further parallelization shows a saturation effect. For

example, if the proportion of the program that can be parallelized is 95% then theproportion that

can not be parallelized (1-P) will be 5% and hence the maximum speedup will be limited to the

factor of 20 irrespective of how much value ofN is further increased. This is depicted in figure 4.3.

Efficiency:

Efficiency is given by the ratio between the speedupSand the number of processorsp:
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FIGURE 4.3: Illustration of Amdahl’s law: the case when the proportion of the program that can be par-
allelized is 95% and the proportion that can not be parallelized (1-P) is 5% then the maximum speedup is
limited to the factor of 20.

E =
S
p

(4.3)

and it represents an index of the fraction of time usefully spent by each processor. In this

case, the highest value of efficiency (equals to 1) is attained when all the processors are utilized to

the maximum (communication times and other overheads equal to zero).

4.6.1 Grid speedup and efficiency

The theoretical analysis of the scalability of the’computation-centric’parallel applications on the

grid appears in [225] with a prompt to the Grid community for the demonstration of this idea in

terms of real Grid computing environments. This theoretical analysis is based onthe idea of’Ho-

mogeneous Computational Grid’ (HCG)and fits well with the real Grid computing infrastructure
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provided by the UK National Grid Service (NGS) [66] that we use for MC-PSC. The HCG model

is based on the concept of’Hierarchical Resource Manager’[226] and assumes that the Grid con-

sists ofC number of identical Computing Elements (CE′s) and eachCE (being a HPC system)

has p number of identical processors along with identical means of interconnect. The workload

decomposition on such a system consists of two-level hierarchy: at first theun-decomposed work

(W expressed e.g. in Mflops) is equally distributed inC CE’s (i.eW/C decomposition) and then

within eachCE the portion of the work is assigned to each of thep processors (i.e(W/C)/p de-

composition). Consequently, this two-level hierarchy gives rise to two sources of communication

overhead i.e the communication overhead betweenC CE’s Q1(W,C) and the communication over-

head betweenp processors of each CEQ2(W/C, p). With this formalism, the execution time on

HCG could be defined as:

TC,p(W) =
Wp

pC∆
+Q2(W/C, p)+Q1(W,C) (4.4)

Where∆ indicates the computing capacity of a processor e.g Mflops/s. Please note that if

C = 1 and ifQ1(W,1) = 0 then the overhead of equation 4.4 returns to the standard parallel case i.e

Q2(W, p) = Q(W, p).

Equation 4.4 makes it clear that running the parallel application on more than one CE’s

introduces an additional communication overhead in terms ofQ1(W,C) which increases the ex-

ecution time. However, this increase in the execution time could be masked by the value of C,

which decreases the execution time by increasing the number of processors and also by reducing

the communication overhead in terms ofQ2(W/C, p) as compared toQ(W, p) on one CE.

In order to analyze the added value of parallelism we normally compare the parallel execu-
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tion time onP processors with the sequential execution time on 1 processor. However, as suggested

by [225], in a Grid environment, we need to compare the parallel execution time onC CE’s with the

parallel execution time on 1 CE. This comparison is named asGrid Speedupand is mathematically

defined as:

ΓC
p =

T1, p(W)

TC, p(W)
(4.5)

where,ΓC
p is the ’Grid Speedup’ (withp processors andC CE’s),T1 is the execution time

on a single CE andTC is the execution time onC CE’s.

The Grid Speedup (equation 4.5) is one of the scalability metrics for the parallelapplica-

tions on the Grid. Its value indicates how better a parallel application performs when decomposed

onC CE’s as compared to its performance on a single CE in terms of execution time. Fromequation

4.5 we could also derive the expression for the Grid efficiency as:

γC
p =

T1, p(W)

CTC, p(W)
(4.6)

where,γC
p is the ’Grid efficiency’ andp, C, T1 andTC represent the same parameters as

described in eq. 4.5.

The description of the ’Grid Efficiency’ in eq. 4.6 follows Amdahl’s popular statement

that "for a given instance of a particular problem, the system efficiency decreases when the number

of available processors is increased " [227]. In the case of the Grid efficiency, in addition to the

number of processors, it is the value of theC (number of CE’s) that affects the system efficiency.

Based on these concepts of scalability, this dissertation performs empirical analysis of our

parallel algorithm for MC-PSC as described in the following chapters. The above formalism could
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also be extended to the heterogeneous systems as proposed in [228]. The study of the scalability in a

heterogeneous environment is based on the assumption that each node in the system gets a workload

related to its computational power and that the overhead time of different processors is also known.

Equations 4.7 and 4.8 present the expressions for speedup and efficiency in a heterogeneous system.

Shet =
Ts

TR
(4.7)

where,Ts is the sequential time of the algorithm,TR = maxNi=1Ti , is the response time of the

last nodeTi (among a pool ofN nodes) in the cluster to finish the application. That is,TR represents

the total time elapsed between the launching and termination of the application and it solely depends

on the the time of the node that finishes in the last. This description of theTR could also be applied

to eq. 4.5 for achieving the Grid Speedup in the heterogeneous system.

Ehet =
W

TR×∑N
i=1Pi

=
W

TR×PT(N)
(4.8)

whereW represents the total workload,TR represents the response time of the slowest

node (i.e the node that finishes in the last),PT represents the total power of the heterogeneous system

(sum of the individual powers of the the nodes) andN represents the total number of processors in

the system. Thepowerin this case means the amount of work that a node/system can perform in a

unit time while executing a particular algorithm.

4.7 Conclusions

This chapter is based on the description of the specific research methodologies which have been

used for the design, implementation and evaluation of various parallel and distributed approaches
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for the solution of the MC-PSC’s computational challenge. Based on this methodology, the next

chapter presents the design, implementation and evaluation of the distributed framework for MC-

PSC and the subsequent chapters further build upon it by addressing several other issues related to

this framework.
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CHAPTER 5

A H IGH -THROUGHPUT DISTRIBUTED FRAMEWORK FOR

MC-PSC

This chapter, presents a novel distributed framework for the efficient computation of large scale

MC-PSC. The design, implementation and evaluation of this distributed framework ispresented.

Based on the succinct description of multi-criteria protein structure comparison (MC-PSC) as pro-

vided in the previous chapter through an overview of ProCKSI; and an in-depth description of the

computational challenge at the core of real-timeMC-PSCas explained in the first chapter; this

chapter describes the high-throughput implementation of the entire protocol shown in Figure 1.1,

whereby very large protein structure dataset comparisons are done in parallel using several methods

and exploiting the intrinsic MIMD (Multiple Instructions Multiple Data) structure of the problem.

Thus, the work presented in this chapter takes a step forward towards theultimate goal of real-time

multi-criteria similarity assessment of very large protein datasets.

This chapter was published as a peer reviewed journal paper in IEEE Transactions on

NanoBioscience, Vol. 9(2), pp.144-155, 2010. [doi:10.1109/TNB.2010.2043851]

http://dx.doi.org/10.1109/TNB.2010.2043851
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5.1 Introduction

Recent advances in high-throughput techniques have led to a data deluge in terms of the availabil-

ity of biological and biomedical data such as 1D sequences (flat files), 3Dstructures, microscopic

images, videos and motifs, etc. [28]. This has put considerable strain in the computational re-

sources that are routinely used to store, manage, process and analyze the vast amount of data being

generated. As to cope with the increase in computational demands instigated by very large data

sets, many existing applications are being ported to distributed/grid environment. For example,

the BLAST (Basic Local Alignment Search Tool [229]) algorithm has been parallelized/distributed

through a variety of ways [38, 42, 230–236]. Some of these approaches use combinations of MPI

(Message Passing Interface) [237], Grid and Public Computing based architectures to distribute

either the query sequence (which could be as long as 80 billions of base pairs [238]) or the target

dataset/database(which could have up to 76 million records [238] ) or both. Allthese approaches use

a simple master/slave task scheduling strategy with coarse-grained level task distribution for mini-

mizing communication overheads [28]. Coarse-grained approaches are not always suitable: given

the variable length of the sequences to be compared and the different processing power of individual

nodes in a heterogeneous cluster/grid environment, deciding the actual unit of work to be assigned

to a particular node is a non-trivial matter for which efficient dynamic load-balancing strategies

are needed. Martino et al. [239], describe a simple, inexpensive and effective strategy that divides

the target dataset/database inn buckets of fixed size (where n represents the number of available

processors). The load-balancing in this case is achieved by ordering the sequences by their length

(number of bases or residues) and assigning them to each bucket in a waythat the longest sequence

is assigned to the segment having smallest sum of sequence lengths and continuing this process in a
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round-robin fashion until all sequences are assigned to buckets. Thistype of load-balancing strategy

reduces thepercentage of work load imbalancewithin homogeneous computing architectures but

does not take into account the heterogeneity of cluster and grid environments. Trelles et al. [240]

present another load-balancing approach based on variable size of blocks (buckets). This strategy

initially distributes blocks with small sizes so as to reduce the latency time for each node to receive

its first unit of work. It then increases the size of blocks (in the same way as classicalSelf Guided

Scheduling(SGS) reduces their size) until the first half of dataset/database is processed and then

again starts decreasing their size. The smallest size of final blocks guarantees that alln processors

will terminate either at a same time (ideal case) or with a maximum time difference that depends on

the size of the final block (i.e its execution time). This strategy has been tested ona cluster of 15

nodes with significant enhancement in the performance.

Proteins 3D structure comparison algorithms (e.g. those listed in Table 1.1) present a sim-

ilar structure to algorithms for sequence comparison (e.g BLAST, FASTA and ClustalW etc) and

hence sometimes similar parallel/distributed strategies can be used [28]. However, as compared to

their sequence counterpart, there are very few instances of the application of parallel computing for

3D structure comparison methods (e.g., Ferrari et al. [176] and Park et al. [177]). None of these

methods, however, deal with the much more complex issue of efficient and scalable distributed im-

plementations for Multi-Criteria Protein Structure Comparison. This chapter, therefore, presents

a novel distributed framework for the efficient computation of large scale MC-PSC. The design,

implementation and evaluation of this distributed framework is presented as per following organi-

zation: sections 5.2, 5.3 and 5.4 provide the architectural design and analysisof the newly proposed

framework. Experimental results and their analysis are presented and discussed in section 5.5 and
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finally section 5.7 concludes the findings of this chapter.

5.2 Design and Implementation

In this section we present the algorithmic framework we use to compute in a distributedenvironment

solutions to the MC-PSC problem. Figure 5.1 illustrates the overall architecture ofthe proposed

system. The top module performs the distribution (through two different decomposition approaches

as explained in the following sections) of pairwise comparisons and allocates themover the available

nodes. Then, using the assigned (bag) proteins, each node performs, in parallel and without the

need for synchronization, the pairwise comparisons required by its associated protein bag using

each of the available PSC methods. That is, each compute node computes a sub-matrix from the

all-against-all similarity matrices associated to each method. Afterwards, a phase of normalization

and estimation of missing/invalid values is executed. This phase exchanges information among

nodes, as it needs the global minimum and maximum similarities for the normalization as well as

for the estimation of missing/invalid cells. All the results concerning the current node are stored

on a local matrix. Note that no global and centralized matrix is maintained by the system and that

all the communication among the nodes are performed using the MPI (Message Passing Interface)

libraries for a cluster of computers and using the MPIg libraries [191,192] in the case of a grid-based

implementation.

The pseudo-code shown in Algorithm 1 illustrates the main steps performed by each node

in the distributed framework. Lines 1- 7 perform the pairwise comparison with all the methods for

all of the proteins assigned to a particular node. Because the system doesnot maintain a global and

centralized matrix, the process of finding the extrema (maximum and minimum similarity values
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needed for the subsequent step of normalization) takes place in two steps. First, the local extrema

are found (lines 8- 11) for all the methods. These are then shared among allthe nodes to find the

global extrema (line 12). Once the extrema are found, the next step (line 13) calls a subroutine

that replaces all the invalid and missing values with their corresponding estimated values. Finally,

line 21 calls the subroutinenormalize_diagonal that performs the normalization of self-similarity

values (across the diagonal of the matrix) and line 22 calls the subroutinenormalize_extremathat

uses the previously calculated extrema to perform the normalization of all the values.

5.3 Decomposition Strategies

The efficiency of the distributed framework strongly depends on the way inwhich proteins are

assigned to compute nodes.

A good load balancing strategy should considerably reduce the execution timeand the

memory necessary to store the main matrix and other data structures necessaryto the overall com-

putation of MC-PSC.

Consider a set of resources (nodes of the clusters or machines on the grid) N1,N2, . . . ,Nn

and the main matrix (proteins× proteins×methods) storing the result of the computation and of the

normalization (and estimating invalid/missing values) phases. Letp be the total number of proteins

andm the total number of methods computed. Note that, indeed,M indicates the total number of

indices computed by the differentm methods; in fact,M = ∑m
k=1Mk, whereMk is the number of

indices computed by the methodk (see Table 5.1 for complete nomenclature).
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FIGURE 5.1: Software architecture of the distributed framework. The top module tries to estimate and dis-
tribute the workload equally to each node available in th pool of resources. Each node runs the distributed part
of the algorithm to perform comparison with all methods followed by data post processing (standardization
& normalization) and produces the sub-matrix of the results.

Algorithm 1 Pseudo-code executed from each nodex concerning the multi-comparison part and
the normalization/replacing invalid missing values part. Line 1 iterates for each method, with m
representing the total number of methods. Lines 14−16 scan through the results and replace the
missing self-similarity (SS) and non-self similarity (NSS) values (for more details please see section
8.3). Lines 18−22 use the extrema values to compute the normalization of the MC-PSC similarity
values stored in the distributed’matrix’ .

1: for all methodk such that 1≤ k≤mdo
2: for all proteini in row (x) do
3: for all protein j in column (x) do
4: compute_methodk on the couple of proteinsi and j {on nodex}
5: end for
6: end for
7: end for
8: for all k such that 1≤ k≤mdo
9: find_local_min

10: find_local_max
11: end for
12: exchange and find all globalminandmax
13: replace_invalid_missing_values:
14: for all k such that 1≤ k≤mdo
15: missing_SS:maxvalue in the cross-section
16: missing_NSS:minvalue in thematrix
17: end for
18: for all methodk such that 1≤ k≤mdo
19: for all proteini in row (x) do
20: for all protein j in column (x) do
21: normalize_diagonal:matrix[i][ j][k] = matrix[i][ j][k]/max
22: normalize_extrema:matrix[i][ j][k] = (matrix[i][ j][k]−min)/(max−min)
23: end for
24: end for
25: end for
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In order to distribute the overallM among the nodes, there may be four possible parti-

tioning schemes. Each of these schemes uses a different level of granularity for assigning the jobs

as:

1. Comparison ofone pairof proteins withone method. This will createp× p×m jobs

2. Comparison ofone pairof proteins withall methods. This will createp× p jobs

3. Comparison ofall pairs of proteins withone method. This will createm jobs

4. Comparison of asubset of pairsof proteins with aset/subset of methods. This will create as

many number of jobs as the number of available processors (or as desired).

The suitability of any of the above listed partitioning schemes could be analyzedin terms

of its workload distribution. Considering the case of all-against-all comparisonof PDB (64036

structures) using six comparison methods, partitioning 1 will generate≈ 24.6 billion jobs. Obvi-

ously, all of these jobs can not be assigned to processors with one-to-one mapping and hence most

of the jobs will have to remain in the queue which needs to be managed properly. Also, the major

problem with this scheme would be that the processors will remain idle while reporting the out-

put for each finished job and getting the details of the next job and fetching its related input files.

This means that the partitioning 1 would be toofine-grainedto be considered for the distributed/-

grid environment. The case of partitioning 2 is also same because it has a slightlyhigher level of

granularity than partitioning 1 and would results in as many number of jobs as≈ 4.1 billion. Par-

titioning 3 on the otherhand, would generate only 6 jobs and hence would be too coarse-grained

to be considered for the distributed/grid environment. The issues of too much fine-grained or too

much coarse-grained level of granularity associated with these 3 partitioningschemes could be well
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balanced with partitioning 4. This scheme suggests to create a job package consisting of many pair-

wise comparisons with either one or all methods to be dispatched as a single job forexecution on a

node. The number of pairwise comparisons in a package could be determined inan intelligent way

so that equal amount of work gets assigned to each processor.

We investigate the 4th partitioning scheme by applying two different approaches. The

first decomposition adopted is shown in figure 5.2. The main matrix that stores the results is de-

composed among the available nodes along the two proteins axis, so each comparison among two

proteins for all the methods is performed on the same node, better balancing the different methods.

This decomposition is the more efficient in terms of inter-jobs communication overhead,as it min-

imizes the number of information exchanges amongst compute nodes. Furthermore, the matrix is

perfectly partitioned as each node is responsible for the computation and storage of same number of

proteins p2m
n . In the next subsection these results will be analyzed in more detail. However,initial

experiments suggested that execution times for different couples of proteins can largely fluctuate

(see table 5.3), making the load among the different nodes not really balanced.

A second strategy is to balance the total execution time per compute node rather than the

number of pairwise comparisons. Thus, this strategy takes into account the inhomogeneities in the

size of the proteins being compared and is shown in figure 5.3. In order to setup a bag of proteins

having the same overall number of residues on each node, the following largely used strategy was

followed. Consider the case of proteins to be assigned to the
√

n row processors (but the procedure

is analogous for the column processors). First of all, proteins are sorted by the number of residues.

Then, they are assigned, from the longest to the shortest one, to the node having the current lowest

sum of residues. This procedure is not really time consuming, as it requires p log p for sorting the
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proteins andp(
√

n)2 = pn for assigning them to the correct node. The same distribution obtained for

the row is also chosen for the column, so that the order of rows is not different of that of the columns

and the operation of normalization and removing invalid/missing values could be performed without

other overheads.

Each of the two proposed load balancing approaches result in a different CPU and mem-

ory usage. In what follows we analyze the benefits and drawbacks behind each of them. Unless

otherwise stated, a given analysis/argument applies to both of the strategies. Henceforth, the first

decomposition will be referred to asevenand the second one asuneven.

FIGURE 5.2: Even distribution of the problem space (proteins× proteins×methods). Each node is respon-
sible for the same computation, i.e. same portion of the matrix)

.

5.4 Cost Analysis

5.4.1 Space Analysis

In what follows we do not take into account transient memory requirements bythe different methods

(e.g. internal data structures) as these have, on the one hand, been already analyzed in the original
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FIGURE 5.3: Uneven distribution of the problem space (proteins× proteins×methods). Note that the
different sizes take different protein sizes into account (e.g. one node only for a few big proteins, which take
quite long to calculate; and one node for many smaller proteins, which are quicker to calculate).

article where each method was originally introduced and, on the other hand,these transient space

requirements are released as soon as a particular pairwise comparison is done. The nomenclature

used in our analysis is summarized in Table 5.1.

The entire matrix, storing the comparison/normalization results, is decomposed along

each of the two proteins axis amongn nodes. So, in the case of even distribution, each node handles

a matrix of sizep2m
n and of size= max(row_protx× col_protx)×m for the uneven distribution,

wherep is the number of proteins,n the number of nodes,m the total number of computed methods

androw_protx andcol_prot_x are respectively the proteins stored on the row and on the column

of the matrix assigned to the nodex. In this case the space→ p2m
n if max(row_protx→ p

n and

max(col_protx→ p
n , i.e. almost the same number of proteins is stored on each node.
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Description

p Number of proteins

n Number of nodes (processors)

m Number of methods used (i.e. MaxCMO, FAST, etc..)

Mk Number of indices computed by the method k

M Total number of indices computed by all the methods

row_protx Number of row proteins present on nodex

col_protx Number of col proteins present on nodex

Evalx Number of evaluation conducted on nodex (row_protx×col_protx)

Sp average size of proteins

Tmx average execution time of all the methods over all the couples of proteins on nodex

Tm average execution time of all the methods over all the couples of proteins

TABLE 5.1: Nomencalutre used for the analysis.

The space necessary to store the proteins isp2mSp

n for even distribution andmax(row_protx×

col_protx)mSp for uneven distribution, whereSp is the average size of proteins. This is the worst

case as in many cases row proteins and column proteins are overlapped.

Obviously, in the case of the uneven distribution, the memory space is balanced only if

the number of proteins stored on a node are not much different from those stored in the others.

5.4.2 Time Analysis

Let Tm be the average execution time of all the methods over one pair of proteins andTmx be

average execution time of all the methods over one protein pair stored on nodex.

So, only for the computation part of the algorithm, in a single node execution, the total

execution time will beTs = p2×Tm. As for the distributed case, formulation is not so simple as,

depending on the distribution of the proteins, average execution times could be really different from

node to node. In such case, in the even distribution the parallel execution time willbeTp = p2Tmx
n

andTp = max(row_protx× col_protx×Tmx) ≤ max(row_protx× col_protx)×max(Tmx) for the
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uneven distribution. So, one has to balance this product as to obtain a fair computation; in the case

of even distribution only ifTmx← Tm for each node, a balanced load is achieved.

In addition to considering different execution times over different nodes, communication

overheads must also be taken into consideration. This overhead happens inthe first phase, when

proteins are distributed over the nodes (usingMPI_Bcastroutine) and in the latter phase, when nor-

malization and invalid/missing value replacement must be conducted (usingMPI_Allreducerou-

tine).

Moving the proteins to different nodes does not require an excessivetime in comparison

with the large computation time of the computing phase. Naturally,evendecomposition needs

slightly less overhead thanunevenone as almost the same number of protein must be send to

each node. The amount of data exchanged is, as discussed before,p2Sp

n for even distribution and

max(row_protx×col_protx)Sp for uneven.

As for the normalization phase, we need to compute the globalminimumandmaximum

for all the methods for a total of 2m values exchanged. For the correction of invalid or missing

values we need theminimumor maximumfor each row and column and method in which we got an

invalid value. Thus, in the worst case, we have to exchange 2n2m, but typically invalid values are

found only for a few methods and not for many cells.

Although the same amount of information is exchanged by the two decomposition strate-

gies, the communication overhead is higher for theunevenstrategy. This is mainly due to the worse

efficiency for collective communication in an environment in which there are different number of

rows and columns for each processor.
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5.4.3 Discussion of the Theoretical Cost Analysis

The two decomposition strategies adopted present different pros and cons. Although the even de-

composition better utilizes memory both in terms of cells of the matrix (p2m
n ) and proteins (p

2Sp

n ),

it does not balance well the execution time on the different nodes, especiallyif, as usual, proteins

have very different structures (or number of residues) . On the contrary, the uneven distribution, pay-

ing the cost of a larger memory requirements (max(row_protx×col_protx)×m for the matrix and

max(row_protx×col_protx)Sp for proteins), is the only approach usable for obtaining appreciable

reduction in execution times for small-medium and not well balanced datasets of proteins.

5.5 Experimental Results and Discussions

Different experiments were conducted to validate the quality of the two decomposition strategies.

Two metrics are usually used for testing the computational scalability of a parallel/distributed sys-

tem: the speedupSand the efficiencyE. The ”speedup” is a measure that indicates the improvement

in the execution time of a parallel algorithm as compared to its sequential counterpart where as the

”efficiency” indicates the utilization of each processor in a parallel system.

5.5.1 Datasets and Test Suite

All the experiments were performed on a Linux cluster, namedspaciand placed at ICAR-CNR

institute in Italy, with 64 dual-processors Itanium2 1.4GHz nodes each having 4GB of main memory

and being connected by a Qsnet high performance network.

In our experiments, we used the first chain of the first model both for the Rost and Sander

dataset (RS119) and for the Chew-Kedem (CK34) data set (see Table5.2 for the characteristics
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of these datasets). As an example of a large dataset, we used the one proposed by Kinjo et al.

[223]. This dataset has been prepared by using PDB-REPRDB [223]algorithm to select 1012 non-

redundant protein chains. The length of each chain in this dataset is greater than 50 with a sequence

identity less than 30%. Furthermore, the dataset does not contain any chain with non-standard

residues or chain breaks and all of its chains have resolution better than 2 Åand R factor better than

20%.

TABLE 5.2: Overview of the datasets used in the experiments. The hash symbol (#) is an abbreviation for
Number of

Dataset # Chains # Comparisons # Residues

per Datasets per Datasets per Datasets

CK34 [221] 34 1,156 6,102

RS119 [222] 119 14,161 23,053

Kinjo et al. [223] 1012 1,024,144 252,569

5.5.2 Scalability of the Even Decomposition

To evaluate the quality of the even decomposition, the previously introduced metrics of scalability

and efficiency were used, together with the execution time on different numbers of processors. The

speed-up values obtained for the two medium datasets CK34 and RS119 areshown in figure 5.4.

For both datasets, the speed-up remains good using up to 16 processors, but using more

processors does not help to speed up the total execution time to the same degree. This is due to the

structural differences of the proteins, as each protein is composed by a different number of residues.

Indeed, inspite of having the same number of proteins on each node, some proteins could have a

large number of residues on a node and a few on another one. This consideration is confirmed by the

large variance in the execution times of the different methods (Table 5.3). As for the execution time,

for the RS119 (CK34) dataset, the entire execution time was reduced from about 6 days (6.2 hours),
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FIGURE 5.4: Speedup of the even decomposition using the CK34 and RS119 datasets onspacicluster. The
graphs shows that with CK34 dataset the speedup of the distributed algorithm (based on even decomposition)
is around 26.2× with efficiency of 41% while the values of speedup and efficiency increase to around 30×
and 46% respectively for the larger dataset i.e., RS119.

using the sequential implementation on one machine, to 4.8 hours (14.15 minutes) on 64 processors.

This means that the new distributed algorithm performs 25× (with CK34 dataset) and 30× (with

RS119 dataset) better than its current sequential counterpart. However, these improvements are still

far from the ideal improvement of 64× and hence on 64 processors, the efficiency degrades to the

values of 41% and 46% respectively for CK34 and RS119. The followingsections provide analysis

of this effect in detail and introduce another approach that further enhances the speedup as well as

the efficiency of the system.

It is important to understand whether the execution times of the different methods de-

scribed in the previous sections depends on the number of proteins, on the numbers of residues, or
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TABLE 5.3: Average execution times and standard deviation (minutes) of the different methods for the
CK34 and RS119 datasets averaged over 60 tries.

Dataset USM FAST TM-ALign Dali CE MaxCMO

CK34 0.52±0.28 0.14±0.07 0.28±0.11 3.49±1.53 3.20±0.66 0.99±0.34

RS119 3.68±0.31 2.16±1.05 5.78±2.86 44.59±20.51 41.05±20.41 20.13±9.69

on both of them. To this end we randomly divided the proteins composing the two datasets CK34

and RS119 among 64 nodes (a 8x8 grid of processors) and we run all theavailable methods and

measured the execution time, the overall number of residues and of proteins present on each node.

This procedure was repeated for 20 times for a total of 120 different measures of time.

Then, we plotted the execution time vs the number of proteins (figures 5.5 a and b)and

the execution time vs the overall number of residues (figures 5.6 a and b). Observing the figures,

it is clear that the execution time depends mainly on the overall number of residuespresent on a

node, i.e. the dependence of time as a function of residues number is nearly linear, while it does not

exhibit a linear dependence on the number of proteins.

The largely usedPearson product-moment correlation coefficient(PMCC) was computed

to better assess the dependency between time and residues versus the time and proteins. In the first

case, we obtained a coefficient of 0.992 and 0.995 respectively for theCK34 andRS119dataset,

while in the latter case we obtained only 0.582 and 0.585.

Further analysis aimed to explore whether this linear dependence was influenced by one

or more slowest methods or is verified for all the methods. Figures 5.7 and 5.8 show the execution

time vs the number of residues for each method for CK34 and RS119. Although FAST, USM and

MacCMO perform faster as compared to Dali, CE, TM-Align, but the dependence is quite evident

for each of them.
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FIGURE 5.5: Execution time (s) vs number of proteins present on the node for the (a) CK34 and (b) RS119
dataset. The graph shows that the execution times exhibits anon-linear pattern in terms of the change in the
number of proteins.
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FIGURE 5.6: Execution time (s) vs number of residues present on the node for the (a) CK34 and (b) RS119
dataset. The graph shows that the execution times exhibits alinear relationship with the change in the number
of residues.



5. A HIGH-THROUGHPUT DISTRIBUTED FRAMEWORK FOR MC-PSC 124

(a)

(b)

FIGURE 5.7: Execution time (s) vs number of residues present on the node for the different methods with
CK34 dataset. Each method has different execution time but exhibits linear relationship with number of
residues.



5. A HIGH-THROUGHPUT DISTRIBUTED FRAMEWORK FOR MC-PSC 125

(a)

(b)

FIGURE 5.8: Execution time (s) vs number of residues present on the node for the different methods with
RS119 dataset. Each method has different execution time butexhibits linear relationship with number of
residues. Additionally, with this slightly large dataset (RS119) the linear dependence becomes even more
vivid.
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5.5.3 Scalability of the Uneven Decomposition

From the previous section, it is clear that the execution time strongly depends onthe number of

residues per node. Thus, scalability experiments for the same dataset as the evendistribution were

also conducted withunevendecomposition and results are reported in figure 5.9. For the RS119

(CK34) dataset, the entire execution time was reduced from about 6 days (6.2 hours), using the se-

quential implementation on one machine, to 3.4 hours (11.65 min.) on 64 processors. In comparison

with the even strategy, we obtained an improvement on 64 processors of about 18% for the CK34

dataset and of about 29% for the RS119 dataset. Furthermore, on 64 processors, the efficiency is

maintained at a quite good value of 64% for RS119. For the CHK34, we obtained a value of 50%

that is not a bad result, given the small grain of the dataset.

0 4 16 25 64
0
4

16

25
30

40

64

Number of processors

S
pe

ed
−

up

 

 

Ideal
CK34
RS119

FIGURE 5.9: Speedup of the uneven decomposition using the CK34 and RS119datasets onspaciclus-
ter. The graphs shows that with CK34 dataset the speedup of the distributed algorithm (based on uneven
decomposition) is around 29.9× with efficiency of 50% while the values of speedup and efficiency increase
to 42.3× and 64% respectively for the larger dataset i.e., RS119.
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5.6 A Further Experiment on a Large Dataset

The last experiment was performed using the the uneven strategy runningon 4, 16, 25 and 64

processors applied to the Kinjo dataset, comprising of 1012 non-redundant protein chains. Using

this dataset, the algorithm performed about 1 million of comparisons for all the methods.

As the execution time on a single processor is extremely large, this case was notconsid-

ered, instead, scalability was measured based on an estimated base line on 4 processors running

the faster of all the methods, namely, the FAST algorithm. For reference note that FAST takes ap-

proximately 11 days to execute on a single processor for such a large number of proteins. Table

5.3 shows that method USM will take approximately 2.7× the execution time of the FAST method

(the factor 2.7 for USM and subsequently for other methods is based on the average ofthe times for

CK34 and RS119 datasets as compared to method FAST). Likewise, the estimatedexecution time

for TM-Align is 2.33×, Dali 22.78×, CE 22.93×, and for MaxCMO 8.19×, giving the aggregate

factor of 58.93. As method FAST takes approximately 11 days on a single processor, theestimated

time for all the methods on 1 processor would be 11×58.93≈ 648 days or≈ 162 days on 4 proces-

sors. The execution time of the algorithm applied to this huge dataset was reduced from 162 days on

4 processors, to 39.7 days on 16 and finally to 10.7 days on 64 processors. The scalability obtained

is very close to the ideal case, as can be seen in figure 5.10. In fact, on 64 processor, respectively a

scalability value of 57× and an efficiency value of 89% were measured.

5.7 Conclusions

A high-throughput/grid-aware distributed Protein structure comparison framework for very large

datasets is proposed, based on an innovative distributed algorithm runningboth in a cluster and grid
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FIGURE 5.10: Speedup of the uneven decomposition using the Kinjo dataseton spacicluster. The graph
shows that with this large dataset the distributed algorithm (based on uneven decomposition) achieves an
increased speedup of 57× and an efficiency value of 89%.

environment. This framework is able to perform structure comparison using all or a selection of the

available methods. The design of this algorithm have been analyzed in terms of space, time, and

communication overhead. Based on this analysis two different load balancingapproaches have been

used to improve the overall performance:evenandunevenstrategies. The former permits to obtain

the best distribution in terms of memory, while the latter performs better in terms of execution time

and scalability on cluster computers. Experiments conducted on medium and large real datasets

prove that the algorithm permits to reduce execution time (i.e. for the RS119 dataset it was reduced

from 6 days on a single processor to about 5 hours on 64 processors) and to cope with problems

otherwise not tractable on a single machine as the Kinjo dataset, which took about 11 days on a
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64-processors cluster.

The next chapter provides further evaluation of this distributed frameworkin terms of

different integrated environments for MPI jobs.
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CHAPTER 6

PERFORMANCE EVALUATION OF THE MC-PSC

ALGORITHMS UNDER IRME FOR MPI J OBS

Chapter 5 presented the design, implementation and evaluation of the distributed framework for

MC-PSC. This chapter evaluates the effect of differentIntegrated Resource Management Environ-

ments(IRMEs) on the performance of this framework in order to find the environment that could

provide optimal results.

This chapter was published as a peer reviewed conference paper inProceedings of the

IEEE International Symposium on Parallel and Distributed Processing with Applications ISPA

’08,ISBN: 978-0-7695-3471-8, pp.817-822, 2008. [doi:10.1109/ISPA.2008.41]

6.1 Introduction

As explained in chapter 5, in order to achieve the high-end computational power needed for compute-

intensive applications such as Protein Structure Comparison, the operation of these applications

needs to be decomposed using some parallel programming libraries that are based on the imple-

mentations of Message Passing Interface (MPI) model. Commonly used MPI libraries include

http://dx.doi.org/10.1109/ISPA.2008.41
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MPICH/MPICH2 [188] [189] and LAM/MPI [241] [242] which has recently been merged into a

global project under the name of OpenMPI [190]. Given that the scopeof parallelism is extending

from supercomputers to personal computers, workstations and networks [187]; aconvergingeffect

on the fields ofparallel anddistributedcomputing is being observed. It is in this perspective that the

operation (submission, execution and monitoring) of MPI based jobs needs to be automated through

some suitable resource management middleware (see Figure 6.1) such as Sun Grid Engine (SGE),

Portable Batch System (PBS), Load Sharing Facility (LSF) etc. The specialized literature refers to

the functionality provided by these software using various names for instanceLocal Resource Man-

agement System(LRMS), Queuing System, Batching System, Workload Manager, Job Management

SystemandDistributed Resource Manageretc as described in chapter 2 and 3.

Normally, when MPI based parallel jobs are submitted to LRMS, it calls some external

framework to launch the MPI environment for the execution of jobs [243]. If there is no appropriate

coordination between the external framework and LRMS, then the launchedjobs may get dispatched

on somewhat different resources than what had been allocated by the LRMS, creating, on the one

hand, resource overloading and conflicting problems, on the other hand,providing inaccurate or no

resource usage and monitoring information. Both of these problems could be eliminated if certain

means are used to integrate the operation of LRMS and MPI environment [243].

If the integration is achieved in such a way that it removes only the first problem namely

the launching of parallel jobs doesn’t create overloading and resource conflicts, then the integration

is said to beLoose Integration. In Loose Integration, the LRMS only sends information to MPI

environment regarding which resources a particular job should run on but the job runs in isolation

from LRMS and hence no resource usage and monitoring information is obtainedby the LRMS.
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FIGURE 6.1: Three main components of aLocal Resource Management System(LRMS). Each newly
submitted request for the execution of user jobs is taken care by theQueue Manager(e.g. sge_qmaster
daemon of SGE), which stores these jobs in a queue and requests the Scheduler (e.g. sge_schedd daemon
of SGE) for their execution. The Scheduler gets job information from the Queue Manager and optimally
decides when and where to execute these jobs based on the information obtained from the Resource Manger
(e.g.sge_execd/sge_shepherd daemonsof SGE) and system administrator’s policies. This type of automated
system frees the user from manually looking if the required resources for the execution of a job are available
and to manually start the job on each node.

However, if the integration is achieved in such a way that it removes both of theproblems then it

is said to be aTight Integration, which enables the LRMS to run the MPI jobs under the control

of its Job Controlling Agentso as to avoid the problem of resource overloading and getting full

resource usage information. This chapter aims to evaluate the performance ofPSC jobs running

under such an integrated architecture configured with different approaches in order to provide a

scientific basis for decision making while building a large scale e-Science infrastructure that meets

with the requirements of today high-impact scientific applications.

The remainder of this chapter is organized as follows: section 6.2 provides an overview

of the parallel libraries and LRMS that has been used in this study; it also provides the details of
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the implementation and results of the integration; section 6.3 provides the details of the testbed and

datasets used for the experimentations; finally section 6.5 concludes the chapter.

6.2 Integrated Resource Management Environment (IRME) for MPI Jobs

This study is based on the use of two different implementations of MPI libraries namely MPICH2

[188] [189] and Open MPI [190]. The description of these libraries is presented in Table 4.3. The

local resource management system is described in the following section.

6.2.1 Sun Grid Engine (SGE)

SGE1 provides management solutions forcluster grids. SGE uses Unix as its native environment

and implements most of its services and other entities as Unix daemons. The use of Unix as a

native environment allows SGE to make use of already developed standardand stable services and

protocols for communication and computation such asSecureShell (SSH),RemoteShell (RSH),

Network File System (NFS), and Remote Procedure Call (RPC) etc. Normally,SGE based cluster

grid consists of four types of hosts and different daemons keep runningon each host. A brief

description of these hosts is given bellow:

Job Server (execution name/command ’sge_qmaster’):

This daemon controls the overall operation of SGE. It interacts with other daemons to provide

job management and monitoring services and information. In case of any errorsit records the

diagnostics messages in the directorySGE_ROOT/<qmaster_spool_dir>/messages.

Job Executor (execution name/cammand ’sge_execd’):

1SGE; the Sun Grid Engine is an open source and cross platform resource management system developed and main-
tained by Sun Microsystems. It also has a commercial version named ’Sun N1 Grid Engine (SN1GE)’

SGE_ROOT/<qmaster_spool_dir>/messages
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This daemon reads the local queue and places the job for execution in conjunction with Job

Controller daemon. In case of errors, the daemon records the diagnostic messages in the

directorySGE_ROOT/<execd_spool_dir>/<hostname>/messages .

Job Controller (execution name/cammand ’sge_shepherd’):

This daemon provides parent process functionality for a single job, and hence enables the SGE

to get the resource usage information after the job finishes. It gets the information from Job

Executor regarding which job to execute and starts up to 5 child processesfor each job. These

child processes include the prologue (if enabled) , startup of the parallelenvironment (if the

job is parallel), startup of the job itself, shutdown of the parallel environmentand finally one

process for epilogue (if enabled). The prologue, epilogue, and parallelenvironment startup

and shutdown scripts are site specific and are provided by the administratorwhile configuring

the cluster. In case of any errors it record the messages in the Job Executor’s directory.

Job Scheduler (execution name/command ’sge_schedd’):

For each new job the Job Server contacts the Job Scheduler daemon. This daemon reads the

job’s profile, gets the site’s policy information as configured by the administrator, requests the

resource information from Job Executor and finally communicates the decisions to Job Server

regarding which queue this job be submitted for execution. In case of any errors the daemon

records diagnostic messages in the directorySGE_ROOT/<qmaster_spool_dir>/schedd/

messages.

In addition to different daemons, the SGE infrastructure consists of anotherentity called

’queue’. A queueis used as a container for jobs. There may be several types of queues characterizing

SGE_ROOT/<execd_spool_dir>/<hostname>/messages
SGE_ROOT/<qmaster_spool_dir>/schedd/messages
SGE_ROOT/<qmaster_spool_dir>/schedd/messages
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different types of resources and environments. The SGE scheduler daemon performs assignment

of jobs to appropriate queues based on the information from job’s profile aswell as the system

load distribution. In order to accommodate those jobs which need to be scheduled at the same

time and which require to communicate among themselves ( the parallel jobs), SGE provides an

interface to define parallel environments (PE). Different ways of integration of the SGE and parallel

environments are further described in the following section.

According to [244], though MPICH2 provides different process management methods

such asgFoker, MPD, andSMPD, only the later could be used for tight integration as it satisfies

the requirement of asingle process groupon each node of the cluster. The SMPD method by itself

could be used in two different ways i.e.SMPD daemon-based(SMPD-DB) andSMPD daemon-less

(SMPD-DL). With SMPD-DB a single daemon per node is used to manage all the processes running

at that node. In case of multi-processor node the resource usage information of all other processors

is aggregated to the one and same daemon and hence the SGE would record theoverall resource

usage information per node through a singleQueue Remote Shell(qrsh) invocation when the job

finishes its execution. Whereas, with SMPD-DL each process starts on its own on each node and

SGE needs to record eachqrsh invocation for each process separately. For the sake of comparison

we used both SMPD-DB and SMPD-DL to perform Loose and Tight Integration using the distinct

configuration parameters as listed in Table 6.1.

6.3 Testbed and Datasets

In order to evaluate the performance of PSC jobs under both (i.e. Loose and Tight) ways of inte-

gration, a testbed consisting of aheterogeneousLinux cluster (resources shown in Table 6.2) has
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TABLE 6.1: Distinct configuration parameters for Loose Vs Tight integration of SGE and MPICH2.

Parameter Loose Integration Tight Integration

start_proc_arg /sge/mpich2_smpd/startmpich2.sh /sge/mpich2_smpd/startmpich2.sh

$pe_hostfile /local/mpich2_smpd $pe_hostfile -catch_rsh /local/mpich2_smpd

stop_proc_arg /sge/mpich2_smpd/stopmpich2.sh /sge/mpich2_smpd/stopmpich2.sh

/local/mpich2_smpd -catch_rsh /local/mpich2_smpd

control_slaves FALSE TRUE

job_is_first_task TRUE FALSE

TABLE 6.2: Hardware Configuration of the Cluster Grid. All hosts communicate through 100 Mbps
Ethernet cards

Host CPU(GHz) Cache(KB) RAM (GB) HD(GB)

comp1 2x P4-1.86 4096 2.0 250

comp2 2x P4- 3.0 512 1.0 80

comp3 P4-2.4 512 0.5 20

comp4 P4-1.7 256 1.0 40

comp5 2x P4-3.6 1024 2.0 80

comp6 P4-2.4 512 0.5 40

been used. The cluster consists of 6 nodes with a total of 9 slots giving an aggregated CPU power

of 25.82 GHz and main memory of 7 GB.

6.3.1 Datasets

Chapter 5, worked with datasets which have already been used in the literature. Developed by dif-

ferent authors; these datasets do not exhibit any regularity in terms of number of structures. The

regularity would however be useful in observing the continuous relationshipbetween the execution

time of PSC jobs and the size of the dataset under different software environments and configura-

tions. To this aim, three subsets of regularly increasing number of structures have been randomly

selected from the dataset of Kinjo et al. [223]. These datasets were prepared with the same algorithm

and characteristics as described in section 5.2. Table 6.3 provides furtherdetails of these datasets
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TABLE 6.3: Datasets used in the experiments. Hash sign (#) represents the word’Number of ’

Dataset # of Chains # of comparisons Size in MB

SFBK-250 250 62,500 33.1

SFBK-500 500 250,000 66.5

SFBK-1000 1000 1,000,000 137.5

and Figure 6.2 shows the effect of the increasing number of protein chainson the computational

time taken by FAST [50], one of the structure comparison methods we used in thisstudy.

6.4 Results and Discussions

In order to evaluate the goodness and weakness of the integrated environment described in the pre-

vious section, we run the FAST algorithm using three datasets listed in Table 6.3. The experiments

were performed on 6 heterogeneous nodes (9 processors) of a Linux Cluster with the characteristics

described in Table 6.2. Figure 6.3A, gives an illustration of a PSC job running FAST algorithm

under loose integration, whereas Figure 6.3B illustrates the operation of the sameMPI job running

under tightly integrated environment.

Table 6.4 shows the computational time in terms ofwall clock time, user time, system

time and CPU time required for the execution of one of the protein structure comparison algorithms

named FAST [50] with different datasets under the integrated resource management environment

for MPI jobs that has been configured with different approaches.Wall Clocktime is the real time

taken by the algorithm as perceived by the user and includes CPU time, I/O time and communication

time e.g. between different nodes,User time is part of the cpu time taken by the user application

(i.e. FAST algorithm) itself;System timeis the part of cpu time taken by the system software;

andCPU time is the sum ofuserandsystemtimes. It can be seen in Table 6.4, that in terms of
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FIGURE 6.2: Computational time for PSC algorithm (FAST) on P4-2.4GHz uni-processor machine with in-
creasing number of proteins (single chain based PDB files) inthe dataset. The graph shows that the execution
time increases with respect to increase in the number of proteins; however, the change is not linear because
of the different number of residues i.e. length of the structures.

wall clock time, the algorithm finishes earlier under Loose integration as comparedto the Tight

integration. The reason beyond this large variance is the fact that with looseintegration we only

get the accounting information for the master process which runs on only one processor and hence

it seems to be a fraction of the total wall clock time as reported in tight integration. Also, with

Loose integration theuser, systemandcpu times (accounting information) can not be noted as the

mpi job doesn’t run under the control of job controlling agentsge-shepherd. Furthermore, in Loose

integration the SGE is unable to get proper monitoring (state) information in case if the mpijob

goes through any problems. An example of such job that SGE was unable to get information about

is one suffering with an mpi related error:

"unable to read the cmd header on the pmi context, socket connection closed, error
stack: MPIDU_Socki_handle_read(607): connection closed by peer ..."

This job took far beyond its expected execution time and the SGE did not notify theuser
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and the job was killed manually afterward. Being able to keep track of which pairs of structures

have been (un)successfully compared and by which method is an essentialfeature of modern robust

comparison servers such as [27]. Hence, this is a potential weakness ofLooseintegration.

Referring to Table 6.4 again, it could also be observed that for a small number of pro-

teins (e.g.SFBK-250 dataset) the performance of both SMPD-DB and SMPD-DL types of tight

integrations is almost same, however, for larger datasets (e.g.SFBK-500andSFBK-1000), the for-

mer outperforms the later one. This is because in case of SMPD-DL, SGE needs to record each

qrsh invocation and hence incurs an extra overhead. Tables 6.5 and 6.6 illustrate some interesting

differences betweenSMPD-DBand SMPD-DL types of tight integrations. Table 6.5 shows that

SMPD-DB integration doesn’t expose the dual-processor nature of someof the nodes (e.g.comp1,

comp2, andcomp4; Table 6.2). However, it utilizes both of the processors of all dual-processor

nodes implicitly as can be seen from the values of CPU times for comp2 and comp5 in Table 6.5,

which are even greater than the value of their correspondingwall clock times. Table 6.6 shows that

the overall performance of the SMPD-DL tight integration gets degraded because of the longer CPU

time taken by the slowest node (comp4; Table 6.2). This longer CPU time could be because of the

slowest speed of certain nodes in subject as well as because of the longer lengths of protein chains

being compared by FAST algorithm at that node. It is because of this long running node that faster

CPUs also go through long idling cycles.
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TABLE 6.4: Resource usage comparison for FAST algorithm [50] with different datasets using Loose and
Tight integration of SGE and MPICH2 with SMPD daemon-based (SMPD-DB) and daemon-less (SMPD-
DL) startup methods.

Dataset Time Loose Integration Tight Integration
[hh:mm:ss] SMPD-DB SMPD-DL SMPD:DB SMPD:DL

SFBK-250 Wall clock 00:10:43 00:13:51 00:59:18 00:52:27

User - - 00:50:18 00:45:46

System - - 00:08:05 00:06:25

CPU - - 00:58:23 00:52:11

SFBK-500 Wall clock 00:51:12 01:01:29 01:38:28 02:11:48

User - - 01:22:11 01:50:25

System - - 00:13:18 00:18:51

CPU - - 01:35:39 02:09:16

SFBK-1000 Wall clock 02:22:25 02:22:36 05:39:36 07:44:04

User - - 04:34:06 06:28:56

System - - 00:49:15 01:08:34

CPU - - 05:23:22 07:37:30

TABLE 6.5: Time distribution for FAST algorithm withSFBK-1000dataset over nine processor using tight
integration with SMPD daemon-based (SMPD-DB) method.

comp1 comp2 comp3 comp4 comp5 comp6

Wall Clock [hh:mm:ss] 05:39:37 05:39:37 05:39:37 05:39:37 05:39:37 05:39:37

User[hh:mm:ss] 03:43:17 05:05:48 02:56:23 03:40:22 07:21:00 04:37:37

System[hh:mm:ss] 00:33:37 01:02:10 00:32:29 00:41:13 01:09:55 00:56:36

CPU [hh:mm:ss] 04:16:28 06:08:07 03:28:52 04:21:35 08:30:55 05:34:13

Mem [MB] 31.06 66.08 60.87 43.53 95.83 104.53
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TABLE 6.6: Time distribution for FAST algorithm withSFBK-1000dataset over nine processor using tight integration with SMPD daemon-less
(SMPD-DL) method.

comp1 comp1 comp2 comp2 comp3 comp4 comp5 comp5 comp6

cpu-1 cpu-2 cpu-1 cpu-2 cpu-1 cpu-2

Wall Clock [hh:mm:ss] 07:44:05 07:44:05 07:44:05 07:44:05 07:44:05 07:44:05 07:44:05 07:44:05 07:44:05

User[hh:mm:ss] 01:29:22 02:01:50 03:55:15 03:00:35 02:31:28 06:28:56 02:57:52 02:14:24 03:20:42

System[hh:mm:ss] 00:14:33 00:17:54 00:40:19 00:29:51 00:29:50 01:08:34 00:30:41 00:24:15 00:45:00

CPU [hh:mm:ss] 01:43:56 02:19:44 04:35:34 03:30:26 03:01:18 07:37:30 03:28:33 02:38:39 04:05:42

Mem [MB] 10.66 29.42 63.66 41.75 22.69 161.77 24.65 30.56 48.44
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FIGURE 6.3: Parallel jobs running under integrated resource management environment for SGE and
MPICH2. A: Loose Integration; SGE launches the parallel job through its job controlling agentsge_shepherd
usingmpiexeccommand by specifying the resources to be used (throughmachinefile) and hence eliminating
the problem of resource conflicting. However, the actual MPIjob (FAST algorithm) doesn’t run under the
control ofsge_shepherdand hence no resource usage (accounting) information couldbe achieved.B: Tight
Integration; SGE uses two instances of its job controlling agentsge_shepherd, one for launching the parallel
job by specifying the resources to be used and other for controlling (monitoring) the operation of the running
MPI job (FAST algorithm) and hence providing the full resource usage (accounting) information.
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6.5 Conclusions

Performance of the distributed framework forProtein (Structure) Comparison, Knowledge, Simi-

larity and Information(ProCKSI) has been evaluated (using FAST algorithm as an example) under

integrated resource management environment for MPI jobs. Results of theevaluation indicate that

Loose Integrationmethod is not much reliable in terms of accounting and monitoring information

to be used for PSC jobs. Furthermore, for larger datasets, Tight Integration with SMPD daemon-

based method outperforms its counterpart i.e. SMPD daemon-less method. It has also been learned

that in a heterogeneous cluster where some nodes have double the performance as that of others,

the slowest node could become a bottleneck for the overall performance of the system. This per-

formance degradation could deteriorate further when that slowest node isassigned PSC jobs with

longer protein chains. This type of problem could be solved with the development of some intelli-

gent heuristics to perform better load balancing among the nodes.

Furthering the process of evaluation, the next chapter presents the results of evaluation

under the Grid environment that consists of more than one clusters and usesgrid-enabled version of

MPI library to spawn the jobs across the sites.
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CHAPTER 7

ON THE SCALABILITY OF M ULTI -CRITERIA PROTEIN

STRUCTURE COMPARISON IN THE GRID

The effect of different integrated environments on the performance ofthe distributed framework

was discussed in chapter 6. This chapter, considers the process of evaluation of the distributed

framework under the Grid environment consisting of more than one clusters in order to analyze the

effect of inter-cluster communication overhead and other issues related to the Grid.

Parts of this chapter were published as a peer reviewed conference paper in thePro-

ceedings of The Euro-Par 2010 Workshop on High Performance Bioinformatics and Biomedicine

(HiBB), August 31-Sep 3, 2010 , Ischia, Naples, Italy.

7.1 Introduction

In order to achieve the consensus-driven decision making, the MC-PSCrequires to execute a given

set of methods on the set of protein structures to be compared. Given the computational require-

ments of each method and the ever growing number of entries in the PDB, the realistic computation

of the MC-PSC becomes a grand challenge and hence requires the use ofGrid computing to over-
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come the limitations of a single parallel computer/cluster. The use of the Grid computing onthe

other hand also introduces additional communication overhead and hence the standard parallel com-

puting measures and metrics such asSpeedupandEfficiencyneed to be redefined [225]. This chapter

uses the grid-based definition of the speedup (Grid Speedup), and efficiency (Grid Efficiency) intro-

duced by Hoekstra et al. [225] (as described in chapter four, section 4.6.1), to measure the scalability

of our distributed algorithm on theUK National Grid Service(NGS) [66] architecture. The code of

the distributed algorithm is same as has been used in chapter 5. The results of cross-site scalabil-

ity would be compared with single-site and single-machine performance to analyze the additional

communication overheard in a wide-area network.

The remainder of this chapter is organized as under: section 2 describes the experimental

setup; section 3 presents the results and discussions and finally section 4 presents the conclusion.

7.2 Deployment on the NGS Infrastructure

TheNational Grid Service(NGS), provides theeScienceinfrastructure to all the UK-based scientists

free of cost [66]. For our case we used the Globus-based MPIg [191, 192] (grid-based implemen-

tation of MPI) to spawn the jobs across two NGS sites; one at Leeds and the other at Manchester.

Like its predecessors (e.g MPICH-G [245] and MPICH-G2 [191]), theMPIg library extends the Ar-

gonne MPICH implementation of MPI to use services provided by the Globus Toolkit (GT) [34] for

cross-site job execution using IP-based communication for inter-cluster messaging. However, being

the latest implementation, the MPIg includes several performance enhancements such as in the case

of inter-cluster communication it uses multiple threads as compared to the single thread commu-

nication of the previous implementations. Furthermore, besides being backward compatible with
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the pre-web service Globus, the MPIg also makes use of the new web services provided by Globus

version 4 [35]. By making use of the new web services, the MPIg provides much more enhanced

functionality, usability and performance. The use of the MPIg for cross-site runs requires advanced

resource reservation so that jobs (processes) can run simultaneously across all the sites. To facili-

tate this, NGS provides theHigh-Available Resource Co-allocation(HARC) [246] as a command

line utility to perform automatic reservation. Each of the two NGS sites (Leeds and Manchester)

consists of 256 cores (AMD Opteron with 2.6GHz and 8GB of main memory) interconnected with

Myrinet M3F-PCIXD-2. However, the NGS policies allow the advance reservation of maximum

of 128 cores at each site for the maximum duration of 48 hours. Once the reservation is done,

then the Globus-based job submission could be achieved with theResource Specification Language

(RSL) scripts and other Globus services could be used for job monitoring andcontrol. For the MPI

based jobs to run on different sites, the source code of the application needs to be compiled with

MPIg libraries at each site and the executable placed in the appropriate working directory under

the respective local file system. The compilation of the MPI based application with MPIg does not

require any change in the source code and hence from the user’s perspective the deployment is as

straight forward as running the parallel application on a single site/cluster withthe exception that

the RSL scripts specifies the resources of the additional site to be used. Figure 7.1, shows the overall

architecture and setup of deploying the MC-PSC application on the Grid.

The dataset used in these experiments is the one introduced by Kinjo et al [223] consisting

of 1012 non-redundant protein chains having a total of 252,569 residues. The 1012 chains result

in as many as 1,024,144 pairwise comparisons for each method/algorithm. While using all the

six methods (e.g. theUniversal Similarity Metric(USM) [48], Maximum Contact Map Overlap
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FIGURE 7.1: Deployment of the MC-PSC application on the Grid:the application takes protein 3-D structures as
input and prepares the balanced workloadW to be distributed on the Grid. Half of the total workload (W/2)
is assigned to each site (CE). Each site further distributesthe W/2 intop number of cores.

(MaxCMO) [46],Distance Alignment Matrix( DaliLite) [45], Combinatorial Extension(CE) [47],

Fast Alignment And Search Tool(FAST) [50] and TM-Align [49]), the total number of pairwise

comparisons becomes 1,024,144×6 = 6,144,864. Given that the average time for the comparison

of 1 pair using all the six methods on a single processor machine is about 8 secs, this computation

requires about 569 days to complete on a single processor and it took about 10.7 days to complete on

a 64-node cluster [247]. The results achieved for this dataset on the Grid infrastructure are reported
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in the next section.

7.3 Results and Discussions

Both the single-site and cross-site experiments for MC-PSC were conducted with varying number

of processors using the Kinjo et al [223] dataset. The Grid speedup and efficiency (4.6.1) were

calculated based on the results of these experiments and are shown in figure 7.2 and 7.3. Figures

7.2 shows that initially (for less number of processors), running the MC-PSC experiments across

two sites almost doubles the performance to that of the single-site. However,as the number of

processors increases (thereby decreasing the level of granularity and increasing the communication

overhead), the speedup decreases slightly and finally reaches to about1.65. There is also same trend

in the Grid efficiency as shown in figure figure 7.3.

Figures 7.4 provides the comparison of the algorithmic speedup on a single-site (S1, hav-

ing 128 processors) and the speedup obtained while running the experiments on the two sites (S2,

having a total of 256 processors). The speedup in this case is taken as the ratio of the execu-

tion time on single-machine (single processor) (T1) to the execution time onp processors (Tp) (i.e

S1 = S2 = T1
Tp

). As indicated by Figure 7.4, though initially, the cross-site speedup is slightly low

as compared to the single-site speedup; however, given the large number ofprocessors available on

the later, the overall speedup increases by almost a factor of 2. The totaltime for the computation of

the given dataset on 256 cores (2.4GHz each) was reduced to 38.6 hours. Comparing this with the

569 days on the single-machine and 10.7 days required on a 64-node (though having less processor

power i.e 1.4GHz each) cluster we observe a good scalability and performance of our algorithm on

the Grid. The boost in the speedup and performance is two folds i.e the largenumber of processors



7. ON THE SCALABILITY OF THE MC-PSC IN THE GRID 149

(physical speedup) coupled with high speed of each individual processor (power scalability). Figure

7.5, shows the corresponding efficiency of the algorithm on single-site andcross-site architecture.

The efficiency, in this case measures the effective use of the hardwareand is equal to the ratio of the

speedup onp processors top (i.e E =
Sp

p ). Figure 7.6 shows the cross-site communication overhead

in terms of running the MC-PSC application in the Grid. The cross-site communicationoverhead

is measured as the difference in execution time when the MC-PSC is run on singleand double sites

with same number of processors. For example, ifT1 is the execution time on one site with 4 pro-

cessors andT2 is the execution time on two sites with 4 processors (i.e., 2 processors per eachsite),

then the cross-site communication overhead would beT1−T2. Figure 7.6 shows that when a few

processors are used the load of the processors and consequently theamount of data to be exchanged

is high and consequently there is considerable communication overhead. However, when we use a

larger number of processors, the overhead is negligible in comparison with the computation time.

FIGURE 7.2: Performance of the MC-PSC on the Grid: grid speedup (eq 4.5);initially the speedup is
almost ideal for less number of nodes but as the number of nodes increases on each site the corresponding
level of granularity decreases while the the level of communication overhead increases and hence it causes the
speedup to degrade slightly. Nevertheless, the overall speedup is much greater ( 1.6) as compared to speedup
on the single site (<1).
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FIGURE 7.3: Performance of the MC-PSC on the Grid: grid efficiency (eq. 4.6); as expected the slight
degradation of speedup causes the degradation in the efficiency of the system.

FIGURE 7.4: Single-site and cross-site speedup; the graph shows that though initially, the cross-site speedup
(S2) is slightly low as compared to the single-site speedup (S1); however, given the large number of processors
available on the later, the overall speedup (S2) increases by almost a factor of 2.
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FIGURE 7.5: Single-site and cross-site efficiency; as expected the cross-site efficiency (E2 is slightly less
as compared to the single-site efficiency (E1 due to extra communication overhead.

FIGURE 7.6: Cross-site communication overhead. The graph shows that when a few processors are used
the load of the processors and consequently the amount of data to be exchanged is high and consequently
there is considerable communication overhead. However, when we use a larger number of processors, the
overhead is negligible in comparison with the computation time.



7. ON THE SCALABILITY OF THE MC-PSC IN THE GRID 152

7.4 Conclusions

The quality of our parallel algorithm for MC-PSC has been measured in terms of Grid Speedup

and efficiency. The results of the single-site and cross-site experiments indicate that by making use

of the Grid resources, the algorithm scales well and that the cross-site communication overhead is

not much significant. The current cross-site experiments were conductedon only two sites based

on the HCG model of the National Grid Service (NGS), UK. As the NGS is still in the process

of adding more sites, in future we would like to extend this study by increasing thenumber of

sites as well as incorporating the heterogeneous architecture of the Grid. Because, at present the

maximum time allocated for continuous execution of a job/process at NGS is limited to 48 hours

and hence does not allow evaluating the performance of the application with very large datasets,

hence the software developed so far could be upgraded by adding the fault tolerance mechanism in

the form of checkpoint/restart. The checkpoint/restart mechanism could be added without changing

the code of the application by using some libraries such as theBerkeley Lab Checkpoint/Restart

(BLCR) [156]. With these improvements, it would be possible for the MC-PSCto perform real

time computation with even large datasets and to develop a database of pre-computed results.

The next chapter is going to discuss the storage, management and analysisof (multi)

similarity data resulting from the comparison of large scale protein structure datasets in the Grid.
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CHAPTER 8

ON THE STORAGE , M ANAGEMENT AND ANALYSIS OF

(M ULTI ) SIMILARITY DATA FOR L ARGE SCALE

PROTEIN STRUCTURE DATASETS IN THE GRID

So far, in the previous chapters the design, implementation and evaluation of the distributed frame-

work for MC-PSC has been described in terms of its execution time, communicationoverhead and

load balancing strategies in different cluster and Grid environments. This chapter and the one that

follows, present the discussion on the storage, management and analysisof (multi) similarity data

resulting from the comparison of large scale protein structure datasets in the Grid. This chapter, in

particular evaluates two of the most commonly used data technologies in the scientific domain and

recommends the one most suitable to the requirements of the MC-PSC.

This chapter was published as a peer reviewed conference paper inProceedings of 22nd

IEEE International Symposium on Computer-Based Medical Systems (CBMS-09, ISBN:978-1-4244-

4879-1, pp.1-8, 2009. [doi:10.1109/CBMS.2009.5255328]

http://dx.doi.org/10.1109/CBMS.2009.5255328
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8.1 Introduction

As the size of commonly used scientific datasets is growing beyond tera and peta-scale bytes, the

corresponding algorithmic complexity of the application programs used for their analysis is also

increasing very fast. This has made it very difficult for a typical scientistto use local and ordinary

resources to perform deep, systematic analysis of these very large datasets. To ameliorate this situ-

ation, many scientific domains have establishedscience data centers(service stations) that provide

easy and efficient access to both the data as well as related application programs needed for the anal-

ysis [248]. Furthermore, most of these science data centers also provide personal workspace to each

scientist for storing the results of their analysis. Though this paradigm shift frees the end-user scien-

tist from the burden of managing the data and applications; however, it enhances the complexity for

service providers by many folds as the size of data and number of users increases. In order to cope

with this situation many institutional, national and international distributed and grid computing in-

frastructures have been established e.g the BIRN,National Grid Service(NGS) in UK,TeraGrid in

US,Enabling Grids for E-sciencE(EGEE) in Europe and across the world. These high-end infras-

tructures provide most of the computing, storage, data and software resources for a wide variety of

scientific disciplines. These resources are available to both categories of scientist i.eend-users, who

use the already deployed applications and data to perform certain analysis andapplication develop-

ers, (who also becomeservice providersat the end of their application development phase in order

to make their newly developed application usable by the respective community), use the computing

resources to develop and test their novel applications requiring the support of that infrastructure.

From the perspective of a scientific computing engineer, the provision of the above men-

tioned infrastructures facilitates the development of scalable applications that could perform large
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scale data and compute intensive in-silico calculations. This chapter reports onour findings on the

storage, management and analysis of data resulting from the newly developed distributed algorithm

for MC-PSC (see chapter 5) for large scale protein structure datasets.Given the large volume and

complexity of data involved in the experimentation the selection and use of an appropriate suite of

technologies becomes quite important. We report on our experiences of using core database tech-

nologies such asHierarchical Data Format(HDF) (HDF5) andRelational Database Management

System(RDBMS) (Oracle/SQL) on the UKNational Grid Service(NGS) infrastructure.

The organization of the rest of this chapter is as follows. A brief survey ofthe related work

is presented in section 8.2. This is followed by the description of the data involvedin the process

of multi-comparison and the techniques used for the estimation of missing/invalid valuesetc in

section 8.3. Section 8.4, introduces the main technologies used for the data storage, management

and analysis and compares their features with other related technologies such as traditional RDBMS

and XML. Details of the experimental design and implementation are described in section 8.5, while

section 8.6 provides the results and discussions.

8.2 Motivations

Due to the exponential growth in the number of protein structures in PDB, most ofthe online servers

for protein structure comparison have started to build a database of pre-computed results for their

applications and use it as a quickest way to respond to user queries which otherwise would have

taken many hours or even days of processing time. Some examples of these servers which use

pre-computed databases include [249–252]. These servers provide both options to users i.e the

user could either select a query structure that is already available in the PDB; in this case the list
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of similar structures will be displayed within the time of a click using the information frompre-

computed database, or the user could select a novel query structure to becompared to all structures

in the PDB. In the later case the existence of the pre-computed knowledge base is used to prune

the search space once any strong match is found for the query structureby limiting the comparison

to only the neighbors of the strong match whose list is maintained in the knowledgebase. The

design and implementation of such knowledge bases seems to be quite easy and straightforward as

they only deal with a single structure comparison method. However, as described in the subsequent

sections of this chapter there are so many issues and complexities in the case of multi-comparison,

and to the best of our knowledge, there exists no other solution in the literatureyet.

8.3 Protein Structure (Multi) Similarity Data

When applying a similarity comparison algorithm to a set of proteins comparing its membersin an

all-against-all fashion, one obtains a matrix that describes the similarity/dissimilarityof each pair

of proteins. This matrix is called asimilarity matrix (SM) when the similarity measure is a type of

scoring function (such asnumber of alignments) that starts with zero (no similarity at all) and that

gives higher values for better agreement between any two proteins considered. Mathematically,

Sa,b =























0, No similarity at all.

>0, No upper bound.

(8.1)

As different algorithms apply different scoring schemes that do not necessarily correlate

with any physical property (e.g. protein size), it is not possible to give anupper bound for SM

values (equation 8.1). On the other hand, there are algorithms that do not produce a scoring function

but express similarity in terms of distances. In this case the resulting matrix for anall-against-all
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comparison is called adissimilarity matrixor distance matrix(DM). In terms of distance matrix, a

value of zero means that two proteins are identical, whereas higher valuesindicate a higher degree

of dissimilarity. Mathematically,

Da,b =























0, Identical proteins.

>0, No upper bound.

(8.2)

The root mean square deviation(RMSD) value is a typical example of a (poor) distance

measure for protein structure comparison. More recent and more sophisticated protein structure

comparison methods rely on a variety of similarity/distance definitions. Some but not all of them

are:

NA: Number of Alignments (DaliLite, CE, MaxCMO, TM-Align, FAST): indicates how

many elements/residues of a query protein structure are aligned to the elements/residues of

the target structure. A higher value indicates more similarity.

Z-score (DaliLite, CE): indicates the statistical significance of the similarity result with re-

spect to the random comparison of structures. Its value should be 3.5 or higher for two

proteins to be similar i.e. having same fold.

RMSD: Root Mean Square Distance(DaliLite, CE, TM-Align, FAST): indicates the diver-

gence between two protein structures. Its value should be less than 5Å fortwo structures to

be similar i.e. belonging to same family.

TM-score (TM-Align): this score is based on the improvement of RMSD i.e. to be indepen-

dent of protein length. Its value lies in between 1 (identical) and 0 (no similarity) with 0.5

being used as a threshold to identify fold level relationships.
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SN: Normalized Score (FAST): indicates the significance of an alignment. Its value of 1.5

or greater indicates significant structural similarity.

USM distance(USM): this measure is based on the calculation of Kolmogorov complexity

between two structures. The lowest the distance, the more similar the structuresand vice-

versa.

Usually the similarity/dissimilarity values are used for further processing steps,e.g. clus-

tering the distance matrix in order to obtain family relationships between differentproteins. Such

methods require a complete and valid matrix as input and usually do not cope with missing or

ill-defined data. Though, similarity comparison algorithms usually produce numerical values to de-

scribe the degree of similarity between two protein structures, but they also return non-numerical

characters in some cases as defined bellow:

• N Indicates that no significant similarity was found between the given pair of proteins

• E Indicates that an error occurred during the comparison

• # Indicates that the input data was missing or not appropriate

When dealing with big datasets with just a few missing data points, it is often more conve-

nient to account for them by estimation instead of submitting them for recalculation.Additionally,

we must correct for invalid self-similaritySSvalues that may occur if heuristic similarity methods

are used (e.g.MaxCMO [46]) that do not guarantee to find the optimal result. Hence, the SS value

of a protein can be worse than any of its non-self-similarity (NSS) values obtained from compar-

ing the protein with any other proteins in the dataset. The techniques used forthe estimation of

missing/invalid SS and NSS values are briefly described in the following sub sections.
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8.3.1 Estimation of Self-Similarity Values

Estimation of SS values could exploit the fact that these values should alwaysbe better than any

other NSS values for the protein considered. However, there is a slight variation of the special

requirement when dealing with normalized data: we know that the best value (lower bound) for any

distance measuremust be zero, but we cannot give an upper bound forsimilarity measures(scoring

functions) as it depends on the length of proteins. In the latter case, we therefore estimate any

missing or invalid SS value by the best (highest) NSS value of any comparison with this protein. If

no value can be found at all due to irrecoverable problems during the calculation, we adopt a worst

case approach and take the worst (smallest) value of the entire similarity matrix.This makes sure

that this value does not interfere with any better (higher) values in any further analysis step, but is

not as drastic as setting the SS value to zero as it would make the standardizationstep impossible

(resulting in a division by zero). The pseudocode for this procedure is shown in Algorithm 2.

Algorithm 2 Pseudo-code for the estimation of missing/invalid self-similarity (SS) values. Since the
self similarity value would always reflect high similarity, therefore, for in the case of the similarity
matrix (SM) the maximum value either from the cross-section of the matrix which contains the
similarity value for the current proteinsi and j compared with any other proteinx (Six|Sx j) is taken
or ( if Six|Sx j not available then) the maximum value from the entire matrix is taken. Similarly, if
the value being estimated belongs to a distance matrix (DM), then the minimum value is taken with
the same approach.

1: for all methodk such that 1≤ k≤mdo
2: for all proteini in row (x) do
3: for all protein j in column (x) do
4: if matrix[i][ j][k] = MISSING/INVALID&& i = j then
5: if matrix_type= SM then
6: Sii = max(Six|Sx j)|max(matrix))
7: else ifmatrix_type= DM then
8: Sii = min(Six|Sx j)|min(matrix))
9: end if

10: end if
11: end for
12: end for
13: end for
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Furthermore, similarity values can depend on the size of the proteins involved.Consider

for instance the comparison of a protein with itself counting the number of alignments asthe given

similarity measure. When we compare identical proteins, the number of aligned residues will be

the number of residues in this protein, but the number will be lower for a smaller protein than for

a larger protein. We therefore have to take the size of the proteins into account and normalize a

similarity valueSi j comparing proteinsPi andPj by dividing it by the highest self-similarity value

of both proteins [185]:

Si j ,norm =
Si j

max{Sii ,Sj j}
(8.3)

When applying Equation 8.3 to self-similarity valuesSii , one obtains normalized values

Sii ,norm= 1 asmax{Sii ,Sii}= Sii . Although this satisfies the first requirement for similarity matrices

at the same time, the range of values will not necessarily start with zero. We require this for all

matrices in order to be compared and combined in order to produce a consensus similarity, thus,

another Normalisation step has to be performed for all similarity/dissimilarity matrices using the

simple approach. As a result, all self-similarity values remain normalized, whereas all values of the

entire matrix lie between[0 and 1].

8.3.2 Estimation of Non-Self-Similarity Values

When estimating non-self-similarity values, we first try to exploit the symmetric nature of any

similarity/dissimilarity matrix. Usually, the comparison of proteinPi with proteinPj gives the same

results as when comparingPj with Pi . So we could substituteSi j by Sji as they will be more similar

than any other estimation can produce. However, the symmetric nature of the similarity/dissimilarity
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matrix might already have been exploited during the calculation procedure saving time by only

calculating the NSS values in one triangle of the matrix (and the SS values). In thiscase, ifSi j

contains an error and its "backup"Sji was not calculated, we need to estimateSi j with the worst value

that can be found in the cross-sectionSim/Sjn of the matrix. This is the highest value in the cross-

section for dissimilarity matrices, and the lowest one for similarity matrices. Additionally, there

is one special case when the comparison methods claims not to have found significant similarities

between a given pair of proteins. In this case, we know that the similarity value will be very small

and therefore substitute it with zero as the worst value for similarity matrices. The pseudocode for

this procedure is shown in Algorithm 3.

Algorithm 3 Pseudo-code for the estimation of missing/invalid non-self-similarity (NSS) values.
For similarity matrix (SM) the minimum value (i.e., the worst value) either from the cross-section
or from the entire matrix is taken. Similarly, for the distance matrix (DM), the maximumvalue (the
worst value) is taken in this case.

1: for all methodk such that 1≤ k≤mdo
2: for all proteini in row (x) do
3: for all protein j in column (x) do
4: if matrix[i][ j][k] = MISSING/INVALID&& i! = j then
5: if matrix_type= SM then
6: Si j = min(Six|Sx j)|min(matrix))
7: else ifmatrix_type= DM then
8: Si j = max(Six|Sx j)|max(matrix))
9: end if

10: end if
11: end for
12: end for
13: end for

8.4 Overview of the Core Data Storage, Management and Analysis Technologies

Scientific disciplines use much simple, convenient and self-describing data models such asHier-

archical Data Format(HDF, HDF4 or HDF5) [253],Flexible Image Transport SystemFITS and
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NetCDF [254]. This is because most of the scientific data goes beyond the limits of traditional re-

lational databases and XML documents in terms of its size, complexity and heterogeneity and is in

the form of numeric arrays and images requiring more programming support (in terms of libraries,

APIs and tools) for statistical analysis, manipulation, processing and visualization. All these re-

quirements are easily accommodated by scientific data models along with additional benefits of

being open source, supporting multi-object data format (i.e each data model could support different

primitive data types as well as multi-dimensional arrays, tables and groups etc), data definition (in

terms of metadata), efficient access (in terms of random/parallel/partial/fast IO), optimal storage

(in terms of compressed and binary file format), and ease of sharing by means of their platform

independent nature (Figure 8.1).

Though there exist many scientific data models but HDF5 is being commonly used across

a wide variety of scientific domains, projects and applications (http://www.hdfgroup.org/HDF5/

users5.html). HDF5 refers to a suite of open source technologies including data model, APIs,

libraries, utilities and tools used for the storage, management and analysis of complex and large

scale scientific datasets. Originally created byNational Center for Supercomputing Applications

(NCSA), it is now maintained byThe HDF Group[253]. The ease of dealing with HDF5 lies in the

multi-object file format that allows data of different type, nature and size to bestored in the same

file with suitable data structure ranging from simple variables, multi-dimensional arrays, tables (the

table object of HDF5 is also in the form of multidimensional array and hence provides much more

quicker access as compared to the rows of SQL database), images to groups and pallets (Figure 8.2.

Working with all of these different formats becomes easy while using high-level interfaces such as

HDF5TB interface, which could be used to work with tables (listing 8.1 shows a code snippet for

http://www.hdfgroup.org/HDF5/users5.html
http://www.hdfgroup.org/HDF5/users5.html
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HDF5 table programming model).

L ISTING 8.1: Code snippet for HDF5TB high level interface

/∗ Def ine HDF5 t a b l e d imens ions ∗ /
# d e f i n e NFIELDS ( h s i z e _ t ) 18
# d e f i n e NRECORDS ( h s i z e _ t ) 4000000
# d e f i n e TABLE_NAME "COMPARISON_RESULTS"

/∗ Def ine f i e l d i n f o r m a t i o n ∗ /
h i d _ t f i e l d _ t y p e [ NFIELDS ] ;
h i d _ t s t r i n g _ t y p e ;
h i d _ t f i l e _ i d ;
h s i z e _ t chunk_s i ze = 100;
i n t ∗ f i l l _ d a t a = NULL;
i n t compress = 0 ;
h e r r _ t s t a t u s ;
i n t w;

/∗ I n i t i a l i z e f i e l d _ t y p e ∗ /
s t r i n g _ t y p e = H5Tcopy ( H5T_C_S1 ) ;
s t r i n g _ t y p e = H5Tcopy ( H5T_C_S1 ) ;
H 5Tse t_s i ze ( s t r i n g _ t y p e , 3 2 ) ;
f i e l d _ t y p e [ 0 ] = H5T_NATIVE_INT ;

. . .

/∗ Crea te a new f i l e u s i n g d e f a u l t p r o p e r t i e s .∗ /
f i l e _ i d = H5Fcrea te ( " pdb_se lec t30_2000 . h5 " , H5F_ACC_TRUNC, H5P_DEFAULT , H5P_DEFAULT ) ;

/∗ Crea te HDF5 t a b l e and w r i t e t h e da ta∗ /
s t a t u s =H5TBmake_table ( " Tab leT i t l e " , f i l e _ i d , TABLE_NAME ,NFIELDS ,NRECORDS,

d s t _ s i z e , f i e l d_names , d s t _ o f f s e t , f i e l d _ t y p e ,
chunk_s ize , f i l l _ d a t a , compress , c o m p a r i s o n _ r e s u l t s ) ;

/∗ Close t h e f i l e ∗ /
H5Fclose ( f i l e _ i d ) ;

It is important to note that unlike HDF5, which provides support for all dataformats

including images, arrays, tables etc , FITS and NetCDF only support imagesand array-oriented data

types respectively. Each of these data items could be additionally described with related metadata,

allowing further ease in terms of data discovery. Furthermore, chunking and compression along

with binary file format of HDF5 provides high performance access and occupies less space and

takes less time to be transmitted over the network. In order to provide Interoperability with XML

(to leverage its additional benefits of working with web/grid services) HDF5 also provides some

tools to translate the data from HDF5 format to XML and vice-versa.

In the following sections we present the design and implementation of a grid-enabled
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HDF5-based architecture for the storage, management and analysis of protein structure multi-

comparison results and compare its performance with a traditional relational database using Or-

acle/SQL.

FIGURE 8.1: This figure illustrates the important reasons beyond the selection and use of the HDF i.e., to
deal with the complexity, heterogeneity and size of the datain an efficient, reliable and low-cost manner.
[extracted from [253]]

FIGURE 8.2: HDF5 file format (.hdf) could store different types of data (randing from 3d array to raster
images and tables) in a single file [extracted from [253]]
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8.5 Design and Implementation of the Proposed Architecture

Figure 8.3 shows the architectural design for the storage, management and analysis of (multi)

similarity for large scale protein structure datasets using the infrastructure resources provided by

NGS. The overall computational load of pair-wise similarity computations is uniformly distributed

through a grid-enabledMessage Passing Interface(MPI) [191] based algorithm. The use of grid-

enabled MPI based model makes it easy to exchange global information needed for the computation

of missing/invalid values; thereby, facilitating the process of standardization and normalization to

be performed on-the-fly in a distributed environment.

The MPI based job packages are submitted for execution on a cross-site grid infrastructure

provided byNational Grid Service(NGS), UK [255]. A brief description of the NGS tools and

services used for our experimentation is given below:

GSI-SSHTerm: An applet as well as an standalone application that provides seamless access

to NGS resources i.e it offers web/command-line interface to securely connect to NGS sites

from any machine having the UK e_Science digital certificate installed. Digital certificates (or

X.509 certificates) are being used as an alternate to user-name and password to authenticate

the user in a wide range of eSciene projects. The NGS runs its own Certification Authority

(CA; ) which issues certificates to UK eScience community. The NGS’s CA authenticates the

users through its representative Registration Authorities (RAs) situated at various universities

across the UK. These RAs in turn authenticate the users based on photo IDs and other personal

details.

GT4: Globus Toolkitversion 4 (GT4), a grid middleware that on the one hand enables the

service providers to bind grid applications together for ease of access and management; and
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on the other hand it provides many services for job submission, monitoring and management.

We used Globus to submit RSL scripts and perform monitoring of jobs.

MPIg: Grid-enabled Message Passing Interface(MPIg) is the latest version of MPICH-G2

that works with web services based version of Globus and enables an MPI-based applica-

tion to spawn jobs across multiple clusters in a WAN environment. We used this library to

distribute our jobs across two NGS clusters as illustrated in Figure 8.3.

SRB: Storage Resource Brokeris aData Grid middleware developed byData Intensive Cy-

ber Environmentsresearch group at theSan Diego Supercomputing Centre(SDC). It enables

users to access files using logical names or attributes from any location in a LAN or WAN

environment without actually worrying about the physical location of each file. It achieves

this through the use of a metadata catalog (MCat), that holds information about the physical

location of each file, its logical name and and attributes. As we used MPIg to runour jobs

across different clusters of NGS, which have different file system hierarchies, we had to use

this facility to provide uniform naming of files.

HARC: Highly-Available Robust Co-scheduler is a framework that provides scheduler based

resource reservation. We used this module to make advance reservation of thenumber of

CPUs we wanted to be used solely for our application.

The (multi) similarity values produced by parallel jobs on each processor were stored both

in HDF5 and Oracle using the following schema shown in listing 8.2 and 8.3 respectively.



8. STORAGE, MANAGEMENT AND ANALYSIS OF (MULTI ) SIMILARITY DATA 167

L ISTING 8.2: HDF5 DDL Schema

HDF5 " P r o t e i n _ M u l t i v e r s e . h5 " {
GROUP " / " {

DATASET "COMPARISON_RESULTS" {
DATATYPE H5T_COMPOUND {

H5T_STRING {
STRSIZE 32 ;
STRPAD H5T_STR_NULLTERM ;
CSET H5T_CSET_ASCII ;
CTYPE H5T_C_S1 ;

} " S t r u c t u r e 1 " ;
H5T_STRING {

STRSIZE 32 ;
STRPAD H5T_STR_NULLTERM ;
CSET H5T_CSET_ASCII ;
CTYPE H5T_C_S1 ;

} " S t r u c t u r e 2 " ;
H5T_IEEE_F32LE " F_sn " ;
H5T_IEEE_F32LE " F_zsco re " ;
H5T_IEEE_F32LE " F_rmsd " ;
H5T_IEEE_F32LE " C_zscore " ;
H5T_STD_I32LE " C_a l ign " ;
H5T_IEEE_F32LE " C_rmsd " ;
H5T_IEEE_F32LE " D_zscore " ;
H5T_STD_I32LE " D_a l ign " ;
H5T_IEEE_F32LE " D_rmsd " ;
H5T_STD_I32LE " T_a l i gn " ;
H5T_IEEE_F32LE " T_tmscore " ;
H5T_IEEE_F32LE " T_rmsd " ;
H5T_STD_I32LE " M_al ign " ;
H5T_STD_I32LE " M_overlap " ;
H5T_IEEE_F32LE "U_usmd" ;

}

L ISTING 8.3: Oracle table description

Name Type
−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
PAIR_ID NUMBER( 8 )
STR1 VARCHAR2( 3 2 )
STR2 VARCHAR2( 3 2 )
F_SN NUMBER( 5 , 2 )
F_ZSCORE NUMBER( 5 , 2 )
F_RMSD NUMBER( 5 , 2 )
C_ZSCORE NUMBER( 5 , 2 )
C_ALIGN NUMBER( 5 )
C_RMSD NUMBER( 5 , 2 )
D_ZSCORE NUMBER( 5 , 2 )
D_ALIGN NUMBER( 5 )
D_RMSD NUMBER( 5 , 2 )
T_ALIGN NUMBER( 5 )
T_TMSCORE NUMBER( 5 , 2 )
T_RMSD NUMBER( 5 , 2 )
M_ALIGN NUMBER( 5 )
M_OVERLAP NUMBER( 5 )
U_UMSD NUMBER( 5 , 2 )
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The integration of MPI-IO with parallel HDF5 also makes the process of result synthesis

to be more efficient as each process writes concurrently to the same file. Thecollated results could

then easily be queried through HDF5 based technologies such asHDFView(a java based application

used to visualize and analyze the contents of HDF5 files and HDF-FastQuery. HDF5-FastQuery

is an API that integratesFast Bitmap Indexingtechnology with HDF5. This integration enables

extremely large HDF5 datasets to be analyzed interactively. According to [256], both approximate

and fixed queries performed through HDF5-FastQuery become as much faster as 10 and 2 times

respectively as compared to using simple HDF5 queries.

In the following section we discuss the results of our experiments with the HDF5-based

architecture and provide its comparison with Oracle/SQL.

8.6 Experimental Results and Discussions

Several experiments were designed to compare a varying number of protein structures with multiple

methods. The datasets and methods used in our experiments are described inTable 8.1 and Table 8.2

respectively. The main objective beyond the selection of these datasets wasto find out the effect of

growing number of proteins on the storage capacity and query execution time using both HDF5 and

Oracle/SQL database technologies. The results of such experimentation arepresented in Table 8.3.

All the results were stored directly on the NGS infrastructure. Though the storage values for HDF5

represent the overall overhead of file structure and related metadata for the results of each dataset;

however, the storage values given for Oracle only include the size of respective tables for the results

of each dataset and the additional storage overhead needed for the base installation (an empty new

oracle database, which takes about 1-2 GB) is not included. Nevertheless, for these datasets, the
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FIGURE 8.3: Architectural design of the storage, management and analysis for MC-PSC data in the grid
environment. The multi-similarity results are stored by each node in a single HDF5 file and oracle database.
The results from the HDF5 file could be accessed and analyzed through HDFView and HDF5-FQ as explained
in the the text.

storage/query overhead for Oracle is quite significant as compared to HDF5. Furthermore, as we

double the number of protein structures the storage requirement for both HDF5 and Oracle grow

approximately with the same rate i.e by a multiple of 4. Whereas, in terms of query execution,

though HDF5 maintains approximately an stable state irrespective of the size ofdataset, the time

for SQL query to Oracle database increases drastically with larger datasets.

The query execution time in each case (HDF5 and Oracle) is an average time taken by a
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TABLE 8.1: Datasets used in the experiments.PDB_SELECT30is a representative dataset (subset of
PDB) consisting of all non-redundant protein structures having chain length greater than 50 and sequence
identity less than 30%. This dataset has been prepared by using thePDB_SELECTalgorithm designed by
Uwe Hobohm and Chris Sander [224]. The overall dataset consists of 7183 structures and was partitioned
into selected groups as listed in the first column of this table. Hash sign (#) represents the word’Number of ’

Dataset # of Chains # of comparisons

PDB_SELECT30_250 250 62,500

PDB_SELECT30_500 500 250,000

PDB_SELECT30_1000 1000 1,000,000

PDB_SELECT30_2000 2000 4,000,000

PDB_SELECT30_4000 4000 16,000,000

TABLE 8.2: Methods used to detect (Multi) Similarity among Protein Structure Datasets.Note: For full
measure/metric names please refer to section 8.3

Method Measures/Metrics

MaxCMO [46] NA, NO

DaliLite [250] NA, Z-score, RMSD

CE [47] NA, Z-score, RMSD

TM-align [49] NA, TM-score, RMSD

USM [48] USM-distance

FAST [50] NA, SN, RMSD

simple query to retrieve the contents of a particular field from the last record(i.e the record with

highest index value in the given table). The average was taken on the basis of 15 repeated queries

and the standard deviation in each case is not much significant (Table 8.4).



8. STORAGE, MANAGEMENT AND ANALYSIS OF (MULTI ) SIMILARITY DATA 171

TABLE 8.3: HDF5 Vs Oracle Storage/Query benchmarking with different datasets. The total number of
records (rows) in each case is equal to the number of pairwisecomparisons for each dataset(Table 8.1)and
the total number of fields is equal to the number of measures/metrics for all the methods ( i.e 15,Table 8.2)
plus 3 additional fields of which 2 store protein IDs and the remaining 1 serves as the record identifier.

Dataset HDF5 Oracle HDF5 Oracle (SQL)

Storage (MB) Storage (MB) Avg. Query (sec) Avg. Query (sec)

pdd_select30_250 0.26 6.84 0.00070 0.01467

pdb_select30_500 1.00 26.37 0.00071 0.04300

pdb_select30_1000 4.01 109.37 0.00072 1.13560

pdb_select30_2000 16.04 421.87 0.00072 10.45620

pdb_select30_4000 67.23 1687.50 0.00075 32.89250

TABLE 8.4: Standard Deviations Calculated on 15 Query Times for HDF5 and Oracle (SQL)

Dataset HDF5 Oracle

Query (STDEV) Query (STDEV)

pdd_select30_250 3.23E-05 0.0019

pdb_select30_500 2.45E-05 0.0057

pdb_select30_1000 2.30E-05 0.464

pdb_select30_2000 3.33E-05 1.332

pdb_select30_4000 4.25E-05 3.929
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8.7 Conclusions

The HDF5 has been used as a scientific data format for the storage, management and analysis of

(multi) similarity of large scale protein structure datasets in a distributed/grid environment provided

by National Grid Service (NGS), UK. Mathematical techniques used for the estimation of miss-

ing/invalid values have been described. The storage/query overhead of HDF5 was compared with

that of Oracle/SQL. The results show significant performance benefit of HDF5 over Oracle/SQL.

It should be noted that the performance evaluation of the Oracle database isbased on non-indexed

queries. It is known from the Oracle documentation that the indexed keys introduce performance

loss in terms of INSERTs, UPDATEs, and DELETEs. Therefore, in future, it would be interesting to

compare the performance gain obtained with indexed keys with the one we havecurrently obtained

(without indexing).

Based on this initial benchmarking, we plan to compute the (multi) similarities of all

available PDB structures; thereby, creating an efficient scientific knowledgebase of pre-computed

results. The development of such knowledge base is aimed at providing aneasy to use interface, so

the biologist can perform scientific queries using a vast variety of criteriaand options leading to far

better and reliable understanding of the protein structural universe.

The next chapter provides an overview of the consensus-based Protein Structure Similar-

ity Clustering and compares the results by using two different consensus clustering approaches.



173

CHAPTER 9

CONSENSUS-BASED PROTEIN STRUCTURE SIMILARITY

CLUSTERING

The previous chapter discussed the storage, management and analysis of protein structure (multi)

similarity data in terms of the comparison of two data technologies i.e., Oracle and HDF5. The anal-

ysis part discussed there was based on the query/visualization of the results obtained from individual

methods. This chapter discusses in details the process of consensus andcompares the results of sin-

gle methods with that of the consensus obtained from two different approaches i.e., total evidence

and total consensus.

9.1 Introduction

Protein Structure Similarity Clustering (PSSC) is the process of analyzing the results obtained from

the comparison of protein structures [257–259]. Because MC-PSC involves multiple methods, the

results from each method need to be combined/unified based on the process of consensus. As il-

lustrated in Figure 9.1, there are different approaches for deriving the consensus [260]. Depending

on whether we combine the data (i.e, character congruence) or the trees (i.etaxonomic congruence)
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these approaches are termed asTotal evidenceandTotal consensusrespectively [261]. It had already

been demonstrated in [27] that the TE based results obtained from MC-PSC are more robust and

accurate as compared to the individual results from each single method. Basedon the initial results

of [27], this chapter presents an extended study on the case of ’Structural Comparison and Clus-

tering of Protein Kinases’. The extension involves the incorporation of more comparison methods

in the process of consensus as well as driving the consensus with a newapproach (i.e’Total con-

sensus’). In what follows, a succinct description of the clustering algorithms, the approaches used

for the consensus and the characteristics of theProtein Kinase Datasetis presented along with the

results, discussions and conclusions.

FIGURE 9.1: Simple MC-PSC process: takes protein 3-D structures as input; applies popularly used algo-
rithms for the comparison of these structures; makes the results homogeneous and finally develops consensus
based clustering. Since, there are also different methods for consensus [260], the MC-PSC process also needs
to investigate the most reliable of all of these.

9.2 Clustering Algorithms

Protein structure similarity results (usually a square similarity matrix or a square distance matrix)

are applied to a clustering algorithm which groups the proteins into a set of disjoint classes so
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that proteins within a class have highsimilarity, while proteins in separate classes are moredis-

similar [262]. There are different algorithms available in different software packages. The results

presented in this chapter are based on the localized version of theClustering Calculator[263]. The

Clustering Calculatorprovides a variety of hierarchical clustering algorithms, including e.g. the

Unweighted Pair Group Method with Arithmetic mean(UPGMA) [180] and theWard’s Minimum

Variance(WMV) method [181]. The results of the clustering are produced as a treein thePHYLIP-

format [264], which could be visualized in a variety of ways using tree visualization software such

asHyperTree[265] andDendroscope[266].

9.3 Consensus Approaches

Two of the most competing paradigms in the field of phylogenetic inference (systematics) are:’total

evidence’(character congruence) and’total consensus’(taxonomic congruence) [267]. A brief

description of these paradigms is given in the following sections.

9.3.1 Total evidence

The term total-evidence was originally introduced by Rudolf Carnap in the context of inductive

logic [268]. Based on this concept, in 1989, Arnold G. Kluge introduced this term in the field of

systematics [269]. As per Kluge’s definition, the idea behind the’total evidence’is to consider

all evidence (e.g. distances) simultaneously and combine them together in order to achieve best

phylogenetic estimate. Figure 9.2 illustrates the steps involved in the process of total evidence. At

top there are several different distance matrices (produced by different methods in the case of MC-

PSC), which are combined (by taking average, mean or median) into a single matrix called ’total

evidence matrix’. This matrix is then used to produce the tree for the final analysis.
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FIGURE 9.2: Total-evidence: the distance matrices (produced by different methods in the case of MC-PSC
are) combined (by taking average, mean or median) into a single matrix (total evidence matrix). The resultant
matrix produces the total evidence based tree to depict the phylogenetic relationship among the elements of
the dataset.

9.3.2 Total consensus

The idea of’total consensus’is based on Karl Popper’sLogik der Forschung(The Logic of Scientific

Discovery) [270] which says that the mutual confirmation of the independentlines of evidence gives

strongest support for conclusions. Hence, this approach focuseson the separate analysis of the data

and then combining the analyzed data (trees) to form a consensus tree (super tree) [267]. Figure
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9.3 illustrates the steps involved in the process of total consensus. At top there are several different

distance matrices (produced by different methods in the case of MC-PSC), each of these matrices is

separately analyzed (by producing a tree) and then these individual trees are combined together to

form the consensus tree for the final analysis. There are several approaches and software packages

for the combination of individual trees to form the consensus [271]. This study uses theTotal

consensus(TC) method of theClann(the Irish word for "family") software [271].

FIGURE 9.3: Total-consensus: the distance matrices (produced by different methods in the case of MC-
PSC) are applied to clustering algorithm to generate trees for separate analysis. The individual trees are then
combined to produce a total consensus based super tree whichdepicts the phylogenetic relationship among
the elements of the dataset.
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9.4 Protein Kinase Dataset

Protein Kinase Dataset consists of 45 structures from 9 different groups (super-families), namely
1) cAMP Dependent Kinases, 2) Protein Kinases C, 3) PhosphorylaseKinases, 4) Calmodulin Ki-
nases, 5) Casein Kinases, 6) Cyclin Dependent Kinases, 7) TyrosineKinases, 8) Mitogen Activated
Kinases, and 9) Twitchen Kinases [272–275] as shown in Table 9.1.

Table 9.1 - Protein Kinase Dataset: Protein Kinase Dataset.Detailed SCOP classification for each protein
domain in the Protein Kinase (PK) dataset, grouped according to Hanks’ and Hunters’ (HH) original clas-
sification scheme. IG = Immunoglobulin, PhK = Tyrosine Phosphorylase Kinase, S/TK = Serine/Threonin
Kinase, TK = Tyrosine Kinase, c.s. = catalytic subunit, c.-r. = cysteine-rich., dep. = dependent. Reproduced
from [27]

HH Sub Protein SCOP Classification Level
Cluster Cluster Domain Class Fold Superfamily Family Domain Species

1

A

d1apme_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. mouse
d1atpe_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. mouse
d1bkxa_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. mouse
d1fmoe_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. mouse
d2cpke_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. mouse

B
d1cdka_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. pig
d1cmke_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. pig
d1ctpe_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. pig

C

d1stce_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. cow
d1ydre_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. cow
d1ydse_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. cow
d1ydte_ α+β PK-like PK-like PK c.s. (S/TK) cAMP-dep. PK, c.s. cow

2 -
d1ptq__ small PK c.-r. domain PK c.-r. domain PK c.-r. domain PK C-delta (PKCdelta) mouse
d1ptr__ small PK c.-r. domain PK c.-r. domain PK c.-r. domain PK C-delta (PKCdelta) mouse

3 - d1phk__ α+β PK-like PK-like PK c.s. (S/TK) γ-subunit glycogen Phk rabbit

4

A d1a06__ α+β PK-like PK-like PK c.s. (S/TK) Calmodulin-dep. PK rat

B
d1cdma_ α EF Hand-like EF-hand Calmodulin-like Calmodulin cow
d1cm1a_ α EF Hand-like EF-hand Calmodulin-like Calmodulin cow
d1cm4a_ α EF Hand-like EF-hand Calmodulin-like Calmodulin cow

5
A d1lr4a_ α+β PK-like PK-like PK c.s. (S/TK) Casein kinase-2, CK2 maize

B
d1csn__ α+β PK-like PK-like PK c.s. (S/TK) Casein kinase-1, CK1 fission yeast
d2csn__ α+β PK-like PK-like PK c.s. (S/TK) Casein kinase-1, CK1 fission yeast

6 -

d1aq1__ α+β PK-like PK-like PK c.s. (S/TK) Cyclin-dep. PK, CDK2 human
d1fina_ α+β PK-like PK-like PK c.s. (S/TK) Cyclin-dep. PK, CDK2 human
d1hck__ α+β PK-like PK-like PK c.s. (S/TK) Cyclin-dep. PK, CDK2 human
d1hcl__ α+β PK-like PK-like PK c.s. (S/TK) Cyclin-dep. PK, CDK2 human
d1jsua_ α+β PK-like PK-like PK c.s. (S/TK) Cyclin-dep. PK, CDK2 human

7

A

d1ad5a1 β SH3-like barrel SH3-domain SH3-domain Hemapoetic cell kinase Hck human
d1ad5a2 α+β SH2-like SH2 domain SH2 domain Hemopoetic cell kinase Hck human
d1ad5a3 α+β PK-like PK-like PK c.s. (TK) Hemopoetic cell kinase Hck human
d1fmk_1 β SH3-like barrel SH3-domain SH3-domain c-src protein TK human
d1fmk_2 α+β SH2-like SH2 domain SH2 domain c-src TK human
d1fmk_3 α+β PK-like PK-like PK c.s. (TK) c-src TK human
d2hcka1 β SH3-like barrel SH3-domain SH3-domain Hemapoetic cell kinase Hck human
d2hcka2 α+β SH2-like SH2 domain SH2 domain Hemopoetic cell kinase Hck human
d2hcka3 α+β PK-like PK-like PK c.s. (TK) Haemopoetic cell kinase Hck human
d2ptk_1 b SH3-like barrel SH3-domain SH3-domain c-src protein TK chicken
d2ptk_2 α+β SH2-like SH2 domain SH2 domain c-src TK chicken
d2ptk_3 α+β PK-like PK-like PK c.s. (TK) c-src TK chicken

B

d1aotf_ α+β SH2-like SH2 domain SH2 domain TK Fyn human
d1blj__ α+β SH2-like SH2 domain SH2 domain P55 Blk protein TK mouse
d1csya_ α+β SH2-like SH2 domain SH2 domain Syk TK human
d1cwea_ α+β SH2-like SH2 domain SH2 domain p56-lck TK human

C

d1fgka_ α+β PK-like PK-like PK c.s. (TK) Fibroblast growth factor receptor 1 human
d1ir3a_ α+β PK-like PK-like PK c.s. (TK) Insulin receptor human
d1irk__ α+β PK-like PK-like PK c.s. (TK) Insulin receptor human
d3lck__ α+β PK-like PK-like PK c.s. (TK) Lymphocyte kinase (lck) human

8

A d1erk__ α+β PK-like PK-like PK c.s. (S/TK) MAP kinase Erk2 rat

B
d1ian__ α+β PK-like PK-like PK c.s. (S/TK) MAP kinase p38 human
d1p38__ α+β PK-like PK-like PK c.s. (S/TK) MAP kinase p38 mouse
d1wfc__ α+β PK-like PK-like PK c.s. (S/TK) MAP kinase p38 human

9
A

d1koa_1 β IG-like β-sandwich IG I set domains Twitchin nematode
d1koa_2 B α+β PK-like PK-like PK c.s. (S/TK) Twitchin, kinase domain Caenorhabditis elegans
d1koba_ α+β PK-like PK-like PK c.s. (S/TK) Twitchin, kinase domain California sea hare
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9.5 Results and Discussions

Figure 9.4(a) shows the classification of the protein kinase dataset with USM method. This method

distinguishes the kinases at class/fold level and groups them into two main clusters i.ealpha+beta/PK-

like proteins and others (i.e., all small proteins (2), all alpha proteins with EF Hand-like fold (4B),

and such from the alpha+beta class but with SH2-like fold (7B)). All of thekinases are correctly

identified and clustered (36 in cluster 1 and 9 in cluster 2 (green box)). Theblue boxin cluster 1

indicates that the classification with USM also detects the similarities up to the species level i.e.,

similar kinases from HH cluster 1 (pigs, cows and mice) are clustered appropriately. The excep-

tions (errors/wrong clustering of kinases at species level) are indicated inblue (inside the blue box),

green (inside the green box) and red (for the rest of the kinases). Figures 9.4(b), to 9.11 show the

similar clustering (based on single method/measure) for the rest of the methods. Whether a partic-

ular method/measure is able to group the kinases properly or not is discussed in the caption of each

figure. It seems that the poorest performing measure amongst all is theRMSDof each method (Fig-

ures 9.6(a), 9.7(b), 9.9(a) and 9.10(a)). Hence, studies such as [257–259], which are based on the

clustering of RMSDs might not have produced proper results, and, therefore, the use of consensus

mechanism to combine the results from different methods/measures becomes indispensable.

Figure 9.12 shows the classification of the protein kinase dataset withTotal evidence(a)

andTotal consensus(b) when only Z-scores are combined from each method. As discussed in the

caption of the figure, the total evidence based consensus produces better classification as compared

to the total consensus. The total consensus fails to separate the kinases intwo main clusters as well
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as the total number of wrongly clustered kinases at species level (i.e., Red,Green and Blue kinases)

is much larger (11) as compared to the total evidence (7). This trend could alsobe observed in

the case of figures 9.13 and 9.14, which are based on the consensus ofNumber of Alignmentsand

RMSDsrespectively.

Finally, figure 9.15 shows the results of the classification when the consensus is derived

from the combination of all the method/measures. Here, again the total evidence approach provides

much better classification as compared to the total consensus. The total consensus fails to separate

the kinases in two main clusters as well as the total number of wrongly clustered kinases at species

level (i.e., Red, Green and Blue kinases) is much larger (10) as compared to the total evidence (3).

Table 9.2, summarizes the performance of all the methods individually, with totalconsensus and

total evidence.
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(a) (b)

FIGURE 9.4: Single method clustering(a) USM (b) MaxCMO/Align. Note: Red, Green and Blue kinases
indicate errors at species level.
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(a) (b)

FIGURE 9.5: Single method clustering(a) MaxCMO/OverLap(b) Dali/Z: Kinases are not grouped into two
main clusters, i.e., kinases from 1st cluster are mixed with2nd; kinases in the 2nd cluster do not group into
the green box.Note: Red, Green and Blue kinases indicate errors at species level.
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(a) (b)

FIGURE 9.6: Single method clustering(a) Dali/RMSD: Kinases are not grouped into two main clusters;
kinases in the 2nd cluster do not group into the green box.(b) Dali/Align: Kinases are not separated into two
main clusters, i.e., kinases from 1st cluster are mixed with2nd cluster; the green box lacks its two kinases
(1ptq,1ptr).Note: Red, Green and Blue kinases indicate errors at species level.
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(a) (b)

FIGURE 9.7: Single method clustering(a) CE/Align: Kinases are not separated into two main clusters
properly, i.e., kinases belonging to 1st cluster are mixed with the 2nd; also the 2nd cluster (green box) lacks
two of its kinases (1ptq,1ptr).(b) CE/RMSD: Kinases are not grouped into two main clusters properly,
i.e., some kinases from 1st cluster are mixed with 2nd cluster; on the hand the blue box lacks two kinases
(1cmke,1ctpe) and the green box lacks one kinase (1aotf).Note: Red, Green and Blue kinases indicate errors
at species level.
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(a) (b)

FIGURE 9.8: Single method clustering(a) CE/Z: kinases are not separated into two main clusters properly
i.e kinases belonging to 1st cluster are mixed with the 2nd. Also the 2nd cluster (green box) lacks two of
its kinases (1ptq,1ptr).(b) FAST/SN: kinases are not grouped into two main clusters properly, i.e., kinases
belonging to 1st cluster are mixed with 2nd.Note: Red, Green and Blue kinases indicate errors at species
level.



9. CONSENSUS-BASED PROTEIN STRUCTURE SIMILARITY CLUSTERING 186

(a) (b)

FIGURE 9.9: Single method clustering(a) FAST/RMSD: kinases are not grouped into two main clusters
properly. The 2nd cluster (green box; missing here) gets mixed with kinases from 1st.(b) FAST/Align. Note:
Red, Green and Blue kinases indicate errors at species level.
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(a) (b)

FIGURE 9.10: Single method clustering(a) TMAlign/RMSD: The 2nd cluster (green box) lacks its 2
kinases (1ptq, 1ptr) and contains two extra/wrong kinases (1fmk,2ptk). (b) TMAlign/Align. Note: Red,
Green and Blue kinases indicate errors at species level.
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FIGURE 9.11:Single method clustering: TMAlign/TM-Score.Note: Red, Green and Blue kinases indicate
errors at species level.
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(a) (b)

FIGURE 9.12:Total evidence (TE) vs Total consensus (TC)(a) TE/All/Z: kinases are not grouped into two
main clusters, i.e., kinases from the 1st cluster are mixed with the 2nd. The blue box lacks its three kinases
(1apme,atpe,1cdka) and contains one extra/wrong kinase (1phk). The green box lacks its two kinases (1ptq,
1ptr) and contains two extra/wrong kinases (1a6o,2ptk).(b) TC/All/Z: kinases are not separated into two
main clusters, rather they follow complicated hierarchy.Note: Red, Green and Blue kinases indicate errors
at species level.



9. CONSENSUS-BASED PROTEIN STRUCTURE SIMILARITY CLUSTERING 190

(a) (b)

FIGURE 9.13: Total evidence (TE) vs Total consensus (TC)(a) TE/All/Align. (b) TC/All/Align: kinases
are not grouped into two main clusters. kinases are not separated into two main clusters.Note: Red, Green
and Blue kinases indicate errors at species level.
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(a) (b)

FIGURE 9.14: Total evidence (TE) vs Total consensus (TC)(a) TE/All/RMSD: kinases are not grouped
into two main clusters, i.e., kinases from the 1st cluster are mixed with the 2nd. The blue box lacks its
three kinases (1apme,atpe,1cdka) and contains one extra/wrong kinase (1phk). The green box lacks its two
kinases (1ptq, 1ptr) and contains two extra/wrong kinases (1a6o,2ptk).(b) TC/All/RMSD: kinases are not
grouped into two main clusters, rather they follow complicated hierarchy. The blue box lacks its two kinases
(1cmke,1ctpe). The green box is missing (all kinases dispersed).Note: Red, Green and Blue kinases indicate
errors at species level.
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(a) (b)

FIGURE 9.15: Total evidence (TE) vs Total consensus (TC)(a) TE/All/All. (b) TC/All/All: kinases are
not separated into two main clusters, rather they follow complicated hierarchy.Note: Red, Green and Blue
kinases indicate errors at species level.
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TABLE 9.2: Single Method Vs Total consensus (TC) Vs Total Evidence (TE))

Method/Measure kinases grouped in Number of wrongly clustered kinases:
2 main Clusters? Red Green Blue Total

USM Yes 3 - 2 5
MaxCMO/Align Yes 4 - 1 5
MaxCMO/OL Yes 4 - 2 6

Dali/Align No 9 2 1 12
Dali/RMSD No 13 3 2 18

Dali/Z No 10 - 2 12
CE/Align No 6 2 2 10

CE/RMSD No 3 1 3 7
CE/Z No 3 2 2 7

TMAlign/Align Yes 2 - 1 3
TMAlign/RMSD No 4 4 2 10

TMAlign/Z Yes 2 - 1 3
FAST/SN No 2 - 2 4

FAST/Align Yes 2 - 1 3
FAST/RMSD No 4 - 3 7
TC/RMSD No 9 1 3 13
TC/Align No 9 1 - 10

TC/Z No 7 - 3 10
TC/All No 6 - 5 11

TE/RMSD No 5 4 4 13
TE/Align Yes 6 - 1 7

TE/Z Yes 1 - 3 4
TE/All Yes 6 - 1 7
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9.6 Conclusions

Protein Structure Similarity Clustering has been performed for theProtein Kinase Dataset[272–

275]. It has been observed that the results of the clustering for each single method differ signifi-

cantly from each other. Some methods (e.g., CE/All, Dali/All, TMAlign/RMSD, FAST/SN/RMSD)

even fail to classify the proteins into two main clusters, which is indeed a significant error in terms of

accuracy of classification because they mix the proteins belonging to different class/fold. The total

consensus approach (using all methods/measures i.e., TC/ALL) also exhibits same mistake, how-

ever; the total evidence approach (TE/ALL) rightly classifies the proteinsinto two main clusters and

hence it performs more accurate and reliable classification as compared to the results of individual

methods or the total consensus approach. Furthermore, the total number of less significant errors

(miss-classification errors at specie level (Red, Green, Blue) in table 9.2)is worst for some single

method based results (e.g., Dali/RMSD has 18 errors, TE/RMSD has 13 errors, Dali/Align/Z have

12 errors) as well as for the total consensus method (i.e., TC/ALL has 11 errors) but it is signif-

icantly less for the results of total evidence (i.e., TE/ALL has only 7 errors). This proves that in

the case of the protein structure similarity clustering the total evidence based consensus approach

performs much better than many single methods as well as the total consensus based approach.

The next chapter summarizes the overall work of this dissertation and provides some

directions for the possible future work.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the overall work of this dissertation and provides some directions for the

possible future work.

10.1 Introduction

This thesis is based on studies of the use of grid-styled parallel/distributed approaches for one of the

Grand Challenge Applications(GCAs) in the field of structural proteomics namely ’Multi-criteria

Protein Structure Comparison and Analysis(MC-PSC)’. The thesis builds on the critical review

of the related literature and uses the knowledge gained from this review to design and implement

an optimal distributed framework to achieve the best solution for the problem ofMC-PSC. The

efficiency and performance of the proposed framework has been evaluated and different strategies

have been used for the optimization of the overall system. The contributions andfindings of this

work have been presented coherently in separate chapters and are summarized in the following

section. Section 10.3 also provides some guidelines for possible future enhancements.
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10.2 Contributions

Chapter 1 sets the stage by providing the historical background on proteinstructure comparison, the

need for multi-criteria protein structure comparison (MC-PSC) and the problemit faces in terms

of computational challenge. This chapter also discusses the proposed solutionalong with general

methodology and organization of the dissertation.

The material presented in chapter 2 contributes in two ways:firstly, it provides a syn-

thetic overview of several major contributions in a way that could help and serve a wide range of

individuals and organizations interested in:

1. Setting up a local, enterprise or global IT infrastructure for life sciences,

2. Solving a particular life science related problem by selecting the most appropriate technolog-

ical options that have been successfully demonstrated and reported herein,

3. Migrating already existing bioinformatics legacy applications, tools and services to a grid-

enabled environment in a way that requires less effort and is motivated with previous related

studies provided herein,

4. comparing a newly developed application/ service features with those currently available, and

5. Starting a research and development career related to the use of web and grid technology for

biosciences.

Secondly, it identifies some key open problems such as:

1. Biological data analysis and management is still quite a difficult job becauseof the lack of

development and adaptation of optimized and unified data models and query engines,
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2. Some of the existing bioinformatics ontologies and workflow management systems are simply

in the form of Directed Acyclic Graphs (DAGs) and their descriptions are lacking expressive-

ness in terms of formal logic [135],

3. Lack of open-source standards and tools required for the development of thesaurus and meta-

thesaurus services [77],

4. Need of appropriate query, visualization and authorization mechanism forthe management

of provenance data and meta-data in in-silico experiments [68,135],

5. Some of the BioGrid projects seem to be discontinued in terms of information updating. This

might arise from funding problems or difficulties associated with their implementation,

6. There is a lack of domain specific mature application programming models, toolkits and APIs

for grid-enabled application development, deployment, debugging and testing,

7. Still there seems to be a gap between the application layer and middleware layerof a typ-

ical BioGrid infrastructure because existing middleware services do not fully facilitate the

demands of applications such as there is no proper support in any grid middleware for auto-

matic application deployment on all grid nodes,

8. It is not trivial to deploy existing bioinformatics applications on available grid testbed (such

as NGS, EGEE etc), as this requires the installation and configuration of specific operating

system and grid middleware toolkits, which is not at least easy from a biologist end-user point

of view,

9. It has been observed that there are still many issues with grid based workflow management
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systems in terms of their support for complex operations (such as loops), legacy bioinformat-

ics applications and tools, use of proper ontology and web services etc. [135],

10. The job submission process on existing grid infrastructures seems to be quite complex be-

cause of inappropriate maturity of resource broker services, and

11. Lack of appropriate implementation initiative regarding knowledge grid infrastructure for life

sciences.

This chapter was published as a peer reviewed journal article inCurrent Bioinformatics,

Vol. 3(1), pp.10-31, 2008. [doi:10.2174/157489308783329850].

Chapter 3, builds on the assumption that the diversity of enabling technologies forgrid

and distributed computing makes it difficult for the developer to select most appropriate techno-

logical infrastructure with proved technological standards and tools. Ittherefore, performs a more

focused review of various demonstrations related to the use of grid and distributed public comput-

ing schemes for structural proteomics in order to provide a road-map in this dilemma. This chapter

identifies that the selection of an appropriate grid/distributed computing approachmainly depends

on the nature of the application. For example, applications with an independent and parallel na-

ture of jobs are more suitable for distributed computing based on publicly-owned resources using

middleware such as BOINC, UD MetaProcessor etc. On the other hand, if the application requires

some pre-determined and controlled quality of service in terms of data and process management

with enhanced reliability and security, then organizational or cross-organizational grid infrastruc-

ture with standard middleware ( such as Globus, Legion, NetSolve, Ninf, myGrid, Condor/G, etc.)

would serve in a better way. Additionally, this chapter also provides the background of multi-criteria

10.2174/157489308783329850
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protein structure comparison in terms of the ProCKSI’s architecture and functionality.

Parts of this chapter were published as a peer reviewed conference paper in theProceed-

ings of the Frontiers of High Performance Computing and Networking ISPA 2007 Workshops, LNCS

Vol.4743 pp.424-434, 2007. [doi:10.1007/978-3-540-74767-3_44]

Based on the comprehensive understanding of the problem at hand, as described in the

earlier chapters, the proposed methodology for the solution has been presented in chapter 4. This

chapter also explains the programming environment that has been used forthe implementation of

the solution as well as the description of the test datasets along with performancemeasures and

metrics that has been used for the evaluation of the implemented solutions.

The design and implementation of an innovative distributed algorithm for MC-PSC has

been introduced in Chapter 5. The design of this algorithm have been analyzed in terms of space,

time, and communication overhead. Based on this analysis two different load balancing approaches

have been used to improve the overall performance:evenandunevenstrategies. Theevenstrategy

considers the total number of protein structures/pairs to be compared and distributes them equally

on each of the available processors; while theunevenstrategy tries to consider the length of each

protein (in terms of number of residues) and assigns the protein structures/pairs to each of the

available processors in a way that each processor gets different number of protein structures/pairs

but nearly equal number of overall residues. The former permits to obtain the best distribution in

terms of memory, while the latter performs better in terms of execution time and scalability on

the cluster/grid computers. Experiments conducted on medium and large real datasets prove that

http://www.springerlink.com/content/90n46423p200502r/
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the algorithm permits to reduce execution time (i.e. for the RS119 dataset it was reduced from 6

days on a single processor to about 5 hours on 64 processors) and tocope with problems otherwise

not tractable on a single machine as the Kinjo dataset, which took about 11 days on a 64-processors

cluster. In the future, we intend to investigate in more depth the use of grid computing environments

in order to cope with very large proteomics datasets.

This chapter was published as a peer reviewed journal paper in IEEE Transactions on

NanoBioscience, Vol. 9(2), pp.144-155, 2010. [doi:10.1109/TNB.2010.2043851]

Chapter 6 studied the effect of different integrated environments on the performance of

the newly developed algorithm. The aim of this study was to provide a scientific basis for decision

making while building a large scale e-Science infrastructure that meets with the requirements of

today’s high-impact scientific applications. The study makes use of the Sun Grid Engine (SGE)

as a distributed local resource management system and tries to integrate the support for parallel

environments using different MPI implementations. The integration has been achieved in two ways

i.e Loose IntegrationandTight Integrationalong with MPI’s different methods for starting the jobs

i.e SMPD daemon-basedandSMPD daemon-less. The results of the evaluation indicate that the

Loose Integrationmethod is not much reliable in terms of accounting and monitoring information

to be used for PSC jobs. Furthermore, for larger datasets,Tight Integrationwith SMPD daemon-

based method outperforms its counterpart i.e. SMPD daemon-less method. It has also been learned

that in a heterogeneous cluster where some nodes have double the performance as that of others, the

slowest node could become a bottleneck for the overall performance of the system.

This chapter was published as a peer reviewed conference paper inProceedings of the

http://dx.doi.org/10.1109/TNB.2010.2043851
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IEEE International Symposium on Parallel and Distributed Processing with Applications ISPA

’08,ISBN: 978-0-7695-3471-8, pp.817-822, 2008. [doi:10.1109/ISPA.2008.41]

The Scalability of the high-throughput distributed framework for MC-PSC inthe grid en-

vironment was presented in chapter 7. Though, the grand challenge nature of the MC-PSC problem

requires the use of Grid computing to overcome the limitations of a single parallel computer/cluster,

however; the use of the Grid computing also introduces additional communication overhead and

hence the standard parallel computing measures and metrics such asSpeedupandEfficiencyneed to

be redefined [225]. This chapter introduced the grid-based definition ofthe speedup (Grid Speedup),

and efficiency (Grid Efficiency) by taking ideas from Hoekstra et al. [225]. These Grid metrics were

then used to measure the scalability of our distributed algorithm on theUK National Grid Service

(NGS) [66] architecture using the latest implementation of grid-enabled MPI i.e.MPIg [276]. The

results of cross-site scalability were compared with single-site and single-machine performance to

analyze the additional communication overheard in a wide-area network. It has been observed that

the algorithm performs well on the combined resources of the two sites.

This chapter was published as a peer reviewed conference paper inProceedings of The

Euro-Par 2010 Workshop on High Performance Bioinformatics and Biomedicine (HiBB), August

31-Sep 3, 2010 , Ischia, Naples, Italy.

Chapter 8 performed the study to identify appropriate technology which could be used

for the storage, management and analysis of (multi)Similarity data resulting from thecomparison

of very large datasets. For this case, different experiments were performed to evaluate the per-

http://dx.doi.org/10.1109/ISPA.2008.41
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formance/efficiency of HDF5 and Oracle. In particular, the storage/query overhead of HDF5 was

compared with that of Oracle/SQL. The results showed significant performance benefit of HDF5

over Oracle/SQL. This initial benchmarking, provides a road-map to compute the (multi) simi-

larities of all available PDB structures; thereby, creating an efficient scientific knowledgebase of

pre-computed results. This knowledgebase could be used to provide an easy to use interface, so

the biologist can perform scientific queries using a vast variety of criteriaand options leading to far

better and reliable understanding of the protein structural universe.

This chapter was published as a peer reviewed conference paper inProceedings of 22nd

IEEE International Symposium on Computer-Based Medical Systems (CBMS-09, ISBN:978-1-4244-

4879-1, pp.1-8, 2009. [doi:10.1109/CBMS.2009.5255328]

Finally, chapter 9 discusses the concept of consensus based protein structure similarity

clustering. It uses theProtein Kinase Datasetto compare the results of two competing paradigms in

the field of systematics i.e., total evidence and total consensus. The results of this work indicate that

for the case of protein structure similarity clustering thetotal evidenceapproach gives better results

as compared to total consensus. Hence, this finding strengthens the current protocol being used in

the ProCKSI.

Needless to say that, in making all this work, there were tremendous problems involved

in the configuration, installation and operation of the Grid computing related hardwareand software

which consumed too much time for their fixing. Some of these problems are reported in Appendix

.2. Nevertheless, this thesis resulted in 5 peer reviewed conference papers (which needed traveling

http://dx.doi.org/10.1109/CBMS.2009.5255328
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to be presented at as far countries as Canada, Australia and USA) and 2peer reviewed journal

papers, 2340 lines of code and several giga bytes of data.

10.3 Future Directions

The work presented in this dissertation sets the foundation for the real time multi-criteria protein

structure comparison and analysis. The work opens many directions for future research including:

• The developed software could be deployed on the high-end resourcessuch as theUK’s High

End Computing Terascale Resource(HECToR) and thereby, compute the all-against-all simi-

larities for all the structures available in the PDB. However, the access to HECToR is not free

and requires the applicant to prepare a full research grant proposal for submission to EPSRC

or BBSRC. Furthermore, in order to make such a deployment, the software developed so far

could be upgraded by adding the fault tolerance mechanism in the form of checkpoint/restart.

The checkpoint/restart support could be added without changing the code of the application

by using some libraries such as theBerkeley Lab Checkpoint/Restart(BLCR) [156].

• Another important direction would be to investigate the proper visualization of the clusters

resulting from the multi-verse of similarities. This large scale clustering and visualization

could be achieved by making use of the newly introduced open-source algorithm memory-

constrained UPGMA(MC-UPGMA) and its related visualization interface that is being used

for single-similarities in the domain of sequence comparison/alignment.

• It would be interesting to exhaustively and systematically explore the utilization of fuzzy

decision making for MC-PSC. In [183–185] the authors took first steps into that direction but

more work remains to be done.
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.1 List of Protein Structure Comparison Methods

Taken from:http://en.wikipedia.org/wiki/Structural_alignment_software

NAME Description

MAMMOTH MAtching Molecular Models Obtained from Theory

CE/CE-MC Combinatorial Extension – Monte Carlo

DaliLite Distance Matrix Alignment

VAST Vector Alignment Search Tool

PrISM Protein Informatics Systems for Modeling

SSAP Sequential Structure Alignment Program

SARF2 Spatial ARrangements of Backbone Fragments

STAMP STructural Alignment of Multiple Proteins

MASS Multiple Alignment by Secondary Structure

SCALI Structural Core ALIgnment of proteins

SSM Secondary Structure Matching

SHEBA Structural Homology by Environment-Based Alignment

LGA Local-Global Alignment

POSA Partial Order Structure Alignment

PyMOL "super" command does sequence-independent 3D alignment

FATCAT Flexible Structure AlignmenT by Chaining Aligned Fragment

Pairs Allowing Twists

http://en.wikipedia.org/wiki/Structural_alignment_software
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Matras MArkovian TRAnsition of protein Structure

MAMMOTH-mult MAMMOTH-based multiple structure alignment

PRIDE PRobaility of IDEntity

FAST FAST Alignment and Search Tool

C-BOP Coordinate-Based Organization of Proteins

ProFit Protein least-squares Fitting

TOPOFIT Alignment as a superimposition of common volumes ...

MUSTANG MUltiple STructural AligNment AlGorithm

URMS Unit-vector RMSD

LOCK Hierarchical protein structure superposition

LOCK 2 Improvements over LOCK

CBA Consistency Based Alignment

TetraDA Tetrahedral Decomposition Alignment

STRAP STRucture based Alignment Program

LOVOALIGN Low Order Value Optimization methods for Structural Alignment

GANGSTA Genetic Algorithm for Non-sequential, Gapped protein STructure

GANGSTA+ Combinatorial algorithm for nonsequential and gapped ...

TM-align TM-score based protein structure alignment

MatAlign Protein Structure Comparison by Matrix Alignment

Vorolign Fast structure alignment using Voronoi contacts

EXPRESSO Fast Multiple Structural Alignment using T-Coffee and Sap

YAKUSA Internal Coordinates and BLAST type algorithm
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BLOMAPS Conformation-based alphabet alignments

CLEPAPS Conformation-based alphabet alignments

TALI Torsion Angle ALIgnment

FlexProt Flexible Alignment of Protein Structures

MultiProt Multiple Alignment of Protein Structures

CTSS Protein Structure Alignment Using Local Geometrical Features

Matt Multiple Alignment with Translations and Twists

TopMatch Protein structure alignment and visualization of structural

SSGS Secondary Structure Guided Superimposition

Matchprot Comparison of protein structures by growing neighborhood

UCSF Chimera see MatchMaker tool and "matchmaker" command

FLASH Fast aLignment Algorithm for finding Structural Homology

RAPIDO Rapid Alignment of Protein structures with Domain

ComSubstruct Structural Alignment based on Differential Geometrical Encoding

ProCKSI Protein (Structure) Comparison, Knowledge, Similarity and Info

SARST Structure similarity search Aided by Ramachandran Sequential Trans.

Fr-TM-align Fragment-TM-score based protein structure alignment

TOPS+ COMPARISON Comparing topological models of protein structures

TOPS++FATCAT Flexible Structure AlignmenT by Chaining Aligned Fragment...

MolLoc Molecular Local Surface Alignment

FASE Flexible Alignment of Secondary Structure Elements

SABERTOOTH Protein Structural Alignment based on a vectorial Structure ...
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SALIGN Sequence-Structure Hybrid Method

.2 Software Related Technical Probelms and Solutions

Sun Grid Engine 6.1u2 related issues

Problem 1: "Unsupported local hostname"

Run ’ifconfig -a’ and obtain the IP address of the interface which is

used to connect to exec hosts. Then edit the file ’/etc/hosts’ and make an entry

127.0.0.1 localhost

128.243.18.20 taramel taramel.cs.nott.ac.uk

Problem 2:

"mount: mount to NFS server ’taramel’ failed: System Error: No route to host"

It indicates there is some thing wrong with the Firewall.

Add the following rules to /etc/sysconfig/iptables on master node:

-A RH-Firewall-1-INPUT -s 128.243.24.xx -j ACCEPT

-A RH-Firewall-1-INPUT -s 128.243.24.xx -j ACCEPT

-A RH-Firewall-1-INPUT -s 128.243.24.xxx -j ACCEPT

Restart the firewall (/etc/init.d/iptables restart).

Problem 3: Cannot contact qmaster. The command failed:

Edit /etc/services on each execution host for entries sge_qmater 536/tcp

and sge_execd 537/tcp and it should work.

Problem 4: "-bash: qconf: command not found"
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run ./usr/SGE6/defualt/common/settings.sh or

cp /usr/SGE6/defualt/common/settings.sh /etc/profile.d/gridengine.sh

MPICH2-1.0.7rc2 + SGE 6.1u2 on CentOS-5

Problem 5: "Connect to address 128.243.: Connection refused"

Check if rsh server is installed. Otherwise install it:

yum install rsh-server

and restart xinetd

Also, the integration of MPICH2 with SGE requires passwordless SSH/RSH onall nodes:

1. local$ssh−keygen− tdsa

2. local$scp/.ssh/iddsa.pubremote

3. local$sshusername@remote

4. remote$cat /iddsa.pub>> /.ssh/authorizedkeys

5. remote$chmod644/.ssh/authorizedkeys6. remote$exit

7. local$sshusername@remote

use: grep rsh /var/log/messages

In /etc/xinetd.d/rsh change "disable" to

disable = no

restart xinetd with

/etc/init.d/xinetd reload

look carefully at the contents of

/.rhosts, /root/.rhosts and /etc/hosts.equiv
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Problem 6: smpd -s: Floating point exception

Check if all machines have same version of OS. Otherwise

instal MPICH2 locally on each machine.

Problem 7: "export: Command not found"

Specify an interpreting shell in the job script with syntax such as:

#$−S/bin/bash

Globus related issues

Problem 7:

GRAM Job submission failed because data transfer to the server failed (error code 10)

Install the advisory from:

www.mcs.anl.gov/~bester/patches/globus_gram_protocol-7.5.tar.gz

Rungpt−buildglobusgramprotocol−7.5.tar.gzgcc32dbggcc32dbgpthr

Problems on National Grid Service

Problem 8: "mpicc with hdf5 fails"

use: module load 64-bit gnu-compilers mpi hdf5

and then use proper wrappers for mpicc, gcc and h5cc

# MPICC wrapping H5CC wrapping GCC

mpicc -cc=h5cc parallel.c procksi_Alone.c -o par_procksi_Alone

-DDEBUG -DTIMING -DPARALLEL

OR

# HD55 wrapping MPICC wrapping GCC

www.mcs.anl.gov/~bester/patches/globus_gram_protocol-7.5.tar.gz
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env HDF5_CC=mpicc HDF5_CLINKER=mpicc h5cc parallel.c procksi_Alone.c

-o par_procksi_Alone -DDEBUG -DTIMING -DPARALLEL

Problem 9: "Pro*C code fails to compile"

Use proper scripts for compilation as:

[ngs0933@ngs]$moduleloadoracle

[ngs0933@ngs]$gcc− I/apps/oracle/10.2.0.3/client/precomp/public/

−L/apps/oracle/10.2.0.3/client/lib− lsqlplus$−osample1.newsample1− pro.c

[ngs0933@ngs]$readel f−hsample1.new

[ngs0933@ngs]$./sample1.new

Connected to the database as user: ngsdb0053
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