
Ryll, Marco (2011) Towards a software framework for
reconfigurable and adaptive fixturing systems. PhD
thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/11733/1/PhD_20101129-FINALPRINT.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Towards a software framework for reconfigurable

and adaptive fixturing systems

Marco Ryll, Dipl.- Inf. (FH)

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy

June 2010

 - i -

Abstract

There is an ongoing trend towards advanced fixturing systems that can be automatically

reconfigured for different workpieces and dynamically adapt the clamping forces during the

manufacturing process. However, the increased utilisation of computer technology and

sensor feedback currently requires a significant amount of programming effort during the

development phase and deployment of such fixtures which impairs their successful

industrial realisation.

This research addresses the issue by developing the core concepts of a novel software

framework that facilitates the deployment and operation of reconfigurable and adaptive

fixturing systems. This includes a new data model for the representation of the fixturing

system, using object-oriented modelling techniques. Secondly, a generic methodology for

the automatic reconfiguration of fixturing systems has been developed that can be applied

to a plethora of different fixture layouts. Thirdly, a flexible communication infrastructure is

proposed which supports the platform-independent communication between the various

parts of the fixturing system through the adoption of a publish/subscribe approach. The

integration of these core knowledge contributions into a software framework significantly

reduces the programming effort by providing a ready-to-use infrastructure that can be

configured according a given fixture layout.

In order to manage the complexity of the research, a structured research methodology has

been followed. Based on an extensive literature review, a number of knowledge gaps have

been identified which were the basis for the definition of clear research objectives. A use

case analysis has been conducted to identify the requirements of the software framework

and several potential middleware technologies have been assessed for the communication

infrastructure. This was followed by the development of the three core knowledge

contributions. Finally, the research results have been demonstrated and initially verified

with a prototype of a reconfigurable fixturing system, indicating that the utilisation of the

software framework can eliminate the need for programming, thereby drastically reducing

deployment effort and lead time.

 - ii -

List of Publications

Journal Publications

Marco Ryll, Thomas Papastathis and Svetan Ratchev, ―Towards an intelligent fixturing

system with rapid reconfiguration and part positioning‖, Journal of Materials Processing

Technology, Volume 201, Issues 1-3, pp. 198 – 203, 2008.

Marco Ryll and Svetan Ratchev, ―A publish/subscribe approach for a software framework

for reconfigurable fixturing systems‖, International Journal of Advanced Manufacturing

Systems, Volume 11, Issue 1, pp. 7-14, 2008.

Book Sections

Marco Ryll and Svetan Ratchev, ―Towards a publish/subscribe control architecture for

precision assembly with the Data Distribution Service‖, In: Micro-Assembly Technologies

and Applications, ISBN: 978-0-387-77402-2, pp. 359-369, Springer Boston, 2008.

Thomas Papastathis, Marco Ryll, Stuart Bone and Svetan Ratchev, ―Development of a

reconfigurable fixture for the automated assembly and disassembly of high pressure rotors

for Rolls-Royce aero engines‖, In: Precision Assembly Technologies and Systems, ISBN:

3-642-11597-7, pp. 283-292, Springer Heidelberg, 2010.

Peer Reviewed Conference Papers

Marco Ryll, Thomas Papastathis and Svetan Ratchev, ―Towards an intelligent fixturing

system with rapid reconfiguration and part positioning‖, 10th International Conference on

Advances in Materials and Processing Technologies (AMPT‘07), 7-11 October 2007,

Daejeon (South Korea).

Thomas Papastathis, Marco Ryll and Svetan Ratchev, ―Rapid reconfiguration and part

repositioning with an intelligent fixturing system‖, ASME International Conference on

Manufacturing Science & Engineering (MSEC2007), 15 - 18 October 2007, Atlanta (USA).

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-4R7J837-13&_user=5939061&_coverDate=05%2F26%2F2008&_alid=1287886735&_rdoc=16&_fmt=high&_orig=search&_cdi=5256&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=989497550de22fdabd3106729ed2cde3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-4R7J837-13&_user=5939061&_coverDate=05%2F26%2F2008&_alid=1287886735&_rdoc=16&_fmt=high&_orig=search&_cdi=5256&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=989497550de22fdabd3106729ed2cde3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-4R7J837-13&_user=5939061&_coverDate=05%2F26%2F2008&_alid=1287886735&_rdoc=16&_fmt=high&_orig=search&_cdi=5256&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=989497550de22fdabd3106729ed2cde3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGJ-4R7J837-13&_user=5939061&_coverDate=05%2F26%2F2008&_alid=1287886735&_rdoc=16&_fmt=high&_orig=search&_cdi=5256&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=989497550de22fdabd3106729ed2cde3

 - iii -

Marco Ryll and Svetan Ratchev, ―A publish/subscribe approach for a software framework

for reconfigurable fixturing systems‖, International Conference on Agile Manufacturing

(ICAM 2008), 16 – 18 July 2008, Kalamazoo (USA).

Marco Ryll and Svetan Ratchev, ―Application of the Data Distribution Service for flexible

manufacturing automation‖ 5th International Conference on Control, Automation and

Systems (ICCAS‘08), 25-27 July 2008, Prague (CR).

 - iv -

Acknowledgements

I would like to thank a number of individuals for their support and contributions without

which this work would not have been possible.

First of all I would like to thank my supervisor Svetan Ratchev for having given me the

opportunity to accomplish this research in a supportive atmosphere. His technical

comments, guidance and encouragement have been invaluable not only for the success of

this research, but also made the past 3 1/2 years a challenging, yet enjoyable experience.

I would also like to thank my colleagues in the Precision Manufacturing Centre at the

University of Nottingham. Special thanks go to Thomas Papastathis for the outstanding

team work and inspiring discussions on the AFFIX research project. Furthermore, I would

like to express my appreciation to Colin Astill whose support and helpful hands were

instrumental for the practical verification of the research results. I would also like to thank

Rachel Watson for proofreading the final thesis.

An dieser Stelle möchte ich mich bei meinen Eltern Renate und Richard Ryll für ihre

jahrelange Unterstützung und Liebe bedanken und für das Gefühl immer ein zu Hause zu

haben.

Finally, but most importantly, I would like to express my deepest gratitude to my lovely

girlfriend Silke Pohl for making me smile every day and for giving me the feeling of being

loved. Without her and our cat Monsta I would not be complete.

 - v -

Table of Contents

1. INTRODUCTION ... 1

1.1. BACKGROUND AND MOTIVATION ... 1

1.2. RESEARCH OBJECTIVES .. 4

1.3. THESIS STRUCTURE OVERVIEW .. 6

2. LITERATURE REVIEW ... 7

2.1. INTRODUCTION ... 7

2.2. FLEXIBLE FIXTURING CONCEPTS .. 8

2.2.1. Modular Fixtures ... 8

2.2.2. Phase-change Fixtures .. 10

2.2.3. Conformable Fixtures .. 11

2.2.4. Programmable Fixtures .. 11

2.2.5. Adaptive Fixtures .. 15

2.2.6. Discussion ... 17

2.3. RECONFIGURATION METHODOLOGIES .. 18

2.3.1. Fixture Reconfiguration Methods .. 18

2.3.2. Reconfiguration Methods for Manufacturing Systems .. 21

2.3.3. Discussion ... 23

2.4. DATA MODELS AND REPRESENTATION CONCEPTS ... 23

2.4.1. Fixture Representation concepts ... 23

2.4.2. Representation Models for Reconfigurable Manufacturing Systems ... 26

2.4.3. Discussion ... 28

2.5. COMMUNICATION INFRASTRUCTURES FOR INFORMATION EXCHANGE ... 29

2.5.1. Distributed Object Architecture .. 30

2.5.2. Data-centric Architecture .. 32

2.5.3. Service-oriented Architecture .. 33

2.5.4. Message-oriented Architecture ... 34

2.5.5. Discussion ... 35

2.6. KNOWLEDGE GAPS ... 35

2.7. CHAPTER SUMMARY ... 38

3. RESEARCH METHODOLOGY ... 39

3.1. INTRODUCTION ... 39

3.2. DEFINITION OF THE RESEARCH DOMAIN ... 41

3.2.1. Definition of the Knowledge Contributions ... 41

 - vi -

3.2.2. Assumptions and Limitations ... 43

3.3. REQUIREMENTS SPECIFICATION .. 45

3.3.1. Initialise Fixture .. 47

3.3.2. Reconfigure Fixture ... 47

3.3.3. Load Part... 48

3.3.4. Unload Part ... 48

3.3.5. Adaptive Clamping .. 49

3.4. ASSESSMENT OF SUITABLE COMMUNICATION TECHNOLOGIES ... 50

3.4.1. Definition of Technical Requirements ... 50

3.4.2. Selection of Middleware Candidates ... 52

3.4.3. Assessment of the Middleware Technologies .. 52

3.5. OVERVIEW ON EXAMPLE FIXTURES FOR ILLUSTRATION PURPOSES .. 58

3.5.1. Rail-based Fixturing System.. 58

3.5.2. Fixture using a Base Plate with Mounting Holes .. 60

3.6. CHAPTER SUMMARY ... 62

4. OBJECT-ORIENTED DATA MODEL FOR RECONFIGURABLE AND ADAPTIVE

FIXTURING SYSTEMS .. 64

4.1. INTRODUCTION ... 64

4.2. MODEL OVERVIEW ... 65

4.3. MODEL ELEMENTS OF THE PACKAGE ―COMMON ELEMENTS‖ .. 66

4.3.1. Data Types... 67

4.3.2. The Class Component .. 68

4.3.3. The Class Capability ... 68

4.4. MODEL ELEMENTS OF THE PACKAGE ―DEVICES‖ ... 69

4.4.1. Device Hierarchy .. 70

4.4.2. Device Types ... 71

4.4.3. Device Capabilities ... 74

4.5. MODEL ELEMENTS OF THE PACKAGE ―FIXTURE MODULE‖ .. 77

4.5.1. Fixture Modules .. 78

4.5.2. Capabilities of Fixture Modules .. 79

4.6. MODEL ELEMENTS OF THE PACKAGE ―TRANSPORT COMPONENTS‖ ... 85

4.6.1. Transport Components .. 86

4.6.2. Slots ... 87

4.6.3. Capabilities of Transport Components.. 89

4.7. MODEL ELEMENTS OF THE PACKAGE ―RECONFIGURATION‖ ... 91

4.7.1. Fixture Design Information ... 92

 - vii -

4.7.2. Force Profiles .. 94

4.7.3. Reconfiguration Commands .. 96

4.8. CHAPTER SUMMARY ... 97

5. FIXTURE RECONFIGURATION METHODOLOGY .. 99

5.1. INTRODUCTION ... 99

5.2. CAPABILITY RECOGNITION METHODOLOGY ... 100

5.2.1. Assumptions and Requirements ... 100

5.2.2. Capability Recognition on Module Level .. 104

5.2.3. Capability Recognition on Fixture Level ... 108

5.3. SETUP ADAPTATION METHODOLOGY ... 113

5.3.1. Assumptions and Requirements ... 113

5.3.2. Overview of the Decision-making Process .. 114

5.3.3. Assignment of Fixture Modules with Contact Points... 115

5.3.4. Generation of Reconfiguration Commands ... 122

5.3.5. Collision Avoidance .. 124

5.3.6. Command Execution.. 128

5.4. CHAPTER SUMMARY ... 131

6. COMMUNICATION INFRASTRUCTURE FOR ADAPTIVE FIXTURES 132

6.1. INTRODUCTION ... 132

6.2. PUBLISH/SUBSCRIBE WITH THE DATA DISTRIBUTION SERVICE ... 133

6.2.1. The Data Centric Publish/Subscribe Model .. 133

6.2.2. The Quality-of-Service Concept .. 134

6.3. PUBLISH/SUBSCRIBE CONCEPT FOR ADAPTIVE FIXTURING SYSTEMS ... 135

6.3.1. Design of the Topic Structure .. 135

6.3.2. Specification of Data Types ... 138

6.3.3. Quality-of-Service Parameter Specification .. 145

6.4. EXTENSION OF THE DATA MODEL .. 149

6.4.1. Publisher and Subscriber Objects ... 149

6.4.2. Method interface of the Capability and Device Classes .. 153

6.4.3. Library Interface Definition for the Hardware Access .. 155

6.5. ILLUSTRATION OF THE COMMUNICATION SEQUENCE .. 156

6.6. CHAPTER SUMMARY ... 161

7. ILLUSTRATION AND VERIFICATION .. 162

7.1. INTRODUCTION ... 162

7.2. DESCRIPTION OF THE TEST BED HARDWARE .. 163

 - viii -

7.2.1. Equipment Description for Transport Components .. 164

7.2.2. Equipment Description of one Fixture Module ... 166

7.2.3. Equipment Description for the Control Hardware .. 167

7.3. DESCRIPTION OF THE PROTOTYPE SOFTWARE... 169

7.3.1. Generation of the Publisher/Subscriber Classes ... 170

7.3.2. Configuration File Settings ... 170

7.3.3. Device Library Implementation ... 172

7.3.4. Implementation Overview of the Fixture Module Software ... 174

7.3.5. Implementation Overview of the Fixture Coordinator Software ... 176

7.4. TESTING OF THE FIXTURE RECONFIGURATION WITH ONE TRANSPORT COMPONENT 180

7.4.1. Objectives .. 180

7.4.2. Configuration Details .. 180

7.4.3. Testing Procedure ... 185

7.4.4. Test Results .. 188

7.5. TESTING OF THE FIXTURE RECONFIGURATION WITH TWO TRANSPORT COMPONENTS 191

7.5.1. Objectives .. 191

7.5.2. Configuration Details .. 192

7.5.3. Testing Procedure ... 195

7.5.4. Test Results .. 197

7.6. CHAPTER SUMMARY ... 198

8. CONCLUSIONS AND FUTURE WORK ... 200

8.1. INTRODUCTION ... 200

8.2. ORIGINAL CONTRIBUTION TO KNOWLEDGE .. 200

8.3. AREAS OF APPLICATION ... 202

8.4. FUTURE WORK ... 203

8.5. CONCLUDING REMARKS ... 205

REFERENCES .. 207

 - ix -

List of Figures

FIGURE 1-1: SCHEMATIC REPRESENTATION OF POTENTIAL TIME REDUCTIONS FOR THE DEVELOPMENT OF

RECONFIGURABLE, ADAPTIVE FIXTURES ... 4

FIGURE 2-1: OVERVIEW ON FLEXIBLE FIXTURING TECHNOLOGIES .. 8

FIGURE 2-2: MODULAR FIXTURE PROPOSED BY SELA ET AL. [17] .. 9

FIGURE 2-3: DOUBLE REVOLVER AND TRANSLATIONAL MOVEMENT SYSTEM ([34]) .. 12

FIGURE 2-4: THREE-FINGERED PROGRAMMABLE AND RECONFIGURABLE FIXTURE CONCEPT BY DU AND LIN

[36] .. 13

FIGURE 2-5: SCHEMATICS OF THE DYNAMIC CLAMP ([48]) ... 16

FIGURE 2-6: HIERARCHICAL CLASSIFICATION OF FIXTURE COMPONENTS [84] .. 24

FIGURE 2-7: EXAMPLE FOR CAPTURING FIXTURE DESIGN INFORMATION AS OBJECTS [57] 25

FIGURE 2-8: CLASS DIAGRAM FOR THE CONTROL SYSTEM OF A ROBOTISED MANUFACTURING CELL [100] 27

FIGURE 2-9: CLASS STRUCTURE OF THE POLYMORPHIC BEHAVIOUR PATTERN [105] .. 28

FIGURE 2-10: OVERVIEW OF THE PUBLISH/SUBSCRIBE CONCEPT .. 32

FIGURE 3-1: OVERVIEW ON THE RESEARCH METHODOLOGY ... 40

FIGURE 3-2: THE KNOWLEDGE CONTRIBUTIONS IN THE CONTEXT OF THE SOFTWARE FRAMEWORK 43

FIGURE 3-3: USE CASE DIAGRAM FOR THE FIXTURING SYSTEM .. 46

FIGURE 3-4: SIMPLIFIED SCHEME OF COMMUNICATION BETWEEN A MODULE AND THE FIXTURE COORDINATOR

 ... 50

FIGURE 3-5: CONCEPTUAL DESIGN OF A FIXTURE WITH FOUR RAILS .. 59

FIGURE 3-6: VARIATIONS OF THE RAIL -BASED FIXTURE DESIGN ... 60

FIGURE 3-7: CONCEPTUAL DESIGN OF A FIXTURE USING A BASE PLATE WITH MOUNTING HOLES 61

FIGURE 3-8: VARIATIONS OF THE FIXTURE DESIGN WITH BASE PLATES AND MOUNTING HOLES 62

FIGURE 4-1: OVERVIEW OF THE PACKAGE STRUCTURE OF THE DATA MODEL... 65

FIGURE 4-2: MODEL ELEMENTS OF THE PACKAGE ―COMMON ELEMENTS‖ ... 66

FIGURE 4-3: HOMOGENEOUS COORDINATE TRANSFORMATION USING THE DATA TYPE SPATIALDESCRIPTION 67

FIGURE 4-4: CLASS DIAGRAM OF THE PACKAGE ―DEVICE‖ ... 69

FIGURE 4-5: EXAMPLES FOR THE DEVICE REPRESENTATION WITH THE COMPOSITION PATTERN 71

FIGURE 4-6: EXAMPLES FOR A LINEAR CLAMP (A) AND A SWING CLAMP (B) .. 72

FIGURE 4-7: EXAMPLES FOR LOCATOR DEVICES ... 73

FIGURE 4-8: THE DATA TYPES STROKERANGE, SWINGRANGE AND AXIS ... 75

FIGURE 4-9: THE DATA TYPES CLAMPINGRANGES AND CLAMPINGDIRECTION .. 75

FIGURE 4-10: COORDINATE SYSTEM DEFINITIONS FOR CLAMPING DEVICES ... 76

FIGURE 4-11: THE DATA TYPES SENSINGINFO AND FORCE ... 77

FIGURE 4-12: MODEL ELEMENTS OF THE PACKAGE ―FIXTUREMODULE‖ .. 78

FIGURE 4-13: THE DATA TYPE CLAMPWORKSPACE .. 80

 - x -

FIGURE 4-14: EXAMPLE INSTANTIATION OF THE ADJUSTTIPPOSITION CAPABILITY .. 81

FIGURE 4-15: DATA TYPES RELATED TO THE ADJUSTBODYPOSITION CAPABILITY ... 82

FIGURE 4-16: RELEVANT DATA TYPES FOR THE CAPABILITY SENSEBODYPOSITION ... 83

FIGURE 4-17: DATA TYPES RELATED TO THE CAPABILITY PROVIDESROLE ... 84

FIGURE 4-18: OVERVIEW OF THE PACKAGE ―TRANSPORT COMPONENT‖ ... 85

FIGURE 4-19: THE DATA TYPES DOMAINTYPE AND GEOMETRYTYPE ... 87

FIGURE 4-20: INSTANTIATION EXAMPLE OF A SLOT ON A TRANSPORT COMPONENT ... 88

FIGURE 4-21: EXAMPLE INSTANTIATION OF SLOT WITH CLOCKING ... 89

FIGURE 4-22: WORKSPACE DEFINITIONS FOR SLOTS ON CONTINUOUS TRANSPORT COMPONENTS (A) AND

DISCRETE TRANSPORT COMPONENTS (B) ... 91

FIGURE 4-23: CLASS DIAGRAM OF THE PACKAGE "RECONFIGURATION" ... 92

FIGURE 4-24: ILLUSTRATION OF CONTACT POINTS .. 93

FIGURE 4-25: DATA TYPES TO DEFINE THE REQUIREMENTS FOR THE FORCE AND POSITION FEEDBACK 93

FIGURE 4-26: THE DATA TYPE FORCEOVERTIME .. 95

FIGURE 4-27: ILLUSTRATION OF A DYNAMIC FORCE PROFILE ... 95

FIGURE 5-1: RECONFIGURATION METHODOLOGY OVERVIEW ... 99

FIGURE 5-2: INTERACTIONS BETWEEN THE SOFTWARE PROCESSES FOR THE FIXTURE MODULES, THE

TRANSPORT COMPONENTS AND THE FIXTURE COORDINATOR ... 101

FIGURE 5-3: FLOWCHART FOR THE CAPABILITY GENERATION ON MODULE LEVEL ... 104

FIGURE 5-4: EXAMPLE FOR THE GENERATION OF LEAF DEVICE OBJECTS ... 105

FIGURE 5-5: EXAMPLE FOR THE GENERATION OF COMPOSITE DEVICE OBJECTS ... 106

FIGURE 5-6: EXAMPLE FOR THE INSTANTIATION OF THE FIXTURE MODULE CAPABILITIES 107

FIGURE 5-7: FLOWCHART OF THE CAPABILITY RECOGNITION ON FIXTURE LEVEL .. 108

FIGURE 5-8: OBJECT GENERATION FOR A.) CONTINUOUS AND B.) DISCRETE TRANSPORT COMPONENTS 109

FIGURE 5-9: EXAMPLE INSTANTIATION AFTER LINKING ONE FIXTURE MODULE WITH A SLOT 111

FIGURE 5-10: DECISION-MAKING PROCESS OVERVIEW .. 114

FIGURE 5-11: FLOWCHART OF THE MODULE ASSIGNMENT SEQUENCE – PART I: FINDING POTENTIAL

CANDIDATES .. 116

FIGURE 5-12: ILLUSTRATIVE EXAMPLE FOR THE CALCULATION OF THE PROJECTED BODY POSITION 116

FIGURE 5-13: STEPS TO RETRIEVE THE PROJECTED BODY POSITION ... 118

FIGURE 5-14: FLOWCHART OF THE MODULE ASSIGNMENT SEQUENCE – PART II: SELECTION OF CANDIDATES

 ... 119

FIGURE 5-15: ILLUSTRATIVE EXAMPLE FOR THE CALCULATION OF THE FITNESS VALUE 120

FIGURE 5-16: IMPORTANCE OF THE MOUNTING ORDER FOR ONE-DIMENSIONAL TRANSPORT COMPONENTS .. 121

FIGURE 5-17: DECISION-MAKING FOR THE RECONFIGURATION COMMAND GENERATION 123

FIGURE 5-18: EXAMPLE FOR POSSIBLE COLLISION BETWEEN FIXTURE MODULES .. 125

FIGURE 5-19: DECISION-MAKING SEQUENCE FOR THE REORDERING OF THE RECONFIGURATION COMMANDS 126

 - xi -

FIGURE 5-20: ILLUSTRATION FOR THE COLLISION DETECTION .. 127

FIGURE 5-21: EXAMPLE - THE LISTS L IN AND LOUT AFTER THE FIRST ITERATION... 128

FIGURE 5-22: EXAMPLE - THE LISTS L IN AND LOUT AFTER THE SECOND ITERATION .. 128

FIGURE 5-23: THE TWO PHASES OF THE COMMAND EXECUTION SEQUENCE ... 129

FIGURE 6-1: CLASS DIAGRAM OF THE DCPS MODEL (ADOPTED FROM [166]) .. 133

FIGURE 6-2: DDS COMMUNICATION MODEL WITH QUALITY -OF-SERVICE .. 135

FIGURE 6-3: TOPIC STRUCTURE OF THE PUBLISH/SUBSCRIBE COMMUNICATION ARCHITECTURE 136

FIGURE 6-4: INTERACTIONS BETWEEN TRANSPORT COMPONENTS AND FIXTURE MODULES 137

FIGURE 6-5: QOS SETTINGS FOR THE DISTRIBUTION OF THE MODULE CAPABILITY DESCRIPTIONS 146

FIGURE 6-6: EXAMPLE FOR THE QOS SETTINGS DURING THE CLAMPING SEQUENCE 148

FIGURE 6-7: QOS SETTINGS FOR THE LIMITATION OF RECEIVED DATA SAMPLES. ... 149

FIGURE 6-8: MODEL EXTENSION OF THE CAPABILITIES WITH PUBLISHER AND SUBSCRIBER OBJECTS 150

FIGURE 6-9: EXAMPLE FOR THE INSTANTIATION OF THE PUBLISHER/SUBSCRIBER OBJECTS 151

FIGURE 6-10: PUBLISHER/SUBSCRIBER CLASSES FOR THE COMMUNICATION OF THE MODULE CAPABILITY

DESCRIPTIONS .. 152

FIGURE 6-11: PUBLISHER/SUBSCRIBER CLASSES FOR THE COMMUNICATION OF THE SLOT LINK INFORMATION

 ... 153

FIGURE 6-12: METHOD INTERFACES FOR THE FIXTURE MODULE CAPABILITY CLASSES 154

FIGURE 6-13: METHOD INTERFACES FOR THE DEVICE CAPABILITY CLASSES .. 154

FIGURE 6-14: METHOD INTERFACES FOR THE DEVICE CLASSES .. 155

FIGURE 6-15: LIBRARY INTERFACE DEFINITIONS ... 156

FIGURE 6-16: EXAMPLE OBJECT MODEL OF A FIXTURE MODULE .. 157

FIGURE 6-17: UML SEQUENCE DIAGRAM FOR THE FORCE FEEDBACK IN THE MODULE PROGRAM 158

FIGURE 6-18: UML SEQUENCE DIAGRAM FOR THE FORCE ADJUSTMENT IN THE MODULE PROGRAM 158

FIGURE 6-19: EXAMPLE OBJECT MODEL IN THE FIXTURE COORDINATOR .. 159

FIGURE 6-20: UML SEQUENCE DIAGRAM FOR THE CAPABILITY EXECUTION IN THE FIXTURE COORDINATOR 160

FIGURE 7-1: PRELIMINARY CONCEPT DRAWINGS FOR THE PROTOTYPE ... 163

FIGURE 7-2: DESIGN FOR A TRANSPORT COMPONENT WITH ONE CARRIER .. 165

FIGURE 7-3: DESIGN FOR THE TRANSPORT COMPONENT WITH TWO CARRIERS .. 166

FIGURE 7-4: LINEAR ACTUATOR WITH MOUNTED FORCE SENSOR... 166

FIGURE 7-5: BLOCK DIAGRAM FOR THE CONTROL HARDWARE COMPONENTS .. 168

FIGURE 7-6: OVERVIEW ON THE SOFTWARE PROCESSES FOR THE PROTOTYPE .. 169

FIGURE 7-7: DEFINITIONS OF THE LOCAL COORDINATE SYSTEMS FOR THE FIXTURE MODULES 171

FIGURE 7-8: BLOCK DIAGRAM FOR THE FORCE CONTROL ALGORITHM ... 173

FIGURE 7-9: SCREEN SHOT OF THE FIXTURE MODULE PROGRAM DURING ITS EXECUTION 176

FIGURE 7-10: SCREEN SHOT OF THE MAIN SCREEN OF THE GUI .. 178

FIGURE 7-11: THE GUI DIALOG TO LINK FIXTURE MODULES WITH SLOTS ... 179

 - xii -

FIGURE 7-12: TEST SETUP FOR THE FIRST EXPERIMENT .. 181

FIGURE 7-13: FORCE PROFILES FOR (A) CONTACT POINT 1 AND (B) CONTACT POINT 2 184

FIGURE 7-14: CALCULATING MOTOR COUNTS FOR THE RAIL MOTOR (BLUE) AND THE ACTUATOR (RED) 187

FIGURE 7-15: THE TIP OF THE LINEAR ACTUATOR AFTER THE RECONFIGURATION SEQUENCE 189

FIGURE 7-16: COMPARISON OF ACTUAL FORCE VS. TARGET FORCE FOR FIXTURE MODULE 1 190

FIGURE 7-17: DETAILED COMPARISON OF FORCE ADAPTATION FOR FIXTURE MODULE 1 191

FIGURE 7-18: PHOTOGRAPHS AND DIMENSIONS FOR (A) WORKPIECE A (B) WORKPIECE B 192

FIGURE 7-19: TEST SETUP FOR THE SECOND EXPERIMENT .. 193

FIGURE 7-20: CONTACT POINTS FOR (A) WORKPIECE A AND (B) WORKPIECE B .. 195

FIGURE 7-21: CLAMPING OF WORKPIECE B ... 198

 - xiii -

List of Tables

TABLE 3-1: ASSESSMENT OF MIDDLEWARE TECHNOLOGIES.. 53

TABLE 5-1: ALLOWED CAPABILITY CLASSES FOR THE DEVICE TYPES ... 105

TABLE 5-2: RULES FOR THE GENERATION OF THE CAPABILITIES FOR FIXTURE MODULES............................... 107

TABLE 5-3: EXAMPLE CALCULATION OF THE FITNESS VALUE FOR CANDIDATE 1A ... 120

TABLE 5-4: ORDERING OF THE CANDIDATE LIST FOR THE ILLUSTRATIVE EXAMPLE 121

TABLE 5-5: ILLUSTRATION OF THE ORDERING OF THE CANDIDATE L IST FOR RAIL -BASED TRANSPORT

COMPONENTS ... 122

TABLE 5-6: FINAL ASSIGNMENT OF FIXTURE MODULES WITH CONTACT POINTS .. 122

TABLE 6-1: RELATIONS BETWEEN TOPICS, CAPABILITIES AND PUBLISHER/SUBSCRIBERS IN THE FIXTURE

MODULES AND THE FIXTURE COORDINATOR ... 151

TABLE 7-1: SPECIFICATION SUMMARY FOR THE LINEAR ACTUATOR ... 167

TABLE 7-2: SPECIFICATION OF THE K ISTLER FORCE SENSOR ... 167

TABLE 7-3: UTILISED THIRD-PARTY SOFTWARE L IBRARIES .. 170

TABLE 7-4: EXPERIMENT PROCEDURE AND EXPECTED BEHAVIOUR .. 186

TABLE 7-5: EXPERIMENT PROCEDURE AND EXPECTED BEHAVIOUR .. 197

TABLE 7-6: PREDICTED MOTOR COUNTS FOR WORKPIECES A AND B ... 197

 - xiv -

List of Appendices

Appendix A: Listings of Module Configuration Files in XML-Format

Appendix B: Datatype Definitions in IDL-format

Appendix C: Source Code for the Device Libraries used in the Prototype Application

Appendix D: Diagrams for the Force Profiles Followed by the Fixture Modules during the

 Tests

 - xv -

Symbology

Symbol Name Description

Unified Modelling Language (UML) Use Case Diagrams

Actor

Actor An actor is a role outside the

system under study which

interacts with the system.

Use Case

Use Case A use case defines a certain

functionality that a system

provides to actors.

UML Class Diagrams

Class A

Class A

attributes

Class A

methods

Class A

attributes

methods

Class A class is a formal description

of a set of objects that have the

same structure, constraints and

semantics.

A class defines attributes to

encapsulate the state for its

objects. Methods are defined to

encapsulate the behaviour of

the objects.

A class can be depicted by any

of the four variations shown on

the left, depending on the

required level of detail.

Class A

Class B

Inheritance

Relationship

Class B inherits from Class A,

i.e. Class B is called a child

class of Class A. The child class

inherits the attributes and

methods from its parent class

 - xvi -

and may add more specialised

attributes and methods.

Class B
1

Class A *

Undirected

Association

Class A and Class B are

associated with each other. That

means, instances of each class

have access to one another.

The numbers specify the

multiplicity of the association.

This defines how many objects

of class A, an object of class B

can be associated with (and vice

versa). In the picture on the left,

Class A can be associated with

many objects of Class B

whereas Class B can be

associated with exactly one

object of Class A.

Class BClass A *1

Directed

Association

Class A and Class B are

associated with each other. The

arrow head indicates that Class

A has access to Class B, but

Class B has no access to Class

A.

Class B
1

Class A
*

Aggregation An aggregation is an

association, semantically

expanded by the comment that

the participating classes

represent a whole-parts

relationship (also called ―has-

 - xvii -

a‖- relationship).

Class B
1

Class A *

Composition A composition is a strict form

of an aggregation, where the

existence of the parts depends

on the existence of the whole.

UML Object Diagrams

:Class A

Object The instantiation of a class is

called object. An object is

depicted as a square box with

the underlined class name,

preceded by a colon.

:Class A :Class B

Link An instance of an association is

called a link. Thus, while

associations are used for

relationships between classes, a

link exists between two objects.

It is depicted by a line between

the two objects.

UML Activity Diagrams (Flowcharts)

 Initial Node An initial node is represented

by a filled circle and marks the

entry point to an activity. It has

outgoing edges, but no

incoming edges.

Final Node A final node represents the end

of an activity. This means, if

the final node is reached, the

activity terminates. A final node

can have incoming edges, but

no outgoing edges.

 - xviii -

Activity

Activity

Node

Represents a tasks to be carried

out

Condition

Fulfilled?

No

Yes

Decision

Node

Is used to represent decisions.

 Introduction

 - 1 -

1. Introduction

1.1. Background and Motivation

Manufacturing practices are significantly affected by worldwide socio-economic trends

such as high labour cost, increased quality expectations by the customers and the global

competition. As a consequence, companies are forced to manufacture a great diversity of

customised products within short time frames in order to be more competitive. In

responding to these market requirements, the current manufacturing needs are characterised

by increasing product diversity, shorter product lifecycles and higher quality requirements.

To realise these goals, the concepts of automation and reconfigurability are widely

acknowledged as the key factors in production and in the past decades a significant amount

of research has been conducted in the field of reconfigurable manufacturing systems. The

aim is to develop systems that are able to respond quickly to changing product requirements

by adapting their equipment structure.

An essential part of almost any manufacturing system is the fixturing solution used to

immobilise the workpiece during the process. Fixtures are devices to support, locate and

hold a workpiece in a desired position during the manufacturing process. As a result of the

direct contact with the workpiece, fixtures play an important role in guaranteeing the

quality of the final product in both machining and assembly processes. Potential problems

caused by a sub-optimal fixture device include deformation due to over-clamping, slippage

and workpiece lift-off as a result of under-clamping, as well as geometric and dimensional

deviations of the final product due to inaccurate positioning of the part. In addition to the

influence on the workpiece quality and process performance, fixtures are a significant cost

factor for the development of a manufacturing system. Indicatively, Bi and Zhang [1]

estimated the cost of designing and fabricating fixtures at 10-20% of the total

manufacturing system cost, while Consalter and Boehls [2] reported that fixtures and

cutting tools may represent up to 25% of the initial investment cost for flexible machining

processes. Additionally, Perremans [3] stated that fixturing may consume up to 25% of the

total process planning time. Finally, the reconfigurability of the fixturing system determines

 Introduction

 - 2 -

to a large extent the degree of flexibility of the overall manufacturing system. However,

traditional fixturing and workholding methods are often a key bottleneck in a truly

automated and reconfigurable manufacturing environment. Designed for specific products

and lacking reactivity, they can be regarded as highly inflexible to changes in product and

process specifications. Consalter and Boehls [2] described this problem as a ―technological

gap‖ separating fixtures from the advances achieved in the production systems they are a

part of. In other words, while modern production systems are increasingly automated,

fixtures are lagging behind, thereby becoming true obstacles to further automation and cost

reduction. Therefore, Bi et al. [4] concluded: ―If flexible manufacturing and assembly

systems are to be truly flexible then the fixturing must also be flexible‖.

Due to the immense impact on the manufacturing process, fixturing has attracted extensive

research effort. As revealed by the literature review in chapter 2, a large percentage of the

research concentrates on automated fixture design, fixture verification methodologies and

optimisation techniques. In addition, a large amount of research has been dedicated towards

the development of modular fixtures which can be reconfigured to accommodate a variety

of workpieces. However, in general these approaches appear to be restricted to purely

mechanical passive devices with limited or no reactive capabilities. Other approaches focus

on automated fixture reconfiguration, but these systems lack generality and are restricted to

specific hardware setups as a result of using customised software routines. In general, the

reactivity of these fixtures is limited to the reconfiguration phase while during the

manufacturing process the fixture acts like a passive system with no adaptation of the

clamping forces. To further improve the fixturing performance, a few researchers have

recently worked towards the development of so-called adaptive fixtures which can actively

control the clamping forces in response to external stimuli such as varying machining

forces. While it has been shown that these approaches can lead to increased product quality,

adaptive fixturing systems currently neglect the problem of reconfigurability. Additionally,

the increased use of sensor feedback and computerised equipment leads to new challenges

for the reconfiguration process, since the software of these systems must also be adaptable.

To summarise, there is a clear trend towards automatically reconfigurable fixtures on one

hand, and adaptive fixturing solutions on the other hand. The ultimate goal for the future is

 Introduction

 - 3 -

to combine these two trends and develop fixturing systems that are both, automatically

reconfigurable and adaptive, thereby becoming a truly flexible part in modern

manufacturing systems. However, due to the increased utilisation of computerised

components and the resulting need for software programming, the development of such

systems can be described as time and cost-intensive, requiring skilled personnel with

backgrounds not only in manufacturing but also in computer science. Supporting this

statement, Mohamed [5] reported that the software development cost for flexible

automation systems is typically 40% or more of the initial investment.

Apart from the mechanical fixture design phase and the physical assembly of the device, a

large amount of the development effort must be dedicated to the programming of the

system, leading to both, long lead times for the initial system development and long

reconfiguration times. This is a significant difference to the development of traditional

modular fixtures which typically consist only of passive metal blocks and therefore do not

require any software layers. The programming effort includes the development of the

software routines for the various sensor and actuator devices, but also the realisation of the

overall software architecture of the system. While the former is mostly concerned with the

programming of simple libraries for the hardware access, the latter deals with the more

complicated integration of the different software modules into a working system. This

includes the development of the reconfiguration sequence, the implementation of the force

adaptation as well as the communication between the fixture and the rest of the

manufacturing system. In current systems which rely on software routines customised to

specific fixture hardware, a large part of the programming effort has to be repeated

whenever the structure of the fixture is changed.

Figure 1-1 illustrates a typical lifecycle for the development of an automated fixture and

indicates where the research presented in this thesis aims to reduce the development effort.

The scenario outlines the main phases of the initial development of such a fixturing system

until the production phase. Additionally, a reconfiguration scenario is shown where the

structure of the existing fixture is changed to respond to new requirements. Examples for

such changes would be the addition or removal of clamps, the replacement of a sensor

 Introduction

 - 4 -

device with equipment from a different vendor or changes in the structural arrangement of

the various fixture components.

t

Lead Time

Software Framework for

Reconfigurable, Adaptive Fixtures

State-of-the-art

Time To Reconfigure

Fixture Development Fixture Operation

Fixture Design /

Manufacture /

Generation of

Clamping Schemes

Programming

of Sensor/

Actuator

Modules

Programming of Complete

Fixturing System Software

Production

Phase

Production

Phase
Re-Programming of

the Fixturing Software

T
e

c
h

n
o

lo
g

y
 R

e
a

d
in

e
s
s

Figure 1-1: Schematic Representation of Potential Time Reductions for the Development of

Reconfigurable, Adaptive Fixtures

The red curve indicates the increase of the system readiness during the various

development phases without the utilisation of software framework whereas the blue curve

depicts the expected improvements, resulting from this research. As can be seen, the

software framework significantly reduces the programming efforts in both, the initial

development phase and potential reconfiguration scenarios, thereby shortening the lead

time and time to reconfigure.

1.2. Research Objectives

The aim of this research is to reduce the programming efforts through the development of a

software framework for the operation of reconfigurable and adaptive fixtures. The English

Oxford Dictionary defines the term ‗framework‘ as ―a structure composed of parts framed

together, especially designed for inclosing or supporting anything‖ [6]. More specifically,

in computer science a software framework provides a reusable design and code

implementations to clients in order to realise applications of particular domain [7].

Software frameworks can be distinguished from libraries by the so-called ―inversion of

control‖. This means, the framework dictates the overall program control flow, whereas

libraries are typically passive entities that are called by an application [8]. The software

 Introduction

 - 5 -

framework, developed in this research study simplifies the fixture development task by

providing a flexible communication infrastructure, a data model to represent the fixture

capabilities and a reconfiguration method, applicable to a plethora of different fixture

designs. Unlike existing approaches which focus on the automation of the fixture design

procedure, the proposed framework reduces the lead times in two aspects:

 The provision of a software framework will eliminate the need to program or re-

invent tasks like the automated recognition of equipment and their capabilities,

information exchange between devices and the programming of the reconfiguration

sequence.

 The platform-independent definition of the library interfaces for common types of

devices used in adaptive fixtures such as force sensors, linear actuators and others

can lead to an arsenal of ready-to-use software libraries which can be reused in

different systems.

As a consequence of this shift from programming effort to configuration effort, engineers

will be able to focus on their core competences (e.g. force control strategies, mechanical

fixture design, simulation) rather than concentrating on programming and integration

issues. Additionally, the fixture development task and the system reconfiguration can be

realised by less skilled personnel. In the long term, the configuration of the framework can

be automated even further through the utilisation of software tools, thereby further reducing

cost, time and effort.

In order to achieve these aims, the following primary research objectives have been

identified:

 To define a data model for the representation of the capabilities of reconfigurable

and adaptive fixturing systems;

 To formalise a generic reconfiguration methodology that is independent of a

specific fixture design and can be applied to a wide range of different fixture

layouts;

 To develop an open and flexible communication infrastructure that allows platform-

independent device access and communication between the fixturing components.

 Introduction

 - 6 -

Additionally, a number of secondary objectives have been identified:

 To identify the user requirements a software framework for the operation of

reconfigurable and adaptive fixtures must satisfy;

 To review available communication infrastructure approaches and identify a

suitable technology for the adaptation to the fixturing domain;

 To experimentally prove the research results with a novel fixture device that

is both, automatically reconfigurable and adaptive

1.3. Thesis Structure Overview

The remainder of the thesis is structured as follows. Chapter 2 provides an extensive

literature review and identifies a number of knowledge gaps. Based on this, chapter 3

defines the research domain by describing the knowledge contributions of this research and

outlines the general research approach. Chapters 4, 5 and 6 contain the detailed descriptions

of the core concepts of this research, each of them corresponding to one of the identified

knowledge contributions. The illustration and verification of the developed software

framework with an exemplary laboratory test bed is explained in chapter 7. Finally, the

conclusions and the outlook to future work are presented in chapter 8.

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=exemplary

 Literature Review

 - 7 -

2. Literature Review

2.1. Introduction

Fixtures are commonly regarded as devices to hold and immobilise a workpiece in a desired

position during the manufacturing process. As a result of this functionality, fixtures are

composed of two main parts, namely clamps and locators. The former are used to exert a

certain amount of force against the workpiece, thereby holding it firmly into position. The

latter are usually passive elements which limit the degree of freedom of the workpiece and

determine a specific position and orientation of the workpiece during the manufacturing

process. Additionally, the stability of the system can be increased by the introduction of

support elements. Like locators, these are passive elements that prevent the workpiece from

moving when the clamps are actuated. The described functional and structural

characteristics distinguish fixtures from other workholding devices, such as chucks and

vices. These devices typically consist of a number of jaws which are used to hold a

workpiece during the manufacturing process. In order to limit the scope of the research, the

concepts presented in this thesis are focused on fixtures.

As a result of the significant impact on the manufacturing process fixtures have attracted

extensive research effort over the past decades. In particular, a vast amount of work has

been focused on the development of fixture design and optimisation methodologies. Also, a

number of approaches are available on reconfigurable fixturing systems and recently few

researchers have concentrated on the development of active clamping schemes using sensor

feedback.

This chapter aims to give an overview on the recent developments in fixturing with a focus

on flexible fixturing systems. Section 2.2 classifies the different fixture types and presents

relevant research works in the respective categories. Section 2.3 presents existing fixture

reconfiguration methodologies and related methods from other areas in manufacturing.

Closely related to these are fixture representation concepts and data models that are used as

the basis for the various reconfiguration methods. These will be covered in section 2.4. In

 Literature Review

 - 8 -

section 2.5, relevant communication architectures and middleware technologies will be

described. Finally, section 2.6 will identify the current knowledge gaps which are addressed

by this research.

2.2. Flexible Fixturing Concepts

The term ―Flexible Fixturing‖ subsumes fixturing systems that present some form of

adaptability. This can either be the ability to be reconfigured for various workpieces or to

adjust certain parameters of their behaviour like the clamping force. As opposed to flexible

fixtures, the term ―dedicated fixture‖ refers to systems that are designed for one particular

workpiece and have no means to reconfigure or adapt. Consequently, dedicated fixtures are

not the subject of this research work, although they are widely in use for mass production

schemes where reconfiguration and adaptability are not considered to be important.

Overviews on the concepts for flexible fixturing have been presented by Shirinzadeh et al.

[9], Lin and Du [10], and Bi and Zhang [1]. The main approaches are summarised in Figure

1-1 and include (1) modular fixtures; (2) phase-change fixtures; (3) conformable clamps;

(4) programmable fixtures for automated reconfiguration and (5) adaptive fixtures. These

technologies are presented in the following sections with a focus on programmable fixtures

for automated reconfiguration and adaptive fixtures.

Flexible Fixtures

Phase-change Fixtures

Conformable ClampsModular Fixtures Adaptive Fixtures

Programmable Fixtures

Figure 2-1: Overview on Flexible Fixturing Technologies

2.2.1. Modular Fixtures

Modular fixturing systems consist of a number of standard elements that can be combined

in order to accommodate a certain workpiece. These elements include various forms of

clamps, locators, supports, base plates and connections. An exhaustive review of modular

fixtures can be found in [11] and a large proportion of research has concentrated on either

 Literature Review

 - 9 -

developing modular fixture equipment or automated design methodologies for this fixture

category [12-15].

Sela et al. [16] presented an adjustable modular fixturing system for the assembly of

flexible thin walled objects, such as free form metal sheets. The device uses a number of

locators and clamps, which can be manually adjusted in all three Cartesian coordinates and

locked in position on a T-slot base plate as shown in Figure 2-2.

Figure 2-2: Modular Fixture proposed by Sela et al. [16]

Recently, Zheng and Qian [17] addressed the problem of holding workpieces with complex

geometries by proposing a modular fixture which can be arranged in 3-D space. The system

consists of three base plates with multiple holes on which clamping and locator pins can be

mounted. One base plate is fixed and mounted horizontally, while the other two base plates

are movable.

The main advantage of a modular fixture is that standard elements can be re-used to build a

large variety of different setups. This leads to lower warehouse costs compared to dedicated

fixtures and lower maintenance costs as damaged elements can be replaced. Hoffmann has

reported that the capital cost of modular fixtures is approximately 25% of an equivalent

dedicated fixture [11]. A more detailed analysis of the cost benefits from adopting the

modular fixturing solution can be found in [18]. However, the setup of the modular

elements leads to larger tolerance stack-up [19]. Also, with the increasing complexity of the

 Literature Review

 - 10 -

processes and workpiece shapes the planning, design and construction of a modular fixture

becomes more difficult and hence time-consuming even for experienced engineers [20].

Finally, these systems are usually designed for manual assembly and are too complex to be

automatically assembled and disassembled by robots.

2.2.2. Phase-change Fixtures

Phase-change fixtures exploit the ability of certain materials to change phase from liquid to

solid and vice versa. This may be induced by temperature, electric impulses or magnetic

fields. Normally, the workpiece is immersed in a container filled with the fixturing material

in liquid form. The material solidifies in response to an external influence (catalysts or

cooling) and firmly secures the workpiece in the desired position. After the machining

process the material is again subjected to catalyst actions and changes its phase back to

liquid releasing the workpiece.

Fixtures using phase-changing materials are appropriate for irregular workpieces which are

difficult to hold [21] and have been widely used in the aerospace sector for holding turbine

blades during the milling process [22]. An example for the application of phase-change

fixtures for aerostructures has been presented by Aoyama [23] which utilises

electrorheological fluids for the clamping of aerostatic sliders, while Rong et al. [24]

exploit the phase-change behaviour of magnetorheological materials. Aoyama and

Kakinuma [25] proposed a hybrid phase-change fixture using a low melting point alloy

enclosed in a chamber with multiple movable pins to hold thin-walled parts. A heating

source triggers the melting of the alloy which results in the repositioning of the locator

pins. This system combines phase-change fixtures and locator elements found in modular

fixtures. Further examples on phase-change fixtures can be found in [26, 27]. A

comprehensive overview on phase-change fixtures has been published by Lee and Sarma

[28].

The advantage of this technique is that there is no limitation to the shape or geometry of the

workpiece as long as there is sufficient phase-change material to encapsulate it [29].

However, no sufficient solutions have been found to precisely position the workpiece in the

 Literature Review

 - 11 -

liquid material. Hence, these types of fixtures provide support but no localisation of the part

and an additional mechanism must be used to align the workpiece [21].

2.2.3. Conformable Fixtures

Conformable fixtures consist of a number of independently adjustable clamping and locator

elements that are arranged in an array to conform to the shape of the workpiece. This

results in a more distributed load profile and allows the clamping of parts with complex

geometries [30].

Englert and Wright [31] have developed a conformable clamping system for turbine blades.

It consists of a hinged octagonal frame with a number of pneumatically controlled plungers.

When the plungers have conformed to the shape of the workpiece they are locked with

socket screws. Cutkosky et al. [32] have enhanced this approach with plungers that can be

actively controlled with a computer programme. Al -Hababeih et al. [33] introduced a

hybrid system for the clamping of complex aerospace components which consists of a

conformable pin-array and a low-melt alloy whose phase-changing behaviour is exploited

to immobilise the pins.

The main disadvantage of conformable fixtures is the limitation of the accessibility of the

workpiece due to the large amount of pins. Secondly, reconfiguration times can be

considerably longer in the case of passive pins that must be manually adjusted and often a

master template workpiece is required to reconfigure the system [32].

2.2.4. Programmable Fixtures

The approaches described in the previous sections are generally based on passive devices

with limited or no intelligence in the form of sensor feedback, programmability and

automation. Consequently, the reconfiguration process of these systems involves manual

adjustments which result in longer reconfiguration times. Programmable fixtures aim to

overcome these disadvantages by incorporating sensor-feedback and NC-controlled

actuators to automate the reconfiguration process of the fixture. Since this research study

 Literature Review

 - 12 -

addresses automated fixture reconfiguration, the research results on programmable fixtures

are particularly relevant.

As an early example, Tuffentsammer [34] presented two alternative solutions for an

automated machining fixture that can be controlled with a CNC interface. The first solution

is called the ―double revolver‖ and arranges locators, clamps and supports on servo-

controlled turntables as shown on the left in Figure 2-3. The system can be configured for

different clamping positions by combining the rotations of the primary and secondary

revolvers. In this way, various workpieces of the same product family can be held. The

clamping operation is divided into several steps. First, the locators are moved to their pre-

programmed positions. When the workpiece is loaded, repositionable hydraulic cylinders

which are located over the part provide pre-determined, small clamping forces to hold it in

place. After, the supporting elements are set against the workpiece, the full operating

hydraulic clamping force is applied to the workpiece and machining can commence.

Figure 2-3: Double Revolver and Translational Movement System ([34])

The second system developed by Tuffentsammer is the ―translational movement system‖

illustrated on the right in Figure 2-3. It incorporates repositionable toe clamps and supports

on one or two translational axes to secure the part. As can be seen in the picture the system

uses a sliding mechanism to adjust the position of the clamps and to be able to hold a wide

spectrum of workpieces. Both systems are designed to be integrated in horizontal milling

centres and are only targeted to hold bulky parts like castings. Although, both systems

 Literature Review

 - 13 -

appear to have a certain level of mechanical reconfigurability, it relies on dedicated

software routines customised to the specific hardware setups. In other words, if these

systems are subject to structural changes like the integration of an additional clamp, the

software has to be reprogrammed.

Inspired by Tuffentsammer‘s double revolver, Lin and Du [35] presented a modular fixture

consisting of two types of modules. The first module contains two fingers which can be

repositioned with a double revolver mechanism to locate a workpiece precisely. The second

module consists of two pneumatic cylinders and is used to clamp the workpiece. Although,

these modules can be combined in various ways to secure different shapes of workpieces,

no considerations have been mentioned on how this would affect the software architecture

of the system. Based on this approach, the same authors proposed an automated flexible

fixture for planar objects which can be seen in Figure 2-4 [36].

Figure 2-4: Three-fingered Programmable and Reconfigurable Fixture Concept by Du and Lin [36]

The system also consists of two CNC modules and is based on the idea of the minimum

number of fingers needed to immobilize a planar workpiece. The locating module is fixed

on the base plate and incorporates two fingers mounted on the module according to the

double revolver principle. The second module is movable and has only one finger. It is

moved towards the workpiece to provide the clamping force. Due to the simple design, it

can only hold simple, planar objects and its structure is limited to exactly two modules.

Youcef-Toumi and Buitrago [37] presented a robot-operated modular adaptable fixture.

Each module consists of a conformable surface element, a control unit and a locking

interface. The conformable surface incorporates a number of pins that can conform to the

surface of the workpiece. Therefore, this approach combines the advantages of both

Module 1
(Fixed)

Finger Workpiece

Module 2
Movable

 Literature Review

 - 14 -

modular fixturing and conformable clamps. The control unit includes the necessary sensors

and actuators and the locking interface provides a means of connecting modules with each

other or with the base plate. Another robot-operated flexible fixture approach was

introduced by Chan et. al. [38, 39]. The system incorporates sensor-integrated horizontal

and vertical locators, sensor-integrated V-Blocks, sensor-integrated horizontal and vertical

clamps and a hole-type base plate. The sensing scheme is based on Y-guide proximity

sensors which can verify if a component is mounted properly in a hole or not. Although, the

system is programmable it is mentioned that dedicated software routines are needed for the

fixturing process that are customised to the number of elements currently incorporated into

the system. Secondly, robot assembly of fixtures has a number of disadvantages like

tolerance stack-up. Additionally, the accuracy of the fixture is limited by the accuracy the

robot can achieve.

Another automated fixture device was built by Kurz et al. [40, 41] consisting of two

hydraulic cylinders, which are connected to the base by revolute joints. The pistons of the

two cylinders are also connected with a revolute joint, achieving an accurate 2DOF

positioning mechanism. Hence, the device can be incorporated in a fixture for positioning

of a workpiece. However, it is not a complete fixturing solution as it lacks clamps for

instance. Furthermore, Lu [42] described an automated fixturing system for two-

dimensional clamping which has a similar structure as a vice. However, its jaws are fitted

with rotatable half-cylinders whose flat surfaces act as clamps. Sensors are used to feed

back the position of these clamping surfaces and the vice opening. Additionally, an

algorithm is proposed to determine the location of the workpiece in the fixture. The

obtained data is then fed back to the NC machine control.

Finally, Chan and Lin [43] developed a CNC controlled modular fixture according to the

all-of-a-kind principle. The system comprises only one type of standard multi-finger CNC

modules which can provide locating, clamping and supporting functions. Each module

consists of four fingers controlled by one motor including two transmission and clutch

systems. To clamp a workpiece several of these modules are combined on the platform. The

finger positions can be adjusted to hold a variety of similar workpieces. This approach

 Literature Review

 - 15 -

simplifies the control problem of the system as all modules are of the same type. Also, in

terms of flexibility the modules can be arranged in various ways and therefore secure a

large number of different workpieces. However, the impact of the reconfiguration on the

control software of this fixture has not been taken into consideration and the configuration

of these modules cannot be achieved automatically [36]. It is assumed, that this system

requires the reprogramming of the control software whenever the fixture setup changes.

2.2.5. Adaptive Fixtures

Adaptive fixtures can be characterised as a comparatively recent development in fixturing

and consequently only little research is available on this subject. Similar to the previous

category, adaptive fixtures utilise sensor feedback and automation to achieve a certain level

of ―intelligence‖ for the fixturing system. However, while programmable fixtures

concentrate on reconfigurability, adaptive fixtures aim to improve the fixturing process by

actively changing the clamping force in response to external influences during the

manufacturing process. In conventional fixtures there is a major discrepancy between

constant fixturing forces and dynamic machining forces acting on the workpiece throughout

the duration of the process. Most research approaches regard clamping forces to be constant

throughout the machining process and hence, clamping forces must restrain the maximum

external force that is predicted for the machining process. This leads to over-clamping for

the situations when the external load is lower than the maximum. As shown by Tao et al.

[44, 45], clamping loads and workpiece deformation can drastically be reduced if the

clamping forces are dynamically adapted during the machining process.

As one of the pioneers in adaptive fixturing, Gupta et al. [46] reported on the integration of

sensing capabilities in a fixturing system for drilling operations. The device consists of

standard vice with two V-blocks, each of them equipped with a dynamometer. With this

setup, the system was capable of monitoring the clamping forces, the thrust force and the

torque acting on the workpiece during the drilling procedure. Based on the collected data,

Gupta et al. was able to define safe and unsafe clamping force regions, depending on the

spindle speed and feed rate. However, the system was not able to change the clamping

forces during the manufacturing process.

 Literature Review

 - 16 -

Arguably, the most promising approach has been proposed by Nee et al. [47]. The system

consists of six locators which are equipped with piezo-electric force sensors and two

clamps. The clamps consist of a DC Servo motor which is coupled with a linear actuator to

achieve the clamping force. The position and speed of the servo motor are controlled by a

servo driver. The servo creates torque to the actuator which transforms it into a linear

movement. The actuator operates with a high reduction worm gear that has a self-locking

capability in order to maintain its position and the force. At the end of the actuator a force

sensor is embedded to feed back the force that is imparted to the workpiece. For

maintaining high accuracy of the motion control, an encoder is attached to the servo motor

to feed back the current position and speed to the control unit, forming a local closed-loop.

An overview of the dynamic clamp can be seen in Figure 2-5.

Figure 2-5: Schematics of the Dynamic Clamp ([48])

The whole system is controlled by customised software routines running on a PC. The

signals from the sensors go through a charge amplifier and an analogue-to-digital converter

(ADC) before entering the PC. The control programme processes the input signals from the

sensors according to the clamping force control strategy and sends output signals to the

servo controller to adapt the clamping force. Mannan and Sollie [49] have shown that the

electro-mechanical clamp is able to adapt the clamping force with an accuracy of +/- 1 N

over a range of 700N with a response time of 200ms. However, in the experiments only

steps of +10 Newtons have been reported.

 Literature Review

 - 17 -

Details of the control strategy are described in [50]. It is based on the concept of ―control-

clamps‖ and on an optimisation model aiming at the reduction of the clamping and reaction

forces in the system. A control clamp of a locator is defined as the clamp with the greatest

impact on this locator. In the proposed system, each locator must be assigned with a control

clamp. When the reaction forces on a locator fall under a specified lower bound value, the

clamping force of its control clamp is increased. Likewise, if the reaction forces of a locator

exceed a certain upper threshold, the software commands the related control clamp to

minimize its clamping force. A prototype of the system has been successfully tested for a

slot-milling operation of a simple-shaped workpiece and for a finish pocketing operation on

a box-shaped, thin-walled workpiece. The results show that dynamic force adaptation

improves the workpiece stability and that clamping forces can be decreased significantly

compared to a conventional system with constant forces. This leads to less deformation and

higher accuracy of the finished workpiece. Workpiece deformation could be decreased by

20% in one experiment [50]. A variation of the above system has been reported in [51]

which uses hydraulic instead of electro-mechanical actuators. Inspired by the results of the

aforementioned system, Rashid and Nicolescu [52] have recently applied the approach of

adaptive fixturing to actively dampen vibration in a palletised workholding device. The

proposed system consists of a rectangular frame with integrated force sensors and piezo-

electric actuators, fast enough to counter-act vibration.

2.2.6. Discussion

The review of the available literature on fixturing shows an ongoing trend towards

automation. This is particularly reflected by the recent developments in the fields of

programmable fixtures and adaptive fixtures. However, the reviewed programmable

fixtures are based on dedicated software routines, customised to specific hardware setups.

Hence, these systems offer the capability of mechanical reconfiguration, but the adaptation

of the underlying software has been widely neglected. This becomes even more important

with the advent of adaptive fixtures. The presented examples for adaptive fixtures do not

provide the ability to be reconfigured for a variety of workpieces. Hence, the ultimate

objective in the future is to combine the benefits of programmable and adaptive fixtures.

However, it appears that the ever-growing integration of sensor-feedback and automated

 Literature Review

 - 18 -

actuator units requires a greater level of flexibility of the fixturing software than current

systems have.

2.3. Reconfiguration Methodologies

While the previous section has focused on available mechanical concepts used for flexible

fixturing, this part aims at exploring the available literature on methods for the fixture

reconfiguration. Additionally, reconfiguration approaches from other areas in

manufacturing are reviewed.

2.3.1. Fixture Reconfiguration Methods

A large percentile of the methodologies addressing the reconfigurability of fixturing

systems target the design and planning process of modular fixturing systems. Traditionally,

this has been a task relying on the experience and intuition of skilled engineers. To

automate this time-consuming and hence cost-intensive process, researchers have applied a

number of techniques from computer science and artificial intelligence. The research

activities can be categorised in (1) Fixture Design and Verification Methodologies and (2)

Fixture Optimisation Methodologies.

2.3.1.1. Fixture Design and Verification Methodologies

Fixture design methodologies aim to automate the decisions made in the fixture

development process. This involves activities like describing the requirements and the

constraints, the selection of appropriate fixture elements and the positioning of the

clamping points. Fixture verification is closely related to this and tries to evaluate a certain

fixture configuration according to the design criteria, such as stability, workpiece

deformation and the minimisation of the clamping forces. The information from the

verification can be fed back to the system in order to generate a better design.

Expert systems have commonly been used which expect the description of the workpiece

and the process as inputs and generate a fixture design by interpreting a set of rules. Nnaji

and Lyu [53] presented such a system for the automatic layout of flexible fixture models on

a CAD/CAM system. The proposed rules are based on the 3-2-1 locating scheme which is

commonly used for prismatic workpieces. According to this, three locators are placed

 Literature Review

 - 19 -

against the largest planar surface, two locators are placed on the surface perpendicular to

the previous plane which has the longest edge and the remaining locator is placed on a

mutually orthogonal plane [21]. The methodology is implemented in the logic-based

programming language PROLOG and was demonstrated for the surface milling of

polyhedral workpieces. As part of the IDEFIX project Perremans [3] developed an expert

system for the design and planning of modular fixtures for the machining of prismatic

workpieces. The inputs are the faces on which positioning, clamping and supporting should

be done and the system automatically generates the necessary assembly of modular

fixturing elements. Gaoliang et al. [54] have proposed a hybrid method using rule-base

reasoning and fuzzy logic to capture the geometric constraints of modular fixtures in a

virtual reality system to automate fixture design.

However, there are some disadvantages in the use of expert systems. Firstly, the complexity

of the design process makes it difficult to formulate rules. Secondly, even experienced

experts struggle to explain their knowledge in simple rules. To overcome the disadvantages

of rule-based systems, some researchers have applied case-based reasoning (CBR)

techniques. In CBR knowledge is stored as experience in the form of cases. When the

system is confronted with a new case it retrieves the most similar case from its case base

and modifies it to meet the new requirements, thereby extending the data base by a new

case. Sun and Chen [55] proposed such a system. In order to find the similar cases the

authors introduced an index method for the features of a fixture. However, the proposed

index considers only workpiece geometry and is quite superficial. A similar system was

proposed by Li et. al. [56] which is based on a hierarchical decomposition of the fixture

structure into layers of function units, components and elements. It is mentioned that this

layered approach facilitates fixture reconfiguration, because the components and elements

can be replaced in response to changing requirements. When confronted with a new case

the system retrieves the most similar case from its knowledge base by calculating the

―degree of similarity‖. However, to accomplish this calculation, the system relies on weigh

factors whose values appear to be rather arbitrary. Recently, the same research group has

enhanced this concept for a welding fixture design system [57].

 Literature Review

 - 20 -

Finally, a number of geometry-oriented approaches have been published where design

information is mainly extracted from CAD systems. Based on the shape of the workpiece,

appropriate clamping, support and locating elements are determined. Trappey et al.

proposed a method that projected the geometry of a workpiece to find a feasible fixture

configuration based on the 3-2-1 locating principle [58]. With a focus on design

verification, Kang et al. [59, 60] presented a computer-aided fixture design verification

(CAFDV) framework which is based on geometric and kinematic models to confirm

locating accuracy, fixturing stability and the determination of the minimum clamping force.

Wu et. al. [61, 62] presented a method addressing the geometric analysis and verification

for the planning of modular fixturing systems. It is capable of determining the fixturing

surfaces and locating points to provide suitable geometric constraints. The approach has

been applied to various types of workpiece in 2D and 3D.

2.3.1.2. Fixture Optimisation Methodologies

The high complexity of fixture design implies that in most cases there is a large number of

possible solutions. Optimization techniques are used to identify the best solution in respect

to a particular design objective. Hence, these systems require an objective function and

search for the best solution by varying certain input parameters.

King and Hutter [63] proposed a theoretical approach that utilised kinematic, force and

robotic grasp analysis to generate optimal fixturing location points that secure the

workpieces ideally with respect to maximum stiffness, resistance to slip and stability.

Menassa and DeVries [64] incorporated the Finite Element Method (FEM) to analyse the

expected deflections of the workpiece. On this basis their system determined the ideal

positions of the fixture supports in order to minimise workpiece deflection. The problem of

these approaches is that they require complex and time-consuming computations. This is

why these models were restricted to simple prismatic workpieces [65].

A number of researchers applied evolutionary programming techniques such as genetic

algorithms (GA) and artificial neural networks to find the optimal fixture configuration for

a set of requirements. Genetic algorithms are based on Darwin‘s Survival-of-the-fittest

 Literature Review

 - 21 -

theory, which states that only the most suited individuals in a population are likely to

survive and generate offsprings. A genetic algorithm emulates the evolution theory by

changing parameters in the system and measuring the ―fitness‖ of the resulting system

against a ―fitness-function‖. The most promising solutions are chosen to generate offsprings

and in this way the optimisation problem is solved. Wu and Chan [65] used this technique

to find the most statically stable fixture configuration from a large number of candidates.

Unlike earlier approaches this method is not limited to specific workpiece geometries and is

free from frictionless assumptions. Krishnakumar et al. [66, 67] used a similar approach to

optimise the fixture layout and clamping force intensity. Their objective function is the

minimisation of the workpiece deformation during the cutting process. Other systems based

on genetic algorithms have been developed by Vallapuzha et. al. [68], Kaya [69] and

Aoyama et al. [70].

2.3.2. Reconfiguration Methods for Manufacturing Systems

The previous section indicates that the methodologies for fixture reconfiguration are mainly

addressing the fixture design and optimisation phase. However, frameworks focussing on

the reconfiguration issues that occur during the operation of the fixture are widely missing.

The reason for this is that until recently fixtures were widely treated as passive mechanical

elements without any intelligence. At the same time, the reported examples for

reconfigurable fixtures (see section 2.2.4) lack a general methodology and are restricted to

specific fixture layouts. The ongoing trend towards intelligent adaptive fixtures leads to a

demand for generic methods that focus on realising the reconfiguration during the fixture

operation. For this reason, it makes sense to review reconfiguration methods applied in

other manufacturing areas which have progressed further on the transition to fully

automated systems. In particular, there are a number of approaches available for the

automated reconfiguration of assembly systems.

A widely acknowledged concept is the holonic approach which is a distributed control

paradigm, based on autonomous and cooperative entities called ―holons‖[71]. As a key

feature a holon can be part of another holon, which builds up an open-ended hierarchy,

called the ―holarchy‖ [72]. Further details about holonic manufacturing systems can be

 Literature Review

 - 22 -

found in [73]. Sugi and Maeda [74] presented a holonic assembly system comprising three

manipulators, one belt-conveyor and two warehouses. The system consists of two layers, an

upper management layer which is responsible for the task planning and a lower execution

layer with holons corresponding to the assembly devices. Holons of the upper layer issue

orders to those of the lower layer, while entities on the same level negotiate with each other

who executes this task. Thus, for the upper layer it is transparent how a particular task is

accomplished and therefore the assembly sequence can be generated dynamically according

to the actual setup. Leitao and Restivo [75, 76] proposed a holonic architecture for agile

and adaptive manufacturing control, called ADACOR. The system is based on a set of

operational holons with self-organizing and learning capabilities. Additionally, a supervisor

holon is introduced which coordinates the subordinate entities and allows for global

optimisation of the process. Other holonic approaches can be found in [77-79].

Closely related to holonic approaches are agent-oriented systems. According to Ferber, an

agent is defined as a physical or virtual entity which is capable of acting autonomously in

an environment, can communicate and has its own goals which it tries to achieve [80]. A

multi-agent system is characterised by the cooperation, communication and even

competition between multiple agents. Due to the distributed nature of these systems, multi-

agent approaches can react flexibly to changes and have therefore been introduced for

reconfigurable manufacturing systems. In fact, most of the holonic manufacturing systems

described in the previous section have been implemented as multi-agent systems. Tang and

Wong proposed a flexible assembly cell based on several reactive agents [81]. Reactive

agents do not maintain the status of their environment. They rather react to stimuli. Hence,

they are particularly effective for systems with limited memory resources. The proposed

system incorporates material-handling agents that control the conveyor line of the cell and

robot agents representing the manipulators. Additionally, a supervisory agent coordinates

the actions of the subordinate agents. This structure is also referred to as the subsumption

architecture. Each of the agents acts autonomously according to its own ―local‖ goals. The

authors introduced a coordination model which allows a team of self-interested, reactive

agents to achieve a global goal by the means of exchanging messages. Similar to the

 Literature Review

 - 23 -

holonic approaches, the system can flexibly adapt the assembly sequence when the physical

resources change.

2.3.3. Discussion

The previous sections show that a significant amount of research is available on fixture

reconfiguration methods. However, these methods concentrate on automating fixture design

and optimisation. In some cases, the presented methodologies only apply to a small number

of fixtures, lacking generality. Generally, the presented research is focused on the design

issues of traditional modular fixtures composed of passive metal blocks. It appears that the

trend towards adaptive fixtures, incorporating sensor and actuator devices, requires new

methodologies to address the reconfiguration issues during the operation of the fixture on

the shop floor. Other areas in manufacturing with a higher level of automation show that

there is a number of potential approaches to achieve dynamic reconfiguration. Some

researchers have proposed holonic architectures and agent-based systems. However, these

approaches rely heavily on time-consuming negotiation algorithms. Although negotiation

between agents is an adequate method for assembly lines where events typically happen in

the ranges of seconds, it does not appear to be the right solution for fixturing systems which

need to react much faster in order to adapt the clamping force. On the other hand, the

proposed hierarchic control methods and the delegation of commands from one layer to

another are regarded as key technologies for the development of a fixture reconfiguration

methodology.

2.4. Data Models and Representation Concepts

A fundamental part of any framework for a reconfigurable system is a data model which is

able to represent common aspects of the underlying systems and model the relationships

between the various entities. This section aims at reviewing existing models for both

fixturing systems and reconfigurable manufacturing systems.

2.4.1. Fixture Representation Concepts

A number of researchers have tried to conceptualise modular fixturing systems as a basis

for the previously reviewed fixture reconfiguration methodologies. Perremans [3] proposed

 Literature Review

 - 24 -

a feature-based data model which describes a number of modular fixture elements in terms

of geometry, type of contact, tolerances and other aspects. His model is based on three

feature types, namely (1) ―Contact Features‖; (2) ―Assembly Features‖; and (3) ―Tightening

Features‖. The first feature type represents elements that are in contact with the workpiece

such as different forms of locators. Assembly features are used to combine various types of

modular elements, while the third feature type is used to tighten an assembly of modular

elements. The author has expanded this model to a catalogue consisting of 26 contact

features types, 10 assembly features and 7 tightening features. The model showed

acceptable results for two commercially available modular fixturing systems (Norelem@

and Bluco@), however the concept is limited to passive elements and is therefore

inadequate for the representation of reconfigurable, adaptive fixtures. Other feature-based

concepts have been proposed by Nee et al. [82], Shirinzadeh [83] and Jeng and Gill [84].

The latter defines a hierarchy of fixturing elements in terms of high-level, functional

entities such as base plates, clamps, locators and supports as shown in Figure 2-6.

Figure 2-6: Hierarchical Classification of Fixture Components [84]

For each component type a data structure is proposed that contains some qualitative

attributes of the functional properties, geometrical constraints and the constituent

components. The feature-based approach of Subrahmanyam [85, 86] also distinguishes

clamping, locating and support features, however these definitions refer to the workpiece

surfaces rather than the fixturing system itself.

The hierarchic modelling approach can also be found in Li et al. [56] who have

decomposed the fixturing structure into several functional units such as top-clamping, side-

clamping or bottom locating. Each functional unit is further decomposed of so-called

functional components which are in contact with the workpiece and assistant components.

 Literature Review

 - 25 -

The bottom of this tree-like structure consists of function elements and assistant elements

which are the basic building blocks for the component layer. This layered hierarchy is the

key for the reconfigurability of the system, because the entities in each layer can be

replaced in response to different requirements without affecting other layers. Similarly,

Wang and Rong [57] utilised multi-level data abstraction to generate a hierarchic model of

the fixture structure. In contrast to the previously mentioned approaches this system

enhances the hierarchic structuring idea with an object-oriented model to represent the

relationships between the various entities in the system. Figure 2-7 illustrates an example

for the capturing of fixture design information, used in this system.

Figure 2-7: Example for Capturing Fixture Design Information as Objects [57]

An advantage of using objects is that they can be easily described with computer-readable,

platform-independent languages such as XML. In this context, Liquing and Kumar [87]

utilised XML and object-orientation in a case-based reasoning system for automated fixture

design of modular fixtures. The description of the cases consists of the part representation,

the fixture design representation and the setup representation which links the design

information with various workpieces. In this conceptualisation, a modular fixture is a

subclass of a fixture which is composed of multiple fixture elements, namely clamps,

locators, supports, base plates and accessory equipment. The implementation of this system

as a client-server application using Java Remote Method Invocation (RMI) has been

described in [88].

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=accessory

 Literature Review

 - 26 -

Recently, Hunter et al. [89, 90] presented a functional approach for the formalisation of

fixture design information as a part of a design methodology for modular fixtures. Object-

oriented modelling techniques are used which are represented with the Unified Modelling

Language (UML). The main entities of the model are non-functional fixture requirements

like cost and functional requirements such as clamping forces and locating points.

Additionally, the model contains design rules and so-called fixture functional elements in

terms of clamps, locators and support elements. The methodology relates the requirements

with suitable fixture functional elements which are mapped to specific commercially

available components.

2.4.2. Representation Models for Reconfigurable Manufacturing

Systems

Similar to the reconfiguration methods, the majority of the fixture representation models

appears to concentrate only on passive modular fixtures. Additionally, these models focus

on the issues of fixture design and cannot be directly applied to the operation of a

reconfigurable, adaptive fixturing system. This section aims at highlighting some related

research on other fields in manufacturing where researchers have tried to generate data

models addressing the need of automated reconfiguration.

A number of approaches have been proposed for the formalisation of the process

capabilities of equipment modules in automated assembly systems. Based on knowledge-

intensive Petri nets, Zha et al. [91] generated a function–behavior–structure model for the

automated design of such systems. According to Lohse et al. [92], the behaviour of a

module is an objective description of how the module reacts to stimuli and transforms

inputs to outputs. The functions are a subjective abstraction of the behaviour and express

the capabilities of a module, based on the purpose or the intention of the designer. The

structure describes the physical model of the modules with objects, attributes and relations.

Based on this, Lohse [93] has described an ontology framework which is able to capture the

capabilities and requirements of modular assembly systems. Other related research was

reported in Meijer et al. [94], Zhang et al. [95] and Prabhakar and Goel [96].

 Literature Review

 - 27 -

Due to its flexibility, object-orientation has been widely used by a number of researchers.

Kovács et al. [97] commented on the merits of object-oriented methods for the

reconfigurability of the control software, both during the design phase and the low-level

management of hardware changes. Schäfer and López [98] proposed an object-oriented

model for the control of flexible manufacturing systems with robotic manipulators. The

model defines a number of equipment resources and their capabilities, as well as control

parameters and coordinate frames. Each resource is defined by two classes, one resource

class and corresponding control class. Further, Bruccoleri et al. [99] reported on an object-

oriented high-level control structure for the real-time error recovery in reconfigurable

assembly systems. In a related article [100], the same authors described a reconfigurable

system for robotised manufacturing cells. The underlying model for this approach is based

on an object hierarchy as illustrated in Figure 2-8.

Figure 2-8: Class Diagram for the Control System of a Robotised Manufacturing Cell [100]

As a further extension of the object-oriented paradigm, a few researchers have exploited the

benefits of object-oriented design patterns in their models. The concept of design patterns

goes back to Alexander‘s ―The Timeless Way of Building‖ [101] which describes them as

generic solutions to recurring problems and therefore they allow the reuse of expertise

acquired in previous designs. Later, design patterns have been introduced to software

engineering for the reuse of generic object structures in the design of software applications

[102, 103]. Gamma et al. [104] formalised the description of patterns and published a

 Literature Review

 - 28 -

standard catalogue of 23 design patterns that are widely considered as the standard work in

this field.

Thiry et al. [105] applied a number of design patterns from Gamma‘s catalogue to the field

of robot control. In more detail, the ―Command‖ pattern was adopted to allow dynamic

upgrade of a system with new behaviour. An illustration of the class structure is provided in

Figure 2-9. A system, in this case a legged robot, can be attached with a variable number of

behaviours, each of them modelled as own classes. To invoke a certain behaviour, the

generic function ―Do‖ is called on the System with the identifier of the behaviour and an

optional parameter list. The request is then delegated to ―Do‖-function of the corresponding

behaviour object.

Figure 2-9: Class Structure of the Polymorphic Behaviour Pattern [105]

Recently, Soundararajan and Brennan [106, 107] have adapted the ―Proxy‖ design pattern

for a distributed real-time control system. The pattern proved particularly useful in

distributed systems where clients invoke server requests on a local representative who is

responsible for the information exchange and makes the rest of the application independent

from the implementation details of the server. Further examples of the use of design

patterns can be found in Pont and Banner [108] (embedded systems control), Sanz and

Zalewski [109] and Buschmann et al. [110].

2.4.3. Discussion

The presented literature shows that a number of researchers have tried to generate data

models for the representation of fixturing systems. Most of the models concentrate on

capturing the structural characteristics of a fixturing system. While this information is

 Literature Review

 - 29 -

crucial in the mechanical design phase, these models lack the means to represent the

behavioural information of the fixture which is required during the operation of the device.

Moreover, the presented models are limited to traditional modular fixtures composed of

mechanical blocks and do not provide mechanisms to represent more intelligent modules,

used in today‘s adaptive and programmable fixtures. Nonetheless, these approaches still

indicate that hierarchical modelling approaches proved useful in conceptualising a system.

In particular, a number of researchers have successfully applied object-orientation

techniques and highlighted the merits of using platform-independent standards like XML

and UML to support their models. Research effort towards the automation and dynamic

reconfiguration of systems in other manufacturing areas shows a clear trend towards the

modelling of system capabilities using object-oriented techniques. However, the existing

models do not address the specifics of the fixturing domain and must therefore be adapted

accordingly. In general, it was observed that although a lot of models are based on object-

orientation, they appear to be limited to basic inheritance relationships while not

mentioning the use of method delegation. The importance of delegation for the

reconfigurability of systems has been emphasised by Gamma et al. [104]. In this context,

several examples have been presented which adopt object-oriented design patterns which

are usually characterised by the heavy use of method delegation.

2.5. Communication Infrastructures for Information

Exchange

The trend towards adaptive fixturing systems, composed of a variety of sensor and actuator

modules will lead to an increased information exchange between the fixture components.

Additionally, the fixture needs to communicate with other parts of the manufacturing

environment, such as Human Machine Interfaces (HMI), Machine Control Systems or

Resource Planning Systems. Consequently, there is a need for a communication

infrastructure that allows information exchange in a heterogeneous network environment

consisting of different hardware architectures, operating systems and communication

requirements. Although, traditional field bus technologies provide robust communication of

cyclic process data, the existing technologies are notoriously hard to integrate with other

networks. At the same time, ethernet has emerged as the most widely used communication

 Literature Review

 - 30 -

technology in other domains, such as e-commerce. For this reason, Neumann [111] states

that in recent years, there is a significant trend towards Ethernet-based communication

systems in the manufacturing arena.

To support Ethernet-based data exchange, a number of middleware approaches are

available which rely on a variety of different communication paradigms. The term

middleware refers to an additional software layer between the application software and the

operating system, shielding the former from low-level tasks for the data distribution. The

fundamental communication paradigms for these middleware solutions can be classified in

multiple ways, depending on which aspect is of interest. Hurwitz [112] distinguishes

between Message-Oriented Middleware (MOM), Remote Procedure Call (RPC) and Object

Request Broker (ORB) systems. Recently, Amoretti and Reggiani [113] proposed a similar

classification and added service-oriented architectures (SOA). In their categorisation, the

term Distributed Object Architecture (DOA) is used for ORB-approaches which is

subsequently adopted. The following sections provide a brief overview on the most

significant architecture paradigms and highlights examples for their use in the

manufacturing domain. Additionally, a further category is introduced, namely data-centric

architecture. Remote Procedure Call can be regarded as a forerunner model of the

Distributed Object Architecture and is therefore not described in detail.

2.5.1. Distributed Object Architecture

Distributed Object Architecture systems allow clients to invoke remote methods of server

objects in the same way as local function calls. Based on the formal description of the

method interface, a client can instantiate a proxy of an object on which it calls a certain

method. Internally, the request is forwarded to the actual server-object which implements

the method.

An example for this category is the Java Remote Method Invocation (RMI) standard.

Mervyn et al. [88] utilised RMI for the implementation of an internet-enabled fixture

design system. However, the Common Object Request Broker Architecture (CORBA)

[114], developed by the Object Management Group has arguably attracted most attention

 Literature Review

 - 31 -

over the years. CORBA has been specifically designed for distributed systems in

heterogeneous environments and enables applications to communicate with each other

regardless of the operating system, programming language and computer architecture. This

is achieved through the definition of the communication interfaces in a platform-

independent format called Interface Definition Language (IDL) [115]. Based on these

definitions the source code for the data transfer is automatically generated and can be

linked with the application source code. In order to communicate, an application needs to

instantiate a local object which represents the remote application. When the functions

provided by its interface are called, the middleware internally cares for all data format

conversions across different platforms and routes the request to the remote application

through a so-called Object Request Broker. The latter acts as a mediator, routing requests

and responses between the distributed objects. As a result of this architecture, it makes no

difference for the software developer if an application is distributed over a large network or

if the communicating peers run on the same computer, or even as parts of the same process.

However, a disadvantage is that the ORB can become a single-point-of-failure and a

potential performance bottleneck. Furthermore, as CORBA is based on the client/server

principle, it creates tight couplings between the interacting applications and therefore

makes the implementation of decoupled many-to-many communication comparatively

difficult. To address the needs of real-time applications, a special CORBA profile has been

released as a standard, namely RT CORBA [116]. This standard shares most characteristics

with the full CORBA profile like the client/server principle or platform-independence, but

extends it with features to have better control over timing and resource usage to allow

deterministic data exchange. Key to this is the Quality-of-Service (QoS) model. The term

Quality-of-Service (QoS) refers to a general concept used to specify and control the

behaviour of the communication service. It offers the advantage that the application

developer only needs to indicate ‗what‘ is required rather than ‗how‘ this behaviour is

achieved [117]. In particular, QoS provides the ability to manage the use of resources like

network bandwidth or memory as well as reliability, timeliness and persistence of the data

transfer. Examples for CORBA-based systems in manufacturing have been reported by

Shin et al. [118], Sanz [119] and Haber et al. [120].

 Literature Review

 - 32 -

2.5.2. Data-centric Architecture

According to Joshi [121] the data model is the most stable part in a system of loosely-

coupled applications and is therefore less likely to change over time than the method

interfaces. Following this observation, data-centric architecture approaches aim to decrease

the interdependencies in distributed applications by exposing the data model, instead of the

method interfaces. Based on the platform-independent definition of the data model, the

source code for sending and receiving data can be generated automatically for the various

target platforms. Secondly, data-centric architecture systems typically follow the

publish/subscribe communication paradigm. According to this model, the applications do

not communicate directly with each other. Instead, data is shared among the applications by

the means of topics. Processes that want to send data become ―publishers‖ for a topic while

other applications can subscribe for contents of a topic if they require data from it.

Consequently, the data topics form a so-called ―global data space‖ that is accessible to all

interested applications [117]. Figure 2-10 illustrates the global data space with three topics

and five participants. The arrow directions indicate if an application is a publisher or a

subscriber for a certain topic. Specifically, an ingoing arrow marks the application as a

subscriber while an outgoing arrow declares it as a publisher. As a result of the

publish/subscribe concept, communication is decoupled through the topics and flexible

many-to-many communication between a large number of participants is supported.

Topic 1

Topic 2

Topic 3
Application

Application Application

Application

Application

Global Data Space

Figure 2-10: Overview of the Publish/Subscribe Concept

The Data Distribution Service [117] is an example for a platform-independent data-centric

middleware standard, released by the Object Management Group. Like CORBA it utilises

the Interface Definition Language as a basis for the automatic generation of communication

source code for a large variety of operating systems, programming languages and computer

architectures. The middleware is able to automatically detect new participants in the system

 Literature Review

 - 33 -

and establishes connections between the publishers and subscribers for a matching topic.

Additionally, the standard is specifically designed for the needs of real-time applications

and provides a rich set of Quality-of-Service (QoS) parameters to configure the

communication behaviour for each topic according to the application requirements. There

are a number of commercially available DDS solutions on the market, including those of

Real-time Innovations, Inc. and PrismTech. Additionally, the open-source community

provides a free version of the standard, called OpenDDS [122]. The aerospace and defence

industry is widely using the DDS standard for intelligent weapon systems and flight

control. Other industrial examples have been reported for flight simulation systems and

traffic control systems [123]. Schneider Electric are using DDS-based communication bus

for their range of Programmable Logic Controllers (PLC) [111, 124], while ALSTOM

Schilling Robotics have developed a remotely operated robotic system, used for underwater

installation and repair works [123].

2.5.3. Service-oriented Architecture

The service-oriented architecture (SOA) paradigm aims at minimising the

interdependencies between the communicating software entities by defining independent

―services‖ which can be accessed through a stateless request/reply scheme [113]. Thus, the

use of SOA results in an environment of loosely-coupled service providers and service

consumers. Key to the concept is the unambiguous, computer-interpretable description of

the service interfaces and their location. SOA systems have mainly been implemented using

Web Services. This technology uses the Web Service Description Language (WSDL) to

define the interface of a service for its consumers. However, there is still no standard for the

distributed publication and discovery of Web Services. The messages are typically

transferred in a standardised protocol, such as Simple Object Access Protocol (SOAP). In

this case, the use of service-oriented architectures introduces a significant communication

overhead as a result of the message interpretation. Veiga et al. [125] compared two

different SOA platforms for the integration of equipment in robotised assembly cells and

concluded that the use of such frameworks can reduce the complexity of the development

of modern manufacturing systems, since engineers can concentrate on their expertise

(machine vision, force control, mechanical design) instead of dealing with device

 Literature Review

 - 34 -

interconnection and cross-platform communication problems. Other applications of SOA

platforms in the manufacturing area have been reported by Ahn et al. [126], Estrem [127]

and Ha et al. [128].

2.5.4. Message-oriented Architecture

Similar to the previous category, Message-Oriented Middleware (MOM) aims at the

decoupling of applications. The difference is the use of a message broker which acts as a

mediator, passing messages to and from the distributed applications. This allows the

decoupled and asynchronous information exchange between a large number of applications.

The Java Messaging Service (JMS) is a message-oriented middleware that provides an

Application Programming Interface (API) for the sending and receiving of messages in

JAVA programs [129]. It has become the de facto industry standard for JAVA-based

messaging [130] and is supported by most commercially available MOM platforms [131].

The standard provides two general mechanisms for communication, referred to as message

domains. The point-to-point domain is used for the synchronous communication between

possibly multiple senders and exactly one receiver. Additionally, JMS allows asynchronous

many-to-many communication via data topics according to the previously described

publish/subscribe paradigm. Industrial applications of JMS have been reported in Urdaneta

et al. [132] and Mervyn et al. [133].

While JMS is an application-neutral middleware standard, another MOM system exists that

is tailored to the manufacturing domain. As a result of the National Electronics

Manufacturing Initiative (NEMI) for a plug & produce environment in the electronics

industry [134], Computer-Aided Manufacturing using XML (CAMX) has been proposed as

a message-oriented middleware which defines an event-based conversational framework

based on exchange of standardised XML messages [135]. These messages are distributed

via a central entity, the message broker, whose general architecture was specified in the

IPC2501 standard [136]. The XML messages are exchanged according to the

publish/subscribe paradigm, allowing many-to-many real-time communication between an

arbitrary number of processes. Additionally, the framework aims at supporting platform-

 Literature Review

 - 35 -

and vendor-independent communication of a wide range of equipment. For this reason, the

syntax and semantics of a large number of messages associated to manufacturing events on

the shop floor are specified in the IPC-254x standards [137-139]. As a difference to the

other middleware candidates, CAMX is not application-neutral, since it is designed for the

assembly of printed circuit boards. Like DDS, CAMX provides a number of Quality-of-

Service parameters to adjust the behaviour of the communication [140, 141].

2.5.5. Discussion

The previous sections have shown that there is a myriad of different communication

platforms available that allow efficient data exchange in distributed applications. In the

field of manufacturing, some researchers have proposed communication platforms for

various applications, in particular robotic systems and reconfigurable assembly systems.

However, the application of these communication models in the fixturing area has not been

reported, yet. The reason for this appears to be once again that fixtures have been only

recently accepted as intelligent or automated components. Consequently, the development

towards a communication infrastructure, tailored to the fixturing domain is identified as an

important step towards next-generation intelligent workholding.

2.6. Knowledge Gaps

Despite the significant developments in the reported research areas, the available systems

do not yet fully address the needs of reconfigurable and adaptive fixtures. The results of the

literature review show an ongoing trend towards adaptive fixturing systems that utilise

sensor feedback and programmable actuators to introduce reactivity in the clamping

process. However, currently these systems are not reconfigurable. Existing approaches for

reconfigurable fixtures on the other side appear to be limited to specific setups and rely on

dedicated software routines, tailored to a particular configuration. Additionally, these

systems lack a software framework that supports the platform-independent integration of

devices. As a consequence, automatically reconfigurable fixtures have not been properly

adopted by industry up to now. The following knowledge gaps have been identified as

current barriers for the successful transition from traditional fixtures as passive devices to

automatically reconfigurable and adaptive parts of modern manufacturing systems.

 Literature Review

 - 36 -

Lack of a generic data model for the representation of the capabilities of adaptive

fixturing systems.

Current data models for fixture representation concentrate on the fixture design of

traditional, modular fixtures comprising passive elements. Consequently, these approaches

address only the structural aspects of the fixture. However, to allow automated

reconfiguration of adaptive fixtures, a data model is required that is able to capture the

capabilities of the fixturing systems and their devices, including sensors and actuators. This

must also allow for the combination of elements and their related capabilities. Further,

whilst a number of researchers have applied object-oriented techniques in other

manufacturing areas, these models are domain-specific and cannot be directly applied to

fixtures. Additionally, the existing models appear to utilise only basic object-oriented

techniques such as inheritance and are consequently limited to a merely hierarchical

representation of the system in question. While such a model is an important requirement

for any automated system, it does not necessarily allow for the exchange of software

methods during the operation of the system which is the key to achieve dynamic

reconfiguration and vendor-independent device access. Thus, for the development of a truly

reconfigurable software framework that can support the dynamic reconfiguration of

adaptive fixtures, other techniques such as object-oriented design patterns and method

delegation are required.

Lack of a fixture reconfiguration method defining the decision-making sequence for the

automated reconfiguration of a wide range of different fixture setups

A number of automatically reconfigurable fixturing systems have been proposed in the

literature. However, the reconfigurability of these systems is limited to specific fixture

setups and lacks general applicability for other fixture layouts. The reason for this is that

the adaptability of the software is not sufficiently taken into consideration. The software

routines that are utilised to achieve the reconfiguration of these systems are customised to a

particular fixture design comprising a set of vendor-specific hardware devices. For

example, the system proposed by Lin and Du [35] only works with specific finger modules,

whereas the system presented by Chan et al. [39] is restricted to a base plate with mounting

holes. Other existing fixturing methodologies (see 2.3.1) only address the design phase

 Literature Review

 - 37 -

while neglecting the challenges of the reconfiguration during the manufacturing process,

such as dynamic discovery of fixture modules, replacement of modules and the

combination of capabilities. In general, a large part of the research effort has been restricted

to purely mechanical passive devices with limited or no reactive capabilities. Further, the

existing approaches on rapidly reconfigurable manufacturing systems do not address the

fixturing domain and can therefore not be directly applied. As a result, the decision-making

for automated fixture reconfiguration must be formalised in a methodology, independent of

a particular fixturing system or design. In general, customised algorithms need to be

replaced by a generic decision-making software architecture that can dynamically adapt to

structural changes of the fixture setup.

Lack of a communication infrastructure for reconfigurable, adaptive fixturing systems

that allows to dynamically establish communication channels and flexible information

exchange

The advent of adaptive fixtures brings new challenges for the reconfiguration and operation

of fixturing systems, such as the need for data exchange between the sensors and actuators.

Additionally, to be an interactive part of the manufacturing system, future fixtures need to

be able to communicate with other manufacturing equipment, too. Today, the

communication channels in the reported fixturing systems are predefined during the

development phase and cannot be changed dynamically during the operation of the device.

For this reason, the presented examples for automated and adaptive fixtures do not provide

sufficient mechanisms to dynamically change the fixturing layout by adding or removing

equipment. To make fixtures truly reconfigurable, the communication links have to be

established dynamically between the various devices whenever new modules are

discovered. The literature review has shown that there is a myriad of different

communication platforms available that support efficient data exchange in distributed

applications. Some of these approaches have been utilised for reconfigurable manufacturing

systems, such as robotics and reconfigurable assembly cells. However, an efficient, yet

flexible communication architecture tailored to the fixturing domain is still missing.

 Literature Review

 - 38 -

2.7. Chapter Summary

This chapter presented the results of a detailed literature review which provides the

theoretical background for the research study. First the different fixturing developments of

the last decades were highlighted, showing a continuous trend towards intelligent and

adaptive fixturing solutions. After this, the available literature on fixture reconfiguration

methods, fixture representation models and communication infrastructures for distributed,

modular systems have been critically reviewed. It is concluded that the currently available

methods do not sufficiently address the needs of reconfigurable, adaptable fixturing

systems. Consequently, three main knowledge gaps have been identified, namely (1) the

lack of an adequate data model; (2) a fixture reconfiguration methodology that is applicable

for a wide variety of different systems and (3) a flexible communication infrastructure.

 Research Methodology

 - 39 -

3. Research Methodology

3.1. Introduction

The knowledge gaps identified in the literature review indicate a general lack of formalised

software models and methods to support the reconfiguration of adaptive fixturing systems.

For this reason the research addresses the reported gaps by the development of a sound

software framework for the operation of reconfigurable adaptive fixturing systems. The

complexity of this research requires the precise identification of the research domain and

the definition of a detailed research methodology.

A systematic research methodology has been followed throughout the duration of the

research. The main steps and phases of the methodology are illustrated in Figure 3-1,

indicating also the relation to the other chapters. As it can be seen in the diagram the

research methodology consists of four main phases. In the first phase an extensive literature

review was carried out to get a detailed overview on the research available in the field of

fixturing. This is the foundation to identify the state-of-the-art in flexible fixturing and

define the knowledge gaps as described in chapter 2. The second phase focuses on the

definition of the research domain and transfers the knowledge gaps into clear research

objectives. Additionally, the system requirements for the software framework are identified

in the form of a use case analysis. Based on this, the suitability of available technologies for

the communication infrastructure are assessed. The third phase consists of the parallel

development of the three core knowledge contributions of this research, namely the data

model for reconfigurable and adaptive fixtures, the fixture reconfiguration methodology

and the communication infrastructure. The three core contributions are highly interrelated

and the main results of this work are described in the chapters 4, 5 and 6. In this context,

the data model provides the definitions and interrelations of the main entities forming the

system. The reconfiguration methodology uses the data model and defines the decision-

making sequence that is carried out when a fixture needs to be reconfigured. The

communication infrastructure realises the flexible communication of an arbitrary number of

components in the framework. Finally, the proposed software framework has been applied

 Research Methodology

 - 40 -

to a physical prototype of a reconfigurable fixture in order to demonstrate and prove the

research results. In particular, a number of tests have been carried out to verify if the system

meets the requirements and if the research has reached its declared objectives.

Definition of the Research Approach & Requirements Specification

(Chapter 3)

Literature Review & Identification of Knowledge Gaps (Chapter 2)

Communication

Concepts
Data Models for

Fixtures

Reconfiguration

Methods

System Verification (Chapter 7)

Software Framework for Reconfigurable Adaptive Fixturing Systems

Use Case Analysis

Assessment of Suitable Technologies

Data Model for

Reconfigurable

Adaptive Fixtures

(Chapter 4)

ü Definition of the

core model entities

üObject-oriented

approach to capture

capabilities

Identification of the Knowledge Gaps

Identification of the Research Objectives

Fixture

Reconfiguration

Methodology

(Chapter 5)

Communication

Infrastructure for

Reconfigurable

Fixtures (Chapter 6)

üDecision-making

for Reconfiguration

üDecision-making

for capability

recognition

üPublish/Subscribe

Concept

ü Specification of the

Topic Structure

Verification of the Approach

Implementation of the Prototype

Flexible Fixturing

Figure 3-1: Overview on the Research Methodology

The following sections provide a comprehensive overview on the steps of the research

methodology and the decisions made during the research. The description concentrates on

the identification of the research domain (section 3.2), the requirement analysis (section

 Research Methodology

 - 41 -

3.3) and the assessment of suitable communication technologies (section 3.4). Additionally,

two conceptual fixture designs are introduced in section 3.5 which are used for illustration

purposes throughout the rest of the thesis. The results of the literature review, the

development of the core contributions and the system verification are covered in individual

chapters and are therefore omitted here.

3.2. Definition of the Research domain

3.2.1. Definition of the Knowledge Contributions

This research work addresses the identified knowledge gaps by the development of:

 A data model for the representation of the capabilities of reconfigurable and

adaptive fixturing systems

The model is based on an object-oriented approach which creates a hierarchic view

of the fixture using generalisation and abstraction principles. However, unlike

existing approaches [57, 84, 87], it is tailored to the operation phase of the fixture

and not for the fixture design phase. For this reason, the model captures not only

structural aspects of the fixture layout, but also provides the means to represent the

changing capabilities of adaptive fixtures when components are added, removed or

replaced. In addition, advanced object-oriented techniques such as design patterns

and software delegation are used to allow the dynamic access and flexible

substitution of the model elements during the operation of the fixture. Other

research [104, 105] shows that these techniques are the key to create reconfigurable

and re-usable software systems. The data model proposed in this research builds

upon these approaches and applies them to the fixturing domain. For the

formalisation and definition of the relationships between the model elements the

Unified Modelling Language (UML) has been used which guarantees a platform-

independent definition of the model.

 A fixture reconfiguration methodology

The core of the methodology consists of two interrelated parts. The first part deals

with the recognition and combination of the capabilities of the fixture elements as a

 Research Methodology

 - 42 -

result of structural changes of the fixture layout. The approach is based on the

formal description of capabilities with the Extensible Markup Language (XML) and

describes the steps to instantiate the model elements in order to represent a fixturing

system. The result is a layered object hierarchy where model elements of higher

layers delegate requests to the model elements of subordinate layers. The principle

of software delegation has been used for the development of reconfigurable systems

in other areas [75, 76]. This research aims at transferring this principle to the

fixturing domain. The second part defines the decision-making sequence to rapidly

adapt a fixture for the next workpiece. The main idea is to dynamically link the

software objects representing the physical setup with the objects representing the

predefined fixture design parameters. Based on this assignment, the required

reconfiguration sequence can be generated. While there are a number of

reconfigurable fixturing systems available [34, 35, 37, 39], this method will provide

a more general solution that is applicable not only for one particular setup, but for a

variety of different fixturing systems. Additionally, it enhances existing adaptive

fixturing approaches [47, 49] with a reconfiguration method.

 A flexible communication infrastructure for the operation of adaptive fixturing

systems

The methodology and the data model are integrated with a communication

infrastructure which allows the flexible communication between the various parts of

the fixturing system. In contrast to existing fixturing systems with hardwired

connections between the devices, the communication infrastructure provides the

means to dynamically establish communication channels when components are

added, removed or replaced. The communication infrastructure uses an existing

middleware standard [117] and applies it to the fixturing domain which so far lacks

any standardised communication platform. Moreover, standardised library

interfaces for adaptive fixturing equipment are defined which is the basis to achieve

vendor and platform-independent device access.

 Research Methodology

 - 43 -

These knowledge contributions are the fundamental cornerstones for the software

framework, which is illustrated in Figure 3-2 with its major inputs and outputs. The main

idea is a paradigm shift from programming effort towards configuration effort. In other

words, instead of developing customised software routines for a specific fixture setup,

engineera would configure the framework with the necessary information about the

fixturing system. This includes the formal description of the capabilities of the fixture

components, the device libraries for the hardware access as well as some information about

the position and orientation of the fixture modules. As a result, the framework provides

ready-to-use software applications for the operation of the fixturing system.

Flexible Communication

Infrastructure

Data Model for

Capability

Representation of

Adaptive Fixtures

Software Framework for

Reconfigurable, Adaptive

Fixtures

Methodology for

Automated

Fixture

Reconfiguration

- Provision of Device Libraries

- Formal Description of Capabilities

- Fixture Design Information

- Spatial Information

- Readily available software application programmes for each entity

- Readily available communication infrastructure

- No programming effort required

Figure 3-2: The knowledge contributions in the context of the software framework

3.2.2. Assumptions and Limitations

The final result of this research will be a software framework for reconfigurable adaptive

fixturing systems that can be applied to a plethora of different fixture setups. For this

 Research Methodology

 - 44 -

reason, the framework is a step towards the successful development of next-generation,

intelligent fixtures. However, in order to limit the complexity of the research task, a number

of general assumptions and limitations have been identified.

 Predefined Fixture Design

This research work does not address the problems of the fixture design phase.

Instead, it assumes that all fixture design parameters such as clamping positions or

force profiles for each workpiece are readily accessible when the fixture needs to

reconfigure.

 Reconfigurable fixtures using independently controllable fixture modules

The framework is tailored to fixtures that have the ability to be reconfigured and

have a modular structure. Consequently, the framework cannot be applied for the

operation of dedicated fixtures. Additionally, the framework cannot be used for

phase-change fixtures because they are not based on a modular structure. Within the

scope of this thesis, the term ―fixture module‖ refers to a physical component with

an own software program that is in contact with the workpiece. The fixture modules

communicate with the so-called fixture coordinator software which manages the

overall fixturing process.

 Degree of Automation

In order to generate the model elements and perform the reconfiguration process

automatically, adequate computer technology is required for the fixturing system.

This is the case for adaptive fixturing systems comprising actuator and sensor

devices. On the contrary, traditional modular fixtures which consist of passive metal

blocks typically lack this kind of computational power and can therefore not directly

benefit from this research. However, passive elements can still be represented by the

data model in which case the framework can assist the operator during the fixture

reconfiguration.

 Components with linear movements

To limit the scope for the definition of the data model, the repositioning of elements

is limited to linear movements. This means, fixtures that reposition their elements

with rotational movements, such as the double revolver fixture by Tuffentsammer

[34] are currently not addressed by the research. However, due to the object-

 Research Methodology

 - 45 -

oriented approach, the data model can be extended with classes to accommodate

such systems.

3.3. Requirements Specification

To capture the functional requirements of the software framework a use case analysis has

been carried out. This is a standardised method for analysing the required functionalities of

a system from a user‘s point of view. Hence, any technical details of how a certain

functionality can be achieved is omitted. The results of the analysis are summarised in the

use case diagram in Figure 3-3 which uses the notation conventions of the Unified

Modelling Language 2.0 (UML 2.0) [142, 143]. According to this standard, the system

(depicted as the large rectangle) is described in terms of actors, use cases and relationships.

An actor, depicted as a stick man, is a role outside of the system under study that interacts

with it [144]. This can be either a human being or another system. A use case refers to a

certain functionality the system provides to actors. It is illustrated as ellipsoids in the

diagram. Use cases can be specialised by other use cases which is represented by a line

with an unfilled arrowhead pointing from the specialised use case to the more general use

case. Additionally, the so-called ―include‖ relationship is used to integrate one use case as a

logical part into another use case. Even though the relationships between use cases may

suggest a natural flow to the reader, use case diagrams do not indicate any sequences of

actions or flows of events. Further information on use case diagrams can be found in [143].

 Research Methodology

 - 46 -

Initialise Fixture

Operator

Change Fixture

Setup

Adaptation of

Current Setup

Adaptive Clamping

Load Part

Unload Part

Fixture
Retrieve Module

Capabilities

Update Structure &

Capability Model

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Retrieve Desired

Fixture Parameters

<<includes>>

Reconfigure Fixture

Observe Sensor

Output

Actuate Clamps

<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Calibration

<<includes>>

Figure 3-3: Use Case Diagram for the Fixturing System

In the context of this research, the operator has been identified as the main actor with

regards to the fixture. Other subsystems that potentially interact with the fixture have not

been modelled as individual actors because for the development of the knowledge

contributions it is irrelevant if a certain functionality is invoked by a human operator, a

robot or another part of the shop floor. Thus, the role operator represents any stakeholder

that calls a service provided by the fixturing system. Furthermore, five top-level and six

second-tier use cases have been identified which are described in the following sections.

The top-level use cases are directly triggered by inputs from the user, while the second-tier

 Research Methodology

 - 47 -

use cases are performed internally by the fixture software in order to satisfy a certain top-

level use case.

3.3.1. Initialise Fixture

The first use case is the initialisation of the fixturing system. This requires the software

framework to recognise the structure and the capabilities of the underlying fixture. In order

to achieve this, the capabilities of each fixture module must be determined and

communicated to the rest of the system which is represented by the second-tier use case

―Retrieve Module Capabilities‖. This requires a communication infrastructure that is able to

 Recognise an arbitrary number of modules in the system

 Exchange capability information in a defined format

When all information about the fixture modules is collected, this information can be

combined to form a complete view of the fixturing system which is part of the use case

―Update Structure and Capability model‖. Additionally, a calibration step is required for the

correct functioning of every fixture. Calibration, however, requires specific routines

depending on the actual underlying fixture hardware. Therefore, the framework takes into

account the necessity of a calibration step but does not define a specific algorithm. After

these essential steps the fixturing system is ready to work.

3.3.2. Reconfigure Fixture

This use case addresses the functionality of a reconfigurable fixture to adapt itself in

response to changing requirements. The reasons for fixture reconfiguration are typically the

need to clamp several parts with one fixture or to process multiple surfaces of a workpiece

using the same fixture. Two forms of fixture reconfiguration have been identified which are

both addressed by the proposed framework.

The first form is concerned with the physical change of the structural layout of the fixture

and the associated use case has been named ―Change Fixture Setup‖. This typically

includes the manual addition, removal or replacement of fixture modules as well as the

modification of the internal device structure of an existing fixture module. The fixture must

be switched off during these changes and the initialisation routine is required after the

 Research Methodology

 - 48 -

reconfiguration procedure. The software framework must be able to recognise the structural

changes and no reprogramming shall be required in order to allow the functioning of the

new fixture. The second form of fixture reconfiguration is called ―Adaptation of the current

setup‖ and occurs more frequently than the previous use case. In contrast to the previous

reconfiguration type, this use case addresses the ability to adapt the existing fixture

configuration without the need of dismantling its current structure. Examples for this are

the modification of the fixture with new clamping parameters such as initial clamping

forces or the maximum allowable reaction forces. Additionally, the ability of fixtures to

automatically reposition their clamping modules is addressed by this use case. For example,

the prototype described in chapter 7 allows to relocate its modules on rail guides. In order

to achieve the adaptation process automatically, the framework must retrieve the predefined

fixture parameters for the new configuration from a data base. These need to be compared

with its current structure and all necessary steps to transform the current fixture into its

desired state must be determined and executed.

3.3.3. Load Part

This use case refers to the ability of the software framework to initiate the clamping of a

part with the fixture. The procedure requires that the reconfiguration step has been

completed and the workpiece is correctly positioned in the fixture working envelope. The

repositioning of the workpiece in the fixture or the adaptation of the tool path is not the

subject of this research. Upon a trigger signal, the clamps must be actuated towards the

workpiece in order to exert a predefined initial clamping force. The execution of this use

case requires the retrieval of the sensor data from the modules and adequate actuation of the

modules under real time conditions. The actual determination of the correct clamping

points and initial forces is part of the fixture design phase and therefore beyond the scope of

this research.

3.3.4. Unload Part

Similar to the previous use case, this addresses the ability of the fixture to accurately

release the part from the fixture. This procedure requires an input signal as a trigger and as

a response each clamping module should retract to its home position, thereby releasing the

 Research Methodology

 - 49 -

part. In order to do this, the framework must be able to retrieve the current position of the

fixture modules and actuate the clamps until they have reached their desired position.

3.3.5. Adaptive Clamping

During the manufacturing of a part, particularly in machining processes, the external forces

acting on the part change dynamically. The promising results of adaptive fixtures to

improve the workpiece quality by reacting to the changing external forces has been

highlighted in the literature review in chapter 2. For this reason, this use case refers to the

ability of the framework to observe the sensor data and issue appropriate commands in

order to adapt the clamping forces. It is assumed that the use case ―Load Part‖ has been

completed.

Rather than focusing on the development of the actual force profiles, the framework aims at

providing the infrastructure to establish the communication in a flexible way. The term

‗flexible‘ addresses the challenge of achieving information exchange in adaptive fixtures

whose number of modules and their interrelations between each other can change over

time. Additionally, since the fixture modules can incorporate different hardware devices, it

is possible to implement same capabilities with different technologies. For example, a

clamping module can realise the clamping capability by several types of linear actuators

(e.g. electromechanical, hydraulic, pneumatic). Clearly, these technologies require different

input signals to achieve a certain clamping force. For this reason, an additional layer of

abstraction is necessary that makes the software framework independent from a certain

platform or vendor. This includes a common data format for the communication between

the fixture modules and the fixture coordinator. The exchanged information needs to be

mapped into the platform-specific signals required for the device access, thereby rendering

the framework compatible for a plethora of different hardware profiles.

In order to achieve this, the framework must have the ability to be parameterised with

device libraries to correctly interpret the data coming from the devices as well as sending

appropriate signals, the device hardware can understand. Additionally, the framework will

utilise the module capability descriptions which are obtained during the initialisation

 Research Methodology

 - 50 -

routine as described in the use case ―Initialise Fixture‖. This is illustrated in Figure 3-4

which shows a simple fixture module communicating with the fixture coordinator.

Module 1

Amplifier ADC

Module Program

mV Vanalog Vdigital

Fixture

Coordinator

Force In Ndigital

Module

Capabily

Description Module

Capabily

Descriptions
Force

Sensor

Figure 3-4: Simplified Scheme of Communication between a Module and the Fixture coordinator

The module consists of a force sensor which is accessed by the local module software. The

latter is configured with the characteristics of the sensor and informs the fixture coordinator

about its resulting capabilities during the initialisation routine. Among other details, this

information declares how the force readings have to be interpreted. During the operation of

the fixture, the module software calls the device library to retrieve the current sensor signal

and converts the voltage signal to a force value in Newton. As a result, the local module

program acts as a software facade which encapsulates the hardware access to the sensor

device, while the fixture coordinator is able to interpret the received force values in order to

process them.

3.4. Assessment of Suitable Communication Technologies

The specification of the user requirements shows that the envisioned software framework is

characterised as a complex distributed system where an arbitrary number of modules need

to communicate. To manage the complexity of the communication it was decided to utilise

and adapt an available middleware technology. Apart from reducing the risks of failure, the

development of the communication infrastructure on top of a recognised standard increases

the acceptance of the proposed system and facilitates potential take-up from industry in the

future.

3.4.1. Definition of Technical Requirements

As revealed by the literature review, a number of different middleware technologies are

available for various application domains. Examples for these are the Common Object

Request Broker Architecture (CORBA) [114], Data Distribution Service (DDS) [117], Java

 Research Methodology

 - 51 -

Messaging Service (JMS) [129] and many more. In order to choose the most suitable

middleware technology for the communication infrastructure a structured approach for the

assessment was followed. In the first step, the technical requirements were defined that are

imperative for the realisation of the software framework. These are summarised as follows:

 Reactivity to Dynamic Network Topology Changes

As fixture modules can be added or removed to the platform, the infrastructure must

be able to automatically recognise these changes in the network topology to invoke

the reconfiguration process.

 Platform-Independence

Since fixturing systems are provided by a variety of vendors, the framework needs

to allow communication between a wide range of computer architectures, operating

systems and programming languages.

 Real-time communication

Fixtures are part of the production environment. As such, they are subject to timing

constraints for the operation which are imposed by the process. This means, that the

time between a sensor input and the system‘s response in form of actuator

movements must be predictable and deterministic. In order to achieve this, the

communication infrastructure needs to have full control over timing and resource

usage.

 Performance and Scalability

As described in [145], common middleware performance indicators are end-to-end

latency and the throughput. The former refers to the time required to send a message

from one communication end to another, whereas the latter is defined as the

maximum amount of data that can be transferred per unit of time. For the fixture

application, it is assumed that the end-to-end latency is more important than the

throughput. Essentially, it determines how fast the fixture can react to sensor feed

back. As a result of this, the latency determines for which processes the framework

is applicable. Scalability is defined as the ability to maintain performance levels as

more nodes are added to the system. Scalability issues can occur when more fixture

modules are added to the system in response to more complex workpieces or when

the fixture is connected with other subsystems via the communication infrastructure.

 Research Methodology

 - 52 -

 Overcoming Impedance Mismatch

As identified by Joshi [121], impedance mismatch is one of the fundamental

challenges for the integration of distributed systems in heterogeneous environments.

The term refers to the difficulties that arise when subsystems with disparate

communication requirements in terms of data volume and data rates need to

interact. For example, some applications produce data at higher rates than others are

able to consume. Since the fixture is a part of a wider production environment, the

software framework needs to interact with other subsystems of the factory like

Human Machine Interfaces (HMI) or the machine control. For this reason, the

communication infrastructure needs to offer a mechanism to fine-tune the data

transfer individually for the requirements of the peers.

3.4.2. Selection of Middleware Candidates

In the second step a number of middleware technologies were selected for the assessment

against these requirements. Due to the huge number of middleware solutions it is not

feasible to assess all available technologies within the scope of this thesis. For this reason

the assessment was limited to the most common solutions for each of the communication

architecture paradigms discussed in the literature review (see section 2.5). The selected

candidates are listed below. Further details on each of the candidates can be found in the

literature review.

 Common Object Request Broker Architecture (CORBA)

 Real-time CORBA (RT CORBA)

 Data Distribution Service (DDS)

 Java Messaging Service (JMS)

 Computer-Aided Manufacturing using XML (CAMX)

 Web Services (WS)

3.4.3. Assessment of the Middleware Technologies

In the final step, the suitability of the presented candidates for the described technical

requirements is compared. The aim of this step is to derive qualitative statements about the

suitability of the technologies with respect to the requirements which results in a ranking.

 Research Methodology

 - 53 -

For this reason an ordinal scale is introduced which classifies the support of a certain

requirement in four categories:

o Category I: No support

o Category II: Weak support

o Categroy III: Good support

o Category IV: Very good support

Although it is arguable whether a certain technology offers weak, good or very good

support, this classification indicates tendencies and at the end a conclusion can be drawn

about the most suitable choice for this research study. The evaluation is based on available

literature and on personal experience with these technologies. The results of the evaluation

are summarised in Table 3-1. The category II, III and IV are illustrated by one, two or three

stars, respectively while for category I a dash is used.

CORBA

DDS

JMS

CAMX

Real-Time CORBA

N
e
tw

o
rk

 t
o
p
o
lo

g
y

C
h
a
n
g
e
s

P
la

tf
o
rm

In

d
e
p
e
n
d
e
n
ce

R
e
a
l-
T
im

e

C
o
m

m
u
n
ic

a
tio

n

P
e
rf
o
rm

a
n
ce

 a
n
d

S
ca

la
b
ili

ty

Im
p
e
d
a
n
ce

M

is
m

a
tc

h

-

-

- -

- -

Web Services

Table 3-1: Assessment of Middleware Technologies

Support of network topology changes

In terms of the support of network topology changes, CORBA, RT CORBA and JMS do

not offer off-the-shelf mechanisms to inform the application about other participants being

added, removed or replaced. In order to achieve this functionality own proprietary protocols

for the discovery of participants have to be developed which is cumbersome and error

prone. An example for a discovery mechanism in a CORBA-based system can be found in

[146]. A number of approaches have been published for the dynamic service discovery of

 Research Methodology

 - 54 -

Web Services [147, 148]. However, these solutions are not yet readily available to use and

Sun et al. [149] highlighted that the dynamic discovery of web services is still difficult to

achieve. For CAMX, a method to optimise the allocation of clients to message brokers has

been presented in [135]. Additionally, a number of event messages are defined to reflect the

states of equipment [137], including aspects like liveliness. DDS automatically establishes

an internal connection between participants with matching data topics and Quality-of-

Service settings. Consequently, communication is automatically achieved when participants

are plugged in. Additionally, DDS provides meta-information about the communication

status of the participants in special data topics. Applications can subscribe to these topics

and are notified by the middleware when other applications are plugged in, removed or

replaced. To conclude, only DDS and CAMX satisfy this criteria off-the-shelf. If one of the

other technologies is selected, this functionality needs to be developed.

Platform independence

In general, the second requirement is satisfied by all candidates. In particular CORBA, RT

CORBA and DDS are defined as platform-independent standards which means they can be

implemented on any kind of transport protocol and hardware. Additionally, when using

these technologies the communication interfaces of the applications are defined in a

platform-independent way which allows the integration of a large variety of different

platforms and the automatic generation of source code. In CAMX the message transfer is

accomplished with web-based communication using the Simple Object Access Protocol

(SOAP). This also allows the collaboration of different platforms, since the SOAP protocol

acts as a layer of abstraction. Web Services also use SOAP as well as other platform-

independent protocols and therefore satisfy this requirement. JMS, is a JAVA-specific API-

standard. Consequently, it is hard to establish communication with other applications that

are not written in the JAVA programming language. However, since JAVA programs run

in a so-called JAVA Runtime Environment (JRE), they are portable over different

operating systems. Additionally, Sanchez et al. [150] have demonstrated how JMS can be

accessed from other programming languages based on additional libraries. Although, their

research shows that this introduces further performance losses in terms of latency and

 Research Methodology

 - 55 -

throughput, the requirement of platform-independence can be satisfied. For this reason,

JMS was classified into category III with regards to this criterion.

Real-time support

With regards to real-time suitability, JMS and CORBA do not provide sufficient means to

ensure deterministic and predictable data exchange. For this reason these two candidates

appear to be less suitable for the fixturing framework application. Web Services typically

offer weak support for applications with real-time requirements. To overcome this gap,

recently numerous researchers have tried to integrate the Quality-of-Service paradigm with

Web Services [149, 151, 152]. However, there is still no uniform standard available and the

solutions are not yet mature. The remaining candidates are specifically tailored to the needs

of real-time applications and are therefore satisfying this requirement. In fact, the real-time

support of all these candidates is based on a rich and mature implementation of the Quality-

of-Service approach.

Performance and scalability

The described performance indicators (end-to-end latency and throughput) are influenced

by a large number of factors, including the speed of the CPU, the operating system, the

programming language, the message length, the number of communicating systems and

others. Since there are extensive benchmark tests available, it is beyond the scope of this

research to compare the performance of the different technologies in terms of quantitative

measurements taken from own experiments. Instead, the assessment is based on

information from literature and, more importantly, conclusions about potential performance

differences are drawn based on the architecture characteristics of the candidates. Recent

performance tests for CORBA and RT CORBA have been reported in [153, 154].

Additionally, large amounts of performance data have been gathered by the Open CORBA

Benchmarking Project which provides an online database of benchmarks for a large number

of CORBA systems [155, 156]. In this context, Gokhale and Schmidt [157] reported that

most CORBA implementations do not sufficiently address the objective of low latencies. A

performance comparison between Web Services and CORBA has been published by Gray

[158] which concludes that despite recent improvements of the former, Web Services are

 Research Methodology

 - 56 -

considerably slower with a higher consumption of network bandwidth and CPU cycles.

Similarly, in the experiments of Juric et al. [159] Web Services proved to be 9 times slower

than Remote Method Invocation which is based on similar principles as CORBA (see

section 2.2.4). The main reason for the performance problems can be found in the overhead

related to the SOAP message processing [159]. For DDS detailed benchmark tests have

been carried out as part of the Real-Time DDS Examination & Evaluation Project (RT-

DEEP) [160]. Results of this research have been reported in [161, 162]. According to this,

end-to-end latencies can be lower than 50たs [163]. Compared to CORBA, DDS achieves

potentially faster data exchange since it does not route data through a central message

broker. Additionally, the publish/subscribe approach followed by DDS minimises the

communication overhead when the number of nodes is increased. However, these issues

can be overcome with RT CORBA when the so-called event service is used. Essentially,

this service establishes publish/subscribe-like data channels. Compared to JMS and

CAMX, the data transfer with DDS has the potential to be significantly faster. The reason

for this is the data-centric approach of DDS while the other two technologies are message-

oriented. This means, in these systems information is encapsulated in a message body

which has to be parsed and analysed upon its receipt. This interpretation of messages

requires additional processing time in each node. DDS on the other side shares information

as user-defined data types. For this reason, there is less communication overhead because

there is no need for message headers and the received data is immediately available for the

application. Furthermore, JMS and CAMX use message brokers as centralised entities

which are potential performance bottlenecks and failure points. DDS on the other hand

establishes peer-to-peer communication between the participating applications. A more

detailed comparison between JMS and DDS has been conducted by Joshi [145]. JMS is

arguably the slowest option of all candidates, since it relies on the JAVA programming

language. Such programs do not run as executables, but are interpreted by the run-time

environment which slows the execution down.

Impedance mismatch

The impedance mismatch requirement is best addressed by DDS and CAMX. The reason

for this is the loose coupling due to the publish/subscribe approach and the Quality-of-

 Research Methodology

 - 57 -

Service concept offered by both middleware technologies. The QoS-parameters of CAMX

primarily aim at satisfying the needs of real-time communication by grouping messages

into four categories (closed-loop real-time control, supervisory control, operator control,

other purposes) with different priorities [135]. In contrast, the QoS-concept offered by DDS

has more configuration options. In addition to the parameters ensuring real-time

communication, DDS allows to apply time-based and content-based filters to individual

topics which prevents applications from being flooded with data. The client/server

approach of CORBA and RT CORBA results in tightly coupled connections which makes

it hard to integrate applications with disparate communication requirements. Therefore,

CORBA is not supporting this requirement. However, the event service and the QoS-

concept of RT CORBA alleviate this drawback. Although JMS and Web Services do not

offer any specific features to address the problem of impedance mismatch, their approach

of loosely coupled communication supports the integration of applications with disparate

communication requirements.

To conclude, a number of middleware candidates have been assessed against technical

requirements of the software framework for adaptive fixturing systems. As a result,

CORBA , Web Services and JMS are less suitable for this application as they lack real-time

support and do not satisfy other important requirements. Although, RT CORBA offers a

fast, robust and platform-independent communication service, its client/server concept

introduces tightly coupled communication channels which cannot adequately support

many-to-many communication. Therefore, CAMX and DDS appear to be more appropriate

for this kind of application. Overall, the assessment revealed that DDS is the preferred

choice for the fixture framework. It is specifically designed for the needs of platform-

independent real-time applications with low-latencies and addresses the challenge of

impedance mismatch. Moreover, since DDS is an application-neutral standard it can be

adapted to the fixturing domain. CAMX on the other hand is designed for assembly

applications. This means, although the middleware allows the definition of extensions, the

majority of the standardised CAMX messages cannot be applied directly to the fixturing

domain. Consequently, DDS was chosen as the communication infrastructure of the

software framework.

 Research Methodology

 - 58 -

This decision has a high impact on the design of the software framework. In particular, the

communication infrastructure described in chapter 6 needs to be based on the data-centric

publish/subscribe paradigm. Data types for the exchanged information between the fixture

modules, as well as an associated data topic concept have to be defined as part of this

research. Additionally, the research shows how the Quality-of-Service concept offered by

DDS can be utilised to address the challenges of reconfigurable fixturing systems.

3.5. Overview on Example Fixtures for Illustration Purposes

In this section the conceptual designs of two different fixturing systems are presented in

order to facilitate the understanding of the concepts described in the following chapters.

The first fixture is based on a rail frame which allows the automatic repositioning of clamps

and locators in order to reconfigure for a variety of workpieces. This concept has also been

realised as a physical prototype and was used for the tests which are described in chapter 7.

The second design uses a base plate with mounting holes on which a set of fixturing

elements can be arranged. This concept has not been implemented as a physical test bed.

Instead, it is used to illustrate the general applicability of the methodology and the data

model presented in the thesis.

3.5.1. Rail-based Fixturing System

The basic idea of this system is to utilise rail guides on which a set of clamping and

locating elements are mounted. These elements can be moved continuously along the rails

to achieve fixture reconfiguration. A variable number of rails can be arranged in 3D space,

depending of the different part families. Figure 3-5 shows a design drawing of a

configuration with four rail guides, forming a closed working envelope. Each rail consists

of a pair of linear low friction guides which are mounted on a plate to provide adequate

vertical and lateral support for the guides and also raise them in height. To allow the

repositioning of the linear actuators and other fixturing elements, a number of carriers are

attached to the rails that can slide along the linear guides. As shown in the detailed view in

the bottom right corner of the drawing, the carriers consist of a runner element on each

linear guide and a metal plate on which a clamp or other equipment can be mounted.

 Research Methodology

 - 59 -

Figure 3-5: Conceptual Design of a Fixture with Four Rails

To realise the repositioning, a ball screw is mounted between the linear guides. The ball

screw nut is mounted on the lower surface of the connecting plate and the ball screw shaft

is held in place by means of ball bearings at the ends of the shaft. One of the ends is driven

directly by a co-axially mounted servomotor with integrated positional feedback which is

not shown in the drawing. The position of the runner pair on the linear guides is thus

controlled through this motor. Different actuators or passive fixturing elements are mounted

on top of the connecting plates. The actuators act as clamps, whilst the passive units act as

locating or supporting points. Actuating units could be based on any available actuating

technology (e.g. pneumatic, hydraulic, electromechanical) depending on the application

requirements. The linear actuators shown in the drawing are each driven by individual AC

servo motors and incorporate a displacement and a force sensor to provide feedback

capabilities. The servo motor has a locking mechanism, granting the formation the ability to

be used as a clamp and a locator. Detailed descriptions on the selected equipment for the

physical test bed are provided in chapter 7.

The general concept can be adapted according to the application requirements. For

example, the end user may choose to include more or less linear guides, runner pairs,

 Research Methodology

 - 60 -

different types of active or passive fixturing elements and could choose between top or side

clamping. Figure 3-6 illustrates three different variations of the rail-based concept.

Figure 3-6: Variations of the Rail-based Fixture Design

The fixture in Figure 3-6.a shows a configuration with two rails and two rigid locators.

Figure 3-6.b demonstrates how the concept can be scaled up to a 3D solution. Finally,

Figure 3-6.c illustrates the use of different clamping elements. In this example, two swing

clamps are mounted on the rails which can be used for top clamping of workpieces.

3.5.2. Fixture using a Base Plate with Mounting Holes

The second example consists of a different fixture design which uses a base plate with a set

of mounting holes. The holes can be used to attach a variety of fixture modules like clamps

or locators onto the plate. This approach is similar to the systems proposed by other

researchers [37-39] and a design overview is provided by Figure 3-7.

 Research Methodology

 - 61 -

Figure 3-7: Conceptual Design of a Fixture Using a Base Plate with Mounting Holes

In contrast to the rail-based fixture design, this approach does not support the continuous

movement of the mounted elements. Instead, a discrete number of mounting holes

determines the possible positions and allows rotating the modules around the axis normal to

the mounting hole. This concept requires an additional mechanism to reposition the fixture

modules during the reconfiguration procedure which can be realised by a robot. Regardless

of what repositioning mechanism is utilised, input information about the current position

and orientation of the modules, their geometric dimensions and the desired positions is

required in order to clamp the next workpiece.

Like the previous approach, the general design can be adapted to create different fixture

layouts. For example, multiple base plates can be combined in 3D space with different hole

patterns. Additionally, different types of fixturing elements can be added or removed and

their positions can be changed on the base plate. Some of the variations are illustrated in the

drawings provided by Figure 3-8. The design in Figure 3-8.a shows an arrangement of three

linear actuators on a base plate with a 7 x 7 hole pattern. Figure 3-8.b illustrates an example

where two base plates are combined and Figure 3-8.c demonstrates a fixture with swing

clamps for top clamping and passive locator elements.

 Research Methodology

 - 62 -

Figure 3-8: Variations of the Fixture Design with Base Plates and Mounting Holes

In the context of the presented examples, the fundamental aim of this research work is to

develop a software framework which is applicable to any of the presented fixture design

variations. This means, the data model must be able to represent the capabilities of the

different fixture elements and the reconfiguration methodology must be formulated

independently from specific design features like mounting holes or rail guides, thereby

realising a concept with general applicability.

3.6. Chapter Summary

This chapter has outlined the systematic research approach adopted in this study and

described the main steps and key decisions taken in the development of the research. Based

on the knowledge gaps identified in chapter 2, the research domain has been defined. This

includes the definition of the key research objectives and the description of general

assumptions for the software framework. A detailed requirement analysis has been carried

out with the use case method to capture the necessary functionalities of the software

framework. Furthermore, a suitable middleware technology has been selected as the basis

for the communication infrastructure of reconfigurable, adaptive fixturing systems. The

described selection process has resulted in the decision to adopt the Data Distribution

 Research Methodology

 - 63 -

Service (DDS). To facilitate the understanding of the core knowledge contributions of this

research, two exemplary fixture design concepts have been described which are

subsequently used for illustration purposes in the following chapters.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 64 -

4. Object-oriented Data Model for Reconfigurable and

Adaptive Fixturing Systems

4.1. Introduction

To guarantee the general applicability of the software framework, a common data model

has been formalised to represent the capabilities of a variety of fixturing systems. This is

based on the observation that despite the structural differences of fixtures, common groups

of functionalities can be identified. The purpose of this chapter is therefore to define the

core model elements that serve as the foundation for the methodology described in chapter

5 and 6. Object-oriented techniques are utilised to logically group common aspects of

fixtures that are subject to the reconfiguration procedure. On the other side, details that are

irrelevant for the methodology are omitted. For example, for the automatic reconfiguration

of fixture modules it is not necessary to capture the exact mechanical structure (e.g. the

number of screws) below module level as these aspects are determined in the fixture design

phase. Therefore, details that can be regarded as constant during the operation of the fixture

are ignored by the model. In this way, the model provides a functional view of the fixture

for the software framework.

To manage the complexity of the model, it has been divided into five logical parts. This has

been done based on the package concept which is defined in the Unified Modelling

Language (UML) standard [142, 143]. According to UML, a package is ―a collection of

model elements that can be of arbitrary types and that are used to structure the entire model

in smaller, easily manageable units‖ [144]. Each package defines a number of model

elements in terms of classes and data types. A class groups model elements with same

specifications of features, constraints and semantics [144]. Data types are used by the

classes for the specification of attributes. In contrast to classes, data types have no identity.

This means, two instances of the same data type cannot be distinguished from each other if

their values are identical. On the other side, two instances of the same class (called objects)

can be distinguished at all times.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 65 -

Section 4.2 provides a comprehensive overview on the data model and its package

structure. Based on this, the subsequent sections describe the various model elements of

each package. In more detail, section 4.3 describes the most fundamental elements which

are used by other packages and therefore have been grouped together. Sections 4.4 and 4.5

focus on the classes related to the devices and the fixture modules, respectively. The details

of transport components are explained in section 4.6. Finally, the classes needed for the

reconfiguration methodology are described in section 4.7.

4.2. Model Overview

Figure 4-1 shows the package structure of the data model which consists of the five

packages ‖Common Elements‖, ―Transport Component‖, ―Fixture Module‖, ―Device‖ and

―Reconfiguration‖. The package ―Common Elements‖ defines the base classes and

common data types used in other packages.

Common Elements

Transport

Component
Fixture Module Device

Reconfiguration

Fixture Coordinator View Fixture Module View

Figure 4-1: Overview of the Package Structure of the Data Model

The packages ―Fixture Module‖, ―Transport Component‖ and ―Device‖ define the physical

elements of a fixture as well as their capabilities. It therefore reflects the overall approach

of this research work to decompose a fixture into these three categories. Essentially, these

packages extend the classes Component and Capability from the ―Common Elements‖

package. As a consequence, so-called dependency-relationships emerge between these

packages which are depicted by dashed arrows pointing from the dependent to the

independent package. For example, the package ―Fixture Module‖ utilises the model

elements defined in package ―Common Elements‖ and further elaborates them. Finally, the

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 66 -

package ―Reconfiguration‖ contains the elements that are required for the reconfiguration

methodology.

The model elements of the packages are instantiated in both, the fixture coordinator

software and software programmes representing each individual fixture module. As it can

be seen in the picture, these software units utilise different parts of the data model, thereby

creating two complementing views of the fixture with different levels of detail. The

software of the fixture coordinator instantiates the model elements of the packages

―Common Elements‖, ―Fixture Module‖, ―Transport Component‖ and ―Reconfiguration‖.

Consequently, it generates a global view of the entire fixture whilst remaining unaware of

the internal devices and their functionalities within each individual module. These details

are encapsulated in the software for the modules which provides each module with a local

view of its own devices and capabilities. Both software units utilise the model elements

defined in the packages ―Common Elements‖ and ―Fixture Module‖ which highlights the

central role of the fixture modules in the data model.

4.3. Model Elements of the Package “Common Elements”

This package defines the two main classes Component and Capability which serve as the

roots for the entire model. Both classes are abstract which means that they are not directly

instantiated by the software framework. Instead, these classes encapsulate properties that

are common for the child classes in other packages that inherit from them. An overview of

the package contents is shown in Figure 4-2. A summary of the utilised UML notations is

provided in the Symbology section in the beginning of the thesis.

Component

id: Integer

description: String

capabilityList: Capability []

boundingBox: BoundingBox

Capability

id: Integer

description: String

Component: Component

nestedCapability: Capability

<<DataType>>

Matrix

line[4]: double

column[4]: double

<<DataType>>

BoundingBox

p1: Point

p2: Point

1 * 1

<<DataType>>

Point

x: double

y: double

z: double

0..1

<<DataType>>

SpatialDescription

x: double

y: double

z: double

rot_x: double

rot_y: double

rot_z: double

<<Enumeration>>

Unit

millimeter

newton

degree

unknown

Figure 4-2: Model Elements of the Package “Common Elements”

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 67 -

In the diagram, the UML notations for classes and data types are used. For each class the

attribute names and the data types are provided which are separated by a colon. Unless

stated otherwise, the class methods are not shown in the UML diagrams in this chapter.

4.3.1. Data Types

UML defines the fundamental data types double, Integer and String. The data types double

and Integer are used for numerical values, whereas String is used to retain text. Based on

the former, this package defines a number of additional data types that are used throughout

the model. The data type BoundingBox is used to approximate the spatial dimensions of a

component. It is defined by the coordinates of two diametric corner points of the smallest

box, enclosing a component. Both corners are defined as elements of the data type Point

which specifies the x, y and z values of a point in the local coordinate system of a

component. To define the measuring units, a number of classes of the model utilise the data

type Unit. The latter is an enumeration data type which defines a set of enumeration literals

for each physical unit. Furthermore, the data type SpatialDescription is used throughout the

model to define the position and orientation of a component relative to another coordinate

system. In essence, it holds the translational and rotational parameters to perform the

coordinate transformation from one coordinate frame to another. Figure 4-3 shows an

example of two such coordinate frames S1 and S2. Based on the spatial description of S2,

one can derive the matrices for the translation and rotation from S1 to S2.

y

x

z

y

x

z

SpatialDescription

x: 100

y: 0

z: -30

rot_x: 0°
rot_y: -90°
rot_z: 0°

M = T * Rx * Ry *Rz

S1

S2

1000

0_cos_sin0

0_sin_cos0

0001

xrotxrot

xrotxrot
Rx =

1000

100

010

001

z

y

x

T =

1000

0_cos0_sin

0010

0_sin0_cos

yrotyrot

yrotyrot

Ry = Rz =

1000

0100

00_cos_sin

00_sin_cos

zrotzrot

zrotzrot

Figure 4-3: Homogeneous Coordinate Transformation Using the Data Type SpatialDescription

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 68 -

According to the homogenous coordinate transformation approach, these matrices are 4 by

4 matrices, which express the transformation between S1 and S2 as a matrix multiplication,

resulting in matrix M. These matices are represented in the model by the data type Matrix.

Based on this, a point P of the system S2 can be expressed in coordinates of system S1 by

multiplying it with matrix M. For this, its Cartesian coordinates are converted to

homogenous coordinates, using the following relation:

 TT zyxzyx 1,,,,, (Equ. 4-1)

After the multiplication of matrix M with the homogenous vector of point P, the resulting

4x1 vector is converted back to Cartesian coordinates with the following function:

 T
T

T zyx
zyx

zyx '','',''
1

'
,

1

'
,

1

'
1,',','

 (Equ. 4-2)

4.3.2. The Class Component

Every physical entity of a fixture that is known to the software framework is modelled as a

subclass of Component, thereby providing a set of common properties. In this context, a

force sensor, a clamp or an entire fixture module are represented as components. Each

component has a unique numerical identifier and a description text. The most important

characteristic at this abstraction level is however the association with a variable number of

Capability objects. Additionally, for each component of the system its spatial dimension

can be defined by setting the attribute boundingBox whose type has been described in the

previous section.

4.3.3. The Class Capability

The class Capability represents a functionality of a component in the fixturing system. Its

subclasses describe what a component is able to do and trigger the associated behaviour.

There are matching capability subclasses for each component type. Similar to Component,

the class Capability does not define any details of a particular functionality since this is

modelled in its subclasses. Instead, it subsumes the commonalities among all capabilities of

the data model. Firstly, the association between a capability and a component is defined in

this class, thereby guaranteeing access to the component who owns the capability.

Secondly, it provides the Capability subclasses in the other packages with a numerical

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 69 -

identifier and a textual description. Finally, as shown in Figure 4-2, a capability can own a

so-called nested capability. This concept reflects the layered approach of the model and is a

result of the hierarchical relationship between fixture modules and their internal devices.

When a capability of a fixture module is triggered, it does not directly access the hardware

to carry out the requested behaviour. Instead, it delegates the request to its nested capability

which can access the associated hardware device.

4.4. Model Elements of the Package “Devices”

The elements of this package are used to represent the internal devices of a fixture module

and their capabilities. For this, the module software must be configured with information

about the devices, their capabilities and the software libraries to access the hardware. This

can be provided in the form of XML files. Figure 4-4 presents an overview of the class

structure of the package. The data types used for the class attributes are not shown in the

diagram, but will be explained in the relevant sections.

FixtureModule

1

*

DisplacementSensorForceSensor

CompositeDevice

nestedDevices: Device []

Device

Sp: SpatialDescription

deviceToModule: Matrix

moduleToDevice: Matrix

deviceLibrary: IDeviceLib

1
FixtureModule

Locate

maxForce: double

SenseForceCapability

sensingInfo: SensingInfo

currentForce: Force

ApplyForce

clampingRanges: ClampingRange []

LinearActuationCapability

strokeRange: StrokeRange

DeviceCapability

LocatorDevice

currentPosition: Point

ClampDevice

currentForce: double

isLockable: boolean

SensorDevice

currentValue: double

LinearClamp

currentActuation: double

SwingClamp

currentAngle: double

SwingActuation

swingRange: SwingRange

*

*

1

SenseDisplacementCapability

sensingInfo: SensingInfo

currentDisp: double

SupportDevice

currentPosition: Point

Support

maxForce: double

Figure 4-4: Class Diagram of the Package “Device”

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 70 -

4.4.1. Device Hierarchy

A device is defined as a subcomponent of a fixture module. In contrast to fixture modules,

devices are not encapsulated by own active software programmes and they have no direct

access to the publish/subscribe communication infrastructure described in chapter six. The

class Device inherits the properties from the base class Component defined in section 4.3.2

In particular, this enables a device to be attached with an arbitrary number of capabilities

which in this case inherit from the class DeviceCapability. Additionally, the Device class

defines an aggregation relationship with one fixture module. In other words, one fixture

module can consist of a variable number of internal devices. For the representation of the

internal device structure of a fixture module, the object oriented ―Composition‖ design

pattern [104] has been adopted. According to this pattern, the parent class Device defines

the class attributes and interfaces that are common to all devices. This includes a reference

to the device library which contains the source code to access the hardware and the spatial

description of the local coordinate frame, relative to the coordinate system of the fixture

module. Based on the spatial description, the transformation matrices from the device‘s

frame to the module‘s frame and vice versa can be generated and are stored in the

properties deviceToModule and moduleToDevice, respectively. The common interface

includes the methods to set and retrieve these attributes which are not shown in the

diagram. The subclasses ClampDevice, SensorDevice, LocatorDevice and SupportDevice

represent concrete device types, while the subclass CompositeDevice is used to group

devices into composites. For this, the class allows to add a number of so-called nested

devices which are in turn objects of the base class Device, thereby recursively creating a

tree structure.

The semantics of this object hierarchy is used to express the links between devices. For

example, when a force sensor is mounted on a linear clamp, the module software creates

not only the objects for these devices, but also an object of the type CompositeDevice. The

latter becomes the parent node of the sensor and the clamp, indicating the connection of

both components. Moreover, the composite receives all capabilities of its children, thereby

providing a combined view of its child nodes. The advantage of the composite pattern is

that, from a software point-of-view, simple devices like an individual force sensor can be

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 71 -

treated the same way as complex devices which are composed of several sub-devices. This

is illustrated in Figure 4-5.a which shows the object model of a fixture module consisting of

a linear clamp with integrated sensors for force and displacement. Conversely, Figure 4-5.b

shows a fixture module which only consists of a force sensor. In an object model diagram,

an instantiated object is illustrated by a rectangle which contains the associated class name,

preceded by a colon. Links between objects are depicted as lines between the rectangular

frames.

:DisplacementSensor:ForceSensor

:CompositeDevice

:LinearClamp

:FixtureModule :FixtureModule

a.) b.)

:ForceSensor

:CompositeDevice

Figure 4-5: Examples for the Device Representation with the Composition Pattern

4.4.2. Device Types

The data model provides the classes for the most commonly used devices in adaptive

fixtures. These include the classes SensorDevice, ClampDevice and LocatorDevice. The

classes SensorDevice and ClampDevice have further child classes to reflect the variety of

different kinds of these devices. Obviously, the framework does not intend to provide

classes for all available device types. However, the object-oriented approach allows to

enhance the data model by adding new classes. For example, for a rotary sensor an

additional child class of SensorDevice can be attached, while other forms of clamping

devices would require to add new subclasses of ClampingDevice.

4.4.2.1. Sensor Devices

Typical sensors used in adaptive fixturing systems are force sensors to measure reaction or

clamping forces and displacement sensors. Consequently, the framework offers distinct

classes for the representation of these hardware devices. To store the latest sensor reading,

the base class SensorDevice provides the attribute currentValue. Since each device also

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 72 -

contains matching capability objects which are described in section 4.4.3, this value can be

correctly interpreted by the fixture module before it is published to other subsystems. The

base class also defines the interface for the method getCurrentValue() which is not shown

in the class diagram in Figure 4-4, since this chapter concentrates more on the data

structures. The description of the interfaces is instead the subject of chapter 6. The method

is called to retrieve the current values from the sensor hardware. Internally, the classes

ForceSensor and DisplacementSensor delegate the requests to the software library they are

configured with, which ultimately accesses the hardware. The configuration of a device

with a software library is already defined in the Device class. For this reason, the classes

ForceSensor and DisplacementSensor do not add own attributes to the model. Instead, they

are defined for semantic reasons.

4.4.2.2. Clamp Devices

Similar to the sensor devices, the framework provides classes for the most common

clamping types used in adaptive fixtures. The base class ClampDevice provides the

attribute currentForce to store the currently exerted clamping force of the device, if the

clamp is connected with a sensor to measure the force. Additionally, the Boolean attribute

isLockable defines whether or not the clamp can be locked in position. If it can be locked,

the clamp can also act as a locator. To model clamps based on a linear actuator the class

LinearClamp is utilised by the framework. In order to store the current stroke of the linear

clamp, the class defines the attribute currentActuation. As illustrated in Figure 4-6, the

class SwingClamp represents clamps that perform an additional swing-in/swing-out

movement during the clamping procedure.

a.) b.)

Figure 4-6: Examples for a Linear Clamp (a) and a Swing Clamp (b)

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 73 -

The class SwingClamp inherits from LinearClamp because the clamping process is

nevertheless based on a linear actuation. It provides the attribute currentAngle for the

position of the clamping arm. For the interpretation of this value, the capability class

SwingActuation provides the attribute swingRange which defines the maximum swing

angles in both clockwise and anti-clockwise direction (see section 4.4.3.1). Within the

scope of the research, it is defined that clockwise rotations are expressed as negative angle

values while rotations in counter-clockwise direction are positive. Consequently, the sign of

the currentAngle attribute indicates the direction of the swing movement.

4.4.2.3. Locator and Support Devices

The research study focuses on active devices which can be adapted before or during the

clamping procedure. Passive devices like locators or supports which consist of purely

mechanical structures without any kind of intelligence, do not actively participate in the

clamping process. However, these devices can also be the subject of the reconfiguration

procedure. For this reason, the framework provides model elements for the representation

of these devices, in terms of their existence and position. Other mechanical details like

material or the exact shape, are omitted as these aspects cannot be automatically

reconfigured. The classes LocatorDevice and SupportDevice are used for the representation

of passive devices. Figure 4-7 presents two devices that can be modelled with the described

classes.

Figure 4-7: Examples for Locator Devices

Both classes have the same structure and extend their base class with an attribute for the

current position of the locator/support tip. Thus, they are designed for passive devices with

one contact point with the workpiece. However, locators or support elements with multiple

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 74 -

contact points or contact areas can also be represented, since the position property can be

treated as a reference which indirectly determines the positions of other points.

Furthermore, the object-oriented approach of the data model allows to add more detailed

classes to capture specific locator/support devices.

4.4.3. Device Capabilities

The device capability classes are used to describe the data format and the limitations of the

functionalities, a certain device provides to the fixture module. For example, a force sensor

can be attached with the capability to sense force in Newton within a range of 0 to 1000N

and with a resolution of 0.5N. As a consequence, clients are able to interpret the value for

the current force attribute, defined in the device class. In addition to this descriptive

purpose, the capability objects are used to trigger a particular functionality of a device. As

described in section 6.4.2, all requests to the capabilities of the fixture modules are

delegated to their nested device capabilities which have the knowledge about the interface

of a particular device object for the hardware access. This delegation approach makes it

possible to enhance the fixture module program with new capabilities and to exchange

software objects in lower layers without affecting upper layers. Additionally, due the

representation of the device capabilities as separate classes, a particular device object can

be configured with exact capabilities the hardware offers. For example, some linear

actuators have integrated force sensors which results in the ability to apply a certain target

force while other actuators do not offer this feature. By separating the device structure from

the capability classes, each device object can be linked with a list of required capability

objects, based on the underlying hardware. The alternative to this approach would have

been to represent the capabilities within the device classes. However, this approach would

require the data model to define all theoretically possible capabilities of a device type,

leading to a potentially large number of classes or obsolete class attributes. The following

sections describe the device capability classes in more detail.

4.4.3.1. Actuation Capabilities

The class LinearActuationCapability is used for clamping devices based on a linear

actuator. It provides an attribute of the data type StrokeRange to describe the allowed travel

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 75 -

of the linear actuation in terms of the minimum and maximum stroke, the accuracy and the

measuring unit.

<<DataType>>

StrokeRange

min : double

max: double

unit : Unit

resolution: double

<<DataType>>

SwingRange

axis: Axis

cw_max : double

ccw_max : double

resolution : double

unit : Unit

<<Enumeration>>

Axis

x_axis

y_axis

z_axis

Figure 4-8: The Data Types StrokeRange, SwingRange and Axis

For swing clamps, the class SwingActuation is used which additionally provides an attribute

of the data type SwingRange to describe the limitations of the swing movement of the

clamping arm. The data type defines the axis around which the swing movement is

performed, as well as the maximum angles in the clockwise (cw_max) and anti-clockwise

(ccw_max) direction. Additionally, the accuracy and the measuring unit can be defined.

4.4.3.2. The ApplyForce Capability

This capability class is used to represent the ability of a clamp to apply a force in a certain

direction. The model supports clamps that can pull, push or exert force in both directions.

For this reason, the class contains a list whose entries are defined by the data type

ClampingRange. This data type contains fields for the minimum and maximum achievable

force, the accuracy and the measuring unit. Additionally, the field direction is used to

specify whether the information accounts for the pull or the push direction. Figure 4-9

shows the UML definitions of these data types.

<<Enumeration>>

ClampingDirection

push

pull

both

unknown

<<DataType>>

ClampingRange

direction: ClampingDirection

minForce : double

maxForce : double

unit : Unit

resolution : double

Figure 4-9: The Data Types ClampingRanges and ClampingDirection

For clamps that can act in both directions, the list contains two entries, one for the pull and

one for the push direction, thereby allowing to specify different sets of information for both

directions. A single entry is defined for a clamp that can exert force only in one direction.

Further, to unambiguously express the clamping direction in terms of the local device

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 76 -

coordinate system, the definition of the local coordinate system is subject to the following

restrictions:

 The clamp must act along or in parallel to the x-axis of the local coordinate system

 If the clamp can apply force in both directions, the push is defined in positive and

the pull in negative direction of the x-axis

 If the clamp can only apply force in one direction (either pull or push), the clamping

direction is defined in positive x-direction

The graphic below illustrates these rules. Figure 4-10.a shows a linear actuator that can

push and pull. Consequently, the device coordinate system has been placed such that its x-

axis defines the clamping direction when in push-mode. In Figure 4-10.b, the actuator is

assumed to support only a single-acting pull-mode. Therefore, the local coordinate system

has been placed such that the x-axis is pointing in the direction, the force is exerted.

Figure 4-10: Coordinate System Definitions for Clamping Devices

4.4.3.3. The Capabilities Locate and Support

Passive elements like locators do not communicate with other devices since they lack the

computational power. Nevertheless, their capabilities need to be represented by the

software framework in order to assess the overall capabilities of the fixture. Additionally,

self-locking clamp devices can also be used as locator or support elements. For this reason

the capability classes Locate and Support have been defined. Both classes contain the

attribute maxForce which specifies the maximum allowed reaction force in Newton the

locator can receive without being damaged.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 77 -

4.4.3.4. Sensing Capabilities

The class SenseForceCapability and SenseDisplacementCapability describe meta-

information about the sensing capabilities of a device. They can be attached to device

objects representing an individual force or displacement sensor. The data model is limited

to force and displacement sensing. However, the model can be extended by further classes

for other types of feedback. Both classes use the data type SensingInfo to describe the

limitations of the sensing capability. This data type contains attributes to define the

minimum and maximum measurable values, the resolution and the measuring unit.

Additionally, both classes provide an attribute to hold the latest sensor sample. For the

displacement sensing, the current sensor value is stored in the attribute currentDisp as a

floating-point number. For the force sensing capability, the data type Force is used. This

allows to store not only the current force value, but also the current clamping direction. If

the capability is attached to a for force sensor that is connected with a locator, the

clampDirection attribute of the data type is set to ―unknown‖.

<<DataType>>

SensingInfo

min: double

max: double

unit : Unit

resolution: double

<<DataType>>

Force

moduleId: integer

clampDirection: ClampingDirection

value: double

Figure 4-11: The Data Types SensingInfo and Force

4.5. Model Elements of the Package “Fixture Module”

The classes in this package are particularly important for the reconfiguration methodology

and the communication infrastructure. Figure 4-12 provides an overview on the classes in

this package and their relationships to other packages. The data types used for the class

attributes are not shown in the diagram, but will be explained in the relevant sections.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 78 -

Reconfiguration

Device

Transport Component

FixtureModule

sp: SpatialDescription

moduleToSlot: Matrix

slotToModule: Matrix

Device

FixtureModuleCap

isInitialised: boolean

isActive: boolean

1*

1

1

*1

Slot

ReconfigurationInfo

ReconfigurationCmd

1

*

1

1

Common Elements

Component Capability

AdjustTipPosition

workspace: ClampWorkSpace

desiredTipPosition: Point

SenseBodyPosition

sensingInfo: BodyPosSensingInfo

currentBodyPosition: Point

currentSlotClocking: Clocking

currentModuleClocking: Clocking

SenseClampingForce

currentForce: Force

sensingInfo: SensingInfo

AdjustClampingForce

clampinRanges: ClampingRange []

desiredForce: Force

SenseTipPosition

tipPosition: Point

sensingInfo_x: SensingInfo

sensingInfo_y: SensingInfo

sensingInfo_z: SensingInfo

SenseReactionForce

currentForce: Force

sensingInfo: SensingInfo

AdjustBodyPosition

workspace: WSInfo []

desiredBodyPosition: Point

desiredSlotClocking: Clocking

desiredModuleClocking: Clocking

ProvidesRole

clampRoleInfo: ClampRoleInfo

locatorRoleInfo: LocatorRoleInfo

supportRoleInfo: SupportRoleInfo

currentRole: Role
Figure 4-12: Model Elements of the Package “FixtureModule”

4.5.1. Fixture Modules

The class FixtureModule represents a component that interacts with the workpiece and is

endowed with an own software program. They are regarded as the essential components in

an adaptive fixturing system and are therefore addressed by the reconfiguration

methodology described in chapter 5. As a result of the software program, fixture modules

can actively announce their presence to the system and propagate their capabilities based on

their internal devices according to the communication concept.

Physically, a fixture module is made up of sensor and actuator devices whose capabilities

determine those of the entire module. This is represented in the diagram by the aggregation-

relationship between the class FixtureModule and the Device-class. As a result of this

hierarchy, the class FixtureModule is not limited to a specific mechanical structure and

groups its devices into one functional unit which can communicate with the fixture

coordinator. The classical example for a fixture module in this research is a smart clamp

with integrated force and position sensors, but also a simple force sensor or a linear actuator

without any feedback can be modelled as a fixture module if they are enhanced with an

own local software routine that complies to the definitions of the communication

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 79 -

infrastructure. On the fixturing platform the fixture modules are mounted on transport

components which determine their position and allow their movement when the fixture

needs to be reconfigured. This is represented by the association between a fixture module

and a ―slot‖ defined in the package ―Transport Component‖ (see section 4.6). To

accomplish the reconfiguration process, a fixture module can be assigned with an object of

the class ReconfigurationInfo and with a number of reconfiguration commands. These

classes are described in section 4.7 while the reconfiguration methodology is described in

chapter 5.

In addition to the relationships with other model elements, the class FixtureModule defines

three more properties which determine its position and orientation on the fixture. This

includes a property of the data type SpatialDescription that defines the translational and

rotational parameters for the coordinate transformation between the module‘s local

coordinate system and the coordinate system of its associated slot. Based on this, the

transformation matrices from the module‘s frame to the slot‘s frame and vice versa can be

generated and are retained in the properties moduleToSlot and slotToModule, respectively.

4.5.2. Capabilities of Fixture Modules

The capabilities of fixture modules are modelled as subclasses of FixtureModuleCap which

in turn inherits from the class Capability, thereby redefining the general relationship

between components and capabilities. Thus, a fixture module can only own capabilities that

are subclasses of FixtureModuleCap. The reason for this restriction is that only the fixture

module capabilities can communicate with the fixture coordinator while the device

capabilities are exclusively visible to the fixture module.

The capability objects in this package serve three purposes. Firstly, by attaching them to the

fixture module object, the latter can be enhanced in a flexible way with functionalities and

additional properties like the ability to exert a clamping force or to feed back the current

position of the actuator tip. Without attaching capability objects, the class FixtureModule is

merely an empty shell. Consequently, the approach allows to reuse the class for a variety of

different hardware setups by attaching it with different capability objects. Secondly, only

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 80 -

the fixture module capability classes contain the logic to communicate via the

publish/subscribe concept. Consequently, the capability objects constitute the interface to

trigger a particular behaviour of the module. Received requests are delegated to the nested

device capability objects until the hardware is accessed. Thirdly, the capability classes

describe the characteristics and limitations of the related functionality in order to allow

other subsystems to utilise the fixture module in a meaningful way. When the fixture

module capabilities are forwarded to fixture coordinator or to other subsystems, they utilise

this information to interpret the data coming from the module.

The framework defines eight fixture module capabilities, reflecting the most common

functionalities in a fixture. However, the object-oriented approach allows programmers to

extend this hierarchy with other classes if required. For example, if a fixture module

containing a temperature sensor is introduced, a new subclass SenseTemperature can be

introduced without affecting the overall concept. In the following sections the fixture

module capabilities are described in more detail.

4.5.2.1. The Capability AdjustTipPosition

The tip position of a fixture module is defined as the point where it touches the workpiece.

Thus, this capability is attached to the fixture module if it contains a clamp device that is

able to actuate to a certain position. The coordinates of this point are relative to the local

coordinate system of the fixture module.

<<DataType>>

ClampWorkspace

strokeRange_x : StrokeRange

strokeRange_y : StrokeRange

strokeRange_z : StrokeRange

swingRange : SwingRange

Figure 4-13: The Data type ClampWorkspace

The class provides an attribute of the data type Point for the desired tip position which can

be set by other systems in order to trigger the actuation, as described in chapter six.

Additionally, the property workspace specifies the area which can be reached by the

actuator tip of the module, using the data type ClampWorkSpace. This is a structural data

type containing the allowed stroke of the actuator along the x, y and z axis of the module

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 81 -

and the swing range. For this the data types StrokeRange and SwingRange are used which

have been described in section 4.4.3. Below an illustrative example is provided of fixture

module consisting of a linear actuator with a maximum travel of 60mm and a resolution of

0.01mm. Since the module does not allow any swing-movement, the clockwise and anti-

clockwise value in the attribute swingRange is set to zero.

 - workspace
- strokeRange_x

-min: 300
-max: 360
-unit: mm
-resolution: 0.01

- strokeRange_y:
-min: 0
-max:0
-unit: mm
-resolution:0

- strokeRange_z:
-min: 0
-max: 0
-unit: mm
-resolution: 0

-swingRange:
-axis: unknown
-cw_max: 0
-ccw_max: 0
-unit: degrees
-resolution: 0

Figure 4-14: Example Instantiation of the AdjustTipPosition Capability

4.5.2.2. The Capability SenseTipPosition

If a fixture module has a sensor device for the positional feedback of its tip position, this

capability is instantiated. The coordinates of the currently measured tip position are stored

in the property tipPosition and defined relative to the local coordinate system of the

module. Further, the class provides three additional attributes of the data type SensingInfo

to allow other systems to interpret the x, y and z component of current tip position value

and to inform them about the limitations of the sensing capability. Details of the data type

SensingInfo have been presented in section 4.4.3.

4.5.2.3. The Capability AdjustBodyPosition

The body position refers to the position of the fixture module on the fixturing platform and

is defined relative to the global coordinate system. Since fixture modules are mounted on

the transport components, the body position and orientation depends on the:

 The position and orientation of the transport component relative to the

global coordinate system

 The position and orientation of the slot on the transport component

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 82 -

 The position and orientation of the module relative to the associated slot

The fixture coordinator creates this capability class automatically when the operator links a

fixture module with a slot on a transport component as described in section 5.2.3. Based on

the capabilities of the transport component, the workspace of the fixture module is derived

and represented in the AdjustBodyPosition class using the data type WSInfo. The latter

defines the allowed linear movements of the fixture module in global coordinates using the

data type StrokeRange.

<<DataType>>

WSInfo

slotId: Integer

linearRange_x: StrokeRange

linearRange_y: StrokeRange

linearRange_z: StrokeRange

slotClockingRanges: ClockingRanges

moduleClockingRanges: ClockingRanges

<<DataType>>

ClockingRange

cw_max: double

ccw_max: double

unit: Unit

resolution: double

<<DataType>>

ClockingRanges

clockingRange_x: ClockingRange

clockingRange_y: ClockingRange

clockingRange_z: ClockingRange

<<DataType>>

Clocking

rot_x : double

rot_y: double

rot_z: double

Figure 4-15: Data Types related to the AdjustBodyPosition Capability

Additionally, the element slotClockingRanges contains the allowed rotation of the

associated slot around its axis. Similarly, if a module can be rotated on the slot, the attribute

moduleClockingRanges defines the allowed rotation. The data type ClockingRange follows

the same concept as the data type SwingRange (see section 4.4.3).

Apart from representing the workspace of the fixture module, the capability is used by the

fixture coordinator to trigger the repositioning of the fixture modules during the

reconfiguration procedure. In this context, the fixture coordinator can update the attributes

desiredBodyPosition, desiredSlotClocking and desiredModuleClocking with the target

values. For this, the data type Clocking is used to indicate the desired angles in clockwise

and counter-clockwise direction. As described before, negative values indicate a clockwise

rotation while positive angles signal a counter-clockwise rotation. These values are

published by the capability according to the communication concept and are ultimately

received by the software objects of the transport component. The transport component is

responsible for the repositioning of its slots, thereby changing the position of the associated

modules. The data exchange between fixture modules and transport components in

described in section 6.3.1.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 83 -

4.5.2.4. The Capability SenseBodyPosition

Similar to the previous class, the capability SenseBodyPosition is automatically created by

the fixture coordinator software when the operator connects a fixture module with a slot on

a transport component. The capability class is used to retrieve and represent the current

position and orientation of the fixture module on the platform. For this, the class provides

the attributes currentBodyPosition, currentSlotClocking and currentModuleClocking. To

allow the correct interpretation of these values, the attribute bodyPositionSensingInfo is

used whose data type definition is depicted in Figure 4-16.

<<DataType>>

BodyPositionSensingInfo

posX: SensingInfo

posY: SensingInfo

posZ: SensingInfo

moduleClockingX: SensingInfo

moduleClockingY: SensingInfo

moduleClockingZ: SensingInfo

slotClockingX: SensingInfo

slotClockingY: SensingInfo

slotClockingZ: SensingInfo
Figure 4-16: Relevant Data Types for the Capability SenseBodyPosition

4.5.2.5. The Capability AdjustClampingForce

If the fixture module contains an actuator device with the ability to apply a clamping force,

this capability is created for the fixture module, based on the ApplyForce capability of the

device. The class allows other subsystems to trigger the clamping behaviour of the module

via the publish/subscribe communication infrastructure. To specify the target force and

clamping direction, the class attribute desiredForce must be set with the desired values.

Similar to the class ApplyForce, the limitations of the functionality are specified using the

data type ClampingRanges (see section 4.4.3 for further details).

4.5.2.6. The Capabilities SenseClampingForce and

SenseReactionForce

The capability class SenseClampingForce is attached to a fixture module which contains a

clamping device and a force sensor to measure the force at its actuator tip. The class has the

property currentForce to represent the current clamping force value and direction. The

attribute is defined using the data type Force which has been described in section 4.4.3.

Additionally, information for the interpretation of the sensor value is provided in the class

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 84 -

attribute sensingInfo whose data type has also been described before. The class

SenseReactionForce has the same structure as the previous capability. However, it is

attached to a fixture module that acts as a locator and contains a force sensor to measure the

experienced reaction force at its locator tip. If a fixture module consists of a lockable

actuator which can act as a clamp and a locator, both capability classes are instantiated for

the module. During the operation, one of them is inactivated, depending on the current role

of the module.

4.5.2.7. The Capability ProvidesRole

Based on the internal devices, a fixture module can support different roles during the

clamping procedure, namely the roles clamp, locator and support. This classification is

represented in the model by the enumeration data type Role which defines three

enumeration literals for the roles. Moreover, the software framework allows modules to

change their role for different fixture setups. For example, a fixture module can act as a

clamp for one workpiece and as a locator for another workpiece, provided that it can lock in

position and withstand the estimated reaction forces.

To indicate the supported roles the capability class ProvidesRole provides the three

attributes clampRoleInfo, locatorRoleInfo and supportRoleInfo whose data types are listed

below.

<<Enumeration>>

Role

Clamp

Locator

Support

<<DataType>>

ClampRoleInfo

isSupported: boolean

<<DataType>>

LocatorRoleInfo

isSupported: boolean

maxForce: double

<<DataType>>

SupportRoleInfo

isSupported: boolean

maxForce: double

Figure 4-17: Data Types Related to the Capability ProvidesRole

Each data type contains a Boolean element isSupported which is set to true, if the fixture

module supports a particular role. The data type ClampRoleInfo does not provide any

further details, because the relevant parameters of the clamping functionality are already

represented in other capability classes of the fixture module, such as AdjustClampingForce

and AdjustTipPosition. For the locator and support role, the attribute maxForce can be used

to specify the maximum allowed reaction force in Newton, the module can experience

without being damaged. Finally, the attribute currentRole is provided to retain the current

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 85 -

role of the associated fixture module. This attribute is only used in the software of the

fixture coordinator, while the software of the fixture modules remains unaware of the

current role.

4.6. Model Elements of the Package “Transport

Components”

Transport components are defined as those parts of the fixture on which the fixture modules

can be mounted and repositioned. The term transport component is neither a traditional

term used in the fixturing domain nor is it limited to a specific geometric structure. Instead,

transport components and fixture modules are abstractions that modularise a fixturing

system into two functional groups: fixture modules which interact with the workpiece and

transport components which allow the repositioning of the former during the

reconfiguration procedure. Figure 4-18 presents a UML class diagram for the package and

illustrates its dependencies to the other packages.

Fixture Module

1

*
1

TransportComponent

sp: SpatialDescription

tcToGlobale: Matrix

globaleToTC: Matrix

domainType: DomainType

geometryType: GeometryType

Slot

id: Integer

sp: SpatialDescription

boundingBox: BoundingBox

slotToTC: Matrix

tcToSlot: Matrix

currentSlotClocking: Clocking

currentModuleClocking: Clocking

FixtureModule

TransportComponentCap

slot: Slot

SensePosition

sensingInfo: BodyPositionSensingInfo

currentSlotPosition: Point

currentSlotClocking: Clocking

currentModuleClocking: Clocking

1 *

Common Elements

Component Capability
1 *

Reposition

workSpace: WSInfo []

desiredSlotPosition: Point

desiredSlotClocking: Clocking

desiredModuleClocking: Clocking

1

Figure 4-18: Overview of the Package “Transport Component”

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 86 -

4.6.1. Transport Components

The class TransportComponent inherits from the class Component and can therefore be

attached with multiple capabilities, which inherit from the class TransportComponentCap.

The position and orientation of the transport components is assumed to be constant during

the operation of the fixture. This means, these components are not subject to the

reconfiguration procedure. The framework can be configured with the position and

orientation of a transport component and retains this information in the class attribute of the

data type SpatialDescription. Based on this, the transformation matrices for the conversion

from the global coordinate system to the local coordinate system of the transport

component and vice versa can be generated as described in section 4.3.1. The matrices are

stored in the class attributes tcToGlobale and globaleToTC.

Typical examples for transport components are the linear guides presented in section 3.5.1

which allow the continuous movement of the attached fixture modules. In contrast to this, a

base plate with mounting holes can be regarded as a transport component which allows the

positioning of the modules in two dimensions. However, in this scenario the modules

cannot be repositioned continuously, but are limited to the positions of the mounting holes.

Other types of transport components, such as magnetic base plates, can alleviate this

restriction and provide a continuous 2D workspace for the modules. These examples

indicate that there are great differences in terms of the shapes, geometries and the

mechanical methods for the mounting and moving of fixture modules on the transport

component. However, at the same time a number of common functional characteristics can

be identified. Firstly, transport components can be grouped according to the degree of

freedom they allow for the movement of the fixture modules. Secondly, there is a

distinction between transport components that allow continuous movement and those where

the modules can be positioned in a discrete number of locations. These two aspects are

reflected by the attributes geometryType and domainType of the class TransportComponent

whose data type definitions are provided unterhalb. The former specifies whether the

transport component allows the positioning of the modules along a line (one dimension), on

a plane (two dimensions) or in space (three dimensions). For this the enumeration data type

GeometryType is used which is shown oben. The second attribute specifies whether the

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 87 -

transport component allows a continuous relocation of the fixture modules or if the possible

positions are restricted to a discrete number of locations.

<<Enumeration>>

DomainType

Continous

Discrete

<<Enumeration>>

GeometryType

OneDimensional

TwoDimensional

ThreeDimensional

Figure 4-19: The Data Types DomainType and GeometryType

4.6.2. Slots

A slot is defined as a part of the transport component which can be connected with one

fixture module at a time. Consequently, the number of slots determines the possible number

of fixture modules on a transport component. Practical examples for slots are the movable

carriers of the rail-based system, presented in section 3.5. By linking a fixture module with

a slot object, the framework becomes aware of the position of the fixture module on the

fixturing platform. This is because the position and orientation of the slots is defined

relative to the coordinate system of the transport component whose posture in the global

coordinate system is known. Thus, when the position of a particular fixture module is

requested, the position of its related slot is used. Similarly, when a fixture module needs to

be relocated, the position of the slot is changed.

Each slot on a transport component has a numerical identifier and defines an own local

coordinate system whose position and orientation is described relative to the coordinate

frame of the associated transport component. For this, the data type SpatialDescription is

used which contains the rotational and translational parameters for the generation for the

transformation matrices between both coordinate frames. These matrices are stored in the

class attibutes slotToTC and tcToSlot. Figure 4-20 illustrates the spatial description of the

local slot coordinate frame (blue), relative to the coordinate frame of the transport

component (red). When a slot is moved during the reconfiguration procedure, its spatial

description and the associated transformation matrices need to be updated in order to reflect

the repositioning. Additionally, the framework allows to represent slots whose orientation

on the transport component can be changed by rotating them around their coordinate axis.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 88 -

This ability is termed ―clocking‖ within the scope of the thesis. The allowed clocking range

can be specified in the Reposition-capability class, described in section 4.6.3.

SpatialDescription
x: 200
y: 50
z: -50
rot_x: 0
rot_y: -90
rot_z: 0

Figure 4-20: Instantiation Example of a Slot on a Transport Component

The current clocking value is retained in the Slot-object using the attribute

currentSlotClocking, defined by the data type Clocking. The value for current clocking

must be within the limits set by the clocking range which is defined in the Reposition-class.

Further, the clocking values are interpreted as offsets from the original spatial description

of the slot. Negative values indicate a clockwise rotation around an axis, while positive

values indicate an anti-clockwise rotation. At the same time, the clocking values influence

the orientation of the slot on the transport component and hence change the rotational parts

of the spatial description attribute. This is illustrated in the example shown in Figure 4-21.

The drawing shows a slot on a transport component which allows the clocking of -/+45°

around its y-axis, beginning from its initial orientation as indicated by the dotted line. In the

current setup, the slot is rotated around its y-axis by 15° in clockwise direction. This value

is retained in the currentSlotClocking attribute and it is also reflected in the rotational part

of the slot‘s spatial description. The separation of the current clocking values from the

current spatial description allows to determine the original (default) orientation of the slot

at all times, as well as the currently allowed clocking in clockwise and counter-clockwise

direction. Hence, by subtracting the current clocking values from the allowed clocking

values one can derive that the slot in the displayed setup can still be rotated by 30° in

clockwise and 60° in counter-clockwise direction. By subtracting the current clocking

values from the spatial description, the original orientation of the slot around the y-axis can

be calculated as 0°.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 89 -

x

z

y

x

zy

SpatialDescription
x: 50mm
y: 0mm
z: 100mm
rot_x: 0°
rot_y: -15°
rot_z: 0°

CurrentSlotClocking:
rot_x: 0°
rot_y: -15°
rot_z: 0°

Transport

Component

Slot

Information for y-axis:
Allowed Clocking clockwise: -45° - (-15°) = -30°

Allowed Clocking counter-clockwise: 45° - (-15°) = 60°

Original Orientation: -15° - (-15°) = 0°

-15°

ClockingRange_x:
cw_max: 0°
ccw_max: 0°

ClockingRange_y:
cw_max: -45°
ccw_max: +45°

ClockingRange_z:
cw_max: 0°
ccw_max: 0°

Figure 4-21: Example Instantiation of Slot with Clocking

Additionally, the framework supports fixture setups where the connection between a slot

and a fixture module allows the clocking of the module on the slot. An example for this

could be a base plate with mounting holes which allow the rotation of the fixture modules

whilst remaining in the slot. For such cases, the class attribute currentModuleClocking is

provided which follows the same principle as the clocking of the slot. The allowed clocking

range of the module must be provided by the operator when the a fixture is connected with

a slot. This information is retained in the Reposition-capability class that is associated with

the transport component.

4.6.3. Capabilities of Transport Components

The capabilities of a transport component are modelled in the class

TransportComponentCap and its subclasses which specify the limitations for the

repositioning of the slots on the transport component and the position feedback

functionality. Additionally, the capability classes are linked to the publish/subscribe

architecture which allows the communication of the current and desired slot position and

orientation. The class contains a reference to a particular slot on the transport component.

Consequently, the capability objects are ultimately related to the slots which are connected

with the fixture modules. Based on this link, the combined workspace of the associated

fixture module can be determined. Since the research work concentrates on the

reconfigurability of fixture modules, the model does not decompose the transport

components into sub-devices with an own set of capabilities. Instead, the transport

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 90 -

component capabilities are limited to the repositioning of the slots and the feedback of the

current slot positions.

4.6.3.1. The Capability Reposition Capability

The class Reposition stands for the capability of a transport component to change the

position of a certain slot within a specified workspace. Consequently, if a slot is linked to a

fixture module, the latter can be repositioned accordingly. Since a transport component can

have multiple slots, it can be attached with potentially many Reposition-objects.

During the reconfiguration procedure this class is used to retrieve the desired position of the

slot on the transport component, the desired slot clocking and the desired clocking of the

fixture module on the slot from the fixture coordinator software. For this purpose, the

attributes desiredPosition, desiredSlotClocking and desiredModuleClocking are provided.

The workspace for the repositioning of a slot is described using an attribute of the data type

WSInfo which contains the allowed linear movements and the clocking ranges for the slot

and the fixture module (see section 4.5.2). Because the module clocking depends on the

connected fixture module, the value for the module clocking range is set to a default of 0

degrees, as long as the slot is unlinked. The operator can update these values when a slot is

linked with a fixture module. Furthermore, the domain type of the transport component

influences the workspace description in this class. For this reason, the class Reposition

contains a list of workspace elements. For transport components which support the

continuous repositioning of their slots, one workspace entry is created. In contrast, for

discrete transport components multiple workspace entries are defined, one for each possible

position on the transport component. Figure 4-22.a shows a transport component with a

continuous domain type which results in a workspace defining the minimum and maximum

positions of the slot on the transport component. In this example, the slot does not allow

any reorientation. As a consequence, the clocking range specifies a value of 0° for each axis

in clockwise and counter-clockwise direction.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 91 -

Figure 4-22: Workspace Definitions for Slots on Continuous Transport Components (a) and Discrete

Transport Components (b)

On the other hand, Figure 4-22b shows a discrete transport component which does not

allow any linear movements of the slots. However, fixture modules can be mounted in three

different positions, resulting in three workspace entries for the slot object. The minimum

and maximum values of each entry are equal, thereby defining a point rather than a range.

In the drawing this is illustrated using the workspace entry two.

4.6.3.2. The Capability SensePosition

This class represents the ability of the transport component to feed back the position and

orientation of a particular slot. Additionally, the values for the current module clocking can

be fed back. For this purpose, the class provides the attributes currentSlotPosition,

currentSlotClocking and currentModuleClocking. To allow the correct interpretation of

these values, the attribute bodyPositionSensingInfo is used whose data type definition was

already described in section 4.5.2.

4.7. Model Elements of the Package “Reconfiguration”

The model elements in this package are required during the reconfiguration procedure to

represent the pre-defined fixture design parameters and the individual steps to convert the

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 92 -

current fixture setup into the desired configuration. Figure 4-23 provides a UML class

diagram of the package. The following sections describe the depicted classes in more detail.

ContactPoint

id: Integer

description: String

sp: SpatialDescription

localToGlobal: Matrix

globalToLocal: Matrix

reconfigInfo: ReconfigurationInfo

reqForceFb: ReqForceFeedback

reqPositionFb: ReqPositionFeedback

isEngaged: Boolean

ClampContactPoint

forceProfile: ForceProfile

LocatorContactPoint

maxForce: double

SupportContactPoint

maxForce: double

ReconfigurationInfo

projectedBodyPosition: Point

desTipPosition: Point

desSpSlot: SpatialDescription

desSlotClocking: Clocking

desSpModule: SpatialDescription

desModuleClocking: Clocking

desClampDirection: ClampingDirection

Fixture Module

FixtureModule

ForceProfile

TimeDrivenForceProfile

targetForces: ForceOverTime []

DynamicForceProfile

optimalForce: double

managedLocator: LocatorContactPoint

minLocatorTreshhold: double

maxLocatorTreshhold: double

currentForce: double

ReconfigurationCommand

isMarked: Boolean

isSorted: Boolean

ChangeTipPositionCmd ChangeBodyPositionCmdChangeRoleCmd

1

*

1

1 1 1

execute(): void
causesCollision(): Boolean

maxForce: double

minForce: double

generateTargetForce(): double

1

FixtureDesign

partId: Integer

processId : Integer

1*

0

Figure 4-23: Class Diagram of the Package "Reconfiguration"

4.7.1. Fixture Design Information

A key assumption of the research study is the availability of pre-defined fixture design

parameters for each workpiece and process. This information can be provided in form of a

data base or through other means, such as configuration files. For the object-oriented

representation of the design information, the data model defines the class FixtureDesign

which contains the the numerical identifiers the associated workpiece and the

manufacturing process. Additionally, it can be attached with a variable number of objects

inheriting from the base class ContactPoint. The latter contains the design criteria for each

point, the fixture is in contact with the workpiece. This information is limited to hardware-

independent parameters such as the position of the contact point in global coordinates or the

required clamping force. Hardware-specific details such as the use of a vendor-specific

device model or a certain clamping technology like pneumatic or electro-mechanical

mechanisms are not defined in the contact point information. This approach renders the

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 93 -

framework independent from particular hardware and allows the operator to upgrade an

existing fixture with new devices as long as the design parameters are satisfied.

As it can be seen in the class diagram, each contact point has a numerical identifier and a

textual description. Its local coordinate system is specified relative to the global coordinate

frame by the attribute of the data type SpatialDescription. Based on this, the matrices for

the coordinate transformation between the local and the globale coordinate systems can be

calculated and stored in the attributes localToGlobal and globalToLocal. The local

coordinate system determines the position where the fixture module shall contact the

workpiece. The x-axis of the local coordinate system is directed towards the workpiece.

Figure 4-24 illustrates the contact point definition for a simple workpiece. Contact points

with a filled circle indicate clamps whereas unfilled circles indicate locator elements.

x

z

y

x

z

y

x

y
z

x

y

z

CP1

CP2

CP3

CP4

Figure 4-24: Illustration of Contact Points

To specify the feedback requirements of a contact point, the attributes reqForceFb and

reqPositionFb are provided whose data types are defined unterhalb. Both structures contain

a Boolean element defining whether or not a particular feedback functionality is required. If

this is the case, the element sensingInfo contains further details which must be satisfied.

<<DataType>>

ReqForceFeedback

isRequired: Boolean

sensingInfo: SensingInfo

<<DataType>>

ReqPositionFeedback

isRequired: Boolean

sensingInfo: SensingInfo
Figure 4-25: Data Types to Define the Requirements for the Force and Position Feedback

Finally, the Boolean attribute isEngaged can be used to declare a contact point as inactive

in a particular design by setting its value to false. Hence, if a fixture design requires less

contact points than others, it can declare a contact point as not engaged. During the

reconfiguration procedure, this contact point will be assigned to one of the fixture modules.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 94 -

Since the contact point defines the target position for the module, it is ensured that it is

moved out of the way and remains inactive for the duration of the process.

The essential step during the reconfiguration methodology is the process of matching the

contact points with the available fixture modules from the physical setup. This link is

represented by a reference to an object of the class ReconfigurationInfo which contains

references to both the FixtureModule and the ContactPoint object. The class stores all

required information for the reconfiguration of the modules in its attributes which are

acquired during the procedure, described in section 5.3.3. This includes the target values for

the body position of the module, the tip position, the clamping direction, the spatial

descriptions for the module and the slot, as well as their clocking values. To indicate

whether a fixture module shall act as a clamp, locator or support element during the

operation, the data model defines three subclasses, inheriting from ContactPoint. The

classes LocatorContactPoint and SupportContactPoint have the same structure, since in the

context of adaptive fixturing both roles define passive elements. These classes provide the

means to specify the maximum amount of force, a matching fixture module must be able to

withstand without being damaged. For contact points that require a clamp, the class

ClampContactPoint is provided which can be configured with a reference to a force profile,

defining the behaviour of the clamp during the operation.

4.7.2. Force Profiles

The force profiles are modelled with the child classes inheriting from the base class

ForceProfile. The latter defines two attributes for the minimum and maximum force values

in Newton, the associated clamp can exert during the clamping procedure. Furthermore,

these classes implement the object-oriented ―Strategy‖ design pattern [104]. The advantage

of the Strategy-pattern is the ability to change algorithms at run-time without the need for

recompiling the software. In the context of this research, it has been applied to allow the

framework to be configured with different kinds of force profiles in a flexible way.

According to the structure of the design pattern, the base class ForceProfile defines a

common interface generateTargetForce() which is called to retrieve the force value in

Newton for the associated fixture module during the operation of the fixture. However, the

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 95 -

base class does not specify how the target force is calculated. Instead, the interface is

implemented differently in the child classes. The class TimeDrivenForceProfile can be used

to define a profile that specifies the clamping force depending on the elapsed time of the

manufacturing process. For this, the class has a list with entries of the data type

ForceOverTime. This data type contains an element for the force magnitude in Newton and

an element specifying a point in time in milliseconds. This allows the definition of step-like

profiles over time as shown in Figure 4-26.

<<DataType>>

ForceOverTime

startTime: double

targetForce: Force

F

t

Target force entries

Figure 4-26: The Data Type ForceOverTime

For cases where the dynamic adaptation of the clamping force in response to the measured

reaction forces acting on the locators is required, the class DynamicForceProfile can be

used. The class allows to specify a locator whose reaction forces determine the magnitude

of the target clamping force. Additionally, an optimal clamping force can be specified in

Newton which the associated fixture module tries to approach during the operation.

However, if the reaction force on the associated locator falls below a certain threshold as

specified by the attribute minLocatorThreshhold, the clamping force is increased to ensure

the workpiece remains in contact with the locator. Conversely, if the reaction force exceeds

the threshold specified in the attribute maxLocatorThreshhold, the clamping force is

decreased to prevent workpiece deformation. This class interprets the minimum and

maximum force values from the base class as a band in which it is allowed to adapt the

clamping force. Hence, the force adaptation described above is limited by these values as

illustrated in Figure 4-27.

maxForce

minForce

optimalForce

F

t

Reaction force on

locator was too high

Reaction force on

locator was too low

Figure 4-27: Illustration of a Dynamic Force Profile

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 96 -

The diagram shows a possible curve for the clamping force as the fixture module tries to

approach the optimal force values, while reacting to the reaction forces of the managed

locator. A similar approach has been presented by Wang et al. [50] as reported in the

literature review (see section 2.2.5). However, the aim of this research is not to describe the

generation of dynamic force profiles. Instead, this section shows how the structure of the

data model supports a wide variety of different force profile approaches. As a result of the

Strategy-pattern, further force profile strategies can be added to the framework without

affecting the existing class structure.

4.7.3. Reconfiguration Commands

The last group of classes in this package are those for the reconfiguration commands which

are used for the execution of the reconfiguration procedure. As described in chapter 5, each

fixture module generates its own reconfiguration steps and stores them as objects of the

subclasses of ReconfigurationCommand. Consequently, when all fixture modules have

completed this procedure, a global list can be generated containing all reconfiguration steps

necessary to adapt the current fixture setup into the desired configuration in order to

accommodate the next workpiece.

The classes for the reconfiguration commands follow the object-oriented ―Command‖

design pattern [104]. According to this, the base class ReconfigurationCommand defines a

common interface that consists of the parameter-less method execute(). Based on this, a

variable number of child classes can be defined which implement the execute()-method

differently. The class ChangeBodyPositionCmd is used to change the body position of the

fixture module on the transport component. Essentially, the class publishes the target

position according to the communication infrastructure described in chapter six until the

movement is complete. The class ChangeTipPositionCmd is used to change the module‘s

tip position by extending or retracting its actuator. Finally, the class ChangeRoleCmd is

used to change the role of the fixture module for the next clamping process in terms of the

roles clamp, locator or support element.

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 97 -

There are several advantages of this design pattern which are all based on the common

interface defined in the abstract base class. Firstly, this approach allows easy enhancement

of the system with new reconfiguration tasks. If future enhancements of the reconfiguration

procedure require new reconfiguration tasks, the class hierarchy can easily be extended by

the further command classes without affecting the rest of the model. Secondly,

decomposing the entire fixture reconfiguration task into atomic steps modelled as objects

reduces the complexity of the procedure for fixture coordinator. For the coordinator, the

execution of the entire reconfiguration sequence consists of simple calls of the execute()-

methods of each command which is explained in section 5.3.6. Finally, having the

reconfiguration steps modelled as software objects allows to evaluate their effects before

they are executed and re-sorting them when collisions between modules are predicted. For

this, the base class defines the method causesCollision() which returns true if the execution

of the command would result in a collision between fixture modules. The collision

avoidance algorithm is explained in section 5.3.5.

4.8. Chapter Summary

A novel data model has been developed to provide the basis for the conceptualisation of a

fixturing system in the framework. The central idea of the model is the representation of a

fixture in terms of fixture modules, devices and transport components. The fixture modules

are components that interact with the workpiece, while the transport components are

elements that allow the repositioning of the modules on the fixturing system. The devices

are the subcomponents of the fixture modules which determine their capabilities. In order to

ensure a platform-independent definition of the data model, all elements have been defined

using Unified Modelling Language.

The developed model addresses the needs of an emerging generation of advanced fixturing

systems which integrate a variety of sensor and actuator components. While existing data

models have concentrated on the design phase of modular fixtures, the presented approach

focuses on the operation of reconfigurable, adaptive fixturing systems. In addition to class

inheritance, a set of more advanced object-oriented techniques like design patterns and

software delegation have been applied to the fixturing domain in order to achieve a highly

 Object-oriented Data Model for Reconfigurable and Adaptive Fixturing Systems

 - 98 -

adaptable data model which is able to reflect the changing capabilities of a wide variety of

different fixturing systems.

 Fixture Reconfiguration Methodology

 - 99 -

5. Fixture Reconfiguration Methodology

5.1. Introduction

Two scenarios for fixture reconfiguration have been presented in the use case analysis in

chapter 3. The use case ―Change Fixture Setup‖ is concerned with the required steps when

fixture modules or devices are added, removed or replaced. Conversely, the use case

―Adaptation of Current Setup‖ refers to the scenario where the fixture automatically adapts

the configuration of its existing fixture modules in order to accommodate the requirements

of a particular workpiece. This includes adjusting their positions on the transport

components and the change of the force profiles. These use cases are addressed by the two

parts of the reconfiguration methodology which are illustrated in Figure 5-1. For both parts

of the methodology, the diagram shows the required inputs and outputs. The former are

shown as parallelograms whereas the latter are depicted as round boxes.

Capability Recognition

Methodology

Module Capabilities
Tranport Component

Capabilities

Setup Adaptation Methodology

Reconfiguration

Sequence

Current Fixture

Configuration

Operator

Change Fixture

Setup

Adaptation of

Current Setup

Transport Component

Information
Device Information

Fixture Design

Information

Figure 5-1: Reconfiguration Methodology Overview

The capability recognition methodology determines the capabilities of each fixture module

and links them with the transport components in order to generate a global view of the

functionalities of the fixturing system. This procedure requires input information from the

operator about the devices in each module as well as the transport components according to

the structure of the data model described in chapter four. Based on this, each fixture module

determines its own capabilities and publishes them according to the communication

 Fixture Reconfiguration Methodology

 - 100 -

concept. As a result, the fixture coordinator discovers the fixture modules and becomes

aware of their capabilities. The setup adaptation methodology requires the current fixture

configuration and the predefined fixture design parameters as inputs which may come from

a data base or provided through XML files. Based on this information, an object-oriented

approach is followed to compare the current and the desired fixture configuration as

described in section 5.3.2. As a result, the reconfiguration sequence for the adaptation of

the fixture is generated and can be executed.

This chapter describes the algorithms for both scenarios and combines them into an

integrated methodology for fixture reconfiguration. Similar to the object-oriented data

model, the presented algorithms are not tailored to one particular fixture design. Instead,

they aim to be applicable to a plethora of adaptive fixturing systems. Section 5.2 provides a

detailed description of the decision-making processes for the capability recognition and the

generation of the object model. The algorithms for the setup adaptation methodology are

subject to section 5.3. Finally, a comprehensive chapter summary is part of section 5.4.

5.2. Capability Recognition Methodology

The capability recognition methodology follows a hierarchical approach which is

decomposed in two levels. In the first level, each fixture module determines its own

capabilities based on its devices, utilising the model elements described in chapter 4. Based

on this, they publish their capabilities using the communication infrastructure, described in

chapter 6. The second level takes place in the fixture coordinator which receives the

capabilities of the fixture modules and the transport components and combines them to

generate a complete view of the fixturing system. Below the general assumptions and

requirements for both levels are summarised.

5.2.1. Assumptions and Requirements

5.2.1.1. Independent Software for the Fixture Modules, Transport

Components and the Fixture Coordinator

The methodology assumes the existence of individual software processes for the fixture

modules, the transport components and the fixture coordinator. As can be seen in Figure

 Fixture Reconfiguration Methodology

 - 101 -

5-1, the software processes for the transport component and the fixture modules generate

separate object models and use the capability objects to communicate with other systems

via the publish/subscribe communication infrastructure.

Transport Component Process Fixture Module Process

Fixture Coordinator Process

:Capability n:Capability 1

:Slot

:TransportComponent

:Capability n:Capability 1

:Fixture Module

:Fixture Module

:Capability 1 :Capability n
:TransportComponent

:Slot

:SensePosition:Reposition

Publish/Subscribe Communication Infrastructure

Figure 5-2: Interactions Between the Software Processes for the Fixture Modules, the Transport

Components and the Fixture Coordinator

When the fixture coordinator is informed about the modules and the transport components,

it generates an own set of objects to represent them, thereby creating a global view of the

entire fixturing system. However, in the fixture coordinator only the capability objects for

the fixture modules are utilised to exchange information. These objects are linked to the

same data topics as the independent software processes for the modules and the transport

components. In this way, the fixture coordinator can concentrate exclusively on the fixture

modules, which reduces the complexity of the decision-making algorithms performed by it.

A detailed description of the realisation of the communication infrastructure is the subject

of chapter 6. The methods presented in this chapter focus on the decision-making

procedures, taking place in the fixture coordinator and the fixture modules. However, in

order to limit the scope of the thesis, details about the internal structure of the software

processes for the transport components are omitted.

 Fixture Reconfiguration Methodology

 - 102 -

5.2.1.2. Required Inputs for the Capability Recognition on Module Level

In order to generate the local object model, the fixture module software must be provided

with information about the capabilities of its incorporated devices and their logical links

between each other. The device description must include the following information:

 A unique numerical identifier for the fixture module

 Technical information for each device according to the data model, in particular

o The device type

o A unique numerical identifier for the device

o The measuring range and resolution for sensing devices

o The stroke range, swing range and a reference to its connected sensors for

clamping devices

o the path to a software library to access the device

o Additional device-specific parameters required by the library. Examples for

such inputs are the board identifier and the channel number for the data

acquisition card, used by a sensor device or the axis number for the motion

control card of an actuator device.

o The spatial description of the position and orientation of the coordinate

system of the device, relative to the coordinate system of the fixture module.

The device information can be provided in several ways, including a data base, manual

operator input or a configuration file. For this research study, an XML-scheme has been

used which is shown in the example listing in Appendix A. The information for each device

of the fixture module is provided within individual <device> blocks. This contains general

details about each device, such as the identifier, the device type and the description text.

Additionally, the details for the capabilities of each device are enclosed in separate

sections. Fixture modules can consist of multiple sensor devices connected to either one

clamp or one locator or support element. The references to the connected sensors are

provided in the configuration file within the < feedbackdevices>-block which lists the

identifiers to the sensors. This information is used to build the object hierarchy according to

the ―Composition‖ design pattern, described in section 4.4.1. The references to the software

libraries, responsible for the hardware access of the devices are provided in the <library>-

block. The implementation of these libraries is beyond the scope of the research as this

 Fixture Reconfiguration Methodology

 - 103 -

depends on the vendor-specific hardware. However, the common interface is explained in

chapter 6. Furthermore, detailed parameters for the operation of the library can be specified

within the <library-parameters>-block. This block is passed to the library during its

initialisation which is assumed to be able to parse and interpret the contents.

5.2.1.3. Required Inputs for the Capability recognition on Fixture Level

When the software of the fixture coordinator is initialised, it needs to be provided with

details about the transport components according to the specification, described in section

4.6. This information includes:

 The domain type and geometry type of the transport component

 A numerical identifier for the transport component

 The spatial description of the position and orientation of the coordinate

system of the transport component, relative to the global coordinate system

 Information about each slot on the transport component, including

o A numerical identifier

o The spatial description of the position and orientation of the

coordinate system of the slot, relative to the coordinate system of the

transport component

o The workspace of the slot on the transport component, specifying the

minimum and maximum coordinates of the slot with regards to the

local coordinate system of the transport component

o Information about the position feedback of slot (see section 4.6.3)

This information can be obtained from a data base, XML-files or manual inputs from the

operator. Additionally, each software process for the control of a transport component can

publish the details about its capabilities. Based on the provided details, the fixture

coordinator instantiates the software objects in order to represent each existent transport

component and its slots.

 Fixture Reconfiguration Methodology

 - 104 -

5.2.2. Capability Recognition on Module Level

Figure 5-3 shows a flow chart with the steps performed within the local software routine of

each fixture module to generate the local object model for its devices and capabilities. In

the first two steps of the procedure, the numerical module identifier and the device

descriptions are read. Based on this information, an empty object of the class

FixtureModule is created in the third step. However, at this point the object lacks any

information about its device configuration, because there are no objects for the devices and

their capabilities attached to it. In order to configure it for the existing setup, the objects for

the devices and their capabilities are created in the subsequent steps. This results in the

generation of the objects representing the capabilities of the fixture module. The following

sections describe the steps to gradually produce an object-oriented representation of the

fixture module. A summary of the utilised UML notation is provided in the symbology

section in the beginning of the thesis.

Read Module ID

Read Device

Descriptions

Create empty Fixture

Module object

Create Device

Objects

Generate Fixture

Module Capabilities

Figure 5-3: Flowchart for the Capability Generation on Module Level

5.2.2.1. Creation of the Device Objects

The fourth step is concerned with the creation of the device objects which have direct

access to the hardware. Figure 5-4 shows an UML object diagram for the devices and their

capabilities of a fixture module, consisting of a linear actuator equipped with a force sensor.

As it can be seen in the diagram, for each device an object of the appropriate class is

created and its attributes are configured with the information from the configuration file.

These objects contain a reference to a software library which handles the hardware access

to the device. Additionally, each device object is attached with adequate capability objects

which are generated from the information provided by the device description. They are

used to define the functionality of their associated device to higher level objects and to

trigger this functionality by calling the installed library.

 Fixture Reconfiguration Methodology

 - 105 -

:ForceSensor

id: 4

description: nothing

deviceLib: forcesensor.dll

:LinearClamp

id: 1

description: nothing

isLockable: false

deviceLib: actuator.dll

:SensingForce

id: 5

description: nothing

sensingInfo:

 min: 0N

 max: 3000N

 resolution: 0.01N

:LinearActuation

id: 2

description: nothing

strokeRange:

 min: 0 mm

 max: 60mm

 resolution: 0.01mm

:ApplyForce

id: 3

description: nothing

clampingRange:

 direction: push

 minForce: 0 N

 maxForce: 2500N,

 resolution: 10N

Figure 5-4: Example for the Generation of Leaf Device Objects

The generation of the device capabilities follows a set of rules which are summarised in

Table 5-1. For clamping devices multiple capabilities can potentially be generated, if the

device description provides sufficient information. In particular, the capability classes

Locate and Support can be generated if a clamping device is lockable.

Device type Allowed Capability classes

Force sensor SenseForce

Displacement sensor SenseDisplacement

Linear clamp ApplyForce, LinearActuation, Locate, Support

Swing clamp ApplyForce, SwingActuation, Locate, Support

Locator element Locate

Support element Support

Table 5-1: Allowed Capability Classes for the Device Types

To express the logical links that exist between the devices a tree structure is generated,

based on the ―Composite‖ design pattern, described in section 4.4.1. To connect two

devices in the object model, a new object of the class CompositeDevice is created. The

latter is attached with the capabilities of the sub devices, thereby generating a combined

functional view. Additionally, the resulting capability objects of the composite device are

each linked to the particular lower level capability objects they have been created for. This

way, requests can be delegated down to the capabilities of the device objects, which access

the hardware by calling the library interface. Figure 5-5 shows a UML object diagram to

illustrate the concept for the previous example fixture module.

 Fixture Reconfiguration Methodology

 - 106 -

:SensingForce :ApplyForce

:CompositeDevice

id: 6

description: nothing

nestedDevices: {0, 4}

:ForceSensor :LinearClamp

:ApplyForce

id: 8

description: nothing

clampingRange:

 direction: push

 minForce: 0 N

 maxForce: 2500N,

 resolution: 10N

:SensingForce

id: 7

description: nothing

sensingInfo:

 min: 0N

 max: 3000N

 resolution: 0.01N

nested

Capability

nested

Capability

Figure 5-5: Example for the Generation of Composite Device Objects

For the sake of simplicity, the diagram only displays the ApplyForce capability for the

clamp and the resulting composite object whilst omitting the capability object for the linear

actuation. Further, the class attributes for the bottom objects are omitted since they have

already been shown.

5.2.2.2. Generation of the Fixture Module Capabilities

In the last step, the fixture module object is configured with the generated device structure

by attaching it with the device objects of the upmost layer. During this step, the objects

representing the fixture module capabilities are created, based on the device capabilities. As

described in section 4.5.2, only the module‘s capability objects are connected with the

publish/subscribe communication infrastructure. Consequently, they represent the interface

of the module for other subsystems without disclosing details of the internal device

structure. Table 5-2 summarises the set of rules for the generation of the fixture module

capabilities. Initially, one ProvidesRole-capability is created and connected to the fixture

module. By default, its attributes indicate that the module supports none of the defined

roles. Subsequently, each device capability is mapped to a newly created object of an

adequate class for the fixture module capabilities which were described in section 4.5.2. If

the added device has an ApplyForce capability, the fixture module object is attached with

an object of the type AdustClampingForce whose class attributes are filled with the

information of the device capability. Additionally, the ProvidesRole capability of the

module is updated accordingly.

 Fixture Reconfiguration Methodology

 - 107 -

Capabilities of added device object Generated capability for the fixture module

ApplyForce
AdjustClampingForce,

ProvidesRole.clampRoleInfo.isSupported := true

LinearActuationCapability or SwingActuation AdjustTipPosition

SenseDisplacementCapability SenseTipPosition

SenseForceCapability

 If device has ApplyForce capability

 else

SenseClampingForce

SenseReactionForce

Locate ProvidesRole.locatorRoleInfo.isSupported := true

Support ProvidesRole.supportRoleInfo.isSupported := true

Table 5-2: Rules for the Generation of the Capabilities for Fixture Modules

A device with the ability to sense force can potentially result in multiple capabilities for the

fixture module, depending on whether the force sensor is connected to a clamp or a passive

element. In the first case, the device capability of the type ApplyForce is existent, resulting

in the generation of the SenseClampingForce capability. Otherwise, the

SenseReactionForce capability is created. Moreover, if a force sensor is connected with a

lockable clamp, both fixture module capabilities are generated because the module can act

as a clamp and a passive element. During the operation, one of them is deactivated,

depending on the current role of the module. Additionally, each of the created fixture

module capabilities is linked to the device capability it has been generated for. Figure 5-6

shows the final object model for the example module that has been used throughout this

section.

:CompositeDevice

:FixtureModule

id: 1

description: nothing

boundingBox:

 p1: (0/0/0)

 p2: (268/57/-57)

:SensingClampingForce

id: 9

description: nothing

sensingInfo:

 min: 0N

 max: 3000N

 resolution: 0.01N

:ForceSensor :LinearClamp:SensingForce :ApplyForce

:ApplyForce:SensingForce

:AdjustClampingForce

id: 10

description: nothing

clampingRange:

 direction: push

 minForce: 0 N

 maxForce: 2500N,

 resolution: 10N

nested Capability

nested Capability

nested Capability

nested Capability

Figure 5-6: Example for the Instantiation of the Fixture Module Capabilities

At the bottom, the device structure and the associated capabilities are displayed in a

simplified way, since they were explained in the previous section. The fixture module

object is attached with the tree structure, which in this case consists of one composite

 Fixture Reconfiguration Methodology

 - 108 -

device and its two leaf devices. Based on the capability objects of the composite device, the

fixture module is attached with objects of the classes AdjustClampingForce,

SenseClampingForce and AdjustTipPosition. The latter is not shown in the picture to

simplify the diagram. Further, the local object for the fixture module does not contain

information about its position and orientation in the global coordinate system. This

information is generated by the fixture coordinator in the next step when the modules are

linked with the transport components. Ultimately, the module software publishes its

capability information according to the communication concept. As a result, other

subsystems such as the fixture coordinator discover each module and their capabilities. A

detailed description on the publishing of the capabilities can be found in chapter 6.

5.2.3. Capability Recognition on Fixture Level

While the steps described in the previous section are performed for each fixture module, a

second data model is instantiated in the fixture coordinator. This includes the objects for the

representation of the transport components and the discovered fixture modules. Figure 5-7

illustrates the steps that are performed by the fixture coordinator.

Generate objects for

transport components

and fixture modules

Link Fixture module

with Transport

Component

All fixture

modules

linked?

No

YesExtend Module

Capabilities

Figure 5-7: Flowchart of the Capability Recognition on Fixture Level

5.2.3.1. Generate Objects for Transport Components and Fixture

Modules

In the first step the objects for the transport components are generated, based on the

provided configuration details. For each transport component a set of objects is instantiated

for its slots and capabilities. As mentioned before, these objects are exclusively used to

represent the existing transport component layout in the internal data model of the fixture

coordinator. Figure 5-8 illustrates the object generation for two different types of systems.

Figure 5-8.a shows a continuous transport component consisting of a rail with one carrier

that can be connected with a fixture module. Consequently, one object of the class

TransportComponent is generated which is linked to one Slot-object. The workspace for the

movement of the slot is captured in the capability class Reposition. This includes, the linear

range for the slide-movement along the rail which is indicated by the two points

 Fixture Reconfiguration Methodology

 - 109 -

(xmin/ymin/zmin) and (xmax/ymax/zmax). Additionally, the workspace defines the allowed

clocking of the slot around its axis. In the example unterhalb the slot is assumed to be

rigidly mounted on the rail, therefore allowing no clocking.

Figure 5-8: Object Generation for a.) Continuous and b.) Discrete Transport Components

For discrete transport components as shown in Figure 5-8.b a different approach is applied.

Instead of creating three Slot objects for the three mounting holes, only one object is

generated. This Slot object is linked to one Reposition-capability object containing three

workspace entries. A fixture module can be connected with the slot in one of the points

specified by the workspace entries. Consequently, the actual position of the slot for discrete

transport components is unknown until they are linked with a fixture module. Therefore,

the class Slot is an abstract concept that does not necessarily reflect a concrete hardware

component in the system. Instead, it is a means to attach attributes to the connection

between a fixture module and a transport component. When fixture modules are discovered

by the system, further Slot objects are generated. The maximum number of slots is limited

by the number of workspace entries. This approach is different from continuous transport

components where all Slot objects are created immediately, depending on the number of

carriers. Essentially, it makes it possible to model discrete transport components with a

large number of mounting holes without the generation of too many capability objects

which would otherwise overwhelm the publish/subscribe communication infrastructure.

In addition to the instantiation of the objects for the transport components, the fixture

coordinator is informed by the communication infrastructure about newly discovered

fixture modules which have published their capabilities. For each discovered fixture

module, the fixture coordinator instantiates an own set of objects representing the module

 Fixture Reconfiguration Methodology

 - 110 -

and its capabilities. However, even though the fixture modules are physically mounted to

the transport components, this link is not yet existent in the object model of the fixture

coordinator. The reason for this is that the transport component objects are only aware of

their slots, but so far they lack the information whether or not a particular slot is connected

with a fixture module. Equally, the positional feedback information of the fixture modules,

obtained through the SenseTipPosition capability, is meaningless at this time, since a

reference to the global coordinate system is missing.

5.2.3.2. Link Lixture Modules with Transport Components

To overcome the aforementioned problem, the second step is concerned with linking the

objects for the fixture modules and the slots. For this, additional operator input is required,

specifying which fixture modules and slots are connected. For each link, the operator must

provide the following details:

 The spatial description of the module with regards to the slot coordinate system.

Based on this, the 4 by 4 matrices for the coordinate transformation between the slot

and the module‘s local coordinate systems and vice versa can be generated.

 The clocking range for the module on the slot. This specifies whether or not the

module can be reoriented on the slot during the operation of the fixture.

 For discrete transport components, the operator must additionally select the position

of the slot from the workspace entries. The reason for this is that the position of a

slot on discrete transport components is unknown until it is linked with a fixture

module. Based on the operator input, the coordinate transformation matrices

between the slot and the transport component‘s local coordinate systems and vice

versa can be generated.

Based on the provided information, the reference to the slot object is set in the fixture

module object and vice versa, thereby establishing the link in the model.

5.2.3.3. Extend Module Capabilities

The link between a slot and a fixture module results in two new capabilities for the fixture

module which are generated in the third step. Firstly, based on the SensePosition capability

of the transport component, the module becomes aware of its body position and orientation

 Fixture Reconfiguration Methodology

 - 111 -

in the global context. It is therefore attached with the capability class SenseBodyPosition.

To obtain the current body position of the module, three coordinate transformations are

necessary which are summarised in the equation below.

slottouleTCtoslotglobaltotc TTTM __mod____ (Equ. 5-1)

According to the order of matrix multiplications, the local coordinate system of the fixture

module is first transformed into the coordinate system of the slot, using the matrix

Tmodule_to_slot. The result is transformed into the coordinate system of the transport

component, using Tslot_to_TC. Finally, the matrix TTC_to_global transforms the result into the

global coordinate system. By multiplying matrix M with the origin of the local coordinate

system of the fixture module P(0/0/0/1) in homogenous coordinates, the latter is expressed

in global coordinates. The result is stored in the attribute currentBodyPosition of the

SenseBodyPosition capability object which has been attached to the fixture module. Figure

5-9 shows the complete object model for a rail with one fixture module and illustrates the

coordinate transformations.

:SensePosition

:Reposition

:Slot:TransportComponent

:AdjustBodyPosition

:SenseBodyPosition

:Fixture Module

creates

creates

x

y

z

z

x

z
y

x TmoduleToSlot

Body Position of

Fixture Module

y

TslotToTC

x

y

z

TTcToGlobal

Black: Global coordinate system

Red: Coordinate system of

transport component

Yellow: Coordinate system of slot

Blue: Coordinate system of the

fixture module

Figure 5-9: Example Instantiation after Linking one Fixture Module with a Slot

 Fixture Reconfiguration Methodology

 - 112 -

For other types of transport components the same principle is applied, leading to a similar

object model. For this reason, a second example is not shown here. Secondly, the module

gets the ability to change its body position within the limitations imposed by the

Reposition-capability of the transport component. Hence, the fixture module object is

attached with the capability class AdjustBodyPosition and its workspace is determined

based on the Reposition-capability. The Reposition-capability defines the minimum and

maximum position for the linear movement of the slot relative to the local coordinate

system of the transport component. Using these values, two transformation matrices

MIN slot_to_TC and MAX slot_to_TC are generated according to the principle described in section

4.3.1. The first matrix provides the coordinate transformation between the slot and the

transport component when the former is in its minimum possible position. The second

matrix provides this transformation when the slot is in its maximum possible position.

Consequently, the overall transformation matrices for the minimum and maximum body

position of the fixture module are:

slottouleTCtoslotglobaltoTC TMINTM __mod____min (Equ. 5-2)

slottouleTCtoslotglobaltoTC TMAXTM __mod____max (Equ. 5-3)

The resulting matrices are multiplied with the origin of the local coordinate system of the

fixture module P(0/0/0/1) in homogeneous coordinates. After converting the result into

Cartesian coordinates, the minimum and maximum body positions of the fixture module in

global coordinates are obtained which are stored in the workspace attribute of the

AdjustBodyPosition capability. Additionally, this attribute stores the allowed clocking

range of the slot and the module. The values for the former can directly be obtained from

the Reposition object whereas the values for the latter are retrieved as an operator input

when the link is established. For discrete transport components the previously described

calculations must be repeated for all workspace entries.

During the operation of the system, the aforementioned capabilities of the fixture module

and the transport component are closely connected through the communication

infrastructure. These interrelations will be explained in section 6.3.1.

 Fixture Reconfiguration Methodology

 - 113 -

5.3. Setup Adaptation Methodology

This part of the reconfiguration methodology aims at the generation of the reconfiguration

sequence which adapts an existing fixture layout for different parts of one product family or

different manufacturing processes. Essentially, this consists of the repositioning of the

fixture modules and the adjustment of behavioural aspects like the clamping force profiles.

5.3.1. Assumptions and Requirements

The following requirements must be fulfilled in order to generate the reconfiguration

sequence:

 Awareness of existing fixture setup

The object model of the fixture coordinator must be generated prior to the setup

adaptation which contains the current positions and states of all fixture modules and

transport components. This is achieved by the method described in the previous

section which is carried out whenever the fixture is switched on or a change of the

hardware occurs. Furthermore, the position and orientation of the transport

components are assumed to be constant during the operation of the fixture.

Consequently, the algorithms described in this section concentrate exclusively on

the reconfiguration of the fixture modules.

 Availability of pre-defined fixture design

The fixture coordinator must be provided with the pre-defined fixture design

parameters for each workpiece. The fixture design information consists of a number

of contact points with the workpiece which specify the positions, clamping forces

and clamping directions.

 Availability of information about the workpiece and manufacturing process

To retrieve the correct fixture design during the reconfiguration process, the fixture

coordinator needs to have information about the workpiece and manufacturing

process in question. The research study assumes the availability of this information

in whatever form. Hence, the development of workpiece recognition algorithms is

not within the scope of this work.

 The workpiece is correctly positioned in the fixture

 Fixture Reconfiguration Methodology

 - 114 -

As a result of the decision-making steps of the methodology, the fixture modules

are positioned according to the specifications of the contact points. It is beyond the

scope of the research to compensate for positional errors during the loading of the

workpiece or for geometrical errors of the workpiece itself.

5.3.2. Overview of the Decision-making Process

The setup adaptation method fundamentally relies on matching the contact points from the

design with the fixture module objects representing the current configuration of the

physical setup. As a result, each module object can individually determine the steps

required to transform its current state according to the design specifications. In this way, the

generation of the reconfiguration sequence is delegated to the module objects in a

decentralised way, thereby making the entire reconfiguration routine independent from the

number of modules. The reconfiguration sequence itself is realised with the ―Command‖

design pattern which was explained in section 4.7.3. Figure 5-10 provides an overview of

the steps of the entire decision-making process for the fixture adaptation methodology.

Retrieve workpiece &

process information

Retrieve Design

Parameters

Assign Fixture Module

objects with Contact

Points

Generate

Reconfiguration

Command List

Order Reconfiguration

Command List

Execute Reconfiguration

Command ListPossible?

Position workpiece in

fixture against locators

Retract Clamps

Remove Workpiece

yesNo

Fixture Hardware

Change

Possible?

yes

No

Adaptive Clamping

whilst manufacturing

Engage Clamps

Figure 5-10: Decision-making Process Overview

The fixture adaptation procedure starts with the retrieval of the identifiers for the next

workpiece and the manufacturing process. This information can be provided by the

operator or through automated feature recognition systems. Based on this information, the

corresponding fixture design is retrieved from a data base in the next step. The fixture

 Fixture Reconfiguration Methodology

 - 115 -

design contains all contact points between the fixture modules and the workpiece, each of

them specifying a position and further details such as the clamping direction and force

profiles, as described in section 4.7.1. The essential step of the methodology is to assign the

fixture module objects representing the current configuration with the appropriate contact

points. Once this relation is established, the required actions to transfer the current

configuration into the target configuration can be derived by each individual module object

using the command approach. If the assignment is not possible it can be concluded that the

current fixture setup cannot be transferred into the desired status. In this case a manual

change of the fixturing hardware is necessary which will ultimately trigger the capability

recognition method, described in section 5.2. If the assignment is possible, the

reconfiguration commands are generated and stored in a list. In order to avoid collisions

between the modules, the command list is then sorted according to a set of rules as

described in section 5.3.5. Finally, the fixture coordinator gradually reconfigures the fixture

by executing the reconfiguration commands one after another. In particular, this moves the

locators to their target positions. The clamping modules are repositioned on the transport

components, yet remain retracted. After this, the workpiece is placed in the fixture and

positioned against the locators. This can be done manually by the operator or with the use

of a robot. Finally, the clamps modules are actuated until they reach the target tip position.

This is followed by the adaptation of the clamping force during the manufacturing process

as defined by the force profile, accessible from the contact point object. After the

completion of the manufacturing process, the clamping modules are retracted, thereby

releasing the workpiece which can subsequently be removed from the fixture. A new

iteration starts with the retrieval of the information for the next workpiece. The following

sections provide a more detailed description of the steps of the procedure.

5.3.3. Assignment of Fixture Modules with Contact Points

This step is essential for the reconfiguration methodology because it enables the fixture

modules to become aware of their target position, orientation and force profiles. The

module assignment faces the following challenges. Firstly, the contact point specifications

are defined independently from the fixturing hardware. Consequently, there is no indication

which fixture module can physically reach a particular contact point. Secondly, one contact

 Fixture Reconfiguration Methodology

 - 116 -

point can potentially be assigned with several fixture modules. For this reason, the

procedure consists of two parts. In the first part, the possible fixture module candidates for

each contact point are found, whereas the second part selects the most appropriate match

for each contact point. Figure 5-11 shows the flow chart for the decision-making procedure

to find the potential candidates. As can be seen, the algorithm iterates through the list of

contact points and uses an additional inner loop to compare them with all fixture modules.

C := next

contact point

F := next

fixture module

C め
Workspace of

F ?

Create candidate

list with

Reconfiguration

Info objects

Add the

candidates to

the transport

component

Do for all contact points

No

Yes

Do For all FixtureModules

Figure 5-11: Flowchart of the Module Assignment Sequence – Part I: Finding Potential Candidates

For each module, the algorithm iterates through the entries of the workspace list which is

provided by its AdjustBodyPosition capability. For each entry it is verified, if the tip of the

fixture module can reach the contact point. If this test returns with a positive result, a new

candidate is found which is subsequently attached to the transport component, as shown in

the flow chart. The test comprises a number of steps which are demonstrated in Figure 5-12

and Figure 5-13. To facilitate the understanding of the principle, the drawings are limited to

2D. However, the described algorithms can be directly applied in 3D space and have been

successfully implemented in the experimental test bed, described in chapter 7. Figure

5-12.a illustrates a fixture module in the form of a linear actuator in its current position and

orientation.

y

x

x

y

xy

xy

C

A

D

b

B

BC

Wmin Wmax

Tmax

y

x

x

y
C

A

a

xy

B

Wmin Wmax

Contact Point

Current position

of fixture module

Figure 5-12: Illustrative Example for the Calculation of the Projected Body Position

 Fixture Reconfiguration Methodology

 - 117 -

In this scenario, the module is mounted on a one-dimensional, continuous transport

component such as a rail-guide which allows the repositioning of the module along the line

between the points Wmin and Wmax. The contact point C has an own local coordinate system

which is arbitrarily oriented against the global coordinate system. The x-axis indicates the

direction in which force shall be exerted. The first step consists of testing, if the module can

be brought into the same orientation as the contact point. This renders an inverse

kinematics problem, since the reorientation of the fixture module can potentially be

achieved by the clocking around its axis and by the clocking of its associated slot. Since the

research is not aimed at contributing towards inverse kinematics algorithms, a heuristic

approach has been followed. According to this, all permitted slot and module clocking

combinations are checked within the limitations, specified by the clocking ranges in the

AdjustBodyPosition capability of the fixture module. This approach is feasible for the

majority of cases, because due to tight rigidity requirements fixtures typically allow no or

limited reorientation of the mounted modules. For each clocking combination, the

transformation matrix from the local coordinate system of the fixture module to the global

coordinate system (see equation 5-1) is calculated. Based on this, the elements of the

rotational part of this matrix are compared with the equivalents in the transformation matrix

of the contact point. If all elements have the same values, the module has the same

orientation as the contact point. If no combination can be found for any of the workspace

entries of the fixture module, the latter cannot be assigned to the contact point and the

algorithm proceeds with the next module. If the module can be brought into the same

orientation as the contact point, the target body position of the fixture module on the

transport component is calculated. For this, the vector

between the current and the desired tip position is calculated and the module is

virtually displaced with this vector, as shown in Figure 5-12.b. As can be seen in the

drawing, the resulting point D is not necessarily within the workspace of the fixture

module. For this reason, the point D must be translated to point E whose coordinates are

within the workspace for the body position, as shown in Figure 5-13.a.

 Fixture Reconfiguration Methodology

 - 118 -

y

x

x

y

xy

xy

E

D

C

A

a

B

a

br *

Wmin Wmax

y

x

xy
xy

EA

b

B

Wmin Wmax

x

y
C

Tmax

Tmin

Figure 5-13: Steps to Retrieve the Projected Body Position

This can be done using the vector equation unterhalb for the line which is coincident with

the x-axis of the coordinate system of the contact point.

brax

 (Equ. 5-4)

The position vector is readily available from the coordinates of point D and the direction

vector can be derived from two arbitrary points on the x-axis of the contact point.

Consequently, the aim is to determine the coefficient r so that the resulting coordinates for

point E lie within the workspace. This can be done by solving the following system of

inequations:

 braw

min (Equ. 5-5)

 braw

max (Equ. 5-6)

, where and are the position vectors to the minimum and maximum

limits of the workspace entry. If no solution for r can be found, the module cannot be

assigned with the contact point. Otherwise, the smallest value from the solution interval is

applied in equation 5-4 which results in the target body position E. In the final step, it is

verified if the module can still reach the contact point from this position. For this, the

contact point coordinates are transformed into the local coordinate system of the fixture

module, taking into account its derived target body position. The resulting values for these

coordinates can directly be compared with the minimum and maximum limitations for the

tip position of the fixture module which are illustrated as Tmin and Tmax in Figure 5-13.b. If

this test returns with a positive result, the fixture module is regarded as a possible candidate

for the contact point. This is expressed with a new object of the class ReconfigurationInfo.

This object contains all the necessary information for the repositioning of the fixture

 Fixture Reconfiguration Methodology

 - 119 -

module which were derived during the previous calculations, including the target body

position, the target value for the tip position and the desired clocking values for the slot and

the module, if applicable. All created ReconfigurationInfo objects are then added to a list

attached to the transport component on which the module is mounted. In this way, each

transport component collects all possible assignment options for its fixture modules as the

algorithm progresses.

Since each transport component can have several modules, there might be more than one

candidate per contact point. For this reason, the second part of the module assignment

procedure selects the best match from the candidate list. As can be seen in Figure 5-14, this

is achieved by iterating through the transport components and reordering their candidate

lists in such a way that the most appropriate candidates are sorted in front of less adequate

candidates.

Order

candidate list

Extract next

entry from

candidate list

Already

assigned?

Assign fixture

module with

contact point

Mark all similar

entries

Do for all transport components

No

Yes Do for all entries in candidate list

Figure 5-14: Flowchart of the Module Assignment Sequence – Part II: Selection of Candidates

The first ordering criteria is the satisfaction of the functional requirements of the contact

points. In order to do this, each requirement of the contact point is compared with the

related capability of the fixture module object. Based on this, a fitness value is calculated

for each element in the candidate list, using the equation below.

n

i
i nrCFg

0

/1*),((Equ. 5-7)

The factor ri has either a value of 1 if the ith requirement of the contact point is fulfilled or a

value of 0 if this requirement is not fulfilled. The multiplication of ri with the scale factor

1/n ensures that the final result of the equation is always a value between 0 and 1. In this

way, the method is independent from the number of requirements imposed by the contact

point. Figure 5-15 shows an illustrative example for this calculation. The presented setup

, with n: number of requirements of contact point C
i: requirement index
r: {1 if requirement ri is fulfilled,

 0 if requirement ri is not fulfilled}

 Fixture Reconfiguration Methodology

 - 120 -

consists of three fixture modules, mounted on a base plate. Module 1 is assumed to consist

of a lockable clamp, equipped with sensors for positional and force feedback. The

maximum clamping force this module can achieve is 1000N and, if locked, it can act as a

locator, withstanding a reaction force of up to 5000N. Module 2 consists of an unlockable

clamp that can exert up to 3500N of force. Additionally, the module has sensor devices for

the positional feedback of the actuator tip and the clamping force. Finally, module 3 is a

locator equipped with a force sensor which can withstand reaction forces of up to 5000 N.

Figure 5-15: Illustrative Example for the Calculation of the Fitness Value

As can be seen, the current setup is confronted with a fixture design consisting of the

contact points A, B and C whose requirements are also shown. It is further assumed that all

contact points can be reached by all fixture modules which results in a candidate list

containing all possible combinations of fixture modules and contact points. In order to

calculate the fitness value for the candidate containing fixture module 1 and contact point A

(candidate 1-A), all four requirements of the contact point are compared with the attributes

of the capability objects, linked with the module. This is shown in Table 5-3.

Requirement Related Capability Fulfilled? Value Fitness

value

Role: Clamp ProvidesRole Yes 1 * (1/4) = 0.25 0.25

clamping range: 1500–3000N AdjustClampingForce No 0 * (1/4) = 0.0 0.25

Force feedback required SenseClampingForce Yes 1 * (1/4) = 0.25 0.5

Position feedback required SenseTipPosition Yes 1 * (1/4) = 0.25 0.75

Table 5-3: Example Calculation of the Fitness value for Candidate 1A

 Fixture Reconfiguration Methodology

 - 121 -

For the other candidates, the fitness values are calculated in the same way, resulting in the

list, shown in the upper row of Table 5-4. The list is then reordered so that the candidates

with higher fitness values are sorted before those with lower values.

5 6 7 8 94321

1-A (0.75) 1-B (1.0) 1-C (1.0) 2-A (1.0) 2-B (0.5) 2-C (0.5) 3-A (0.25) 3-B (1.0) 3-C (1.0)

1-B (1.0) 1-C (1.0) 2-A (1.0) 3-B (1.0) 1-A (0.75) 2-B (0.5) 2-C (0.5)3-C (1.0) 3-A (0.25)

Before

After

Table 5-4: Ordering of the Candidate List for the Illustrative Example

A special case exists for one-dimensional, continuous transport components such as rail

guides. These types require an assignment method that takes into account the mounting

order of the modules because this restricts the allowed repositioning of the modules. As a

result, there is the risk that modules are assigned with contact points, they cannot reach

because other modules prevent them from being moved to their target positions. This is

illustrated in Figure 5-16 which shows a rail with three fixture modules, each of them able

to reach the contact points according to their workspace definitions. An incorrect module

assignment as shown in Figure 5-16b would obviously lead to an unsolvable situation for

the reconfiguration procedure. In order to avoid this, the candidate list is sorted a second

time according to the following two criteria.

Workpiece Workpiece

(a) (b)

1

2

3

1

2

A

B
C

A

B

3

C

Figure 5-16: Importance of the Mounting Order for One-dimensional Transport Components

First the list is sorted in ascending order according to the distance between the origin of the

local coordinate system of the transport component (displayed as a dot in the figure oben)

to the current body positions of the fixture modules. This information can be directly

retrieved from the fixture module objects. Secondly, the list is sorted in ascending order

according to the distance between the origin of the local coordinate system of the transport

 Fixture Reconfiguration Methodology

 - 122 -

component and the target body positions. Consequently, for the example in Figure 5-16 a

new sequence of the candidate entries evolves which is shown in Table 5-5.

5 6 7 8 94321

1-A 1-B 1-C 2-A 2-B 2-C 3-A 3-B 3-C

3-A 3-B 3-C 2-A 2-C 1-A 1-B2-B 1-C

Unordered List

First Criteria

3-C 2-C 1-C 3-B 1-B 3-A 2-A2-B 1-ASecond Criteria

Table 5-5: Illustration of the Ordering of the Candidate List for Rail-based Transport Components

After the list has been ordered, the best matches are selected. For this, the algorithm iterates

through the sorted list and connects each unmarked entry with both, the FixtureModule

object and the ContactPoint object, thereby establishing a link between the both. At the

same time, all other entries of the candidate list which contain the same fixture module or

contact point are marked to avoid that either of them are assigned twice. As a result, each

module is assigned with exactly one contact point, thereby becoming aware of its desired

configuration for the fixturing of the next workpiece. The algorithm is illustrated in Table

5-6 for the previous example.

53 6 7 8 9421

3-C 2-C 1-C 3-B 1-B 3-A 2-A2-B 1-A1st Iter.

3-C 2-C 1-C 3-B 1-B 3-A 2-A2-B 1-A

3-C 2-C 1-C 3-B 1-B 3-A 2-A2-B 1-A3rd Iter.

2nd Iter.

Table 5-6: Final Assignment of Fixture Modules with Contact Points

As can be seen, the algorithm correctly selects candidates 2-B and 1-A as the best matches.

If there is at least one contact point unassigned after the algorithm finishes, the current

fixture layout cannot be adapted.

5.3.4. Generation of Reconfiguration Commands

After the completion of the assignment step, each fixture module can independently

generate the reconfiguration sequence for the changes required by the desired

configuration. For each reconfiguration step, the concerned fixture module creates an

individual object of one of the subclasses of ReconfigurationCommand which encapsulates

 Fixture Reconfiguration Methodology

 - 123 -

the required target values. These objects follow the ―Command‖ design pattern which has

been described in section 4.7.3 and they are stored in a global list maintained by the fixture

coordinator software. The decision-making strategy of the command generation step is

illustrated in Figure 5-17 which is carried out for all modules. This leads to a complete list

of the required reconfiguration commands in order to adapt the current fixture setup into the

desired configuration. It should be noted that the creation of the command objects does not

yet trigger the reconfiguration process. The command execution is described in section

5.3.6.

Current BP =

Desired BP?

Current TP =

Desired TP?

Yes Current Role =

Desired Role?

Yes Yes

No

Create

ChangeBodyPositionCmd

No

Create

ChangeTipPositionCmd

No

Create

 ChangeRoleCmd

Proceed to next step

Requirements

fulfilled?

Adaptation not possible

Figure 5-17: Decision-making for the Reconfiguration Command Generation

As can be seen in the flow chart, the first step consists of examining the fitness value of the

ReconfigurationInfo object attached to the module, in order to verify if the fixture module

meets all requirements of the contact point. This is necessary because the previous module

assignment step may have resulted in matches which do not fully meet the functional

requirements of the contact point. One reason for this is that the described sort algorithms

only ensure that the matches with the highest fitness value are selected. However, it is not

guaranteed that selected candidates fully match the requirements. Additionally, in case of

one-dimensional transport components, the matches are selected according to the mounting

order of the modules, thereby ignoring whether or not they meet the contact point

requirements. To verify if all requirements are satisfied, it is checked if the previously

calculated fitness value is equal to 1.0. If this is not the case, the functional requirements of

the contact point are not satisfied and consequently the setup adaptation process is aborted.

Instead, the module must either be exchanged or upgraded which ultimately triggers the

capability recognition method, described in section 5.2. If all requirements are met, each

module compares its current states with the desired values of the associated contact point.

First, the current body position and orientation on the transport component are compared

with the specifications, stored in ReconfigurationInfo object. If these are not equal, a new

 Fixture Reconfiguration Methodology

 - 124 -

command of the class ChangeBodyPositionCmd is created and appended to a global list,

maintained by the fixture coordinator. Since the command object is configured with the

ReconfigurationInfo object, it has access to all target values when it is executed later on.

After this, the current tip position is compared with the desired tip position which is stored

as an attribute of the ReconfigurationInfo object. If the values differ, a new command

object of the class ChangeTipPositionCmd is added to the list. Finally, the current and the

requested role of the fixture module are compared, resulting in a new object of the class

ChangeRoleCmd, in case a difference is detected. Similar to the previous commands, the

object is configured with the reference of the ReconfigurationInfo object.

5.3.5. Collision Avoidance

Before the reconfiguration of the fixture can be executed it is necessary to reorder the

command list in order to prevent collisions between fixture modules. The reason for this is

that the commands have been created in an arbitrary order, not taking into account any

potential collisions between fixture modules. In particular, one-dimensional transport

components such as rails need to have a mechanism to predict any collisions during the

reconfiguration sequence. For other types of transport components with external

mechanisms for the repositioning of the fixture modules, the collision problem is less

problematic. For example, in case of a discrete transport component like a base plate with

mounting holes, a robotic system can be used to reposition the modules. Typically, these

systems have their own path planning and collision avoidance algorithms. For this reason,

the algorithm described in this section is focused only on one-dimensional, continuous

transport components.

Figure 5-18 illustrates the necessity to reorder the commands for one-dimensional transport

components, using the previously described example rail with three fixture modules. On the

left side of the drawing, the current module configuration is shown whereas the right side

depicts the target configuration. Below the generated reconfiguration commands are listed.

From the drawing it is clear, that the execution of this sequence would lead to a collision

between the fixture module 1 and 2 when the first command is carried out. Consequently,

the list needs to be reordered to make sure that module 2 is moved prior to module 1.

 Fixture Reconfiguration Methodology

 - 125 -

Additionally, it must be assured that the tip position of a module is changed after the

module has reached its target body position and orientation on the transport component.

Workpiece Workpiece
1

2

3

1

2

3

A

B
C

A

B

C

Command type Fixture Module DescriptionPosition in List

ChangeBodyPositonCmd 1 Move module to its target body position1

ChangeTipPositionCmd 1 Extend actuator to target tip position2

ChangeBodyPositionCmd 2 Move module to its target body position3

ChangeTipPositionCmd 2 Extend actuator to target tip position4

ChangeRoleCmd 2 Change modules role to Locator5

ChangeBodyPositonCmd 3 Move module to its target body position6

ChangeTipPositionCmd 3 Extend actuator to target tip position7

Current Configuration & contact point

assignment
Target configuration

Figure 5-18: Example for Possible Collision Between Fixture Modules

The algorithm to generate a collision-free reconfiguration sequence takes the unordered

command list, called LIN, as an input and creates a new empty list LOUT where the

command objects are placed in the right order. It then enters a loop which iterates through

all entries of LIN. For each command of LIN it is verified if its execution would lead to a

collision. If no collision is predicted, the command object is removed from LIN and added to

the output list LOUT. Additionally, its effects for the associated fixture module are internally

updated in the data model in order to be able to correctly test the remaining commands in

LIN. If, on the other hand, the command would cause a collision, it remains in the unsorted

list. After all commands have been tested in the loop, it is verified whether or not the list

LIN is empty. If this is the case, the algorithms finishes and the collision-free command

sequence can be retrieved from LOUT. On the contrary, if there are any commands left in the

list LIN, the algorithm only continuous if at least one element was appended to LOUT during

the previously described loop. In this case, another iteration of the described steps is carried

out with the remaining elements of LIN. If, however, no elements were appended to the list

LOUT, a collision-free sequence cannot be found. The algorithm aborts and the automatic

 Fixture Reconfiguration Methodology

 - 126 -

setup adaptation of the current fixturing system is not possible. The complete algorithm is

shown in the flow chart in Figure 5-19.

Do for all Commands in LIN

cmd = next

Command of

LIN

Collision

predicted?

No Move cmd to

LOUT

Update

associated

fixture module

Yes

LIN empty?

Yes

LIN

No

Create empty

list LOUT

Collision-free

sequence found

Yes No

Collision not

avoidable

LOUT

changed?

Figure 5-19: Decision-making Sequence for the Reordering of the Reconfiguration Commands

To predict collisions, each command subclass implements the method causesCollision(),

described in section 4.7.3. Consequently, the collision verification task is delegated to each

command object. The advantage of this object-oriented method delegation approach is that

the entire algorithm becomes independent from the number and type of commands. Each

command class can implement the collision verification differently without having an effect

on the rest of the system. Equally, new command class can be introduced without affecting

the overall framework. The subclass ChangeRoleCmd always returns false, since the mere

change of the role does not cause any collisions with other modules. The class

ChangeTipPositionCmd returns true if the list LIN contains another object of the class

ChangeBodyPositionCmd which is linked to the same fixture module. Consequently, in this

case the command remains in the list as long as the command to change the body position

is not moved to the list LOUT. This strategy ensures that during the execution of the

reconfiguration procedure, the modules are first repositioned on the transport component,

before their tip position is changed. For the commands to change the body position, it is

verified if another module is located between the current body position of the concerned

fixture module and its target body position. For this, the direction vector

 between the current and the target body position is calculated. Subsequently, the

module‘s position is gradually translated along this vector, as shown in Figure 5-20. The

drawing shows a simplified view of the bounding box surrounding a fixture module. The

module is moved to the target position along the direction vector . The intermediate

positions during the movement of the module are shown by the dashed boxes. For each

intermediate position, including the target position, it is tested if the bounding box of this

 Fixture Reconfiguration Methodology

 - 127 -

module interferes with any of the other modules. If an interference is detected, the

concerned command object remains in the list LIN, as shown in the flow chart in Figure

5-19.

y

z

Bounding Box of module

in current position

 d

y
x

z

y
x

z

...
x

Bounding Box of module

in target position

Figure 5-20: Illustration for the Collision Detection

The interference test can be done using any of the myriad of collision detection algorithms

available in literature. In the scope of this thesis, the algorithm proposed by Gottschalk et

al. [164] is used because it can efficiently detect collisions between two arbitrary oriented

objects in 3D space. The algorithm requires the coordinates of the bounding boxes of the

fixture modules and the matrices for the coordinate transformations from the local

coordinate systems of both modules into the global coordinate system. Based on these

inputs, it can be verified if two modules interfere with each other. The internal details of

this algorithm are irrelevant for the overall decision-making of the reconfiguration

procedure and are therefore omitted. A software library implementing the algorithm is

available [165] and has been used for the prototype, described in chapter 7.

To illustrate the complete procedure, the command list for the example introduced in Figure

5-18 shall be ordered according to the algorithm described above. Iterating through the

unordered command list, the first entry is the command to move the fixture module 1 to its

new body position. As can be seen clearly from the drawing in Figure 5-18, this causes a

collision with module 2. Consequently, the command object remains in the list. The second

entry is concerned with the change of the tip position of module 1. As described before, this

object also remains in LIN because there is still an object of the type

ChangeBodyPositionCmd in the list which is related to the same fixture module. The third

entry does not cause a collision and is therefore added to the so-far empty list LOUT. In the

 Fixture Reconfiguration Methodology

 - 128 -

same way, the remaining commands in LIN do not cause any collision and are therefore

moved to LOUT one-by-one. Hence, after one iteration the contents of the lists LIN and LOUT

are as shown below.

Command type ModuleIndex

ChangeBodyPositonCmd 11

ChangeTipPositionCmd 12

Command type ModuleIndex

ChangeBodyPositonCmd 21

ChangeTipPositionCmd 22

ChangeRoleCmd 23

ChangeBodyPositonCmd 34

ChangeTipPositionCmd 35

Unordered list LIN Ordered list LOUT

Figure 5-21: Example - the Lists LIN and LOUT after the First Iteration

A second iteration through the list LIN is carried out, because LIN is not empty and the list

LOUT was changed during the previous loop. Thus, the command for the movement of

module 1 is tested again for collisions. This time, however, the internal data model takes

into account the target positions of the other modules as an effect of the previously sorted

commands. Consequently, no collision is detected this time and the command is added to

the end of list LOUT. After the completion of the second iteration, the algorithm concludes,

since LIN is now empty. The final collision-free command sequence is shown below.

Unordered list LIN Ordered list LOUT

Command type ModuleIndex Command type ModuleIndex

ChangeBodyPositonCmd 21

ChangeTipPositionCmd 22

ChangeRoleCmd 23

ChangeBodyPositonCmd 34

ChangeTipPositionCmd 35

ChangeBodyPositonCmd 16

ChangeTipPositionCmd 17

{empty}

Figure 5-22: Example - the Lists LIN and LOUT after the Second Iteration

5.3.6. Command Execution

If all previous steps were successful, the command list can be executed to gradually

transform the fixture configuration. This is done in two phases, as shown in Figure 5-23.

These phases can be indicated by the fixture coordinator by the setting of state variables

which the command objects can access. The first phase is carried out before the workpiece

is placed in the fixture. All modules are repositioned on the transport components and the

 Fixture Reconfiguration Methodology

 - 129 -

roles of all modules are changed to their target specification. Additionally, the tip positions

of all modules acting as locators are adjusted. However, the commands to adjust the tip

position of modules acting as clamps are not executed in this phase. Consequently, these

modules remain retracted in this phase. After the workpiece is placed in the fixture, the

second phase commences which adjusts the tip positions of the clamping modules.

Workpiece

placed?

For all commands

cmd := next

command

Execute

command

For all commands

cmd := next

command

Execute

command

Yes

No

Phase I Phase II

ChangeTipPositionCmds attached to

modules acting as Clamps remain idle

ChangeTipPositionCmds attached to

modules acting as Clamps are executed

Figure 5-23: The Two Phases of the Command Execution Sequence

As can be seen in the flow chart, the command execution sequences in both phases look

similar. This is because each subclass of ReconfigurationCommand can implement the

execute()-method differently. The class ChangeRoleCmd updates the required role in the

internal data model of the fixture coordinator by setting the attribute currentRole in the

class ProvidesRole. In case, the module can act as a clamp or a locator, the sense force

capabilities are activated adequately. For example, if the module acts a clamp in the next

configuration, the capability class SenseClampingForce is activated and the capability

SenseReactionForce is deactivated. This way it is avoided that conflicting force sensor

information is received during the clamping procedure. The class ChangeTipPositionCmd

implements the execute()-method such, that it returns immediately without doing anything

during the first phase of the reconfiguration process. In the second phase however, the

command object publishes the module identifier and the desired value for the tip position,

using the communication infrastructure. These target values are received by the software of

the concerned fixture module which subsequently performs the required movement and

publishes the current tip position into a separate data topic. As a consequence the fixture

coordinator is informed about the progress of the movement and updates its internal data

model accordingly. The command object waits until either the target position has been

reached or a deadline has elapsed in order to prevent the command from waiting eternally.

 Fixture Reconfiguration Methodology

 - 130 -

The execute()-method of the ChangeBodyPositionCmd class works according to the same

principle. The target values are published and it waits until the desired values have been

retrieved by the fixture coordinator and updated in its internal data model. The details for

the communication infrastructure and the individual data topics are described in chapter 6.

The main advantage of the followed object-oriented design pattern and the delegation

principle is that the software framework becomes independent from a particular fixture

setup. This is because the command objects do not contain any implementation code to

reconfigure a particular fixture module. Instead, each command publishes the desired

values for its module, thereby delegating the responsibility for the execution to the fixture

modules or other stakeholders which have been registered as subscribers. As a result, the

fixture coordinator is unaware of the components responsible to carry out the actions of the

command. For example, when a ChangeBodyPositionCmd command is executed, it triggers

its associated fixture module object to publish the desired body position and orientation,

thereby delegating the task to the equipment responsible for moving this fixture module.

However, for the fixture coordinator it is irrelevant which component has subscribed to this

information. In the experimental test bed, presented in chapter 7, the software programs

controlling the movement of the rail carriers are the subscribers for this information. In

other scenarios, the subscriber might be a robot, picking up each fixture module from its

current position and placing it at the target position. Furthermore, due to the common

interface of the command objects, the complexity of the entire reconfiguration process is

reduced to simple calls of a variable number of execute()-methods. These methods are

invoked by the fixture coordinator without knowing any implementation details or even the

type of a particular command. As a result, the reconfiguration process becomes independent

from these aspects. This allows programmers to introduce new command classes in the

future or to change the implementation code of existing commands without affecting the

overall logic. Additionally, the same algorithm works for simple and complex

reconfiguration tasks in the same way as this is reflected only by the number of command

objects in the list.

 Fixture Reconfiguration Methodology

 - 131 -

5.4. Chapter Summary

A new decision-making methodology for fixture reconfiguration has been described which

consists of two parts, namely the capability recognition method and the setup adaptation

method. The first part describes how the elements of the object-oriented data model are

instantiated by both, the fixture module software and the fixture coordinator, in order to

reflect the capabilities of the current fixture setup. As a consequence, the software

framework is rendered applicable to a large variety of different fixturing systems. The

second part defines the steps to reconfigure an existing fixture layout for the next

workpiece. The core idea is based on matching the fixture module objects with the contact

point objects from the fixture design. This assignment makes it possible to delegate the

generation of the reconfiguration sequence to each individual fixture module.

The methodology is a significant improvement over existing approaches because it

addresses the adaptation of the fixturing software during the reconfiguration procedure.

Unlike existing concepts which appear to be limited to a specific fixture layout, the

presented methodology is applicable for a range of different systems. This is achieved

through the dynamic generation of the object model elements in order to reflect the

capabilities of a given system. In addition, the concept allows for the combination of

capabilities when fixture modules are added and uses software delegation to fulfil requests

during the operation of the fixture. Moreover, the methodology has contributed to the field

of object-oriented design patterns by applying the Command pattern to a new area, namely

the fixture reconfiguration problem.

 Communication Infrastructure for Adaptive Fixtures

 - 132 -

6. Communication Infrastructure for Adaptive Fixtures

6.1. Introduction

The fixtures addressed by this research, consist of an arbitrary number of modules which

can be added, removed or replaced to alter the capabilities. Consequently, these fixtures can

be characterised as complex distributed systems with dynamically-changing network

topologies. For this reason, the reconfiguration methodology and data model must be

integrated with a communication infrastructure that is able to dynamically establish

communication channels among the modules, the fixture coordinator and other subsystems

that need to interact with the fixture.

Available middleware technologies were assessed against the communication requirements

of adaptive fixtures in chapter 3. As a result of this evaluation the Data Distribution Service

(DDS) was selected as the foundation for the communication framework. Consequently, the

mechanisms provided by DDS must be adapted to the needs of the fixturing domain. In

particular, suitable data types and data topics must be defined for the data exchange

between the fixture modules and the fixture coordinator. Thus, the infrastructure described

in this chapter constitutes the adoption of an emerging middleware standard to a new

application domain. Additionally, the method interfaces of the data model objects are

described which allow the access of the fixturing hardware.

Section 6.2 describes the class structure defined by DDS to realise the publish/subscribe

communication and explains how the Quality-of-Service concept is implemented by the

middleware standard. Based on this, the communication infrastructure for the adaptive

fixtures is described in section 6.3. This includes, the definition of the data topics, the data

types and the Quality-of-Service settings. The extension of the data model elements with

publisher/subscriber classes and a method interface is the subject of section 6.4. Finally,

section 6.5. illustrates the described concept with an example and outlines the interactions

between the fixture coordinator and the modules during the clamping procedure.

 Communication Infrastructure for Adaptive Fixtures

 - 133 -

6.2. Publish/Subscribe with the Data Distribution Service

The fundamental principle of the publish/subscribe concept was explained in detail in the

literature review (see section 2.5). As discussed there, the approach is particularly suitable

for many-to-many communication between an arbitrary number of participants in a

dynamically changing network environment. The Data Distribution Service builds on the

described communication principle and provides easy-to-use communication services

which allow applications to exchange information in a platform-independent way. The

following sections aim to give a more detailed overview on how communication is

achieved using DDS, in particular the class model and the Quality-of-Service concept.

6.2.1. The Data Centric Publish/Subscribe Model

Data exchange with DDS is realised according to the Data Centric Publish Subscribe

(DCPS) model. This model describes the interfaces and relations of all entities that

participate in the communication which is shown in Figure 6-1. Although fundamental

knowledge of these classes and their relationships is important in order to understand DDS,

they do not have to be programmed manually by the application developer. Instead, any

DDS implementation provides automated tools to generate these classes, based on the

target platform and the data type definitions of the application. The data model for the

fixture modules and the fixture coordinator must be enhanced by these classes and the

methods they provide must be used in order to achieve communication.

1

*

Entity QosPolicy

Publisher Topic Subscriber

DataWriter DataReader

Data

1

*

1

*

1

*

*1

1

1 *

* *

Figure 6-1: Class Diagram of the DCPS model (adopted from [166])

The core of the model is the class Entity. It is configurable with Quality-of-Service policies

and can be attached with listener objects to be notified about events. Due to the inheritance

 Communication Infrastructure for Adaptive Fixtures

 - 134 -

relationship these characteristics are passed on to all other classes of the model, each of

them defining a specialised set of QoSPolicy objects to fine-tune the data transfer. The class

Topic represents a data flow that is defined by an unique identifier and a data type. More

specifically, it connects the publishing and the subscribing ends of the communication. The

former consists of the class Publisher that is internally used by the middleware to send out

data. It can be associated with multiple objects of the class DataWriter which provides a

data type specific access for the application to trigger the publisher. This means, for every

data type, a dedicated DataWriter-class is generated which provides the method interface to

send samples of this type. Essentially, this consists of the method write() which expects one

sample of a given type as a parameter. The subscribing side of the communication is

similarly structured. Internally, data is received by objects of the class Subscriber. These

can be accessed by the application through data type specific objects of the class

DataReader. The latter are automatically generated for each data type and provide the

method interface to receive data of a given type. In its most basic form, this consists of the

method take() which returns the retrieved samples of a given data type to the application.

6.2.2. The Quality-of-Service Concept

As described in the literature review (see section 2.5), the Quality-of-Service concept is a

widely-accepted method to configure the communication behaviour. The QoS model

defined by DDS is a rich set of classes which are derived from QosPolicy and therefore can

be attached to all objects that are involved in the communication. Each of these policies

associates a name with a value and controls a specific aspect of the behaviour of the

service. The DDS specification defines separate semantics for the publishing and the

subscribing side of each QoS parameter. To ensure correct communication, the QoS

policies at the publisher side must be compatible with those at the subscribing end. Figure

6-2 illustrates this for the data exchange between a publisher and a subscriber that are

configured with individual sets of Quality-of-Service parameters. The middleware

automatically verifies if the QoS settings for corresponding publishers and subscribers

match according to the subscriber-requested, publisher-offered pattern. According to this

pattern, communication is only established if the offered communication properties of the

publisher meet the requested behaviour of the subscriber.

 Communication Infrastructure for Adaptive Fixtures

 - 135 -

Data

Writer

Data

Reader

Publisher Subscriber

Offered

QoS

Requested

QoS

Topic

Figure 6-2: DDS Communication Model with Quality-of-Service

Furthermore, the utilisation of QoS settings addresses the needs of real-time applications

because it provides precise control over resource usage and the timeliness of the data

exchange. At the same time the concept preserves the flexibility inherent to the

publish/subscribe model. Additionally, the QoS concept can be used to alleviate the

communication challenges resulting from late-joining applications which is explained in

detail in section 6.3.3. This aspect is particularly relevant for adaptive fixturing systems,

since it provides the means to integrate new fixture modules or other subsystems at any

point in time. The complete QoS specification of DDS can be found in [117].

6.3. Publish/Subscribe Concept for Adaptive Fixturing

Systems

6.3.1. Design of the Topic Structure

A number of data topics have been defined which provide the infrastructure for the

exchange of information between the various components in the fixturing system. The

concept consists of nine topics, each of them associated with one of the data types

described in section 6.3.2. The data topic ―Module Capability Description‖ is used by the

fixture modules to publish their capability descriptions as one data sample during their

initialisation routine. Consequently, the fixture coordinator must subscribe to this topic in

order to be informed about the capabilities of the fixture modules. The data topic ―Slot Link

Info‖ is used by the fixture coordinator to publish which module has been linked with a

particular slot on a transport component. The transport components are subscribers to this

topic, thereby becoming aware of the fixture modules they are connected with. The

 Communication Infrastructure for Adaptive Fixtures

 - 136 -

remaining topics are utilised for the exchange of the current sensor data and desired

actuator values. Figure 6-3 illustrates the topic structure for the complete system. In the

centre of the picture, the data topics are displayed with their unique identifier. Additionally,

the data type that is exchanged through this topic is provided in brackets. An ingoing arrow

from an application to a topic indicates that this application is a publisher for this topic,

whereas an outgoing arrow classifies the application as a subscriber.

FixtureModuleFixtureModule

Module

Capability

Description

(ModuleCap

Defition)

Fixture Modules

Fixture Coordinator

Desired

Tip

Position

(Position)

Current

Tip

Position

(Position)

Current

Clamping

Force

(Force)

Desired

Clamping

Force

(Force)

Current

Reaction

Force

(Force)

Desired

Body

Position

(Body

Position

Info)

Current

Body

Position

(Body

Position

Info)

FixtureModuleFixtureModuleTransport Components

Slot

Link

Info

(SlotLink

Info)

Figure 6-3: Topic Structure of the Publish/Subscribe Communication Architecture

For each module capability two separate data topics are defined. The first topic is used by

each fixture module software to populate its current sensor readings while the fixture

coordinator is registered as a subscriber. Conversely, the target values for the actuators are

published by the fixture coordinator into the second data topic while the fixture modules are

subscribers. This way, the fixture coordinator is a publisher for the topics “Desired Tip

Position”, “Desired Clamping Force” and “Desired Body Position”. The fixture modules

on the other side are publishers for the topics “Current Tip Position”, “Current Clamping

Force” and “Current Reaction Force”. As can be seen in the diagram, the fixture modules

are not connected with the topics “Current Body Position” and “Desired Body Position”.

This is because the local software of the fixture modules is not aware of their own position

and orientation in the global context. Instead, this information is exclusively generated in

the fixture coordinator when a module is linked with a slot on a transport component. Only

the transport components are able to change the position and orientation of the fixture

modules by the repositioning of the associated slots. Consequently, the software of the

transport components and not the fixture modules must subscribe to the desired body

 Communication Infrastructure for Adaptive Fixtures

 - 137 -

position topic. Similarly, the transport components publish information about the current

position of their slots, which is the basis to derive the current body position of the

associated fixture modules. For the fixture coordinator, these interactions are not visible

because in its data model each fixture module object is attached with the capabilities to

adjust and feedback its body position. These capability objects are connected to the

previously mentioned data topics, thereby establishing the communication with the

transport component software. Figure 6-4 presents a detailed view of the described

interactions.

:SensePosition

:Reposition

:Slot:TransportComponent

:AdjustBodyPosition

:SenseBodyPosition

:Fixture Module

Desired Body

Position

Current Body

Position

:SensePosition

:Reposition

:Slot

Fixture Coordinator Transport Component

publish

publish

subscribe

subscribe

Figure 6-4: Interactions Between Transport Components and Fixture Modules

The right side of the drawing shows the software of the transport component which is

responsible for the repositioning of the module. It continuously publishes the slot position

and the orientation of the associated fixture module into the topic “Current Body Position”.

Additionally, it repositions its slot when it receives new target values through the data topic

“Desired Body Position”. On the left side the data model of the fixture coordinator is

shown. As can be seen, it contains the objects for the representation of the transport

components which do not participate in the communication procedure. However, the object

representing the fixture module possesses two capabilities for the current and target body

position which are generated when the module is linked with the transport component as

described in section 5.2.3. The capability SenseBodyPosition is continuously updated with

the position of the associated slot. Based on this information, it updates the transformation

matrix Tslot_to_TC in the fixture coordinator and calculates the new body position of the

fixture module using the equation 5-1, described in section 5.2.3. Similarly, the capability

AdjustBodyPosition of the fixture module is used by the fixture coordinator to reposition a

module. For this, the target position of the slot, the desired slot clocking and the module

clocking are published into the data topic ―Desired Body Position‖, thereby triggering the

 Communication Infrastructure for Adaptive Fixtures

 - 138 -

associated transport component which is responsible for the correct movement of the slot.

The advantage of this approach is that the fixture coordinator can retrieve and change the

body position of a module in the same way as any other capability, even though in reality

the software of the transport component carries out the task.

The described topic structure can easily be extended by further data topics in the future

when more capabilities for fixture modules are defined. For example, new topics can be

defined to communicate the current temperature or error states. Similarly, the

publish/subscribe paradigm facilitates the integration of the fixture with other subsystems

the manufacturing environment. For example, a Human Machine Interface (HMI) can

participate in the data exchange by registering publishers or subscribers for the appropriate

data topics and receive data without affecting the rest of the system.

6.3.2. Specification of Data Types

The second step for the definition of the communication infrastructure consists of the

specification of the data types which are used to transfer information over the topics. Due to

the variety of fixture modules with different capabilities and data formats, the concept is

challenged by the trade-off between an efficient data transfer and the interpretation of data.

On one hand, other systems must be informed about the capabilities of a fixture module,

including its limitations and how to interpret the data coming from it. On the other hand, it

would not be efficient to publish this meta-information with every data sample during the

operation of the fixture. To overcome this problem, the communication infrastructure

clearly separates between data types which provide the meta-information needed by other

systems to interpret the capabilities of the fixture module and data types for the actual data

exchange. This approach allows each module to publish its capability description only once

during its initialisation routine. After this, simple data structures can be used for the

exchange of information during the operation of the fixture, thereby reducing network load

and processing time during the clamping procedure. The following data types have been

defined using the platform-independent Interface Definition Language (IDL). Based on

these specifications, the source code for the realisation of the publish/subscribe

 Communication Infrastructure for Adaptive Fixtures

 - 139 -

communication can be generated automatically for numerous programming languages and

operating systems.

6.3.2.1. Data Types for the Description of the Fixture Module

Capabilities

For the distribution of the module capabilities the structural data type ModuleCapDefinition

has been defined in Listing 1. This structure contains the numerical identifier of the fixture

module and information about the occupied space of the module. Additionally, further

attributes are defined which specify the characteristics and limitations of each capability.

However, the attributes do not reveal any information about the fixture module‘s structure

or the capabilities of its subdevices. This information remains encapsulated in the fixture

module itself, thereby providing a functional view to the fixture coordinator. In the

following listing, the attributes are defined within the brackets. Each attribute is defined by

a data type, followed by a name. According to widely accepted conventions, the data types

start with capital letters while attribute names begin with small letters.

struct ModuleCapDefition{

long id;

OccupiedSpace occupiedSpace;

SenseTipPositionCapability senseTipPositionCapability;

AdjustTipPositionCapability adjustTipPositionCapability;

SenseReactionForceCapability senseReactionForceCapability;

AdjustClampingForceCapability adjustClampingForceCapability;

SenseClampingForceCapability senseClampingForceCapability;

ProvidesRoleCapability providesRoleCapability;

};

Listing 1: The Data Type ModuleCapDefinition

Each capability attribute is defined as a structural data type containing the relevant

properties of a given capability to allow other systems to interpret and use this

functionality. The following section provides the details of these properties.

SenseReactionForceCapability and SenseClampingForceCapability

The data type SenseReactionForceCapability is used to communicate the characteristics

and limitations of the related capability class SenseReactionForce to other systems. If the

fixture module is able feedback a reaction force, the attribute isSupported is set to true and

the attribute sensingInfo is filled with the values of the capability class. The data type

SensingInfo has been described in section 4.4.3 and defines the value range for the force

 Communication Infrastructure for Adaptive Fixtures

 - 140 -

feedback, including its resolution and measuring unit. In case, further properties are

required, the data type SenseReactionForceCapability can be extended by further attributes.

Setting the field isSupported to false, indicates to other systems that the module cannot

feedback a reaction force. Consequently, the other attributes are ignored in this case. The

IDL definition of this data type are provided by Listing 2.

struct SenseReactionForceCapability{

SensingInfo sensingInfo;

boolean isSupported;

};

struct SenseClampingForceCapability{

SensingInfo sensingInfo;

boolean isSupported;

};

Listing 2: Definitions of the Data Types SenseReactionForceCapability and
SenseClampingForceCapability

As can be seen in the listing above, the data type describing the capability for the feed back

the clamping force has been defined in a similar way which is used to indicate whether or

not the fixture module is attached with an object of the class SenseClampingForce.

SenseTipPositionCapability

This data type is used if the module is able to feed back the position of its actuator tip as a

result of the capability SenseTipPosition. Since the tip position is published as a point

containing the x, y and z values with respect to the local coordinate system of the module,

this data type contains three elements specifying the feedback information for the x, y and z

components. Listing 3 provides the IDL definition of this data type.

struct SenseTipPositionCapability{

SensingInfo sensingInfo_x;

SensingInfo sensingInfo_y;

SensingInfo sensingInfo_z;

boolean isSupported;

};

Listing 3: The Definition of the Data Type SenseTipPositionCapability

As described before, the attribute isSupported indicates whether or not the capability is

supported by the fixture module. If this is set to true, the remaining attributes provide more

detailed information about the value range, resolution and measuring unit for the x, y and z

components of the tip position.

 Communication Infrastructure for Adaptive Fixtures

 - 141 -

AdjustClampingForceCapability

If the fixture module contains an actuator that can exert a clamping force, the attribute

adjustClampingForceCapability is filled with the relevant properties to allow other systems

like the fixture coordinator to use this functionality. These values stem from the attributes

of the class AdjustClampingForce which has been generated by the fixture module during

its initialisation procedure. The definition of the data type is provided in Listing 4.

struct AdjustClampingForceCapability{

ClampingRange clampingRangePush;

ClampingRange clampingRangePull;

ClampingDirection clampingDirection;

boolean isSupported;

};

Listing 4: The Definition for the Data Type AdjustClampingForceCapability

The attribute isSupported indicates whether or not the related capability is existent. If set to

true, the attribute clampingDirection indicates the supported directions in which the module

can exert a clamping force. For this, the data type ClampingDirection is used which has

been described in section 4.4.3 The attribute can have the values push, pull, both or

unknown. Based on this, the two remaining attributes specify the details for each supported

direction, using the data type ClampingRange. As explained in section 4.4.3, this

information includes the minimum and maximum amount of force, the measuring unit and

the resolution.

AdjustTipPositionCapability

To describe the capability of moving the actuator tip, the attribute

adjustTipPositionCapability must be specified by the fixture module. Similar to the

previous examples, this attribute is defined as a structured data type containing the relevant

properties. This includes an element of the data type ClampWorkSpace whose structure has

been defined in section 4.5.2. According to this, the workspace is defined by the stroke

range of the actuator in x, y and z direction, relative to the local coordinate system of the

fixture module. Additionally, the swing range around one of the coordinate axis can be

described, provided that the fixture module consists of a clamp that can perform such a

movement. Listing 5 provides the definition for the data type.

 Communication Infrastructure for Adaptive Fixtures

 - 142 -

struct AdjustTipPositionCapability{

ClampWorkSpace workspace;

boolean isSupported;

};

Listing 5: The Definition of the Data Type AdjustTipPositionCapability

ProvidesRoleCapability

Finally, the attribute of the data type ProvidesRoleCapability is used to describe which

functional roles the fixture module supports. Similar to the previous sections, this attribute

is filled with the information of the associated capability class. Consequently, the data type

consists of three elements to describe whether or not a certain role is supported. For this the

already defined data types ClampRoleInfo, LocatorRoleInfo and SupportRoleInfo are used

which have been described in section 4.5.2. The IDL definition of the data type is shown in

Listing 6.

struct ProvidesRoleCapability{

ClampRoleInfo clampRoleInfo;

LocatorRoleInfo locatorRoleInfo;

SupportRoleInfo supportRoleInfo;

};

Listing 6: The Definition of the Data Type ProvidesRoleCapability

6.3.2.2. Data type for the link between fixture modules and slots

When a link is established between the objects of a fixture module and a slot in the fixture

coordinator, the software process of the associated transport component needs to be

informed. For this, the fixture coordinator publishes one element of the data type

SlotLinkInfo into the equally named data topic. As a result, the software processes of the

transport components are informed about which fixture modules they are connected with,

since they are registered as subscribers for this data topic. The IDL definition of this data

type is provided by Listing 7.

struct SlotLinkInfo{

long module_id;

 long tc_id;

long slot_id;

boolean isLink;

SpatialDescription sdModule;

};
Listing 7: The Definition of the Data Type SlotLinkInfo

 Communication Infrastructure for Adaptive Fixtures

 - 143 -

Each sample contains the numerical identifiers of the fixture module, the transport

component and the slot. In this way, the subscribers of the transport components can filter

out the data samples relevant to them. The Boolean attribute isLink is set to true to indicate

that a link between the fixture module and the slot has been established. Conversely, if it is

set to false, it signals that the connection between the module and the slot no longer exists.

Finally, the spatial description of the fixture module relative to the local coordinate system

of the slot is specified by the attribute sdModule. Based on this, the software process of the

transport component can generate the matrix for the coordinate transformation between the

module‘s and the slot‘s local coordinate systems.

6.3.2.3. Data Types for the Exchange of Data during Adaptive Clamping

As a result of the exchange of the module capability description during the initialisation

routine, the fixture coordinator knows how to interpret the data coming from a particular

fixture module. Additionally, it is aware how a particular module interprets the target

values of its actuator. Consequently, the real-time exchange of sensor data and target values

during the fixturing procedure can be achieved using simple data structures. Listing 8

shows the definition of the structured data type Force which is used for both, the

transmission of the sensor readings from the module to the fixture coordinator and the

communication of the target clamping forces. Thus, during the operation of the fixture, the

modules continuously publish samples of this data type into the topics ―Current Clamping

Force‖ and ―Current Reaction Force‖, depending on the capability objects they have been

attached with. To adjust the clamping force, the fixture coordinator publishes elements of

this data type into the topic ―Desired Clamping Force‖ which are received by the fixture

modules subscribing to this topic.

struct Force {

long module_id;

ClampingDirection clampingDirection;

double value;

};

Listing 8: The Definition of the Data Type Force

The data type consists of a numeric attribute for the module identifier, the clamping

direction and the force value itself. However, no further details like the measuring unit are

required, since the meta-information to interpret the force value have been exchanged as

 Communication Infrastructure for Adaptive Fixtures

 - 144 -

part of the module capability description. The module identifier is required to distinguish

between the force samples of the different fixture modules in the system. Similarly, the

module identifier must be specified by the fixture coordinator when it publishes the target

clamping force for a particular fixture module. Only the module with the matching

identifier changes its clamping force by activating its actuator device accordingly. The

attribute clampingDirection is used to indicate the current or desired direction in which the

force is exerted. The possible values for the attribute can either be ―push‖ or ―pull‖.

In a similar way, the current and desired tip positions can be exchanged using the data type

Position whose IDL definition is provided by Listing 9.

struct Position{

long module_id;

double x;

double y;

double z;

};

Listing 9: The Definition of the Data Type Position

To feed back the current tip position, a fixture module publishes one sample of this data

type into the specified data topic as described in section 6.3.1. Subscribers of this topic can

identify the source of this information by examining the attribute module_id and update

their internal data model accordingly. The same principle is used by the fixture coordinator

to issue the target positions for the fixture modules. It publishes data samples containing the

module identifiers and the desired values for the position into the data topic “Desired Tip

Position”. As a result, the fixture modules subscribing to this data topic are informed about

the request and reposition their actuator if the module identifier of the received sample

matches with their own id.

Finally, the data type BodyPositionInfo is used to exchange the values for the position and

orientation of the fixture modules on the transport components. To trigger the repositioning

of a module, the fixture coordinator issues one sample of this data type into the topic

―Desired Body Position‖. This contains the numeric identifiers of the module, the transport

component and the slot. Additionally, the element position provides the target values for

the position of the slot in the local coordinates of the transport component. If required, the

 Communication Infrastructure for Adaptive Fixtures

 - 145 -

target clocking values for the module and its slot can be defined. As described in section

4.6.2, these values specify the desired rotations around the coordinate axis of the module

and the slot, respectively. Negative values indicate a clockwise rotation while positive

angles signal a counter-clockwise rotation.

struct BodyPositionInfo{

long module_id;

long tc_id;

long slot_id;

Point position;

Clocking slotClocking;

Clocking moduleClocking;

};

Listing 10: The Definition of the Data Type BodyPositionInfo

The software processes of the transport components receive the published data samples,

since they are registered as subscribers for the mentioned topic. Based on the attribute

tc_id, each subscriber can verify if a sample is addressed to it. If this is the case, it triggers

the repositioning of the specified slot according to the received target values. The feed back

of the current position and orientation of the fixture modules is carried out reversely. For

each fixture module that is connected with a slot, the transport components publish a data

sample into the topic ―Current Body Position‖. This time, the attributes are filled with the

current position of the slot and the clocking values. When the fixture coordinator receives a

sample from the data topic, it verifies the source of the information, based on the identifiers

and updates the corresponding objects in its data model accordingly.

6.3.3. Quality-of-Service Parameter Specification

The third step for the definition of the DDS-based communication infrastructure consists of

the specification of the Quality-of-Service settings for the various topics. In this context,

different communication requirements exist which are explained in the following sections.

6.3.3.1. Quality-of-Service Settings for the Dissemination of Module

Capability Descriptions

In order to be discovered by other systems, each module publishes its capability description

as one data sample during its initialisation routine. However, the fact that this information

is published only once, raises the challenge of the so-called ―late-joining applications‖.

 Communication Infrastructure for Adaptive Fixtures

 - 146 -

Essentially, if the fixture coordinator is launched later than the fixture modules, it does not

receive the module capability descriptions, issued before its arrival. Consequently, it cannot

interpret the values coming from the modules.

To alleviate this challenge there are two possibilities. The first solution would be to impose

a strict start sequence which regulates when the various components of the system have to

be launched. However, this solution would jeopardise the aim of creating a loosely coupled

communication infrastructure where modules can be added and removed at any time.

Therefore, as a second solution a mechanism is preferred that automatically re-distributes

the module capability information to late-joining applications. In traditional, particularly

client/server-based systems, the problem of redistributing historical data is often solved by

periodical broadcasts or by explicitly requesting the required information in a synchronous

message sequence. Both approaches would cause significant communication overhead and

add complexity to the application logic of the modules. For this reason, the proposed

solution is based on the idea that each publisher of the module capability description stores

its last-written data sample locally. As a result, it can automatically re-distribute this data

whenever a new subscriber for the associated data topic is detected. DDS provides an

effective way to establish this method with the QoS concept. In this way, the responsibility

for the discovery of new modules and the redistribution of their capability descriptions can

be delegated to the middleware and the data is only exchanged when it is really necessary.

For the realisation of this strategy, the data writers and data readers for the module

capability descriptions need to be attached with the QoS settings as shown in Figure 6-5.

The picture also shows how other systems such as Human Machine Interfaces (HMI) can

be integrated with the communication infrastructure.

Fixture Module Module

Capability

Description

Fixture Coordinator

HMI

HISTORY.depth = 1

RELIABILITY.kind = Reliable

DURABILITY.kind = TRANSIENT_LOCAL

Figure 6-5: QoS Settings for the Distribution of the Module Capability Descriptions

 Communication Infrastructure for Adaptive Fixtures

 - 147 -

For the publishing side, the QoS parameter HISTORY specifies if and how many published

data samples are stored for late-joining subscribers. With its attribute depth set to 1 and the

DURABILITY.kind parameter defined as TRANSIENT_LOCAL, it is assured that the last

published sample is stored locally in the publisher. Finally, this strategy is only applicable

for reliable data transfer which is specified by the value of the RELIABILITY parameter.

This way, DDS automatically redistributes the capability information whenever a new

subscriber for the data topic ―Module Capability Description‖ is discovered.

A similar approach can be applied to notify the fixture coordinator when the connection to

certain fixture modules gets lost. For this, the publishers and the subscriber for the module

description need to be configured with the QoS parameter LIVELINESS which determines

if and how the middleware detects communication status changes of entities in the network.

In more the detail, the attribute LIVELINESS.kind must be set to AUTOMATIC which

ensures that the middleware informs the fixture coordinator automatically when ―lost‖

modules are detected. Additionally, the attribute LIVELINESS.lease_duration must be

configured with a time span which specifies how often the status is checked.

6.3.3.2. Quality-of-Service Settings for the Exchange for Clamping Data

The exchange of sensor data and target values for the actuators during the fixture operation

is subject to real-time requirements. Thus, the communication infrastructure must provide a

mechanism to control the timeliness of the data transfer, as well as the resource usage and

memory consumption. This can be achieved by adjusting the QoS parameter sets for the

publisher and subscriber objects.

In this context, there is a trade-off between the reliability of the data transfer and its

timeliness. In order to guarantee a reliable data transfer, any middleware needs to check if

data packets are transmitted correctly and resend lost samples if necessary. However, the

redelivery of packets takes time and hence destroys the timing determinism of the data

transfer [167]. This behaviour would not be acceptable for the exchange of sensor data

during the operation of the fixture. Instead, in this scenario it is more important to retrieve

the most recent sensor updates, rather than trying to redeliver old samples that have been

 Communication Infrastructure for Adaptive Fixtures

 - 148 -

lost. This can be achieved by setting the QoS parameter RELIABILITY to the value of

―BEST_EFFORT‖. Further, the publishers and subscribers can be configured with the QoS

parameter DEADLINE in order to specify the allowed time frames for the data transfer. In

detail, this parameter defines the time period within at least one data sample must be

exchanged. If there is no data update during the specified time, the middleware informs the

application about the violated timing constraint. An exemplary QoS configuration is

illustrated in Figure 6-6 for the exchange of the clamping force. Similar settings are

required for all other topics, based on the requirements of a particular application.

Fixture Module Fixture Coordinator

Desired Clamping

Force

RELIABILITY.kind = BEST_EFFORT

DEADLINE.period = 10ms

Current Clamping

Force

Figure 6-6: Example for the QoS Settings During the Clamping Sequence

Other QoS policies that influence the real-time behaviour are LATENCY_BUDGET and

TIME_BASED_FILTER. The first QoS parameter specifies the maximum allowed time

span between the publication and subscription of a data sample. Consequently, this policy

allows to define priorities for the data transfer. For example, the concept can be used to

specify that the communication of the current reaction force values is more urgent than the

dissemination of displacement sensor readings. Secondly, the QoS policy

TIME_BASED_FILTER can be used to limit the number of data samples a subscribing

application receives, thereby controlling both network bandwidth, as well as the memory

and processing resources for this application. This can be used to overcome the impedance

mismatch, described in section 3.4.1, which affects subscribing applications that cannot

process data at the same rates as it is generated by the publishers. For example, if the

current clamping force values shall be displayed by a HMI application with a graphical user

interface, it is critical to ensure that the HMI is not flooded with too much data. To prevent

this, the subscriber can be configured with the TIME_BASED_FILTER parameter to limit

 Communication Infrastructure for Adaptive Fixtures

 - 149 -

the number of samples it receives, regardless of how fast force sensor values are issued by

the modules. This is illustrated in the drawing unterhalb.

HMI

TIME_BASED_FILTER = 500ms

Fixture Module
Current

Clamping Force

Fixture Coordinator

Figure 6-7: QoS Settings for the Limitation of Received Data Samples.

6.4. Extension of the Data Model

6.4.1. Publisher and Subscriber Objects

To accomplish the communication through the data topics, the model elements instantiated

by the fixture coordinator and the software processes for the fixture modules and transport

components, need to be extended with adequate publisher/subscriber objects. The most

appropriate location for these model extensions are the capability objects of the fixture

modules. In this way, only those publishers and subscribers are generated which are really

required for the information exchange, based on the capabilities the fixture modules offer.

As can be seen in the class diagram in Figure 6-8, three publisher and three subscriber

classes have been defined to send and receive force and positional information. The former

three classes inherit from the class IPublisher which encapsulates the DDS-internal objects

to realise the publishing of data. This includes the objects for the data topic and the DDS-

internal publisher. Additionally, this class provides a common interface for its child classes

which consists of the method initialise(). This method must be called in order to create and

register the publisher/subscriber objects with the Data Distribution Service. Each child class

provides a method for the publishing of a specific data type. Internally, the publication is

realised with a data writer object that is generated, based on the data type definitions. Thus,

the class ForcePublisher contains an object of the class ForceDataWriter. To issue a force

value, the method publish() must be invoked which expects the value to be published as an

argument. The subscriber side is similarly structured. The parent class ISubscriber provides

an interface common to all of its child classes and defines the DDS internal objects for the

 Communication Infrastructure for Adaptive Fixtures

 - 150 -

topic and the subscriber. Each child class contains a customised data reader and the method

subscribe() to receive data and make it available to the application.

IPublisher

initialise()

ISubscriber

initialise()

ForcePublisher

publish(Force force)

ForceSubscriber

subscribe() : Force

PositionPublisher

publish(Position pos)

PositionSubscriber

subscribe() : Position

BodyPositionInfoPublisher

publish(Position pos,

 Clocking slotClocking,

 Clocking moduleClocking)

BodyPositionInfoSubscriber

subscribe() : BodyPositionInfo

SenseClampingForce

SenseReactionForce

AdjustClampingForce

SenseTipPosition

AdjustTipPosition

SenseBodyPosition

AdjustBodyPosition

topic: Topic

publisher: Publisher

topic: Topic

subscriber: Subscriber

dw: ForceDataWriter

dw: PositionDataWriter

dw: BodyPositionInfoDataWriter

dr: ForceDataReader

dr: PositionDataReader

dr: BodyPositionInfoDataReader

Figure 6-8: Model Extension of the Capabilities with Publisher and Subscriber Objects

The essential step during the initialisation of these objects is to register them with the

correct data topic. This is governed by the capability-class they are associated with. For

example, a ForceSubscriber or ForcePublisher which is created by the capability

SenseClampingForce must be registered with the data topic “Current Clamping Force”,

while the publisher/subscriber objects created by the capability AdjustClampingForce are

linked to the topic “Desired Clamping Force”. However, it is important to remember that

the model elements for the fixture modules and their associated capabilities are instantiated

not only in the fixture coordinator software but also in the software processes of the

modules. This means, the publisher/subscriber objects must be registered with different

data topics depending on whether they are instantiated in the fixture coordinator or the local

fixture module software. Figure 6-9 illustrates this with an example of a fixture module that

has the capability to adjust and feedback its clamping force. In the fixture coordinator two

capability objects are instantiated which are shown in the upper part of the picture. The

capability SenseClampingForce registers an object of the class ForceSusbcriber with the

data topic “Current Clamping Force” in order to receive sensor updates from the fixture

module. To send the target clamping force values to the module, the capability

AdjustClampingForce registers a ForcePublisher object with the topic “Desired Clamping

Force”. In the local software routine of the fixture module, however, the relations between

 Communication Infrastructure for Adaptive Fixtures

 - 151 -

the data topics and the publish/subscriber objects are reverted which can be seen in the

lower part of the picture. The capability SenseClampingForce registers a ForcePublisher

object with the topic “Current Clamping Force” to issue the current sensor data to remote

systems. Finally, the capability AdjustClampingForce registers an object of the class

ForceSubscriber to receive the desired clamping forces from the fixture coordinator.

:ForcePublisher
:ForceSubscriber

:SenseClampingForce

:FixtureModule

:FixtureModule

:AdjustClampingForce:SenseClampingForce

:AdjustClampingForce

Current

Clamping

Force

(Force)

Desired

Clamping

Force

(Force)

:ForcePublisher

Fixture Coordinator Process

Fixture Module Process

Data Distribution Service

:ForceSubscriber

Figure 6-9: Example for the Instantiation of the Publisher/Subscriber Objects

Similar relations exist for all other publisher/subscriber objects which are summarised in

the following table. It shows which publisher/subscriber objects are created by a particular

capability in the fixture coordinator and the fixture modules. As described before, the

capabilities SenseBodyPosition and AdjustBodyPosition are not instantiated in the fixture

module program. Instead, the transport components are responsible for the communication

of the related information via the associated data topics.

Topic Capability Fixture Coordinator Fixture Module

Current Clamping Force SenseClampingForce ForceSubscriber ForcePublisher

Desired Clamping Force AdjustClampingForce ForcePublisher ForceSubscriber

Current Reaction Force SenseReactionForce ForceSubscriber ForcePublisher

Current Tip Position SenseTipPosition PositionSubscriber PositionPublisher

Desired Tip Position AdjustTipPosition PositionPublisher PositionSubscriber

Current Body Position SenseBodyPosition BodyPositionInfoSubscriber -

Desired Body Position AdjustBodyPosition BodyPositionInfoPublisher -

Table 6-1: Relations Between Topics, Capabilities and Publisher/Subscribers in the Fixture Modules
and the Fixture Coordinator

 Communication Infrastructure for Adaptive Fixtures

 - 152 -

In addition to these objects, the software processes need to instantiate the

publisher/subscriber objects for the information exchange through the data topics “Module

Capability Description” and “SlotLinkInfo”. These objects are not linked to a particular

capability class, because they are used to transfer the configuration details for the

generation of the data model. As can be seen in Figure 6-10, each software process of a

fixture module creates one object of the class ModuleCapabilityPublisher. This object is

used to publish one sample of the data type ModuleCapDefinition into the specified topic.

The fixture coordinator software and other subsystems that need to discover the fixture

modules, create one object of the class ModuleCapabilitySubscriber.

ModuleCapabilityPublisher

publish() : void

ModuleCapabilitySubscriber ModuleCapabilityListener

on_data_available() : void

Publisher

initialise() : void

Subscriber

initialise() : void

DDSDataReaderListener

on_data_available() : void

Module Capability

Description

Fixture Module Process Fixture Coordinator Process

Figure 6-10: Publisher/Subscriber Classes for the Communication of the Module Capability

Descriptions

As can be seen in the diagram, this class does not have a method to retrieve data from the

associated topic. Instead, a so-called Listener-object is registered with it, that inherits from

the DDS-provided class DDSDataReaderListener. The latter defines the method

on_data_available() which is automatically called by the middleware whenever a new data

sample is available in the data topic. This way, the fixture coordinator is asynchronously

informed about the discovery of the fixture modules whenever they publish their capability

description. The described approach follows the object-oriented ―Observer‖ design pattern

which has been described by Gamma et al. [104]. In a similar way, the information about

the connection between the fixture modules and the slots is communicated. The fixture

coordinator creates one object of the class SlotLinkInfoPublisher which is connected with

the specified topic. Whenever the operator connects a slot with a fixture module, one

sample of the data type SlotLinkInfo is published. This information can be retrieved by the

software processes of the transport components by instantiating an object of the class

SlotLinkInfoSubscriber which is associated with a listener, as can be seen in Figure 6-11.

 Communication Infrastructure for Adaptive Fixtures

 - 153 -

SlotLinkInfoPublisher

publish() : void

SlotLinkInfoSubscriber SlotLinkInfoListener

on_data_available() : void

Publisher

initialise() : void

Subscriber

initialise() : void

DDSDataReaderListener

on_data_available() : void

 Slot Link Info

Fixture Coordinator Process Transport Component Process

Figure 6-11: Publisher/Subscriber Classes for the Communication of the Slot Link Information

The described class structure of both previous examples raises the legitimate question why

the classes ModuleCapabilitySubscriber and SlotLinkInfoSubscriber have been defined,

since obviously data is received by the listener classes. The reason is that the listeners

cannot exist on their own. Instead, they must be associated to the DataReader-objects

which are contained in the subscriber classes.

6.4.2. Method interface of the Capability and Device Classes

To trigger the previously described publisher and subscriber objects it is necessary to

extend the capability and device classes of the data model with a method interface. The

interface of the class FixtureModuleCap consists of the method perform() which must be

called in order to carry out a capability. As can be seen in the class diagram below, the

method is parameterless and does not reveal a purpose. Instead, it defines a common

interface which is implemented differently by its child classes. Consequently, all

capabilities are triggered the same way which makes the framework independent of the

type and number of capabilities, a particular fixture setup supports. It also allows

programmers to define new capability classes in the model without affecting the overall

concept. During the fixturing process the fixture coordinator iterates through the capability

list of each module and calls the perform()-methods one after another. The class

AdjustClampingForce publishes the target force which can be retrieved from the

ContactPoint-object, associated with the fixture module. Sensing capabilities first retrieve

the current values from the modules by calling their associated subscriber object. If new

data is received, the internal data model in the fixture coordinator is updated accordingly.

To provide access to the received values for other parts of the system, so-called getter-

methods are defined by each capability class. Equally, setter-methods are defined to

configure the capability classes with the target values to be published. Figure 6-12 shows

 Communication Infrastructure for Adaptive Fixtures

 - 154 -

the class diagram for the mentioned classes with a focus on the method interface. For each

method its name is specified, followed by the parameter list in brackets. If the method has a

return value, the data type of this value is separated by a colon.

FixtureModuleCap

perform()

AdjustClampingForce

getDesiredForce(): Force

setDesiredForce(Force f)

AdjustTipPosition

getDesiredTipPosition(): Point

setDesiredTipPosition(Point p)

AdjustBodyPosition

getBodyPosition(): Point

getSlotClocking(): Clocking

getModuleClocking(): Clocking

setBodyPosition(Point p)

setSlotClocking(Clocking cl)

getModuleClocking(Clocking cl)

SenseTipPosition

getTipPosition(): Point

setTipPosition(Point p)

SenseBodyPosition

getBodyPosition(): Point

getSlotClocking(): Clocking

getModuleClocking(): Clocking

setBodyPosition(Point p)

setSlotClocking(Clocking cl)

getModuleClocking(Clocking cl)

SenseClampingForce

getCurrentForce(): Force

setCurrentForce(Force f)

SenseReactionForce

getCurrentForce(): Force

setCurrentForce(Force f)

ProvidesRole

getRole(): Role

setRole(Role r)

Figure 6-12: Method Interfaces for the Fixture Module Capability Classes

In a similar way, the local software process of each module iterates through its capability

list and continuously calls the perform()-methods. This time, actuating capabilities (e.g.

AdjustClampingForce) first try to retrieve a new target value from the associated subscriber

and then delegate the request down to their nested capability in order to perform the

actuation. For sensing capabilities, the procedure is carried out reversely. For example,

when the perform()-method of the class SenseClampingForce is called, the capability

object first delegates the request to its nested capability until the interface of the device

class is triggered to retrieve the current sensor value. The result is returned to the capability

object of the fixture module which passes it to its associated publisher object to

communicate the current value to the fixture coordinator. A detailed illustration of the

described interactions is provided in section 6.5. To access the nested capabilities, specific

methods are invoked which are defined in the device capability classes, as shown in Figure

6-13.

Locate

SenseForceCapability

senseForce(): Force

SenseDisplacementCapability

senseDisplacement(): double

ApplyForce

applyForce(Force targetForce)

LinearActuationCapability

actuate(Point targetPosition)

DeviceCapability

SupportSwingActuationCapability

actuate(Point targetPosition)
Figure 6-13: Method Interfaces for the Device Capability Classes

 Communication Infrastructure for Adaptive Fixtures

 - 155 -

If the device capability class also contains a nested capability, the request is delegated

further by calling the method interface of the nested capability. This way, the request is

delegated down the object hierarchy until the capability object is reached which is attached

to the sensor or actuator device object. Here, the method interface of the associated Device-

object is called which encapsulates the access to the hardware. Additionally, the actuate()-

method defined by the classes LinearActuationCapability and SwingActuationCapability

converts the target position into coordinates of the actuator device, using the matrix

moduleToDevice which is provided by the device object. An overview of the methods

provided by the device classes is shown in the class diagram in Figure 6-14.

DisplacementSensorForceSensor

Device

LocatorDeviceClampDevice

actuate(Force targetForce)

actuate(Point targetPosition)

SensorDevice

getCurrentValue(): double

SupportDevice

Figure 6-14: Method Interfaces for the Device Classes

To simplify the diagram, the composite pattern (see section 4.4.1) is not shown as it has no

impact on the interface definitions. Further, the method interface of locator and support

devices is empty because they are typically passive elements without any intelligence.

6.4.3. Library Interface Definition for the Hardware Access

The methods provided by the device classes must not contain the implementation code for

the hardware access because this would prevent these classes from being re-used for a

variety of devices from different vendors. Instead, the classes are configured with software

libraries, tailored for a particular device and vendor. Consequently, all requests are

ultimately delegated to the methods offered by devices libraries. This way the hardware

access is extracted from the rest of the software framework which makes the framework

reusable for several different setups.

For each device type a library interface has been defined according to the following class

structure. The parent class IDeviceLib defines the method interfaces for the initialisation of

 Communication Infrastructure for Adaptive Fixtures

 - 156 -

the device library and its closure. Additionally, the class ISensorLib defines the interface of

the method getCurrentValue() which is called to retrieve the current sensor value. Finally,

the class IActuatorLib defines the method interfaces for the force and position controlled

actuation which expect the target actuation and force values as parameters.

IDeviceLib

initialise(): bool

closeDevice(): bool

ISensorLib

getCurrentValue(): double

IActuatorLib

actuate(Force targetForce)

actuate(double targetActuation)
Figure 6-15: Library Interface Definitions

The implementation of these library functions is beyond the scope of this research, since

this depends on the specificities of the hardware device in question. Instead, the described

class structure must be extended by further child classes which implement the method

interfaces, based on the hardware requirements of a particular device. This can be done

with any appropriate programming language, such as LabView, C or C++. The initialise()-

method must correctly register the I/O channels for the hardware communication and

prepare the device for its operation. For actuator devices, this includes the execution of the

procedure to find the home position. Similarly, the closeDevice()-method must contain the

code to correctly release any used software resources. A typical implementation of the

getCurrentValue()-method would access the data acquisition card of the sensor to read a

digital voltage value. In the second step, this voltage value is translated into a force or

position value, depending on the kind of sensor. For electromechanical actuators, a typical

implementation of the positional actuate()-method converts the target actuation value into

motor counts and then sends appropriate commands to the motion controller of the device.

Concrete examples for the implementation of these methods are described in chapter 7,

based on the hardware used for the demonstrator test bed.

6.5. Illustration of the Communication Sequence

To illustrate the previously described interactions during the clamping procedure, this

section presents an exemplary setup consisting of one fixture module communicating with

the fixture coordinator. The module consists of a force sensor and a linear actuator.

 Communication Infrastructure for Adaptive Fixtures

 - 157 -

Consequently, during its initialisation routine the software process of the module creates

the device and capability objects as described in section 5.2.2. On the top of this hierarchy,

the module object is attached with the fixture module capability objects. These objects

register the publishers and subscribers with the data topics as described in section 6.3.1.

Additionally, each capability contains a reference to its nested capability. The latter can

have another nested capability, unless it is connected with the object for the hardware

device. Finally, each device object is configured with an object for the library, which

inherits from the class structure, described in section 6.4.3. For example, the class

ExampleSensorLib shown in Figure 6-16 is a child class of ISensorLib and implements the

interface for the specific sensor hardware. Below the local object model of the fixture

module is shown. For the sake of simplicity, the diagram is limited to the objects related to

the feedback and adjustment of the clamping force.

:FixtureModule:SenseClampingForce :AdjustClampingForce

:CompositeDevice:SenseForce :ApplyForce

:ForceSensor :LinearClamp:SenseForce :ApplyForce

Current

Clamping

Force

Desired

Clamping

Force

:ForcePublisher :ForceSubscriber

:ExampleSensorLib :ExampleActuatorLib
Figure 6-16: Example Object Model of a Fixture Module

During the clamping of a workpiece, the fixture module object continuously calls the

perform() methods of all attached capability objects. When the perform()-method of the

SenseClampingForce capability is invoked, the request is delegated to its nested capability

by calling the method senseForce(). Since this object has another nested capability, the

request is delegated further by another call of the method senseForce(). The receiving

object is linked with the device object for the force sensor and consequently delegates the

request to it by calling the method getCurrentValue(). The device object can access the

hardware through the provided library and returns the current clamping force value. After

passing the measured value up the object hierarchy, it is published to make it available to

the fixture coordinator or other subsystems connected to the communication infrastructure.

 Communication Infrastructure for Adaptive Fixtures

 - 158 -

The UML sequence diagram unterhalb shows the described sequence. The objects are

represented by rectangles on the top of the diagram which are connected with vertical

dashed lines. The latter are called life lines and symbolise the time flowing from top to

bottom. The execution of methods is represented by oblong rectangles on the life line,

thereby showing the sequence of actions. Further details on UML sequence diagrams can

be found in Weilkins and Oesterreich [144].

:Fixture

Module

:SenseClamping

Force

:SenseForce

Capability

:SenseForce

Capability

:Force

Sensor

:Example

SensorLib
:Force

Publisher

senseForce()
senseForce() getCurrent

Value() getCurrent

Value()

publish()

perform()

Figure 6-17: UML Sequence Diagram for the Force Feedback in the Module Program

When the perform()-method of the AdjustClampingForce capability is called by the fixture

module, it first tries to retrieve a new target force value from its associated subscriber. If a

new value is received, it calls the applyForce()-method of its nested capability, passing

over the target force value. Since the receiving object has another nested capability, the

request is delegated further until the capability object is reached, that has access to the

object representing the clamp device. Consequently, the actuate(force)-method of the

device object is called which adapts the clamping force by delegating the request to the

library, it has been configured with. Figure 6-18 shows the UML sequence diagram for the

interactions, carried out during the execution of one perform()-method.

:Fixture

Module

:AdjustClamping

Force
:ApplyForce :ApplyForce

:Linear

Clamp

:Example

ActuatorLib

:Force

Subscriber

actuate()

perform()
subscribe()

applyForce()
applyForce()

actuate()

Figure 6-18: UML Sequence Diagram for the Force Adjustment in the Module Program

 Communication Infrastructure for Adaptive Fixtures

 - 159 -

If no target force is received by the subscriber in the first place, the described sequence is

carried with the last received target force which is stored as an attribute in the class

AdjustClampingForce. This way, the fixture module does not stop adapting the clamping

force in the time interval between two received target force values. Consequently, the

adaptation is independent from the frequency the fixture coordinator issues target values

and solely depends on the cycle time of the module process. The cycle time is defined as

the time which the module needs to execute the perform()-methods of all attached

capabilities.

The fixture coordinator software operates independently from the sequence executed in the

fixture modules. During its initialisation routine it receives the capability description from

the fixture module which results in the generation of the objects shown in Figure 6-19. To

simplify the subsequent considerations, the diagram only shows the capabilities for the

feedback and adjustment of the clamping force.

Current

Clamping

Force

Desired

Clamping

Force

:ForcePublisher
:ForceSubscriber

:SenseClampingForce :FixtureModule :AdjustClampingForce

Figure 6-19: Example Object Model in the Fixture Coordinator

During the clamping procedure, the fixture coordinator also continuously iterates through

the capability lists of all module objects, and calls the common interface of the perform()-

methods. The implementation of this method in the class SenseClampingForce triggers the

subscriber object to retrieve the latest sensor update. If new data has been received, the data

model is updated accordingly. When the perform()-method of the class

AdjustClampingForce is called, the desired clamping direction and the target force value

are retrieved. The former can be obtained from the ReconfigurationInfo-object that is linked

with the fixture module. The latter is generated by the ForceProfile-object which is

attached to the associated contact point of the fixture module. As described in section 4.7.2,

the class ForceProfile defines the common interface generateTargetForce() which must be

implemented by its child classes. Hence, depending on the implementation of the child

 Communication Infrastructure for Adaptive Fixtures

 - 160 -

class, the target force value can be generated according to different strategies. For example,

a time-driven force profile returns a pre-defined value from a look-up table, based on the

elapsed time of the manufacturing process. Other child classes of ForceProfile could return

a target force, based on the current tool position or the currently experienced reaction forces

on other fixture modules. Ultimately, the target force value is issued by the ForcePublisher

object, associated with the capability. To release the clamps, a target value of 0 is

published. Figure 6-20 provides the UML sequence diagram for the execution of both, the

force feedback and the issuing of new target force values.

:Sense

ClampingForce

:Force

Publisher

:Adjust

ClampingForce

:Force

Subscriber

:Reconfiguration

Info

:Force

Profile

:Fixture

Coordinator

perform()
subscribe()

perform()
getDirection()

generateTargetForce()

publish()

Figure 6-20: UML Sequence Diagram for the Capability Execution in the Fixture Coordinator

The described sequences are carried out continuously by the module software and the

fixture coordinator, as they call the perform()-methods of the capability objects. As a result,

both communication peers constantly exchange the sensor values and the target values in a

loosely-coupled way. The advantage of the described delegation approach lies in its ability

to reuse the class structure for different hardware setups. The common interface of the

perform()-method allows to trigger all functionalities in the same way and hides the

implementation details of lower layers. Consequently, it is possible to enhance an existing

module with further capabilities or make changes to the device structure without the need

of reprogramming the module software, since these alterations do not affect the common

perform()-method interface. Additionally, the framework can be extended by new

capability classes without disturbing the described interaction sequence.

 Communication Infrastructure for Adaptive Fixtures

 - 161 -

6.6. Chapter Summary

A novel communication infrastructure for the data exchange between the fixturing

components has been described. The infrastructure is based on the publish/subscribe

paradigm and adopts the Data Distribution Service (DDS) which is an emerging

communication standard. The required data topics and data types were defined, using the

platform-independent Interface Definition Language (IDL). Additionally, the data model

elements were extended by a method interface which supports the flexible operation of the

fixture modules, based on the delegation approach.

Unlike existing fixturing approaches which are typically restricted to a predefined set of

components with hard-wired communication links, the infrastructure makes it possible to

dynamically discover the fixture modules with their associated capabilities and to establish

the communication channels between them. As a result of the common method interface

and the delegation of requests down to the device libraries, the class structure of the data

model can be re-used for different scenarios without the need to re-programme the fixture

software.

 Illustration and Verification

 - 162 -

7. Illustration and Verification

7.1. Introduction

This chapter aims at illustrating the research outcomes by applying the proposed software

framework to an experimental test bed. The testbed has been built based on the conceptual

design presented in chapter 3 and renders an adaptive fixture with the ability to reposition

the clamps on a rail frame. For the operation of this prototype, two software applications

for the fixture coordinator and the fixture modules have been developed which implement

the object-oriented data model, communicate via the DDS-based communication

infrastructure and realise the fixture reconfiguration according to the methodology,

described in chapter 5. The programs can be configured with information about the

hardware devices, transport components and fixture design parameters and are therefore not

limited to the prototype fixture.

To demonstrate the general applicability of the research results, two representative test

cases have been selected to show that the software framework can be used for different

structural layouts of the test bed hardware. Additionally, it was confronted with different

workpieces in order to test a variety of reconfiguration scenarios. The results of these tests

indicate the validity of the proposed framework and suggest that the research outcomes can

be utilised for other systems in the industrial context.

Section 7.2 describes the physical structure of the test bed, including the characteristics of

the sensor and actuator components. The implementation of the software framework is

subject to section 7.3. This focuses on describing how the data model, the methodology and

the communication infrastructure have been integrated into a working software system that

is able to operate the test bed. Finally, the sections 7.4 and 7.5 describe two experiments

which demonstrate the basic capabilities of the framework.

 Illustration and Verification

 - 163 -

7.2. Description of the Test Bed Hardware

The starting point for the development of the test bed hardware was the definition of a set

of general requirements and constraints. These can be summarised as follows:

 Reconfiguration capability

It shall be possible to reposition the fixture modules automatically in order to

accommodate different part sizes and geometries

 Modular design

It shall be possible to re-arrange the components of the test bed in different

setups. Additionally, the fixture modules and transport components must be

independently controllable.

 Adaptive clamping capability

It shall be possible to apply a predefined clamping force and adapt it according

to predefined force profiles.

 Prismatic workpieces

For the initial verification it is sufficient to use simple prismatic workpieces of

varying sizes and geometries. In this way, the complexity of the test bed

hardware and associated costs can be reduced.

Based on these general requirements an early design concept was developed which is

shown in Figure 7-1. The drawing shows a top-down view of a frame with four linear

guides along which the fixture modules can be moved.

Independently movable fixture

modules

rail guides
Figure 7-1: Preliminary Concept Drawings for the Prototype

The second step consisted of the definition of further design criteria which were influenced

by the requirements of a related research activity, carried out by a another researcher:

 Illustration and Verification

 - 164 -

 Maximal working envelope of the fixture: 500 x 500 mm

 Working temperature range: -20~70oC

 Maximal applied clamping force: 2500N

 Clamping direction: horizontal (side-clamping)

Finally, the mechanical design for the test bed was developed and the equipment was

selected. This task has been performed by another researcher and is therefore not claimed

as a contribution of this research..

7.2.1. Equipment Description for Transport Components

In order to reduce equipment cost and development time, it was decided to limit the system

to two transport components, instead of using four. This solution allows to demonstrate the

reconfiguration capabilities on two sides of the workpiece, while the remaining fixture

modules require a manual repositioning. However, due to the modularity of both the

hardware design and the software, the system can easily be upgraded to a fully-automated

solution which repositions all fixture modules automatically.

The design of the first transport component is shown in Figure 7-2. As can be seen, the

solution provides the means to reposition one fixture module automatically through a servo

motor and a ball screw mechanism. The structure of the second transport component is

similar. However, a second fixture module can be mounted on it which can be repositioned

manually on the rail. In this way, it is possible to demonstrate the instantiation of the data

model with different types of transport components and to test the collision avoidance

algorithm described in section 5.3.4. The decision to achieve the repositioning of the

second module manually was made to limit the complexity of the design, thereby reducing

cost and development time. A detailed description of the chosen hardware components is

provided by the following sections.

 Illustration and Verification

 - 165 -

DC Servor Motor Ball screw

Linear guides

carriers

carrier plate

rail plate

Ground plate

Detailed Carrier ViewHome Switch

Figure 7-2: Design for a Transport Component with one Carrier

Linear guides and carriers

To guarantee the repositioning capability, two parallel low-friction linear guides are used,

on which carriers can slide along. More specifically, the model SHW21-CR-2-ZZ-C1-

+400L-P-II from the company THK Co. Ltd. has been selected. The length of one rail guide

is 400mm and the span between the two guides is 120mm. The guides are mounted on a

customised metal plate, hereafter called rail plate, with a dimension of 400mm x 170mm x

14mm. The carriers on each linear guide are connected by the carrier plate which provides a

platform to mount a fixture module. This has a dimension of 250mm x 64mm x 5mm.

Additionally, on one side of the linear guides on-off switch has been mounted which

indicates the home position of the first carrier during the initialisation routine.

Motor and ball screw

The first set of carriers can actively be moved along the rail by a AC servo motor with a

ball screw mechanism which is mounted on the ground plate with a dimension of 660mm x

170mm x 20mm. For the motor, the AC servo motor model AKM23C-ANBNC-01 from the

company Danaher Motions, Inc. has been used which includes an internal encoder for the

positional feed back. The resolution of the feedback signal is 2000 counts per revolution.

The ball screw was supplied by THK Co. Ltd. and the chosen model is BNT1404 which has

a lead pitch of 4mm. Therefore, one full revolution of the servo motor equals to a positional

displacement of 4mm. From this ratio, the positional resolution of the system can be

deducted from the following equation.

 Illustration and Verification

 - 166 -

 (Equ. 7-1)

Replacing parameter y with a value of 1 and solving the equation for parameter x results in

2たm as the smallest possible displacement. The second transport component provides an

additional set of carriers which are not connected to the ball screw. Instead, they can only

be moved manually. The design drawing of the second transport component is shown in

Figure 7-3.

Automatically

movable carrier

Manually movable

carrier
Figure 7-3: Design for the Transport Component with two Carriers

7.2.2. Equipment Description of one Fixture Module

To demonstrate the adaptive clamping capability, two identical fixture modules were built

which consist of a linear actuator, driven by a servo motor. The actuator tip is equipped

with a Kistler force sensor, described further below. A photograph of one linear actuator is

shown in Figure 7-4.

Kistler Force

Sensor

Figure 7-4: Linear Actuator with Mounted Force Sensor

The chosen actuator model is EC2-BK235-100-16B-60-MS6M-FT1M from Danaher

Motion, Inc., whose technical specifications are listed in Table 7-1.

4 mm

x mm

2000 motor counts

y motor counts
=

 Illustration and Verification

 - 167 -

Category Value

Motor type Brushless AC Servo Motor

Screw type Ball screw

Screw lead pitch 16mm

Gear factor 1:10

Maximum load capacity 3600 N

Self-locking yes

Maximum No Load speed 1280 mm/s

Stroke 60mm

Positional feedback resolution 8たm (2000 counts/ revolution)

Table 7-1: Specification Summary for the Linear Actuator

As the force sensor, the Kistler PZT 9101A single component load washer has been

selected because these components were readily available in the laboratory. Additionally,

this type of force sensor has the advantage of a compact design, which allows to mount it

near the actuator tip as shown in Figure 7-4. A selection of the specification details of the

sensor is provided by Table 7-2.

Category Value

Measuring range 0 – 20KN

Rigidity 1.8 KN/たm

Sensitivity -4.3 pC/N

Dimensions (H x D x d) 6.5 x 14.5 x 8 (mm)

Table 7-2: Specification of the Kistler Force Sensor

7.2.3. Equipment Description for the Control Hardware

To operate the selected sensor and actuator components, a number of control hardware

components are required, such as servo drives, a motion control card and a charge

amplifier. These have been selected according to the recommendations of the hardware

suppliers. Figure 7-5 presents a high-level block diagram of the used components and their

connections between each other. All software applications run on an ordinary office PC

with the operating system Windows 2000 installed. The PC is equipped with a PCI Motion

Control Card (model number: NI PCI 7344) from the company National Instrument which

can be accessed by a software interface to perform the motion control of up to 4 axes

simultaneously.

 Illustration and Verification

 - 168 -

Motion Control

Card NI PCI-7344

NI-UMI-7774

 Servo Drive

Servo Drive

Servo Drive

Servo Drive

Force sensor #1

Linear actuator #1

Linear actuator #2

Force sensor #2

Amplifier

Rail motor #1

Rail motor #2

Universal Motion Interface

PC

Figure 7-5: Block Diagram for the Control Hardware Components

To connect the motion control card with the servo drives from Danaher Motions, Inc., a so-

called Universal Motion Interface (UMI) board is required which transfers the voltage

signals from the motion controller to the servo drives. This has also been purchased from

National Instrument in order to guarantee compatibility with the motion control card. The

model number is NI UMI-7774. Each servo motor is controlled by its own drive unit which

transforms the voltage signal from the UMI into current, required by the motor to generate

the torque. The servo drive model ServoStar S20360-VTS from Danaher Motions, Inc. has

been selected for the linear actuators, while the servo motors for the rails are driven by the

ServoStar S20260-VTS unit from the same supplier. The two drive models only differ in the

output current they are able to generate. Technical details on both devices can be obtained

from [168]. Finally, the two force sensors are connected with the multichannel charge

amplifier Kistler 5017B1800 which generates a voltage signal corresponding to the force

that is experienced by the sensor. The amplifier has been calibrated to generate a voltage

signal between 0 and +10V for a force range of 0 to 2500 N. Thus, every 1V represents a

force increase of 300N. This signal is fed into the Analog-to-Digital converter (ADC) of the

UMI-board which has a resolution of 12bit. As a result, the force sensing resolution can be

deducted from the ratio, defined in Equ.7-2, as ~0.61N.

 Illustration and Verification

 - 169 -

 (Equ. 7-2)

7.3. Description of the Prototype Software

To demonstrate the research results, two software applications have been developed. The

first application is the software program for one fixture module. This program is configured

with the software libraries for the device access and an XML-file containing the module

description. During the test procedure multiple instances of these programs are launched,

depending on the number of fixture modules that exist. The second application consists of

the fixture coordinator software which has been enhanced with a graphical user interface

(GUI). Additionally, this software program contains the logic for the transport components

as separate threads. In computer science, a thread is a concurrently running task within a

process [169]. Consequently, the transport component threads are carried out in parallel to

the threads of the fixture coordinator and the graphical user interface, thereby preserving

their independence. Figure 7-6 presents a block diagram of the interacting software

components.

Fixture Coordinator Software

Graphical User Interface

Transport Component

Threads

Fixture Module Software

Configuration file

Device Libraries

Instantiation of Data Model

Instantiation of Data Model

Fixture Module Software

Configuration file

Device Libraries

Instantiation of Data Model

Data Distribution Service

Fixture Coordinator

Thread

Devices Devices

Transport

Component

Details

Figure 7-6: Overview on the Software Processes for the Prototype

The software programs for the fixture coordinator and the fixture modules have been

implemented in the programming language C++, using the Microsoft Development

Environment 2003, version 7.1.3088. The graphical user interface of the fixture coordinator

has been implemented with the Microsoft Foundation Classes (MFC) which is a widely-

2500 N
=

212 -1

yx N

 Illustration and Verification

 - 170 -

used framework for the programming of Windows applications [170]. Additionally, a

number of open-source software libraries have been utilised which are listed in the table

unterhalb. An ―X‖ indicates that a certain library is used for the corresponding application.

Library Name Purpose
Fixture Module

Software
Fixture Coordinator

Software

tinyXML [171]
Parsing and interpretation of

XML-files
X

Matrix TCL Lite 2.0 [172] Matrix calculations X X

RAPID 2.01 [165] Collision Detection during the
reconfiguration sequence

 X

Table 7-3: Utilised Third-party Software Libraries

Finally, communication between the software processes and threads is achieved via the

commercially available DDS-platform RTI-DDS 4.1e from Real-Time Innovations, Inc.

7.3.1. Generation of the Publisher/Subscriber Classes

To generate the classes for the DDS-communication, the IDL-definition of the data types

described in chapter 6 have been written in the file exampleAppl.idl. The content of this file

can be found in Appendix B. Based on the IDL-definition, the DDS internal C++ classes

are generated automatically by the tool rtiddsgen which is part of the DDS-platform. To run

the tool, the following command line must be entered.

rtiddsgen -language c++ exampleAppl.idl

Listing 11: Command Line for the Generation of the DDS Classes

The resulting files are exampleAppl.cpp, exampleAppl.h, exampleApplSupport.cpp,

exampleApplSupport.h, exampleApplPlugin.cpp and exampleApplPlugin.h. These files need

to be compiled and linked to the source code of both, the application for the fixture

modules and the fixture coordinator.

7.3.2. Configuration File Settings

The general content of the module description file has been discussed in section 5.2.1. This

section describes the contents of this file for the fixture modules used in the test bed. Apart

from the numeric identifier and the module dimension, the XML-file contains three

<device>-sections for the linear actuator, the displacement sensor and the force sensor. For

the linear actuator, the following definitions have been made with respect to the spatial

relation of its local coordinate system. As can be seen in Figure 7-7, both the coordinate

 Illustration and Verification

 - 171 -

systems of the fixture module and the actuator device have been placed in the centre of the

actuator tip when the latter is not extended. This way, the value of the x-axis directly

correlates with the current displacement of the actuator. These definitions are reflected by

the values in the <spatialdesc>-block for the actuator device which can be seen on the right

side in Figure 7-7.

<kind>LINEAR_CLAMP</kind>

<id>1</id>

<description>Nothing</description>

<spatialdesc>

<x>0</x>

<y>0</y>

<z>0</z>

<rotx>0</rotx>

<roty>0</roty>

<rotz>0</rotz>

</spatialdesc>

<isLockable>true</isLockable>

y

x
z

Local coordinate system

of the fixture module

Figure 7-7: Definitions of the Local Coordinate Systems for the Fixture Modules

Further, the chosen actuator model is self-locking as a result of its internal structure. This is

reflected by setting the <isLockable>-tag to true. The capability descriptions for the

actuator device can be summarised as follows:

 Stroke range 0 to 60mm with a resolution of 8たm

 Clamping Range 0 to 2500 N in push direction

 Maximum allowable reaction force: 5000 N

The values for the stroke range and the maximum allowable reaction force can be obtained

from the design specification of the actuator. Finally, the < library>-block and the

<library-parameters>-block provide the name of the device library and the details that it

requires in order to function correctly. This includes the identifier of the motion controller

card which has a value of 1. Secondly, the identifier of the motion axis must be provided,

which is 1 for the first module and 2 for the second module. Thirdly, the ADC-channel

identifier to acquire the current force are provided which has a value of 1 for the first

module and a value of 2 for the second module. Finally, the encoder resolution and the

pitch is required to correctly convert between displacement values in mm and motor counts.

Appendix A provides the complete listings of both configuration files. The XML-block for

the displacement sensor is an example of how the proposed data model decomposes the

physical setup into separate functional components. Even though, the displacement

 Illustration and Verification

 - 172 -

feedback is provided internally by the linear actuator, a separate <device>-block is defined

in the XML-file which results in the generation of a separate object in the data model. The

reason for this is that the class used for the representation of the linear actuator does not

provide a method interface to retrieve sensor values. Finally, the information for the force

sensor is provided in the last <device>-block which is based on the calibration parameters

of the charge amplifier and the resolution of the ADC of the UMI-board. Thus, the force

feedback capability of the device is defined by a measuring range between 0 and 2500 N.

The resolution which has been calculated earlier, is rounded up to +/-1N. The device library

of the sensor requires the identifier of the motion control board and the channel number of

the ADC on the UMI which retrieves the sensor signal. For the first module, this is the

channel number 1, whereas the force sensor of the second module is attached to the channel

2.

7.3.3. Device Library Implementation

Three software libraries have been created which accomplish the access to the hardware

devices. These have been implemented as Dynamic Link Libraries (dll) in the programming

language C++, using the Microsoft Development Environment 2003, version 7.1.3088. This

allows other applications, such as the fixture module software, to be dynamically

configured with them at run-time. The created library files are listed below:

 DisplacementSensor_EncoderS200Lib.dll

Implements the class DisplacementSensor_EncoderS200Lib as a child class

of ISensorLib to retrieve the current displacement from the encoder of the

linear actuator. The method getCurrentValue() accesses the motion

controller to read the current position in motor counts from the encoder. The

retrieved value is converted into a displacement, using equ. 7-1.

 KistlerForceSensor_UMI_ADC.dll

Implements the class KistlerForceSensor_UMI_ADC as a child class of

ISensorLib to retrieve the current force from the Kistler force sensor. For

this the method getCurrentValue() first accesses the ADC of the UMI-board.

The obtained value is then converted into a a force in Newton, using equ. 7-

2.

 Illustration and Verification

 - 173 -

 NI_UMI7774_S200VTS.dll

Implements the class NI_UMI7774_S200VTS as a child class of

IActuatorLib for the linear actuator with the UMI7774-board. The adopted

algorithm for the force control is based on changing the actuators position in

response to the force feedback. This is realised by two control loops, which

are illustrated in the diagram below. The inner control loop is performed by

the motion controller hardware and ensures that the target position is

achieved. Additionally, there is an outer control loop implemented in the

library software which continuously reads the current force feedback from

the sensor and issues new target positions. The same approach has been used

for the adaptive fixture developed at the National University of Singapore

[49] which has been described as the state-of-the-art in adaptive fixturing in

chapter 2.

Force

Sensor

Position

Sensor

(Encoder)

Motor

Read

Current

Force

Trajectory

Generator

Update

Target

Position

Application Software (Library) Motion Drive

Control

Loop

Position Feedback

Compare

with Target

Force

Force Feedback

Figure 7-8: Block Diagram for the Force Control Algorithm

The source code of all libraries is provided in Appendix C. In order to allow the fixture

module application to create the software objects of the library classes, each dll-file

provides the method createLibraryInstance() whose signature is provided below:

void * createLibraryInstance(TiXmlNode * node)

Listing 12: Interface for the Method createLibraryInstance()

The method expects the XML-node with the relevant < library-parameters>-block for the

library from the module configuration file. Since each library is tailored to a particular

device, it knows how to interpret the details of the XML-node and can therefore extract the

required information to create the library object. The advantage of this approach is that it

allows the definition of different sets of configuration parameters for the device libraries,

 Illustration and Verification

 - 174 -

depending on the device type, vendor-specific details, peripheral equipment and numerous

other influencing aspects. For example, the actuator library used for the test bed requires

the numeric identifiers of the motion controller card and the motion axis, as well as the

values for the encoder resolution and the pitch of the ball screw. Clearly, another actuator

type from a different vendor would require a different set of configuration parameters. By

delegating the object generation to the library itself, the software framework becomes

independent from the specificities of the hardware devices. The code for the

createLibraryInstance()-method of each library is also provided in Appendix C. The fixture

module software calls this method for each device library it has been configured with, as

shown in Listing 13. The first line loads the dll-file with the name provided by the variable

library. If this was successful, the next step consists of getting the memory address of the

createLibraryInstance()-method which is accomplished by lines 5 and 6. Finally, if the

address could be found, the method is called with the XML-node of the relevant < library-

parameters>-block as a parameter. The return value of the method is converted into an

object of the class IDeviceLib (see section 6.4.3) which allows the module to invoke the

initialise()-method of the library object during its initialisation routine.

1 //load library

2 HINSTANCE lib = LoadLibrary(library);

3 //load function

4 if (lib){

5 createLibraryFunction = (CreateLibraryInstanceFunction) GetProcAddress(lib,

6 "createLibraryInstance");

7 if (createLibraryFunction){

8 //get pointer to newly created object

9 deviceLib = static_cast< IDeviceLib* > (createLibraryFunction(node));

10 }

11 }
Listing 13: Code Example to Load a Device Library

The initialise()-method of actuator library carries out a reference move in order to find the

home position. Conversely, the initialise()-methods of the libraries for the force and

displacement sensors are implemented empty, since the test bed setup does not require any

allocation of software resources to operate these devices.

7.3.4. Implementation Overview of the Fixture Module Software

The software of the fixture module constitutes a skeleton program which can be configured

with a module description file and device libraries. Consequently, no additional

development effort is necessary for this application when new fixture modules are

 Illustration and Verification

 - 175 -

introduced or hardware devices are changed. The application is started in a command line

interpreter with the following syntax. The parameter config-file specifies the path and name

to the XML-file containing the module description.

FixtureModuleAppl.exe [config-file]

Listing 14: Syntax to Start the Fixture Module Application from a Command Line Interpreter

The program first parses the xml-file, using the library tinyXML [171] and generates the

object model for the devices and the capabilities, based on the acquired information. This is

accomplished according to the rules described in section 5.2.2. For the test bed, the

program generates one FixtureModule object which is attached with the objects of the

capability classes AdjustTipPosition, SenseTipPosition, AdjustClampingForce,

SenseClampingForce, SenseReactionForce and ProvidesRole. Further, each of the created

capability objects initialises its publisher/subscriber objects. This procedure is outlined

below for the position publisher of the SenseTipPosition-capability.

1 //create DDS-publisher

2 this->publisher = participant->create_publisher(DDS_PUBLISHER_QOS_DEFAULT,

3 NULL, DDS_STATUS_MASK_NONE);

4 //register data topic

5 this->topic = participant->create_topic(this->topicName, this->type_name,

6 DDS_TOPIC_QOS_DEFAULT, NULL, DDS_STATUS_MASK_NONE);

7 //register data writer

8 DDS_DataWriterQos dwqos;

9 publisher->get_default_datawriter_qos(dwqos);

10 this->dw = publisher->create_datawriter(this->topic, dwqos, NULL, DDS_STATUS_MASK_NONE);

Listing 15: Source Code Extract from the Method initialise() of the Class PositionPublisher

The first step consists of creating the DDS-publisher object by invoking a method of the so-

called domain participant which is shown in the first three lines in the listing above. The

domain participant is an object provided by DDS which acts as an entry point to the service

because it is used to create other objects, namely the publishers, subscribers and the data

topics. The second step consists of creating the data topic. For this, the method

create_topic() of the domain participant is invoked with the topic name (“Current Tip

Position”) and the data type name (―Position”) as parameters. The complete reference for

the other method parameters can be obtained from [173]. Finally, as can be seen in the last

three lines, the just created DDS-publisher object is used to create the DataWriter-object

which is registered with the topic. After the completion of the initialisation sequence for all

capabilities, the module is connected to the communication infrastructure and it can publish

 Illustration and Verification

 - 176 -

one entry of the data type ModuleCapDefinition in order to indicate its existence to other

applications. Finally, the program enters a loop which continuously calls the perform()-

methods of the fixture module capabilities, thereby exchanging data with other systems and

accomplishing tasks by delegating requests through the object hierarchy. Listing 16 shows

the source code for this loop which is executed until the fixture module is switched off.

1 while(1){

2 //call the perform method on all fixture module caps...

3 int j = 0;

4 for(j=0; j<this->capabilityList.size(); j++){

5 ((FixtureModuleCap *)capabilityList[j])->perform();

6 }

7 }

Listing 16: Source Code for the Continuous Execution of the Module Capabilities

As can be seen in line 5, the program only invokes the common interface of the perform()-

method which is defined in the parent class FixtureModuleCap. As a result, the application

is independent from the implementation details further down the object hierarchy and can

therefore operate with arbitrary fixture module configurations. Moreover, it allows to

introduce new capability classes without the need to change the rest of the program. The

application output of the fixture module program during the execution of the loop is

provided in Figure 7-9.

Figure 7-9: Screen Shot of the Fixture Module Program During its Execution

7.3.5. Implementation Overview of the Fixture Coordinator

Software

Similar to the module software, the application for the fixture coordinator is a skeleton

program which means that it is not limited to the test bed hardware. Instead, it can be

 Illustration and Verification

 - 177 -

configured with the position and orientation of arbitrary numbers of transport components,

fixture modules and the fixture design information. Consequently, changes of the fixture

hardware do not require additional programming effort for the fixture coordinator software.

The first step during the start of the application, is the generation of the object model for the

transport components, based on the provided configuration data. For the test bed, it was

decided to provide this information directly in the source code, instead of utilising XML-

files. This decision reduced the programming effort by avoiding the development of a

second XML interpreter, yet preserved the ability to test different transport component

configurations by defining a set of test cases in the source code. At the start of the

application one of these test cases must be selected and depending on that, the program

generates the object model for the transport components. The listing unterhalb shows

extracts for the object generation for a test case, labelled TESTCASE_6.

1 case TESTCASE_5:

 ...

3 case TESTCASE_6:

4 //first build the transport component objects...

5 TransportComponent * rail1 = new TransportComponent(idCounter->getNextId(),

6 continuous, onedimensional);

7 //set the spatial description of the TC relative to the global coordinate system

8 rail1->setSpatialDescriptions(0,0,0,0,0,0);

9 //create a slot object for the rail...

10 Slot * slot1 = new Slot(*rail1, idCounter->getNextId());

 ...

21 RepositionCapability * repositionCap = new RepositionCapability(idCounter->getNextId(),

22 rail1->getId(), slot1);

23 WorkSpace * ws = new WorkSpace();

24 ws->linearRange_x.max = 548.5;

25 ws->linearRange_x.min = 212.5;

26 ws->linearRange_x.resolution = 0.002;

27 ws->linearRange_x.unit = UNIT_MILLIMETER;

...
Listing 17: Configuration with Transport Component Details

First, one object of the class TransportComponent is created in line 5 and its spatial relation

to the global coordinate system is defined in line 8. In this case, both coordinate systems are

coincident, since the values for the translational and rotational parts of the coordinate

transformation are all zero. Line 10 shows the creation of an object of the class Slot which

stands for one carrier. The creation of a capability object is outlined in the lines 21 to 27.

When all objects for one transport component are generated, the attached capability objects

initialise their publisher/subscriber objects. After this, a new thread is started which

continuously iterates through the capability list of the transport component and invokes the

perform()-methods.

 Illustration and Verification

 - 178 -

The second essential step consists of the initialisation of the subscriber for the module

descriptions. This procedure is similar to the steps outlined for the publisher, described in

the previous section and is therefore not explained in detail. Whenever a new module

description is retrieved, the information is used to create a new object of the class

FixtureModule and to attach it with adequate capability objects. All created objects are

displayed immediately in two separate lists on the main window of the GUI which is shown

in Figure 7-10.

Figure 7-10: Screen Shot of the Main Screen of the GUI

The left list contains the existing transport components while the right list displays all

discovered fixture modules with their capabilities. Below the list boxes, an area with two

buttons and a text field exists. The left button opens another dialog window which allows

the operator to link the fixture modules with the slot objects. The button on the right is used

to start and stop the clamping of a workpiece. The text field was used during the

development phase to display debug messages. Finally, on the bottom of the dialog three

buttons have been placed to demonstrate the reconfiguration procedure for different test

workpieces. If one of the buttons is activated, the software retrieves the predefined design

information for the workpiece and starts the reconfiguration method as described in section

 Illustration and Verification

 - 179 -

5.3. Whereas in an industrial environment the design information should be retrieved from

a data base, it was decided to implement different sets of design parameters directly in the

source code. In this way, the effort for the development of a data base interface could be

saved.

The second dialog window of the application appears when the operator clicks on the

button, labelled with ―Link Modules to Slots‖. As described in section 5.2.3., this step is

necessary because without being linked to the slots, the module positions and orientations

are unknown. The layout of the dialog is shown in Figure 7-11.

Figure 7-11: The GUI Dialog to Link Fixture Modules with Slots

The list on the right shows all free slots of the transport components, while the list on the

right displays the unlinked fixture modules. The operator can select one slot and one fixture

module at a time which are additionally shown in the text fields below the list boxes. The

essential step is to provide the software with the spatial description of the fixture module,

relative to the slot‘s local coordinate system. For this purpose, six input fields are provided

to enter the translational and rotational parts, required by the coordinate transformation.

When the ―Link‖-button in the middle is pressed, both objects are taken away from the lists

in order to avoid multiple links. Additionally, as described in section 5.2.3, the fixture

module is extended with the capabilities to adjust and sense the body position, based on its

connection with the slot.

 Illustration and Verification

 - 180 -

7.4. Testing of the Fixture Reconfiguration with one

Transport Component

7.4.1. Objectives

In the first experiment, the fixture setup consists of just one rail which carries the two

fixture modules. The example workpiece is a steel plate with a dimension of 250.0 mm x

51.1 mm x 10.0 mm which is rigidly screwed on a frame. As a result, the fixture modules

are not required to secure and clamp the workpiece. Instead, they are used to apply

dynamically changing clamping forces on two different points on the plate. Therefore, the

aim of the experiment is not to demonstrate a complete fixture consisting of locators and

clamps. Instead, it validates:

 The automatic discovery of fixture modules by the fixture coordinator.

 The automatic reconfiguration of the fixture modules from arbitrary initial

positions to predefined target positions, including the avoidance of collisions

 The configuration of the fixture modules with predefined force profiles from

the fixture design.

 The dynamic adaptation of the force over time.

7.4.2. Configuration Details

The software programs for the two fixture modules are configured with the files

ModuleDescription_Module1.xml and ModuleDescription_Module2.xml, respectively. Both

files are identical, except that different module-ids are provided, namely 1 for the first

module and 2 for the second. Additionally, the identifiers for the motion axis and the ADC-

channels differ. Appendix A contains the contents of these files.

 Illustration and Verification

 - 181 -

z

x

y
Global coordinate system

x

y

z

Coordinate system of slot

x

y

z

Coordinate system of fixture

module

x

y

z

x

y

z

Contact point 2

Contact point 1

workpiece

Figure 7-12: Test Setup for the First Experiment

The fixture coordinator is configured with the following information.

 The origin of the global coordinate system is set in the bottom corner of the rail

plate as shown in Figure 7-12

 The local coordinate system of the transport component is defined as coincident

with the global coordinate system. Consequently, all values for the spatial

description of the transport component object are zero.

 Configuration data for first slot

o The local coordinate system is placed in the bottom corner of the carrier

plate as shown in Figure 7-12 and is rotated by 90° about the y-axis in

clockwise direction. This location has been selected to simplify the

measurement of the distances to the global coordinate system, using a

micrometer and high-accuracy gage blocks from the company Cromwell

Metrology. The results of these measurements are reflected by the values for

x, y and z, given below. The value for x is based on the distance between the

global coordinate system and the carrier after the latter has been moved to its

home position during the initialisation routine of the transport component.

 Illustration and Verification

 - 182 -

When the home switch of the rail triggers, it can be measured that this

distance is 13.5mm.

 x: 13.5mm rot_x: 0°

 y: 35.0mm rot_y: -90°

 z: 25.0mm rot_z: 0°

o Based on the dimension of the carrier plate, the attribute boundingBox is

defined by the following points

 p1: (0.0/0.0/0.0)

 p2: (-250.0/5.0/-64.0)

o The Reposition-capability is instantiated with the following details. As can

be seen, the minimum and maximum values for the attributes linearRange_y

and linearRange_z are equal, since the slot can only be repositioned along

the x-axis. Consequently, the resolution values for these attributes are not

relevant and have been set to a default of 1mm. The maximum value for the

displacement along the x-axis is 336.0, as a result of subtracting the width of

the carrier (64mm) from the length of the rail (400mm).

 linearRange_x: 13.5 mm to 336.0 mm, resolution: 0.002mm

 linearRange_y: 35.0 mm to 35.0 mm, resolution: 1.0mm

 linearRange_z: 25.0 mm to 25.0 mm, resolution: 1.0mm

 The setup does not allow any rotations of the slot itself or the

mounted fixture module. Consequently, all elements for the attribute

slotClockingRanges and moduleClockingRanges are set to zero.

o The SensePosition-capability is instantiated with the following details:

 posX: 13.5 mm to 336.0 mm , resolution: 0.002mm

 posY: 35.0 mm to 35.0 mm , resolution: 1mm

 posZ: 25.0 mm to 25.0 mm, resolution: 1mm

 Since the setup does not allow any rotations of the slot or the

module, all elements of the attributes slotClockingX, slotClockingY,

slotClockingZ, moduleClockingX, moduleClockingY, and

moduleClockingZ are set to zero

 Configuration data for second slot

 Illustration and Verification

 - 183 -

o The local coordinate system is placed in the bottom corner of the carrier

plate as shown in Figure 7-12 and is rotated by 90° in clockwise direction.

At the start of the experiment the carrier is manually moved to a start

position, defined by the spatial description details below.

 x: 97.5mm rot_x: 0°

 y: 35.0mm rot_y: -90°

 z: 25.0mm rot_z: 0°

o Based on the dimension of the carrier plate, the attribute boundingBox is

defined by the following points

 p1: (0.0/0.0/0.0)

 p2: (-250.0/5.0/-64.0)

o The Reposition-capability is instantiated with the following details:

 linearRange_x: 13.5 mm to 336.0 mm, resolution: 1.0.mm

 linearRange_y: 35.0 mm to 35.0 mm, resolution: 1.0mm

 linearRange_z: 25.0 mm to 25.0 mm, resolution: 1.0mm

 The setup does not allow any rotations of the slot itself or the

mounted fixture module. Consequently, all elements for the attribute

slotClockingRanges and moduleClockingRanges are set to zero.

o The SensePosition-capability is instantiated with the following details:

 posX: 13.5 to 336.0, resolution: 1.0mm

 posY: 35.0 to 35.0, resolution: 1.0mm

 posZ: 25.0 to 25.0, resolution: 1.0mm

 Since the setup does not allow any rotations of the slot or the

module, all elements of the attributes slotClockingX, slotClockingY,

slotClockingZ, moduleClockingX, moduleClockingY, and

moduleClockingZ are set to zero

Since the repositioning of the second slot is performed manually, the related capability

object is created with a resolution of 1mm which is an estimate of what is achievable by

manually moving the carrier. The Reposition-capability is implemented as a dummy which

opens a dialog box, asking the operator to move the slot to the target position. After the

 Illustration and Verification

 - 184 -

dialog is closed, it is assumed that the slot has been repositioned correctly and the values

for the current position are updated in the data model. Similarly, the SensePosition-

capability is also implemented as a dummy. Instead of accessing a sensor device, it simply

returns the current values for the slot position from the data model. The resolution for the

feedback is also set to 1mm.

Furthermore, the fixture coordinator has been configured with the following fixture design

details, in the form of ContactPoint objects. The values for the spatial description relative

to the global coordinate system have been retrieved through manual measurements, using a

micrometer and gage blocks.

 ContactPoint 1

o Spatial Description

 x: 120.0mm rot_x: 0°

 y: 68.6mm rot_y: -90°

 z: 112.2mm rot_z: 0°

o Role: Clamp

o ForceProfile: time-dependent step function as shown in Figure 7-13

 ContactPoint 2

o Spatial Description

 x: 220.0mm rot_x: 0°

 y: 68.6mm rot_y: -90°

 z: 112.2mm rot_z: 0°

o Role: Clamp

o ForceProfile: time-dependent step function as shown in Figure 7-13

F
o

rc
e

 i
n

 N

Time in s10 20 30

25
50
75
100

Force profile for contact point 1a.)

125
150

5 15 25 35

F
o

rc
e

 i
n

 N

Time in s10 20 30

25
50
75

100

Force profile for contact point 2b.)

125
150

5 15 25 35
Figure 7-13: Force Profiles for (a) Contact Point 1 and (b) Contact Point 2

 Illustration and Verification

 - 185 -

7.4.3. Testing Procedure

Table 7-4 shows the sequence of actions during the experiment and the expected behaviour.

As can be seen, the first module is started before the fixture coordinator is launched (steps 1

and 2). This has been done in order to demonstrate the capability of the communication

infrastructure to redistribute the module capabilities, as described in section 6.3.3. When

the operator links the fixture modules with the slots (steps 3 and 6), the following values

are used.

 x: 64.1 mm rot_x: 0°

 y: 33.6 mm rot_y: 0°

 z: -31.8 mm rot_z: 0°

These values have been retrieved using the gage blocks described before and are based on

the settings for the local coordinate systems of the fixture module (see section 7.4.2) and

the slots. Furthermore, step 4 renders a negative test, proving that the framework is not only

able to correctly reconfigure a fixture, but can also recognise situations where the design

parameters cannot be satisfied. Only after the second fixture module is correctly linked with

the slot, the reconfiguration procedure succeeds (step 7).

Action Expected Behaviour

1.) Start of fixture

module 1

 The module initialises and extends the actuator to find the

home position

2.) Start of the

fixture coordinator

 The transport component is initialised and the first slot is

moved to the home position

 The transport component is displayed with all details in the

GUI

 The fixture module is automatically recognised and displayed

with all details in the GUI

3.) Link Slot 1

with Fixture

module 1

 The fixture module object of the coordinator is enhanced with

2 additional capabilities, namely the SenseBodyPosition and

AdjustBodyPosition

4.) Click on Button

―Workpiece A‖

 The design parameters are retrieved and the reconfiguration

procedure aborts with an error message, indicating that the

 Illustration and Verification

 - 186 -

current fixture setup cannot satisfy the design criteria. The

reason for this is that there are more contact points than

fixture modules.

5.) Launch Fixture

module 2

 The fixture coordinator discovers the module and displays its

properties on the GUI

6.) Link Slot 2

with Fixture

Module 2

 Same as step 3.

7.) Click on Button

―Workpiece A‖

 The design parameters are retrieved and the reconfiguration

procedure finishes successfully. Contact point 1 is assigned

with fixture module 1 and contact point 2 is assigned with

fixture module 2. In order to avoid a collision between both

modules, the reconfiguration commands are executed such

that module 2 is moved first to its target position.

8.) Click on the

―Start Clamping‖-

button

 The clamping process is started and the force profiles are

followed by the associated fixture modules.

9.) Click on the

―Stop Clamping‖

button

 Both modules retract fully to their initial home position

Table 7-4: Experiment Procedure and Expected Behaviour

The test procedure above has been carried out 15 times over a period of 3 days. To obtain

an initial verification of the correct positioning of the fixture modules, the target counts of

the motors for the rail and the linear actuators have been calculated manually, as illustrated

in Figure 7-14. Based on this, these values were compared with the final counts of both

motors after the completion of the reconfiguration procedure.

 Illustration and Verification

 - 187 -

120.0

x

z

13.5

Contact point (120.0/y/106.6)

106.5

 Motor count: 0 Motor count: 106.5 * 2000 / 4.0 = 53250

Rail

Motor

31.8

64.1

17.5

 Motor count: 0

 Motor count: 17.5 * 2000 / 1.6

 = 21875

Module in

 home

position

Module in

target

position

25.0

106.6

Figure 7-14: Calculating Motor Counts for the Rail Motor (blue) and the Actuator (red)

Figure 7-14 shows a top-down view of the transport component with a fixture module

mounted on the carrier plate (gray). All distances are provided in mm and have been

obtained using gauge blocks. The details relevant for the positioning of the module on the

rail are marked in blue colour, while red is used for the calculation of the motor count for

the linear actuator. When the carrier plate is in its home position, the left corner of the plate

is 13.5mm away from the global coordinate system. In this position, the rail motor has its

initial motor count of 0. Due to the dimension of the actuator and the way it has been

mounted on the carrier plate, the carrier must be moved 106.5mm along the rail in order to

ensure that the actuator tip can reach the contact point. This distance equals a motor count

of 53250, as a result of equ. 7-1. The same strategy was applied to calculate the target

values for the linear actuator. When the actuator is in its home position, the distance

between its tip and the global coordinate system is 89.1 mm (25.0 + 64.1). Consequently,

the actuator must extend by 17.5mm in order to reach the contact point. This equals a motor

count of 21875, based on the pitch of the actuator (16mm), the gear factor (1:10) and the

positional resolution (2000). Additionally, the locations of the contact points have been

marked on the workpiece. This allows to visually inspect if the workpiece is approached

correctly.

 Illustration and Verification

 - 188 -

To verify if the force profiles are followed, the fixture module software has been extended

with the capability to store the measured force sensor values, together with a time stamp.

Additionally, the software stores the time when it receives a new target force from its

subscriber. The time stamp consists of the clock count of the PC‘s CPU which operates at a

frequency of 2999980000 ticks per second. Based on this, the elapsed time in milliseconds

between two samples can be calculated, using the equation below

 (Equ. 7-3)

, where CLK1 and CLK2 stand for the clock counts of the first and second sample,

respectively. Additionally, the fixture coordinator software retains the clock count when the

―Start Clamping‖-button is pressed. Since both software applications run on the same PC,

the reaction time of the fixture module can be obtained using (Equ. 7-3). The reaction time

is influenced by the delay for the publish/subscribe communication, the cycle time of the

module software and the time delay until a motor movement results in a change of the force

sensor readings. These delays are further discussed in the next section. All measurements

are stored in a text file with the CSV-format which can be opened by Microsoft Excel in

order to draw diagrams.

7.4.4. Test Results

During the execution of the test procedure, the expected behaviour of the fixture

coordinator could be observed. The fixture modules were discovered automatically and the

details of their capabilities were displayed by the GUI. Furthermore, in step 4 of the test

sequence the reconfiguration process was aborted as expected with an error message,

indicating that the fixture design cannot be satisfied. Once the second module was

discovered and linked to its slot, the reconfiguration process was carried out successfully.

In particular, the list of reconfiguration commands was reordered automatically by the

fixture coordinator to avoid the detected collision between the two modules. Thus, during

the execution of this list it could be observed that the command to move module 2 along the

rail was carried out before module 1 was repositioned. The accurate approach of the fixture

modules towards the contact points was examined for module 1 only, since the second

module is moved manually on the transport component. For this, the final counts of both,

the motor for the rail and the linear actuator were retrieved after the completion of the

telapsed = (CLK2 – CLK1) * 1000 / 2999980000

 Illustration and Verification

 - 189 -

reconfiguration sequence, using the ―Measurement And Automation Explorer (MAX)‖

from National Instrument, Inc. This software can be used to display the details of the

motion controller, including the current motor counts on all axis. As a result, it can be

stated that the expected motor count values as calculated in section 7.4.3 were achieved,

indicating that the contact points were accurately approached. This was confirmed by

visually inspecting the workpiece, which is shown in Figure 7-15.

Figure 7-15: The Tip of the Linear Actuator after the Reconfiguration Sequence

The general results for the force adaptation are summarised in the diagram provided by

Figure 7-16. The diagram shows the measured forces and the target forces for the first

fixture module during the 6th test run. All other test runs have shown similar results and are

therefore not discussed in the subsequent sections. As can be seen, the force profile is

followed by the fixture module throughout the entire duration of the test. Target forces are

reached within less than 300ms after they have been published by the fixture coordinator.

After this time span the measured values stabilise with small fluctuations of less than 2%.

The fluctuations can be explained by the noise of the sensor feedback which results in

minimal motor movements when the force control algorithm tries to compensate the alleged

error. Just after 10 seconds there is a clearly visible increase in the measured forces on this

module which results from the effects when the second actuator decreases its own clamping

force from 100 N to 75 N. However, as can be seen in the diagram, the force adaptation of

the module compensates for this error and stabilises again after about 300ms.

 Illustration and Verification

 - 190 -

0

25

50

75

100

125

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

2
1

0
0

0

2
2

0
0

0

2
3

0
0

0

2
4

0
0

0

2
5

0
0

0

Time in ms

F
o

rc
e
 i

n
 N

Actual Forces

Target Forces

Figure 7-16: Comparison of Actual Force vs. Target Force for Fixture Module 1

Figure 7-17 shows a more detailed graph of the adaptation for the first target force by

module 1. At time 0, the fixture coordinator has just published the target force of 100N.

This is received 4.5ms later by the fixture module, which subsequently triggers the actuator

to move in order to adapt the force. This delay is caused by the transmission time for the

data transfer via DDS and the cycle time of the fixture module program. However, based on

the reported performance benchmarks in chapter 3, the latency induced by DDS is

significantly smaller than 1ms. Consequently, the main reason for the delay is the cycle

time of the fixture module program. This is supported by the measured sample data which

show an average cycle time of around 9ms. Hence, in the worst case a delay equal to a full

cycle can occur when the target force is published just after the AdjustClampingForce-

capability of the module has been performed. However, it is pointed out that the cycle times

of the fixture modules in the experiments are negatively affected by the fact that all

programs were operated on the same PC, thereby taking away processor resources from

each other. Secondly, the measurement of the sample data itself takes time, typically in the

range of 300-400 microseconds. Thirdly, due to the Windows operating system, a number

of other processes are executed in parallel, consuming processor time. Hence, the observed

delays can be drastically reduced by implementing the concept on dedicated processors for

each fixture module. The average cycle time of the fixture coordinator program is lower at

3-4ms because the fixture coordinator does not interact with any hardware. However, in the

 Illustration and Verification

 - 191 -

experiment it is also slowed down due to the previously mentioned reasons. Further delays

are introduced as a result of the integrated GUI and the thread for the transport components.

In an industrial environment, these tasks would be implemented as separate applications,

thereby significantly increasing the performance of the coordinator software.

Start

adapting

Force begins to

increase

Force is within

2% of target

0

25

50

75

100

125

150

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Time in ms

F
o

rc
e
 i
n

 N

Actual Forces

Target Forces

Figure 7-17: Detailed Comparison of Force Adaptation for Fixture Module 1

After the actuator starts moving, a further delay of approximately 50ms can be observed

until the measured clamping force values start to increase. This delay can be explained with

the inertia the motor has to overcome when it is acting against the workpiece and potential

backlash effects. Therefore, this effect is caused by the motor characteristics, rather than

being related with the presented concepts of this research. Moreover, it shows that the

overhead as a result of the communication infrastructure is significantly smaller than the

delays, induced by the equipment itself.

7.5. Testing of the Fixture Reconfiguration with two

Transport Components

7.5.1. Objectives

For the second experiment, two prismatic parts with different geometries and dimensions

were clamped. For this, the fixture setup was extended with the second transport

 Illustration and Verification

 - 192 -

component which is positioned perpendicular to the first rail. One of the fixture modules

was mounted on the carrier of the second rail, resulting in a new fixture layout consisting of

two transport components with one fixture module each. Hence, the objectives of this

experiment can be summarised as follows:

 To demonstrate the ability of the framework to adapt to a new fixture setup

without the need for reprogramming

 To demonstrate the automatic reconfiguration of the fixture modules for

different prismatic workpieces

Additionally, the test demonstrates the ability of the communication infrastructure to detect

when fixture modules become disconnected.

7.5.2. Configuration Details

Figure 7-18 shows the photographs and the dimensions for both test workpieces. The

material of these parts is aluminium. As can be seen, workpiece A has a dimension of 320

mm x 320 mm x 50 mm. Conversely, workpiece B is smaller with a dimension of 300mm x

300mm x 50mm. The characteristics of the cut-out can be obtained from the picture.

100
5
0

300

3
0
0

320

3
2
0

a.) b.)

Figure 7-18: Photographs and Dimensions for (a) Workpiece A (b) Workpiece B

The software programs for the two fixture modules are configured with the same files as in

the first test, since the internal device structure of each module remained the same. The

fixture coordinator is configured with the following information.

 Illustration and Verification

 - 193 -

 The origin of the global coordinate system is set in the same position as in the

previous test. It is positioned in the bottom corner of the first rail plate, as shown in

Figure 7-19.

xy

z

x

y

z

x

y

z

x

y

z

Global coordinate system

Coordinate system

of slot

Coordinate

system of module

Coordinate system of

second transport component

Passive locator

elements

Figure 7-19: Test Setup for the Second Experiment

 Configuration details for the first transport component

o All details are the same as in section 7.4.2. However, the second slot has

been manually moved to the far end of the rail, as can be seen in Figure

7-19. This is reflected by the spatial description for slot 2, which is set to

 x: 300.0 mm rot_x: 0°

 y: 35.0 mm rot_y: -90°

 z: 25.0 mm rot_z: 0°

 Configuration details for the second transport component

o The local coordinate system is placed in the bottom corner of the ground

plate, as shown in Figure 7-19. The values for the spatial description define

the relative position and orientation of the local coordinate system to the

global coordinate system. These values are results of measurements with a

calibrated micrometer and are summarised below,

 Illustration and Verification

 - 194 -

 x: 462.4 mm rot_x: 0°

 y: 0.0 mm rot_y: -90°

 z: 54.0 mm rot_z: 0°

 Configuration data for the slot

o All configuration details are identical with those of the first slot of transport

component 1.

As can be seen in Figure 7-19, there are three additional passive locator elements to confine

the clamped workpiece. Since these elements are not controlled by the software framework,

the fixture coordinator is not informed about their existence. Furthermore, the fixture

coordinator is configured with the following fixture design details, in the form of

ContactPoint objects. Figure 7-20 shows both sample workpieces when they are clamped,

indicating the positions of the subsequently defined contact points.

 For workpiece A

 ContactPoint 1

o Spatial Description

 x: 185.0 mm rot_x: 0°

 y: 68.6 mm rot_y: -90°

 z: 112.8 mm rot_z: 0°

o Role: Clamp

o ForceProfile: constant clamping force at 200N

 ContactPoint 2

o Spatial Description

 x: 344.6 mm rot_x: 0°

 y: 68.6 mm rot_y: -180°

 z: 260.0 mm rot_z: 0°

o Role: Clamp

o ForceProfile: constant clamping force at 200N

 For workpiece B

 ContactPoint 1

o Spatial Description

 Illustration and Verification

 - 195 -

 x: 170.0 mm rot_x: 0°

 y: 68.6 mm rot_y: -90°

 z: 113.0 mm rot_z: 0°

o Role: Clamp

o ForceProfile: constant clamping force at 200N

 ContactPoint 2

o Spatial Description

 x: 343.7 mm rot_x: 0°

 y: 68.6 mm rot_y: -180°

 z: 350.0 mm rot_z: 0°

o Role: Clamp

o ForceProfile: constant clamping force at 200N

Transport

component 2

Transport

component 1

Contact point 2

Contact point 1

Transport

component 1
Transport

component 2

Contact point 1Contact point 2

a.)
b.)

Figure 7-20: Contact Points for (a) Workpiece A and (b) Workpiece B

7.5.3. Testing Procedure

Table 7-5 shows the sequence of actions during the experiment and the expected behaviour.

To link the fixture modules with the slots, the same values as in the first experiment are

used, which are summarised below.

 X: 64.1 mm rot_x: 0°

 y: 33.6 mm rot_y: 0°

 z: -31.8 mm rot_z: 0°

Action Expected Behaviour

1.) Start of fixture Both modules initialise and extend their actuator to

 Illustration and Verification

 - 196 -

module 1 and 2 find the home position

2.) Start of the fixture

coordinator

 Both transport components are initialised and the slots,

connected to the ball screw are moved to the home

position

 Both transport components are displayed with all

details in the GUI

 Both fixture modules are automatically recognised and

displayed with all details in the GUI

3.) Kill process of fixture

module 1

 The fixture coordinator software discovers the

disconnected module within 1 second and immediately

destroys its related software objects

4.) Restart fixture module

1

 Fixture module 1 initialises by finding its home

position and publishing its capability description

 The fixture coordinator software discovers the new

module and displays its details in the GUI

5.) Link Slots with fixture

modules

 Both fixture module objects of the coordinator are

enhanced with 2 additional capabilities, namely

SenseBodyPosition and AdjustBodyPosition

6.) Click on Button

―Workpiece A‖

 The design parameters are retrieved and the

reconfiguration commands are executed. After both

modules have been repositioned on the rails, the

operator is asked to position the part against the

passive locators. After that, both modules approach the

workpiece.

7.) Click on the ―Start

Clamping‖-button

 Both fixture modules start applying the specified

constant clamping force

8.) Click on the ―Stop

Clamping‖ button

 Both modules retract fully to their respective home

positions

9.) Click on Button

―Workpiece B‖

 Same as step 4

 Illustration and Verification

 - 197 -

10.) Click on the ―Start

Clamping‖ button

 Both fixture modules start applying the specified

constant clamping force

11.) Click on the ―Stop

Clamping‖ Button

 Both modules retract fully to their respective home

positions

Table 7-5: Experiment Procedure and Expected Behaviour

The test procedure above has been carried out 15 times over a period of 3 days. As in the

first experiment, the applied clamping forces were recorded in CSV-files. To verify the

positioning of the fixture modules, the target motor counts were calculated manually, using

the same approach as in the first experiment. The expected values are listed in Table 7-6

and were compared with the real values, as signalled by the feedback devices of the motors.

 Fixture Module 1 Fixture Module 2

Workpiece A Rail motor 1: 69850 counts

Actuator motor 1: 29625 counts

Rail motor 2: 80352 counts

Actuator motor 2: 35875 counts

Workpiece B Rail motor 1: 62349 counts

Actuator motor 1: 29875 counts

Rail motor 2: 125350 counts

Actuator motor 2: 37000 counts

Table 7-6: Predicted Motor Counts for Workpieces A and B

Additionally, the correct approach of the fixture modules towards the contact points was

inspected visually.

7.5.4. Test Results

As expected, each fixture module moved its actuator to the home position during the

initialisation routine. Similarly, the fixture coordinator instantiated two objects for the

transport components which moved their carrier to its home position. After that, the fixture

coordinator discovered both fixture modules, since they have previously published their

capability descriptions. Subsequently, the details of their capabilities could be obtained

from the GUI. When the process of fixture module 1 was aborted, the coordinator software

reacted correctly by informing the operator with an immediate error message and deleting

the software objects related to module 1. This showed the ability of the communication

infrastructure to be the backbone of robust industrial fixtures with the ability of failure

recovery. Linking both modules with their slots in the fixture coordinator, resulted in the

enhancement of their capabilities with AdjustBodyPosition and SenseBodyPosition

capability objects. After pressing the button ―Workpiece A‖, the reconfiguration sequence

 Illustration and Verification

 - 198 -

succeeded with the actuator tips of both modules approaching the workpiece. Similar to the

first experiment, the achieved motor counts were compared with the pre-calculated target

values, revealing that the fixture reconfiguration was performed as expected. Visual

inspection of the parts showed that the actuator tips were positioned at the contact point.

After the clamping of workpiece A, both modules retracted to their actuator home

positions. When the button ―Workpiece B‖ was clicked, the new design parameters were

correctly retrieved by the fixture coordinator and the reconfiguration process was initiated.

First, both fixture modules were repositioned on the rails, before the operator was asked to

load the part and position it against the passive locator elements. After that, the fixture

modules approached the part until the linear actuator reached its target position. Again, a

comparison of the motor count and visual inspection showed agreement with the expected

outcomes. Figure 7-21 shows a detailed picture of the fixture after the completion of the

reconfiguration process for workpiece B.

Figure 7-21: Clamping of Workpiece B

With regards to the force control, the same effects as in the first experiments could be

observed for all workpieces and fixture modules. Therefore, for the discussion of these

results it is referred to section 7.4.4. Detailed diagrams of the force profiles are provided in

Appendix D.

7.6. Chapter Summary

The key research elements have been verified using a set of experiments. The experimental

results show that the research results can be applied to automate the reconfiguration and

clamping process of different fixturing systems. The results also demonstrate that the

 Illustration and Verification

 - 199 -

initially defined use cases (see section 3.3) are satisfied by implementing the proposed

model and the methodology.

With regard to the use case ―Initialise Fixture‖, it was shown that the communication

infrastructure is able to discover the different components in the system and represent their

capabilities. Fixture modules are discovered regardless of whether or not they have been

launched before the fixture coordinator. Additionally, the communication infrastructure

discovers disconnected fixture modules. In the context of the use case ―Reconfigure

Fixture‖, it can be stated that the change-over from the fixture layout for the first to the

second experiment required approximately 30 minutes, due to the manual labour needed to

mount one module on the second transport component. However, no changes were

necessary in any of the software applications that operate the fixture. This is a significant

improvement over existing systems which typically require reprogramming and

recompiling in order to be adapted for a new fixture. Moreover, the automatic

reconfiguration for two different workpieces was accomplished in less than 10 seconds.

Finally, it was shown that the proposed software framework can be used for the realisation

of adaptive fixtures. In the experiments, target forces were reached in less than 300ms. This

is comparable to the reaction times of the adaptive fixture, developed at the National

University of Singapore [49] which has been characterised as the state-of-the-art in

adaptive fixturing. However, in addition to the force adaptation capability the concepts

proposed by this research render the fixture not only adaptive, but also reconfigurable. This

provides evidence that this research is indeed a promising approach towards the realisation

of reconfigurable and adaptive fixturing system for complex manufacturing processes.

 Conclusions and Future Work

 - 200 -

8. Conclusions and Future Work

8.1. Introduction

The research described in this thesis was motivated by the ongoing trend towards the

utilisation of advanced computer technology and sensor feedback for the development of

fixtures that are both, adaptive and reconfigurable. However, as identified in chapter 2,

existing fixturing solutions satisfy at best only one of the aforementioned characteristics.

The main barriers for this are (1) the lack of a data model for the representation of the

capabilities of adaptive fixtures; (2) a missing fixture reconfiguration approach that is

applicable to a wider range of different fixturing systems and (3) a lack of a communication

infrastructure that recognises the need for flexible and platform-independent information

exchange between the participating components.

According to a detailed research framework, presented in chapter 3, the knowledge gaps

were first translated into clear research objectives. Additionally, a detailed use case analysis

was conducted and available technologies for the realisation of the communication

infrastructure were compared. Based on this, the key concepts of a software framework for

the operation of reconfigurable and adaptive fixturing systems were developed and finally

demonstrated in a prototype application.

This chapter provides a summary of the key knowledge contributions in section 8.2 and

discusses potential application areas in industry in section 8.3. Furthermore, section 8.4

focuses on the future work that needs to be carried out in order to guarantee industrial

uptake of the proposed framework.

8.2. Original Contribution to Knowledge

A new data model for the representation of the capabilities of reconfigurable and

adaptive fixturing systems has been developed

In contrast to existing data models for fixture reconfiguration which appear to concentrate

on the design phase and treat fixtures as purely mechanical, passive devices, the developed

 Conclusions and Future Work

 - 201 -

data model uses object-oriented modelling techniques that are able to capture the changing

capabilities of adaptive fixtures during their operation. In addition to conventional object-

oriented techniques such as inheritance, the model makes heavy use of software delegation

and a number of object-oriented design patterns to accomplish the dynamic access and

flexible substitution of the model elements during the operation of the fixture. In this way,

the research does not only contribute to the fixturing domain by the introduction of a new

data model, but also to the field of computer science through the application of existing

concepts to a new application area. For the formalisation and definition of the relationships

between the model elements the Unified Modelling Language (UML) has been used which

guarantees a platform-independent definition of the data model.

A generic methodology for the automatic reconfiguration of adaptive fixturing systems

has been developed

A novel decision-making methodology for fixture reconfiguration has been developed

which consists of two interrelated parts. Firstly, the capability recognition method describes

how the elements of the object-oriented data model are instantiated by both, the fixture

module software and the fixture coordinator, in order to reflect the capabilities of a given

fixture setup. This results in a layered object hierarchy where model elements of higher

layers delegate requests to the model elements of subordinate layers during the operation of

the fixture. Secondly, the setup adaptation method defines the steps for the reconfiguration

of an existing fixture layout to accommodate the next workpiece. The approach is based on

matching the software objects representing the physical setup with the objects representing

the predefined fixture design parameters. This assignment allows to delegate the generation

of the reconfiguration sequence to each individual fixture module, using the Command

pattern approach. As a result, the proposed methodology is independent from the number

and type of the existing fixture modules and can therefore be adapted for a plethora of

different setups.

A flexible communication infrastructure for the operation of reconfigurable and

adaptive fixturing systems has been developed

A flexible communication infrastructure has been proposed which allows the platform-

independent communication between the various parts of the fixturing system through the

 Conclusions and Future Work

 - 202 -

adoption of a publish/subscribe mechanism. In contrast to existing approaches for adaptive

fixtures which rely on hardwired connections between the devices, the proposed

infrastructure allows to dynamically establish communication channels when components

are added, removed or replaced. For this an emerging middleware standard (DDS) has been

applied to the fixturing domain which so far lacks any standardised communication

infrastructure. The required data topics and data types were defined, using the platform-

independent Interface Definition Language (IDL). Additionally, standardised device library

interfaces and method interfaces for the data model elements were defined which are the

key for the platform-independent and flexible operation of the fixture.

In addition, the following secondary contributions have been achieved:

 A comprehensive requirement analysis of reconfigurable and adaptive fixturing

system was carried out, based on a use case study.

 A detailed assessment of different middleware concepts for the use as a

communication infrastructure for fixturing systems was conducted.

 A prototype software application for the operation of an exemplary fixturing system

has been developed, based on the proposed core knowledge contributions.

8.3. Areas of Application

The key knowledge contributions support a common software framework which can

significantly reduce the efforts for the development of adaptive and reconfigurable fixturing

systems in future applications. As demonstrated by the prototype application in chapter 7,

ready-to-use skeleton programs for the fixture coordinator and the fixture modules can be

used and configured with information of the particular fixture setup. This will benefit

system integrators as it alleviates the need for programming of the overall application

architecture and recurring tasks, such as the recognition of equipment capabilities,

information exchange and the realisation of the reconfiguration procedure. As a result,

engineers will be able to focus on their core competencies, such as the generation of

clamping strategies and the mechanical design of the fixturing system. Moreover, the

research results of this study are expected to be applicable to a wide range of applications in

the fixturing domain, from assembly operations to fixtures for machining operations. Apart

 Conclusions and Future Work

 - 203 -

from the prototype application, the research outcomes have partly been implemented in a

reconfigurable fixturing system for the assembly and disassembly of Rolls-Royce aero-

engines. At the time of writing this thesis, large parts of the software for this system have

been completed, which utilise the reconfiguration methodology, described in chapter 5.

Other companies, including Airbus have shown interest in the communication

infrastructure as a basis for the development of a new generation of adaptive and

reconfigurable fixtures.

8.4. Future Work

While the reported research is regarded as a significant step towards the successful

realisation of reconfigurable and adaptive fixtures, it also opens new avenues for further

research. The main areas where these opportunities arise are summarised below.

Extension of the data model for other fixturing scenarios and equipment

For the definition of the data model only the most common equipment types and associated

capabilities have been included, in order to reduce the complexity of the proposed model.

However, the described object-oriented structure can be extended with additional classes

and attributes to represent more equipment, like other clamping types, sensor devices or

locator types, as well as their associated capabilities. An example for an additional

equipment type would be a temperature sensor. The latter could be integrated by defining

new classes for the sensor device itself and its associated capability. Additionally, a new

data topic for the communication of the measured temperature data would have to be

defined. Similarly, the existing classes of the model can be extended with further attributes

in order to arrive at a more detailed representation of the fixture. For example, the device

classes could be extended with attributes for the weight, rigidity and material.

Investigation of distributed, collaborative fixturing approach

The proposed publish/subscribe communication can easily be extended by further data

topics in the future and it facilitates the integration of the fixture with other subsystems of

the shop floor. For example, a Human Machine Interface (HMI) can easily participate in the

data exchange by registering publishers or subscribers for the appropriate data topics.

 Conclusions and Future Work

 - 204 -

Additionally, the proposed communication infrastructure can act as a starting point for

further research towards the development of a distributed system with autonomous fixture

modules. In such an approach, the fixture coordinator would become obsolete as a central

instance to ensure correct functioning. Instead, the modules would subscribe to all topics

and hence get informed about each other‘s existence and current states. Based on this

information, a collaborative methodology for the fixture reconfiguration and clamping

procedure could be developed to adapt the system without the need of a central coordinator.

The advantage of this approach is the elimination of the fixture coordinator as a single-

point-of-failure.

Extension of the framework for repositionable transport components

The proposed software framework is based on the assumption that only the fixture modules

can change positions during the operation of the fixture while the transport components are

fixed. While this limitation reflects the physical characteristics of many existing fixturing

systems, there are scenarios conceivable where transport components can be repositioned

automatically, too. For example, consider a setup where the rails from the prototype

described in chapter 7 are mounted on a stage that can lift the rails up and down. For such

cases, the framework needs to be extended with the option to link transport components

with each other. Additionally, new capability classes for the transport components need to

be created which represent their ability to be repositioned. Finally, the generation of the

reconfiguration commands needs to be extended by command classes for the repositioning

of transport components and further strategies are required to determine whether or not the

repositioning of transport components is required in order to align the fixture modules with

the contact points.

Extension of the fixture reconfiguration algorithm with the capability to make

proposals

Furthermore, it is possible to extend the fixture reconfiguration methodology with the

ability to actively propose changes in the event that an existing fixture layout cannot be

transformed according to given design requirements. A possible solution would involve a

data base which contains information about the available fixture modules and transport

 Conclusions and Future Work

 - 205 -

components. Based on this, the system could search the data base for replacement

components which better satisfy the requirements of a given fixture design. Similarly, it

could propose the addition of more fixture modules and other changes of the fixture layout

in order to accommodate the next workpiece.

8.5. Concluding Remarks

Fixtures play an important role in both assembly and machining operations. Their

significance is reflected by the myriad of research activities aimed at improving various

aspects of their behaviour. However, despite recent efforts towards increased

reconfigurability and adaptability, fixtures still appear to be major bottlenecks of

reconfigurable manufacturing systems.

The research presented in this thesis rooted in the observation that a major obstacle for the

successful realisation of fixturing systems with reconfigurable and adaptive capabilities, is

the lack of flexible software concepts for the operation of such devices. The overarching

idea was to define the core concepts for a software framework that minimises the need for

application programming when a new fixture is developed or an existing system is adapted

for new requirements. Starting from an extensive literature review and a detailed

requirement analysis, the core knowledge contributions of the research have been

developed and presented in the chapters 4, 5 and 6. These are (1) an object-oriented data

model; (2) a generic fixture reconfiguration methodology and (3) a publish/subscribe

communication infrastructure. While the developed framework is not claimed to be a

complete industrial solution, it presents a significant step towards the successful and cost-

effective development of reconfigurable fixturing systems in future applications. The

fundamental principle of the developed framework has been demonstrated in a prototype

application in chapter 7 while parts of the data model and reconfiguration methodology

have been implemented for an industrial testcase, as described in section 8.3.

As the work has been done in close collaboration with industry, there is a good chance that

the research outcomes will be accepted and adopted as a platform for the development of

next-generation fixtures. However the success of the work also depends on the

 Conclusions and Future Work

 - 206 -

dissemination of results to the wider manufacturing community and the inclusion of extra

features to create a commercial product that system integrators can use for industrial

projects.

 References

 - 207 -

References

1. Bi, Z.M. and Zhang, W.J., 2001, "Flexible fixture design and automation: Review,
issues and future directions", International Journal of Production Research, vol. 39,
n. 13, pp. 2867-2894.

2. Consalter, L.A. and Boehls, L., 2004, "An Approach to Fixture Systems
Management in Machining Processes", Journal of the Brazilian Society of
Mechanical Science & Engineers, vol. 26, n. 2, pp. 145-152.

3. Perremans, P., 1996, "Feature-based description of modular fixturing elements: The
key to an expert system for the automatic design of the physical fixture", Advances
in Engineering Software, vol. 25, n. 1, pp. 19-27.

4. Bi, Z.M., Lang, Y.T.S., Verner, M. and Orban, P., 2007, "Development of
reconfigurable machines", International Journal of Advanced Manufacturing
Technology, vol. 39, n. 11-12, pp. 1227-1251.

5. Mohamed, Z.M., 1996, "A flexible approach to (re)configure Flexible
Manufacturing Cells", European Journal of Operational Research, vol. 95, n. 3, pp.
566-576.

6. Oxford University Press, 2010, "Oxford English Dictionary", Available from:
www.oed.com, April 2010.

7. Riehle, D., 2000, "Framework design: A Role model approach", PhD Thesis, ETH
Zurich, pp. 230.

8. Fayad, M. and Schmidt, D.C., 1997, "Object-oriented application frameworks",
Communications of the ACM, vol. 40, n. 10, pp. 32-38.

9. Shirinadeh, B., Lin, G. and Chan, K., 1995, "Strategies for planning and
implementation of flexible fixturing systems in a computer-integrated
manufacturing environment", Proceedings of International Conference on Computer
Integrated Manufacturing, Singapore.

10. Lin, G. and Du, H., "Design and development of an automated flexible fixture",
Proceedings of the 4th Internatonal Conference on Automation Technology
(AUTOMATION ‗96), Hsinchu, Taiwan.

11. Hoffman, G.H., 1987, "Modular fixturing", Manufacturing Technology Press, Lake
Geneva, Wisconsin, ISBN: 978-0932819000, pp. 186.

12. Gandhi, M.V. and Thompson, B., 1986, "Automated design of modular fixturing for
flexible manufacturing systems", Journal of Manufacturing Systems, vol. 5, n. 4, pp.
243-252.

13. Lewis, G., 1983, "Modular fixturing system", Second International conference on
Flexible Manufacturing Systems (IFS), London.

14. Lin, C.I., 1994, "A systematic conceptual design of modular fixtures", International
Journal of Advanced Manufacturing Technology, vol. 9, n. 4, pp. 217-224.

15. Ngoi, B.K.A., 1990, "Computer aided design of modular fixture assembly", PhD
Thesis, University of Canterbury, New Zealand, pp. 225.

16. Sela, M.N., Gaundry, O., Dombre, E. and Benhabib, B., 1997, "A reconfigurable
modular fixturing system for thin-walled flexible objects", International Journal of
Advanced Manufacturing Technology, vol. 13, n. 9, pp. 611-617.

http://www.oed.com/

 References

 - 208 -

17. Zheng, Y. and Qian, W.-H., 2008, "A 3-D modular fixture with enhanced
localization accuracy and immobilarization capability", International Journal of
Machine Tools and Manufacture, vol. 48, n. 6, pp. 677-687.

18. Xu, Y.-C., Liu, G., Tang, Y., Zhang, R., Dong, R. and Wu, M., 1985, "A modular
fixturing system for flexible manufacturing", in "Flexible Manufacturing Systems",
IFS Publications, Bedford, pp. 227-233.

19. Kusiak, A., 1992, "Intelligent design and manufacturing", John Wiley & Sons, New
York, ISBN: 978-0471534730, pp. 776.

20. Shirinzadeh, B., 1995, "Flexible and automated workholding systems", Industrial
Robot: An International Journal, vol. 22, n. 2, pp. 29-34.

21. Nee, A.Y.C., Whybrew, K. and Kumar, A.S., 1995, "Advanced Fixture Design For
FMS", Advanced Manufacturing Series, Springer-Verlag, London, ISBN: 978-
1848827387, pp. 481.

22. Hazen, F.B. and Wright, P.K., 1990, "Workholding automation: innovations in
analysis, design and planning", Manufacturing Review, vol. 3, n. 4, pp. 224-236.

23. Aoyama, T., 2004, "Development of Gel Structured Electrorheological Fluids and
their Application for the Precision Clamping Mechanism of Aerostatic Sliders",
CIRP Annals - Manufacturing Technology, vol. 53, n. 1, pp. 325-328.

24. Rong, Y., Tao, R. and Tang, X., 2000, "Flexible Fixturing with phase-change
materials. Part 1. Experimental study on magnetorheological fluids", International
Journal of Advanced Manufacturing Technology, vol. 16, n. 11, pp. 822-829.

25. Aoyama, T. and Kakinuma, Y., 2005, "Development of Fixture Devices for Thin
and Compliant Workpieces", CIRP Annals - Manufacturing Technology, vol. 54, n.
1, pp. 325-328.

26. Ahn, S.A. and Wright, P.K., 2002, "Reference free part encapsulation (RFPE): An
investigation of material properties and the role of RFPE in a taxonomy of fixturing
systems", Journal of Manufacturing Systems, vol. 21, n. 2, pp. 101-110.

27. Choi, D.S., Lee, S.H., Shin, B.S., Wang, K.H., Yoon, K.K. and Sarma, S.E., 2001,
"A new rapid prototyping system using universal automated fixturing with feature-
based CAD/CAM", Journal of Materials Processing Technology, vol. 113, n. 1-3,
pp. 285-290.

28. Lee, E. and Sarma, S.E., 2007, "Reference free part encapsulation: Materials,
machines and methods", Journal of Manufacturing Systems, vol. 26, n. 1, pp. 22-
36.

29. Phuah, H.L., 2005, "Part-fixture behaviour prediction methodology for fixture
design verification", PhD Thesis, University of Nottingham, pp. 210.

30. Hurtado, J.F. and Melkote, S.N., 1998, "A Model for the Prediction of Reaction
Forces in a 3-2-1 Machining fixture", 26th North American Manufacturing
Research Conference NAMRC XXVI, Atlanta, Georgia.

31. Englert, P.J. and Wright, P.K., 1986, "Application of artificial intelligence and the
design of fixtures for automated manufacturing", IEEE International Conference on
robotics and automation, San Francisco.

32. Cutkovsky, M.R., Kurawa, E. and Wright, P.K., 1985, "Programmable conformable
clamps", AUTOFACT 4, Dearborn, Michigan.

33. Al -Habaibeh, A., Gindy, N. and Parkin, R.M., 2003, "Experimental Design and
Investigation of a pin-type reconfigurable clamping system for manufacturing

 References

 - 209 -

aerospace components ", Journal of Engineering and Manufacture - Proceedings of
the Institution for Mechanical Engineers Part B, vol. 217, n. 12, pp. 1771-1777.

34. Tuffentsammer, K., 1981, "Automatic loading of machining system and automatic
clamping of workpieces", Annals of the CIRP, vol. 30, n. 2, pp. 553-558.

35. Lin, G.C.I. and Du, H., 1996, "Design and development of an automated flexible
fixture", 4th International Conference on Automation Technology, Hsinchu,
Taiwan.

36. Du, H. and Lin, G.C.I., 1998, "Development of an automated flexible fixture for
planar objects", Robotics and Computer-Integrated Manufacturing, vol. 14, n. 3, pp.
173-183.

37. Youcef-Toumi, K. and Buitrago, J.H., 1989, "Design and implementation of robot-
operated adaptable and modular fixtures", Robotics & Computer-Integrated
Manufacturing, vol. 5, n. 4, pp. 343-356.

38. Benhabib, B., Chan, K.C. and Dai, M., 1991, "A modular programmable fixturing
system", Journal of Engineering for Industry, vol. 113, n. 1, pp. 93-100.

39. Chan, K., Benhabib, B. and Dai, M., 1990, "A reconfigurable fixturing system for
robotic assemble", Journal of Manufacturing Systems, vol. 9, n. 3, pp. 206-221.

40. Kurz, K., Craig, K. and Wolf, B., 1993, "Design and development of a flexible,
automated fixturing device for manufacturing", Proceedings of 1993 ASME Winter
Annual Meeting, New Orleans.

41. Kurz, K., Craig, K., Wolf, B. and Stolfi, F., 1994, "Developing a flexible automated
fixturing device", Mechanical Engineering, vol. 116, n. 7, pp. 59-63.

42. Lu, S.-S., Chu, J.-L. and Jang, H.-C., 1997, "Development of a novel coordinate
transposing fixture system", International Journal of Advanced Manufacturing
Technology, vol. 13, n. 5, pp. 350-358.

43. Chan, K. and Lin, C., 1996, "Development of a computer numerical control [CNC]
modular fixture machine design of a standard multifinger module", International
Journal of Advanced Manufacturing Technology, vol. 11, n. 1, pp. 18-26.

44. Tao, Z.J., Kumar, A.S. and Nee, A.Y.C., 1999, "Automatic generation of dynamic
clamping forces for machining fixtures", International Journal of Production
Research, vol. 37, n. 12, pp. 2755-2776.

45. Tao, Z.J., Kumar, A.S., Nee, A.Y.C. and Mannan, M.A., 1997, "Modelling and
experimental investigation of a sensor-integrated workpiece-fixture system",
International Journal of Computer Applications in Technology, vol. 10, n. 3-4, pp.
236-250.

46. Gupta, S., Bagchi, A. and Lewis, R., 1988, "Sensor-based fixturing system", in
"Recent Developments in Production Research", Elsevier, Amsterdam, pp. 11-16.

47. Nee, A.Y.C., Kumar, A.S. and Tao, Z.J., 2000, "An Intelligent Fixture with a
Dynamic Clamping Scheme", Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, vol. 214, n. 3, pp. 183-196.

48. Nee, A.Y.C., Tao, Z.J. and Kumar, A.S., 2004, "An Advanced Treatise on Fixture
Design and Planning", Series on Manufacturing Systems and Technology, World
Scientific Publishing, Singapore, ISBN: 978-9812560599, pp. 248.

49. Mannan, M.A. and Sollie, J.P., 1997, "A Force-Controlled Clamping Element for
Intelligent Fixturing", Annals of the CIRP, vol. 46, n. 1, pp. 256-268.

 References

 - 210 -

50. Wang, Y.F., Wong, Y.S. and Fuh, J.Y.H., 1999, "Off-line modelling and planning
of optimal clamping forces for an intelligent fixturing system", International Journal
of Machine Tools and Manufacture, vol. 39, n. 2, pp. 253-271.

51. Wang, Y.F., Fuh, J.Y.H. and Wong, Y.S., 1997, "A model-based online Control of
optimal fixturing process", IEEE International Conference on Robotics and
Automation, Albuquerque, USA.

52. Rashid, A. and Mihai Nicolescu, C., 2006, "Active vibration control in palletised
workholding system for milling", International Journal of Machine Tools and
Manufacture, vol. 46, n. 12-13, pp. 1626-1636.

53. Nnaji, B.O. and Lyu, P., 1990, "Rules for an expert fixturing system on a CAD
screen using flexible fixtures ", Journal of Intelligent Manufacturing, vol. 1, n. 1,
pp. 31-48.

54. Gaoliang, P., Xu, H., Haiquan, Y., Xin, H. and Alipour, K., 2008, "Precise
manipulation approach to facilitate interactive modular fixture assembly design in a
virtual environment ", Assembly Automation, vol. 28, n. 3, pp. 216-224.

55. Sun, S.H. and Chen, J.L., 1996, "A Fixture Design System using Case-based
Reasoning", Engineering Applications of Artificial Intelligence, vol. 9, n. 5, pp.
533-540.

56. Li, W., Li, P. and Rong, Y., 2002, "Case-based agile fixture design", Journal of
Materials Processing Technology, vol. 128, n. 1-3, pp. 7-18.

57. Wang, H. and Rong, Y.K., 2008, "Case based reasoning method for computer aided
welding fixture design", Computer-Aided Design, vol. 40, n. 12, pp. 1121-1132.

58. Trappey, A.C. and Matrubhutam, S., 1993, "Fixture configuration using projective
geometry", Journal of Manufacturing Systems, vol. 12, n. 6, pp. 486-495.

59. Kang, Y., Rong, Y. and Yang, J.A., 2003, "Geometric and Kinetic Model Based
Computer-Aided Fixture Design Verification", Journal of Computing and
Information Science in Engineering, vol. 3, n. 3, pp. 187-200.

60. Kang, Y., Rong, Y. and Yang, J.C., 2003, "Computer-Aided Fixture Design
Verification. Part 1. The Framework and Modelling", International Journal of
Advanced Manufacturing Technology, vol. 21, n. 10-11, pp. 827–835.

61. Wu, Y., Rong, Y., Ma, W. and LeClair, S.R., 1998, "Automated modular fixture
planning: Accuracy, clamping, and accessibility analyses", Robotics and Computer-
Integrated Manufacturing, vol. 14, n. 1, pp. 17-26.

62. Wu, Y., Rong, Y., Ma, W. and LeClair, S.R., 1998, "Automated modular fixture
planning: Geometric analysis", Robotics and Computer-Integrated Manufacturing,
vol. 14, n. 1, pp. 1-15.

63. King, L.S.B. and Hutter, I., 1993, "Theoretical Approach for Generating Optimal
Fixturing Locations for Prismatic Workparts in Automated Assembly", Journal of
Manufacturing Systems, vol. 12, n. 5, pp. 409-416.

64. Menassa, R.J. and DeVries, W.R., 1991, "Optimisation Methods Applied to
Selecting Support Positions in Fixture Design", Journal of Engineering for Industry,
Transactions of ASME, vol. 113, n. 1, pp. 412-418.

65. Wu, N.H. and Chan, K.C., 1996, "A Genetic Algorithm Based Approach to Optimal
Fixture Configuration", Computers and Industrial Engineering, vol. 31, n. 3-4, pp.
919-924.

 References

 - 211 -

66. Krishnakumar, K. and Melkote, S.N., 2000, "Machining fixture layout optimization
using the genetic algorithm", International Journalof Machine Tools and
Manufacture, vol. 40, n. 4, pp. 579-598.

67. Krishnakumar, K., Satyanarayana, S. and Melkote, S.N., 2002, "Iterative fixture
layout and clamping force optimization using the genetic algorithm", Journal of
Manufacturing Science and Engineering, vol. 124, n. 1, pp. 119-126.

68. Vallapuzha, S., DeMetere, C., Choudhuri, S. and Khetan, R.P., 2002, "An
investigation into the use of spatial coordinates for the genetic algorithm based
solution of the fixture layout optimization problem", International Journal of
Machine Tools and Manufacture, vol. 42, n. 2, pp. 265 – 275.

69. Kaya, N., 2006, "Machining fixture locating and clamping position optimization
using genetic algorithms", Computers in Industry, vol. 57, n. 2, pp. 112-120.

70. Aoyama, T., Kakinuma, Y. and Inasaki, I., 2006, "Optimization of fixture layout by
means of the genetic algorithm", I*PROMS - Intelligent Production Machines and
Systems, Virtual International Conference.

71. Huang, B., Gou, H., Liu, W., Li, Y. and Xie, M., 2002, "A framework for virtual
enterprise control with the holonic manufacturing paradigm", Computers in
Industry, vol. 49, n. 3, pp. 299-310.

72. Van Leeuwen, E.H. and Norrie, D., 1997, "Holons and holarchies", Manufacturing
Engineer, vol. 76, n. 2, pp. 86-88.

73. Valckenaers, P., Van Brussel, H., Bongaerts, L. and Wyns, J., 1997, "Holonic
manufacturing systems", Integrated Computer-Aided Engineering, vol. 4, n. 3, pp.
191-201.

74. Sugi, M. and Maeda, Y., 2003, "A Holonic architecture for easy reconfiguration of
robotic assembly systems", IEEE Transactions on Robotics and Automation, vol.
19, n. 3, pp. 457-464.

75. Leitao, P. and Restivo, F., 2006, "ADACOR: A holonic architecture for agile and
adaptive manufacturing control", Computers in Industry, vol. 57, n. 2, pp. 121-130.

76. Leitão, P. and Restivo, F., 2008, "A holonic approach to dynamic manufacturing
scheduling", Robotics and Computer-Integrated Manufacturing, vol. 24, n. 5, pp.
625-634.

77. Babiceanu, R.F., Chen, F.F. and Sturges, R.H., 2005, "Real-time holonic scheduling
of material handling operations in a dynamic manufacturing environment", Robotics
and Computer-Integrated Manufacturing, vol. 21, n. 4-5, pp. 328-337.

78. Gou, L., Luh, P.B. and Kyoya, Y., 1998, "Holonic manufacturing scheduling:
architecture, cooperation mechanism, and implementation", Computers in Industry,
vol. 37, n. 3, pp. 213-231.

79. Jarvis, J., Ronnquist, R., McFarlane, D. and Jain, L., 2006, "A team-based holonic
approach to robotic assembly cell control", Journal of Network and Computer
Applications, vol. 29, n. 2-3, pp. 160-176.

80. Ferber, J., 1999, "Multi-agent Systems: An Introduction to Distributed Artificial
Intelligence", ADDISON-WESLEY, London, ISBN: 978-0201360486, pp. 528.

81. Tang, H.P. and Wong, T.N., 2005, "Reactive multi-agent system for assembly cell
control", Robotics and Computer-Integrated Manufacturing, vol. 21, n. 2, pp. 87-
98.

 References

 - 212 -

82. Nee, A.Y.C., Kurnar, A.S., Prombanpong, S. and Puah, K.Y., 1992, "A Feature-
Based Classification Scheme for Fixtures", CIRP Annals - Manufacturing
Technology, vol. 41, n. 1, pp. 189-192.

83. Shirinzadeh, B., 1996, "A CAD-Based hierarchical approach to interference
detection among fixture modules in a reconfigurable fixturing system", Robotics &
Computer-Integrated Manufacturing, vol. 12, n. 1, pp. 44-53.

84. Jeng, Y.C. and Gill, K.F., 1997, "A CAD-based approach to the design of fixtures
for prismatic parts ", Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, vol. 211, n. 7, pp. 523-538.

85. Subrahmanyam, S.R., 2002, "Fixturing features selection in feature-based systems",
Computers in Industry, vol. 48, n. 2, pp. 99-108.

86. Subrahmanyam, S.R., 2002, "A method for generation of machining and fixturing
features from design features", Computers in Industry, vol. 47, n. 3, pp. 269-287.

87. Liquing, F. and Kumar, A.S., 2005, "XML-based Representation in a CBR System
for Fixture Design", Computer-Aided Design & Applications, vol. 2, n. 1-4, pp.
339-348.

88. Mervyn, F., Kumar, A.S., Bok, S.H. and Nee, A.Y.C., 2003, "Development of an
Internet-enabled Interactive Fixture Design System", Computer-Aided Design, vol.
35, n. 10, pp. 945-957.

89. Hunter, A., R., Ríos, C., J., Pérez García, J.M. and Vizán Idoipe, A., 2010, "Fixture
knowledge model development and implementation based on a functional design
approach", Robotics and Computer-Integrated Manufacturing, vol. 26, n. 1, pp. 56-
66.

90. Hunter, R., Rios, J., Perez, J.M. and Vizan, A., 2006, "A functional approach for the
formalization of the fixture design process", International Journal of Machine Tools
and Manufacture, vol. 46, n. 6, pp. 683-697.

91. Zha, X.F., Du, H. and Lim, Y.E., 2001, "Knowledge intensive Petri net framework
for concurrent intelligent design of automatic assembly systems", Robotics and
Computer-Integrated Manufacturing, vol. 17, n. 5, pp. 379-398.

92. Lohse, N., Ratchev, S. and Chrisp, A., 2004, "Function-behaviour-structure model
for modular assembly equipment", Proceedings of the International Precision
Assembly Seminar IPAS 2004, Bad Hofgastein, Austria.

93. Lohse, N., 2006, "Towards an ontology framework for the integrated design of
modular assembly systems", PhD Thesis, University of Nottingham, pp. 234.

94. Meljer, B.R., Tomlyama, T., van der Hoist, B.H.A. and van der Werff, K., 2003,
"Knowledge Structuring for Function Design", CIRP Annals - Manufacturing
Technology, vol. 52, n. 1, pp. 89-92.

95. Zhang, M., Fisher, W., Webb, P. and Tarn, T.-J., 2003, "Functional Model Based
Object-Oriented Development Framework for Mechatronic Systems", IEEE
International Conference on Robotics & Automation, Taipei, Taiwan.

96. Prabhakar, S. and Goel, A.K., 1998, "Functional modeling for enabling adaptive
design of devices for new environments", Artificial Intelligence in Engineering, vol.
12, n. 4, pp. 417-444.

97. Kovács, G.L., Kopácsi, S., Nacsa, J., Haidegger, G. and Groumpos, P., 1999,
"Application of software reuse and object-oriented methodologies for the modelling

 References

 - 213 -

and control of manufacturing systems", Computers in Industry, vol. 39, n. 3, pp.
177–89.

98. Schäfer, C. and López, O., 2004, "An Object-Oriented Robot Model and Its
Integration into Flexible Manufacturing Systems ", in "Multiple Approaches to
Intelligent Systems", Springer, Berlin / Heidelberg, pp. 820-829.

99. Bruccoleri, M., Pasek, Z.J. and Koren, Y., 2006, "Operation management in
reconfigurable manufacturing systems: Reconfiguration for error handling",
International Journal of Production Economics, vol. 100, n. 1, pp. 87-100.

100. Bruccoleri, M., 2007, "Reconfigurable control of robotized manufacturing cells",
Robotics and Computer-Integrated Manufacturing, vol. 23, n. 1, pp. 94-106.

101. Alexander, C., 1979, "The Timeless Way of Building", Oxford University Press,
New York, ISBN: 978-0201360486, pp. 552.

102. Coad, P., 1992, "Object-Oriented Patterns", Communications of the ACM, vol. 35,
n. 9, pp. 152-159.

103. Gamma, E., Helm, R., Johnson, R.E. and Vlissides, J., 1993, "Design Patterns:
Abstraction and Reuse of Object-Oriented Design", in "Lecture Notes in Computer
Science ", Springer-Verlag, Kaiserslautern, pp. 406-431.

104. Gamma, E., Helm, R., Johnson, R.E. and Vlissides, J., 1995, "Design Patterns.
Elements of Reusable Object-Oriented Software." Addison-Wesley Longman,
Amsterdam, ISBN: 978-0582844421, pp. 395.

105. Thiry, L., Perronne, J.-M. and Thirion, B., 2004, "Patterns for behavior modeling
and integration", Computers in Industry, vol. 55, n. 3, pp. 225-237.

106. Soundararajan, K. and Brennan, R.W., 2005, "A proxy design pattern to support
real-time distributed control system benchmarking", in "Holonic and Multi-Agent
Systems for Manufacturing", Springer, Berlin/Heidelberg, pp. 133-143.

107. Soundararajan, K. and Brennan, R.W., 2008, "Design patterns for real-time
distributed control system benchmarking", Robotics and Computer-Integrated
Manufacturing, vol. 24, n. 5, pp. 606-615.

108. Pont, M.J. and Banner, M.P., 2004, "Designing embedded systems using patterns: a
case study", Journal of Systems and Software, vol. 74, n. 3, pp. 201-213.

109. Sanz, R. and Zalewski, J., 2003, "Pattern-based control systems engineering ",
IEEE Control Systems Magazine, vol. 23, n. 3, pp. 43-60.

110. Buschmann, R., Meunier, H., Rohnert, P. and Sommerland, M., 1996, "Pattern-
oriented Software Architecture - A System of Patterns", John Wiley & Sons,
Chichester, ISBN: 978-9971514211, pp. 476.

111. Neumann, P., 2007, "Communication in industrial automation—What is going on?"
Control Engineering Practice, vol. 15, n. 11, pp. 1332-1347.

112. Hurwitz, J., 1998, "Sorting out middleware", DBMS Archive, vol. 11, n. 1, pp. 10-
12.

113. Amoretti, M. and Reggiani, M., 2009, "Architectural paradigms for robotics
applications", Advanced Engineering Informatics, vol. 24, n. 1, pp. 4-13.

114. Object Management Group, 2004, "Common Object Request Broker Architecture:
Core Specification, Version 3.0.3", Available from: www.omg.org, August 2007.

115. Object Management Group, 2002, "OMG IDL Syntax and Semantics", Available
from: www.omg.org, October 2008.

http://www.omg.org/
http://www.omg.org/

 References

 - 214 -

116. Object Management Group, 2005, "Real-Time CORBA Specification, Version 1.2",
Available from: www.omg.org, March 2010.

117. Object Management Group, 2007, "Data Distribution Service for Real-Time
Systems, Version 1.2", Available from: www.omg.org, June 2007.

118. Shin, J., Park, S., Ju, C. and Cho, H., 2003, "CORBA-based integration framework
for distributed shop floor controlsmall star", Computers & Industrial Engineering,
vol. 45, n. 3, pp. 457-474.

119. Sanz, R., 2003, "A CORBA-based architecture for strategic process control",
Annual Reviews in Control, vol. 27, n. 1, pp. 15-22.

120. Haber, R.E., Cantillo, K. and Jiménez, J.E., 2005, "Networked sensing for high-
speed machining processes based on CORBA", Sensors and Actuators A: Physical,
vol. 119, n. 2, pp. 418-426.

121. Joshi, J., 2007, "Data-Oriented Architecture", Real-Time Innovations, Inc.,
Whitepaper, Available from: www.rti.com, March 2010.

122. Object Computing, Inc., "OPEN DDS", Available from: http://www.opendds.org/,
March 2010.

123. Real-Time Innovations, Inc., 2009, "Applications of the RTI Data Distribution
Service", Available from: http://www.rti.com/industries/, 20th October 2009.

124. Object Management Group, 2009, "The Real-time Publish-Subscribe Wire Protocol
DDS Interoperability Wire Protocol Specification, Version 2.1", Available from:
http://www.omg.org/spec/DDSI/2.1, October 2009.

125. Veiga, G., Pires, J.N. and Nilsson, K., 2009, "Experiments with service-oriented
architectures for industrial robotic cells programming", Robotics and Computer-
Integrated Manufacturing, vol. 25, n. 4-5, pp. 746-755.

126. Ahn, S.C., Kim, J.H., Lim, K., Kwon, Y. and Kim, H., 2005, "UPnP approach for
robot middleware", Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, Barcelona, Spain.

127. Estrem, W.A., 2003, "An evaluation framework for deploying Web Services in the
next generation manufacturing enterprise", Robotics and Computer-Integrated
Manufacturing, vol. 19, n. 6, pp. 509-519.

128. Ha, Y.-G., Sohn, J.-C., Cho, Y.-J. and Yoon, H., 2007, "A robotic service
framework supporting automated integration of ubiquitous sensors and devices",
Information Sciences, vol. 177, n. 3, pp. 657-679.

129. Sun Microsystems, Inc, 2002, "Java Message Service Specification, Version 1.1",
Available from: www.sun.com, August 2007.

130. Sánchez, E., Portas, A., Pereira, A. and Vega, J., 2006, "Applying a message
oriented middleware architecture to the TJ-II remote participation system", Fusion
Engineering and Design, vol. 81, n. 15-17, pp. 2063-2067.

131. Sachs, K., Kounev, S., Bacon, J. and Buchmann, A., 2009, "Performance evaluation
of message-oriented middleware using the SPECjms2007 benchmark", Performance
Evaluation, vol. 66, n. 8, pp. 410-434.

132. Urdaneta, G., Colmenares, J.A., Queipo, N.V., Arapé, N., Arévalo, C., Ruz, M.,
Corzo, H. and Romero, A., 2007, "A reference software architecture for the
development of industrial automation high-level applications in the petroleum
industry", Computers in Industry, vol. 58, n. 1, pp. 35-45.

http://www.omg.org/
http://www.omg.org/
http://www.rti.com/
http://www.opendds.org/
http://www.rti.com/industries/
http://www.omg.org/spec/DDSI/2.1
http://www.sun.com/

 References

 - 215 -

133. Mervyn, F., Kumar, A.S., Bok, S.H. and Nee, A.Y.C., 2004, "Developing
distributed applications for integrated product and process design", Computer-Aided
Design, vol. 36, n. 8, pp. 679-689.

134. Dugenske, A., Fraser, A., Nguyen, T. and Voitus, R., 2000, "The National
Electronics Manufacturing Initiative (NEMI) plug and play factory", International
Journal of Computer Integrated Manufacturing, vol. 13, n. 3, pp. 225-244.

135. Delamer, I.M. and Martinez Lastra, J.L., 2006, "Evolutionary multi-objective
optimization of QoS-Aware Publish/Subscribe Middleware in electronics
production", Engineering Applications of Artificial Intelligence, vol. 19, n. 6, pp.
593-697.

136. Association Connecting Electronics Industries (IPC), 2003, "IPC-2501 - Definition
for Web-based Exchange of XML Data", Northbrook, USA.

137. Association Connecting Electronics Industries (IPC), 2001, "IPC2541 - Generic
Requirements for Electronics Manufacturing Shop-Floor Equipment
Communication Messages (CAMX) ", Northbrook, USA.

138. Association Connecting Electronics Industries (IPC), 2005, "IPC2546 - Sectional
Requirements for Shop-Floor Equipment Communication Messages (CAMX) for
Printed Circuit Board Assembly", Northbrook, USA.

139. Association Connecting Electronics Industries (IPC), 2001, "IPC2547 - Sectional
Requirements for Shop-Floor Equipment Communication Messages (CAMX) for
Printed Circuit Board Test, Inspection and Rework", Northbrook, USA.

140. Delamer, I.M. and Martinez Lastra, J.L., 2006, "Quality of service for CAMX
middleware", International Journal of Computer Integrated Manufacturing, vol. 19,
n. 8, pp. 784-804.

141. Delamer, I.M., Martinez Lastra, J.L. and Tuokko, R., 2004, "Design of QoS-aware
framework for industrial CAMX systems", Proceedings of the Second IEEE
International Conference on Industrial Informatics INDIN 2004, Berlin, Germany.

142. Object Management Group, 2005, "Unified Modeling Language: Infrastructure,
version 2.0", Available from: http://www.omg.org/spec/UML/2.0/, March 2010.

143. Object Management Group, 2005, "Unified Modelling Language: Superstructure,
version 2.0", Available from: http://www.omg.org/spec/UML/2.0/, March 2010.

144. Weilkiens, T. and Oestereich, B., 2007, "UML 2 Certification Guide - Fundamental
and Intermediate Exams", Morgan Kaufmann Publishers, San Francisco, ISBN:
978-0-12-373585-0, pp. 320.

145. Joshi, J., 2006, "A comparison and mapping of Data Distribution Service (DDS)
and Java Messaging Service (JMS) ", Real-Time Innovations, Inc., Whitepaper,
Available from: www.rti.com, March 2009.

146. Ryll, M., 2006, "Entwicklung einer CORBA-basierten Applikation zur
Überwachung und Visualisierung von modularen Produktionslinien", Diploma
Thesis, University of Applied Sciences, pp. 110.

147. Li, Y., Zou, F., Wu, Z. and Ma, F., 2004, "PWSD: A Scalable Web Service
Discovery Architecture Based on Peer-to-Peer Overlay Network ", in "Advanced
Web Technologies and Applications", Springer Berlin / Heidelberg, pp. 291-300.

148. Makris, C., Panagis, Y., Sakkopoulos, E. and Tsakalidis, A., 2006, "Efficient and
adaptive discovery techniques of Web Services handling large data sets", Journal of
Systems and Software, vol. 79, n. 4, pp. 480-495.

http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/
http://www.rti.com/

 References

 - 216 -

149. Sun, Y., He, S. and Leu, J.Y., 2007, "Syndicating Web Services: A QoS and user-
driven approach", Decision Support Systems, vol. 43, n. 1, pp. 243-255.

150. Sánchez, E., Portas, A., Pereira, A., Vega, J. and Kirpichev, I., 2007, "Remote
control of data acquisition devices by means of message oriented middleware",
Fusion Engineering and Design, vol. 82, n. 5-14, pp. 1365-1371.

151. Buccafurri, F., De Meo, P., Fugini, M., Furnari, R., Goy, A., Lax, G., Lops, P.,
Modafferi, S., Pernici, B., Redavid, D., Semeraro, G., Ursino, D., 2008, "Analysis
of QoS in cooperative services for real time applications", Data & Knowledge
Engineering, vol. 67, n. 3, pp. 463-484.

152. Cardoso, J., Sheth, A., Miller, J., Arnold, J. and Kochut, K., 2004, "Quality of
service for workflows and web service processes", Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 1, n. 3, pp. 281-308.

153. Schmidt, D.C. and O'Ryan, C., 2003, "Patterns and performance of distributed real-
time and embedded publisher/subscriber architectures", The Journal of Systems and
Software, vol. 66, n. 3, pp. 213-223.

154. Tselikas, N.D., Dellas, N.D., Koutsoloukas, E.A., Kapellaki, S.H., Prezerakos, G.N.
and Venieris, I.S., 2007, "Distributed service provision using open APIs-based
middleware: OSA/Parlay vs. JAIN performance evaluation study", The Journal of
Systems and Software, vol. 80, n. 5, pp. 765-777.

155. Tuma, P. and Buble, A., 2001, "Open CORBA Benchmarking", International
Symposium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS 2001), Orlando, Florida.

156. Distributed Systems Research Group, Charles University, Prague, 2008, "Open
CORBA Benchmarking", Available from: http://dsrg.mff.cuni.cz/~bench/, May
2010.

157. Gokhale, A.S. and Schmidt, D.C., 1998, "Measuring and Optimizing CORBA
Latency and Scalability Over High-speed Networks", IEEE Transaction on
Computers, vol. 47, n. 4, pp. 391-413.

158. Gray, N.A.B., 2004, "Comparison of Web Services, Java-RMI, and CORBA service
implementations", Fifth Australasian Workshop on Software and System
Architectures, Melbourne, Australia.

159. Juric, M.B., Rozman, I., Brumen, B., Colnaric, M. and Hericko, M., 2006,
"Comparison of performance of Web services, WS-Security, RMI, and RMI–SSL",
Journal of Systems and Software, vol. 79, n. 5, pp. 689-700.

160. Distributed Object Computing (DOC) Group for Distributed Real-time and
Embedded (DRE) Systems, 2008, "Real-Time DDS Examination & Evaluation
Project (RT-DEEP)", Available from: http://www.dre.vanderbilt.edu/DDS/,
07.10.2008.

161. Parsons, J., Xiong, M., Schmidt, D.C., Edmondson, J., Nguyen, H. and Ajiboye, O.,
2006, "Evaluating the performance of Pub/Sub Platforms for Tactical Information
Management", Whitepaper, Available from: http://www.omgwiki.org/dds/, May
2010.

162. Xiong, M., Parsons, J., Edmondson, J., Nguyen, H. and Schmidt, D.C., 2006,
"Evaluating the performance of Publish/Subscribe platforms information
management in distributed real-time and embedded systems", Whitepaper,
Available from: http://www.omgwiki.org/dds/, May 2010.

http://dsrg.mff.cuni.cz/~bench/
http://www.dre.vanderbilt.edu/DDS/
http://www.omgwiki.org/dds/
http://www.omgwiki.org/dds/

 References

 - 217 -

163. Real-Time Innovations, Inc., 2008, "RTI Data Distribution Service 4.2 Architectural
Overview", Real-Time Innovations, Inc., Whitepaper, Available from:
www.rti.com, April 2010.

164. Gottschalk, S., Lin, M.C. and Manocha, D., 1996, "OBBTree: a hierarchical
structure for rapid interference detection", Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques (SIGGRAPH), New
Orleans, USA.

165. UNC Research Group on Modeling, Physically-Based Simulation and Applications,
2009, "RAPID - Robust and Accurate Polygon Interference Detection", Available
from: http://gamma.cs.unc.edu/OBB/, April 2010.

166. Pardo-Castellote, G., 2005, "OMG Data-Distribution Service: Architectural
overview", Real-Time Innovations, Inc., Whitepaper, Available from:
www.omg.org, April 2010.

167. Real-Time Innovations, Inc., 2006, "Can Ethernet be Real time?" Real-Time
Innovations, Inc., Whitepaper, Available from: www.rti.com, April 2010.

168. S200 High Performance Compact Brushless Servo Drives - Reference
Manual,2008, Danaher Motion, I., Available from: www.danahermotion.com, April
2010.

169. Butenhof, D.R., 1997, "Programming with POSIX Threads", Addison-Wesley,
Boston, ISBN: 0-201-63392-2, pp. 400.

170. Shepherd, G. and Wingo, S., 1996, "MFC Internals - Inside the Microsoft
Foundation Class Architecture", Addison-Wesley, ISBN: 0-201-40721-3, pp. 736.

171. Geeknet, Inc., "TinyXml ", Available from: http://sourceforge.net/projects/tinyxml/,
April 2010.

172. Techsoft, Inc., "Matrix TCL Lite 2.0", Available from: www.techsoftpl.com/, April
2010.

173. Real-Time Innovations, Inc., 2007, "RTI Data Distribution Service - User Manual",
Available from: www.rti.com, April 2010.

http://www.rti.com/
http://gamma.cs.unc.edu/OBB/
http://www.omg.org/
http://www.rti.com/
http://www.danahermotion.com/
http://sourceforge.net/projects/tinyxml/
http://www.techsoftpl.com/
http://www.rti.com/

 Appendices

 - 218 -

Appendix A:

Listings of Module Configuration Files in XML-Format

 Appendices

 - 219 -

Contents of the File: ModuleDescription_module1.xml

<?xml version="1.0" ?>
<FixtureModule>
 <id>1</id>
 <OccupiedSpace>
 <p1>
 <x>-334.3</x>
 <y>-28.5</y>
 <z>28.5</z>
 </p1>
 <p2>
 <x>60.0</x>
 <y>28.5</y>
 <z>-28.5</z>
 </p2>
 </OccupiedSpace>
 <device>
 <kind>LINEAR_CLAMP</kind>
 <id>1</id>
 <description>Nothing</description>
 <spatialdesc>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 <rotx>0</rotx>
 <roty>0</roty>
 <rotz>0</rotz>
 </spatialdesc>
 <isLockable>true</isLockable>
 <applyforce>
 <clampingrange>
 <min>0</min>
 <max>2500</max>
 <unit>N</unit>
 <resolution>1</resolution>
 <clampingdirection>push</clampingdirection>
 </clampingrange>
 </applyforce>
 <linearactuation>
 <stroke_range>
 <min>0</min>
 <max>60</max>
 <unit>MM</unit>
 <resolution>0.0008</resolution>
 </stroke_range>
 </linearactuation>
 <locate>
 <maxReactionForce>5000</maxReactionForce>
 </locate>
 <library>NI_UMI7774_S200VTS.dll</library>
 <library-parameters>
 <board_id>1</board_id>
 <axis_id>1</axis_id>
 <adcChannel>1</adcChannel>
 <enc_resolution>2000</enc_resolution>

 Appendices

 - 220 -

 <pitch>1.6</pitch>
 </library-parameters>
 <feedbackdevices>
 <device>2</device>
 <device>3</device>
 </feedbackdevices>
 </device>
 <device>
 <kind>DISPLACEMENT_SENSOR</kind>
 <id>2</id>
 <description>SFD of Actuator</description>
 <sensedisplacement>
 <sensing_info>
 <min>0</min>
 <max>1000</max>
 <unit>MM</unit>
 <resolution>0.0008</resolution>
 </sensing_info>
 </sensedisplacement>
 <library>DisplacementSensor_EncoderS200Lib.dll</library>
 <library-parameters>
 <board_id>1</board_id>
 <axis_id>1</axis_id>
 <enc_resolution>2000</enc_resolution>
 <pitch>1.6</pitch>
 </library-parameters>
 </device>
 <device>
 <kind>FORCE_SENSOR</kind>
 <id>3</id>
 <description>Force sensor on actuator tip</description>
 <senseforce>
 <sensing_info>
 <min>0</min>
 <mæx>2500</mæx>
 <unit>N</unit>
 <resolution>1.0</resolution>
 </sensing_info>
 </senseforce>
 <library>KistlerForceSensor_UMI_ADC.dll</library>
 <library-parameters>
 <board_id>1</board_id>
 <device_channel>1</device_channel>
 <minVolt>0</minVolt>
 <mæxVolt>10</mæxVolt>
 <mæxForce>2500</mæxForce>
 </library-parameters>
 </device>
</FixtureModule>

 Appendices

 - 221 -

Contents of the file: ModuleDescription_module2.xml
<?xml version="1.0" ?>
<FixtureModule>
 <id>2</id>
 <OccupiedSpace>
 <p1>
 <x>-334.3</x>
 <y>-28.5</y>
 <z>28.5</z>
 </p1>
 <p2>
 <x>60.0</x>
 <y>28.5</y>
 <z>-28.5</z>
 </p2>
 </OccupiedSpace>
 <device>
 <kind>LINEAR_CLAMP</kind>
 <id>1</id>
 <description>Nothing</description>
 <spatialde c>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 <rotx>0</rotx>
 <roty>0</roty>
 <rotz>0</rotz>
 </spatialde u99 ?>
 <isLockable>true</isLockable>
 <applyforce>
 <clampingrange>
 <min>0</min>
 <max>2500</max>
 <unit>N</unit>
 <resolution>1</resolution>
 <clampingdirection>push</clampingdirection>
 </clampingrange>
 </applyforce>
 <linearactuation>
 <stroke_range>
 <min>0</min>
 <max>60</max>
 <unit>MM</unit>
 <resolution>0.0008</resolution>
 </stroke_range>
 </linearactuation>
 <locate>
 <maxReactionForce>5000</maxReactionForce>
 </locate>
 <library>NI_UMI7774_S200VTS.dll</library>
 <library-parameters>
 <board_id>1</board_id>
 <axis_id>2</axis_id>
 <adcChannel>2</adcChannel>
 <enc_resolution>2000</enc_resolution>
 <pitch>1.6</pitch>

 Appendices

 - 222 -

 </library-parameters>
 <feedbackdevices>
 <device>2</device>
 <device>3</device>
 </feedbackdevices>
 </device>
 <device>
 <kind>DISPLACEMENT_SENSOR</kind>
 <id>2</id>
 <description>SFD of Actuator</description>
 <sensedisplacement>
 <sensing_info>
 <min>0</min>
 <max>1000</max>
 <unit>MM</unit>
 <resolution>0.0008</resolution>
 </sensing_info>
 </sensedisplacement>
 <library>DisplacementSensor_EncoderS200Lib.dll</library>
 <library-parameters>
 <board_id>1</board_id>
 <axis_id>2</axis_id>
 <enc_resolution>2000</enc_resolution>
 <pitch>1.6</pitch>
 </library-parameters>
 </device>
 <device>
 <kind>FORCE_SENSOR</kind>
 <id>3</id>
 <description>Force sen_or on actuator tip</description>
 <senseforce>
 <sensing_info>
 <min>0</min>
 <max>2500</max>
 <unit>N</unit>
 <resolution>1.0</resolution>
 </sensing_info>
 </senseforce>
 <library>KistlerForceSensor_UMI_ADC.dll</library>
 <library-parameters>
 <board_id>1</board_id>
 <device_channel>2</device_channel>
 <minVolt>0</minVolt>
 <maxVolt>10</maxVolt>
 <maxForce>2500.0</maxForce>
 </library-parameters>
 </device>
</FixtureModule>

 Appendices

 - 223 -

Appendix B:

Data Type Definitions in IDL-format

 Appendices

 - 224 -

Contents of the File: exampleApp.idl

enum ClampingDirection {
 push = 0,
 pull = 1,
 both = 2,
 unknown = 3
};

struct Force {
 long module_id;
 ClampingDirection clampingDirection;
 double value;
};

struct Position{
 long module_id;
 double x;
 double y;
 double z;
};

struct Point{
 double x;
 double y;
 double z;
};

struct OccupiedSpace {
 Point p1;
 Point p2;
};

struct SpatialDescription{
 double x;
 double y;
 double z;
 double rot_x;
 double rot_y;
 double rot_z;
};

struct Clocking{
 double rot_x;
 double rot_y;
 double rot_z;
};

struct BodyPositionInfo{
 long module_id;
 long tc_id;
 long slot_id;
 Point position;
 Clocking slotClocking;
 Clocking moduleClocking;
};

 Appendices

 - 225 -

struct SensingInfo {
 double min;
 double max;
 long unit;
 double resolution;
};

struct BodyPosSensingInfo{
 SensingInfo posX;
 SensingInfo posY;
 SensingInfo posZ;
 SensingInfo moduleClockingX;
 SensingInfo moduleClockingY;
 SensingInfo moduleClockingZ;
 SensingInfo slotClockingX;
 SensingInfo slotClockingY;
 SensingInfo slotClockingZ;
};

struct ClampingRange{
 ClampingDirection clampingDirection;
 double minForce;
 double maxForce;
 long unit;
 double resolution;
};

struct StrokeRange{
 double min;
 double max;
 long unit;
 double resolution;
};

struct SwingRange{
 long axis;
 double cw_max;
 double ccw_max;
 long unit;
 double resolution;
};

struct ClockingRange{
 double cw_max;
 double ccw_max;
 long unit;
 double resolution;
};

struct ClockingRanges{
 ClockingRange clockingRange_x;
 ClockingRange clockingRange_y;
 ClockingRange clockingRange_z;
};

 Appendices

 - 226 -

struct WorkSpace{
 StrokeRange linearRange_x;
 StrokeRange linearRange_y;
 StrokeRange linearRange_z;
 ClockingRange clockingRange_x;
 ClockingRange clockingRange_y;
 ClockingRange clockingRange_z;
};

struct ClampWorkSpace{
 StrokeRange strokeRange_x;
 StrokeRange strokeRange_y;
 StrokeRange strokeRange_z;
 SwingRange swingRange;
};

struct SenseTipPositionCapability{
 SensingInfo sensingInfo_x;
 SensingInfo sensingInfo_y;
 SensingInfo sensingInfo_z;
 boolean isSupported;
};

struct AdjustTipPositionCapability{
 ClampWorkSpace workspace;
 boolean isSupported;
};

struct SenseReactionForceCapability{
 SensingInfo sensingInfo;
 boolean isSupported;
};

struct SenseClampingForceCapability{
 SensingInfo sensingInfo;
 boolean isSupported;
};

struct AdjustClampingForceCapability{
 ClampingRange clampingRangePush;
 ClampingRange clampingRangePull;
 ClampingDirection clampingDirection;
 boolean isSupported;
};

struct SlotLinkInfo{
 long module_id;
 long tc_id;
 long slot_id;
 boolean isLink;
 SpatialDescription sdModule;
};

struct ClampRoleInfo{
 boolean isSupported;
};

 Appendices

 - 227 -

struct LocatorRoleInfo{
 boolean isSupported;
 double maxForce;
};

struct SupportRoleInfo{
 boolean isSupported;
 double maxForce;
};

struct ProvidesRoleCapability{
 ClampRoleInfo clampRoleInfo;
 LocatorRoleInfo locatorRoleInfo;
 SupportRoleInfo supportRoleInfo;
 boolean isSupported;
};

struct ModuleCapDefinition{
 long id;
 OccupiedSpace occupiedSpace;
 SenseTipPositionCapability senseTipPositionCapability;
 AdjustTipPositionCapability adjustTipPositionCapability;
 SenseReactionForceCapability senseReactionForceCapability;
 AdjustClampingForceCapability adjustClampingForceCapability;
 SenseClampingForceCapability senseClampingForceCapability;
 ProvidesRoleCapability providesRoleCapability;
};

 Appendices

 - 228 -

 Appendix C:

Source Code for the Device Libraries used in the

Prototype Application

 Appendices

 - 229 -

Device Library for the Force Sensor Access –

Contents of the File: KistlerForceSensor_UMI_ADC.cpp

// KistlerForceSensor_UMI_ADC.cpp : Defines the entry point for the DLL
application.
//
#include "stdafx.h"
#include "KistlerForceSensor_UMI_ADC.h"
#include "flexmotn.h"
#include "ForceSensor_UMI7774_ADCLib.h"

BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

void* KISTLERFORCESENSOR_UMI_ADC_API createLibraryInstance(TiXmlNode *
node){
 //if there is no parent node
 if (!node)
 return NULL;

 //init
 int boardId = 0;
 int channelNumber = NIMC_ADC1;
 double minVolt = 0.0;
 double maxVolt = 10.0;
 double maxForce = 2500.0;

 do{
 //get type of node
 int t = node->Type();
 switch (t){
 case TiXmlNode::ELEMENT:
 if (strcmp(node->Value(), "board_id") == 0){

sscanf(node->FirstChild()->Value(), "%d", &boardId);
 } else if (strcmp(node->Value(), "device_channel") == 0){

sscanf(node->FirstChild()->Value(), "%d",
&channelNumber);

 } else if (strcmp(node->Value(), "minVolt") == 0) {
 sscanf(node->FirstChild()->Value(), "%lf", &minVolt);

 Appendices

 - 230 -

 } else if (strcmp(node->Value(), "maxVolt") == 0){
 sscanf(node->FirstChild()->Value(), "%lf", &maxVolt);
 }else if (strcmp(node->Value(), "maxForce") == 0) {

sscanf(node->FirstChild()->Value(), "%lf",
&maxForce);

 }
 break;
 case TiXmlNode::UNKNOWN:
 break;
 }
 }while ((node = node->NextSibling()) != 0);

 //put the right constant for the channel_number
 switch(channelNumber){
 case 1:
 channelNumber = NIMC_ADC1;
 break;
 case 2:
 channelNumber = NIMC_ADC2;
 break;
 case 3:
 channelNumber = NIMC_ADC3;
 break;
 case 4:
 channelNumber = NIMC_ADC4;
 break;
 default:
 channelNumber = NIMC_ADC1;
 break;
 }

return static_cast< void* > (new ForceSensor_UMI7774_ADCLib
(boardId, channelNumber,

minVolt, maxVolt,
 maxForce));

}

 Appendices

 - 231 -

Device Library for the Force Sensor Access –
Contents of the File: KistlerForceSensor_UMI7774_ADCLib.cpp

#include "StdAfx.h"
#include ".\forcesensor_umi7774_adclib.h"

#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;

#include "flexmotn.h"
#ifndef NIMCEXAMPLE_H_INCLUDE
#define NIMCEXAMPLE_H_INCLUDE

//~~~
//constructor
ForceSensor_UMI7774_ADCLib::ForceSensor_UMI7774_ADCLib(int boardId, int
channelNumber, double minVolt, double maxVolt, double maxForce)
: boardId(boardId),
 channelNumber(channelNumber),
 minVolt(minVolt),
 maxVolt(maxVolt),
 maxForce(maxForce)
{
 //nothing
}

//destructor
ForceSensor_UMI7774_ADCLib::~ForceSensor_UMI7774_ADCLib(void){
 //nothing
}

//see header
bool ForceSensor_UMI7774_ADCLib::initialise(){
 //set adc range to 0..10V
 flex_set_adc_range(this->boardId, this->channelNumber,

NIMC_ADC_UNIPOLAR_10);
 u16 adcMap = 3; //should be 0b0000000000000011 -> enable adc1 + 2
 flex_enable_adcs(this->boardId, 0, adcMap);
 //set adc range to 0..10V again..to make sure
 flex_set_adc_range(this->boardId, this->channelNumber,

NIMC_ADC_UNIPOLAR_10);

 return true;
}

//see header
bool ForceSensor_UMI7774_ADCLib::closeDevice(){
 return true;
}

//see header
double ForceSensor_UMI7774_ADCLib::getCurrentValue(void){
 i16 adcValue = 0;
 i32 err;

 Appendices

 - 232 -

 double forceNewton = 0.0;

 // Read the ADC channel

err = flex_read_adc_rtn(this->boardId, this->channelNumber,
&adcValue);

 //transform the adc-value to a Newton-value...
 // 2^12 -1 2500 10V
 // ---- = ---- = ----
 // x y z

forceNewton = (double)((double)(adcValue * this->maxForce) /
(double)4095.0);

 return forceNewton;
}

 Appendices

 - 233 -

Device Library for the Displacement Sensor Access –
Contents of the File: DisplacementSensor_EncoderS200Lib.cpp
// DisplacementSensor_EncoderS200Lib.cpp : Defines the entry point for
the DLL application.
//
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###Includes~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include "stdafx.h"
#include "DisplacementSensor_EncoderS200Lib.h"
#include ".\encoders200_umi7774lib.h"
//~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
BOOL APIENTRY DllMain( HANDLE hModule,  
                       DWORD  ul_reason_for_call,  
                       LPVOID lpReserved 
      ) 
{ 
 switch (ul_reason_for_call) 
 { 
 case DLL_PROCESS_ATTACH: 
 case DLL_THREAD_ATTACH: 
 case DLL_THREAD_DETACH: 
 case DLL_PROCESS_DETACH: 
  break; 
 } 
    return TRUE; 
} 
 
//see header 
void* DISPLACEMENTSENSOR_ENCODERS200LIB_API createLibraryInstance( 

TiXmlNode * node) 
{ 
 //if there is no parent node 
 if ( !node )  
  return NULL; 
 
 //init 
 int boardId = 0; 
 int axisId = 0; 
 double encoder_resolution = 0.0; 
 double pitch = 0.0; 
 
 do{ 
   //get type of node 
   int t = node->Type(); 
   switch ( t ){ 
   case TiXmlNode::ELEMENT: 
  if (strcmp(node->Value(), "board_id") == 0){ 
   sscanf(node->FirstChild()->Value(), "%d", &boardId); 
  } else if (strcmp(node->Value(), "axis_id") == 0) { 
   sscanf(node->FirstChild()->Value(), "%d", &axisId); 
  } else if (strcmp(node->Value(), "enc_resolution") == 0){ 
   sscanf(node->FirstChild()->Value(), "%lf",  

&encoder_resolution); 
  }else if (strcmp(node->Value(), "pitch") == 0) { 
   sscanf(node->FirstChild()->Value(), "%lf", &pitch); 



 Appendices 

 - 234 -    

  }  
  break; 
 
     case TiXmlNode::UNKNOWN: 
  break; 
   } 
 }while ((node = node->NextSibling()) != 0); 
 
 return static_cast< void* > (new EncoderS200_UMI7774Lib(boardId,  

axisId, encoder_resolution,  
pitch)); 

} 



 Appendices 

 - 235 -    

Device Library for the Displacement Sensor Access –  
Contents of the File: EncoderS200_UMI774Lib.cpp 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IncludeS~~~~~~~~~~~~~~~~~~~~~~~~~ 
#include "StdAfx.h" 
#include ".\encoders200_umi7774lib.h" 
#include <stdio.h> 
#include <iostream> 
using namespace std; 
 
//for hardware access 
#include "flexmotn.h" 
#ifndef NIMCEXAMPLE_H_INCLUDE 
#define NIMCEXAMPLE_H_INCLUDE 
 
//constructor 
EncoderS200_UMI7774Lib::EncoderS200_UMI7774Lib(int boardId, int axisId,  

double encoder_resolution, double pitch) 
: boardId(boardId), 
  axisId(axisId), 
  encoder_resolution(encoder_resolution), 
  pitch(pitch), 
  stepOffset(0) 
{ 
 //nothing 
} 
 
//destructor  
EncoderS200_UMI7774Lib::~EncoderS200_UMI7774Lib(void){ 
 //nothing 
} 
 
//see header 
bool EncoderS200_UMI7774Lib::initialise(){ 
 return true;  
} 
 
//see header 
bool EncoderS200_UMI7774Lib::closeDevice(){ 
 return true; 
} 
 
//see header 
double EncoderS200_UMI7774Lib::getCurrentValue(void){ 
 i32 positionInSteps; // Current position of axis 
 i32 err; 
 //try to read the current axis position 
 err = flex_read_pos_rtn(this->boardId,this->axisId,  

&positionInSteps); 
 //transform the retrieved value in millimeters... 
 //now it is dreisatz 1.6mm = 2000 Steps  
 //                   ----   --------- 
 //                   x mm = y Steps 
 return ((this->pitch * positionInSteps) /  

this->encoder_resolution);   
} 



 Appendices 

 - 236 -    

Device Library for the Linear Actuator Access –  
Contents of the File: NI_UMI7774_S200VTS.cpp 
// NI_UMI7774_S200VTS.cpp : Defines the entry point for the DLL 
application. 
// 
#include "stdafx.h" 
#include "flexmotn.h" 
#include "NI_UMI7774_S200VTS.h" 
BOOL APIENTRY DllMain( HANDLE hModule,  
                       DWORD  ul_reason_for_call,  
                       LPVOID lpReserved 
      ) 
{ 
 switch (ul_reason_for_call) 
 { 
 case DLL_PROCESS_ATTACH: 
 case DLL_THREAD_ATTACH: 
 case DLL_THREAD_DETACH: 
 case DLL_PROCESS_DETACH: 
  break; 
 } 
    return TRUE; 
} 
 
 
//see header 
void* NI_UMI7774_S200VTS_API createLibraryInstance(TiXmlNode * node){ 
 //if there is no parent node 
 if ( !node )  
  return NULL; 
 
 //init 
 int boardId = 0; 
 int axisId = 0; 
 double encoder_resolution = 0.0; 
 double pitch = 0.0; 
 int adcChannelNumber = 1; 
 
 do{ 
  //get type of node 
  int t = node->Type(); 
  switch ( t ){ 
  case TiXmlNode::ELEMENT: 
    if (strcmp(node->Value(), "board_id") == 0){ 
   sscanf(node->FirstChild()->Value(), "%d", &boardId); 
    } else if (strcmp(node->Value(), "axis_id") == 0) { 
   sscanf(node->FirstChild()->Value(), "%d", &axisId); 
    } else if (strcmp(node->Value(), "enc_resolution") == 0){ 
   sscanf(node->FirstChild()->Value(), "%lf",  

&encoder_resolution); 
    }else if (strcmp(node->Value(), "pitch") == 0) { 
   sscanf(node->FirstChild()->Value(), "%lf", &pitch); 
    } else if (strcmp(node->Value(), "adcChannel") == 0) { 

sscanf(node->FirstChild()->Value(), "%d",  
&adcChannelNumber); 

    }  



 Appendices 

 - 237 -    

    break; 
 
  case TiXmlNode::UNKNOWN: 
   break; 
  } 
 }while ((node = node->NextSibling()) != 0); 
 
 //put the right constant for the channel_number 
 switch(adcChannelNumber){ 
  case 1: 
   adcChannelNumber = NIMC_ADC1; 
   break; 
  case 2: 
   adcChannelNumber = NIMC_ADC2; 
   break; 
  case 3: 
   adcChannelNumber = NIMC_ADC3; 
   break; 
  case 4: 
   adcChannelNumber = NIMC_ADC4; 
   break; 
  default: 
   adcChannelNumber = NIMC_ADC1; 
   break; 
 } 
 
 return static_cast< void* > (new NI_UMI774_S200VTSLib(boardId,  

axisId, encoder_resolution, pitch,  
adcChannelNumber)

); 
} 



 Appendices 

 - 238 -    

Device Library for the Linear Actuator Access –  
Contents of the File: NI_UMI7774_S200VTSLib.cpp 
 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~####IncludeS~~~~~~~~~~~~~~~~~~~~~~~~~
#include "StdAfx.h" 
#include ".\ni_umi774_s200vtslib.h" 
 
// basic file operations 
#include <iostream> 
#include <fstream> 
#include <math.h> 
using namespace std; 
 
#include "flexmotn.h" 
#ifndef NIMCEXAMPLE_H_INCLUDE 
#define NIMCEXAMPLE_H_INCLUDE 
#include <conio.h> 
 
//see header 
NI_UMI774_S200VTSLib::NI_UMI774_S200VTSLib(int boardId, int axisId,  

double encoder_resolution, double pitch, int adcChannel)  
: boardId(boardId), 
  axisId(axisId), 
  encoder_resolution(encoder_resolution), 
  pitch(pitch), 
  adcChannel(adcChannel), 
  stepOffset(0) 
{ 
 //nothing 
} 
 
//destructor 
NI_UMI774_S200VTSLib::~NI_UMI774_S200VTSLib(void){ 
 //nothing 
} 
 
 
//see header 
bool NI_UMI774_S200VTSLib::initialise(){ 
 f64 acceleration =100; // Acceleration value in RPS/S 
 f64 velocity =200; // Velocity value in RPM 
 u16 found, finding; // Check Reference Statuses 
 u16 axisStatus;  // Axis Status 
 u16 csr=0;   // Communication Status Register 
 i32 position;  // Current position of axis 

i32 scanVar;  // Scan variable to read in values 
// not supported by the scanf function 

 
 //Variables for modal error handling 
 u16 commandID;    // The commandID of the 
function 
 u16 resourceID;   // The resource ID 
 i32 errorCode;    // Error code 
 i32 err; 
 
 //Check if the board is at power up reset condition 



 Appendices 

 - 239 -    

 err = flex_read_csr_rtn(this->boardId, &csr); 
  
     if (csr & NIMC_POWER_UP_RESET ){ 

printf("\nThe FlexMotion board is in the reset condition.  
Please initialize the board."); 

  return false; 
 } 
 
 //Load acceleration and deceleration to the axis selected 
 err = flex_load_rpsps(this->boardId, this->axisId, NIMC_BOTH,  

acceleration, 0xFF); 
 //Load velocity to the axis selected 
 err = flex_load_rpm(this->boardId,this->axisId, velocity, 0xFF); 
  

//configures the find_reference function, to automatically `reset 
//IF a home position is found 

 flex_load_reference_parameter(this->boardId,this->axisId,  
NIMC_FIND_HOME_REFERENCE, NIMC_ENABLE_RESET_POSITION ,1);  

 flex_load_reference_parameter(this->boardId,this->axisId,  
NIMC_FIND_HOME_REFERENCE, NIMC_PRIMARY_RESET_POSITION, 0); 

 flex_load_reference_parameter(this->boardId,this->axisId,  
NIMC_FIND_HOME_REFERENCE,NIMC_SMART_ENABLE ,TRUE); 

 
 //configures the find reference to initially search reverse for  

//the home position 
 flex_load_reference_parameter(this->boardId, this->axisId,  

NIMC_FIND_HOME_REFERENCE,NIMC_INITIAL_SEARCH_DIRECTION,  
true); 

 
 //Start the Find Reference move 
 err = flex_find_reference(this->boardId, this->axisId, 0,  

NIMC_FIND_HOME_REFERENCE); 
 
 //Wait for find reference to complete on the axis  
 do{ 
  //Read the current position of axis 
  err = flex_read_pos_rtn(this->boardId,this->axisId,  

&position); 
  err = flex_read_axis_status_rtn(this->boardId,this->axisId,  

&axisStatus); 
 
  //Check if the reference has finished finding 
  err = flex_check_reference(this->boardId, this->axisId, 0,  

&found, &finding); 
  //Read the Communication Status Register - check the 
  //modal error bit 
  err = flex_read_csr_rtn(this->boardId, &csr); 
  if (csr & NIMC_MODAL_ERROR_MSG) 
  { 
   flex_stop_motion(boardId, NIMC_AXIS1,  

NIMC_DECEL_STOP, 0);//Stop the Motion 
   err = csr & NIMC_MODAL_ERROR_MSG; 
  } 
 }while ( !(axisStatus & (NIMC_FOLLOWING_ERROR_BIT |  

NIMC_AXIS_OFF_BIT)) && finding); 
 
 



 Appendices 

 - 240 -    

 //wait a bit until he is really at position 0 
 Sleep(5000); 
 
 if (found){ 
  printf("\nAxis Found Home Position: Axis %d position:  

%10d", this->axisId, position); 
 }else{ 
  printf("\nAxis Did not Find Home Position: Axis %d  

position: %10d  --- Please abort program",  
this->axisId, position); 

  char buf[500]; 
  scanf("%s", buf); 

return false; 
 } 
  

//~~~~~~~~Initialise the acc, dec and velocity so we don't have 
//to do it during the operation all the time 

 // Set the velocity for the move (in counts/sec) 
 err = flex_load_velocity(this->boardId, this->axisId, 10000,  

0xFF); 
 // Set the acceleration for the move (in counts/sec^2) 
 err = flex_load_acceleration(this->boardId, this->axisId,  

NIMC_ACCELERATION, 100000, 0xFF); 
 // Set the deceleration for the move (in counts/sec^2) 
 err = flex_load_acceleration(this->boardId, this->axisId,  

NIMC_DECELERATION, 100000, 0xFF); 
 // Set the jerk (s-curve value) for the move (in sample periods) 
 err = flex_load_scurve_time(this->boardId, this->axisId, 100,  

0xFF); 
 err = flex_set_op_mode(this->boardId, this->axisId,  

NIMC_RELATIVE_POSITION); 
 //initialise the ADC settings...just to be on the safe side.... 
 //set adc range to 0..10V 
 flex_set_adc_range(this->boardId,  

this->adcChannel,NIMC_ADC_UNIPOLAR_10); 
 u16 adcMap = 1; //should be 0b0000000000000001 
 flex_enable_adcs(this->boardId, 0, adcMap); 
 
 return found;  // Finish 
} 
 
//see header 
bool NI_UMI774_S200VTSLib::closeDevice(){ 
 return true; 
} 
 
//see header 
bool NI_UMI774_S200VTSLib::applyForce(double targetForce, long  

desiredDirection) 
{ 
 u16 axisStatus;   // Axis status 
 i32 constant;    // Constant force 
 i16 adcValue;    // ADC value read 
 i32 err;    // Error code 
 

// constant force as an adc value that needed to be maintained  
 constant = ((long)targetForce * 4095) / 2500;  



 Appendices 

 - 241 -    

  
 // Check the move complete status/following error/axis off status 
 err = flex_read_axis_status_rtn(this->boardId, this->axisId,  

&axisStatus); 
 if(!(axisStatus & NIMC_AXIS_OFF_BIT)){ 
  //check if the move is complete - only do something if the  

//axis is currently not moving 
  if(!(axisStatus & NIMC_MOVE_COMPLETE_BIT)){ 
   return true; 
  } 
   
  err = flex_read_adc_rtn(this->boardId, this->adcChannel,  

&adcValue); 
   
  if( (constant - adcValue) != 0){ 
   //adjust new relative position 
   int diff = constant - adcValue; 
    
   err = flex_set_op_mode(this->boardId, this->axisId,  

NIMC_RELATIVE_POSITION); 
 
   err = flex_load_target_pos(this->boardId, this- 

>axisId, diff, 0xFF); 
   // Move based on delta force 
   err =  flex_start(this->boardId, this->axisId, 0); 
  } 
 }  
 
 return true;  
} 
 
//see header 
bool NI_UMI774_S200VTSLib::actuate(double targetActuation){ 
 //translate the desiredActuation into steps 
 //now it is dreisatz 1.6mm = 2000 Steps  
 //                   ----   --------- 
 //                   x mm = y Steps 
 long positionInSteps = (targetActuation *  

this->encoder_resolution) / this->pitch; 
 
 //initialise some variables 
     u16 csr = 0;     
 u16 axisStatus;    
 u16 moveComplete; 
 i32 err; 
  
 // Set the operation mode 
 err =  flex_set_op_mode (this->boardId, this->axisId,  

NIMC_ABSOLUTE_POSITION); 
 // Load Position as giving by the parameter 
 err = flex_load_target_pos (this->boardId,this->axisId,  

positionInSteps, 0xFF); 
 // Start the move 
 err = flex_start(this->boardId, this->axisId, 0); 
  
 do 
 { 



 Appendices 

 - 242 -    

  axisStatus = 0; 
  // Check the move complete status 
  err = flex_check_move_complete_status(this->boardId,  

this->axisId, 0, &moveComplete); 
  // Check the following error/axis off status for the axis 
  err = flex_read_axis_status_rtn(this->boardId,  

this->axisId, &axisStatus); 
 }while (!moveComplete && !(axisStatus & NIMC_FOLLOWING_ERROR_BIT)  

&& !(axisStatus & NIMC_AXIS_OFF_BIT));  
 return moveComplete;  // Finish 
} 



 Appendices 

 - 243 -    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D:  

Diagrams for Force Profiles Followed by the Fixture 

Module During the Tests  



 Appendices 

 - 244 -    

Force Profiles for Fixture Module 2 during the first test: 

Force Control

0

25

50

75

100

125
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

2
1
0
0
0

2
2
0
0
0

2
3
0
0
0

2
4
0
0
0

2
5
0
0
0

Time in ms

F
o

rc
e
 i
n

 N

Actual Forces

Target Forces

 
Figure D.1: Overall Force Profile of Fixture Module 2 during the First Test 

 

Force Control

0

25

50

75

100

125

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Time in ms

F
o

rc
e
 i
n

 N Actual Forces

Target Forces

 
Figure D.2: Zoomed-in Force Profile of Fixture Module 2 during the First Test 

 



 Appendices 

 - 245 -    

Force profiles during the second test (Workpiece A): 

Force Control

0

25

50

75

100

125

150

175

200

225

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

2
1

0
0

0

2
2

0
0

0

2
3

0
0

0

2
4

0
0

0

2
5

0
0

0

Time in ms

F
o

rc
e
 i
n

 N

Actual Forces

Target Forces

 
Figure D.3: Force Profile of Fixture Module 1 during the Second Test 

 

Force Control

0

25

50

75

100

125

150

175

200

225

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

Time in ms

F
o

rc
e
 i
n

 N

Actual Forces

Target Forces

 
Figure D.4: Force Profile of Fixture Module 2 during the Second Test 

 



 Appendices 

 - 246 -    

Force profiles during the second test (Workpiece B): 

Force Control

0

25

50

75

100

125

150

175

200

225

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

2
1

0
0

0

2
2

0
0

0

2
3

0
0

0

2
4

0
0

0

2
5

0
0

0

Time in ms

F
o

rc
e
 i
n

 N

Actual Forces

Target Forces

 
Figure D.5: Force Profile of Fixture Module 1 during the Second Test 

 

Force Control

0

25

50

75

100

125

150

175

200

225

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

2
1

0
0

0

2
2

0
0

0

2
3

0
0

0

2
4

0
0

0

2
5

0
0

0

Time in ms

F
o

rc
e
 i
n

 N

Actual Forces

Target Forces

 
Figure D.6: Force Profile of Fixture Module 2 during the Second Test 

 

 


