m The Uniyersitg of
A | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Ryll, Marco (2011) Towards a software framework for
reconfigurable and adaptive fixturing systems. PhD
thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/11733/1/PhD_20101129-FINALPRINT.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Towards a software framework for reconfigurable

and adaptive fixturing systems

Marco Ryll, Dipl.- Inf. (FH)

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy

June 2010

Abstract

There is an ongoing trend towards advanced fixturing systems that can be automatically
reconfigured for different workpieces and dynamically adapt the clamping forces during the
manufacturing process. However, the increased utilisation of computer technology and
sensor feedback currently requires a significant amount of programming effort during the
development phase and deployment of such fixtures which impairs their successful

industrial realisation.

This research addresses the issue by developing the core concepts of a novel software
framework that facilitates the deployment and operation of reconfigurable and adaptive
fixturing systems. This includes a new data model for the representation of the fixturing
system, using object-oriented modelling techniques. Secondly, a generic methodology for
the automatic reconfiguration of fixturing systems has been developed that can be applied
to a plethora of different fixture layouts. Thirdly, a flexible communication infrastructure is
proposed which supports the platform-independent communication between the various
parts of the fixturing system through the adoption of a publish/subscribe approach. The
integration of these core knowledge contributions into a software framework significantly
reduces the programming effort by providing a retdyse infrastructure that can be

configured according a given fixture layout.

In order to manage the complexity of the research, a structured research methodology has
been followed. Based on an extensive literature review, a number of knowledge gaps have
been identified which were the basis for the definition of clear research objectives. A use
case analysis has been conducted to identify the requirements of the software framework
and several potential middleware technologies have been assessed for the communication
infrastructure. This was followed by the development of the three core knowledge
contributions. Finally, the research results have been demonstrated and initially verified
with a prototype of a reconfigurable fixturing system, indicating that the utilisation of the
software framework can eliminate the need for programming, thereby drastically reducing

deployment effort and lead time.

List of Publications

Journal Publications

Marco Ryll, Thomas Papastathis and Svetan Ratchev, ‘{Towards an intelligent fixturing

system with rapid reconfiguration and part positiofijnigurnal of Materials Processing

Technology, Volume 201, Issues 1-3, pp. 1983, 2008.

Marco Ryll and Svetan &chev, “A publish/subscribe approach for a software framework
for reconfigurable fixturing systeisInternational Journal of Advanced Manufacturing

Systems, Volume 11, Issue 1, pp. 7-14, 2008.

Book Sections
Marco Ryll and Svetan Ratchev, “Towards a publish/subscribe control architecture for

precision assembly with the Data Distribution Service”, In: Micro-Assembly Technologies
and Applications, ISBN: 978-0-387-77402-2, pp. 359-369, Springer Boston, 2008.

Thomas Papastathis, Marco Ryll, Stuart Bond Svetan Ratchev, “Development of a
reconfigurable fixture for the automated assembly and disassembly of high pressure rotors
for Rolls-Royce aero engin&sln: Precision Assembly Technologies and Systems, [ISBN:
3-642-11597-7, pp. 283-292, Springer Heidelberg, 2010.

Peer Reviewed Conference Papers

Marco Ryll, Thomas Papastathis and Svetan Ratchev, ‘{Towards an intelligent fixturing

system with rapid reconfiguration and part positiofijnd)™ International Conference on

Advances in Materials and Processing Technologies (AMPT’07), 7-11 October 2007,

Daejeon (South Korea).
Thomas Papastathis, Marco Ryll and Svetan Ratchev, “Rapid reconfiguration and part

repositioning with an intelligent fixturing syst¢mASME International Conference on
Manufacturing Science & Engineering (MSEC2007), 15 - 18 October 2007, Atlanta (USA).

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-4R7J837-13&_user=5939061&_coverDate=05%2F26%2F2008&_alid=1287886735&_rdoc=16&_fmt=high&_orig=search&_cdi=5256&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=989497550de22fdabd3106729ed2cde3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-4R7J837-13&_user=5939061&_coverDate=05%2F26%2F2008&_alid=1287886735&_rdoc=16&_fmt=high&_orig=search&_cdi=5256&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=989497550de22fdabd3106729ed2cde3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-4R7J837-13&_user=5939061&_coverDate=05%2F26%2F2008&_alid=1287886735&_rdoc=16&_fmt=high&_orig=search&_cdi=5256&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=989497550de22fdabd3106729ed2cde3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-4R7J837-13&_user=5939061&_coverDate=05%2F26%2F2008&_alid=1287886735&_rdoc=16&_fmt=high&_orig=search&_cdi=5256&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=989497550de22fdabd3106729ed2cde3

Marco Ryll and Svetan Ratchev, “A publish/subscribe approach for a software framework
for reconfigurable fixturing systeisInternational Conference on Agile Manufacturing
(ICAM 2008), 16- 18 July 2008, Kalamazoo (USA).

Marco Ryll and Svetan Ratchev, “Application of the Data Distribution Service for flexible
manufacturing automation” 5" International Conference on Control, Automation and
Systems (ICCAS’08), 25-27 July 2008, Prague (CR).

Acknowledgements

I would like to thank a number of individuals for their support and contributions without
which this work would not have been possible.

First of all | would like to thank my supervisor Svetan Ratchev for having given me the
opportunity to accomplish this research in a supportive atmosphere. His technical
comments, guidance and encouragement have been invaluable not only for the success of

this research, but also made the past 3 1/2 years a challenging, yet enjoyable experience.

| would also like to thank my colleagues in the Precision Manufacturing Centre at the
University of Nottingham. Special thanks go to Thomas Papastathis for the outstanding
team work and inspiring discussions on the AFFIX research project. Furthermore, | would
like to express my appreciation to Colin Astill whose support and helpful hands were
instrumental for the practical verification of the research results. | would also like to thank
Rachel Watson for proofreading the final thesis.

An dieser Stelle méchte ich mich bei meinen Eltern Renate und Richard Ryll fir ihre
jahrelange Unterstitzung und Liebe bedanken und fur das Gefuhl immer ein zu Hause zu

haben.
Finally, but most importantly, | would like to express my deepest gratitude to my lovely

girlfriend Silke Pohl for making me smile every day and for giving me the feeling of being

loved. Without her and our cat Monsta | would not be complete.

-V -

Table of Contents

(I 1 NV 1 2 1 11 L I 1 SRS 1
1.1. BACKGROUND AND MOTIVATION oo 1f.......
1.2. RESEARCHOBIECTIVES. ..o 4.
1.3. THESISSTRUCTUREOVERVIEW oo 6l.......
2. LITERATURE REVIEW ..ottt sttt sttt st sttt st et sttt st e et nbe e ebestenennens 7
2.1 INTRODUCTION ...t tttttttttia s e e e e e e e et eeeeetabata s e s s e e e e e e e eeeeaetbsba i aa s s e e e e e aaeeeeeeteebabaan e e e eeeeaaeeeessnnnnnns s N
2.2. FLEXIBLE FIXTURING CONCEPTS. ..o gf.......
2.2.1. MOQUIAT FIXIUTES oo 8l.........
2.2.2. Phase-Change FiXtUIES.coiiiiiiiiieiiiiii ettt e e e e nabb e eee e 10......
2.2.3. CONOrMADIE FIXIUMES ..o 11......
2.2.4. I5rogrammable FIXEUTES oo 11......
2.2.5. AJAPLVE FIXIUINES....oceeieiiiiiieie i e e ettt s e s e e e e e e e et ettt s e e e e e aeaeeeeeeanteaaansaeeaeaaeeenen 15.......
2.2.6. DISCUSSION. ...ttt ettt ettt e e e e e e e e e oot oo bbbt et ettt e et e e eaeaeaeaaaasaaa e nnnnbbebbeeseeeeeeen 17.......
2.3. RECONFIGURATIONMETHODOLOGIES.ceettuueettttiaeeetetiaeseesiinaeeeestanaeeseetnnaaesessnnaaeseernnaaaees 18!....
2.3.1. Fixture Reconfiguration MEtNOGS.........coouuiiiiiiiiiiiiicee et 19|....
2.3.2. Reconfiguration Methods for Manufacturing SyStems..........ccccceeeiiiiiiiieeeenieee e 21].
2.3.3. DUSCUSSION.....ciiiiiiieitiitteeie ettt ettt et e eeeee e e e e et e s s s s eeebbe b e e eeeeeaeeteeaaeaeesessssaaaaannssssnssrnnneees 23
2.4. DATA MODELS ANDREPRESENTATIONCONCEPTS. ..o 23..
2.4.1. Fixure -Representation CONCEPLS ..ttt i et e e e e e et e ettt s e e s e e e e et e e e eeae it s e e aeaaaaeeeeessnnes 23.....
2.4.2. Representation Models for Reconfigurable Manufacturing Systems..............cccecvveenns 26
2.4.3. DISCUSSION.....ciiiiiiiiiiitiittete et ettt e e eeeeeaeeeaessaaaaaaeneeeebeeteeeseeeeaeeteaaaeaaeaessesaaaaaansssssnsensnnnes 28|.......
2.5. COMMUNICATION INFRASTRUCTURES FORNFORMATION EXCHANGEcoiiiieeeiiiieceeiiiiiiaae e 29
2.5.1. Distributed ODJECt ArChILECIUIE.....cciiiiiiiiii it 30.....
2.5.2. Data-CentriC ArChItECIUL......ueeiiieiiieiie e e e e e e e e e e e e e s e e e e e e s reeeeeees 32......
2.5.3. Service-oriented ArChItECIUNE. ... 33.....
254, Message-oriented ArChItECIUNE e e e e e e e e e 34....
(255, DISCUSSIOM. .o 35|.......
2.6. KINOWLEDGE GAPS. ...ttt ettt ettt r e e e e e e e ettt e e e b et e e e e e e e e e e eeeeeeneban s 35.......
2.7. CHAPTER SUMMARY ..cettttttuaseseeeeeteeeeeaessnsnnaaasaeeeeeteeeeessssnsnnnaaeeaeeeaeeeeesnsnnnnnnnsasseeeeeeeeemmnnes 38.......
3. RESEARCH METHODOLOGY ..ottt sttt e ste e s te s te e steesate e steesnae e sateesnae s snneesnneesnneennnes 39
3.1. INTRODUCTION ...t tttti et ettt e e e ettt e e ettt e e e et taa e e e e e eat e s e eeeab e e et esb e e e e ee b s e e e eeban s e e s eeban s eeeeennnss 39........
3.2. DEFINITION OF THERESEARCH DOMAIN.....0ceiieeiiiiiieeeeeeiitireeeeessssneneeessssssneseessssssnneeeessnnnnnnns. 4 000
3.2.1. Definition of the Knowledge Contributions..............coooviiiiiiiiiiiiiiiiiieeiieeeeeee e A4

-V -

3.2.2. Assumptions and LIMItAtioNS.........c.cooeiiiiieiiiiiiieiiieiie e rreeeee e e e e e e s s e s ssssennrenneeaeeeeeeeeeeees 43.....
3.3. REQUIREMENTSSPECIFICATION. ...ttttttetiutttteteessasntseeaessasssseeeessanssssessesssnssseesesssmnssseeeessannsssees 45.....
3.3.1. INIUANSE FIXIUIE ..o 4j
3.3.2. Reconfigure FIXIUTE. oo 47l......
R T R e T- Yo [=Y A U R R R R PR U TR TRTURRRRP a8l........
3.3i4. UNIOGA PATL..ciiiieiiieiiiiiiiie ettt et e e e e e e e e e e s e e e e e et e bt e e e e eeeeeaaaaaaaeesd 44........
3.3.5. FS oLy C= @ Y LT 49.......
3.4. ASSESSMENT OFSUITABLE COMMUNICATION TECHNOLOGIES .- 50l
3.4.1. Definition of Technical ﬁequirements .. 50....
3.4.2. Selection of Middleware Candidates............ccooiuuiiiieiiiiiiiieee i 52|..
3.4.3. Assessment of the Middleware Technologies ... 52]...
3.5. OVERVIEW ON EXAMPLE FIXTURES FORILLUSTRATION PURPOSES........cccccttiiieeesiiiiereeeesnsnnens 58
3.5.1. Rail-based FiXtUring SYSTEIM........cccoiiiiiiiiiieiiitiiiee ettt et e e e e st eeeeesaees 58l.....
3.5.2. Fixture using a Base Plate with Mounting Holes.............cccoiiiiiiiie e, 60]..
3.6. CHAPTER SUMMARY . etttttttas e s e e eeeeeteeessssssssas s s e s aeaeeaeeeeessssanaaa s e e e eeaeeteeesnssnnnn s aesaeeeeeseennnnns 62.......
4. OBJECT-ORIENTED DATA MODEL FOR RECONFIGURABLE AND ADAPTIVE
FIXTURING SYSTEMS ...ttt ettt sttt s be st e st e e s sbenaeneees 64
4.1. INTRODUCTION ... cttttttttii s s s s e e e e et et eeesnts e s e e e e e e e eeeeeesnn e s s s e e e eeeeeeeeenssnbn s s eeeeeeeeeennnnnnnnnnnnssd 64........
4.2. IMODEL OVERVIEW ...ttt e eee ettt s e e e e ettt s s e e e e e e e e e ee e et tebab s e e e e e e e e eeeeeesenbannnnan s 65.......
4.3. MODEL ELEMENTS OF THEPACKAGE “COMMON ELEMENTS”iiiiiiiiiieieii et eeenn 66[.
T T B B = r= T B 01T T OO PPPPPPRPPP T 61.......
4.3.2. The Class COMPONEIL ... e e e e e et r s e e e e e e e et e e e aete b s s e eeeeaeseeesesennnnns 68l......
4.3.3. The Class CaPaDbIlit.. ..o e ———— 68l......
4.4. MODEL ELEMENTS OF THEPACKAGE "DEVICES +ovovvooooooooooooooooooooooonn 69l...
O R B 1= Tt 1= = Y o)Y/ PSSP 70.......
4.2, DEVICE TP . ttiiiie ettt e ettt ettt e ettt e e e e ettt e e e e e bbbt e e e e e n b bt e e e e e et b e e e e e e anneees ...
4.4.3. Device Capabilities.........coooiiiiii e T4......
|4.5. MODEL ELEMENTS OF THEPACKAGE “FIXTURE MODULE”cvvvveeiiiiiieeeessesirvneeessesnsnnnaessnn).
4.5. 1. FiXXUrE MOAUIES.....coiieiiieeee ettt eee ettt e e e e e e e e e e e e e s e e s essnneennennnnneneeeeeeeaeneeeeeeesses d D) ennnns
45.2. Capabilities of FIXIUTE MOGUIES ..o 79.....
|4.6. MODEL ELEMENTS OF THEPACKAGE “TRANSPORTCOMPONENTS .o 85|
4.6.1. TranSPOrt COMPONMEINES. et eeeei ettt e e e e e e e e et eeebe b e r e e e e e ae et eeesebabaaa e aaaaaeeaaas 84|......
B.6.2. SIOUS... i tttiiiee et ittt e ettt e e e e et e e e e et ———taeeaa————aaae e e tb—ataaeetatbrtaaaeeaantaaaaaeenanes 81f.........
4.6.3. Capabilities of Transport COMPONENLS........ccoiiiiiiiiiiee it e e seeeeeeee e 89.....
4.7. MODEL ELEMENTS OF THEPACKAGE “RECONFIGURATIONcccciiiiiiieeeeesiitreeeeeeesnrneeeeesennnens 91].
4.7.1. Fixture Design INfOrmation..........c.uueiiiiiiiiiiiiie et 92.....

-V -

A.7.2. FOICE ProfilES. ..ottt ettt e et e e e et a e e e e nnres a4l.......
4.7.3. Reconfiguration COMMANS...........uuuruuiimiiiiiiieiieeieeeeeeesiessssssssesrenrrsrrrrrrrrrraraaeaeeaeseasans 96].....
4.8. CHAPTER SUMMARY .. tttttttaa e s e e eeatateeeasstasaa s s e e aaaaateeeeetsebaaaaaaeeeaeaaeeeeessbebbanasaesaeeaaaaeeannnes 97......
Ii FIXTURE RECONFIGURATION METHODOLOGY ..ottt 99
5.1, INTRODUCTION ... et tttttttt e e e e e e e et et eeeetbbat e s s e e e e e e e eeeeaetba b aa e e e e e e aeaeeeeasbeba e e e e eeeaeeeeesnbbnnnnnnes 99........
5.2. CAPABILITY RECOGNITIONMETHODOLOGYciiitteitiutuiniiaaaaaaeeaeeeeeasssstnnnnaaaaaaaaaaaeeeessnnnnnnns 100..
~[5.2.1. Assumptions and erquirements ... 10q...
5.2.2. Capability Recognition on Module LEVEL..............cooi i 104.
5.2.3. Capability ﬁecognition ON FIXTUTE LEVEL oo 10?.
5.3 SETUP ADAPTATION METHODOLOGY ...vvvtteeiuttreeeeesinteteeeessansteseesessasssseeeessnssseeesessnssseeeens 113.
5.3.1. Assumptions and REQUIFEMENTS.........cuiiiiiiiiiiiier ittt e e et e e s ree e e s senbe e e e e s neees 113..
5.3.2. Overview of the DeciSion-making ProCESS..........occuriiiieiiiiiiiie e 114.
5.3.3. Assignment of Fixture Modules with Contact POINtS.............ueeveiiiiiiiiiiieiieeeeeee e 115
5.3.4. Generation of Reconfiguration Commands............ccccoovvrriiiieiiniiiiiee e 122.
5.3.5. COIlISION AVOIGANCE ..o 124....
5.3.6. COMMANG EXECUNAN. ..o 129....
54. CHAPTER SUMMARY ..ttt e e e e e eeeteeeeesetssaa s s e s e e e eeaeeeeseses s aa s e e e eeee et eeesnbsan i n s s e eeeeeeeeeennnnnnan 13%.....
6. COMMUNICATION INFRASTRUCTURE FOR ADAPTIVE FIXTURES......ccccoeivnneriienens 132
6.1. INTRODUCTION ...t ttttieeetett e e ettt e et ee e e e e et b r e e e et be e e e e eeeea e e e eesba e e e eesba e eeaeebnn e eeeebnn e eeaeennns 137......
6.2. PUBLISH/SUBSCRIBE WITH THEDATA DISTRIBUTION SERVICE.....ucvvttttteeieeeeeeaeeessasssasnnnnnnenenes 133
6.2.1. The Data Centric Publish/Subscribe Model............ccviiiiiiieeeiiiiiceeeeeeee e 133.
6.2.2. The QUAityof-ServiCe CONCEPL.......uuruieiii e e e eeeeee e e e e e e e e e e e e e e e aeeaeaannes 134..
6.3. PUBLISH/SUBSCRIBECONCEPT FORADAPTIVE FIXTURING SYSTEMS......oooooooooooons 13?
6.3.1. Design of the Topic SHTUCTUIE e e e e e e e e e e e e aeeaeeeees 135...
6.3.2. Specification Of DAta TYPES......uuuuuiiiiii e e e e e e e e e e e e e eaeaeanaaa 138.
6.3.3. Quality-of-Service Parameter SpecificatiQn...........cc.eeeeeiiiiiiiiiieiiiiiee e 144.
6.4. EXTENSION OF THEDATA IMODEL ..iittiiieiiiiiie ettt ettt e e et e e e e s e e e enna e e 149...
6.4.1. Publisher and Subscriber ODJECLS..........uiiiiiiii e 149..
6.4.2. Method interface of the Capability and Device CIaSSES.........ccovvvvieveeiiiiiiieneeeeniien, 153
6.4.3. Library Interface Definition for the Hardware ACCESS...........cvvvvvevviiiiiieieeeeeeeeeeeiiiiinnn, 153
6.5. ILLUSTRATION OF THECOMMUNICATION SEQUENCEctuiiuniitneiineiieiiieiieitieeieeeaesetseenessnesnnas 15
6.6. CHAPTER SUMMARY ..ttt e e e e eeaeeteteeetetaiaa s s e e e aaaeteeeeeesstas s aa e e e e aeaeeeeeesebaban e e aeeeeeeaeeennnnranan 161.....
7. ILLUSTRATION AND VERIFICATION ..ottt 162
7.1. INTRODUCTION ...t tttt et ettt e ettt s e ettt e et et b r e e e et b r e e e ettt s e e e e e taa e e e ee st e e e e eebanneeeenbnn e eeaeeenns 167......
7.2. DESCRIPTION OF THETESTBED HARDWAREccvtuuiiiiiiiii ettt e et eeeaeiae e e e e e eeennneees 163.

- Vil -

7.2.1. Equipment Description for Transport COMPONENTS.......cccccuvrrvrirrireereeirerreereeeeeeeseesenns 164

7.2.2. Equipment Description of one Fixture Module...............ooooeiiiiiiiiiiiiiiireeeeecee e 166
7.2.3. Equipment Description for the Control Hardware.............cccevveeiiiiiiiieeniieee e 167|
|13. DESCRIPTION OF THEPROTOTYPESOFTWARE......cutututuuiaaaaeaaateteeeistnnnnnnaaaaaaeaaaseessstannnnnaens 16

[7.3.1. Generation of the PUDIISNEer/SUbSCrDEr CIaSSES....oissssssssssosoons 17

7.3.2. Configuration File SOEINGS. c ettt ettt 17

7.3.3. Device Library ImplementatiQnl.........cccuveeieeeeeeeie e e e e e e e e e e e e e e e e s e e e eennnns 172...

7 3.4. Implementation Overview of the FIXIUrE MOQUIE SOMWALE oo 17¢

735, Implementation Overview of the FIXIUre COOrdinator SOMWAIE. ..., 17
|l4. TESTING OF THEFIXTURE RECONFIGURATION WITH ONETRANSPORTCOMPONENT.cceveeennee 180
T4 L. ODJECHIVES. ..ci ittt ettt e e et e e s st e e e s e e e e e e e e e e e 180Q......
7.4.2. Configuration DEtailS.........oovriiiiiiiiiiiie e 18Q....
T.4.3. TESUNY PrOCEUUIE. ..ottt ettt e et e e et e e e s aannnreeeas 185.....
T4, TESERESUILS. ... uutiiiiiiiiiiie ettt e et e e e e e e e e e e s s e s e b et e seeeeeeeeaaaaaeaeeens 189......
|15. TESTING OF THEFIXTURE RECONFIGURATION WITH TWOT RANSPORTCOMPONENTS. 191
75,0, ODJECHVES. ...uteiiiee ittt e e e e e e e et et e e et aaaaaaear 1911......
7.5.2. Configuration DEtallS.........ccooiiiiiiiiiiiiiie e a e e e aaarana 1902....
7.5.3. TeStNG PrOCEAUIE........coiiiiieeie it e e e e e e e e e e e e et aeeeeaes 19§.....
T.5.4. TESERESUILS. .. .uutiiiiiiiiiiiii ettt ettt et e e e e e e e e s e s s s s s bbb e b e seeeeeeaeeaaaaaeeeens 197......
7.6. CHAPTER SUMMARY .ttt teeeeeaeateeeattetsnaaaeseaaaateeeesssssssaaa s aeeeaeaaeeeeesessnnnnaaaeaaaeaaeesessssnnnn 19§.....
8. CONCLUSIONSAND FUTURE WORK ..ottt sttt st e st esae s st e e s snteesne e ssaeennee s 200
8.1. INTRODUCTION ...t tttttttti e s e e e e ettt ettt e s e e e e e e e ettt ee e be b s e e e e e e e et e e e ee bt bb e s e e e eeeeeeeeesennnnannns 20Q......
8.2. ORIGINAL CONTRIBUTION TOKNOWLEDGE.ctttutuuiteaeeeeeeteeeestsiniissesaeeaeeeeeeessnrnnnanaaaaeeeans 200..
8.3. AREAS OFAPPLICATION ..ttt s e e e e et eeeeetett e s e e e e e e e et eeessbe b a s s e e e e eeeeeeeeesnbnnnaaeaeeaaeeeees 20
8.4. FUTURE WORK ...ttt ettt ettt ettt s e e e e e e e et e e e e e bbb s e e e e e e e e e eennennnnans 203......
8.5. CONCLUDING REMARKS ...t eetiee ettt s e e e e e e et ettt a e e s e e e e e eeeeeeeeatnbnnnaeeeeeaeeeeeeeeennnnnnn 205....
REFERENGCES........cco oottt s ettt e st e e st e s te e st e e s ate e st e e easeeanteeeaseesnteeanseesnteeanseesnteeaseesssenennnnnne 207

- viii -

List of Figures

FIGURE 1-1: SCHEMATIC REPRESENTATION OFPOTENTIAL TIME REDUCTIONS FOR THEDEVELOPMENT OF

RECONFIGURABLE, ADAPTIVE FIXTURES ..o A
[FIGURE 2-1: OVERVIEW ON FLEXIBLE FIXTURING TECHNOLOGIES ..o g|....
[FIGURE 2-2: MODULAR FIXTURE PROPOSED BYSELA ET AL [L7] -orovooorooooooooooooeo oo 9....
FIGURE 2-3: DOUBLE REVOLVER AND TRANSLATIONAL MOVEMENT SYSTEM ([34])....ccoevieiivenvvnvieeeeeeeee 12

FIGURE 2-4: THREE-FINGEREDPROGRAMMABLE AND RECONFIGURABLEFIXTURE CONCEPT BYDU AND LIN

(L] OO PP PP PRUPRUURPRPRTI 3.
[FIGURE 2-5: SCHEMATICS OF THEDYNAMIC CLAMP ([A8I) -eveeeeiirreeee e ettt 16
[FIGURE 2-6: HIERARCHICAL CLASSIFICATION OFFIXTURE COMPONENTS[B4]...cceveiiiiiiiiieeiiiiiiieae e 24
[FIGURE 2-7: EXAMPLE FOR CAPTURING FIXTURE DESIGNINFORMATION AS OBJECTS[5_7] Zﬂ
[FIGURE 2-8: CLASS DIAGRAM FOR THE CONTROL SYSTEM OF AROBOTISEDMANUFACTURING CELL [100].....27,
FIGURE 2-9: CLASS STRUCTURE OF THEPOLYMORPHIC BEHAVIOUR PATTERN [105].......ccoiiiiiiiicieeee e, 28
FIGURE 2-10: OVERVIEW OF THEPUBLISH/SUBSCRIBECONCEPT.cttttittitititaeaeaaeaaaaaesaaasiiiinreseeeseeeeeeeeeeas 32..
FIGURE 3-1: OVERVIEW ON THERESEARCHMETHODOLOGY......tutuuuiaeeeaaeaieeeeetnnrnnnnaaeaeeaaeeseeessnnnnnnnneaeesd 40|...
FIGURE 3-2: THE KNOWLEDGE CONTRIBUTIONS IN THE CONTEXT OF THE SOFTWARE FRAWORK................. 43
FIGURE 3-3: USE CASE DIAGRAM FOR THEFIXTURING SYSTEMcciiitiiiiiiitiiieieeeeeeeeeeeeeeiiiniianseseeeaesaeeeenees 46}..

FIGURE 3-4: SIMPLIFIED SCHEME OFCOMMUNICATION BETWEEN A MODULE AND THE FIXTURE COORDINATOR

... 50]..........
[FIGURE 3-5; CONCEPTUALDESIGN OF AFIXTURE WITH FOURRAILS oo 59
FIGURE 3-6: VARIATIONS OF THERAIL -BASED FIXTURE DESIGN......uuuiiiiiiiiiiieieiiiineeeeiiineeseeinineesesinnneeaeesnes 60f..
FIGURE 3-7: CONCEPTUALDESIGN OF AFIXTURE USING ABASE PLATE WITH MOUNTING HOLES.................. 61
FIGURE 3-8: VARIATIONS OF THEFIXTURE DESIGN WITH BASE PLATES AND MOUNTING HOLES.................... 62
FIGURE 4-1: OVERVIEW OF THEPACKAGE STRUCTURE OF THEDATA MODEL.....uuuiiiieieeeeeieeeeeeviiiiceeeeee e 65
FIGURE 4-2: MODEL ELEMENTS OF THEPACKAGE “COMMON ELEMENTS” ..1uuuiiiiiiieeeeieieeeeetitieeeee e eeeeeeeeannd a6|.

'FIGURE 4-3: HOMOGENEOUSCOORDINATE TRANSFORMATION USING THEDATA TYPE SPATIALDESCRIPTIONG7|

[FIGURE 4-4: CLASS DIAGRAM OF THE PACKAGE "DEVICE” oo 69...
[FIGURE 4-5; EXAMPLES FOR THEDEVICE REPRESENTATION WITH THECOMPOSITIONPATTERN oo 71]
FIGURE 4-6: EXAMPLES FOR ALINEAR CLAMP (A) AND A SWING CLAMP (B) ..oeeeeeeeeieieeeieiiiie e e s e e e e e eeeeeeannens 72
FIGURE 4-7: EXAMPLES FORLOCATORDEVICES........cciititititiiieeieeeeeeeee ettt s e e e e e e e e e e e e eeaa st e e e e aeaeaaans 73.....
FIGURE 4-8: THE DATA TYPESSTROKERANGE, SWINGRANGE AND AXIS ...cvtuiieiiiiiiieeeeeriiieeeeevineeeeeseneeeaens 75|
FIGURE 4-9: THE DATA TYPESCLAMPINGRANGES AND CLAMPINGDIRECTIONccccoeveviviiiiiiieeeieeeeeeeeeeeennnes 75
FIGURE 4-10: COORDINATE SYSTEM DEFINITIONS FORCLAMPING DEVICES.......ccccvvtiiieeiiiiieeeeeiie e eeeanineees 76|
[FIGURE 4-11: THE DATA TYPESSENSINGINFO AND FORCE . voovooo oo 71|...
[FIGURE 4-12: MODEL ELEMENTS OF THEPACKAGE “FIXTUREMODULE” oo, 79|.
FIGURE 4-13: THE DATA TYPE CLAMPWWORKSPACEcctttuiieittttiieetetttineeasetsiaeesestssseasesssansasssssnnsessssnannanns 80....

FIGURE 4-15: DATA TYPES RELATED TO THEADJUSTBODYPOSITION CAPABILITY ...ccooeieeeverrvnirnrneneeeeeeeeeenss 82
[FIGURE 4-16: RELEVANT DATA TYPES FOR THECAPABILITY SENSEBODYPOSITION. ..o, 83
[FIGURE 4-17:DATA TYPESRELATED TO THE CAPABILITY PROVIDESROLE ..o 84
'FIGURE 4-18: OVERVIEW OF THE PACKAGE “TRANSPORTCOMPONENT oo Bﬂ
[FIGURE 4-19: THE DATA TYPESDOMAINTYPE AND GEOMETRYTYPE. ..o 87|.
[FIGURE 4-20: INSTANTIATION EXAMPLE OF A SLOT ON A TRANSPORTCOMPONENT. ..o, 88
[FIGURE 4-21; EXAMPLE INSTANTIATION OF SLOT WITH CLOCKING oo 89...

FIGURE 4-22: WORKSPACEDEFINITIONS FORSLOTS ONCONTINUOUS TRANSPORTCOMPONENTS(A) AND

DISCRETETRANSPORTCOMPONENTS(B) trvvttvtrreerrerreeaeeeessesissssasssnssssssssssssseererreeeeeeeeaeessnsannmnnssnnsnsm 91....
'FIGURE 4-23: CLASS DIAGRAM OF THE PACKAGE "RECONFIGURATION' oo 92].
FIGURE 4-24: ILLUSTRATION OF CONTACT POINTS ..cottuiieiiiitiiseeeeiiis e e e eetis e e e s eai s e e eeai s e e s entan s e e sentnnaeeeessnns 93l....
FIGURE 4-25: DATA TYPES TODEFINE THEREQUIREMENTS FOR THEFORCE ANDPOSITION FEEDBACK 93
FIGURE 4-26: THE DATA TYPE FORCEOVERTIMEciiitiieeiiii e e st s e et et e e e e et e e e eetas e e e eetaasaeeeeaannaeeeees a5
[FIGURE 4-27: ILLUSTRATION OF ADYNAMIC FORCEPROFILE .vovovovooo oo a5]...
[FIGURE 5-1; RECONFIGURATIONMETHODOLOGY OVERVIEW oo 9.

FIGURE 5-2: INTERACTIONSBETWEEN THESOFTWARE PROCESSES FOR THEIXTURE MODULES, THE

TRANSPORTCOMPONENTS AND THEFIXTURE COORDINATOR ...cvvvvitieetetiiiieeseetinessentineesesiineeseenanns 101
FIGURE 5-3: FLOWCHART FOR THECAPABILITY GENERATIONON MODULE LEVEL......ccvvvvvuieeieeiiiieeeeeninnnnn, 104
FIGURE 5-4: EXAMPLE FOR THEGENERATION OF LEAF DEVICE OBJIECTS.....ccvvttutiiiieieeeeeeeeeeeersinrinnneaeeens 105
FIGURE 5-5: EXAMPLE FOR THEGENERATION OFCOMPOSITEDEVICE OBJECTS.....uuiiveiiiiieeeeeiniieeeeesnineeaees 106
[FIGURE 5-6: EXAMPLE FOR THEINSTANTIATION OF THE FIXTURE MODULE CAPABILITIES »oovooooooooooo 103
[FIGURE 5-7: FLOWCHART OF THECAPABILITY RECOGNITION ONFIXTURE LEVEL -ovoovoooooooooooooon, 10

FIGURE 5-8: OBJECTGENERATION FOR A) CONTINUOUS AND B.) DISCRETETRANSPORTCOMPONENTS....... 109

FIGURE 5-9: EXAMPLE INSTANTIATION AFTER LINKING ONE FIXTURE MODULE WITH A SLOTucvvviieniiinnnen. 111

FIGURE 5-10: DECISION-MAKING PROCESSOVERVIEW.t iteeeeeieieieiitiiiiiaaaeeeeeaeaeeeeeeantennnnaaaeeeaeaeeeeensnnes 114..

FIGURE5-11: FLOWCHART OF THEMODULE ASSIGNMENTSEQUENCE— PART I: FINDING POTENTIAL

(@Y N][1 = 116
FIGURE5-12:ILLUSTRATIVE EXAMPLE FOR THECALCULATION OF THE PROJECTEDBODY POSITION............ 116
[FIGURE 5-13: STEPS TORETRIEVE THEPROJECTEDBODY POSITION oo, 11

FIGURE 5-19: DECISION-MAKING SEQUENCE FOR THEREORDERING OF THERECONFIGURATION COMMANDS 126

-X -

FIGURE 5-20; [LLUSTRATION FOR THECOLLISION DETECTIONuvuutrrtrrrereeererreeseeaeeaesssssnssnsssnnssnssssseseeeees 127
FIGURE5-21;: EXAMPLE - THE LISTSLy AND Loyt AFTER THEFIRSTITERATION......cccoiii i 128
[FIGURE 5-22: EXAMPLE - THE LISTS Lin AND Loyt AFTER THESECONDITERATION ..vvviiiviiiiieeceeiic e eeeinane 128
[FIGURE 5-23: THE TWO PHASES OF THECOMMAND EXECUTION SEQUENCE.......ciittieiiieeeeeeeeee e 129
[FIGURE 6-1: CLASS DIAGRAM OF THE DCP SMODEL (ADOPTED FROM[166])....cceeiiuriieeeeeiiiiiiieeeessiiieeeeans 133
[FIGURE 6-2: DDS COMMUNICATION MODEL WITH QUALITY -OF-SERVICEuuiiiieieeeeeeeeeeiiiiiie e e e e 13
[FIGURE 6-3: TOPIC STRUCTURE OF THEPUBLISH/SUBSCRIBE COMMUNICATION ARCHITECTURE 13
[FIGURE 6-4: INTERACTIONS BETWEEN TRANSPORTCOMPONENTS ANDFIXTURE MODULES. oo, 13
[FIGURE6-5. QOS SETTINGS FOR THEDISTRIBUTION OF THEMODULE CAPABILITY DESCRIPTIONS............... 14
FIGURE 6-6: EXAMPLE FOR THEQOS SETTINGSDURING THE CLAMPING SEQUENCE........ccuuvvrirrrrnreeeereeeens 148
[FIGURE6-7: QOS SETTINGS FOR THELIMITATION OF RECEIVED DATA SAMPLES......ciiiiieieiiieeeeeiiiiiiiae e 149
FIGURE 6-8: MODEL EXTENSION OF THECAPABILITIES WITH PUBLISHER AND SUBSCRIBEROBJECTS........... 150
FIGURE 6-9: EXAMPLE FOR THEINSTANTIATION OF THE PUBLISHER/SUBSCRIBEROBJECTS......uvvvrrrrereeeeens 151

FIGURE 6-10: PUBLISHER/SUBSCRIBERCLASSES FOR THECOMMUNICATION OF THE MODULE CAPABILITY

-Xi -

... 153
FIGURE 6-12: METHOD INTERFACES FOR THEFIXTURE MODULE CAPABILITY CLASSES......cccviiiiiriiiineeeennns 154
FIGURE 6-13: METHOD INTERFACES FOR THEDEVICE CAPABILITY CLASSES......uiiiiiiiiiiieeeeeiiiieeeesineeeeenenns 154
FIGURE 6-14: METHOD INTERFACES FOR THHDEVICE CLASSES........ccevttttitiiiieieeeeeeeeeeeeseisttnnseneeeaesaseeees 155
FIGURE 6-15:LIBRARY INTERFACEDEFINITIONS.........citttuttttiieieieeeeeeeeeeeeeststannaeaeaeeesesessssstarnnaeaaaeees 154...
[FIGURE 6-16: EXAMPLE OBJECTMODEL OF AFIXTURE MODULE. ..o 157
FIGURE 6-17: UML SEQUENCEDIAGRAM FOR THEFORCEFEEDBACK IN THE MODULE PROGRAM 15
[FIGURE 6-18; UML SEQUENCEDIAGRAM FOR THE FORCEADJUSTMENT IN THEMODULE PROGRAM........... 15
FIGURE 6-19: EXAMPLE OBJECTMODEL IN THE FIXTURE COORDINATORccvttuiiiriiiieeereeiinsesersinsaseannnnns 159
FIGURE 6-20: UML SEQUENCEDIAGRAM FOR THE CAPABILITY EXECUTION IN THE FIXTURE COORDINATOR160
FIGURE 7-1: PRELIMINARY CONCEPTDRAWINGS FOR THEPROTOTYPE.......cccvvttttiiieieieeeeeeeeeeeersrnniaaaeeeenns 163
FIGURE 7-2: DESIGN FOR ATRANSPORTCOMPONENT WITH ONECARRIERcuuiiiieiiiiieeeeeiiiieeeeennieeeeeannnnns 165
FIGURE 7-3: DESIGN FOR THETRANSPORTCOMPONENT WITH TWOCARRIERS.......cccuuiieieiiiieeeeeinieeeeennnnnns 1686
[FIGURE 7-4: LINEAR ACTUATOR WITH MOUNTED FORCESENSOR v+ v oo oo 16.§
[FIGURE 7-5: BLOCK DIAGRAM FOR THE CONTROL HARDWARE COMPONENTS. ..o 16
FIGURE 7-6: OVERVIEW ON THE SOFTWARE PROCESSES FOR THPROTOTYPE.......cvtuuiiiieiiiiieeeeeinneeaeesnnnnns 169
FIGURE 7-7: DEFINITIONS OF THELOCAL COORDINATE SYSTEMS FOR THEFIXTURE MODULES.................... 171
FIGURE 7-8: BLOCK DIAGRAM FOR THE FORCECONTROL ALGORITHM.......ccvvvuruiiieieieeeeeeeeeeerrrrnnnaanaeaens 173
FIGURE 7-9: SCREENSHOT OF THEFIXTURE MODULE PROGRAM DURING ITSEXECUTIONcuveeiiiiineens 176
FIGURE 7-10: SCREENSHOT OF THEMAIN SCREEN OF THEGUI.......iiiiiiiiiii e 178
FIGURE 7-11: THE GUI DIALOG TO LINK FIXTURE MODULES WITHSLOTSciiiviiieeeeeiiiieeeeeenineeeeenineeeeann 179

FIGURE 7-12: TESTSETUP FOR THEFIRSTEXPERIMENTiiiiiitittitieeeeeeeeeeeeeeeeeesaesssssssnnnssnnnnnnnssnneeeeeees 181.

FIGURE 7-13: FORCEPROFILES FOR(A) CONTACT POINT 1 AND (B) CONTACT POINT 2.....cccccevvvrrrnrnneneeeeen, 184
[FIGURE 7-14: CALCULATING MOTORCOUNTS FOR THERAIL MOTOR (BLUE) AND THE ACTUATOR (RED)...... 187
[FIGURE 7-15: THE TIP OF THELINEAR ACTUATOR AFTER THERECONFIGURATIONSEQUENCE............ueun.... 189
[FIGURE 7-16: COMPARISON OFACTUAL FORCE VS TARGET FORCE FORFIXTURE MODULE 1 190
[FIGURE 7-17: DETAILED COMPARISON OFFORCE ADAPTATION FOR FIXTURE MODULE Lo, 191
[FIGURE 7-18: PHOTOGRAPHS ANDDIMENSIONS FOR(A) WORKPIECEA (B) WORKPIECEBooo... 19
[FIGURE 7-19: TESTSETUP FOR THESECOND EXPERIMENT oo 193.
[FIGURE 7-20: CONTACT POINTS FOR(A) WORKPIECEA AND (B) WORKPIECEB ..o oo 19
FIGURE 7-21: CLAMPING OF WORKPIECEBcctiiiiiieiiiiieisiiieessieeessiieeesteeeesnseeessnseneesssenessnsneesnssensanns 199.

- Xil -

List of Tables

TABLE 3-1: ASSESSMENT ORVIIDDLEWARE TECHNOLOGIES. .. .uuitittiinieeteriiieesesiinieesestinseesesssnsesssssnnnaesenes 53...
TABLE 5-1; ALLOWED CAPABILITY CLASSES FOR THEDEVICE TYPES ..o 10
[TABLE 5-2: RULES FOR THEGENERATION OF THECAPABILITIES FOR FIXTURE MODULES. .. v 10
[TABLE 5-3: EXAMPLE CALCULATION OF THE FITNESS VALUE FORCANDIDATE 1A 120
TABLE 5-4: ORDERING OF THECANDIDATE LIST FOR THEILLUSTRATIVE EXAMPLE wovoovoooooosooooononn: 121

TABLE 5-5: [LLUSTRATION OF THEORDERING OF THECANDIDATE LIST FORRAIL-BASED TRANSPORT

(000 1Y [=T0] =1 S 122
TABLE 5-6: FINAL ASSIGNMENT OFFIXTURE MODULES WITHCONTACT POINTSciviiiiiiicieei e, 122

TABLE 6-1: RELATIONS BETWEENTOPICS CAPABILITIES AND PUBLISHER/SUBSCRIBERS IN THEFIXTURE

MODULES AND THEFIXTURE COORDINATOR v vovoo oo .’Lﬂ .
[TABLE 7-1: SPECIFICATION SUMMARY FOR THE LINEAR ACTUATOR. ..o 16
TABLE 7-2: SPECIFICATION OF THEKISTLER FORCESENSORcvvuuiiiiiiiiiieeietiiie e e eeiiiis e e sesaan s e seasnn e e sesnnnns 167.
TABLE 7-3: UTILISED THIRD-PARTY SOFTWARELIBRARIESuuuiiiiiiiiiieieiiineeseeiiinesseetninssesssssnnsessasnnnsanes 17Q.
TABLE 7-4: EXPERIMENT PROCEDURE ANDEXPECTEDBEHAVIOURccvtttiiiiiieieeeeeeeeeeeeveiiiinaeseeeeeaeseeens 186
TABLE 7-5: EXPERIMENT PROCEDURE ANDEXPECTEDBEHAVIOURccttttiiiieieiieeeeeeeeeeeveiiiiaaeseeeeeaeaeeens 197
TABLE 7-6: PREDICTEDMOTORCOUNTS FORWORKPIECESA AND Boovviiiiiiiii e, 197

- Xiii -

List of Appendices

Appendix A: Listings of Module Configuration Files in XML-Format

Appendix B: Datatype Definitions in IDL-format

Appendix C: Source Code for the Device Libraries used in the Prototype Application
Appendix D: Diagrams for the Force Profiles Followed by the Fixture Modules during the

Tests

- Xiv -

Symbology

Symbol

Name

Description

Unified Modelling Language (UML) U

se Case Diagrams

Actor An actor is a role outside t
system under study whig

Actor interacts with the system.

Use Case A use case defines a certs
functionality that a syster
provides to actors.

UML Class Diagrams

Class A Class A class is a formal descriptio
of a set of objects that have t
same structure, constraints g

Class A

attributes semantics.
A class defines attributes

Class A

methods encapsulate the state for
objects. Methods are defined
encapsulate the behaviour

Class A .

attributes the objects.

methods
A class can be depicted by a
of the four variations shown @
the left, depending on th
required level of detalil.

Class A Inheritance | Class B inherits from Class A

Relationship | i.e. Class B is called a chi

class of Class A. The child cla

inherits the attributes an

methods from its parent cla

- XV -

and may add more specialis

attributes and methods.

Undirected

Association

Class A and Class B a
associated with each other. T¥
means, instances of each cli
have access to one another.

The numbers specify th
multiplicity of the association
This defines how many objec
of classA, an object of class |
can be associated with (and v
versa). In the picture on the le
Class A can be associated w
many objects of Class
whereas Class B can |
associated with exactly or

object of Class A.

Directed

Association

Class A and Class B a
associated with each other. T
arrow head indicates that Cla
A has access to Class B, &
Class B has no access to Cl
A.

[Glassb |

Aggregation

An aggregation is a
association, semantical
expanded by the comment th
the participating classe
represent a whole-par

relationship (also called ‘“has-

- XVi -

a”- relationship).

Composition

A composition is a strict forn
of an aggregation, where t
existence of the parts depen

on the existence of the whole.

UML Object Diagrams

:Class A

Object

The instantiation of a class
called object. An object i
depicted as a square box w
the underlined class nam

preceded by a colon.

:Class A :Class B

Link

An instance of an association
called a link. Thus, whilg
associations are used f
relationships between classes
link exists between two object
It is depicted by a line betwee
the two objects.

UML Activity Diagrams (Flowcharts)

Initial Node

An initial node is representg
by a filled circle and marks th
entry point to an activity. It ha
outgoing edges, but n

incoming edges.

Final Node

A final node represents the e
of an activity. This means,
the final node is reached, ti
activity terminates. A final nod
can have incoming edges, [

no outgoing edges.

- XVil -

(Activity > Activity Represents a tasks to be carr

Node out
Yes Decision Is used to represent decisions
Node

Condition
Fulfilled?

- Xviii -

Introduction

1. Introduction

1.1. Background and Motivation

Manufacturing practices are significantly affected by worldwide socio-economic trends
such as high labour cost, increased quality expectations by the customers and the global
competition. As a consequence, companies are forced to manufacture a great diversity of
customised products within short time frames in order to be more competitive. In
responding to these market requirements, the current manufacturing needs are characterised
by increasing product diversity, shorter product lifecycles and higher quality requirements.
To realise these goals, the concepts of automation and reconfigurability are widely
acknowledged as the key factors in production and in the past decades a significant amount
of research has been conducted in the field of reconfigurable manufacturing systems. The
aim is to develop systems that are able to respond quickly to changing product requirements

by adapting their equipment structure.

An essential part of almost any manufacturing system is the fixturing solution used to
immobilise the workpiece during the process. Fixtures are devices to support, locate and
hold a workpiece in a desired position during the manufacturing process. As a result of the
direct contact with the workpiece, fixtures play an important role in guaranteeing the
guality of the final product in both machining and assembly processes. Potential problems
caused by a sub-optimal fixture device include deformation due to over-clamping, slippage
and workpiece lift-off as a result of under-clamping, as well as geometric and dimensional
deviations of the final product due to inaccurate positioning of the part. In addition to the
influence on the workpiece quality and process performance, fixtures are a significant cost
factor for the development of a manufacturing system. Indicatively, Bi and Zhang [1]
estimated the cost of designing and fabricating fixtures at 10-20% of the total
manufacturing system cost, while Consalter and Boehls [2] reported that fixtures and
cutting tools may represent up to 25% of the initial investment cost for flexible machining
processes. Additionally, Perremans [3] stated that fixturing may consume up to 25% of the

total process planning time. Finally, the reconfigurability of the fixturing system determines

-1-

Introduction

to a large extent the degree of flexibility of the overall manufacturing system. However,
traditional fixturing and workholding methods are oftankey bottleneck in a truly
automated and reconfigurable manufacturing environment. Designed for specific products
and lacking reactivity, they can be regarded as highly inflexible to changes in tpaoduc
process specifications. Consalter and Boehlsgl¢&]ribed this problem as a “technological

gap” separating fixtures from the advances achieved in the production systems they are a
part of. In other words, while modern production systems are increasingly automated,
fixtures are lagging behind, thereby becoming true obstacles to further automation and cost
reduction. Therefore, Bi et al. [4] concludetf flexible manufacturing and assembly

systemare to be truly flexible then the fixturing must also be flexible”.

Due to the immense impact on the manufacturing process, fixturing has attracted extensive
research effort. Arevealed by the literature review in chapter 2, a large percentage of the
research concentrates on automated fixture design, fixture verification methodologies and
optimisation technique$n addition, a large amount of research has been dedicated towards
the development of modular fixtures which can be reconfigured to accommodate a variety
of workpieces. However, in general these approaches appear to be restricted to purely
mechanical passive devices with limited or no reactive capabilities. Other approaches focus
on automated fixture reconfiguration, but these systems lack generality and are restricted to
specific hardware setups as a result of using customised software routines. In general, the
reactivity of these fixtures is limited to the reconfiguration phase while during the
manufacturing process the fixture acts like a passive system with no adaptation of the
clamping forces. To further improve the fixturing performance, a few researchers have
recently worked towards the development of so-called adaptive fixtures which can actively
control the clamping forces in response to external stimuli such as varying machining
forces. While it has been shown that these approaches can lead to increased product quality,
adaptive fixturing systems currently neglect the problem of reconfigurability. Additionally,

the increased use of sensor feedback and computerised equipment leads to new challenges
for the reconfiguration process, since the software of these systems must also be adaptable.
To summarise, there is a clear trend towards automatically reconfigurable fixtures on one

hand, and adaptive fixturing solutions on the other hand. The ultimate goal for the future is
-2

Introduction

to combine these two trends and develop fixturing systems that are both, automatically
reconfigurable and adaptive, thereby becoming a truly flexible part in modern
manufacturing systems. However, due to the increased utilisation of computerised
components and the resulting need for software programming, the development of such
systems can be described time and cost-intensive, requiring skilled personnel with
backgrounds not only in manufacturing but also in computer science. Supporting this
statement, Mohamed [5] reported that the software development cost for flexible

automation systems is typically 40% or more of the initial investment.

Apart from the mechanical fixture design phase and the physical assembly of the device, a
large amount of the development effort must be dedicated to the programming of the
system, leading to both, long lead times for the initial system development and long
reconfiguration times. This is a significant difference to the development of traditional
modular fixtures which typically consist only of passive metal blocks and therefore do not
require any software layers. The programming effort includes the development of the
software routines for the various sensor and actuator devices, but also the realisation of the
overall software architecture of the system. While the former is mostly concerned with the
programming of simple libraries for the hardware access, the latter deals with the more
complicated integration of the different software modules into a working system. This
includes the development of the reconfiguration sequence, the implementation of the force
adaptation as well as the communication between the fixture and the rest of the
manufacturing system. In current systems which rely on software routines customised to
specific fixture hardware, a large part of the programming effort has to be repeated

whenever the structure of the fixture is changed.

Figure 1-1 illustrates a typical lifecycle for the development of an automated fixture and

indicates where the research presented in this thesis aims to reduce the development effort.
The scenario outlines the main phases of the initial development of such a fixturing system
until the production phase. Additionally, a reconfiguration scenario is shown where the
structure of the existing fixture is changed to respond to new requirements. Examples for

such changes would be the addition or removal of clamps, the replacement of a sensor

-3-

Introduction

device with equipment from a different vendor or changes in the structural arrangement of

the various fixture components.

A Lead Time Time To Reconfigure
<l - <—>
< »| o <—>|
[I
@
2 Software Framework for
Q| Reconfigurable, Adaptive Fixtures
T |
3 |
87 1
° State-of-the-art |
£
[&]
()
'_
Fixture Development Fixture Operation Tt
Fixture Design / Programming
[Manufacture / of Sensor/ P rogramming of Complete Production™ Re-Programming of ~ Production
Generation of 7 Actuator | Fixturing System Software- Phase - the Fixturing Software - Phase

Clamping Schemes Modules

Figure 1-1. Schematic Representation of Potential Time Reductionsfor the Development of
Reconfigurable, Adaptive Fixtures

The red curve indicates the increase of the system readiness during the various
development phases without the utilisation of software framework whereas the blue curve
depicts the expected improvements, resulting from this research. As can be seen, the
software framework significantly reduces the programming efforts in both, the initial

development phase and potential reconfiguration scenarios, thereby shortening the lead

time and time to reconfigure.

1.2. Research Objectives

The aim of this research is to reduce the programming efforts through the development of a
software framework for the operation of reconfigurable and adaptive fixtures. The English
Oxford Dictionary defines the term ‘framework’ as “a structure composed of parts framed
together, especially designed for inclosing or supporting anything” [6]. More specifically,

in computer science a software framework provides a reusable design and code
implementations to clients in order to realise applications of particular domain [7]
Software frameworks can be distinguished from libraries by theal&al “inversion of
control”. This means, the framework dictates the overall program control flow, whereas

libraries are typically passive entities that are called by an application [8]. The reoftwa

-4 -

Introduction

framework, developed in this research study simplifies the fixture development task by

providing a flexible communication infrastructure, a data model to represent the fixture

capabilities and a reconfiguration method, applicable to a plethora of different fixture

designs. Unlike existing approaches which focus on the automation of the fixture design

procedure, the proposed framework reduces the lead times in two aspects:

The provision of a software framework will eliminate the need to program or re-
invent tasks like the automated recognition of equipment and their capabilities,
information exchange between devices and the programming of the reconfiguration
sequence.

The platform-independent definition of the library interfaces for common types of
devices used in adaptive fixtures such as force sensors, linear actuators and others
can lead to an arsenal of readydse software libraries which can be reused in

different systems.

As a consequence of this shift from programming effort to configuration effort, engineers

will be able tofocus on their core competences (e.g. force control strategies, mechanical

fixture design, simulation) rather than concentrating on programming and integration

issues. Additionally, the fixture development task and the system reconfiguration can be

realised by less skilled personnel. In the long term, the configuration of the framework can

be automated even further through the utilisation of software tools, thereby further reducing

cost, time and effort.

In order to achieve these aims, the following primary research objectives have been
identified:

To define a data model for the representation of the capabilities of reconfigurable
and adaptive fixturing systems;

To formalise a generic reconfiguration methodology that is independent of a
specific fixture design and can be applied to a wide range of different fixture

layouts;

To develop an open and flexible communication infrastructure that allows platform-

independent device access and communication between the fixturing components.

-5-

Introduction

Additionally, a number of secondary objectives have been identified
e To identify the user requirements a software framework for the operation of
reconfigurable and adaptive fixtures must satisfy;
e To review available communication infrastructure approaches and identify a
suitable technology for the adaptation to the fixturing domain;
e To experimentally prove the research results with a novel fixture device that

is both, automatically reconfigurable and adaptive

1.3. Thesis Structure Overview

The remainder of thehesis is structured as follows. Chapter 2 provides an extensive
literature review and identifies a number of knowledge gaps. Based on this, chapter 3
defines the research domain by describing the knowledge contributions reédasch and

outlines the general research approach. Chapters 4, 5 and 6 contain the detailed descriptions
of the core concepts of this research, each of them corresponding to one of the identified
knowledge contributions. The illustration and verification of the developed software

framework with an exempléry laboratory test bed is explained in chapter 7. Finally, the

conclusions and the outlook to future work are presented in chapter 8.

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=exemplary

Literature Review

2. Literature Review

2.1. Introduction

Fixtures are commonly regarded as devices to hold and immobilise a workpiece in a desired
position during the manufacturing process. As a result of this functionality, fixtures are
composed of two main parts, namely clamps and locators. The former are used to exert a
certain amount of force against the workpiece, thereby holding it firmly into position. The
latter are usually passive elements which limit the degree of freedom of the workpiece and
determine a specific position and orientation of the workpiece during the manufacturing
process. Additionally, the stability of the system can be increased by the introduction of
support elements. Like locators, these are passive elements that prevent the workpiece from
moving when the clamps are actuated. The described functional and structural
characteristics distinguish fixtures from other workholding devices, such as chucks and
vices. These devices typically consist of a number of jaws which are used to hold a
workpiece during the manufacturing process. In order to limit the scope of the research, the

concepts presented in this thesis are focused on fixtures.

As a result of the significant impact on the manufacturing process fixtures have attracted
extensive research effort over the past decades. In particular, a vast amount of work has
been focused on the development of fixture design and optimisation methodologiea. Also,
number of approaches are available on reconfigurable fixturing systems and recently few
researchers have concentrated on the development of active clamping schemes using sensor
feedback.

This chapter aims to give an overview on the recent developments in fixturing with a focus

on flexible fixturing systems. Sectipn 2.2 classifies the different fixture types and presents

relevant research works in the respective categories. Secti|on 2.3 presents existing fixture

reconfiguration methodologies and related methods from other areas in manufacturing.

Closely related to these are fixture representation concepts and data models that are used as

the basis for the various reconfiguration methods. These will be covered in section 2.4. In

-7-

Literature Review

section 2.5, relevant communication architectures and middleware technologies will be

described. Finally, sectipn 2.6 will identify the current knowledge gaps which are addressed

by this research.

2.2. Flexible Fixturing Concepts

The term “Flexible Fixturing” subsumes fixturing systems that present some form of
adaptability. This can either be the ability to be reconfigured for various workpieces or to
adjust certain parameters of their behaviour like the clamping force. As opposed to flexible
fixtures, the term “dedicated fixture” refers to systems that are designed for one particular
workpiece and have no means to reconfigure or adapt. Consequently, dedicated fixtures are
not the subject of this research work, although they are widely in use for mass production

schemes where reconfiguration and adaptability are not considered to be important.

Overviews on the concepts for flexible fixturing have been presented by Shirinzadeh et al.

[9], Lin and Du [10], and Bi and Zhang [1]. The main approaches are summatised in|Figure

1-1 and include (1) modular fixtures; (2) phase-change fixtures; (3) conformable clamps;

(4) programmable fixtures for automated reconfiguration and (5) adaptive fixtures. These
technologies are presented in the following sections with a focus on programmable fixtures

for automated reconfiguration and adaptive fixtures.

[Flexible Fixtures j

v i v

(Modular Fixtures j (Conformable Clampsj (Adaptive Fixtures j

[Phase-change Fixturesj (Programmable Fixturesj

Figure 2-1: Overview on Flexible Fixturing Technologies

2.2.1. Modular Fixtures

Modular fixturing systems consist of a number of standard elements that can be combined
in order to accommodate a certain workpiece. These elements include various forms of
clamps, locators, supports, base plates and connections. An exhaustive review of modular

fixtures can be found in [11] and a large proportion of research has concentrated on either

-8-

Literature Review

developing modular fixture equipment or automated design methodologies for this fixture

category [12-15].

Sela et al. [16] presented an adjustable modular fixturing system for the assembly of
flexible thin walled objects, such as free form metal sheets. The device uses a number of

locators and clamps, which can be manually adjusted in all three Cartesian coordinates and

locked in position on a T-slot base plate as shoyn in Figufe 2-2.

e o

Figure 2-2: Modular Fixture proposed by Sela et al. [16]
Recently, Zheng and Qian [17] addressed the problem of holding workpieces with complex
geometries by proposing a modular fixture which can be arranged in 3-D space. The system
consists of three base plates with multiple holes on which clamping and locator pins can be
mounted. One base plate is fixed and mounted horizontally, while the other two base plates

are movable.

The main advantage of a modular fixture is that standard elements can be re-used to build a
large variety of different setups. This leads to lower warehouse costs compared to dedicated
fixtures and lower maintenance costs as damaged elements can be replaced. Hoffmann has
reported that the capital cost of modular fixtures is approximately 25% of an equivalent
dedicated fixture [11]. A more detailed analysis of the cost benefits from adopting the
modular fixturing solution can be found in [18]. However, the setup of the modular

elements leads to larger tolerance stack-up [19]. Also, with the increasing complexity of the

-9-

Literature Review

processes and workpiece shapes the planning, design and construction of a modular fixture
becomes more difficult and hence time-consuming even for experienced engineers [20]
Finally, these systems are usually designed for manual assembly and are too complex to be

automatically assembled and disassembled by robots.

2.2.2. Phase-change Fixtures

Phase-change fixtures exploit the ability of certain materials to change phase from liquid to
solid and vice versa. This may be induced by temperature, electric impulses or magnetic
fields. Normally, the workpiece is immersed in a container filled with the fixturing material

in liquid form. The material solidifies in response to an external influence (catalysts or
cooling) and firmly secures the workpiece in the desired position. After the machining
process the material is again subjected to catalyst actions and changes its phase back to

liquid releasing the workpiece.

Fixtures using phase-changing materials are appropriate for irregular workpieces which are
difficult to hold [21] and have been widely used in the aerospace sector for holding turbine
blades during the milling process [22]. An example for the application of phase-change
fixtures for aerostructures has been presented by Aoyama [23] which utilises
electrorheological fluids for the clamping of aerostatic sliders, while Rong et al. [24]
exploit the phase-change behaviour of magnetorheological materials. Aoyama and
Kakinuma [25] proposed a hybrid phase-change fixture using a low melting point alloy
enclosed in a chamber with multiple movable pins to hold thin-walled parts. A heating
source triggers the melting of the alloy which results in the repositioning of the locator
pins. This system combines phase-change fixtures and locator elements found in modular
fixtures. Further examples on phase-change fixtures can be found in [26, 27]. A
comprehensive overview on phase-change fixtures has been published by Lee and Sarma
[28].

The advantage of this technique is that there is no limitation to the shape or geometry of the
workpiece as long as there is sufficient phase-change material to encapsulate it [29].
However, no sufficient solutions have been found to precisely position the workpiece in the

-10 -

Literature Review

liquid material. Hence, these types of fixtures provide support but no localisation of the part

and an additional mechanism must be used to align the workpiece [21].

2.2.3. Conformable Fixtures

Conformabile fixtures consist of a number of independently adjustable clamping and locator
elements that are arranged in an an@yonform to the shape of the workpiece. This
results in a more distributed load profile and allows the clamping of parts with complex

geometries [30].

Englert and Wright [31] have developed a conformable clamping system for turbine blades.
It consists of a hinged octagonal frame with a number of pneumatically controlled plungers.
When the plungers have conformed to the shape of the workpiece they are locked with
socket screws. Cutkosky et al. [32] have enhanced this approach with plungers that can be
actively controlled with a computer programmf.-Hababeih et al. [33] introduced a
hybrid system for the clamping of complex aerospace components which consists of a
conformable pin-array and a low-melt alloy whose phase-changing behaviour is exploited

to immobilise the pins.

The main disadvantage of conformable fixtures is the limitation of the accessibility of the
workpiece due to the large amount of pins. Secondly, reconfiguration times can be
considerably longer in the case of passive pins that must be manually adjusted and often a
master template workpiece is required to reconfigure the system [32].

2.2.4. Programmable Fixtures

The approaches described in the previous sect@ngenerally based on passive devices
with limited or no intelligence in the form of sensor feedback, programmability and
automation. Consequently, the reconfiguration process of these systems involves manual
adjustments which result in longer reconfiguration times. Programmable fixtures aim to
overcome these disadvantages by incorporating sensor-feedback and NC-controlled

actuators to automate the reconfiguration process of the fixture. Since this research study

-11 -

Literature Review

addresses automated fixture reconfiguration, the research results on programmable fixtures

are particularly relevant.

As an early example, Tuffentsammer [34] presented two alternative solutions for an
automated machining fixture that can be controlled with a CNC interface. The first solution

is called the “double revolver” and arranges locators, clamps and supports on servo-

controlled turntables as shown on the left in Figurg 2-3. The system can be configured for

different clamping positions by combining the rotations of the primary and secondary

revolvers. In this way, various workpieces of the same product family can be held. The
clamping operation is divided into several steps. First, the locators are moved to their pre-
programmed positions. When the workpiece is loaded, repositionable hydraulic cylinders
which are located over the part provide pre-determined, small clamping forces to hold it in
place. After, the supporting elements are set against the workpiece, the full operating

hydraulic clamping force is applied to the workpiece and machining can commence.

- ——hydraulic
clamping cylinder

///} -clamping element ‘\r

1—supporting
element

— position
determination
element

4 AN
\ 7 | clamping element
support element

position determination elerment

Figure 2-3: Double Revolver and Trandational M ovement System ([34])

The second system developed by Tuffammer is the “translational movement system”

illustrated on the right 1n Figure 2-3. It incorporates repositionable toe clamps and supports

on one or two translational axes to secure the part. As can be seen in the picture the system
uses a sliding mechanism to adjust the position of the clamps and to be able to hold a wide
spectrum of workpieces. Both systems are designed to be integrated in horizontal milling

centres and are only targeted to hold bulky parts like castings. Although, both systems

-12 -

Literature Review

appear to have a certain level of mechanical reconfigurability, it relies on dedicated
software routines customised to the specific hardware setups. In other words, if these
systems are subject to structural changes like the integration of an additional clamp, the
software has to be reprogrammed.

Inspired by Tuffentsammer’s double revolver, Lin and Du [35] presented a modular fixture
consisting of two types of modules. The first module contains two fingers which can be
repositioned with a double revolver mechanism to locate a workpiece precisely. The second
module consists of two pneumatic cylinders and is used to clamp the workpiece. Although,
these modules can be combined in various ways to secure different shapes of workpieces,
no considerations have been mentioned on how this would affect the software architecture

of the system. Based on this approach, the same authors proposed an automated flexible

fixture for planar objects which can be segn in Figure¢ 2-4 [36].

Finger « - - -, .~ --% Workpiece
\.\}\\ /,/:_ ; J
Module l¢--- .
(Fixed) “---% Module 2
Movable

Figure 2-4: Three-fingered Programmable and Reconfigurable Fixture Concept by Du and Lin [36]

The system also consists of two CNC modules and is based on the idea of the minimum
number of fingers needed to immobilize a planar workpiece. The locating module is fixed
on the base plate and incorporates two fingers mounted on the module according to the
double revolver principle. The second module is movable and has only one finger. It is
moved towards the workpiece to provide the clamping force. Due to the simple design, it

can only hold simple, planar objects and its structure is limited to exactly two modules.

Youcef-Toumi and Buitrago [37] presented a robot-operated modular adaptable fixture.

Each module consists of a conformable surface element, a control unit and a locking

interface. The conformable surface incorporates a number of pins that can conform to the

surface of the workpiece. Therefore, this approach combines the advantages of both
-13 -

Literature Review

modular fixturing and conformable clamps. The control unit includes the necessary sensors
and actuators and the locking interface provides a means of connecting modules with each
other or with the base plate. Another robot-operated flexible fixture approach was
introduced by Chan et. al. [38, 39]. The system incorporates sensor-integrated horizontal
and vertical locators, sensor-integrated V-Blocks, sensor-integrated horizontal and vertical
clamps and a hole-type base plate. The sensing scheme is based on Y-guide proximity
sensors which can verify if a component is mounted properly in a hole or not. Although, the
system is programmable it is mentioned that dedicated software routines are needed for the
fixturing process that are customised to the number of elements currently incorporated into
the system. Secondly, robot assembly of fixtures has a number of disadvantages like
tolerance stack-up. Additionally, the accuracy of the fixture is limited by the accuracy the
robot can achieve.

Another automated fixture device was built by Kurz et al. [40, 41] consisting of two
hydraulic cylinders, which are connected to the base by revolute joints. The pistons of the
two cylinders are also connected with a revolute joint, achieving an accurate 2DOF
positioning mechanism. Hence, the device can be incorporated in a fixture for positioning
of a workpiece. However, it is not a complete fixturing solution as it lacks clamps for
instance. Furthermore, Lu [42] described an automated fixturing system for two-
dimensional clamping which has a similar structure as a vice. However, its jaws are fitted
with rotatable half-cylinders whose flat surfaces act as clamps. Sensors are used to feed
back the position of these clamping surfaces and the vice opening. Additionally, an
algorithm is proposed to determine the location of the workpiece in the fixture. The

obtained data is then fed back to the NC machine control.

Finally, Chan and Lin [43] developed a CNC controlled modular fixture according to the

all-of-a-kind principle. The system comprises only one type of standard multi-finger CNC

modules which can provide locating, clamping and supporting functions. Each module

consists of four fingers controlled by one motor including two transmission and clutch

systems. To clamp a workpiece several of these modules are combined on the platform. The

finger positions can be adjusted to hold a variety of similar workpieces. This approach
-14 -

Literature Review

simplifies the control problem of the system as all modules are of the same type. Also, in
terms of flexibility the modules can be arranged in various ways and therefore secure a
large number of different workpieces. However, the impact of the reconfiguration on the
control software of this fixture has not been taken into consideration and the configuration
of these modules cannot be achieved automatically [36]. It is assumed, that this system

requires the reprogramming of the control software whenever the fixture setup changes.

2.2.5. Adaptive Fixtures

Adaptive fixtures can be characterised as a comparatively recent development in fixturing
and consequently only little research is available on this subject. Similar to the previous
category, adaptive fixtures utilise sensor feedback and automation to achieve a certain level
of “intelligence” for the fixturing system. However, while programmable fixtures
concentrate on reconfigurability, adaptive fixtures aim to improve the fixturing process by
actively changing the clamping force in response to external influences during the
manufacturing process. In conventional fixtures there is a major discrepancy between
constant fixturing forces and dynamic machining forces acting on the workpiece throughout
the duration of the process. Most research approaches regard clamping forces to be constant
throughout the machining process and hence, clamping forces must restrain the maximum
external force that is predicted for the machining process. This leads to over-clamping for
the situations when the external load is lower than the maximum. As shown by Tao et al.
[44, 45], clamping loads and workpiece deformation can drastically be reduced if the
clamping forces are dynamically adapted during the machining process.

As one of the pioneers in adaptive fixturing, Gupta et al. [46] reported on the integration of
sensing capabilities in a fixturing system for drilling operations. The device consists of
standard vice with two V-blocks, each of them equipped with a dynamometer. With this
setup, the system was capable of monitoring the clamping forces, the thrust force and the
torque acting on the workpiece during the drilling procedure. Based on the collected data,
Gupta et al. was able to define safe and unsafe clamping force regions, depending on the
spindle speed and feed rate. However, the system was not able to change the clamping

forces during the manufacturing process.

-15 -

Literature Review

Arguably, the most promising approach has been proposed by Nee et al. [47]. The system
consists of six locators which are equipped with piezo-electric force sensors and two
clamps. The clamps consist of a DC Servo motor which is coupled withaadicteator to
achieve the clamping force. The position and speed of the servo motor are controlled by a
servo driver. The servo creates torque to the actuator which transforms it into a linear
movement. The actuator operates with a high reduction worm gear that has a self-locking
capability in order to maintain its position and the force. At the end of the actuator a force
sensor is embedded to feed back the force that is imparted to the workpiece. For
maintaining high accuracy of the motion control, an encoder is attached to the servo motor

to feed back the current position and speed to the control unit, forming a local closed-loop.

An overview of the dynamic clamp can be segn in Figure 2-5.

Locators with sensors N
— . B
e
e

Linear actuator - Force
| sensor

Workpiece

Coupling

b Servo 3 =
- motor Charge
¢ amplifier

Encoder

Figure 2-5: Schematics of the Dynamic Clamp ([48])

The whole system is controlled by customised software routines running on a PC. The
signals from the sensors go through a charge amplifier and an antdedjgéal converter

(ADC) before entering the PC. The control programme processes the input signals from the
sensors according to the clamping force control strategy and sends output signals to the
servo controller to adapt the clamping force. Mannan and Sollie [49] have shown that the
electro-mechanical clamp is able to adapt the clamping force with an accuracy dfl +/- 1
over a range of 700N with a response time of 200ms. However, in the experiments only

steps of +10 Newtons have been reported.

-16 -

Literature Review

Details of the control strategy are described in [50]. It is basebearoncept of “control-

clamps” and on an optimisation model aiming at the reduction of the clamping and reaction
forces in the system. A control clampalocator is defined as the clamp with the greatest
impact on this locator. In the proposed system, each locator must be assigned with a control
clamp. When the reaction forces on a locator fall under a specified lower bound value, the
clamping force of its control clamp is increased. Likewise, if the reaction forces of a locator
exceed a certain upper threshold, the software commands the related control clamp to
minimize its clamping force. A prototype of the system has been successfully tested for
slot-milling operation of a simple-shaped workpiece and for a finish pocketing operation on
a box-shaped, thin-walled workpiece. The results show that dynamic force adaptation
improves the workpiece stability and that clamping forces can be decreased significantly
compared to a conventional system with constant forces. This leads to less deformation and
higher accuracy of the finished workpiece. Workpiece deformation could be decreased by
20% in one experiment [50]. A variation of the above system has been reported in [51]
which uses hydraulic instead of electro-mechanical actuators. Inspired by the results of the
aforementioned system, Rashid and Nicolescu [52] have recently applied the approach of
adaptive fixturing to actively dampen vibration in a palletised workholding device. The
proposed system consists of a rectangular frame with integrated force sensors and piezo-

electric actuators, fast enough to cawmact vibration.

2.2.6. Discussion

The review of the available literature on fixturing shows an ongoing trend towards
automation. This is particularly reflected by the recent developments in the fields of
programmable fixtures and adaptive fixtures. Howevege riviewed programmable
fixtures are based on dedicated software routines, customised to specific hardware setups.
Hence these systems offer the capability of mechanical reconfiguration, but the adaptation
of the underlying software has been widely neglected. This becomes even more important
with the advent of adaptive fixtures. The presented examples for adaptive fixtures do not
provide the ability to be reconfigured for a variety of workpieces. Hence, the ultimate
objective in the future is to combine the benefits of programmable and adaptive fixtures.
However, it appears that the ever-growing integration of sensor-feedback and automated

=17 -

Literature Review

actuator units requires a greater level of flexibility of the fixturing software than current

systems have.

2.3. Reconfiguration Methodologies

While the previous section has focused on available mechanical concepts used for flexible
fixturing, this part aims at exploring the available literature on methods for the fixture
reconfiguration. Additionally, reconfiguration approaches from other areas in

manufacturing are reviewed.

2.3.1. Fixture Reconfiguration Methods

A large percentile of the methodologies addressing the reconfigurability of fixturing
systems target the design and planning process of modular fixturing systems. Traditionally,
this has been a task relying on the experience and intuition of skilled engineers. To
automate this time-consuming and hence cost-intensive process, researchers have applied a
number of techniques from computer science and artificial intelligence. The research
activities can be categoris&u (1) Fixture Design and Verification Methodologies any (2

Fixture Optimisation Methodologies.

2.3.1.1. Fixture Design and Verification Methodologies

Fixture design methodologies aim to automate the decisions made in the fixture
development process. This involves activities like describing the requirements and the
constraints, the selection of appropriate fixture elements and the positioning of the
clamping points. Fixture verification is closely related to this and tries to evaluate a certain
fixture configuration according to the design criteria, such as stability, workpiece
deformation and the minimisation of the clamping forces. The information from the

verification can be fed back to the system in order to generate a better design.

Expert systems have commonly been used which expect the description of the workpiece
and the process as inputs and generate a fixture design by interpreting a set of rules. Nnaji
and Lyu [53] presented such a system for the automatic layout of flexible fixture models on

a CAD/CAM system. The proposed rules are based on the 3-2-1 locating scheme which is

commonly used for prismatic workpieces. According to this, three locators are placed
-18 -

Literature Review

against the largest planar surface, two locators are placed on the surface perpendicular to
the previous plane which has the longest edge and the remaining locator is placed on a
mutually orthogonal plane [21]. The methodology is implemented in the logic-based
programming language PROLOG and was demonstrated for the surface milling of
polyhedral workpieces. As part of the IDEFIX project Perremans [3] developed an expert
system for the design and planning of modular fixtures for the machining of prismatic
workpieces. The inputs are the faces on which positioning, clamping and supporting should
be done and the system automatically generates the necessary assembly of modular
fixturing elements. Gaoliang et al. [54] have proposed a hybrid method using rule-base
reasoning and fuzzy logic to capture the geometric constraints of modular fixtures in a

virtual reality system to automate fixture design.

However, there are some disadvantages in the use of expert systems. Firstly, the complexity
of the design process makes it difficult to formulate rules. Secondly, even experienced
experts struggle to explain their knowledge in simple rules. To overcome the disadvantages
of rule-based systems, some researchers have applied case-based reasoning (CBR)
techniques. In CBR knowledge is stored as experience in the form of cases. When the
system is confronted with a new case it retrieves the most similar case from its case base
and modifies it to meet the new requirements, thereby extending the data base by a new
case. Sun and Chen [55] proposed such a system. In order to find the similar cases the
auhors introduced an index method for the features of a fixture. However, the proposed
index considers only workpiece geometry and is quite superficial. A similar system was
proposed by Li et. al. [56] which is based on a hierarchical decomposition of the fixture
structure into layers of function units, components and elements. It is mentioned that this
layered approach facilitates fixture reconfiguration, because the components and elements
can be replaced in response to changing requirements. When confronted with a new case
the system retrieves the most similar case from its knowledge base by calculating the
“degree of similarity”. However, to accomplish this calculation, the system relies on weigh
factors whose values appear to be rather arbitrary. Recently, the same research group has

enhanced this concept for a welding fixture design system [57].

-19 -

Literature Review

Finally, a number of geometry-oriented approaches have been published where design
information is mainly extracted from CAD systems. Based on the shape of the workpiece,
appropriate clamping, support and locating elements are determined. Trappey et al.
proposed a method that projected the geometry of a workpiece to find a feasible fixture
configuration based on the 3-2-1 locating principle [58]. With a focus on design
verification, Kang et al. [59, 60] presented a computer-aided fixture design verification
(CAFDV) framework which is based on geometric and kinematic models to confirm
locating accuracy, fixturing stability and the determination of the minimum clamping force.
Wu et. al. [61, 62] presented a method addressing the geometric analysis and verification
for the planning of modular fixturing systems. It is capable of determining the fixturing
surfaces and locating points to provide suitable geometric constraints. The approach has

beenapplied to various types of workpiece in 2D and 3D.

2.3.1.2. Fixture Optimisation Methodologies

The high complexity of fixture design implies that in most cases there is a large number of
possible solutions. Optimization techniques are used to identify the best solution in respect
to a particular design objective. Hence, these systems require an objective function and

search for the best solution by varying certain input parameters.

King and Hutter [63] proposed a theoretical approach that utilised kinematic, force and
robotic grasp analysis to generate optimal fixturing location points that secure the
workpieces ideally with respect to maximum stiffness, resistance to slip and stability.
Menassa and DeVries [64] incorporated the Finite Element Method (FEM) to analyse the
expected deflections of the workpiece. On this basis their system determined the ideal
positions of the fixture supports in order to minimise workpiece deflection. The problem of
these approaches is that they require complex and time-consuming computations. This is

why these models were restricted to simple prismatic workpieces [65].

A number of researchers applied evolutionary programming techniques such as genetic
algorithms (GA) and artificial neural networks to find the optimal fixture configuration for

a set of requirements. Genetic algorithms are based oniDarSurvival-of-the-fittest

-20 -

Literature Review

theory, which states that only the most suited individuals in a population are likely to
survive and generate offsprings. A genetic algorithm emulates the evolution theory by
changing parameters in the system and measuring the “fitness” of the resulting system
against a “fitness-function”. The most promising solutions are chosen to generate offsprings

and in this way the optimisation problem is solved. Wu and Chan [65] used this technique
to find the most statically stable fixture configuration from a large number of candidates.
Unlike earlier approaches this method is not limited to specific workpiece geometries and is
free from frictionless assumptions. Krishnakumar et al. [66, 67] used a similar approach to
optimise the fixture layout and clamping force intensity. Their objective function is the
minimisation of the workpiece deformation during the cutting process. Other systems based
on genetic algorithms have been developed by Vallapuzha et. al. [68], Kaya [69] and
Aoyama et al. [70].

2.3.2. Reconfiguration Methods for Manufacturing Systems

The previous section indicates that the methodologies for fixture reconfiguration are mainly
addressing the fixture design and optimisation phase. However, frameworks focussing on
the reconfiguration issues that occur during the operation of the fixture are widely missing.
The reason for this is that until recently fixtures were widely treated as passive mechanical

elements without any intelligence. At the same time, the reported examples for

reconfigurable fixtures (see sectjon 2{2.4) lack a general methodology and are restricted to

specific fixture layouts. The ongoing trend towards intelligent adaptive fixtures leads to a
demand for generic methods that focus on realising the reconfiguration during the fixture
operation. For this reason, it makes sense to review reconfiguration methods applied in
other manufacturing areas which have progressed further on the transition to fully
automated systems. In particular, there are a number of approaches available for the

automated reconfiguration of assembly systems.

A widely acknowledged concept is the holonic approach which is a distributed control
paradigm, based on autonomous and cooperative entities Chtéas’[71]. As a key
feature a holon can be part of another holon, which builds up an open-ended hierarchy,

called the “holarchy” [72]. Further details about holonic manufacturing systems can be

-21 -

Literature Review

found in [73]. Sugi and Maeda [74] presented a holonic assembly system comprising thre
manipulators, one belt-conveyor and two warehouses. The system consists of two layers, an
upper management layer which is responsible for the task planning and a lower execution
layer with holons corresponding to the assembly devices. Holons of the upper layer issue
orders to those of the lower layer, while entities on the same level negotiate with each other
who executes this task. Thus, for the upper layer it is transparent how a particular task is
accomplished and therefore the assembly sequence can be generated dynamically according
to the actual setup. Leitao and Restivo [75, 76] proposed a holonic architecture for agile
and adaptive manufacturing control, called ADACOR. The system is based on a set of
operational holons with self-organizing and learning capabilities. Additionally, a supervisor
holon is introduced which coordinates the subordinate entities and allows for global
optimisation of the process. Other holonic approaches can be found in [77-79].

Closely related to holonic approaches are agent-oriented systems. According to Ferber, an
agent is defined as a physical or virtual entity which is capable of acting autonomously in
an environment, can communicate and has its own goals which it tries to achieve [80]. A
multi-agent system is characterised by the cooperation, communication and even
competition between multiple agents. Due to the distributed nature of these systems, multi-
agent approaches can react flexibly to changes and have therefore been intfoduced
reconfigurable manufacturing systems. In fact, most of the holonic manufacturing systems
described in the previous section have been implemented as multi-agent systems. Tang and
Wong proposed a flexible assembly cell based on several reactive agents [81]. Reactive
agents do not maintain the status of their environment. They rather react to stimuli. Hence,
they are particularly effective for systems with limited memory resources. The proposed
system incorporates material-handling agents that control the conveyor line of the cell and
robot agents representing the manipulators. Additionally, a supervisory agent coordinates
the actions of the subordinate agents. This structure is also referred to as the subsumption
architecture. Each of the agents acts autonomously accorditsgton “local” goals. The

authors introduced a coordination model which allows a team of self-interested, reactive

agents to achieve a global goal by the means of exchanging messages. Similar to the

-22 -

Literature Review

holonic approaches, the system can flexibly adapt the assembly sequence when the physical

resources Change.

2.3.3. Discussion

The previous sections show that a significant amount of research is available on fixture
reconfiguration methods. However, these methods concentrate on automating fixture design
and optimisation. In some cases, the presented methodologies only apply to a small number
of fixtures, lacking generality. Generally, the presented research is focused on the design
iIssues of traditional modular fixtures composed of passive metal blocks. It appears that the
trend towards adaptive fixtures, incorporating sensor and actuator devices, requires new
methodologies to address the reconfiguration issues during the operation of the fixture on
the shop floor. Other areas in manufacturing with a higher level of automation show that
there is a number of potential approaches to achieve dynamic reconfiguration. Some
researchers have proposed holonic architectures and agent-based systems. However, these
approaches rely heavily dime-consuming negotiation algorithms. Although negotiation
between agents is an adequate method for assembly lines where events typically happen in
the ranges of secondsdoesnot appear to be the right solution for fixturing systems which
need to react much faster in order to adapt the clamping force. On the other hand, the
proposed hierarchic control methods and the delegation of commands from one layer to
another are regarded as key technologies for the development of a fixture reconfiguration

methodology.

24. Data Models and Representation Concepts

A fundamental part of any framework for a reconfigurable system is a data model which is
able to represent common aspects of the underlying systems and model the relationships
between the various entities. This section aims at reviewing existing models for both

fixturing systems and reconfigurable manufacturing systems.

2.4.1. Fixture Representation Concepts

A number of researchers have tried to conceptualise modular fixturing systems as a basis

for the previously reviewed fixture reconfiguration methodologies. Perremans [3] proposed

-23-

Literature Review

a feature-based data model which describes a number of modular fixture elements in terms
of geometry, type of contact, tolerances and other aspects. His model is based on three
feature types, namely (1) “Contact Features™; (2) “Assembly Features”; and (3) “Tightening
Features”. The first feature type represents elements that are in contact with the workpiece
such as different forms of locators. Assembly features are used to combine various types of
modular elements, while the third feature type is used to tighten an assembly of modular
elements. The author has expanded this model to a catalogue consisting of 26 contact
features types, 10 assembly features and 7 tightening features. The model showed
acceptable results for two commercially available modular fixturing systems (N&telem
and Bluc®), however the concept is limited to passive elements and is therefore
inadequate for the representation of reconfigurable, adaptive fixtures. Other feature-based
concepts have been proposed by Nee et al. [82], Shirinzadeh [83] and Jeng and.Gill [84]

The latter defines a hierarchy of fixturing elements in terms of high-level, functional

entities such as base plates, clamps, locators and supports as ghown in Higure 2-6.

Fixture Component

1

| I I
Baseplate ! [Locator Support | Clamp

I: angle — edge-locator — fixed — side
horizontal — edge-support — adjustable — overhead
L— down-support

Figure 2-6: Hierarchical Classification of Fixture Components [84]

For each component type a data structure is proposed that contains some qualitative
attributes of the functional properties, geometrical constraints and the constituent
components. The feature-based approach of Subrahmanyam [85, 86] also distinguishes
clamping, locating and support features, however these definitions refer to the workpiece

surfaces rather than the fixturing system itself.

The hierarchic modelling approach can also be found in Li et al. [56] who have

decomposed the fixturing structure into several functional units such as top-clamping, side-

clamping or bottom locating. Each functional unit is further decomposed of so-called

functional components which are in contact with the workpiece and assistant components.
-24 -

Literature Review

The bottom of this tree-like structure consists of function elements and assistant elements
which are the basic building blocks for the component layer. This layered hierarchy is the
key for the reconfigurability of the system, because the entities in each layer can be
replaced in response to different requirements without affecting other layers. Similarly,

Wang and Rong [57] utilised multi-level data abstraction to generate a hierarchic model of
the fixture structure. In contrast to the previously mentioned approaches this system
enhances the hierarchic structuring idea with an object-oriented model to represent the
relationships between the various entities in the sy.@re 2-7 illustrates an example

for the capturing of fixture design information, used in this system.

Fixture solution
v v
Workpicee geometric features Fixturing plan

// Waorld eoordinate system
F

v oy

//"J Locating Clamping e Clamping Py
| Function: side clumping
= Locating Position: 465 (6N -327. 7889 192 2557
Function: vide lacating Fhiveetion: -1 e -t Q000 -6, 0000
Pogition: 463 0000, <308 2468, 189 3216 Facey: NamefSideClampingPaind_onFace)

- = Feature_[D{505]
Direction: 10000 -0.0000 00000

Fuceg: NanefSideLocatingPointl)_onFace! » Clamping P,
Feature [DfS01]

—m= Locating P, —

Figure 2-7: Examplefor Capturing Fixture Design Information as Objects [57]

An advantage of using objects is that they can be easily described with computer-readable,
platform-independent languages such as XML. In this context, Liquing and rK8ifa
utilised XML and object-orientation in a case-based reasoning system for automated fixture
design of modular fixtures. The description of the cases consists of the part representation,
the fixture design representation and the setup representation which links the design
information with various workpieces. In this conceptualisation, a modular fixture is a

subclass of a fixture which is composed of multiple fixture elements, namely clamps,

locators, supports, base plates|and accessory equipment. The implementation of this system

as a client-server application using Java Remote Method Invocation (RMI) has been

described in [88].
-25 -

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=accessory

Literature Review

Recently, Hunter et al. [89, 90] presented a functional approach for the formalisation of
fixture design information as a part of a design methodology for modular fixtures. Object-
oriented modelling techniques are used which are represented with the Unified Modelling
Language (UML). The main entities of the model are non-functional fixture requirements
like cost and functional requirements such as clamping forces and locating points.
Additionally, the model contains design rules and so-called fixture functional elements in
terms of clamps, locators and support elements. The methodology relates the requirements
with suitable fixture functional elements which are mapped to specific commercially

available components.

2.4.2. Representation Models for Reconfigurable Manufacturing

Systems

Similar to the reconfiguration methods, the majority of the fixture representation models
appears to concentrate only on passive modular fixtures. Additionally, these models focus
on the issues of fixture design and cannot be directly applied to the operation of a
reconfigurable, adaptive fixturing system. This section aims at highlighting some related
research on other fields in manufacturing where researchers have tried to generate data

models addressing the need of automated reconfiguration.

A number of approaches have been proposed for the formalisation of the process
capabilities of equipment modules in automated assembly systems. Based on knowledge-
intensive Petri nets, Zha et al. [91] generated a fundbemaviorstructure model for the
automated design of such systems. According to Lohse et al. [92], the behaviour of a
module is an objective description of how the module reacts to stimuli and transforms
inputs to outputs. The functions are a subjective abstraction of the behaviour and express
the capabilities of a module, based on the purpose or the intention of the designer. The
structure describes the physical model of the modules with objects, attributes and relations.
Based on this, Lohse [93] has described an ontology framework which is able to capture the
capabilities and requirements of modular assembly systems. Other related research was
reported in Meijer et al. [94], Zhang et al. [95] and Prabhakar and Goel [96].

-26 -

Literature Review

Due to its flexibility, object-orientation has been widely used by a number of researchers.
Kovacs et al. [97] commented on the merits of object-oriented methods for the
reconfigurability of the control software, both during the design phase and the low-level
management of hardware changes. Schéafer and Lopez [98] proposed an object-oriented
model for the control of flexible manufacturing systems with robotic manipulators. The
model defines a number of equipment resources and their capabilities, as well as control
parameters and coordinate frames. Each resource is defined by two classes, one resource
class and corresponding control class. Further, Bruccoleri et al. [99] reported on an object-
oriented high-level control structure for the real-time error recovery in reconfigurable
assembly systems. In a related article [100], the same authors described a reconfigurable

system for robotised manufacturing cells. The underlying model for this approach is based

on an object hierarchy as illustrated in Figure 2-8.

Manufacturing cell

S-axis portal Process line
R |
Processing Input station Qutput
s Station station
Machine Conveyoar
I I& 1
Vertical milling Multi spindle Horizontal milling
machine milling machine machine

Figure 2-8: Class Diagram for the Control System of a Robotised M anufacturing Cell [100]

As a further extension of the object-oriented paradigm, a few researchers have exploited the
benefits of object-oriented design patterns in their models. The concept of design patterns
goes back to Alexander’s “The Timeless Way of Building” [101] which describes them as

generic solutions to recurring problems and therefore they allow the reuse of expertise
acquired in previous designs. Later, design patterns have been introduced to software
engineering for the reuse of generic object structures in the design of software applications

[102, 103]. Gamma et al. [104] formalised the description of patterns and published a
-27 -

Literature Review

standard catalogue of 23 design patterns that are widely considered as the standard work in
this field.

Thiry et al. [105] applied a number dsign patterns from Gamma’s catalogue to the field
of robot control. In more detaithe “Command” pattern was adopted to allow dynamic

upgrade of a system with new behaviour. An illustration of the class structure is provided in

Figure 2-9. A system, in this case a legged robot, can be attached with a variable number of

behaviours, each of them modelled as own classes. To invoke a certain behaviour, the
generic function “Do” is called on the System with the identifier of the behaviour and an
optional parameter list. The request is then delegated to “Do”-function of the corresponding

behaviour object.

. System
Behavior hd

Add (Behavior)
name .

* sys| Get (name):Behavior
. Do (name, parameters)
+ actions/primitives

Do (parameters)

7
| |

Concrete e Concrete

Client

Behavior, Behaviory

) |

Figure 2-9: Class Structure of the Polymor phic Behaviour Pattern [105]

Recently, Soundararajan and Brennan [106, h@v¢ adapted the “Proxy” design pattern

for a distributed real-time control system. The pattern proved particularly useful in
distributed systems where clients invoke server requests on a local representative who is
responsible for the information exchange and makes the rest of the application independent
from the implementation details of the server. Further examples of the use of design
patterns can be found in Pont and Banner [108] (embedded systems control), Sanz and
Zalewski [109] and Buschmann et al. [110].

2.4.3. Discussion

The presented literature shows that a number of researchers have tried to generate data
models for the representation of fixturing systems. Most of the models concentrate on

capturing the structural characteristics of a fixturing system. While this information is

-28 -

Literature Review

crucial in the mechanical design phase, these models lack the means to represent the
behavioural information of the fixture which is required during the operation of the device.
Moreover, the presented models are limited to traditional modular fixtures composed of
mechanical blocks and do not provide mechanisms to represent more intelligent modules,
used in today’s adaptive and programmable fixtures. Nonetheless, these approaches still

indicate that hierarchical modelling approaches proved useful in conceptualising a system.
In particular, a number of researchers have successfully applied object-orientation
techniques and highlighted the merits of using platform-independent standards like XML
and UML to support their models. Research effort towards the automation and dynamic
reconfiguration of systems in other manufacturing areas shows a clear trend towards the
modelling of system capabilities using object-oriented techniques. However, the existing
models do not address the specifics of the fixturing domain and must therefore be adapted
accordingly. In general, it was observed that although a lot of models are based on object-
orientation, they appear to be limited to basic inheritance relationships while not
mentioning the use of method delegation. The importance of delegation for the
reconfigurability of systems has been emphasised by Gamma et al. L@} context,

several examples have been presented which adopt object-oriented design patterns which

are usually characterised by the heavy use of method delegation.

2.5. Communication Infrastructures for Information
Exchange

The trend towards adaptive fixturing systems, composed of a variety of sensor and actuator
modules will lead to an increased information exchange between the fixture components.
Additionally, the fixture needs to communicate with other parts of the manufacturing
environment, such as Human Machine Interfaces (HMI), Machine Control Systems or
Resource Planning Systems. Consequently, there is a need for a communication
infrastructure that allows information exchange in a heterogeneous network environment
consisting of different hardware architectures, operating systems and communication
requirements. Although, traditional field bus technologies provide robust communication of
cyclic process data, the existing technologies are notoriously hard to integrate with other
networks. At the same time, ethernet has emerged as the most widely used communication
-29 -

Literature Review

technology in other domains, such as e-commerce. For this reason, Neumann [111] states
that in recent years, there is a significant trend towards Ethernet-based communication

systems in the manufacturing arena.

To support Ethernet-based data exchange, a number of middleware approaches are
available which rely on a variety of different communication paradigms. The term
middleware refers to an additional software layer between the application software and the
operating system, shielding the former from low-level tasks for the data distribution. The
fundamental communication paradigms for these middleware solutions can be classified in
multiple ways, depending on which aspect is of interest. Hurwitz [112] distinguishes
between Messag@+iented Middleware (MOM), Remote Procedure Call (RPC) and Object
Request Broker (ORB) systems. Recently, Amoretti and Reggiani [113] proposed a similar
classification and added service-oriented architectures (SOA). In their categorisation, the
term Distributed Object Architecture (DOA) is used for ORB-approaches which is
subsequently adopted. The following sections provide a brief overview on the most
significant architecture paradigms and highlights examples for their use in the
manufacturing domain. Additionally, a further category is introduced, namely data-centric
architecture. Remote Procedure Call can be regarded as a forerunner model of the

Distributed Object Architecture and is therefore not described in detalil.

2.5.1. Distributed Object Architecture

Distributed Object Architecture systems allow clients to invoke remote methods of server
objects in the same way as local function calls. Based on the formal description of the
method interface, a client can instantiate a proxy of an object on which it callsia certa
method. Internally, the request is forwarded to the actual server-object which implements
the method.

An example for this category is the Java Remote Method Invocation (RMI) standard.
Mervyn et al. [88] utilised RMI for the implementation of an internet-enabled fixture
design system. However, the Common Object Request Broker Architecture (CORBA)
[114], developed by the Object Management Groupdmgisably attracted most attention

-30 -

Literature Review

over the years. CORBA has been specifically designed for distributed systems in
heterogeneous environments and enables applications to communicate with each other
regardless of the operating system, programming language and computer architecture. This
iIs achieved through the definition of the communication interfaces in a platform-
independent format called Interface Definition Language (IDL) [115]. Based on these
definitions the source code for the data transfer is automatically generated and can be
linked with the application source code. In order to communicate, an application needs to
instantiate a local object which represents the remote application. When the functions
provided by its interface are called, the middleware internally cares for all data format
conversions across different platforms and routes the request to the remote application
through a so-called Object Request Broker. The latter acts as a mediator, routing requests
and responses between the distributed objects. As a result of this architecture, it makes no
difference for the software developer if an application is distributed over a large network or
if the communicating peers run on the same computer, or even as parts of the same process.
However, a disadvantage is that the ORB can become a single-point-of-failure and a
potential performance bottleneck. Furthermore, as CORBA is based on the client/server
principle, it creates tight couplings between the interacting applications and therefore
makes the implementation of decoupled m#syaany communication comparatively
difficult. To address the needs of real-time applications, a special CORBA profile has been
released as a standard, namely RT CORBA [116]. This standard shares most characteristics
with the full CORBA profile like the client/server principle or platform-independence, but
extends it with features to have better control over timing and resource usage to allow
deterministic data exchange. Key to this is the Quality-of-Service (QoS) model. The term
Quality-of-Service (QoS) refers to a general concept used to specify and control the
behaviour of the communication service. It offers the advantage that the application
developer only needs to indicate ‘what’ is required rather than ‘how’ this behaviour is
achieved [117]. In particular, QoS provides the ability to manage the use of resources like
network bandwidth or memory as well as reliability, timeliness and persistence of the data
transfer. Examples for CORBA-based systems in manufacturing have been reported by
Shin et al. [118], Sanz [119] and Haber et al. [120].

-31 -

Literature Review

2.5.2. Data-centric Architecture

According to Joshi [121] the data model is the most stable part in a system of loosely-
coupled applications and is therefore less likely to change over time than the method
interfaces. Following this observation, data-centric architecture approaches aim to decrease
the interdependencies in distributed applications by exposing the data model, instead of the
method interfaces. Based on the platform-independent definition of the data model, the
source code for sending and receiving data can be generated automaticallyéoroine

target platforms. Secondly, data-centric architecture systems typically follow the
publish/subscribe communication paradigm. According to this model, the applications do
not communicate directly with each other. Instead, data is shared among the applications by
the means of topic®rocesses that want to send data become “publishers” for a topic while

other applications can subscribe for contents of a topic if they require data from it.
Consequently, the data topics form acshied “global data space” that is accessible to all

interested applications [11}]. Figure 2;10 illustrates the global data space with three topics

and five participants. The arrow directions indicate if an application is a publisher or a
subscriber for a certain topic. Specifically, an ingoing arrow marks the application as a
subscriber while an outgoing arrow declares it as a publisher. As a result of the
publish/subscribe concept, communication is decoupled through the topics and flexible

many{o-many communication between a large number of participants is supported.

Global Data Space
' Application

Figure 2-10: Overview of the Publish/Subscribe Concept

Appllcatlon

Application

Appllcatlon

Application

The Data Distribution Service [117] is an example for a platform-independent data-centric
middleware standard, released by the Object Management Group. Like CORBA it utilises
the Interface Definition Language as a basis for the automatic generation of contimuinica
source code for a large variety of operating systems, programming languagesnguoder
architectures. The middleware is able to automatically detect new participants in the system

-32 -

Literature Review

and establishes connections between the publishers and subscribers for a matching topic.
Additionally, the standard is specifically designed for the needs of real-time applications
and provides a rich set of Quality-Service (QoS) parameters to configure the
communication behaviour for each topic according to the application requirements. There
are a number of commercially available DDS solutions on the market, including those of
Real-time Innovations, Inc. and PrismTech. Additionally, the open-source community
provides a free version of the standard, called OpenDDS [122]. The aerospace and defence
industry is widely using the DDS standard for intelligent weapon systems and flight
control. Other industrial examples have been reported for flight simulation systems and
traffic control systems [123]. Schneider Electric are using DDS-based communication bus
for their range of Programmable Logic Controllers (PLC) [111, 124], while ALSTOM
Schilling Robotics have developed a remotely operated robotic system, used for underwater

installation and repair works [123].

2.5.3. Service-oriented Architecture

The service-oriented architecture (SOA) paradigm aims at minimising the
interdependencies between the communicating software entities by defining independent
“services” which can be accessed through a stateless request/reply scheme [113]. Thus, the

use of SOA results in an environment of loosely-coupled service providers and service
consumers. Key to the concept is the unambiguous, computer-interpretable description of
the service interfaces and their location. SOA systems have mainly been implemented using
Web Services. This technology uses the Web Service Description Language (WSDL) to
define the interface of a service for its consumers. However, there is still no standard for the
distributed publication and discovery of Web Services. The messages are typically
transferred in a standardised protocol, such as Simple Object Access Protocol (SOAP). In
this case, the use of service-oriented architectures introduces a significant communication
overhead as a result of the message interpretation. Veiga et al. [125] compared two
different SOA platforms for the integration of equipment in robotised assembly cells and
concluded that the use of such frameworks can reduce the complexity of the development
of modern manufacturing systems, since engineers can concentrate on their expertise

(machine vision, force control, mechanical design) instead of dealing with device

-33-

Literature Review

interconnection and cross-platform communication problems. Other applications of SOA
platforms in the manufacturing area have been reported by Ahn et al. [126], Estrem [127]
and Ha et al. [128].

2.5.4. Message-oriented Architecture

Similar to the previous category, Message-Oriented Middleware (MOM) aims at the
decoupling of applications. The difference is the use of a message broker which acts as a
mediator, passing messages to and from the distributed applications. This allows the

decoupled and asynchronous information exchange between a large number of applications.

The Java Messaging Service (JMS) is a message-oriented middleware that provides an
Application Programming Interface (API) for the sending and receiving of messages in
JAVA programs [129]. It has become the de facto industry standard for JAVA-based
messaging [130] and is supported by most commercially available MOM platforms [131]
The standard provides two general mechanisms for communication, referred to as message
domains. The pointis-point domain is used for the synchronous communication between
possibly multiple senders and exactly one receiver. Additionally, JIMS allows asynchronous
many-to-many communication via data topics according to the previously described
publish/subscribe paradigm. Industrial applications of JMS have been reported in Urdaneta
et al. [132] and Mervyn et al. [133].

While JMS is an application-neutral middleware standard, another MOM system exists that
is tailored to the manufacturing domain. As a result of the National Electronics
Manufacturing Initiative (NEMI) for a plug & produce environment in the electronics
industry [134], Computer-Aided Manufacturing using XML (CAMX) has been proposed as

a message-oriented middleware which defines an event-based conversational framework
based on exchange of standardised XML messages [135]. These messages are distributed
via a central entity, the message broker, whose general architecture was specified in the
IPC2501 standard [136]. The XML messages are exchanged according to the
publish/subscribe paradigm, allowing maymany real-time communication between an
arbitrary number of processes. Additionally, the framework aims at supporting platform-

-34 -

Literature Review

and vendor-independent communication of a wide range of equipment. For this reason, the
syntax and semantics of a large number of messages associated to manufacturing events on
the shop floor are specified in the IPC-254x standards [137-139]. As a difference to the
other middleware candidates, CAMX is not application-neutral, since it is designed for the
assembly of printed circuit boards. Like DDS, CAMX provides a number of Quality-of-

Service parameters to adjust the behaviour of the communication [140, 141].

2.5.5. Discussion

The previous sections have shown that there is a myriad of different communication
platforms available that allow efficient data exchange in distributed applications. In the
field of manufacturing, some researchers have proposed communication platforms for
various applications, in particular robotic systems and reconfigurable assembly systems.
However, the application of these communication models in the fixturing area has not been
reported, yet. The reason for this appears to be once again that fixtures have been only
recently accepted as intelligent or automated components. Consequently, the development
towards a communication infrastructure, tailored to the fixturing domain is identified as an

important step towards next-generation intelligent workholding.

2.6. Knowledge Gaps

Despite the significant developments in the reported research areas, the available systems
do not yet fully address the needs of reconfigurable and adaptive fixtures. The results of the
literature review show an ongoing trend towards adaptive fixturing systems that utilise
sensor feedback and programmable actuators to introduce reactivity in the clamping
process. However, currently these systems are not reconfigurable. Existing approaches for
reconfigurable fixtures on the other side appear to be limited to specific setups and rely on
dedicated software routines, tailored to a particular configuration. Additionally, these
systems lack a software framework that supports the platform-independent integration of
devices. As a consequence, automatically reconfigurable fixtures have not been properly
adopted by industry up to now. The following knowledge gaps have been identified as
current barriers for the successful transition from traditional fixtures as passive devices to

automatically reconfigurable and adaptive parts of modern manufacturing systems.

-35 -

Literature Review

Lack of a generic data model for the representation of the capabilities of adaptive
fixturing systems.

Current data models for fixture representation concentrate on the fixture design of
traditional, modular fixtures comprising passive elements. Consequently, these approaches
address only the structural aspects of the fixture. However, to allow automated
reconfiguration of adaptive fixtures, a data model is required that is able to capture the
capabilities of the fixturing systems and their devices, including sensors and actuators. This
must also allow for the combination of elements and their related capabilities. Further,
whilst a number of researchers have applied object-oriented techniques in other
manufacturing areas, these models are domain-specific and cannot be directly applied to
fixtures. Additionally, the existing models appear to utilise only basic object-oriented
techniques such as inheritance and are consequently limited to a merely hierarchical
representation of the system in question. While such a model is an important requirement
for any automated system, it does not necessarily allow for the exchange of software
methods during the operation of the system which is the key to achieve dynamic
reconfiguration and vendor-independent device access. Thus, for the development of a truly
reconfigurable software framework that can support the dynamic reconfiguration of
adaptive fixtures, other techniques such as object-oriented design patterns and method

delegation are required.

Lack of a fixture reconfiguration method defining the decision-making sequence for the
automated reconfiguration of a wide range of different fixture setups

A number of automatically reconfigurable fixturing systems have been proposed in the
literature. However, the reconfigurability of these systems is limited to specific fixture
setups and lacks general applicability for other fixture layouts. The reason for this is that
the adaptability of the software is not sufficiently taken into consideration. The software
routines that are utilised to achieve the reconfiguration of these systems are customised to a
particular fixture design comprising a set of vendor-specific hardware devices. For
example, the system proposed by Lin and Du [35] only works with specific finger modules,

whereas the system presented by Chan et al. [39] is restricted to a base plate with mounting

holes. Other existing fixturing methodologies (see 2.3.1) only address the design phase
-36 -

Literature Review

while neglecting the challenges of the reconfiguration during the manufacturing process,

such as dynamic discovery of fixture modules, replacement of modules and the

combination of capabilities. In general, a large part of the research effort has been restricted
to purely mechanical passive devices with limited or no reactive capabilities. Further, the

existing approaches on rapidly reconfigurable manufacturing systems do not address the
fixturing domain and can therefore not be directly applied. As a result, the decision-making

for automated fixture reconfiguration must be formalised in a methodology, independent of

a particular fixturing system or design. In general, customised algorithms need to be

replaced by a generic decision-making software architecture that can dynamicallyoadapt

structural changes of the fixture setup.

Lack of a communication infrastructure for reconfigurable, adaptive fixturing systems

that allows to dynamically establish communication channels and flexible information
exchange

The advent of adaptive fixtures brings new challenges for the reconfiguration and operation
of fixturing systems, such as the need for data exchange between the sensors and actuators.
Additionally, to be an interactive part of the manufacturing system, future fixtures need to
be able to communicate with other manufacturing equipment, too. Today, the
communication channels in the reported fixturing systems are predefined during the
development phase and cannot be changed dynamically during the operation of the device.
For this reason, the presented examples for automated and adaptive fixtures do not provide
sufficient mechanisms to dynamically change the fixturing layout by adding or removing
equipment. To make fixtures truly reconfigurable, the communication links have to be
established dynamically between the various devices whenever new modules are
discovered. The literature review has shown that there is a myriad of different
communication platforms available that suppefficient data exchange in distributed
applications. Some of these approaches have been utilised for reconfigurable manufacturing
systems, such as robotics and reconfigurable assembly cells. However, an efficient, yet

flexible communication architecture tailored to the fixturing domain is still missing.

-37 -

Literature Review

2.7. Chapter Summary

This chapter presented the results of a detailed literature review which provides the
theoretical background for the research study. First the different fixturing developments of
the last decades were highlighted, showing a continuous trend towards intelligent and
adaptive fixturing solutions. After this, the available literature on fixture reconfiguration
methods, fixture representation models and communication infrastructures for distributed,
modular systems have been critically reviewed. It is concluded that the currently available
methods do not sufficiently address the needs of reconfigurable, adaptable fixturing
systems. Consequently, three main knowledge gaps have been identified, namely (1) the
lack of an adequate data model; (2) a fixture reconfiguration methodology that is applicable

for a wide variety of different systems and (3) a flexible communication infrastructure.

-38 -

Research Methodology

3. Research Methodology

3.1. Introduction

The knowledge gaps identified in the literature review indicate a general lack of formalised
software models and methods to support the reconfiguration of adaptive fixturing systems.
For this reason the research addresses the reported gaps by the development of a sound
software framework for the operation of reconfigurable adaptive fixturing systems. The
complexity of this research requires the precise identification of the research domain and

the definition of a detailed research methodology.

A systematic research methodology has been followed throughout the duration of the

research. The main steps and phases of the methodology are illustrated in Figure 3-1,

indicating also the relation to the other chapters. As it can be seen in the diagram the
research methodology consists of four main phases. In the first phase an extensive literature
review was carried out to get a detailed overview on the research available in the field of
fixturing. This is the foundation to identify the state-of-the-art in flexible fixturing and
define the knowledge gaps as described in chapter 2. The second phase focuses on the
definition of the research domain and transfers the knowledge gaps into clear research
objectives. Additionally, the system requirements for the software framework are identified
in the form of a use case analysis. Based on this, the suitability of available technologies for
the communication infrastructure are assessed. The third phase consists of the parallel
development of the three core knowledge contributions of this research, namely the data
model for reconfigurable and adaptive fixtures, the fixture reconfiguration methodology
and the communication infrastructure. The three core contributions are highly interrelated
and the main results of this work are described in the chapters 4, 5 and 6. In thig context
the data model provides the definitions and interrelations of the main entities forming the
system. The reconfiguration methodology uses the data model and defines the decision-
making sequence that is carried out when a fixture needs to be reconfigured. The
communication infrastructure realises the flexible communication of an arbitrary number of

components in the framework. Finally, the proposed software framework has been applied

-39 -

Research Methodology

to a physical prototype of a reconfigurable fixture in order to demonstrate and prove the
research results. In particular, a number of tests have been carried out to verify if the system

meets the requirements and if the research has reached its declared objectives.

Literature Review & Identification of Knowledge Gaps (Chapter 2)
Flexible Fixturing

Data Models for Reconfiguration Communication
Fixtures Methods Concepts
= o o

' Identification of the Knowledge Gaps |

[
IL 4L
Definition of the Research Approach & Requirements Specification
(Chapter 3)
>| Identification of the Research Objectives |<
4L
>| Use Case Analysis |
4L
Assessment of Suitable Technologies |
Ll
Software Framework for Reconfigurable Adaptive Fixturing Systems
Data Model for Fixture Communication
Reconfigurable Reconfiguration Infrastructure for
Adaptive Fixtures Methodology Reconfigurable
(Chapter 4) (Chapter 5) Fixtures (Chapter 6)
v’ Definition of the v'Decision-making v'Publish/Subscribe
core model entities for Reconfiguration Concept
v'Object-oriented v'Decision-making v Specification of the
approach to capture for capability Topic Structure
capabilities recognition
4L
System Verification (Chapter 7)
Implementation of the Prototype
4L
' Verification of the Approach }

Figure 3-1: Overview on the Research M ethodology

The following sections provide a comprehensive overview on the steps of the research

methodology and the decisions made during the research. The description concentrates on
3.2), the requirement analysis (section

the identification of the research domain (sedtiorn
- 40 -

Research Methodology

3.3

and the assessment of suitable communication technologies (segtion 3.4). Additionally,

two conceptual fixture designs are introduced in seftion 3.5 which are used for illustration

purposes throughout the rest of the thesis. The results of the literature review, the

development of the core contributions and the system verification are covered in individual

chapters and are therefore omitted here.

3.2. Definition of the Research domain

3.2.1. Definition of the Knowledge Contributions

This research work addresses the identified knowledge gaps by the development of:

A data model for the representation of the capabilities of reconfigurable and

adaptive fixturing systems

The model is based on an object-oriented approach which creates a hierarchic view
of the fixture using generalisation and abstraction principles. However, unlike
existing approaches [57, 84, 87], it is tailored to the operation phase of the fixture
and not for the fixture design phase. For this reason, the model captures not only
structural aspects of the fixture layout, but also provides the means to represent the
changing capabilities of adaptive fixtures when components are added, removed or
replaced. In addition, advanced object-oriented techniques such as design patterns
and software delegation are used to allow the dynamic access and flexible
substitution of the model elements during the operation of the fixture. Other
research [104, 105] shows that these techniques are the key to create reconfigurable
and re-usable software systems. The data model proposed in this research builds
upon these approaches and applies them to the fixturing domain. For the
formalisation and definition of the relationships between the model elements the
Unified Modelling Language (UML) has been used which guarantees a platform-

independent definition of the model.

A fixture reconfiguration methodology
The core of the methodology consists of two interrelated parts. The first part deals

with the recognition and combination of the capabilities of the fixture elements as a

-41 -

Research Methodology

result of structural changes of the fixture layout. The approach is based on the
formal description of capabilities with the Extensible Markup Language (XML) and
describes the steps to instantiate the model elements in order to represent a fixturing
system. The result is a layered object hierarchy where model elements of higher
layers delegate requests to the model elements of subordinate layers. The principle
of software delegation has been used for the development of reconfigurable systems
in other areas [75, 76]This research aims at transferring this principle to the
fixturing domain. The second part defines the decision-making sequence to rapidly
adapt a fixture for the next workpiece. The main idea is to dynamically link the
software objects representing the physical setup with the objects representing the
predefined fixture design parameters. Based on this assignment, the required
reconfiguration sequence can be generated. While there are a number of
reconfigurable fixturing systems available [34, 35, 37, 39], this method will provide

a more general solution that is applicable not only for one particular setup, but for a
variety of different fixturing systems. Additionally, it enhances existing adaptive
fixturing approaches [47, 49] with a reconfiguration method.

A flexible communication infrastructure for the operation of adaptive fixturing
systems

The methodology and the data model are integrated with a communication
infrastructure which allows the flexible communication between the various parts of
the fixturing system. In contrast to existing fixturing systems with hardwired
connections between the devices, the communication infrastructure provides the
means to dynamically establish communication channels when components are
added, removed or replaced. The communication infrastructure uses an existing
middleware standard [117] and applies it to the fixturing domain which so far lacks
any standardised communication platform. Moreover, standardised library
interfaces for adaptive fixturing equipment are defined which is the basis to achieve

vendor and platform-independent device access.

=42 -

Research Methodology

These knowledge contributions are the fundamental cornerstones for the software

framework, which is illustrated |n Figure 3-2 with its major inputs and outputs. The main

idea is a paradigm shift from programming effort towards configuration effort. In other
words, instead of developing customised software routines for a specific fixture setup,
engineera would configure the framework with the necessary information about the
fixturing system. This includes the formal description of the capabilities of the fixture
components, the device libraries for the hardware access as well as some information about
the position and orientation of the fixture modules. As a result, the framework provides

readyto-use software applications for the operation of the fixturing system.

- Provision of Device Libraries

- Formal Description of Capabilities
- Fixture Design Information
- Spatial Information

Flexible Communication
Infrastructure

Methodology for Data Model for

Automated Capability
Fixture Representation of
Reconfiguration Adaptive Fixtures

Software Framework for
Reconfigurable, Adaptive
Fixtures

- Readily available software application programmes for each entity
- Readily available communication infrastructure
- No programming effort required

Figure 3-2: The knowledge contributionsin the context of the softwar e framework
3.2.2. Assumptions and Limitations

The final result of this research will be a software framework for reconfigurable adaptive

fixturing systems that can be applied to a plethora of different fixture setups. For this

-43 -

Research Methodology

reason, the framework is a step towards the successful development of next-generation,

intelligent fixtures. However, in order to limit the complexity of the research task, a number

of general assumptions and limitations have been identified.

Predefined Fixture Design

This research work does not address the problems of the fixture design phase.
Instead, it assumes that all fixture design parameters such as clamping positions or
force profiles for each workpiece are readily accessible when the fixture needs to
reconfigure.

Reconfigurable fixtures using independently controllable fixture modules

The framework is tailored to fixtures that have the ability to be reconfigured and
have a modular structure. Consequently, the framework cannot be applied for the
operation of dedicated fixtures. Additionally, the framework cannot be used for
phaseehange fixtures because they are not based on a modular structure. Within the
scope of this thesishe term “fixture modulé& refers to a physical component with

an own software program that is in contact with the workpiece. The fixture modules
communicate with theso-called fixture coordinator software which manages the
overall fixturing process.

Degree of Automation

In order to generate the model elements and perform the reconfiguration process
automatically, adequate computer technology is required for the fixturing system.
This is the case for adaptive fixturing systems comprising actuator and sensor
devices. On the contrary, traditional modular fixtures which consist of passive metal
blocks typically lack this kind of computational power and can therefore not directly
benefit from this research. However, passive elements can still be represented by the
data model in which case the framework can assist the operator during the fixture
reconfiguration.

Components with linear movements

To limit the scope for the definition of the data model, the repositioning of elements
is limited to linear movements. This means, fixtures that reposition their elements
with rotational movements, such as the double revolver fixture by Tuffentsammer

[34] are currently not addressed by the research. However, due to the object-
-44 -

Research Methodology

oriented approach, the data model can be extended with classes to accommodate

such systems.

3.3. Requirements Specification

To capture the functional requirements of the software framework a use case analysis has
been carried out. This is a standardised method for analysing the required functionalities of
a system from a user’s point of view. Hence, any technical details of how a certain

functionality can be achieved is omitted. The results of the analysis are summarised in the

use case diagram |n Figure B-3 which uses the notation conventions of the Unified
Modelling Language 2.0 (UML 2.0) [142, 143]. According to this standard, the system

(depicted as the large rectangle) is described in terms of actors, use cases and relationships.

An actor, depicted as a stick man, is a role outside of the system under study that interacts
with it [144]. This can be either a human being or another system. A use case refers to a
certain functionality the system provides to actors. It is illustrated as ellipsoids in the
diagram. Use cases can be specialised by other use cases which is represented by a line
with an unfilled arrowhead pointing from the specialised use case to the more general use
case. Additionally, the sealled “includé’ relationship is used to integrate one use case as a
logical part into another use case. Even though the relationships between use cases may
suggest a natural flow to the reader, use case diagrams do not indicate any sequences of

actions or flows of events. Further information on use case diagrams can be found in [143].

- 45 -

Research Methodology

Fixture

Retrieve Module
Capabilities

Initialise Fixture

<<includes>>

<<includes>>

Change Fixture
Setup

<<includes>>

<<includes>>

Calibration

Reconfigure Fixture

Update Structure &
Capability Model

<<includes>>

Adaptation of
Current Setup

Operator

Retrieve Desired
Fixture Parameters

<<includes>>

Load Part

<<includes>>

Observe Sensor
Output

Unload Part

<<includes>>
<<includes>>

Actuate Clamps

Adaptive Clamping

<<includes>>

Figure 3-3: Use Case Diagram for the Fixturing System

In the context of this research, the operator has been identified as the main actor with
regards to the fixture. Other subsystems that potentially interact with the fixture have not
been modelled as individual actors because for the development of the knowledge
contributions it is irrelevant if a certain functionality is invoked by a human operator, a
robot or another part of the shop floor. Thus, the role operator represents any stakeholder
that calls a service provided by the fixturing system. Furthermore, five top-level and six
second-tier use cases have been identified which are described in the following sections.

The top-level use cases are directly triggered by inputs from the user, while the second-tier

- 46 -

Research Methodology

use cases are performed internally by the fixture software in order to satisfy a certain top-

level use case.

3.3.1. Initialise Fixture

The first use case is the initialisation of the fixturing system. This requires the software
framework to recognise the structure and the capabilities of the underlying fixture. In order
to achieve this, the capabilities of each fixture module must be determined and
communicated to the rest of the system which is represented by the second-tier use case
“Retrieve Module Capabilities”. This requires a communication infrastructure that is able to

e Recognise an arbitrary number of modules in the system

e Exchange capability information in a defined format
When all information about the fixture modules is collected, this information can be
combined to form a complete view of the fixturing system which is part of the use case
“Update Structure and Capability model”. Additionally, a calibration step is required for the
correct functioning of every fixture. Calibration, however, requires specific routines
depending on the actual underlying fixture hardware. Therefore, the framework takes into
account the necessity of a calibration step but does not define a specific algorithm. After
these essential steps the fixturing system is ready to work.

3.3.2. Reconfigure Fixture

This use case addresses the functionality of a reconfigurable fixture to adapt itself in
response to changing requirements. The reasons for fixture reconfiguration are typically the
need to clamp several parts with one fixture or to process multiple surfaces of a workpiece
using the same fixture. Two forms of fixture reconfiguration have been identified which are

both addressed by the proposed framework.

The first form is concerned with the physical change of the structural layout of the fixture
and the associated use case has been named “Change Fixture Setup”. This typicaly
includes the manual addition, removal or replacement of fixture modules as well as the
modification of the internal device structure of an existing fixture module. The fixture must

be switched off during these changes and the initialisation routine is required after the

-47 -

Research Methodology

reconfiguration procedure. The software framework must be able to recognise the structural
changes and no reprogramming shall be required in order to allow the functioning of the
new fixture.The second form of fixture reconfiguration is called “Adaptation of the current

setup” and occurs more frequently than the previous use case. In contrast to the previous
reconfiguration type, this use case addresses the ability to adapt the existing fixture
configuration without the need of dismantling its current structure. Examples for this are
the modification of the fixture with new clamping parameters such as initial clamping
forces or the maximum allowable reaction forces. Additionally, the ability of fixtures to
automatically reposition their clamping modules is addressed by this use case. For example,
the prototype described in chapter 7 allows to relocate its modules on rail guides. In order
to achieve the adaptation process automatically, the framework must retrieve the predefined
fixture parameters for the new configuration from a data base. These need to be compared
with its current structure and all necessary steps to transform the current fixture into its

desired state must be determined and executed.

3.3.3. Load Part

This use case refers to the ability of the software framework to initiate the clamping of a
part with the fixture. The procedure requires that the reconfiguration step has been
completed and the workpiece is correctly positioned in the fixture working envelope. The
repositioning of the workpiece in the fixture or the adaptation of the tool path is not the
subject of this research. Upon a trigger signal, the clamps must be actuated towards the
workpiece in order to exert a predefined initial clamping force. The execution of this use
case requires the retrieval of the sensor data from the modules and adequate actuation of the
modules under real time conditions. The actual determination of the correct clamping
points and initial forces is part of the fixture design phase and therefore beyond the scope of
this research.

3.3.4. Unload Part

Similar to the previous use case, this addresses the ability of the fixture to accurately
release the part from the fixture. This procedure requires an input signal as a trigger and as

a response each clamping module should retract to its home position, thereby releasing the

-48 -

Research Methodology

part. In order to do this, the framework must be able to retrieve the current position of the

fixture modules and actuate the clamps until they have reached their desired position.

3.3.5. Adaptive Clamping

During the manufacturing of a part, particljain machining processes, the external forces
acting on the part change dynamically. The promising results of adaptive fixtures to
improve the workpiece quality by reacting to the changing external forces has been
highlighted in the literature review in chapter 2. For this reason, this use case refers to the
ability of the framework to observe the sensor data and issue appropriate commands in
order to adapt the clamping forcdsis assumed that the use case “Load Part” has been

completed.

Rather than focusing on the development of the actual force profiles, the framework aims at
providing the infrastructure to establish the communication in a flexible way. The term
‘flexible’ addresses the challenge of achieving information exchange in adaptive fixtures
whose number of modules and their interrelations between each other can change over
time. Additionally, since the fixture modules can incorporate different hardware devices, it
is possible to implement same capabilities with different technologies. For example, a
clamping module can realise the clamping capability by several types of linear actuator
(e.g. electromechanical, hydraulic, pneumatic). Clearly, these technologies require different
input signals to achieve a certain clamping force. For this reason, an additional layer of
abstraction is necessary that makes the software framework independent from a certain
platform or vendor. This includes a common data format for the communication between
the fixture modules and the fixture coordinator. The exchanged information needs to be
mapped into the platform-specific signals required for the device access, thereby rendering
the framework compatible for a plethora of different hardware profiles.

In order to achieve this, the framework must have the ability to be parameterised with
device libraries to correctly interpret the data coming from the devices as well as sending
appropriate signals, the device hardware can understand. Additionally, the framework will
utilise the module capability descriptions which are obtained during the initialisation

-49 -

Research Methodology

routine as described in the use case “Initialise Fixture”. This is illustrated in|Figure 3-4

which shows a simple fixture module communicating with the fixture coordinator.

Module
Module 1 Capabily =~
Description ~ Module
TR Vanal V gigi —~ i

B Amplifier |~ % ADG | Ydste] TR ey

% - Descriptions
Force In Ngigi Fixtur
Sensor Module Program A Coorc:iun:tor

Figure 3-4: Simplified Scheme of Communication between a M odule and the Fixture coordinator

The module consists of a force sensor which is accessed by the local module softevare. Th
latter is configured with the characteristics of the sensor and informs the fixture coordinator
about its resulting capabilities during the initialisation routine. Among other details, this
information declares how the force readings have to be interpreted. During the operation of
the fixture, the module software calls the device library to retrieve the current sensor signal
and converts the voltage signal to a force value in Newton. As a result, the local module
program acts as a software facade which encapsulates the hardware access to the sensot
device, while the fixture coordinator is able to interpret the received force values in order to

process them.

3.4. Assessment of Suitable Communication Technologies

The specification of the user requirements shows that the envisioned software framework is
characterised as a complex distributed system where an arbitrary number of modules need
to communicate. To manage the complexity of the communication it was decided to utilise
and adapt an available middleware technology. Apart from reducing the risks of failure, the
development of the communication infrastructure on top of a recognised standard increases
the acceptance of the proposed system and facilitates potential take-up from industry in the

future.

3.4.1. Definition of Technical Requirements

As revealed by the literature review, a number of different middleware technologies are
available for various application domains. Examples for these are the Common Object
Request Broker Architecture (CORBA) [114], Data Distribution Service (DDS) [117], Java

-850 -

Research Methodology

Messaging Service (JMS) [129] and many more. In order to choose the most suitable

middleware technology for the communication infrastructure a structured approach for the

assessment was followed. In the first step, the technical requirements were defined that are

imperative for the realisation of the software framework. These are summarised as follows:

Reactivity to Dynamic Network Topology Changes

As fixture modules can be added or removed to the platform, the infrastructure must
be able to automatically recognise these changes in the network topology to invoke
the reconfiguration process.

Platfor m-Independence

Since fixturing systems are provided by a variety of vendors, the framework needs
to allow communication between a wide range of computer architectures, operating
systems and programming languages.

Real-time communication

Fixtures are part of the production environment. As such, they are subject to timing
constraints for the operation which are imposed by the process. This means, that the
time between a sensor input and the system’s response in form of actuator
movements must be predictable and deterministic. In order to achieve this, the
communication infrastructure needs to have full control over timing and resource
usage.

Perfor mance and Scalability

As described in [145], common middleware performance indicators art-emd-
latency and the throughput. The former refers to the time required to send a message
from one communication end to another, whereas the latter is defined as the
maximum amount of data that can be transferred per unit of time. For the fixture
application, it is assumed that the dpneend latency is more important than the
throughput. Essentially, it determines how fast the fixture can react to sensor feed
back. As a result of this, the latency determines for which processes the framework
is applicable. Scalability is defined as the ability to maintain performance levels as
more nodes are added to the system. Scalability issues can occur when more fixture
modules are added to the system in response to more complex workpieces or when

the fixture is connected with other subsystems via the communication infrastructure.
-51 -

Research Methodology

Overcoming | mpedance Mismatch

As identified by Joshi [121], impedance mismatch is one of the fundamental
challenges for the integration of distributed systems in heterogeneous environments.
The term refers to the difficulties that arise when subsystems with disparate
communication requirements in terms of data volume and data rates need to
interact. For example, some applications produce data at higher rates than others are
able to consume. Since the fixture is a part of a wider production environment, the
software framework needs to interact with other subsystems of the factory like
Human Machine Interfaces (HMI) or the machine control. For this reason, the
communication infrastructure needs to offer a mechanism to fine-tune the data

transfer individually for the requirements of the peers.

3.4.2. Selection of Middleware Candidates

In the second step a number of middleware technologies were selected for the assessment

against these requirements. Due to the huge number of middleware solutions it is not

feasible to assess all available technologies within the scope of this thesis. For this reason

the assessment was limited to the most common solutions for each of the communication

architecture paradigms discussed in the literature review (see gectijon 2.5). The selected

candidates are listed below. Further details on each of the candidates can be found in the

literature review.

Common Object Request Broker Architecture (CORBA)
Real-time CORBA (RT CORBA)

Data Distribution Service (DDYS)

Java Messaging Service (JMS)

Computer-Aided Manufacturing using XML (CAMX)
Web Services (WYS)

3.4.3. Assessment of the Middleware Technologies

In the final step, the suitability of the presented candidates for the described technical

requirements is compared. The aim of this step is to derive qualitative statements about the

suitability of the technologies with respect to the requirements which results in a ranking.

-52 -

Research Methodology

For this reason an ordinal scale is introduced which classifies the support of a certain
requirement in four categories:

o Categoryl: No support

o Category ll: Weak support

o Categroy lll: Good support

o Category IV: Very good support

Although it is arguable whether a certain technology offers weak, good or very good
support, this classification indicates tendencies and at the end a conclusion can be drawn
about the most suitable choice for this research study. The evaluation is based on available

literature and on personal experience with these technologies. The results of the evaluation

are summarised |n Table 3-1. The category I, Il and IV are illustrated by one, two or three

stars, respectively while for category | a dash is used.

N S}
800) & 3 '\§ <z>(bQr
& 5565 /\§§’ S QC?Q
< & SIS 5 S NG g
6\ o ~N QO Q' 5 S o (3]
S T S £ 5 S
& ke o ¢ 9 \S§
S < O Q
coneA ook | - | g |-
Real-Time CORBA - TRK | Wk | WORK w
DDS TRk | wkok | okl | Wolok | Yokok
VS - Yok - ¥ ®
CAMX YOk | dofok | Yook | A% LARAS
Web Services * DAQAQAE DG PAGAG >

Table 3-1: Assessment of Middlewar e Technologies

Support of network topology changes

In terms of the support of network topology changes, CORBA, RT CORBA and JMS do
not offer off-the-shelf mechanisms to inform the application about other participants being
added, removed or replaced. In order to achieve this functionality own proprietary protocols
for the discovery of participants have to be developed which is cumbersome and error
prone. An example for a discovery mechanism in a CORBA-based system can be found in
[146]. A number of approaches have been published for the dynamic service discovery of

-B53 -

Research Methodology

Web Services [147, 148]. However, these solutions are not yet readily available to use and
Sun et al. [149] highlighted that the dynamic discovery of web services is still difficult to
achieve. For CAMX, a method to optimise the allocation of clients to message brokers has
been presented in [135]. Additionally, a number of event messages are defined to reflect the
states of equipment [137], including aspects like liveliness. DDS automatically establishes
an internal connection between participants with matching data topics and Quality-of-
Service settings. Consequently, communication is automatically achieved when participants
are plugged in. Additionally, DDS provides meta-information about the communication
status of the participants in special data topics. Applications can subscribe to these topics
and are notified by the middleware when other applications are plugged in, removed or
replaced. To conclude, only DDS and CAMX satisfy this criteria off-the-shelf. If oneof th
other technologies is selected, this functionality needs to be developed.

Platform independence

In general, the second requirement is satisfied by all candidates. In particular CORBA, RT
CORBA and DDS are defined as platform-independent standards which means they can be
implemented on any kind of transport protocol and hardware. Additionally, when using
these technologies the communication interfaces of the applications are defined in a
platform-independent way which allows the integration of a large variety of different
platforms and the automatic generation of source code. In CAMX the message transfer is
accomplished with web-based communication using the Simple Object Access Protocol
(SOAP). This also allows the collaboration of different platforms, since the SOAP protocol
acts as a layer of abstraction. Web Services also use SOAP as well as other platform-
independent protocols and therefore satisfy this requirement. JIMS, is a JAVA-specific API-
standard. Consequently, it is hard to establish communication with other applications that
are not written in the JAVA programming language. However, since JAVA programs run
in a socalled JAVA Runtime Environment (JRE), they are portable over different
operating systems. Additionally, Sanchez et al. [150] have demonstrated how JMS can be
accessed from other programming languages based on additional libraries. Although, their

research shows that this introduces further performance losses in terms of latency and

-54 -

Research Methodology

throughput, the requirement of platform-independence can be satisfied. For this reason,

JMS was classified into category Il with regards to this criterion.

Real-time support

With regards to real-time suitability, JMS and CORBA do not provide sufficient means to
ensure deterministic and predictable data exchange. For this reason these two candidates
appear to be less suitable for the fixturing framework application. Web Services typically
offer weak support for applications with real-time requirements. To overcome this gap,
recently numerous researchers have tried to integrate the Quality-of-Service paradigm with
Web Services [149, 151, 152]. However, there is still no uniform standard available and the
solutions are not yet mature. The remaining candidates are specifically tailored to the needs
of real-time applications and are therefore satisfying this requirement. In fact, the real-time
support of all these candidates is based on a rich and mature implementation of the Quality-

of-Service approach.

Performance and scalability
The described performance indicators (ém&nd latency and throughput) are influenced
by a large number of factors, including the speed of the CPU, the operating system, the
programming language, the message length, the number of communicating systems and
others. Since there are extensive benchmark tests available, it is beyond the scope of this
research to compare the performance of the different technologies in terms of quantitative
measurements taken from own experiments. Instead, the assessment is based on
information from literature and, more importantly, conclusions about potential performance
differences are drawn based on the architecture characteristics of the candidates. Rece
performance tests for CORBA and RT CORBA have been reported in [153, 154]
Additionally, large amounts of performance data have been gathered by the Open CORBA
Benchmarking Project which provides an online database of benchmarks for a large number
of CORBA systems [155, 156]. In this context, Gokhale and Schmidt [157] reported that
most CORBA implementations do not sufficiently address the objective of low latecies.
performance comparison between Web Services and CORBA has been published by Gray
[158] which concludes that despite recent improvements of the former, Web Services are
-55-

Research Methodology

considerably slower with a higher consumption of network bandwidth and CPU cycles.
Similarly, in the experiments of Juric et al. [159] Web Services proved to be 9 times slower

than Remote Method Invocation which is based on similar principles as CORBA (see

section 2.2.4). The main reason for the performance problems can be found in the overhead

related to the SOAP message processing [159]. For DDS detailed benchmark tests have
been carried out as part of the Real-Time DDS Examination & Evaluation Project (RT-
DEEP) [160]. Results of this research have been reported in [161, 162]. According to this,
endio-end latencies can be lower than 50us [163]. Compared to CORBA, DDS achieves
potentially faster data exchange since it does not route data through a central message
broker. Additionally, the publish/subscribe approach followed by DDS minimises the
communication overhead when the number of nodes is increased. However, these issues
can be overcome with RT CORBA when the so-called event service is used. Essentially,
this service establishes publish/subscribe-like data channels. Compared to JMS and
CAMX, the data transfer with DDS has the potential to be significantly faster. The reason
for this is the data-centric approach of DDS while the other two technologies are message-
oriented. This means, in these systems information is encapsulated in a message body
which has to be parsed and analysed upon its receipt. This interpretation of messages
requires additional processing time in each node. DDS on the other side shares information
as user-defined data types. For this reason, there is less communication overhead because
there is no need for message headers and the received data is immediately available for the
application. Furthermore, JMS and CAMX use message brokers as centralised entities
which are potential performance bottlenecks and failure points. DDS on the other hand
establishes pedo-peer communication between the participating applications. A more
detailed comparison between JMS and DDS has been conducted by Joshi [145]. JMS is
arguably the slowest option of all candidates, since it relies on the JAVA programming
language. Such programs do not run as executables, but are interpreted by the run-time

environment which slows the execution down.

I mpedance mismatch
The impedance mismatch requirement is best addressed by DDS and CAMX. The reason

for this is the loose coupling due to the publish/subscribe approach and the Quality-
-56 -

Research Methodology

Service concept offered by both middleware technologies. The QoS-parameters of CAMX
primarily aim at satisfying the needs of real-time communication by grouping messages
into four categories (closed-loop real-time control, supervisory control, operator control,
other purposes) with different priorities [135]. In contrast, the QoS-concept offered by DDS
has more configuration options. In addition to the parameters ensuring real-time
communication, DDS allows to apply time-based and content-based filters to individual
topics which prevents applications from being flooded with data. The client/server
approach of CORBA and RT CORBA results in tightly coupled connections which makes
it hard to integrate applications with disparate communication requirements. Therefore,
CORBA is not supporting this requirement. However, the event service and the QoS-
concept of RT CORBA alleviate this drawback. Although JMS and Web Services do not
offer any specific features to address the problem of impedance mismatch, their approach
of loosely coupled communication supports the integration of applications with disparate

communication requirements.

To conclude, a number of middleware candidates have been assessed against technical
requirements of the software framework for adaptive fixturing systems. As a result,
CORBA , Web Services and JMS are less suitable for this application as they lack real-time
support and do not satisfy other important requirements. Although, RT CORBA offers a
fast, robust and platform-independent communication service, its client/server concept
introduces tightly coupled communication channels which cannot adequately support
many{o-many communication. Therefore, CAMX and DDS appear to be more appropriate
for this kind of application. Overall, the assessment revealed that DDS is the preferred
choice for the fixture framework. It is specifically designed for the needs of platform-
independent real-time applications with low-latencies and addresses the challenge of
impedance mismatch. Moreover, since DDS is an application-neutral standard it can be
adapted to the fixturing domain. CAMX on the other hand is designed for assembly
applications. This means, although the middleware allows the definition of extensions, the
majority of the standardised CAMX messages cannot be applied directly to the §xturin
domain. Consequently, DDS was chosen as the communication infrastructure of the
software framework.

-57 -

Research Methodology

This decision has a high impact on the design of the software framework. In particular, the
communication infrastructure described in chapter 6 needs to be based on the data-centric
publish/subscribe paradigm. Data types for the exchanged information between the fixture
modules, as well as an associated data topic concept have to be defined as part of this
research. Additionally, the research shows how the Quality-of-Service conceptl difere

DDS can be utilised to address the challenges of reconfigurable fixturing systems.

3.5. Overview on Example Fixtures for lllustration Purposes

In this section the conceptual designs of two different fixturing systems are presented in
order to facilitate the understanding of the concepts described in the following chapters.
The first fixture is based on a rail frame which allows the automatic repositioning of clamps
and locators in order to reconfigure for a variety of workpieces. This concept has also been
realised as a physical prototype and was used for the tests which are described in.chapter 7
The second design uses a base plate with mounting holes on which a set of fixturing
elements can be arranged. This concept has not been implemented as a physical test bed.
Instead, it is used to illustrate the general applicability of the methodology and the data

model presented in the thesis.

3.5.1. Rail-based Fixturing System

The basic idea of this system is to utilise rail guides on which a set of clamping and
locating elements are mounted. These elements can be moved continuously along the rails

to achieve fixture reconfiguration. A variable number of rails can be arranged in 3D space,

depending of the different part familigs. Figure (3-5 shows a design drawing of a

configuration with four rail guides, forming a closed working envelope. Each rail consists

of a pair of linear low friction guides which are mounted on a plate to provide adequate
vertical and lateral support for the guides and also raise them in height. To allow the
repositioning of the linear actuators and other fixturing elements, a number of carriers are
attached to the rails that can slide along the linear guides. As shown in the detailed view in
the bottom right corner of the drawing, the carriers consist of a runner element on each

linear guide and a metal plate on which a clamp or other equipment can be mounted.

- 58 -

Research Methodology

ball screw

Figure 3-5: Conceptual Design of a Fixture with Four Rails

To realise the repositioning, a ball screw is mounted between the linear guides. The ball
screw nut is mounted on the lower surface of the connecting plate and the ball screw shaft
is held in place by means of ball bearings at the ends of the shaft. One of the erds is dr
directly by a co-axially mounted servomotor with integrated positional feedback which is
not shown in the drawing. The position of the runner pair on the linear guides is thus
controlled through this motor. Different actuators or passive fixturing elements are mounted
on top of the connecting plates. The actuators act as clamps, whilst the passive units act as
locating or supporting points. Actuating units could be based on any available actuating
technology (e.g. pneumatic, hydraulic, electromechanical) depending on the application
requirements. The linear actuators shown in the drawing are each driven by indivitlual A
servo motors and incorporate a displacement and a force sensor to provide feedback
capabilities. The servo motor has a locking mechanism, granting the formation the ability to
be used as a clamp and a locator. Detailed descriptions on the selected equipment for the

physical test bed are provided in chapter 7.

The general concept can be adapted according to the application requirements. For

example, the end user may choose to include more or less linear guides, runner pairs,

-59 -

Research Methodology

different types of active or passive fixturing elements and could choose between top or side
clamping 6 illustrates three different variations of the rail-based concept.

Figure 3-6: Variations of the Rail-based Fixture Design

The fixture in Figure 3-6.a shows a configuration with two rails and two rigid locators.

Figure 3-6.b demonstrates how the concept can be scaled up to a 3D solution. Finally,

Figure 3-6.c illustrates the use of different clamping elements. In this example, two swing

clamps are mounted on the rails which can be used for top clamping of workpieces.

3.5.2. Fixture using a Base Plate with Mounting Holes

The second example consists of a different fixture design which uses a base plate with a set
of mounting holes. The holes can be used to attach a variety of fixture modules like clamps
or locators onto the plate. This approach is similar to the systems proposed by other
researchers [37-39] and a design overview is provid @re 3-7.

- 060 -

Research Methodology

Figure 3-7: Conceptual Design of a Fixture Using a Base Plate with M ounting Holes

In contrast to the rail-based fixture design, this approach does not support the continuous
movement of the mounted elements. Instead, a discrete number of mounting holes
determines the possible positions and allows rotating the modules around the axis normal to
the mounting hole. This concept requires an additional mechanism to reposition the fixture
modules during the reconfiguration procedure which can be realised by a robot. Regardless
of what repositioning mechanism is utilised, input information about the current position

and orientation of the modules, their geometric dimensions and the desired positions is

required in order to clamp the next workpiece.

Like the previous approach, the general design can be adapted to create different fixture
layouts. For example, multiple base plates can be combined in 3D space with different hole
patterns. Additionally, different types of fixturing elements can be added or removed and

their positions can be changed on the base plate. Some of the variations are illustrated in the

drawings provided Ry Figure 3-8he design in Figure 3}8.a shows an arrangement of three

linear actuators on a base plate with a 7 x 7 hole pattern. Figdre 3-8.b illustrates an example

where two base plates are combined|and Figurg 3-8.c demonstrates a fixture with swing

clamps for top clamping and passive locator elements.

-61 -

Research Methodology

Figure 3-8: Variations of the Fixture Design with Base Plates and Mounting Holes

In the context of the presented examples, the fundamental aim of this research work is to
develop a software framework which is applicable to any of the presented fixture design
variations. This means, the data model must be able to represent the capabilities of the
different fixture elements and the reconfiguration methodology must be formulated
independently from specific design features like mounting holes or rail guides, thereby

realising a concept with general applicability.

3.6. Chapter Summary

This chapter has outlined the systematic research approach adopted in this study and
described the main steps and key decisions taken in the development of the research. Based
on the knowledge gaps identified in chapter 2, the research domain has been defined. This
includes the definition of the key research objectives and the description of general
assumptions for the software framework. A detailed requirement analysis has been carried
out with the use case method to capture the necessary functionalities of the software
framework. Furthermore, a suitable middleware technology has been selected as the basis
for the communication infrastructure of reconfigurable, adaptive fixturing systems. The

described selection process has resulted in the decision to adopt the Data Distribution

-62 -

Research Methodology

Service (DDS). To facilitate the understanding of the core knowledge contributions of this
research, two exemplary fixture design concepts have been described which are

subsequently used for illustration purposes in the following chapters.

-63 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

4. Object-oriented Data Model for Reconfigurable and
Adaptive Fixturing Systems

4.1. Introduction

To guarantee the general applicability of the software framework, a common data model
has ben formalised to represent the capabilities of a variety of fixturing systems. This is
based on the observation that despite the structural differences of fixtures, common groups
of functionalities can be identified. The purpose of this chapter is therefore to define the
core model elements that serve as the foundation for the methodology described in chapter
5 and 6. Object-oriented techniques are utilised to logically group common aspects of
fixtures that are subject to the reconfiguration procedure. On the other side, details that are
irrelevant for the methodology are omitted. For example, for the automatic reconfiguration
of fixture modules it is not necessary to capture the exact mechanical structure (e.g. the
number of screws) below module level as these aspects are determined in the fixture design
phase. Therefore, details that can be regarded as constant during the operation of the fixture
are ignored by the model. In this way, the model provides a functional view of the fixture

for the software framework.

To manage the complexity of the model, it has been divittedive logical parts. This has

been done based on the package concept which is defined in the Unified Modelling
Language (UML) standard [142, 143{ccording to UML, a package is “a collection of

model elements that can be of arbitrary types and that are used to structure the entire model
in smaller, easily manageable units” [144]. Each package defines a number of model
elements in terms of classes and data types. A class groups model elements with same
specifications of features, constraints and semantics [144]. Data types are used by the
classes for the specification of attributes. In contrast to classes, data types have no identity.
This means, two instances of the same data type cannot be distinguished from each other if
their values are identical. On the other side, two instances of the same class (called objects)

can be distinguished at all times.

-64 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

Section| 4.2 provides a comprehensive overview on the data model and its package

structure. Based on this, the subsequent sections describe the various model elements of

each package. In more detail, section 4.3 describes the most fundamental elements which

are used by other packages and therefore have been grouped together.| Sections 4.4 and 4.5

focus on the classes related to the devices and the fixture modules, respectively. The details

of transport components are explained in se¢tion 4.6. Finally, the classes needed for the

reconfiguration methodology are described in seftioh 4.7.

4.2. Model Overview

Figure 4-1 shows the package structure of the data model which consists of the five

packages’Common Elements “Transport Componeht“Fixture Modulé&, “Device’ and
“Reconfiguratiofl. The package “Common Elements” defines the base classes and
common data types used in other packages.

Fixture Coordinator View [— Fixture Module View
2 Common Elements f_
Transport Fixture Module Device
Component
Reconfiguration

Figure 4-1: Overview of the Package Structure of the Data M odel

The packages “Fixture Modulé&, “Transport Componehtnd “Device’ define the physical

elements of a fixture as well as their capabilities. It therefore reflects the overall approach
of this research work to decompose a fixture into these three categories. Essentially, these
packages extend the classes Component and Capdhilitythe “Common Elements
package. As a consequence, so-called dependency-relationships emerge between these
packages which are depicted by dashed arrows pointing from the dependent to the
independent package. For example, the pack&geture Modulé& utilises the model

elements defined in package “Common Elementsand further elaborates them. Finally, the

- 65 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

package‘Reconfiguratiofi contains the elements that are required for the reconfiguration

methodology.

The model elements of the packages are instantiated in both, the fixture coordinator
software and software programmes representing each individual fixture module. As it can
be seen in the picture, these software units utilise different parts of the data model, thereby
creating two complementing views of the fixture with different levels of detail. The
software of the fixture coordinator instantiates the model elements of the packages
“Common Elements “Fixture Modul&, “Transport Componehtand “Reconfiguratiofi.
Consequently, it generates a global view of the entire fixture whilst remaining unaware of
the internal devices and their functionalities within each individual module. These details
are encapsulated in the software for the modules which provides each module with a local
view of its own devices and capabilities. Both software units utilise the model elements
defined in the packages “Common Elementsand “Fixture Modul& which highlights the

central role of the fixture modules in the data model.

4.3. Model Elements of the Package “Common Elements”

This package defines the two main classes Component and Capability which serve as the
roots for the entire model. Both classes are abstract which means that they are not directly
instantiated by the software framework. Instead, these classes encapsulate properties that

are common for the child classes in other packages that inherit from them. An overview of

the package contents is shown in Figurg 4-2. A summary of the utilised UML notations is

provided in the Symbology section in the beginning of the thesis.

0..1
Component 1] Capability L

id: Integer id: Integer
description: String description: String
capabilityList: Capability [] Component: Component
boundingBox: BoundingBox nestedCapability: Capability
<<DataType>> <<DataType>> <<DataType>> <<DataType>> <<Enumeration>>
BoundingBox Point SpatialDescription Matrix Unit
p1: Point x: double x: double line[4]: double millimeter
p2: Point y: double y: double column([4]: double | | newton
z: double z: double degree
rot_x: double unknown
rot_y: double
rot_z: double

Figure 4-2: Model Elements of the Package “Common Elements”

- 66 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

In the diagram, the UML notations for classes and data types are used. For each class the
attribute names and the data types are provided which are separated by a colon. Unless

stated otherwise, the class methods are not shown in the UML diagrams in this chapter.

4.3.1. Data Types

UML defines the fundamental data types double, Integer and String. The data types double
and Integer are used for numerical values, whereas String is used to retain text. Based on
the former, this package defines a number of additional data types that are used throughout
the model. The data type BoundingBox is used to approximate the spatial dimensions of
component. It is defined by the coordinates of two diametric corner points of the smallest
box, enclosinga component. Both corners are defined as elements of the data type Point
which specifies the x, y and z values of a point in the local coordinate system of a
component. To define the measuring units, a number of classes of the model utilise the data
type Unit. The latter is an enumeration data type which defines a set of enumeration literals
for each physical unit. Furthermore, the data type SpatialDescription is used throughout the
model to define the position and orientation of a component relative to another coordinate
system. In essence, it holds the translational and rotational parameters to perform the

coordinate transformation from one coordinate frame to angther. Figure 4-3 shows an

example of two such coordinate framgsa®d $. Based on the spatial description of S
one can derive the matrices for the translation and rotation fiamSp

S, YA SpatialDescription

x: 100
y:0
y z:-30
rot_x: 0°
rot_y: -90°
rot_z: 0°
S
T= 0
0
0
1 0 0 0 cosrot_y O sinrot_y O cosrot_z -sinrot_z 0 O
R - 0 cosrot_x -sinrot_x O B 0 1 0 0 R. - sinrot_z «cosrot_z 0 O
*“l0 sinrot_x cosrot_ x 0| ' |-sinrot_y O cosrot_y 0| 0 0 10
0 0 0 1 0 0 0 1 0 0 01

Figure 4-3: Homogeneous Coor dinate Transfor mation Using the Data Type SpatialDescription

-67 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

According to the homogenous coordinate transformation approach, these matrices are 4 by
4 matrices, which express the transformation between S1 and S2 as a matrix multiplication,
resulting in matrix M. These matices are represented in the model by the data type Matrix
Based on this, a point P of the systesrc&h be expressed in coordinates of systetoyS
multiplying it with matrix M. For this, its Cartesian coordinates are converted to

homogenous coordinates, using the following relation:
(Xl y’ Z)T - (Xiyazrl)T (Equ. 4-1)

After the multiplication of matrix M with the homogenous vector of point P, the resulting

4x1 vector is converted back to Cartesian coordinates with the following function:

' . N T
(x.y,z'D) %(E%EJ =(x",y",z2") (Equ. 4-2)
4.3.2. The Class Component

Every physical entity of a fixture that is known to the software framework is modelled as a
subclass of Component, thereby providing a set of common properties. In this context, a
force sensor, a clamp or an entire fixture module are represented as components. Each
component has a unigue numerical identifier and a description text. The most important
characteristic at this abstraction level is however the association with a variable number of
Capability objects. Additionally, for each component of the system its spatial dimension
can be defined by setting the attribute boundingBox whose type has been described in the

previous section.

4.3.3. The Class Capability

The class Capability represents a functionality of a component in the fixturing system. Its
subclasses describe what a component is able to do and trigger the associated behaviour.
There are matching capability subclasses for each comptypen Similar to Component

the class Capability does not define any details of a particular functionality since this is
modelled in its subclasses. Instead, it subsumes the commonalities among all capabilities of
the data model. First, the association between a capability and a component is defined in
this class, thereby guaranteeing access to the component who owns the capability.

Secondly, it provides the Capability subclasses in the other packages with a numerical

- 68 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

identifier and a textual description. Finally, as shown in Figure 4-2, a capability can own a

so-called nested capability. This concept reflects the layered approach of the moded and is
result of the hierarchical relationship between fixture modules and their internal devices.
When a capability of a fixture module is triggered, it does not directly access the hardware
to carry out the requested behaviour. Instead, it delegates the request to its nested capability

which can access the associated hardware device.

4.4. Model Elements of the Package “Devices”

The elements of this package are used to represent the internal devices of a fixture module
and their capabilities. For this, the module software must be configured with information

about the devices, their capabilities and the software libraries to access the hardware. This

can be provided in the form of XML files. Figure #-4 presents an overview of the class

structure of the package. The data types used for the class attributes are not shown in the

diagram, but will be explained in the relevant sections.

. «
FixtureModule Device
| FixtureModule |&J Sp: SpatialDescription
deviceToModule: Matrix
1 | moduleToDevice: Matrix
devicelLibrary: IDeviceLib
[\ \ | 1

ClampDevice SensorDevice LocatorDevice CompositeDevice (>
currentForce: double currentValue: double | |currentPosition: Point | | | nestedDevices: Device]
isLockable: boolean %

i | |

LinearClamp ForceSensor DisplacementSensor SupportDevice
currentActuation: double currentPosition: Point

SwingClamp
currentAngle: double

. DeviceCapability
\ \ \ |
LinearActuationCapability SenseForceCapability Locate SenseDisplacementCapability
strokeRange: StrokeRange | | sensinglInfo: SensinglInfo maxForce: double | | | sensingInfo: Sensinginfo
currentForce: Force currentDisp: double
T —
SwingActuation ApplyForce Support
swingRange: SwingRange clampingRanges: ClampingRange [] | | maxForce: double

Figure 4-4: Class Diagram of the Package “Device”
- 69 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

4.4.1. Device Hierarchy

A device is defined as a subcomponent of a fixture module. In contrast to fixture modules,

devices are not encapsulated by own active software programmes and they have no direct
access to the publish/subscribe communication infrastructure described in chapter six. The
class Device inherits the properties from the base class Component defined ir@ion 4.3.2

In particular, this enables a device to be attached with an arbitrary number of capabilities
which in this case inherit from the class DeviceCapability. Additionally, the Device class
defines an aggregation relationship with one fixture module. In other words, one fixture
module can consist of a variable number of internal devices. For the representation of the
internal device structure of a fixture module, tigect oriented “Composition” design

pattern [104] has been adopted. According to this pattern, the parent class Device defines
the class attributes and interfaces that are common to all devices. This includes a reference
to the device library which contains the source code to access the hardware and the spatial
description of the local coordinate frame, relative to the coordinate system of the fixture
module. Based on the spatial descriptite transformation matrices from the device’s

frame to the module’s frame and vice versa can be generated and are stored in the
properties devicBoModule and modulBoDevice, respectively. The common interface
includes the methods to set and retrieve these attributes which are not shown in the
diagram. The subclasses ClampDeyiSensorDevice, LocatorDevice and SupportDevice
represent concrete device types, while the subclass CompositeDevice is used to group
devices into composites. For this, the class allows to add a number of so-called nested
devices which are in turn objects of the base class Device, thereby recursively creating a

tree structure.

The semantics of this object hierarchy is used to express the links between devices. For
example, when a force sensor is mounted on a linear clamp, the module software creates
not only the objects for these devices, but also an object of the type CompositeDevice. The
latter becomes the parent node of the sensor and the clamp, indicating the connection of
both components. Moreover, the composite receives all capabilities of its children, thereby
providing a combined view of its child nodes. The advantage of the composite pattern is

that, from a software point-of-view, simple devices like an individual force sensor can be
-70 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

treated the same way as complex devices which are composed of several sub-devices. This

is illustrated ivl\ Figure 44{5.a which shows the object model of a fixture module consisting of

a linear clamp with integrated sensors for force and displacement. Conyersely, Figure 4-5.b

shows a fixture module which only consists of a force sensor. In an object model diagram,
an instantiated object is illustrated by a rectangle which contains the associated class name,

preceded by a colon. Links between objects are depicted as lines between the rectangular

frames.
a.) - b.)
| | -
‘ Gz 4
:FixtureModule :FixtureModule
\ \
:CompositeDevice :CompositeDevice
[
| | | |
:LinearClamp :ForceSensor :DisplacementSensor :ForceSensor

Figure 4-5: Examplesfor the Device Representation with the Composition Pattern
4.4.2. Device Types

The data model provides the classes for the most commonly used devices in adaptive
fixtures. These include the classes SensorDevice, ClampDevice and LocatorDevice. The
classes SensorDevice and ClampDevice have further child classes to reflect theofariety
different kinds of these devices. Obviously, the framework does not intend to provide
classes for all available device types. However, the object-oriented approach allows to
enhance the data model by adding new classes. For example, for a rotary sensor an
additional child class of SensorDevice can be attached, while other forms of clamping

devices would require to add new subclasses of ClampingDevice.

4.4.2.1. Sensor Devices

Typical sensors used in adaptive fixturing systems are force sensors to measure reaction or
clamping forces and displacement sensors. Consequently, the framework offers distinct
classes for the representation of these hardware devices. To store the latest sensor reading,

the base class SensorDevice provides the attribute currentValue. Since each device also
-71 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

contains matching capability objects which are described in sgection 4.4.3, this value can be

correctly interpreted by the fixture module before it is published to other subsystems. The
base class also defines the interface for the method getCurrentValue() which is not shown

in the class diagram ‘n Figure 4-4, since this chapter concentrates more on the data

structures. The description of the interfaces is instead the subject of chapter 6. The method
is called to retrieve the current values from the sensor hardware. Internally, the classes
ForceSensor and DisplacementSensor delegate the requests to the software library they are
configured with, which ultimately accesses the hardware. The configuration of a device
with a software library is already defined in the Device class. For this reason, the classes
ForceSensor and DisplacementSensor do not add own attributes to the model. Instead, they

are defined for semantic reasons.

4.4.2.2. Clamp Devices

Similar to the sensor devices, the framework provides classes for the most common
clamping types used in adaptive fixtures. The base class ClampDevice provides the
attribute currentForce to store the currently exerted clamping force of the device, if the
clamp is connected with a sensor to measure the force. Additionally, the Boolean attribute
isLockable defines whether or not the clamp can be locked in position. If it can be locked,
the clamp can also act as a locator. To model clamps based on a linear actuator the class
LinearClamp is utilised by the framework. In order to store the current stroke of the linear

clamp, the class defines the attribute currentActuation. As iIIustratIed in Figyre 4-6, the

class SwingClamp represents clamps that perform an additional swing-in/swing-out

movement during the clamping procedure.

Figure 4-6: Examplesfor aLinear Clamp (&) and a Swing Clamp (b)

-72 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

The class SwingClamp inherits from LinearClamp because the clamping process is
nevertheless based on a linear actuation. It provides the attribute currentAngle for the
position of the clamping arm. For the interpretation of this value, the capability class
SwingActuation provides the attribute swingRange which defines the maximum swing

angles in both clockwise and anti-clockwise direction (see sgction 4.4.3.1). Within the

scope of the research, it is defined that clockwise rotations are expressed as negative angle
values while rotations in counter-clockwise direction are positive. Consequently, the sign of

the currentAngle attribute indicates the direction of the swing movement.

4.4.2.3. Locator and Support Devices

The research study focuses on active devices which can be adapted before or during the
clamping procedure. Passive devices like locators or supports which consist of purely
mechanical structures without any kind of intelligence, do not actively participate in the
clamping process. However, these devices can also be the subject of the reconfiguration
procedure. For this reason, the framework provides model elements for the representation
of these devices, in terms of their existence and position. Other mechanical details like
material or the exact shape, are omittasl these aspects cannot be automatically

reconfigured. The classLocatorDevice and SupportDevice are used for the representation

of passive devices. Figure 4-7 presents two devices that can be modelled with the described

clases

Figure 4-7: Examplesfor Locator Devices

Both classes have the same structure and extend their base class with an attribute for the
current position of the locator/support tip. Thus, they are designed for passive devices with

one contact point with the workpiece. However, locators or support elements with multiple

-73 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

contact points or contact areas can also be represented, since the position property can be
treated asa reference which indirectly determines the positions of other points.
Furthermore, the object-oriented approach of the data model allows to add more detailed
classes to capture specific locator/support devices.

4.4.3. Device Capabilities

The device capability classes are used to describe the data format and the limitations of the
functionalities, a certain device provides to the fixture module. For example, a force sensor
can be attached with the capability to sense force in Newton within a range of 0 to 1000N
and with a resolution of 0.5N. As a consequence, clients are able to interpret the value for
the current force attribute, defined in the device class. In addition to this descriptive
purpose, the capability objects are used to trigger a particular functionality of a device. As

described in sectioE 6.4.2, all requests to the capabilities of the fixture modules are

delegated to their nested device capabilities which have the knowledge about the interface
of a particular device object for the hardware access. This delegation approach makes it
possible to enhance the fixture module program with new capabilities and to exchange
software objects in lower layers without affecting upper layers. Additionally, due the
representation of the device capabilities as separate classes, a particular device object can
be configured with exact capabilities the hardware offers. For example, some linear
actuators have integrated force sensors which results in the ability to apply a certain target
force while other actuators do not offer this feature. By separating the device structure from
the capability classes, each device object can be linked with a list of required capability
objects, based on the underlying hardware. The alternative to this approach would have
been to represent the capabilities within the device classes. However, this approach would
require the data model to define all theoretically possible capabilities of a device type,
leading to a potentially large number of classes or obsolete class attributes. The following

sections describe the device capability classes in more detail.

4.4.3.1. Actuation Capabilities

The class LinearActuationCapabiliig used for clamping devices based on a linear

actuator. It provides an attribute of the data type StrokeRange to describe the alloaled tra

-74 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

of the linear actuation in terms of the minimum and maximum stroke, the accuracy and the

measuring unit.

<<DataType>> <<DataType>> <<Enumeration>>
StrokeRange SwingRange Axis
min : double axis: Axis X_axis
max: double cw_max : double y_axis
unit : Unit ccw_max : double Z_axis
resolution: double resolution : double
unit : Unit

Figure 4-8: The Data Types StrokeRange, SwingRange and Axis

For swing clamps, the class SwingActuation is used which additionally provides an attribute
of the data type SwingRange to describe the limitations of the swing movement of the
clamping arm. The data type defines the axis around which the swing movement is
performed, as well as the maximum angles in the clockwise (cw_max) and anti-clockwise

(ccw_max) direction. Additionally, the accuracy and the measuring unit can be defined.

4.4.3.2. The ApplyForce Capability

This capability class is used to represent the ability of a clamp to apply a forcertaia
direction. The model supports clamps that can pull, push or exert force in both directions.
For this reason, the class contains a list whose entries are defined by the data type
ClampingRange. This data type contains fields for the minimum and maximum achievable
force, the accuracy and the measuring unit. Additionally, the field direction is used to

specify whether the information accounts for the pull or the push direction. Figyre 4-9

shows the UML definitions of these data types.

<<Enumeration>>
ClampingDirection

<<DataType>>
ClampingRange

direction: ClampingDirection || push

minForce : double pull
maxForce : double both
unit : Unit unknown

resolution : double

Figure 4-9: The Data Types ClampingRanges and ClampingDir ection
For clamps that can act in both directions, the list contains two entries, one for the pull and
one for the push direction, thereby allowing to specify different sets of information for both
directions. A single entry is defined for a clamp that can exert force only in one direction.

Further, to unambiguously express the clamping direction in terms of the local device

-75 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

coordinate system, the definition of the local coordinate system is subject to the following
restrictions
e The clamp must act along or in parallel to the x-axis of the local coordinate system
e |If the clamp can apply force in both directions, the push is defined in positive and

the pull in negative direction of the x-axis

¢ |f the clamp can only apply force in one direction (either pull or push), the clamping

direction is defined in positive x-direction

The graphic below illustrates these rules. Figure 4-10.a shows a linear actuator that can

push and pull. Consequently, the device coordinate system has been placed such that its x-

axis defines the clamping direction when in push-modg. In Figurg 4-10.b, the actuator is

assumed to support only a single-acting pull-mode. Therefore, the local coordinate system

has been placed such that the x-axis is pointing in the direction, the force is exerted.

a_) b) [
YA
=
S - ”
z

Figure 4-10: Coordinate System Definitionsfor Clamping Devices

4.4.3.3. The Capabilities Locate and Support

Passive elements like locators do not communicate with other devices since they lack the
computational power. Nevertheless, their capabilities need to be represented by the
software framework in order to assess the overall capabilities of the fixture. Additionally,
self-locking clamp devices can also be used as locator or support elements. For this reason
the capability class Locate and Support have been defined. Both classes contain the
attribute maxForce which specifies the maximum allowed reaction force in Newton the

locator can receive without being damaged.

-76 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

4.4.3.4. Sensing Capabilities

The class SenseForceCapability and SenseDisplacementCapability describe meta-
information about the sensing capabilities of a device. They can be attached to device
objects representing an individual force or displacement sefserdata model is limited

to force and displacement sensing. However, the model can be extended by further classes
for other types of feedback. Both classes use the data type Sensinginfo to describe the
limitations of the sensing capability. This data type contains attributes to define the
minimum and maximum measurable values, the resolution and the measuring unit.
Additionally, both classes provide an attribute to hold the latest sensor sample. For the
displacement sensing, the current sensor value is stored in the attribute currentDisp as a
floating-point number. For the force sensing capability, the data type Force is used. This
allows to store not only the current force value, but also the current clamping direction. If
the capability is attached to a for force sensor that is connected with a locator, the

clampDirectionattribute of the data type is set to “unknowry’.

<<DataType>> <<DataType>>
Sensinginfo Force
min: double moduleld: integer
max: double clampDirection: ClampingDirection
unit : Unit value: double
resolution: double

Figure 4-11: The Data Types Sensinglnfo and Force

4.5. Model Elements of the Package “Fixture Module”

The classes in this package are particularly important for the reconfiguration methodology

and the communication infrastructyre. Figuréﬁlprovides an overview on the classes in

this package and their relationships to other packages. The data types used for the class

attributes are not shown in the diagram, but will be explained in the relevant sections.

-77 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

Transport Component Common Elements
1
Slot ’ Component ‘ ’ Capability ‘
Device 1 1 *
FixtureModule ——— FixtureModuleCap
1 | sp: SpatialDescription isInitialised: boolean
1 moduleToSlot: Matrix isActive: boolean
slotToModule: Matrix
1
Reconfiguration
—— 1 -
’ Reconfigurationinfo Fi
’ ReconfigurationCmd }»
I]]]

AdjustTipPosition AdjustClampingForce SenseClampingForce SenseReactionForce
workspace: ClampWorkSpace clampinRanges: ClampingRange [] currentForce: Force currentForce: Force
desiredTipPosition: Point desiredForce: Force sensinglnfo: Sensinginfo || | sensinglnfo: Sensinginfo

| — — |

AdjustBodyPosition SenseTipPosition SenseBodyPosition ProvidesRole

workspace: WSInfo [] tipPosition: Point sensinglnfo: BodyPosSensingInfo clampRolelnfo: ClampRolelnfo
desiredBodyPosition: Point sensingInfo_x: Sensinglnfo || currentBodyPosition: Point locatorRolelnfo: LocatorRoleInfo
desiredSlotClocking: Clocking sensinglnfo_y: Sensinglnfo || currentSlotClocking: Clocking supportRolelnfo: SupportRolelnfo
desiredModuleClocking: Clocking sensinglinfo_z: Sensinglnfo || currentModuleClocking: Clocking currentRole: Role

Figure 4-12: Model Elements of the Package “FixtureM odule”

4.5.1. Fixture Modules

The class FixtureModule represents a component that interacts with the workpiece and is
endowed with an own software program. They are regarded as the essential components in
an adaptive fixturing system and are therefore addressed by the reconfiguration
methodology described in chapter 5. As a result of the software program, fixture modules
can actively announce their presence to the system and propagate their capabilities based on

their internal devices according to the communication concept.

Physically, a fixture module is made up of sensor and actuator devices whose capabilities
determine those of the entire module. This is represented in the diagram by the aggregation-
relationship between the class FixtureModule and the Device-class. As a result of this
hierarchy, the class FixtureModule is not limited to a specific mechanical structure and
groups its devices into one functional unit which can communicate with the fixture
coordinator. The classical example for a fixture module in this research is a smart clamp
with integrated force and position sensors, but also a simple force sensor or a linear actuator
without any feedback can be modelled as a fixture module if they are enhanced with an
own local software routine that complies to the definitions of the communication
-78 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

infrastructure. On the fixturing platform the fixture modules are mounted on transport
components which determine their position and allow their movement when the fixture

needs to be reconfigured. This is represented by the association between a fixture module

and a “slot” defined in the package “Transport Componeht(see section (4.6). To

accomplish the reconfiguration process, a fixture module can be assigned with an object of

the class Reconfigurationinfo and with a number of reconfiguration commands. These

classes are described in section 4.7 while the reconfiguration methodology is described in

chapter 5.

In addition to the relationships with other model elements, the class FixtureModule defines
three more properties which determine its position and orientation on the fixture. This
includes a property of the data type SpatialDescription that defines the translational and
rotational parameters for the coordinate transformation between the module’s local
coordinate system and the coordinate system of its associated slot. Based on this, the
transformation matris from the module’s frame to the slot’s frame and vice versa can be

generated and are retained in the properties moduleToSlot and slotToModule, respectively.

4.5.2. Capabilities of Fixture Modules

The capabilities of fixture modules are modelled as subclasses of FixtureModuleCap which
in turn inherits from the class Capability, thereby redefining the general relationship
between components and capabilities. Thus, a fixture module can only own capabilities that
are subclasses of FixtureModuleCap. The reason for this restriction is that only the fixture
module capabilities can communicate with the fixture coordinator while the device

capabilities are exclusively visible to the fixture module.

The capability objects in this package serve three purposes. Firstly, by attaching them to the
fixture module object, the latter can be enhanced in a flexible way with functionalities and
additional properties like the ability to exert a clamping force or to feed back the current
position of the actuator tip. Without attaching capability objects, the class FixtureModule is
merely an empty shell. Consequently, the approach allows to reuse the class for a variety of
different hardware setups by attaching it with different capability objects. Secondly, only

-79 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

the fixture module capability classes contain the logic to communicate via the
publish/subscribe concept. Consequently, the capability objects constitute the interface to
trigger a particular behaviour of the module. Received requests are delegated to the nested
device capability objects until the hardware is accessed. Thirdly, the capabilitgsclass
describe the characteristics and limitations of the related functionality in order to allow
other subsystems to utilise the fixture module in a meaningful way. When the fixture
module capabilities are forwarded to fixture coordinator or to other subsystems, they utilise
this information to interpret the data coming from the module.

The framework defines eight fixture module capabilities, reflecting the most common
functionalities in a fixture. However, the object-oriented approach allows programmers to
extend this hierarchy with other classes if required. For example, if a fixture module
containing a temperature sensor is introduced, a new subclass SenseTemperature can be
introduced without affecting the overall concept. In the following sections the fixture

module capabilities are described in more detail.

4.5.2.1. The Capability AdjustTipPosition
The tip position of a fixture module is defined as the point whdmichesthe workpiece.
Thus, this capability is attached to the fixture module if it contains a clamp device that is
able to actuate to a certain position. The coordinates of this point are relative to the local

coordinate system of the fixture module.

<<DataType>>
ClampWorkspace

strokeRange_x : StrokeRange
strokeRange_y : StrokeRange
strokeRange_z : StrokeRange
swingRange : SwingRange

Figure 4-13: The Data type ClampWor kspace

The class provides an attribute of the data type Point for the desired tip position which can
be set by other systems in order to trigger the actuation, as described in chapter six.
Additionally, the property workspace specifies the area which can be reached by the
actuator tip of the module, using the data type ClampWorkSpace. This is a structural data
type containing the allowed stroke of the actuator along the x, y and z axis of the module

-80 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

and the swing range. For this the data types StrokeRange and SwingRange are used which

have been described in sectlion 4.4.3. Below an illustrative example is provided of fixture

module consisting of a linear actuator with a maximum travel of 60mm and a resolution of
0.01mm. Since the module does not allow any swing-movement, the clockwise and anti-

clockwise value in the attribute swingRange is set to zero.

- workspace
- strokeRange_x
A -min: 300
y -max: 360
-unit: mm
-resolution: 0.01
- strokeRange_y:
-min: 0
-max:0
-unit: mm
-resolution:0
- strokeRange_z:
-min: 0
-max: 0
-unit: mm
-resolution: 0
-swingRange:
-axis: unknown
-cw_max: 0
-ccw_max: 0
-unit: degrees
-resolution: 0

Figure 4-14: Example I nstantiation of the AdjustTipPosition Capability

4.5.2.2. The Capability SenseTipPosition

If a fixture module has sensor device for the positional feedback of its tip position, this
capability is instantiated. The coordinates of the currently measured tip position are stored
in the property tipPosition and defined relative to the local coordinate system of the
module. Further, the class provides three additional attributes of the data type Sensinginfo
to allow other systems to interpret the x, y and z component of current tip position value

and to inform them about the limitations of the sensing capability. Details of the data type

Sensinginfo have been presented in seftion 4.4.3.

4.5.2.3. The Capability AdjustBodyPosition
The body position refers to the position of the fixture module on the fixturing platform and
is defined relative to the global coordinate system. Since fixture modules are mounted on
the transport components, the body position and orientation depends on the:
e The position and orientation of the transport component relative to the
global coordinate system

e The position and orientation of the slot on the transport component
-81 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

e The position and orientation of the module relative to the associated slot

The fixture coordinator creates this capability class automatically when the operater links

fixture module with a slot on a transport component as described in $ectign 5.2.3. Based on

the capabilities of the transport component, the workspace of the fixture module is derived
and represented in the AdjustBodyPosition class using the data type WSInfo. The latter
defines the allowed linear movements of the fixture module in global coordinates using the

data type StrokeRange.

<<DataType>> <<DataType>> <<DataType>> <<DataType>>
WSinfo ClockingRanges ClockingRange Clocking
slotld: Integer clockingRange_x: ClockingRange || cw_max: double rot_x : double
linearRange_x: StrokeRange clockingRange_y: ClockingRange ||ccw_max: double rot_y: double
linearRange_y: StrokeRange clockingRange_z: ClockingRange || unit: Unit rot_z: double

linearRange_z: StrokeRange
slotClockingRanges: ClockingRanges
moduleClockingRanges: ClockingRanges

Figure 4-15: Data Typesrelated to the AdjustBodyPosition Capability

resolution: double

Additionally, the element slotClockingRanges contains the allowed rotation of the
associated slot around its axis. Similarly, if a module can be rotated on the slot, the attribute
moduleClockingRanges defines the allowed rotation. The data type ClockingRange follows
section 4.4.3).

the same concept as the data type SwingRange (see

Apart from representing the workspace of the fixture module, the capability is used by the
fixture coordinator to trigger the repositioning of the fixture modules during the
reconfiguration procedure. In this context, the fixture coordinator can update the attributes
desiredBodyPosition, desiredSlotClocking and desiredModuleClocking with the target
values. For this, the data type Clocking is used to indicate the desired angles in clockwise
and counter-clockwise direction. As described before, negative values indicate a clockwise
rotation while positive angles signal a counter-clockwise rotation. These values are
published by the capability according to the communication concept and are ultimately
received by the software objects of the transport component. The transport component is
responsible for the repositioning of its slots, thereby changing the position of the associated
modules. The data exchange between fixture modules and transport components in
n6.3.1.

described in sectid

-82 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

4.5.2.4. The Capability SenseBodyPosition

Similar to the previous class, the capability SenseBodyPosition is automatically created by
the fixture coordinator software when the operator connects a fixture module with a slot on
a transport component. The capability class is used to retrieve and represent the current
position and orientation of the fixture module on the platform. For this, the class provides
the attributes currentBodyPosition, currentSlotClocking and currentModuleClocking. To

allow the correct interpretation of these values, the attribute bodyPositionSensinginfo is

used whose data type definition is depicted in Figure|4-16.

<<DataType>>
BodyPositionSensinginfo

posX: Sensinginfo

posY: Sensinginfo

posZ: SensinglInfo
moduleClockingX: Sensinglnfo
moduleClockingY: Sensinginfo
moduleClockingZ: SensinglInfo
slotClockingX: SensinglInfo
slotClockingY: Sensinginfo
slotClockingZ: Sensinglnfo

Figure 4-16: Relevant Data Typesfor the Capability SenseBodyPosition

4.5.2.5. The Capability AdjustClampingForce

If the fixture module contains an actuator device with the ability to apply a clamping force,
this capability is created for the fixture module, based on the ApplyForce capability of the
device. The class allows other subsystems to trigger the clamping behaviour of the module
via the publish/subscribe communication infrastructure. To specify the target force and
clamping direction, the class attribute desiredForce must be set with the desired values.

Similar to the class ApplyForce, the limitations of the functionality are specified using the

data type ClampingRanges (see se¢tion #.4.3 for further details).

4.5.2.6. The Capabilities SenseClampingForce and
SenseReactionForce
The capability class SenseClampingForce is attached to a fixture module which cantains
clamping device and a force sensor to measure the force at its actuator tip. The class has the

property currentForce to represent the current clamping force value and direction. The

attribute is defined using the data type Force which has been described in|section 4.4.3

Additionally, information for the interpretation of the sensor value is provided in the class

-83 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

attribute sensinginfo whose data type has also been described befmeclags
SenseReactionForce has the same structure as the previous capability. However, it is
attached to a fixture module that acts as a locator and contains a force sensor to measure the
experienced reaction force at its locator tip. If a fixture module consists of a lockable
actuator which can act as a clamp and a locator, both capability classes are instantiated for
the module. During the operation, one of them is inactivated, depending on the current role

of the module.

4.5.2.7. The Capability ProvidesRole

Based on the internal devices, a fixture module can support different roles during the
clamping procedure, namely the roles clamp, locator and support. This classification is
represented in the model by the enumeration data type Role which defines three
enumeration literals for the roles. Moreover, the software framework allows modules to
change their role for different fixture setups. For example, a fixture madmlact as a
clamp for one workpiece and as a locator for another workpiece, provided that it can lock in
position and withstand the estimated reaction forces.

To indicate the supported roles the capability class ProvidesRole provides the three

attributes clampRolelnfdocatorRolelnfo and supportRolelnfo whose data types are listed

below.
<<DataType>> <<DataType>> <<DataType>> <<Enumeration>>
ClampRolelnfo LocatorRoleinfo SupportRolelnfo Role
isSupported: boolean | | isSupported: boolean | | isSupported: boolean | | Clamp
maxForce: double maxForce: double Locator
Support

Figure 4-17: Data Types Related to the Capability ProvidesRole

Each data type contains a Boolean element isSupported which is set to true, if the fixture
module supports a particular role. The data type ClampRolelnfo does not proyide an
further details, because the relevant parameters of the clamping functionality are already
represented in other capability clessf the fixture module, such as AdjustClampingForce
and AdjustTipPosition. For the locator and support role, the attribute maxForce can be used
to specify the maximum allowed reaction force in Newton, the module can experience

without being damaged. Finally, the attribute currentRole is provided to retain the current

-84 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

role of the associated fixture module. This attribute is only used in the software of the
fixture coordinator, while the software of the fixture modules remains unaware of the

current role.

4.6. Model Elements of the Package “Transport
Components”

Transport components are defined as those parts of the fixture on which the fixture modules
can be mounted and repositioned. The term transport component is neither a traditional
term used in the fixturing domain nor is it limited to a specific geometric structure. Instead,
transport components and fixture modules are abstractions that modularise a fixturing
system into two functional groups: fixture modules which interact with the workpiece and
transport components which allow the repositioning of the former during the

reconfiguration procedure. Figure 4{18 presents a UML class diagram for the package and

illustrates its dependencies to the other packages.
]

Fixture Module

1

Common Elements

| FixureModule | [Comporent |O1—| Capabiity |

— = =
TransportComponent ! . TransportComponentCap
sp: SpatialDescription slot: Slot
tcToGlobale: Matrix

globaleToTC: Matrix
domainType: DomainType
geometryType: GeometryType

1 Reposition SensePosition
workSpace: WSinfo [] sensinginfo: BodyPositionSensinglnfo
desiredSlotPosition: Point currentSlotPosition: Point
desiredSlotClocking: Clocking currentSlotClocking: Clocking

N desiredModuleClocking: Clocking | | currentModuleClocking: Clocking

— Slot

id: Integer

sp: SpatialDescription
boundingBox: BoundingBox
slotToTC: Matrix

tcToSlot: Matrix
currentSlotClocking: Clocking
currentModuleClocking: Clocking

Figure 4-18: Overview of the Package “Transport Component”

-85 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

4.6.1. Transport Components

The class TransportComponent inherits from the class Component and can therefore be
attached with multiple capabilities, which inherit from the class TransportComponentCap
The position and orientation of the transport components is assumed to be constant during
the operation of the fixture. This means, these components are not subject to the
reconfiguration procedure. The framework can be configured with the position and
orientation of a transport component and retains this information in the class attribute of the
data type SpatialDescription. Based on this, the transformation matrices for the conversion
from the global coordinate system to the local coordinate system of the transport

component and vice versa can be generated as described in sectiFﬂih@Mtrices are

stored in the class attributes tcToGlobale and globaleToTC.

Typical examples for transport components are the linear guides presented ir| section 3.5.1

which allow the continuous movement of the attached fixture modules. In contrast to this, a
base plate with mounting holes can be regarded as a transport component which allows the
positioning of the modules in two dimensions. However, in this scenario the modules
cannot be repositioned continuously, but are limited to the positions of the mounting holes.
Other types of transport components, such as magnetic base plates, can alleviate this
restriction and provide a continuous 2D workspace for the modulese Examples
indicate that there are great differences in terms of the shapes, geometries and the
mechanical methods for the mounting and moving of fixture modules on the transport
component. However, at the same time a number of common functional characteristics can
be identified. Firstly, transport components can be grouped according to the degree of
freedom they allow for the movement of the fixture modules. Secondly, there is a
distinction between transport components that allow continuous movement and thase wher
the modules can be positioned in a discrete number of locations. These two aspects are
reflected by the attributes geometryType and domainType of the class TransportComponent

whose data type definitions are provided unteilhalb. The former specifies whether th

transport component allows the positioning of the modules along a line (one dimension), on

a plane (two dimensions) or in space (three dimensions). For this the enumeration data type

GeometryType is used which is shown 3ben. The second attribute specifies whether the

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

transport component allows a continuous relocation of the fixture modules or if the possible

positions are restricted to a discrete number of locations.

<<Enumeration>> <<Enumeration>>
DomainType GeometryType
Continous OneDimensional
Discrete TwoDimensional
ThreeDimensional

Figure 4-19: The Data Types DomainType and GeometryType

4.6.2. Slots

A slot is defined as a part of the transport component which can be connected with one
fixture module at a time. Consequently, the number of slots determines the possible number

of fixture modules on a transport component. Practical examples for slots are the movable

carriers of the rail-based system, presented in segction 3.5. By linking a fixture module with

a slot object, the framework becomes aware of the position of the fixture module on the
fixturing platform. This is because the position and orientation of the slots is defined
relative to the coordinate system of the transport component whose posture in the global
coordinate system is known. Thus, when the position of a particular fixture module is
requested, the position of its related slot is used. Similarly, when a fixture module needs to

be relocated, the position of the slot is changed.

Each slot on a transport component has a numerical identifier and defines an own local
coordinate system whose position and orientation is described relative to the coordinate
frame of the associated transport component. For this, the data type SpatialDescription is
used which contains the rotational and translational parameters for the generation for the

transformation matrices between both coordinate frames. These matrices are stored in the

class attibutes slotToTC and tcToSlot. Figur2Qfiflustrates the spatial description of the

local slot coordinate frame (blue), relative to the coordinate frame of the transport
component (red). When a slot is moved during the reconfiguration procedure, its spatial
description and the associated transformation matrices need to be updated in order to reflect
the repositioning. Additionally, the framework allows to represent slots whose orientation

on the transport component can be changed by rotating them around their coordinate axis.

-87 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

This ability is termed “clocking” within the scope of the thesis. The allowed clocking range

can be specified in the Reposition-capability class, described in sectiﬂn 4.6.3.

SpatialDescription
x: 200
y: 50
z:-50
rot x: 0
rot_y: -90
rot z: 0

Figure 4-20: Instantiation Example of a Slot on a Transport Component

The current clocking value is retained in the Slot-object using the attribute
currentSlotClocking, defined by the data type Clocking. The value for current clocking
must be within the limits set by the clocking range which is defined in the Reposition-class.
Further, the clocking values are interpreted as offsets from the original spatial description
of the slot. Negative values indicate a clockwise rotation around an axis, while positive
values indicate an anti-clockwise rotation. At the same time, the clocking values influence

the orientation of the slot on the transport component and hence change the rotational parts

of the spatial description attribute. This is illustrated in the example shagwn in Figufe 4-21.

The drawing shows a slot on a transport component which allows the clocking of -/+45°
around its y-axis, beginning from its initial orientation as indicated by the dotted line. In the
current setup, the slot is rotated around its y-axis by 15° in clockwise direction. This value
is retained in the currentSlotClocking attribute anid @lso reflected in the rotational part

of the slot’s spatial description. The separation of the current clocking values from the
current spatial description allows to determine the original (default) orientation of the slot
at all times, as well as the currently allowed clocking in clockwise and counter-clockwise
direction. Hence, by subtracting the current clocking values from the allowed clocking
values one can derive that the slot in the displayed setup canestdtated by 30° in
clockwise and 60° in counter-clockwise direction. By subtracting the current clocking
values from the spatial description, the original orientation of the slot around the y-axis can

be calculated as 0°.
- 88 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

ClockingRange _x: SpatialDescription

cw_max: 0° x: 50mm
ccw_max: 0° y: 0mm
ClockingRange_y: z: 100mm
Transport cw_max: -45° rot_ x:0°
xA Component ccw_max: +45° rot_y:-15°
ClockingRange_z: rot_z:0°
cw_max: 0° CurrentSlotClocking:
ccw_max: 0° rot_x:0°
> rot_y: -15°
_ ' rot_z:0°
y I
: Information for y-axis:
_} Allowed Clocking clockwise: -45°- (-15° =-30°
Allowed Clocking counter-clockwise: 45°- (-15°) =60°
Original Orientation: -15°- (-159 =0°

Figure 4-21: Example Instantiation of Slot with Clocking

Additionally, the framework supports fixture setups where the connection between a slot
and a fixture module allows the clocking of the module on the slot. An example for this

could be a base plate with mounting holes which allow the rotation of the fixture modules
whilst remaining in the slot. For such cases, the class attribute currentModuleClocking is
provided which follows the same principle as the clocking of the slot. The allowed clocking

range of the module must be provided by the operator when the a fixture is connected with
a slot. This information is retained in the Reposition-capability class that is associated with

the transport component.

4.6.3. Capabilities of Transport Components

The capabilities of a transport component are modelled in the class
TransportComponentCap and its subclasses which specify the limitations for the
repositioning of the slots on the transport component and the position feedback
functionality. Additionally, the capability classes are linked to the publish/subscribe
architecture which allows the communication of the current and desired slot position and
orientation. The class contains a reference to a particular slot on the transport component.
Consequently, the capability objects are ultimately related to the slots which are connected
with the fixture modules. Based on this link, the combined workspace of the associated
fixture module can be determined. Since the research work concentrates on the
reconfigurability of fixture modules, the model does not decompose the transport

components into sub-devices with an own set of capabilities. Instead, the transport

-89 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

component capabilities are limited to the repositioning of the slots and the feedback of the

current slot positions.

4.6.3.1. The Capability Reposition Capability

The class Reposition stands for the capability of a transport component to change the
position of a certain slot within a specified workspace. Consequently, if a slot is linked to a
fixture module, the latter can be repositioned accordingly. Since a transport component can

have multiple slots, it can be attached with potentially many Reposition-objects.

During the reconfiguration procedure this class is used to retrieve the desired position of the
slot on the transport component, the desired slot clocking and the desired clocking of the
fixture module on the slot from the fixture coordinator software. For this purpose, the

attributes desiredPosition, desiredSlotClocking and desiredModuleClocking are provided.
The workspace for the repositioning of a slot is described using an attribute of the data type

WSInfo which contains the allowed linear movements and the clocking ranges for the slot

and the fixture module (see section 415.2). Because the module clocking depends on the

connected fixture module, the value for the module clocking range is set to a default of O
degrees, as long as the slot is unlinked. The operator can update these values when a slot is
linked with a fixture module. Furthermore, the domain type of the transport component
influences the workspace description in this class. For this reason, the class Reposition
contains a list of workspace elements. For transport components which support the
continuous repositioning of their slots, one workspace entry is created. In contrast, for

discrete transport components multiple workspace entries are defined, one for each possible

position on the transport compongnt. Figurd2tk shows a transport component with a

continuous domain type which results in a workspace defining the minimum and maximum
positions of the slot on the transport component. In this example, the slot does not allow
any reorientation. As a consequence, the clocking range specifies a value of 0° for each axis

in clockwise and counter-clockwise direction.

-90 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

a)vya

Workspace entry #1 —* linearRange_x: clockingRange_x:

y min: 150mm cw_max: 0°

max: 400mm ccw_max: 0°

linearRange_y: clockingRange_y:

min:50mm cw_max: 0°

max:50mm ccw_max: 0°

linearRange_z: clockingRange_z:

min: 50mm cw_max: 0°

max: 50mm ccw_max: 0°

Y]

b.) /L\‘ Workspace entry #2 » linearRange_x: clockingRange x:
: % / min: 100mm cw_max: 0°
= - / max: 100mm cew_max; 0°

/ linearRange_y: clockingRange_y:

min: Omm cw_max: 0°
max:0mm cew_max: 0°

linearRange_z: clockingRange_z:

Workspace entry #1 min: 50mm cw_max: 0°
Workspace entry #3 max: 50mm cow_max: 0°

Figure 4-22: Workspace Definitionsfor Slots on Continuous Transport Components (a) and Discrete
Transport Components (b)

On the other hang, Figure 4{22b shows a discrete transport component which does not

allow any linear movements of the slots. However, fixture modules can be mounted in three
different positions, resulting in three workspace entries for the slot object. The minimum
and maximum values of each entry are equal, thereby defining a point rather than a range.

In the drawing this is illustrated using the workspace entry two.

4.6.3.2. The Capability SensePosition

This class represents the ability of the transport component to feed back the position and
orientation of a particular slot. Additionally, the values for the current module clocking can
be fed back. For this purpose, the class provides the attributes currentSlotPosition
currentSlotClocking and currentModuleClocking. To allow the correct interpretation of
these values, the attribute bodyP ositionSensinginfo is used whose data type definition was

already described in section 4.5.2.

4.7. Model Elements of the Package “Reconfiguration”

The model elements in this package are required during the reconfiguration procedure to
represent the pre-defined fixture design parameters and the individual steps to convert the

-91 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

current fixture setup into the desired configuratlon. Figure |4-23 provides a UML class

diagram of the package. The following sections describe the depicted classes in more detail.

1 11 « 1
Fixture Module — Reconfigurationinfo ContactPoint k— FixtureDesign
1 : 1 projectedBodyPosition: Point id: Integer partld: Integer
M FixtureModule desTipPosition: Point description: String processld : Integer
desSpSiot: SpatialDescription sp: SpatialDescription
desSlotClocking: Clocking localToGlobal: Matrix
desSpModule: SpatialDescription globalToLocal: Matrix
desModuleClocking: Clocking reconfiglnfo: Reconfigurationinfo
desClampDirection: ClampingDirection reqForceFb: ReqForceFeedback
reqPositionFb: ReqPositionFeedback
isEngaged: Boolean
1 0 [[|
ForceProfile ClampContactPoint LocatorContactPoint | | SupportContactPoint
maxForce: double forceProfile: ForceProfile | | maxForce: double maxForce: double
minForce: double
generateTargetForce(): double
2
[|
TimeDrivenForceProfile DynamicForceProfile
targetForces: ForceOverTime [] optimalForce: double
managedLocator: LocatorContactPoint
L] ReconfigurationCommand minLocatorTreshhold: double

maxLocatorTreshhold: double
isMarked: Boolean currentForce: double
isSorted: Boolean
execute(): void
causesCollision(): Boolean

[I |
ChangeTipPositionCmd | | ChangeRoleCmd | | ChangeBodyPositionCmd

Figure 4-23: Class Diagram of the Package " Reconfiguration”
4.7.1. Fixture Design Information

A key assumption of the research study is the availability of pre-defined fixture design
parameters for each workpiece and process. This information can be provided in form of a
data base or through other means, such as configuration files. For the object-oriented
representation of the design information, the data model defines the class FixtureDesign
which contains the the numerical identifiers the associated workpiece and the
manufacturing process. Additionally, it can be attached with a variable number of objects
inheriting from the base class ContactPoint. The latter contains the design criteria for each
point, the fixture is in contact with the workpiece. This information is limited to hardware-
independent parameters such as the position of the contact point in global coordinates or the
required clamping force. Hardware-specific details such as the use of a vendor-specific
device model or a certain clamping technology like pneumatic or electro-mechanical

mechanisms are not defined in the contact point information. This approach renders the

-92 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

framework independent from particular hardware and allows the operator to upgrade an

existing fixture with new devices as long as the design parameters are satisfied.

As it can be seen in the class diagram, each contact point has a numerical identifier and a
textual description. Its local coordinate system is specified relative to the global coordinate
frame by the attribute of the data type SpatialDescription. Based on this, the matrices for
the coordinate transformation between the local and the globale coordinate systems can be
calculated and stored in the attributes localToGlobal and globalToLdtel. local
coordinate system determines the position where the fixture module shall contact the

workpiece. The x-axis of the local coordinate system is directed towards the workpiece.

Figure 4-24 illustrates the contact point definition for a simple workpiece. Contact points

with a filled circle indicate clamps whereas unfilled circles indicate locator elements.

7
Z iCPs
X

Yy
CP4 Ytz

X CP,

Figure 4-24: |llustration of Contact Points

To specify the feedback requirements of a contact point, the attributes reqForceFb and

regPositionFb are provided whose data types are dgfined ungerhalb. Both structures contain

a Boolean element defining whether or not a particular feedback functionality is required. If

this is the case, the element sensinglnfo contains further details which must be satisfied.

<<DataType>> <<DataType>>
ReqgForceFeedback RegPositionFeedback

isRequired: Boolean isRequired: Boolean
sensinglnfo: Sensinglnfo sensinglnfo: Sensinginfo

Figure 4-25: Data Typesto Define the Requirementsfor the Force and Position Feedback

Finally, the Boolean attribute isEngaged can be used to declare a contact point as inactive

in a particular design by setting its value to false. Hence, if a fixture design requires less

contact points than others, it can declare a contact point as not engaged. During the

reconfiguration procedure, this contact point will be assigned to one of the fixture modules.
-93 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

Since the contact point defines the target position for the module, it is ensurédighat

moved out of the way and remains inactive for the duration of the process.

The essential step during the reconfiguration methodology is the process of matching the
contact points with the available fixture modules from the physical setup. This link is

represented by a reference to an object of the class Reconfigurationinfo which contains
references to both the FixtureModule and the ContactPoint object. The class stores all

required information for the reconfiguration of the modules in its attributes which are

acquired during the procedure, described in section|5.3.3. This includes the target values for

the body position of the module, the tip position, the clamping direction, the spatial
descriptions for the module and the slot, as well as their clocking values. To indicate
whether a fixture module shall act as a clamp, locator or support element during the
operation, the data model defines three subclasses, inheriting from ContactPoint. The
classes LocatorContactPoint and SupportContactPoint have the same structure, since in the
context of adaptive fixturing both roles define passive elements. These classes provide the
means to specify the maximum amount of force, a matching fixture module must be able to
withstand without being damaged. For contact points that require a clamp, the class
ClampContactPoint is provided which can be configured with a reference to a force profile,

defining the behaviour of the clamp during the operation.

4.7.2. Force Profiles

The force profiles are modelled with the child classes inheriting from the base class
ForceProfile. The latter defines two attributes for the minimum and maximum force values
in Newton, the associated clamp can exert during the clamping procedure. Furthermore,
these classes implement the objedénted “Strategy” design pattern [104]. The advantage

of the Strategy-pattern is the ability to change algorithms at run-time without the need for
recompiling the software. In the context of this research, it has been applied to allow the
framework to be configured with different kinds of force profiles in a flexible way.
According to the structure of the design pattern, the base class ForceProfile defines a
common interface generateTargetForce() which is called to retrieve the force value in
Newton for the associated fixture module during the operation of the fixture. However, the

-94 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

base class does not specify how the target force is calculated. Instead, the interface is
implemented differently in the child classes. The class TimeDrivenForceProfile can be used
to define a profile that specifies the clamping force depending on the elapsed time of the
manufacturing process. For this, the class has a list with entries of the data type
ForceOverTime. This data type contains an element for the force magnitude in Newton and

an element specifying a point in time in milliseconds. This allows the definition of step-like

profiles over time as shown|in Figure 4;26.

\

‘ .
<<DataType>> F 41— Target force entries
ForceOverTime ! /

startTime: double
targetForce: Force

Figure 4-26: The Data Type ForceOverTime

For cases where the dynamic adaptation of the clamping force in response to the measured
reaction forces acting on the locators is required, the class DynamicForceProfile can be
used. The class allows to specify a locator whose reaction forces determine the magnitude
of the target clamping force. Additionally, an optimal clamping force can be specified in
Newton which the associated fixture module tries to approach during the operation.
However, if the reaction force on the associated locator falls below a certain threshold as
specified by the attribute minLocatorThreshhold, the clamping force is increased to ensure
the workpiece remains in contact with the locator. Conversely, if the reaction force exceeds
the threshold specified in the attribute maxLocatorThreshhold, the clamping force is
decreased to prevent workpiece deformation. This class interprets the minimum and
maximum force values from the base class as a band in which it is allowed to adapt the

clamping force. Hence, the force adaptation described above is limited by these values as

illustrated in Figure 4-27

/
F L ————————— s maxForce
Reaction force on

locator was too high

optimalForce
Reaction force on Vl
locator was too low
—— minForce

>t

Figure4-27: lllustration of a Dynamic For ce Profile

-95 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

The diagram shows a possible curve for the clamping force as the fixture module tries to
approach the optimal force values, while reacting to the reaction forces of the managed
locator. A similar approach has been presented by Wang et al. [50] as reported in the
literature review (see sectiEZ.S). However, the aim of this research is not to describe the

generation of dynamic force profiles. Instead, this section shows how the structure of the
data model supports a wide variety of different force profile approaches. As a result of the
Strategy-pattern, further force profile strategies can be added to the frameworkt withou

affecting the existing class structure.

4.7.3. Reconfiguration Commands

The last group of classes in this package are those for the reconfiguration commands which
are used for the execution of the reconfiguration procedure. As described in chapter 5, each
fixture module generates its own reconfiguration steps and stores them as objects of the
subclasses of ReconfigurationCommand. Consequently, when all fixture moduks hav
completed this procedure, a global list can be generated containing all reconfiguration steps
necessary to adapt the current fixture setup into the desired configuration in order to

accommodate the next workpiece.

The classes for the reconfiguration commands follow the object-oriéWtesimand”

design pattern [104]. According to this, the base class ReconfigurationCommand defines a
common interface that consists of the parameter-less method execute(). Based on this, a
variable number of child classes can be defined which implement the execute()-method
differently. The class ChangeBodyPositionCmd is used to change the body position of the
fixture module on the transport component. Essentially, the class publishes the target
position according to the communication infrastructure described in chapter six until the
movement is complete. The class ChangeTipPositionCmd is used to ¢changglule’s

tip position by extending or retracting its actuator. Finally, the class ChangeRoleCmd is
used to change the role of the fixture module for the next clamping process in terms of the

roles clamp, locator or support element.

-96 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

There are several advantages of this design pattern which are all based on the common
interface defined in the abstract base class.|¥i$tis approach allows easy enhancement

of the system with new reconfiguration tasks. If future enhancements of the reconfiguration
procedure require new reconfiguration tasks, the class hieraadsasily be extended by

the further command classes without affecting the rest of the model. Secondly,
decomposing the entire fixture reconfiguration task into atomic steps modelled as objects
reduces the complexity of the procedure for fixture coordinator. For the coordinator, the

execution of the entire reconfiguration sequence consists of simple calls of the execute()-

methods of each command which is explained in se¢tion |5.3.6. Finally, having the

reconfiguration steps modelled as software objects allows to evaluateffeets before
they are executed and re-sorting them when collisions between modules are predicted. For
this, the base class defines the method causesCollision() which returns true if the execution

of the command would result in a collision between fixture modules. The collision

avoidance algorithm is explained in secfion §5.3.5.

4.8. Chapter Summary

A novel data model has been developed to provide the basis for the conceptualisation of a
fixturing system in the framework. The central idea of the model is the representation of a
fixture in terms of fixture modules, devices and transport components. The fixture modules
are components that interact with the workpiece, while the transport components are
elements that allow the repositioning of the modules on the fixturing system. The devices
are the subcomponents of the fixture modules which determine their capabilities. In order to
ensure a platform-independent definition of the data model, all elements have been defined

using Unified Modelling Language.

The developed model addresses the needs of an emerging generation of advanced fixturing
systems which integrate a variety of sensor and actuator components. While existing data
models have concentrated on the design phase of modular fixtures, the presented approach
focuses on the operation of reconfigurable, adaptive fixturing systems. In addition to class
inheritance, a set of more advanced object-oriented techniques like design patterns and

software delegation have been applied to the fixturing domain in order to achieve a highly

-97 -

Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

adaptable data model which is able to reflect the changing capabilities of a wide variety of

different fixturing systems.

-98 -

Fixture Reconfiguration Methodology

5. Fixture Reconfiguration Methodology

5.1. Introduction

Two scenarios for fixture reconfiguration have been presented in the use case analysis in
chapter 3. The use ca$€hange Fixture Settigs concerned with the required steps when

fixture modules or devices are added, removed or replaced. Conversely, the use case
“Adaptation of Current Setlipefers to the scenario where the fixture automatically adapts

the configuration of its existing fixture modules in order to accommodate the requirements

of a particular workpiece. This includes adjusting their positions on the transport
components and the change of the force profiles. These use cases are addressed by the two

parts of the reconfiguration methodology which are illustrated in Figufe 5-1. For both parts

of the methodology, the diagram shows the required inputs and outputs. The former are

shown as parallelograms whereas the latter are depicted as round boxes.

/ Device Information Translﬁ?gtm(igt?;%onent/
U [WY e——

:> .’ Capability Recognition A
l Methodology)

4

(Module Capabilities) Tranport Component
Capabilities

Current Fixture
Configuration

Fixture Design
Information

Operator

Adaptation o

Reconfiguration
Sequence

Figure5-1: Reconfiguration M ethodology Overview

The capability recognition methodology determines the capabilities of each fixture module
and links them with the transport components in order to generate a global view of the
functionalities of the fixturing system. This procedure requires input information from the
operator about the devices in each module as well as the transport components according to
the structure of the data model described in chapter four. Based on this, each fixture module

determines its own capabilities and publishes them according to the communication
-99 -

Fixture Reconfiguration Methodology

concept. As a result, the fixture coordinator discovers the fixture modules and becomes
aware of their capabilities. The setup adaptation methodology requires the current fixture
configuration and the predefined fixture design parameters as inputs which may come from
a data base or provided through XML files. Based on this information, an object-oriented

approach is followed to compare the current and the desired fixture configuration as

described in sectign 5.3.2. As a result, the reconfiguration sequence for the adaptation of

the fixture is generated and can be executed.

This chapter describes the algorithms for both scenarios and combines them into an
integrated methodology for fixture reconfiguration. Similar to the object-oriented data

model, the presented algorithms are not tailored to one particular fixture design. Instead,
they aim to be applicable to a plethora of adaptive fixturing systems. S@ion 5.2 provides a

detailed description of the decision-making processes for the capability recognition and the

generation of the object model. The algorithms for the setup adaptation methodology are

subject to sectign 5[3. Finally, a comprehensive chapter summary is part of|segtion 5.4.

5.2. Capability Recognition Methodology

The capability recognition methodology follows a hierarchical approach which is
decomposed in two levels. In the first level, each fixture module determines its own
capabilities based on its devices, utilising the model elements described in chapter 4. Based
on this, they publish their capabilities using the communication infrastructure, described in
chapter 6. The second level takes place in the fixture coordinator which receives the
capabilities of the fixture modules and the transport components and combines them to
generate a complete view of the fixturing system. Below the general assumptions and

requirements for both levels are summarised.

5.2.1. Assumptions and Requirements

5.2.1.1. Independent Software for the Fixture Modules, Transport
Components and the Fixture Coordinator

The methodology assumes the existence of individual software processes for the fixture

modules, the transport components and the fixture coordinator. As can be |seen in Figure
-100 -

Fixture Reconfiguration Methodology

5-1} the software processes for the transport component and the fixture modules generate

separate object models and use the capability objects to communicate with other systems

via the publish/subscribe communication infrastructure.

Fixture Module Process

1
|
|
:Fixture Module |
|
|
|
|

: Transport Component Process :
|
: | :TransportComponent | !
! I
| |
| pello1Y |
i ! | |
| [| |
* :Capability 1 |-~ - -[:Capability n | \| :Capability 1| -~ _| :Capability n |/

< at v it it >
Publish/Subscribe Communication Infrastructure
0 3

| :Capability 1 [—— :Capability n
\ \

,_l_l_

:Slot ﬂ | :Fixture Module

| :TransportComponent

| :Reol)sition I“ |:Sens;Position|“

Fixture Coordinator Process

Figure 5-2: Interactions Between the Softwar e Processes for the Fixture M odules, the Transport
Components and the Fixture Coordinator

When the fixture coordinator is informed about the modules and the transport components,
it generates an own set of objects to represent them, thereby creating a glohzl thiew
entire fixturing system. However, in the fixture coordinator only the capability objects for
the fixture modules are utilised to exchange information. These objects are linked to the
same data topics as the independent software processes for the modules and the transport
components. In this way, the fixture coordinator can concentrate exclusively on the fixture
modules, which reduces the complexity of the decision-making algorithms performed by it.
A detailed description of the realisation of the communication infrastructure is the subject
of chapter 6. The methods presented in this chapter focus on the decision-making
procedures, taking place in the fixture coordinator and the fixture modules. However, in
order to limit the scope of the thesis, details about the internal structure of the software

processes for the transport components are omitted.

- 101 -

Fixture Reconfiguration Methodology

5.2.1.2. Required Inputs for the Capability Recognition on Module Level

In order to generate the local object model, the fixture module software must be provided
with information about the capabilities of its incorporated devices and their logical links
between each other. The device description must include the following information:
¢ A unique numerical identifier for the fixture module
e Technical information for each device according to the data model, in particular
o The device type
o A unique numerical identifier for the device
o The measuring range and resolution for sensing devices
o The stroke range, swing range and a reference to its connected sensors for
clamping devices
o the path to a software library to access the device
o Additional device-specific parameters required by the library. Examples for
such inputs are the board identifier and the channel number for the data
acquisition card, used by a sensor device or the axis number for the motion
control card of an actuator device.
o The spatial description of the position and orientation of the coordinate

system of the device, relative to the coordinate system of the fixture module.

The device information can be provided in several ways, including a data base, manual
operator input or a configuration file. For this research study, an XML-scheme has been
used which is shown in the example listing in Appendix A. The information for each device

of the fixture module is provided within individual <device> blocks. This contains general
details about each device, such as the identifier, the device type and the description text.
Additionally, the details for the capabilities of each device are enclosed in separate
sections. Fixture modules can consist of multiple sensor devices connected to either one
clamp or one locator or support element. The references to the connected sensors are
provided in the configuration file within the <feedbackdevices>-block which lists the
identifiers to the sensors. This information is used to build the object hierarchy according to

the “Composition” design pattern, described in section|4.4.1l. The references to the software

libraries, responsible for the hardware access of the devices are provided in the <library>-

block. The implementation of these libraries is beyond the scope of the research as this
-102 -

Fixture Reconfiguration Methodology

depends on the vendor-specific hardware. However, the common interface is explained in
chapteﬂs. Furthermore, detailed parameters for the operation of the library can be specified
within the <library-parameters>-block. This block is passed to the library during its
initialisation which is assumed to be able to parse and interpret the contents.

5.2.1.3. Required Inputs for the Capability recognition on Fixture Level

When the software of the fixture coordinator is initialised, it needs to be provided with

details about the transport components according to the specification, described in section

4.6. This information includes:

e The domain type and geometry type of the transport component
e A numerical identifier for the transport component
e The spatial description of the position and orientation of the coordinate
system of the transport component, relative to the global coordinate system
¢ Information about each slot on the transport component, including
o A numerical identifier
o The spatial description of the position and orientation of the
coordinate system of the slot, relative to the coordinate system of the
transport component
o The workspace of the slot on the transport component, specifying the
minimum and maximum coordinates of the slot with regards to the

local coordinate system of the transport component

o Information about the position feedback of slot (see sgction|4.6.3)

This information can be obtained from a data base, XML-files or manual inputs from the
operator. Additionally, each software process for the control of a transport component can
publish the details about its capabilities. Based on the provided details, the fixture
coordinator instantiates the software objects in order to represent each existent transport

component and its slots.

- 108 -

Fixture Reconfiguration Methodology

5.2.2. Capability Recognition on Module Level

Figure 5-3 shows a flow chart with the steps performed within the local software routine of

each fixture module to generate the local object model for its devices and capabilities. In
the first two steps of the procedure, the numerical module identifier and the device
descriptions are read. Based on this information, an empty object of the class
FixtureModule is created in the third step. However, at this point the object lacks any
information about its device configuration, because there are no objects for the devices and
their capabilities attached to it. In order to configure it for the existing setup, the objects for
the devices and their capabilities are created in the subsequent steps. This results in the
generation of the objects representing the capabilities of the fixture module. The following
sections describe the steps to gradually produce an object-oriented representation of the
fixture module. A summary of the utilised UML notation is provided in the symbology

section in the beginning of the thesis.

Create Device Generate Fixture
_ (Read Module ID) C Objects HModule Capabilities)@

i

Read Device Create empty Fixture
Descriptions Module object

Figure 5-3: Flowchart for the Capability Generation on Module L evel

5.2.2.1. Creation of the Device Objects

The fourth step is concerned with the creation of the device objects which have direct
access to the hardwaire. Figure|5-4 shows an UML object diagram for the devices and their
capabilities of a fixture module, consisting of a linear actuator equipped with a force sensor.

As it can be seen in the diagram, for each device an object of the appropriate class is
created and its attributes are configured with the information from the configuration file.
These objects contain a reference to a software library which handles the hardware access
to the device. Additionally, each device object is attached with adequate capability objects
which are generated from the information provided by the device description. They are
used to define the functionality of their associated device to higher level objects and to

trigger this functionality by calling the installed library.

- 104 -

Fixture Reconfiguration Methodology

:LinearActuation :ApplyForce
- - :SensingForce
id: 2 id: 3 :
description: nothing description: nothing id:5 .
strokeRange: clampingRange: desc.rlptlon: nothing
min: 0 mm direction: push sensmglnfo:
max: 60mm minForce: 0 N min: ON
resolution: 0.01mm maxForce: 2500N, max: 3000N
‘ resolution: 10N resolution: 0.01N
T
] [\
:LinearClamp :ForceSensor
id: 1 id: 4
description: nothing description: nothing
isLockable: false devicel.ib: forcesensor.dll
devicelib: actuator.dll

v

Figure5-4: Examplefor the Generation of Leaf Device Objects

The generation of the device capabilities follows a set of rules which are summarised in

Table 5-1. For clamping devices multiple capabilities can potentially be generated, if the

device description provides sufficient information. In particular, the capability classes

Locate and Support can be generated if a clamping device is lockable.

Device type Allowed Capability classes

Force sensor > SenseForce

Displacement sensor > SenseDisplacement

Linear clamp > ApplyForce, LinearActuation, Locate, Support
Swing clamp > ApplyForce, SwingActuation, Locate, Support
Locator element > Locate

Support element > Support

Table 5-1: Allowed Capability Classesfor the Device Types

To express the logical links that exist between the devices a tree structure is generated,

based on the “Composite” design pattern, described in section |4.4.). To connect two

devices in the object model, a new object of the class CompositeDevice is created. The
latter is attached with the capabilities of the sub devices, thereby generating a combined
functional view. Additionally, the resulting capability objects of the composite device are
each linked to the particular lower level capability objects they have been created for. This
way, requests can be delegated down to the capabilities of the device objects, which access

the hardware by calling the library interfaEe. Figure| 5-5 shows a UML object diagram to

illustrate the concept for the previous example fixture module.

- 105 -

Fixture Reconfiguration Methodology

:SensingForce :ApplyForce

id: 7 id: 8

description: nothing description: nothing

sensinglnfo: clampingRange:
min: ON direction: push
max: 3000N minForce: 0 N
resolution: 0.01N maxForce: 2500N,

resolution: 10N
nested ; , nested
Capability :CompositeDevice Capability
id: 6

description: nothing
nestedDevices: {0, 4}

—| :SensingForce |—| :ForceSensor | | :LinearClamp |—| :ApplyForce k
Figure 5-5: Examplefor the Generation of Composite Device Objects

For the sake of simplicity, the diagram only displays the ApplyForce capability for the
clamp and the resulting composite object whilst omitting the capability object for the linear
actuation. Further, the class attributes for the bottom objects are omitted since they have

already been shown.

5.2.2.2. Generation of the Fixture Module Capabilities

In the last step, the fixture module object is configured with the generated device structure
by attaching it with the device objects of the upmost layer. During this step, the objects
representing the fixture module capabilities are created, based on the device capabilities. As
described in SeCti@ .Bnly the module’s capability objects are connected with the

publish/subscribe communication infrastructure. Consequently, they represent the interface

of the module for other subsystems without disclosing details of the internal device

structure| Table 5{2 summarises the set of rules for the generation of the fixture module

capabilities. Initially, one ProvidesRole-capability is created and connected to the fixture
module. By default, its attributes indicate that the module supports none of the defined

roles. Subsequently, each device capability is mapped to a newly created object of an

adequate class for the fixture module capabilities which were described in [sectipnf4.5.2. |

the added device has an ApplyForce capability, the fixture module object is attached with
an object of the type AdustClampingForce whose class attributes are filled with the
information of the device capability. Additionally, the ProvidesRole capability of the

module is updated accordingly.
- 106 -

Fixture Reconfiguration Methodology

Capabilities of added device object Generated capability for the fixture module
ApplyForce N Adju.stCIampingForce, |
ProvidesRole.clampRolelnfo.isSupported := true

LinearActuationCapability or SwingActuation -> AdjustTipPosition
SenseDisplacementCapability > SenseTipPosition
SenseForceCapability

If device has ApplyForce capability -> SenseClampingForce

else > SenseReactionForce
Locate - ProvidesRole.locatorRolelnfo.isSupported := true
Support - ProvidesRole.supportRolelnfo.isSupported := true

Table 5-2: Rulesfor the Generation of the Capabilitiesfor Fixture M odules

A device with the ability to sense force can potentially result in multiple capabilities for the
fixture module, depending on whether the force sensor is connected to a clamp or a passive
element. In the first case, the device capability of the type ApplyForce is existent, resulting
in the generation of the SenseClampingForce capability. Otherwise, the
SenseReactionForce capability is created. Moreover, if a force sensor is connected with a
lockable clamp, both fixture module capabilities are generated because the module can act
as a clamp and a passive element. During the operation, one of them is deactivated,
depending on the current role of the module. Additionally, each of the created fixture

module capabilities is linked to the device capability it has been generatEd for. Fijjure 5-

shows the final object model for the example module that has been used throughout this

section.

:SensingClampingForce :FixtureModule :AdjustClampingForce

id: 9 id: 1 id: 10

description: nothing description: nothing description: nothing

sensinglnfo: boundingBox: clampingRange:
min: ON p1: (0/0/0) direction: push
max: 3000N p2: (268/57/-57) minForce: O N
resolution: 0.01N maxForce: 2500N,

resolution: 10N

nested Capability|

‘ nested Capability

| :SensingForce |—| :CompositeDevice |—| :ApplyForce |
nested Capability nested Capability

| :SensingForce |—| :ForceSensor | | :LinearClamp |—| :ApplyForce |
Figure 5-6: Examplefor the Instantiation of the Fixture M odule Capabilities

At the bottom, the device structure and the associated capabilities are displayed in a
simplified way, since they were explained in the previous section. The fixture module

object is attached with the tree structure, which in this case consists of one composite

- 107 -

Fixture Reconfiguration Methodology

device and its two leaf devices. Based on the capability objects of the composite device, the
fixture module is attached with objects of the classes AdjustClampingForce,
SenseClampingForce and AdjustTipPosition. The latter is not shown in the picture to
simplify the diagram. Further, the local object for the fixture module does not contain
information about its position and orientation in the global coordinate system. This
information is generated by the fixture coordinator in the next step when the modules are
linked with the transport components. Ultimately, the module software publishes its
capability information according to the communication concept. As a result, other
subsystems such as the fixture coordinator discover each module and their capabilities. A

detailed description on the publishing of the capabilities can be found in chapter 6.

5.2.3. Capability Recognition on Fixture Level

While the steps described in the previous section are performed for each fixture module, a
second data model is instantiated in the fixture coordinator. This includes the objects for the

representation of the transport components and the discovered fixture modules. Figure 5-7
illustrates the steps that are performed by the fixture coordinator.

Generate objects for Link Fixture module A0 ot Yes
transport components with Transport E)gingb'\ﬂﬁgz'e motli)ijllg:
and fixture modules Component P linked?
No

Figure 5-7: Flowchart of the Capability Recognition on Fixture L evel

5.2.3.1. Generate Objects for Transport Components and Fixture
Modules
In the first step the objects for the transport components are generated, based on the
provided configuration details. For each transport component a set of objects is instantiated
for its slots and capabilities. As mentioned before, these objects are exclusively used to

represent the existing transport component layout in the internal data model of the fixture

coordinator} Figure 548 illustrates the object generation for two different types of systems.

Figure 5-8.a shows a continuous transport component consisting of a rail with one carrier

that can be connected with a fixture module. Consequently, one object of the class
TransportComponent is generated which is linked to one Slot-object. The workspace for the
movement of the slot is captured in the capability class Reposition. This includes, the linear

range for the slide-movement along the rail which is indicated by the two points
-108 -

Fixture Reconfiguration Methodology

Xmin/Ymin/Zmin) and (nadYmaxZmax)- Additionally, the workspace defines the allowed
clocking of the slot around its axis. In the exan{ple untefhalb the slot is assumed to be

rigidly mounted on the rail, therefore allowing no clocking.

:SensePosition
[:TransportComponent |—{ :Slot |:TransportComponent —{ :Slot
\ \ :Reposition A :Reposition
v \ / ¥) \\ o
* = : / }x‘ Workspa?:_a entries for the
- . . linearrange of work space 5 o r\épo'sitibriing Sl

- for regositioning of slot ——

Figure 5-8: Object Generation for a.) Continuousand b.) Discrete Transport Components

For discrete transport components as shown in Figure 5-8.b a different approach is applied.

Instead of creating three Slot objects for the three mounting holes, only one object is
generated. This Slot object is linked to one Reposition-capability object containing three
workspace entries. A fixture module can be connected with the slot in one of the points
specified by the workspace entries. Consequently, the actual position of the slot for discrete
transport components is unknown until they are linked with a fixture module. Therefore,
the class Slot is an abstract concept that does not necessarily reflect a concrete hardware
component in the system. Instead, it is a means to attach attributes to the connection
between a fixture module and a transport component. When fixture modules are discovered
by the system, further Slot objects are generated. The maximum number of slots is limited
by the number of workspace entries. This approach is different from continuous transport
components where all Slot objects are created immediately, depending on the number of
carriers. Essentially, it makes it possible to model discrete transport components with a
large number of mounting holes without the generation of too many capability objects

which would otherwise overwhelm the publish/subscribe communication infrastructure.

In addition to the instantiation of the objects for the transport components, the fixture
coordinator is informed by the communication infrastructure about newly discovered
fixture modules which have published their capabilities. For each discovered fixture

module, the fixture coordinator instantiates an own set of objects representing the module

- 109 -

Fixture Reconfiguration Methodology

and its capabilities. However, even though the fixture modules are physically mounted to
the transport components, this link is not yet existent in the object model of the fixture
coordinator. The reason for this is that the transport component objects are only aware of
their slots, but so far they lack the information whether or not a particular slot is connected
with a fixture module. Equally, the positional feedback information of the fixture modules,
obtained through the SenseTipPosition capability, is meaningless at this time, since a

reference to the global coordinate system is missing.

5.2.3.2. Link Lixture Modules with Transport Components
To overcome the aforementioned problem, the second step is concerned with linking the
objects for the fixture modules and the slots. For this, additional operator input is required,
specifying which fixture modules and slots are connected. For each link, the operator must
provide the following detalils:

e The spatial description of the module with regards to the slot coordinate system
Based on this, the 4 by 4 matrices for the coordinate transformation between the slot
and the module’s local coordinate systems and vice versa can be generated.

e The clocking range for the module on the slot. This specifies whether or not the
module can be reoriented on the slot during the operation of the fixture.

e For discrete transport components, the operator must additionally select the position
of the slot from the workspace entries. The reason for this is that the position of a
slot on discrete transport components is unknown until it is linked with a fixture
module. Based on the operator input, the coordinate transformation matrices
between the slot and the transport component’s local coordinate systems and vice

versa can be generated.

Based on the provided information, the reference to the slot object is set in the fixture

module object and vice versa, thereby establishing the link in the model.

5.2.3.3. Extend Module Capabilities

The link between a slot and a fixture module results in two new capabilities for the fixture
module which are generated in the third step. Firstly, based on the SensePosition capability

of the transport component, the module becomes aware of its body position and orientation

- 110 -

Fixture Reconfiguration Methodology

in the global context. It is therefore attached with the capability class SenseBodyP osition.
To obtain the current body position of the module, three coordinate transformations are

necessary which are summarised in the equation below.

M = th_to_globaI'TsIot_to_TC) Tmodule_to_slot (Equ. 5-1)

According to the order of matrix multiplications, the local coordinate system of the fixture
module is first transformed into the coordinate system of the slot, using the matrix
Tmodule to_slot The result is transformed into the coordinate system of the transport
component, using skt 1o_tc Finally, the matrix Fc o_goba transforms the result into the
global coordinate system. By multiplying matrix M with the origin of the local coordinate
system of the fixture module P(0/0/0/1) in homogenous coordinates, the latter is expressed
in global coordinates. The result is stored in the attribute currentBodyPosition of the
SenseBodyP osition capability object which has been attached to the fixture @ Figure

5-9| shows the complete object model for a rail with one fixture module and illustrates the

coordinate transformations.

} creates !
| ‘Reposition | :AdjustBodyPosition |
. . | [
:TransportComponent |—| :Slot | | :Fixture Module |
\
\ | :SensePosition | | :SenseBodyPosition |
\ v
\ - creates ..
\ \XT """"
T1cToGlobal - T
————— moduleToSlot

4 Black: Global coordinate system
> Red: Coordinate system of

- transport component
Body Position of Yellow: Coordinate system of slot
Fixture Module Blue: Coordinate system of the
fixture module

Figure 5-9: Example Instantiation after Linking one Fixture Module with a Slot

-111 -

Fixture Reconfiguration Methodology

For other types of transport components the same principle is applied, leading to a similar
object model. For this reason, a second example is not shown here. Secondly, the module
gets the ability to change its body position within the limitations imposed by the
Reposition-capability of the transport component. Hence, the fixture module object is
attached with the capability class AdjustBodyPosition and its workspace is determined
based on the Reposition-capability. The Reposition-capability defines the minimum and
maximum position for the linear movement of the slot relative to the local coordinate
system of the transport component. Using these values, two transformation matrices

MIN siot_t0_tc@NdMAX g0t to_Tcare generated according to the principle described in section

4.3.1. The first matrix provides the coordinate transformation between the slot and the

transport component when the former is in its minimum possible position. The second
matrix provides this transformation when the slot is in its maximum possible position.
Consequently, the overall transformation matrices for the minimum and maximum body

position of the fixture module are

M mn — TTC_to_gIobaI' MIN slot_to_TC 'Tmodule_to_slot (Equ. 5-2)
M max TTC_to_gIobaI. MAX slot_to_TC 'Tmodule_to_slot (Equ' 5'3)

The resulting matrices are multiplied with the origin of the local coordinate system of the
fixture module P(0/0/0/1) in homogeneous coordinates. After converting the result into
Cartesian coordinates, the minimum and maximum body positions of the fixture module in
global coordinates are obtained which are stored in the workspace attribute of the
AdjustBodyPosition capability. Additionally, this attribute stores the allowed clocking
range of the slot and the module. The values for the former can directly be obtained from
the Reposition object whereas the values for the latter are retrieved as an operator input
when the link is established. For discrete transport components the previously described

calculations must be repeated for all workspace entries.

During the operation of the system, the aforementioned capabilities of the fixture module

and the transport component are closely connected through the communication

infrastructure. These interrelations will be explained in section|6.3.1.

-112 -

Fixture Reconfiguration Methodology

5.3. Setup Adaptation Methodology

This part of the reconfiguration methodology aims at the generation of the reconfiguration

sequence which adapts an existing fixture layout for different parts of one product family or

different manufacturing processes. Essentially, this consists of the repositioning of the

fixture modules and the adjustment of behavioural aspects like the clamping force profiles.

5.3.1. Assumptions and Requirements

The following requirements must be fulfilled in order generate the reconfiguration

sequence

Awareness of existing fixture setup

The object model of the fixture coordinator must be generated prior to the setup
adaptation which contains the current positions and states of all fixture modules and
transport components. This is achieved by the method described in the previous
section which is carried out whenever the fixture is switched on or a change of the
hardware occurs. Furthermore, the position and orientation of the transport
components are assumed to be constant during the operation of the fixture.
Consequently, the algorithms described in this section concentrate exclusively on
the reconfiguration of the fixture modules.

Availability of pre-defined fixture design

The fixture coordinator must be provided with the pre-defined fixture design
parameters for each workpiece. The fixture design information consists of a number
of contact points with the workpiece which specify the positions, clamping forces
and clamping directions.

Availability of information about the workpiece and manufacturing process

To retrieve the correct fixture design during the reconfiguration process, the fixture
coordinator needs to have information about the workpiece and manufacturing
process in question. The research study assumes the availability of this information
in whatever form. Hence, the development of workpiece recognition algorithms is
not within the scope of this work.

Theworkpieceis correctly positioned in the fixture

- 113 -

Fixture Reconfiguration Methodology

As a result of the decision-making steps of the methodology, the fixture modules

are positioned according to the specifications of the contact points. It is beyond the
scope of the research to compensate for positional errors during the loading of the
workpiece or for geometrical errors of the workpiece itself.

5.3.2. Overview of the Decision-making Process

The setup adaptation method fundamentally relies on matching the contact points from the
design with the fixture module objects representing the current configuration of the
physical setup. As a result, each module object can individually determine the steps
required to transform its current state according to the design specifications. In this way, the
generation of the reconfiguration sequence is delegated to the module objexts in
decentralised way, thereby making the entire reconfiguration routine independent from the

number of modules. The reconfiguration sequence itself is realised witiC éh@enand”

design pattern which was explained in segtion 4{.7.3. Figurg 5-10 provides an overview of

the steps of the entire decision-making process for the fixture adaptation methodology.

‘ 3 _ Generate
Retrieve yvorkpleqe & Reconfiguration Remove Workpiece
process information Command List

[Retrieve Design]
P
arameters yes [Retract Clamps]
Assign Fixture Module Order Reconfiguration
objects with Contact Command List
Fonts Adaptive Clamping
Execute Reconflguratlon whilst manufacturing
Possible? Command List
Fixture Hardware
Change Position workplece in [Engage Clamps]
Q fixture agamst locators

Figure5-10: Decision-makmg Process Overview

The fixture adaptation procedure starts with the retrieval of the identifiers for the next
workpiece and the manufacturing process. This information can be provided by the
operator or through automated feature recognition systems. Based on this information, the

corresponding fixture design is retrieved from a data base in the next step. The fixture
-114 -

Fixture Reconfiguration Methodology

design contains all contact points between the fixture modules and the workpiece, each of

them specifying a position and further details such as the clamping direction and force

profiles, as described in sectjon 4]7.1. The essential step of the methodology is to assign the

fixture module objects representing the current configuration with the appropriate contact
points. Once this relation is established, the required actions to transfer the current
configurationinto the target configuration can be derived by each individual module object
using the command approach. If the assignment is not possible it can be concluded that the
current fixture setup cannot be transferred into the desired status. In this case a manual

change of the fixturing hardware is necessary which will ultimately trigger the capability

recognition method, described in sectipn [5.2. If the assignment is possible, the

reconfiguration commands are generated and stored in a list. In order to avoid collisions
between the modules, the command list is then sorted according to a set of rules as

described in sectign 5.3.5. Finally, the fixture coordinator gradually reconfigures the fixture

by executing the reconfiguration commands one after another. In particular, this moves the
locators to their target positions. The clamping modules are repositioned on the transport
components, yet remain retracted. After this, the workpiece is placed in the fixture and
positioned against the locators. This can be done manually by the operator or with the use
of a robot. Finally, the clamps modules are actuated until they reach the target tip position.
This is followed by the adaptation of the clamping force during the manufacturing process
as defined by the force profile, accessible from the contact point object. After the
completion of the manufacturing process, the clamping modules are retracted, thereby
releasing the workpiece which can subsequently be removed from the fixture. A new
iteration starts with the retrieval of the information for the next workpiece. The following

sections provide a more detailed description of the steps of the procedure.

5.3.3. Assignment of Fixture Modules with Contact Points

This step is essential for the reconfiguration methodology because it enables the fixture
modules to become aware of their target position, orientation and force profiles. The
module assignment faces the following challenges. Firstly, the contact point specifications
are defined independdytirom the fixturing hardware. Consequently, there is no indication

which fixture module can physically reach a particular contact point. Secondly, one contact

-115-

Fixture Reconfiguration Methodology

point can potentially be assigned with several fixture modules. For this reason, the
procedure consists of two parts. In the first part, the possible fixture module candidates for

each contact point are found, whereas the second part selects the most appropriate match

for each contact point. Figure 5{11 shows the flow chart for the decision-making procedure

to find the potential candidates. As can be seen, the algorithm iterates through the list of

contact points and uses an additional inner loop to compare them with all fixture modules.
s

Do for all contact points

Do For all FixtureModules

reate candidate Add the
C = next list with candidates to
E contact point fixture module Reconfiguration the transport @
Info objects component

- J
Figure 5-11: Flowchart of the M odule Assignment Sequence - Part |: Finding Potential Candidates

For each module, the algorithm iterates through the entries of the workspace list which is
provided by its AdjustBodyP osition capability. For each entry it is verified, if the tip of the
fixture module can reach the contact point. If this test returns with a positive result, a new
candidate is found which is subsequently attached to the transport component, as shown in
the flow chart. The test comprises a number of steps which are demons@ ure 5-12
and Figure 5-183. To facilitate the understanding of the principle, the drawings are limited to

2D. However, the described algorithms can be directly applied in 3D space and have been
successfully implemented in the experimental test bed, described in Figure

5-12.a illustrates a fixture module in the form of a linear actuator in its current position and

orientation.
X
Current position C
of fixture module ‘7\/ @
|
A | ,* A
y v / y
/
Contact Point
AR
// /
\Q//*/
Wmm A Wmax X Wmin A Wmax VX

.Tmax

Figure 5-12: |llustrative Example for the Calculation of the Projected Body Position

- 116 -

Fixture Reconfiguration Methodology

In this scenario, the module is mounted on a one-dimensional, continuous transport
component such as a rail-guide which allows the repositioning of the module along the line
between the points M and Whax The contact point C has an own local coordinate system
which is arbitrarily oriented against the global coordinate system. The x-axis indicates the
direction in which force shall be exerted. The first step consists of testing, if the module can
be brought into the same orientation as the contact point. This renders an inverse
kinematics problem, since the reorientation of the fixture module can potentially be
achieved by the clocking around its axis and by the clocking of its associated slot. Since the
research is not aimed at contributing towards inverse kinematics algorithms, a heuristic
approach has been followed. According to this, all permitted slot and module clocking
combinations are checked within the limitations, specified by the clocking ranges in the
AdjustBodyPosition capability of the fixture module. This approach is feasible for the
majority of cases, because due to tight rigidity requirements fixtures typically allow no or
limited reorientation of the mounted modules. For each clocking combination, the
transformation matrix from the local coordinate system of the fixture module to the global
coordinate system (see equation 5-1) is calculated. Based on this, the elements of the
rotational part of this matrix are compared with the equivalents in the transformation matrix
of the contact point. If all elements have the same values, the module has the same
orientation as the contact point. If no combination can be found for any of the workspace
entries of the fixture module, the latter cannot be assigned to the contact point and the
algorithm proceeds with the next module. If the module can be brought into the same
orientation as the contact point, the target body position of the fixture module on the
transport component is calculated. For this, the vector
BC between the current and the desired tip position is calculated and the module is

virtually displaced with this vector, as shown|in Figure b-12.b. As can be seen in the

drawing, the resulting point D is not necessarily within the workspace of the fixture

module. For this reason, the point D must be translated to point E whose coordinates are

within the workspace for the body position, as shown in Figurg&-13

-117 -

Fixture Reconfiguration Methodology

nd - —4

Wmax X Wmin

Wmin A /E A

Figure5-13: Stepsto Retrieve the Projected Body Position

This can be done using the vector equgtion unterhalb for the line which is coincident with

the x-axis of the coordinate system of the contact point.

X=a+rb (Equ. 5-4)
The position vectoitis readily available from the coordinates of point D and the direction
vector b can be derived from two arbitrary points on the x-axis of the contact point.
Consequently, the aim is to determine the coefficient r so that the resulting coordinates for
point E lie within the workspace. This can be done by solving the following system of

inequations:

\%
o]

rb (Equ. 5-5)

W +
+1b (Equ. 5-6)

min

s
g

IA

QO

, Wwhere w,_. andw,,_ are the position vectors to the minimum and maximum
limits of the workspace entry. If no solution for r can be found, the module cannot be
assigned with the contact point. Otherwise, the smallest value from the solution interval is
applied in equation 5-4 which results in the target body position E. In the final step, it is
verified if the module can still reach the contact point from this position. For this, the

contact point coordinates are transformed into the local coordinate system of the fixture
module, taking into account its derived target body position. The resulting values for these

coordinates can directly be compared with the minimum and maximum limitations for the

tip position of the fixture module which are illustrated ag @nd Tax in|Figure 5-18.b. If

this test returns with a positive result, the fixture module is regarded as a possible candidate
for the contact point. This is expresisvith a new object of the class Reconfigurationlnfo

This object contains all the necessary information for the repositioning of the fixture
-118 -

Fixture Reconfiguration Methodology

module which were derived during the previous calculations, including the target body
position, the target value for the tip position and the desired clocking values for the slot and
the module, if applicable. All created Reconfigurationinfo objects are then &oldelist
attached to the transport component on which the module is mounted. In this way, each
transport component collects all possible assignment options for its fixture modules as the

algorithm progresses.

Since each transport component can have several modules, there might be more than one

candidate per contact point. For this reason, the second part of the module assignment

procedure selects the best match from the candidate list. As can be|seen in Figure 5-14, this

Is achieved by iterating through the transport components and reordering their candidate
lists in such a way that the most appropriate candidates are sorted in front of less adequate

candidates.
e

Do for all transport components

Do for all entries in candidate list

Mark all similar
entries

- J
Figure 5-14: Flowchart of the M odule Assignment Sequence— Part |1 Selection of Candidates

Extract next
entry from
candidate list

Assign fixture
module with
contact point

Order
candidate list

The first ordering criteria is the satisfaction of the functional requirements of the contact
points. In order to do this, each requirement of the contact point is compared avith th
related capability of the fixture module object. Based on this, a fitness value is calculated

for each element in the candidate list, using the equation below.

g(F,C) :Zri *1/n , with n: number of requirements of contact point (Equ. 5-7)
i=0 i- requirement index
r: {1 if requirement ris fulfilled,
0 if requirementis not fulfilled}

The factor rhas either a value of 1 if th8 fequirement of the contact point is fulfilled or a
value of O if this requirement is not fulfilled. The multiplication pivith the scale factor
1/n ensures that the final result of the equation is always a value between 0 and 1. In this

way, the method is independent from the number of requirements imposed by the contact

point.| Figure 5-1b shows an illustrative example for this calculation. The presented setup
-119 -

Fixture Reconfiguration Methodology

consists of three fixture modules, mounted on a base plate. Module 1 is assumed to consist
of a lockable clamp, equipped with sensors for positional and force feedback. The
maximum clamping force this module can achieve is 1000N and, if locked, it can act as a
locator, withstanding a reaction force of up to 5000N. Module 2 consists of an unlockable
clamp that can exert up to 3500N of force. Additionally, the module has sensor devices for
the positional feedback of the actuator tip and the clamping force. Finally, module 3 is a
locator equipped with a force sensor which can withstand reaction forces of up to 5000 N.
Fixurobodule 3: s Eos foadba et on
max. force- 5000 N » Position feedback required: yes

« Role: clamp

Force feedback existing: yes
: 9 ¥ minimum clamping force: 1500N

« Position feedback existing: no

“ maximum clamping force: 3000N
X - !
ContactPoint B: i e -
» Force feedback required:no ~_ _ T 3 -t 2)
s . = = pate - ! e
» Position feedback required: no ="~ o \@ A = .~ FixtureModule 2:
= Role: Locator . - e ,./J e * unlockable clamp
maximum force: 2500N = = - clamping range: 0 - 3500 N
- o I ' » Force feedback existing: yes
1] Q- « Position feedback existing: yes

FixtureModule 1: = ContactPoint C:

» Lockable clamp = Force feedback required: yes

clamping range: 0 - 1000 N » Position feedback required: no
» Force feedback existing: yes e Rale: Locator

» Position feedback existing: yes maximum force: 2500N

Figure5-15: lllustrative Example for the Calculation of the Fithess Value

As can be seen, the current setup is confronted with a fixture design consisting of the
contact points A, B and C whose requirements are also shown. It is further assumed that all
contact points can be reached by all fixture modules which results in a candidate list
containing all possible combinations of fixture modules and contact points. In order to

calculate the fitness value for the candidate containing fixture module 1 and contact point A

(candidate 1-A), all four requirements of the contact point are compared with the attributes

of the capability objects, linked with the module. This is shown in Table 5-3.

Requirement Related Capability Fulfilled? | Value Fitness
value
Role: Clamp ProvidesRole Yes 1*(1/4)=0.25 | 0.25
clamping range: 1500—-3000N AdjustClampingForce | No 0*(1/4)=0.0 0.25
Force feedback required SenseClampingForce | Yes 1*(1/4)=0.25 | 0.5
Position feedback required SenseTipPosition Yes 1*(1/4)=0.25 | 0.75

Table 5-3: Example Calculation of the Fitness value for Candidate 1A
- 120 -

Fixture Reconfiguration Methodology

For the other candidates, the fitness values are calculated in the same way, resulting in the

list, shown in the upper row ppf Table 5-4. The list is then reordered so that the candidates

with higher fitness values are sorted before those with lower values.

1 2 3 4 5 6 7 8 9
Before [1-A (0.75)| 1-B (1.0) | 1-C (1.0) | 2-A (1.0) | 2-B (0.5) | 2-C (0.5)|3-A (0.25)| 3-B (1.0) | 3-C (1.0)

A R e e e T I

After | 1-B (1.0) | 1-C (1.0) | 2-A (1.0)| 3-B (1.0)| 3-C (1.0) |1-A (0.75)| 2-B (0.5) | 2-C (0.5) | 3-A (0.25

Table 5-4: Ordering of the Candidate List for the Illustrative Example

A special case exists for one-dimensional, continuous transport components such as rail
guides. These types require an assignment method that takes into account the mounting
order of the modules because this restricts the allowed repositioning of the modules. As a
result, there is the risk that modules are assigned with contact points, they cannot reach

because other modules prevent them from being moved to their target positions. This is

illustrated i) Figure 5-16 which shows a rail with three fixture modules, each of them able

to reach the contact points according to their workspace definitions. An incorrect module

assignment as shown|in Figure 5-16b would obviously lead to an unsolvable situation for

the reconfiguration procedure. In order to avoid this, the candidate list is sorted a second

time according to the following two criteria.

Figure 5-16: Importance of the Mounting Order for One-dimensional Transport Components

First the list is soddin ascending order according to the distance between the origin of the

local coordinate system of the transport component (displayed as a dot in thge figyre oben

to the current body positions of the fixture modules. This information can be directly
retrieved from the fixture module objects. Secondly, the list is sorted in ascending order
according to the distance between the origin of the local coordinate system of the transport

-121 -

Fixture Reconfiguration Methodology

component and the target body positions. Consequently, for the example in Figyee 5-16

new sequence of the candidate entries evolves which is shpwn in Tgble 5-5.

1 2 3 4 5 6 7 8 9
Unordered List | 1-A 1-B 1-C 2-A 2-B 2-C 3-A 3-B 3-C

] - > T X 4
First Criteria 3-A 3-B 3-C 2-A 2-B 2-C 1-A 1-B 1-C
e e e e e e e Y ></><
Second Criteria | 3.C 2-C 1-C 3-B 2-B 1-B 3-A 2-A 1-A
Table5-5: Illustration of the Ordering of the Candidate List for Rail-based Transport Components

After the list has been ordered, the best matches are selected. For this, the algorithm iterates
through the sorted list and connects each unmarked entry with both, the FixtureModule
object and the ContactPoint object, thereby establishing a link between the both. At the
same time, all other entries of the candidate list which contain the same fixture module or
contact point are marked to avoid that either of them are assigned twice. As a result, each

module is assigned with exactly one contact point, thereby becoming aware of its desired

configuration for the fixturing of the next workpiece. The algorithm is illustrated in Table

5-6|for the previous example.

1 2 3 4 5 6 7 8 9

1% lter.| 3-C 2-B 1-B 2-A 1-A
2Yiter.| 3-C 2-B 1-A
3%er.| 3-C 2-B 1-A

Table 5-6: Final Assignment of Fixture M oduleswith Contact Points

As can be seen, the algorithm correctly selects candidates 2-B and 1-A as the best matche
If there is at least one contact point unassigned after the algorithm finishes, the current

fixture layout cannot be adapted.

5.3.4. Generation of Reconfiguration Commands

After the completion of the assignment step, each fixture module can independently
generate the reconfiguration sequence for the changes required by the desired
configuration. For each reconfiguration step, the concerned fixture module creates an

individual object of one of the subclasses of ReconfigurationCommand which encapsulates

-122 -

Fixture Reconfiguration Methodology

the required target value8hese objects follow the “Command” design pattern which has

been described in sect1on 4]7.3 and they are stored in a global list maintained by the fixture

coordinator software. The decision-making strategy of the command generation step is

illustrated ir) Figure 5-17 which is carried out for all modules. This leads to a complete list

of the required reconfiguration commands in order to adapt the current fixture setup into the

desired configuration. It should be noted that the creation of the command objects does not

yet trigger the reconfiguration process. The command execution is described in section

5.3.49.

Requirement:
fulfilled?

Adaptation not possible

Create Create Create
ChangeBodyPositionCmd/ \ChangeTipPositionCmd ChangeRoleCmd

Figure 5-17: Decision-making for the Reconfiguration Command Gener ation

As can be seen in the flow chart, the first step consists of examining the fitness value of the
Reconfigurationinfo object attached to the module, in order to verify if the fixture module
meets all requirements of the contact point. This is necessary because the previous module
assignment step may have resulted in matches which do not fully meet the functional
requirements of the contact point. One reason for this is that the described sort algorithms
only ensure that the matches with the highest fithess value are selected. However, it is not
guaranteed that selected candidates fully match the requirements. Additionally, in case of
one-dimensional transport components, the matches are selected according to the mounting
order of the modules, thereby ignoring whether or not they meet the contact point
requirements. To verify if all requirements are satisfied, it is checked if the previously
calculated fitness value is equal to 1.0. If this is not the case, the functional requirements of
the contact point are not satisfied and consequently the setup adaptation process is aborted.

Instead, the module must either be exchanged or upgraded which ultimately triggers the

capability recognition method, described in seqtion} 5.2. If all requirements are met, each

module compares its current states with the desired values of the associated contact point.
First, the current body position and orientation on the transport component are compared

with the specifications, stored in Reconfigurationinfo object. If these are not equal, a new
-123 -

Fixture Reconfiguration Methodology

command of the class ChangeBodyPositionCmd is created and appended to a global list,
maintained by the fixture coordinator. Since the command object is configured with the
Reconfigurationinfo object, it has access to all target values when it is executed later on.
After this, the current tip position is compared with the desired tip position which is stored
as an attribute of the Reconfigurationinfo object. If the values differ, a new command
object of the class ChangeTipP ositionCimédded to the list. Finally, the current and the
requested role of the fixture module are compared, resulting in a new object of the class
ChangeRoleCmd, in case a difference is detected. Similar to the previous commands, the

object is configured with the reference of the Reconfigurationinfo object.

5.3.5. Collision Avoidance

Before the reconfiguration of the fixture can be executed it is necessary to reorder the
command list in order to prevent collisions between fixture modules. The reason for this is
that the commands have been created in an arbitrary order, not taking into account any
potential collisions between fixture modules. In particular, one-dimensional transport
components such as rails need to have a mechanism to predict any collisions during the
reconfiguration sequence. For other types of transport components with external
mechanisms for the repositioning of the fixture modules, the collision problem is less
problematic. For example, in case of a discrete transport component like a base plate with
mounting holes, a robotic system can be used to reposition the modules. Typically, these
systems have their own path planning and collision avoidance algorithms. For this reason,
the algorithm described in this section is focused only on one-dimensional, continuous

transport components.

@ illustrates the necessity to reorder the commands for one-dimensional transport
components, using the previously described example rail with three fixture modules. On the
left side of the drawing, the current module configuration is shown whereas the right side
depicts the target configuration. Below the generated reconfiguration commands are listed.
From the drawing it is clear, that the execution of this sequence would lead to arcollisio
between the fixture module 1 and 2 when the first command is carried out. Consequently,
the list needs to be reordered to make sure that module 2 is moved prior to module 1.

- 124 -

Fixture Reconfiguration Methodology

Additionally, it must be assured that the tip position of a module is changed after the
module has reached its target body position and orientation on the transport component.

Current Configuration & contact point Target configuration

assignment
1
Workpiece
2
3
Position in List Command type Fixture Module Description
A 1 ChangeBodyPositonCmd 1 Move module to its target body position
2 ChangeTipPositionCmd 1 Extend actuator to target tip position
3 ChangeBodyPositionCmd 2 Move module to its target body position
4 ChangeTipPositionCmd 2 Extend actuator to target tip position
5 ChangeRoleCmd 2 Change modules role to Locator
6 ChangeBodyPositonCmd 3 Move module to its target body position
7 ChangeTipPositionCmd 3 Extend actuator to target tip position

Figure 5-18: Example for Possible Collision Between Fixture M odules

The algorithm to generate a collisitnree reconfiguration sequence takes the unordered
command list, called &, as an input and creates a new empty lisgrLwhere the
command objects are placed in the right order. It then enters a loop which iterates through
all entries of Ly. For each command ofi\Lit is verified if its execution would lead to a
collision. If no collision is predicted, the command object is removed frQmand added to

the output list byt. Additionally, its effects for the associated fixture module are internally
updated in the data model in order to be able to correctly test the remaining commands in
Lin. If, on the other hand, the command would cause a collision, it remains in the unsorted
list. After all commands have been tested in the loop, it is verified whether or not the list
Lin is empty. If this is the case, the algorithms finishes and the collision-free command
sequence can be retrieved froguk. On the contrary, if there are any commands left in the

list L, the algorithm only continuous if at least one element was appendegd-tduring

the previously described loop. In this case, another iteration of the described steps is carried
out with the remaining elements ofLIf, however, no elements were appended to the list

Lout, a collision-free sequence cannot be found. The algorithm aborts and the automatic

- 125 -

Fixture Reconfiguration Methodology

setup adaptation of the current fixturing system is not possible. The complete algorithm is

shown in the flow chart |n Figure 5-19.

Yes

Collision not

Do for all Commands in Ly N No avoidable

Move cmd to
Lout

A /
Figure 5-19: Decision-making Sequence for the Reordering of the Reconfiguration Commands

Update
associated
fixture module

Create empty
list Lour cmd = next
Command of

I-IN

Collision-free
sequence found

To predict collisions, each command subclass implements the method causesCollision()

described in sectign 4.7.3. Consequently, the collision verification task is delegated to each

command object. The advantage of this object-oriented method delegation approach is that
the entire algorithm becomes independent from the number and type of commands. Each
command class can implement the collision verification differently without having an effect
on the rest of the system. Equally, new command class can be introduced without affecting
the overall framework. The subclass ChangeRoleCmd always returns false, since the mere
change of the role does not cause any collisions with other modules. The class
ChangeTipPositionCmd returns true if the list tontains another object of the class
ChangeBodyP ositionCmd which is linked to the same fixture module. Consequently, in this
case the command remains in the list as long as the command to change the body position
is not moved to the list dyt. This strategy ensures that during the execution of the
reconfiguration procedure, the modules are first repositioned on the transport component,
before their tip position is changed. For the commands to change the body position, it is
verified if another module is located between the current body position of the concerned
fixture module and its target body position. For this, the direction vector

d between the current and the target body position is calculated. Subsequently, the

module’s position is gradually translated along this vector, as shown in|Figure 5-20. The

drawing shows a simplified view of the bounding box surrounding a fixture module. The
module is moved to the target position along the direction vector . The intermediate
positions during the movement of the module are shown by the dashed boxes. For each
intermediate position, including the target position, it is tested if the bounding box of this

- 126 -

Fixture Reconfiguration Methodology

module interferes with any of the other modules. If an interference is detected, the

concerned command object remains in the ligt Bs shown in the flow chart |in Figﬂre

5-19.

Bounding Box of module
in current position

Bounding Box of module
in target pgsition

N

Y4

N % //,, ,/,/ § .

N

yA

o

X

-

z = z
Figure 5-20: IIIustratioi for the Collision Detection

The interference test can be done using any of the myriad of collision detection algorithms
available in literature. In the scope of this thesis, the algorithm proposed by Gottschalk et
al. [164] is used because it can efficiently detect collisions between two arbitrary oriented
objects in 3D space. The algorithm requires the coordinates of the bounding boxes of the
fixture modules and the matrices for the coordinate transformations from the local
coordinate systems of both modules into the global coordinate system. Based on these
inputs, it can be verified if two modules interfere with each other. The internal details of
this algorithm are irrelevant for the overall decision-making of the reconfiguration
procedure and are therefore omitted. A software library implementing the algorithm is

available [165] and has been used for the prototype, described in chapter 7.

To illustrate the complete procedure, the command list for the example introduced inf Figure

5-18 shall be ordered according to the algorithm described above. lterating through the

unordered command list, the first entry is the command to move the fixture module 1 to its

new body position. As can be seen clearly from the drawipg in Figur¢ 5-18, this causes a

collision with module 2. Consequently, the command object remains in the list. The second
entry is concerned with the change of the tip position of module 1. As described before, this
object also remains in . because there is still an object of the type

ChangeBodyPositionCmd in the list which is related to the same fixture module. The third

entry does not cause a collision and is therefore added to the so-far empgy-lidnlthe
-127 -

Fixture Reconfiguration Methodology

same way, the remaining commands i o not cause any collision and are therefore
moved to loytoneby-one. Hence, after one iteration the contents of the ligtand Loyt

are as shown below.

Unordered list Ly Ordered list Loyt
Index Command type Module Index Command type Module
1 ChangeBodyPositonCmd 1 1 ChangeBodyPositonCmd 2
2 ChangeTipPositionCmd 1 2 ChangeTipPositionCmd 2
3 ChangeRoleCmd 2
4 ChangeBodyPositonCmd 3
5 ChangeTipPositionCmd 3

Figure 5-21: Example - the ListsLy and L oyt after the First Iteration

A second iteration through the lisiyls carried out, becausenLis not empty and the list

Lour was changed during the previous loop. Thus, the command for the movement of
module 1 is tested again for collisions. This time, however, the internal data model takes
into account the target positions of the other modules as an effect of the previously sorted
commands. Consequently, no collision is detected this time and the command is added to
the end of list byr. After the completion of the second iteration, the algorithm concludes,
since Ly is now empty. The final collision-free command sequence is shown below.

Unordered list Ly Ordered list Loyt
| Index | Command type | Module| Index Command type Module
1 ChangeBodyPositonCmd 2
ChangeTipPositionCmd

ChangeRoleCmd
ChangeBodyPositonCmd
ChangeTipPositionCmd

{empty}

(o2 @) I I NN IOSTN IN \V]

ChangeBodyPositonCmd
7 ChangeTipPositionCmd

= | = W|W|IN[DN

Figure 5-22: Example - the Lists Ly and L oyt after the Second Iteration

5.3.6. Command Execution

If all previous steps were successful, the command list can be executed to gradually

transform the fixture configuration. This is done in two phases, as shgwn in Figufe 5-23.

These phases can be indicated by the fixture coordinator by the setting of state variables
which the command objects can access. The first phase is carried out before the workpiece

is placed in the fixture. All modules are repositioned on the transport components and the

- 128 -

Fixture Reconfiguration Methodology

roles of all modules are changed to their target specification. Additionally, the tip positions
of all modules acting as locators are adjusted. However, the commands to adjust the tip
position of modules acting as clamps are not executed in this phase. Consequesatly, the
modules remain retracted in this phase. After the workpiece is placed in the fixture, the

second phase commences which adjusts the tip positions of the clamping modules.

Phase | \ g Phase Il \

cmd = next Execute cmd := next Execute
command command command command

N € e e e e e e e e e - N (e e e e e e e e e e -

| |
| |
| |
| |
| |
For all commands : For all commands :
| |
| |
| |
| |
| |

ChangeTipPositionCmds attached to ChangeTipPositionCmds attached to
modules acting as Clamps remain idle modules acting as Clamps are executed

Figure 5-23: The Two Phases of the Command Execution Sequence

As can be seen in the flow chart, the command execution sequences in both phases look
similar. This is because each subclass of ReconfigurationCommand can implement the
execute()-method differently. The class ChangeRoleCmd updates the required role in the
internal data model of the fixture coordinator by setting the attribute currentRole in the
class ProvidesRole. In case, the module can act as a clamp or a locator, the sense force
capabilities are activated adequately. For example, if the module acts a clamp in the next
configuration, the capability class SenseClampingForce is activated and the capability
SenseReactionForce is deactivated. This way it is avoided that conflicting force sensor
information is received during the clamping procedure. The class ChangeTipP ositionCmd
implements the execute()-method such, that it returns immediately without doing anything
during the first phase of the reconfiguration process. In the second phase however, the
command object publishes the module identifier and the desired value for the tip position,
using the communication infrastructure. These target values are received by the software of
the concerned fixture module which subsequently performs the required movement and
publishes the current tip position into a separate data topic. As a consequence the fixture
coordinator is informed about the progress of the movement and updates its internal data
model accordingly. The command object waits until either the target position has been
reached or a deadline has elapsed in order to prevent the command from waiting eternally.
-129 -

Fixture Reconfiguration Methodology

The execute()-method of the ChangeBodyPositionCmd class works according to the same
principle. The target values are published and it waits until the desired values have been
retrieved by the fixture coordinator and updated in its internal data model. The details for
the communication infrastructure and the individual data topics are described in chapter 6.

The main advantage of the followed object-oriented design pattern and the delegation
principle is that the software framework becomes independent from a particular fixture
setup. This is because the command objects do not contain any implementation code to
reconfigure a particular fixture module. Instead, each command publishes the desired
values forits module, thereby delegating the responsibility for the execution to the fixture
modules or other stakeholders which have been registered as subscribers. As a result, the
fixture coordinator is unaware of the components responsible to carry out the actions of the
command. For example, when a ChangeBodyP ositionCmd command is executed, it triggers
its associated fixture module object to publish the desired body position and orientation
thereby delegating the task to the equipment responsible for moving this fixture module
However, for the fixture coordinator it is irrelevant which component has subscribed to this
information. In the experimental test bed, presented in chapter 7, the software programs
controlling the movement of the rail carriers are the subscribers for this information. In
other scenarios, the subscriber might be a robot, picking up each fixture module from its
current position and placing it at the target position. Furthermore, due to the common
interface of the command objects, the complexity of the entire reconfiguration process is
reduced to simple calls of a variable number of execute()-methods. These methods are
invoked by the fixture coordinator without knowing any implementation details or even the
type of a particular command. As a result, the reconfiguration process becomes independent
from these aspects. This allows programmers to introduce new command classes in the
future or to change the implementation code of existing commands without affecting the
overall logic. Additionally, the same algorithm works for simple and complex
reconfiguration tasks in the same way as this is reflected only by the number of command

objects in the list.

- 130 -

Fixture Reconfiguration Methodology

5.4. Chapter Summary

A new decision-making methodology for fixture reconfiguration has been described which
consists of two parts, namely the capability recognition method and the setup adaptation
method. The first part describes how the elements of the object-oriented data model are
instantiated by both, the fixture module software and the fixture coordinator, in order to
reflect the capabilities of the current fixture setup. As a consequence, the software
framework is rendered applicable to a large variety of different fixturing systems. The
second part defines the steps to reconfigure an existing fixture layout for the next
workpiece. The core idea is based on matching the fixture module objects with the contact
point objects from the fixture design. This assignment makes it possible to delegate the

generation of the reconfiguration sequence to each individual fixture module.

The methodology is a significant improvement over existing approaches betause
addresss the adaptation of the fixturing software during the reconfiguration procedure.
Unlike existing concepts which appear to be limited to a specific fixture layout, the
presented methodology is applicable for a range of different systems. This is achieved
through the dynamic generation of the object model elements in order to reflect the
capabilities of a given system. In addition, the concept allows for the combination of
capabilities when fixture modules are added and uses software delegation to fulfil requests
during the operation of the fixture. Moreover, the methodology has contributed to the field
of object-oriented design patterns by applying the Command pattern to a new area, namely

the fixture reconfiguration problem.

-131 -

Communication Infrastructure for Adaptive Fixtures

6. Communication Infrastructure for Adaptive Fixtures

6.1. Introduction

The fixtures addressed by this research, consist of an arbitrary number of modules which
can be added, removed or replaced to alter the capabilities. Consequently, these fixtures can
be characterised as complex distributed systems with dynamically-changing network
topologies. For this reason, the reconfiguration methodology and data model must be
integrated with a communication infrastructure that is able to dynamically establish
communication channels among the modules, the fixture coordinator and other subsystems

that need to interact with the fixture.

Available middleware technologies were assessed against the communication requirements
of adaptive fixtures in chapter 3. As a result of this evaluation the Data Distribution Service
(DDS) was selected as the foundation for the communication framework. Consequently, the
mechanisms provided by DDS must be adapted to the needs of the fixturing domain. In
particular, suitable data types and data topics must be defined for the data exchange
between the fixture modules and the fixture coordinator. Thus, the infrastructure described
in this chapter constitutes the adoption of an emerging middleware standard to a new
application domain. Additionally, the method interfaces of the data model objects are

described which allow the access of the fixturing hardware.

Section 6.2 describes the class structure defined by DDS to realise the publish/subscribe

communication and explains how the Quality-of-Service concept is implemented by the

middleware standard. Based on this, the communication infrastructure for the adaptive

fixtures is described in sectipn 6.3. This includes, the definition of the data topics, the data

types and the Quality-of-Service settings. The extension of the data model elements with

publisher/subscriber classes and a method interface is the subject of|segtion 6.4. Finally,

sectior) 6.5. illustrates the described concept with an example and outlines the interactions

between the fixture coordinator and the modules during the clamping procedure.

- 132 -

Communication Infrastructure for Adaptive Fixtures

6.2. Publish/Subscribe with the Data Distribution Service

The fundamental principle of the publish/subscribe concept was explained in detail in the

literature review (see sectipn R.5). As discussed there, the approach is particularly suitable

for manyto-many communication between an arbitrary number of participants in a
dynamically changing network environment. The Data Distribution Service builds on the
described communication principle and provides dasye communication services

which allow applications to exchange information in a platform-independent way. The
following sections aim to give a more detailed overview on how communication is

achieved using DDS, in particular the class model and the Quality-of-Service concept.

6.2.1. The Data Centric Publish/Subscribe Model

Data exchange with DDS is realised accagdio the Data Centric Publish Subscribe

(DCPS) model. This model describes the interfaces and relations of all entities that

participate in the communication which is showr in Figure 6-1. Although fundamental

knowledge of these classes and their relationships is important in order to understand DDS,
they do not haveéo be programmed manually by the application developer. Instead, any
DDS implementation provides automated tools to generate these classes, based on the
target platform and the data type definitions of the application. The data model for the
fixture modules and the fixture coordinator must be enhanced by these classes and the

methods they provide must be used in order to achieve communication.

1 *

Entity QosPolicy
[| |
Publisher Topic Subscriber

1 L 1 X J 1
DataWriter DataReader

1

Data
Figure 6-1: Class Diagram of the DCPS model (adopted from [166])

The core of the model is the class Entity. It is configurable with Quality-of-Service policies

and can be attached with listener objects to be notified about events. Due to the inheritance

- 133 -

Communication Infrastructure for Adaptive Fixtures

relationship these characteristics are passed on to all other classes of the model, each of
them defining a specialised set of QoSPolicy objects to fine-tune the data transfer. The class
Topic represents a data flow that is defined by an unique identifier and a data type. More
specifically, it connects the publishing and the subscribing ends of the communication. The
former consists of the class Publisher that is internally used by the middleware to send out
data. It can be associated with multiple objects of the class DataWriter which provides a
data type specific access for the application to trigger the publisher. This means, for every
data type, a dedicated DataWriter-class is generated which provides the method interface to
send samples of this type. Essentially, this consists of the method write() which expects one
sample of a given type as a parameter. The subscribing side of the communication is
similarly structured. Internally, data is received by objects of the class Subscriber. These
can be accessed by the application through data type specific objects of the class
DataReader. The latter are automatically generated for each data type and provide the
method interface to receive data of a given type. In its most basic form, this consists of the

method take() which returns the retrieved samples of a given data type to the application.

6.2.2. The Quality-of-Service Concept

As described in the literature review (see segtion 2.5), the Quality-of-Service concept is a

widely-accepted method to configure the communication behaviour. The QoS model

defined by DDS is a rich set of classes which are derived from QosPolicy and therefore can
be attached to all objects that are involved in the communication. Each of these policies
associates a name with a value and controls a specific aspect of the behaviour of the
service. The DDS specification defines separate semantics for the publishing and the
subscribing side of each QoS parameter. To ensure correct communication, the QoS

policies at the publisher side must be compatible with those at the subscribiEg end| Figure

6-2| illustrates this for the data exchange between a publisher and a subscriber that are

configured with individual sets of Qualipt-Service parameters. The middleware

automatically verifies if the QoS settings for corresponding publishers and subscribers
match according to the subscriber-requested, publisher-offered pattern. According to this
pattern, communication is only established if the offered communication properties of the

publisher meet the requested behaviour of the subscriber.

- 134 -

Communication Infrastructure for Adaptive Fixtures

Data Data

Writer Reader

Publisher
| |

Figure 6-2: DDS Communication M odel with Quality-of-Service

Offered II

QoS

Requested ll
QoS

Furthermore, the utilisation of QoS settings addresses the needs of real-time applications
because it provides precise control over resource usage and the timeliness of the data
exchange. At the same time the concept preserves the flexibility inherent to the
publish/subscribe model. Additionally, the QoS concept can be used to alleviate the

communication challenges resulting from late-joining applications which is explained in

detail in section 6.3|3. This aspect is particularly relevant for adaptive fixturing systems,

since it provides the means to integrate new fixture modules or other subsystems at any

point in time. The complete QoS specification of DDS can be found in [117].

6.3. Publish/Subscribe Concept for Adaptive Fixturing
Systems

6.3.1. Design of the Topic Structure

A number of data topics have been defined which provide the infrastructure for the
exchange of information between the various components in the fixturing system. The

concept consists of nine topics, each of them associated with one of the data types

described in sectign 6.3.2he data topic “Module Capability Descriptichis used by the

fixture modules to publish their capability descriptions as one data sample during their
initialisation routine. Consequently, the fixture coordinator must subscribe to this topic in
order to be informed about the capabilities offilseire modules. The data topic “Slot Link

Info” is used by the fixture coordinator to publish which module has been linked with a
particular slot on a transport component. The transport components are subscribers to this

topic, thereby becoming aware of the fixture modules they are connected with. The

- 135 -

Communication Infrastructure for Adaptive Fixtures

remaining topics are utilised for the exchange of the current sensor data and desired

actuator values. Figure §-3 illustrates the topic structure for the complete system. In the

centre of the picture, the data topics are displayed with their unique identifier. Additionally,
the data type that is exchanged through this topic is provided in brackets. An ingoing arrow
from an application to a topic indicates that this application is a publisher for this topic,

whereas an outgoing arrow classifies the application as a subscriber.

’ Fixture Coordinator ‘

TA 1 A‘\

Module Current

Slot

Desired

Current

Desired

Current

Current Desired

Capability Tip Tip Clamping Clamping Reaction Body Body Link
Description Position Position Force Force Force Position Position Info
(ModuleCap| |(position)||(Position)| | (Force) (Force) (Force) (Body (Body (slotLink

Position
Info)

Position
Info)

Defition)

Info)

-

F—

Fixture Modules

W

Transport Components -H

Figure 6-3: Topic Structure of the Publish/Subscribe Communication Architecture

For each module capability two separate data topics are defined. The first topic is used by
each fixture module software to populate its current sensor readings while the fixture
coordinator is registered as a subscriber. Conversely, the target values for the actuators are
published by the fixture coordinator into the second data topic while the fixture modules are
subscribers. This way, the fixture coordinator is a publisher for the toplesired Tip
Position”, “Desired Clamping Force” and “Desired Body Position”. The fixture modules

on the other side are publishers for the topi€Csrrent Tip Position”, “Current Clamping

Force” and “Current Reaction Force”. As can be seen in the diagram, the fixture modules
are not connected with the topi€€urrent Body Position” and “Desired Body Position” .

This is because the local software of the fixture modules is not aware of their own position
and orientation in the global context. Instead, this information is exclusively generated in
the fixture coordinator when a module is linked with a slot on a transport component. Only
the transport components are able to change the position and orientation of the fixture
modules by the repositioning of the associated slots. Consequently, the software of the
transport components and not the fixture modules must subscribe to the desired body

- 136 -

Communication Infrastructure for Adaptive Fixtures

position topic. Similarly, the transport components publish information about the current
position of their slots, which is the basis to derive the current body position of the
associated fixture modules. For the fixture coordinator, these interactions are not visible
because in its data model each fixture module object is attached with the capabilities to
adjust and feedback its body position. These capability objects are connected to the

previously mentioned data topics, thereby establishing the communication with the

transport component software. Figure |6-4 presents a detailed view of the described

interactions.

Transport Component‘

Fixture Coordinator

publish ¢ Desired Body ? subscribe

Position

| :Reposition | |:Ad'ustBodyPositionf

:TransportComponent H :Slot :Fixture Module

| :SensePosition | | :SenseBodyPosition |-

:SensePosition

Current Body
Position

subscribe publish

Figure 6-4: Interactions Between Transport Components and Fixture M odules

The right side of the drawing shows the software of the transport component which is
responsible for the repositioning of the module. It continuously publishes the slot position
and the orientation of the associated fixture module into the t@pierent Body Position”.
Additionally, it repositions its slot when it receives new target values through the data topic
“Desired Body Position”. On the left side the data model of the fixture coordinator is
shown. As can be seen, it contains the objects for the representation of the transport
components which do not participate in the communication procedure. However, the object
representing the fixture module possesses two capabilities for the current and target body

position which are generated when the module is linked with the transport component as

described in sectign 5.2.3. The capability SenseBodyPosition is continuously updated with

the position of the associated slot. Based on this information, it updates the transformation

matrix Tsiot to_Tc IN the fixture coordinator and calculates the new body position of the

fixture module using the equation 5-1, described in section(5.2.3. Similarly, the capability

AdjustBodyPosition of the fixture module is used by the fixture coordinator to reposition a
module. For this, the target position of the slot, the desired slot clocking and the module

clocking are publishethto the data topic “Desired Body Positich thereby triggering the
-137 -

Communication Infrastructure for Adaptive Fixtures

associated transport component which is responsible for the correct movement of the slot.
The advantage of this approach is that the fixture coordinator can retrieve and change the
body position of a module in the same way as any other capability, even though in reality

the software of the transport component carries out the task.

The described topic structure can easily be extended by further data topics in the future
when more capabilities for fixture modules are defined. For example, new topics can be
defined to communicate the current temperature or error states. Similarly, the
publish/subscribe paradigm facilitates the integration of the fixture with other subsystems
the manufacturing environment. For example, a Human Machine Interface (HMI) can
participate in the data exchange by registering publishers or subscribers for the appropriate
data topics and receive data without affecting the rest of thensyst

6.3.2. Specification of Data Types

The second step for the definition of the communication infrastructure consists of the
specification of the data types which are used to transfer information over the topics. Due to
the variety of fixture modules with different capabilities and data formats, the coscept i
challenged by the trade-off between an efficient data transfer and the interpretation of data.
On one hand, other systems must be informed about the capabilities of a fixture module,
including its limitations and how to interpret the data coming from it. On the other hand, it
would not be efficient to publish this meta-information with every data sample during the
operation of the fixture. To overcome this problem, the communication infrastructure
clearly separates between data types which provide the meta-information needed by other
systems to interpret the capabilities of the fixture module and data types for the actual data
exchange. This approach allows each module to publish its capability description only once
during its initialisation routine. After this, simple data structures can be used for the
exchange of information during the operation of the fixture, thereby reducing network load
and processing time during the clamping procedure. The following data types have been
defined using the platform-independent Interface Definition Language (IDL). Based on

these specifications, the source code for the realisation of the publish/subscribe

- 138 -

Communication Infrastructure for Adaptive Fixtures

communication can be generated automatically for numerous programming languages and

operating systems.

6.3.2.1. Data Types for the Description of the Fixture Module
Capabilities

For the distribution of the module capabilities the structural data type ModuleCapDefinition
has been defined in Listing 1. This structure contains the numerical identifier of the fixture
module and information about the occupied space of the module. Additionally, further
attributes are defined which specify the characteristics and limitations of each capability.
However, the attributes do not reveal anfpimation about the fixture module’s structure
or the capabilities of its subdevices. This information remains encapsulated in the fixture
module itself, thereby providing functional view to the fixture coordinator. In the
following listing, the attributes are defined within the brackets. Each attribute is defined by
a data type, followed by a name. According to widely accepted conventions, the data types

start with capital letters while attribute names begin with small letters.

struct ModuleCapDefition{
long id;
OccupiedSpace occupiedSpace;
SenseTipPositionCapability senseTipPositionCapability;
AdjustTipPositionCapability adjustTipPositionCapability;
SenseReactionForceCapability senseReactionForceCapability;
AdjustClampingForceCapability adjustClampingForceCapability;
SenseClampingForceCapability senseClampingForceCapability;
ProvidesRoleCapability providesRoleCapability;

Listing 1: The Data Type M oduleCapDefinition

Each capability attribute is defined as a structural data type containing the relevant
properties of a given capability to allow other systems to interpret and use this

functionality. The following section provides the details of these properties.

SenseReactionF orceCapability and SenseClampingForceCapability

The data type SenseReactionForceCapability is used to communicate the characteristics
and limitations of the related capability class SenseReactionForce to other systems. If the
fixture module is able feedback a reaction force, the attribute isSupported is set taltrue a

the attribute sensinginfo is filled with the values of the capability class. The data type

Sensinginfo has been described in se¢tion ¢.4.3 and defines the value range for the force
- 139=

Communication Infrastructure for Adaptive Fixtures

feedback, including its resolution and measuring unit. In case, further properties are

required, the data type SenseReactionForceCapability can be extended by further attributes.
Setting the field isSupported to false, indicates to other systems that the module cannot
feedback a reaction force. Consequently, the other attributes are ignored in this case. The

IDL definition of this data type are provided|by Listing 2.

struct SenseReactionForceCapability{
SensingInfo sensingInfo;
boolean isSupported;

17

struct SenseClampingForceCapability({
SensingInfo sensingInfo;
boolean isSupported;

i

Listing 2: Definitions of the Data Types SenseReactionFor ceCapability and
SenseClampingFor ceCapability

As can be seen in the listing above, the data type describing the capability for the feed back

the clamping force has been defined in a similar way which is used to indicate whether or

not the fixture module is attached with an object of the class SenseClampingForce.

SenseTipPositionCapability

This data type is used if the module is able to feed back the position of its actuator tip as a
result of the capability SenseTipPosition. Since the tip position is published as a point

containing the x, y and z values with respect to the local coordinate system of the module,

this data type contains three elements specifying the feedback information for the x, y and z

components. Listing(3 provides the IDL definition of this data type.

struct SenseTipPositionCapability{
SensingInfo sensingInfo x;
SensingInfo sensingInfo y;
SensingInfo sensingInfo z;
boolean isSupported;

bi
Listing 3: The Definition of the Data Type SenseTipPositionCapability
As described before, the attribute isSupported indicates whether or not the capability is
supported by the fixture module. If this is set to true, the remaining attributes provide more
detailed information about the value range, resolution and measuring unit for the xz y and

components of the tip position.

- 140 -

Communication Infrastructure for Adaptive Fixtures

AdjustClampingF orceCapability

If the fixture module contains an actuator that can exert a clamping force, the attribute
adjustClampingForceCapability is filled with the relevant properties to allow other systems
like the fixture coordinator to use this functionality. These values stem from the attributes
of the class AdjustClampingForce which has been generated by the fixture module during

its initialisation procedure. The definition of the data type is provided in Listing 4.

struct AdjustClampingForceCapability{
ClampingRange clampingRangePush;
ClampingRange clampingRangePull;
ClampingDirection clampingDirection;
boolean isSupported;

¥

Listing 4: The Definition for the Data Type AdjustClampingFor ceCapability
The attribute isSupported indicates whether or not the related capability is existent. If set to
true, the attribute clampingDirection indicates the supported directions in which the module
can exert a clamping force. For this, the data type ClampingDirection is used which has

been described in sectipn 44.3 The attribute can have the values push, pull, both or

unknown. Based on this, the two remaining attributes specify the details for each supported

direction, using the data type ClampingRange. As explained in section 4.4.3, this

information includes the minimum and maximum amount of force, the measuring unit and

the resolution.

AdjustTipPositionCapability

To describe the capabilty of moving the actuator tip, the attribute
adjustTipPositionCapability must be specified by the fixture module. Similar to the
previous examples, this attribute is defined as a structured data type containing the relevant

properties. This includes an element of the data type ClampWorkSpace whose structure has

been defined in sectign 4.%.2. According to this, the workspace is defined by the stroke

range of the actuator in x, y and z direction, relative to the local coordinate system of the
fixture module. Additionally, the swing range around one of the coordinate axis can be
described, provided that the fixture module consists of a clamp that can perform such a

movement. Listing 5 provides the definition for the data type.

- 141 -

Communication Infrastructure for Adaptive Fixtures

struct AdjustTipPositionCapability({
ClampWorkSpace workspace;
boolean isSupported;

}i
Listing 5: The Definition of the Data Type AdjustTipPositionCapability

ProvidesRoleCapability

Finally, the attribute of the data type ProvidesRoleCapability is used to describe which
functional roles the fixture module supports. Similar to the previous sections, this attribute
is filled with the information of the associated capability class. Consequently, the data type
consists of three elements to describe whether or not a certain role is supported. For this the

already defined data types ClampRolelnfo, LocatorRolelnfo and SupportRolelnfo are used

which have been described in section 4.5.2. The IDL definition of the data type is shown in

Listing 6.

struct ProvidesRoleCapability{
ClampRoleInfo clampRoleInfo;
LocatorRoleInfo locatorRoleInfo;
SupportRoleInfo supportRoleInfo;
}i

Listing 6: The Definition of the Data Type ProvidesRoleCapability
6.3.2.2. Data type for the link between fixture modules and slots

When a link is established between the objects of a fixture module and a slot in the fixture
coordinator, the software process of the associated transport component needs to be
informed. For this, the fixture coordinator publishes one element of the data type
SlotLinkinfo into the equally named data topic. As a result, the software processes of the
transport components are informed about which fixture modules they are connected with,

since they are registered as subscribers for this data topic. The IDL definition of this data

type is provided by Listing|7.

struct SlotLinkInfo{
long module id;
long tc id;
long slot id;
boolean isLink;
SpatialDescription sdModule;
)i

Listing 7: The Definition of the Data Type SlotLinkInfo

- 142 -

Communication Infrastructure for Adaptive Fixtures

Each sample contains the numerical identifiers of the fixture module, the transport

component and the slot. In this way, the subscribers of the transport components can filter
out the data samples relevant to them. The Boolean attribute isLink is set to true to indicate
that a link between the fixture module and the slot has been established. Conversely, if it is
set to false, it signals that the connection between the module and the slot no longer exists.
Finally, the spatial description of the fixture module relative to the local coordinate system

of the slot is specified by the attribute sdModule. Based on this, the software process of the
transport component can generate the matrix for the coordinate transformation between the

module’s and the slot’s local coordinate systems.

6.3.2.3. Data Types for the Exchange of Data during Adaptive Clamping

As a result of the exchange of the module capability description during the initialisation
routine, the fixture coordinator knows how to interpret the data coming from a particular
fixture module. Additionally, it is aware how a particular module interprets the target
values of its actuator. Consequently, the real-time exchange of sensor data and target values
during the fixturing procedure can be achieved using simple data structures. Listing 8
shows the definition of the structured data type Force which is used for both, the
transmission of the sensor readings from the module to the fixture coordinator and the
communication of the target clamping forces. Thus, during the operation of the fixture, the
modules continuously publish samples of this data type into the topics “Current Clamping
Forcé and “Current Reaction Fortedepending on the capability objects they have been
attached with. To adjust the clamping force, the fixture coordinator publishes elements of
this data type into the topic “Desired Clamping For&ewhich are received by the fixture

modules subscribing to this topic.

struct Force {
long module id;
ClampingDirection clampingDirection;
double value;

Listing 8: The Definition of the Data Type Force

The data type consists of a numeric attribute for the module identifier, the clamping

direction and the force value itself. However, no further details like the measuring unit are

required, since the meta-information to interpret the force value have been exchanged as
-143 -

Communication Infrastructure for Adaptive Fixtures

part of the module capability description. The module identifier is required to distinguish
between the force samples of the different fixture modules in the system. Similarly, the
module identifier must be specified by the fixture coordinator when it publishes the target
clamping force for a particular fixture module. Only the module with the matching
identifier changes its clamping force by activating its actuator device accordiftuyty
attribute clampingDirection is used to indicate the current or desired direction in which the

force is exerted. He possible values for the attribute can either be “push’ or “pull”.

In a similar way, the current and desired tip positions can be exchanged using the data type

Position whose IDL definition is provided by Listing 9.

struct Position({
long module id;
double x;
double y;
double z;

ti

Listing 9: The Definition of the Data Type Position

To feed back the current tip position, a fixture module publishes one sample of this data

type into the specified data topic as described in sgction| 6.3.1. Subscribers of this topic can

identify the source of this information by examining the attribute module_id and update
their internal data model accordingly. The same principle is used by the fixture coordinator
to issue the target positions for the fixture modules. It publishes data samples containing the
module identifiers and the desired values for the position into the data“tepited Tip
Position”. As a result, the fixture modules subscribing to this data topic are informed about
the request and reposition their actuator if the module identifier of the received sample

matches with their own id.

Finally, the data type BodyPositionIinfo is used to exchange the values for the position and
orientation of the fixture modules on the transport components. To trigger the repositioning
of a module, the fixture coordinator issues one sample of this data type into the topic
“Desired Body Positiodh This contains the numeric identifiers of the module, the transport

component and the slot. Additionally, the element position provides the target values for

the position of the slot in the local coordinates of the transport component. If required, the

- 144 -

Communication Infrastructure for Adaptive Fixtures

target clocking values for the module and its slot can be defined. As described in section

4.6.2, these values specify the desired rotations around the coordinate axis of the module

and the slot, respectively. Negative values indicate a clockwise rotation while positive

angles signal a counter-clockwise rotation.

struct BodyPositionInfo({
long module id;
long tc_ id;
long slot id;
Point position;
Clocking slotClocking;
Clocking moduleClocking;
bi
Listing 10: The Definition of the Data Type BodyPositionInfo
The software processes of the transport components receive the published data samples,
since they are registered as subscribers for the mentioned topic. Based on the attribute
tc_id, each subscriber can verify if a sample is addressed to it. If this is the case, it triggers
the repositioning of the specified slot according to the received target values. The feed back
of the current position and orientation of the fixture modules is carried out reversely. For
each fixture module that is connected with a slot, the transport components publish a data
sample into the topic “Current Body Positioh This time, the attributes are filled with the
current position of the slot and the clocking values. When the fixture coordinator receives a
sample from the data topic, it verifies the source of the information, based on the identifiers

and updates the corresponding objects in its data model accordingly.

6.3.3. Quality-of-Service Parameter Specification
The third step for the definition of the DDS-based communication infrastructure consists of

the specification of the QualityfService settings for the various topics. In this context

different communication requirements exist which are explained in the following sections.

6.3.3.1. Quality-of-Service Settings for the Dissemination of Module
Capability Descriptions
In order to be discovered by other systems, each module publishes its capability description
as one data sample during its initialisation routine. However, the fact that this information

is published only once, raises the challenge of theaBed “late-joining applications”.

- 145 -

Communication Infrastructure for Adaptive Fixtures

Essentially, if the fixture coordinator is launched later than the fixture modules, it does not
receive the module capability descriptions, issued before its arrival. Consequeattgoit

interpret the values coming from the modules.

To alleviate this challenge there are two possibilities. The first solution would be to impose

a strict start sequence which regulates when the various components of the system have to
be launched. However, this solution would jeopardise the aim of creating a loosely coupled
communication infrastructure where modules can be added and removed at any time.
Therefore, as a second solution a mechanism is preferred that automatically re-distributes
the module capability information to late-joining applications. In traditional, particularly
client/server-based systems, the problem of redistributing historical data is often solved by
periodical broadcasts or by expllgitrequesting the required information in a synchronous
message sequence. Both approaches would cause significant communication overhead and
add complexity to the application logic of the modules. For this reason, the proposed
solution is based on the idea that each publisher of the module capability description stores
its last-written data sample locally. As a result, it can automatically re-distribute this data
whenever a new subscriber for the associated data topic is detected. DDS provides an
effective way to establish this method with the QoS concept. In this way, the responsibility
for the discovery of new modules and the redistribution aof ttepability descriptions can

be delegated to the middleware and the data is only exchanged when it is really necessary.

For the realisation of this strategy, the data writers and data readers for the module

capability descriptions need to be attached with the QoS settings as shown in Figure 6-5

The picture also shows how other systems such as Human Machine Interfaces (HMI) can

be integrated with the communication infrastructure.

Fixture Coordinator

’ > HMI
HISTORY.depth = 1

RELIABILITY.kind = Reliable
DURABILITY.kind = TRANSIENT LOCAL

Figure 6-5: QoS Settings for the Distribution of the M odule Capability Descriptions

y

Module
Capability
Description

Fixture Module

- 146 -

Communication Infrastructure for Adaptive Fixtures

For the publishing side, the QoS parameter HISTORY specifies if and how many published
data samples are stored for late-joining subscribers. With its attribute depth set to 1 and the
DURABILITY.kind parameter defined as TRANSIENT_LOCAL, it is assured that the last
published sample is stored locally in the publisher. Finally, this strategy is only applicable
for reliable data transfer which is specified by the value of the RELIABILITY parameter.
This way, DDS automatically redistributes the capability informatd@never a new

subscriber for the data topitModule Capability Descripticdhis discovered.

A similar approach can be applied to notify the fixture coordinator when the connection to
certain fixture modules gets lost. For this, the publishers and the subscriber for the module
description need to be configured with the QoS parameter LIVELINESS which determines
if and how the middleware detects communication status changes of entities in the network.
In more the detail, the attribute LIVELINESS.kind must be set to AUTOMATIC which
ensures that the middleware informs the fixture coordinai@matically when “lost”
modules are detected. Additionally, the attribute LIVELINESS.lease_ duration must be

configured with a time span which specifies how often the status is checked.

6.3.3.2. Quality-of-Service Settings for the Exchange for Clamping Data

The exchange of sensor data and target values for the actuators during the fixture operation
IS subject to real-time requirements. Thus, the communication infrastructure must provide

mechanism to control the timeliness of the data transfer, as well as the resource usage and
memory consumption. This can be achieved by adjusting the QoS parameter sets for the

publisher and subscriber objects.

In this context, there is a trade-off between the reliability of the data transfer and its
timeliness. In order to guarantee a reliable data transfer, any middleware needs to check if
data packets are transmitted correctly and resend lost samples if necessary. However, the
redelivery of packets takes time and hence destroys the timing determinism of the data
transfer [167]. This behaviour would not be acceptable for the exchange of sensor data
during the operation of the fixture. Instead, in this scenario it is more important to retrieve

the most recent sensor updates, rather than trying to redeliver old samples that have been

- 147 -

Communication Infrastructure for Adaptive Fixtures

lost. This can be achieved by setting the QoS parameter RELIABILITY to the value of
“BEST EFFORT”. Further, the publishers and subscribers can be configured with the QoS
parameter DEADLINE in order to specify the allowed time frames for the data transfer. In
detail, this parameter defines the time period within at least one data sample must be
exchanged. If there is no data update during the specified time, the middleware informs the

application about the violated timing constraint. An exemplary QoS configuration is

illustrated in| Figure 646 for the exchange of the clamping force. Similar settings are

required for all other topics, based on the requirements of a particular application.

Desired Clamping
Force

Fixture Module Fixture Coordinator

Current Clamping

Force
RELIABILITY.kind = BEST EFFORT
DEADLINE.period = 10ms

Figure 6-6: Examplefor the QoS Settings During the Clamping Sequence

Other QoS policies that influence the réate behaviour are LATENCY_BUDGET and
TIME_BASED_FILTER. The first QoS parameter specifies the maximum allowed time
span between the publication and subscriptioa déta sample. Consequently, this policy
allows to define priorities for the data transfer. For example, the concept can be used to
specify that the communication of the current reaction force values is more urgent than the
dissemination of displacement sensor readings. Secondly, the QoS policy
TIME_BASED_FILTER can be used to limit the number of data samples a subscribing
application receives, thereby controlling both network bandwidth, as well as the memory
and processing resources for this application. This can be used to overcome the impedance
mismatch, described in sectiE4.l, which affects subscribing applications that cannot

process data at the same rates as it is generated by the publishers. For example, if the
current clamping force values shall be displayed by a HMI application with a graphical user
interface, it is critical to ensure that the HMI is not flooded with too much data. To prevent
this, the subscriber can be configured with the TIME_BASED_FILTER parameter to limit

- 148 -

Communication Infrastructure for Adaptive Fixtures

the number of samples it receives, regardless of how fast force sensor values are issued by

the modules. This is illustrated in the drawing unterhalb.

w»mmo»l Fixture Coordinator |

4—0—0—0—i>| HMI |
TIME BASED FILTER = 500ms
Figure 6-7: QoS Settingsfor the Limitation of Received Data Samples.

Current
Clamping Force

Fixture Module

6.4. Extension of the Data Model

6.4.1. Publisher and Subscriber Objects

To accomplish the communication through the data topics, the model elements instantiated
by the fixture coordinator and the software processes for the fixture modules and transport
components, need to be extended with adequate publisher/subscriber objects. The most
appropriate location for these model extensions are the capability objects of the fixture
modules. In this way, only those publishers and subscribers are generated which are really
required for the information exchange, based on the capabilities the fixture modules offer.

As can be seen in the class diagram in Figure 6-8, three publisher and three subscriber

classes have been defined to send and receive force and positional information. The former
three classes inherit from the cldBsiblisher which encapsulates the DDS-internal objects

to realise the publishing of data. This includes the objects for the data topic and the DDS-
internal publisher. Additionally, this class provides a common interface for its child classes
which consists of the method fir@lise(). This method must be called in order to create and
register the publisher/subscriber objects with the Data Distribution Service. Each child class
provides a method for the publishing of a specific data type. Internally, the publication is
realised with a data writer object that is generated, based on the data type definitions. Thus
the class ForcePublisher contains an object of the class ForceDataWriter. To issue a force
value, the method publish() must be invoked which expects the value to be published as an
argument. The subscriber side is similarly structured. The parentSldescriber provides

an interface common to all of its child classes and defines the DDS internal objects for the

- 149 -

Communication Infrastructure for Adaptive Fixtures

topic and the subscriber. Each child class contains a customised data reader and the method

subscribe() to receive data and make it available to the application.

IPublisher ISubscriber
topic: Topic topic: Topic
publisher: Publisher subscriber: Subscriber
initialise() initialise()
I SenseClampingForce A\
ForcePublisher H SenseReactionForce H ForceSubscriber
dw: ForceDataWriter dr: ForceDataReader
publish(Force force) AdjustClampingForce subscribe() : Force

/I SenseTipPosition I\

PositionPublisher

dw: PositionDataWriter

PositionSubscriber

[AdjustTipPosition |/

dr: PositionDataReader

publish(Position pos)

subscribe() : Position

| SenseBodyPosition ’\

BodyPositionInfoPublisher
[AdjustBodyPosition |

dw: BodyPositioninfoDataWriter
publish(Position pos,
Clocking slotClocking,
Clocking moduleClocking)

Figure 6-8: M odel Extension of the Capabilities with Publisher and Subscriber Objects

BodyPositioninfoSubscriber
dr: BodyPositionInfoDataReader
subscribe() : BodyPositionInfo

The essential step during the initialisation of these objects is to register them with the

correct data topic. This is governed by the capability-class they are associated with. For
example, a ForceSubscriber or ForcePublisher which is created by the capability

SenseClampingForce must be registered with the data topio-ent Clamping Force”,

while the publisher/subscriber objects created by the capability AdjustClampingForce are

linked to the topic“Desired Clamping Force”. However, it is important to remember that

the model elements for the fixture modules and their associated capabilities are instantiated
not only in the fixture coordinator software but also in the software processes of the

modules. This means, the publisher/subscriber objects must be registered with different

data topics depending on whether they are instantiated in the fixture coordinator or the local

fixture module softwarg. Figure §-9 illustrates this with an example of a fixture module that

has the capability to adjust and feedback its clamping force. In the fixture coordinator two
capability objects are instantiated which are shown in the upper part of the picture. The
capability SenseClampingForce registers an object of the class ForceSusbcriber with the
data topic“Current Clamping Force” in order to receive sensor updates from the fixture
module. To send the target clamping force values to the module, the capability
AdjustClampingForce registers a ForcePublisher object with the tépicred Clamping

Force”. In the local software routine of the fixture module, however, the relations between
- 150 -

Communication Infrastructure for Adaptive Fixtures

the data topics and the publish/subscriber objects are reverted which can be seen in the
lower part of the picture. The capability SenseClampingForce registers a ForcePublisher
object with the topic‘Current Clamping Force” to issue the current sensor data to remote
systems. Finally, the capability AdjustClampingForce registers an object of the class
ForceSubscriber to receive the desired clamping forces from the fixture coordinator.

| :SenseClampingForce ’—{ :FixtureModule ’—{ :AdjustClampingForce |

Fixture Coordinator Process

| M‘b%fibﬂ | | :ForcePublisher |

Current

Desired
Clamping
Force
(Force)

Clamping Data Distribution Service
Force

(Force)

1

| :ForcePublisher | | :ForceSubscriber |

Fixture Module Process

| :SenseClampingForce }—{ :FixtureModule }—{ :AdjustClampingForce |

Figure 6-9: Examplefor the Instantiation of the Publisher/Subscriber Objects

Similar relations exist for all other publisher/subscriber objects which are summarised in
the following table. It shows which publisher/subscriber objects are created by a particular
capability in the fixture coordinator and the fixture modules. As described before, the
capabilities SenseBodyPosition and AdjustBodyP osition are not instantiated in the fixture

module program. Instead, the transport components are responsible for the communication
of the related information via the associated data topics.

Topic Capability Fixture Coordinator Fixture Module

Current Clamping Force | SenseClampingForce ForceSubscriber ForcePublisher

Desired Clamping Force | AdjustClampingForce ForcePublisher ForceSubscriber

Current Reaction Force | SenseReactionForce ForceSubscriber ForcePublisher
Current Tip Position SenseTipPosition PositionSubscriber PositionPublisher
Desired Tip Position AdjustTipPosition PositionPublisher PositionSubscriber

Current Body Position SenseBodyPosition | BodyPositioninfoSubscriber -

Desired Body Position AdjustBodyPosition BodyPositionInfoPublisher -

Table 6-1: Relations Between Topics, Capabilities and Publisher/Subscribersin the Fixture M odules
and the Fixture Coor dinator

- 151 -

Communication Infrastructure for Adaptive Fixtures

In addition to these objects, the software processes need to instantiate the
publisher/subscriber objects for the information exchange through the data‘tbfoidsle
Capability Description” and “SlotLinkInfo”. These objects are not linked to a particular
capability class, because they are used to transfer the configuration details for the

generation of the data model. As can be seg¢n in Figur¢ 6-10, each software process of a

fixture module creates one object of the class ModuleCapabilityPublisher. This object is
used to publish one sample of the data type ModuleCapDefinition into the specified topic.
The fixture coordinator software and other subsystems that need to discover the fixture

modules, create one object of the class ModuleCapabilitySubscriber.

:/Fixture Module Process \: (Fixture Coordinator Process h

| |

i Publisher i Subscriber DDSDataReaderListener

: initialise() : void : initialise() : void on_data_available() : void

: i Module Capability.

R - ? f

i ModuleCapabilityPublisher : N ModuleCapabilitySubscriber ModuleCapabilityListener

| | publish() : void i on_data_available() : void

|_ ___________________ / g J
Figure 6-10: Publisher/Subscriber Classesfor the Communication of the M odule Capability

Descriptions

As can be seen in the diagram, this class does not have a method to retrieve data from the
associated topic. Instead, a so-called Listener-object is registered with it, that inherits from
the DDS-provided class DDSDataReaderListener. The latter defines the method
on_data_available() which is automatically called by the middleware whenever ataew da
sample is available in the data topic. This way, the fixture coordinator is asynchronously
informed about the discovery of the fixture modules whenever they publish their capability
description. The described approach follows the ohjaetted “Observer” design pattern

which has been described by Gamma et al. [104]. In a similar way, the information about
the connection between the fixture modules and the slots is communicated. The fixture
coordinator creates one object of the class SlotLinkinfoPublisher which is connected with
the specified topic. Whenever the operator connects a slot with a fixture module, one
sample of the data type SlotLinkinfo is published. This information can be retrieved by the

software processes of the transport components by instantiating an object of the class

SlotLinkinfoSubscriber which is associated with a listener, as can be geen in Figyre 6-11.

- 152 -

Communication Infrastructure for Adaptive Fixtures

:/ Fixture Coordinator Process \: /Transport Component Process h
| |

i Publisher i Subscriber DDSDataReaderListener

: initialise() : void : initialise() : void on_data_available() : void

T O i

| A

: SlotLinkInfoPublisher | Y SlotLinkinfoSubscriber SlotLinkInfoListener

E publish() : void i on_data_available() : void

N / L J

Figure 6-11: Publisher/Subscriber Classesfor the Communication of the Slot Link Infor mation

The described class structure of both previous examples raises the legitimate question why
the classes ModuleCapabilitySubscriber and SlotLinkinfoSubscriber have been defined,

since obviously data is received by the listener classes. The reason is that the listeners
cannot exist on their own. Instead, they must be associated to the DataReader-objects

which are contained in the subscriber classes.

6.4.2. Method interface of the Capability and Device Classes

To trigger the previously described publisher and subscriber objects it is necessary to
extend the capability and device classes of the data model with a method inteniace. T
interface of the clss FixtureModuleCap consists of the method perform() which must be
called in order to carry out a capability. As can be seen in the class diagram below, the
method is parameterless and does not reveal a purpose. Instead, it defines a common
interface which is implemented differently by its child classes. Consequently, all
capabilities are triggered the same way which makes the framework independent of the
type and number of capabilities, a particular fixture setup supports. It also allows
programmers to define new capability classes in the model without affecting the overall
concept. During the fixturing process the fixture coordinator iterates through the capability
list of each module and calls the perform()-methods one after another. The class
AdjustClampingForce publishes the target force which can be retrieved from the
ContactPoint-object, associated with the fixture module. Sensing capabilities first retrieve
the current values from the modules by calling their associated subscriber object. If new
data is received, the internal data model in the fixture coordinator is updated accordingly.
To provide access to the received values for other parts of the system, so-called getter-

methods are defined by each capability class. Equally, setter-methods are defined to

configure the capability classes with the target values to be published. Figure 6-12 shows
- 153 -

Communication Infrastructure for Adaptive Fixtures

the class diagram for the mentioned classes with a focus on the method interface. For each
method its name is specified, followed by the parameter list in brackets. If the method has a

return value, the data type of this value is separated by a colon.

FixtureModuleCap

perform()

b

AdjustClampingForce

SenseReactionForce

SenseTipPosition

SenseClampingForce

ProvidesRole

getDesiredForce(): Force
setDesiredForce(Force f)

getCurrentForce(): Force
setCurrentForce(Force f)

getTipPosition(): Point
setTipPosition(Point p)

getCurrentForce(): Force
setCurrentForce(Force f)

getRole(): Role
setRole(Role r)

AdjustTipPosition

SenseBodyPosition

getDesiredTipPosition(): Point
setDesiredTipPosition(Point p)

getBodyPosition(): Point
getSlotClocking(): Clocking
getModuleClocking(): Clocking
setBodyPosition(Point p)
setSlotClocking(Clocking cl)
getModuleClocking(Clocking cl)

AdjustBodyPosition

getBodyPosition(): Point
getSlotClocking(): Clocking
getModuleClocking(): Clocking
setBodyPosition(Point p)
setSlotClocking(Clocking cl)
getModuleClocking(Clocking cl)

Figure 6-12: Method I nterfacesfor the Fixture Module Capability Classes

In a similar way, the local software process of each module iterates through its capability
list and continuously calls the perform()-methods. This time, actuating capabilities (e.g.

AdjustClampingForce) first try to retrieve a new target value from the associated subscriber
and then delegate the request down to their nested capability in order to perform the
actuation. For sensing capabilities, the procedure is carried out reversely. For example,
when the perform()-method of the class SenseClampingForce is called, the capability
object first delegates the request to its nested capability until the interface of the device
class is triggered to retrieve the current sensor value. The result is returned to the capability
object of the fixture module which passes it to its associated publisher object to

communicate the current value to the fixture coordinator. A detailed illustration of the

described interactions is provided in section] 6.5. To access the nested capabilities, specific

methods are invoked which are defined in the device capability classes, as shown in Figure

6-13.

DeviceCapability

N

LinearActuationCapability ApplyForce SenseDisplacementCapability | | | SenseForceCapability
actuate(Point targetPosition) applyForce(Force targetForce) senseDisplacement(): double

?

SwingActuationCapability

senseForce(): Force

Locate Support

actuate(Point targetPosition)
Figure 6-13: Method Interfacesfor the Device Capability Classes

- 154 -

Communication Infrastructure for Adaptive Fixtures

If the device capability class also contains a nested capability, the request is delegated
further by calling the method interface of the nested capability. This way, the request is
delegated down the object hierarchy until the capability object is reached which is attached
to the sensor or actuator device object. Here, the method interface of the associated Device-
object is called which encapsulates the access to the hardware. Additionally, the actuate()-
method defined by the classes LinearActuationCapability and SwingActuationCapability
converts the target position into coordinates of the actuator device, using the matrix

moduleToDevice which is provided by the device object. An overview of the methods

provided by the device classes is shown in the class diage 6-14

Device
ClampDevice SensorDevice LocatorDevice SupportDevice
actuate(Force targetForce) getCurrentValue(): double
actuate(Point targetPosition)
[|
ForceSensor DisplacementSensor

Figure 6-14: Method Interfacesfor the Device Classes

To simplify the diagram, the composite pattern (see sgction[4.4.1) is not shown as it has no

impact on the interface definitions. Further, the method interface of locator and support

devices is empty because they are typically passive elements without any intelligence.

6.4.3. Library Interface Definition for the Hardware Access

The methods provided by the device classes must not contain the implementation code for
the hardware access because this would prevent these classes from being re-used for a
variety of devices from different vendors. Instead, the classes are configured with software
libraries, tailored for a particular device and vendor. Consequently, all requests are
ultimately delegated to the methods offered by devices libraries. This way the hardware
access is extracted from the rest of the software framework which makes the framework

reusable for several different setups.

For each device type a library interface has been defined according to the folkdaasg

structure. The parent class IDevicelLib defines the method interfaces for the initialisation of
- 155 -

Communication Infrastructure for Adaptive Fixtures

the device library and its closure. Additionally, the class 1SensorLib defines the interface of
the method getCurrentValue() which is called to retrieve the current sensor value. Finally,
the class IActuatorLib defines the method interfaces for the force and position controlled
actuation which expect the target actuation and force values as parameters.

IDeviceLib

initialise(): bool
closeDevice(): bool

[|
ISensorLib IActuatorLib

getCurrentValue(): double actuate(Force targetForce)
actuate(double targetActuation)

Figure 6-15: Library Interface Definitions

The implementation of these library functions is beyond the scope of this research, since
this depends on the specificities of the hardware device in question. Instead, the described
class structure must be extended by further child classes which implement the method
interfaces, based on the hardware requirements of a particular device. This can be done
with any appropriate programming language, such as LabView, C or C++. The initialise()
method must correctly register the 1/0O channels for the hardware communication and
prepare the device for its operation. For actuator devices, this includes the execution of the
procedure to find the home position. Similarly, the closeDévimethod must contain the

code to correctly release any used software resources. A typical implementation of the
getCurrentValue()-method would access the data acquisition card of the sensor to read a
digital voltage value. In the second step, this voltage value is translated into a force or
position value, depending on the kind of sensor. For electromechanical actuators, a typical
implementation of the positional actuate()-method converts the target actuation value into
motor counts and then sends appropriate commands to the motion controller of the device.
Concrete examples for the implementation of these methods are described in chapter 7,

based on the hardware used for the demonstrator test bed.

6.5. lllustration of the Communication Sequence

To illustrate the previously described interactions during the clamping procedure, this
section presents an exemplary setup consisting of one fixture module communicating with

the fixture coordinator. The module consists of a force sensor and a linear actuator.

- 156 -

Communication Infrastructure for Adaptive Fixtures

Consequently, during its initialisation routine the software process of the module creates

the device and capability objects as described in sgctior] 5.2.2. On the top of this hierarchy,

the module object is attached with the fixture module capability objects. These objects

register the publishers and subscribers with the data topics as described in section 6.3.1.

Additionally, each capability contairesreference to its nested capability. The latter can
have another nested capability, unless it is connected with the object for the hardware

device. Finally, each device object is configured with an object for the library, which

inherits from the class structure, described in segtion [6.4.3. For example, the class

ExampleSensorLib shown|in Figure 616 is a child class of ISensorLib and implements the

interface for the specific sensor hardware. Below the local object model of the fixture
module is shown. For the sake of simplicity, the diagram is limited to the objects related to

the feedback and adjustment of the clamping force.

Current
Clamping

Desired
Clamping
Force Force

:ForcePublisher :ForceSubscriber

’:SenseCIam ingForce }—{ :FixtureModule }—{ :Ad'ustCIamgingForce‘

:CompositeDevice :ApplyForce
[\
[|
’ :SenseForce }—{ :ForceSensor‘ ’ :LinearClamp }—{ :ApplyForce ‘
\
’:ExamgleSensorLib‘ ’ :ExampleActuatorLib ‘

Figure 6-16: Example Object M odédl of a Fixture M odule

During the clamping of a workpiece, the fixture module object continuously calls the
perform() methods of all attached capability objects. When the perform()-method of the
SenseClampingForce capability is invoked, the request is delegated to its nested capability
by calling the method senseForce(). Since this object has another nested capability, the
request is delegated further by another call of the method senseForce(). The receiving
object is linked with the device object for the force sensor and consequently delegates the
request to it by calling the method getCurrentValue(). The device object can access the
hardware through the provided library and returns the current clamping force value. After
passing the measured value up the object hierarchy, it is published to make it available to
the fixture coordinator or other subsystems connected to the communication infrastructure.
- 157 -

Communication Infrastructure for Adaptive Fixtures

The UML sequence diagrarn unterhjalb shows the described sequence. The objects are

represented by rectangles on the top of the diagram which are connected with vertical
dashed lines. The latter are called life lines and symbolise the time flowing from top to
bottom. The execution of methods is represented by oblong rectangles on the life line,
thereby showing the sequence of actions. Further details on UML sequence diagrams can
be found in Weilkins and Oesterreich [144].

:Fixture :SenseClamping :SenseForce :SenseForce :Force :Example :Force
Module Force Capability Capability Sensor SensorLib Publisher
T T T LI T

] perform() ! ! | | | |

o senseForce() | | | | |

" | senseForce() _ | getCurrent | | :

» Value() . | getCurrent | I

™7 Value() | :

|

i] :

<K-—-——-——-——-- | |

K-——————=—- | | |

K-———————=-= - ! publish() ! ! !

P L [IR I 1]

_________ L | | | |
L | | | | | :

Figure 6-17: UML Sequence Diagram for the For ce Feedback in the M odule Program '

When the perform()-method of the AdjustClampingForce capability is called by the fixture
module, it first tries to retrieve a new target force value from its associated subscriber. If a
new value is received, it calls the applyForce()-method of its nested capability, passing
over the target force value. Since the receiving object has another nested capability, the
request is delegated further until the capability object is reached, that has access to the
object representing the clamp device. Consequently, the actuate(force)-method of the
device object is called which adapts the clamping force by delegating the request to the

library, it has been configured with. Figure 6-18 shows the UML sequence diagram for the

interactions, carried out during the execution of one perform()-method.

:Fixture :AdjustClamping :Force :Linear :Example

Module Force Subscriber :ApplyForce ‘ApplyForce Clamp ActuatorLib
T T T T T - 1

I I I I I I

perform() » L subscribe() 1 ! ! ! !

e | | | |

" applyForce(). ! ! : :

o applyForce() . | I I

> actuate() | |

|

I

I

i > actuate()

I

| L< ----- I]
| S

I

|

| | | | |
Figure 6-18: UML Sequence Diagram for the Force Adjustment in the M odule Program

- 158 -

Communication Infrastructure for Adaptive Fixtures

If no target force is received by the subscriber in the first place, the described sequence is
carried with the last received target force which is stored as an attribute in the class
AdjustClampingForce. This way, the fixture module does not stop adapting the clamping
force in the time interval between two received target force values. Consequently, the
adaptation is independent from the frequency the fixture coordinator issues target values
and solely depends on the cycle time of the module process. The cycle time is defined as
the time which the module needs to execute the perform()-methods of all attached

capabilities.

The fixture coordinator software operates independently from the sequence executed in the

fixture modules. During its initialisation routine it receives the capability description from

the fixture module which results in the generation of the objects shawn in Figufe 6-19. To

simplify the subsequent considerations, the diagram only shows the capabilities for the

feedback and adjustment of the clamping force.

| :SenseClampingForce |—| :FixtureModule |—| :AdjustClampingForce |

| :ForceSubscriber | | :ForcePublisher |

Current
Clamping
Force

Figure 6-19: Example Object Modél in the Fixture Coordinator

Desired
Clamping
Force

During the clamping procedure, the fixture coordinator also continuously iterates through
the capability lists of all module objects, and calls the common interface of the perform()-
methods. The implementation of this method in the class SenseClampingForce triggers the
subscriber object to retrieve the latest sensor update. If new data has been received, the data
model is wupdated accordingly. When the perform()-method of the class
AdjustClampingForce is called, the desired clamping direction and the target force value
are retrieved. The former can be obtained from the Reconfigurationinfo-object that is linked
with the fixture module. The latter is generated by the ForceProfile-object which is

attached to the associated contact point of the fixture module. As described in sectjon 4.7.2

the class ForceProfile defines the common interface generateTargetForce() which must be
implemented by its child classes. Hence, depending on the implementation of the child
- 159 -

Communication Infrastructure for Adaptive Fixtures

class, the target force value can be generated according to different strategiesmipte, exa

a time-driven force profile returns a pre-defined value from a look-up table, based on the

elapsed time of the manufacturing process. Other child classes of ForceProfile could return
a target force, based on the current tool position or the currently experienced reaction forces
on other fixture modules. Ultimately, the target force value is issued by the ForcePublisher

object, associated with the capability. To release the clamps, a target value of O is

published| Figure 6-20 provides the UML sequence diagram for the execution of both, the

force feedback and the issuing of new target force values.

A\

getDirection()

:Fixture :Sense :Force :Adjust :Reconfiguration :Force :Force
Coordinator| | ClampingForce Subscriber ClampingForce Info Profile Publisher
T T T T T T T
| | | | | |

—— perform()
>~ subscribe() | | | |
________ l l l
________ | | |
| | |
perform() I : :
|
|
|
|

L
|
| | | |

Figure 6-20: UML Sequence Diagram for the Capability Execution in the Fixture Coordinator

C

The described sequences are carried out continuously by the module software and the
fixture coordinator, as they call the perform()-methods of the capability objects. As a result,
both communication peers constantly exchange the sensor values and the target values in a
loosely-coupled way. The advantage of the described delegation approach lies iityits abil

to reuse the class structure for different hardware setups. The common interface of the
perform()-method allows to trigger all functionalities in the same way and hides the
implementation details of lower layers. Consequently, it is possible to enhance an existing
module with further capabilities or make changes to the device structure without the need
of reprogramming the module software, since these alterations do not affect the common
perform()-method interface. Additionally, the framework can be extended by new

capability classes without disturbing the described interaction seguenc

- 160 -

Communication Infrastructure for Adaptive Fixtures

6.6. Chapter Summary

A novel communication infrastructure for the data exchange between the fixturing
components has been described. The infrastructure is based on the publish/subscribe
paradigm and adopts the Data Distribution Service (DDS) which is an emerging
communication standard. The required data topics and data types were defined, using the
platform-independent Interface Definition Language (IDL). Additionally, the data model
elements were extended by a method interface which supports the flexible operation of the
fixture modules, based on the delegation approach.

Unlike existing fixturing approaches which are typically restricted to a predefined set of
components with hard-wired communication links, the infrastructure makes it possible to
dynamically discover the fixture modules with their associated capabilities and to establish
the communication channels between them. As a result of the common method interface
and the delegation of requests down to the device libraries, the class structure of the data
model can be re-used for different scenarios without the need to re-programme the fixture

software.

- 161 -

[llustration and Verification

7. lllustration and Verification

7.1. Introduction

This chapter aims at illustrating the research outcomes by applying the proposed software
framework to an experimental test bed. The testbed has been built based on the conceptual
design presented in chapter 3 and renders an adaptive fixture with the ability to reposition
the clamps on a rail frame. For the operation of this prototype, two software applications
for the fixture coordinator and the fixture modules have been developed which implement
the object-oriented data model, communicate via the DDS-based communication
infrastructure and realise the fixture reconfiguration according to the methodology,
described in chapter 5. The programs can be configured with information about the
hardware devices, transport components and fixture design parameters and are therefore not

limited to the prototype fixture.

To demonstrate the general applicability of the research results, two representative test
cases have been selected to show that the software framework can be used for different
structural layouts of the test bed hardware. Additionally, it was confronted with different
workpieces in order to test a variety of reconfiguration scenarios. The resultsetette
indicate the validity of the proposed framework and suggest that the research outcomes can

be utilised for other systems in the industrial context.

Section 7.2 describes the physical structure of the test bed, including the characteristics of

the sensor and actuator components. The implementation of the software framework is

subject to sectign 7.3. This focuses on describing how the data model, the methodology and

the communication infrastructure have been integrated into a working software system that

is able to operate the test bed. Finally, the segtions 7.4 arwd 7.5 describe two experiments

which demonstrate the basic capabilities of the framework.

- 162 -

[llustration and Verification

7.2. Description of the Test Bed Hardware

The starting point for the development of the test bed hardware was the definition of a set
of general requirements and constraints. These can be summarised as follows:
e Reconfiguration capability
It shall be possible to reposition the fixture modules automatically in order to
accommodate different part sizes and geometries
e Modular design
It shall be possible to re-arrange the components of the test bed in different
setups. Additionally, the fixture modules and transport components must be
independently controllable.
e Adaptive clamping capability
It shall be possible to apply a predefined clamping force and adapt it according
to predefined force profiles.
e Prismatic workpieces
For the initial verification it is sufficient to use simple prismatic workpieces of
varying sizes and geometries. In this way, the complexity of the test bed

hardware and associated costs can be reduced.

Based on these general requirements an early design concept was developed which is

shown in Figure 741. The drawing shows a top-down view of a frame with four linear

guides along which the fixture modules can be moved.

Independently movable fixture
modules

rail guides
Figure 7-1: Preliminary Concept Drawingsfor the Prototype

The second step consisted of the definition of further design criteria which were influenced

by the requirements of a related research activity, carried out by a another researcher:

- 163 -

[llustration and Verification

e Maximal working envelope of the fixture: 500 x 500 mm

e Working temperature range: -20-°70

e Maximal applied clamping force: 2500N

e Clamping direction: horizontal (side-clamping)
Finally, the mechanical design for the test bed was developed and the equipment was
selected. This task has been performed by another researcher and is therefore not claimed

as a contribution of this research..

7.2.1. Equipment Description for Transport Components

In order to reduce equipment cost and development time, it was decided to limit the system
to two transport components, instead of using four. This solution allows to demonstrate the
reconfiguration capabilities on two sides of the workpiece, while the remaining fixture
modules require a manual repositioning. However, due to the modularity of both the
hardware design and the software, the system can easily be upgraded to a fully-automated

solution which repositions all fixture modules automatically.

The design of the first transport component is shown in Figure 7-2. As can be seen, the

solution provides the means to reposition one fixture module automatically through a servo
motor and a ball screw mechanism. The structure of the second transport component is
similar. However, a second fixture module can be mounted on it which can be repositioned
manually on the rail. In this way, it is possible to demonstrate the instantiation of the data

model with different types of transport components and to test the collision avoidance

algorithm described in sectign 5.8.4. The decision to achieve the repositioning of the

second module manually was made to limit the complexity of the design, thereby reducing
cost and development time. A detailed description of the chosen hardware components is

provided by the following sections.

- 164 -

[llustration and Verification

DC Servor Iylotor

Ball screw Home Switch Detaileq Carrier View

|
|
|
|
|
|

Ground pla;e

e

rail plate

\
carrier plate

\
Linear guides
Figure 7-2: Design for a Transport Component with one Carrier

Linear guidesand carriers

To guarantee the repositioning capability, two parallel fdetion linear guides are used,

on which carriers can slide along. More specifically, the model SHVR2-ZZ-C1-
+400L-P{I from the company THK Co. Ltd. has been seleci&ée length of one rail guide

is 400mm and the span between the two guides is 120mm. The guides are mounted on a
customised metal plate, hereafter called rail plate, with a dimension of 400mm x 170mm X
14mm. The carriers on each linear guide are connected by the carrier plate which provides a
platform to mount a fixture module. This has a dimension of 250mm x 64mm x 5mm.
Additionally, on one side of the linear guides on-off switch has been mounted which

indicates the home position of the first carrier during the initialisation routine.

Motor and ball screw

The first set of carriers can actively be moved along the rail by a AC servo motor with a
ball screw mechanism which is mounted on the ground plate with a dimension of 660mm x
170mm x 20mm. For the motor, the AC servo motor model AKM23C-ANBNC-01 from the
company Danaher Motions, Inc. has been used which includes an internal encoder for the
positional feed back. The resolution of the feedback signal is 2000 counts per revolution.
The ball screw was supplied by THK Co. Ltd. and the chosen model is BNT1404 which has
a lead pitch of 4mm. Therefore, one full revolution of the servo motor equals to a positional
displacement of 4mm. From this ratio, the positional resolution of the system can be

deducted from the following equation.
- 165 -

[llustration and Verification

4 mm 2000 motor counts (Equ. 7-1)
X mm y motor counts

Replacing parameter y with a value of 1 and solving the equation for parameter x results in
2um as the smallest possible displacement. The second transport component provides an
additional set of carriers which are not connected to the ball screw. Instead, they can only

be moved manually. The design drawing of the second transport component is shown in

Figure 7-3.

Automatically
movable carrier

Manually movable
carrier

Figure 7-3: Design for the Transport Component with two Carriers

7.2.2. Equipment Description of one Fixture Module

To demonstrate the adaptive clamping capability, two identical fixture modules were built
which consist of a linear actuator, driven by a servo motor. The actuator tip is equipped

with a Kistler force sensor, described further below. A photograph of one linear actuator is

shown in Figure 7-4.

e

o
e 7

Figure 7-4: Linear Actuator with Mounted Force Sensor

The chosen actuator model is EC2-BK235-100-16B-60-MS6M-FT1M from Danaher

Motion, Inc., whose technical specifications are listgd in TabIF 7-1
- 166 -

[llustration and Verification

Category Value

Motor type Brushless AC Servo Motor
Screw type Ball screw

Screw lead pitch 16mm

Gear factor 1:10

Maximum load capacity 3600 N

Self-locking yes

Maximum No Load speed 1280 mm/s

Stroke 60mm

Positional feedback resolution 8um (2000 counts/ revolution)

Table 7-1: Specification Summary for the Linear Actuator
As the force sensor, the Kistler PZT 9101A single component load washer has been

selected because these components were readily available in the laboratory. Additionally,

this type of force sensor has the advantage of a compact design, which allows to mount it

near the actuator tip as shown in Figure| 7-4. A selection of the specification details of the

sensor is provided by Table 7-2.

Category Value

Measuring range 0 — 20KN

Rigidity 1.8 KN/um
Sensitivity -4.3 pC/N
Dimensions (H x D x d) 6.5 x 14.5x 8 (mm)

Table 7-2: Specification of the Kistler Force Sensor

7.2.3. Equipment Description for the Control Hardware

To operate the selected sensor and actuator components, a number of control hardware
components are required, such as servo drives, a motion control card and a charge

amplifier. These have been selected according to the recommendations of the hardware

suppliers. Figure 7{5 presents a high-level block diagram of the used components and their

connections between each other. All software applications run on an ordinary office PC
with the operating system Windows 2000 installed. The PC is equipped with a PCI Motion
Control Card (model number: NI PCI 7344) from the company National Instrument which
can be accessed by a software interface to perform the motion control of up to 4 axes

simultaneously.

- 167 -

[llustration and Verification

Linear actuator #1

Servo Drive m

Rail motor #1

Universal Motion Interface
Motion Control i=r -
Card NI PCI-7344 |

i

NI-UMI-7774

(R ZI U e
[N err——

Force sensor #1

&

Force sensor #2

S 2

Figure 7-5: Block Diagram for the Control Hardware Components

Amplifier

To connect the motion control card with the servo drives from Danaher Motions, Inc., a so-
called Universal Motion Interface (UMI) board is required which transfers the voltage
signals from the motion controller to the servo drives. This has also been purchased from
National Instrument in order to guarantee compatibility with the motion control card. The
model number is NI UMI-7774. Each servo motor is controlled by its own drive unit which
transforms the voltage signal from the UMI into current, required by the motor to generate
the torque. The servo drive model ServoStar S20360-VTS from Danaher Motions, Inc. has
been selected for the linear actuators, while the servo motors for the rails are driven by the
ServoStar S20260-VTS unit from the same supplier. The two drive models only differ in the
output current they are able to generate. Technical details on both devices can be obtained
from [168]. Finally, the two force sensors are connected with the multichannel charge
amplifier Kistler 5017B1800 which generates a voltage signal corresponding to the force
that is experienced by the sensor. The amplifier has been calibrated to generate a voltage
signal between 0 and +10V for a force range of 0 to 2500 N. Thus, every 1V represents a
force increase of 300N. This signal is fed into the AnateBigital converter (ADC) of the
UMI-board which has a resolution of 12bit. As a result, the force sensing resolution can be
deducted from the ratio, defined in Equ.7-2, as ~0.61N.

- 168 -

[llustration and Verification

2500N _ 21 (Equ. 7-2)
x N y

7.3. Description of the Prototype Software

To demonstrate the research results, two software applications have been developed. The
first application is the software program for one fixture module. This program is configured
with the software libraries for the device access and an XML-file containing the module
description. During the test procedure multiple instances of these programs are launched,
depending on the number of fixture modules that exist. The second application consists of
the fixture coordinator software which has been enhanced with a graphical user interface
(GUI). Additionally, this software program contains the logic for the transport components
as separate threads. In computer science, a thread is a concurrently running task within a
process [169]. Consequently, the transport component threads are carried out in parallel to

the threads of the fixture coordinator and the graphical user interface, thereby preserving

their independence. Figure 7-6 presents a block diagram of the interacting software

components.

Fixture Coordinator Software

Graphical User Interface

CTransport |:> Instantiation of Data Model
omponent
Degans Fixture Coordinator Transport Component

Thread Threads

< Data Distribution Service >
I:> Fixture Module Software D I:> Fixture Module Software

Configuration file Instantiation of Data Model Configuration file

= e/ =

Device Libraries Davieas Device Libraries Devices

Instantiation of Data Model

Figure 7-6: Overview on the Softwar e Processes for the Prototype
The software programs for the fixture coordinator and the fixture modules have been
implemented in the programming language C++, using the Microsoft Development
Environment 2003, version 7.1.3088. The graphical user interface of the fixture coordinator
has been implemented with the Microsoft Foundation Classes (MFC) which is a widely-

- 169 -

[llustration and Verification

used framework for the programming of Windows applications [170]. Additionally, a

number of open-source software libraries have been utilised which are listed in the table

unterhall) An “X” indicates that a certain library is used for the corresponding application.

. Fixture Module Fixture Coordinator
Library Name Purpose Software Software
. Parsing and interpretation of
tinyXML [171] 9 XML-fiIeF; X
Matrix TCL Lite 2.0 [172] Matrix calculations X X
RAPID 2.01 [165] CoII|S|on. Deteptlon during the X
reconfiguration sequence

Table 7-3: Utilised Third-party Software Libraries

Finally, communication between the software processes and threads is achieved via the

commercially available DDS-platform RTI-DDS 4.1e from Real-Time Innovations, Inc.

7.3.1. Generation of the Publisher/Subscriber Classes

To generate the classes for the DDS-communication, the IDL-definition of the data types
described in chapter 6 have been written in the file exampleAppl.idl. The content of this file
can be found in Appendix B. Based on the IDL-definition, the DDS internal C++ classes
are generated automatically by the tool rtiddsgen which is part of the DDS-platform. To run

the tool, the following command line must be entered.
rtiddsgen -language c++ exampleAppl.idl
Listing 11: Command Linefor the Generation of the DDS Classes

The resulting files are exampleAppl.cpp, exampleAppl.h, exampleApplSupport.cpp,
exampleApplSupport.h, exampleApplPlugin.cpp and exampleApplPlugin.h. These files need
to be compiled and linked to the source code of both, the application for the fixture

modules and the fixture coordinator.

7.3.2. Configuration File Settings

The general content of the module description file has been discussed in sectlon 5.2.1. This

section describes the contents of this file for the fixture modules used in the test bed. Apart
from the numeric identifier and the module dimension, the XML-file contains three
<device>-sections for the linear actuator, the displacement sensor and the force sensor. For

the linear actuator, the following definitions have been made with respect to the spatial

relation of its local coordinate system. As can be segn in Figufe 7-7, both the coordinate

-170 -

[llustration and Verification

systems of the fixture module and the actuator device have been placed in the centre of the
actuator tip when the latter is not extended. This way, the value of the x-axis directly

correlates with the current displacement of the actuator. These definitions are reflected by
the values in the <spatialdesc>-block for the actuator device which can be seen on the right

side in Figure 7-[7.

Local coordinate system <kind>LINEAR CLAMP</kind>
of the fixture module <id>1</id>
<description>Nothing</description>
<spatialdesc>
<x>0</x>
<y>0</y>
<z>0</z>
<rotx>0</rotx>
<roty>0</roty>
<rotz>0</rotz>
</spatialdesc>
<isLockable>true</isLockable>

Figure 7-7: Definitions of the Local Coordinate Systemsfor the Fixture M odules

Further, the chosen actuator model is self-locking as a result of its internal structure. This is
reflected by setting the <isLockable>-tag to true. The capability descriptions for the
actuator device can be summarised as follows:

e Stroke range 0 to 60mm with a resolutiorsh

e Clamping Range 0 to 2500 N in push direction

e Maximum allowable reaction force: 5000 N
The values for the stroke range and the maximum allowable reaction force can be obtained
from the design specification of the actuator. Finally, the <library>-block and the
<library-parameters>-block provide the name of the device library and the details that it
requires in order to function correctly. This includes the identifier of the motion controlle
card which has a value of 1. Secondly, the identifier of the motion axis must be provided,
which is 1 for the first module and 2 for the second module. Thirdly, the ADC-channel
identifier to acquire the current force are provided which has a value of 1 for the first
module and a value of 2 for the second module. Finally, the encoder resolution and the
pitch is required to correctly convert between displacement values in mm and motor counts.
AppendixA provides the complete listings of both configuration files. The XML-block for
the displacement sensor is an example of how the proposed data model decomposes the

physical setup into separate functional components. Even though, the displacement
-171 -

[llustration and Verification

feedback is provided internally by the linear actuator, a separate <device>-block is defined
in the XML-file which results in the generation of a separate object in the data model. The
reason for this is that the class used for the representation of the linear actuator does not
provide a method interface to retrieve sensor values. Finally, the information for the force
sensor is provided in the last <device>-block which is based on the calibration parameters
of the charge amplifier and the resolution of the ADC of the UMI-board. Thus, the force
feedback capability of the device is defined by a measuring range between 0 aridl 2500
The resolution which has been calculated earlier, is rounded up to +/-1N. The device library
of the sensor requires the identifier of the motion control board and the channel number of
the ADC on the UMI which retrieves the sensor signal. For the first module, this is the
channel number 1, whereas the force sensor of the second module is attached to the channel
2.

7.3.3. Device Library Implementation

Three software libraries have been created which accomplish the access to the hardware
devices. These have been implemented as Dynamic Link Libraries (dll) in the programming
language C++, using the Microsoft Development Environment 2003, version 7.1.3088. This
allows other applications, such as the fixture module software, to be dynamically
configured with them at run-time. The created library files are listed below:
e DisplacementSensor_Encoder S200Lib.dll
Implements the class DisplacementSensor_EncoderS200Lib as a child class
of ISensorLib to retrieve the current displacement from the encoder of the
linear actuator. The method getCurrentValue() accesses the motion
controller to read the current position in motor counts from the encoder. The
retrieved value is converted into a displacement, using equ. 7-1.
e KistlerForceSensor_ UMI_ADC.dII
Implements the class KistlerForceSensor_ UMI_ADC as a child class of
ISensorLib to retrieve the current force from the Kistler force sensor. For
this the method getCurrentValue() first accesses the ADC of the UMI-board.
The obtained value is then converted into a a force in Newton, using equ. 7-
2.

-172 -

[llustration and Verification

e NI_UMI7774_S200VTS.dll

Implements the class NI_UMI7774_S200VTS as a child class of
|ActuatorLib for the linear actuator with the UMI7774-board. The adopted
algorithm for the force control is based on changing the actuators position in
response to the force feedback. This is realised by two control loops, which
are illustrated in the diagram below. The inner control loop is performed by
the motion controller hardware and ensures that the target position is
achieved. Additionally, there is an outer control loop implemented in the
library software which continuously reads the current force feedback from
the sensor and issues new target positions. The same approach has been used
for the adaptive fixture developed at the National University of Singapore

[49] which has been described as the sbédre-art in adaptive fixturingni

chapter 2.
Application Software (Library) Motion Drive
Read Compare Update .
Current |—»{ with Target —» Target é‘:éicrg;g CLo;ct)roI » Motor
Force Force Position P
f v

Position Feedback Position

Sensor
(Encoder)

Force Feedback Force

Sensor

Figure 7-8: Block Diagram for the Force Control Algorithm

The source code of all libraries is provided in Appendix C. In order to allow the fixture
module application to create the software objects of the library classes, each dll-file

provides the method createLibrarylnstance() whose signature is provided below:

void * createlibraryInstance (TiXmlNode * node)

Listing 12: Interface for the M ethod createlL ibrarylnstance()

The method expects the XML-node with the relevant <library-parameters>-block for the

library from the module configuration file. Since each library is tailored to a particular

device, it knows how to interpret the details of the XML-node and can therefore extract the

required information to create the library object. The advantage of this approach is that it

allows the definition of different sets of configuration parameters for the device libraries,
-173 -

[llustration and Verification

depending on the device type, vendor-specific details, peripheral equipment and numerous
other influencing aspects. For example, the actuator library used for the test bed requires
the numeric identifiers of the motion controller card and the motion axis, as well as the
values for the encoder resolution and the pitch of the ball screw. Clearly, another actuator
type from a different vendor would require a different set of configuration parameters. By
delegating the object generation to the library itself, the software framework becomes
independent from the specificities of the hardware devices. The code for the
createLibrarylnstance()-method of each library is also provided in Appendix C. The fixture
module software calls this method for each device library it has been configured with, as
shown in Listing 13. The first line loads the dll-file with the name provided by the variable
library. If this was successful, the next step consists of getting the memory address of the
createLibrarylnstance()-method which is accomplished by lines 5 and 6. Finally, if the
address could be found, the method is called with the XML-node of the relevant <library-

parameters>-block as a parameter. The return value of the method is converted into an

object of the class IDevicelLib (see section §.4.3) which allows the module to invoke the

initialise()-method of the library object during its initialisation routine.

//load library
HINSTANCE lib = LoadLibrary(library);
//load function
if (1lib) {
createlibraryFunction = (CreatelibraryInstanceFunction) GetProcAddress (lib,

"createlibraryInstance") ;
if (createlibraryFunction) {
//get pointer to newly created object
deviceLib = static cast< IDeviceLib* > (createlLibraryFunction(node));

P = O oo Jo Ul W

Listing 13: Code Exampleto Load a Device Library

The initialise()-method of actuator library carries out a reference move in order to find the
home position. Conversely, the initial{senethods of the libraries for the force and
displacement sensors are implemented empty, since the test bed setup does not require any
allocation of software resources to operate these devices.

7.3.4. Implementation Overview of the Fixture Module Software

The software of the fixture module constitutes a skeleton program which can be configured
with a module description file and device libraries. Consequently, no additional

development effort is necessary for this application when new fixture modules are

- 174 -

[llustration and Verification

introduced or hardware devices are changed. The application is started in a command line
interpreter with the following syntax. The parameter cofiiegspecifies the path and name

to the XML-file containing the module description.

FixtureModuleAppl.exe [config-file]
Listing 14: Syntax to Start the Fixture M odule Application from a Command Line | nterpreter

The program first parses the xml-file, using the library tinyXML [171] and generates the

object model for the devices and the capabilities, based on the acquired information. This is

accomplished according to the rules described in section| 5.2.2. For the test bed, the

program generates one FixtureModule object which is attached with the objects of the
capability classes AdjustTipPosition, SenseTipPosition, AdjustClampingForce,
SenseClampingForce, SenseReactionForce and ProvidesRole. Further, each of the created
capability objects initialises its publisher/subscriber objects. This procedure is outlined

below for the position publisher of the SenseTipP osition-capability.

1 //create DDS-publisher

2 this->publisher = participant->create publisher (DDS PUBLISHER QOS DEFAULT,

3 NULL, DDS STATUS MASK NONE) ;
4 //register data topic

5 this->topic = participant->create topic(this->topicName, this->type name,
6 DDS_TOPIC QOS DEFAULT, NULL, DDS_STATUS MASK NONE) ;

7 //register data writer

8 DDS DataWriterQos dwgos;

9 publisher->get default datawriter gos (dwgos);

10 this->dw = publisher->create datawriter (this->topic, dwgos, NULL, DDS STATUS MASK NONE) ;

Listing 15: Source Code Extract from the M ethod initialise() of the Class PositionPublisher
The first step consists of creating the DDS-publisher object by invoking a method of the so-
called domain participant which is shown in the first three lines in the listing above. The
domain participant is an object provided by DDS which acts as an entry point to the service
because it is used to create other objects, namely the publishers, subscribers and the data
topics. The second step consists of creating the data topic. For this, the method
create_topic() of the domain participant is invoked with the topic nar@erfent Tip
Position”) and the data type name (“Position”) as parameters. The complete reference for
the other method parameters can be obtained from [173]. Finally, as can be seen in the last
three lines, the just created DDS-publisher object is used to create the DataWriter-object
which is registered with the topic. After the completion of the initialisation sequence for all

capabilities, the module is connected to the communication infrastructure and it can publish

- 175 -

[llustration and Verification

one entry of the data type ModuleCapDefinition in order to indicate its existence to other
applications. Finally, the program enters a loop which continuously calls the perform()-

methods of the fixture module capabilities, thereby exchanging data with other systems and

accomplishing tasks by delegating requests through the object hiefarchy. Ligting 16 shows

the source code for this loop which is executed until the fixture module is switched off.

1 while (1) {

2 //call the perform method on all fixture module caps...

3 int j = 0;

4 for (j=0; j<this->capabilityList.size(); j++) {

5 ((FixtureModuleCap *)capabilityList[]j])->perform() ;
6 }

7}

Listing 16: Source Code for the Continuous Execution of the M odule Capabilities

As can be seen in line 5, the program only invokes the common interface of the perform()-
method which is defined in the parent class FixtureModuleCap. As a result, the application
is independent from the implementation details further down the object hierarchy and can
therefore operate with arbitrary fixture module configurations. Moreover, it allows to

introduce new capability classes without the need to change the rest of the program. The

application output of the fixture module program during the execution of the loop is

provided in Figure 7-9.

¢+ c:\Documents and Settings\Administrator\My Documents\Affix\documentsiow

Performing AdjustC lampingForce.
P ming Ad TipPozition
Performing

Performing &

Performing Adju

FPerforming
Performing

gForce
actionForce

Figure 7-9: Screen Shot of the Fixture M odule Program During its Execution
7.3.5. Implementation Overview of the Fixture Coordinator
Software

Similar to the module software, the application for the fixture coordinator is a skeleton

program which means that it is not limited to the test bed hardware. Instead, it can be

- 176 -

[llustration and Verification

configured with the position and orientation of arbitrary numbers of transport components,
fixture modules and the fixture design information. Consequently, changes of the fixture
hardware do not require additional programming effort for the fixture coordinator software.
The first step during the start of the application, is the generation of the object model for the
transport components, based on the provided configuration data. For the test bed, it was
decided to provide this information directly in the source code, instead of utilising XML-
files. This decision reduced the programming effort by avoiding the development of a
second XML interpreter, yet preserved the ability to test different transport component
configurations by defining a set of test cases in the source code. At the start of the

application one of thee test cases must be selected and depending on that, the program

generates the object model for the transport components. The [listing unterhalb shows

extracts for the object generation for a test case, labelled TESTCASE_6.

1 case TESTCASE_5:

case TESTCASE 6:

3

4 //first build the transport component objects...

5 TransportComponent * raill = new TransportComponent (idCounter->getNextId (),

6 continuous, onedimensional) ;

7 //set the spatial description of the TC relative to the global coordinate system

8 raill->setSpatialDescriptions(0,0,0,0,0,0);

9 //create a slot object for the rail...

10 Slot * slotl = new Slot(*raill, idCounter->getNextId())

21 RepositionCapability * repositionCap = new RepositionCapability(idCounter->getNextId(),
22 raill->getId (), slotl);
23 WorkSpace * ws = new WorkSpace () ;

24 ws->linearRange x.max = 548.5;

25 ws->linearRange x.min = 212.5;

26 ws->linearRange x.resolution = 0.002;

27 ws->linearRange x.unit = UNIT_MILLIMETER;

Listing 17: Configuration with Transport Component Details

First, one object of the class TransportComponent is created in line 5 and its spatial relation
to the global coordinate system is defined in line 8. In this case, both coordinate systems are
coincident, since the values for the translational and rotational parts of the coordinate
transformation are all zero. Line 10 shows the creation of an object of the class Slot which
stands for one carrier. The creation of a capability object is outlined in the lines 21 to 27.
When all objects for one transport component are generated, the attached capability objects
initialise their publisher/subscriber objects. After this, a new thread is started which
continuously iterates through the capability list of the transport component and invokes the

perform()-methods.

-177 -

[llustration and Verification

The second essential step consists of the initialisation of the subscriber for the module
descriptions. This procedure is similar to the steps outlined for the publisher, described in
the previous section and is therefore not explained in detail. Whenever a new module
description is retrieved, the information is used to create a new object of the class
FixtureModule and to attach it with adequate capability objects. All created objects are

displayed immediately in two separate lists on the main window of the GUI which is shown

in|Figure 7-1q).

24 Untitled - Monitor B = fj
Fle ER Hep
-
Monkored Transport Components Mondiored Fixture Modules
Tracsport Component: 0 ~ Fixture Module: 1
DomainType: continuous Description:
GeometryType: 1dm Associsted Siot: Nothng assigned
+ Spatial Relstion to Global Coordinate System + Spatisl Relation to Slot
= Sot: 0 Associated ContactPoint: Nothing assigned
= Spatial Relstion to the TC = Capabiities
Xi 212.700000 = AdpstClampingForce
y: 66.690000 00
2: -15.551000 Description:
102 _Jx: 0,000000 Active: yes
108_y: “90.000000 PubfSub Indisised: yes
ro2_2: 0,000000 Desired Force: -
sMovable: TRUE Desired Clasnping Dwrection: -
sOccupied: PALSE = Clamping Range
Assotisted FotureModude: - teinForce: 0.000000
= RepostionCapabiity maxFocce: 2500.000000
= WorkSpace Resohtion: 10.000000
= UnesrRange x Unt: Newton
Min: 212.700000 Clarnping Drection: push
Ma: $48,500000 Avadabla Clampang Direction: push
Rezolution: 1.000000 + AdustTipPosRion
unk: mm + SerseClampngForce
UnearRange_y + SerseReactionForce
+ UnearRange 2 ¥ SenseTgpPostion
+ ClockingRange_x + ProvidesRole
+ ClockingRange_y
+ ClockicoRanas 2 ¥
Unk Modules to Skots | Rart Camping
A e Perfoemed all capabities of moduel -

SerseCampngForce: perfeemn (For Modude 1)----> update current Clamping Force (19.000000)
SenseReactionForce::perform (foe Modue 1)---> update current Reaction Force (19.000000)
SerseTipPoskion::perform (For Module 1)---> update Tip Position (352, 300000, 28.500000, -28.500000)
............. Performed ol capabdties of modusl 1+ meeser

SenseClampingForce::perfoe (For Modde 1)---> update current Clamping Farce (12.000000)
SensaReactionForce: ipacform (For Modue 1)---> update currenk Reaction Force (12.000000)
SenseTipPosRion::perform (for Modue 1)--> update Tip Position {245.300000, 28.500000, -28.500000)
------------- Performed all copatities of moduel 1--eerereee

Workpisce A ’ Workpiece 8 | Workpiece C ‘ —

Figure 7-10: Screen Shot of the M ain Screen of the GUI

The left list contains the existing transport components while the right list displays all
discovered fixture modules with their capabilities. Below the list boxes, an area with two
buttons and a text field exists. The left button opens another dialog window which allows
the operator to link the fixture modules with the slot objects. The button on the right is used
to start and stop the clamping of a workpiece. The text field was used during the
development phase to display debug messages. Finally, on the bottom of the dialog three
buttons have been placed to demonstrate the reconfiguration procedure for different test
workpieces. If one of the buttons is activated, the software retrieves the predefined design

information for the workpiece and starts the reconfiguration method as described in section
-178 -

[llustration and Verification

5.3. Whereas in an industrial environment the design information should be retrieved from

a data base, it was decided to implement different sets of design parameters directly in the
source code. In this way, the effort for the development of a data base interface could be

saved.

The second dialog window of the application appears when the operator clicks on the

button, labelled with “Link Modules to Slots”. As described in section[5.2.3., this step is

necessary because without being linked to the slots, the module positions and orientations

Transport Component: 0 Fixture Madule: 1

Slot; 0 Fixture Module: 2
Slak: 1

are unknown. The layout of the dialog is sho

Link Dialog

Transpork Component 0 - Slot; 0 FixtureModule 1

Specify how the Module related in space to the slat

Link

Figure 7-11: The GUI Dialog to Link Fixture M oduleswith Slots

The list on the right shows all free slots of the transport components, while the list on the
right displays the unlinked fixture modules. The operator can select one slot and one fixture
module at a time which are additionally shown in the text fields below the list boxes. The
essential step is to provide the software with the spatial description of the fixture module,
relative to the slot’s local coordinate system. For this purpose, six input fields are provided

to enter the translational and rotational parts, required by the coordinate transformation.

When the “Link”-button in the middle is pressed, both objects are taken away from the lists

in order to avoid multiple links. Additionally, as described in segtion 5.2.3, the fixture

module is extended with the capabilities to adjust and sense the body position, based on its

connection with the slot.

-179 -

[llustration and Verification

74. Testing of the Fixture Reconfiguration with one

Transport Component

7.4.1. Objectives

In the first experiment, the fixture setup consists of just one rail which carries the two
fixture modules. The example workpiece is a steel plate with a dimension of 250.0 mm x
51.1 mm x 10.0 mm which is rigidly screwed on a frame. As a result, the fixture modules
are not required to secure and clamp the workpiece. Instead, they are used to apply
dynamically changing clamping forces on two different points on the plate. Therefore, the
aim of the experiment is not to demonstrate a complete fixture consisting of locators and
clamps. Instead, it validates:
e The automatic discovery of fixture modules by the fixture coordinator.
e The automatic reconfiguration of the fixture modules from arbitrary initial
positions to predefined target positions, including the avoidance of collisions
e The configuration of the fixture modules with predefined force profiles from
the fixture design.

e The dynamic adaptation of the force over time.

7.4.2. Configuration Details

The software programs for the two fixture modules are configured with the files
ModuleDescription_Modulel.xml and ModuleDescription_Module2.xml, respectively. Both
files are identical, except that different module-ids are provided, namely 1 for the first
module and 2 for the second. Additionally, the identifiers for the motion axis and the ADC-

channels differ. AppendiR contains the contents of these files.

- 180 -

[llustration and Verification

Global coordinate system 5 i % v
< 55/ ¢ ~ Contact point 1

-

Figure 7-12: Test Setup for the First Experiment

The fixture coordinator is configured with the following information.

The origin of the global coordinate system is set in the bottom corner of the ralil

plate as shown |n Figure 7{12

The local coordinate system of the transport component is defined as coincident
with the global coordinate system. Consequently, all values for the spatial
description of the transport component object are zero.
Configuration data for first slot
o The local coordinate system is placed in the bottom corner of the carrier
plate as shown i@lz and is rotated by 90° about the y-axis in

clockwise direction. This location has been selected to simplify the

measurement of the distances to the global coordinate system, using a
micrometer and high-accuracy gage blocks from the company Crbmwel

Metrology. The results of these measurements are reflected by the values for
X, y and z, given below. The value for x is based on the distance between the
global coordinate system and the carrier after the latter has been moved to its

home position during the initialisation routine of the transport component.

- 181 -

[llustration and Verification

When the home switch of the rail triggers, it can be measured that this

distance is 13.5mm.

= X 13.5mm rot_x: 0°
= y:35.0mm rot_y: -90°
= 7:25.0mm rot_z: 0°

Based on the dimension of the carrier plate, the attribute boundingBox is
defined by the following points

= pl:(0.0/0.0/0.0)

= p2:(-250.0/5.0/-64.0)
The Reposition-capability is instantiated with the following details. As can
be seen, the minimum and maximum values for the attributes linearRange_y
and linearRange_z are equal, since the slot can only be repositioned along
the x-axis. Consequently, the resolution values for these attributes are not
relevant and have been set to a default of 1mm. The maximum value for the
displacement along the x-axis is 336.0, as a result of subtracting the width of
the carrier (64mm) from the length of the rail (400mm).

» linearRange_x: 13.5 mm to 336.0 mm, resolution: 0.002mm

» linearRange_y: 35.0 mm to 35.0 mm, resolution: 1.0mm

» JinearRange_z: 25.0 mm to 25.0 mm, resolution: 1.0mm

= The setup does not allow any rotations of the slot itself or the

mounted fixture module. Consequently, all elements for the attribute

slotClockingRanges and moduleClockingRanges are set to zero.

o The SensePosition-capability is instantiated with the following details:

= posX: 13.5 mm to 336.0 mm , resolution: 0.002mm

= posY: 35.0 mm to 35.0 mm , resolution: 1mm

» posZ: 25.0 mm to 25.0 mm, resolution: 1mm

» Since the setup does not allow any rotations of the slot or the
module, all elements of the attributes slotClockingX, slotClocking,
slotClockingZ, moduleClockingX, moduleClockingy, and

moduleClockingZ are set to zero

Configuration data for second slot

- 182 -

[llustration and Verification

o The local coordinate system is placed in the bottom corner of the carrier
plate as shown ‘n Figure 7412 and is rotated by 90° in clockwise direction.
At the start of the experiment the carrier is manually moved to a start

position, defined by the spatial description details below.

= X 97.5mm rot_x: 0°
= y: 35.0mm rot_y: -90°
= 7:25.0mm rot_z: 0°

o Based on the dimension of the carrier plate, the attribute boundingBox is
defined by the following points
= pl:(0.0/0.0/0.0)
= p2:(-250.0/5.0/-64.0)
o The Reposition-capability is instantiated with the following details:
» linearRange_x: 13.5 mm to 336.0 mm, resolution: 1.0.mm
» linearRange_y: 35.0 mm to 35.0 mm, resolution: 1.0mm
» JinearRange_z: 25.0 mm to 25.0 mm, resolution: 1.0mm
» The setup does not allow any rotations of the slot itself or the
mounted fixture module. Consequently, all elements for the attribute
slotClockingRanges and moduleClockingRanges are set to zero.
o The SensePosition-capability is instantiated with the following details:
= posX: 13.5to 336.0, resolution: 1.0mm
= posY: 35.0to 35.0, resolution: 1.0mm
= posZ: 25.0to 25.0, resolution: 1.0mm
= Since the setup does not allow any rotations of the slot or the
module, all elements of the attributes slotClockingX, slotClockingy,
slotClockingZ, moduleClockingX, moduleClockingY, and

moduleClockingZ are set to zero

Since the repositioning of the second slot is performed manually, the related capability
object is created with a resolution of 1mm which is an estimate of what is achievable by
manually moving the carrier. The Reposition-capability is implemented as a dummy which

opens a dialog box, asking the operator to move the slot to the target position. After the

- 183 -

[llustration and Verification

dialog is closed, it is assumed that the slot has been repositioned correctly and the values
for the current position are updated in the data model. Similarly, the SensePosition-
capability is also implemented as a dummy. Instead of accessing a sensor device, it simply
returns the current values for the slot position from the data model. The resolution for the
feedback is also set to 1mm.

Furthermore, the fixture coordinator has been configured with the following fixture design
details, in the form of ContactPoint objects. The values for the spatial description relative
to the global coordinate system have been retrieved through manual measurements, using a
micrometer and gage blocks.

e ContactPoint 1

o Spatial Description

= x:120.0mm rot_x: 0°
= y:68.6mm rot_y: -90°
= 2:112.2mm rot_z: 0°

o Role: Clamp

o ForceProfile: time-dependent step function as shoyn in Figurg¢ 7-13

e ContactPoint 2

o Spatial Description

= x:220.0mm rot_x: 0°
= y:68.6mm rot_y: -90°
= 7:112.2mm rot_z: 0°

o Role: Clamp

o ForceProfile: time-dependent step function as shoyn in Figure 7-13

4 a.) Force profile for contact point 1 A b.) Force profile for contact point 2
z150T =150
c125¢ £125+
$100 $1004
375 T Ti 75 :—11
“50 1 5ot
25 + 25+
I I I I I —> : I : I i —»
5 10 15 20 25 30 35Timeins 5 10 15 20 25 30 35Timeins

Figure 7-13: Force Profilesfor (a) Contact Point 1 and (b) Contact Point 2

- 184 -

[llustration and Verification

7.4.3. Testing Procedure

Table 7-4 shows the sequence of actions during the experiment and the expected behaviour.

As can be seen, the first module is started before the fixture coordinator is launched (steps 1
and 2). This has been done in order to demonstrate the capability of the communication
infrastructure to redistribute the module capabilities, as described in secti§|n 6.3.3. When

the operator links the fixture modules with the slots (steps 3 and 6), the following values

are used.
e X! 64.1 mm rot_x: 0°
e y: 33.6 mm rot_y: 0°
e z: -31.8 mm rot_z: 0°

These values have been retrieved using the gage blocks described before and are based on

the settings for the local coordinate systems of the fixture module (see gection 7.4.2) and

the slots. Furthermore, step 4 renders a negative test, proving that the framework is not only
able to correctly reconfigure a fixture, but can also recognise situations where the design
parameters cannot be satisfied. Only after the second fixture module is correctly linked with

the slot, the reconfiguration procedure succeeds (step 7).

Action Expected Behaviour
1.) Start of fixture e The module initialises and extends the actuator to find
module 1 home position

2.) Start of the e The transport component is initialised and the first slc

fixture coordinator moved to the home position

e The transport component is displayed with all details in
GUI

e The fixture module is automatically recognised and displ
with all details in the GUI

3.) Link Slot 1 e The fixture module object of the coordinator is enhanced
with Fixture 2 additional capabilities, namely the SenseBodyP osition
module 1 AdjustBodyP osition

4.) Click on Button e The design parameters are retrieved and the reconfigul

“Workpiece A” procedure aborts with an error message, indicating tha

- 185 -

[llustration and Verification

current fixture setup cannot satisfy the design criteria.
reason for this is that there are more contact points

fixture modules.

5.) Launch Fixture

The fixture coordinator discovers the module and display

module 2 properties on the GUI

6.) Link Slot 2 Same as step 3.

with Fixture

Module 2

7.) Click on Button The design parameters are retrieved and the reconfigul
“Workpiece A” procedure finishes successfully. Contact point 1 is assi

with fixture module 1 and contact point 2 is assigned \
fixture module 2. In order to avoid a collision between
modules, the reconfiguration commands are executed

that module 2 is moved first to its target position.

8.) Click on the
“Start Clamping”-
button

The clamping process is started and the force profileg

followed by the associated fixture modules.

9.) Click on the
“Stop Clamping”
button

Both modules retract fully to their initial home position

Table 7-4: Experiment Procedure and Expected Behaviour

The test procedure above has been carried otitri#s over a period of 3 days. To obtain

an initial verification of the correct positioning of the fixture modules, the target counts of

the motors for the rail and the linear actuators have been calculated manually, as illustrated

in

Figure 7-14

l. Based on this, these values were compared with the final counts of both

motors after the completion of the reconfiguration procedure.

- 186 -

[llustration and Verification

Motor count: 0 Motor count: 106{5 * 2000/ 4.0 = 53250
\ \ [-T——————=n
|
i R o
| |
— ||
: : Module in : :
i | target |
: | 1 position | |
Rail |] | |
Motor P L
|
|| L
| 1 | |
| 1 | |
X | | | !
> | | |
| | | | 25.0
— — IP__I I_L,,
| | |
zy | poCTTTT 64.1
\ } \ L ___—Motor count: 0
106.6| | ! ! -~}
| 318 | |
| - | L
|
e — N L 17.5 Motor count: 17.5 * 2000/ 1.6
. o IO = 21875
Na--—"___
120.0 Contact point (120.0/y/106.6)

Figure 7-14: Calculating Motor Countsfor the Rail Motor (blue) and the Actuator (red)

Figure 7-14 shows a top-down view of the transport component with a fixture module

mounted on the carrier plate (gray). All distances are providesinnand have been
obtained using gauge blocks. The details relevant for the positioning of the module on the
rail are marked in blue colour, while red is used for the calculation of the motor count for
the linear actuator. When the carrier plate is in its home position, the left corner of ¢he plat

iIs 13.5mm away from the global coordinate system. In this position, the rail motor has its
initial motor count of 0. Due to the dimension of the actuator and the way it has been
mounted on the carrier plate, the carrier must be moved 106.5mm along the rail in order to
ensure that the actuator tip can reach the contact point. This distance equals a motor count
of 53250, as a result of equ. 7-1. The same strategy was applied to calculate the target
values for the linear actuator. When the actuator is in its home position, the distance
between its tip and the global coordinate system is 881125.0 + 64.1). Consequently

the actuator must exterty 17.5mmin order to reach the contact point. This equals a motor
count of 21875, based on the pitch of the actuator (16mm), the gear factor (1:10) and the
positional resolution (2000). Additionally, the locations of the contact points have been
marked on the workpiece. This allows to visually inspect if the workpiece is approached

correctly.

- 187 -

[llustration and Verification

To verify if the force profiles are followed, the fixture module software has been extended
with the capability to store the measured force sensor values, together with a time stamp.
Additionally, the software stores the time when it receives a new target force from its
subsciber. The time stamp consists of the clock count of the PC’s CPU which operates at a
frequency of 2999980000 ticks per second. Based on this, the elapsed time in milliseconds
between two samples can be calculated, using the equation below

telapsed = (CLK>_CLKj;) * 1000 / 2999980000 (Equ. 7-3)
, Where CLK and CLK; stand for the clock counts of the first and second sample,
respectively. Additionally, the fixture coordinator software retains the clock count when the

“Start Clamping”-button is pressed. Since both software applications run on the same PC,

the reaction time of the fixture module can be obtained psing (Equ. 7-3). The reaction time

is influenced by the delay for the publish/subscribe communication, the cycle time of the
module software and the time delay until a motor movement results in a change of the force
sensor readings. These delays are further discussed in the next section. All measurements
are stored in a text file with theS¥-format which can be opened by Microsoft Excel in

order to draw diagrams.

7.4.4. Test Results

During the execution of the test procedure, the expected behaviour of the fixture
coordinator could be observed. The fixture modules were discovered automatically and the
details of their capabilities were displayed by the GUI. Furthermore, in step 4 of the test
sequence the reconfiguration process was aborted as expected with an error message,
indicating that the fixture design cannot be satisfied. Once the second module was
discovered and linked to its slot, the reconfiguration process was carried out successfully.
In particular, the list of reconfiguration commands was reordered automatically by the
fixture coordinator to avoid the detected collision between the two modules. Thus, during
the execution of this list it could be observed that the command to move module 2 along the
rail was carried out before module 1 was repositioned. The accurate approach of the fixture
modules towards the contact points was examined for module 1 only, since the second
module is moved manually on the transport component. For this, the final counts of both,

the motor for the rail and the linear actuator were retrieved after the completion of the

- 188 -

[llustration and Verification

reconfiguration sequence, using thleasurement And Automation Explorer (MAX)
from National Instrument, Inc. This software can be used to display the details of the

motion controller, including the current motor counts on all axis. As a result, it can be

stated that the expected motor count values as calculated in gectign 7.4.3 were achieved,

indicating that the contact points were accurately approached. This was confirmed by

Figure 7-15: The Tip of the Linear Actuator after the Réconfiguration Sequence

The general results for the force adaptation are summarised in the diagram provided by

Figure 7-16. The diagram shows the measured forces and the target forces for the first

fixture module during the"stest run. All other test runs have shown similar results and are
therefore not discussed in the subsequent sections. As can be seen, the force profile is
followed by the fixture module throughout the entire duration of the test. Target forces are
reached within less than 300ms after they have been published by the fixture coordinator.
After this time span the measured values stabilise with small fluctuations of less than 2%.
The fluctuations can be explained by the noise of the sensor feedback which results in
minimal motor movements when the force control algorithm tries to compensate the alleged
error. Just after 10 seconds there is a clearly visible increase in the measured forces on this
module which results from the effects when the second actuator decreases its own clamping
force from 100 N to 75 N. However, as can be seen in the diagram, the force adaptation of

the module compensates for this error and stabilises again after about 300ms.

- 189 -

[llustration and Verification

125

100 Lt

75 erstmal o Ll PR T T | PO
v

LS b Lol pauadd L) ey Iﬁﬂu
— Actual Forces

q —— Target Forces
50 vl""ﬁ“l/"v’m“‘ a 1 | YN

Forcein N

25

1000
2000 +
3000
4000
5000 +
6000 ~
7000 +
8000 -
21000 +
22000 -
23000 -
24000 -
25000

—_ o - = o e e e e -

Time inms

Figure 7-16: Comparison of Actual Forcevs. Target Forcefor Fixture M odule 1

Figure 7-17 shows a more detailed graph of the adaptation for the first target force by

module 1. At time O, the fixture coordinator has just published the target force of 100N.
This is received 4.5ms later by the fixture module, which subsequently triggers the actuator
to move in order to adapt the force. This delay is caused by the transmission time for the
data transfer via DDS and the cycle time of the fixture module program. However, based on
the reported performance benchmarks in chapter 3, the latency induced by DDS is
significantly smaller than 1ms. Consequently, the main reason for the delay is the cycle
time of the fixture module program. This is supported by the measured sample data which
show an average cycle time of around 9ms. Hence, in the worst case a delay adulhl to
cycle can occur when the target force is published just after the AdjustClampingForce-
capability of the module has been performed. However, it is pointed out that the cysle time
of the fixture modules in the experiments are negatively affected by the fact that all
programs were operated on the sdri@ thereby taking away processor resources from
each other. Secondly, the measurement of the sample data itself takes time, typically in the
range of 300-400 microseconds. Thirdly, due to the Windows operating system, a number
of other processes are executed in parallel, consuming processor time. Hence, the observed
delays can be drastically reduced by implementing the concept on dedicated prdoessors
each fixture module. The average cycle time of the fixture coordinator program is lower at

3-4ms because the fixture coordinator does not interact with any hardware. However, in the
-190 -

[llustration and Verification

experiment it is also slowed down due to the previously mentioned reasons. Further delays
are introduced as a result of the integrated GUI and the thread for the transport components
In an industrial environment, these tasks would be implemented as separate applications,
thereby significantly increasing the performance of the coordinator software.

150

1251 Force is within

2% of target

100

75 4 —— Actual Forces

—— Target Forces

Forcein N

50 -
Start
adapting

/

25
Force begins to
increase

0 T T T T T T T T

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Time in ms

Figure 7-17: Detailed Comparison of Force Adaptation for Fixture M odule 1

After the actuator starts moving, a further delay of approximately 50ms can be observed

until the measured clamping force values start to increase. This delay can be explained with
the inertia the motor has to overcome when it is acting against the workpiece and potential
backlash effects. Therefore, this effect is caused by the motor characteristics, rather than
being related with the presented concepts of this research. Moreover, it shows that the
overhead as a result of the communication infrastructure is significantly smaller than the

delays, induced by the equipment itself.

7.5. Testing of the Fixture Reconfiguration with two
Transport Components

7.5.1. Objectives

For the second experiment, two prismatic parts with different geometries and dimensions

were clamped. For this, the fixture setup was extended with the second transport

-191 -

[llustration and Verification

component which is positioned perpendicular to the first rail. One of the fixture modules
was mounted on the carrier of the second rail, resulting in a new fixture layout consisting of
two transport components with one fixture module each. Hence, the objectives of this
experiment can be summarised as follows:
e To demonstrate the ability of the framework to adapt to a new fixture setup
without the need for reprogramming
e To demonstrate the automatic reconfiguration of the fixture modules for
different prismatic workpieces
Additionally, the test demonstrates the ability of the communication infrastructure to detect

when fixture modules become disconnected.

7.5.2. Configuration Details

Figure 7-1? shows the photographs and the dimensions for both test workpieces. The
material of these parts is aluminium. As can be seen, workpiece A has a dimension of 320
mm x 320 mm x 50 mm. Conversely, workpiece B is smaller with a dimension of 300mm X

300mm x 50mm. The characteristics of the cut-out can be obtained from the picture.

Figure 7-18: Photographsand Dimensionsfor (a) Workpiece A (b) Workpiece B

The software programs for the two fixture modules are configured with the same files as in
the first test, since the internal device structure of each module remained the same. The
fixture coordinator is configured with the following information.

-192 -

[llustration and Verification

e The origin of the global coordinate system is set in the same position as in the

previous test. It is positioned in the bottom corner of the first rail plate, as shown in

P 7

Coordinate system
of slot

e N\
y N
N

Figure 7-19: Test Setup for the Second Experiment

e Configuration details for the first transport component
o All details are the same as in secfion 1.4.2. However, the second slot has

been manually moved to the far end of the rail, as can be sgen in |Figure

7-19. This is reflected by the spatial description for slot 2, which is set to

= Xx:300.0 mm rot_x: 0°
= y:35.0mm rot_y: -90°
= 7:25.0mm rot_z: 0°

e Configuration details for the second transport component

o The local coordinate system is placed in the bottom corner of the ground

plate, as shown |n Figure 7419. The values for the spatial description define

the relative position and orientation of the local coordinate system to the
global coordinate system. These values are results of measurements with a

calibrated micrometer and are summarised below,

- 193 -

[llustration and Verification

= X:462.4mm rot_x: 0°
= y:0.0mm rot_y: -90°
= 7:54.0mm rot_ z: 0°

e Configuration data for the slot
o All configuration details are identical with those of the first slot of transport

component 1.

As can be seenl|in Figure 7119, there are three additional passive locator elements to confine

the clamped workpiece. Since these elements are not controlled by the software framework,
the fixture coordinator is not informed about their existence. Furthermore, the fixture

coordinator is configured with the following fixture design details, in the form of

ContactPoint objects. Figure 7420 shows both sample workpieces when they are clamped,

indicating the positions of the subsequently defined contact points.
e [For workpiece A
e ContactPoint 1

o Spatial Description

= Xx:185.0 mm rot_x: 0°
= y:68.6mm rot_y: -90°
= 2:112.8 mm rot_z: 0°

o Role: Clamp
o ForceProfile: constant clamping force at 200N
e ContactPoint 2

o Spatial Description

= X! 344.6 mm rot_x: 0°
= y:68.6 mm rot_y: -180°
= 7:260.0 mm rot_z: 0°

o Role: Clamp
o ForceProfile: constant clamping force at 200N
e For workpiece B
e ContactPoint 1

o Spatial Description

- 194 -

[llustration and Verification

= X:170.0 mm rot_x: 0°
= y:68.6 mm rot_y: -90°
= 7:113.0 mm rot_z: 0°

o Role: Clamp
o ForceProfile: constant clamping force at 200N

e ContactPoint 2

o Spatial Description
= X:343.7 mm rot_x: 0°
= y:68.6 mm rot_y: -180°
= 7:350.0 mm rot_z: 0°

o Role: Clamp

o ForceProfile: constant clamping force at 200N

Transport
component 1

T ' ¢ :
e, & ~/4. SN A
Flgure7 20: Contact Pointsfor (a) WorkpleceA and (b) Workpiece B

7.5.3. Testing Procedure

Table 7-% shows the sequence of actions during the experiment and the expected behaviour.

To link the fixture modules with the slots, the same values as in the first experiment are

used, which are summarised below.

e X:64.1 mm rot_x: 0°
e y:33.6 mm rot_y: 0°
e z:-31.8 mm rot_z: 0°
Action Expected Behaviour
1.) Start of fixture e Both modules initialise and extend their actuatol

- 195 -

[llustration and Verification

module 1 and 2

find the home position

2.) Start of the fixture

coordinator

Both transport components are initialised and the g
connected to the ball screw are moved to the h
position

Both transport components are displayed with
details in the GUI

Both fixture modules are automatically recognised
displayed with all details in the GUI

3.) Kill process of fixture

module 1

The fixture coordinator software discovers |
disconnected module within 1 second and immedig

destroys its related software objects

4.) Restart fixture modul
1

Fixture module 1 initialises by finding its hon
position and publishing its capability description
The fixture coordinator software discovers the 1

module and displays its details in the GUI

5.) Link Slots with fixture

modules

Both fixture module objects of the coordinator |
enhanced with 2 additional capabilities, nam
SenseBodyP osition and AdjustBodyP osition

6.) Click on Button
“Workpiece A”

The design parameters are retrieved and
reconfiguration commands are executed. After K
modules have been repositioned on the rails,
operator is asked to position the part against
passive locators. After that, both modules approacl

workpiece.

7.) Click on the “Start
Clamping”-button

Both fixture modules start applying the specif

constant clamping force

8.) Click on the “Stop
Clamping” button

Both modules retract fully to their respective ho

positions

9.) Click on Button
“Workpiece B”

Same as step 4

- 196 -

[llustration and Verification

10.) Click on the “Start e Both fixture modules start applying the specif
Clamping” button constant clamping force

11.) Click on the “Stop e Both modules retract fully to their respective ho
Clamping” Button positions

Table 7-5: Experiment Procedure and Expected Behaviour
The test procedure above has been carried out 15 times over a period of 3 days. As in the
first experiment, the applied clamping forces were recorded in CSV-files. To verify the
positioning of the fixture modules, the target motor counts were calculated manually, using

the same approach as in the first experiment. The expected values are |isted in Table 7-6

and were compared with the real values, as signalled by the feedback devices of the motors.

Fixture Module 1 Fixture Module 2
Workpiece A | Rail motor 1: 69850 counts Rail motor 2: 80352 counts
Actuator motor 1: 29625 counts Actuator motor 2: 35875 counts
Workpiece B | Rail motor 1: 62349 counts Rail motor 2: 125350 counts
Actuator motor 1: 29875 counts Actuator motor 2: 37000 counts

Table 7-6: Predicted Motor Countsfor WorkpiecesA and B
Additionally, the correct approach of the fixture modules towards the contact points was

inspected visually.

7.5.4. Test Results

As expected, each fixture module moved its actuator to the home position during the
initialisation routine. Similarly, the fixture coordinator instantiated two objects for the
transport components which moved their carrier to its home position. After that, the fixture
coordinator discovered both fixture modules, since they have previously published their
cgpability descriptions. Subsequently, the details of their capabilities could be obtained
from the GUI. When the process of fixture module 1 was aborted, the coordinator software
reacted correctly by informing the operator with an immediate error message and deleting
the software objects related to module 1. This showed the ability of the communication
infrastructure to be the backbone of robust industrial fixtures with the ability of failure
recovery. Linking both modules with their slots in the fixture coordinator, resulted in the
enhancement of their capabilities with AdjustBodyPosition and SenseBodyPosition
capability objects. After pressing the button “Workpiece A”, the reconfiguration sequence

- 197 -

[llustration and Verification

succeeded with the actuator tips of both modules approaching the workpiece. Similar to the
first experiment, the achieved motor counts were compared with the pre-calculated target
values, revealing that the fixture reconfiguration was performed as expected. Visual
inspection of the parts showed that the actuator tips were positioned at the contact point.
After the clamping of workpiece A, both modules retracted to their actuator home
positions. When the button “Workpiece B” was clicked, the new design parameters were
correctly retrieved by the fixture coordinator and the reconfiguration process was initiated.
First, both fixture modules were repositioned on the rails, before the operator was asked to
load the part and position it against the passive locator elements. After that, the fixture
modules approached the part until the linear actuator reached its target position. Again, a

comparison of the motor count and visual inspection showed agreement with the expected

outcomes. Figure 7-21 shows a detailed picture of the fixture after the completion of the

reconfiguration process for workpiece B.

Figure 7—21:~?Clamping of Workpiece B
With regards to the force control, the same effects as in the first experiments could be
observed for all workpieces and fixture modules. Therefore, for the discussion of these

results it is referred to sectiEn 7.4.4. Detailed diagrams of the force profiles are provided in

Appendix D.

7.6. Chapter Summary

The key research elements have been verified using a set of experiments. The experimental
results show that the research results can be applied to automate the reconfiguration and

clamping process of different fixturing systems. The results also demonstrate that the

- 198 -

[llustration and Verification

initially defined use cases (see section| 3.3) are satisfied by implementing the proposed

model and the methodology.

With regard to the use case “Initialise Fixture”, it was shown that the communication
infrastructure is able to discover the different components in the system and represent their
capabilities. Fixture modules are discovered regardless of whether or not they have been
launched before the fixture coordinator. Additionally, the communication infrastructure
discovers disamected fixture modules. In the context of the use case “Reconfigure
Fixture”, it can be stated that the change-over from the fixture layout for the first to the
second experiment required approximately 30 minutes, due to the manual labour needed to
mount one module on the second transport component. However, no changes were
necessary in any of the software applications that operate the fixture. This is a significant
improvement over existing systems which typically require reprogramming and
recompiling in order to be adapted for a new fixture. Moreover, the automatic

reconfiguration for two different workpieces was accomplished in less than 10 seconds.

Finally, it was shown that the proposed software framework can be used for the realisation
of adaptive fixtures. In the experiments, target forces were reached in less than 300ms. This
is comparable to the reaction times of the adaptive fixture, developed at the National
University of Singapore [49] which has been characterised as the state-of-the-art in
adaptive fixturing. However, in addition to the force adaptation capability the concepts
proposed by this research render the fixture not only adaptive, but also reconfigurable. This
provides evidence that this research is indeed a promising approach towards the realisation

of reconfigurable and adaptive fixturing system for complex manufacturing processes.

- 199 -

Conclusions and Future Work

8. Conclusions and Future Work

8.1. Introduction

The research described in this thesis was motivated by the ongoing trend towards the
utilisation of advanced computer technology and sensor feedback for the development of
fixtures that are both, adaptive and reconfigurable. However, as identified in chapter 2,
existing fixturing solutions satisfy at best only one of the aforementioned characteristics.
The main barriers for this are (1) the lack of a data model for the representation of the
capabilities of adaptive fixtures; (2) a missing fixture reconfiguration approach that is
applicable to a wider range of different fixturing systems and (3) a lack of a communication
infrastructure that recognises the need for flexible and platform-independent information

exchange between the participating components.

According to a detailed research framework, presented in chapter 3, the knowledge gaps
were first translated into clear research objectives. Additionally, a detailed use case analysis
was conducted and available technologies for the realisation of the communication
infrastructure were compared. Based on this, the key concepts of a software framework for
the operation of reconfigurable and adaptive fixturing systems were developed and finally
demonstrated in a prototype application.

This chapter provides a summary of the key knowledge contributions in gectjon 8.2 and

discusses potential application areas in industry in sgctign 8.3. Furthermore, |se¢tion 8.4

focuses on the future work that needs to be carried out in order to guarantee industrial

uptake of the proposed framework.

8.2. Original Contribution to Knowledge

A new data model for the representation of the capabilities of reconfigurable and
adaptive fixturing systems has been devel oped
In contrast to existing data models for fixture reconfiguration which appear to concentrate

on the design phase and treat fixtures as purely mechanical, passive devices, the developed

- 200 -

Conclusions and Future Work

data model uses object-oriented modelling techniques that are able to capture the changing
capabilities of adaptive fixtures during their operation. In addition to conventional object-
oriented techniques such as inheritance, the model makes heavy use of software delegation
and a number of object-oriented design patterns to accomplish the dynamic access and
flexible substitution of the model elements during the operation of the fixture. In this way,
the research does not only contribute to the fixturing domain by the introduction of a new
data model, but also to the field of computer science through the application of existing
concepts to a new application area. For the formalisation and definition of the relationships
between the model elements the Unified Modelling Language (UML) has been used which

guarantees a platform-independent definition of the data model.

A generic methodology for the automatic reconfiguration of adaptive fixturing systems

has been devel oped

A novel decision-making methodology for fixture reconfiguration has been developed
which consists of two interrelated parts. Firstly, the capability recognition method describes
how the elements of the object-oriented data model are instantiated by both, the fixture
module software and the fixture coordinator, in order to reflect the capabilities of a given
fixture setup. This results in a layered object hierarchy where model elements of higher
layers delegate requests to the model elements of subordinate layers during the operation of
the fixture. Secondly, the setup adaptation method defines the steps for the reconfiguration
of an existing fixture layout to accommodate the next workpiece. The approach is based on
matching the software objects representing the physical setup with the objects representing
the predefined fixture design parameters. This assignment allows to delegate the generation
of the reconfiguration sequence to each individual fixture module, using the Command
pattern approach. As a result, the proposed methodology is independent from the number
and type of the existing fixture modules and can therefore be adapted for a plethora of
different setups.

A flexible communication infrastructure for the operation of reconfigurable and
adaptive fixturing systems has been devel oped
A flexible communication infrastructure has been proposed which allows the platform-

independent communication between the various parts of the fixturing system through the
-201 -

Conclusions and Future Work

adoption of a publish/subscribe mechanism. In contrast to existing approaches for adaptive
fixtures which rely on hardwired connections between the devices, the proposed
infrastructure allows to dynamically establish communication channels when components
are added, removed or replaced. For this an emerging middleware standard (DDS) has been
applied to the fixturing domain which so far lacks any standardised communication
infrastructure. The required data topics and data types were defined, using the platform-
independent Interface Definition Language (IDL). Additionally, standardised device library
interfaces and method interfaces for the data model elements were defined which are the

key for the platform-independent and flexible operation of the fixture.

In addition, the following secondary contributions have been achieved:
e A comprehensive requirement analysis of reconfigurable and adaptive fixturing
system was carried out, based on a use case study.
e A detailed assessment of different middleware concepts for the use as a
communication infrastructure for fixturing systems was conducted.
e A prototype software application for the operation of an exemplary fixturing system

has been developed, based on the proposed core knowledge contributions.

8.3. Areas of Application

The key knowledge contributions support a common software framework which can
significantly reduce the efforts for the development of adaptive and reconfigurable fixturing
systems in future applications. As demonstrated by the prototype application in chapter 7,
readyto-use skeleton programs for the fixture coordinator and the fixture modules can be
used and configured with information of the particular fixture setup. This will benefit
system integrators as it alleviates the need for programming of the overall application
architecture and recurring tasks, such as the recognition of equipment capabilities,
information exchange and the realisation of the reconfiguration procedure. As a result,
engineers will be able to focus on their core competencies, such as the generation of
clamping strategies and the mechanical design of the fixturing system. Moreover, the
research results of this study are expected to be applicable to a wide range of applications in

the fixturing domain, from assembly operations to fixtures for machining operations. Apart

- 202 -

Conclusions and Future Work

from the prototype application, the research outcomes have pagthirbplemented i
reconfigurable fixturing system for the assembly and disassembly of Rolls-Royce aero-
engines. At the time of writing this thesis, large parts of the software for this system have
been completed, which utilise the reconfiguration methodology, described in chapter 5.
Other companies, including Airbus have shown interest in the communication
infrastructure as a basis for the development of a new generation of adaptive and

reconfigurable fixtures.

8.4. Future Work

While the reported research is regarded as a significant step towards the successful
realisation of reconfigurable and adaptive fixtures, it also opens new avenues for further

research. The main areas where these opportunities arise are summarised below.

Extension of the data model for other fixturing scenarios and equipment

For the definition of the data model only the most common equipment types and associated
capabilities have been included, in order to reduce the complexity of the proposed model.
However, the described object-oriented structure can be extended with additional classes
and attributes to represent more equipment, like other clamping types, sensor devices or
locator types, as well as their associated capabilities. An examplanfadditional
equipment type would be a temperature sensor. The latter could be integrated by defining
new classes for the sensor device itself and its associated capability. Additionally, a new
data topic for the communication of the measured temperature data would have to be
defined. Similarly, the existing classes of the model can be extended with further attributes
in order to arrive at a more detailed representation of the fixture. For example, the device

classes could be extended with attributes for the weight, rigidity and material.

I nvestigation of distributed, collaborative fixturing approach

The proposed publish/subscribe communication can easily be extended by further data
topics in the future and it facilitates the integration of the fixture with other subsystems of
the shop floor. For example, a Human Machine Interface (HMI) can easily participate in the

data exchange by registering publishers or subscribers for the appropriate data topics.

- 203 -

Conclusions and Future Work

Additionally, the proposed communication infrastructure can act as a starting point for
further research towards the development of a distributed system with autonomous fixture
modules. In such an approach, the fixture coordinator would become obsolete as a central
instance to ensure correct functioning. Instead, the modules would subscribe to all topics
and hence get informed ahoeach other’s existence and current states. Based on this
information, a collaborative methodology for the fixture reconfiguration and clamping
procedure could be developed to adapt the system without the need of a central coordinator.
The advantage of this approach is the elimination of the fixture coordinator as a single-

point-of-failure.

Extension of the framework for repositionable transport components

The proposed software framework is based on the assumption that only the fixture modules
can change positions during the operation of the fixture while the transport components are
fixed. While this limitation reflects the physical characteristics of many existing fixturing
systems, there are scenarios conceivable where transport components can be repositioned
automatically, too. For example, consider a setup where the rails from the prototype
described in chapter 7 are mounted on a stage that can lift the rails up and down. For such
cases, the framework needs to be extended with the option to link transport components
with each other. Additionally, new capability classes for the transport components need to
be created which represent their ability to be repositioned. Finally, the generation of the
reconfiguration commands needs to be extended by command classes for the repositioning
of transport components and further strategies are required to determine whether or not the
repositioning of transport components is required in order to align the fixture modules with

the contact points.

Extension of the fixture reconfiguration algorithm with the capability to make
proposals

Furthermore, it is possible to extend the fixture reconfiguration methodology with the
ability to actively propose changes in the event that an existing fixture layout cannot be
transformed according to given design requirements. A possible solution would involve a
data base which contains information about the available fixture modules and transport

- 204 -

Conclusions and Future Work

components. Based on this, the system could search the data base for replacement
components which better satisfy the requirements of a given fixture design. Similarly, it
could propose the addition of more fixture modules and other changes of the fixture layout

in order to accommodate the next workpiece.

8.5. Concluding Remarks

Fixtures play an important role in both assembly and machining operations. Their
significance is reflected by the myriad of research activities aimed at improving various
aspects of their behaviour. However, despite recent efforts towards increased
reconfigurability and adaptability, fixtures still appear to be major bottlenecks of

reconfigurable manufacturing systems.

The research presented in this thesis rooted in the observation that a major obstacle for the
successful realisation of fixturing systems with reconfigurable and adaptive capabilities, is
the lack of flexible software concepts for the operation of such devices. The overarching
idea was to define the core concepts for a software framework that minimises the need for
application programming when a new fixture is developed or an existing system is adapted
for new requirements. Starting from an extensive literature review and a detailed
requirement analysis, the core knowledge contributions of the research have been
developed and presented in the chapters 4, 5 and 6. These are (1) an object-oriented data
model; (2) a generic fixture reconfiguration methodology and (3) a publish/subscribe
communication infrastructure. While the developed framework is not claimed to be a
complete industrial solution, it presents a significant step towards the successful and cost-
effective development of reconfigurable fixturing systems in future applications. The
fundamental principle of the developed framework has been demonstrated in a prototype
application in chapte? while parts of the data model and reconfiguration methodology

have been implemented for an industrial testcase, as described in[se¢tion 8.3.

As the work has been done in close collaboration with industry, there is a good chance that
the research outcomes will be accepted and adopted as a platform for the development of

next-generation fixtures. However the success of the work also depends on the

- 205 -

Conclusions and Future Work

dissemination of results to the wider manufacturing community and the inclusion of extra
features to create a commercial product that system integrators can use for industrial

projects.

- 206 -

References

References

1.

10.

11.

12.

13.

14.

15.

16.

Bi, Z.M. and Zhang, W.J., 2001, "Flexible fixture design and automation: Review,
iIssues and future directions”, International Journal of Production Research, vol. 39,
n. 13, pp. 2867-2894.

Consalter, L.A. and Boehls, L., 2004, "An Approach to Fixture Systems
Management in Machining Processes", Journal of the Brazilian Society of
Mechanical Science & Engineers, vol. 26, n. 2, pp. 145-152.

Perremans, P., 1996, "Feature-based description of modular fixturing elements: The
key to an expert system for the automatic design of the physical fixture", Advances
in Engineering Software, vol. 25, n. 1, pp. 19-27.

Bi, Z.M., Lang, Y.T.S., Verner, M. and Orban, P., 2007, "Development of
reconfigurable machines”, International Journal of Advanced Manufacturing
Technology, vol. 39, n. 11-12, pp. 1227-1251.

Mohamed, Z.M., 1996, "A flexible approach to (re)configure Flexible
Manufacturing Cells", European Journal of Operational Research, vol. 95, n. 3, pp.
566-576.

Oxford University Press, 2010, "Oxford English Dictionary”, Available from:
[www.oed.conp April 2010.

Riehle, D., 2000, "Framework design: A Role model approach”, PhD Thesis, ETH
Zurich, pp. 230.

Fayad, M. and Schmidt, D.C., 1997, "Object-oriented application frameworks",
Communications of the ACM, vol. 40, n. 10, pp. 32-38.

Shirinadeh, B., Lin, G. and Chan, K., 1995, "Strategies for planning and
implementation of flexible fixturing systems in a computer-integrated
manufacturing environment”, Proceedings of International Conference on Computer
Integrated Manufacturing, Singapore.

Lin, G. and Du, H., "Design and development of an automated flexible fixture",
Proceedings of the 4th Internatonal Conference on Automation Technology
(AUTOMATION “96), Hsinchu, Taiwan.

Hoffman, G.H., 1987, "Modular fixturing", Manufacturing Technology Press, Lake
Geneva, Wisconsin, ISBN: 978-0932819000, pp. 186.

Gandhi, M.V. and Thompson, B., 1986, "Automated design of modular fixturing for
flexible manufacturing systems"”, Journal of Manufacturing Systems, vol. 5, n. 4, pp.
243-252.

Lewis, G., 1983, "Modular fixturing system”, Second International conference on
Flexible Manufacturing Systems (IFS), London.

Lin, C.1., 1994, "A systematic conceptual design of modular fixtures", International
Journal of Advanced Manufacturing Technology, vol. 9, n. 4, pp. 217-224.

Ngoi, B.K.A., 1990, "Computer aided design of modular fixture assembly”, PhD
Thesis, University of Canterbury, New Zealand, pp. 225.

Sela, M.N., Gaundry, O., Dombre, E. and Benhabib, B., 1997, "A reconfigurable
modular fixturing system for thin-walled flexible objsttinternational Journal of
Advanced Manufacturing Technology, vol. 13, n. 9, pp. 611-617.

- 207 -

http://www.oed.com/

References

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Zheng, Y. and Qian, W.-H., 2008, "A 3-D modular fixture with enhanced
localization accuracy and immobilarization capability”, International Journal of
Machine Tools and Manufacture, vol. 48, n. 6, pp. 677-687.

Xu, Y.-C., Liu, G., Tang, Y., Zhang, R., Dong, R. and Wu, M., 1985, "A modular
fixturing system for flexible manufacturing"”, in "Flexible Manufacturing Systems",
IFS Publications, Bedford, pp. 227-233.

Kusiak, A., 1992, "Intelligent design and manufacturing”, John Wiley & Sons, New
York, ISBN: 978-0471534730, pp. 776.

Shirinzadeh, B., 1995, "Flexible and automated workholding systems", Industrial
Robot: An International Journal, vol. 22, n. 2, pp. 29-34.

Nee, A.Y.C., Whybrew, K. and Kumar, A.S., 1995, "Advanced Fixture Design For
FMS", Advanced Manufacturing Series, Springer-Verlag, London, ISBN: 978-
1848827387, pp. 481.

Hazen, F.B. and Wright, P.K., 1990, "Workholding automation: innovations in
analysis, design and planning”, Manufacturing Review, vol. 3, n. 4, pp. 224-236.
Aoyama, T., 2004, "Development of Gel Structured Electrorheological Fluids and
their Application for the Precision Clamping Mechanism of Aerostatic Sliders",
CIRP Annals - Manufacturing Technology, vol. 53, n. 1, pp. 325-328.

Rong, Y., Tao, R. and Tang, X., 2000, "Flexible Fixturing with phase-change
materials. Part 1. Experimental study on magnetorheological fluids", International
Journal of Advanced Manufacturing Technology, vol. 16, n. 11, pp. 822-829.
Aoyama, T. and Kakinuma, Y., 2005, "Development of Fixture Devices for Thin
and Compliant Workpieces", CIRP Annals - Manufacturing Technology, vol. 54, n.
1, pp. 325-328.

Ahn, S.A. and Wright, P.K., 2002, "Reference free part encapsulation (RFPE): An
investigation of material properties and the role of RFPE in a taxonomy of fixturing
systems", Journal of Manufacturing Systems, vol. 21, n. 2, pp. 101-110.

Choi, D.S,, Lee, S.H., Shin, B.S., Wang, K.H., Yoon, K.K. and Sarma, S.E., 2001,
"A new rapid prototyping system using universal automated fixturing with feature-
based CAD/CAM", Journal of Materials Processing Technology, vol. 113, n. 1-3,
pp. 285-290.

Lee, E. and Sarma, S.E., 2007, "Reference free part encapsulation: Materials,
machines and methods", Journal of Manufacturing Systems, vol. 26, n. 1, pp. 22-
36.

Phuah, H.L., 2005, "Part-fixture behaviour prediction methodology for fixture
design verification", PhD Thesis, University of Nottingham, pp. 210.

Hurtado, J.F. and Melkote, S.N., 1998, "A Model for the Prediction of Reaction
Forces in a 3-2-1 Machining fixture", 26th North American Manufacturing
Research Conference NAMRC XXVI, Atlanta, Georgia.

Englert, P.J. and Wright, P.K., 1986, "Application of artificial intelligence and the
design of fixtures for automated manufacturing”, IEEE International Conference on
robotics and automation, San Francisco.

Cutkovsky, M.R., Kurawa, E. and Wright, P.K., 1985, "Programmable conformable
clamps", AUTOFACT 4, Dearborn, Michigan.

Al-Habaibeh, A., Gindy, N. and Parkin, R.M., 2003, "Experimental Design and
Investigation of a pin-type reconfigurable clamping system for manufacturing

- 208 -

References

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

aerospace components ", Journal of Engineering and Manufacture - Proceedings of
the Institution for Mechanical Engineers Part B, vol. 217, n. 12, pp. 1771-1777.
Tuffentsammer, K., 1981, "Automatic loading of machining system and automatic
clamping of workpieces", Annals of the CIRP, vol. 30, n. 2, pp. 553-558.

Lin, G.C.I. and Du, H., 1996, "Design and development of an automated flexible
fixture", 4th International Conference on Automation Technology, Hsinchu,
Taiwan.

Du, H. and Lin, G.C.1., 1998, "Development of an automated flexible fixture for
planar objects", Robotics and Computer-Integrated Manufacturing, vol. 14, n. 3, pp.
173-183.

Youcef-Toumi, K. and Buitrago, J.H., 1989, "Design and implementation of robot-
operated adaptable and modular fixtures", Robotics & Computer-Integrated
Manufacturing, vol. 5, n. 4, pp. 343-356.

Benhabib, B., Chan, K.C. and Dai, M., 1991, "A modular programmable fixturing
system”, Journal of Engineering for Industry, vol. 113, n. 1, pp. 93-100.

Chan, K., Benhabib, B. and Dai, M., 1990, "A reconfigurable fixturing system for
robotic assemble”, Journal of Manufacturing Systems, vol. 9, n. 3, pp. 206-221.
Kurz, K., Craig, K. and Wolf, B., 1993, "Design and development of a flexible,
automated fixturing device for manufacturing”, Proceedings of 1993 ASME Winter
Annual Meeting, New Orleans.

Kurz, K., Craig, K., Wolf, B. and Stolfi, F., 1994, "Developing a flexible automated
fixturing device", Mechanical Engineering, vol. 116, n. 7, pp. 59-63.

Lu, S.-S., Chu, J.-L. and Jang, H.-C., 1997, "Development of a novel coordinate
transposing fixture system”, International Journal of Advanced Manufacturing
Technology, vol. 13, n. 5, pp. 350-358.

Chan, K. and Lin, C., 1996, "Development of a computer numerical control [CNC]
modular fixture machine design of a standard multifinger module”, International
Journal of Advanced Manufacturing Technology, vol. 11, n. 1, pp. 18-26.

Tao, Z.J., Kumar, A.S. and Nee, A.Y.C., 1999, "Automatic generation of dynamic
clamping forces for machining fixtures", International Journal of Production
Research, vol. 37, n. 12, pp. 2755-2776.

Tao, Z.J., Kumar, A.S., Nee, A.Y.C. and Mannan, M.A., 1997, "Modelling and
experimental investigation of a sensor-integrated workpiece-fixture system”,
International Journal of Computer Applications in Technology, vol. 10, n. 3-4, pp.
236-250.

Gupta, S., Bagchi, A. and Lewis, R., 1988, "Sensor-based fixturing system", in
"Recent Developments in Production Research”, Elsevier, Amsterdam, pp. 11-16.
Nee, A.Y.C., Kumar, A.S. and Tao, Z.J., 2000, "An Intelligent Fixture with a
Dynamic Clamping Scheme”, Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, vol. 214, n. 3, pp. 183-196.
Nee, A.Y.C., Tao, Z.J. and Kumar, A.S., 2004, "An Advanced Treatise on Fixture
Design and Planning”, Series on Manufacturing Systems and Technology, World
Scientific Publishing, Singapore, ISBN: 978-9812560599, pp. 248.

Mannan, M.A. and Sollie, J.P., 1997, "A Force-Controlled Clamping Element for
Intelligent Fixturing", Annals of the CIRP, vol. 46, n. 1, pp. 256-268.

- 209 -

References

50.

51.

52.

53.

54.

55.

56.

S57.

58.

59.

60.

61.

62.

63.

64.

65.

Wang, Y.F., Wong, Y.S. and Fuh, J.Y.H., 1999, "Off-line modelling and planning
of optimal clamping forces for an intelligent fixturing system", International Journal
of Machine Tools and Manufacture, vol. 39, n. 2, pp. 253-271.

Wang, Y.F., Fuh, J.Y.H. and Wong, Y.S., 1997, "A model-based online Control of
optimal fixturing process", IEEE International Conference on Robotics and
Automation, Albuquerque, USA.

Rashid, A. and Mihai Nicolescu, C., 2006, "Active vibration control in palletised
workholding system for milling", International Journal of Machine Tools and
Manufacture, vol. 46, n. 12-13, pp. 1626-1636.

Nnaji, B.O. and Lyu, P., 1990, "Rules for an expert fixturing system on a CAD
screen using flexible fixtures ", Journal of Intelligent Manufacturing, vol. 1, n. 1,
pp. 31-48.

Gaoliang, P., Xu, H., Haiquan, Y., Xin, H. and Alipour, K., 2008, "Precise
manipulation approach to facilitate interactive modular fixture assembly design in a
virtual environment ", Assembly Automation, vol. 28, n. 3, pp. 216-224.

Sun, S.H. and Chen, J.L., 1996, "A Fixture Design System using Case-based
Reasoning”, Engineering Applications of Artificial Intelligence, vol. 9, n. 5, pp.
533-540.

Li, W., Li, P. and Rong, Y., 2002, "Case-based agile fixture design", Journal of
Materials Processing Technology, vol. 128, n. 1-3, pp. 7-18.

Wang, H. and Rong, Y.K., 2008, "Case based reasoning method for computer aided
welding fixture design"”, Computer-Aided Design, vol. 40, n. 12, pp. 1121-1132.
Trappey, A.C. and Matrubhutam, S., 1993, "Fixture configuration using projective
geometry", Journal of Manufacturing Systems, vol. 12, n. 6, pp. 486-495.

Kang, Y., Rong, Y. and Yang, J.A., 2003, "Geometric and Kinetic Model Based
Computer-Aided Fixture Design Verification”, Journal of Computing and
Information Science in Engineering, vol. 3, n. 3, pp. 187-200.

Kang, Y., Rong, Y. and Yang, J.C., 2003, "Computer-Aided Fixture Design
Verification. Part 1. The Framework and Modelling”, International Journal of
Advanced Manufacturing Technology, vol. 21, n. 10-11, pp.—8325.

Wu, Y., Rong, Y., Ma, W. and LeClair, S.R., 1998, "Automated modular fixture
planning: Accuracy, clamping, and accessibility analyses", Robotics and Computer-
Integrated Manufacturing, vol. 14, n. 1, pp. 17-26.

Wu, Y., Rong, Y., Ma, W. and LeClair, S.R., 1998, "Automated modular fixture
planning: Geometric analysis”, Robotics and Computer-Integrated Manufacturing,
vol. 14, n. 1, pp. 1-15.

King, L.S.B. and Huitter, I., 1993, "Theoretical Approach for Generating Optimal
Fixturing Locations for Prismatic Workparts in Automated Assembly", Journal of
Manufacturing Systems, vol. 12, n. 5, pp. 409-416.

Menassa, R.J. and DeVries, W.R., 1991, "Optimisation Methods Applied to
Selecting Support Positions in Fixture Design", Journal of Engineering for Industry,
Transactions of ASME, vol. 113, n. 1, pp. 412-418.

Wu, N.H. and Chan, K.C., 1996, "A Genetic Algorithm Based Approach to Optimal
Fixture Configuration”, Computers and Industrial Engineering, vol. 31, n. 3-4, pp.
919-924.

- 210 -

References

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Krishnakumar, K. and Melkote, S.N., 2000, "Machining fixture layout optimization
using the genetic algorithm”, International Journalof Machine Tools and
Manufacture, vol. 40, n. 4, pp. 579-598.

Krishnakumar, K., Satyanarayana, S. and Melkote, S.N., 2002, "lterative fixture
layout and clamping force optimization using the genetic algorithm”, Journal of
Manufacturing Science and Engineering, vol. 124, n. 1, pp. 119-126.

Vallapuzha, S., DeMetere, C., Choudhuri, S. and Khetan, R.P., 2002, "An
investigation into the use of spatial coordinates for the genetic algorithm based
solution of the fixture layout optimization problem", International Journal of
Machine Tools and Manufacture, vol. 42, n. 2, pp. 28%5.

Kaya, N., 2006, "Machining fixture locating and clamping position optimization
using genetic algorithms", Computers in Industry, vol. 57, n. 2, pp. 112-120.
Aoyama, T., Kakinuma, Y. and Inasaki, I., 2006, "Optimization of fixture layout by
means of the genetic algorithm”, I*PROMS - Intelligent Production Machines and
Systems, Virtual International Conference.

Huang, B., Gou, H., Liu, W., Li, Y. and Xie, M., 2002, "A framework for virtual
enterprise control with the holonic manufacturing paradigm”, Computers in
Industry, vol. 49, n. 3, pp. 299-310.

Van Leeuwen, E.H. and Norrie, D., 1997, "Holons and holarchies", Manufacturing
Engineer, vol. 76, n. 2, pp. 86-88.

Valckenaers, P., Van Brussel, H., Bongaerts, L. and Wyns, J., 1997, "Holonic
manufacturing systems"”, Integrated Computer-Aided Engineering, vol. 4, n. 3, pp.
191-201.

Sugi, M. and Maeda, Y., 2003, "A Holonic architecture for easy reconfiguration of
robotic assembly systems", IEEE Transactions on Robotics and Automation, vol.
19, n. 3, pp. 457-464.

Leitao, P. and Restivo, F., 2006, "ADACOR: A holonic architecture for agile and
adaptive manufacturing control”, Computers in Industry, vol. 57, n. 2, pp. 121-130.
Leitdo, P. and Restivo, F., 2008, "A holonic approach to dynamic manufacturing
scheduling", Robotics and Computer-Integrated Manufacturing, vol. 24, n. 5, pp.
625-634.

Babiceanu, R.F., Chen, F.F. and Sturges, R.H., 2005, "Real-time holonic scheduling
of material handling operations in a dynamic manufacturing environment", Robotics
and Computer-Integrated Manufacturing, vol. 21, n. 4-5, pp. 328-337.

Gou, L., Luh, P.B. and Kyoya, Y., 1998, "Holonic manufacturing scheduling:
architecture, cooperation mechanism, and implementation”, Computers in Industry,
vol. 37, n. 3, pp. 213-231.

Jarvis, J., Ronnquist, R., McFarlane, D. and Jain, L., 2006, "A team-based holonic
approach to robotic assembly cell control”, Journal of Network and Computer
Applications, vol. 29, n. 2-3, pp. 160-176.

Ferber, J., 1999, "Multi-agent Systems: An Introduction to Distributed Artificial
Intelligence”, ADDISON-WESLEY, London, ISBN: 978-0201360486, pp. 528.
Tang, H.P. and Wong, T.N., 2005, "Reactive multi-agent system for assembly cell
control", Robotics and Computer-Integrated Manufacturing, vol. 21, n. 2, pp. 87-
98.

-211 -

References

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Nee, A.Y.C., Kurnar, A.S., Prombanpong, S. and Puah, K.Y., 1992, "A Feature-
Based Classification Scheme for Fixtures", CIRP Annals - Manufacturing
Technology, vol. 41, n. 1, pp. 189-192.

Shirinzadeh, B., 1996, "A CAD-Based hierarchical approach to interference
detection among fixture modules in a reconfigurable fixturing system", Robotics &
Computer-Integrated Manufacturing, vol. 12, n. 1, pp. 44-53.

Jeng, Y.C. and Gill, K.F., 1997, "A CAD-based approach to the design of fixtures
for prismatic parts ", Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, vol. 211, n. 7, pp. 523-538.
Subrahmanyam, S.R., 2002, "Fixturing features selection in feature-based systems",
Computers in Industry, vol. 48, n. 2, pp. 99-108.

Subrahmanyam, S.R., 2002, "A method for generation of machining and fixturing
features from design features”, Computers in Industry, vol. 47, n. 3, pp. 269-287.
Liquing, F. and Kumar, A.S., 2005, "XML-based Representation in a CBR System
for Fixture Design”, Computer-Aided Design & Applications, vol. 2, n. 1-4, pp.
339-348.

Mervyn, F., Kumar, A.S., Bok, S.H. and Nee, A.Y.C., 2003, "Development of an
Internet-enabled Interactive Fixture Design System", Computer-Aided Design, vol.
35, n. 10, pp. 945-957.

Hunter, A., R., Rios, C., J., Pérez Garcia, J.M. and Vizan Idoipe, A., 2010, "Fixture
knowledge model development and implementation based on a functional design
approach”, Robotics and Computer-Integrated Manufacturing, vol. 26, n. 1, pp. 56-
66.

Hunter, R., Rios, J., Perez, J.M. and Vizan, A., 2006, "A functional approach for the
formalization of the fixture design process", International Journal of Machine Tools
and Manufacture, vol. 46, n. 6, pp. 683-697.

Zha, X.F., Du, H. and Lim, Y.E., 2001, "Knowledge intensive Petri net framework
for concurrent intelligent design of automatic assembly systems", Robotics and
Computer-Integrated Manufacturing, vol. 17, n. 5, pp. 379-398.

Lohse, N., Ratchev, S. and Chrisp, A., 2004, "Function-behaviour-structure model
for modular assembly equipment”, Proceedings of the International Precision
Assembly Seminar IPAS 2004, Bad Hofgastein, Austria.

Lohse, N., 2006, "Towards an ontology framework for the integrated design of
modular assembly systems", PhD Thesis, University of Nottingham, pp. 234.
Meljer, B.R., Tomlyama, T., van der Hoist, B.H.A. and van der Werff, K., 2003,
"Knowledge Structuring for Function Design", CIRP Annals - Manufacturing
Technology, vol. 52, n. 1, pp. 89-92.

Zhang, M., Fisher, W., Webb, P. and Tarn, T.-J., 2003, "Functional Model Based
Object-Oriented Development Framework for Mechatronic Systems"”, IEEE
International Conference on Robotics & Automation, Taipei, Taiwan.

Prabhakar, S. and Goel, A.K., 1998, "Functional modeling for enabling adaptive
design of devices for new environments", Artificial Intelligence in Engineering, vol.
12, n. 4, pp. 417-444.

Kovacs, G.L., Kopacsi, S., Nacsa, J., Haidegger, G. and Groumpos, P., 1999,
"Application of software reuse and object-oriented methodologies for the modelling

-212 -

References

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

and control of manufacturing systems", Computers in Industry, vol. 39, n. 3, pp.
177-89.

Schéfer, C. and Lépez, O., 2004, "An Object-Oriented Robot Model and Its
Integration into Flexible Manufacturing Systems ", in "Multiple Approaches to
Intelligent Systems", Springer, Berlin / Heidelberg, pp. 820-829.

Bruccoleri, M., Pasek, Z.J. and Koren, Y., 2006, "Operation management in
reconfigurable manufacturing systems: Reconfiguration for error handling",
International Journal of Production Economics, vol. 100, n. 1, pp. 87-100.
Bruccoleri, M., 2007, "Reconfigurable control of robotized manufacturing cells",
Robotics and Computer-Integrated Manufacturing, vol. 23, n. 1, pp. 94-106.
Alexander, C., 1979, "The Timeless Way of Building", Oxford University Press,
New York, ISBN: 978-0201360486, pp. 552.

Coad, P., 1992, "Object-Oriented Patterns”, Communications of the ACM, vol. 35,
n. 9, pp. 152-159.

Gamma, E., Helm, R., Johnson, R.E. and Vlissides, J., 1993, "Design Patterns:
Abstraction and Reuse of Object-Oriented Design”, in "Lecture Notes in Computer
Science ", Springer-Verlag, Kaiserslautern, pp. 406-431.

Gamma, E., Helm, R., Johnson, R.E. and Vlissides, J., 1995, "Design Patterns.
Elements of Reusable Object-Oriented Software." Addison-Wesley Longman,
Amsterdam, ISBN: 978-0582844421, pp. 395.

Thiry, L., Perronne, J.-M. and Thirion, B., 2004, "Patterns for behavior modeling
and integration”, Computers in Industry, vol. 55, n. 3, pp. 225-237.
Soundararajan, K. and Brennan, R.W., 2005, "A proxy design pattern to support
real-time distributed control system benchmarking"”, in "Holonic and Multi-Agent
Systems for Manufacturing"”, Springer, Berlin/Heidelberg, pp. 133-143.
Soundararajan, K. and Brennan, R.W., 2008, "Design patterns for real-time
distributed control system benchmarking”, Robotics and Computer-Integrated
Manufacturing, vol. 24, n. 5, pp. 606-615.

Pont, M.J. and Banner, M.P., 2004, "Designing embedded systems using patterns: a
case study", Journal of Systems and Software, vol. 74, n. 3, pp. 201-213.

Sanz, R. and Zalewski, J., 2003, "Pattern-based control systems engineering ",
IEEE Control Systems Magazine, vol. 23, n. 3, pp. 43-60.

Buschmann, R., Meunier, H., Rohnert, P. and Sommerland, M., 1996, "Pattern-
oriented Software Architecture - A System of Patterns”, John Wiley & Sons,
Chichester, ISBN: 978-9971514211, pp. 476.

Neumann, P., 2007, "Communication in industrial automatitinat is going on?"
Control Engineering Practice, vol. 15, n. 11, pp. 1332-1347.

Hurwitz, J., 1998, "Sorting out middleware", DBMS Archive, vol. 11, n. 1, pp. 10-
12.

Amoretti, M. and Reggiani, M., 2009, "Architectural paradigms for robotics
applications”, Advanced Engineering Informatics, vol. 24, n. 1, pp. 4-13.

Object Management Group, 2004, "Common Object Request Broker Architecture:
Core Specification, Version 3.0.3", Available frgwmww.omg.org August 2007.
Object Management Group, 2002, "OMG IDL Syntax and Semantics", Aeailabl
from:lwww.omg.org October 2008.

-213 -

http://www.omg.org/
http://www.omg.org/

References

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

Object Management Group, 2005, "Real-Time CORBA Specification, Version 1.2",
Available from|www.omg.ordg March 2010.

Object Management Group, 2007, "Data Distribution Service for Real-Time
Systems, Version 1.2", Available fromvww.omg.org June 2007.

Shin, J., Park, S., Ju, C. and Cho, H., 2003, "CORBA-based integration framework
for distributed shop floor controlsmall star”, Computers & Industrial Engineering,
vol. 45, n. 3, pp. 457-474.

Sanz, R., 2003, "A CORBA-based architecture for strategic process control",
Annual Reviews in Control, vol. 27, n. 1, pp. 15-22.

Haber, R.E., Cantillo, K. and Jiménez, J.E., 2005, "Networked sensing for high-
speed machining processes based on CORBA", Sensors and Actuators A: Physical,
vol. 119, n. 2, pp. 418-426.

Joshi, J., 2007, "Data-Oriented Architecture”, Real-Time Innovations, Inc.,
Whitepaper, Available frorfwww.rti.com March 2010.
Object Computing, Inc., "OPEN DDS", Available frgnttp://www.opendds.org/

March 2010.

Real-Time Innovations, Inc., 2009, "Applications of the RTI Data Distribution
Service", Available fromhttp://www.rti.com/industrie$/20th October 2009.

Object Management Group, 2009, "The Real-time Publish-Subscribe Wire Protocol
DDS Interoperability Wire Protocol Specification, Version 2.1", Available from:
[http://www.omg.org/spec/DDSI/2| Dctober 2009.

Veiga, G., Pires, J.N. and Nilsson, K., 2009, "Experiments with service-oriented
architectures for industrial robotic cells programming", Robotics and Computer-
Integrated Manufacturing, vol. 25, n. 4-5, pp. 746-755.

Ahn, S.C., Kim, J.H., Lim, K., Kwon, Y. and Kim, H., 2005, "UPnP approach for
robot middleware", Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, Barcelona, Spain.

Estrem, W.A., 2003, "An evaluation framework for deploying Web Services in the
next generation manufacturing enterprise”, Robotics and Computer-Integrated
Manufacturing, vol. 19, n. 6, pp. 509-519.

Ha, Y.-G., Sohn, J.-C., Cho, Y.-J. and Yoon, H., 2007, "A robotic service
framework supporting automated integration of ubiquitous sensors and devices",
Information Sciences, vol. 177, n. 3, pp. 657-679.

Sun Microsystems, Inc, 2002, "Java Message Service Specification, Version 1.1",
Available from|www.sun.conp August 2007.

Sanchez, E., Portas, A., Pereira, A. and Vega, J., 2006, "Applying a message
oriented middleware architecture to the TJ-Il remote participation system”, Fusion
Engineering and Design, vol. 81, n. 15-17, pp. 2063-2067.

Sachs, K., Kounev, S., Bacon, J. and Buchmann, A., 2009, "Performance evaluation
of message-oriented middleware using the SPECjms2007 benchmark", Performance
Evaluation, vol. 66, n. 8, pp. 410-434.

Urdaneta, G., Colmenares, J.A., Queipo, N.V., Arapé, N., Arévalo, C., Ruz, M.,
Corzo, H. and Romero, A., 2007, "A reference software architecture for the
development of industrial automation high-level applications in the petroleum
industry”, Computers in Industry, vol. 58, n. 1, pp. 35-45.

- 214 -

http://www.omg.org/
http://www.omg.org/
http://www.rti.com/
http://www.opendds.org/
http://www.rti.com/industries/
http://www.omg.org/spec/DDSI/2.1
http://www.sun.com/

References

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

Mervyn, F., Kumar, A.S., Bok, S.H. and Nee, A.Y.C., 2004, "Developing
distributed applications for integrated product and process design”, Computer-Aided
Design, vol. 36, n. 8, pp. 679-689.

Dugenske, A., Fraser, A., Nguyen, T. and Voitus, R., 2000, "The National
Electronics Manufacturing Initiative (NEMI) plug and play factory", International
Journal of Computer Integrated Manufacturing, vol. 13, n. 3, pp. 225-244.
Delamer, I.M. and Martinez Lastra, J.L., 2006, "Evolutionary multi-objective
optimization of QoS-Aware Publish/Subscribe Middleware in electronics
production”, Engineering Applications of Artificial Intelligence, vol. 19, n. 6, pp.
593-697.

Association Connecting Electronics Industries (IPC), 2003, "IPC-2501 - Definition
for Web-based Exchange of XML Data", Northbrook, USA.

Association Connecting Electronics Industries (IPC), 2001, "IPC2541 - Generic
Requirements for Electronics Manufacturing Shop-Floor Equipment
Communication Messages (CAMX) ", Northbrook, USA.

Association Connecting Electronics Industries (IPC), 2005, "IPC2546 - Sectional
Requirements for Shop-Floor Equipment Communication Messages (CAMX) for
Printed Circuit Board Assembly", Northbrook, USA.

Association Connecting Electronics Industries (IPC), 2001, "IPC2547 - Sectional
Requirements for Shop-Floor Equipment Communication Messages (CAMX) for
Printed Circuit Board Test, Inspection and Rework", Northbrook, USA.

Delamer, I.M. and Martinez Lastra, J.L., 2006, "Quality of service for CAMX
middleware", International Journal of Computer Integrated Manufacturing, vol. 19,
n. 8, pp. 784-804.

Delamer, I.M., Martinez Lastra, J.L. and Tuokko, R., 2004, "Design of QoS-aware
framework for industrial CAMX systems", Proceedings of the Second IEEE
International Conference on Industrial Informatics INDIN 2004, Berlin, Germany.
Object Management Group, 2005, "Unified Modeling Language: Infrastructure,
version 2.0", Available fronfhttp://www.omg.org/spec/UML/2.pMarch 2010.

Object Management Group, 2005, "Unified Modelling Language: Superstructure,
version 2.0", Available fronfhttp://www.omg.org/spec/UML/2.pMarch 2010.
Weilkiens, T. and Oestereich, B., 2007, "UML 2 Certification Guide - Fundamental
and Intermediate Exams", Morgan Kaufmann Publishers, San Francisco, ISBN:
978-0-12-373585-0, pp. 320.

Joshi, J., 2006, "A comparison and mapping of Data Distribution Service (DDS)
and Java Messaging Service (JMS) ", Real-Time Innovations, Inc., Whitepaper,
Available from[www.rti.com] March 2009.

Ryll, M., 2006, "Entwicklung einer CORBA-basierten Applikation zur
Uberwachung und Visualisierung von modularen Produktionslinien”, Diploma
Thesis, University of Applied Sciences, pp. 110.

Li, Y., Zou, F., Wu, Z. and Ma, F., 2004, "PWSD: A Scalable Web Service
Discovery Architecture Based on PegesPeer Overlay Network ", in "Advanced
Web Technologies and Applications”, Springer Berlin / Heidelberg, pp. 291-300.
Makris, C., Panagis, Y., Sakkopoulos, E. and Tsakalidis, A., 2006, "Efficient and
adaptive discovery techniques of Web Services handling large data sets", Journal of
Systems and Software, vol. 79, n. 4, pp. 480-495.

- 215 -

http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/
http://www.rti.com/

References

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

Sun, Y., He, S. and Leu, J.Y., 2007, "Syndicating Web Services: A QoS and user-
driven approach”, Decision Support Systems, vol. 43, n. 1, pp. 243-255.

Sanchez, E., Portas, A., Pereira, A., Vega, J. and Kirpichey, I., 2007, "Remote
control of data acquisition devices by means of message oriented middleware",
Fusion Engineering and Design, vol. 82, n. 5-14, pp. 1365-1371.

Buccafurri, F., De Meo, P., Fugini, M., Furnari, R., Goy, A., Lax, G., Lops, P.,
Modafferi, S., Pernici, B., Redavid, D., Semeraro, G., Ursino, D., 2008, "Analysis
of QoS in cooperative services for real time applications”, Data & Knowledge
Engineering, vol. 67, n. 3, pp. 463-484.

Cardoso, J., Sheth, A., Miller, J., Arnold, J. and Kochut, K., 2004, "Quality of
service for workflows and web service processes”, Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 1, n. 3, pp. 281-308.

Schmidt, D.C. and O'Ryan, C., 2003, "Patterns and performance of distributed real-
time and embedded publisher/subscriber architectures”, The Journal of Systems and
Software, vol. 66, n. 3, pp. 213-223.

Tselikas, N.D., Dellas, N.D., Koutsoloukas, E.A., Kapellaki, S.H., Prezerakos, G.N.
and Venieris, 1.S., 2007, "Distributed service provision using open APIs-based
middleware: OSA/Parlay vs. JAIN performance evaluation study", The Journal of
Systems and Software, vol. 80, n. 5, pp. 765-777.

Tuma, P. and Buble, A., 2001, "Open CORBA Benchmarking", International
Symposium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS 2001), Orlando, Florida.

Distributed Systems Research Group, Charles University, Prague, 2008, "Open
CORBA Benchmarking”, Available fronfttp://dsrg.mff.cuni.cz/~benchiMay

2010.

Gokhale, A.S. and Schmidt, D.C., 1998, "Measuring and Optimizing CORBA
Latency and Scalability Over High-speed Networks", IEEE Transaction on
Computers, vol. 47, n. 4, pp. 391-413.

Gray, N.A.B., 2004, "Comparison of Web Services, Java-RMI, and CORBA service
implementations", Fifth Australasian Workshop on Software and System
Architectures, Melbourne, Australia.

Juric, M.B., Rozman, I., Brumen, B., Colnaric, M. and Hericko, M., 2006,
"Comparison of performance of Web services, WS-Security, RMI, and-884!",
Journal of Systems and Software, vol. 79, n. 5, pp. 689-700.

Distributed Object Computing (DOC) Group for Distributed Real-time and
Embedded (DRE) Systems, 2008, "Real-Time DDS Examination & Evaluation
Project (RT-DEEP)", Available frorfittp://www.dre.vanderbilt.edu/DD/

07.10.2008.

Parsons, J., Xiong, M., Schmidt, D.C., Edmondson, J., Nguyen, H. and Ajiboye, O.,
2006, "Evaluating the performance of Pub/Sub Platforms for Tactical Information
Management", Whitepaper, Available frqhitp://www.omgwiki.org/ddg/May

2010.

Xiong, M., Parsons, J., Edmondson, J., Nguyen, H. and Schmidt, D.C., 2006,
"Evaluating the performance of Publish/Subscribe platforms information
management in distributed real-time and embedded systems"”, Whitepaper,
Available fromihttp://www.omgwiki.org/ddg/May 2010.

- 216 -

http://dsrg.mff.cuni.cz/~bench/
http://www.dre.vanderbilt.edu/DDS/
http://www.omgwiki.org/dds/
http://www.omgwiki.org/dds/

References

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

Real-Time Innovations, Inc., 2008, "RTI Data Distribution Service 4.2 Architectural
Overview", Real-Time Innovations, Inc., Whitepaper, Available from:
April 2010.

Gottschalk, S., Lin, M.C. and Manocha, D., 1996, "OBBTree: a hierarchical
structure for rapid interference detection”, Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques (SIGGRAPH), New
Orleans, USA.

UNC Research Group on Modeling, Physically-Based Simulation and Applications,
2009, "RAPID - Robust and Accurate Polygon Interference Detection”, Available
from:[http://gamma.cs.unc.edu/OBBXpril 2010.

Pardo-Castellote, G., 2005, "OMG Data-Distribution Service: Architectural
overview", Real-Time Innovations, Inc., Whitepaper, Available from:
[www.omg.ord April 2010.

Real-Time Innovations, Inc., 2006, "Can Ethernet be Real time?" Real-Time
Innovations, Inc., Whitepaper, Available frdmww.rti.com] April 2010.

S200 High Performance Compact Brushless Servo Drives - Reference
Manual,2008, Danaher Motion, I., Available frqmavw.danahermotion.copApril
2010.

Butenhof, D.R., 1997, "Programming with POSIX Threads", Addison-Wesley,
Boston, ISBN: 0-201-63392-2, pp. 400.

Shepherd, G. and Wingo, S., 1996, "MFC Internals - Inside the Microsoft
Foundation Class Architecture”, Addison-Wesley, ISBN: 0-201-40721-3, pp. 736.
Geeknet, Inc., "TinyXml ", Available frothitp://sourceforge.net/projects/tinyxml/
April 2010.

Techsoft, Inc., "Matrix TCL Lite 2.0", Available fropwww.techsoftpl.conj/April
2010.

Real-Time Innovations, Inc., 2007, "RTI Data Distribution Service - User Manual”,

Available from|www.rti.com] April 2010.

-217 -

http://www.rti.com/
http://gamma.cs.unc.edu/OBB/
http://www.omg.org/
http://www.rti.com/
http://www.danahermotion.com/
http://sourceforge.net/projects/tinyxml/
http://www.techsoftpl.com/
http://www.rti.com/

Appendices

Appendix A:
Listings of Module Configuration Files in XML-Format

-218 -

Appendices

Contents of the File: ModuleDescription_module1.xml

<?xml version="1.0" ?>
<FixtureModule>
<id>1</id>
<OccupiedSpace>
<pl>
<x>-334.3</x>
<y>-28.5</y>
<z>28.5</z>
</pl>
<p2>
<x>60.0</x>
<y>28.5</y>
<z>-28.5</z>
</p2>
</OccupiedSpace>
<device>
<kind>LINEAR_CLAMP</kind>
<id>1</id>
<description>Nothing</description>
<spatialdesc>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z>
<rotx>0</rotx>
<roty>0</roty>
<rotz>0</rotz>
</spatialdesc>
<isLockable>true</isLockable>
<applyforce>
<clampingrange>
<min>0</min>
<max>2500</max>
<unit>N</unit>
<resolution>1</resolution>

<clampingdirection>push</clampingdirection>

</clampingrange>
</applyforce>
<linearactuation>
<stroke range>
<min>0</min>
<max>60</max>
<unit>MM</unit>
<resolution>0.0008</resolution>
</stroke range>
</linearactuation>
<locate>

<maxReactionForce>5000</maxReactionForce>

</locate>
<library>NI_UMI7774 S200VTS.dll</library>
<library-parameters>
<board id>1</board id>
<axis id>1</axis_ id>
<adcChannel>1</adcChannel>
<enc resolution>2000</enc resolution>

-219 -

Appendices

<pitch>1.6</pitch>
</library-parameters>
<feedbackdevices>
<device>2</device>
<device>3</device>
</feedbackdevices>
</device>
<device>
<kind>DI SPLACEMENT_SENSOR</ kind>
<id>2</id>
<description>SFD of Actuator</description>
<sensedisplacement>
<sensing info>
<min>0</min>
<max>1000</max>
<unit>MM</unit>
<resolution>0.0008</resolution>
</sensing info>
</sensedisplacement>
<library>DisplacementSensor EncoderS200Lib.dll</library>
<library-parameters>
<board id>1</board id>
<axis id>1</axis id>
<enc resolution>2000</enc resolution>
<pitch>1.6</pitch>
</library-parameters>
</device>
<device>
<kind>FORCE_SENSOR</kind>
<id>3</1id>
<description>Force sensor on actuator tip</description>
<senseforce>
<sensing info>
<min>0</min>
<maex>2500</max>
<unit>N</unit>
<resolution>1.0</resolution>
</sensing info>
</senseforce>
<library>KistlerForceSensor UMI ADC.dll</library>
<library-parameters>
<board id>1</board id>
<device channel>1</device channel>
<minvVolt>0</minVolt>
<maexVolt>10</mexVolt>
<maexForce>2500</mexForce>
</library-parameters>
</device>
</FixtureModule>

- 220 -

Appendices

Contents of thefile: ModuleDescription module2.xml

<?xml version="1.0" ?>

<FixtureModule>
<id>2</id>
<OccupiedSpace>
<pl>
<x>-334.3</x>
<y>=28.5</y>
<z>28.5</z>
</pl>
<p2>
<x>60.0</x>
<y>28.5</y>
<z>-28.5</z>
</p2>
</OccupiedSpace>
<device>
<kind>LINEAR_CLAMP</kind>
<id>1</id>

<description>Nothing</description>
<spatialde c>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z>
<rotx>0</rotx>
<roty>0</roty>
<rotz>0</rotz>
</spatialde u99 2>
<isLockable>true</isLockable>
<applyforce>
<clampingrange>
<min>0</min>
<max>2500</max>
<unit>N</unit>
<resolution>1l</resolution>

<clampingdirection>push</clampingdirection>

</clampingrange>
</applyforce>
<linearactuation>
<stroke range>
<min>0</min>
<max>60</max>
<unit>MM</unit>
<resolution>0.0008</resolution>
</stroke range>
</linearactuation>
<locate>

<maxReactionForce>5000</maxReactionForce>

</locate>
<library>NI UMI7774 S200VTS.dll</library>
<library-parameters>
<board id>1</board id>
<axis id>2</axis id>
<adcChannel>2</adcChannel>
<enc_resolution>2000</enc_resolution>
<pitch>1.6</pitch>

-221 -

Appendices

</library-parameters>
<feedbackdevices>
<device>2</device>
<device>3</device>
</feedbackdevices>
</device>
<device>
<kind>DI SPLACEMENT_SENSOR</ kind>
<id>2</id>
<description>SFD of Actuator</description>
<sensedisplacement>
<sensing info>
<min>0</min>
<max>1000</max>
<unit>MM</unit>
<resolution>0.0008</resolution>
</sensing_ info>
</sensedisplacement>
<library>DisplacementSensor EncoderS200Lib.dll</library>
<library-parameters>
<board id>1</board id>
<axis id>2</axis id>
<enc resolution>2000</enc resolution>
<pitch>1.6</pitch>
</library-parameters>
</device>
<device>
<kind>FORCE_SENSOR</kind>
<id>3</id>
<description>Force sen or on actuator tip</description>
<senseforce>
<sensing info>
<min>0</min>
<max>2500</max>
<unit>N</unit>
<resolution>1.0</resolution>
</sensing info>
</senseforce>
<library>KistlerForceSensor UMI ADC.dll</library>
<library-parameters>
<board id>1</board id>
<device channel>2</device channel>
<minvVolt>0</minVolt>
<maxVolt>10</maxVolt>
<maxForce>2500.0</maxForce>
</library-parameters>
</device>
</FixtureModule>

- 222 -

Appendices

Appendix B:
Data Type Definitions in IDL-format

- 223 -

Appendices

Contents of the File: exampleApp.idl

enum ClampingDirection {

push = 0,
pull = 1,
both = 2,
unknown = 3

}s

struct Force {
long module id;

ClampingDirection clampingDirection;

double wvalue;

}i

struct Position{
long module id;
double x;
double y;
double z;

}i

struct Point{
double x;
double y;
double z;
}i

struct OccupiedSpace {
Point pl;
Point p2;

bi

struct SpatialDescription{
double x;
double y;
double z;
double rot x;
double rot y;
double rot z;

}i

struct Clocking{
double rot x;
double rot y;
double rot z;

}i

struct BodyPositionInfof
long module id;
long tc id;
long slot id;
Point position;
Clocking slotClocking;
Clocking moduleClocking;

- 224 -

Appendices

struct SensingInfo {
double min;
double max;
long unit;
double resolution;
}s

struct BodyPosSensingInfo({

SensingInfo posX;
SensingInfo posY;
SensingInfo posZ;

SensingInfo moduleClockingX;
SensingInfo moduleClockingY;
SensingInfo moduleClockingZ;
SensingInfo slotClockingX;
SensingInfo slotClockingyY;
SensingInfo slotClockingZ;

b

struct ClampingRange({

ClampingDirection clampingDirection;

double minForce;
double maxForce;
long unit;

double resolution;

bi

struct StrokeRange({
double min;
double max;
long unit;
double resolution;

}i

struct SwingRange{
long axis;
double cw max;
double ccw max;
long unit;
double resolution;

}i

struct ClockingRange({
double cw max;
double ccw max;
long unit;
double resolution;

b

struct ClockingRanges{

ClockingRange clockingRange x;
ClockingRange clockingRange y;
ClockingRange clockingRange z;

Appendices

struct WorkSpace(
StrokeRange linearRange x;
StrokeRange linearRange y;
StrokeRange linearRange z;
ClockingRange clockingRange x;
ClockingRange clockingRange y;
ClockingRange clockingRange z;

}i

struct ClampWorkSpace{
StrokeRange strokeRange x;
StrokeRange strokeRange y;
StrokeRange strokeRange z;
SwingRange swingRange;

}i

struct SenseTipPositionCapability{
SensingInfo sensingInfo x;
SensingInfo sensingInfo y;
SensingInfo sensingInfo z;
boolean isSupported;

}i

struct AdjustTipPositionCapability{
ClampWorkSpace workspace;
boolean isSupported;

}i

struct SenseReactionForceCapability{
SensingInfo sensingInfo;
boolean isSupported;

}i

struct SenseClampingForceCapability{
SensingInfo sensingInfo;
boolean isSupported;

}i

struct AdjustClampingForceCapability{

ClampingRange clampingRangePush;
ClampingRange clampingRangePull;
ClampingDirection clampingDirection;

boolean isSupported;

bi

struct SlotLinkInfo{
long module id;
long tc_id;
long slot id;
boolean isLink;
SpatialDescription sdModule;
}i

struct ClampRoleInfo{
boolean isSupported;

}s

- 226 -

Appendices

struct LocatorRoleInfo{
boolean isSupported;
double maxForce;

}s

struct SupportRoleInfo{
boolean isSupported;
double maxForce;

}i

struct ProvidesRoleCapability{
ClampRoleInfo clampRoleInfo;
LocatorRoleInfo locatorRolelInfo;
SupportRoleInfo supportRolelInfo;
boolean isSupported;

}i

struct ModuleCapDefinition({
long id;
OccupiedSpace occupiedSpace;
SenseTipPositionCapability senseTipPositionCapability;
AdjustTipPositionCapability adjustTipPositionCapability;
SenseReactionForceCapability senseReactionForceCapability;
AdjustClampingForceCapability adjustClampingForceCapability;
SenseClampingForceCapability senseClampingForceCapability;
ProvidesRoleCapability providesRoleCapability;

- 227 -

Appendices

Appendix C:
Source Code for the Device Libraries used in the
Prototype Application

- 228 -

Appendices

Device Library for the Force Sensor Access —

Contents of the File: KistlerForceSensor UMI ADC.cpp

// KistlerForceSensor UMI ADC.cpp : Defines the entry point for the DLL
application.

//

#include "stdafx.h"

#include "KistlerForceSensor UMI ADC.h"

#include "flexmotn.h"

#include "ForceSensor UMI7774 ADCLib.h"

BOOL APIENTRY Dl1Main(HANDLE hModule,
DWORD wul reason for call,
LPVOID lpReserved
)

switch (ul reason for call)
{

case DLL PROCESS ATTACH:
case DLL THREAD ATTACH:
case DLL THREAD DETACH:
case DLL PROCESS DETACH:

break;
}
return TRUE;
}

void* KISTLERFORCESENSOR UMI ADC API createlibraryInstance(TiXmlNode *
node) {
//1if there is no parent node
if (!'node)
return NULL;

//init

int boardId = 0;

int channelNumber = NIMC ADCI;
double minvVolt = 0.0;

double maxVolt = 10.0;

double maxForce = 2500.0;

do{
//get type of node
int t = node->Type();
switch (t){
case TiXmlNode: :ELEMENT:

if (strcmp(node->Value(), "board id") == 0){
sscanf (node->FirstChild () ->Value (), "%d", &boardId):;
} else if (strcmp(node->Value(), "device channel") == 0){
sscanf (node->FirstChild () ->Value (), "%d",
&channelNumber) ;
} else if (strcmp(node->Value (), "minVolt") == 0) {

sscanf (node->FirstChild () ->Value (), "%1f", &minVolt);

- 229 -

Appendices

} else if (strcmp(node->Value (), "maxVolt") == 0) {
sscanf (node->FirstChild () ->Value (), "%1f", &maxVolt);
}else if (strcmp(node->Value (), "maxForce") == 0) {
sscanf (node->FirstChild () ->Value (), "%1f",
gmaxForce) ;
}
break;
case TiXmlNode: :UNKNOWN:
break;
}
}while ((node = node->NextSibling()) != 0);

//put the right constant for the channel number
switch (channelNumber) {

case 1:
channelNumber = NIMC ADCI1;
break;

case 2:
channelNumber = NIMC ADC2;
break;

case 3:
channelNumber = NIMC ADC3;
break;

case 4:
channelNumber = NIMC ADC4;
break;

default:
channelNumber = NIMC ADCI1;
break;

return static cast< void* > (new ForceSensor UMI7774 ADCLib
(boardId, channelNumber,

minVolt, maxVolt,

maxForce)) ;

- 230 -

Appendices

Device Library for the Force Sensor Access —
Contents of the File: KistlerForceSensor UMI7774 ADCLib.cpp

#include "StdAfx.h"
#include ".\forcesensor umi7774 adclib.h"

#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;

#include "flexmotn.h"
#ifndef NIMCEXAMPLE H INCLUDE
#define NIMCEXAMPLE H INCLUDE

//constructor
ForceSensor UMI7774 ADCLib::ForceSensor UMI7774 ADCLib(int boardId, int
channelNumber, double minVolt, double maxVolt, double maxForce)
: boardId(boardId),

channelNumber (channelNumber),

minVolt (minVolt),

maxVolt (maxVolt),

maxForce (maxForce)
{

//nothing

}

//destructor

ForceSensor UMI7774 ADCLib::~ForceSensor UMI7774 ADCLib (void) {
//nothing

}

//see header
bool ForceSensor UMI7774 ADCLib::initialise() {
//set adc range to 0..10V
flex set adc_range(this->boardId, this->channelNumber,
NIMC ADC_UNIPOLAR 10);
ulé adcMap = 3; //should be 0b0000000000000011 =-> enable adcl + 2
flex enable adcs(this->boardId, 0, adcMap);
//set adc range to 0..10V again..to make sure
flex set adc_range(this->boardId, this->channelNumber,
NIMC ADC_UNIPOLAR 10);

return true;

}

//see header
bool ForceSensor UMI7774 ADCLib::closeDevice () {
return true;

}

//see header

double ForceSensor UMI7774 ADCLib::getCurrentValue (void) {
il6 adcValue = 0;
132 err;

-231 -

Appendices

double forceNewton = 0.0;

// Read the ADC channel
err = flex read adc rtn(this->boardId, this->channelNumber,
&adcValue) ;

//transform the adc-value to a Newton-value...

// 2712 -1 2500 10V

/] === - - = -

/] x y Z

forceNewton = (double) ((double) (adcValue * this->maxForce) /

(double)4095.0) ;

return forceNewton;

- 232 -

Appendices

Device Library for the Displacement Sensor Access —

Contents of the File: DisplacementSensor Encoder S200Lib.cpp

// DisplacementSensor EncoderS200Lib.cpp : Defines the entry point for
the DLL application.

//

#include "stdafx.h"
#include "DisplacementSensor EncoderS200Lib.h"
#include ".\encoders200 umi77741lib.h"

BOOL APIENTRY Dl1Main(HANDLE hModule,
DWORD wul reason for call,
LPVOID lpReserved
)

switch (ul reason for call)
{

case DLL PROCESS ATTACH:
case DLL THREAD ATTACH:
case DLL THREAD DETACH:
case DLL PROCESS DETACH:

break;
}
return TRUE;
}

//see header
void* DISPLACEMENTSENSOR_ENCODERSZOOLIB_API createlLibraryInstance (
TiXmlNode * node)
{
//1if there is no parent node
if (!'node)
return NULL;

//init

int boardId = 0;

int axisId = 0;

double encoder resolution = 0.0;

double pitch = 0.0;

do{
//get type of node
int t = node->Type();
switch (t){
case TiXmlNode: :ELEMENT:
if (strcmp(node->Value(), "board id") == 0) {
sscanf (node->FirstChild () ->Value (), "%d", &boardId):;

} else if (strcmp(node->Value(), "axis id") == 0) {
sscanf (node->FirstChild()->Value (), "%d", &axisId);
} else if (strcmp(node->Value(), "enc resolution") == 0){
()

sscanf (node->FirstChild () ->Value (), "%1f",
&encoder resolution);
}else if (strcmp (node->Value(), "pitch") == 0) {

sscanf (node->FirstChild()->Value (), "$1f", &pitch);

- 233 -

Appendices

}

break;

case TiXmlNode: :UNKNOWN :
break;

}
}while ((node = node->NextSibling()) != 0);

return static cast< void* > (new EncoderS200 UMI7774Lib (boardId,

axisId, encoder resolution,
pitch));

- 234 -

Appendices

Device Library for the Displacement Sensor Access —

Contents of the File: EncoderS200 UM 774Lib.cpp

[/~ N N NN N NN NN NN N IncludeS~~~~r~~~~nmnmnvsvn v
#include "StdAfx.h"

#include ".\encoders200 umi77741lib.h"

#include <stdio.h>

#include <iostream>

using namespace std;

//for hardware access
#include "flexmotn.h"
#ifndef NIMCEXAMPLE H INCLUDE
#define NIMCEXAMPLE H INCLUDE

//constructor
EncoderS200 UMI7774Lib::EncodersS200 UMI7774Lib (int boardId, int axisId,
double encoder resolution, double pitch)
boardId (boardId),
axisId(axisId),
encoder_ resolution(encoder resolution),
pitch (pitch),
stepOffset (0)
{
//nothing
}

//destructor

EncoderS200 UMI7774Lib::~EncoderS200 UMI7774Lib (void) {
//nothing

}

//see header
bool EncoderS200 UMI7774Lib::initialise () {
return true;

}

//see header
bool EncoderS200 UMI7774Lib::closeDevice () {
return true;

}

//see header

double EncodersS200 UMI7774Lib::getCurrentValue (void) {
132 positionInSteps; // Current position of axis
132 err;
//try to read the current axis position
err = flex read pos rtn(this->boardId,this->axisId,

&positionInSteps) ;
//transform the retrieved value in millimeters...
//now it is dreisatz 1.6mm = 2000 Steps
// == -
// x mm = y Steps
return ((this->pitch * positionInSteps) /
this->encoder resolution);

- 235 -

Appendices

Device Library for the Linear Actuator Access—
Contents of the File: NI UMI 7774 S200VTS.cpp

// NI UMI7774 S200VTIS.cpp : Defines the -entry point for the
application.
//

#include "stdafx.h"
#include "flexmotn.h"
#include "NI_UMI7774_S200VTS.h"
BOOL APIENTRY Dl1lMain(HANDLE hModule,
DWORD wul reason for call,
LPVOID lpReserved
)

switch (ul reason for call)
{

case DLL PROCESS ATTACH:
case DLL THREAD ATTACH:
case DLL THREAD DETACH:
case DLL PROCESS DETACH:

break;
}
return TRUE;

//see header

void* NI UMI7774 S200VTS API createlibraryInstance (TiXmlNode * node) {

//if there is no parent node
if (!'node)
return NULL;

//init

int boardId = 0;

int axisId = 0;

double encoder resolution = 0.0;
double pitch = 0.0;

int adcChannelNumber = 1;

do{

//get type of node
int t = node->Type();
switch (t) {
case TiXmlNode: :ELEMENT:
if (strcmp(node->Value(), "board id") == 0){

DLL

sscanf (node->FirstChild () ->Value (), "%d", &boardId);

} else if (strcmp(node->Value(), "axis id") == 0) {

} else if (strcmp(node->Value (), "enc resolution") ==
sscanf (node->FirstChild () ->Value (), "%1f",

&encoder resolution);

}else if (strcmp (node->Value (), "pitch") == 0) {

sscanf (node->FirstChild () ->Value (), "%1f", &pitch);

} else if (strcmp(node->Value (), "adcChannel") == 0) {
sscanf (node->FirstChild () ->Value (), "%d4d",
&adcChannelNumber) ;

- 236 -

(
(
sscanf (node->FirstChild () ->Value (), "%d", &axisId);
(
(

0) {

Appendices

break;

case TiXmlNode: :UNKNOWN :
break;

}
}while ((node = node->NextSibling()) != 0);

//put the right constant for the channel number
switch (adcChannelNumber) {

case 1:
adcChannelNumber = NIMC ADCI;
break;

case 2:
adcChannelNumber = NIMC ADC2Z;
break;

case 3:
adcChannelNumber = NIMC ADC3;
break;

case 4:
adcChannelNumber = NIMC ADC4;
break;

default:
adcChannelNumber = NIMC ADCI;
break;

}

return static cast< void* > (new NI UMI774 S200VTSLib (boardId,
axisId, encoder resolution, pitch,
adcChannelNumber)

) ;

- 237 -

Appendices

Device Library for the Linear Actuator Access —
Contents of the File: NI UMI7774 S200VTSLib.cpp

#include "StdAfx.h"
#include ".\ni umi774 s200vtslib.h"

// basic file operations
#include <iostream>
#include <fstream>
#include <math.h>

using namespace std;

#include "flexmotn.h"

#ifndef NIMCEXAMPLE_H_INCLUDE
#define NIMCEXAMPLE H INCLUDE
#include <conio.h>

//see header
NI UMI774 S200VTSLib::NI UMI774 S200VTSLib (int boardId, int axisId,
double encoder resolution, double pitch, int adcChannel)
boardId (boardId),
axisId(axisId),
encoder_ resolution(encoder resolution),
pitch(pitch),
adcChannel (adcChannel),
stepOffset (0)
{
//nothing
}

//destructor

NI UMI774 S200VTSLib::~NI UMI774 S200VTSLib (void) {
//nothing

}

//see header
bool NI UMI774 S200VISLib::initialise () {

f64 acceleration =100; // Acceleration value in RPS/S

f64 velocity =200; // Velocity value in RPM

ulé found, finding; // Check Reference Statuses

ul6 axisStatus; // Axis Status

ulé csr=0; // Communication Status Register
132 position; // Current position of axis

132 scanVar; // Scan variable to read in values

// not supported by the scanf function

//Variables for modal error handling

ul6 commandID; // The commandID of the
function

ul6 resourcelD; // The resource ID

132 errorCode; // Error code

132 err;

//Check i1if the board is at power up reset condition

- 238 -

Appendices

err = flex read csr rtn(this->boardId, é&csr);

if (csr & NIMC POWER UP RESET) {
printf ("\nThe FlexMotion board is in the reset condition.
Please initialize the board."):;
return false;

}

//Load acceleration and deceleration to the axis selected

err = flex load rpsps(this->boardId, this->axisId, NIMC BOTH,
acceleration, OXxFF);

//Load velocity to the axis selected

err = flex load rpm(this->boardId,this->axisId, velocity, OxFF);

//configures the find reference function, to automatically ’reset
//IF a home position is found
flex load reference parameter (this->boardId, this->axisId,

NIMC FIND HOME REFERENCE, NIMC ENABLE RESET POSITION ,1);
flex load reference parameter (this->boardId,this->axisId,

NIMC FIND HOME REFERENCE, NIMC PRIMARY RESET POSITION, O0);
flex load reference parameter (this->boardId, this->axisId,

NIMC FIND HOME REFERENCE,NIMC SMART ENABLE ,TRUE);

//configures the find reference to initially search reverse for
//the home position
flex load reference parameter (this->boardId, this->axisId,
NIMC FIND HOME REFERENCE,NIMC INITIAL SEARCH DIRECTION,
true) ;

//Start the Find Reference move
err = flex find reference(this->boardId, this->axisId, O,

NIMC FIND HOME REFERENCE) ;

//Wait for find reference to complete on the axis

do{
//Read the current position of axis
err = flex read pos rtn(this->boardId,this->axisId,
&position) ;
err = flex read axis status rtn(this->boardId, this->axisId,
&axisStatus);
//Check i1if the reference has finished finding
err = flex check reference(this->boardId, this->axisId, O,
&found, &finding);
//Read the Communication Status Register - check the
//modal error bit
err = flex read csr rtn(this->boardId, &csr);
if (csr & NIMC MODAL ERROR MSG)
{
flex stop motion(boardId, NIMC AXISI,
NIMC_DECEL_STOP, 0);//Stop the Motion
err = csr & NIMC MODAL ERROR MSG;
}
}while (!(axisStatus & (NIMC FOLLOWING ERROR BIT |

NIMC AXIS OFF BIT)) && finding);

- 239 -

Appendices

//wait a bit until he is really at position 0
Sleep (5000) ;

if (found) {
printf ("\nAxis Found Home Position: Axis %d position:
%$10d", this->axisId, position);
lelse(
printf ("\nAxis Did not Find Home Position: Axis %d
position: %10d --- Please abort program",
this->axisId, position);
char buf[500];
scanf ("%$s", buf);
return false;

[/~~~ Initialise the acc, dec and velocity so we don't have
//to do it during the operation all the time
// Set the velocity for the move (in counts/sec)
err = flex load velocity(this->boardId, this->axisId, 10000,
O0xFF) ;
// Set the acceleration for the move (in counts/sec”2)
err = flex load acceleration(this->boardId, this->axisId,
NIMC ACCELERATION, 100000, OXxFF);
// Set the deceleration for the move (in counts/sec”2)
err = flex load acceleration(this->boardId, this->axisId,
NIMC DECELERATION, 100000, OXxFF);
// Set the jerk (s-curve value) for the move (in sample periods)
err = flex load scurve time(this->boardId, this->axisId, 100,
0xFF) ;
err = flex set op mode(this->boardId, this->axisId,
NIMC_RELATIVE_POSITION);
//initialise the ADC settings...Jjust to be on the safe side....
//set adc range to 0..10V
flex set adc range(this->boardId,
this->adcChannel,NIMC ADC UNIPOLAR 10);
ulé adcMap = 1; //should be 0b0000000000000001
flex enable adcs (this->boardId, 0, adcMap);

return found; // Finish

}

//see header
bool NI UMI774 S200VTSLib::closeDevice () {
return true;

}

//see header
bool NI UMI774 S200VISLib::applyForce (double targetForce, long

desiredDirection)
{
ul6 axisStatus; // Axls status
132 constant; // Constant force
116 adcValue; // ADC value read
132 err; // Error code

// constant force as an adc value that needed to be maintained
constant = ((long)targetForce * 4095) / 2500;

- 240 -

Appendices

// Check the move complete status/following error/axis off status
err = flex read axis status rtn(this->boardId, this->axisId,
&axisStatus);

if (! (axisStatus & NIMC AXIS OFF BIT)) {

//check if the move is complete - only do something if the

//axis is currently not moving

if (! (axisStatus & NIMC MOVE COMPLETE BIT)) {

return true;

}

err = flex read adc_rtn(this->boardId, this->adcChannel,
&adcValue) ;

if((constant - adcValue) != 0){
//adjust new relative position
int diff = constant - adcValue;

err flex set op mode(this->boardId, this->axisId,

NIMC RELATIVE POSITION) ;

err = flex load target pos(this->boardId, this-
>axisId, diff, OxFF);

// Move based on delta force

err = flex start(this->boardId, this->axisId, 0);

return true;

}

//see header

bool NI UMI774 S200VISLib::actuate(double targetActuation) {
//translate the desiredActuation into steps
//now it is dreisatz 1.6mm = 2000 Steps

// e e
// x mm = y Steps
long positionInSteps = (targetActuation *

this->encoder resolution) / this->pitch;

//initialise some variables
ul6 csr = 0;

ul6 axisStatus;

ul6 moveComplete;

132 err;

// Set the operation mode

err = flex set op mode (this->boardId, this->axisId,
NIMC_ABSOLUTE_POSITION);

// Load Position as giving by the parameter

err = flex load target pos (this->boardId,this->axisId,
positionInSteps, OxFF);

// Start the move

err = flex start(this->boardId, this->axisId, O0);

do
{

- 241 -

Appendices

axisStatus = 0;
// Check the move complete status
err = flex check move complete status(this->boardId,

this->axisId, 0, &moveComplete);
// Check the following error/axis off status for the axis
err = flex read axis status rtn(this->boardId,
this->axisId, &axisStatus);
}while (!moveComplete && ! (axisStatus & NIMC FOLLOWING ERROR BIT)
&& ! (axisStatus & NIMC AXIS OFF BIT));
return moveComplete; // Finish

- 242 -

Appendices

Appendix D:
Diagrams for Force Profiles Followed by the Fixture
Module During the Tests

- 243 -

Appendices

Force Profilesfor Fixture Module 2 during thefirst test:

Force Control

125

100

75

4
£ — Actual Forces
§ —— Target Forces
(<]
w
50
25
0
©O O O O O O 0O 0O 0O 0O O O 9O O 9O 9O 90 9O 9O O 90O 9O 9O O 9O 9O
S © 6 © © © © © © O O O O 6 O 6 O 6 o6 6 © 6 & o o
S © & O O O O O O O O OO O O O O O o o 6 o o O o
- A ® ¥ KD ©K ©® ®© © -~ I ® ¥ L O K ©®® O ~ A ® F 1O
- - - - - - - - - - AN N N N N
Time in ms
FigureD.1: Overall Force Profile of Fixture Module 2 during the First Test
Force Control
125
100 - AN ~
75 -
E — Actual Forces
8 —— Target Forces
:

50 1

25 +

0

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Time in ms

Figure D.2: Zoomed-in Force Profile of Fixture Module 2 during the First Test

- 244 -

Appendices

Force profiles during the second test (Workpiece A):

Force Control

225

200

175

150

b4
e 125 — Actual Forces
8 —— Target Forces
S 100
75
50
25
0
o o
o o
o o
~— N [+0) < n © ~ [ce] (2] o — N [+0) < n © ~ [ce] () o — N (2] < Yol
- - = = ™ ™= ™= ™= +— +— &N &N N &N N
Time in ms
Figure D.3: Force Profile of Fixture Module 1 during the Second Test
Force Control
225
200
175
150
=
£ 125 —— Actual Forces
8 —— Target Forces
S 100

75

50

25

o o [=3 [=3 (= [=3 (= o [=3 o [=3 [=3 o [=3 (=3 o o (= [=3 [=3 o
oS o o (=] o =] oS o oS o o oS o oS oS o o o o oS
o o o o o o o o o o o o o o o o o o o o
— « ™ < 15 © ~ © » S — Y ™ < 0n © ~ © <] o
— — ~ — ~ ~— — ~— — — N
Time in ms

Figure D.4: Force Profile of Fixture Module 2 during the Second Test

- 245 -

Appendices

Force profiles during the second test (Workpiece B):

Force Control

225

200

175

150

b4
e 125 — Actual Forces
8 —— Target Forces
S 100
75
50
25
0
o o
o o
o o
~— N [+0) < n © ~ [ce] (2] o — N [+0) < n © ~ [ce] () o — N (2] < Yol
- - = = ™ ™= ™= ™= +— +— &N &N N &N N
Time in ms
Figure D.5: Force Profile of Fixture Module 1 during the Second Test
Force Control
225
200
175
150
=
£ 125 —— Actual Forces
8 —— Target Forces
S 100

75

50

25

©O O O O 9 9 9 O O O O 9 9 9 9 99 O 9 9 9 9 9 99 O 9O o
S © o
O O O O O O O O O O O O O O O O O O O o O o o o o
- N ® ¥ O © K © ®© © -~ A ® ¥ L © kN ® ® © -~ 4 ® I W
- -~ = == = *+ - - - - N N N N o
Time in ms

Figure D.6: Force Profile of Fixture Module 2 during the Second Test

- 246 -

