
Ferreira, Joao Fernando Peixoto (2011) Principles and
applications of algorithmic problem solving. PhD thesis,
University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/11707/1/thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Principles and Applications

of

Algorithmic Problem Solving

João Fernando Peixoto Ferreira

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

December 2010

To the memory of my father, Fernando Ferreira, whose encouragement

and inspiration shaped who I am today.

i

Abstract

Algorithmic problem solving provides a radically newway of approaching and solving

problems in general by using the advances that have been made in the basic principles

of correct-by-construction algorithm design. The aim of this thesis is to provide educa-

tional material that shows how these advances can be used to support the teaching of

mathematics and computing.

We rewrite material on elementary number theory and we show how the focus on the

algorithmic content of the theory allows the systematisation of existing proofs and,

more importantly, the construction of new knowledge in a practical and elegant way.

For example, based on Euclid’s algorithm, we derive a new and efficient algorithm to

enumerate the positive rational numbers in two different ways, and we develop a new

and constructive proof of the two-squares theorem.

Because the teaching of any subject can only be effective if the teacher has access to

abundant and sufficiently varied educational material, we also include a catalogue of

teaching scenarios. Teaching scenarios are fully worked out solutions to algorithmic

problems together with detailed guidelines on the principles captured by the problem,

how the problem is tackled, and how it is solved. Most of the scenarios have a recre-

ational flavour and are designed to promote self-discovery by the students.

Based on the material developed, we are convinced that goal-oriented, calculational

algorithmic skills can be used to enrich and reinvigorate the teaching of mathematics

and computing.

ii

Acknowledgements

Many people supported me in preparing this thesis, and I would like to express my

thanks and gratitude.

First, I would like to thank my supervisor Roland Backhouse for accepting me as his

PhD student and for being an excellent supervisor. His experience and impressive

ability to simplify and solve problems are inspiring, and always helped me whenever

I got stuck. Also, his detailed and valuable feedback on my work will surely have an

impact on the rest of my career. I have learnt a great deal from Roland.

I would also like to thank Luís Soares Barbosa, my co-supervisor, for his constant sup-

port and encouragement. Luis is a dear and caring person, without whom I would

never have startedmy PhD studies. I owe him a lot. Thanks, too, to JoséNunoOliveira,

who, through his enthusiasm, inspired me to pursuit a research career.

Many people gaveme useful and constructive feedback on parts of this thesis. In partic-

ular, I would like to thank my internal examiner Natasha Alechina, who accompanied

my progress since the first year. Also, thanks to my external examiner Shin-Cheng Mu

for all the valuable comments and corrections. I am also grateful to Wei Chen, who is a

good friend, collaborator, and who is always posing me interesting problems. Thanks

to Arjan Mooij, Eric Macaulay, Jeremy Weissmann, and Paula Valença for their com-

ments and suggestions on parts of this thesis. Thanks, too, to Filipe Oliveira, who was

one of my favourite teachers at university and who introduced me to number theory.

Thanks to Nocas, Marta, Hélder, and Silvino for their good advice and for making me

feel special. Also, thanks to Paulo Abrantes for the support and for always trying to

make me smile. Special thanks to Sarawut Jindarat, who helped me a lot when I first

arrived to Nottingham.

My mother, Irene Ferreira, has always been a constant source of inspiration and love.

Mãe, obrigado pela tua presença e amor constantes. Sem ti, nunca teria chegado aqui.

Finally, my deepest and biggest thanks go to my beloved wife Alexandra. Her love,

support, and encouragement are what make my life worthwhile.

iii

A Fundação para a Ciência e a Tecnologia apoiou o trabalho desenvolvido nesta tese

com a bolsa de investigação SFRH/BD/24269/2005, financiada pelo POPH - QREN -

Tipologia 4.1 - Formação Avançada (comparticipado pelo Fundo Social Europeu e por

fundos nacionais do MCTES).

iv

Contents

1 Introduction 1

1.1 Algorithmic problem solving: what is it all about? 1

1.2 A first example . 2

1.2.1 A conventional proof . 2

1.2.2 An algorithmic proof . 3

1.3 Contributions . 5

1.4 Related work . 6

1.4.1 Mathematics of program construction 6

1.4.2 Calculational proofs and structured derivations 8

1.4.3 Education and research on algorithmic problem solving 8

1.4.4 Classical problem solving . 10

1.5 Structure and organisation . 11

2 Principles of Algorithmic Problem Solving 13

2.1 Identifying algorithmic problems . 14

2.2 On the use of formalism . 17

2.3 Goal-oriented investigations . 27

2.4 On concision and avoidance of unnecessary detail 32

3 Techniques for Algorithmic Problem Solving 36

3.1 Problem decomposition . 37

3.2 Symmetry . 39

3.3 Distributivity . 48

3.4 Invariants . 52

3.5 Proving program termination . 57

3.6 Algorithm Inversion . 59

4 A Calculational and Algorithmic Approach to Elementary Number Theory 65

4.1 Introduction . 65

4.2 Divisibility theory . 68

4.2.1 Integer division . 68

v

CONTENTS

4.2.2 Division relation . 75

4.2.3 Constructing Euclid’s algorithm 77

4.2.4 Greatest common divisor . 79

4.3 Euclid’s algorithm as a verification interface 81

4.3.1 Exploring the invariant . 81

4.3.2 ▽ on the left side . 83

4.3.3 A geometrical property . 85

4.4 Euclid’s algorithm as a construction interface 87

4.4.1 Distributivity properties . 87

4.4.2 Enumerating the rationals . 92

4.5 The theory of congruences . 102

4.5.1 Basic properties of congruences . 103

4.5.2 Modular exponentiation . 114

4.5.3 On a simple version of the Chinese remainder theorem 117

4.6 Designing an algorithmic proof of the two-squares theorem 124

4.6.1 Euclid’s algorithm . 125

4.6.2 Inverting Euclid’s algorithm . 128

4.6.3 Reversed sequences of vectors . 131

4.6.4 Length of the sequence of vectors 135

4.6.5 Sum of two positive squares . 136

4.6.6 Discussion . 138

4.7 Conclusion . 138

4.8 Appendix: historical remarks on the trees of rationals 139

4.8.1 Stern’s paper . 140

4.8.2 Brocot, the watchmaker . 144

4.8.3 Conclusion . 147

5 Supporting the Teaching of Algorithmic Problem Solving 148

5.1 Teaching scenarios . 148

5.2 How to create a teaching scenario . 150

5.2.1 Brief description and goals . 150

5.2.2 Problem statement . 150

5.2.3 Prerequisites . 152

5.2.4 Resolution . 152

5.2.5 Notes for the teacher . 152

5.2.6 Extensions and exercises . 154

5.2.7 Further reading . 154

vi

CONTENTS

5.3 A catalogue of teaching scenarios . 155

6 Conclusion 158

6.1 Future work . 161

References 163

I Teaching Scenarios for Teaching Algorithmic Problem Solving 172

1 Exploring Algebraic Symmetries . 173

2 Calculating Orderings Between Two Numbers 184

3 The Island of Knights and Knaves . 192

4 Portia’s Casket . 203

5 A Logical Race . 216

6 A Calculational Proof of the Handshaking Lemma 227

7 Moving a Heavy Armchair . 238

8 Exchanging the Values of Two Variables 247

9 The Chameleons of Camelot . 263

10 Will This Algorithm Terminate? . 287

11 Constructing Euclid’s Algorithm . 303

12 The King Who Loved Diagonals . 323

vii

CHAPTER 1

Introduction

While realizing that the solution of problems is one of the lowest forms of

mathematical research, and that, in general, it has no scientific value, yet its

educational value cannot be overestimated. It is the ladder by which the mind ascends

into the higher fields of original research and investigation. Many dormant minds

have been aroused into activity through the mastery of a single problem.

— BENJAMIN FINKEL AND JOHN M. COLAW (1894)

1.1 Algorithmic problem solving: what is it all about?

Algorithmic problem solving is about the formulation and solution of problems where the

solution involves, possibly implicitly, the principles and techniques that have been de-

veloped to assist in the construction of correct algorithms1 . Algorithms have been stud-

ied and developed since the beginning of civilisation, but, over the last few decades,

the unprecedented scale of programming problems and the consequent demands on

the reliability of computer software led to massive improvements in our algorithmic-

problem-solving skills. The improvements are centred on goal-directed, calculational

construction of algorithms as opposed to the traditional guess-and-verify methodology.

In spite of these improvements, and although much of mathematics is algorithmic in

nature2, the skills needed to formulate and solve algorithmic problems do not form an

integral part of mathematics education. Also, the teaching of computer-related topics

at pre-university level focuses on enabling students to be effective users of information

1An algorithm is a finite sequence of instructions that can be systematically executed in the solution of

a given problem.
2When we say that mathematics is algorithmic in nature, we do notmean that we have an algorithm to

do mathematics. Instead, we want to say that the principles and techniques that have been developed to

formulate and solve algorithmic problems can be used to solve many mathematical problems.

1

CHAPTER 1: INTRODUCTION

technology, rather than equip them with the skills to develop new applications or to

solve new problems. In this thesis, we argue that this situation should change.

One of our main claims is that goal-oriented, calculational algorithmic skills can be

used to enrich and reinvigorate the teaching of mathematics and computing. As a

result, the main contribution of this thesis is educational material that supports that

claim. The material is problem-driven and it is aimed at the boundary between pre-

university and university level. Along the way, we also elaborate on some principles

and techniques that can be used to solve algorithmic problems more effectively. In

section 1.3, we explain in more detail the contributions of this thesis. But first, we show

an example that may help to understand the nature of algorithms and their relation to

problem solving.

1.2 A first example

A concrete example may help to understand better how algorithmic techniques can be

used to do mathematics in a precise and effective way. We consider a well-known the-

orem on the Fibonacci numbers. The theorem and the first proof we show were taken

from the book [Bur05, p. 286], where the Fibonacci sequence is defined as follows3:

fib.1= fib.2= 1 fib.n = fib.(n−1) + fib.(n−2) for n≥ 3 .

The theorem states that any two consecutive Fibonacci numbers are coprime, that is,

their greatest common divisor (gcd) is 1:

Theorem 1.2.1 For the Fibonacci sequence, gcd(fib.n, fib.(n+1)) = 1 for every n≥ 1.

2

You may want to prove the theorem before reading further. We first show the proof

taken from [Bur05], which, we believe, is representative of the conventional style in

which these proofs are shown to students. We label it as “conventional proof”. We

then show how we can use an algorithm and the notion of invariance to prove it.

1.2.1 A conventional proof

Let us suppose that the integer d> 1 divides both fib.n and fib.(n+1). Then their differ-

ence fib.(n+1)− fib.n = fib.(n−1) is also divisible by d. From this and from the relation

3In [Bur05], the nth Fibonacci number is denoted as un. We denote it as fib.n; the name fib is more

informative and we use an infix dot for function application.

2

CHAPTER 1: INTRODUCTION

fib.n− fib.(n−1) = fib.(n−2), it may be concluded that d \ fib.(n−2). Working back-

ward, the same argument shows that d \ fib.(n−3), d \ fib.(n−4), . . . , and finally that

d \ fib.1. But fib.1= 1, which is certainly not divisible by any d> 1. This contradiction

ends our proof.

Some comments on the conventional proof This proof captures several aspects of

conventional mathematical method. First, it uses mostly natural language to express

the connection between the steps. Second, it is based on implication rather than equal-

ity (the use of natural language usually forces one to use the connective “then”, which

corresponds to implication). Third, it is a proof by contradiction: we start by assuming

that d is a common divisor of fib.n and fib.(n+1) at least 2, but we reach the contradic-

tion that d has to divide 1. Other conventional aspects are the use of a prefix notation to

the associative gcd operator and the use of the so-called dot-dot-dot notation (. . .), which

reveals some imprecision in the argument. (By using a prefix notation for gcd, the au-

thor forces a syntactic distinction between the equivalent expressions gcd(m, gcd(n, p))

and gcd(gcd(m, n), p). In what follows, we change to an infix notation.) Finally, one

could also argue that the proof is not at all clear about the properties being used (e.g.,

which property is the author using when he writes “the difference is also divisible”?).

In this thesis, we will discuss most of these conventional aspects and we will propose

some alternatives that we think are better. Wewill, for example, avoid the use of natural

language to connect steps in our arguments, and we will use a systematic proof format

that allows us to be more precise about the properties that we use.

1.2.2 An algorithmic proof

More than two thousand years ago (c. 300 B.C.), in Book 7, Propositions 1 and 2, of his

seminal mathematical treatise Elements [HE56, p. 296], Euclid has given a method to

compute the greatest common divisor of two positive numbers4. That method is now

known as Euclid’s algorithm and, using the Guarded Command Language (GCL), we

can formulate it as:

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: m gcd n = x gcd y }
4According to Donald Knuth [Knu97, p. 334], some scholars believe that the method was known up to

200 years earlier. Knuth also writes that we might call Euclid’s method the granddaddy of all algorithms,

because it is the oldest nontrivial algorithm that has survived to the present day.

3

CHAPTER 1: INTRODUCTION

do y < x → x := x−y

2 x < y → y := y−x

od

{ x = y ∧ m gcd n = x = y } .

The algorithm maintains two variables, x and y, which are set initially to be m and n,

respectively. The do · · · od statement is a loop that executes while one of the guards

(y< x and x< y) is true. The algorithm stops when x= y. If y< x, x is decreased by y.

If x< y, y is decreased by x. Expressions in curly brackets are assertions. The first asser-

tion, usually called precondition, states that the arguments of the algorithm, m and n,

have to be positive numbers; the last assertion, usually called postcondition, states that,

on termination, the value of x and y is the greatest common divisor of the arguments

m and n. The assertion in the middle expresses that the value of m gcd n= x gcd y is an

invariant of the loop body, that is, it is true throughout the execution of the algorithm.

In other words, it is true initially and true after each iteration of the loop body. As a

result, it will be true on termination when x= y. Since the greatest common divisor is

idempotent (m gcdm=m, for all m), we can conclude that the greatest common divisor

of m and n is x (or y, since they are equal).

Because the theorem that we want to prove involves computing the greatest common

divisor of two positive numbers, it seems sensible to investigate whether we can use

Euclid’s algorithm to prove it. Indeed we can. We first observe that the theorem states

that if the initial value of the variables x and y are two consecutive Fibonacci numbers,

their final value is 1. Suppose then that x and y are two consecutive Fibonacci numbers.

Comparing the two assignments in the loop body with the definition of the Fibonacci

sequence, an invariant is immediately suggested: x and y are two consecutive Fibonacci

numbers. The proof is an immediate consequence of the Fibonacci definition. This

means that we can refine the algorithm shown above as follows:

x , y := fib.(n+1) , fib.n ;

{ Invariant: x and y are two consecutive Fibonacci numbers

∧ fib.(n+1) gcd fib.n = x gcd y }
do y < x → x := x−y

2 x < y → y := y−x

od

{ x and y are two consecutive Fibonacci numbers ∧ x = y

∧ fib.(n+1) gcd fib.n = x = y } .

4

CHAPTER 1: INTRODUCTION

The goal is to prove that fib.(n+1) gcd fib.n = 1, i.e., the final value of the variables x

and y is 1. Observing that the Fibonacci sequence is increasing, we can simplify part of

the postcondition as follows:

x and y are two consecutive Fibonacci numbers ∧ x = y

= { there are only two equal consecutive Fibonacci numbers:

fib.1 and fib.2, which are both 1 }

x = y = 1 .

This proves that on termination the value of fib.(n+1) gcd fib.n is 1. Because Euclid’s

algorithm always terminates, we conclude that the following algorithm establishes the-

orem 1.2.1:

x , y := fib.(n+1) , fib.n ;

{ Invariant: x and y are two consecutive Fibonacci numbers

∧ fib.(n+1) gcd fib.n = x gcd y }

do y < x → x := x−y

2 x < y → y := y−x

od

{ x = y = 1 ∧ fib.(n+1) gcd fib.n = 1 = 1 }

Although this proof based on Euclid’s algorithmmay seemmore complex than the one

labelled as conventional, we will show in this thesis that we can systematise it. We

hope to convince the reader that the emphasis on algorithmic skills and techniques can

indeed be used to reinvigorate mathematics education!

1.3 Contributions

The main contribution of this thesis is educational material, capturing calculational

and algorithmic problem-solving techniques, that supports the teaching of mathemat-

ics and computing. The material is problem-driven, it is aimed at the boundary be-

tween pre-university and university level, and it is divided in two main parts.

First, in chapter 4, we show how a fresh approach to introductory number theory that

focuses on the algorithmic content of the theory can combine practicality with math-

ematical elegance. We prove both old and well-known, and new and previously un-

5

CHAPTER 1: INTRODUCTION

known, theorems related with the greatest common divisor and rational numbers. For

example, based on Euclid’s algorithm, we derive the following new results: we calcu-

late sufficient conditions for a natural-valued function to distribute over the greatest

common divisor, we derive an efficient algorithm to enumerate the positive rational

numbers in two different ways, and we develop a new and constructive proof of the

two-squares theorem.

We believe that the material on number theory that we have developed can be used to

support a course on elementary number theory. Nevertheless, and although the ma-

terial shown contains educational remarks, we are convinced that the teaching of al-

gorithmic problem solving is more effective if the teacher has access to detailed guide-

lines on how to solve and present specific algorithmic problems. Towards that end,

we propose the introduction of educational material in the form of teaching scenarios,

which are fully worked out solutions to algorithmic problems together with detailed

guidelines on the principles captured by the problem, how the problem is tackled,

and how it is solved. So, the second part of the material is a set of teaching scenar-

ios that illustrate the principles and techniques discussed in this thesis. The scenarios

are example-driven and have a recreational flavour, making them especially suitable

for extra-curricular math clubs. Although they can be directly used by the students,

they are primarily written for the teacher. Moreover, they are designed to promote

self-discovery, since we believe that the success of teaching depends on the amount

of discovery that is left for the students: if the teacher discloses all the information

needed to solve a problem, students act only as spectators and become discouraged; if

the teacher leaves all the work to the students, they may find the problem too difficult

and become discouraged too. Scenarios are designed to maintain a balance between

these two extremes. Some of the problems and solutions shown in the teaching scenar-

ios are not new, but we capture them in a new and accessible way: as a catalogue of

problems and solutions having a consistent format.

1.4 Related work

1.4.1 Mathematics of program construction

Many principles and ideas discussed in this thesis were created or developed by com-

puting scientists working in the area of mathematics of program construction. Adopting

a simplistic view, we can say that this area started in the 1960s, when programmers

started recognising that there were serious problems in the programming field and

that it was necessary to prove the correctness of programs. At the time, software engi-

6

CHAPTER 1: INTRODUCTION

neering was facing a software crisis and programming was not very well understood.

Many software projects ran over budget and schedule, and some of them even caused

property damage and loss of life5. (Note that, fifty years later, many still do.)

To solve these problems, computer scientists focused on programming methodology

and on ways to build programs in a systematic way. A common consensus was that

programs should be proved correct, and in the late 1960s, a number of landmark pa-

pers had an important impact on the field. For example, in 1968, Edsger W. Dijkstra

published an article [Dij68] on the harmfulness of the Go To statement, where he claims

that its use makes it impossible to determine the progress of a program. Also, one year

later, TonyHoare published a seminal article [Hoa69] where he introduces what is now

known as Hoare triples and an axiomatic approach to language definition.

Although Hoare’s theory had a great impact, it was quite difficult to use it to prove

existing programs correct, since one was forced to find an invariant for each loop. Pro-

grammers started studying alternatives, and the most plausible one was to develop the

program together with its proof. Some years later, in 1975, Edsger W. Dijkstra pub-

lished a paper [Dij75] where he introduced weakest preconditions. One year later he

published a book [Dij76] and showed how to use weakest preconditions as a “calculus

for the derivation of programs”. Programmers were now able to build programs in a

more reliable and systematic way, and the art of programming became more and more

a discipline of programming.

From here, Dijkstra and others, dedicated themselves to the mathematization of pro-

gramming and to the methodology of program derivation. As the programs were be-

coming more and more complicated, the solutions were becoming less and less simple

and beautiful. According to [Fei87, page 9], the reason was the “standard mathemati-

cal reasoning patterns”, which were not suitable for the task at hand. The conclusion

was that computer scientists would have to learn how to construct proofs more effec-

tively, in order to solve more ambitious problems. This was the beginning of a new

period: computer scientists started to investigate ways of streamlining mathematical

arguments. Mathematics and mathematicians were now faced with this new side of

Computing Science.

During this new period, several problems were identified with traditional mathemat-

ics. One of the first problems was that mathematicians hardly manipulate their formu-

lae: instead, they interpret them; and one of the reasons is that the notation they use is

not adequate for manipulation. This and other observations were also presented in the

5A list of accidents caused by computer programs can be found at “The Risks Digest”

(http://catless.ncl.ac.uk/Risks)

7

http://catless.ncl.ac.uk/Risks

CHAPTER 1: INTRODUCTION

PhD thesis of Netty van Gasteren “On the shape of mathematical arguments” [vG90],

where she presents a study about proofs (proofs of correctness of programs included).

In particular, in chapter 11 of her thesis, she shows how Euclid’s algorithm can be used

to prove theorems about the greatest common divisor of two numbers. In this thesis

we expand substantially the material shown in that chapter.

In a way, this project is a continuation of Van Gasteren’s study, but while she did a

broad study, we are concerned specifically with algorithmic problems: construction of

new algorithms and usage of algorithmic skills to demystify mathematical invention.

1.4.2 Calculational proofs and structured derivations

One of the products of the attempts to streamline mathematical arguments mentioned

above is the so-called calculational method, which aims at reducing proofs as much

as possible to elementary syntactic calculation. The calculational proof style has been

adopted widely by the community of computing scientists working on formal pro-

gramming methods. For example, the textbooks written by Roland Backhouse [Bac03],

by Richard Bird and Oege de Moor [BdM96], by David Gries and Fred Schneider

[GS93], and by Jan van de Snepscheut [vdS93] are well-known examples.

Gries and Schneider have also studied the use of calculational proofs for teaching

mathematics [GS95]. Also, Back et al. introduced the concept of structured derivations

[BGvW96, BvW97, BPSvW04, Bac09, BvW06], which is a further development of the

calculational proof style created by Feijen and Dijkstra. Essentially, structured deriva-

tions add a mechanism for doing subderivations and for handling assumptions in

proofs. Moreover, in 2001, they have initiated a study in Finland to investigate whether

structured derivations could be used to integrate logic, proof and formal reasoning

throughout secondary-school mathematics education [BvW06]. The results were posi-

tive and the test group outperformed the control group.

Two of the main resources on the calculational method are the websites “E. W. Dijkstra

Archive” (http://userweb.cs.utexas.edu/users/EWD) and “mathmeth.com – Disci-

pline in Thought” (http://mathmeth.com).

1.4.3 Education and research on algorithmic problem solving

Computing science is all about solving algorithmic problems (or, as some authors pre-

fer to say, it is all about instructing computers to solve problems). Below, we briefly

survey related projects that aim at using and improving algorithmic skills and tech-

8

http://userweb.cs.utexas.edu/users/EWD
http://mathmeth.com

CHAPTER 1: INTRODUCTION

niques.

Algorithmic Problem Solving The algorithmic problem solving research group at

the University of Nottingham conducts research into mathematical method, in partic-

ular the problem-solving skills involved in the formulation and solution of algorithmic

problems. It also offers a module entitled “Algorithmic Problem Solving” to first-year

undergraduates in computing science. As Roland Backhouse explains in [Bac06], the

name of themodule is deliberately ambiguous. Parsed as algorithmic-problem solving,

it is about solving problems that involve the construction of an algorithm for their solu-

tion. Parsed as algorithmic problem-solving, it is about problem solving in general, us-

ing the principles that have been learnt in the development of correct-by-construction

algorithm-design techniques.

The material included in this thesis was developed in the context of the group’s re-

search plan. It was also done in the context of MATHIS, a project that aims to reinvigo-

rate secondary-school mathematics by exploiting insights of the dynamics of algorith-

mic problem solving [FMBB09].

Computer Science Unplugged Our work is related to the work developed within

the project “Computer Science Unplugged” [BWF06], whose goal is to teach principles

of computing science through games and puzzles. They provide a series of activity

worksheets that can be directly used in the classroom. These worksheets are similar

to the teaching scenarios that we propose, but their goals are slightly different: whilst

they want to convey general principles and ideas of computing, we want to focus on

calculational and algorithmic principles and techniques that can be used to reinvigorate

mathematics. Also, their material is suitable for people of all ages and the material

shown in this thesis is aimed at the boundary between pre-university and university

level.

The project was started by Tim Bell, Mike Fellows and Ian Witten, and is now being

explored by several dozen contributors working in many countries (including New

Zealand, USA, Sweden, Australia, China, Korea, Taiwan and Canada). Additional in-

formation about the project can be found at the website http://csunplugged.org.

Computational thinking We can say that our work fits with what is now usually

called “computational thinking” [Win06]. We, too, want to transfer skills created and

developed within computing science and we want to illustrate the value of compu-

tational thinking to everyone interested in problem solving. In particular, we believe

9

http://csunplugged.org

CHAPTER 1: INTRODUCTION

thatmathematics education can be reinvigorated by exploring the algorithmic nature of

much of its contents. Research in computational thinking is being led by the Center of

Computational Thinking at Carnegie Mellon where their major activity is conducting

PROBEs (PROBlem-oriented Explorations). These PROBEs are experiments that apply

novel computing concepts to problems to show the value of computational thinking. It

is worth mentioning that, currently, there is not any PROBE onmathematics education.

1.4.4 Classical problem solving

We cannot conclude this section without mentioning some of the efforts of the mathe-

matical community in articulating psychological and technical approaches to problem

solving. The best known work, and one of the major influences in problem solving,

is George Pólya’s How to Solve It. Even though other mathematicians had considered

questions of problem solving in earlier generations, it was Pólya’s How to Solve It

that had the tremendous impact on the way people viewed the techniques of attacking

mathematical problems. In particular, it was there that Pólya suggested the division of

the problem-solving process into the now widely accepted four phases: understanding

the problem, devising a plan, carrying out the plan, and looking back. Other works include

Jacques Hadamard’s Essay on the Psychology of Invention in the Mathematical Field, Karl

Duncker’sOn Problem Solving, andMaxWertheimer’s Productive Thinking. Incidentally,

all these books appeared in 1945, which led Alan H. Schoenfeld to point out that 1945

was indeed a great year for problem solving.

Another trend in mathematics and problem solving—and related with the opening

quote of this chapter— is based on the belief that mathematical games and recreations

can be used for educational purposes and incorporated into various curricula. Recre-

ational problems have been used for many centuries. The Rhind Mathematical Papyrus

shown in figure 1.1, for example, shows that Egyptian mathematicians were interested

in puzzle type problems. Althoughmost of the problems are on division, weights, mea-

sures, and rational numbers, the papyrus also includes the famous multiple-of-seven

riddle, rewritten in the Medieval era as the nursery rhyme “As I was going to St. Ives”,

whose common modern version is:

As I was going to St Ives

I met a man with seven wives

Each wife had seven sacks

Each sack had seven cats

Each cat had seven kits

10

CHAPTER 1: INTRODUCTION

Kits, cats, sacks, wives

How many were going to St Ives?

Figure 1.1: The Rhind Mathematical Papyrus, written around 1650 B.C.

One of the contemporary leaders of this trend was Martin Gardner, who published

thousands of puzzles in his books and various journals. Also, Zbigniew and Matthew

Michalewicz recently published the book Puzzle-Based Learning: An introduction to crit-

ical thinking, mathematics, and problem solving [MM08], where they support the teaching

of problem solving based on puzzles that are inherently unstructured. We are sympa-

thetic with their view and we also support a problem-driven approach to algorithmic

problem solving. For example, most of the problems discussed in the teaching scenar-

ios are recreational.

1.5 Structure and organisation

The goal-oriented, calculational algorithmic skills that we believe can be used to enrich

and reinvigorate the teaching of mathematics and computing are presented and dis-

cussed in chapters 2 and 3. In chapter 2, we discuss principles of algorithmic problem

11

CHAPTER 1: INTRODUCTION

solving, that is, general rules that we think should be used whenever solving (algo-

rithmic) problems. In chapter 3, we discuss techniques for algorithmic problem solving.

The main difference between the two is that, whilst principles apply to all problems,

the same problem can be solved using different techniques. To make these chapters

accessible to a wider audience, we illustrate the principles and techniques with simple

and recreational examples. The material shown in these two chapters is essentially a

summary of some relevant material that the community of “mathematics and program

construction” has been developing.

To prove that these principles and techniques can be used to do mathematics in a prac-

tical way, we use them in chapter 4 to rewrite some material on elementary number

theory. We prove both old and well-known, and new and previously unknown, theo-

rems.

We think that the best way to convey our message is to provide abundant and suffi-

ciently varied educational material. So, in chapter 5, we propose the introduction of

educational material in the form of teaching scenarios, we explain howwe think teach-

ing scenarios should be constructed, and we describe a catalogue of scenarios that is

included in appendix I. The catalogue in appendix suggests problems that can be used

to illustrate the principles and techniques discussed in this thesis.

Finally, in chapter 6, we discuss what was achieved and we suggest some directions for

future work.

12

CHAPTER 2

Principles of Algorithmic Problem

Solving

Amodern mathematical proof is not very different from a modern machine,

or a modern test setup: the simple fundamental principles are hidden

and almost invisible under a mass of technical details.

— HERMANN WEYL (1932)

This chapter discusses some important principles of algorithmic problem solving. All

the principles are introduced via simple examples, to make the material accessible to a

wider audience.

We start, in section 2.1, by distinguishing three main types of problems that can be

solved using algorithmic techniques. Before using any of the techniques described in

chapter 3, it is useful to know which kind of problem we have.

In section 2.2, we argue that precision can only be achieved if we use effective for-

malisms that support our reasoning processes. An example of such a formalism is the

calculational method and its proof format, which allow us to conveniently record and

justify every step in our arguments. As remarked earlier, the development of com-

puting science over the last few decades led to improvements in our problem-solving

skills. These improvements are centred on goal-directed and calculational construction

of algorithms as opposed to the traditional guess-and-verify methodology. Section 2.2

explains what we mean by calculational constructions. In section 2.3, we explain what

we mean by goal-oriented constructions.

We conclude the chapter with section 2.4, where we discuss the importance of naming

the elements of a problem. We hope to convince the reader that the combination of

concision and precision is a prerequisite for effective problem solving.

13

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

2.1 Identifying algorithmic problems

The focus of this dissertation are problems of algorithmic nature. It is only natural that

one of the first sections is on the identification of such problems. We usually say that a

problem is algorithmic when its solution involves the construction of an algorithm. An

algorithm is a well-defined procedure, consisting of a number of instructions that are

executed in turn, in order to solve the given problem. We do not know any algorithm

to determine if a given problem is an algorithmic problem. However, there are some

types of problems that can be immediately recognised as algorithmic. The goal of this

section is to discuss some of them. For example, consider the following problem:

Goat, Cabbage and Wolf

A farmer wishes to ferry a goat, a cabbage and a wolf across a river.

However, his boat is only large enough to take one of them at a time, making

several trips across the river necessary. Also, the goat should not be left

alone with the cabbage (otherwise, the goat would eat the cabbage), and

the wolf should not be left alone with the goat (otherwise, the wolf would

eat the goat).

How can the farmer achieve the task?

Implicit in the problem statement is that all the four elements are at the same riverbank

and that the farmer has to accompany each of the other elements when crossing the

river. This is clearly an algorithmic problem, because the solution consists of a sequence

of instructions indicating who or what should cross. A typical instruction would be:

“the farmer crosses with the wolf” or “the farmer returns alone”.

There are many algorithmic problems in our daily lives: how to dress up in the correct

order, how to cook a certain dish, how to tie a shoelace, how to reach a certain destina-

tion quicker, and so on. This would suggest that we are naturally excellent algorithmic

problem solvers. However, we have learnt and practised these routine algorithms with

never thinking about the underlying principles or techniques. Not surprisingly, when

confronted with new algorithmic problems, most people do not exploit the connection.

Note, however, that some algorithmic problems do not require us to construct an al-

gorithm. Instead, an algorithm is provided and we are required to prove some of its

properties. For example, our catalogue of teaching scenarios includes the following

problem (scenario 9):

14

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

The Chameleons of Camelot

On the island of Camelot there are three different types of chameleons:

grey chameleons, brown chameleons, and crimson chameleons. Whenever

two chameleons of different colours meet, they both change colour to the

third colour.

For which number of grey, brown, and crimson chameleons is it possi-

ble to arrange a succession of meetings that results in all the chameleons

displaying the same colour?

This is an algorithmic problem, because there is an underlying algorithm that organ-

ises meetings between chameleons. The goal is to know for which initial numbers of

chameleons it is possible to organise meetings that result in one single monochromatic

colony of chameleons. To solve the problem, we have to identify relevant properties

of the algorithm that can be used to characterise the initial number of chameleons for

which the goal is possible. Therefore, it is desirable to model the algorithm in a way

that facilitates the inference of properties— that is where a formal approach is benefi-

cial, as we hope to demonstrate later.

A domain that has many algorithmic problems is mathematics. For example, there are

theorems, usually called existence theorems, which assert the existence of certain objects.

So, suppose that a theorem states that there exists a value x that satisfies a property

Q. There are two different ways of establishing the theorem: the constructive and the

nonconstructive proof. In a constructive proof, we design an algorithm that constructs

a value x guaranteed to satisfy Q. We call such an x a witness. In a nonconstructive

proof, we prove the theorem without constructing a witness. Usually, we achieve that

by translating the problem into a counting problem, and we conclude something of the

form “there is at least one object satisfying property Q”. In section 4.3.2, we deal with

an existence theorem that states that the greatest common divisor of two numbers m

and n can be written as a linear combination of m and n. More formally, we express the

theorem as:

〈∃a, b:: m gcd n = m×a + n×b〉 .

The notation will be explained later; for now, we just need to understand that it is

stating that there exist two numbers, a and b, such that

m gcd n = m×a + n×b .

Given m and n, a constructive argument computes the two witnesses, a and b, that

satisfy the requirement. But we have already seen that there is an algorithm—Euclid’s

15

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

algorithm— that computes m gcd n. A reasonable strategy is to change or extend the

algorithm to compute the witnesses a and b. That is indeedwhat we do in section 4.3.2.

From the perspective of a computing scientist, constructive arguments are attractive:

they give more (i.e., the witnesses), they can be automated, and their design can use

the advances that have been made in our understanding of the basic principles of algo-

rithm development over the last few decades. Moreover, they can be simpler and more

useful than counting arguments— it is useful to know, for example, that we can write

m gcd n as a linear combination of m and n, but if we want to compute the witnesses, a

counting argument is useless.

It is not difficult to see that any existence theorem can, in principle, be turned into an

algorithmic problem. However, not all theorems in mathematics are existential. So a

question that arises is: are there any other types of theorems that we can solve using

algorithmic techniques? Consider, for example, theorem 1.2.1 that we have proved in

chapter 1. It states that

For the Fibonacci sequence, fib.(n+1) gcd fib.n = 1 for every n≥ 1 .

We have shown how to use Euclid’s algorithm (and the notion of invariant) to prove the

theorem: we have assumed that the initial arguments of the algorithm were two con-

secutive Fibonacci numbers, and we have concluded that the algorithm would always

compute as their greatest common divisor the value 1. The use of Euclid’s algorithm in

this case is well-justified, since the theorem is about greatest common divisors. In fact,

we will see (in section 4.3) that many theorems related with greatest common divisors

can be proved using Euclid’s algorithm.

Finally, there are some problems that can be solved by using algorithms seemingly un-

related with the original statement. For example, there is a well-known theorem in

number theory that characterises the numbers that can be expressed as the sum of two

positive integer squares (the number 5, for example, can be written as 12+22; on the

other hand, the number 6 can not be expressed as the sum of two squares). In section

4.6, we prove this theorem using the algorithm developed to prove the existential proof

about the greatest common divisor mentioned above. The relation between this theo-

rem and the algorithm is not straightforward and requires details that we do not want

to include in this section. Nevertheless, this example illustrates that some problems

can be transformed into specific algorithmic problems in a surprising way.

The conclusion of this section is that algorithmic problems can take different shapes.

Some ask directly for a sequence of instructions, like the problem “Goat, Cabbage and

Wolf”; others ask us to establish properties about given algorithms, like the problem

16

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

“Chameleons of Camelot”; others are about establishing the existence of values satisfy-

ing certain properties, like the existential theorem about the greatest common divisor;

and, finally, other problems can be solved by using algorithms seemingly unrelated

with the original statement, like the problem on writing a number as the sum of two

squares. The only way we know to gain proficiency in identifying (and solving) algo-

rithmic problems is by practising.

2.2 On the use of formalism

The demands on the reliability and precision of computer software led computing sci-

entists to develop formalisms where programs are, essentially, mathematical formulae.

From this perspective, the statement that a programmeets a functional specification is a

mathematical theorem. However, the complexity of non-trivial programs leads to long

formulae, which are difficult to interpret without error or loss of precision. Therefore,

besides concision and precision, manipulability of mathematical formulae becomes im-

portant to reason about programs. In particular, we are interested in manipulability

without interpretation, because we want reasoning about programs to be as simple as

possible. Moreover, reducing calculations to elementary syntactic manipulation helps

to avoid errors, since all the steps are justified by previously established syntactic rules

that are easy to check.

The mathematical method of reducing proofs as much as possible to elementary syn-

tactic calculation is usually called the calculational method [IPL95]. In this section, we

briefly discuss some aspects of the method. We start with the relevance of notation and

the proof format, and we illustrate, with two examples, how an emphasis on a calcula-

tional and equational logic can be used to rewrite and reinvigorate schoolmathematics.

We conclude the section with a simple example of how the calculational method can

support formal manipulation of algorithms. For more details and considerations on

the use of formalism, we recommend the reader the chapter 16 of [vG90] (some of the

observations contained in this section were taken from that chapter).

Relevance of notation If we want to manipulate formulae without interpretation, we

have to rely on the symbols written down. As a result, the notations we use become an

important and technical issue: clumsy notations can hinder our reasoning, whilst well-

designed notations geared to our manipulative needs can help us establishing new and

surprising results.

By using notations geared to manipulation, rather than using them only for descriptive

17

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

purposes, we sometimes deviate from conventional practice. We have already shown

such an instance in chapter 1, when we use an infix notation for the gcd operator. In

general, whenever we have an associative operator op, we use infix notation. It is much

nicer to write

a op b op c

than

op(a, op(b, c)) or op(op(a, b), c) .

Moreover, the second notation forces a totally irrelevant choice that results in calcula-

tions longer than necessary, because we have to include steps that pass from one choice

to the other.

Another example that is even more distant from conventional practice is the introduc-

tion of a new operator to exploit the associativity of Boolean equality. Whenever we

want to use an associative reading, we use the symbol ≡ (we call it equivales). On the

other hand, when we want to use a conjunctive reading, we use the symbol = (this is

the conventional symbol for equality). So, for example, if we have the expression

false≡ false≡ true ,

we can evaluate it as

(false≡ false) ≡ true .

Because false≡ false and true≡ true are both true, we can conclude that the value of this

continued equivalence is true. However, if we have the expression

false = false = true ,

we evaluate it conjunctively:

false = false ∧ false = true .

Because false = true is false and false is the zero of conjunction, the value of this contin-

ued equality is false. This shows that the associative and conjunctive readings conflict.

That is why we introduce a new operator for the less conventional associative seman-

tics. (The introduction of a new operator avoids context-dependent parsing. In page

146 of her thesis, Netty van Gasteren uses the expression “context-dependent parsing"

to denote parsing that depends on the type of the operands, but we think it can be

extended to include parsing that depends on the semantic context as well.)

18

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

Mathematicians usually use the symbol ⇔ to denote Boolean equality, and they read

it as “if and only if”. We avoid this notation because it is normally associated with

mutual implication, whereas we want to highlight equality and substitution of equals

for equals.

Another example of a non-conventional notation that we use is the so-called Eindhoven

quantifier notation. Unlike the traditional mathematical notation for quantifiers, the

Eindhoven notation clearly identifies all the relevant parts of the quantification (dum-

mies, range, and term). Because it is more uniform, we can apply the same calculational

rules to different quantifiers. We use and explain the Eindhoven quantifier notation in

section 2.3, in chapter 4, and scenario 6. For more details about quantifiers, we recom-

mend [Bac03, Chapter 11] and [BM06].

Finally, sometimes it is desirable to introduce new notations that are especially suited

for the algebraic properties involved in a given problem. An example is the problem

shown in exercise 5.6.2 of the scenario 5 (page 224), where we are required to express

that exactly one of three propositions is true. Given three propositions P, Q, and R, we

could introduce a binary operator⊙ to denote that exactly one of them is true

(2.2.1) P⊙ Q⊙ R .

However, there is not any binary Boolean operator that can be used to express that

exactly one of three propositions is true (see [Fer09b] and [Fer09a] for more details).

As a result, we introduce a new bracket notation, i.e., we write (2.2.1) as:

〈〈P,Q,R〉〉 .

This notation is easy to use and to handwrite, it delimits well the list of propositions,

and it makes it simple to express the relevant algebraic properties that are used to solve

the problem:

p ∧ 〈〈q0,q1, · · · ,qn〉〉 = 〈〈p∧q0 , p∧q1 , · · · , p∧qn〉〉 ,

〈〈p〉〉 = p , and

〈〈p,false〉〉 = p = 〈〈false,p〉〉 .

Relevance of the proof format A proof of a theorem should demonstrate, using cer-

tain facts (also known as axioms) or previously proved theorems, why it is true. Addi-

tionally, a good proof should explain clearly how the facts are combined and it should

express the design considerations so that readers can understand it better, explain it to

others, and prove other theorems in a similar fashion.

19

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

For example, suppose that we want to write a three-step proof of the statement A⇐D,

where1

• the first step establishes A = B ;

• the second step establishes B = C;

• the third step establishes C⇐D .

A conventional proof would use mostly natural language and would possibly start by

justifying why A equals B, then it would show that B equals C, and that C follows from

D. Then, by transitivity, it would conclude that A⇐D. But note how just articulating

how a conventional argument would be, we have repeated the intermediate expres-

sions B and C twice! Clearly, writing the conventional proof would lead to the same

repetitions. In general, B and C can be long expressions, so we need a proof format

that allows us to be concise and omit unnecessary intermediate expressions. We use

Wim Feijen’s proof format (described in detail in [Dij87], [DS90] and [Bac03, Chapter

3]), which for this small example would render:

A

= { hint why A = B }

B

= { hint why B = C }

C

⇐ { hint why C⇐D }

D .

Although we repeat the expressions in the hints, we will not do it in general. As the

examples below show,when justifying a step, we focus on the relevant properties. Note

that this format forces the writer to provide explanation for each step, avoiding holes in

the argument and making it easier to check. It also allows us to conclude immediately

that A⇐D without reading the intermediate expressions. The example shows that we

can use different relations between the steps; in fact, we can use any transitive relation.

Another advantage is that the use of a systematic proof format allows us to compare

two different proofs of the same theorem more effectively.

1A⇐D is read as “A if D” and is the same as D⇒A.

20

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

There is a good reason for writing the different expressions aligned in different lines:

the main operation that we perform most frequently when manipulating formulae is

substitution of an expression by another expression. Therefore, if all the expressions

are aligned, it is much easier to do a syntactic comparison and verify what changed

from one step to the other.

We are convinced that the calculational method, with its emphasis on manipulation

and with its proof format that forces the justification of each step, can have a tremen-

dous impact on school mathematics. Moreover, we believe that students would benefit

from an earlier introduction and explicit use of formal logic. In particular, we think

that equational logic, which is based on equality and Leibniz’s rule of “substitution

of equals for equals”, is suitable and easy to teach. The next paragraphs show two

examples of the calculational method in action.

Rewriting a proof on sets Consider the following property that holds for all sets A,

B, and C:

A∪(B∩C) = (A∪B)∩(A∪C) .

The following proof, which establishes this property by mutual inclusion, is from a

math textbook (but we extracted it from [GS95]) and illustrates how proofs about sets

are conventionally done:

We first show that A∪(B∩C) ⊆ (A∪B)∩(A∪C). If x∈(A∪(B∩C)) , then

either x∈A or x∈(B∩C). If x∈A, then certainly x∈(A∪B) and x∈(A∪C), so

x∈((A∪B)∩(A∪C)). On the other hand, if x∈(B∩C), then x∈B and x∈C,
so x∈(A∪B) and x∈(A∪C), so x∈((A∪B)∩(A∪C)).

Hence, A∪(B∩C) ⊆ (A∪B)∩(A∪C).

Conversely, if y∈((A∪B)∩(A∪C)), then y∈(A∪B) and y∈(A∪C). We

consider two cases: y∈A and y 6∈A. If y∈A, then y∈(A∪(B∩C)), and this

part is done. If y 6∈A, then, since y∈(A∪B) we must have y∈B . Similarly,

since y∈(A∪C) and y 6∈A , we have y∈C . Thus, y∈(B∩C) , and this im-

plies y∈(A∪(B∩C)) . Hence ((A∪B)∩(A∪C)⊆ A∪(B∩C)). The theorem

follows.

Note that this proof is not clear about the facts that it is using. For example, it says “If

y 6∈A, then, since y∈(A∪B) wemust have y∈B”, but there is no reference to the theorem

that supports this claim. Moreover, the repetition of intermediate expressions and all

the case analysis make the proof long and verbose. Let us see now how we would

prove the property using a calculational approach:

21

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

Below, we prove that, for all v, v∈(A∪(B∩C))≡ v∈((A∪B)∩(A∪C)).

By Extensionality (the definition of equality of sets), we can conclude

A∪(B∩C) = (A∪B)∩(A∪C) .

Here is the proof:

v∈(A∪(B∩C))

= { definition of ∪ }

v∈A ∨ v∈(B∩C)

= { definition of ∩ }

v∈A ∨ (v∈B ∧ v∈C)

= { distributivity of ∨ over ∧ }

((v∈A ∨ v∈B) ∧ (v∈A ∨ v∈C))

= { definition of ∪, twice }

v∈(A∪B) ∧ v∈(A∪C)

= { definition of ∩ }

v∈((A∪B)∩(A∪C)) .

In contrast to the conventional proof, this proof is concise, is explicit about all the prop-

erties it uses, and eliminates all the case analysis. Moreover, it reveals that the core

property of the theorem is that disjunction distributes over conjunction. In fact, this

proof uses a strategy that is common in mathematics: to prove something about opera-

tors, eliminate them using their definitions (which are usually based on more elemen-

tary operators), manipulate the formulae, and reintroduce the original operators.

The calculational approach and equational logic can be extended to many mathemat-

ical domains. Nevertheless, we believe that they should be introduced using simple

and recreational problems. In particular, logic puzzles where the goal is to solve si-

multaneous equations on Booleans, can be introduced by analogy with simultaneous

equations on numbers. For example, consider the following problem:

Suppose Ben is twice as old as Anne, but two years ago, Benwas three times

as old as Anne. How old are Ben and Anne?

In our experience, most secondary-school students know how to solve this problem.

Their first step is to model the problem as the two simultaneous equations

b = 2×a ∧ b−2 = 3×(a−2) ,

22

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

where a and b denote, respectively, Ben and Anne’s ages. Then, and now using the

calculational proof format, most of them know how to calculate the correct solution:

b = 2×a ∧ b−2 = 3×(a−2)

= { replace b by 2×a }

b = 2×a ∧ 2×a− 2 = 3×(a−2)

= { arithmetic }

b = 2×a ∧ 4= a

= { replace a by 4 }

b = 8 ∧ 4 = a .

Now, consider a different problem:

In an abridged version of Shakespeare’s Merchant of Venice, Portia had two

caskets: gold and silver. Inside one of these caskets, Portia had put her por-

trait, and on each was an inscription. Portia explained to her suitor that

each inscription could be either true or false but, on the basis of the inscrip-

tions, he was to choose the casket containing the portrait. If he succeeded,

he could marry her.

The inscriptions were:

Gold: The portrait is in this casket.

Silver: If the inscription on the gold casket is true, this inscription is false.

Which casket contained the portrait? What can we deduce about the in-

scriptions?

Most students solve this problem by case analysis. However, this problem is similar

to the one above. The main difference is the domain: whilst the problem above was

about solving simultaneous equations on natural numbers, this problem is about solv-

ing simultaneous equations on Booleans. As a result, the strategy is the same. First, we

model the problem by writing down the simultaneous equations

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is ≡ ig⇒¬is) ,

where the variables mean:

23

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

ig the inscription on the gold casket is true

is the inscription on the silver casket is true

pg the portrait is in the gold casket

ps the portrait is in the silver casket .

Then, instead of using the algebra of numbers, we use the algebra of Booleans:

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is ≡ ig⇒¬is)

= { definition of ⇒ and associativity }

(pg≡¬ps) ∧ (ig≡ pg) ∧ ((is≡ ¬is) ≡ ¬is ∨ ig)

= { negation (twice) }

(pg≡¬ps) ∧ (ig≡ pg) ∧ ¬(¬is ∨ ig)

= { De Morgan }

(pg≡¬ps) ∧ (ig≡ pg) ∧ is∧ ¬ig

= { reflexivity, negation, and Leibniz }

(pg≡¬ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

= { Leibniz and negation }

(true≡ ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false) .

This problem is discussed in scenario 4, so we will not discuss any details of the rules

involved. Wewould just like to remark that the propertywe call “Leibniz” corresponds

to “substitution of equals for equals” (we have used it twice in the problem on num-

bers). Also, observing that the variables pg and ig are equal, we could simplify the

solution by naming only one of them. However, since this is a coincidence, we prefer

to show the general method of solution. The exercise 4.6.4 in scenario 4, for example,

shows a variation of the problem where such a coincidence does not happen.

We believe that logic puzzles such as this one are a good vehicle to teach manipula-

tion without interpretation. In our experience, most people would agree that using

case analysis in the problem on Ben and Anne’s ages is not a good idea, because case

analysis is very specific and does not scale well to more complicated problems; most

people would agree that it is more important to teach the students how to solve general

systems of simultaneous equations. Moreover, it is important to remark that when the

students are solving such problems on numbers, they are not interpreting the formu-

lae. We think the same should be done when solving problems on Booleans; for that

24

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

reason, we include three different logic puzzles in our catalogue of scenarios (scenarios

3, 4, and 5) and we show how to solve them calculationally.

Formal manipulation of algorithms We conclude this section by showing how the

calculational method can be used to support formal manipulation of algorithms. Sup-

pose that x and y are numbers and we are asked to determine what the following pro-

gram does2:

x := x+y ; y := x−y ; x := x−y .

One way of solving the problem is to test the programwith some specific values, guess

what it is doing to the variables, and verifying if the guess is correct. However, this

strategy is not easy to apply in general, since most programs are more complex. So,

instead of guessing, let us calculate what the program does. In other words, let us

calculate its functional specification.

The specification of a program can be seen as a relation between its input and its output.

The specification of this program, for example, would relate the initial values of x and

y to their final values after running the program. We specify a program S by stating a

precondition P and a postcondition Q and requiring that S be constructed to satisfy

{ P } S { Q } .

If so, we say that S establishes the postcondition Q under the assumption of precondi-

tion P. In other words, the notation { P } S { Q } means that, for all possible values of

the variables in P, S and Q, if, initially, the state of the program variables satisfies the

predicate P and the statement S is executed, S is guaranteed to terminate and, on ter-

mination of S, the final state will satisfy the predicate Q. We call the triple { P } S { Q }
a Hoare triple3.

We can use this new notation to state more precisely our goal. The goal is to calculate

a precondition P in:

{ P } x := x+y ; y := x−y ; x := x−y { x = X ∧ y = Y } .

The postcondition is the most general we can have: it states that x and y will have

some values (X and Y) on termination. Now, consider the third assignment of the

2In this thesis, we use the Guarded Command Language (GCL) to express algorithms. GCL is a very

simple programming language with just four programming constructs—assignment, sequential compo-

sition, conditionals, and loops. The GCL was introduced by Dijkstra [Dij75].
3Hoare triples were introduced by Sir Tony Hoare in [Hoa69]. The presentation we show here is,

essentially, the same as the one in [Bac03, chapter 9], which we recommend.

25

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

program, x := x−y. After this assignment, the value of x will become x−y. So, if

the postcondition is to apply to x after the assignment, it should apply to x−y before

the assignment. More specifically, x−y = X should be true before the assignment. This

rule is called the assignment axiom and in its general form can be written as

{ Q[x := e] } x := e { Q } ,

where Q[x := e] corresponds to the property Q with all occurrences of ‘x’ replaced by

‘e’. Using the assignment axiom, and working backwards from the postcondition, we

can now annotate the program as follows. The reader should read it from bottom to

top:

{ (x+y)−((x+y)−y) = X ∧ (x+y)−y = Y }

x := x+y ;

{ x−(x−y) = X ∧ x−y = Y }

y := x−y ;

{ x−y = X ∧ y = Y }

x := x−y

{ x = X ∧ y = Y } .

This means that the precondition we are looking for is

(x+y)−((x+y)−y) = X ∧ (x+y)−y = Y .

Simplifying the arithmetic expressions, we have:

{ y = X ∧ x = Y } x := x+y ; y := x−y ; x := x−y { x = X ∧ y = Y } .

The conclusion is that, provided that the program starts in a state where y = X and

x = Y, its execution is guaranteed to terminate in a state where x = X and y = Y. In

other words, the program is swapping the values of the variables x and y. Note that

the program does not use any additional variables to swap the values! We discuss this

program and its generalisation in scenario 8. In fact, this program can be used with

other operators and it is usually presented as a programming trick, with no formal

justification (see, for example, [CR06, p. 130], and [PC06, p. 182]). We believe that this

reflects the informal style of most software engineering practitioners.

As we have just seen, this calculational approach is useful for verifying the correctness

of existing programs. However, the ideal is to avoid guessing and to use the method

26

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

to calculate programs that satisfy a given specification. In chapter 4, for example, we

show how to calculate several algorithms from their formal specifications. In the next

section, we briefly discuss the constructive aspect of the method.

2.3 Goal-oriented investigations

Conventional mathematics is characterised by the “theorem-proof” style of reasoning,

in which theorems are first formulated and then verified. But as Roland Backhouse

explains in [Bac02] , while conventional mathematics is primarily concerned with the

modelling and analysis of existing natural systems, computing is dominated by a con-

cern for synthesis, i.e., with the design and construction of new systems and the accom-

panying algorithmic techniques. Therefore, computing is characterised by an emphasis

on construction and by a goal-oriented style of reasoning. The final example of the pre-

vious section is an example of a goal-oriented investigation. Rather than guessing a

precondition and then verifying it, we calculate what the precondition should be.

In fact, we can use the same skills to calculate programs. For example, suppose that we

are asked to write an assignment X to the variable s such that4

{ s = n2 } s , n := X , n+1 { s = n2 } .

We can easily guess that s := (n+1)2 is suitable. But suppose that we are not allowed

to use exponentiation— the computation of s should only involve additions and not

multiplications. Which assignment should we write? Well, applying the assignment

axiom, we get

{ X = (n+1)2 } s , n := X , n+1 { s = n2 } .

Comparing with the specification, the goal is to calculate X so that

s = n2 ⇒ X = (n+1)2 .

We assume s = n2 and calculate:

X = (n+1)2

= { arithmetic }
4The assignment s , n := X , n+1 is a simultaneous assignment (also called multiple assignment). In

general, a simultaneous assignment x0 , x1 , · · · , xn := e0 , e1 , · · · , en is executed by evaluating all the

expressions e0 , e1 , · · · , en and then, for each i, updating the value of the variable xi to the value obtained

for expression ei.

27

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

X = n2 + 2·n + 1

= { s = n2 and 2·n = n+n (recall that we cannot use multiplication) }

X = s+n+n+1 .

We conclude, with no guessing involved, that the required assignment statement is:

{ s = n2 } s , n := s+n+n+1 , n+1 { s = n2 } .

We believe that the emphasis on construction brings reliability and can have a tremen-

dous impact on mathematics. Mathematicians, of course, are aware of the benefits. In

[Pol81, chapter 8] and [Pol90, pp. 141–148 (Pappus) and pp. 225–232 (Working back-

wards)] , for example, Pólya discusses goal-oriented reasoning. He calls it regressive

planning, or working backwards, and he classifies it as a “basically important pattern”.

Perhaps one reason why the pattern is not so used in conventional mathematics is that

formulae are usually interpreted. In contrast, in the calculational method, formulae are

manipulated, most of the time, without interpretation. This allows us to use guiding

principles and heuristics based on the shape of the formulae. It is common, for exam-

ple, to have an almost-forced obvious sequence of steps, once we formally express the

goal. For example, in scenario 6, we discuss the following problem:

Let a finite number of points be joined in pairs by any system of curves,

including the possibility of loops (for example, joining a point C with itself;

see figure 2.1) and of multiple edges (joining the same pair of points). We

define the local degree of a vertex A, denoted by d.A, to be the number of

edges incident with the point A, counting loops twice. For example, in

figure 2.1,

d.A = 6, d.B = 3, and d.C = 3 .

We want to show that in any network, as outlined above, the number of

vertices which have odd local degree is an even number. (Note that in the

system shown in figure 2.1, precisely two vertices, B and C, have odd local

degrees.)

The Handshaking Lemma This property is also known as the Handshak-

ing Lemma. As explained in [Hon98, p. 8], if we think of the vertices as

people, and the joining of two vertices A and B (say) to mean that A and

B shook hands (loops, if any, indicating one shook hands with himself and

28

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

A

BC

D E

Figure 2.1: System of curves with five points

counting as two handshakes), the local degree d.A of a vertex A gives the

total number of times A shook hands. What we want to show, then, is that

the number of people who have shaken hands an odd number of times is

even. This application is all the more interesting because it is independent

of time — one can state without fear of contradiction that the number of

people at the opera next Thursday (or in the whole world from the begin-

ning of time if you like) who will shake hands an odd number of times is

even. (One might enjoy verifying this result with a group of friends.)

The goal of the problem is to determine the value of the following expression5:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉 .

If the result is true, there is an even number of vertices with odd degree; otherwise,

there is an odd number. The problem statement claims that the result is always true.

5Quantifiers allow us to denote the operation of applying some binary operator (like addition, multi-

plication, conjunction, disjunction or equivalence) to an arbitrary bag of values. We use a uniform notation

for quantifiers: the Eindhoven quantifier notation (mentioned in section 2.2). There are five components

to the notation. The first component is the quantifier. In this case, the quantifier is Σ, which denotes sum-

mation of an arbitrary number of values. We also use ≡ as a quantifier to denote a continued equivalence

of an arbitrary number of values. The second component is the dummy variable; in this case, variable a.

The third component is the range of the dummy; in this case, the range is a∈V ∧ odd.(d.a). The range is

a Boolean-valued expression that determines the set of values of the dummy for which the expression is

true. The fourth component is the term. In this case, the term is the natural number 1, meaning that we

add 1 for each value a that satisfies the range (in other words, we are adding 1 (counting) for each node a

with an odd degree in V). The final component of the notation is the angle brackets; these serve to delimit

the scope of the dummy variable. Also, we use an infix dot to denote functional application.

29

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

However, the goal we propose is to calculate its value. We know that predicate even

distributes through addition, that is:

even.(m+n) ≡ even.m≡ even.n .

In terms of arbitrary summations, this rule can be expressed as:

even.〈Σa:R:T〉 = 〈≡a: R: even.T〉 .

This means that we can use this property to manipulate our goal:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉

= { even distributes over addition }

〈≡a: a∈V ∧ odd.(d.a): even.1〉

= { even.1 is false }

〈≡a: a∈V ∧ odd.(d.a): false〉

= { the range can be simplified by using the so-called

trading rule (the conjunct odd.(d.a)∧ is “traded”

into an implication odd.(d.a)⇒ in the term) }

〈≡a: a∈V: odd.(d.a) ⇒ false〉

= { odd.(d.a) ⇒ false ≡ even.(d.a) }

〈≡a: a∈V: even.(d.a)〉

= { even distributes over addition }

even.〈Σa : a∈V : d.a〉 .

This calculation shows that the parity of the number of vertices with odd degree is the

same as the parity of the sum of all the degrees. But because each edge has two ends,

the sum of all the degrees is simply twice the total number of edges. We thus have:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉

= { calculation above }

even.〈Σa : a∈V : d.a〉

= { the sum of all the degrees is twice the number of edges;

hence, it is an even number }

true .

30

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

And so we can conclude that every undirected graph contains an even number of ver-

tices with odd degree.

The fact that even distributes over addition allowed to transform the problem into a

problem in logic. Once we have done that, we were driven by the goal of simplifying

the formulae. This calculation is clearly a process guided by the shape of the formu-

lae. On the other hand, conventional solutions for this problem are not goal-oriented.

Consider the following solution, representative of the conventional style, taken from

[Hon98, p. 8]:

The proof in general is simple. We denote by T the total of all the local

degrees:

(1) T = d(A) + d(B) + d(C) + · · · + d(K) .

In evaluating T we count the number of edges running into A, the num-

ber into B, etc., and add. Because each edge has two ends, T is simply twice

the number of edges; hence T is even.

Now the values d(P) on the right-hand side of (1) which are even add

up to a sub-total which is also even. The remaining values d(P) each of

which is odd, must also add up to an even sub-total (since T is even). This

shows that there is an even number of odd d(P)’s (it takes an even number

of odd numbers to give an even sum). Thus there must be an even number

of vertices with odd local degree.

There is nothing wrong with this solution in the sense that it clearly shows why the

property holds. However, it is clearly oriented to verification: it starts by introducing

the total sum of all the local degrees, observing that its value is even; then it analyses

that sum to conclude the property. The question is: how can we teach students to

consider the total sum of all the local degrees? In general, how can we teach students

to identify seemingly unrelated concepts that will be crucial in the development of their

arguments? We do not think we can.

On the other hand, if we look at the goal-oriented proof, we see that the goal is simple to

express. Furthermore, with some training, most students would write it correctly and

would be able to calculate that the parity of the number of vertices with odd degree

is the same as the parity of the sum of all the degrees. And then (and only then) the

introduction of the total sum of all the degrees would make sense. In conclusion, we

believe it is more valuable to work in a formal and goal-oriented way, since it allows

us to discover the crucial properties.

31

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

2.4 On concision and avoidance of unnecessary detail

Effective reasoning depends on economy of expression. This is particularly true when

reasoning about programs: since formulae can be long, including unnecessary detail

can lead to unmanageable complexity.

One way of achieving concision is by avoiding unnecessary case analysis. In general,

solutions by case analysis result from failing in the identification of fundamental, struc-

tural properties. We have seen an example in page 21, on how to rewrite a proof by

mutual inclusion into a proof that was more concise, mainly because it avoided an

unnecessary case analysis. In that case, the structural property is that disjunction dis-

tributes over conjunction.

Exploiting structural properties leads to shorter proofs. However, it is important to

note that concision is not about the number of words or lines of a proof. As an example,

consider the following lemma taken from the book [JJ98, p. 39]6:

Lemma 3.1

For any fixed n≥ 1 we have a∼=b (mod n) if and only if n\(a−b).

For the authors, a∼=b (mod n) is defined as a and b having the same remainder upon

division by n. Their proof is by mutual implication:

Proof

Putting a = q×n + r and b = q′×n + r′ as above, we have

a−b = (q−q′)×n + (r−r′) with −n < r−r′ < n. If a∼=b (mod n) then

r = r′ , so r−r′ = 0 and a−b = (q−q′)×n, which is divisible by n. Con-

versely, if n divides a−b then it divides (a−b) − (q−q′)×n = r−r′; now

the only integer strictly between −n and n which is divisible by n is 0, so

r−r′ = 0, giving r = r′ and hence a∼=b (mod n).

By most conventional standards, this is a concise proof. However, we can avoid the

mutual implication and prove the lemma as follows:

Writing a = q×n + r and b = q′×n + r′ , we have a−b = (q−q′)×n + (r−r′),

with −n < r−r′ < n. Hence,

6The notations we use are not the same as in the book, but the lemma and the structure are (including

the text). The symbol ∼= is used for the congruence relation and n\(a−b) means that n divides a−b.

32

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

n\(a−b)

= { consideration above }

n\((q−q′)×n + (r−r′))

= { division property }

n\(r−r′)

= { −n < r−r′ < n and the only integer strictly between−n and n

which is divisible by n is 0 }

r−r′ = 0 .

Therefore r = r′ and, by definition, a∼=b (mod n).

The size of the two proofs is similar (the second uses less words, but has more lines).

Nevertheless, we consider the second proof more concise; it avoids the two cases as-

sociated with the mutual implication, by identifying the two relevant properties (the

properties used in the second and third steps). Note how the second part of the first

proof mentions all the relevant properties for establishing the equality; the authors

could establish the theorem just by replacing

“if n divides a−b then it divides (a−b) − (q−q′)×n = r−r′”

by

“n divides a−b is the same as n divides r−r′” .

This example also shows that an emphasis on equational logic can lead to better argu-

ments.

On naming It is impossible to solve problems without introducing names. However,

if we name unnecessary elements or if we make unnecessary distinctions, we add un-

necessary detail and complexity to the solution. The two following examples show

how the avoidance of unnecessary naming leads to more effective and simple solu-

tions. Both examples are taken from [Bac07]. Let us start with the problem “Goat,

Cabbage and Wolf”, shown in page 14. The problem is about crossing four individuals

without violating the two conditions:

1. the goat should not be left alone with the cabbage;

2. the wolf should not be left alone with the goat.

33

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

These two conditions expose a similarity between the wolf and the cabbage: the goat

cannot be left with either the wolf or the cabbage. Moreover, there are no restrictions

on leaving the wolf alone with the cabbage. This clearly suggests that both the cabbage

and the wolf are playing the same role. Why, then, are the “wolf” and the “cabbage”

distinguished by giving them different names?

Let us restate the problem7, this time with a naming convention that omits the unnec-

essary distinction between the wolf and the cabbage. In the restated problem, we call

the goat an “alpha” and the cabbage and the wolf “betas”.

A farmer wishes to ferry an alpha and two betas across a river. However,

his boat is only large enough to take one of them at a time, making several

trips across the river necessary. Also, an alpha should not be left alone with

a beta.

How can the farmer achieve the task?

Now the problem becomes much easier to solve. Indeed, there is only one solution:

take the alpha across, and then one beta across, returning with the alpha; then take

the second beta across, followed by the alpha. Because there is only one solution, it is

easy to discover (note that in the problem with the four individuals, we would have

two solutions, since we have two different choices when choosing the first beta to take

across).

When elements of a problem are given individual names, it distinguishes them from

other elements of the problem, and adds to the size of the state space. The process of

omitting unnecessary detail, and reducing a problem to its essentials is called abstrac-

tion. Poor solutions to problems are ones that fail to “abstract” adequately, making the

problem more complicated than it really is.

Another problem where the decision of naming is even more important is the follow-

ing:

The Jealous Couples

Three couples (husband and wife) wish to cross a river. They have one

boat that can carry at most two people, making several trips across the river

necessary. The husbands are so jealous of each other that none is willing to

allow their wife to be with another man, if they are not themselves present.

How can all three couples get across the river?

7The restatement of the problem and the subsequent two paragraphs are extracted from [Bac07], since

the author of this dissertation could not write it any better.

34

CHAPTER 2: PRINCIPLES OF ALGORITHMIC PROBLEM SOLVING

One way of naming the elements of this problem is by distinguishing the individual

people, as in, for example, H1, W1, H2, W2, H3, and W3 —where the Hs are husbands,

theWs are wives, and a pair Hn,Wn forms a couple.

Using this notation, one possible transition from the initial state is to take across the

couple H1,W1. Similarly, we can take across the couple H2,W2, or the couple H3,W3.

This suggests that we could find a notation to represent a couple and, instead of the

three different transitions, wewould have one single transition. That is indeedwhat we

do. As in [Bac07], we use the letters H,W and C to mean husband, wife and couple, re-

spectively. These are preceded by a number; for example, 2H means two husbands, 3C

means three couples and 1C,2H means one couple and two husbands. We exploit the

notation to distinguish between couples and individuals; for example, 1H,1W means

a husband and wife who do not form a couple, whilst 1C means a husband and wife

who do form a couple.

The second notation is avoiding unnecessary detail, because there is no need to distin-

guish the individuals. Note that if we use the first notation, we have a total of 60 possi-

ble transitions; on the other hand, if we use the second notation, we reduce this number

to a third, i.e., we have a total of 17 possible transitions! It is a massive improvement

for such a small problem. We discuss this problem further in the next chapter.

Finally, in chapter 4, we show the gains in our problem-solving skills that can be

achieved by the right combination of precision and concision. In particular, the cru-

cial step that allowed the discovery of the two main novel contributions was to rewrite

the so-called extended Euclid’s algorithm in terms of matrices. The conventional for-

mulation of the algorithm uses four distinct variables; our reformulation encapsulates

these variables into one 2×2 matrix. Not only we avoid unnecessary naming, but we

also gain from the introduction of matrix arithmetic.

35

CHAPTER 3

Techniques for Algorithmic Problem

Solving

The required techniques of effective reasoning are pretty formal, but as long as

programming is done by people that don’t master them, the software crisis will

remain with us and will be considered an incurable disease. And you know what

incurable diseases do: they invite the quacks and charlatans in, who in this case take

the form of Software Engineering gurus.

— EDSGER W. DIJKSTRA (2000)

This chapter discusses techniques that can be used to simplify and solve problems. In

contrast to the previous chapter, which contains general principles that apply to all

problems, the techniques shown in this chapter are more specific. For example, there

are techniques that are irrelevant to certain problems, and there are problems that have

different solutions, each based on a different technique. Moreover, certain techniques

can be combined together to achieve more effective solutions.

As in the previous chapter, we illustrate each technique with simple and accessible

examples, and, whenever convenient, we refer to the parts of the thesis where the tech-

nique is used.

We start, in section 3.1, by discussing one of the most elementary techniques in prob-

lem solving: problem decomposition. In particular, we focus on the role of sequential

composition. We complement this section with section 3.2, where we show how a

combination of symmetry and problem decomposition can massively simplify some

solutions. In section 3.2, we also include a discussion on how algebraic symmetry can

be used to guide and simplify calculations. Still connected with problem decomposi-

tion is the notion of distributivity, which we discuss in section 3.3. Besides its use to

simplify calculations, distributivity can also be used to name the elements of a problem

36

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

more effectively.

Perhaps the most important technique in algorithmic problem solving is the use of

invariants, which we discuss in section 3.4. We show how we can calculate invariants,

and how we can use invariants to calculate algorithms. More specifically, we show the

derivation of a non-trivial algorithm that is guided by the notion of invariance.

Essential to the the derivation of algorithms is the ability to prove that an algorithm

terminates. In section 3.5, we show how termination is typically proved.

Finally, we conclude the chapter in section 3.6 with a discussion on program inversion.

Although a formal approach to program inversion can be used to prove certain argu-

ments more precisely, the technique is not widely used. We believe it deserves to be

better known.

3.1 Problem decomposition

Problem decomposition is one of the most elementary problem-solving techniques. It

consists in breaking down a problem into smaller and more manageable problems, and

finding a way of combining the solutions of the smaller problems to solve the original

one. This technique is sometimes called divide-and-conquer, but the latter denomination

is more used when the problem is broken down recursively.

The simplest way of combining two smaller problems into a larger problem is by se-

quential composition. For example, constructing a program S satisfying the specifica-

tion

{ P } S { Q }

can be done by constructing two (smaller) programs, S1 and S2 such that

{ P } S1 { R }

and

{ R } S2 { Q } .

Provided that P is guaranteed, program S1 establishes R; therefore, executing S2 after

S1 establishes Q. We write S1;S2 to denote execution of S1 followed by execution of S2,

and we have

{ P } S1 ; S2 { Q } .

37

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

Note that if one of the smaller problems is easy to solve, S is essentially reduced to the

more difficult problem. This suggests that whenever we have to solve an algorithmic

problem, we should always think of states from which the problem is easy to solve.

For example, recall the problem of “The Chameleons of Camelot”, briefly discussed in

chapter 2:

The Chameleons of Camelot

On the island of Camelot there are three different types of chameleons:

grey chameleons, brown chameleons, and crimson chameleons. Whenever

two chameleons of different colours meet, they both change colour to the

third colour.

For which number of grey, brown, and crimson chameleons is it possi-

ble to arrange a succession of meetings that results in all the chameleons

displaying the same colour?

Assuming that S is the algorithm that organises meetings, the goal of the problem is to

find a precondition P such that:

{ P }

S

{ All the chameleons display the same colour } .

One way of decomposing the problem is to think of states for which the problem is

easy to solve. In other words, for which numbers of chameleons is it easy to arrange

meetings that satisfy the goal? For example, the simplest states we can think of are

the ones where there is only one type of chameleon; in this case the goal is trivially

satisfied. Similarly, the problem is easy to solve when the number of chameleons of

the three different colours is the same; in this case, we can choose two colours and

organise a meeting between all the chameleons of these two colours. More generally,

for the states where at least two types of chameleons are equally numbered, we can

arrange a meeting between all the chameleons of these two types. As a result, we can

decompose the problem as follows:

{ P }

S1

; { Two classes of chameleons are equally numbered }

Two classes of chameleons are equally numbered, so we can arrange a meeting

38

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

between all the chameleons of these two classes. As a consequence, their colour

changes to the third one.

(If there are only chameleons of one colour, there is nothing left to do.)

{ All the chameleons display the same colour } .

We solve this problem in scenario 9. This decomposition is key to the solution, since it

helps us to find an important property of the algorithm S1 that determines P.

An alternative way of decomposing a problem consists in identifying states that are

easy to achieve from the initial state. In the next section we will see an example.

The next section contains more examples where problem decomposition is used. More

specifically, we show how a combination of problem decomposition with symmetry

can massively improve and simplify our solutions.

3.2 Symmetry

Symmetry is a regularity that is possessed by an object and is characterised by the

transformations that leave the object unchanged. For example, the sequence

4,3,2,1,2,3,4

is symmetric with respect to the action “swap every kth element to the right of 1 with

the kth element to the left of 1”. The importance of symmetry is that it gives us free

information about the structure of a problem. For example, given the action above and

the partial sequence 1,2,3,4, we would be able to reconstruct the entire sequence very

easily. The relevance to algorithms is clear: if we know that the solution to an algorith-

mic problem is symmetric with respect to some action, we just need to construct half of

the solution; the rest follows from symmetry.

The two following problems are examples of symmetric problems. The first is the

problem of the Jealous Couples that we have already seen in page 34. Indeed, any

river-crossing problemwhere the crossing rules are the same for both directions is sym-

metric. If we reverse a solution that crosses objects from left to right, we get another

solution that crosses the same objects from right to left.

The second problem is known as the “nuclear pennies game”. It is about moving a

checker on a one-dimensional board according to some given rules. The solution we

show is taken from [BCF10].

We conclude the section with a discussion on algebraic symmetry.

39

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

Jealous Couples For the reader’s convenience, we repeat the problem statement (shown

in section 2.4, page 34):

The Jealous Couples

Three couples (husband and wife) wish to cross a river. They have one

boat that can carry at most two people, making several trips across the river

necessary. The husbands are so jealous of each other that none is willing to

allow their wife to be with another man, if they are not themselves present.

How can all three couples get across the river?

Recall that we use the letters H, W and C to mean husband, wife and couple, respec-

tively. For example, 1H,1W means a husband and wife who do not form a couple,

whilst 1C means a husband and wife who do form a couple.

The solution we show is taken from [Bac07]. The solution to the problem is a sequence

of transitions that leads from the initial state (where we assume that the three couples

are at the left bank) to the final state (where the three couples are at the right bank).

We denote a state by two sequences separated by bars (the bars represent the river). An

example is 1C,2H || 2W, which denotes the state in which one couple and two husbands

are at the left bank and two wives are at the right bank. The starting state is thus 3C ||
and the required finishing state is || 3C. This notation allows invalid states to be easily

identified. For example, 1C,1W || 1C,1H is invalid (because there is a wife who is on

the same side of the river as a man other than her husband, who is on the other side of

the river). More generally, any state where a W appears on the same side as a C or an

H, is invalid.

To denote transitions, we use a similar notation: we use the space between the two bars

to express who is crossing. An example is 3H |2W| 1W, which denotes the transition

of transporting two wives across the river, leaving three husbands at the left bank and

one wife at the right bank. An example of an invalid transition is 3H |3W|, because the
boat can only carry at most two people.

We do not need to express the position or direction of the boat, since the boat and the

three couples are initially at the same bank, and the boat must alternate between the

left bank and the right bank. Note that the alternation of the boat means that the total

number of transitions is odd.

Using Hoare triples to denote changes of state, the goal is to construct a sequence of

transitions S satisfying

{ 3C || } S { || 3C } .

40

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

In words, this means that provided that we have three couples at the left bank, per-

forming the sequence of transitions S is guaranteed to terminate in a state where the

three couples are at the right bank. A concrete example of this notation in use is:

{ 3C || }

1C,2H |2W|

{ 1C,2H || 2W } .

This example means that beginning in the initial state, letting two wives cross will

result in a state where two husbands and one couple are at the left bank and two wives

at the right bank.

Using this notation we can easily express our strategy for decomposing the problem.

Our strategy can be summarised as exploiting two properties of the problem:

• The solution is symmetric, i.e., given a sequence of transitions that crosses the

three couples from left to right, its reverse is a sequence of transitions that crosses

the three couples from right to left;

• It is easy to get the wives from one side to the other whilst their husbands remain

on one bank1.

This strategy is realised by decomposing S into three sequences S1, S2 and S3 such that

{ 3C || } S1 { 3H || 3W } ,

{ 3H || 3W } S2 { 3W || 3H } ,

{ 3W || 3H } S3 { || 3C } .

The sequence S1 changes the state from the initial state to the state where all the wives

are at the right bank and all the husbands are at the left bank. The sequence S2 changes

the end state of S1 to the state where the positions of the wives and husbands are re-

versed. Finally, the sequence S3 changes the end state of S2 to the final state, where

everyone is at the right bank. So, doing S1 followed by S2 followed by S3, which we

1The initial decomposition of this problem is an example where we identify states that are easily ac-

cessible from the initial state. Compare this with the problem “The Chameleons of Camelot”, where we

identify states from where we can easily achieve the final state.

41

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

denote by S1 ; S2 ; S3, will achieve the goal of changing the state from the initial state

(everyone is at the left bank) to the final state (everyone is at the right bank).

We have decomposed the problem into three different problems because we want to

exploit symmetry, and because the total number of transitions is odd. Symmetry is

captured by making the sequence S3 the reverse of the sequence S1. So, if we construct

S1, the sequence S3 comes for free (this is what we mean by obtaining free information).

As a result, we only have to tackle the problem of constructing S1 and S2.

The sequence S1 is easy to construct, since it is easy to get the wives from one side to

the other whilst their husbands remain on one bank. Here is how it is achieved:

{ 3C || }

1C,2H |2W|

; { 1C,2H || 2W }

1C,2H |1W| 1W

; { 2C,1H || 1W }

3H |2W| 1W

{ 3H || 3W } .

We thus have,

{ 3C || } 1C,2H |2W| ; 1C,2H |1W| 1W ; 3H |2W| 1W { 3H || 3W } .

From the symmetry of the solution, we immediately conclude that the sequence S3 is

the reverse of S1:

{ 3W || 3H } 1W |2W| 3H ; 1W |1W| 1C,2H ; |2W| 1C,2H { || 3C } .

(Note how S3 is obtained by reading S1 backwards.)

We now construct S2 by further decomposing the problem. We first observe that S1
leaves the boat at the right bank, so the starting position of S2 is the right bank. Sym-

metrically, S3 starts from the left bank, so S2 must leave the boat at the left bank. More-

over, if the solution is to remain symmetric, and because the number of total transitions

is odd, the middle transition has to be symmetric. Clearly, the only symmetric transi-

tion that is valid is 1C |1C| 1C2. Thus, S2 must surely take the following form:
2Note how the notation adopted allows us to easily identify 1C |1C| 1C as the middle transition. Had

we chosen to denote only who crosses (e.g. “1C left” or “1C right”), it would be impossible to identify the

middle transition.

42

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

{ 3H || 3W }

T1

; 1C |1C| 1C

; T2

{ 3W || 3H } .

The task is now to construct the symmetric sequences of transitions T1 and T2. Note

that we do not know yet if the middle transition is from right to left or from left to

right. If it is from right to left, the transition must be preceded by the state 1C || 2C and

results in the state 2C || 1C. Vice-versa, if the middle transition is from left to right, the

transition must be preceded by the state 2C || 1C and results in the state 1C || 2C. Using

brute-force, we find that T1 consists of just two actions:

{ 3H || 3W }

3H |1W| 2W

; { 1C,2H || 2W }

1C |2H| 2W

{ 1C || 2C } .

Symmetrically, for T2 we have:

{ 2C || 1C }

2W |2H| 1C

; { 2W || 1C,2H }

2W |1W| 3H

{ 3W || 3H } .

Finally, putting everything together, we have the complete solution to the jealous-

couples problem:

{ 3C || }

1C,2H |2W| ; 1C,2H |1W| 1W ; 3H |2W| 1W

; { 3H || 3W }

3H |1W| 2W ; 1C |2H| 2W

43

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

; { 1C || 2C }

1C |1C| 1C

; { 2C || 1C }

2W |2H| 1C ; 2W |1W| 3H

; { 3W || 3H }

1W |2W| 3H ; 1W |1W| 1C,2H ; |2W| 1C,2H

{ || 3C } .

The final solution involves eleven crossings, but we have only constructed five. By

combining problem decomposition and symmetry, six crossings are given for free! We

believe that this is an excellent example of how the free information that results from

exploiting symmetry can massively improve our solutions. Moreover, the combination

of problem decomposition and symmetry can be used to solve many other symmetric

problems. The next paragraphs show another example: the “nuclear pennies game”.

Seven-Trees-in-One and the Nuclear Pennies Game Consider the definition of bi-

nary trees—a binary tree is an empty tree or an element together with a pair of binary

trees. Let us use symbols + and × to denote disjoint union and Cartesian product

respectively and let 11 denote the unit type. The type T of binary trees can be char-

acterised by the type isomorphism T ∼= 11+T×T. Surprisingly, it can be shown that

there is an isomorphism between seven-tuples of binary trees and binary trees. That is,

T7 ∼= T. This has been dubbed “seven trees in one” by Blass [Bla95] who attributes the

isomorphism to a remark made by Lawvere [Law91].

The isomorphism has been turned into a game with checkers called the “nuclear pen-

nies game” [Pip07]. The game is played on a one-dimensional board of infinite extent.

A checker is placed on one of the squares and the goal is to move the checker six places

to the right. An atomic move is to replace a checker in a square numbered n+1 by

two checkers, one in each of the two adjacent squares n and n+2, or vice-versa, two

checkers, one in square n and one in square n+2 for some n, are replaced by a checker

in square n+1. Note that there can be multiple checkers in a square. The connec-

tion with seven-trees-in-one is easy to see if one views a move as replacing Tn×T by

Tn×(11+T×T) or vice-versa (having a checker in square n corresponds to Tn).

The nuclear-pennies game has an easy solution if one exploits the left-right symmetry

of the problem (moving a checker 6 places to the right is symmetric tomoving a checker

6 places to the left). The problem is decomposed into first ensuring that there is a

44

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

checker in the square 6 places to the right of the starting position and, symmetrically,

there is a checker in the square 6 places to the left of the finishing position.

Achieving this first stage is easy. Below we show how it is done. First, six moves are

needed to ensure that a checker is added six places to the right of the starting position.

(This is shown below using dots to indicate checkers on a square. A blank indicates no

checker on the square.)

0 1 2 3 4 5 6 7 8

...

...

...

...

...

...

0 1 2 3 4 5 6 7 8

...

Symmetrically, working from bottom to top, six moves are needed to ensure that a

checker is added six places to the left of the finishing position.

0 1 2 3 4 5 6 7 8

...

...

...

...

...

...

0 1 2 3 4 5 6 7 8

...

Now the goal is to connect these two intermediate states (the bottom state in the top

diagram and the top state in the bottom diagram). An appropriate (symmetrical) se-

quence of states is as follows. (For the reader’s convenience, the last and first states in

the above figures are repeated as the top and bottom states in the figure below.)

45

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

0 1 2 3 4 5 6 7 8

...

...

...

...

...

...

0 1 2 3 4 5 6 7 8

...

The first and last moves make the number of checkers in the leftmost and rightmost

positions equal. Then a small amount of creativity is needed to identify the two (sym-

metrical) moves to the (symmetrical) middle state.

Algebraic symmetry We use the term algebraic symmetry when symmetry is used in

an algebraic context; for example, when an expression consists of subexpressions with

a common shape, we say that the expression is (algebraically) symmetric. That is, we

can say that the expression

p×q = p×(x+y)

is symmetric, because the shapes of the expressions on both sides of the equality are

similar (we have an expression pre-multiplied by p on both sides of the equality). Alge-

braic symmetry admits a notion of order; we can say, for example, that the expression

above is more symmetric than its equivalent

p×q = p×x + p×y ,

since both sides of the equality in the first expression are more similar. In other words,

in the first expression, both sides of the equality are multiplications that share the first

argument (i.e., they share the same shape), whilst in the second expression, the shapes

are different: the left side is a multiplication and the right side is an addition.

Sometimes, making an expression more symmetric can simplify and guide our calcula-

tions. Consider, for example, the problem of scenario 1, where we are ask to prove that

the product of four consecutive positive natural numbers cannot be the square of an

integer number.

Assuming that n is a positive natural number, the goal of the problem is to construct a

calculation of the form

46

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

S.(n(n+1)(n+2)(n+3))

= { justification }

false,

where S.n is defined to be true only when n is the square of an integer.

Having nothing else to play with, let us manipulate the product n(n+1)(n+2)(n+3)

by using the property that multiplication distributes over addition:

S.(n(n+1)(n+2)(n+3))

= { we use distributivity, twice; there are three ways in which

we can develop the product, so we choose to multiply

n by n+3 and n+1 by n+2 in order to introduce symmetry

—both have the term n2+3n }

S.((n2+3n)(n2+3n + 2))

= { we introduce symmetry again; we want to transform the

argument of S into an expression that looks like a square }

S.(((n2+3n + 1)−1)((n2+3n + 1)+1))

= { difference of two squares, i.e., (m−1)(m+1) = m2−1 }

S.((n2+3n + 1)2−1)

= { there are no two consecutive positive integers

that are both squares }

false .

Note how symmetry guided our calculation! In fact, this problem is asking for symme-

try, since the goal is to determine if we can express the product n(n+1)(n+2)(n+3) as

a product of two equal numbers, i.e., as a product with a symmetric shape.

This thesis contains other examples of where algebraic symmetry helps. In chapter 4,

for example, we show how the transformation of the definition of greatest common

divisor into a more symmetric definition suggests the structure of Euclid’s algorithm.

47

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

3.3 Distributivity

Suppose that f is a function and ⊕ is a binary operator. We say that f distributes over

⊕, if for all a and b, there exists an operator⊗, such that:

(3.3.1) f .(a⊕b) = f .a⊗ f .b .

Distributivity is important for two reasons. First, it can be used to reduce the number

of calculations. If we use (3.3.1) from right to left, we clearly reduce the number of

function applications. For example, the fact that multiplication distributes over addi-

tion

a×(b+c) = a×b + a×c

can be used to reduce the number of multiplications (an example is the last calculation

of the previous section).

The second reason why distributivity is important is that, reading (3.3.1) from left to

right, it corresponds to problem decomposition. If we want to apply a function to a

“problem” a⊕b, consisting of two smaller “problems” a and b, we apply the function to

each “smaller problem” and we combine the solutions using the operator⊗. A simple

example of this pattern is the rule that most of us learn in school to calculate the value

of products. For example, suppose that we want to compute the value of 13×102. We

first observe that 102 is the same as 100+2; so, using distributivity, we first calculate

the values of 13×100 and 13×2 (which are easy to compute), and then we combine the

results using addition (and we get the final result of 1326).

Sometimes, the decomposition of the problem may occur in the opposite direction.

That is, the problem a⊕b can be a simplification of the problems a and b. In chapter

4, we show an example of when this occurs: we prove that the so-called Mersenne

function distributes over the greatest common divisor:

2m gcd n−1 = (2m−1) gcd (2n−1) .

In general, it is more difficult to compute the value of the right-hand side than to com-

pute the value of the left-hand side. As an example, this property can be used to sim-

plify the computation of the greatest common divisor of the numbers 1023 and 127:

1023 gcd 127

= { 1023 = 210−1 and 127 = 27−1 }

48

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

(210−1) gcd (27−1)

= { distributivity }

210 gcd 7−1

= { 10 gcd 7 = 1 }

1 .

Note that definition (3.3.1) is not conventional, since conventional definitions of dis-

tributivity involve only one function and one binary operator. In particular, where we

write ⊗, most people would write the same operator ⊕. However, for us, a property

like

log.(a×b) = log.a + log.b

is a distributivity property. Another distributivity property we have seen in section 2.3

is that even distributes over addition:

even.(a+b) ≡ even.a≡ even.b .

This property is useful, because we can reason about the parity of numbers within the

Boolean domain, which is simpler than the domain of numbers. For example, consider

the following problem:

Chess moves

In chess, a bishop moves along the diagonal. That is, starting from a

position (i, j), a bishop can move a (positive or negative) distance k to the

position (i+k , j+k) or to the position (i+k , j−k). (This is provided, of

course, that the bishop stays within the boundary of the board. See figure

3.1; the bishop is in position (2, 2).)

Show that a move from the position (i, j) to the position (i+k , j+k) does

not change the colour of the square. Hint: The following definition can be

useful:

black.(i, j) ≡ even.i ≡ even.j.

The goal of this problem is to prove the following two equalities:

(3.3.2) black.(i, j) ≡ black.(i+k , j+k)

and

(3.3.3) black.(i, j) ≡ black.(i+k , j−k).

A calculational proof of (3.3.2) is as follows:

49

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

7 0Z0Z0Z0Z
6 Z0Z0Z0Z0
5 0Z0Z0Z0Z
4 Z0Z0Z0Z0
3 0Z0Z0Z0Z
2 Z0a0ZnZ0
1 0Z0Z0Z0Z
0 Z0Z0Z0Z0

0 1 2 3 4 5 6 7

Figure 3.1: Examples of chess moves: bishop and knight

black.(i+k , j+k)

= { definition of black }

even.(i+k) ≡ even.(j+k)

= { even distributes over addition }

even.i≡ even.k≡ even.j≡ even.k

= { associativity and symmetry of ≡ }

even.i≡ even.j≡ even.k≡ even.k

= { associativity and reflexivity of ≡ }

even.i≡ even.j

= { definition of black }

black.(i, j) .

The proof of (3.3.3) is similar. Note that the solution constitutes a unified interface for

reasoning about how the colour of the squares change regardless of the chess piece.

For example, we can use the same proof structure to prove that the move of a knight

always changes the colour of the square (see figure 3.1; in this case, the key property is

that the numbers 1 and 2 have different parities). Furthermore, it is easy to create new

exercises just by choosing different moves.

Standard solutions to parity problems are usually done within the familiar domain of

numbers. In this particular example, a standard solution would claim that the parities

of i+k+j+k and i+j are the same. However, reasoning within the Boolean domain

50

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

can be more effective: the algebraic manipulations may be less familiar than ordinary

arithmetic, but they are easier because the domain is much simpler. We show another

example in scenario 5, where we use distributivity to solve a logic puzzle.

Distributivity and naming We conclude this section with the observation that dis-

tributivity can also be used to name the elements of a problem more effectively. An

example where we have used it implicitly was when we named the elements of the

problem “Jealous Couples”. Recall that, if we distinguish the individual people as sug-

gested in section 2.4, the initial state would be represented as

H1,W1,H2,W2,H3,W3 || .

From this state, three possible transitions are to the following states:

H2,W2,H3,W3 || H1,W1 ,

H1,W1,H3,W3 || H2,W2 , and

H1,W1,H2,W2 || H3,W3 .

We have seen that we can reduce these three transitions to one transition by using a

notation that names couples, rather than naming individual people. In a way, we are

factoring out the initial state and combining the three different states into one single

state. To formulate this idea, let us write s→s′ to denote a transition from state s to

state s′, and let us use the operator ⊗ to indicate a choice between transitions. Then,

using i to denote the initial state, and a, b, and c to denote the three states shown above,

we have:

(i→a) ⊗ (i→b) ⊗ (i→c) .

Now, using the operator ⊕ to indicate the unification of names, we can rewrite this

expression as:

i → (a⊕b⊕c) ,

where a⊕b⊕c, in this particular case, would be 2C || 1C. Clearly, the equality

i → (a⊕b⊕c) = (i→a) ⊗ (i→b) ⊗ (i→c)

has the same shape as definition (3.3.1).

51

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

3.4 Invariants

An invariant is a property or expression that remains constant throughout the execu-

tion of an algorithm. Because invariants are constant, they are often used to prove that

certain states are not achievable. For this reason, they are sometimes called safety prop-

erties. Scenario 7, for example, is about a problem where an invariant is used to prove

that a certain state is unreachable. Invariants can also be used in different ways. In

chapter 1 we have shown how to verify a theorem using one of the invariants of Eu-

clid’s algorithm. In this section, we show two more examples of how invariants can be

used to solve algorithmic problems. The first is a simple, recreational problem that can

be used to introduce the notion of invariant. The second example shows the impor-

tance of invariants in algorithm construction: we develop an algorithm that constructs

a witness for an existential theorem. It is also an example of howwe can use algorithms

to do mathematics.

Introducing invariants Invariants can be introduced via simple and recreational ex-

amples. For instance, consider the following problem, taken from [Bac07]:

Empty Boxes

Eleven large empty boxes are placed on a table. An unknown number

of the boxes is selected and, into each, eight medium boxes are placed. An

unknown number of the medium boxes is selected and, into each, eight

small boxes are placed.

At the end of this process there are 102 empty boxes. How many boxes

are there in total?

We are given the initial and final numbers of empty boxes and we are required to find

the total number of boxes at the end of the process. This motivates the introduction of

variables for these values; we use t to denote the total number of boxes, and e to denote

the number of empty boxes. Initially, we know that t = e = 11. We want to determine

the value of t after the small boxes are placed into the medium boxes.

Since the number of empty boxes that is selected is unknown, let us focus on the atomic

action of placing boxes inside an empty box. Whenever we put eight boxes inside an

empty box, the total number of boxes increases by eight and the number of empty

boxes increases by seven. Therefore, the assignment that models this is:

t , e := t+8 , e+7 .

52

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

An invariant of this type of assignment is easy to calculate. We seek some linear combi-

nation of t and e that remains constant after execution of the assignment, so we propose

to calculate x and y, such that

(x·t + y·e)[t , e := t+8 , e+7] = x·t + y·e .

In words, wewant to calculate x and y, such that the value of x·t + y·e after execution of

the assignment t , e := t+8 , e+7 remains the same. The calculation is straightforward:

(x·t + y·e)[t , e := t+8 , e+7] = x·t + y·e

= { substitution }

x·(t+8) + y·(e+7) = x·t + y·e

= { arithmetic }

8·x + 7·y = 0

⇐ { arithmetic }

x = 7 ∧ y = −8 .

Thus, an invariant of the assignment is 7·t− 8·e. We know that its initial value is −11

(because t = e = 11). Since it is an invariant, its final value has to be −11. This means

that on termination, when e = 102, we have

7·t− 8·102 = −11 .

Therefore, the final value of t is 115. That is, at the end of the process there are 115

boxes.

This solution is also an example of appropriate naming: we have introduced only two

variables, one to express the goal, and the other to model the concrete data given by the

problem statement. If we had introduced variables for the numbers of small, medium,

and large boxes, the solution would be more complicated.

Calculating an algorithm Invariants are very important for calculating algorithms.

The following example shows the derivation of a non-trivial algorithm that constructs

a witness for the existential theorem3:
3We write a\b to denote “a divides b”. The derivation we show is essentially the same as in [Dij82b],

but, to make it more accessible, we include more details.

53

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

Theorem For any odd p≥ 1, integer K ≥ 1, and odd r, a value x exists such

that

1≤ x < 2K ∧ 2K\(xp−r) ∧ odd.x .

The functional specification of the algorithm S that we want to construct is

{ odd.p ∧ p≥ 1 ∧ K≥ 1 ∧ odd.r }

S

{ 1≤ x < 2K ∧ 2K\(xp−r) ∧ odd.x } .

Since the statement S is essentially a search process, it is reasonable to assume that it

has to be a repetitive statement. This means that we should choose an invariant for

S. A common technique to find an invariant from the postcondition is to replace a

constant by a variable; here, we replace the constant K by a variable k, and we rewrite

the postcondition to:

P ∧ k=K ,

where

P ≡ 1≤ x < 2k ∧ 2k\(xp−r) ∧ odd.x .

Now, because we can easily find values for x and k that make P true (k = x = 1, for

example), we choose P to be the invariant and the negation of k = K to be the guard of

the loop. This results in the following:

k , x := 1 , 1 ;

{ Invariant: P }

do k 6= K → k , x := k+1 , x+X od

{ P ∧ k = K }

The loop terminates when k = K. Moreover, if P is an invariant, it will be true on

termination and we can conclude that the loop establishes the theorem. So, the goal is

to find a value for X that guarantees the invariance of P. The formal requirement is:

P[k , x := k+1 , x+X] ⇐ P .

Expanding the expressions, the formal requirement is:

54

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

1≤ x+X < 2k+1 ∧ 2k+1\((x+X)p−r) ∧ odd.(x+X)

⇐

1≤ x < 2k ∧ 2k\(xp−r) ∧ odd.x .

Note that if X = 0, the only conjunct that can be violated is 2k+1\(xp−r). So, an accept-

able refinement for our loop is:

do k 6= K→ if 2k+1\(xp−r) → k := k+1

2 2k+1 //\(xp−r) → k , x := k+1 , x+X

fi

od

In other words, whenever we have 2k+1\(xp−r), we do not change the value of x. But

what if 2k+1 //\(xp−r)? In this case, we want to compute an X such that

1≤ x+X < 2k+1 ∧ 2k+1\((x+X)p−r) ∧ odd.(x+X)

⇐

P ∧ 2k+1 //\(xp−r) .

Let us focus first on the middle conjunct:

2k+1\((x+X)p−r)

= { By the Binomial Theorem, we have

(x+X)p = 〈Σj : 0≤ j≤ p : (pj)×xp−j×X j〉 }

2k×2 \ (〈Σj : 0≤ j≤ p : (pj)×xp−j×X j〉−r)

= { range disjunction, associativity, and

distributivity (we factor out X) }

2k×2 \ ((xp−r) + X×〈Σj : 1≤ j≤ p : (pj)×xp−j×X j−1〉)

⇐ { we have that 2k\(xp−r); assume that X = 2k to make

both terms divisible by 2k }

2\((xp−r
2k)+〈Σj : 1≤ j≤ p : (pj)×xp−j×2k×(j−1)〉)

= { distributivity }

2\(xp−r
2k) ≡ 〈≡ j: 1≤ j≤ p: 2\((pj)×xp−j×2k×(j−1))〉

55

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

= { 2k+1 //\(xp−r), i.e. 2\(xp−r
2k) ≡ false;

also, 〈∀j : 2≤ j≤ p : 2\2k×(j−1)〉 }

false ≡ 2 \ p×xp−1

= { odd.p and odd.x }

true .

The conclusion is that

2k+1\((x+2k)p−r) ⇐ P ∧ 2k+1 //\(xp−r) .

We also have (the proof is easy and left to the reader):

1≤ x+2k < 2k+1 ∧ odd.(x+2k)

⇐

1≤ x < 2k ∧ odd.x .

Therefore, we conclude that

P[k , x := k+1 , x+2k]

⇐

P ∧ 2k+1 //\(xp−r),

and we rewrite the algorithm to:

{ odd.p ∧ p≥ 1 ∧ K≥ 1 ∧ odd.r }

k , x := 1 , 1 ;

{ Invariant: P }

do k 6= K→ if 2k+1\(xp−r) → k := k+1

2 2k+1 //\(xp−r) → k , x := k+1 , x+2k

fi

od

{ P ∧ k = K }

The algorithm computes the value of 2k+1 twice and the value of 2k once. We can op-

timise it by introducing a new variable d to hold the value of 2k, but the goal of this

56

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

derivation is not to get the most efficient algorithm. Instead, we hope to have demon-

strated how the notion of invariance can be used to calculate non-trivial algorithms.

The only step where we had to do some guessing was the step where we assumed

that X was 2k (third step of the calculation). But we think it was a reasonable guess,

completely guided by symmetry.

Finally, because K≥ 1, and because we are incrementing k by 1 at each step of the loop,

the algorithm will reach a point at which k = K. Therefore, the algorithm terminates

and the existence theorem is proved. In the next section, we discuss program termina-

tion in more detail.

In chapter 4, we show several derivations of algorithms, all of them based on the no-

tion of invariance. Also, scenarios 7, 9, and 11 provide further examples of problems

involving invariants.

3.5 Proving program termination

When we construct an algorithm, we have to guarantee that it makes progress towards

the desired postcondition. For example, in the last algorithm of the previous section,

we included a brief discussion on why the variable k would eventually become K. If

we had omitted the termination argument, the theorem would not be established.

The classic method of proving that an algorithm terminates was proposed by Turing in

a 1949 paper [MJ84], where he wrote:

Finally the checker has to verify that the process comes to an end. Here

again he should be assisted by the programmer giving a further definite as-

sertion to be verified. This may take the form of a quantity which is asserted

to decrease continually and vanish when the machine stops.

In this thesis, we use the term bound function and we define it to be a natural-number-

valued function of the program variables that measures the size of the problem to be

solved. A guarantee that the value of such a bound function is always decreased at

each iteration is a guarantee that the number of times the loop body is executed is at

most the initial value of the bound function.

For example, the function K−k can be used as a bound function of the last algorithm

shown in the previous section. Its initial value is K−1, and it clearly decreases at each

iteration. Because the loop terminates when k = K, the function K−k is bounded below.

Another example where it is easy to find a bound function is Euclid’s algorithm. Recall

57

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

that, in chapter 1, we have used Euclid’s algorithm to prove that the greatest common

divisor of two consecutive Fibonacci numbers is 1:

x , y := fib.(n+1) , fib.n ;

{ Invariant: x and y are two consecutive Fibonacci numbers

∧ fib.(n+1) gcd fib.n = x gcd y }

do y < x → x := x−y

2 x < y → y := y−x

od

{ x = y = 1 ∧ fib.(n+1) gcd fib.n = 1 }

However, we have not proved that the algorithm terminates (we have just stated that

it does). To prove that it terminates, we observe that at each step we either decrease x

or we decrease y. As a result, the value of x+y has to decrease; formally, we have to

prove:

(x+y)[x := x−y] < C ⇐ x+y = C ∧ y < x , and

(x+y)[y := y−x] < C ⇐ x+y = C ∧ x < y .

In words, these requirements mean that if the value of x+y before any assignment is C,

it has to be less than C after the execution of an assignment. We prove the first and we

leave the second for the reader:

(x+y)[x := x−y]

= { substitution }

(x−y)+y

= { associativity and symmetry }

(x+y)−y

= { x+y = C }

C−y

< { 0 < y }

C .

Termination is not always as obvious as in the previous examples. For a more challeng-

ing problem, consider the following game, taken from [vG90]:

58

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

We are requested to provide an argument for the termination of the fol-

lowing game: a finite bit string (i.e. a string of zeroes and ones) is repeatedly

transformed by replacing

a pattern 00 by 01 , or

a pattern 11 by 10 , wherever in the string and as long as

such transformations are possible.

The solution we show here is Van Gasteren’s solution. Since the pair of transforma-

tions is invariant under an interchange of 0 and 1, only equality and difference of bits

matter. Exploiting this observation, we record the succession of neighbour equalities

and differences in the bit string as a string of y’s and x’s, with

y standing for a pair of equal neighbour bits, and

x standing for a pair of different neighbour bits

(which given the first bit precisely determines the bit string).

In this terminology, a transformation changes a y in the “code string” into an x, while

leaving all elements to the left of that y unchanged. Thus the code string decreases lex-

ically at each transformation. Since it furthermore is lexically bounded from below—

by the string of appropriate length consisting of x’s only— the game terminates.

(The shape of the bit string upon termination follows from the observation that the

leftmost bit of the bit string does not change in the game and that upon termination the

code string consists of x’s only.)

The bound function is the lexical ordering of the code string; since the strings are enu-

merable, the function can be seen as a natural-valued-function that maps a code string

to the correspondent natural number (e.g., the lexically smallest code string is mapped

to zero).

This argument is also a good example of appropriate naming: we named neither the

lengths nor the individual elements of the bit and code strings, and we only had to

consider one change of one symbol (namely, of a y into an x).

In scenario 10, we show another non-trivial problem on termination, and we include

this game as an exercise.

3.6 Algorithm Inversion

Inverting an algorithm S consists in finding another algorithm, usually denoted by

S−1, that when composed with S leaves the program state unchanged. In other words,

59

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

executing S−1 after S amounts to doing nothing, that is, if we provide to S−1 some

output of S, it will compute a corresponding input to S.

Some statements are easy to invert. The inverse of skip, for example, is skip itself. Also,

the inverse of x := x−y is x := x+y. However, other statements are difficult or impos-

sible to invert. For example, we cannot invert x := 1 without knowing the value of x

before the assignment; we can only invert it if we know the precondition. The inverse

of

{ x = 0 } x := 1

is

{ x = 1 } x := 0 .

Note that the assertion becomes an assignment and the assignment becomes an asser-

tion. This simple example shows that we may be able to compute inverses only when

the precondition is given. Therefore, we define the inverse of a statement with respect

to a precondition. That is, S−1 is the (right) inverse of S with respect to R, if for every

Q

{ R ∧ Q } S ; S−1 { Q } .

An important aspect of the above characterisation is that it distributes through program

constructs. This allows us to reduce the inversion of a program into the inversion of its

components. For example, the inverse of a sequence of commands is the reverse of the

sequence of inverses of the individual commands:

(S0;S1; · · · ;Sn)−1 = S−1
n ; · · · ;S−1

1 ;S−1
0 .

To illustrate this rule, suppose that we want to invert the following program, taken

from the scenario 8:

{ x = X ∧ y = Y }

x := x+y ;

y := x−y ;

x := x−y

{ x = Y ∧ y = X } .

As seen in section 2.2 (page 25), this program swaps the values of variables x and y

without using a temporary variable (we are assuming that overflows do not occur).

Using the rule, the inverse of the program is:

60

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

{ x = Y ∧ y = X }

(x := x−y)−1;

(y := x−y)−1;

(x := x+y)−1

{ x = X ∧ y = Y } .

Note that, as expected, the precondition and the postcondition are swapped. Also, the

inverse of x := x−y is x := x+y, and vice-versa. To calculate the inverse of y := x−y,

we first note that it is the same as y := −(y−x), which is equivalent to y := y−x ; y :=

−y. The inverse of this sequence is y := −y ; y := y+x, which is equivalent to y :=

−y+x. Therefore, the assignment y := x−y is its own inverse. Applying this to the

program, we have

{ x = Y ∧ y = X }

x := x+y ;

y := x−y ;

x := x−y

{ x = X ∧ y = Y } .

Comparing the original program and its inverse, we conclude that the program is its

own inverse. This is not surprising, because swapping the values of two variables twice

is the same as doing nothing.

Now, if c0 and c1 are constants, the inverse of

(3.6.1) v := c0 ; S { v = c1 }

is

v := c1 ; S−1 { v = c0 } .

In (3.6.1), variable v is initialised to a value c0, S is executed, and upon termination v

has the final value c1. The inverse assigns c1 to v, undoes what S did, and terminates

with v = c0. Note, again, how the assignment and the assertion switch places.

Another important inversion rule concerns alternative commands. Suppose we want

to invert the following command:

61

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

{ G0 ∨ G1 }

if G0→S0 { C0 }

2 G1→S1 { C1 }

fi

{ C0 ∨ C1 } .

Execution must begin with one of the guards true, so the disjunction of the guards

has been placed before the statement. Execution terminates with either C0 or C1 true,

depending on which command is executed, so C0 ∨ C1 is the postcondition. To invert

this command we must know whether to perform the inverse of S0 or to perform the

inverse of S1. Therefore, C0 and C1 cannot be true at the same time (i.e., ¬(C0 ∧ C1)).

For symmetry, we also require ¬(G0 ∧ G1). Because the command ends in a state sat-

isfying C0 ∨ C1, its inverse must begin in a state satisfying C0 ∨ C1. Also, execution

of G1→S1 { C1 } means that beginning with G1 true, S1 is executed, and C1 is estab-

lished. The inverse must express that beginning with C1 true, S1 is undone, and G1 is

established:

C1→S−1
1 { G1 } .

Note how, when inverting a guarded command with a postcondition, the guard and

postcondition switch places. Continuing to read backwards yields the inverse of the

alternative command:

{ C0 ∨ C1 }

if C1→S−1
1 { G1 }

2 C0→S−1
0 { G0 }

fi

{ G0 ∨ G1 } .

The final rule we will see is used to invert iterative commands. Suppose we have a

loop that executes while G0 is true:

do G0→S0 od { ¬G0 } .

Clearly, the inverse of this loop has to have ¬G0 as its precondition; also, its postcondi-

tion has to be the precondition of this loop. Therefore, based on what we have seen for

the alternative command, we add the following assertions:

62

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

{ ¬G1 } do G0→S0 { G1 } od { ¬G0 } .

The inverse of this command can now be obtained by reading it backwards, as we have

done for the alternative command. Its inverse is:

{ ¬G0 } do G1→S−1
0 { G0 } od { ¬G1 } .

Finally, because our syntax allows non-determinacy, it is common to have programs of

the following shape:

{ G0 ∨ G1 }

do G0 → S0 { C0 }

2 G1 → S1 { C1 }

od

{ C0 ∨ C1 } .

If both the guards G0 and G1 are true, the block operator (2) ensures that one of the

statements S0 and S1 is chosen non-deterministically. If both the guards are false, the

loop terminates properly (in fact, in that case, it is the same as doing skip)4.

To invert such a program, we can use the inversion rule for alternative statements to-

gether with the inversion rule for iterative statements. Provided that ¬(C0 ∧ C1) and

¬(G0 ∧ G1), the inverse of the program is:

{ C0 ∨ C1 }

do C1 → S−1
1 { G1 }

2 C0 → S−1
0 { G0 }

od

{ G0 ∨ G1 } .

In section 4.6, this rule is used to invert Euclid’s algorithm. For more details on the

inversion rules shown in this section, we recommend the expositions in [Gri81, chapter

21] and [vdS93, chapter 11]. As far as we know, the technique of program inversion

first appeared in [Dij82a, pp. 351–354] and, since then, it has been mentioned and used

in many places (see, for example, [vdS91, Che90, vW91, MB03]).

4Note that if all the guards are false in the alternative statement of the shape if · · · fi, then proper

termination does not occur (in that case, it is the same as doing abort).

63

CHAPTER 3: TECHNIQUES FOR ALGORITHMIC PROBLEM SOLVING

Although a formal approach to program inversion can be used to prove certain argu-

ments more precisely, the technique is not widespread. We believe it deserves to be

better known. We use it in section 4.6 to make an argument more precise.

64

CHAPTER 4

A Calculational and Algorithmic

Approach to Elementary Number

Theory

The elementary theory of numbers should be one the very best subjects for early

mathematical instruction. It demands very little previous knowledge, its subject

matter is tangible and familiar; the processes of reasoning which it employs are

simple, general and few; and it is unique among the mathematical sciences in its

appeal to natural human curiosity.

— G. H. HARDY (1928)

4.1 Introduction

This chapter, which is based on [BF08], [BF10], and [Fer10], presents a calculational and

algorithmic approach to elementary number theory, a theory concerned with the prop-

erties of the integer numbers. In other words, we use the principles and techniques

described in previous chapters to reason about numbers and some of their proper-

ties (especially divisibility properties). In our view, the algorithmic nature of some

number-theoretical concepts and the points highlighted in the opening quote of this

chapter justify well why number theory is a good subject to be rewritten with a focus

on algorithmic content. We hope to show that our reformulation can be used to convey

principles of algorithmic development to mathematics students. Moreover, since num-

ber theory forms the mathematical foundations of cryptography, we believe it can also

be useful for computing science students.

Our approach is unconventional, mainly because traditional presentations of number

65

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

theory have benefited little from the advances that have been made in our understand-

ing of the basic principles of algorithm development. A blatant example is the conven-

tional treatment of Euclid’s algorithm to compute the greatest common divisor (gcd)

of two positive natural numbers, the oldest nontrivial algorithm that involves iteration

and that has not been superseded by algebraic methods. (For a modern paraphrase of

Euclid’s original statement, see [Knu97, pp. 335–336].) Most books on number theory

include Euclid’s algorithm, but rarely use the algorithm directly to reason about prop-

erties of numbers. In a thesis such as this one, it is of course not the place to rewrite

mathematics textbooks. Nevertheless, our goal in this chapter is to demonstrate how a

focus on algorithmic method can enrich and reinvigorate the teaching of mathematics.

We use Euclid’s algorithm to derive both old and well-known, and new and previously

unknown, properties of the greatest common divisor and rational numbers. The leit-

motiv is the notion of a loop invariant — how it can be used as a verification interface

(i.e., how to verify theorems) and as a construction interface (i.e., how to investigate

and derive new theorems).

We begin in section 4.2 with the construction of the integer division algorithm, with ba-

sic properties of the division relation, and with the construction of Euclid’s algorithm.

In contrast to standard presentations of the algorithm, which typically assume the ex-

istence of the gcd operator with specific algebraic properties, our derivation gives a

constructive proof of the existence of an infimum operator in the division ordering of

natural numbers.

The focus of section 4.3 is the systematic use of invariant properties of Euclid’s algo-

rithm to verify known identities. Section 4.4, on the other hand, shows how to use the

algorithm to derive new results related with the greatest common divisor: we calculate

sufficient conditions for a natural-valued function1 to distribute over the greatest com-

mon divisor, and we derive an efficient algorithm to enumerate the positive rational

numbers in two different ways.

Although the identities in section 4.3 are well-known, we believe that our derivations

improve considerably on standard presentations. One example is the proof that the

greatest common divisor of two numbers is a linear combination of the numbers; by

the simple device of introducing matrix arithmetic into Euclid’s algorithm, it suffices

to observe that matrix multiplication is associative in order to prove the theorem. This

exemplifies the gains in our problem-solving skills that can be achieved by the right

combination of precision and concision. The introduction of matrix arithmetic at this

early stage was also what enabled us to derive a previously unknown algorithm to

1We call a function natural-valued if its range is the set of natural numbers.

66

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

enumerate the rationals in so-called Stern-Brocot order (see section 4.4), which is one

of the primary novel results (as opposed to method) in this chapter.

One of the main tools provided by number theory is modular arithmetic. Therefore,

in section 4.5, we illustrate how the theory of congruences can be made more calcu-

lational, we show how we can construct an algorithm to do modular exponentiation,

and we construct a simple version of the Chinese remainder theorem in two different

ways. This section was jointly written with Arjan Mooij.

The final problem that we solve in this chapter is one that has received a lot of atten-

tion: which numbers can be written as the sum of two squares? There is a well-known

theorem due to Albert Girard (we call it the two-squares theorem) that answers this

question and that is usually verified in elementary number theory books. In section

4.6, we show a new and constructive proof of the two-squares theorem, based on our

formulation of Euclid’s algorithm expressed in terms of matrices. Rather than sim-

ply verifying the result—as it is usually done in the mathematical community—we

use Euclid’s algorithm as an interface to investigate which numbers can be written as

sums of two positive squares. The precise formulation of the problem as an algorithmic

problem is the key, since it allows us to use algorithmic techniques and to avoid guess-

ing. The notion of invariance, in particular, plays a central role in our development:

it is used initially to observe that Euclid’s algorithm can actually be used to represent

a given number as a sum of two positive squares, and then it is used throughout the

argument to prove other relevant properties. We also show how the use of program

inversion techniques can make mathematical arguments more precise. The theorem

that we derive is more general than the one conjectured by Girard.

We finish the chapter with a brief summary of the work of Stern and Brocot, the 19th

century authors after whom the Stern-Brocot tree is named. It is interesting to review

their work, particularly that of Brocot, because it is clearly motivated by practical, algo-

rithmic problems. The review of Stern’s paper was written by Roland Backhouse, since

the author of this dissertation does not read any German. We include it in this thesis,

because we believe that the historical perspective enriches the material of section 4.4.

It also resolves recent misunderstandings about the origin of the Eisenstein-Stern and

Stern-Brocot enumerations of the rationals.

Most of the material shown in this chapter was published before. Sections 4.2, 4.3, 4.4,

and the appendix with the summary of the work of Stern and Brocot were published in

[BF10]. The only exception is the derivation of the division algorithm shown in section

4.2. Also, section 4.6 was published in [Fer10]. The only section of this chapter that was

never published, and is therefore new, is section 4.5.

67

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

4.2 Divisibility theory

Division is one of the most important concepts in number theory. This section begins

with a derivation of the division algorithm from its formal specification. We also give

a short, basic account of the division relation. We observe that division is a partial

ordering on the natural numbers and pose the question whether the infimum, in the

division ordering, of any pair of numbers exists. The algorithm we know as Euclid’s

gcd algorithm is then derived in order to give a positive (constructive) answer to this

question.

4.2.1 Integer division

Integer division as a Galois connection

The integer division of P by Q, here denoted by P÷Q, is usually introduced as the

integer x such that

P = x×Q + r ∧ 0≤ r < |Q| .

(Note that this definition rounds down, rather than rounding towards zero; for ex-

ample, (−7)÷2 is −4, not −3.) This formulation is usually accompanied by many

examples that convey the concept of division, dividend, and remainder. However, we

believe that the students do not learn how to reason effectively about division. Proper-

ties like the following2

(4.2.1) [(a÷b)÷c = a÷(c×b)]

are rarely discussed, and even when they are, their justification is typically informal

and imprecise. Note, however, that this sort of property is often given as a rule of thumb

in connection to exercises. Properly understanding them becomes relevant to build the

correct underlying mathematical intuitions. Therefore, we propose the introduction of

the integer division of P by Q as the Galois connection3:

(4.2.2) 〈∀k:: k×Q≤ P ≡ k≤ P÷Q〉 .
2The square so-called “everywhere” brackets are used to indicate that a Boolean statement is “every-

where” true. That is, the statement has the value true for all instantiations of its free variables. Such

statements are often called “facts”, or “laws”, or “theorems”.

When using the everywhere brackets, the domain of the free variables has to be made clear. This is

particularly important here because sometimes the domain of a variable is the integers and sometimes

it is the natural numbers. Usually, we rely on a convention for naming the variables, but sometimes we

preface a law with a reminder of the domain.
3We use a systematic notation for quantified expressions: the Eindhoven quantifier notation (men-

tioned in section 2.2 and already used in page 29). For more details, see [Bac03, chapter 11] and [GS93,

68

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

This definition requires that Q is a natural number; other requirements on the variables

involved will emerge later. We can use this definition to effectively prove properties of

integer division. For instance, replacing k by P÷Q, we establish the property:

(P÷Q)×Q≤ P .

We can also conclude that 0≤ P is equivalent to 0≤ P÷Q, by replacing k by 0. Also,

using indirect equality, definition (4.2.2) can be used to prove property (4.2.1) in just

three steps:

k≤ (a÷b)÷c

= { definition (4.2.2) }

k×c≤ a÷b

= { definition (4.2.2) and associativity }

k×(c×b) ≤ a

= { definition (4.2.2) }

k≤ a÷(c×b) .

Moreover, definition (4.2.2) is a suitable specification for an algorithm that computes

P÷Q. Note that the goal of such an algorithm is to compute a solution to the equation4

x:: 〈∀k:: k×Q≤ P ≡ k≤ x〉 .

If a solution to this equation exists, then it is unique (because the relation ≤ is reflexive

and anti-symmetric). Furthermore, an important property of the solution x follows

from instantiating k with x in (4.2.2):

(4.2.3) x×Q≤ P .

Instantiating k with x+1 in (4.2.2), we also have:

(4.2.4) ¬((x+1)×Q≤ P) .

In fact, x is the largest integer that satisfies (4.2.3). Properties (4.2.3) and (4.2.4) are the

only ingredients we need to specify the division algorithm:
chapter 8].

Recall that the symbol ≡ denotes Boolean equality. In continued expressions ≡ is read associatively

and = is read conjunctionally. For example, p ≡ q ≡ r is evaluated associatively— i.e. as (p ≡ q) ≡ r or

p ≡ (q ≡ r), whichever is most convenient—whereas p = q = r is evaluated conjunctionally— i.e. p = q

and q = r.
4The notation x:: E means that x is the unknown and the other free variables are parameters of the

equation E.

69

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

S

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) } .

We now apply a common technique in algorithm development: we take the first con-

junct as the invariant, since it is easy to initialise (x := 0), and we take the negation of

the second conjunct as the loop guard. The first version of the algorithm becomes5:

{ 0≤ P }

x := 0 ;

{ Invariant: x×Q≤ P }

do (x+1)×Q≤ P → x := A

od

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) } .

The precondition 0≤ P is necessary to make the invariant initially valid. Now, calcu-

lating the assignment to x, so that the invariant is preserved, is the same as calculating

A in a way that the following requirement is satisfied:

A×Q≤ P ⇐ x×Q≤ P ∧ (x+1)×Q≤ P .

Clearly, we can choose A to be x+1 and we get the next version of the algorithm:

{ 0≤ P }

x := 0 ;

{ Invariant: x×Q≤ P }

do (x+1)×Q≤ P → x := x+1

od

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) } .

Termination proof To prove that the algorithm terminates, we have to define a bound

function, which is a natural-number-valued function of the program variables that mea-

sures the size of the problem to be solved. A guarantee that the value of such a bound

5We use the Guarded Command Language (GCL), a very simple programming language with just four

programming constructs—assignment, sequential composition, conditionals, and loops. The GCL was

introduced by Dijkstra [Dij75]. The statement do S od is a loop that executes S repeatedly while at least

one of S’s guards is true. Expressions in curly brackets are assertions.

70

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

function is always decreased at each iteration is a guarantee that the number of times

the loop body is executed is at most the initial value of the bound function.

In this case, a good candidate is the function P−x; we need to verify that

{ P−x = C }

x := x+1

{ P−x < C } .

The formal requirement is

P−(x+1) < C ⇐ P−x = C ,

and the proof is very simple:

P−(x+1) < C

= { distributivity and associativity }

(P−x)−1< C

= { P−x = C }

C−1 < C

= { integer inequality }

true .

That the function is bounded below follows from the invariant and from the guard:

0≤ P−x

= { cancellation }

x≤ P

= { we know from the invariant that x×Q≤ P;

assuming that 0 < Q, we have x≤ x×Q;

because ≤ is transitive, we also have x≤ P }

true .

Note that the assumption 0 < Q, highlighted in bold in the calculation, emerges natu-

rally from the shape of the invariant. As a result, to guarantee termination, we have to

include 0< Q as a precondition of the algorithm:

71

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

{ 0 < Q ∧ 0≤ P }

x := 0 ;

{ Invariant: x×Q≤ P }

do (x+1)×Q≤ P → x := x+1

od

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) } .

Refining the guard The current version of the algorithm is computing the value x+1

twice: once in the guard and once in the loop body. A good improvement would be to

remove its computation from the guard. In order to do that, we first observe that

(x+1)×Q≤ P

= { distributivity }

x×Q + Q ≤ P

= { cancellation }

Q ≤ P− x×Q .

This suggests the introduction of a variable that equals P− x×Q. Calling this variable

r and adding the equality

r = P− x×Q

to the invariant, we get the following algorithm:

{ 0 < Q ∧ 0≤ P }

x , r := 0 , P ;

{ Invariant: x×Q≤ P ∧ r = P− x×Q }

do Q≤ r → x , r := x+1 , B

od

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) ∧ r = P− x×Q } .

Clearly, to satisfy the invariant, the initial value of r must be P. The next step is to

calculate the assignment to r, that is, to calculate B in a way that the following holds:

72

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

{ r = P− x×Q ∧ Q≤ r }

x , r := x+1 , B

{ r = P− x×Q } .

Using the assignment axiom, we determine B as follows:

B = P− (x+1)×Q

= { distributivity }

B = P− x×Q− Q

= { invariant r = P− x×Q and cancellation }

B = r−Q .

Therefore, the final version of the algorithm is:

{ 0 < Q ∧ 0≤ P }

x , r := 0 , P ;

{ Invariant: x×Q≤ P ∧ r = P− x×Q }

do Q≤ r → x , r := x+1 , r−Q

od

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) ∧ r = P− x×Q } .

Deriving a recursive algorithm To illustrate the flexibility of the definition of P÷Q

as a Galois connection, we now show how to calculate a recursive definition of P÷Q

for natural P and positive Q. The first step is to express P÷Q in terms of the operator

÷, but with the first argument reduced:

k≤ P÷Q

= { (4.2.2) }

k×Q≤ P

= { cancellation }

k×Q− Q ≤ P−Q

= { distributivity, 0 < Q, and (4.2.2); the construction assumes

that the first argument is a natural number, so we need to

73

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

guarantee that Q≤ P }

k−1≤ (P−Q)÷Q

= { cancellation }

k ≤ (P−Q)÷Q + 1 .

Hence, by indirect equality, the following property holds:

P÷Q = (P−Q)÷Q + 1 ⇐ Q≤ P .

We now consider the case when P < Q:

k≤ P÷Q

= { (4.2.2) }

k×Q≤ P

= { transitivity (k×Q≤ P and P < Q); cancellation }

k≤ 0 .

Again, by indirect equality, we conclude:

P÷Q = 0 ⇐ P < Q .

Putting the two cases together, we have the following recursive definition (for natural

P and positive Q):

P÷Q | P < Q = 0

P÷Q | Q≤ P = (P−Q)÷Q + 1 .

This function clearly terminates, as it stops when P < Q and P is being reduced at each

recursive step.

Some final remarks We would like to stress that the derivation of the division algo-

rithm is an educational example that can be used to teach algorithmic techniques such

as loop formation, using the invariant to calculate assignments, and proving progress.

It can also be used to teach the technique of introducing extra variables and computa-

tions to produce more efficient versions.

As we have seen, the definition based on a Galois connection is so flexible that we

can not only use it to prove properties on division, but also to derive two different

74

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

algorithms: one iterative and one recursive! We think that this definition should be

better known and more used in school mathematics.

Also, the calculational approach allows us to be more constructive because the require-

ments emerge from the calculations. As an example, the requirement that the divisor

Q is positive emerges as a necessary condition in the proof that the bound function is

bounded below. Another example is the calculation of the assignment to the variable

r; rather than guessing the assignment and making a post-hoc verification, we have

calculated it with no guessing involved!

4.2.2 Division relation

The division relation, here denoted by an infix “\” symbol, is the relation on integers

defined to be the converse of the “is-a-multiple-of” relation6:

[m\n ≡ 〈∃k : k∈ZZ : n= k×m〉] .

In words, an integer m divides an integer n (or n is divisible by m) if there exists some

integer k such that n= k×m. In that case, we say that m is a divisor of n and that n is a

multiple of m.

The division relation plays a prominent role in number theory. So, we start by pre-

senting some of its basic properties and their relation to addition and multiplication.

First, it is reflexive because multiplication has a unit (i.e., m= 1×m) and it is transitive,

since multiplication is associative. It is also (almost) preserved by linear combination

because multiplication distributes over addition:

(4.2.5) [k\x ∧ k\y ≡ k\(x+ a×y) ∧ k\y] .

(We leave the reader to verify this law; take care to note the use of the distributivity of

multiplication over addition in its proof.) Reflexivity and transitivity make division a

preorder on the integers. It is not anti-symmetric but the numbers equivalent under the

preordering are given by

[m\n ∧ n\m ≡ abs.m= abs.n] ,

where abs is the absolute value function and the infix dot denotes function application.

Each equivalence class thus consists of a natural number and its negation. If the divi-

sion relation is restricted to natural numbers, division becomes anti-symmetric, since

6Although the notation m|n is more common, we prefer to use an asymmetric symbol such as the

backward slash to denote an asymmetric relation. As the authors of [GKP94, p. 102] point out, vertical

bars are overused and m\n gives an impression that m is the denominator of an implied ratio.

75

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

abs is the identity function on natural numbers. This means that, restricted to the nat-

ural numbers, division is a partial order with 0 as the greatest element and 1 as the

smallest element.

Infimum in the division ordering

The first question that we consider is whether two arbitrary natural numbers m and n

have an infimum in the division ordering. That is, can we solve the following equa-

tion7?

(4.2.6) x:: 〈∀k :: k\m ∧ k\n ≡ k\x〉 .

The answer is not immediately obvious because the division ordering is partial. (With

respect to a total ordering, the infimum of two numbers is their minimum; it is thus

equal to one of them and can be easily computed by a case analysis.)

If a solution to (4.2.6) exists, it is unique (because the division relation on natural num-

bers is reflexive and anti-symmetric). When it does have a solution, we denote it by

m▽n. That is, provided it can be established that (4.2.6) has a solution,

(4.2.7) [k\m ∧ k\n ≡ k \ (m▽n)] .

Because conjunction is idempotent,

[k\m ∧ k\m ≡ k\m] .

That is, m solves (4.2.6) when m and n are equal. Also, because [k\0],

[k\m ∧ k\0 ≡ k\m] .

That is, m solves (4.2.6) when n is 0. So, m▽m exists as does m▽0, and both equal m:

(4.2.8) [m▽m = m▽0 = m] .

Other properties that are easy to establish by exploiting the algebraic properties of con-

junction are, first, ▽ is symmetric (because conjunction is symmetric)

(4.2.9) [m▽n = n▽m] ,

and, second,▽ is associative (because conjunction is associative)

(4.2.10) [(m▽n)▽p = m▽(n▽p)] .

7Unless indicated otherwise, the domain of all variables is IN, the set of natural numbers. Note that we

include 0 in IN.

76

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Note that we choose infix notation for ▽, since it allows us to write m▽n▽p with-

out having to choose between (m▽n)▽p or m▽(n▽p). (See the discussion on infix

notation in section 2.2.)

The final property of ▽ that we deduce from (4.2.7) is obtained by exploiting (4.2.5),

with x and y replaced by m and n, respectively :

(4.2.11) [(m+ a×n)▽n = m▽n] .

4.2.3 Constructing Euclid’s algorithm

At this stage in our analysis, properties (4.2.9), (4.2.10) and (4.2.11) assume that equa-

tion (4.2.6) has a solution in the appropriate cases. For instance, (4.2.9) means that, if

(4.2.6) has a solution for certain natural numbers m and n, it also has a solution when

the values of m and n are interchanged.

In view of properties (4.2.8) and (4.2.9), it remains to show that (4.2.6) has a solution

when both m and n are strictly positive and unequal. We do this by providing an

algorithm that computes the solution. Equation (4.2.6) does not directly suggest any

algorithm, but the germ of an algorithm is suggested by observing that it is equivalent

to

(4.2.12) x, y:: x= y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 .

This new shape strongly suggests an algorithm that, initially, establishes the truth of

〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

—which is trivially achieved by the assignment x,y := m,n—and then, reduces x and

y in such a way that the property is kept invariant whilst making progress to a state

satisfying x= y. When such a state is reached, we have found a solution to the equation

(4.2.12), and the value of x (or y since they are equal) is a solution of (4.2.6). (Note that

this is the same technique we have used in the construction of the division algorithm.)

Thus, the structure of the algorithm we are trying to develop is as follows:

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

do x 6= y → x , y := A , B

od

{ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

77

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Nowwe only have to define A and B in such away that the assignment in the loop body

leads to a state where x= y is satisfied while maintaining the invariant. Exploiting the

transitivity of equality, the invariant is maintained by choosing A and B so that

(4.2.13) 〈∀k:: k\x ∧ k\y ≡ k\A ∧ k\B〉 .

To ensure that we are making progress towards the termination condition, we have to

define a bound function that depends on the assignments we choose for A and B.

At this point, we need to exploit properties specific to division. (Refer back to section

4.2.2 for a discussion of some of the properties.) Inspecting the shape of (4.2.13), we see

that it is similar to the shape of property (4.2.5). This suggests that we can use (4.2.5),

and in fact, considering this property, we have the corollary:

(4.2.14) [k\x ∧ k\y ≡ k\(x−y) ∧ k\y] .

The relevance of this corollary is that our invariant is preserved by the assignment

x := x−y (leaving the value of y unchanged). (Compare (4.2.14) with (4.2.13).) Note

that this also reduces the value of xwhen y is positive. This suggests that we strengthen

the invariant by requiring that x and y remain positive; the assignment x := x−y is

executed when x is greater than y and, symmetrically, the assignment y := y−x is

executed when y is greater than x. As bound function we can take x+y. The algorithm

becomes

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: 0<x ∧ 0<y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

Bound function: x+y }

do x 6= y →

if y < x → x := x−y

2 x < y → y := y−x

fi

od

{ 0<x ∧ 0<y ∧ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

(We leave the reader to perform the standard steps used to verify the correctness of the

algorithm.) Finally, since

(x< y ∨ y< x) ≡ x 6= y ,

78

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

we can safely remove the outer guard and simplify the algorithm, as shown below.

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: 0<x ∧ 0<y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

Bound function: x+y }

do y < x → x := x−y

2 x < y → y := y−x

od

{ 0<x ∧ 0<y ∧ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

The algorithm that we have constructed is Euclid’s algorithm for computing the great-

est common divisor of two positive natural numbers, the oldest nontrivial algorithm

that has survived to the present day! (Please note that our formulation of the algo-

rithm differs from most versions found in number-theory books. While they use the

property [m▽n = n▽(mmod n)], we use (4.2.14), i.e., [m▽n = (m−n)▽n]. For

an encyclopedic account of Euclid’s algorithm, we recommend [Knu97, p. 334].)

4.2.4 Greatest common divisor

In section 4.2.2, we described the problem we were tackling as establishing that the

infimum of two natural numbers under the division ordering always exists; it was only

at the end of the section 4.2.3 that we announced that the algorithm we had derived is

an algorithm for determining the greatest common divisor. This was done deliberately

in order to avoid the confusion that can—and does—occur when using the words

“greatest common divisor”. In this section, we clarify the issue in some detail.

Confusion and ambiguity occur when a set can be ordered in two different ways. The

natural numbers can be ordered by the usual size ordering (denoted by the symbol ≤),

but they can also be ordered by the division relation. When the ordering is not made

explicit (for instance, when referring to the “least” or “greatest” of a set of numbers),

we might normally understand the size ordering, but the division ordering might be

meant, depending on the context.

In words, the infimum of two values in a partial ordering— if it exists— is the largest

value (with respect to the ordering) that is at most both values (with respect to the or-

dering). The terminology “greatest lower bound” is often used instead of “infimum”.

79

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Of course, “greatest” here is with respect to the partial ordering in question. Thus,

the infimum (or greatest lower bound) of two numbers with respect to the division or-

dering— if it exists— is the largest number with respect to the division ordering that

divides both of the numbers. Since, for strictly positive numbers, “largest with respect to

the division ordering” implies “largest with respect to the size ordering” (equally, the

division relation, restricted to strictly positive numbers, is a subset of the ≤ relation),

the “largest number with respect to the division ordering that divides both of the num-

bers” is the same, for strictly positive numbers, as the “largest number with respect to the

size ordering that divides both of the numbers”. Both these expressionsmay thus be ab-

breviated to the “greatest common divisor” of the numbers, with no problems caused

by the ambiguity in the meaning of “greatest”—when the numbers are strictly positive.

Ambiguity does occur, however, when the number 0 is included, because 0 is the largest

number with respect to the division ordering, but the smallest number with respect to

the size ordering. If “greatest” is taken to mean with respect to the division ordering

on numbers, the greatest common divisor of 0 and 0 is simply 0. If, however, “greatest”

is taken to mean with respect to the size ordering, there is no greatest common divi-

sor of 0 and 0. This would mean that the gcd operator is no longer idempotent, since

0▽0 is undefined, and it is no longer associative, since, for positive m, (m▽0)▽0 is

well-defined whilst m▽(0▽0) is not.

Concrete evidence of the confusion in the standard mathematics literature is easy to

find. We looked up the definition of greatest common divisor in three commonly used

undergraduate mathematics texts, and found three non-equivalent definitions. The

first [Hir95, p. 30] defines “greatest” to mean with respect to the divides relation (as,

in our view, it should be defined); the second [Bur05, p. 21, def. 2.2] defines “greatest”

to mean with respect to the ≤ relation (and requires that at least one of the numbers be

non-zero). The third text [Fra98, p. 78] excludes zero altogether, defining the greatest

common divisor of strictly positive numbers as the generator of all linear combinations

of the given numbers; the accompanying explanation (in words) of the terminology

replaces “greatest” by “largest” but does not clarify with respect to which ordering the

“largest” is to be determined.

Now that we know that ▽ is the greatest common divisor, we could change the opera-

tor to gcd, i.e., replace m▽n by m gcd n. However, we stick to the “▽” notation because

it makes the formulae shorter, and, so, easier to read. We also use “△” to denote the

least common multiple operator. To remember which is which, just remember that in-

fima (lower bounds) are indicated by downward-pointing symbols (eg. ↓ for minimum,

and ∨ for disjunction) and suprema (upper bounds) by upward-pointing symbols.

80

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

4.3 Euclid’s algorithm as a verification interface

In this section we show how algorithms and the notion of invariance can be used to

prove theorems. In particular, we show that the exploitation of Euclid’s algorithm

makes proofs related with the greatest common divisor simple and more systematic

than the traditional ones.

There is a clear pattern in all our calculations: every time we need to prove a new

theorem involving ▽, we construct an invariant that is valid initially (with x , y :=

m , n) and that corresponds to the theorem to be proved upon termination (with

x = y = m▽n). Alternatively, we can construct an invariant that is valid on termination

(with x = y = m▽n) and whose initial value corresponds to the theorem to be proved.

The invariant in section 4.3.3 is such an example. Then, it remains to prove that the

chosen invariant is valid after each iteration of the repeatable statement.

We start with a minor change in the invariant that allows us to prove some well-known

properties. Then, we explore how the shape of the theorems to be proved determine

the shape of the invariant. We also show how to prove a geometrical property of ▽.

4.3.1 Exploring the invariant

The invariant that we use in section 4.2.3 rests on the validity of the theorem

[k\m ∧ k\n ≡ k\(m−n) ∧ k\n] .

But, as Van Gasteren observed in [vG90, Chapter 11], we can use the more general and

equally valid theorem

[k \ (c×m) ∧ k \ (c×n) ≡ k \ (c× (m−n)) ∧ k \ (c×n)]

to conclude that the following property is an invariant of Euclid’s algorithm:

〈∀k, c:: k \ (c×m) ∧ k \ (c×n) ≡ k \ (c×x) ∧ k \ (c×y)〉 .

In particular, the property is true on termination of the algorithm, at which point x and

y both equal m▽n. That is, for all m and n, such that 0< m and 0< n,

(4.3.1) [k \ (c×m) ∧ k \ (c×n) ≡ k \ (c× (m▽n))] .

In addition, theorem (4.3.1) holds when m < 0, since

[(−m)▽n = m▽n] ∧ [k \ (c×(−m)) ≡ k \ (c×m)] ,

81

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

and it holds when m equals 0, since [k\0]. Hence, using the symmetry between

m and n we conclude that (4.3.1) is indeed valid for all integers m and n. (In Van

Gasteren’s presentation, this theorem only holds for all (m, n) 6= (0, 0).)

Theorem (4.3.1) can be used to prove a number of properties of the greatest common

divisor. If, for instance, we replace k by m, we have

[m \ (c×n) ≡ m \ (c× (m▽n))] ,

and, as a consequence, we also have

(4.3.2) [(m \ (c×n) ≡ m\c) ⇐ m▽n = 1] .

More commonly, (4.3.2) is formulated as the weaker

[m\c ⇐ m▽n = 1 ∧ m\(c×n)] ,

and is known as Euclid’s Lemma. Another significant property is

(4.3.3) [k \ (c× (m▽n)) ≡ k \ ((c×m)▽(c×n))] ,

which can be proved as:

k \ (c× (m▽n))

= { (4.3.1) }

k \ (c×m) ∧ k \ (c×n)

= { (4.2.7) }

k \ ((c×m)▽(c×n)) .

From (4.3.3) we conclude

(4.3.4) [(c×m)▽(c×n) = c× (m▽n)] .

Property (4.3.4) states that multiplication by a natural number distributes over ▽. It

is an important property that can be used to simplify arguments where both multipli-

cation and the greatest common divisor are involved. An example is Van Gasteren’s

proof of the theorem

(4.3.5) [(m×p)▽n = m▽n ⇐ p▽n = 1] ,

which is as follows:

82

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

m▽n

= { p▽n = 1 and 1 is the unit of multiplication }

(m×(p▽n))▽n

= { (4.3.4) }

(m×p) ▽ (m×n) ▽ n

= { (m×n)▽n = n }

(m×p)▽n .

4.3.2 ▽ on the left side

In the previous sections, we have derived a number of properties of the ▽ operator.

However, where the divides relation is involved, the operator always occurs on the

right side of the relation. (For examples, see (4.2.7) and (4.3.3).) Now we consider

properties where the operator is on the left side of a divides relation. Our goal is to

show that

(4.3.6) [(m▽n) \ k ≡ 〈∃a, b:: k = m×a + n×b〉] ,

where the range of a and b is the integers.

Of course, if (4.3.6) is indeed true, then it is also true when k equals m▽n. That is, a

consequence of (4.3.6) is

(4.3.7) [〈∃a, b:: m▽n = m×a + n×b〉] .

In words, m▽n is a linear combination of m and n. For example,

3▽5 = 1 = 3×2− 5×1 = 5×2− 3×3 .

Vice-versa, if (4.3.7) is indeed true then (4.3.6) is a consequence. (The crucial fact is that

multiplication distributes through addition.) It thus suffices to prove (4.3.7).

We can establish (4.3.7) by constructing such a linear combination for given values of

m and n.

When n is 0, we have

m▽0 = m = m×1+ 0×1 .

(The multiple of 0 is arbitrarily chosen to be 1.)

83

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

When both m and n are non-zero, we need to augment Euclid’s algorithm with a com-

putation of the coefficients. The most effective way to establish the property is to es-

tablish that x and y are linear combinations of m and n is an invariant of the algorithm;

this is best expressed using matrix arithmetic.

In the algorithm below, the assignments to x and y have been replaced by equivalent

assignments to the vector (x y). Also, an additional variable C, whose value is a 2×2

matrix of integers has been introduced into the program. Specifically, I, A and B are

2×2 matrices; I is the identity matrix
(

1
0

0
1

)

, A is the matrix
(

1
−1

0
1

)

and B is the matrix
(

1
0

−1
1

)

. (The assignment (x y) := (x y)×A is equivalent to x , y := x−y , y, as can be

easily checked.)

{ 0 < m ∧ 0 < n }

(x y) ,C := (m n) , I ;

{ Invariant: (x y) = (m n) × C }

do y < x → (x y) ,C := (x y) ×A , C×A

2 x < y → (x y) ,C := (x y) × B , C×B

od

{ (x y) = (m▽n m▽n) = (m n) × C }

The invariant shows only the relation between the vectors (x y) and (m n); in words,

(x y) is a multiple of (m n).

It is straightforward to verify that the invariant is established by the initialising assign-

ment, and maintained by the loop body. Crucial to the proof that it is maintained by

the loop body is that multiplication (here of matrices) is associative. Had we expressed

the assignments to C in terms of its four elements, verifying that the invariant is main-

tained by the loop body would have amounted to giving in detail the proof that matrix

multiplication is associative. This is a pointless duplication of effort, avoiding which

fully justifies the excursion into matrix arithmetic.

(An exercise for the reader is to express the property that m and n are linear combina-

tions of x and y. The solution involves observing that A and B are invertible. This will

be exploited in section 4.4.2.)

This algorithm is commonly called Extended Euclid’s Algorithm.

84

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

4.3.3 A geometrical property

In this section, we prove that in a Cartesian coordinate system,m▽n can be interpreted

as the number of points with integral coordinates on the straight line joining the points

(0, 0) and (m, n), excluding (0, 0). Formally, with dummies s and t ranging over inte-

gers, we prove:

(4.3.8) [〈Σs, t : m×t = n×s ∧ s≤m ∧ t≤ n ∧ (0< s ∨ 0< t) : 1〉 = m▽n] .

We begin by observing that (4.3.8) holds whenm = 0 or when n = 0 (we leave the proof

to the reader). When 0 < m and 0 < n, we can simplify the range of (4.3.8). First, we

observe that

(0 < s≤m ≡ 0 < t≤ n) ⇐ m×t = n×s ,

since

0 < t≤ n

= { 0 < m }

0 < m×t≤m×n

= { m×t = n×s }

0 < n×s≤m×n

= { 0 < n, cancellation }

0 < s≤ m .

As a result, (4.3.8) can be written as

(4.3.9) [〈Σs, t : m×t = n×s ∧ 0< t≤ n : 1〉 = m▽n] .

In order to use Euclid’s algorithm, we need to find an invariant that allows us to con-

clude (4.3.9). If we use as invariant

(4.3.10) 〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉 = x▽y ,

its initial value is the property that we want to prove:

〈Σs, t : m×t = n×s ∧ 0< t≤ n : 1〉 = m▽n .

Its value upon termination is

〈Σs, t : (m▽n)×t = (m▽n)×s ∧ 0 < t≤m▽n : 1〉 = (m▽n)▽(m▽n) ,

85

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

which is equivalent (by cancellation of multiplication and idempotence of ▽) to

〈Σs, t : t = s ∧ 0 < t≤m▽n : 1〉 = m▽n .

It is easy to see that the invariant reduces to true on termination (because the sum on

the left equals m▽n), making its initial value also true.

It is also easy to see that the right-hand side of the invariant is unnecessary as it is

the same initially and on termination. This motivates the generalisation of the concept

“invariant”. “Invariants” in the literature are always Boolean-valued functions of the

program variables, but we see no reason why “invariants” shouldn’t be of any type: for

us, an invariant of a loop is simply a function of the program variables whose value is

unchanged by execution of the loop body8. In this case, the value is a natural number.

Therefore, we can simplify (4.3.10) and use as invariant

(4.3.11) 〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉 .

Its value on termination is

〈Σs, t : (m▽n)×t = (m▽n)×s ∧ 0 < t≤m▽n : 1〉 ,

which is equivalent to

〈Σs, t : t = s ∧ 0 < t≤m▽n : 1〉 .

As said above, this sum equals m▽n.

Now, since the invariant (4.3.11) equals the left-hand side of (4.3.9) for the initial values

of x and y, we only have to check if it remains constant after each iteration. This means

that we have to prove (for y < x ∧ 0 < y):

〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉

= 〈Σs, t : (x−y)×t = y×s ∧ 0< t≤ y : 1〉 ,

which can be rewritten, for positive x and y, as:

〈Σs, t : (x+y)×t = y×s ∧ 0< t≤ y : 1〉

= 〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉 .

8Some caution is needed here because our more general use of the word “invariant” does not com-

pletely coincide with its standard usage for Boolean-valued functions. The standard meaning of an in-

variant of a statement S is a Boolean-valued function of the program variables which, in the case that

the function evaluates to true, remains true after execution of S. Our usage requires that, if the function

evaluates to false before execution of S, it continues to evaluate to false after executing S.

86

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

The proof is as follows:

〈Σs, t : (x+y)×t = y×s ∧ 0 < t≤ y : 1〉

= { distributivity and cancellation }

〈Σs, t : x×t = y×(s−t) ∧ 0< t≤ y : 1〉

= { range translation: s := s+t }

〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉 .

Note that the simplification done in (4.3.9) allows us to apply the range translation rule

in the last step without having to relate the range of variable swith the possible values

for variable t.

4.4 Euclid’s algorithm as a construction interface

In this section we show how to use Euclid’s algorithm to derive new theorems related

with the greatest common divisor. We start by calculating reasonable sufficient condi-

tions for a natural-valued function to distribute over the greatest common divisor. We

also derive an efficient algorithm for enumerating the positive rational numbers in two

different ways.

4.4.1 Distributivity properties

In addition to multiplication by a natural number, there are other functions that dis-

tribute over ▽. The goal of this subsection is to determine sufficient conditions for a

natural-valued function f to distribute over ▽, i.e., for the following property to hold:

(4.4.1) [f .(m▽n) = f .m▽ f .n] .

For simplicity, we restrict all variables to natural numbers. This implies that the domain

of f is also restricted to the natural numbers.

We explore (4.4.1) by identifying invariants of Euclid’s algorithm involving the function

f . To determine an appropriate loop invariant, we take the right-hand side of (4.4.1)

and calculate:

f .m▽ f .n

= { the initial values of x and y are m and n, respectively }

87

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

f .x▽ f .y

= { suppose that f .x▽ f .y is invariant;

on termination: x = m▽n ∧ y = m▽n }

f .(m▽n) ▽ f .(m▽n)

= { ▽ is idempotent }

f .(m▽n) .

Property (4.4.1) is thus established under the assumption that f .x▽ f .y is an invariant

of the loop body. (Please note that this invariant is of the more general form introduced

in section 4.3.3.)

The next step is to determine what condition on f guarantees that f .x▽ f .y is indeed

invariant. Noting the symmetry in the loop body between x and y, the condition is

easily calculated to be

[f .(x−y) ▽ f .y = f .x▽ f .y ⇐ 0 < y < x] .

Equivalently, by the rule of range translation (x := x+y), the condition can be written

as

(4.4.2) [f .x▽ f .y = f .(x+y) ▽ f .y ⇐ 0 < x ∧ 0 < y] .

Formally, this means that

“ f distributes over ▽ ” ⇐ (4.4.2) .

Incidentally, the converse of this property is also valid:

(4.4.2) ⇐ “ f distributes over ▽ ” .

The simple calculation proceeds as follows:

f .(x+y) ▽ f .y

= { f distributes over▽ }

f .((x+y)▽y)

= { (4.2.11) }

f .(x▽y)

= { f distributes over▽ }

f .x▽ f .y .

88

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

By mutual implication we conclude that

“ f distributes over ▽ ” ≡ (4.4.2) .

We have now reached a point where we can determine if a function distributes over▽.

However, since (4.4.2) still has two occurrences of ▽, we want to refine it into simpler

properties. Towards that end we turn our attention to the condition

f .x▽ f .y = f .(x+y) ▽ f .y ,

and we explore simple ways of guaranteeing that it is everywhere true. For instance,

it is immediately obvious that any function that distributes over addition distributes

over▽. (Note that multiplication by a natural number is such a function.) The proof is

very simple:

f .(x+y) ▽ f .y

= { f distributes over addition }

(f .x+ f .y) ▽ f .y

= { (4.2.11) }

f .x▽ f .y .

In view of properties (4.2.11) and (4.3.5), we formulate the following lemma, which is

a more general requirement:

Lemma 4.4.3 All functions f that satisfy

〈∀x, y:: 〈∃a, b : a▽ f .y = 1 : f .(x+y) = a× f .x + b× f .y〉〉

distribute over▽.

Proof

f .(x+y) ▽ f .y

= { f .(x+y) = a× f .x + b× f .y }

(a× f .x + b× f .y) ▽ f .y

= { (4.2.11) }

(a× f .x) ▽ f .y

= { a▽ f .y = 1 and (4.3.5) }

f .x▽ f .y .

89

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Note that since the discussion above is based on Euclid’s algorithm, lemma 4.4.3 only

applies to positive arguments. We now investigate the case where m or n is 0. We have,

for m = 0 :

f .(0▽n) = f .0▽ f .n

= { [0▽m = m] }

f .n = f .0▽ f .n

= { [a\b ≡ a = b▽a] }

f .n \ f .0

⇐ { obvious possibilities that make the expression valid

are f .0 = 0, f .n = 1, or f .n = f .0; the first is the

interesting case }

f .0 = 0 .

Hence, using the symmetry between m and n we have, for m = 0 or n = 0:

(4.4.4) f .(m▽n) = f .m▽ f .n ⇐ f .0 = 0 ∧ (m = 0 ∨ n = 0) .

The conclusion is that we can use (4.4.4) and lemma 4.4.3 to prove that a natural-valued

functionwith domain IN distributes over▽. Wewere unable to prove that the condition

in lemma 4.4.3 is necessary for a function to distribute over▽, but we do not know any

function distributing over▽ that does not satisfy the condition.

Example 0: the Fibonacci function

In [Dij90], Edsger Dijkstra proves that the Fibonacci function distributes over ▽ . He

does not use lemma 4.4.3 explicitly, but he constructs the property

(4.4.5) fib.(x+y) = fib.(y−1) × fib.x + fib.(x+1) × fib.y ,

and then, using the lemma

fib.y▽ fib.(y−1) = 1 ,

he concludes the proof. His calculation is the same as that in the proof of lemma 4.4.3

but for particular values of a and b and with f replaced by fib. Incidentally, if we don’t

want to construct property (4.4.5) we can easily verify it using induction—more details

are given in [GKP94].

90

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

An interesting application of this distributivity property is to prove that for any posi-

tive k, every kth number in the Fibonacci sequence is a multiple of the kth number in

the Fibonacci sequence. More formally, the goal is to prove

fib.(n×k) is a multiple of fib.k ,

for positive k and natural n. A concise proof is:

fib.(n×k) is a multiple of fib.k

= { definition }

fib.k \ fib.(n×k)

= { [a\b ≡ a▽b = a] ,

with a := fib.k and b := fib.(n×k) }

fib.k▽ fib.(n×k) = fib.k

= { fib distributes over▽ }

fib.(k▽(n×k)) = fib.k

= { k▽(n×k) = k and reflexivity }

true .

Example 1: the Mersenne function

We now prove that, for all integers k and m such that 0< km, the function f defined as

f .m = km−1

distributes over▽.

First, we observe that f .0 = 0. (Recall the discussion of (4.4.4).) Next, we use lemma

4.4.3. This means that we need to find integers a and b, such that

km+n−1 = a×(km−1) + b×(kn−1) ∧ a▽(kn−1) = 1 .

The most obvious instantiations for a are 1, kn and kn−2. (That two consecutive num-

bers are coprime follows from (4.2.11).) Choosing a = 1, we calculate b:

km+n−1 = (km−1) + b×(kn−1)

= { arithmetic }

km+n−km = b×(kn−1)

91

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

= { multiplication distributes over addition }

km×(kn−1) = b×(kn−1)

⇐ { Leibniz }

km = b .

We thus have

km+n−1 = 1×(km−1) + km×(kn−1) ∧ 1▽(kn−1) = 1 ,

and we use lemma 4.4.3 to conclude that f distributes over▽:

[(km−1) ▽ (kn−1) = k(m▽n)−1] .

In particular, the Mersenne function, which maps m to 2m−1, distributes over ▽:

(4.4.6) [(2m−1) ▽ (2n−1) = 2(m▽n)−1] .

A corollary of (4.4.6) is the property

[(2m−1)▽(2n−1) = 1 ≡ m▽n = 1] .

In words, two numbers 2m−1 and 2n−1 are coprime is the same as exponents m and n

are coprime. (See page 48 for an example where this property is used.)

4.4.2 Enumerating the rationals

A standard theorem of mathematics is that the rationals are “denumerable", i.e. they

can be put in one-to-one correspondence with the natural numbers. Another way of

saying this is that it is possible to enumerate the rationals so that each appears exactly

once.

Recently, there has been a spate of interest in the construction of bijections between the

natural numbers and the (positive) rationals (see [GLB06, KRSS03, CW00] and [AZ04,

pp. 94–97]). Gibbons et al [GLB06] describe as “startling” the observation that the

rationals can be efficiently enumerated9 by “deforesting” the so-called “Calkin-Wilf”

[CW00] tree of rationals. However, they claim that it is “not at all obvious” how to

“deforest” the Stern-Brocot tree of rationals.

In this section, we derive an efficient algorithm for enumerating the rationals according

to both orderings. The algorithm is based on a bijection between the rationals and

9By an efficient enumeration we mean a method of generating each rational without duplication with

constant cost per rational in terms of arbitrary-precision simple arithmetic operations.

92

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

invertible 2×2 matrices. The key to the algorithm’s derivation is the reformulation of

Euclid’s algorithm in terms of matrices (see section 4.3.2). The enumeration is efficient

in the sense that it has the same time and space complexity as the algorithm credited

to Moshe Newman in [KRSS03], albeit with a constant-fold increase in the number of

variables and number of arithmetic operations needed at each iteration.

Note that, in our view, it is misleading to use the name “Calkin-Wilf tree of rationals”

because Stern [Ste58] had already documented essentially the same structural char-

acterisation of the rationals almost 150 years earlier than Calkin and Wilf. For more

explanation, see the appendix (section 4.8) in which we review in some detail the rele-

vant sections of Stern’s paper. Stern attributes the structure to Eisenstein, so henceforth

we refer to the “Eisenstein-Stern” tree of rationals where recent publications (including

our own [BF08]) would refer to the “Calkin-Wilf tree of rationals”. For a comprehen-

sive account of properties of the Stern-Brocot tree, including further relationships with

Euclid’s algorithm, see [GKP94, pp. 116–118].

Euclid’s algorithm

A positive rational in so-called “lowest form” is an ordered pair of positive, coprime

integers. Every rational m
n has unique lowest-form representation

m/(m▽n)
n/(m▽n)

. For example,
2
3 is a rational in lowest form, whereas 4

6 is the same rational, but not in lowest form.

Because computing the lowest-form representation involves computing greatest com-

mon divisors, it seems sensible to investigate Euclid’s algorithm to see whether it gives

insight into how to enumerate the rationals. Indeed it does.

Beginning with an arbitrary pair of positive integers m and n, the algorithm presented

in section 4.3.2 calculates an invertible matrix C such that

(m▽n m▽n) = (m n) × C .

It follows that

(4.4.7) (1 1) × C−1 = (m/(m▽n)
n/(m▽n)) .

Because the algorithm is deterministic, positive integers m and n uniquely define the

matrix C. That is, there is a function from pairs of positive integers to finite products of

the matrices A and B. Recall that A is the matrix
(

1
−1

0
1

)

and B is the matrix
(

1
0

−1
1

)

.

Also, because the matrices A and B are constant and invertible, C−1 is a finite product

of the matrices A−1 and B−1 and (4.4.7) uniquely defines a rational m
n (in lowest form).

We may therefore conclude that there is a bijection between the rationals and the finite

93

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

products of thematricesA−1 and B−1 provided that we can show that all such products

are different.

The finite products of matrices A−1 and B−1 form a binary tree with root the identity

matrix (the empty product). RenamingA−1 as L and B−1 asR, the tree can be displayed

with “L” indicating a left branch and “R” indicating a right branch. Figure 4.1 displays

the first few levels of the tree.
(

1

0

0

1

)

(

1

1

0

1

) (

1

0

1

1

)

L R

(

1

2

0

1

) (

1

1

1

2

) (

2

1

1

1

) (

1

0

2

1

)

L R L R

Figure 4.1: Tree of Products of L and R

That all matrices in the tree are different is proved by showing that the tree is a binary

search tree (as formalised shortly). The key element of the proof10 is that the determi-

nants of A and B are both equal to 1 and, hence, the determinant of any finite product

of Ls and Rs is also 1.

Formally, we define the relation ≺ on matrices that are finite products of Ls and Rs by

(

a c

b d

)

≺
(

a′

b′
c′

d′

)

≡ a+c

b+d
<

a′+c′

b′+d′
.

(Note that the denominator in these fractions is strictly positive; this fact is easily

proved by induction.) We prove that, for all such matrices X, Y and Z,

(4.4.8) X×L×Y ≺ X ≺ X×R×Z .

It immediately follows that there are no duplicates in the tree of matrices because the

relation ≺ is clearly transitive and a subset of the inequality relation. (Property (4.4.8)

formalises precisely what wemean by the tree of matrices forming a binary search tree:

the entries are properly ordered by the relation≺, with matrices in the left branch being

“less than” the root matrix which is “less than” matrices in the right branch.)

10The proof is an adaptation of the proof in [GKP94, p. 117] that the rationals in the Stern-Brocot tree

are all different. Our use of determinants corresponds to their use of “the fundamental fact” (4.31). Note

that the definitions of L and R are swapped around in [GKP94].)

94

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

In order to show that

(4.4.9) X×L×Y ≺ X ,

suppose X =
(

a
b

c
d

)

and Y =
(

a′
b′

c′
d′

)

. Then, since L =
(

1
1

0
1

)

, (4.4.9) is easily calculated

to be

(a+c)×a′ + (c×b′) + (a+c)×c′ + (c×d′)
(b+d)×a′ + (d×b′) + (b+d)×c′ + (d×d′)

<
a+c

b+d
.

That this is true is also a simple, albeit longer, calculation (which exploits the cancella-

tion properties of multiplication and addition); as observed earlier, the key property is

that the determinant of X is 1, i.e. a×d− b×c = 1. The calculation is:

(a+c)×a′ + (c×b′) + (a+c)×c′ + (c×d′)
(b+d)×a′ + (d×b′) + (b+d)×c′ + (d×d′) <

a+c
b+d

= { arithmetic }
(a+c)×(a′+c′) + c×(b′+d′)
(b+d)×(a′+c′) + d×(b′+d′) <

a+c
b+d

= { denominators are different from zero }

(a+c)×(a′+c′)×(b+d) + c×(b′+d′)×(b+d)

<

(a+c)×(b+d)×(a′+c′) + (a+c)×d×(b′+d′)

= { cancellation (twice) }

c×(b+d) < (a+c)×d

= { distributivity and cancellation }

c×b < a×d

= { a×d− b×c = 1 }

true .

The proof that X≺ X×R×Z is similar.

Of course, we can also express Euclid’s algorithm in terms of transpose matrices. In-

stead of writing assignments to the vector (x y), we can write assignments to its trans-

pose
(

x
y

)

. Noting that A and B are each other’s transposition, the assignment

(x y) ,C := (x y) ×A , C×A

in the body of Euclid’s algorithm becomes
(

x

y

)

, C := B×
(

x

y

)

, B×C .

95

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Similarly, the assignment

(x y) ,C := (x y) × B , C×B

becomes
(

x

y

)

, C := A×
(

x

y

)

, A×C .

On termination, the matrix C computed by the revised algorithm will of course be

different; the pair
(

m/(m▽n)
n/(m▽n)

)

is recovered from it by the identity

C−1 ×
(

1
1

)

=

(

m/(m▽n)
n/(m▽n)

)

.

In this way, we get a second bijection between the rationals and the finite products of

the matrices A−1 and B−1. This is the basis for our second method of enumerating the

rationals.

In summary, we have:

Theorem 4.4.10 Define the matrices L and R by

L =

(

1
1
0
1

)

and R =

(

1
0

1
1

)

.

Then the following algorithm computes a bijection between the (positive) rationals and

the finite products of L and R. Specifically, the bijection is given by the function that

maps the rational m
n to the matrix D constructed by the algorithm together with the

function from a finite product, D, of Ls and Rs to (1 1) ×D. (The comments added to

the algorithm supply the information needed to verify this assertion.)

{ 0 < m ∧ 0 < n }

(x y) ,D := (m n) , I ;

{ Invariant: (m n) = (x y) ×D }

do y < x → (x y) ,D := (x y) × L−1 , L×D

2 x < y → (x y) ,D := (x y) × R−1 , R×D

od

{ (x y) = (m▽n m▽n) ∧ (m/(m▽n)
n/(m▽n)) = (1 1) ×D }

Similarly, by applying the rules of matrix transposition to all expressions in the above,

Euclid’s algorithm constructs a second bijection between the rationals and finite prod-

ucts of the matrices L and R. Specifically, the bijection is given by the function that

maps the rational m
n to the matrix D constructed by the revised algorithm together

with the function from finite products,D, of Ls and Rs to D×
(

1
1

)

. 2

96

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Enumerating products of L and R

The problem of enumerating the rationals has been transformed to the problem of enu-

merating all finite products of the matrices L and R. As observed earlier, the matrices

are naturally visualised as a tree—recall figure 4.1—with left branching corresponding

to multiplying (on the right) by L and right branching to multiplying (on the right) by

R.

By premultiplying each matrix in the tree by (1 1), we get a tree of rationals. (Premul-

tiplying by (1 1) is accomplished by adding the elements in each column.) This tree is

sometimes called the Calkin-Wilf tree [GLB06, AZ04, CW00]; we call it the Eisenstein-

Stern tree of rationals. (See the appendix for an explanation.) The first four levels of the

tree are shown in figure 4.2. In this figure, the vector (x y) has been displayed as y
x .

(Note the order of x and y. This is to aid comparison with existing literature.)

1

1

1

2

2

1

1

3

3

2

2

3

3

1

1

4

4

3

3

5

5

2

2

5

5

3

3

4

4

1

Figure 4.2: Eisenstein-Stern Tree of Rationals (aka Calkin-Wilf Tree)

By postmultiplying each matrix in the tree by
(

1
1

)

, we also get a tree of rationals. (Post-

multiplying by
(

1
1

)

is accomplished by adding the elements in each row.) This tree is

called the Stern-Brocot tree [GKP94, pp. 116–118]. See figure 4.3. In this figure, the

vector
(

x
y

)

has been displayed as x
y .

1

1

1

2

2

1

1

3

2

3

3

2

3

1

1

4

2

5

3

5

3

4

4

3

5

3

5

2

4

1

Figure 4.3: Stern-Brocot Tree of Rationals

Of course, if we can find an efficient way of enumerating the matrices in figure 4.1, we

immediately get an enumeration of the rationals as displayed in the Eisenstein-Stern

tree and as displayed in the Stern-Brocot tree — as each matrix is enumerated, simply

premultiply by (1 1) or postmultiply by
(

1
1

)

. Formally, thematrices are enumerated by

97

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

enumerating all strings of Ls and Rs in lexicographic order, beginning with the empty

string; each string is mapped to a matrix by the homomorphism that maps “L” to L,

“R” to R, and string concatenation to matrix product. It is easy to enumerate all such

strings; as we see shortly, converting strings to matrices is also not difficult, for the

simple reason that L and R are invertible.

The enumeration proceeds level-by-level. Beginning with the unit matrix (level 0), the

matrices on each level are enumerated from left to right. There are 2k matrices on level

k, the first of which is Lk. The problem is to determine for a given matrix, which is the

matrix “adjacent” to it. That is, given a matrix D, which is a finite product of L and R,

and is different from Rk for all k, what is the matrix that is to the immediate right of D

in figure 4.1?

Consider the lexicographic ordering on strings of Ls and Rs of the same length. The

string immediately following a string s (that is not the last) is found by identifying the

rightmost L in s. Supposing s is the string tLRj, where Rj is a string of j Rs, its successor

is tRLj.

It’s now easy to see how to transform the matrix identified by s to its successor matrix.

Simply postmultiply by R−j × L−1 × R× Lj. This is because, for all T and j,

(T× L× Rj) × (R−j × L−1 × R× Lj) = T× R× Lj .

Also, it is easy to calculate R−j × L−1 × R× Lj. Specifically,

R−j × L−1 × R× Lj =

(

2j + 1
−1

1
0

)

.

(We omit the details. Briefly, by induction, Lj equals
(

1
j

0
1

)

. Also, R is the transpose of

L.)

The final task is to determine, given a matrix D, which is a finite product of Ls and Rs,

and is different from Rk for all k, the unique value j such thatD = T× L× Rj for some

T. This can be determined by examining Euclid’s algorithm once more.

The matrix form of Euclid’s algorithm discussed in theorem 4.4.10 computes a matrix

D given a pair of positive numbers m and n; it maintains the invariant

(m n) = (x y) ×D .

D is initially the identity matrix and x and y are initialised to m and n, respectively;

immediately following the initialisation process,D is repeatedly premultiplied by R so

long as x is less than y. Simultaneously, y is reduced by x. The number of times that D

is premultiplied by R is thus the greatest number j such that j×m is less than n, which

98

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

is
⌊

n−1
m

⌋

. Now suppose the input values m and n are coprime. Then, on termination of

the algorithm, (1 1) ×D equals (m n). That is, if

D =

(

D00

D10

D01

D11

)

,

then,
⌊

n−1
m

⌋

=

⌊

D01 + D11 − 1
D00 + D10

⌋

.

It remains to decide how to keep track of the levels in the tree. For this purpose, it

is not necessary to maintain a counter. It suffices to observe that D is a power of R

exactly when the rationals in the Eisenstein-Stern, or Stern-Brocot, tree are integers,

and this integer is the number of the next level in the tree (where the root is on level

0). So, it is easy to test whether the last matrix on the current level has been reached.

Equally, the first matrix on the next level is easily calculated. For reasons we discuss

in the next section, we choose to test whether the rational in the Eisenstein-Stern tree

is an integer; that is, we evaluate the Boolean D00 + D10 = 1. In this way, we get the

following (non-terminating) program which computes the successive values of D.

D := I ;

do D00 + D10 = 1 → D :=
(

1
D01+D11

0
1

)

2 D00 + D10 6= 1 → j :=
⌊

D01 + D11 − 1
D00 + D10

⌋

;

D := D×
(

2j + 1
−1

1
0

)

od

A minor simplification of this algorithm is that the “− 1” in the assignment to j can be

omitted. This is because
⌊

n−1
m

⌋

and
⌊

n
m

⌋

are equal when m and n are coprime and m is

different from 1. We return to this shortly.

The enumerations

As remarked earlier, we immediately get an enumeration of the rationals as displayed

in the Eisenstein-Stern tree and as displayed in the Stern-Brocot tree — as each matrix

is enumerated, simply premultiply by (1 1) or postmultiply by
(

1
1

)

, respectively.

In the case of enumerating the Eisenstein-Stern tree, several optimisations are possible.

First, it is immediate from our derivation that the value assigned to the local variable j

is a function of (1 1) ×D. In turn, the matrix
(

2j + 1
−1

1
0

)

is also a function of (1 1) ×D.

99

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Let us name the function J, so that the assignment becomes

D := D × J.((1 1) ×D) .

Then, the Eisenstein-Stern enumeration iteratively evaluates

(1 1) × (D × J.((1 1) ×D)) .

Matrix multiplication is associative; so this is

((1 1) ×D) × J.((1 1) ×D) ,

which is also a function of (1 1) ×D. Moreover—in anticipation of the current discussion—

we have been careful to ensure that the test for a change in the level in the tree is also

a function of (1 1) ×D. Combined together, this means that, in order to enumerate

the rationals in Eisenstein-Stern order, it is not necessary to compute D at each iter-

ation, but only (1 1) ×D. Naming the two components of this vector m and n, and

simplifying the matrix multiplications, we get11

m,n := 1,1 ;

do m = 1 → m,n := n+1 ,m

2 m 6= 1 → m,n := (2
⌊

n− 1
m

⌋

+ 1) ×m− n , m

od

At this point, a further simplification is also possible. We remarked earlier that
⌊

n − 1
m

⌋

equals
⌊

n
m

⌋

when m and n are coprime and m is different from 1. By good fortune, it is

also the case that (2
⌊

n
m

⌋

+ 1) ×m− n simplifies to n+1 when m is equal to 1. That is,

the elimination of “− 1” in the evaluation of the floor function leads to the elimination

of the entire case analysis! This is the algorithm attributed to Newman in [KRSS03].

m,n := 1,1 ;

do m,n := (2
⌊ n

m

⌋

+ 1) ×m− n , m

od

Discussion

Our construction of an algorithm for enumerating the rationals in Stern-Brocot order

was motivated by reading two publications, [GKP94, pp. 116–118] and [GLB06]. Gib-

11Recall that, to comply with existing literature, the enumerated rational is n
m and not m

n .

100

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

bons, Lester and Bird [GLB06] show how to enumerate the elements of the Eisenstein-

Stern tree, but claim that “it is not at all obvious how to do this for the Stern-Brocot

tree". Specifically, they say12:

However, there is an even better compensation for the loss of the order-

ing property in moving from the Stern-Brocot to the Calkin-Wilf tree: it

becomes possible to deforest the tree altogether, and generate the rationals

directly, maintaining no additional state beyond the ‘current’ rational. This

startling observation is due to Moshe Newman (Newman, 2003). In con-

trast, it is not at all obvious how to do this for the Stern-Brocot tree; the best

we can do seems to be to deforest the tree as far as its levels, but this still

entails additional state of increasing size.

In this section, we have shown that it is possible to enumerate the rationals in Stern-

Brocot order without incurring “additional state of increasing size”. More importantly,

we have presented one enumeration algorithm with two specialisations, one being the

“Calkin-Wilf” enumeration they present, and the other being the Stern-Brocot enumer-

ation that they described as being “not at all obvious”.

The optimisation of Eisenstein-Stern enumeration which leads to Newman’s algorithm

is not possible for Stern-Brocot enumeration. Nevertheless, the complexity of Stern-

Brocot enumeration is the same as the complexity of Newman’s algorithm, both in

time and space. The only disadvantage of Stern-Brocot enumeration is that four vari-

ables are needed in place of two; the advantage is the (well-known) advantage of the

Stern-Brocot tree over the Eisenstein-Stern tree — the rationals on a given level are in

ascending order.

Gibbons, Lester and Bird’s goal seems to have been to show how the functional pro-

gramming language Haskell implements the various constructions – the construction

of the tree structures and Newman’s algorithm. In doing so, they repeat the existing

mathematical presentations of the algorithms as given in [GKP94, CW00, KRSS03]. The

ingredients for an efficient enumeration of the Stern-Brocot tree are all present in these

publications, but the recipe is missing!

The fact that expressing the rationals in “lowest form” is essential to the avoidance of

duplication in any enumeration immediately suggests the relevance of Euclid’s algo-

rithm. The key to our exposition is that Euclid’s algorithm can be expressed in terms of

matrix multiplications, where —significantly— the underlying matrices are invertible.

Transposition and inversion of the matrices capture the symmetry properties in a pre-

12Recall that they attribute the tree to Calkin and Wilf rather than Eisenstein and Stern.

101

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

cise, calculational framework. As a result, the bijection between the rationals and the

tree elements is immediate and we do not need to give separate, inductive proofs for

both tree structures. Also, the determination of the next element in an enumeration of

the tree elements has been reduced to one unifying construction.

4.5 The theory of congruences

This section shows a calculational approach to the theory of congruences, an elegant

theory that can be used to solve problems on divisibility. The theory was introduced

by Carl Friedrich Gauss in his seminal book “Disquisitiones Arithmeticae” [Gau01], in

1801. In section I of his book, he gave the following definition:

If a number a divides the difference of the numbers b and c, b and c are

said to be congruent relative to a; if not, b and c are noncongruent. The

number a is called the modulus. If the numbers b and c are congruent, each

of them is called a residue of the other. If they are noncongruent they are

called nonresidues.

He also wrote in a footnote that “the modulus must obviously be taken absolutely, i.e.

without sign”. Putting all this into a definition, we have Definition 4.5.1.

Definition 4.5.1 Let n be a natural number. We say that two integers a and b are

congruent modulo n, and we write

a ∼= b (mod n) ,

when n divides the difference a−b. Formally, we write

a ∼= b (mod n) ≡ n\(a−b) .

When n does not divide a−bwe say that a is noncongruent to bmodulo n and we write

a ≇ b (mod n).

2

Our notation is slightly different from the conventional one, which was originally cre-

ated by Gauss. Where we write a∼=b (mod n), Gauss would have written a ≡ b (mod n).

He justified his choice in a footnote:

We have adopted this symbol because of the analogy between equality and

congruence. For the same reason Legendre, in the treatise which we shall

102

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

often have occasion to cite, used the same sign for equality and congruence.

To avoid ambiguity we have made a distinction.

Since we are using≡ to denote Boolean equality, Gauss’s argument can also be applied

to our case. Therefore, we have chosen the symbol∼= because it still reflects the analogy

with equality.

4.5.1 Basic properties of congruences

The first three properties that we show follow directly from the definition 4.5.1 by con-

sidering particular values for the modulus n.

Theorem 4.5.2

1. [a∼=b (mod 0)≡ a = b]

2. [a∼=b (mod 1)]

3. Two integers are congruent modulo 2 when they have the same parity, i.e. when

they are both even or both odd. More formally,

[a ∼= b (mod 2)≡ even.a≡ even.b] .

Proof

1. a∼=b (mod 0)

= { definition }

0\(a−b)

= { 0 only divides 0 }

a−b = 0

= { cancellation }

a = b .

2. a∼=b (mod 1)

= { definition }

1\(a−b)

= { [1\n] }

true .

103

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

3. The following proof is based on the definition of the predicate even and on its

distributivity properties:

a∼=b (mod 2)

= { definition }

2\(a−b)

= { definition of even }

even.(a−b)

= { even distributes over addition }

even.a≡ even.b .

2

(In some number theory books the modulus is considered to be a positive natural num-

ber [Bur05], but we see no reason for excluding the case when the modulus is 0.)

Now, given an integer a, let a ÷ n and a mod n be, respectively, its quotient and

remainder13 upon division by n, so that

a = (a÷ n)×n + (a mod n) ,

with

0≤ a mod n < n .

Then we can conclude that

a ∼= (a mod n) (mod n) ,

as the following calculation shows:

a∼=(a mod n) (mod n)

= { definition and a mod n = a− (a÷ n)×n }

n\(a− a + (a÷ n)×n)

= { arithmetic and [n\(k×n)] }

true .

13To be consistent with the existing literature, we overload the name “mod”. Wewrite a mod n to denote

the remainder upon division by n and we write a ∼= b (mod n) to denote that a and b are congruent

modulo n. To help distinguish them, we write the first in a sans-serif font.

104

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Remark In the book [Bur05, p. 64], this last property is presented as:

Given an integer a, let q and r be its quotient and remainder upon divi-

sion by n, so that

a = q×n + r 0≤ r < n

Then, by definition of congruence, a ≡ r (mod n).

This is not totally correct, because the conclusion does not follow directly from the def-

inition of congruence—we also use the property that a number n divides any multiple

of n.

We have the feeling that most mathematicians would argue that this remark is so obvi-

ous that there is no need to include it. Nevertheless, the author is omitting a relevant

property; one possible reason is the way in which he records his proofs. Had he used

our calculational format and he would be forced to use the theorem [n\(k×n)] to de-

rive true in the last step.

(End of Remark)

Because in the integer division by n the remainder r satisfies the condition 0≤ r < n,

any integer is congruent modulo n to exactly one natural less than n. In particular;

[a ∼= 0 (mod n)≡ n\a] ,

which follows directly from the definition of congruence. Usually, the set of n integers

{r: 0≤ r < n: r} is called the set of least nonnegative residues modulo n.

The following theorem provides a useful characterisation of congruence modulo n in

terms of remainder upon division by n.

Theorem 4.5.3 a∼=b (mod n) ≡ a mod n = bmod n

Proof

a mod n = bmod n

= { [p mod q = p− (p÷ q)×q] }

a− (a÷ n)×n = b− (b÷ n)×n

= { cancellation }

a−b = ((a÷ n)−(b÷ n))×n

105

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

= { division }

n\(a−b)

= { definition }

a∼=b (mod n) .

2

We shall use this alternative definition whenever it is more convenient. The follow-

ing three properties are an example. As we said before, there is an analogy between

congruence and equality, because some elementary properties of equality carry over to

congruences. For instance, the following theorem states that congruence is an equiva-

lence relation, i.e. it is reflexive, symmetric, and transitive.

Theorem 4.5.4

1. Reflexivity: [a∼=a (mod n)]

2. Symmetry: [a∼=b (mod n) ≡ b∼=a (mod n)]

3. Transitivity: [a∼=c (mod n) ⇐ a∼=b (mod n) ∧ b∼=c (mod n)]

Proof

1. a∼=a (mod n)

= { theorem 4.5.3 }

a mod n = a mod n

= { reflexivity of equality }

true .

2. a∼=b (mod n)

= { theorem 4.5.3 }

a mod n = bmod n

= { symmetry of equality }

b mod n = a mod n

= { theorem 4.5.3 }

b∼=a (mod n) .

106

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

3. a∼=b (mod n) ∧ b∼=c (mod n)

= { theorem 4.5.3 }

a mod n = bmod n ∧ bmod n = c mod n

⇒ { transitivity of equality }

a mod n = c mod n

= { theorem 4.5.3 }

a∼=c (mod n) .

2

The three properties presented in the previous theorem could be proved using the def-

inition of congruence and the properties of division, but the proofs would become

slightly more complicated.

Note that since transitivity holds, we can write continued congruences to denote that all

the numbers involved are congruent. For example, we may write expressions like the

following, whenever it is convenient:

32 ∼= −9 ∼= 73 ∼= 114 (mod 41) .

Also, whenever the modulus is clear, we may use the calculational proof format. For

example, if the modulus is 41, we may write:

32

∼= { 32∼= −9 }

−9

∼= { −9∼= 114 }

114 .

Now, another important property related with equality is the so-called Leibniz rule:

[f .a = f .b ⇐ a = b] .

The correspondent rule in congruences would be

(4.5.5) [f .a ∼= f .b (mod n) ⇐ a ∼= b (mod n)] ,

but this is not true in general. If, for instance, we define exp.n to be the number of times

that 2 divides n, then we have

4 ∼= 2 (mod 2) ,

107

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

but

exp.4 ≇ exp.2 (mod 2) .

We can, however, calculate a condition on f under which (4.5.5) holds:

f .a∼= f .b (mod n)

= { definition }

n\(f .a− f .b)

= { • f .a− f .b = k×(a−b) , for some k }

n\(k×(a−b))

= { a∼=b (mod n) }

true .

So, if a function f satisfies

(4.5.6) 〈∀a, b::〈∃k:: f .a− f .b = k×(a−b)〉〉 ,

then (4.5.5) holds. The following theorem shows two examples of functions that satisfy

(4.5.5).

Theorem 4.5.7

1. [a+c∼= b+c (mod n) ⇐ a∼=b (mod n)]

2. [a×c∼= b×c (mod n) ⇐ a∼=b (mod n)]

Proof

1. The function involved in this property is f .n = n+c . Since [f .a− f .b = a−b],

(4.5.6) holds, and consequently, (4.5.5) holds.

2. The function involved in this property is f .n = n×c . Since [f .a− f .b = c×(a−b)],

(4.5.6) holds, and consequently, (4.5.5) holds.

2

The following four properties are more flexible and complement the analogy with

equality:

108

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Theorem 4.5.8

1. [a+c∼= b+d (mod n) ⇐ a∼=b (mod n)∧ c∼=d (mod n)]

2. [a×c∼= b×d (mod n) ⇐ a∼=b (mod n)∧ c∼=d (mod n)]

3. [ak∼=bk (mod n) ⇐ a∼=b (mod n) ∧ 0 < k]

4. If P.x = 〈Σk : 0≤ k < m : ck×xk〉 then

[P.a ∼= P.b (mod n) ⇐ a ∼= b (mod n)] .

Proof

1. a+c∼= b+d (mod n)

= { definition }

n\((a+c)−(b+d))

= { associativity and symmetry }

n\((a−b)+(c−d))

= { context: a∼=b (mod n) and c∼=d (mod n), which

correspond to n\(a−b) and n\(c−d), respectively }

true .

2. We first observe that if we have a∼=b (mod n) and c∼=d (mod n), then there exist

integers i and j such that

a−b = i×n , and

c−d = j×n .

It follows that

a×c = (b + i×n)×(d + j×n) ,

and the proof is:

a×c∼= b×d (mod n)

= { definition }

n\(a×c− b×d)

= { a×c = (b + i×n)×(d + j×n) and distributivity }

109

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

n\(b×d + n×(i×d + b×j + i×j×n) − b×d)

= { arithmetic }

n\(n×(i×d + b×j + i×j×n))

= { [n\(k×n)] }

true .

3. We can prove it by induction on k. If k = 1, it is clearly true. For k > 1, we assume

the theorem is true (it is our induction hypothesis) and we prove the following:

ak+1 ∼= bk+1 (mod n) ⇐ a ∼= b (mod n) .

The proof is:

ak+1∼=bk+1

= { arithmetic }

a×ak ∼= b×bk

⇐ { [a×c∼= b×d (mod n)⇐ a∼=b (mod n)∧ c∼=d (mod n)] }

a∼=b ∧ ak∼=bk

= { assume a∼=b and use the induction hypothesis }

true .

Therefore, we establish the theorem for all positive k.

4. P.a∼= P.b (mod n)

= { definition }

〈Σk : 0≤ k < m : ck×ak〉∼=〈Σk : 0≤ k < m : ck×bk〉 (mod n)

⇐ { general form of

[a+c∼= b+d (mod n)⇐ a∼=b (mod n)∧ c∼=d (mod n)] }

〈∀k : 0≤ k < m : ck×ak ∼= ck×bk (mod n)〉

⇐ { [a×c∼= b×c (mod n) ⇐ a∼=b (mod n)] and monotonicity }

〈∀k : 0≤ k < m : ak∼=bk (mod n)〉

⇐ { [ak∼=bk (mod n) ⇐ a∼=b (mod n) ∧ 0 < k] }

a∼=b (mod n) .

2

110

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Congruences in practice The properties we have seen so far can be used to help us

with certain computations. For example, suppose that wewant to prove that 41 divides

220−1. We can do it as follows (all congruences are modulo 41):

220−1

= { 220 = (25)4 }

(25)4−1

∼= { 25 = 32 and 32∼= −9 }

(−9)4−1

= { (−9)4 = 812 }

812−1

∼= { 81∼= −1 and (−1)2 = 1 }

0 .

Thus, 41 \ 220−1. Note how the proof format easily allows us to use equality and con-

gruence without ambiguity. For another example, suppose that we are asked to com-

pute the remainder obtained upon dividing the sum

1!+2!+3!+4!+ · · ·+99!+100!

by 12. A crucial observation is that 4! = 24∼= 0 (mod 12). Therefore, for 4≤ k, we have:

k! ∼= 4!×5×6× · · · ×k ∼= 0×5×6× · · · ×k ∼= 0 (mod 12) .

Therefore,

1!+2!+3!+4!+ · · ·+99!+100!

∼= { observation above }

1!+2!+3!+0+ · · ·+0+0

= { arithmetic }

9 .

Finally, we can use property 4 of theorem 4.5.8 to prove the known rule of thumb that

a number n (written in base 10) is divisible by 3 when the sum of its digits is divisible

111

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

by 3. Assume that n has m digits, and that ck is the kth decimal digit of n (from right).

Then, if

P.x = 〈Σk : 0≤ k < m : ck×xk〉 ,

we have

n = P.10 .

Moreover, assuming that all congruences are modulo 3, we have:

P.10

∼= { 10∼=1 (mod 3) and property 4 of theorem 4.5.8 }

P.1

= { arithmetic }

〈Σk : 0≤ k < m : ck〉 .

The conclusion is, as expected,

n ∼= 〈Σk : 0≤ k < m : ck〉 (mod 3) .

Cancellation properties We have seen before that

[a×c ∼= b×c (mod n) ⇐ a ∼= b (mod n)] .

The converse, however, fails to hold. Nevertheless, we can use the following theorem,

which can be seen as a cancellation property:

Theorem 4.5.9 For non-zero c and n, we have

[a ∼= b (mod
n

c▽n
) ≡ a×c ∼= b×c (mod n)] .

Proof

a∼=b (mod
n

c▽n
)

= { definition and [n\a≡ n\|a|] }
n

c▽n
\|a−b|

= { definition of division }

112

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

〈∃k:: |a−b| = k× n

c▽n
〉

= { cancellation (c▽n 6= 0) }

〈∃k:: |a−b|×c▽n = k×n〉

= { multiplication by a natural number

distributes over the greatest common divisor }

〈∃k:: (|a−b|×c)▽(|a−b|×n) = k×n〉

= { definition of division }

n\(|a−b|×c)▽(|a−b|×n)

= { n divides |a−b|×n }

n\(|a−b|×c)

= { distributivity, definition, and [n\a≡ n\|a|] }

a×c∼= b×c (mod n) .

2

A corollary of this theorem is:

Corollary 4.5.10 [a∼=b (mod n)≡ a×c∼= b×c (mod n) ⇐ c▽n = 1]

Proof

a×c∼= b×c (mod n)

= { Theorem 4.5.9 }

a∼=b (mod
n

c▽n
)

= { assumption c▽n = 1 }

a∼=b (mod n) .

2

There is a special case of this corollary that can be useful:

[a ∼= b (mod n) ≡ a×c ∼= b×c (mod n) ⇐ n is prime ∧ ¬(p\c)] .

This last theoremwas the first where we have manipulated the modulus part. There is,

however, another theorem that involves the modulus part:

113

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Theorem 4.5.11 [a∼=b (mod m)∧ a∼=b (mod n) ≡ a∼= b (mod m△ n)]

Proof

a∼=b (mod m) ∧ a∼=b (mod n)

= { definition }

m\(a−b) ∧ n\(a−b)

= { definition of least common multiple }

(m△ n)\(a−b)

= { definition }

a∼= b (mod m△ n) .

2

The special case m⊥n of this law is important, because m △ n = m×n when m⊥n.

Therefore, we will state it explicitly:

[(a ∼= b (mod m) ∧ a ∼= b (mod n) ≡ a ∼= b (mod m×n)) ⇐ m⊥n] .

4.5.2 Modular exponentiation

A problem that arises frequently is to calculate the smallest y such that

y ∼= ak (mod n) ,

that is, to calculate a y such that

y = ak mod n .

A straightforward algorithm is to multiply a by itself k times and then reduce it mod-

ulo n, but it is possible to do it much more efficiently. First, we formally specify the

algorithm:

{ a ∈ ZZ ∧ k ∈ IN }

Compute a value y

{ y = ak mod n } .

A common technique that we use when exponentiation is involved is to write the ex-

ponent as a sum of binary powers. In this way, we may reduce the number of multipli-

cations. Noting that k can be written as

〈Σi : 0≤ i < log.k : ki×2i〉 ,

114

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

where ki corresponds to the ith bit (from right) in the binary representation of k, we can

rewrite the postcondition shown above:

y = ak mod n

= { binary expansion of k }

y = a〈Σi : 0 ≤ i < log.k : ki×2i〉 mod n

= { exponentiation distributes over addition }

y = 〈Πi : 0≤ i < log.k : aki×2i〉mod n

= { the values ki are bits, so we use them as the

outermost exponents }

y = 〈Πi : 0≤ i < log.k : (a2
i
)ki〉 mod n

= { mod distributes over multiplication;

the values ki are bits }

y = 〈Πi : 0≤ i < log.k : (a2
i
mod n)ki〉mod n .

Using this new postcondition, we can rewrite the formal specification as

{ a ∈ ZZ ∧ k ∈ IN }

Compute a value y

{ y = 〈Πi : 0≤ i < log.k : (a2
i
mod n)ki〉mod n } .

Replacing the constant log.k by a variable n, we get the first version of the algorithm by

using the same technique as before (one of the conjuncts is chosen for the invariant and

the negation of the other for the guard):

{ a ∈ ZZ ∧ k ∈ IN }

y , n := 1 , 0

{ Invariant: P };

do n 6= log.k → y , n := Y , n+1 od

{ P ∧ n = log.k },

where

P ≡ y = 〈Πi : 0≤ i < n : (a2
i
mod n)ki〉mod n .

115

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Now, we can calculate Y in a way that P is preserved. Using the assignment axiom, we

calculate as follows:

P[y , n := Y , n+1]

= { substitution }

Y = 〈Πi : 0≤ i < n+1 : (a2
i
mod n)ki〉mod n

= { range splitting, distributivity, and invariant }

Y = y× (a2
n
mod n)kn mod n

= { kn is either 0 or 1 }

Y = y×(a2
n
mod n)kn .

The algorithm becomes:

{ a ∈ ZZ ∧ k ∈ IN }

y , n := 1 , 0

{ Invariant: P };

do n 6= log.k → y , n := y×(a2
n
mod n)kn , n+1 od

{ P ∧ n = log.k }.

Although conditionally correct, we can optimise this algorithm by strengthening the

invariant with the equality

z = a2
n
mod n .

(We have used this technique in the derivation of the division algorithm—see section

4.2.1.) The shape of the assignment in the loop becomes

y , n , z := y×zkn , n+1 , Z ,

and we calculate Z as follows:

(z = a2
n
mod n)[n , z := n+1 , Z]

= { substitution }

Z = a2
n+1

mod n

= { arithmetic }

Z = (a2
n
)2 mod n

116

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

= { invariant }

Z = (z×z) mod n .

The optimised version of the algorithm is:

{ a ∈ ZZ ∧ k ∈ IN }

y , n , z := 1 , 0 , a

{ Invariant: P ∧ z = a2
n
mod n };

do n 6= log.k → y , n , z := y×zkn , n+1 , (z×z) mod n od

{ P ∧ n = log.k }.

It is not difficult to prove termination (a bound function is log.k− n). Note that, because

kn is a bit (i.e. either 0 or 1), the algorithm can be rewritten as:

{ a ∈ ZZ ∧ k ∈ IN }

y , n , z := 1 , 0 , a

{ Invariant: P ∧ z = a2
n
mod n };

do n 6= log.k →

if kn = 1 → y := y×zkn fi ;

n , z := n+1 , (z×z) mod n

od

{ P ∧ n = log.k }.

4.5.3 On a simple version of the Chinese remainder theorem

The goal of this section is to present the design of an algorithm that computes a solution

x for the following simultaneous congruence equations

x ∼= a (mod m) ∧ x ∼= b (mod n) .

We construct the algorithm in two different ways. The first is extracted from an ex-

istence proof, whilst the second starts with a functional specification and is based on

conventional methods for deriving algorithms.

This section was jointly written with Arjan Mooij.

117

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Studying the existence of solutions

We start our analysis by investigating when a solution to our problem exists. The for-

mulation is straightforward and the calculation proceeds as follows:

〈∃x:: x∼=a (mod m) ∧ x∼=b (mod n)〉

= { definition of congruence (twice) }

〈∃x:: m\(x−a) ∧ n\(x−b)〉

= { definition of division (twice), cancellation,

distributivity and nesting }

〈∃x, i, j:: x = a + i×m ∧ x = b + j×n〉

= { trading and one-point rule }

〈∃i, j:: a + i×m = b + j×n〉

= { cancellation }

〈∃i, j:: a−b = j×n− i×m〉

= { property of the greatest common divisor,

here denoted by the infix operator▽; more details below }

〈∃k:: a−b = k×(m▽n)〉

= { definition of mod }

a∼=b (mod m▽n) .

The fifth step of the above calculation is the only one that is not well motivated. In

fact, we could have stopped after the third step and conclude that there is a solution

to our problem if we can write a−b as a linear combination of m and n (j×n− i×m).

However, we know that we can write any linear combination of m and n as a multiple

of m▽n. This leads to a shorter condition based on the operator mod. The validity of

the step is established by mutual implication, as follows:

〈∃i, j:: a−b = j×n− i×m〉

= { m▽n\m ∧ m▽n\n, arithmetic }

〈∃i, j:: a−b = (
j×n

m▽n
− i×m

m▽n
)×m▽n〉

⇒ { k :=
j×n

m▽n
− i×m

m▽n
}

〈∃k:: a−b = k×(m▽n)〉 .

118

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

The other direction is based on the extended Euclid’s algorithm:

〈∃k:: a−b = k×(m▽n)〉

= { Euclid’s algorithm }

〈∃x, y, k : m▽n = x×m + y×n : a−b = k×(x×m + y×n)〉

⇒ { distributivity, associativity, and i := −k× x, j := k×y }

〈∃i, j:: a−b = j×n− i×m〉 .

Extracting an algorithm from the existence proof

The existence proof is very instructive and can be used directly to build an algorithm.

Reading it backwards, we first construct a k such that

k =
a−b

m▽n
.

Afterwards, we can use the extended Euclid’s algorithm to compute a linear combina-

tion i×m + j×n (in fact, Euclid’s algorithm can be used to computem▽n and the linear

combination in one go). Finally, we can find a solution by computing a− i×k×m (or

b + j×k×n). The three-step algorithm is:

k :=
a−b

m▽n
;

i , j : m▽n = i×m + j×n ;

x := a− i×k×m

We now show how to avoid the computation of k:

a− i×k×m

= { value of k }

a− i× a−b

m▽n
×m

= { distributivity }

a− a× i×m

m▽n
+ b× i×m

m▽n

= { From Euclid’s algorithm:
i×m

m▽n
= 1− j×n

m▽n
}

a× j×n

m▽n
+ b× i×m

m▽n

= { arithmetic }
a×j×n + b×i×m

m▽n
.

119

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

It is interesting to observe that if m▽n = 1, our algorithm computes the solution

a×j×n + b×i×m .

Constructing an algorithm from the functional specification

The functional specification of the algorithm that we want to construct is

{ 0 < m ∧ 0< n ∧ 〈∃x:: x∼=a (mod m) ∧ x∼=b (mod n)〉 }

S

{ x∼=a (mod m) ∧ x∼=b (mod n) } .

Turning our attention to the postcondition, a common technique is suggested by its

shape. First, we rewrite it to the equivalent expression:

x ∼= a (mod m) ∧ y ∼= b (mod n)∧ x = y .

Now, with the postcondition rewritten in this new shape, we can take the first two

conjuncts to be the invariant and the negation of the third conjunct to be the guard

of a repetition statement. The new invariant is very easy to initialise (the statement

x , y := a , b will do) and we get the next version:

{ 0 < m ∧ 0< n ∧ 〈∃x:: x∼=a (mod m) ∧ x∼=b (mod n)〉 }

x , y := a , b ;

{ Invariant: x∼=a (mod m) ∧ y∼=b (mod n) }

do x 6= y→ S

od

{ x∼=a (mod m) ∧ y∼=b (mod n)∧ x = y } .

Refining the guard and the loop statement Clearly, the goal of the loop statement

is to change variables x and y without violating the invariant, and in a way such that

x and y are equal on termination. Common strategies for changing integer variables

so that they become equal are to increase the smallest one or to decrease the largest

one, both iteratively. Adopting one of these strategies means that we should rewrite

the guard to know at each point what is the smallest or the largest variable, and that

we should investigate properties of the “mod” operator involving addition, so that the

invariant is not violated.

120

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Rewriting the guard causes no problem, since the following is valid:

x 6= y ≡ x < y ∨ y < x .

Regarding properties of the “mod” operator involving addition, the following law is

extremely useful:

(4.5.12) [a + k×m ∼= b (mod m) ⇐ a ∼= b (mod m)] .

(This law follows from property 1 of theorem 4.5.8.) In fact, from the above observa-

tions and from this law, we get the next version of the program:

{ 0 < m ∧ 0< n ∧ 〈∃x:: x∼=a (mod m) ∧ x∼=b (mod n)〉 }

x , y := a , b ;

{ Invariant: x∼=a (mod m) ∧ y∼=b (mod n) }

do x < y → x := x+m

2 y < x → y := y+n

od

{ x∼=a (mod m) ∧ y∼=b (mod n)∧ x = y } .

Is is not difficult to see that the invariant is preserved by the loop statement (just use

(4.5.12) with k := 1). This version is correct, but we still have to prove termination.

Proof of termination To prove termination, we have to find an appropriate bound

function. If we can prove the existence of a number z such that the following property

(4.5.13) x≤ z ∧ y≤ z

is a loop invariant, then we can choose as bound function the function bf defined as

bf .(x, y) = (z−x)+(z−y) .

The function bf decreases because x and y are iteratively increased and if (4.5.13) holds,

then it is natural-valued, i.e., it is bounded below.

So, nowwe just have to find an appropriate z such that (4.5.13) is a loop invariant. Since

the solution we are building is obtained by increasing x or y, then we can assume that

a solution z at least a and b exists, i.e.:

〈∃z : a≤ z ∧ b≤ z : z ∼= a (mod m) ∧ z ∼= b (mod n)〉 .

121

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Using this fact as precondition, we now try to prove the invariant (4.5.13). To prove it,

we have to prove that the following holds:

x+m≤ z ⇐ x≤ z and

y+n≤ z ⇐ y≤ z .

For the first conjunct, the relevant properties that are in the context are:

(4.5.14) x ∼= a (mod m) ,

(4.5.15) z ∼= a (mod m) , and

(4.5.16) x < y≤ z .

From (4.5.14) and (4.5.15) we can easily prove that z∼=x (mod m), i.e., there is an integer

j such that z = x + j×m. From (4.5.16), we conclude that 0 < j . We use these two facts

to prove the first conjunct:

x+m≤ z

= { z = x + j×m }

x+m ≤ x + j×m

= { 0 < j }

true .

The proof of the other conjunct is very similar and the fully annotated program is:

{ 0 < m ∧ 0< n ∧ 〈∃z : a≤ z ∧ b≤ z : z∼=a (mod m) ∧ z∼=b (mod n)〉 }

x , y := a , b ;

{ Invariant: x∼=a (mod m) ∧ y∼=b (mod n) ∧ x≤ z ∧ y≤ z }

do x < y → x := x+m

2 y < x → y := y+n

od

{ x∼=a (mod m) ∧ y∼=b (mod n)∧ x = y } .

122

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Computing the set of all solutions

We have presentedwhen a solution to the problem exists and how to compute it. How-

ever, that solution is not unique. In this section we show how to compute the set of all

solutions.

For any a,b,m and n, we assume that

〈∃i, j:: a + i×m = b + j×n〉 .

Let us calculate the set of all solutions of this equation:

{ f , g: a + f×m = b + g×n: a + f×m}

= { cancellation }

{ f , g: a−b = g×n− f×m: a + f×m}

= { use assumption }

{ f , g: j×n− i×m = g×n− f×m: a + f×m}

= { cancellation and distributivity }

{ f , g: (j−g)×n = (i− f)×m: a + f×m}

= { dummy renaming: f := i− f and g := j−g }

{ f , g: g×n = f×m: (a + i×m) − f×m}

= { one-point rule and definition of division }

{z: m\z ∧ n\z: (a + i×m)−z}

= { definition of the least common multiple }

{z: (m△ n)\z: (a + i×m)−z}

= { definition of division and one-point rule }

{k:: (a + i×m) − k×(m△ n)} .

So, given a solution, the set of all solutions are the values that are equal to it modulo

m△ n . That is,

{s: s = a + i×m (mod (m△ n)): s} ,

where a + i×m denotes a solution.

123

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

4.6 Designing an algorithmic proof of the two-squares theo-

rem

Which numbers can be written as sums of two squares? According to Dickson [Dic99,

p. 225], this classic question in number theory was first discussed by Diophantus, but it

is usually associated with Fermat, who stated in 1659 that he possessed an irrefutable

proof that every prime of the form 4k + 1 can be written as the sum of two squares.

(He first communicated the result to Mersenne, in a letter dated December 25, 1640;

for this reason, this result is sometimes called Fermat’s Christmas Theorem. Incidentally,

Dickson names this result after Albert Girard, who, in 1632, was the first to state it. We

follow Dickson’s convention and we also refer to the two-squares theorem as Girard’s

result.) However, as with many other of his results, Fermat did not record his proof.

The first recorded proof of Girard’s result is due to Euler who proved it in 1749, “after

he had struggled, off and on, for seven years to find a proof” [Bel08, p. 69]. Euler

communicated his five-step argument in a letter to Goldbach dated 6 May 1747, but

the fifth step was only made precise in a second letter written in 1749. In 1801, Gauss

proved for the first time that such prime numbers are uniquely represented as the sum

of two positive integers [Gau01, Art. 182].

This classic theorem attracted the attention of many mathematicians. Since Euler’s

proof by the method of infinite descent, Lagrange proved it using quadratic forms

(subsequently, Gauss simplified Lagrange’s proof in [Gau01, Art. 182]); Dedekind used

Gaussian integers; Serret and Hermite used continued fractions [Her48, Ser48]; Brill-

hart improved Hermite’s argument using Euclid’s algorithm [Bri72]; Smith used con-

tinuants [CELV99]; more recently, Zagier [Zag90] published a one-sentence proof based

on an involution of a particular finite set (see also [AZ04, chapter 4] and [Dij93] for a de-

tailed explanation of the proof); and Wagon [Wag90] gave a self-contained proof based

on Euclid’s algorithm and on [Bri72].

Like Brillhart and Wagon, we present a proof that is also based on Euclid’s algorithm,

but, rather than simply verifying Girard’s result, we use the algorithm as an interface

to investigate which numbers can be written as sums of two positive squares14. The

precise formulation of the problem as an algorithmic problem is the key, since it allows

us to use algorithmic techniques and to avoid guessing. The notion of invariance, in

particular, plays a central role in our development: it is used initially to observe that

14Every square number m2 can be written as m2+02. However, this type of solution is not considered

in this section, since our formulation of Euclid’s algorithm deals only with positive numbers. Therefore,

our construction aims to express a number as the sum of two positive squares.

124

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Euclid’s algorithm can actually be used to represent a given number as a sum of two

positive squares, and then it is used throughout the argument to prove other relevant

properties. We also showhow the use of program inversion techniques canmakemath-

ematical arguments more precise. As we will see, the end result is also more general

than the one conjectured by Girard.

In the next section we show how our reformulation of Euclid’s algorithm in terms of

matrices (see section 4.3.2) can be used to prove the theorem. At the end of the section,

we describe how the argument is organised.

4.6.1 Euclid’s algorithm

Recall that in section 4.3.2, we have reformulated the so-called Extended Euclid’s algo-

rithm in terms of matrices:

{ 0 < m ∧ 0 < n }

(x y) ,C := (m n) , I ;

{ Invariant: (x y) = (m n) × C }

do y < x → (x y) ,C := (x y) ×A , C×A

2 x < y → (x y) ,C := (x y) × B , C×B

od

{ (x y) = (m▽n m▽n) = (m n) × C }

Specifically, I, A, and B are 2×2 matrices; I is the identity matrix
(

1
0

0
1

)

, A is the matrix
(

1
−1

0
1

)

, and B is the matrix
(

1
0

−1
1

)

.

A key insight exploited in section 4.4.2 is that matrices A and B are invertible, which

allows us to rewrite the invariant as (x y) × C−1 = (m n), where the matrix C−1 is a

finite product of the matrices A−1 and B−1, which are, respectively,
(

1
1

0
1

)

and
(

1
0

1
1

)

.

In fact, we have seen that we can change the above algorithm to compute the matrix

C−1 instead; renaming C−1 to D, A−1 to L, and B−1 to R, we rewrite it as follows:

{ 0 < m ∧ 0 < n }

(x y) ,D := (m n) , I ;

{ Invariant: (x y) ×D = (m n) }

do y < x → (x y) ,D := (x y) × L−1 , L×D

2 x < y → (x y) ,D := (x y) × R−1 , R×D

125

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

od

{ (x y) = (m▽n m▽n) ∧ (m▽n m▽n) ×D = (m n) }

It is this form of the algorithm that is the starting point for our investigation. Note that

if D=
(

a
c

b
d

)

, the invariant is equivalent to

(m n) = (x y) ×D = (x×a + y×c x×b + y×d) ,

which means that if, at any point in the execution of the algorithm, (x y) equals (a c),

we can conclude that m is a sum of two positive squares, that is:

(m n) = (a c) ×D = (a×a + c×c a×b + c×d) .

Symmetrically, if, at any point in the execution of the algorithm, (x y) equals (b d), we

can conclude that n is a sum of two positive squares.

It may help to visualise an execution trace of the algorithm. Table 4.1 depicts the ex-

ecution trace when the arguments are m = 17 and n = 4. Each row of the table shows

the state-space and the value of the invariant after each iteration of the algorithm. The

first two columns show the values of the variables (x y) and D, respectively. The third

column shows how the invariant is satisfied, according to the values of the first two

columns. The first row corresponds to the initial state and the last row corresponds to

the final state.

(x y) D, the same as
(

a
c

b
d

)

Invariant: (m n) = (x×a + y×c x×b + y×d)

(17 4)
(

1
0

0
1

)

= I (17 4) = (17×1+ 4×0 17×0+ 4×1)

(13 4)
(

1
1

0
1

)

= L (17 4) = (13×1+ 4×1 13×0+ 4×1)

(9 4)
(

1
2

0
1

)

= LL (17 4) = (9×1+ 4×2 9×0 + 4×1)

(5 4)
(

1
3

0
1

)

= LLL (17 4) = (5×1+ 4×3 5×0 + 4×1)

(1 4)
(

1
4

0
1

)

= LLLL (17 4) = (1×1 + 4×4 1×0 + 4×1)

(1 3)
(

5
4

1
1

)

= RLLLL (17 4) = (1×5+ 3×4 1×1 + 3×1)

(1 2)
(

9
4

2
1

)

= RRLLLL (17 4) = (1×9+ 2×4 1×2 + 2×1)

(1 1)
(

13
4

3
1

)

= RRRLLLL (17 4) = (1×13 + 1×4 1×3 + 1×1)

Table 4.1: Execution trace of Euclid’s algorithm for arguments m = 17 and n = 4

As we can see in table 4.1, there is a point at which x = a = 1 and y = c = 4; it follows

directly from the invariant that 17 can be expressed as the sum of two positive squares

126

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

(17 = 12+42).

One question that now arises is what is so special about the numbers 17 and 4 thatmade

the vectors (x y) and (a c) to be equal. (Had we used as arguments the numbers 17 and

5, for example, x would never equal a.) Put more generally, how can we characterise

the arguments that make the vectors (x y) and (a c) to be equal at some point in the

execution of the algorithm?

A closer inspection of the values shown in table 4.1 can help us answering the general

question. If we ignore the first row, we see that the sequence of successive values

of the vector (x y) is the reverse of the sequence of successive values of (a c). Also,

because the length of these sequences is the same and odd, there is a middle point

at which (x y)=(a c). So, one way of proving that at some point in the execution of

the algorithm the vectors (x y) and (a c) are equal is to prove that the sequences of

successive values of the vectors (x y) and (a c), with the exception of the initial values,

are reverses of each other and that both sequences have odd length. (In the example

above, the length is 7.)

Taking this analysis into account, the question can be reformulated as: for which ar-

guments m and n does Euclid’s algorithm produce odd-length sequences of successive

values of the vectors (x y) and (a c) that are reverses of each other?

Our answer to this question is divided in three parts. First, in section 4.6.2, we invert

Euclid’s algorithm to prove that the operations performed on the vector (x y) are the

same as those performed on the vector (a c) when running the algorithm backwards.

Second, in section 4.6.3, we determine necessary and sufficient conditions on the ar-

guments m and n to make the initial value of the vector (x y) equal the final value of

the vector (a c). These two parts together characterise the arguments for which the

sequences of vectors are each other’s reverses. Finally, in section 4.6.4, we show that if

the sequences are the reverses of each other, they must have odd length.

Note that our investigation aims at expressing the argumentm as a sum of two positive

squares— that is why we focus on vectors (x y) and (a c). This means that, given a

value m, we want to characterise which values n can be chosen to be passed along with

m as arguments of the algorithm (we perform this characterisation in section 4.6.3).

For brevity, andwhenever the context is unambiguous, we shall refer to “the sequences”

to mean “the sequences of successive values of the vectors (x y) and (a c)” and to “the

sequences are reversed” to mean “the sequences are the reverses of each other”. Also,

we assume throughout that D=
(

a
c

b
d

)

.

127

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

4.6.2 Inverting Euclid’s algorithm

In section 3.6, we have seen that, if c0 and c1 are constants, the inverse of

(4.6.1) v := c0 ; S { v = c1 }

is

v := c1 ; S−1 { v = c0 } .

Since Euclid’s algorithm is an instance of (4.6.1)— instantiate vwith the variables (x y)

and D, and consider S to be the loop— its inverse is:

(x y) := (m▽n m▽n) ;

initialise D such that (m▽n m▽n) ×D = (m n) ;

S−1

{ (x y) = (m n) ∧ D = I } .

That is, provided that we initialise (x y) to (m▽n m▽n) and the matrix D in a way

that satisfies (m▽n m▽n) ×D = (m n), undoing S terminates in a state where (x y)

and D equal their initial values in Euclid’s algorithm. But we have to guarantee that

there is only one way of initialising D. This is indeed the case, since

(m▽n m▽n) ×D = (m n)

=

(1 1) ×D = (m/(m▽n) n/(m▽n)),

where (m/(m▽n) n/(m▽n)) can be seen as a positive rational number in so-called

lowest-form representation. We know from section 4.4.2 that there is a bijection be-

tween finite products of the matrices L and R and the positive rationals. Therefore, D

(which is a finite product of Ls and Rs) is uniquely defined (more specifically, it rep-

resents the path from the origin to the rational n/(m▽n)

m/(m▽n)
in the Stern-Eisenstein tree of

rationals).

Now, since the alternative statement in the loop of Euclid’s algorithm is deterministic

(y < x and x < y are mutually exclusive), we can use the inversion rule for deterministic

alternative statements together with the inversion rule for iterative statements. Recall,

from section 3.6, that the inverse of a program of the form

128

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

{ G0 ∨ G1 }

do G0 → S0 { C0 }

2 G1 → S1 { C1 }

od

{ C0 ∨ C1 },

is

{ C0 ∨ C1 }

do C1 → S−1
1 { G1 }

2 C0 → S−1
0 { G0 }

od

{ G0 ∨ G1 } .

(We require ¬(C0 ∧ C1) and ¬(G0 ∧ G1).) We now have to insert appropriate assertions

in Euclid’s algorithm so that the rules presented above can be used. Recall that, as ex-

plained in section 4.6.1, we want to ignore the initial values (in effect, this corresponds

to ignoring the first row of table 4.1). This motivates moving the first step out of the

loop body. Assuming that n < m, we can rewrite the algorithm as follows (note the new

annotations and recall that D=
(

a
c

b
d

)

):

{ 0 < n < m }

(x y) ,D := (m−n n) , L ;

{ Invariant: (x y) ×D = (m n) }

{ y < x ∨ x < y }

do y < x → (x y) ,D := (x y) × L−1 , L×D { a < c }

2 x < y → (x y) ,D := (x y) × R−1 , R×D { c < a }

od

{ a < c ∨ c < a }

{ (x y) = (m▽n m▽n) ∧ (m▽n m▽n) ×D = (m n) }

For the rest of the argument, whenever we refer to Euclid’s algorithm, the intended

reference is to this algorithm. The removal of the first step out of the loop body forces

n < m and 1 < m, but it allows us to include assertions after each assignment, making

129

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

the inversion of the loop body a straightforward application of the rules mentioned

above. (The new assertions after the assignments follow from the facts that premulti-

plying a matrix by L corresponds to adding the first row to the second, and premul-

tiplying a matrix by R corresponds to adding the second row to the first.) Note that

we have indented the loop to stress that the new disjunctive assertions, y < x ∨ x < y

and a < c ∨ c < a, are, respectively, the loop’s precondition and postcondition. Because

the assignments in the loop body are easily inverted, the inverse of Euclid’s algorithm

becomes:

{ 0 < n < m }

(x y) := (m▽n m▽n) ;

initialise D such that (m▽n m▽n) ×D = (m n) ;

{ Invariant: (x y) ×D = (m n) }

{ a < c ∨ c < a }

do a < c → (x y) ,D := (x y) × L , L−1×D { y < x }

2 c < a → (x y) ,D := (x y) × R , R−1×D { x < y }

od

{ y < x ∨ x < y }

{ (x y) = (m−n n) ∧D = L }

Comparing the two algorithms, we see that the assignments to (x y) and to (a c) are

interchanged: in the original algorithm we have

y < x → (x y) := (x−y y)

2 x < y → (x y) := (x y−x) ,

and in the inverted algorithm we have

a < c → (a c) := (a c−a)

2 c < a → (a c) := (a−c c) .

(We leave the reader to check the matrix arithmetic.) In other words, the inverse of

Euclid’s algorithm is Euclid’s algorithm itself, but on different variables: the inverted

version computes the greatest common divisor using the variables a and c. This means

that to make the sequences of successive values of the vectors (x y) and (a c) the re-

verse of each other, we only need to guarantee that the initial value of (x y) in the

130

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

non-inverted algorithm is the same as the initial value of (a c) in the inverted one. In

other words, we need to guarantee that in Euclid’s algorithm, the initial value of (x y)

is the same as the final value of (a c).

The initial assignments of the inverted algorithm may seem strange at first sight, but

the important fact to retain is that if we compose both algorithms, the program state

remains unchanged. The inversion of the algorithm serves only as a formal proof that

the process applied to (x y) in one direction is the same as the one applied to (a c) in

the opposite direction. In the remainder of our investigation, we base our discussion

on Euclid’s algorithm, i.e., on the non-inverted version.

4.6.3 Reversed sequences of vectors

Given the result of the previous section, saying that the sequences of vectors (x y) and

(a c) are reversed is equivalent to saying that the initial value of (a c) is equal to the

final value of (x y) and the initial value of (x y) is equal to the final value of (a c).

Looking at the algorithm, we see that the initial value of (a c) is (1 1) and the final

value of (x y) is (m▽n m▽n). So, for the sequences to be reversed, m▽n has to be 1,

i.e., m and n have to be coprime. We thus assume henceforth that m▽n = 1.

Also, the initial value of (x y) is (m−n n). So, because m▽n = 1, we have the follow-

ing equality:

“The sequences are reversed”

=

“The final value of (a c) is (m−n n)” .

We can rewrite this equality in terms of matrix D:

“The sequences are reversed”

=

“The final value of D is
(

m−n
n

b
d

)

for some b and d” .

Now, becauseD is the product of matrices whose determinant equals 1, its determinant

also equals 1; this allows us to calculate b and d:

det.D = 1

= { D has the shape
(

m−n
n

b
d

)

}

131

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

(m−n)×d− n×b = 1

= { arithmetic }

m×d− n×(d+b) = 1

= { we have assumed that m▽n = 1, so, on termination,

the invariant states that (1 1) ×D = (m n);

this means that n = b+d }

m×d = n2+1

= { 0 < m }

d =
n2+1
m

.

The value of b is simply n−d, since on termination we have n = b+d (it follows from

the invariant). Because D is a matrix of integer values, d has to be an integer, and so, a

necessary condition is that m\(n2+1), that is, n2 ∼= −1 (mod m). We can thus conclude

that

n2 ∼= −1 (mod m) ⇐ “The sequences are reversed” .

A question that now arises is whether n2 ∼= −1 (mod m) is a sufficient condition for the

sequences to be reversed. That is, can we prove

(4.6.2) “The final value of D is
(

m−n

n

n−(n2+1)/m
(n2+1)/m

)

” ⇐ n2 ∼= −1 (mod m) ?

Using the assumption that D =
(

a
c

b
d

)

, we can simplify (4.6.2) to:

(4.6.3) “The final value of c is n” ⇐ n2 ∼= −1 (mod m) ,

since c uniquely determines all the other entries (recall that m = a+c, n = b+d and

det.D = 1). To prove (4.6.3), we first show that n∼=c (mod m) follows from n2 ∼= −1

(mod m) and then we use the range of n and c to conclude that n = c. The following

lemma is used to prove that n∼=c (mod m).

Lemma 4.6.4 For all integers m, n, and c, the following holds:

n ∼= c (mod m) ⇐ n2 ∼= −1 (mod m) ∧ n×c ∼= −1 (mod m) .

Proof Using the fact that, for all integers a, b, and c, the following law on congruences

holds

(4.6.5) a−c ∼= b−d (mod m) ⇐ a ∼= b (mod m) ∧ c ∼= d (mod m) ,

we can prove the lemma as follows:

132

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

n∼=c (mod m)

= { arithmetic }

n−c∼= 0 (mod m)

⇐ { m▽n = 1 and Euclid’s lemma; see below for details }

n×(n−c) ∼= 0 (mod m)

= { arithmetic }

n2 − n×c ∼= 0 (mod m)

= { n2 ∼= −1 (mod m) and n×c∼= −1 (mod m) and (4.6.5) }

true .

In the second step we can safely assume that m▽n = 1, since it follows from the con-

gruence n2 ∼= −1 (mod m) . A short proof of this fact is:

n2 ∼= −1 (mod m)

= { definition }

〈∃q:: n2+1= q×m〉

= { arithmetic }

〈∃q:: 1 = q×m− n×n〉

⇒ { (m▽n)\(q×m− n×n), so (m▽n)\1;

division is anti-symmetric }

m▽n = 1 .

Also, Euclid’s lemma states that for all integers a, b, and c:

a\c ⇐ a \ b×c ∧ a▽b = 1 .

We prove Euclid’s lemma in page 82.

2

Now, if, on termination, we have that n×c∼= −1 (mod m), we can use lemma 4.6.4 to

conclude that, on termination, we also have that n∼=c (mod m) follows from n2 ∼= −1

(mod m). Recall that an invariant of the algorithm is

(x y) ×D = (m n) = (x×a + y×c x×b + y×d) .

133

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

Because the determinant of D equals 1, the inverse of D is
(

d
−c

−b
a

)

, making the fol-

lowing property also invariant:

(4.6.6) (x y) = (m n) ×D−1 = (m×d− n×c a×n− b×m) .

It follows that on termination, when (x y) = (1 1), we have that n×c∼= −1 (mod m),

as the following calculation shows:

n×c∼= −1 (mod m)

= { definition }

m\(n×c + 1)

⇐ { division properties }

m×d = n×c + 1

= { arithmetic }

m×d− n×c = 1

= { invariant (4.6.6), (x y) = (1 1) on termination }

true .

By lemma 4.6.4, we deduce that on termination n∼=c (mod m) follows from n2 ∼= −1

(mod m). Finally, because 0 < a and m = a+c we have that 0 < c < m; this allows us to

conclude that n = c:

n∼=c (mod m)

= { definition }

m\(n−c)

= { 0 < n < m and 0 < c < m imply that −m < n−c < m;

the only multiple of m in that range is 0 }

n−c = 0

= { arithmetic }

n = c .

The conclusion is that n2 ∼= −1 (mod m) is also a sufficient condition for the sequences

to be reversed, leading to the equality:

134

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

“The sequences are reversed”

=

n2 ∼= −1 (mod m) .

To summarise, in the following algorithm

{ 0 < n < m }

(x y) ,D := (m−n n) , L ;

{ Invariant: (m n) = (x y) ×D = (x×a + y×c x×b + y×d)

∧ (m n) ×D−1 = (x y) = (m×d− n×c a×n− b×m) }

do y < x → (x y) ,D := (x y) × L−1 , L×D { a < c }

2 x < y → (x y) ,D := (x y) × R−1 , R×D { c < a }

od

{ (x y) = (1 1) ∧ (m n) = (1 1) ×D },

the sequences of vectors (x y) and (a c) are reverses of each other exactlywhen n2 ∼= −1

(mod m).

4.6.4 Length of the sequence of vectors

We now have to prove that the final value of matrix D is decomposed into an odd-

length product of the matrices L and R. However, because D is initially L and because

it is iteratively premultiplied, D = M×L for some M. So we can alternatively prove

thatM is decomposed into an even-length product of the matrices L and R. Observing

that

M = D×L−1 =

(

m−(2×n− (n2+1)/m)

n−(n2+1)/m

n−(n2+1)/m
(n2+1)/m

)

,

we see thatM has the top-right and bottom-left corners equal, whichmeans thatM = MT

(M equals the transpose of M). We also know that R = LT and L = RT.

There are also two functions from finite products of L and R to naturals, #L and #R,

that give, respectively, the number of Ls and the number of Rs in the decomposition of

their argument15. Now, a fundamental property is that #L.M = #R.MT, wheneverM is

15Note that, given that we can easily provide algorithms that compute them, functions length, #L, and

#R are well-defined. As proved in section 4.4.2, there is a bijection between finite products of matrices L

and R, and binary strings made of the symbols L and R; defining these functions in the realm of strings is

easy.

135

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

a product of Ls and Rs. This fundamental property means that the number of Ls in the

decomposition of M equals the numbers of Rs in the decomposition of MT, which is

easy to see because R = LT and L = RT. Using these observations, a simple calculation

showing that the length of M is an even number is:

length.M

= { M is a product of Ls and Rs }

#L.M + #R.M

= { #L.M = #R.MT }

#R.MT + #R.M

= { MT = M }

2× #R.M .

Hence, the length of M is an even number. Subsequently, the length of the final value

of D is odd.

4.6.5 Sum of two positive squares

In the above sections we have proved the following theorem:

Theorem 4.6.7 A number m at least 2 can be written as the sum of two positive

squares if there is a number n such that 0< n < m and n2∼=−1 (mod m).

2

The argument we provide is constructive because we show how to use Euclid’s algo-

rithm to represent a number as the sum of two positive squares. Indeed we can extend

Euclid’s algorithm so that it expresses a given number m as the sum of two positive

squares:

{ 1 < m ∧ 〈∃n : 0 < n < m : n2 ∼= −1 (mod m)〉 }

• Find a number n such that 0 < n < m and n2 ∼= −1 (mod m);

{ 0 < n < m ∧ n2 ∼= −1 (mod m) }

(x y) ,D := (m−n n) , L ;

{ Invariant: (x y) ×D = (m n) = (x×a + y×c x×b + y×d) }

do (x y) 6= (a c) →

136

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

y < x → (x y) ,D := (x y) × L−1 , L×D

2 x < y → (x y) ,D := (x y) × R−1 , R×D

od

{ (x y) = (a c) ∧ m = x2+y2 = a2+c2 }

Theorem 4.6.7 is more general than Girard’s result: while Girard’s theorem is only on

odd prime numbers, theorem 4.6.7 concerns all positive integers at least 2. As an ex-

ample, we can say that the number 10 is expressible as the sum of two positive squares,

since 32∼=−1 (mod 10) (and, in fact, we have that 10 = 32+12). Moreover, given the fol-

lowing lemma (see [AZ04, p. 17, Lemma 1]), Girard’s result is an immediate corollary

of theorem 4.6.7.

Lemma 4.6.8 For primes p = 4k + 1 the equation s2∼=−1 (mod p) has two solutions

s∈{1 .. p−1}, for p = 2 there is only one such solution, while for primes of the form

p = 4k + 3 there is no solution.

2

Although we believe that theorem 4.6.7 may be known by some number-theorists, we

have not found it in the literature.

Please note that developing an efficient algorithm to find a number n such that 0<n<m

and n2 ∼= −1 (mod m) is not trivial. For more details on this topic, we recommend

[Wag90] and [BW08], where the authors discuss different algorithms that can be used

to find such a number n. Finally, the algorithm shown above can be generalised. In a

private communication, Wagon told us that the method of using Euclid’s algorithm to

write a number as a sum of two squares (or, more generally, as a2 + g×c2) is known

as the Smith-Cornacchia algorithm (he referred us to [BW08] and [Cor08]). Also, in

[HMW90], Hardy, Muskat, and Williams show a more general algorithm for solving

m = f×a2 + g×c2 in coprime integers a and c. At the moment, we do not know how

to adapt our algorithm to solve the more general problem. Recall that we have started

our argument by observing that if, at any point in the execution of the algorithm, (x y)

equals (a c), it follows from the invariant

(m n) = (x y) ×D = (x×a + y×c x×b + y×d)

that m can be written as a sum of two positive squares. To solve the general problem,

we have to investigate when it is possible to have, at any point in the execution of the

algorithm, a\x and c\y. If this happens, that is, if there are two integers f and g such

137

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

that x = f×a and y = g×c, it follows from the invariant that m = f×a2 + g×c2:

(m n) = (f×a g×c) ×D = (f×a2 + g×c2 f×a×b + g×c×d) .

4.6.6 Discussion

This section shows a new and constructive proof of the two-squares theorem based

on a somewhat unusual, but very effective, way of rewriting the so-called extended

Euclid’s algorithm. As mentioned in the introduction, the use of Euclid’s algorithm

to prove the theorem is not new: Brillhart [Bri72] and Wagon [Wag90] have used it to

verify the theorem. Effectively, given the close relationship between Euclid’s algorithm

and continued fractions, we can say that Serret [Ser48] and Hermite [Her48] were the

first to provide the germ of the essential idea presented here (in fact, Brillhart’s note

is described as an improvement on Hermite’s method: in using Euclid’s algorithm,

Brillhart avoids the calculation of the convergents arising in the continued fractions).

The novel contribution of this section is the use of the algorithm to investigate which

numbers can be written as the sum of two positive squares. The precise formulation

of the problem as an algorithmic problem is the key, since it allows us to use algorith-

mic techniques and to avoid guessing. The notion of invariance, in particular, plays a

central role in our development: it is used initially to observe that Euclid’s algorithm

can actually be used to represent a given number as a sum of two positive squares,

and then it is used throughout the argument to prove relevant properties. Also, section

4.6.2 is an example of how the use of program inversion can make our arguments more

precise.

4.7 Conclusion

In our view, much of mathematics is inherently algorithmic; it is also clear that, in the

modern age, algorithmic problem solving is just as important, if not much more so,

than in the 19th century. Somehow, however, mathematical education in the 20th cen-

tury lost sight of its algorithmic roots. We hope to have exemplified in this chapter how

a fresh approach to introductory number theory that focuses on the algorithmic content

of the theory can combine practicality with mathematical elegance. By continuing this

endeavour we believe that the teaching of mathematics can be enriched and given new

vigour.

We have to admit, however, that this chapter lacks some importantmaterial that should

be taught in a module on elementary number theory. In particular, we do not discuss

138

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

fundamental topics such as primality or number theoretic functions (e.g., functions τ

and σ). Nevertheless, our goal was never to make of this chapter a complete textbook!

Instead, we wanted to show how we could use algorithmic principles and techniques

to rewrite existing material, and, more importantly, we wanted to derive new results.

We have achieved both goals and we believe we have done it in a practical and elegant

way.

4.8 Appendix: historical remarks on the trees of rationals

One of the primary novel results of this chapter is the construction given in section 4.4.2

of an algorithm to enumerate the rationals in Stern-Brocot order. Apart from minor

differences, that section was submitted in April 2007 to the American Mathematical

Monthly; it was rejected in November 2007 on the grounds that it was not of sufficient

interest to readers of the Monthly. One (of two referees) did, however, recommend

publication. The referee made the following general comment.

Each of the two trees of rationals—the Stern-Brocot tree and the Calkin-

Wilf tree—has some history. Since this paper now gives the definitive link

between these trees, I encourage the authors, perhaps in their Discussion

section, to also give the definitive histories of these trees, something in the

same spirit as the Remarks at the end of the Calkin and Wilf paper.

Since the publication of [BF08], we have succeeded in obtaining copies of the original

papers and it is indeed interesting to briefly review the papers. But we do not claim

to provide “definitive histories of these trees” — that is a task for a historian of mathe-

matics.

Section 4.8.1 is about the paper [Ste58] published in 1858 by Stern. The surprising fact

that emerges from the review is that the so-called “Calkin-Wilf” tree of rationals, and

not just the “Stern-Brocot” tree, is studied in detail in his paper. Moreover, of the two

structures, the “Calkin-Wilf” tree is more readily recognised; the “Stern-Brocot” tree

requires rather more understanding to identify. Brocot’s paper [Bro61], which we re-

view in section 4.8.2, is interesting because it illustrates how 19th century mathematics

was driven by practical, algorithmic problems. (For additional historical remarks, see

also [Hay00].)

As mentioned before, the review of Stern’s paper was written by Roland Backhouse,

since the author of this dissertation does not read any German.

139

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

4.8.1 Stern’s paper

Earlier we have commented that the structure that has recently been referred to as the

“Calkin-Wilf” tree was documented by Stern [Ste58] in 1858. In this section we review

those sections of Stern’s paper that are relevant to our own.

The Eisenstein array

Stern’s paper is a detailed study of what has now become known as the “Eisenstein

array” of numbers (see, for example, [Slo, sequence A064881]). (Stern’s paper cites two

papers written by the more famous mathematician Gotthold Eisenstein; we have not

read these papers.) Given two natural numbers m and n, Stern describes a process

(which he attributes to Eisenstein) of generating an infinite sequence of rows of num-

bers. The zeroth row in the sequence (“nullte Entwickelungsreihe”) is the given pair of

numbers:

m n .

Subsequent rows are obtained by inserting between every pair of numbers the sum of

the numbers. Thus the first row is

m m+n n

and the second row is

m 2×m + n m+n m + 2×n n .

The process of constructing such rows is repeated indefinitely. The sequence of num-

bers obtained by concatenating the individual rows in order is what is now called the

Eisenstein array and denoted by Ei(m,n) (see, for example, [Slo, sequence A064881]) .

Stern refers to each occurrence of a number in rows other than the zeroth row as either

a sum element (“Summenglied”) or a source element (“Stammglied”). The sum elements

are the newly added numbers. For example, in the first row the number m+n is a sum

element; in the second row the number m+n is a source element.

The Eisenstein-Stern tree of rationals

A central element of Stern’s analysis of the Eisenstein array is the consideration of sub-

sequences of numbers in individual rows. He calls these groups (“Gruppen”) and he

records the properties of pairs of consecutive numbers (groups of size two — “zwei-

gliedrige Gruppen”) and triples of consecutive numbers (groups of size three — “drei-

gliedrige Gruppen”).

140

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

In sections 5 thru 8 of his paper, Stern studies Ei(1,1), the Eisenstein array that begins

with the pair (1, 1). He proves that all pairs of consecutive numbers in a given row are

coprime and every pair of coprime numbers appears exactly once as such a pair of con-

secutive numbers. He does not use the word “tree”—tree structures are most probably

an invention of modern computing science— and he does not refer to “rational num-

bers” —he refers instead to relatively prime numbers (“relatieve Primzahlen”)— but

there is no doubt that, apart from the change in terminology, he describes the tree of

rationals that in recent years has been referred to as the “Calkin-Wilf” tree of rationals.

It is for this reason that we believe it is misleading to use the name “Calkin-Wilf tree”

and prefer to use the name “Eisenstein-Stern tree”. Figure 4.4 shows the first four rows

of Ei(1,1) and figure 4.5 shows all pairs of consecutive numbers for each of the four

rows. The pairs have been arranged so that the correspondence between figure 4.2 and

figure 4.5 is clear.

1 1

1 2 1

1 3 2 3 1

1 4 3 5 2 5 3 4 1

Figure 4.4: First four rows of Ei(1,1)

(1, 1)

(1, 2) (2, 1)

(1, 3) (3, 2) (2, 3) (3, 1)

(1, 4) (4, 3) (3, 5) (5, 2) (2, 5) (5, 3) (3, 4) (4, 1)

Figure 4.5: Pairs of consecutive numbers in the first four rows of Ei(1,1)

Other sections of Stern’s paper record additional properties of the tree, which we do

not discuss here. For example, Stern discusses how often each number appears as a

sum number.

141

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

The Stern-Brocot tree of rationals

Identification of the so-called Stern-Brocot tree of rationals in Stern’s paper is more de-

manding. Recall the process of constructing a sequence of rows of numbers from a

given pair of numbers m and n. It is clear that every number is a linear combination

of m and n. Stern studies the coefficients (“Coefficienten”), i.e. the pair of multiplicative

factors of m and n, defined by the linear combination. Figure 4.6 displays the coeffi-

cients in a way that allows direct comparison with the Stern-Brocot tree of rationals

(figure 4.3). (The reader may also wish to compare figure 4.6 with Graham, Knuth and

Patashnik’s depiction of the tree [GKP94, p. 117].)

1×m + 0×n 0×m + 1×n

1×m + 1×n

2×m + 1×n 1×m + 2×n

3×m + 1×n 3×m + 2×n 2×m + 3×n 1×m + 3×n

4×m + 1×n 3×m + 2×n 5×m + 2×n 3×m + 5×n 5×m + 3×n 2×m + 5×n 4×m + 3×n 1×m + 4×n

Figure 4.6: Tree of “coefficients” of Ei(m,n)

The numbers at the top-left and top-right of figure 4.6 are the numbers m and nwritten

as 1×m + 0×n and 0×m + 1×n, respectively, in order to make the coefficients clear.

This, we recall, is the zeroth row in Stern’s structure.

In the subsequent levels of the tree, only the sum elements are displayed. The corre-

spondence betweenfigure 4.6 and figure 4.3 should be easy to see; the number k×m + l×n

in figure 4.6 is displayed as the rational l
k in figure 4.3. The “fundamental fact” (4.31) in

[GKP94] is observed by Stern [Ste58, equation (8), p.207] and used immediately to infer

that coefficients are relatively prime. In section 15 of his paper, Stern uses the (already

proven) fact that the Eisenstein-Stern tree is a tree of (all) rationals to deduce that the

Stern-Brocot tree is also a tree of rationals.

Newman’s algorithm

An interesting question is whether Stern also documents the algorithm currently at-

tributed to Moshe Newman for enumerating the elements of the Eisenstein array. This

is a question we found difficult to answer because of our limited understanding of

German. However, the answer would appear to be: almost, but not quite!

As remarked earlier, Stern documents a number of properties of groups of numbers in

rows of the Eisenstein array, in particular groups of size three. Of course, a group of

142

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

size three comprises two groups of size two. Since groups of size two in the Eisenstein

array correspond to rationals in the Eisenstein-Stern tree, by studying groups of size

three Stern is effectively studying consecutive rationals in the Eisenstein-Stern tree of

rationals.

It is important to note that Stern’s focus is the sequence of rows of numbers (in modern

terminology, the tree of numbers) as opposed to the (flattened) sequence of numbers

defined by Ei(m,n) — significantly, the last number in one row and the first number in

the next row do not form a “group” according to Stern’s definition. This means that, so

far as we have been able to determine, he nowhere considers a triple of numbers that

crosses a row boundary.

Newman’s algorithm (in the form we use in section 4.4.2) predicts that each triple of

numbers in a given row of Ei(1,1) has the form

a b (2
⌊ a

b

⌋

+ 1) × b− a

(Variable names have been chosen to facilitate comparison with Stern’s paper.) It fol-

lows immediately that the sum of the two outer elements of the triple is divisible by the

middle element (that is, a + ((2
⌊

a
b

⌋

+ 1) × b− a) is divisible by b); this fact is observed

by Stern (for triples in a given row) in section 4 of his paper. Importantly for what fol-

lows, Stern observes that the property holds for Ei(m,n) for arbitrary natural numbers

m and n, and not just Ei(1,1). Stern observes further [Ste58, (4) p.198] that each triple

in Ei(m,n) has the form

(4.8.1) a b (2t + 1) × b− a

for some number t. Stern identifies t as the number of rows preceding the current row

in which the number b occurs as a sum element. (In particular, if b is a sum element

then t equals 0.) Stern shows how to calculate t from the position of b in the row —

effectively by expressing the position as a binary numeral. (Note that “t” is the variable

name used in Stern’s paper; it has the same role as the variable “j” in our derivation of

the algorithm in section 4.4.2.)

So far as we have been able to determine, Stern does not explicitly remark that t equals
⌊

a
b

⌋

in the case of Ei(1,1), but he does so implicitly in section 10 where he relates the

the continued fraction representation of a
b to the row number in which the pair (a, b)

occurs. He does not appear to suggest a similar method for computing t in the general

case of enumerating Ei(m,n). However, it is straightforward to combine our derivation

of Newman’s algorithm with Stern’s theorems to obtain an algorithm to enumerate the

elements of Ei(m,n) for arbitrary natural numbers m and n. Interested readers may

consult our website [BF10] where several implementations are discussed.

143

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

As stated at the beginning of this section, the conclusion is that Stern almost derives

Newman’s algorithm, but not quite. On the other hand, because his analysis is of the

general case Ei(m,n) as opposed to Ei(1,1), his results are more general.

Stern-Brocot enumeration

We now turn to the question whether Stern also gives an algorithm for enumerating

the rationals in Stern-Brocot order.

To this end, we observe that the form (4.8.1) extends to the coefficients of each element

of Ei(M,N), and hence to the elements of the Stern-Brocot tree. Specifically, triples in

Ei(M,N) have the form

n0M+m0N n1M+m1N ((2k + 1)n1 − n0)M + ((2k + 1)m1 −m0)N

It is easy to exploit this formula directly to get an enumeration of the rationals in Stern-

Brocot order, just as we did above to obtain an enumeration of Ei(M,N). Just recall that

the Stern-Brocot rationals are given by the coefficients of the sum elements, and the sum

elements are the odd-numbered elements in the rows of Ei(M,N) (where numbering

starts from zero). The algorithm so obtained is the one we derived in section 4.4.2.

In this sense, Stern does indeed provide an algorithm for enumerating the rationals in

Stern-Brocot order, albeit implicitly. However, as with Newman’s algorithm, he fails

to observe the concise formula for the value of the variable k. Also, a major method-

ological difference is our exploitation of the concision and precision afforded by matrix

algebra. Given the state of development of matrix algebra in 1858, Stern cannot be

criticised for not doing the same.

Finally, we remark that Stern returns to the properties of triples in section 19 of his

paper. Unfortunately, we have been unable to fully understand this section.

4.8.2 Brocot, the watchmaker

Achille Brocot was a famous French watchmaker who, some years before the publica-

tion of his paper [Bro61], had to fix some pendulums used for astronomical measure-

ments. However, the device was incomplete and he did not know how to compute the

number of teeth of cogs that were missing. He was unable to find any literature help-

ful to the solution of the problem, so, after some experiments, he devised a method to

compute the numbers. In his paper, Brocot illustrates his method with the following

example:

144

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

A shaft turns once in 23 minutes. We want suitable cogs so that another

shaft completes a revolution in 3 hours and 11 minutes, that is 191 minutes.

The ratio between both speeds is 191
23 , so we can clearly choose a cog with 191 teeth,

and another one with 23 teeth. But, as Brocot wrote, it was not possible, at that time, to

create cogs with so many teeth. And because 191 and 23 are coprime, cogs with fewer

teeth can only approximate the true ratio.

Brocot’s contributionwas amethod to compute approximations to the true ratios (hence

the title of his paper, “Calculus of cogs by approximation”). He begins by observing

that 191
23 must be between the ratios 8

1 and 9
1 . If we choose the ratio 8

1 , the error is −7

since 8×23 = 1×191 − 7. This means that if we choose this ratio, the slower cog com-

pletes its revolution seven minutes early, i.e., after 8×23 minutes. On the other hand,

if we choose the ratio 9
1 , the error is 16 since 9×23 = 1×191 + 16, meaning that the

slower cog completes its revolution sixteen minutes late, i.e., after 9×23 minutes.

Accordingly, Brocot writes two rows:

8 1 -7

9 1 +16

His method consists in iteratively forming a new row, by adding the numbers in all

three columns of the rows that produce the smallest error. Initially, we only have two

rows, so we add the numbers in the three columns and we write the row of sums in the

middle.

8 1 -7

17 2 +9

9 1 +16

(If we choose the ratio 17
2 , the slower cog completes its revolution 9

2 minutes later, since
17
2 =

191+ 9
2

23 .) Further approximations are constructed by adding a row adjacent to the

row that minimises the error term. The process ends once we reach the error 0, which

refers to the true ratio. The final state of the table is:

145

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

8 1 -7

33 4 -5

58 7 -3

83 10 -1

191 23 0

108 13 +1

25 3 +2

17 2 +9

9 1 +16

The conclusion is that the two closest approximations to 191
23 are ratios of 83

10 (which

runs 1
10 minutes faster) and 108

13 (which runs 1
13 minutes slower). We could continue this

process, getting at each stage a closer approximation to 191
23 . In fact, Brocot refines the

table shown above, in order to construct a multistage cog train (see [Bro61, p. 191]).

At each step in Brocot’s process we add a new ratio m+m′
n+n′ , which is usually called the

mediant of m
n and m′

n′ . Similarly, each node in the Stern-Brocot tree is of the form m+m′
n+n′ ,

where m
n is the nearest ancestor above and to the left, and m′

n′ is the nearest ancestor

above and to the right. (Consider, for example, the rational 4
3 in figure 4.3. Its nearest

ancestor above and to the left is 1
1 and its nearest ancestor above and to the right is

3
2 .) Brocot’s process can be used to construct the Stern-Brocot tree: first, create an array

that contains initially the rationals 0
1 and 1

0 ; then, insert the rational
m+m′
n+n′ between two

adjacent fractions m
n and m′

n′ . In the first step we add only one rational to the array

0
1
,
1
1
,
1
0

,

but in the second step we add two new rationals:

0
1
,
1
2
,
1
1
,
2
1
,
1
0

.

Generally, in the nth step we add 2n−1 new rationals. Clearly, this array can be repre-

sented as an infinite binary tree, whose first four levels are represented in figure 4.3 (we

omit the fractions 0
1 and 1

0).

The most interesting aspect to us of Brocot’s paper is that it solves an algorithmic prob-

lem. Brocot was faced with the practical problem of how to approximate rational

146

CHAPTER 4: A CALCULATIONAL AND ALGORITHMIC APPROACH TO ELEMENTARY

NUMBER THEORY

numbers in order to construct clocks of satisfactory accuracy and his solution is undis-

putably an algorithm. Stern’s paper is closer to a traditional mathematical paper but,

even so, it is an in-depth study of an algorithm for generating rows of numbers of

increasing length.

4.8.3 Conclusion

There can be no doubt that what has been dubbed in recent years the “Calkin-Wilf”

tree of rationals is, in fact, a central topic in Stern’s 1858 paper. Calkin andWilf [CW00]

admit that in Stern’s paper “there is a structure that is essentially our tree of fractions”

but add “in a different garb” and do not clarify what is meant by “a different garb”. It

is unfortunate that the misleading name has now become prevalent; in order to avoid

further misinterpretations of historical fact, it would be desirable for Stern’s paper to

be translated into English.

We have not attempted to determine how the name “Stern-Brocot” tree came into exis-

tence. It has been very surprising to us howmuch easier it is to identify the Eisenstein-

Stern tree in Stern’s paper in comparison to identifying the Stern-Brocot tree.

147

CHAPTER 5

Supporting the Teaching of

Algorithmic Problem Solving

What is teaching?

In my opinion, teaching is giving opportunity

to the students to discover things by themselves.

— GEORGE PÓLYA (1966)

5.1 Teaching scenarios

The teaching of any subject can only be effective if the teacher has access to abundant

and sufficiently varied educational resources. That is why one of our goals is to develop

educational material to support the teaching of algorithmic problem solving.

The material shown in previous chapters can indeed be used to teach some algorith-

mic principles and techniques. Chapter 4, for example, can be used to rewrite a course

on elementary number theory. Nevertheless, and although the material shown con-

tains educational remarks, we believe that the teaching of algorithmic problem solving

is more effective if the teacher has access to detailed guidelines on how to solve and

present specific algorithmic problems.

Towards that end, we propose the introduction of educational material in the form

of teaching scenarios, which are fully worked out solutions to algorithmic problems to-

gether with detailed guidelines on the principles captured by the problem, how the

problem is tackled, and how it is solved. In appendix I, we present a set of teach-

ing scenarios that illustrate the principles discussed in this thesis. The scenarios are

example-driven and they usually have a recreational flavour, making them especially

148

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

suitable for extra-curricular math clubs. Although they can be directly used by the

students, they are primarily written for the teacher. Moreover, they are designed to

promote self-discovery, since we believe that the success of teaching depends on the

amount of discovery that is left for the students: if the teacher discloses all the infor-

mation needed to solve a problem, students act only as spectators and become discour-

aged; if the teacher leaves all the work to the students, they may find the problem too

difficult and become discouraged too. Scenarios are designed to maintain a balance

between these two extremes.

In general, each scenario is divided into the following sections:

• Brief description and goals This section provides a summary of the scenario,

allowing the teacher to determine if it is adequate for the students.

• Problem statement This section states the problem (or problems) discussed in

the scenario.

• Students should know This section lists prerequisites that should be met by the

students. The teacher can use it to determine if the scenario is adequate for the

students.

• Resolution This section presents a possible solution for the problem in the style

advocated in this thesis.

• Notes for the teacher In this section, the solution presented above is decom-

posed into its main parts and each part is discussed in more detail. To main-

tain the balance mentioned in the first paragraph, we also recommend how the

teacher should present the material, including questions that the teacher should

or should not ask, and important concepts that should be introduced.

• Extensions and exercises This section can be used for homework or project as-

signments. All the exercises are accompanied by their solutions.

• Further reading Recommended reading for the teacher and the students. It may

include discussions and comparisons between conventional solutions and the so-

lutions presented in the scenario.

Some of the problems and solutions shown in the scenarios are not new, but we cap-

ture them in a new and accessible way: as a catalogue of problems and solutions hav-

ing a consistent format. The reader may notice that some of the scenarios have longer

solutions than what is conventionally expected. The reason is that the scenarios are

149

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

method-oriented, rather than solution-oriented. For us, proving a theorem or solving

a problem is only part of the goal; we believe it is more important to demystify mathe-

matical invention and to make of algorithmic problem solving a teachable discipline.

It is important to note that, although scenarios are detailed guidelineswith self-contained

and complete solutions, we encourage the teachers to adapt them to their own teaching

style or to improve them with more effective or elegant solutions.

5.2 How to create a teaching scenario

This section presents some guidelines for creating new teaching scenarios. It also serves

to understand better why we have built the catalogue of scenarios the way we did. We

discuss each section in turn, giving examples where appropriate.

5.2.1 Brief description and goals

This section provides a summary of the scenario, allowing the teacher to determine if

it is adequate for the students. Ideally, it describes the type of problem being solved,

its goal, and the principles and techniques that are used in the solution. For example,

we have described scenario 5, “A Logical Race”, as follows:

This scenario shows how a calculational approach to logic leads to a con-

cise solution of a type of logic puzzle that is based on unique existential

quantifications. It can be used to introduce Boolean inequivalence (6≡), to

practise formal modelling, and to illustrate how distributivity can be used

to simplify mathematical arguments. The puzzle, which we have found in

[Hon98, p. 17], is about deducing a conclusion based on the statements of

three people. We also show (in the exercises) how we can generalise this

type of logic puzzle.

5.2.2 Problem statement

This section states the problem (or problems) discussed in the scenario. The problem

statement should be concise, clear and unambiguous. Consider, for example, the prob-

lem statement that we use in scenario 1 (“Exploring Algebraic Symmetries”):

Prove that the product of four consecutive positive natural numbers cannot

be the square of an integer number.

150

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

We found this problem in [Zei06, p. 4], where the formulation omits the adjective posi-

tive. However, for us, 0 (zero) is a natural number, which means that their formulation

is impossible to prove (because 0 is a counter-example: 0×1×2×3= 02). By adding the

adjective positive, the problem statement becomes clearer and more precise. As men-

tioned in chapter 2, concision and avoidance of unnecessary detail can have a great

impact on our solutions.

When creating new scenarios, we recommend the use of recreational problems. Based

on our experience, it is more appealing for the students to solve a problem that is for-

mulated in a way understandable by a general audience. For example, consider the

problem statement of scenario 12, “The King Who Loved Diagonals”:

A very rich king wanted to thank one of his knights for leading his soldiers

in a victorious battle. So he chose four large rooms of his castle that had the

floor equally tiled. In each of these rooms, he drew a straight diagonal line

connecting two opposite corners. Where the line crossed exactly four tiles,

he placed one gold coin. (He actually ordered someone to draw the lines

and place the coins. After all, he was the king!)

The four rooms were all of different sizes:

• Room 0: (211−1)×(213−1) tiles, i.e., 2047×8191 tiles

• Room 1: (215−1)×(220−1) tiles, i.e., 32767×1048575 tiles

• Room 2: (217−1)×(221−1) tiles, i.e., 131071×2097151 tiles

• Room 3: (220−1)×(222−1) tiles, i.e., 1048575×4194303 tiles

On the day that all coins were placed, he explained to the knight what he

has done. He told him the sizes of the four rooms and he allowed him to

collect all the gold coins from one of the rooms (and only one!).

Which room should the knight choose so that he collects a maximum num-

ber of gold coins?

Although unreal, the problem is simple to understand: there is one king, one knight,

four rooms, gold coins placed on the diagonals of the rooms in a specific way, and we

want to choose the room with the largest number of coins. This problem is solved by

using two theorems about the greatest common divisor. From the first theorem, we

are able to conclude that the number of coins in each room equals the greatest common

divisor of its two dimensions. From the second theorem, we conclude that the so-called

Mersenne function (2k−1) distributes through the greatest common divisor. Putting

these two theorems together, we can easily compute the number of coins in each room

151

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

and solve the problem. Had we formulated the problem as an exercise in number

theory, that is, by asking the students to directly use the theorems, the problem would

be less attractive.

5.2.3 Prerequisites

This section lists prerequisites that should be met by the students. Teachers can use it

to determine if the scenario is adequate for their students, so it is important to list the

most important concepts that the solution depends upon and that are assumed to be

known. This section can also be used to express dependencies on other scenarios; for

example, scenario 12 depends on some of the exercises included in scenario 11.

5.2.4 Resolution

This section presents a possible solution for the problem, preferably in the style advo-

cated in this thesis. As mentioned in the introduction of this chapter, we recommend

the solution to be method-oriented, rather than solution-oriented. It is important that

all steps are well motivated and justified.

5.2.5 Notes for the teacher

In this section, the solution presented above is decomposed into its main parts and

each part is discussed in detail. This section can contain recommendations on how the

teacher should present the material. For example, in scenario 9, “The Chameleons of

Camelot”, we suggest the teacher to provide an informal explanation:

The teacher should explain that the above expression executes only once,

i.e., once an assignment is selected, it is executed, and the process stops.

This motivates the introduction of loops:

do 0 < g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0 < g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0 < b ∧ 0 < c → g , b , c := g+2 , b−1 , c−1

od .

An informal explanation can be useful (e.g. “The do · · · od means that one

of the assignments will be repeatedly chosen to be executed until all the

guards evaluate to false.”).

152

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

We also recommend the inclusion of questions that the teacher should ask and ques-

tions that the teacher should not ask. The inspiration for this came from the book How

to Solve It [Pol90], where Pólya argues that the teacher’s method of questioning should

be unobtrusive. One of the first examples he uses is about finding the length of the

diagonal of a classroom. He suggests a series of questions that aim at helping the stu-

dents reaching the conclusion that they must use the theorem of Pythagoras. He then

elaborates on “Good questions and bad questions”:

Let us go back to the situation as it presented itself at the beginning of sec-

tion 10 when the questionwas asked: Do you know a related problem?. Instead

of this, with the best intention to help the students, the question may be of-

fered: Could you apply the theorem of Pythagoras?

The intention may be the best, but the question is about the worst. We must

realize in what situation it was offered; then we shall see that there is a long

sequence of objections against that sort of “help.”

He then lists several situations depending onwhether the students understand the goal

of the question and he offers some objections:

(2) If the suggestion is understood, it gives the whole secret away, very little

remains for the student to do.

(...)

(4) Even if he understands the suggestion, the student can scarcely under-

stand how the teacher came to the idea of putting such a question. And

how could he, the student, find such a question by himself? It appears as

an unnatural surprise, as a rabbit pulled out of a hat; it is really not instruc-

tive.

We agree with Pólya and we think that by including questions that the teacher should

not ask, we are helping the teacher in promoting self-discovery by the students. How-

ever, in our experience, it is difficult to come up with a set of effective questions. Some

of the questions that we propose were tested in a classroom environment, whilst others

had to be imagined. For example, the following question, taken from scenario 8 (“Ex-

changing the Values of Two Variables”) was never tested, but, clearly, it should not be

asked, since it gives a crucial property away:

Canwe use unitpotency1 to eliminate the subexpression y⊗ y in x⊗ (y⊗ y)?

1We say that ⊗ is unitpotent if, for all y, y ⊗ y = 1⊗.

153

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

The questions that we propose are not rigid; we recommend teachers to ignore or adapt

them to their own teaching style, as long as they stay unobtrusive. Also, it is important

to note that we do not include all the questions that should not be asked; we only

include some suggestions.

The inclusion of questions that the teacher should not ask is also useful for stress-

ing that certain methods should be avoided. For example, in scenario 3 (“Knights or

Knaves”), one of the questions that we recommend not to be asked is What are the

possible cases?, because we think it is better for the students to model and analyse the

problem, rather than solving it by brute-force. (In fact, the goal of the scenario is to

illustrate how we can calculate the solutions to logic puzzles and avoid case analysis.)

Finally, it is worth mentioning that including both this section and the previous one

(“Resolution”) can lead to a substantial amount of duplication. Nevertheless, we rec-

ommend the inclusion of both, because some readers may not be interested in educa-

tional remarks.

5.2.6 Extensions and exercises

This section can be used for homework or for project assignments. Exercises can be

additional questions about the problem discussed in the scenario or even variations

and generalisations of the problem. Sometimes, we also include different problems

that illustrate related principles. We recommend that all the exercises are accompanied

by their solutions.

5.2.7 Further reading

This section contains recommended reading for the teacher and the students. It is a

good place to include discussions and comparisons with alternative solutions. For ex-

ample, in scenario 5 (“A Logical Race”), we include the following comment:

The problem presented in this scenario was taken from [Hon98, p. 17]. In

there, Honsberger solves the puzzle by translating it to the domain of num-

bers and formulating the relevant properties in terms of numbers. His so-

lution is an extreme case of what is conventionally done in school mathe-

matics: problems are always formulated using the more familiar domain

of numbers and logic is used implicitly in the arguments. (We consider his

solution extreme, since the problem was originally a logic problem. There

was no need at all to translate it to a different, more complex, domain.) We

154

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

recommend the teacher to compare both solutions.

5.3 A catalogue of teaching scenarios

In this section, we briefly describe the catalogue of teaching scenarios that is included

in appendix I. The catalogue contains 12 scenarios divided in two main parts.

The first part consists of scenarios 1 to 6 and is mainly on the use of formalism, the

calculational method, and goal-oriented investigations. In particular, scenarios 3, 4,

and 5 are on three different types of logic puzzles that can be solved calculationally.

We believe this part can be used to introduce formal modelling and calculational logic.

It can also be used to practise the techniques of symmetry and distributivity.

The second part consists of scenarios 7 to 12 and its focus is on solving algorithmic

problems. It introduces the notion of invariant, it shows how to formally manipulate al-

gorithms, it shows how to model and solve problems that are based on algorithms, and

it terminates with the derivation of an algorithm from its formal specification. To facil-

itate the teaching of material from chapter 4, the final two scenarios are self-contained

solutions to problems on the greatest common divisor of two numbers. With the ex-

ception of program inversion, the second part can be used to practise all the techniques

discussed in chapter 3.

For the reader’s convenience, we now list the titles and abstracts of the 12 scenarios.

Scenario 1: Exploring Algebraic Symmetries This teaching scenario presents a prob-

lem that admits a simple solution by exploring two important principles in problem

solving: goal-directed constructions and algebraic symmetries. It can be used to intro-

duce the notion of calculational proof format and to practise formal modelling.

Scenario 2: Calculating Orderings Between Two Numbers The goal of this teaching

scenario is to illustrate the effectiveness of calculational and goal-directed construc-

tions. In particular, it shows how the introduction of variables for representing objects

other than numbers can help. It can also be used to introduce the notions of calcula-

tional proof and monotonicity.

Scenario 3: The Island of Knights and Knaves This teaching scenario is about a

type of logic puzzle where the algebraic properties of equivalence play a central role.

We adopt a calculational approach: instead of solving the puzzle by performing case

155

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

analysis, we calculate its solution. The scenario can be used as an introduction to cal-

culational logic and to Boolean equality.

Scenario 4: Portia’s Casket This scenario is about a type of logic puzzle that can be

reduced to a system of simultaneous equations on Booleans. It can be used to introduce

logical implication and to practise calculational logic.

Scenario 5: A Logical Race This scenario shows how a calculational approach to logic

leads to a concise solution of a type of logic puzzle that is based on unique existential

quantifications. It can be used to introduce Boolean inequivalence (6≡), to practise for-

mal modelling, and to illustrate how distributivity can be used to simplify mathemati-

cal arguments. The puzzle, which we have found in [Hon98, p. 17], is about deducing

a conclusion based on the statements of three people. We also show (in the exercises)

how we can generalise this type of logic puzzle.

Scenario 6: A Calculational Proof of the Handshaking Lemma This teaching sce-

nario shows a goal-oriented and calculational proof of the Handshaking lemma, an

elementary result in graph theory. The lemma states that every finite undirected graph

has an even number of vertices with odd degree. The solution presented in this sce-

nario can be used to introduce the Eindhoven quantifier notation.

Scenario 7: Moving a Heavy Armchair This scenario introduces the notion of invari-

ant through a simple and recreational example. The problem was taken from [Bac03,

Chapter 12] and does not require any prerequisites from the students.

Scenario 8: Exchanging the Values of Two Variables This scenario discusses and

generalises a programming trick that can be used to exchange the values of two vari-

ables without using additional variables. It serves as an introduction to formal manip-

ulation of algorithms and it can be also be used to introduce the Guarded Command

Language. In our view, it is also a good example of investigative mathematics.

Scenario 9: The Chameleons of Camelot This scenario presents a generalisation of

the problem “The Chameleons of Camelot”, found in [Hon97, p. 140] (a more recent

and accessible reference is [Win09]). Its goal is to help students recognise, model, and

solve algorithmic problems. The solution is goal-oriented and explores an invariant of

156

CHAPTER 5: SUPPORTING THE TEACHING OF ALGORITHMIC PROBLEM SOLVING

the underlying non-deterministic algorithm. It is also an example of problem decom-

position and it can be used to convey the notions of loop, guard, postcondition, and

non-determinism. We also show howwe can achieve the goal, rather than just showing

it is possible to achieve it. The constructive argument involves a discussion on program

termination that can be used to introduce the concept of bound function.

Scenario 10: Will This Algorithm Terminate? This scenario presents a problem from

the St. Petersburg City Olympiad 1996, whose goal is to prove that a given algorithm

terminates. It can be used to introduce the topic of program termination, the concept

of bound function, and to help the students practise termination proofs.

Scenario 11: Constructing Euclid’s Algorithm The goal of this scenario is to derive

Euclid’s algorithm to compute the greatest common divisor of two positive natural

numbers. We also show how to use the algorithm to verify theorems related with the

greatest common divisor. The scenario can be used to introduce the construction of

programs from their formal specifications and the use of invariance to prove theorems.

Scenario 12: The King who Loved Diagonals This scenario is about a recreational

problem that can be solved by using the solutions to two exercises from scenario 11.

It can be used to practise formal modelling and to learn interesting properties related

with the greatest common divisor of two numbers.

157

CHAPTER 6

Conclusion

The progress of Science consists in observing interconnections and in showing with a

patient ingenuity that the events of this ever-shifting world are but examples of a few

general relations, called laws. To see what is general in what is particular, and what is

permanent in what is transitory, is the aim of scientific thought.

— ALFRED NORTH WHITEHEAD (1911)

The initial goal of this study was to investigate how algorithmic skills might be used to

reinvigorate the teaching of mathematics and computing. Towards that goal, we have

decided to create new educational material that can be used to introduce and teach

algorithmic principles and techniques. In particular, we have rewritten material on

introductory number theory, and we have created teaching scenarios that can be used

to introduce and teach specific skills.

Based on the results, we are convinced that goal-oriented, calculational algorithmic

skills can indeed be used to enrich and reinvigorate the teaching of mathematics and

computing. The focus on the algorithmic content of number theory, for example, al-

lowed the systematisation of existing proofs and, more importantly, the construction of

new knowledge in a practical and elegant way. Also, we believe that the solutions pre-

sented in the scenarios illustrate the advantages of an emphasis on algorithmic skills.

We now feel that we have enough material for the teachers to use and to do a serious

and extensive study on the suitability of the methods described in the thesis.

Some preliminary experiences show that the educational material shown in this thesis

can be used with success. For example, we have conducted a study at the Univer-

sity of Nottingham, whose goal was to assess whether the students registered on the

first-year module “Mathematics for Computer Scientists” appreciate the calculational

method. We wanted to determine what the students think of calculational proofs, com-

pared with more conventional ones, and which are easier to verify; we also assessed

158

CHAPTER 6: CONCLUSION

how their opinions changed during the term. The module covers basic concepts in

mathematics of relevance to the development of computer software (Boolean algebra,

elementary number theory, sets, functions and relations, quantifiers, and simple induc-

tion on natural numbers). There were a total of 135 students registered on the module.

They had two lectures per week, associated coursework and weekly tutorials. Their

feedback was collected through supplementary questions included in seven of the nine

courseworks released. The participation was on a voluntary basis, but the students

would have extra marks if they expressed their opinions.

The study consisted of two parts: “Proof Reading” and “Problem Solving”. In “Proof

Reading”, we have shown calculational and conventional proofs for the same theorem

and we have asked the students which one they preferred. We repeated the same ques-

tions later in the term to measure how their opinions changed. In “Problem Solving”,

we have asked them to solve the same problems at the beginning and later in the term,

so that we could compare the solutions and determine if our methods have influenced

them.

The results obtained show that most students prefer or understand better the calcu-

lational proofs. For example, in the first coursework, 69% of the students preferred

the calculational version. In the second coursework, the theorem was that the square

root of 2 is an irrational number; contrary to the previous results, 63% of the students

preferred the conventional version. We believe that themajor problemwith the calcula-

tional proof was the introduction of a new auxiliary function. Nevertheless, the results

show that the students’ preferences depend on the specific examples being used. In-

deed, it is not enough to rewrite a proof using the calculational proof format; we also

have to explain and motivate the techniques that we use.

To assess which type of proof is easier to verify, we have included (in the fourth course-

work) two incorrect proofs that the square root of 4 is irrational (the proofs were the

same as the ones shown in the second coursework, but with all the relevant occurrences

of 2 replaced by 4). Surprisingly, 74% of the students did not detect any mistake; more-

over, 59% of these preferred the conventional proof, and 41% the calculational one. Of

the 26% of the students that detected the mistake, most of them (69%) detected the er-

ror in the calculational proof. Interestingly, there were no students detecting the error

in the conventional proof and choosing it as their favourite. The results also suggest

that a significant number of the students who preferred the conventional proof in the

second coursework may not have understood it properly.

There was a relatively large number of students changing their preference from the

conventional to the calculational proofs during the term (69%). This suggests that,

159

CHAPTER 6: CONCLUSION

as the students got more familiar with the calculational format, they found it better.

Indeed, we think that the students would be prepared to switch to the calculational

format if given more practice.

Regarding the “Problem Solving” part, we observed that most students had no difficul-

ties solving the problems posed. Moreover, a significant number of students improved

their solutions during the term. However, their use of the calculational style was not

effective. For more details about this study, we refer the reader to [FM09].

As a result of another experience, we believe that we can introduce material from this

thesis at lower levels of the educational system. In July 2010, we organised a one-

week workshop for Portuguese secondary-school students (aged between 14 and 17)

on algorithmic problem solving. The goal was to show the students how the principles

and techniques developed by computing scientists can be used to model and solve

problems. In particular, we had the opportunity to test how pre-university students

react to the calculational method and proof format, and to the material shown in the

scenarios 4, 7, and 9. We also discussed the problem “Goat, Cabbage andWolf”, shown

in chapter 2. There were 13 students registered in the workshop; all of them were

above average students. The material was surprisingly well received. For example,

they have calculated the solution to the logic puzzle shown in scenario 4 very easily,

which suggests that calculational logic can indeed be introduced at secondary-school

level. Furthermore, most of them enjoyed the recreational flavour of the problems,

and, at the end of the week, they were able to apply techniques like invariants and

symmetry by themselves (in particular, most of them were able to solve by themselves

the arm chair problem shown in scenario 7).

In the workshop, we also used two software tools: the Alloy Analyzer, which was used

to analyse specifications written in the Alloy specification language [Jac06], and Net-

Logo [TW04], a multi-agent programmable modelling environment. The goal was to

illustrate how we could use the computer to model problems and reason about some

of their properties. In particular, we have modelled the problem shown in the scenario

9, “The Chameleons of Camelot”. Using Alloy Analyzer, the students were able to find

examples of arguments for which the problem is possible to solve. However, when pro-

vided with arguments for which there is no solution, the tool was not able to produce

any answer (because it could not find any solution). We then modelled the problem as

shown in scenario 9 and we were able to get a definitive answer.

We also modelled the non-deterministic algorithm that arranges meetings between

chameleons in NetLogo. The graphical interface of the tool enriched the experience

and allowed the students to interact with the problem. Motivated by the inefficiency

160

CHAPTER 6: CONCLUSION

of the non-deterministic algorithm, some students removed the non-determinism and

constructed an efficient deterministic version.

The feedback from the students was positive. They liked the recreational flavour of the

problems, the interactivity provided by the software tools that we have used, and they

enjoyed being challenged.

Although we have conducted some preliminary experiences to assess what students

think of some of the material developed, it was never our intention to do any extensive

educational studies. Instead, our goal was to investigate how calculational algorithmic

skills might be used to solve algorithmic problems and to do mathematics, and to cre-

ate material supporting the methods described in this thesis. In fact, we do not believe

that the impact of our study can be assessed by statistically analysing classroom exper-

iments. The standard ways of assessing new educational methods, like the use of test

and control groups, randomised trials, and assessment based on lectures to students

have serious flaws. (Some of the difficulties involved in the assessment are pointed

out by Herbert Wilf in his essay [Wil].) Nevertheless, the novel results achieved in this

thesis, the preliminary results on the didactical suitability of the calculational method

obtained in [FM09], and our teaching experience encourage us to continue our efforts.

Also, the success claimed by relatedwork like [BMPS08] and [MM08], makes us believe

that we can have a positive impact.

In our view, this thesis can be used as a starting point for a broader educational pro-

gramme. There are certainly some aspects that have to improve, and other unexplored

aspects that deserve to be explored. In the next sectionwe discuss some of these aspects

and some future directions.

6.1 Future work

Supporting the teaching of mathematics Although chapter 4 can be used to support

a module on elementary number theory, it lacks some important material that should

be taught in such a module. For example, it does not include fundamental topics such

as primality or number theoretic functions (e.g., functions τ and σ). A valuable di-

rection would be to extend the chapter in order to support a module that stresses the

algorithmic content of the theory.

Also, some material shown in chapter 4 can be further developed. For example, it

would be nice to know if the condition in lemma 4.4.3 is necessary for a function to

distribute over ▽. Another interesting extension would be to generalise and adapt

161

CHAPTER 6: CONCLUSION

the algorithm developed in section 4.6.5 to the Smith-Cornacchia algorithm (see the

discussion in page 137).

Finally, in addition to number theory, there are other mathematical areas that can ben-

efit from an algorithmic and calculational approach. In [GS93], for example, the au-

thors show how the calculational method can be used to teach Discrete Mathematics.

Also, some members of the project CryptoForma are working on calculational aspects

of cryptography [Gru08, BG10]. Another recent example is [Bou09], where the author

shows how to make temporal logic more calculational.

Teaching scenarios The scenarios included in appendix I were not tested by anyone,

other than the author of this thesis (who only had the opportunity to test some of them).

Therefore, before we can use them in schools, we think it is important to get feedback

from mathematics teachers. The feedback would allow us to refine the scenarios and

to accurately determine the level at which they can be used.

With the help of mathematics teachers, it would be useful to prepare different packages

of scenarios aimed at different levels and audiences. A way to enrich these packages

would be to create a glossary with the concepts that each scenario lists. The glossary

could be done in the same spirit as the second part of Pólya’s book How to Solve It

[Pol90].

A natural direction is to create more scenarios, for we believe that the method we sup-

port can only succeed if there is an abundance of material and guides ready for the

teachers to use. In our opinion, providing resources and assistance to the teachers is

the best way to overcome the challenge of convincing them to use the approach we

propose.

Finally, we think it would be interesting to investigate and create software tools that

could be used to support the scenarios. For example, educational computer games

could be used to put into practice the relevant techniques to solve river-crossing prob-

lems and logic puzzles.

Techniques for algorithmic problem solving The techniques listed in chapter 3 are

the main techniques that support the educational material of this thesis. It would be

good to create more educational material that illustrates these techniques. In particular,

it would be interesting to solve more mathematical problems using program inversion,

since it is a technique that is not widely used in mathematics.

Another direction is to explore other techniques. Polynomials, for example, can be

162

CHAPTER 6: CONCLUSION

used to model many problems. Combining polynomial arithmetic with the notion of

invariance can lead to elegant solutions. An example is [BCF10], which explores this

technique to solve one-person solitaire-like games. Another technique that can lead to

effective and concise solutions of problems involving sequences is the use of generat-

ing functions [GKP94, p. 320], which are functions that “generate” infinite sequences.

The idea of capturing an infinite structure into a manipulable and concise expression

is appealing. We think it would be useful to investigate calculational approaches to the

theory of generating functions and their application to the design of algorithms on se-

quences. Perhaps a good starting point is the functional approach to streams described

in [Hin08].

Finally, we believe it would be interesting to explore and systematise the derivation of

algorithms that can be specified by Galois connections (in chapter 4, we have seen two

algorithms that were specified by Galois connections: the integer division and Euclid’s

algorithms). There is some undergoing related work in that direction [Oli10b, Oli10a].

Assessing the impact of the methods supported by this thesis To conclude, we be-

lieve that it is important to do more educational studies like the ones described in the

introduction of this chapter. Also, it would be valuable to collaborate with researchers

in mathematics education, so that we can assess more precisely how the methods sup-

ported by this thesis compare with conventional approaches. Now that we have mate-

rial for the teachers to use, we believe we can do a serious and extensive study on the

suitability of the methods described in this thesis.

163

References

[AZ04] Martin Aigner and Günter Ziegler. Proofs From The Book, 3rd Edition.

Springer-Verlag, 2004.

[Bac02] Roland Backhouse. The art of effective reasoning. September 2002.

[Bac03] Roland C. Backhouse. Program Construction. Calculating Implementations

from Specifications. John Wiley & Sons, 2003.

[Bac06] Roland Backhouse. Algorithmic problem solving — three years on. In

Teaching Formal Methods: Practice and Experience. BCS, The Chartered Insti-

tute for IT, 2006.

[Bac07] Roland Backhouse. Algorithmic problem solving. Lecture notes, School of

Computer Science, University of Nottingham. Updated at least annually

and widely available on the internet, but see author’s website for latest

version., September 2007.

[Bac09] Ralph-Johan Back. Structured derivations as a unified proof format for

teaching mathematics. Technical Report 949, TUCS, Jul 2009.

[BCF10] Roland Backhouse, Wei Chen, and João Ferreira. The algorithmics of

solitaire-like games. In Claude Bolduc, Jules Desharnais, and Béchir Ktari,

editors, Mathematics of Program Construction, volume 6120 of Lecture Notes

in Computer Science, pages 1–18. Springer-Verlag, 2010.

[BdM96] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall

International, 1996.

[Bel08] E. T. Bell. Men of Mathematics - The Lives and Achievements of the Great Math-

ematicians from Zeno to Poincaré. Touchstone, July 2008.

[BF08] Roland Backhouse and João F. Ferreira. Recounting the rationals: Twice!

InMathematics of Program Construction, volume 5133 of LNCS, pages 79–91.

Springer-Verlag, 2008.

164

REFERENCES

[BF10] Roland Backhouse and João F. Ferreira. On Euclid’s algorithm and elemen-

tary number theory. To appear in the journal Science of Computer Program-

ming., 2010.

[BG10] Eerke Boiten and Dan Grundy. The logic of large enough. In Claude

Bolduc, Jules Desharnais, and Béchir Ktari, editors,Mathematics of Program

Construction, volume 6120 of Lecture Notes in Computer Science, pages 42–57.

Springer-Verlag, 2010.

[BGvW96] Ralph Back, Jim Grundy, and Joakim von Wright. Structured calculational

proof. Technical Report TUCS-TR-65, 1996.

[Bla95] Andreas Blass. Seven trees in one. Journal of Pure and Applied Algebra,

103(1):1–21, 1995.

[BM06] Roland Backhouse and Diethard Michaelis. Exercises in quantifier manip-

ulation. InMathematics of Program Construction 2006, volume 4014 of LNCS,

pages 69–81. Springer-Verlag, 2006.

[BMPS08] Ralph-Johan Back, Linda Mannila, Mia Peltomaki, and Patrick Sibelius.

Structured derivations: A logic based approach to teaching mathematics.

In FORMED 2008: Formal Methods in Computer Science Education, Budapest,

2008.

[Bou09] Raymond Boute. Making temporal logic calculational: A tool for unifi-

cation and discovery. In FM ’09: Proceedings of the 2nd World Congress on

Formal Methods, pages 387–402, Berlin, Heidelberg, 2009. Springer-Verlag.

[BPSvW04] Ralph-Johan Back, Mia Peltomäki, Tapio Salakoski, and Joakim von

Wright. Structured derivations supporting high-school mathematics. In

A. Laine, J. Lavonen, and V. Meisalo, editors, Proceedings of the 20th An-

nual Symposium of the Finnish Mathematics and Science Education Research

Association, Research Report 253, pages 104–122, Helsinki, Finland, 2004.

Department of Applied Sciences of Education, University of Helsinki.

[Bri72] John Brillhart. Note on representing a prime as a sum of two squares.

Mathematics of Computation, 26(120):1011–1013, 1972.

[Bro61] Achille Brocot. Calcul des rouages par approximation, nouvelle

méthode. Revue Chronométrique, 3:186–194, 1861. Available via

http://joaoff.com/publications/2008/rationals/.

165

http://joaoff.com/publications/2008/rationals/

REFERENCES

[Bur05] David M. Burton. Elementary Number Theory. McGraw-Hill Higher Educa-

tion, 6th revised edition, December 2005.

[BvW97] Ralph-Johan Back and Joakim vonWright. Doing high schoolmathematics

carefully. Technical report, 1997.

[BvW06] Ralph-Johan Back and Joakim von Wright. Mathematics with a little bit of

logic: Structured derivations in high-school mathematics. 2006. Manuscript.

[BW08] Joe Buhler and Stan Wagon. Basic algorithms in number theory. In

Joseph P. Buhler and Peter Stevenhagen, editors, Algorithmic Number The-

ory. Lattices, Number Fields, Curves and Cryptography, pages 25–68. Cam-

bridge University Press, 2008.

[BWF06] Tim Bell, Ian H. Witten, and Mike Fellows. Computer Science Unplugged:

An enrichment and extension programme for primary-aged children. December

2006. Available from http://csunplugged.org/index.php/en/books.

[CELV99] F.W. Clarke, W.N. Everitt, L. L. Littlejohn, and S. J. R. Vorster. H. J. S. Smith

and the Fermat two squares theorem. The American Mathematical Monthly,

106(7):652–665, 1999.

[Che90] Wei Chen. A formal approach to program inversion. In CSC ’90: Proceed-

ings of the 1990 ACM annual conference on Cooperation, pages 398–403. ACM

Press, 1990.

[Cor08] G. Cornacchia. Su di un metodo per la risoluzione in numeri interi

dell’equazione ∑
n
h=0 Chx

n−hyh = P. Giornale di Matematiche di Battaglini,

46:33–90, 1908.

[CR06] Lucas Carlson and Leonard Richardson. Ruby Cookbook (Cookbooks

(O’Reilly)). O’Reilly Media, Inc., 2006.

[CW00] Neil Calkin and Herbert S. Wilf. Recounting the rationals. The American

Mathematical Monthly, 107(4):360–363, 2000.

[Dic99] Leonard E. Dickson. History of the Theory of Numbers: Diophantine Analysis:

Diophantine Analysis Vol 2 (AMS/Chelsea Publication). American Mathemat-

ical Society, August 1999.

[Dij68] Edsger W. Dijkstra. Go To statement considered harmful. Comm. ACM,

11(3):147–148, 1968.

166

http://csunplugged.org/index.php/en/books

REFERENCES

[Dij75] Edsger W. Dijkstra. Guarded commands, non-determinacy and formal

derivation of programs. Comm. ACM, 18(8):453–457, 1975.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Dij82a] Edsger W. Dijkstra. Program inversion. In Selected Writings on Computing:

A Personal Perspective, pages 351–354. Springer-Verlag, 1982.

[Dij82b] Edsger W. Dijkstra. A theorem about odd powers of odd integers. In

Selected Writings on Computing: A Personal Perspective, pages 349–350.

Springer-Verlag, 1982.

[Dij87] Edsger W. Dijkstra. Our proof format. January 1987.

[Dij90] EdsgerW. Dijkstra. Fibonacci and the greatest common divisor. April 1990.

[Dij93] Edsger W. Dijkstra. A derivation of a proof by D. Zagier. August 1993.

[DS90] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.

Springer-Verlag, 1990.

[Erd39a] Paul Erdös. Note on products of consecutive integers, I. J. London Math.

Soc., 14:194–198, 1939.

[Erd39b] Paul Erdös. Note on products of consecutive integers, II. J. London Math.

Soc., 14:245–249, 1939.

[ES75] Paul Erdös and J. L. Selfridge. The product of consecutive integers is never

a power. Illinois J. Math., 19:292–301, 1975.

[Fei87] Wim H. J. Feijen. On programming and mathematical reasoning. Circu-

lated privately, October 1987.

[Fer09a] João F. Ferreira. On the inexistence of a unique existential binary operator.

Source code available from http://github.com/jff, August 2009.

[Fer09b] João F. Ferreira. On the unique existential quantifier. Available from the

author, November 2009.

[Fer10] João F. Ferreira. Designing an algorithmic proof of the two-squares the-

orem. In Claude Bolduc, Jules Desharnais, and Béchir Ktari, editors,

Mathematics of Program Construction, volume 6120 of LNCS, pages 140–156.

Springer-Verlag, 2010.

167

http://github.com/jff

REFERENCES

[FM09] João F. Ferreira and Alexandra Mendes. Students’ feedback on teaching

mathematics through the calculational method. In Frontiers in Education

Conference, 2009. FIE ’09. 39th IEEE, 2009.

[FMBB09] João F. Ferreira, Alexandra Mendes, Roland Backhouse, and Luís S. Bar-

bosa. Which mathematics for the information society? In Teaching Formal

Methods, volume 5846 of LNCS, pages 39–56. Springer-Verlag, 2009.

[Fra98] John B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, 6th

edition, 1998.

[Gau01] Carl F. Gauss. Disquisitiones Arithmeticae. G. Fleischer, Leipzig, 1801. En-

glish translation by A. A. Clarke, Springer-Verlag, 1986.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-

matics : a Foundation for Computer Science. Addison-Wesley, second edition,

1994.

[GLB06] Jeremy Gibbons, David Lester, and Richard Bird. Enumerating the ratio-

nals. Journal of Functional Programming, 16(3):281–291, 2006.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, 1981.

[Gru08] Dan Grundy. Concepts and Calculation in Cryptography. PhD the-

sis, Computing Laboratory, University of Kent, 2008. Available from

www.cs.kent.ac.uk/~eab2/crypto/thesis.web.pdf.

[GS93] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.

Springer-Verlag, 1993.

[GS95] David Gries and Fred B. Schneider. Teaching math more effec-

tively, through calculational proofs. The American Mathematical Monthly,

102(8):691–697, 1995.

[Hay00] Brian Hayes. On the teeth of wheels. American Scientist, 88(4):296–300, July

2000.

[HE56] Thomas L. Heath and Euclid. The Thirteen Books of Euclid’s Elements, Books

III–IX, volume II. Dover Publications, Incorporated, 1956.

[Her48] Hermite. Note au sujet de l’article précédent. Journal de Mathématiques

Pures et Appliquées, 13:15, 1848.

168

www.cs.kent.ac.uk/~eab2/crypto/thesis.web.pdf

REFERENCES

[Hin08] Ralf Hinze. Functional pearl: streams and unique fixed points. In ICFP ’08:

Proceeding of the 13th ACM SIGPLAN international conference on Functional

programming, pages 189–200, New York, NY, USA, 2008. ACM.

[Hir95] Keith E. Hirst. Numbers, Sequences and Series. Edward Arnold, 1995.

[HMW90] Kenneth Hardy, Joseph B. Muskat, and Kenneth S. Williams. A determin-

istic algorithm for solving n = f u2 + gv2 in coprime integers u and v.

Mathematics of Computation, 55(191):327–343, July 1990.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-

nications of the ACM, 12(10):576–580, October 1969.

[Hon97] Ross Honsberger. In Polya’s Footsteps: Miscellaneous Problems and Es-

says (Dolciani Mathematical Expositions). The Mathematical Association of

America, October 1997.

[Hon98] Ross Honsberger. Ingenuity in Mathematics (NewMathematical Library). The

Mathematical Association of America, August 1998.

[IPL95] The calculational method. volume 53, Amsterdam, The Netherlands,

February 1995. Elsevier North-Holland, Inc.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The

MIT Press, 2006.

[JJ98] Gareth A. Jones and Josephine M. Jones. Elementary Number Theory.

Springer-Verlag, July 1998.

[Knu97] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algo-

rithms, volume 2. Addison-Wesley, Boston, MA, USA, 3rd edition, 1997.

[KRSS03] Donald E. Knuth, C.P. Rupert, Alex Smith, and Richard Stong. Recounting

the rationals, continued. The American Mathematical Monthly, 110(7):642–

643, 2003.

[Law91] F. W. Lawvere. Some thoughts on the future of category theory. Lecture

Notes in Mathematics, 1488:1–13, 1991.

[MB03] Shin-Cheng Mu and Richard Bird. Rebuilding a tree from its traversals: A

case study of program inversion. In Programming Languages and Systems,

volume 2895 of LNCS, pages 265–282. Springer-Verlag, 2003.

169

REFERENCES

[MJ84] F. L. Morris and C. B. Jones. An early program proof by Alan Turing. IEEE

Ann. Hist. Comput., 6(2):139–143, 1984.

[MM08] Z. Michalewicz and M. Michalewicz. Puzzle-based Learning: Introduction to

Critical Thinking, Mathematics, and Problem Solving. Hybrid Publishers, 1st

edition, 2008.

[Oli10a] J.N. Oliveira. A (calculational) look at optimization. Talk at the 1st

Workhsop of the Mondrian Project, Aveiro, Portugal, July 2010.

[Oli10b] J.N. Oliveira. A look at program “G”alculation. Talk at IFIP WG 2.1 65th

Meeting, Póvoa de Lanhoso, Portugal, January 2010.

[PC06] Tim Patrick and John Craig. Visual Basic 2005 Cookbook: Solutions for VB

2005 Programmers (Cookbooks (O’Reilly)). O’Reilly Media, Inc., 2006.

[Pip07] Dan Piponi. Arboreal isomorphisms from nuclear pennies, September

2007. Blog post available at http://blog.sigfpe.com/2007/09/arboreal-

isomorphisms-from-nuclear.html.

[Pol81] George Polya. Mathematical Discovery. On understanding, learning, and teach-

ing problem solving. John Wiley & Sons, combined edition, 1981.

[Pol90] George Polya. How to Solve It (Penguin Science). Penguin Books Ltd, April

1990.

[Ser48] J. A. Serret. Sur un théorème relatif aux nombres entiers. Journal de Mathé-

matiques Pures et Appliquées, 13:12–14, 1848.

[Slo] N. J. A. Sloane. The on-line encyclopedia of integer sequences.

[Ste58] Moritz A. Stern. Üeber eine zahlentheoretische Funktion. Journal für die

reine und angewandte Mathematik, 55:193–220, 1858.

[TW04] Seth Tisue andUriWilensky. Netlogo: A simple environment for modeling

complexity. In in International Conference on Complex Systems, pages 16–21,

2004.

[vdS91] Jan L. A. van de Snepscheut. Inversion of a recursive tree traversal. Inf.

Process. Lett., 39(5):265–267, 1991.

[vdS93] Jan L.A. van de Snepscheut. What Computing Is All About. Springer-Verlag,

1993.

170

REFERENCES

[vG90] Antonetta J. M. van Gasteren. On the Shape of Mathematical Arguments.

Number 445 in Lecture Notes in Computer Science. Springer-Verlag, New

York, NY, USA, 1990.

[vW91] J. von Wright. Program inversion in the refinement calculus. Inf. Process.

Lett., 37(2):95–100, 1991.

[Wag90] Stan Wagon. Editor’s corner: The Euclidean algorithm strikes again. The

American Mathematical Monthly, 97(2):125–129, 1990.

[Wil] Herbert S.Wilf. Can there be “research inmathematical education”? Avail-

able from http://www.math.upenn.edu/~wilf/website/PSUTalk.pdf.

[Win06] Jeannette M. Wing. Computational thinking. Communications of the ACM,

49(3):33–35, March 2006.

[Win09] Peter Winkler. Puzzled: Understanding relationships among numbers.

Communications of the ACM, 52(5):112, 2009.

[Zag90] D. Zagier. A one-sentence proof that every prime p ≡ 1(mod 4) is a sum of

two squares. The American Mathematical Monthly, 97(2):144+, 1990.

[Zei06] Paul Zeitz. The Art and Craft of Problem Solving. John Wiley & Sons, 2nd

edition, September 2006.

171

http://www.math.upenn.edu/~wilf/website/PSUTalk.pdf

Appendix I

Teaching Scenarios for Teaching

Algorithmic Problem Solving

172

SCENARIO 1

Exploring Algebraic Symmetries

1.1 Brief description and goals

This teaching scenario presents a problem that admits a simple solution by exploring

two important principles in problem solving: goal-directed constructions and algebraic

symmetries. It can be used to introduce distributivity, the notion of calculational proof

format, and to practise formal modelling.

1.2 Problem

Prove that the product of four consecutive positive natural numbers cannot be the

square of an integer number.

1.3 Prerequisites

Elementary algebraic properties: multiplication distributes over addition and differ-

ence of two squares.

1.4 Resolution and notes

The goal is to prove that the product of four consecutive positive natural numbers

cannot be the square of an integer number. Our first step is to formalise the goal, so

that we can be precise about what the problem requires. Assuming that n is a positive

natural number, one way of formalising the goal is

S.(n(n+1)(n+2)(n+3))

173

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

= { justification }

false,

where S.n is defined to be true only when n is the square of an integer. We now have

to provide a convincing (and preferably short and well-motivated) justification that al-

lows us to conclude the equality stated above. In other words, we have to manipulate

the first expression until we get an intermediate expression that is obviously false. Be-

cause we do not know any properties involving S and the product n(n+1)(n+2)(n+3),

we have to transform the product into an expression that is not a square. But how can

we show that something is not a square? This strategy does not seem very effective,

since we cannot think of an easy criterion for determining when a number is a square.

We need a new strategy. Having nothing else to play with, let us manipulate the prod-

uct n(n+1)(n+2)(n+3) by using the property that multiplication distributes over ad-

dition. We record the manipulations using the format shown above, where two equiv-

alent expressions are written in separate lines and the justification for their equality is

written between them in curly brackets.

S.(n(n+1)(n+2)(n+3))

= { we use distributivity, twice; there are three ways in which

we can develop the product, so we choose to multiply

n by n+3 and n+1 by n+2 in order to introduce symmetry

—both have the term n2+3n }

S.((n2+3n)(n2+3n + 2))

= { we introduce symmetry again; we want to transform the

argument of S into an expression that looks like a square }

S.(((n2+3n + 1)−1)((n2+3n + 1)+1))

= { difference of two squares, i.e., (m−1)(m+1) = m2−1 }

S.((n2+3n + 1)2−1)

= { there are no two consecutive positive integers

that are both squares }

false .

174

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

Note how symmetry guided our calculation! In fact, this problem is asking for symme-

try, since the goal is to determine if we can express the product n(n+1)(n+2)(n+3) as

a product of two equal numbers, i.e., as a product with a symmetric shape. In general,

exploring and identifying symmetry is an important problem-solving skill, since it can

help us to avoid unnecessary duplication and to simplify expressions. Also, if the so-

lution of an algorithmic problem is symmetric, it means that we only need to solve half

of the problem: the second half can be immediately derived from the first. The river-

crossing problems shown in [Bac07] are excellent examples of symmetric algorithmic

problems.

1.5 For the teacher

Formalising the problem in a goal-oriented way The teacher should help the stu-

dents formalising the problem and defining a structure for their argument. We suggest

the following structure for the argument:

S.(n(n+1)(n+2)(n+3))

= { justification }

false,

where n is a positive natural number and S.n is defined to be true only when n is the

square of an integer.

We now have to provide a convincing (and preferably short and well-motivated) justi-

fication that allows us to conclude the equality stated above. In other words, we have

to manipulate the first expression until we get an intermediate expression that is ob-

viously false. Because we do not know any properties involving S and the product

n(n+1)(n+2)(n+3), we have to transform the product into an expression that is not a

square. The teacher may extend the structure shown above to reflect this strategy:

S.(n(n+1)(n+2)(n+3))

= { justification }

S.(E.n)

= { the expression E.n is not a square }

false .

175

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

But how can we show that something is not a square? In other words, how can we

specify E.n? This strategy does not seem very effective, since we cannot think of an

easy criterion for determining when a number is a square. We need a new strategy.

Exploring the algebraic symmetries Having nothing else to play with, let us manip-

ulate the product n(n+1)(n+2)(n+3) by using the property that multiplication dis-

tributes over addition. We record the manipulations using the format shown above,

where two equivalent expressions are written in separate lines and the justification for

their equality is written between them in curly brackets. The teacher may want to pro-

vide more details on the proof format.

The students should understand that there are three different ways in which we can

develop the expression

n(n+1)(n+2)(n+3) .

They are:

• (n2+n)(n2+5n + 6)

• (n2+2n)(n2+4n + 3)

• (n2+3n)(n2+3n + 2)

We recommend the teacher to ask the students which one they think is better. The

discussion should lead them to choose the one that is more symmetric, that is:

(n2+3n)(n2+3n + 2) .

There are several reasons that justify the introduction of symmetry. First, when two

formulae share some symmetry, it is easier to spot the differences between them. Sec-

ond, symmetry implies duplication; by highlighting the places where duplication oc-

curs, we may be able to avoid it. Third, and more specific to this example, we want

to transform the product n(n+1)(n+2)(n+3) into something similar to a square, i.e.,

into something similar to a product with a symmetric shape (a product of two equal

numbers). Using the discussion on symmetry as a starting point, the following steps

should be symmetry driven and the following calculation can be written.

S.(n(n+1)(n+2)(n+3))

= { we use distributivity, twice; there are three ways in which

we can develop the product, so we choose to multiply

176

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

n by n+3 and n+1 by n+2 in order to introduce symmetry

—both have the term n2+3n }

S.((n2+3n)(n2+3n + 2))

= { we introduce symmetry again; we want to transform the

argument of S into an expression that looks like a square }

S.(((n2+3n + 1)−1)((n2+3n + 1)+1)) .

Note how exploring symmetry allowed us to rewrite the initial product into a product

of two almost equal expressions. We observe that the subexpression n2+3n + 1 is dupli-

cated and we know how to avoid it, since (m−1)(m+1) = m2−1 for all m. We can thus

write:

S.(((n2+3n + 1)−1)((n2+3n + 1)+1))

= { difference of two squares, i.e., (m−1)(m+1) = m2−1 }

S.((n2+3n + 1)2−1) .

The final steps We have now reached a stage where we have the expression

S.((n2+3n + 1)2−1) .

The teacher must be sure that the students understand that (n2+3n + 1)2 is a square

and that this expression means that the predecessor of (n2+3n + 1)2 is also a square.

Then, the teacher may ask the students if they know any two consecutive positive inte-

ger numbers that are both squares. Once they realise that there are no two consecutive

positive squares, they can conclude the argument.

The teacher can ask the students what would happen if we relax the conditions and

consider all natural numbers, that is, if we allow n to be a natural number (including

zero).

1.5.1 Questions that the teacher should ask

Formalising the problem in a goal-oriented way

• How can we express formally the product of four consecutive positive nat-

ural numbers?

The goal is to express formally the product of four consecutive numbers. De-

pending on the level of the students, the teacher can use this first step as an

177

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

exercise in formal modelling. If the students do not know how to express it,

the teacher may write down the product of two consecutive positive natural

numbers and ask for the answer for three and four.

• What is our goal and how can we layout our calculation?

Once the product is formally expressed, the students should understand

clearly what is the goal. A traditional way to express the goal is saying that

the following equation has no solution in x:

n(n+1)(n+2)(n+3) = x2 .

Using this approach, the students should manipulate the left-hand expres-

sion and get a new expression that cannot be written as a square. Another

alternative is to introduce a predicate S and use the following structure for

the argument:

S.(n(n+1)(n+2)(n+3))

= { justification }

false,

where S.n is defined to be true only when n is the square of an integer. We

prefer this alternative, because it is a concise and goal-oriented translation

of the problem statement.

• How can we show that an expression is not a square?

The goal is to conclude that it is not easy to come up with a general criterion

for determining when a number is not a square. It is possible that some

students propose that an expression is not a square if it has the shape n2−1

(although, according to our experience, that has never happened!). If that

is the case, the teacher may act unaware that that is the criterion we are

going to use. We usually write down the students’ proposals in one of the

corners of the whiteboard and when we reach the solution, we confront the

students’ guesses with the solution we have constructed. We think this is an

effective way of showing that guessing is not always the best foundation for

a mathematical investigation. (It also shows that, usually, students are not

good guessers.)

Exploring the algebraic symmetries

• In how many ways can we develop the expression n(n+1)(n+2)(n+3)?

178

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

The goal is to make the students aware that the calculation can be developed

in different ways. The teacher should write down (with the students’ help)

the three possible expressions.

• From the three possible expressions, which one would you choose? Why?

The goal is to introduce the idea that it is generally better to exploit sym-

metry. If they do not know which one to choose, we suggest the teacher

to explain them that it is usually better to exploit symmetric formulae. The

teacher can help them by explaining what algebraic symmetry is and by

asking which one of the three possibilities is more symmetric. The teacher

can also elaborate on the reasons shown above to justify the introduction of

symmetry.

• We now have the expression (n2+3n)(n2+3n + 2). Can we introduce more

symmetry?

Once it is shown to the students how to make this expressionmore symmet-

ric, it is easy to see how to do it. However, rewriting 2 as 1+1 and 0 as−1+1

is not an obvious step for someone who does not have practice in algebraic

manipulations. We suggest the teacher to first rewrite n2+3n as n2 + 3n + 0

and then rewrite 2 as 1+1 and 0 as −1+1.

The final step

• We have reached the expression S.((n2+3n + 1)2−1). What does it mean?

It is important to understand that (n2+3n + 1)2−1 is the predecessor of a

square number.

• What is the distance between two consecutive squares?

Depending on the level of the students, the teacher may elaborate on the

distance between two consecutive squares. We can do a simple calculation

to compute this distance d :

n2+d = (n+1)2

= { arithmetic }

n2+d = n2 + 2n + 1

= { cancellation }

d = 2n + 1 .

A consequence is that there are not two consecutive positive square num-

bers, and therefore S.((n2+3n + 1)2−1) is false.

179

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

• We have seen that the theorem is valid for positive natural numbers. Is the

theorem valid for all natural numbers?

The students should understand that if we consider 0, then the theorem is

not valid. (Because 0×1×2×3 is 02.)

1.5.2 Questions that the teacher should not ask

Formalising the problem in a goal-oriented way

• Is n(n+1)(n+2)(n+3) a suitable formalisation of the product of four con-

secutive numbers?

It is better to leave to the students the formalisation of the product. If they

are having problems doing it, the teacher may illustrate how we could for-

malise the product of two consecutive numbers.

Exploring the algebraic symmetries

• What are the three possible developments for n(n+1)(n+2)(n+3)?

If they propose some specific manipulation, the teacher can ask why they

have chosen that one and he may ask which other (and howmany) manipu-

lations are possible. In such a simple problem as this one, the teacher should

leave most of the work to the students.

The final step

• Can you see that there are no two consecutive positive natural numbers that

are both squares?

This question gives away the crucial property that is used to solve the prob-

lem. We think it is better to ask what they can say about (n2+3n + 1)2−1

and what is the distance between two consecutive squares, because these

questions guide the students towards the relevant property, rather than just

giving it away.

1.5.3 Concepts that the teacher should introduce

Calculational proof

Goal-directed investigations

Symmetry

180

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

1.6 Extensions and exercises

Exercise 1.6.1 (Warm-up) Can the product of two consecutive positive natural num-

bers be a square?

2

Exercise 1.6.2 (Odd number of divisors) Suppose that n is a natural number with

an odd number of divisors. What can you say about n? (Try to exploit the following

symmetry between the divisors of n: if k divides n, n÷k also divides n.)

2

Exercise 1.6.3 (n doors in a row) You have n doors in a row that are all initially

closed. Each door is sequentially numbered: the first door is door number 1, the second

door is door number 2, etc. You make n passes by the doors starting with the first door

every time. The first time through you visit every door and toggle the door (i.e., if the

door is closed, you open it; if it is open, you close it). The second time you only visit

every second door (doors 2,4,6, etc.). The third time, every 3rd door (doors 3, 6, 9, etc.),

etc, until you only visit the 100th door.

At the end of this process, which doors are open?

2

1.7 Solutions to extensions and exercises

1.6.1 Using a similar approach as shown above, we want to determine the validity of

S.(n(n+1)) ,

which is the same as

S.(n2+n) .

Now, the distance d between two consecutive squares can be easily computed:

n2+d = (n+1)2

= { arithmetic }

181

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

n2+d = n2 + 2n + 1

= { cancellation }

d = 2n + 1 .

Because n < 2n + 1, then n2+n can not be a square and S.(n2+n) is false.

2

1.6.2 This exercise can be solved by using the following symmetry between the divisors

of n: if k is a divisor of n, then n÷k is also a divisor of n. This means that divisors come

in pairs: for each divisor k, there is an associated divisor n÷k (also, note that if k is a

divisor of n, then n÷(n÷k) is k). Take the example of the number 28, whose divisors

are 1, 2, 4, 7, 14, and 28. Identifying the symmetries, we see that 28 has three pairs of

divisors: 1 and 28÷1, 2 and 28÷2, and 4 and 28÷4.

A consequence is that a natural number n has an odd number of divisors exactly when

there exists a divisor k such that k = n÷k, that is, k2 = n. For example, the number

16 has five divisors: 1, 2, 4, 8, and 16. Identifying the symmetries, we see that 1 is

associated with 16, 2 is associated with 8, and 4 is associated with itself (i.e., 4= 16÷4).

Therefore, we conclude that a number n with an odd number of divisors is a perfect

square.

2

1.6.3 In the kth pass by the doors, you will toggle all the doors whose numbers are

multiples of k. Moreover, because the doors were closed initially, if you toggle a door

an even number of times, that door remains closed. Similarly, if you toggle a door an

odd number of times, that door becomes open.

Therefore, at the end of the process, the open doors are the ones that were toggled an

odd number of times. In other words, the open doors are the doors whose numbers

have an odd number of divisors.

Now, using the result from the previous exercise, the open doors are the doors whose

numbers are perfect squares.

2

1.8 Further reading

The problem discussed in this scenario was found in [Zei06, p. 4], where it is used

to illustrate the strategy “get your hands dirty”. The author computes the value of

182

SCENARIO 1: EXPLORING ALGEBRAIC SYMMETRIES

n(n+1)(n+2)(n+3) for the first six positive integers and he gets 24, 120, 360, 840, 1680,

17160. Then he writes “Just about everyone notices that the first two values are one less

than a perfect square.” and he conjectures that the value of n(n+1)(n+2)(n+3) is one

less than a perfect square. Finally, he verifies this conjecture by exploring symmetry

(as seen in our solution). In our view, the guessing part is completely unnecessary

and should be avoided. Whilst the guessed conjecture is specific to this problem, the

emphasis on symmetry and algebraic manipulation can be helpful in many different

problems.

To conclude, the problem discussed in this scenario is an instance of the more general

theorem proved in 1939 by Erdös, stating that the product of consecutive integers is never

a square [Erd39a, Erd39b]. The theorem is even more general, since Erdös and Selfridge

published in 1975 a proof that the product of two or more consecutive positive integers is

never a power [ES75].

183

SCENARIO 2

Calculating Orderings Between Two

Numbers

2.1 Brief description and goals

The goal of this teaching scenario is to illustrate the effectiveness of calculational and

goal-directed constructions. In particular, it shows how the introduction of variables

for representing objects other than numbers can help. It can also be used to introduce

the notions of calculational proof and monotonicity.

2.2 Problem

Is
√
2 +

√
7 less, equal or greater than

√
3 +

√
5 ? (Assume that all arising square

roots are taken with the positive sign.)

2.3 Prerequisites

Ordering relations and elementary algebra skills.

2.4 Resolution and notes

The goal of the problem is to determine if the numbers
√
2 +

√
7 and

√
3 +

√
5 are

equal, or if the first is greater, or if the second is greater. More formally, we want to

calculate the relation R between the two numbers:

(
√
2 +

√
7) R (

√
3 +

√
5) ,

184

SCENARIO 2: CALCULATING ORDERINGS BETWEEN TWO NUMBERS

where R is either less-than (<), equals (=), or greater-than (>). The difficulty in com-

paring the numbers is the presence of the square roots. However, we can eliminate

them, because we know that we can square both sides related by R. In other words, we

know that for positive a and b,

(2.4.1) a2 R b2 ≡ a R b .

We usually describe this rule as “squaring is invertible and monotonic with respect to

R”. Together with the fact that addition is also invertible and monotonic with respect

to R, we can calculate the relation R as follows:

(
√
2 +

√
7) R (

√
3 +

√
5)

= { squaring is invertible and monotonic with respect to R }

(
√
2 +

√
7)2 R (

√
3 +

√
5)2

= { arithmetic }

(9 + 2×
√
14) R (8 + 2×

√
15)

= { addition is invertible and monotonic with respect to R }

(1 + 2×
√
14) R (2×

√
15)

= { squaring is invertible and monotonic with respect to R }

(57 + 4×
√
14) R 60

= { addition is invertible and monotonic with respect to R }

(4×
√
14) R 3

= { squaring is invertible and monotonic with respect to R }

224 R 9

= { conclusion }

R is > .

The calculation shows that the relation R is greater-than, that is, the number
√
2 +

√
7

is greater than
√
3 +

√
5.

2.5 For the teacher

Name the unknown The teacher must be sure the students understand that the un-

known is an ordering relation. An idea is to make the analogy with equations; the

185

SCENARIO 2: CALCULATING ORDERINGS BETWEEN TWO NUMBERS

students should have no problem understanding that the variable x in an equation like

x + 3= 5 represents a number. Similarly, the teacher should introduce a variable for

the relation:

(
√
2 +

√
7) R (

√
3 +

√
5) .

The goal is to calculate R. It is important that the students understand that R can be

one of less-than, equals or greater-than relation.

Understanding the problem in terms of symbols The teacher should ask the stu-

dents why they cannot compare immediately the two expressions; they should under-

stand that the problem is calculating the square roots. This motivates the exploration

of symbol dynamics: is it possible to eliminate the occurrences of the square root op-

erator? The idea is to introduce the following rule that is valid for positive a and b:

(2.5.1) a2 R b2 ≡ a R b .

We usually describe this rule as “squaring is invertible and monotonic with respect to

R”. We say that function f is monotonic with respect to an ordering R when:

a R b ⇒ f .a R f .b .

In other words, the ordering determined by R is preserved by f . We also have the

implication in the other direction, because the inverse of f is monotonic:

f .a R f .b

⇒ { f−1 is monotonic with respect to R }

f−1. f .a R f−1. f .b

= { f and f−1 are inverse functions }

a R b .

Instantiating f with the square function and f−1 with the square root function, we can

immediately conclude rule (2.5.1).

Also, the teacher may refer that addition is invertible and monotonic with respect to R,

i.e., for all a, b, and k:

(a+k) R (a+k) ≡ a R b .

Once these rules are introduced, the calculation becomes a straightforward exercise in

algebraic manipulation. We recommend the teacher to explain these rules in terms of

186

SCENARIO 2: CALCULATING ORDERINGS BETWEEN TWO NUMBERS

symbol dynamics: for example, whenever we have an expression of the shape a R b,

we can replace it by another expression where both sides are squared, i.e., a2 R b2.

(Alternatively, whenever we have an expression of the shape a2 R b2, we can replace

it by another expression where the squares are removed.) As the calculation proceeds,

the teacher should also explain the proof format.

Explaining the proof format If the teacher is using the scenario to introduce the for-

mat of calculational proofs, we recommend the emphasis on the importance of the hints

and on the advantages of the format.

Discussing generalisations If the opportunity arises, we recommend the teacher to

present the generalisation shown in exercise 2.6.2. It can also be given as homework.

2.5.1 Questions that the teacher should ask

Name the unknown:

• In the problems we have seen before, you have introduced variables for the

unknowns. Can you apply the same strategy here? If so, what is the un-

known? What would a variable represent in this problem?

The goal is to help the students understand that the unknown in this prob-

lem is an ordering relation.

Understanding the problem in terms of symbols:

• Why can’t you compare the two expressions immediately? In terms of sym-

bols, what should you do? Do you know any rule that allows you to do

that?

The goal is to help the students understand that the origin of the problem is

the square root operator. If they don’t know any rule to eliminate the square

roots, the teacher can present and explain rule (2.5.1).

• Do you understand why saying that a function is monotonic is the same as

saying that the order is preserved after applying the function to both sides?

The goal is to help the students make the connection between the formula-

tion of monotonicity and its meaning. The teacher may also ask the students

if they think that multiplication by a negative number is monotonic. (They

should realise that it is not; that is why both sides have to remain positive.)

187

SCENARIO 2: CALCULATING ORDERINGS BETWEEN TWO NUMBERS

2.5.2 Questions that the teacher should not ask

Name the unknown:

• Can you use a variable for the ordering relation?

This question is obtrusive and it should occur naturally to the student. There

is only one unknown, and that is what the students must name.

Understanding the problem in terms of symbols:

• Can you see that the goal is to eliminate the square root operator?

The teacher should only ask this question if the students fail to see the sym-

bol manipulations they have to perform. It is important to ask first what

kind of manipulations they can do in order to get the answer.

2.5.3 Concepts that the teacher should introduce

Goal-directed investigations

Calculational proof

Monotonicity

2.6 Extensions and exercises

Exercise 2.6.1 (Warm-up) Determine the ordering relation between
√
3 +

√
13 and

√
5 +

√
11. Use the same style of calculation as before.

2

Exercise 2.6.2 (Generalisation) Explain how you could determine the ordering rela-

tion between
√
a +

√
b and

√
c +

√
d.

2

Exercise 2.6.3 (Specialisation) Apply the method you devised in exercise 2.6.2 to

solve the problem of section 2.2 and exercise 2.6.1.

2

188

SCENARIO 2: CALCULATING ORDERINGS BETWEEN TWO NUMBERS

2.7 Solutions to extensions and exercises

2.6.1 We can determine the ordering relation as before.

(
√
3 +

√
13) R (

√
5 +

√
11)

= { squaring is invertible and monotonic with respect to R }

(
√
3 +

√
13)2 R (

√
5 +

√
11)2

= { arithmetic }

(16 + 2×
√
39) R (16 + 2×

√
55)

= { addition is invertible and monotonic with respect to R }

(2×
√
39) R (2×

√
55)

= { squaring is invertible and monotonic with respect to R }

(4×39) R (4×55)

= { arithmetic }

156 R 220

= { conclusion }

R is < .

2

2.6.2 We can determine the ordering relation as before, but we need to ensure that the

terms that occur in both sides remain positive.

(
√
a +

√
b) R (

√
c +

√
d)

= { squaring is invertible and monotonic with respect to R }

(
√
a +

√
b)2 R (

√
c +

√
d)2

= { arithmetic; u := a+b , v := a×b, x := c+d and y := c×d }

(u + 2×√
v) R (x + 2×√

y)

= { addition is invertible and monotonic with respect to R;

to guarantee that both sides are positive, assume that u≤ x;

use z := x−u }

(2×√
v) R (z + 2×√

y)

189

SCENARIO 2: CALCULATING ORDERINGS BETWEEN TWO NUMBERS

= { squaring is invertible and monotonic with respect to R;

p := z2 + 4×y and q := z× 2×√
y }

(4×v) R (p + 2×q)

= { there are two cases }

if 4×v < p → R is <

2 p ≤ 4×v → R is the same as in (4×v − p)2 R (4×q2)

fi .

Note that we have assumed the condition u≤ x, which means that we may have to

swap the terms of the relation to apply the result. This assumption is to guarantee that

both sides are positive. Alternatively, we can subtract the minimum of u and x from

both sides.

2

2.6.3 Let us start with exercise 2.6.1. Instantiating the variables with the concrete val-

ues, we get

a = 3 ∧ b = 13 ∧ c = 5 ∧ d = 11 .

From these values, we compute the value of the other variables:

u = 16 ∧ v = 39 ∧ x = 16 ∧ y = 55 , and

4×v = 156 ∧ z = 0 ∧ p = z2 + 4×y = 220 .

Since u≤ x, we can safely apply the result obtained in exercise 2.6.2. Hence, and be-

cause 4×v < p, we conclude that R is <.

Let’s now solve the problem of section 2.2. For this problem, we have to swap the

terms, because u > x. That means that we are going to determine the relation R′ in the

expression

(
√
3 +

√
5) R′ (

√
2 +

√
7) .

Instantiating the variables with the concrete values yields

a = 3 ∧ b = 13 ∧ c = 5 ∧ d = 11 .

From these values, we compute the value of the other variables:

u = 8 ∧ v = 15 ∧ x = 9 ∧ y = 14 , and

190

SCENARIO 2: CALCULATING ORDERINGS BETWEEN TWO NUMBERS

4×v = 60 ∧ z = 1 ∧ p = z2 + 4×y = 57 ∧ q = 2×
√
14 .

Now, since p < 4×v, the relation R′ is the same as in

(60 − 57)2 R′ (4×(2×
√
14)2) .

Evaluating both terms we get

9 R′ 224 ,

from where we deduce that R′ is <. Since we have swapped the original terms, we

conclude that R is >.

2

2.8 Further reading

This problem was taken from the chapter 3 of [Bac03]. We recommend that chapter as

an introduction to calculational proofs.

Also, in the chapter 8 of [Pol81], Pólya discusses this problem. In that chapter, Pólya

uses the terms “working backward [from the goal]”, “regressive planning”, and “anal-

ysis” for what we call “goal-oriented”.

191

SCENARIO 3

The Island of Knights and Knaves

3.1 Brief description and goals

This teaching scenario is about a type of logic puzzle where the algebraic properties of

equivalence play a central role. We adopt a calculational approach: instead of solving

the puzzle by performing case analysis, we calculate its solution. The scenario can be

used as an introduction to calculational logic and to Boolean equality.

3.2 Problem

The island of knights and knaves has two types of inhabitants: ‘knights’, who always

tell the truth; and ‘knaves’, who always lie.

Someone tells you that the island has gold and you go there to collect it. You find a

native at a fork in the road and you want to determine whether the gold can be found

by following the left or the right fork. Which question do you have to formulate such

that the reply will be “yes” if the left fork should be followed and “no” if the right fork

should be followed?

3.3 Prerequisites

Familiarity with the calculational proof style can be helpful.

192

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

3.4 Resolution and notes

The solution we present here is the same as the one shown in [Bac03, chapter 5]. Sup-

pose A is the proposition ‘person A is a knight’ and suppose that person A makes a

statement S1. Then A is true is the same as S is true. That is,

(3.4.1) A≡ S .

This is the most important insight for solving puzzles about the island. For example, if

A says ‘I am the same type as B’, then A’s statement is the same as

A≡ B .

Replacing S in (3.4.1) by this statement, we get A≡ (A≡ B), which by associativity and

reflexivity of equivalence simplifies to B. So, from this statement, we can infer that B is

a knight, but nothing about A.

Similarly, if a native is asked a yes/no question Q, then the response to the question

is A≡ Q. That is, the response will be ‘yes’ if the native is a knight and the answer is

really yes, or A is a knave and the answer is really no. Otherwise, the response will be

‘no’. For example, asked the question ‘is B a knight?’ A will respond ‘yes’ if they are

both the same type, otherwise ‘no’. That is, A’s response is ‘yes’ or ‘no’ depending on

the truth or falsity of A≡ B.

The goal of the problem is to construct a question Q, to which the native responds

‘yes’ if the left fork leads to the gold or ‘no’ otherwise. Let G be the proposition ‘the

left fork leads to the gold’. We require that G equivales the response to the ques-

tion is yes. But the response to the question is yes is the same as A≡ Q. So, we re-

quire that G≡ (A≡ Q). Now, by associativity and symmetry of equivalence, we have

Q≡ (G≡ A). The question is thus: is the statement that the left fork leads to the gold equiv-

alent to you being a knight?

3.5 Notes for the teacher

Key observation We suggest the teacher to introduce first the key property (3.5.1). So,

suppose A is the proposition ‘person A is a knight’ and suppose A makes a statement

S. Then A is true is the same as S is true. That is, using ≡ to denote equivalence (i.e.,

equality of propositions),

(3.5.1) A≡ S .
1Note that we overload A to denote both ‘person A’ and the proposition that the ‘person A is a knight’.

This means that we need to be careful and to rely on the context when using the symbol A.

193

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

This is the most important insight for solving puzzles about the island. The teacher

has to be sure that the students understand what (3.5.1) means: A and S are equal, that

is, they always have the same value. In other words, saying that A is a knight is the

same as saying that A’s statements are true, and saying that A is a knave is the same as

saying that A’s statements are false. (Note that we overload A to denote both ‘person

A’ and the proposition ‘person A is a knight’. This means that we need to be careful

and to rely on the context when using the symbol A. Alternatively, the teacher may

want to introduce different symbols.)

Properties of equivalence Because the most important insight is based on equiva-

lence, we suggest the teacher to elaborate on its algebraic properties. First, ≡ is asso-

ciative, which means that for all p, q, and r, we have

((p≡ q) ≡ r) = (p≡ (q≡ r)) .

This means that we can write p≡ q≡ r without ambiguity (however we bracket the

expression, its value does not change).

Please note that when we have continued equivalences without any brackets, we need

to be careful with the interpretation we use. The conventional reading of continued

equalities is based on transitivity, that is, when we write the expression

a = b = c

we usually mean that a, b, and c are all equal. More formally, we usually mean that

a = b ∧ b = c .

However, in the Boolean domain, the associative reading and the transitive reading can

conflict. For example, suppose that we have the expression

true≡ false ≡ false .

If we read it associatively, we can simplify it as follows:

true≡ false≡ false

= { associativity }

true≡ (false≡ false)

= { false is equivalent to false, so we can simplify

(false ≡ false) to true }

194

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

true≡ true

= { true is equivalent to true, so we can simplify

(true ≡ true) to true }

true .

On the other hand, if we read it using transitivity, we simplify it differently:

true≡ false≡ false

= { transitive reading }

(true≡ false) ∧ (false≡ false)

= { (true ≡ false) is false and (false≡ false) is true }

false ∧ true

= { false ∧ p is false, for all p }

false .

The conclusion is thus that different readings of continued equivalences may yield dif-

ferent values! To avoid ambiguities, when we use the conventional equality symbol =,

we read the expression in a transitive way. To read the expression associatively, we use

the less conventional symbol ≡ and we call it “equivales”. We suggest the teacher to

explain the difference between the two readings and to introduce equivales, since all

the educational material on logic contained in this thesis explores the associativity of

equivalence.

Another important property of equivalence is reflexivity, which states that for all p, we

have

p≡ p≡ true .

Note that, thanks to associativity, reflexivity captures two rules:

(p≡ p) ≡ true , and

p≡ (p≡ true) .

In terms of symbols, the first rule means that whenever we have an expression of the

shape p≡ pwe can replace by true. The second rule means that whenever we have true

involved in an equivalence, we can simply remove it.

195

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

Now, from associativity and reflexivity, we can prove that equivalence is symmetric,

that is:

(p≡ q) ≡ (q≡ p) .

The proof is very simple and illustrative of the calculational format that we use for

teaching logic:

(p≡ q) ≡ (q≡ p)

= { associativity }

p≡ (q≡ q) ≡ p

= { reflexivity and associativity }

(p≡ true) ≡ p

= { reflexivity }

p≡ p

= { reflexivity }

true .

Some simple examples Before solving the proposed problem, we suggest that the

teacher shows some simple examples where the properties of equivalence are used.

For example, if A says ‘I am the same type as B’, then A’s statement is the same as

A≡ B .

Replacing S in (3.5.1) by this statement, we get A≡ (A≡ B). We can calculate the value

of this expression as follows:

A≡ (A≡ B)

= { associativity }

(A≡ A)≡ B

= { reflexivity }

true≡ B

= { reflexivity }

B .

So, from this statement, we can infer that B is a knight, but nothing about A.

196

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

Yes/No questions The problem is about formulating a yes/no question and we can

use the same reasoning as above. That is, if a native is asked a yes/no questionQ, then

the response to the question is A≡ Q. (Note that we are associating ‘yes’ to true and

‘no’ to false.) The response will be ‘yes’ if the native is a knight and the answer is really

yes, or A is a knave and the answer is really no. Otherwise, the response will be ‘no’.

For example, asked the question ‘is B a knight?’ A will respond ‘yes’ if they are both

the same type, otherwise ‘no’. That is, A’s response is ‘yes’ or ‘no’ depending on the

truth or falsity of A≡ B. In other words, the response to the question is yes is the same

as A≡ Q.

The teacher should ask what is the goal of problem, so that the students’ attention gets

redirected to the problem statement. The goal of the problem is to construct a question

Q, to which the native responds ‘yes’ if the left fork leads to the gold or ‘no’ otherwise.

Let G be the proposition ‘the left fork leads to the gold’. We require that G equivales

the response to the question is yes. But the response to the question is yes is the same

as A≡ Q. So, we require that G≡ (A≡ Q). Now, by associativity and symmetry of

equivalence, we have Q≡ (G≡ A). The question is thus: is the statement that the left fork

leads to the gold equivalent to you being a knight?

The teacher may analyse the different possible cases to convince the students that the

question is indeed correct. However, we suggest that the students practise calcula-

tional solutions to different problems on knights and knaves (see section 3.6 for more

exercises). We believe that the calculational approach is superior to the conventional

approach by case analysis, since it is more concise and can be used as a platform to

learn algebraic rules that are useful to solve other problems on logic.

Generalisations and other examples Another simple example is when A says ‘I am

a knight’. In this case, A’s statement is A, so we want to simplify the expression A≡ A.

By reflexivity, this simplifies to true, which means that we cannot say anything about

A’s type. (Similarly, if you ask a native ‘Are you a knight?’, the answer will always be

‘yes’.)

Negation is a unary operator that can also be useful for solving puzzles. If p is a Boolean

expression, ¬p represents the negation of p and is read ‘not p’. The law governing

negation is

¬p≡ p≡ false .

The relevance of negation is that if we want to express that A is a knave, we can simply

write ¬A.

197

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

If A says ‘I am a knave’, then A’s statement is¬A, sowewant to simplify the expression

A≡¬A. By negation, this simplifies to false, which means that A could never have said

that. (Similarly, if you ask a native ‘Are you a knave?’, the answer will always be ‘no’.)

Section 3.6 contains more exercises that can be used in lectures or as homework.

3.5.1 Questions that the teacher should ask

Key observation

• Do you understand the problem?

The teacher has to be sure that the students understand what is required.

• Suppose person A is a knight. What can you say about A’s statements?

What if A is a knave?

The students should understand that the statements of knights are always

true, whilst the statements of knaves are always false. This motivates the

introduction of the key property (3.5.1).

• Do you understand property (3.5.1)?

Property (3.5.1) is the key to solve this type of puzzle. It is important that

the students understand it.

Properties of equivalence

• Do you understand what associativity means?

Although we believe that manipulating expressions without interpreting

their meaning brings many advantages, we think that it is important for

students to understand what is the meaning of some rules. In particular, we

suggest that the teacher explains the meaning in terms of symbols (for asso-

ciativity, it means that we can bracket a continued expression as we wish).

The teacher may also give examples of other associative operators, like ad-

dition and multiplication.

The same question applies to reflexivity and symmetry.

• When we write something like a = b = c, what do we usually mean?

We expect the students to say that the conventional reading of a = b = c is

transitive, that is, a, b, and c are all equal. This question can be followed

by the simplification of true ≡ false≡ false using the transitive reading. Then

the teacher can show how the associative reading yields a different result.

198

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

• What is the difference between p = q = r and p≡ q≡ r?

The students should understand that whenever we have a continued equiv-

alence with the symbol ≡, we read it associatively. If the symbol used is =,

we read it transitively.

Yes/No Questions

• What is our goal?

After explaining some of the properties of equivalence and showing some

examples, the teacher should redirect the students’ attention to the goal of

the problem: to formulate a particular yes/no question. In particular, the

teacher may say that we want to calculate the question, instead of guessing

it.

• G is the proposition “the left fork leads to the gold”. What is the requirement

on G?

The teacher should allow the students to carefully articulate the requirement

on G. We require that G equivales the response to the question is yes. But the

response to the question is yes is the same as A≡ Q. Therefore, G equivales

A≡ Q and from here, we can calculate Q. Once the expression G≡ (A≡ Q)

is achieved, the teacher can ask the students what is the question that we

have to ask.

3.5.2 Questions that the teacher should not ask

Some simple examples

• [For all examples] What are the possible cases?

The idea of this scenario is to illustrate that we can calculate the solutions to

logic puzzles and avoid case analysis. Therefore, the teacher should not ask

the students to analyse the possible cases. Although initially the students

will have the tendency to analyse all the possible cases, we observe that

after some practise, most of them will try a calculational approach.

Yes/No Questions

• G is the proposition “the left fork leads to the gold”. Can you see that the

requirement is G≡ (A≡ Q)?

The teacher should allow the students to think and try to articulate the re-

quirement on G. If they are unsuccessful, the teacher may help with hints.

199

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

3.5.3 Concepts that the teacher should introduce

Calculational logic

Boolean equality

Associativity

Reflexivity

Symmetry

Negation

3.6 Extensions and exercises

The following exercises (and solutions) are taken from [Bac03, chapter 5].

Exercise 3.6.1 (Warm-up) You ask one of the natives, A, whether there is gold on the

island. He makes the following response: ‘There is gold on the island equivales I am a

knight’. Can it be determined whether A is a knight or a knave? Can it be determined

whether there is gold on the island?

2

Exercise 3.6.2 (Interrogation) What single question allows you to determinewhether

A is a knight?

2

Exercise 3.6.3 (Interrogation) What single question should you ask A to determine

whether B is a knight?

2

Exercise 3.6.4 (Negation) Negation is a unary operator that can also be useful for

solving puzzles. If p is a Boolean expression, ¬p represents the negation of p and is

read ‘not p’. The law governing negation is

¬p≡ p≡ false .

The relevance of negation is that if we want to express that A is a knave, we can simply

write ¬A. Now, suppose there are two natives, A and B. A says ‘B is a knight is the

same as I am a knave’. What can you determine about A and B?

200

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

2

Exercise 3.6.5 (Negation) What single question should you ask A to determinewhether

B is a knave?

2

Exercise 3.6.6 (Negation) What single question should you ask A to determinewhether

A and B are different types?

2

3.7 Solutions to extensions and exercises

3.6.1 Let G denote the proposition ‘There is gold on the island’.A’s statement is A≡ G.

So, recalling (3.5.1), what we are given is

A≡ A≡ G .

By associativity and reflexivity, this is equivalent to G. Therefore, we can conclude that

there is gold in the island. However, we cannot determine whether A is a knight or a

knave.

2

3.6.2 Let Q be the question. Asking the question Q will produce the response A≡ Q,

which we require to be A. So, we require that A≡ A≡ Q, which, by reflexivity, sim-

plifies to Q. Therefore, we should ask A to confirm or deny any true statement (for

example, ‘is 0 equals to 0’?).

2

3.6.3 Let Q be the question. Asking the question Q will produce the response A≡ Q,

which we require to be B. So, we require B≡ A≡ Q. Therefore, we should ask whether

A and B are the same type.

2

3.6.4 A’s statement is B≡¬A. So, what we are given is

A≡ B≡¬A .

This simplifies to ¬B as follows.

201

SCENARIO 3: THE ISLAND OF KNIGHTS AND KNAVES

A≡ B≡ ¬A

= { associativity and symmetry }

A≡¬A≡ B

= { negation law: ¬p≡ p≡ false with p := A }

false≡ B

= { symmetry and negation law: ¬p≡ p≡ false with p := B }

¬B .

So, B is a knave and we cannot say whether A is a knight or a knave.

2

3.6.5 Let Q be the question. Asking the question Q will produce the response A≡ Q,

which we require to be ¬B. So, we require ¬B≡ A≡ Q. Therefore, we should ask

whether A and B are of different types.

2

3.6.6 Let Q be the question. Asking the question Q will produce the response A≡ Q,

which we require to be ¬B≡ A. So, we require ¬B≡ A≡ A≡ Q. By associativity

and reflexivity of equivalence, this simplifies to ¬B≡ Q. Therefore, we should ask A

whether B is a knave.

2

3.8 Further reading

The problem, exercises, and solutions were taken from chapter 5 of [Bac03]. Moreover,

chapter 7 of the same book contains examples where implication is used. In our view,

these two chapters constitute an excellent introduction to calculational logic.

202

SCENARIO 4

Portia’s Casket

4.1 Brief description and goals

This scenario is about a type of logic puzzle that can be reduced to a system of simul-

taneous equations on Booleans. It can be used to introduce logical implication and to

practise calculational logic.

4.2 Problem

In an abridged version of Shakespeare’sMerchant of Venice, Portia had two caskets: gold

and silver. Inside one of these caskets, Portia had put her portrait, and on each was an

inscription. Portia explained to her suitor that each inscription could be either true or

false but, on the basis of the inscriptions, he was to choose the casket containing the

portrait. If he succeeded, he could marry her.

The inscriptions were:

Gold: The portrait is in this casket.

Silver: If the inscription on the gold casket is true, this inscription is false.

Which casket contained the portrait? What can we deduce about the inscriptions?

4.3 Prerequisites

Algebraic properties of equality. Knowledge of solving systems of linear equations on

numbers can be useful.

203

SCENARIO 4: PORTIA’S CASKET

4.4 Resolution and notes

The goal is to determine the casket that contains the portrait, so the first step in mod-

elling the problem is to introduce the two following variables:

pg the portrait is in the gold casket

ps the portrait is in the silver casket .

We want to calculate the values of these variables. Clearly, the portrait is in only one

of the caskets. As a result, only one of pg and ps is true. So, an equation given by the

problem statement is:

pg≡¬ps .

Also, because we need to model what the inscriptions say, we introduce the following

variables:

ig the inscription on the gold casket is true

is the inscription on the silver casket is true .

The inscription on the gold casket is true whenever the portrait is in the gold casket.

So, we have the equation:

ig≡ pg .

The inscription on the silver casket is true whenever the implication ig⇒¬is is true.

Therefore, we also have the equation:

is ≡ ig⇒¬is .

The goal is to determine the values of the variables pg and ps knowing that the three

equations shown above are simultaneously true. That is, we know that the following

conjunction is true:

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is ≡ ig⇒¬is) .

Using Boolean algebra, we can simplify the conjunction as follows:

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is ≡ ig⇒¬is)

= { definition of ⇒, i.e., ig⇒¬is ≡ ¬is ≡ ¬is ∨ ig;

associativity }

204

SCENARIO 4: PORTIA’S CASKET

(pg≡¬ps) ∧ (ig≡ pg) ∧ ((is≡ ¬is) ≡ ¬is ∨ ig)

= { negation (twice), i.e., is≡¬is≡ false }

(pg≡¬ps) ∧ (ig≡ pg) ∧ ¬(¬is ∨ ig)

= { De Morgan, i.e., ¬(¬is ∨ ig) ≡ is∧ ¬ig }

(pg≡¬ps) ∧ (ig≡ pg) ∧ is∧ ¬ig

= { reflexivity, negation, and Leibniz }

(pg≡¬ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

= { Leibniz and negation }

(true≡ ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false) .

We conclude that the portrait is in the silver casket, that the inscription on the silver

casket is true, and that the inscription on the gold casket is false.

4.5 Notes for the teacher

Introduction to the problem We believe that the best way to introduce logic puzzles

like this one, where the goal is to solve simultaneous equations on Booleans, is by

analogywith simultaneous equations on numbers. For example, consider the following

problem:

Suppose Ben is twice as old as Anne, but two years ago, Benwas three times

as old as Anne. How old are Ben and Anne?

In our experience, most secondary-school students know how to solve this problem.

Their first step is to model the problem as the two simultaneous equations

b = 2×a ∧ b−2 = 3×(a−2) ,

where a and b denote, respectively, Ben and Anne’s ages. Then, and using the calcula-

tional proof format, most of them know how to calculate the correct solution:

b = 2×a ∧ b−2 = 3×(a−2)

= { replace b by 2×a }

b = 2×a ∧ 2×a− 2 = 3×(a−2)

= { arithmetic }

205

SCENARIO 4: PORTIA’S CASKET

b = 2×a ∧ 4= a

= { replace a by 4 }

b = 8 ∧ 4 = a .

Although most students would solve the logic puzzle by case analysis, it can be solved

just like we solved the problem on Ben and Anne’s ages. The main difference is the

domain: whilst the problem above was about solving simultaneous equations on nat-

ural numbers, this puzzle is about solving simultaneous equations on Booleans. As a

result, instead of using the algebra of numbers, we use the algebra of Booleans. One

of the main algebraic rules, the one that allows the substitution of equals for equals—

used in the first and third steps of the calculation above— is essentially the same in the

Boolean domain:

(p≡ q) ∧ f .p

= { substitution of equals for equals; we also call

this rule “Leibniz” }

(p≡ q) ∧ f .q .

In words, if we have that p and q are equivalent, we can replace p by q (and vice-versa)

in a given context f . Another two rules that concern Booleans and are commonly used

are reflexivity

p≡ p≡ true ,

and negation

¬p≡ p≡ false .

A concrete example combining the rules of reflexivity and Leibniz is:

(p≡ q) ∧ p

= { reflexivity }

(p≡ q) ∧ (p≡ true)

= { Leibniz }

(true≡ q) ∧ (p≡ true)

= { reflexivity (twice) }

q ∧ p .

206

SCENARIO 4: PORTIA’S CASKET

We suggest the teacher to show the students an example on using the rule of Leibniz

with Booleans.

Model the problem The first step in the solution is to model the problem. The goal

is to determine the casket that contains the portrait, so we introduce the two following

variables:

pg the portrait is in the gold casket

ps the portrait is in the silver casket .

We want to calculate the values of these variables. The teacher can make the analogy

with the problem on numbers, where we also have introduced variables that represent

the goal (the ages of Ben and Anne).

We suggest the teacher to ask the students if they can identify any relation between pg

and ps. The idea is to introduce the equation stating that the portrait is in only one of

the caskets, that is, that only one of pg and ps is true. The equation is:

pg≡¬ps .

Also, because we need to model what the inscriptions say, we introduce the following

variables:

ig the inscription on the gold casket is true

is the inscription on the silver casket is true .

We now have to model what the inscriptions say. The inscription on the gold casket

is true whenever the portrait is in the gold casket. We suggest the teacher asks the

students what is the equation that models this. The goal is to introduce the equation:

ig≡ pg .

The inscription on the silver casket may require the introduction of implication. When-

ever we have a proposition of the form “If a then b”, we can model it formally as a⇒b.

Implication admits two definitions:

a⇒b≡ a≡ a ∧ b , and

a⇒b≡ b≡ a ∨ b .

Depending on the context, we use the definition that is more convenient. For exam-

ple, if we have b≡ a⇒b, we would choose the second definition because it introduces

another b; this would allow to eliminate the new sub-expression b≡b by reflexivity.

207

SCENARIO 4: PORTIA’S CASKET

Now, the inscription on the silver casket is true whenever the implication ig⇒¬is is
true. Again, we suggest the teacher asks the students what is the equation that models

this. The equation is:

is ≡ ig⇒¬is .

The goal is to determine the values of the variables pg and ps knowing that the three

equations shown above are simultaneously true. That is, we know that the following

conjunction is true:

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is ≡ ig⇒¬is) .

Again, we suggest the teacher to make the analogy with the problem on numbers.

Solution Now, to solve the problem, we use Boolean algebra to simplify the conjunc-

tion. For each step, we suggest the teacher to ask the students what to do. Although

there are several possibilities for each step, we show the steps we think are more rele-

vant. For example, in the first step, the most relevant rule to apply is the definition of

implication:

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is ≡ ig⇒¬is)

= { definition of ⇒, i.e., ig⇒¬is ≡ ¬is ≡ ¬is ∨ ig;

associativity }

(pg≡¬ps) ∧ (ig≡ pg) ∧ ((is≡ ¬is) ≡ ¬is ∨ ig)

We have chosen the definition involving disjunction, because it allows to introduce the

subexpression is≡¬is. We simplify it in the next step:

(pg≡¬ps) ∧ (ig≡ pg) ∧ ((is≡ ¬is) ≡ ¬is ∨ ig)

= { negation (twice), i.e., is≡¬is≡ false }

(pg≡¬ps) ∧ (ig≡ pg) ∧ ¬(¬is ∨ ig)

Now, we have a disjunction negated. There is a rule involving negation and disjunction

called De Morgan:

¬(a ∨ b) ≡ ¬a ∧ ¬b .

We can use this rule to simplify the third conjunct:

208

SCENARIO 4: PORTIA’S CASKET

(pg≡¬ps) ∧ (ig≡ pg) ∧ ¬(¬is ∨ ig)

= { De Morgan, i.e., ¬(¬is ∨ ig) ≡ is∧ ¬ig }

(pg≡¬ps) ∧ (ig≡ pg) ∧ is∧ ¬ig

Using reflexivity and negation we can rewrite the two last conjuncts as:

(pg≡¬ps) ∧ (ig≡ pg) ∧ is∧ ¬ig

= { reflexivity and negation }

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

We know that ig is false, so we can rewrite the second conjunct using substitution of

equals for equals (Leibniz):

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

= { Leibniz }

(pg≡¬ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

Finally, from the second conjunct, we know that pg is false; we can rewrite the first

conjunct using the rules of Leibniz and negation:

(pg≡¬ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

= { Leibniz and negation }

(true≡ ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false) .

We conclude that the portrait is in the silver casket, that the inscription on the silver

casket is true, and that the inscription on the gold casket is false.

We suggest the teacher to conclude with the advantages of the calculational approach.

In our experience, most people would agree that using case analysis in the problem

on Ben and Anne’s ages is not a good idea, because case analysis is very specific and

does not scale well to more complicated problems; most people would agree that it is

more important to teach the students how to solve general systems of simultaneous

equations. Moreover, it is important to remark that when the students are solving such

problems on numbers, they are not interpreting the formulae.

4.5.1 Questions that the teacher should ask

Introduction to the problem

209

SCENARIO 4: PORTIA’S CASKET

• Do you understand the problem?

The teacher has to be sure that the students understand what is required.

• Have you ever solved any related problem?

The goal of this question is to introduce the analogy with simultaneous

equations on numbers.

• [After showing the problem on Ben and Anne’s ages] Howwould you solve

this problem?

This question is useful to know if the students know how to solve simulta-

neous equations on numbers.

• Can you see how Leibniz rule is applied in the Boolean domain?

It is important that the students understand Leibniz rule.

Model the problem

• Which variables should we introduce?

It is important to discuss with the students which elements of the problem

should be named.

• What is the relation between pg and ps? How can we express it formally?

The goal of this question is to let the students think about the equations. We

believe it is better if all the equations are introduced by the students.

Solution

• [At each step of the calculation] What should we do now?

It is important to make the students think about the possible rules that can

be applied at each step. If they do not suggest any property, we recommend

the teacher to suggest symbol manipulations (e.g. “I think it would be a

good idea to remove the implication. How can we do that?”).

4.5.2 Questions that the teacher should not ask

Model the problem

• Can we model the relation between these variables as...

We think the teacher should not suggest any equation. Instead, if the stu-

dents do not suggest any equations, we recommend the teacher to give some

clues.

210

SCENARIO 4: PORTIA’S CASKET

Solution

• [At each step of the calculation] Can we use property X?

We think the teacher should not suggest any properties. If the students do

not suggest any properties to be used, the teacher can suggest symbol ma-

nipulations, rather than properties (e.g., “It would be useful to eliminate the

implication”).

4.5.3 Concepts that the teacher should introduce

Substitution of equals for equals

Implication

Negation

De Morgan rules

4.6 Extensions and exercises

Exercise 4.6.1 (Variation) Suppose now that the inscription on the silver casket was

the following:

“The inscription on the gold casket is true if this inscription is true”.

In this case, which casket contained the portrait? And what can we deduce about the

inscriptions?

2

Exercise 4.6.2 (Variation) Suppose now that the inscription on the silver casket was

the following:

“The inscription on the gold casket is false if this inscription is true”.

In this case, which casket contained the portrait? And what can we deduce about the

inscriptions?

2

211

SCENARIO 4: PORTIA’S CASKET

Exercise 4.6.3 (Variation) Suppose now that the inscription on the silver casket was

the following:

“If the inscription on the gold casket is false, this inscription is false”.

In this case, which casket contained the portrait? And what can we deduce about the

inscriptions?

2

Exercise 4.6.4 (Variation) Suppose now that the inscriptions on the silver and gold

caskets were the following:

Gold: The portrait is in the gold casket if the inscription on the silver casket is true.

Silver: If the inscription on the gold casket is true, this inscription is false.

In this case, which casket contained the portrait? And what can we deduce about the

inscriptions?

2

4.7 Solutions to extensions and exercises

4.6.1 The inscription on the silver casket is true whenever the implication ig⇐is is true.

Therefore, the equation that models the inscription on the silver casket is:

is≡ ig⇐is .

The calculation is:

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is≡ ig⇐is)

= { definition of ⇐ and associativity }

(pg≡¬ps) ∧ (ig≡ pg) ∧ ((is≡ is) ≡ is ∧ ig)

= { reflexivity (three times) }

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is≡ true) ∧ (ig≡ true)

= { Leibniz }

(pg≡¬ps) ∧ (true≡ pg) ∧ (is≡ true) ∧ (ig≡ true)

212

SCENARIO 4: PORTIA’S CASKET

= { Leibniz and negation }

(false≡ ps) ∧ (true≡ pg) ∧ (is≡ true) ∧ (ig≡ true) .

We conclude that the portrait is in the gold casket and that both inscriptions are true.

2

4.6.2 The inscription on the silver casket is true whenever the implication ¬ig⇐ is is

true. Therefore, the equation that models the inscription on the silver casket is:

is ≡ ¬ig⇐ is .

The calculation is:

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is ≡ ¬ig⇐ is)

= { definition of ⇐ and associativity }

(pg≡¬ps) ∧ (ig≡ pg) ∧ ((is≡ is) ≡ is ∧ ¬ig)

= { reflexivity (twice) and negation }

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

= { Leibniz }

(pg≡¬ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

= { Leibniz and negation }

(true≡ ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false) .

We conclude that the portrait is in the silver casket, that the inscription on the silver

casket is true, and that the inscription on the gold casket is false.

Note that, by the contrapositive rule, we know that ¬ig⇐ is is the same as ig⇒¬is.
Therefore, this exercise is the same as the problem solved in the scenario.

2

4.6.3 The inscription on the silver casket is true whenever the implication ¬ig⇒¬is is
true. Therefore, the equation that models the inscription on the silver casket is:

is ≡ ¬ig⇒¬is .

If we use the contrapositive rule, this problem is the same as exercise 4.6.1:

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is ≡ ¬ig⇒¬is)

213

SCENARIO 4: PORTIA’S CASKET

= { contrapositive }

(pg≡¬ps) ∧ (ig≡ pg) ∧ (is≡ ig⇐is)

= { exercise 4.6.1 }

(false≡ ps) ∧ (true≡ pg) ∧ (is≡ true) ∧ (ig≡ true) .

We conclude that the portrait is in the gold casket and that both inscriptions are true.

2

4.6.4 The inscription on the gold casket is true whenever the implication pg⇐is is true

and the inscription on the silver casket is true whenever the implication ig⇒¬is is

true. Therefore, the equations that model the inscriptions are:

ig≡ pg⇐is , and

is ≡ ig⇒¬is .

We can calculate the solution to the puzzle as follows:

(pg≡¬ps) ∧ (ig≡ pg⇐is) ∧ (is ≡ ig⇒¬is)

= { definition of ⇒, i.e., ig⇒¬is ≡ ¬is ≡ ¬is ∨ ig;

associativity }

(pg≡¬ps) ∧ (ig≡ pg⇐is) ∧ ((is≡¬is) ≡ ¬is ∨ ig)

= { negation (twice), i.e., is≡¬is≡ false }

(pg≡¬ps) ∧ (ig≡ pg⇐is) ∧ ¬(¬is ∨ ig)

= { De Morgan, i.e., ¬(¬is ∨ ig) ≡ is∧ ¬ig }

(pg≡¬ps) ∧ (ig≡ pg⇐is) ∧ is ∧ ¬ig

= { reflexivity and negation }

(pg≡¬ps) ∧ (ig≡ pg⇐is) ∧ (is≡ true) ∧ (ig≡ false)

= { Leibniz }

(pg≡¬ps) ∧ (false≡ pg⇐true) ∧ (is≡ true) ∧ (ig≡ false)

= { pg⇐true is the same as pg }

(pg≡¬ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false)

= { Leibniz and negation }

(true≡ ps) ∧ (false≡ pg) ∧ (is≡ true) ∧ (ig≡ false) .

214

SCENARIO 4: PORTIA’S CASKET

We conclude that the portrait is in the silver casket, that the silver inscription is true

and the gold inscription is false.

2

4.8 Further reading

We recommend chapters 5 and 7 of [Bac03]. In our view, these two chapters constitute

an excellent introduction to calculational logic.

215

SCENARIO 5

A Logical Race

5.1 Brief description and goals

This scenario shows how a calculational approach to logic leads to a concise solution

of a type of logic puzzle that is based on unique existential quantifications. It can be

used to introduce Boolean inequivalence (6≡), to practise formal modelling, and to illus-

trate how distributivity can be used to simplify mathematical arguments. The puzzle,

which we have found in [Hon98, p. 17], is about deducing a conclusion based on the

statements of three people. We also show (in the exercises) how we can generalise this

type of logic puzzle.

5.2 Problem

Lucy, Minnie, Nancy, and Opey ran a race. Asked how they made out, they replied:

Lucy: “Nancy won; Minnie was second.”

Nancy: “Opey was last; Lucy was second.”

Minnie: “Nancy was second; Opey was third.”

If each of the girls made one and only one true statement, who won the race?

5.3 Prerequisites

All the required knowledge can be introducedwith the solution, but elementary knowl-

edge of calculational logic helps.

216

SCENARIO 5: A LOGICAL RACE

5.4 Resolution and notes

The first step in our solution is to formally model the problem. We need to express

each of the three answers, so we need to introduce a way of associating a person with

a position. Moreover, we need to express that, given two statements, one and only one

of them is true.

To associate a person with a position, we write pn to denote that the person whose

name starts by letter p ends the race in position n. For example, N1 means that Nancy

wins the race and M2 means that Minnie is second1. These are, in fact, the two state-

ments of Lucy, but because only one of them is true, Lucy’s statement is equivalent

to

N1 6≡ M2 .

(Because N1 and M2 are Booleans, saying that they are different is the same as saying

that one of them is true and the other is false.) In the sameway, the statements of Nancy

and Minnie are, respectively,

O4 6≡ L2 and

N2 6≡O3 .

Now, to calculate the solution to the puzzle, we have to simplify the conjunction of the

three statements:

(N1 6≡ M2) ∧ (N2 6≡O3) ∧ (O4 6≡ L2) .

Given that we do not know how to simplify any of these three inequivalences, we

have to investigate properties involving both conjunction and inequivalence. A useful

property is that conjunction distributes over 6≡, that is, for all p, q, and r:

p ∧ (q 6≡ r)

=

(p ∧ q) 6≡ (p ∧ r) .

So, considering the notation introduced above, we have the following example:

N1 ∧ (N2 6≡ M1)

= { conjunction distributes over 6≡ }

(N1 ∧ N2) 6≡ (N1 ∧ M1) .

1In this scenario, we assume that p and q range over the set {L,M,N,O} and that m and n are positive

natural numbers at most 4.

217

SCENARIO 5: A LOGICAL RACE

You may have noticed that this example is peculiar: conjuncts N1 ∧ N2 and N1 ∧ M1

are both false. It is impossible that Nancy finishes in first and second positions and we

also exclude the possibility that Nancy and Minnie finish both in first position. In fact,

we have chosen it because it reveals two important properties implicit in the problem

statement. The first one reflects the impossibility of the same girl ending the race in

different positions. Formally, we express this property as:

(5.4.1) pn ∧ pm ≡ m = n .

The second property reflects the impossibility of different girls ending the race in the

same position. We express this property as follows:

(5.4.2) pn ∧ qn ≡ p = q .

Now, to calculate the solution to the puzzle, we just have to simplify the conjunction of

the three statements:

(N1 6≡ M2) ∧ (N2 6≡O3) ∧ (O4 6≡ L2) .

One possible calculation, based essentially on distributivity, is as follows:

(N1 6≡ M2) ∧ (N2 6≡O3) ∧ (O4 6≡ L2)

= { distributivity, (5.4.1), and (5.4.2) }

(N1 6≡ M2) ∧ (N2 ∧O4 6≡O3∧ L2)

= { distributivity, (5.4.1), and (5.4.2) }

N1 ∧O3∧ L2 .

The conclusion is that Nancy won the race (N1), Lucy was second (L2), Opey was third

(O3), and Minnie was fourth (by elimination).

Youmay want to compare this solution with the one shown in [Hon98, p. 17]. Wemake

a short comparison in section 5.8.

5.5 Notes for the teacher

Model the problem and express the goal The first step in our solution is to formally

model the problem. We have three girls and three answers. Each answer consists of

two different and mutual-exclusive statements related with the result of the race. For

example, Lucy answered “Nancy won; Minnie was second.”. This means that we need

218

SCENARIO 5: A LOGICAL RACE

to introduce a way of associating a person with a position. Moreover, we need to ex-

press that, given two statements, one and only one of them is true.

The teacher may ask for notation suggestions. We recommend to use pn to denote that

the person whose name starts by letter p ends the race in position n. For example, N1

means that Nancy wins the race and M2 means that Minnie is second2. The teacher

may use a different notation, but we recommend a concise notation that gives the same

status to both people and positions. For example, writing p(n) instead of pn, unneces-

sarily highlights people rather than positions.

Now, the two statements of Lucy are N1 and M2, but because only one of them is true,

Lucy’s statement is equivalent to

N1 6≡ M2 .

(Because N1 and M2 are Booleans, saying that they are different is the same as saying

that one of them is true and the other is false. An alternative formulation is N1≡¬M2,

but we prefer to use 6≡ due to its interaction with conjunction.) We suggest the teacher

to ask the students how theywould formulate Lucy’s statement. Once they understand

Lucy’s statement, the teacher should ask them to formulate the answers of the other

two girls. The statements of Nancy and Minnie are, respectively,

O4 6≡ L2 and

N2 6≡O3 .

Now, putting all together, we know (or we assume) that the girls spoke the truth. So,

to calculate the solution to the puzzle, we have to simplify the conjunction of the three

statements:

(N1 6≡ M2) ∧ (N2 6≡O3) ∧ (O4 6≡ L2) .

Discuss calculational strategies and implicit properties of the problem Given that

we do not know how to simplify any of these three inequivalences, we have to inves-

tigate properties involving both conjunction and inequivalence. A useful property is

that conjunction distributes over 6≡, that is, for all p, q, and r:

p ∧ (q 6≡ r)

=

(p ∧ q) 6≡ (p ∧ r) .

2In this scenario, we assume that p and q range over the set {L,M,N,O} and that m and n are positive

natural numbers at most 4.

219

SCENARIO 5: A LOGICAL RACE

At this point, the teacher may want discuss exercise 5.6.1 with the students. Moreover,

we suggest the teacher to illustrate the property with an example. We have chosen the

following one, because it highlights some implicit properties of the problem. Suppose

we have the expression N1 ∧ (N2 6≡ M1). Using distributivity, we can rewrite it as

follows:

N1 ∧ (N2 6≡ M1)

= { conjunction distributes over 6≡ }

(N1 ∧ N2) 6≡ (N1 ∧ M1) .

The teacher has to be sure that the students understand how distributivity was used.

Moreover, we suggest the teacher to ask the students what they can say about the ex-

pressionsN1 ∧ N2 and N1 ∧ M1. The students should realise that they are both false. It

is impossible that Nancy finishes in first and second positions and we also exclude the

possibility that Nancy and Minnie finish both in first position. In fact, we have chosen

it because it reveals two important properties implicit in the problem statement. The

first one reflects the impossibility of the same girl ending the race in different positions.

Formally, we express this property as:

(5.5.1) pn ∧ pm ≡ m = n .

The second property reflects the impossibility of different girls ending the race in the

same position. We express this property as follows:

(5.5.2) pn ∧ qn ≡ p = q .

(We are not expecting the students to formulate this properties by themselves, but we

suggest the teacher to explain how they can be used.)

Calculate the solution Now, to calculate the solution to the puzzle, we just have to

simplify the conjunction of the three statements:

(N1 6≡ M2) ∧ (N2 6≡O3) ∧ (O4 6≡ L2) .

A detailed calculation, based on distributivity and the properties (5.5.1) and (5.5.2), is:

(N1 6≡ M2) ∧ (N2 6≡O3) ∧ (O4 6≡ L2)

= { distributivity }

220

SCENARIO 5: A LOGICAL RACE

(N1 6≡ M2) ∧ (N2 ∧ (O4 6≡ L2) 6≡ O3 ∧ (O4 6≡ L2))

= { distributivity, associativity }

(N1 6≡ M2) ∧ (N2 ∧O4 6≡ N2 ∧ L2 6≡ O3 ∧O4 6≡ O3 ∧ L2)

= { from (5.5.2), N2 ∧ L2 is false; from (5.5.1), O3 ∧O4 is false;

false is the unit of 6≡ }

(N1 6≡ M2) ∧ (N2 ∧O4 6≡ O3 ∧ L2)

= { distributivity }

N1 ∧ (N2 ∧O4 6≡ O3 ∧ L2) 6≡ M2∧ (N2 ∧O4 6≡ O3 ∧ L2)

= { distributivity, associativity }

N1 ∧ N2 ∧O4 6≡ N1 ∧O3∧ L2 6≡ M2∧ N2 ∧O4 6≡ M2∧O3 ∧ L2

= { from (5.5.2), M2 ∧ N2 ∧O4 and M2∧O3∧ L2 are false;

from (5.5.1), N1 ∧ N2 ∧O4 is false;

false is the unit of 6≡ }

N1 ∧O3∧ L2 .

The conclusion is that Nancy won the race (N1), Lucy was second (L2), Opey was third

(O3), and Minnie was fourth (by elimination).

The teacher may want to compare this solution with the one shown in [Hon98, p. 17].

We make a short comparison in section 5.8. The main message is that conventional

solutions tend to unnecessarily convert problems on the Boolean domain to the more

familiar domain of numbers.

Discuss generalisations One obvious generalisation is to increase the number of girls.

Another is to increase the number of statements that each girl makes. Exercise 5.6.2 is

an example of the second type of generalisation. We recommend the teacher to discuss

it with the students.

5.5.1 Questions that the teacher should ask

Model the problem and express the goal

• Do you understand the problem?

The teacher has to be sure that the students understand what is required.

221

SCENARIO 5: A LOGICAL RACE

• What is our goal? What do we want to prove?

Every time we are working in a goal-oriented fashion, this question should

be asked explicitly. The goal is to deduce from the answers of the girls who

won the race. This means that to model the problem, we have to model the

answers.

• How can we express the answers more formally?

The students should understand that we need to introduce a way of associ-

ating a personwith a position. The teachermay ask for notation suggestions.

(Please see the recommendation above.)

Moreover, we need to express that, given two statements, one and only one

of them is true. The teacher should ask how we can express that from two

propositions exactly one is true; help may be given when modelling one of

the answers, but the other two should be modelled by the students.

Discuss calculational strategies and implicit properties of the problem

• Can you simplify any of the conjuncts (i.e. any of the inequivalences)?

The students should understand that the inequivalences cannot be simpli-

fied. The teacher should guide the students to the conclusion that, in order

to simplify the expression, we have to investigate properties involving con-

junction and inequivalence.

• Do you know any properties involving conjunction and inequivalence?

We do not expect the students to know any property involving conjunction

and inequivalence. However, we suggest the teacher to allow the students

to think about properties. We also suggest the teacher to prove the distribu-

tivity property together with the students (see exercise 5.6.1).

• What can we say about N1 ∧ N2 and N1 ∧ M1?

We expect that most students understand that these expressions are false. If

that is the case, we suggest the teacher to ask themwhy and to introduce the

properties (5.5.1) and (5.5.2). It is important that the students understand

how they can use these properties in a calculation: because false is the unit

of 6≡, whenever we have such an expression, we can remove it.

Calculate the solution

• [After the second step in the calculation.] How can we simplify this new

expression?

222

SCENARIO 5: A LOGICAL RACE

This is wherewe use the properties (5.5.1) and (5.5.2). We suggest the teacher

to let the students perform the simplification.

• [At the end of the calculation] What is the solution to the problem?

When we reach the final conjunction, the students should realise that we

cannot simplify it anymore. The teacher should ask what is the solution to

the problem.

Discuss generalisations

• Can we generalise this problem? How?

Asking this question explicitly helps to cultivate inquisitive minds. The stu-

dents should realise that a problem is never really solved, as we can always

raise new questions. Some generalisations can be set as homework.

The teacher can take the opportunity to discuss the generalisation shown in

the exercise 5.6.2 and to elaborate on some of the advantages of a calcula-

tional approach to this type of puzzle. Whilst some people can easily solve

the problem shown above using intuition, the generalisation shown in the

exercise 5.6.2 is more difficult. However, using a calculational approach,

both problems have the same complexity.

5.5.2 Questions that the teacher should not ask

Model the problem and express the goal

• How can we associate a person with a position?

We recommend the teacher to let the students reach the conclusion that the

notation has to express the association between people and positions. It is

important for them to learn how to model problems more formally.

Discuss calculational strategies and implicit properties of the problem

• Can you see that N1 ∧ N2 and N1 ∧ M1 are both false?

From experience, we believe that most students will understand that these

expressions are false. We suggest the teacher to ask what the value of these

expressions is, rather than revealing it. (See related question in the previous

section.)

223

SCENARIO 5: A LOGICAL RACE

5.5.3 Concepts that the teacher should introduce

Calculational logic

Distributivity

Inequivalence

5.6 Extensions and exercises

Exercise 5.6.1 (Distributivity) Prove that conjunction distributes over inequivalence,

i.e., prove the following equality for all p, q, and r:

p ∧ (q 6≡ r)

=

(p ∧ q) 6≡ (p ∧ r) .

2

Exercise 5.6.2 (Generalisation) Lucy, Minnie, Nancy, and Opey ran a race. Asked

how they made out, they replied:

Lucy: “Nancy won; Minnie was second; Opey was fourth.”

Minnie: “Minnie won; Nancy was second; Opey was third.”

Nancy: “Opey won; Opey was second; Nancy was fourth.”

If each of the girls made one and only one true statement, who won the race?

2

5.7 Solutions to extensions and exercises

5.6.1 Perhaps the simplest way of proving this property is by case analysis on p. If p is

true, both sides are equal because true is the unit of conjunction. If p is false, both sides

are false because false is the zero of conjunction and false 6≡ false is false.

An alternative and calculational proof, based on equivalence, is:

224

SCENARIO 5: A LOGICAL RACE

p ∧ (q 6≡ r)

= { golden rule, definition of 6≡ }

p≡ (q≡ r≡ false) ≡ p ∨ (q≡ r≡ false)

= { disjunction distributes over ≡, symmetry, associativity }

(p≡ q≡ p ∨ q) ≡ (p≡ r≡ p ∨ r) ≡ false

= { definition of 6≡ }

(p ∧ q) 6≡ (p ∧ r) .

2

5.6.2 Using the same notation as in the previous solution and the brackets 〈〈 〉〉 to ex-

press uniqueness, the three statements are formally expressed as:

〈〈N1,M2,O4〉〉 ∧ 〈〈M1,N2,O3〉〉 ∧ 〈〈O1,O2,N4〉〉 .

The expression 〈〈N1,M2,O4〉〉 means that exactly one of N1, M2, and O4 is true. Dis-

tributivity, in this more general case, can be expressed as:

p ∧ 〈〈q,r,s〉〉 = 〈〈p ∧ q , p ∧ r , p ∧ s〉〉 .

To calculate the solution, we use distributivity together with the properties (5.5.1) and

(5.5.2). We also use the following two rules, where L is a list of expressions and p is a

single proposition:

〈〈false,L〉〉= 〈〈L〉〉 , and

〈〈p〉〉 = p .

We calculate the solution as follows:

〈〈N1,M2,O4〉〉 ∧ 〈〈M1,N2,O3〉〉 ∧ 〈〈O1,O2,N4〉〉

= { distributivity, (5.5.1), and (5.5.2) }

〈〈〈〈N1 ∧O3〉〉,〈〈M2 ∧O3〉〉,〈〈O4∧ M1 ,O4∧ N2〉〉〉〉 ∧ 〈〈O1,O2,N4〉〉

= { distributivity, 〈〈p〉〉 = p, (5.5.1), (5.5.2),

and 〈〈false,L〉〉 = 〈〈L〉〉 }

〈〈〈〈false〉〉,〈〈M2∧O3∧ N4〉〉,〈〈〈〈false〉〉,〈〈false〉〉〉〉〉〉

= { 〈〈false,L〉〉= 〈〈L〉〉 and 〈〈p〉〉 = p }

M2∧O3∧ N4 .

225

SCENARIO 5: A LOGICAL RACE

We conclude that Lucy won the race (by elimination), Minnie was second (M2), Opey

was third (O3), and Nancy was fourth (N4).

2

5.8 Further reading

The problem presented in this scenario was taken from [Hon98, p. 17]. In there, Hons-

berger solves the puzzle by translating it to the domain of numbers and formulating

the relevant properties in terms of numbers. His solution is an extreme case of what is

conventionally done in school mathematics: problems are always formulated using the

more familiar domain of numbers and logic is used implicitly in the arguments. (We

consider his solution extreme, since the problem was originally a logic problem. There

was no need at all to translate it to a different, more complex, domain.) We recommend

the teacher to compare both solutions.

Finally, to the best of our knowledge, the type of generalisation shown in exercise 5.6.2

is new. In our view, it illustrates well how a calculational approach to logic can be

effective, since the complexity of its solution is essentially the same as the one of the

solution to the original problem.

226

SCENARIO 6

A Calculational Proof of the

Handshaking Lemma

6.1 Brief description and goals

This teaching scenario shows a goal-oriented and calculational proof of the Handshak-

ing lemma, an elementary result in graph theory. The lemma states that every finite

undirected graph has an even number of vertices with odd degree. The solution pre-

sented in this scenario can be used to introduce the Eindhoven quantifier notation.

6.2 Problem

Let a finite number of points be joined in pairs by any system of curves, including the

possibility of loops (for example, joining a point C with itself; see figure 6.1) and of

multiple edges (joining the same pair of points). We define the local degree of a vertex

A, denoted by d.A, to be the number of edges incident with the point A, counting loops

twice. For example, in figure 6.1,

d.A = 6, d.B = 3, and d.C = 3 .

We want to show that in any network, as outlined above, the number of vertices which

have odd local degree is an even number. (Note that in the system shown in figure 6.1,

precisely two vertices, B and C, have odd local degrees.)

The Handshaking Lemma This property is also known as the Handshaking Lemma.

If we think of the vertices as people, and the joining of two vertices A and B (say)

227

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

A

BC

D E

Figure 6.1: System of curves with five points

to mean that A and B shook hands (loops, if any, indicating one shook hands with

himself and counting as two handshakes), the local degree d.A of a vertex A gives the

total number of times A shook hands. What we want to show, then, is that the number

of people who have shaken hands an odd number of times is even. This application is

all the more interesting because it is independent of time — one can state without fear

of contradiction that the number of people at the opera next Thursday (or in the whole

world from the beginning of time if you like) who will shake hands an odd number of

times is even. (One might enjoy verifying this result with a group of friends.)

A remark on terminology A system of curves that join a finite number of points is

also called an undirected graph. In the problem statement, we use the same terminology

as in [Hon98, p. 7], because we find it more accessible. (In fact, most of the text is

transcribed from [Hon98].)

6.3 Prerequisites

All the required knowledge can be introduced with the solution, but an elementary

knowledge of quantifiers can be useful.

6.4 Resolution and notes

The problem asks us to show that in any network, as outlined in the problem statement,

the number of vertices which have odd local degree is an even number. As typical in

228

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

mathematics textbooks, this problem asks for a verification of a given fact. But how

can one derive such a fact in the first place? Suppose, for a moment, that we ask the

question “what is the parity of the number of vertices which have odd local degree?”.

How could we proceed in that case?

Well, the first step is to express the goal. We need to express the number of vertices

which have odd local degree. Assuming that V is the set of all vertices, we want to

count the number of vertices a∈V such that d.a is odd. One way of formally expressing

this is by using the summation quantifier:

〈Σa : a∈V ∧ odd.(d.a) : 1〉 .

There are five components to the notation we are using. The first component is the

quantifier Σ, which denotes summation of an arbitrary number of values. The second

component is the dummy variable a. The third component is the range of the dummy;

in this case, the range is a∈V ∧ odd.(d.a). The range is a Boolean-valued expression

that determines the set of values of the dummy for which the expression is true. The

fourth component is the term. In this case, the term is the natural number 1, meaning

that we add 1 for each value a that satisfies the range (in other words, we are adding

1 (counting) for each node a with an odd degree in V.). The final component of the

notation is the angle brackets; these serve to delimit the scope of the dummy variable.

Our goal is to determine the value of the following expression:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉 .

If the result is true, there is an even number of vertices with odd degree; otherwise,

there is an odd number. The problem statement claims that the result is always true.

However, the goal we have proposed is to calculate its value. We know that predicate

even distributes through addition, so we calculate:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉

= { even distributes over addition }

〈≡a: a∈V ∧ odd.(d.a): even.1〉

= { even.1 is false }

〈≡a: a∈V ∧ odd.(d.a): false〉

= { the range can be simplified by using the trading rule }

〈≡a: a∈V: odd.(d.a) ⇒ false〉

= { odd.(d.a) ⇒ false ≡ even.(d.a) }

229

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

〈≡a: a∈V: even.(d.a)〉

= { even distributes over addition }

even.〈Σa : a∈V : d.a〉 .

This calculation shows that the parity of the number of vertices with odd degree is the

same as the parity of the sum of all the degrees. But because each edge has two ends,

the sum of all the degrees is simply twice the total number of edges. We thus have:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉

= { calculation above }

even.〈Σa : a∈V : d.a〉

= { the sum of all the degrees is twice the number of edges, i.e.,

it is an even number }

true .

And so we can conclude that every undirected graph contains an even number of ver-

tices with odd degree.

6.5 For the teacher

Formalising the problem in a goal-oriented way We suggest the teacher to start by

observing that this problem asks for a verification of a given fact and by reformulating

the problem to the following: “what is the parity of the number of vertices which have

odd local degree?”. This reformulation is goal-oriented and reflects reality better: when

solving new problems, we usually do not know the answer. Although guessing and

verifying is a valid technique (and useful when the guesser is very good), it teaches

little on mathematical invention.

The first step is to express the goal. We need to express the number of vertices which

have odd local degree. Assuming that V is the set of all vertices, we want to count the

number of vertices a∈V such that d.a is odd. One way of formally expressing this is by

using the summation quantifier:

〈Σa : a∈V ∧ odd.(d.a) : 1〉 .

We use the Eindhoven quantifier notation and, because it is convenient for calcula-

tional purposes, we recommend the teacher to use it too. There are five components to

230

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

the notation. The first component is the quantifier Σ, which denotes summation of an

arbitrary number of values. The second component is the dummy variable a. The third

component is the range of the dummy; in this case, the range is a∈V ∧ odd.(d.a). The

range is a Boolean-valued expression that determines the set of values of the dummy

for which the expression is true. The fourth component is the term. In this case, the

term is the natural number 1, meaning that we add 1 for each value a that satisfies the

range (in other words, we are adding 1 (counting) for each node a with an odd degree

in V.). The final component of the notation is the angle brackets; these serve to delimit

the scope of the dummy variable. For a comprehensive presentation of the quantifier

calculus that we use in this scenario, we recommend [Bac03, Chapter 11].

Our goal is to determine the value of the following expression:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉 .

If the result is true, there is an even number of vertices with odd degree; otherwise,

there is an odd number. The problem statement claims that the result is always true.

However, the goal we have proposed is to calculate its value. The teacher should make

clear that the final result is a Boolean value, that is, it is either true or false.

Manipulating quantifiers Now, because we have the predicate even applied to a sum-

mation, we can use the following distributivity property:

even.(m+n) ≡ even.m≡ even.n .

In other words, even distributes over addition. In terms of arbitrary summations, this

rule can be expressed as:

even.〈Σa:R:T〉 = 〈≡a: R: even.T〉 .

(Some examples may be helpful if the students are not familiar with this property.) This

means that we can manipulate our goal similarly:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉

= { even distributes over addition }

〈≡a: a∈V ∧ odd.(d.a): even.1〉 .

We now have a quantified expression that represents a continued equivalence. The

term even.1 is the same as false, so there is not much we can do to it. We can, however,

simplify the range by using the so-called trading rule:

231

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

〈≡a: R ∧ P: T〉

= { trading rule }

〈≡a: R: P⇒T〉 .

In terms of symbols, an implication, P⇒, in the term is “traded” into a conjunct, P ∧,
in the range. This means that we can continue the calculation as:

〈≡a: a∈V ∧ odd.(d.a): even.1〉

= { even.1 is the same as false }

〈≡a: a∈V ∧ odd.(d.a): false〉

= { trading rule }

〈≡a: a∈V: odd.(d.a) ⇒ false〉 .

Now, the expression odd.(d.a) ⇒ false is the same as ¬(odd.(d.a)), i.e., even.(d.a). A

simple calculational proof of this fact is:

odd.(d.a) ⇒ false

= { definition of ⇒ }

odd.(d.a) ≡ odd.(d.a) ∧ false

= { false is the zero of conjunction }

odd.(d.a) ≡ false

= { negation }

even.(d.a) .

We can now continue the above calculation as follows:

〈≡a: a∈V: odd.(d.a) ⇒ false〉

= { odd.(d.a) ⇒ false ≡ even.(d.a) }

〈≡a: a∈V: even.(d.a)〉 .

If we now apply the distributivity property in reverse, we conclude the following

equality:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉

= { steps shown above }

232

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

〈≡a: a∈V: even.(d.a)〉

= { even distributes over addition }

even.〈Σa : a∈V : d.a〉 .

The final step This calculation shows that the parity of the number of vertices with

odd degree is the same as the parity of the sum of all the degrees. But because each edge

has two ends, the sum of all the degrees is simply twice the total number of edges. We

thus have:

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉

= { calculation above }

even.〈Σa : a∈V : d.a〉

= { the sum of all the degrees is twice the number of edges, i.e.,

it is an even number }

true .

And so we can conclude that every undirected graph contains an even number of ver-

tices with odd degree.

6.5.1 Questions that the teacher should ask

Formalising the problem in a goal-oriented way

• Do you understand the problem?

The problem statement is quite long, so it is important that the teacher spends

sufficient time making sure that all the students understand the problem

statement. Showing different examples may help.

• What is the parity of the number of vertices which have odd local degree?

The problem statement answers this question, but we suggest the teacher to

ask it. As mentioned above, the first step is to transform the problem in a

goal-oriented way, as if we did not know the answer. We suggest the teacher

to stress that in research problemswe never know the answer before tackling

the problems. That is why it is important to ask goal-oriented questions.

Manipulating quantifiers

233

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

• Do you understand how the property even.(m+n) ≡ even.m≡ even.n gener-

alises to quantified summations?

It is important that the students understand why we can transform a sum-

mation into a continued equivalence. In case the students do not under-

stand, we suggest the teacher illustrates the properties with some examples.

For example, it is not difficult to see that

even.〈Σa : 0≤ k≤ 3 : k〉 = 〈≡a: 0≤ k≤ 3: even.k〉

(just expand both quantifications; we also know that even.0 is true).

• Do you see any way of simplifying the range? Is it possible to remove the

occurrence of odd.(d.a) from the range?

These questions prepare the introduction of the trading rule that is used

to simplify the range. When presenting the trading rule, the teacher can

illustrate it with simple examples.

The final step

• We have reached the equality

even.〈Σa : a∈V ∧ odd.(d.a) : 1〉

= { calculation above }

even.〈Σa : a∈V : d.a〉

What does it mean?

The students should understand that we have proved that the parity of the

number of vertices with odd degree is the same as the parity of the sum of

all the degrees.

• What can we say about the parity of the sum of all the degrees? What do we

know about the sum of all the degrees?

The teacher should lead the students to the conclusion that the sum of all

degrees is twice the number of edges. Therefore, it is an even number and

the conclusion is that even.〈Σa : a∈V ∧ odd.(d.a) : 1〉 is true.

6.5.2 Questions that the teacher should not ask

The final step

234

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

• Can you see that the sum of all degrees is twice the number of edges?

This question gives away a crucial property that is used to solve the problem.

The teacher should allow the students to discover this fact by themselves.

6.5.3 Concepts that the teacher should introduce

Calculational proof

Distributivity

Eindhoven quantifier notation

Goal-directed investigations

6.6 Extensions and exercises

Exercise 6.6.1 (Warm-up) Prove that the parity of a sum of a set of integers is odd

equivales the number of odd elements is odd. More formally, given a set of integers S,

prove the following equality:

even.〈Σa : a∈S : a〉

=

even.〈Σa : a∈S ∧ odd.a : 1〉 .

2

6.7 Solutions to extensions and exercises

6.6.1 The proof is quite similar to the one we have used to establish the Handshaking

Lemma:

even.〈Σa : a∈S : a〉

= { even distributes over addition }

〈≡a: a∈S: even.a〉

= { we want to introduce the expression odd.a in the range;

we use the trading rule, because even.a ≡ odd.a⇒ false }

235

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

〈≡a: a∈S ∧ odd.a: false〉

= { even.1≡ false }

〈≡a: a∈S ∧ odd.a: even.1〉

= { even distributes over addition }

even.〈Σa : a∈S ∧ odd.a : 1〉 .

2

6.8 Further reading

Conventional solutions for this problem are usually very similar to the following one,

taken from [Hon98, p. 8]:

The proof in general is simple. We denote by T the total of all the local

degrees:

(1) T = d(A) + d(B) + d(C) + · · · + d(K) .

In evaluating T we count the number of edges running into A, the number

into A, etc., and add. Because each edge has two ends, T is simply twice the

number of edges; hence T is even.

Now the values d(P) on the right-hand side of (1) which are even add up

to a sub-total which is also even. The remaining values d(P) each of which

is odd, must also add up to an even sub-total (since T is even). This shows

that there is an even number of odd d(P)’s (it takes an even number of odd

numbers to give an even sum). Thus there must be an even number of

vertices with odd local degree.

There is nothing wrong with this solution in the sense that it shows why the property

holds. However, it is clearly oriented to verification: it starts by introducing the total

sum of all the local degrees, observing that its value is even; then it analyses that sum to

conclude the property. The question is: how can we teach students to consider the total

sum of all the local degrees? In general, how can we teach students to identify seem-

ingly unrelated concepts that will be crucial in the development of their arguments?

We don’t think we can.

On the other hand, if we look at the goal-oriented proof, we see that the goal is simple to

express. Furthermore, with some training, most students would write it correctly and

236

SCENARIO 6: A CALCULATIONAL PROOF OF THE HANDSHAKING LEMMA

would be able to calculate that the parity of the number of vertices with odd degree

is the same as the parity of the sum of all the degrees. And then (and only then) the

introduction of the total sum of all the degrees would make sense. In conclusion, we

believe it is more valuable to work in a formal and goal-oriented way, since it allows

us to discover the crucial properties.

Finally, for more information on the quantifiers notation and manipulation rules, we

recommend [Bac03, Chapter 11].

237

SCENARIO 7

Moving a Heavy Armchair

7.1 Brief description and goals

This scenario introduces the notion of invariant through a simple and recreational ex-

ample. The problem was taken from [Bac03, Chapter 12] and does not require any

prerequisites from the students.

7.2 Problem

Suppose it is required to move a square armchair sideways by a distance equal to its

own width (see figure 7.1(a)). However, the chair is so heavy that it can only be moved

by rotating it through 90◦, around one of its corners (see figure 7.1(b)). Is it possible to

move the chair as desired? If so, how? If not, why not? You can assume that the room

is of infinite size (the figures illustrate only a small part).

(a) Goal: move the armchair sideways (b) The chair has to be rotated 90◦

Figure 7.1: Moving a heavy armchair

238

SCENARIO 7: MOVING A HEAVY ARMCHAIR

7.3 Prerequisites

No prerequisites.

7.4 Resolution and notes

An affirmative answer to the question means that there is an algorithm that moves the

chair as required. In particular, it is a finite sequence of rotations around one of the

corners of the chair. (Whenever we write rotations, we obviously mean 90◦ rotations.)

Since the only instructions involved in the algorithm are rotations, we should investi-

gate what happens to the chair after a rotation is done. Taking a second look at figure

7.1(b) and imagining that the black dots form a square grid, it is easy to see that:

• the chair moves to one of the four vertically or horizontally adjacent squares;

• the orientation of the chair changes; more specifically, if the chair was facing

north-south before a rotation, it will be facing east-west after the rotation (and

vice-versa).

The first point suggests that we should find a way of distinguishing a square from its

four vertically or horizontally adjacent squares. One way of doing that is by painting

the floor alternately with black and white squares, like a chessboard, with each of the

squares being the same size as the armchair (see figure 7.2).

Figure 7.2: The floor is painted alternately with black and white squares.

239

SCENARIO 7: MOVING A HEAVY ARMCHAIR

Based on figure 7.2, instead of saying that the chair moves to one of the four vertically

or horizontally adjacent squares, we can simply say that the chair moves to a square of

a different colour.

Let us assume that the chair is initially on a black square and that its orientation is

north-south. Then, the goal is to move the chair to the white square at its left or at

its right, using only rotations. Also, based on the discussion above, an invariant of

rotating the armchair around a corner is

the chair in on a black square≡ the chair is facing north-south .

Clearly, the invariant is false when the chair in on a white square and facing north-

south. Therefore, it is impossible to move the chair as desired.

7.5 Notes for the teacher

Analysis of the problem This problem is algorithmic, because an affirmative answer

to the question means that there is an algorithm that moves the chair as required. In

particular, it is a finite sequence of rotations around one of the corners of the chair. It is

important that the students understand this.

Since the only instructions involved in the algorithm are rotations, we should investi-

gate what happens to the chair after a rotation is done. We recommend the teacher to

ask the students for suggestions. Looking at figure 7.1(b) and imagining that the black

dots form a square grid, the students should observe the following:

• the chair moves to one of the four vertically or horizontally adjacent squares;

• the orientation of the chair changes; more specifically, if the chair was facing

north-south before a rotation, it will be facing east-west after the rotation (and

vice-versa).

If the students do not identify these properties, the teacher can help with questions like

“to which squares does the chair move to after a rotation?” or “what happens to the

chair when a rotation is done?”.

Painting the floor The first point suggests that we should find away of distinguishing

a square from its four vertically or horizontally adjacent squares. The teacher should

ask the students if they know any simple way of doing that. One way consists in

painting the floor alternately with black and white squares, like a chessboard, with

240

SCENARIO 7: MOVING A HEAVY ARMCHAIR

each of the squares being the same size as the armchair (see figure 7.2). Using colours

to distinguish the elements of a problem is a common strategy.

Based on figure 7.2 , the teacher should ask the students how to rephrase the first point

shown above. They should realise that instead of saying that the chair moves to one

of the four vertically or horizontally adjacent squares, we can simply say that the chair

moves to a square of a different colour.

Finding the invariant We suggest the teacher to assume that the chair is initially on

a black square and that its orientation is north-south. Then, the teacher can ask what is

the goal of the problem. Clearly, the goal is to move the chair to the white square at its

left or at its right, using only rotations.

We suggest the teacher to ask if they can find any invariant of the problem. Asking for

a relation between the colour of the square and the orientation may help the students.

The students should realise that an invariant of rotating the armchair around a corner

is

the chair in on a black square≡ the chair is facing north-south .

Or, symmetrically,

the chair in on a white square≡ the chair is facing east-west .

Clearly, the invariant is false when the chair in on a white square and facing north-

south. Therefore, it is impossible to move the chair as desired.

7.5.1 Questions that the teacher should ask

Analysis of the problem

• Do you understand the problem?

The teacher has to be sure that the students understand what is required.

From our experience, the most common misunderstandings are on the type

of rotation, the size of the floor (it is unlimited), and the allowed number of

rotations (we are allowed to make an unlimited number of rotations).

• Is this an algorithmic problem?

One of the basic and most important skills in algorithmic problem solving is

to be able to identify problems of algorithmic nature. We suggest the teacher

to ask this question explicitly, so that in subsequent problems students ask

the same question to themselves.

241

SCENARIO 7: MOVING A HEAVY ARMCHAIR

• What happens to the chair after a rotation is done?

The goal is to help the students identify the two crucial properties of the

problem. If the students do not identify these properties, we suggest the

teacher to refine the question, as in, for example, “to which squares does the

chair move after a rotation?” or “how does the chair change when a rotation

is done?”.

Painting the floor

• How can we distinguish a square from its four vertically or horizontally

adjacent squares?

The goal is to introduce the painting of the floor. If the students do not

suggest the binary distinction (black/white, A/B, etc.), we recommend the

teacher to ask something like “Suppose that we paint this square black. How

can we distinguish the four neighbours?”. If the students suggest the paint-

ing of the neighbours with four different colours, we suggest the teacher to

ask if we need all these colours.

• Now that the floor is painted as a chessboard, how can we rephrase the first

point shown above?

The goal is to help the students realise that after a rotation, the chair moves

to a square of a different colour.

Finding the invariant

• Assume that initially the chair is in a black square facing north-south. What

is the goal of the problem?

The students should understand that, with this assumption, the goal is to

move the chair to the white square at its left or at its right.

• Can you think of any property that remains constant after a rotation? That

is, can you think of an invariant property?

If the students do not suggest any invariant, we suggest the teacher to repeat

the assumptions and properties. For example: “The chair is initially on a

black square facing north-south. We have seen that whenever we rotate the

chair, both the colour of its square and its orientation change. Can you think

of any property that remains constant?”. A more specific question that can

be used is: “Is there any relation between the colour of the square and the

orientation?”.

242

SCENARIO 7: MOVING A HEAVY ARMCHAIR

7.5.2 Questions that the teacher should not ask

Analysis of the problem

• How does the orientation of the chair change after a rotation is done?

This question suggests that the orientation is an important property of the

problem. We suggest the teacher to start with more general questions (e.g.

“what happens to the chair?”) and ask this question only if the students fail

to identify a change in the orientation.

Painting the floor

• Can we paint the floor to distinguish a square from its four vertically or hori-

zontally adjacent squares? orCan we paint the floor like a chessboard to dis-

tinguish a square from its four vertically or horizontally adjacent squares?

These questions give the colouring strategy away. Before asking this type of

question, the teacher should ask how we can distinguish a square from its

neighbours.

7.5.3 Concepts that the teacher should introduce

Invariant

7.6 Extensions and exercises

Exercise 7.6.1 (Mutilated chessboard) A chessboard has had its top-right and bottom-

left squares removed so that there are 62 squares remaining. (See figure 7.3.) An un-

Figure 7.3: Mutilated Chess Board

limited supply of dominoes has been provided; each domino will cover exactly two

243

SCENARIO 7: MOVING A HEAVY ARMCHAIR

squares of the chessboard. Is it possible to cover all 62 squares of the chessboard with

the dominoeswithout any domino overlapping another domino or sticking out beyond

the edges of the board?

2

Exercise 7.6.2 (Knockout tournament) A knockout tournament is a series of games.

Two players compete in each game; the loser is knocked out (i.e. doesn’t play anymore),

the winner carries on. The winner of the tournament is the player that is left after all

other players have been knocked out.

Suppose there are 1234 players in a tournament. How many games are played before

the tournament winner is decided? (Hint: choose suitable variables, and seek an in-

variant.)

2

Exercise 7.6.3 (Empty boxes) Eleven large empty boxes are placed on a table. An un-

known number of the boxes is selected and, into each, eight medium boxes are placed.

An unknown number of the medium boxes is selected and, into each, eight small boxes

are placed.

At the end of this process there are 102 empty boxes. How many boxes are there in

total?

2

7.7 Solutions to extensions and exercises

7.6.1 When we place a domino on the chessboard, we cover one black square and one

white square. As a result, the number of white covered squares and black covered

squares is equal (this is an invariant). But we have removed two black squares, so

the mutilated chessboard has more white squares than black squares. Therefore, it is

impossible to cover the chessboard with dominoes.

2

7.6.2 1233 games must be played. Let k be the number of players that have been

knocked out, and let g be the number of games that have been played. Initially, k

and g are both equal to 0. Every time a game is played, one more player is knocked

244

SCENARIO 7: MOVING A HEAVY ARMCHAIR

out. So, k and g are always equal (ie, k = g is invariant). To decide the tournament,

1234−1 players must be knocked out. Hence, this number of games must be played.

In general, if there are p players, the tournament consists of p−1 games.

2

7.6.3 We are given the initial and final numbers of empty boxes and we are required to

find the total number of boxes at the end of the process. This motivates the introduction

of variables for these values; we use t to denote the total number of boxes, and e to

denote the number of empty boxes. Initially, we know that t = e = 11. We want to

determine the value of t after the small boxes are placed into the medium boxes.

Since the number of empty boxes that is selected is unknown, let us focus on the atomic

action of placing boxes inside an empty box. Whenever we put eight boxes inside an

empty box, the total number of boxes increases by eight and the number of empty

boxes increases by seven. Therefore, the assignment that models this is:

t , e := t+8 , e+7 .

An invariant of this type of assignment is easy to calculate. We know that there must

be some linear combination of t and e that remains constant after execution of the as-

signment, so we propose to calculate x and y, such that

(x·t + y·e)[t , e := t+8 , e+7] = x·t + y·e .

In words, we want to calculate x and y, such that the value of x·t + y·e after executing
the assignment t , e := t+8 , e+7 remains the same. The calculation is straightforward:

(x·t + y·e)[t , e := t+8 , e+7] = x·t + y·e

= { substitution }

x·(t+8) + y·(e+7) = x·t + y·e

= { arithmetic }

8·x + 7·y = 0

⇐ { arithmetic }

x = 7 ∧ y = −8 .

Thus, an invariant of the assignment is 7·t− 8·e. We know that its initial value is −11

(because t = e = 11). Since it is an invariant, its final value has to be −11. This means

245

SCENARIO 7: MOVING A HEAVY ARMCHAIR

that on termination, when e = 102, we have

7·t− 8·102 = −11 .

Therefore, the final value of t is 115. There is, at the end of the process there are 115

boxes.

This solution is also an example of appropriate naming: we have introduced only two

variables, one to express the goal, and the other to model the concrete data given by the

problem statement. If we had introduced variables for the numbers of small, medium,

and large boxes, the solution would be more complicated.

2

7.8 Further reading

The problem of the heavy chair was taken from [Bac03, Chapter 12] and the problems

shown in the exercises where taken from [Bac07]. We would like to thank to Roland

Backhouse, who kindly authorised the use of the figures.

246

SCENARIO 8

Exchanging the Values of Two

Variables

8.1 Brief description and goals

This scenario discusses and generalises a programming trick that can be used to ex-

change the values of two variables without using additional variables. It serves as an

introduction to formal manipulation of algorithms and it can be also be used to in-

troduce the Guarded Command Language. In our view, it is also a good example of

investigative mathematics.

8.2 Problem

One way of exchanging the values of two variables x and y consists in using a tempo-

rary variable z to store one of the values. Using the Guarded Command Language, we

can write the exchange of values as:

{ x = X ∧ y = Y }

z := x ; x := y ; y := x

{ x = Y ∧ y = X } .

The program is made of three assignments separated by a semi-colon. We read the first

assignment, z := x, as “z becomes x” and it means that after execution, the value of

z is the same as the value of x. The expressions between curly brackets correspond to

assertions. An expression of the form { P } S { Q }where P and Q are properties of the

program variables and S is a program statement is called a Hoare triple. It means that if

247

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

the program variables satisfy P before the execution of the statement S, execution of S is

guaranteed to terminate in a state where the variables satisfy propertyQ. In this case, if

we execute the three assignments in a state that satisfies the property x = X ∧ y = Y,

we are guaranteed to terminate in a state that satisfies x = Y ∧ y = X. In other words,

the values of the variables x and y are interchanged.

More surprisingly, it is also possible to exchange the values of two variables without

using any additional variables (it is, in fact, a well-known programming trick!). A

conventional solution assumes that the values of the variables can be represented as

sequences of bits and exploits the bitwise exclusive-or operation (here denoted by 6≡):

{ x = X ∧ y = Y }

x := x 6≡ y ; y := x 6≡ y ; x := x 6≡ y

{ x = Y ∧ y = X } .

The exclusive-or operator corresponds to bitwise inequivalence. For example, the bi-

nary representations of the numbers 5 and 3 are, respectively, 101 and 011. Since

(0 6≡1) = (1 6≡0) = 1 and (0 6≡0) = (1 6≡1) = 0, we have that (101 6≡011) = 110, that is, 5 6≡3 = 6.

Suppose now that we want to write a program to exchange the values of two variables

without using additional variables in a programming language that has no support for

bitwise operators. Besides the bitwise exclusive-or, which other operators can we use

to achieve the same result?

8.3 Prerequisites

Familiarity with bitwise operators like exclusive-or, with the calculational proof format

and with associativity may be helpful.

8.4 Resolution and notes

In order to determine which properties of 6≡ are involved and which other operators

can be used, let’s change 6≡ to an arbitrary operator⊗ and present all the relevant anno-

tations. Working back from the postcondition to the precondition, we get the following

annotated program:

{ x = X ∧ y = Y }

248

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

{ (x⊗ y) ⊗ ((x⊗ y) ⊗ y) = Y ∧ (x⊗ y) ⊗ y = X }

x := x⊗ y

{ x⊗ (x⊗ y) = Y ∧ x⊗ y = X };

y := x⊗ y

{ x⊗ y = Y ∧ y = X };

x := x⊗ y

{ x = Y ∧ y = X } .

Now, given the first assertion, we can rewrite the second one as the conjunction of the

following two conditions:

(x⊗ y) ⊗ ((x⊗ y) ⊗ y) = y , and

(x⊗ y) ⊗ y = x .

We want to find properties of the operator⊗ that make these conditions hold. Starting

with the simpler condition (i.e., with the second one) and using square brackets to

denote universal quantification over all free variables, we calculate:

(x⊗ y) ⊗ y

= { assume that ⊗ is associative,

in order to isolate x }

x⊗ (y⊗ y)

= { assume that ⊗ is unitpotent, that is:

[z⊗ z = 1⊗] , where 1⊗ is the unit of ⊗ }

x .

The second condition is thus satisfied by assuming that⊗ is associative and unitpotent.

The first condition can be calculated using the same properties:

(x⊗ y) ⊗ ((x⊗ y) ⊗ y)

= { ⊗ is associative }

((x⊗ y) ⊗ (x⊗ y)) ⊗ y

= { ⊗ is unitpotent }

y .

249

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

Thus the correctness of the program presented above follows from the following two

properties of ⊗:

⊗ is associative , and

⊗ is unitpotent .

Clearly, the bitwise exclusive-or is suitable. But note that the bitwise equivalence (usu-

ally denoted by ≡) can also be used.

Generalising ⊗

Note, however, that using only one operator is limiting. We now generalise ⊗ by re-

placing each occurrencewith a separate operator. The new program and corresponding

annotations become:

{ x = X ∧ y = Y }

{ (x⊗ y) ⊖ ((x⊗ y) ⊕ y) = Y ∧ (x⊗ y) ⊕ y = X }

x := x⊗ y

{ x⊖ (x⊕ y) = Y ∧ x⊕ y = X };

y := x⊕ y

{ x⊖ y = Y ∧ y = X };

x := x⊖ y

{ x = Y ∧ y = X } .

Again, from the two initial assertions we get the two following conditions:

(x⊗ y) ⊖ ((x⊗ y) ⊕ y) = y , and

(x⊗ y) ⊕ y = x .

As before, the goal is to investigate which properties of the operators make these con-

ditions hold. Starting with the second condition, we calculate:

(x⊗ y) ⊕ y

= { assume that ⊗ associates with ⊕ }

x⊗ (y⊕ y)

= { assume that ⊕ is unitpotent with respect to ⊗, that is:

250

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

[z⊕ z = 1⊗], where 1⊗ is the unit of ⊗ }

x .

Now, the first condition:

(x⊗ y) ⊖ ((x⊗ y) ⊕ y)

= { previous calculation }

(x⊗ y) ⊖ x

= { assume that ⊗ is symmetric }

(y⊗ x) ⊖ x

= { assume that ⊗ associates with ⊖ }

y⊗ (x⊖ x)

= { assume that ⊖ is unitpotent with respect to ⊗ }

y .

Note that the choices made in this calculation could be different. Exercise 8.6.1 is about

a calculation that leads to different properties.

We thus conclude from the two previous calculations that our new program is correct

if the following properties hold:

⊗ is symmetric ,

⊗ associates with ⊕ ,

⊗ associates with ⊖ ,

⊕ is unitpotent with respect to ⊗ , and

⊖ is unitpotent with respect to ⊗ .

As we can see, operations ⊕ and ⊖ are identical with respect to these conditions. In

fact, we can prove that these five properties imply that ⊕ and ⊖ are equal:

x⊕ y

= { unitpotency of ⊖ with respect to ⊗,

in order to introduce ⊖ }

(x⊕ y) ⊗ (y⊖ y)

= { ⊗ associates with ⊖ }

251

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

((x⊕ y) ⊗ y) ⊖ y

= { deferred proof obligation of [(x⊕ y) ⊗ y = x];

see below }

x⊖ y .

The assumption in the last step can be easily proved from the other properties as fol-

lows:

(x⊕ y) ⊗ y

= { ⊗ is symmetric }

y⊗ (x⊕ y)

= { ⊗ associates with ⊕ }

(y⊗ x) ⊕ y

= { ⊗ is symmetric }

(x⊗ y) ⊕ y

= { ⊗ associates with ⊕ }

x⊗ (y⊕ y)

= { ⊕ is unitpotent with respect to ⊗ }

x .

Thus we write both ⊕ and ⊖ as ⊕ and our program becomes:

{ x = X ∧ y = Y }

x := x⊗ y ;

y := x⊕ y ;

x := x⊕ y

{ x = Y ∧ y = X } .

Recall that this program is correct if the following properties hold:

⊗ is symmetric ,

⊗ associates with ⊕ , and

⊕ is unitpotent with respect to ⊗ .

252

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

A simple refinement

An immediate corollary is that if we have a group with a symmetric operation ⊗, and

if we define the operator⊕ as

x⊕ y = x⊗ y−1 ,

where y−1 is the inverse of y , then the above properties will hold, as the reader can

verify. If we take, for instance, real addition for ⊗ and real subtraction for ⊕, we get

the following program:

{ x = X ∧ y = Y }

x := x+y ;

y := x−y ;

x := x−y

{ x = Y ∧ y = X } .

Note that, in practise, we have to take into account the size of the variables to avoid

overflow problems. (Overflow occurs when an operation attempts to create a value

that is larger than the maximum value that can be represented within the available

storage space.) We omit considerations on overflows for brevity and simplicity.

8.5 Notes for the teacher

Model the problem and annotate the program The goal of the problem is to investi-

gate which other operators can be used in the place of 6≡, so the first thing we do is to

change to an arbitrary operator⊗:

{ x = X ∧ y = Y }

x := x⊗ y ; y := x⊗ y ; x := x⊗ y

{ x = Y ∧ y = X }

Consider now the last assignment and the postcondition. What is the weakest precon-

dition that, after execution of the last assignment, establishes the postcondition? To

answer this question, we use the assignment axiom:

{ Q[x := e] } x := e { Q } .

253

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

The assignment axiom is a very straightforward rule; the key is to work backwards

from postconditions to preconditions. Suppose the assignment x := e is required to

establish the postcondition Q. The postcondition is some Boolean-valued expression

in the program variables, one of which is x. After the assignment, xwill have the value

of expression e before the assignment. So, if Q is to apply to x after the assignment, Q

should apply to e before the assignment. The condition Q[x := e] is called the weak-

est precondition. The teacher can provide more examples to illustrate how to calculate

weakest preconditions. For example, if we require the assignment k := k+1 to es-

tablish the postcondition 0 < k, its weakest precondition is 0< k+1. Once the students

understand the concept (and we think it can only be done with practice), we are ready

to annotate the program with the weakest precondition relative to the last assignment:

{ x = X ∧ y = Y }

x := x⊗ y ; y := x⊗ y ;

{ x⊗ y = Y ∧ y = X }

x := x⊗ y

{ x = Y ∧ y = X }

Working back from the postcondition to the precondition, we can now repeat the same

for the other assignments and annotate the program as follows:

{ x = X ∧ y = Y }

{ (x⊗ y) ⊗ ((x⊗ y) ⊗ y) = Y ∧ (x⊗ y) ⊗ y = X }

x := x⊗ y

{ x⊗ (x⊗ y) = Y ∧ x⊗ y = X };

y := x⊗ y

{ x⊗ y = Y ∧ y = X };

x := x⊗ y

{ x = Y ∧ y = X } .

Investigate properties Now, given the first assertion, we can rewrite the second one

as the conjunction of the following two conditions (we replace X by x and Y by y):

(x⊗ y) ⊗ ((x⊗ y) ⊗ y) = y , and

254

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

(x⊗ y) ⊗ y = x .

The goal is to find properties of the operator ⊗ that make these conditions hold. The

teacher has to be sure that the students understand this. Starting with the simpler

condition (i.e., with the second one), the goal is to find properties of the operator ⊗
that guarantee (x⊗ y) ⊗ y = x. One way of doing that is to “let the symbols do the

work”:

(x⊗ y) ⊗ y

= { assume that ⊗ is associative,

in order to isolate x }

x⊗ (y⊗ y)

= { assume that ⊗ is unitpotent, that is:

[z⊗ z = 1⊗] , where 1⊗ is the unit of ⊗ }

x .

Note that we use square brackets to denote universal quantification over all free vari-

ables (the teacher may want to write it differently). The second condition is thus sat-

isfied by assuming that ⊗ is associative and unitpotent. We recommend the teacher

to stress the investigative approach that the calculation follows: we are postulating

properties based on the shape of the expressions. Syntactic-guided investigations are

practical and useful. The first condition can be calculated using the same properties:

(x⊗ y) ⊗ ((x⊗ y) ⊗ y)

= { ⊗ is associative }

((x⊗ y) ⊗ (x⊗ y)) ⊗ y

= { ⊗ is unitpotent }

y .

Thus the correctness of the program presented above follows from the following two

properties of ⊗:

⊗ is associative , and

⊗ is unitpotent .

Clearly, the bitwise exclusive-or is suitable. But note that the bitwise equivalence (usu-

ally denoted by ≡) can also be used. (Before advancing to the next section, the teacher

should guarantee that the students understood what was done so far.)

255

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

Generalise the operator Using only one operator is limiting, so we now generalise⊗
by replacing each occurrence with a separate operator. The new program and corre-

sponding annotations become:

{ x = X ∧ y = Y }

{ (x⊗ y) ⊖ ((x⊗ y) ⊕ y) = Y ∧ (x⊗ y) ⊕ y = X }

x := x⊗ y

{ x⊖ (x⊕ y) = Y ∧ x⊕ y = X };

y := x⊕ y

{ x⊖ y = Y ∧ y = X };

x := x⊖ y

{ x = Y ∧ y = X } .

(We recommend the teacher to let the students practise the assignment axiom by asking

them to annotate the program.) Again, from the two initial assertions we get the two

following conditions:

(x⊗ y) ⊖ ((x⊗ y) ⊕ y) = y , and

(x⊗ y) ⊕ y = x .

As before, the goal is to investigate which properties of the operators make these con-

ditions hold. Starting with the second condition, we calculate:

(x⊗ y) ⊕ y

= { assume that ⊗ associates with ⊕,

in order to isolate x }

x⊗ (y⊕ y)

= { assume that ⊕ is unitpotent with respect to ⊗, that is:

[z⊕ z = 1⊗], where 1⊗ is the unit of ⊗ }

x .

Now, the first condition:

(x⊗ y) ⊖ ((x⊗ y) ⊕ y)

= { previous calculation }

256

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

(x⊗ y) ⊖ x

= { assume that ⊗ is symmetric }

(y⊗ x) ⊖ x

= { assume that ⊗ associates with ⊖ }

y⊗ (x⊖ x)

= { assume that ⊖ is unitpotent with respect to ⊗ }

y .

Note that the choices made in this calculation could be different. Exercise 8.6.1 is about

a calculation that leads to different properties.

We thus conclude from the two previous calculations that our new program is correct

if the following properties hold:

⊗ is symmetric ,

⊗ associates with ⊕ ,

⊗ associates with ⊖ ,

⊕ is unitpotent with respect to ⊗ , and

⊖ is unitpotent with respect to ⊗ .

The teacher should remark that the operations ⊕ and ⊖ are identical with respect to

these conditions. In fact, we can prove that these five properties imply that ⊕ and ⊖
are equal:

x⊕ y

= { unitpotency of ⊖ with respect to ⊗,

in order to introduce ⊖ }

(x⊕ y) ⊗ (y⊖ y)

= { ⊗ associates with ⊖ }

((x⊕ y) ⊗ y) ⊖ y

= { deferred proof obligation of [(x⊕ y) ⊗ y = x];

see below }

x⊖ y .

257

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

The assumption in the last step can be easily proved from the other properties as fol-

lows:

(x⊕ y) ⊗ y

= { ⊗ is symmetric }

y⊗ (x⊕ y)

= { ⊗ associates with ⊕ }

(y⊗ x) ⊕ y

= { ⊗ is symmetric }

(x⊗ y) ⊕ y

= { ⊗ associates with ⊕ }

x⊗ (y⊕ y)

= { ⊕ is unitpotent with respect to ⊗ }

x .

Thus we write both ⊕ and ⊖ as ⊕ and our program becomes:

{ x = X ∧ y = Y }

x := x⊗ y ;

y := x⊕ y ;

x := x⊕ y

{ x = Y ∧ y = X } .

Recall that this program is correct if the following properties hold:

⊗ is symmetric ,

⊗ associates with ⊕ , and

⊕ is unitpotent with respect to ⊗ .

A simple refinement An immediate corollary is that if we have a group with a sym-

metric operation⊗, and if we define the operator⊕ as

x⊕ y = x⊗ y−1 ,

258

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

where y−1 is the inverse of y , then the above properties will hold, as the reader can ver-

ify. Depending on the level of the students, the teacher may want to omit this corollary.

However, we suggest the discussion of the following example. If we take, for instance,

real addition for ⊗ and real subtraction for ⊕, we get the following program:

{ x = X ∧ y = Y }

x := x+y ;

y := x−y ;

x := x−y

{ x = Y ∧ y = X } .

Note that, in practise, we have to take into account the size of the variables to avoid

overflow problems. (Overflow occurs when an operation attempts to create a value

that is larger than the maximum value that can be represented within the available

storage space.) We omit considerations on overflows for brevity and simplicity.

8.5.1 Questions that the teacher should ask

Model the problem and annotate the program

• Do you understand the problem? Do you understand the trick based on the

exclusive-or operator?

The teacher has to be sure that the students understand what is required.

Going through one or two examples may be enough for most students.

• What is theweakest precondition that, after execution of the last assignment,

establishes the postcondition?

The goal of this question is to help introducing the assignment axiom. It

is important that the students learn how to use the assignment axiom to

calculate weakest preconditions (at a later stage, the teacher may want to

show them how to use it to calculate assignments).

• Do you understand the assignment axiom?

The assignment axiom is a fundamental rule to reason about programs. There-

fore, the teacher has to be sure that the students understand it before pro-

ceeding.

Investigate properties

259

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

• What can we conclude if the two properties (x⊗ y) ⊗ ((x⊗ y) ⊗ y) = y and

(x⊗ y) ⊗ y = x are satisfied?

The students should understand that if these two conditions are true ini-

tially, the values of the variables will be exchanged on termination. The

teacher has to be sure that they understand the goal: to investigate proper-

ties of the operator that guarantee these two conditions.

• Wewant to prove that (x⊗ y) ⊗ y = x. How canwe isolate the x in (x⊗ y) ⊗ y?

We have almost reduced the problem to a syntactic problem. The teacher

should ask what properties allow the isolation of x. The goal is to help the

students reach the conclusion that we can use associativity.

• How can we eliminate the subexpression y⊗ y in x⊗ (y⊗ y)?

Again, the goal of this question is to help the students reach the conclu-

sion that, if we assume that the operator is unitpotent, we can eliminate the

subexpression y⊗ y.

• When is the program shown correct?

The students should understand that the program is correct if the conditions

that we have assumed are true. So, any operator that satisfies these condi-

tions, can be used to exchange the values of two variables without using any

additional variables.

Generalise the operator

• Do you notice any symmetry between the operators ⊕ and ⊖ ?

The goal of this question is to help the students realise that the operators

⊕ and ⊖ are identical with respect to the conditions shown. The teacher

should stress that this suggests the presence of unnecessary detail and then

help the students prove that they are indeed the same.

A simple refinement

• Can you think of any known operators that can be used as instances of ⊗
and ⊕?

We suggest the teacher to let the students suggest instances for the operators,

rather than showing them which operators can be used. We believe that

most students will realise that addition and subtraction can be used (the

same for multiplication and division).

260

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

8.5.2 Questions that the teacher should not ask

Investigate properties

• Can you see that if we use associativity in the expression (x⊗ y) ⊗ y, we

isolate the x?

We recommend the teacher to let the students think about properties that

allow the isolation of the variable x, rather than disclosing it.

• Can we use unitpotency to eliminate the subexpression y⊗ y in x⊗ (y⊗ y)?

For the same reason as above, this question is not recommended, because it

discloses the property that has to be postulated.

A simple refinement

• Can we use addition and subtraction (resp. multiplication and division) as

instances of ⊗ and ⊕?

We recommend the teacher to let the students suggest instances for⊗ and⊕.

If they do not suggest any operators, the teacher may provide some clues. It

can also be useful to test the students’ suggestionswith particular examples.

8.5.3 Concepts that the teacher should introduce

Assignment axiom

Invariant

Non-determinism

Postcondition

Weakest precondition

8.6 Extensions and exercises

Exercise 8.6.1 (Eliminating the symmetry requirement) In page 256, we prove that

(x⊗ y) ⊖ ((x⊗ y) ⊕ y) = y ,

using the fact that ⊗ is symmetric. Can you prove it without assuming that ⊗ is sym-

metric?

2

261

SCENARIO 8: EXCHANGING THE VALUES OF TWO VARIABLES

8.7 Solutions to extensions and exercises

8.6.1 Another possible calculation is:

(x⊗ y) ⊖ ((x⊗ y) ⊕ y)

= { ⊖ associates with ⊕ }

((x⊗ y) ⊖ (x⊗ y)) ⊕ y

= { ⊖ is unitpotent with respect to ⊕ }

y .

We then conclude that ⊗ does not need to be symmetric and that the program with

three operations is correct if

⊗ associates with ⊕ ,

⊖ associates with ⊕ ,

⊕ is unitpotent with respect to ⊗ , and

⊖ is unitpotent with respect to ⊕ .

2

8.8 Further reading

We recommend [Bac03, Chapter 9] for more details about the assignment axiom. In

the page 124 of the same book, the reader may also find a short discussion on weakest

preconditions.

262

SCENARIO 9

The Chameleons of Camelot

9.1 Brief description and goals

This scenario presents a generalisation of the problem “The Chameleons of Camelot”,

found in [Hon97, p. 140] (a more recent and accessible reference is [Win09]). Its goal

is to help students recognise, model, and solve algorithmic problems. The solution is

goal-oriented and explores an invariant of the underlying non-deterministic algorithm.

It is also an example of problem decomposition and it can be used to convey the notions

of loop, guard, postcondition, and non-determinism. We also show howwe can achieve

the goal, rather than just showing it is possible to achieve it. The constructive argument

involves a discussion on program termination that can be used to introduce the concept

of bound function.

9.2 Problem

On the island of Camelot there are three different types of chameleons: grey chameleons,

brown chameleons, and crimson chameleons. Whenever two chameleons of different

colours meet, they both change colour to the third colour.

For which number of grey, brown, and crimson chameleons is it possible to arrange a

succession of meetings that results in all the chameleons displaying the same colour?

For example, if the number of the three different types of chameleons is 4, 7, and 19

(irrespective of the colour), we can arrange a succession of meetings that results in a

monochromatic state (e.g. (4 , 7 , 19)→(6 , 6 , 18)→(5 , 5 , 20)→ · · ·→(0 , 0 , 30)). On the

other hand, if the number of chameleons is 1, 2, and 3, it is impossible to make them all

display the same colour.

263

SCENARIO 9: THE CHAMELEONS OF CAMELOT

9.3 Prerequisites

Elementary knowledge of invariants, postconditions, and congruences.

9.4 Resolution and notes

This problem is clearly of algorithmic nature, since there is a process that makes the

chameleons change colours. The algorithm behind it is non-deterministic and easily

expressible; denoting the number of grey, brown, and crimson chameleons by g, b, and

c, respectively, we can formalise it as follows:

do 0 < g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0 < g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0 < b ∧ 0 < c → g , b , c := g+2 , b−1 , c−1

od

{ P } .

The algorithm consists of a single loop (enclosed between the keywords do and od)

that executes while at least one of the three guards (the conditions at the left of the ar-

row →) is satisfied. If more than one guard is satisfied, the block operator (2) ensures

that only one of the three assignments is chosen non-deterministically. The first assign-

ment, for example, corresponds to a meeting between a grey chameleon and a brown

chameleon: provided that there are chameleons of both these colours, the number of

grey chameleons (g) and brown chameleons (b) both decrease by 1, whilst the number

of crimson chameleons (c) increases by 2. P is the postcondition and it should express

that all chameleons display the same colour. A candidate for P is

(9.4.1) (g = 0∧ b = 0) ∨ (g = 0∧ c = 0) ∨ (b = 0 ∧ c = 0) .

Although (9.4.1) is simple to express, it does not need to be guessed, since it corre-

sponds to to the negation of the disjunction of the guards. In other words, if the loop

stops executing it is because it reached a state satisfying (9.4.1). However, the algorithm

is non-deterministic and is not guaranteed to terminate. Our goal is thus to make the

algorithm more deterministic in a way that guarantees termination.

Now, instead of working directly with the final goal (9.4.1), we can think of how to

get to intermediate states from which the problem is easy to solve. Towards that end,

we need to determine from which states we can easily arrange meetings such that the

264

SCENARIO 9: THE CHAMELEONS OF CAMELOT

resulting states satisfy (9.4.1). For example, the simplest states we can think of are the

ones where there is only one type of chameleon; in this case the goal is trivially satisfied

(e.g. (0 , 0 , 30)). Similarly, the problem is easy to solve when the number of chameleons

of different colours is the same (e.g. (30 , 30 , 30)); in this case, we can choose two

colours and organise a meeting between all the chameleons of these two colours. More

generally, for the states where at least two types of chameleons are equally numbered,

we can arrange a meeting between all the chameleons of these two types. Formally, we

can express these states as:

(9.4.2) g = b ∨ g = c ∨ b = c .

If the algorithm above reaches a state that satisfies this expression, it remains to arrange

a meeting between all the chameleons of two equally numbered classes. Now that

the problem is decomposed into two simpler parts, we can change and annotate the

algorithm to reflect the decomposition:

do g 6= b ∧ g 6= c ∧ b 6= c →

if 0< g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0< g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0< b ∧ 0< c → g , b , c := g+2 , b−1 , c−1

fi

od

{ g = b ∨ g = c ∨ b = c };

Two classes of chameleons are equally numbered, so we can arrange a meeting

between all the chameleons of these two classes. As a consequence, their colour

changes to the third one.

(If there are only chameleons of one colour, there is nothing left to do.)

{ (g = 0 ∧ b = 0) ∨ (g = 0 ∧ c = 0) ∨ (b = 0∧ c = 0) } .

The introduction of the if-statement is necessary, because we want to guarantee that

the loop stops when it reaches a state satisfying (9.4.2). Also, we do not want the loop

to execute when two classes of chameleons are equally numbered.

Having nothing else to play with, we can now investigate how (9.4.2) behaves under

the three loop assignments. Taking the first disjunct, we calculate:

(g = b)[g , b , c := g−1 , b−1 , c+2]

265

SCENARIO 9: THE CHAMELEONS OF CAMELOT

= { substitution }

g−1= b−1

= { cancellation }

g = b ;

(g = b)[g , b , c := g−1 , b+2 , c−1]

= { substitution }

g−1= b+2

= { cancellation }

g = b+3 ;

Finally,

(g = b)[g , b , c := g+2 , b−1 , c−1]

= { substitution }

g+2= b−1

= { cancellation }

g+3= b .

From these calculations we can conclude that the number of grey and brown chameleons

after any meeting is either the same, or it differs by 3. Consequently, after several meet-

ings, the number of chameleons differs by a multiple of 3 (note that 0 is a multiple of

3). A concise way of expressing this fact is by using congruences1:

g ∼= b (mod 3) .

Using the same reasoning for the other two disjuncts (see exercise 9.6.1), we conclude

that an invariant of the loop is

g ∼= b (mod 3) ∨ g ∼= c (mod 3) ∨ b ∼= c (mod 3) .

We can now extend the algorithm presented above with the invariant:

{ Invariant: g∼=b (mod 3) ∨ g∼=c (mod 3) ∨ b∼=c (mod 3) }
1g∼=b (mod 3) means that g and b differ by a multiple of 3, i.e., 3 \ g−b.

266

SCENARIO 9: THE CHAMELEONS OF CAMELOT

do g 6= b ∧ g 6= c ∧ b 6= c →

if 0< g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0< g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0< b ∧ 0< c → g , b , c := g+2 , b−1 , c−1

fi

od

{ g = b ∨ g = c ∨ b = c };

Two classes of chameleons are equally numbered, so we can arrange a meeting

between all the chameleons of these two classes. As a consequence, their colour

changes to the third one.

(If there are only chameleons of one colour, there is nothing left to do.)

{ (g = 0 ∧ b = 0) ∨ (g = 0 ∧ c = 0) ∨ (b = 0∧ c = 0) }.

We can also immediately conclude that if the initial numbers of chameleons do not

satisfy the invariant, that is, if no two initial numbers are congruent modulo 3, it is

impossible to organise a succession of meetings that results in all the chameleons dis-

playing the same colour (see exercise 9.6.2).

But we still have to show that from a state satisfying the invariant, it is possible to reach

a state where two classes of chameleons are equally numbered. That is, we have to

make it more deterministic in a way that guarantees termination. Recall that after each

meeting, the difference between the number of chameleons is either the same or it dif-

fers by 3. Therefore, if the difference between the numbers of two types of chameleons

is a multiple of 3, and if we can iteratively reduce that difference by 3, it is possible

to make them equal. We now give an algorithm that shows how to do it. Suppose,

without loss of generality, that the difference between the number of grey and brown

chameleons is a multiple of 3 and that g < b. Then, while there are crimson chameleons

and g 6= b, we organise successive meetings between brown and crimson chameleons.

This reduces the difference between the number of grey and brown chameleons by a

multiple of 3. If there are no crimson chameleons and g 6= b, we organise a meeting

between one grey and one brown chameleon. This increases the number of crimson

chameleons by 2 and we can now organise two meetings between brown and crimson

chameleons. Formally, the algorithm that organises a succession of meetings that allow

to reach a state where g = b is:

267

SCENARIO 9: THE CHAMELEONS OF CAMELOT

{ g∼=b (mod 3) ∧ g < b }

{ Bound-function: b−g }

do g 6= b→ if c 6= 0 → g , b , c := g+2 , b−1 , c−1

2 c = 0 → g , b , c := g−1 , b−1 , c+2 ;

g , b , c := g+2 , b−1 , c−1

fi

od

{ g = b }

The algorithm executes while g 6= b and it terminates, because the function b−g, which

is initially a positive multiple of 3, decreases by 3 at each iteration. This guarantees that

the algorithm reaches a state where b−g = 0, that is, where g = b.

In conclusion, any initial values g, b and c that satisfy the invariant

g ∼= b (mod 3) ∨ g ∼= c (mod 3) ∨ b ∼= c (mod 3) ,

allow a succession of meetings that results in all the chameleons displaying the same

colour.

9.5 Notes for the teacher

Model the problem This problem is clearly of algorithmic nature, since there is a

process that makes the chameleons change colours. To be sure that the students under-

stand the problem, we recommend the teacher to go through one or two examples (the

examples shown in section 9.2 can be useful).

The next step is to model the underlying algorithm. The teacher should emphasise

that we are interested in the number of existing chameleons and in how that number

evolves over time. This initial discussion should naturally lead to the introduction

of variables to represent the number of the different types of chameleons; and of as-

signments to model the way in which these variables can change. It is a good idea to

accompany an assignment like the following

g , b , c := g−1 , b−1 , c+2 ,

with words explaining its informal meaning (e.g. “This assignment represents the

meeting between a grey chameleon and a brown chameleon. The number of grey

268

SCENARIO 9: THE CHAMELEONS OF CAMELOT

chameleons and brown chameleons are both decreased by 1 and the number of crimson

chameleons is increased by 2.”).

At this point, the teacher can recall that the variables are natural numbers (because we

can not have a negative number of chameleons) and ask if the assignment above is en-

tirely correct. The discussion should lead to the notion of guard and to the introduction

of the guarded assignment:

0 < g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2 .

Again, an informal explanation can be useful (e.g. “We can only arrange a meeting

between two brown and crimson chameleons when there is at least one of each.”).

Now, the teacher can ask the students to write down formally the other two meetings

and introduce the block operator (2) for non-deterministic choice:

0 < g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0 < g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0 < b ∧ 0 < c → g , b , c := g+2 , b−1 , c−1

This expression represents a non-deterministic choice of one of three assignments: if

more than one guard is satisfied, then the operator 2 selects one at random to execute.

So, if there are, for example, 4 green chameleons, 7 brown chameleons, and 19 crimson

chameleons, all the three assignments can be executed (but only one will).

The teacher should explain that the above expression executes only once, i.e., once

an assignment is selected, it is executed, and the process stops. This motivates the

introduction of loops:

do 0 < g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0 < g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0 < b ∧ 0< c → g , b , c := g+2 , b−1 , c−1

od .

An informal explanation can be useful (e.g. “The do · · · od means that one of the as-

signments will be repeatedly chosen to be executed until all the guards evaluate to

false.”).

Determine the postcondition and decompose the problem Now that we have mod-

elled the underlying algorithm, we have to express our goal. The answer comes di-

rectly from the problem statement: “For which number of grey, brown, and crimson

269

SCENARIO 9: THE CHAMELEONS OF CAMELOT

chameleons is it possible to arrange a succession of meetings that results in all the

chameleons displaying the same colour?”. So we need to express formally that all the

chameleons display the same colour. One alternative is:

(9.5.1) (g = 0∧ b = 0) ∨ (g = 0∧ c = 0) ∨ (b = 0 ∧ c = 0) .

Again, an informal description can be useful (e.g. “The first disjunct means that there

are only crimson chameleons, the second means that there only brown chameleons,

and the third means that there are only green chameleons. Their disjunction means

that at least one of these statements is true.”).

Note that (9.5.1) does not need to be guessed, since it corresponds to to the negation

of the disjunction of the guards. In other words, the loop stops executing when it

reaches a state satisfying (9.5.1). Depending on the level of the students, the teacher

may calculate (9.5.1) from the guards. One way of doing it is:

¬((0 < g ∧ 0 < b) ∨ (0 < g ∧ 0 < b) ∨ (0 < g ∧ 0 < b))

= { De Morgan’s rule and the variables are natural numbers }

(g = 0 ∨ b = 0) ∧ (b = 0∨ c = 0) ∧ (c = 0 ∨ g = 0)

= { distributivity (several times) }

(g = 0 ∧ b = 0∧ c = 0) ∨ (g = 0∧ b = 0) ∨ (g = 0∧ c = 0) ∨ (b = 0 ∧ c = 0)

= { the first disjunct implies the others }

(g = 0 ∧ b = 0) ∨ (g = 0 ∧ c = 0) ∨ (b = 0 ∧ c = 0) .

Now, instead of working directly with the final goal (9.5.1), we can think of how to

get to intermediate states from which the problem is easy to solve. The teacher should

lead the students to the observation that if two types of chameleons are equally num-

bered, we can arrange a meeting between all the chameleons of these two types. We

suggest the teacher to start with some concrete examples until the students get there

(e.g. (0 , 0 , 0) , (5 , 3 , 5), and (10 , 171 , 10)). Formally, we can express these states as:

(9.5.2) g = b ∨ g = c ∨ b = c .

If the algorithm above reaches a state that satisfies this expression, it remains to arrange

a meeting between all the chameleons of two equally numbered classes. Now that

the problem is decomposed into two simpler parts, we can change and annotate the

algorithm to reflect the decomposition:

do g 6= b ∧ g 6= c ∧ b 6= c →

270

SCENARIO 9: THE CHAMELEONS OF CAMELOT

if 0< g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0< g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0< b ∧ 0< c → g , b , c := g+2 , b−1 , c−1

fi

od

{ g = b ∨ g = c ∨ b = c };

Two classes of chameleons are equally numbered, so we can arrange a meeting

between all the chameleons of these two classes. As a consequence, their colour

changes to the third one.

(If there are only chameleons of one colour, there is nothing left to do.)

{ (g = 0 ∧ b = 0) ∨ (g = 0 ∧ c = 0) ∨ (b = 0∧ c = 0) } .

The introduction of the if-statement is necessary, because we want to guarantee that

the loop stops when it reaches a state satisfying (9.5.2). (We can say that (9.5.2) is a

postcondition of the loop, but not of the algorithm.) Also, we do not want the loop to

execute when two classes of chameleons are equally numbered.

The teacher should make clear that the non-deterministic loop is not guaranteed to

terminate. The goal is thus to make the algorithm more deterministic in a way that

guarantees termination.

Determine appropriate invariants Now that we have formalised our algorithm and

goal, there is not much left to do other than to investigate how (9.5.2) behaves under

the three loop assignments. A standard technique is to work from the postcondition,

using the assignment axiom:

{ P[v := e] } v := e { P } ,

where v := e represents an assignment and P is the postcondition. Taking the first

disjunct of (9.5.2), we calculate how it behaves under the three assignments:

(g = b)[g , b , c := g−1 , b−1 , c+2]

= { substitution }

g−1= b−1

= { cancellation }

271

SCENARIO 9: THE CHAMELEONS OF CAMELOT

g = b ;

(g = b)[g , b , c := g−1 , b+2 , c−1]

= { substitution }

g−1= b+2

= { cancellation }

g = b+3 ;

Finally,

(g = b)[g , b , c := g+2 , b−1 , c−1]

= { substitution }

g+2= b−1

= { cancellation }

g+3= b .

The teacher should ask the students if they see any pattern in the calculations. The

discussion should lead to the fact that the number of grey and brown chameleons after

any meeting is either the same, or it differs by 3. Consequently, after several meetings,

the number of chameleons differs by a multiple of 3 (note that 0 is a multiple of 3). A

concise way of expressing this fact is by using congruences:

g ∼= b (mod 3) .

Using the same reasoning for the other two disjuncts (see exercise 9.6.1), we conclude

that an invariant of the loop is

g ∼= b (mod 3) ∨ g ∼= c (mod 3) ∨ b ∼= c (mod 3) .

We can now extend the algorithm presented above with the invariant:

{ Invariant: g∼=b (mod 3) ∨ g∼=c (mod 3) ∨ b∼=c (mod 3) }

do g 6= b ∧ g 6= c ∧ b 6= c →

if 0< g ∧ 0 < b → g , b , c := g−1 , b−1 , c+2

2 0< g ∧ 0 < c → g , b , c := g−1 , b+2 , c−1

2 0< b ∧ 0< c → g , b , c := g+2 , b−1 , c−1

272

SCENARIO 9: THE CHAMELEONS OF CAMELOT

fi

od

{ g = b ∨ g = c ∨ b = c };

Two classes of chameleons are equally numbered, so we can arrange a meeting

between all the chameleons of these two classes. As a consequence, their colour

changes to the third one.

(If there are only chameleons of one colour, there is nothing left to do.)

{ (g = 0 ∧ b = 0) ∨ (g = 0 ∧ c = 0) ∨ (b = 0∧ c = 0) }.

Use the invariant to solve the problem We can also immediately conclude that if

the initial numbers of chameleons do not satisfy the invariant, that is, if no two initial

numbers are congruent modulo 3, it is impossible to organise a succession of meetings

that results in all the chameleons displaying the same colour. It is important that the

students understand what an invariant is and how it is being used here to make this

conclusion. The exercise 9.6.2 can help the teacher to determine if the students under-

stand how to use the invariant as a necessary condition.

But we still have to show that from a state satisfying the invariant, it is possible to

reach a state where two classes of chameleons are equally numbered. That is, we have

to make it more deterministic in a way that guarantees termination. We suggest the

teacher to emphasise that, so far, we have only proved that the invariant is a necessary

condition. The teacher could also ask the students if it is sufficient. If the students

say no, the teacher can ask for a counter-example (which has to be invalid, since the

invariant is a sufficient condition). If the students say yes, the teacher can ask how they

can organise a succession of meetings to achieve the goal.

We now prove that the invariant is sufficient by constructing an algorithm that organ-

ises meetings to achieve the goal. Recall that after each meeting, the difference between

the number of chameleons is either the same or it differs by 3. Therefore, if the differ-

ence between the numbers of two types of chameleons is a multiple of 3, and if we

can iteratively reduce that difference by 3, it is possible to make them equal. We now

give an algorithm that shows how to do it. Suppose, without loss of generality, that

the difference between the number of grey and brown chameleons is a multiple of 3

and that g < b. Then, while there are crimson chameleons and g 6= b, we organise suc-

cessive meetings between brown and crimson chameleons. This reduces the difference

between the number of grey and brown chameleons by a multiple of 3. If there are

273

SCENARIO 9: THE CHAMELEONS OF CAMELOT

no crimson chameleons and g 6= b, we organise a meeting between one grey and one

brown chameleon. This increases the number of crimson chameleons by 2 and we can

now organise two meetings between brown and crimson chameleons. Formally, the al-

gorithm that organises a succession of meetings that allow to reach a state where g = b

is:

{ g∼=b (mod 3) ∧ g < b }

{ Bound-function: b−g }

do g 6= b→ if c 6= 0 → g , b , c := g+2 , b−1 , c−1

2 c = 0 → g , b , c := g−1 , b−1 , c+2 ;

g , b , c := g+2 , b−1 , c−1

fi

od

{ g = b }

This algorithm can be used to introduce the concept of bound function, which is usu-

ally a natural-valued function on the program variables that is bounded below and that

decreases at each iteration. In this case, the algorithm executes while g 6= b and it termi-

nates, because the function b−g, which is initially a positive multiple of 3, decreases by

3 at each iteration. This guarantees that the algorithm reaches a state where b−g = 0,

that is, where g = b.

Depending on the goals and on the students, the teacher can formally prove that b−g

is indeed decreasing by 3. In general, we introduce an auxiliary variable C that denotes

the value of the bound function before an iteration, and we prove that the value of the

bound function after the iteration is less than C. In this case, we have to prove the two

following properties:

(b−g)[g , b , c := g+2 , b−1 , c−1] < C ⇐ b−g = C , and

(b−g)[g , b , c := g−1 , b−1 , c+2 ; g , b , c := g+2 , b−1 , c−1] < C ⇐ b−g = C .

The proof of the first property is:

(b−g)[g , b , c := g+2 , b−1 , c−1] < C

= { substitution }

b−g−3< C

274

SCENARIO 9: THE CHAMELEONS OF CAMELOT

= { b−g = C }

C−3 < C

= { inequality }

true .

We leave the proof of the other property for the reader. (Note that the composition

of the two assignments g , b , c := g−1 , b−1 , c+2 and g , b , c := g+2 , b−1 , c−1 cor-

responds to the assignment g , b , c := g+1 , b−2 , c+1.) We suggest the teacher to ask

what happens to the algorithm when g = b. The students should understand why the

algorithm stops.

In conclusion, any initial values g, b and c that satisfy the invariant

g ∼= b (mod 3) ∨ g ∼= c (mod 3) ∨ b ∼= c (mod 3) ,

allow a succession of meetings that results in all the chameleons displaying the same

colour. We suggest the teacher to go through the initial examples once again to see

which ones satisfy the invariant.

Discuss generalisations If the teacher has the opportunity to discuss generalisations,

then he could start by asking the students how we can generalise the problem. In

particular, we have two generalisations in view:

• Generalise the number of colours: Instead of three different types of chameleons,

we can have n different types. This generalisation would increase the number of

variables and assignments.

• Generalise the number of chameleons that change colour: Whenever two chameleons

of different colours meet, we can reduce the number of chameleons of these two

colours by m and increase the number of chameleons of the third colour by p.

This generalisation is considered in exercise 9.6.4.

We advise the teacher to discuss some generalisations (even if they are not solved in

the classroom), because the students get the perception that a problem is never really

solved. Furthermore, the teacher can set some generalisations as projects or homework.

9.5.1 Questions that the teacher should ask

Model the problem

275

SCENARIO 9: THE CHAMELEONS OF CAMELOT

• Do you understand the problem?

The teacher has to be sure that the students understand what is required.

Going through one or two examples may be enough for most students.

• Is this an algorithmic problem?

One of the basic and most important skills in algorithmic problem solving is

to be able to identify problems of algorithmic nature. We suggest the teacher

to ask this question explicitly, so that in subsequent problems students ask

the same question to themselves.

• What changes after each meeting and how can we represent that change?

The purpose of this question is to introduce variables and assignments. The

students should realise by themselves that what changes after each meeting

is the number of chameleons of certain colours. Once they get there, the

teacher can introduce the names for the variables and ask how they change.

The discussion should naturally lead to the introduction of the assignments.

• Is the assignment

g , b , c := g−1 , b−1 , c+2

entirely correct? Remember: the variables are natural numbers!

If the students do not see what is wrong with the assignment, we suggest

the teacher to show some examples (e.g. “What happens if there is only

one crimson chameleon?”). Once the students understand that we can only

perform such an assignment when there are at least one green chameleon

and one brown chameleon, the teacher can ask howwould they express that

restriction. The discussion should lead to the introduction of guards.

• Are there any other possible assignments? Which assignments are these?

It is important to let the students work! So, the other two assignments

should be done by the students, not the teacher.

• If it is possible to arrange more than one meeting at one time, which one

should we choose?

The students should understand that if it is possible to execute more than

one assignment, there is no preferred one. In terms of reasoning, it is better

to avoid distinctions. The teacher should introduce the block operator to ex-

press this non-determinism (depending on the students, it may be necessary

to explain what non-determinismmeans).

276

SCENARIO 9: THE CHAMELEONS OF CAMELOT

Determine and discuss the postcondition

• What is our goal? What do we want to prove? How do we express it for-

mally?

Every time we are working in a goal-oriented fashion, this question should

be asked explicitly. The teacher may need to help the students formalising

the states where there are chameleons of only one colour; if that is the case,

we suggest him to help with the first disjunct and let the students do the

other two.

• Can you think of any state for which the problem is easy to solve?

One way of simplifying the problem is to think of states fromwhich it is easy

to attain the goal. To help the students, we recommend the teacher to go

through some examples for which the problem is easy to solve. Clearly, the

simplest is when there are chameleons of only one colour: there is nothing

left to do. If the chameleons of the three types are equally numbered, it is

also easy to solve. More generally, if two classes of chameleons are equally

numbered the problem is easy to solve.

• Do you understand the structure of our algorithm?

The teacher should not proceed until the students understand how the ar-

gument is structured. In particular, it is important to understand the role of

the intermediate state.

Determine appropriate invariants

• Do you see any pattern in these three calculations? What is the relation

between the number of grey and brown chameleons?

The goal of this question is to get to the fact that the number of grey and

brown chameleons after any meeting is either the same or it differs by 3. The

teacher can ask the students to calculate how the other two disjuncts behave

under the three assignments (see exercise 9.6.1).

Use the invariant to solve the problem

• Do you understand how the invariant is being used?

The teacher should be sure that most students understandwhat an invariant

is and how the notion of invariance is being used to solve this problem. We

recommend the teacher to do a final explanation of how the argument is

structured and how it achieves our goal.

277

SCENARIO 9: THE CHAMELEONS OF CAMELOT

• How can we use our argument to deal with the examples we have seen ini-

tially?

It is important to let the students see by themselves which examples satisfy

the invariant and which don’t. The teacher can also invent new examples to

test their understanding..

Discuss generalisations

• Can we generalise this problem? How?

Asking this question explicitly helps cultivating inquisitive minds. The stu-

dents should realise that a problem is never really solved, as we can always

raise new questions. Some generalisations can be set as homework.

9.5.2 Questions that the teacher should not ask

Model the problem

• Can you see thatwe have to introduce variables for the number of chameleons

as their number changes after each meeting?

The students should be lead to the introduction of the right variables. In

general, it is better they feel that they find the answers by themselves.

• Why is the assignment

g , b , c := g−1 , b−1 , c+2

wrong for natural numbers?

Again, this question is obtrusive. The discussion should naturally lead to

the fact that the variables represent natural numbers.

• [Assuming the teacher wrote the other two assignments] Do these two as-

signments correctly model the other two types of meetings?

To learn how to solve problems, the students have to practise and write

down their solutions. Once the first assignment is explained, the teacher

should ask the students to write down the other two.

Determine and discuss the postcondition

• [Assuming the teacher wrote the goal with no explanation] Can you seewhy

this is our goal?

278

SCENARIO 9: THE CHAMELEONS OF CAMELOT

Expressing the goal of the problem is one of the most important tasks of the

solution. Therefore, we suggest the teacher to take some time here and to

formalise the goal together with the students.

• Can you see that if two different types of chameleons are equally numbered,

the problem is easy to solve?

The teacher should start by asking the students which states make the prob-

lem easy to solve. With the help of some examples, we believe that most

students will get to the fact that if two different types of chameleons are

equally numbered, the problem is easy to solve.

Determine appropriate invariants

• Can you see that the number of grey and brown chameleons after any meet-

ing is either the same or it differs by 3?

Again, we suggest the teacher to let the students reach the answer by them-

selves. Perhaps going through each calculation independently and asking

the students to express the relation between the variables helps.

Use the invariant to solve the problem

• Can you see that this example satisfies the invariant and this one does not?

The teacher should let the students test the argument with the examples

shown previously. This way, the teacher can assess if the students really

understand the argument developed.

9.5.3 Concepts that the teacher should introduce

Assignment axiom

Invariant

Non-determinism

Postcondition

9.6 Extensions and exercises

Exercise 9.6.1 (Invariants) Prove that g∼=c (mod 3) and b∼=c (mod 3) are also invari-

ants of the algorithm.

279

SCENARIO 9: THE CHAMELEONS OF CAMELOT

2

Exercise 9.6.2 (Subatomic particles) A bubble chamber contains three types of sub-

atomic particles: 10 particles of type X, 11 particles of type Y, 111 particles of type Z.

Whenever an X- and Y-particle collide, they both become Z-particles. Likewise, Y- and

Z-particles collide and become X-particles and X- and Z-particles become Y−particles

upon collision. Can the particles in the bubble chamber evolve so that only one type is

present?

2

Exercise 9.6.3 (Total number of chameleons) What can you say about the total num-

ber of chameleons? That is, how does the value of g+b+c change after each meet-

ing?

2

Exercise 9.6.4 (Generalisation) On the island of Camelot there are three different

types of chameleons: grey chameleons, brown chameleons, and crimson chameleons.

Whenever two chameleons of different colours meet, the number of chameleons of

these two colours is reduced by m, and the number of chameleons of the third colour

is increased by p.

For which number of grey, brown, and crimson chameleons is it possible to arrange a

succession of meetings that results in all the chameleons displaying the same colour?

2

9.7 Solutions to extensions and exercises

9.6.1 To determine if g∼=c (mod 3) is an invariant, we have to determine how it behaves

under the three loop assignments:

(g∼=c (mod 3))[g , b , c := g−1 , b−1 , c+2]

= { substitution }

g−1∼= c+2 (mod 3)

280

SCENARIO 9: THE CHAMELEONS OF CAMELOT

= { modular arithmetic }

g∼= c+3 (mod 3)

= { modular arithmetic }

g∼=c (mod 3) ;

(g∼=c (mod 3))[g , b , c := g−1 , b+2 , c−1]

= { substitution }

g−1∼= c−1 (mod 3)

= { modular arithmetic }

g∼=c (mod 3) ;

Finally,

(g∼=c (mod 3))[g , b , c := g+2 , b−1 , c−1]

= { substitution }

g+2∼= c−1 (mod 3)

= { modular arithmetic }

g+3∼= c (mod 3)

= { modular arithmetic }

g∼=c (mod 3) .

This means that the number of grey and crimson chameleons after anymeeting is either

the same, or it differs by 3. The other calculation is exactly the same, but with g replaced

by b.

2

9.6.2 This problem is an instance of the one that we solved, but, instead of chameleons,

we have subatomic particles. Because 10 ≇ 11 (mod 3), 10 ≇ 111 (mod 3), and 11 ≇ 111

(mod 3), it is impossible to attain a configuration where only one type of particles is

present.

We have found this problem in [Zei06, p. 100].

2

9.6.3 The total number of chameleons remains constant after each iteration of the loop

281

SCENARIO 9: THE CHAMELEONS OF CAMELOT

body. To prove it, we calculate how the value of g+b+c behaves under the three loop

assignments:

(g+b+c)[g , b , c := g−1 , b−1 , c+2]

= { substitution }

(g−1)+(b−1)+(c+2)

= { arithmetic }

g+b+c ;

(g+b+c)[g , b , c := g−1 , b+2 , c−1]

= { substitution }

(g−1)+(b+2)+(c−1)

= { arithmetic }

g+b+c ;

Finally,

(g+b+c)[g , b , c := g+2 , b−1 , c−1]

= { substitution }

(g+2)+(b−1)+(c−1)

= { arithmetic }

g+b+c .

2

9.6.4 The algorithm behind this generalisation is similar to the one shown in section

9.4; denoting the number of grey, brown, and crimson chameleons by g, b, and c, re-

spectively, we can formalise it as follows:

do g 6= b ∧ g 6= c ∧ b 6= c →

if m≤ g ∧m≤ b → g , b , c := g−m , b−m , c+p

2 m≤ g ∧m≤ c → g , b , c := g−m , b+p , c−m

2 m≤ b ∧m≤ c → g , b , c := g+p , b−m , c−m

fi

282

SCENARIO 9: THE CHAMELEONS OF CAMELOT

od

{ (9.4.2), i.e., g = b ∨ g = c ∨ b = c };

Two classes of chameleons are equally numbered, so we can arrange a meeting

between all the chameleons of these two classes. As a consequence, their colour

changes to the third one.

(If there are only chameleons of one colour, there is nothing left to do.)

{ (g = 0 ∧ b = 0) ∨ (g = 0 ∧ c = 0) ∨ (b = 0∧ c = 0) } .

Repeating the analysis of how (9.5.2) behaves under the three assignments, we take the

first disjunct, and we calculate:

(g = b)[g , b , c := g−m , b−m , c+p]

= { substitution }

g−m = b−m

= { cancellation }

g = b ;

(g = b)[g , b , c := g−m , b+p , c−m]

= { substitution }

g−m = b+p

= { cancellation, associativity }

g = b+(m+p) ;

Finally,

(g = b)[g , b , c := g+p , b−m , c−m]

= { substitution }

g+p = b−m

= { cancellation, associativity }

g+(m+p) = b .

This means that the number of grey and brown chameleons after any meeting is either

the same, or it differs by m+p. Consequently, after several meetings, the number of

chameleons differs by a multiple of m+p (note that 0 is a multiple of m+p).

283

SCENARIO 9: THE CHAMELEONS OF CAMELOT

A concise way of expressing this fact is by using congruences:

g ∼= b (mod (m+p)) .

Using the same reasoning for the other two disjuncts (exercise left to the reader), we

conclude that an invariant of the loop is

g ∼= b (mod (m+p)) ∨ g ∼= c (mod (m+p)) ∨ b ∼= c (mod (m+p)) .

We can now extend the algorithm presented above with the invariant:

{ Invariant: g∼=b (mod (m+p)) ∨ g∼=c (mod (m+p)) ∨ b∼=c (mod (m+p)) }

do g 6= b ∧ g 6= c ∧ b 6= c →

if m≤ g ∧m≤ b → g , b , c := g−m , b−m , c+p

2 m≤ g ∧m≤ c → g , b , c := g−m , b+p , c−m

2 m≤ b ∧m≤ c → g , b , c := g+p , b−m , c−m

fi

od

{ g = b ∨ g = c ∨ b = c };

Two classes of chameleons are equally numbered, so we can arrange a meeting

between all the chameleons of these two classes. As a consequence, their colour

changes to the third one.

(If there are only chameleons of one colour, there is nothing left to do.)

{ (g = 0 ∧ b = 0) ∨ (g = 0 ∧ c = 0) ∨ (b = 0∧ c = 0) }.

We can also immediately conclude that if the initial numbers of chameleons do not

satisfy the invariant, that is, if no two initial numbers are congruent modulo m+p, it

is impossible to organise a succession of meetings that results in all the chameleons

displaying the same colour.

But we still have to show that from a state satisfying the invariant, it is possible to

reach a state where two classes of chameleons are equally numbered. Recall that after

each meeting, the difference between the number of chameleons is either the same or

it differs by m+p. Therefore, if the difference between the numbers of two types of

chameleons is a multiple of m+p, and if we can iteratively reduce that difference by

m+p, it is possible to make them equal. We now give an algorithm that shows how to

do it. Suppose, without loss of generality, that the difference between the number of

284

SCENARIO 9: THE CHAMELEONS OF CAMELOT

grey and brown chameleons is a multiple of m+p and that g < b. Then, while there

are crimson chameleons and g 6= b, we organise successive meetings between brown

and crimson chameleons. This reduces the difference between the number of grey and

brown chameleons by amultiple ofm+p. If there are no crimson chameleons and g 6= b,

we organise a meeting between one grey and one brown chameleon. This increases the

number of crimson chameleons by p and we can now organise p meetings between

brown and crimson chameleons. Formally, the algorithm that organises a succession of

meetings that allow to reach a state where g = b is:

{ g∼= b (mod m+p) ∧ g < b }

{ Bound-function: b−g }

do g 6= b→ if c 6= 0 → g , b , c := g+p , b−m , c−m

2 c = 0 → g , b , c := g−m , b−m , c+p ;

g , b , c := g+p , b−m , c−m

fi

od

{ g = b }

The algorithm executes while g 6= b and it terminates, because the function b−g, which

is initially a positive multiple of m+p, decreases by m+p at each iteration. This guar-

antees that the algorithm reaches a state where b−g = 0, that is, where g = b.

In conclusion, any initial values g, b and c that satisfy the invariant

g ∼= b (mod (m+p)) ∨ g ∼= c (mod (m+p)) ∨ b ∼= c (mod (m+p)) ,

allow a succession of meetings that results in all the chameleons displaying the same

colour. Note that the main example of this scenario is an instance of this problem with

m replaced by 1 and p replaced by 2.

2

9.8 Further reading

The problem presented in this scenario is a generalisation of the one found in [Hon97,

page 140] (a more recent and accessible reference is [Win09]). The original statement is:

On the island of Camelot there are 45 chameleons. At one time 13 of

them are grey, 15 brown, and 17 crimson. However, whenever two chameleons

285

SCENARIO 9: THE CHAMELEONS OF CAMELOT

of different colors meet, they both change color to the third color. Thus, for

example, if a grey and a brown chameleon were to be the first to meet, the

count would change to 12 grey, 14 brown, and 19 crimson.

Is it possible to arrange a succession of meetings that would result in all

the chameleons displaying the same color?

We recommend the teacher to illustrate the use of the invariant found in section 9.4 with

these particular values. Also, it may be beneficial to read and compare Honsberger’s

solution with our solution.

286

SCENARIO 10

Will This Algorithm Terminate?

10.1 Brief description and goals

This scenario presents a problem from the St. Petersburg City Olympiad 1996, whose

goal is to prove that a given algorithm terminates. It can be used to introduce the

topic of program termination, the concept of bound function, and to help the students

practise termination proofs.

10.2 Problem

Several positive integers are written on a blackboard. One can erase any two distinct

integers and write their greatest common divisor and least common multiple instead.

Prove that eventually the numbers will stop changing.

10.3 Prerequisites

Familiarity with the notions of divisibility, greatest common divisor, and least common

multiple can be helpful. Some properties of conjunction, disjunction, and implication

are used (DeMorgan’s rules, contrapositive, weakening, distributivity, and symmetry).

10.4 Resolution and notes

Our argument explores the algorithmic nature of the problem: we prove that the un-

derlying algorithm terminates by finding a natural-valued function on the algorithm’s

variables that decreases at each iteration.

287

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

The first step is to model the problem and to formalise the underlying algorithm. Nam-

ing the blackboard as B, the formal transcription of the replacement process is:

do 〈a, b ∈ B :: a 6= b ∧ {a,b} 6= {a△b , a▽b} → a , b := a△b , a▽b 〉

od

We write a▽b and a△b to denote the greatest common divisor and the least common

multiple of a and b, respectively. The expression do g→e od represents a loop that

executes ewhile the guard g evaluates to true. Inwords, the formal transcriptionmeans:

given two distinct numbers written on the blackboard, a and b, replace them by a△b

and a▽b as long as the set of numbers change (i.e., as long as {a,b} 6= {a△b , a▽b}).
The loop terminates when there are no such numbers on the blackboard. Also, a\b
means that a divides b, that is, there is an integer k such that b = k×a. If a does not

divide b, we write a //\b.

The shape of the second conjunct in the guard of the algorithm brings to our attention

a somewhat known theorem:

(10.4.1) {a,b} = {a△b , a▽b} ≡ a\b ∨ b\a .

This theorem is relevant because it means that if we choose any two numbers a and b

such that a\b ∨ b\a, then the collection of numbers remains unchanged. For example,

if the two numbers to be changed are 10 and 5 , we replace them by the numbers 10▽5

and 10△5, which are, respectively, 5 and 10. Clearly, the collection of numbers remains

unchanged. The theorem is also relevant because, in its contrapositive form, allows us

to refine the guard of the algorithm:

(10.4.2) {a,b} 6= {a△b , a▽b} ≡ a //\b ∧ b //\a .

This means that we can safely focus only on the numbers a and b such that a //\b ∧ b //\a.
For brevity, we write a–‖b instead of a //\b ∧ b //\a. We also call the set {a,b} a couple when-

ever a–‖b.

Also, note that we can remove the expression a 6= b from the guard of the algorithm,

since

a 6= b ⇐ {a,b} 6= {a△b , a▽b} .

Now, to help with our analysis, suppose S is the bag of all couples present in the black-

board, that is, for a and b in B,

(10.4.3) {a,b} ∈ S≡ a–‖b .

288

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

As an example, if the collection of numbers written on the blackboard is {7,7,10,15},
we have

S = {{7,10},{7,15},{7,10},{7,15},{10,15}} .

Using this terminology, one way of formalising the algorithm is

do {a,b} ∈ S → a , b := a▽b , a△b od .

Note that a and b are local names that have no meaning outside the loop. This for-

mulation clearly shows that the loop body will execute while S is non-empty. This

immediately suggests that to prove termination we have to prove that the size of S

decreases at each iteration. To avoid confusion, we use S to denote the bag before an

iteration and S′ to denote the bag after the same iteration. The goal is to prove that

|S′| < |S|. And this is indeed the case. The substitution of a and b by the numbers a▽b

and a△bmeans that there is one couple {a,b} in S that does not belong to S′. Moreover,

the set {a▽b , a△b} is not included in S′, since a▽b\a△b. Note, however, that S′ may

include couples of the shapes {a▽b , c} and {a△b , c}, for some c, that are not elements

of S. (We shall call these “new couples”.) Our goal is thus to prove that, even with the

inclusion of these new couples in S′, |S′| is smaller than |S|; in other words, we have

to prove that the removal of the numbers a and b compensates the addition of new

couples to S′. More precisely, we prove the following propositions:

(10.4.4) {a▽b , c} ∈ S′ ∧ {a△b , c} ∈ S′ ⇒ {a,c} ∈ S ∧ {b,c} ∈ S ;

(10.4.5) {a▽b , c} ∈ S′ ⇒ {a,c} ∈ S ∨ {b,c} ∈ S ;

(10.4.6) {a△b , c} ∈ S′ ⇒ {a,c} ∈ S ∨ {b,c} ∈ S .

Proposition (10.4.4) means that if two new couples {a▽b , c} and {a△b , c} are elements

of S’, then {a,c} and {b,c} are elements of S. But because we have replaced a and b,

{a,c} and {b,c} can not be elements of S′. Hence, the removal of a and b compensates

the addition of the new couples to S′. Similarly, propositions (10.4.5) and (10.4.6) mean

that for each new couple added to S’, there is at least one couple that is an element of S

but not of S′.

Now, before proving the propositions (10.4.4), (10.4.5), and (10.4.6), we investigate cal-

culational rules that relate the operators ▽ and △ with the relation //\. First, we have

the contrapositives of the definitions of ▽ and △:

(10.4.7) a△b //\ c ≡ (a //\c) ∨ (b //\c) , and

289

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

(10.4.8) (c //\ a▽b) ≡ (c //\a) ∨ (c //\b) .

Note that in these rules △ and ▽ occur on the left and right of the //\ symbol, respec-

tively. The rules where △ and ▽ occur on the right and left, respectively, are:

(10.4.9) (c //\ a△b) ⇒ (c //\a) ∧ (c //\b) , and

(10.4.10) (a▽b //\ c) ⇒ (a //\c) ∧ (b //\c) .

(Note the use of implication, rather than equality, in these last two properties. We leave

their proofs for the reader.)

Finally, using these calculational rules, the proofs of (10.4.4), (10.4.5), and (10.4.6) be-

come simple exercises in calculational logic. Proposition (10.4.4) can be proved as:

{a▽b , c} ∈ S′ ∧ {a△b , c} ∈ S′

= { definitions (10.4.3) and –‖ }

(a▽b //\ c) ∧ (c //\ a▽b) ∧ (a△b //\ c) ∧ (c //\ a△b)

⇒ { weakening }

(a▽b //\ c) ∧ (c //\ a△b)

⇒ { (10.4.10) and (10.4.9) }

(a //\c) ∧ (b //\c) ∧ (c //\a) ∧ (c //\b)

= { symmetry and definitions (10.4.3) and –‖ }

{a,c} ∈ S ∧ {b,c} ∈ S .

Also, we prove (10.4.5) as follows:

{a▽b , c} ∈ S′

= { definitions (10.4.3) and –‖ }

(a▽b //\ c) ∧ (c //\ a▽b)

⇒ { (10.4.10) and (10.4.8) }

(a //\c) ∧ (b //\c) ∧ ((c //\a) ∨ (c //\b))

= { distributivity }

((a //\c) ∧ (b //\c) ∧ (c //\a)) ∨ ((a //\c) ∧ (b //\c) ∧ (c //\b))

290

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

⇒ { weakening }

((a //\c) ∧ (c //\a)) ∨ ((b //\c) ∧ (c //\b))

= { definitions (10.4.3) and –‖ }

{a,c} ∈ S ∨ {b,c} ∈ S .

The proof of (10.4.6) is very similar:

{a△b , c} ∈ S′

= { definitions (10.4.3) and –‖ }

(a△b //\ c) ∧ (c //\ a△b)

⇒ { (10.4.9) and (10.4.7) }

((a //\c) ∨ (b //\c)) ∧ (c //\a) ∧ (c //\b)

= { distributivity }

((a //\c) ∧ (c //\a) ∧ (c //\b)) ∨ ((b //\c) ∧ (c //\a) ∧ (c //\b))

⇒ { weakening }

((a //\c) ∧ (c //\a)) ∨ ((b //\c) ∧ (c //\b))

= { definitions (10.4.3) and –‖ }

{a,c} ∈ S ∨ {b,c} ∈ S .

We can thus conclude that the size of S decreases at each iteration, which means that

the algorithm will eventually terminate.

(This solution was jointly developed with Alexandra Mendes.)

10.5 Notes for the teacher

Short introduction to program termination Program termination is a fundamental

topic in Computing and an active research area. Therefore, we recommend the teacher

to start with a short introduction to the topic. In particular, we suggest the introduction

to the concept of bound function. To ensure that we are making progress towards a

termination condition, we usually define a bound function, which is a natural-valued

function of the program variables that measures the size of the problem to be solved. A

guarantee that the value of such a bound function is always decreased at each iteration

is a guarantee that the number of times the algorithm (or loop) is executed is at most

291

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

the initial value of the bound function. In this scenario, we will use as a bound function

the size of a given bag.

Model the problem Now, the first step in our solution is to model the problem and

to formalise the underlying algorithm. Naming the blackboard as B, the formal tran-

scription of the replacement process is:

do 〈a, b ∈ B :: a 6= b → a , b := a△b , a▽b 〉

od

The teacher may use different notations, but we recommend the use of a▽b and a△b to

denote the greatest common divisor and the least common multiple of a and b, respec-

tively (these notations also help with a generalisation discussed later). It is important

that the teacher makes sure that the students understand the formal transcription (it

helps if each part of the algorithm is written as the several aspects of the problem state-

ment are discussed).

We suggest the teacher to ask what would happen if we have the numbers 1 and 3. The

goal is to help the students notice that in certain situations, the collection of numbers

will not change. This suggests that we refine the model to allow replacements only

when the set of numbers change. One way of achieving that is as follows:

do 〈a, b ∈ B :: a 6= b ∧ {a,b} 6= {a△b , a▽b} → a , b := a△b , a▽b 〉

od

It may help the students to describe it in words: given two distinct numbers written on

the blackboard, a and b, replace them by a△b and a▽b as long as the set of numbers

change (i.e., as long as {a,b} 6= {a△b , a▽b}). The loop terminates when there are no

such numbers on the blackboard.

Refine the model Now that we have a model, we can try to simplify it. We recom-

mend the teacher to remark that the shape of the second conjunct in the guard of the

algorithm is related with the following known theorem:

(10.5.1) {a,b} = {a△b , a▽b} ≡ a\b ∨ b\a .

The students should understand that this theorem is relevant because it means that if

we choose any two numbers a and b such that a\b ∨ b\a, then the collection of numbers

remains unchanged. For example, if the two numbers to be changed are 10 and 5 ,

292

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

we replace them by the numbers 10▽5 and 10△5, which are, respectively, 5 and 10.

Clearly, the collection of numbers remains unchanged. The theorem is also relevant

because, in its contrapositive form, allows us to refine the guard of the algorithm:

(10.5.2) {a,b} 6= {a△b , a▽b} ≡ a //\b ∧ b //\a .

This means that we can safely focus only on the numbers a and b such that a //\b ∧ b //\a.
For brevity, we recommend the teacher to write a–‖b instead of a //\b ∧ b //\a. We also call

the set {a,b} a couplewhenever a–‖b.

Also, note that we can remove the expression a 6= b from the guard of the algorithm,

since

a 6= b ⇐ {a,b} 6= {a△b , a▽b} .

At this stage, we have the following model:

do 〈a, b ∈ B :: a–‖b → a , b := a△b , a▽b 〉

od

Now, to help with our termination analysis, suppose S is the bag of all couples present

in the blackboard, that is, for a and b in B,

(10.5.3) {a,b} ∈ S≡ a–‖b .

Using this terminology, one way of formalising the algorithm is

do {a,b} ∈ S → a , b := a▽b , a△b od .

A bag is sometimes called a multiset and it is a set in which elements may occur more

than once (and the number of occurrences is significant). To help the students grasp the

concept of bag and definition (10.5.3), we suggest the teacher towork out the value of S,

when the collection of numbers written on the blackboard is, for example, {7,7,10,15}:

S = {{7,10},{7,15},{7,10},{7,15},{10,15}} .

(Also, note that the bags {7,7,10,15} and {7,10,15} are different.)

The strategy follows from the model This new formulation clearly shows that the

loop body will execute while S is non-empty. This immediately suggests that to prove

termination, we have to prove that the size of S decreases at each iteration. The teacher

should make clear that when S is empty, the loop terminates. Also, we recommend

293

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

the teacher to point out that the function giving the size of S is the bound function (see

the short introduction) chosen for this algorithm. To avoid confusion, we shall use S

to denote the bag before an iteration and S′ to denote the bag after the same iteration.

The goal is to prove that |S′| < |S|. We suggest the teacher to ask the students how we

can prove it. Most students will probably remark that the substitution of a and b by the

numbers a▽b and a△bmeans that there is one couple {a,b} in S that does not belong to

S′. Also, it is easy to see that the set {a▽b , a△b} is not included in S′, since a▽b\a△b.

(If they do not make any of these remarks, we suggest the teacher to ask questions that

can lead the students to them.)

Note, however, that S′ may include couples of the shapes {a▽b , c} and {a△b , c}, for
some c, that are not elements of S. (We shall call these “new couples”.) The teacher

should make sure that the students understand that new couples can form.

Our goal is thus to prove that, even with the inclusion of these new couples in S′, |S′|
is smaller than |S|; in other words, we have to prove that the removal of the numbers a

and b compensates the addition of new couples to S′. More precisely, we have to prove

the following propositions:

(10.5.4) {a▽b , c} ∈ S′ ∧ {a△b , c} ∈ S′ ⇒ {a,c} ∈ S ∧ {b,c} ∈ S ;

(10.5.5) {a▽b , c} ∈ S′ ⇒ {a,c} ∈ S ∨ {b,c} ∈ S ;

(10.5.6) {a△b , c} ∈ S′ ⇒ {a,c} ∈ S ∨ {b,c} ∈ S .

Informal explanations of these properties can help the students. Proposition (10.5.4)

means that if two new couples {a▽b , c} and {a△b , c} are elements of S’, then {a,c}
and {b,c} are elements of S. But because we have replaced a and b, {a,c} and {b,c} can

not be elements of S′. Hence, the removal of a and b compensates the addition of the

new couples to S′. Similarly, propositions (10.5.5) and (10.5.6) mean that for each new

couple added to S’, there is at least one couple that is an element of S but not of S′.

Calculating the solution Now, before proving the propositions (10.5.4), (10.5.5), and

(10.5.6), we investigate calculational rules that relate the operators ▽ and △ with the

relation //\. First, we have the contrapositives of the definitions of ▽ and △:

(10.5.7) a△b //\ c ≡ (a //\c) ∨ (b //\c) , and

(10.5.8) (c //\ a▽b) ≡ (c //\a) ∨ (c //\b) .

294

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

Note that in these rules △ and ▽ occur on the left and right of the //\ symbol, respec-

tively. The rules where △ and ▽ occur on the right and left, respectively, are:

(10.5.9) (c //\ a△b) ⇒ (c //\a) ∧ (c //\b) , and

(10.5.10) (a▽b //\ c) ⇒ (a //\c) ∧ (b //\c) .

(Note the use of implication, rather than equality, in these last two properties. The

teacher may want to prove them with the students; if we apply the contrapositive, the

proofs are quite simple.)

Finally, using these calculational rules, the proofs of (10.5.4), (10.5.5), and (10.5.6) be-

come simple exercises in calculational logic (the teacher should emphasise syntactic

manipulation; given the four previous rules, the students do not need to interpret the

expressions at all!). Proposition (10.5.4) can be proved as:

{a▽b , c} ∈ S′ ∧ {a△b , c} ∈ S′

= { definitions (10.5.3) and –‖ }

(a▽b //\ c) ∧ (c //\ a▽b) ∧ (a△b //\ c) ∧ (c //\ a△b)

⇒ { weakening }

(a▽b //\ c) ∧ (c //\ a△b)

⇒ { (10.5.10) and (10.5.9) }

(a //\c) ∧ (b //\c) ∧ (c //\a) ∧ (c //\b)

= { symmetry and definitions (10.5.3) and –‖ }

{a,c} ∈ S ∧ {b,c} ∈ S .

Also, we prove (10.5.5) as follows:

{a▽b , c} ∈ S′

= { definitions (10.5.3) and –‖ }

(a▽b //\ c) ∧ (c //\ a▽b)

⇒ { (10.5.10) and (10.5.8) }

(a //\c) ∧ (b //\c) ∧ ((c //\a) ∨ (c //\b))

= { distributivity }

((a //\c) ∧ (b //\c) ∧ (c //\a)) ∨ ((a //\c) ∧ (b //\c) ∧ (c //\b))

295

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

⇒ { weakening }

((a //\c) ∧ (c //\a)) ∨ ((b //\c) ∧ (c //\b))

= { definitions (10.5.3) and –‖ }

{a,c} ∈ S ∨ {b,c} ∈ S .

The proof of (10.5.6) is very similar:

{a△b , c} ∈ S′

= { definitions (10.5.3) and –‖ }

(a△b //\ c) ∧ (c //\ a△b)

⇒ { (10.5.9) and (10.5.7) }

((a //\c) ∨ (b //\c)) ∧ (c //\a) ∧ (c //\b)

= { distributivity }

((a //\c) ∧ (c //\a) ∧ (c //\b)) ∨ ((b //\c) ∧ (c //\a) ∧ (c //\b))

⇒ { weakening }

((a //\c) ∧ (c //\a)) ∨ ((b //\c) ∧ (c //\b))

= { definitions (10.5.3) and –‖ }

{a,c} ∈ S ∨ {b,c} ∈ S .

We can thus conclude that the size of S is decreasing at each iteration, which means

that the algorithm will eventually terminate.

Discuss generalisations and other properties We have just proved that the bag Swill

eventually become empty, which means that on termination, we have a\b ∨ b\a for all
numbers a and b that are written in the blackboard B. An immediate conclusion is

that the numbers left on the blackboard form a chain (alternative names for a chain are

linearly ordered set and totally ordered set).

We have not used anywhere the assumption that the numbers written on the black-

board are positive, which means that the problem statement contains unnecessary de-

tail. Also, even more interesting, in the solution presented above there is nothing spe-

cial about the operators △ and ▽, and about the relation //\. In fact, we can generalise

the problem to the following:

Suppose B is a bag of elements of some lattice (A,⊑). One can replace any

296

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

two distinct values of B by their infimum and supremum instead. Prove

that eventually B will stop changing.

The solution to this generalisation is essentially the same, but with the relation \ re-

placed by ⊑ and △ and ▽ representing the supremum and infimum in that order,

respectively.

10.5.1 Questions that the teacher should ask

Model the problem

• Do you understand the problem?

The teacher has to be sure that the students understand what is required.

Going through one or two examples may be enough for most students.

• Is this an algorithmic problem?

One of the basic and most important skills in algorithmic problem solving is

to be able to identify problems of algorithmic nature. We suggest the teacher

to ask this question explicitly, so that in subsequent problems students ask

the same question to themselves.

• How can we model the problem?

The goal of this question is to start the discussion on the modelling of the

problem. This question can be gradually decomposed into other questions,

such as Which variables should we introduce?, How can we model the replace-

ment?, How can we model the restriction that the numbers have to be different?,

and How can we model the repetitive nature of the problem?. All these questions

refer to different components of the model.

• What would happen if the blackboard had the numbers 1 and 2?

The goal of this question is to help the students understand that in certain

situations, the collection of numbers will not change. This question prepares

the first refinement of the guard.

Refine the model

• Can we simplify or rewrite the guard {a,b} 6= {a△b , a▽b}?

This question can be used to introduce the discussion on relevant properties

for the problem. In particular, the teacher can ask the students if they know

any condition on a and b such that {a,b} = {a△b , a▽b}.

297

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

• Why is theorem (10.5.1) relevant? or What happens if we replace two num-

bers a and b such that a\b ∨ b\a?

The students have to understand that if we replace two numbers a and b

such that a\b ∨ b\a, then the collection of numbers does not change.

• How can we use (10.5.1) to change the guard?

We assume that the students are familiar with the contrapositive rule. This

question can be used to introduce the notion of couple and the new notation

that we suggest above.

• How can we use prove that the algorithm based on the bag S terminates?

It is very important that the students understand how they can prove the

termination of the algorithm based on the bag S.

The strategy follows from the model

• [After the strategy is defined]What is the bound function that we are using?

The goal of this question is to relate the strategy with the initial discussion

on bound functions. The students should understand that, in essence, what

they are doing is defining as bound function the function that returns the

size of bag S.

• How can we prove that |S′| < |S|?

This question can be used to introduce the discussion on how we can prove

that the size of S is decreasing.

• What happens to Swhen the numbers a and b are replaced by a▽b and a△b?

This question is related with the previous one. The first crucial observation

is that a▽b and a△b are not in S′.

• If a▽b and a△b are not in S′, can we conclude immediately that |S′|< |S|?
or Can S′ include new couples?

The students have to understand that new couples can form and that the

proof reduces to prove that, even with new couples, the size of S′ is smaller

than the size of S.

• If new couples are added to S′, how can its size be smaller than the size of

S? How can we express that formally?

This question can be used to introduce the three proof obligations. It is im-

portant that the students understand their formalisation. We recommend

298

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

the teacher to help them model the proof obligations and to give informal

explanations of each.

Calculating the solution

• Do you know any properties relating the operators ▽ and △ with the rela-

tion //\?

This question can be used to introduce the calculational rules that we use in

the final part of the solution..

10.5.2 Questions that the teacher should not ask

Refine the model

• Can we use the theorem

{a,b} = {a△b , a▽b} ≡ a\b ∨ b\a

to simplify the guard?

We recommend the teacher towork outwith the students the theorem, rather

than giving it away. The questions in the previous section can help.

10.5.3 Concepts that the teacher should introduce

Bound function

10.6 Extensions and exercises

Exercise 10.6.1 (Euclid’s algorithm) Assuming that x and y are both positive integers,

does the following loop terminate?

do y < x → x := x−y

2 x < y → y := y−x

od

If so, give a bound function on x and y that decreases at each iteration.

2

299

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

Exercise 10.6.2 (Binary Strings) Suppose that we have a finite bit string (i.e. a string

of zeroes and ones) that is repeatedly transformed by replacing

a pattern 00 by 01 , or

a pattern 11 by 10 , wherever in the string and as long as

such transformations are possible.

(This problem was taken from Netty van Gasteren’s thesis [vG90, p. 14].)

2

10.7 Solutions to extensions and exercises

10.6.1 At each step, one of the variables is being decreased, which means that the loop

terminates and the function x+y can be used as a bound function. To formally prove

that the loop terminates, we can assume that the bound function has a certain value,

say Z, and verify that that value decreases after each iteration. More formally, we verify

the following:

{ x+y = Z }

y < x → x := x−y

2 x < y → y := y−x

{ x+y < Z }

We have two calculations, one for each assignment. If the first assignment is executed,

the formal requirement that we have to prove is:

(x−y)+y < Z ⇐ x+y = Z ,

which is the same as

x < Z ⇐ x+y = Z ,

We can easily prove it as follows:

x+y = Z

= { monotonicity, i.e., subtract y from both sides;

we can safely do this, because y is positive }

300

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

x = Z−y

⇒ { y is a positive number, so Z−y < Z }

x < Z .

If the second assignment is executed, the formal requirement and the proof are sym-

metric on y. So, we conclude that x+y is decreasing. Furthermore, since x and y are

both positive, x+y is also positive (i.e., it is bounded below). Therefore, the loop has to

terminate.

2

10.6.2 The solution we show here is Netty van Gasteren’s solution. Since the pair of

transformations is invariant under an interchange of 0 and 1, only equality and differ-

ence of bits matter. Exploiting this observation, we record the succession of neighbour

equalities and differences in the bit string as a string of y’s and x’s, with

y standing for a pair of equal neighbour bits, and

x standing for a pair of different neighbour bits

(which given the first bit precisely determines the bit string).

In this terminology, a transformation changes a y in the “code string” into an x, while

leaving all elements to the left of that y unchanged. Thus the code string decreases lex-

ically at each transformation. Since it furthermore is lexically bounded from below—

by the string of appropriate length consisting of x’s only— the game terminates.

(The shape of the bit string upon termination follows from the observation that the

leftmost bit of the bit string does not change in the game and that upon termination the

code string consists of x’s only.)

2

10.8 Further reading

We have found this problem in [Zei06, p. 77] as an example of the extreme principle. In

there, Zeitz starts with some examples and with an informal discussion that, according

to him, “leads easily” to the following conjecture:

Eventually, the sequence will form a chain where each element will divide

the next (when arranged in order). Moreover, the least element and the

greatest element of this chain are respectively the greatest common divisor

and least common multiple of all the original numbers.

301

SCENARIO 10: WILL THIS ALGORITHM TERMINATE?

He then presents an informal argument, followed by a formal solution that verifies the

conjecture by induction. Our main criticism of his solution is that we are not convinced

that working out some examples “leads easily” to the conjecture. Once it is stated, it

is easy to see it; but how can we teach students to guess this sort of conjecture? In our

solution, once we formalise the algorithm, we clearly see that the loop body will run

while S is non-empty; this immediately suggests that we need to prove that the size of

S decreases at each iteration. The fact that a chain is formed follows immediately from

our definition of S. So we think that the amount of guessing in our solution is much

more reasonable and teachable.

Also, we think that our calculational solution helps to generalise the problem. It is very

easy to see that all the properties used apply to any lattice.

302

SCENARIO 11

Constructing Euclid’s Algorithm

11.1 Brief description and goals

The goal of this scenario is to derive Euclid’s algorithm to compute the greatest com-

mon divisor of two positive natural numbers. We also show how to use the algorithm

to verify theorems related with the greatest common divisor. The scenario can be used

to introduce the construction of programs from their formal specifications and the use

of invariance to prove theorems.

11.2 Problem

The greatest common divisor (gcd) of two numbers is the largest natural number that

divides both numbers. For example, the greatest common divisor of 8 and 12, denoted

in this scenario as 8▽12, is 4. (We use the symbol▽ to denote the gcd operator and we

call it “nabla”.)

The gcd is a fundamental concept in number theory, so it is important to know some of

its properties. For example, a property that is commonly used to simplify calculations

is that multiplication by a natural number distributes over▽:

(11.2.1) [(c×m)▽(c×n) = c× (m▽n)] .

The square so-called “everywhere” brackets are used to indicate that a Boolean state-

ment is “everywhere” true. That is, the statement has the value true for all instantiations

of its free variables. Such statements are often called “facts”, or “laws”, or “theorems”.

When using the everywhere brackets, the domain of the free variables has to be made

clear. This is particularly important here because sometimes the domain of a variable

is the integers and sometimes it is the natural numbers. Usually, we rely on a conven-

303

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

tion for naming the variables, but sometimes we preface a law with a reminder of the

domain.

Note that confusion and ambiguity occur when we define the gcd as the largest natural

number that divides both numbers, because the natural numbers can be ordered in

more than one way: they can be ordered by the usual size ordering (denoted by the

symbol≤), but they can also be ordered by the division relation (denoted by the symbol

\). To avoid ambiguity, we define the gcd of two numbers as the largest number that

divides both numbers with respect to the division ordering. More formally, given two

numbers m and n, m▽n is defined as

(11.2.2) 〈∀k:: k\m ∧ k\n ≡ k \m▽n〉 .

The goal of this scenario is to construct an algorithm that computes the gcd of two

positive natural numbers. That is, we want to construct an algorithm that solves the

following equation:

(11.2.3) x:: 〈∀k :: k\m ∧ k\n ≡ k\x〉 .

Also, can we use the derived algorithm to prove property (11.2.1)?

11.3 Prerequisites

Knowledge of division properties, invariants, guarded-command language, and indi-

rect equality may be useful.

11.4 Resolution and notes

The goal is to solve the two following problems:

1. construct an algorithm that solves equation (11.2.3), where m and n are positive

naturals;

2. use the derived algorithm to prove property (11.2.1).

We solve them in the two following sections.

304

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

11.4.1 Constructing the algorithm

Equation (11.2.3) does not directly suggest any algorithm, but the germ of an algorithm

is suggested by observing that it is equivalent to

(11.4.1) x, y:: x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 .

This new shape strongly suggests an algorithm that, initially, establishes the truth of

〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

—which is trivially achieved by the assignment x,y := m,n—and then, reduces x and

y in such a way that the property is kept invariant whilst making progress to a state

satisfying x = y. When such a state is reached, we have found a solution to the equation

(11.4.1), and the value of x (or y since they are equal) is a solution of (11.2.3). Thus, the

structure of the algorithm we are trying to develop is as follows1:

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

do x 6= y → x , y := A , B

od

{ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

Nowwe only have to define A and B in such away that the assignment in the loop body

leads to a state where x = y is satisfied while maintaining the invariant. Exploiting the

transitivity of equality, the invariant is maintained by choosing A and B so that

(11.4.2) 〈∀k:: k\x ∧ k\y ≡ k\A ∧ k\B〉 .

To ensure that we are making progress towards the termination condition, we have to

define a bound function, which is a natural-valued function of the variables x and y that

measures the size of the problem to be solved. A guarantee that the value of such a

bound function is always decreased at each iteration is a guarantee that the number of

times the loop body is executed is at most the initial value of the bound function. The

definition of the bound function depends on the assignments we choose for A and B.

1We use the Guarded Command Language (GCL), a very simple programming language with just four

programming constructs—assignment, sequential composition, conditionals, and loops. The GCL was

introduced by Dijkstra [Dij75]. The statement do S od is a loop that executes S repeatedly while at least

one of S’s guards is true. Expressions in curly brackets are assertions.

305

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

At this point, we need to exploit properties specific to division. Inspecting the shape of

(11.4.2), we see that it is similar to the shape of the following property:

[k\x ∧ k\y ≡ k\(x + a×y) ∧ k\y] .

A corollary of this property is:

(11.4.3) [k\x ∧ k\y ≡ k\(x−y) ∧ k\y] .

The relevance of this corollary is that our invariant is preserved by the assignment

x := x−y (leaving the value of y unchanged). (Compare (11.4.3) with (11.4.2).) Note

that this also reduces the value of xwhen y is positive. This suggests that we strengthen

the invariant by requiring that x and y remain positive; the assignment x := x−y is

executed when x is greater than y and, symmetrically, the assignment y := y−x is

executed when y is greater than x. As bound function we can take x+y (see exercise

11.6.2). The algorithm becomes

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: 0<x ∧ 0<y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

Bound function: x+y }

do x 6= y →

if y < x → x := x−y

2 x < y → y := y−x

fi

od

{ 0<x ∧ 0<y ∧ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

(Exercise 11.6.1 is about formally verifying the correctness of the algorithm.) Finally,

since

(x < y ∨ y < x) ≡ x 6= y ,

we can safely remove the outer guard and simplify the algorithm, as shown below.

{ 0 < m ∧ 0 < n }

x , y := m , n ;

306

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

{ Invariant: 0<x ∧ 0<y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

Bound function: x+y }

do y < x → x := x−y

2 x < y → y := y−x

od

{ 0<x ∧ 0<y ∧ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

The algorithm that we have constructed is Euclid’s algorithm for computing the great-

est common divisor of two positive natural numbers, the oldest nontrivial algorithm

that has survived to the present day! (Please note that our formulation of the algorithm

differs from most versions found in number-theory books. While they use the prop-

erty [m▽n = n▽(m mod n)], we use (11.4.3), i.e., [m▽n = (m−n)▽n]. For an

encyclopedic account of Euclid’s algorithm, we recommend [Knu97, p. 334].)

11.4.2 Proving the distributivity property

makeThe invariant that we use in the previous section rests on the validity of the theo-

rem

[k\m ∧ k\n ≡ k\(m−n) ∧ k\n] .

But, as Van Gasteren observed in [vG90, Chapter 11], we can use the more general and

equally valid theorem

[k \ (c×m) ∧ k \ (c×n) ≡ k \ (c× (m−n)) ∧ k \ (c×n)]

to conclude that the following property is an invariant of Euclid’s algorithm:

〈∀k, c:: k \ (c×m) ∧ k \ (c×n) ≡ k \ (c×x) ∧ k \ (c×y)〉 .

In particular, the property is true on termination of the algorithm, at which point x and

y both equal m▽n. That is, for all m and n, such that 0< m and 0< n,

(11.4.4) [k \ (c×m) ∧ k \ (c×n) ≡ k \ (c× (m▽n))] .

In addition, theorem (11.4.4) holds when m < 0, since

[(−m)▽n = m▽n] ∧ [k \ (c×(−m)) ≡ k \ (c×m)] ,

and it holds when m equals 0, since [k\0]. Hence, using the symmetry between

m and n we conclude that (11.4.4) is indeed valid for all integers m and n. (In Van

Gasteren’s presentation, this theorem only holds for all (m, n) 6= (0, 0).)

307

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

Theorem (11.4.4) can be used to prove property (11.2.1) by indirect equality. That is, we

prove:

[k \ (c× (m▽n)) ≡ k \ ((c×m)▽(c×n))] .

The proof is simple:

k \ (c× (m▽n))

= { (11.4.4) }

k \ (c×m) ∧ k \ (c×n)

= { (11.2.2) }

k \ ((c×m)▽(c×n)) .

Property (11.2.1) is an important property that can be used to simplify arguments

where both multiplication and the greatest common divisor are involved. An exam-

ple is Van Gasteren’s proof of the theorem

(11.4.5) [(m×p)▽n = m▽n ⇐ p▽n = 1] ,

which is as follows:

m▽n

= { p▽n = 1 and 1 is the unit of multiplication }

(m×(p▽n))▽n

= { (11.2.1) }

(m×p) ▽ (m×n) ▽ n

= { (m×n)▽n = n }

(m×p)▽n .

11.5 Notes for the teacher

Manipulating the specification It is important that the students understand that the

goal is to construct an algorithm satisfying

{ 0 < m ∧ 0 < n }

Compute x

{ 〈∀k :: k\m ∧ k\n ≡ k\x〉 } .

308

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

Equation (11.2.3) does not directly suggest any algorithm nor an invariant. We suggest

the teacher to ask the students how they canmake (11.2.3)more symmetric; introducing

symmetry can make it easier to initialise and may suggest an invariant. The goal is to

introduce the following equivalent equation:

(11.5.1) x, y:: x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 .

This new equation strongly suggests an algorithm that, initially, establishes the truth of

〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

—which is trivially achieved by the assignment x,y := m,n—and then, reduces x and

y in such a way that the property is kept invariant whilst making progress to a state

satisfying x = y. When such a state is reached, we have found a solution to the equation

(11.5.1), and the value of x (or y since they are equal) is a solution of (11.2.3). Thus, the

structure of the algorithm we are trying to develop is as follows:

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

do x 6= y → x , y := A , B

od

{ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

This technique is very common. Suppose that we have a postcondition of the form

P ∧Q, andwe knowhow to initialise one of the conjuncts, say P. Then, a possible shape

for an algorithm that establishes the postcondition using a loop has P as an invariant

and ¬Q as the guard of the loop. Property P is true on termination (because it is an

invariant) and the loop terminates whenQ is true; as a result, the algorithm establishes

P ∧Q. It is important that the students understand this technique.

Also, the teacher may have to explain the notations used to express the algorithm. We

use the Guarded Command Language (GCL), a very simple programming language

with just four programming constructs—assignment, sequential composition, condi-

tionals, and loops. The GCL was introduced by Dijkstra [Dij75]. The statement do S od

is a loop that executes S repeatedly while at least one of S’s guards is true. Expressions

in curly brackets are assertions.

Calculating the assignments Nowwe only have to define A and B in such a way that

the assignment in the loop body leads to a state where x = y is satisfiedwhile maintain-

309

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

ing the invariant. Exploiting the transitivity of equality, the invariant is maintained by

choosing A and B so that

(11.5.2) 〈∀k:: k\x ∧ k\y ≡ k\A ∧ k\B〉 .

At this point, we need to exploit properties specific to division. We suggest the teacher

to ask if the students know any properties similar to (11.5.2). If they do not know any

properties, the teacher may introduce the following theorem:

[k\x ∧ k\y ≡ k\(x + a×y) ∧ k\y] .

(The teachermay have to explain that the square brackets mean that the theorem is true

for all possible values of k, x, y, and a.) Now, we recommend the teacher asks why this

theorem is relevant. The students should understand that if A is chosen to be x+a×y

and B to be y, the invariant is preserved. Moreover, a corollary of this property is:

(11.5.3) [k\x ∧ k\y ≡ k\(x−y) ∧ k\y] .

The relevance of this corollary is that our invariant is preserved by the assignment x :=

x−y (leaving the value of y unchanged). It is important that the students understand

this. Note that this also reduces the value of x when y is positive. This suggests that

we strengthen the invariant by requiring that x and y remain positive; the assignment

x := x−y is executed when x is greater than y and, symmetrically, the assignment

y := y−x is executed when y is greater than x. The algorithm becomes

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: 0<x ∧ 0<y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

do x 6= y →

if y < x → x := x−y

2 x < y → y := y−x

fi

od

{ 0<x ∧ 0<y ∧ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

The teacher may want to prove the correctness of the assignments more formally; al-

ternatively, it can be given as an exercise (see exercise 11.6.1).

310

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

Simplifying the guards Finally, we recommend the teacher to ask if the algorithm

can be simplified. The goal is to observe that, since

(x < y ∨ y < x) ≡ x 6= y ,

we can safely remove the outer guard and simplify the algorithm, as shown below.

{ 0 < m ∧ 0 < n }

x , y := m , n ;

{ Invariant: 0<x ∧ 0<y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

do y < x → x := x−y

2 x < y → y := y−x

od

{ 0<x ∧ 0<y ∧ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

This algorithm is the so-called Euclid’s algorithm for computing the greatest common

divisor of two positive natural numbers, the oldest nontrivial algorithm that has sur-

vived to the present day! (The teacher should say that our formulation of the algorithm

differs frommost versions found in number-theory books. While they use the property

[m▽n = n▽(m mod n)], we use (11.5.3), i.e., [m▽n = (m−n)▽n].)

Proving termination We recommend the teacher to ask the students if the algorithm

above terminates. The students should understand that the postcondition is only es-

tablished if termination is proved. To ensure that we are making progress towards the

termination condition, we have to define a bound function, which is a natural-valued

function of the variables x and y that measures the size of the problem to be solved. A

guarantee that the value of such a bound function is always decreased at each iteration

is a guarantee that the number of times the loop body is executed is at most the ini-

tial value of the bound function. The definition of the bound function depends on the

assignments we choose for A and B.

We recommend the teacher asks if the students can think of any function on variables

x and y that decreases at each iteration and is bounded below. A possibility is the

function x+y; the teacher may want to prove that it can be chosen as a bound function

(see exercise 11.6.2).

We can also annotate the algorithm with the bound function:

{ 0 < m ∧ 0 < n }

311

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

x , y := m , n ;

{ Invariant: 0<x ∧ 0<y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

Bound function: x+y }

do y < x → x := x−y

2 x < y → y := y−x

od

{ 0<x ∧ 0<y ∧ x = y ∧ 〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 }

Generalising the invariant The second part of the problem is about proving property

(11.2.1), using the derived algorithm. Beforewe tackle the proof, we suggest the teacher

to introduce a generalisation of the invariant that we have used. The invariant that we

use in the previous section rests on the validity of the theorem

[k\m ∧ k\n ≡ k\(m−n) ∧ k\n] .

But we can use the more general and equally valid theorem

[k \ (c×m) ∧ k \ (c×n) ≡ k \ (c× (m−n)) ∧ k \ (c×n)]

to conclude that the following property is an invariant of Euclid’s algorithm:

〈∀k, c:: k \ (c×m) ∧ k \ (c×n) ≡ k \ (c×x) ∧ k \ (c×y)〉 .

(The teacher may want to prove that it is indeed an invariant.) In particular, the prop-

erty is true on termination of the algorithm, at which point x and y both equal m▽n.

That is, for all m and n, such that 0 < m and 0 < n,

(11.5.4) [k \ (c×m) ∧ k \ (c×n) ≡ k \ (c× (m▽n))] .

In addition, theorem (11.5.4) holds when m < 0, since

[(−m)▽n = m▽n] ∧ [k \ (c×(−m)) ≡ k \ (c×m)] ,

and it holds when m equals 0, since [k\0]. Hence, using the symmetry between m

and n we conclude that (11.5.4) is indeed valid for all integers m and n.

The teachermay omit the generalisation to the integer domain and restrict all the proofs

to natural numbers.

312

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

Proving the distributivity property Theorem (11.5.4) can be used to prove property

(11.2.1) by indirect equality. That is, we prove:

(11.5.5) [k \ (c× (m▽n)) ≡ k \ ((c×m)▽(c×n))] .

We suggest the teacher to explain what is indirect equality and to show why (11.5.5)

establishes (11.2.1). If property (11.5.5) is true, it is true for all possible values of k. In

particular, it is valid for k = c× (m▽n); replacing k by c× (m▽n), the left-hand side

simplifies to true and we conclude that (c× (m▽n)) \ ((c×m)▽(c×n)). But it is also

valid for k = (c×m)▽(c×n), so if we replace k, the right-hand side simplifies to true

and we conclude (c×m)▽(c×n) \ (c× (m▽n)). Therefore, by anti-symmetry of the

division relation (we assume that c is a natural), we have (c×m)▽(c×n) = c× (m▽n).

The proof of (11.5.5) is simple:

k \ (c× (m▽n))

= { (11.5.4) }

k \ (c×m) ∧ k \ (c×n)

= { (11.2.2) }

k \ ((c×m)▽(c×n)) .

Property (11.2.1) is an important property that can be used to simplify arguments

where both multiplication and the greatest common divisor are involved. An exam-

ple is Van Gasteren’s proof of the theorem

[(m×p)▽n = m▽n ⇐ p▽n = 1] ,

which is as follows:

m▽n

= { p▽n = 1 and 1 is the unit of multiplication }

(m×(p▽n))▽n

= { (11.2.1) }

(m×p) ▽ (m×n) ▽ n

= { (m×n)▽n = n }

(m×p)▽n .

We suggest the teacher to prove this property with the students.

313

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

Discuss generalisations and exercises Euclid’s algorithm can be used to prove other

theorems on the greatest common divisor. For two non-trivial examples, see exercises

11.6.3 and 11.6.4. We believe these exercises can be set as project assignments.

11.5.1 Questions that the teacher should ask

Manipulating the specification

• Do you understand the problem?

The teacher has to be sure that the students understandwhat is required. We

recommend the teacher to show the formal specification to the students.

• Sometimes, it helps to make expressions more symmetric. How can we

make (11.2.3) more symmetric?

The goal of this question is to introduce (11.5.1). It is important to let the

students think about the question.

• Does (11.5.1) suggest any algorithm?

The goal of this question is to introduce the discussion on using one conjunct

as the invariant and the negation of the other as the guard of the loop. It is

important that the students understand the technique.

Calculating the assignments

• Do you know any property similar to (11.5.2)?

The goal of this question is to start the discussion on relevant properties of

division. The goal is to introduce (11.5.3). It is important that the students

understand the relevance of (11.5.3).

• Is (11.5.3) relevant to determine the assignments?

It is important that the students understand the relevance of (11.5.3).

Simplifying the guards

• Can we simplify the algorithm?

The algorithm can be simplified by removing the if statement. The teacher

may have to explain informally why both versions are semantically the same.

Proving termination

• Does the algorithm always terminate?

314

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

The goal is to make the students realise that the postcondition is only es-

tablished if termination is proved. We suggest the teacher asks the students

how would they prove that it always terminates. After discussing the con-

cept of bound function, the teacher may ask if they can think of any function

on variables x and y that decreases at each iteration and is bounded below.

Proving the distributivity property

• Can you see why (11.5.5) establishes the distributivity property?

The goal is to start the discussion on indirect equality. We suggest the teacher

to show the instantiations that establish the distributivity property and to

highlight the relevant properties (reflexivity and anti-symmetry).

11.5.2 Questions that the teacher should not ask

Proving termination

• Can you see that x := x−y (or y := y−x) is a valid assignment?

We think it is better to let the students choose the assignments based on the

properties of division discussed before.

Proving termination

• Can x+y be used as a bound function?

This question should not be asked because it gives away a possible bound

function. It is better to let the students suggest functions and verify if they

can be used.

11.5.3 Concepts that the teacher should introduce

Bound function

Invariant

Indirect equality

11.6 Extensions and exercises

Exercise 11.6.1 (Correctness) Prove the correctness of the assignments in the loop of

Euclid’s algorithm.

315

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

2

Exercise 11.6.2 (Termination) We have stated, but not proved, that x+y can be used

as a bound function. Show that x+y can indeed be used.

2

Exercise 11.6.3 (Geometric property) Using Euclid’s algorithm, prove that in a Carte-

sian coordinate system, m▽n can be interpreted as the number of points with integral

coordinates on the straight line joining the points (0, 0) and (m, n), excluding (0, 0).

More formally, prove the following (with dummies s and t ranging over integers):

[〈Σs, t : m×t = n×s ∧ s≤m ∧ t≤ n ∧ (0 < s ∨ 0 < t) : 1〉 = m▽n] .

2

Exercise 11.6.4 (Distributivity) In addition to multiplication by a natural number,

there are other functions that distribute over ▽. Based on Euclid’s algorithm, investi-

gate and determine reasonable sufficient conditions for a natural-valued function f to

distribute over▽, i.e., for the following property to hold:

[f .(m▽n) = f .m▽ f .n] .

2

11.7 Solutions to extensions and exercises

11.6.1 The goal is to prove that

〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉

is an invariant of the assignments in the loop body. It surely is an invariant with respect

to the assignment x := x−y, since we have:

〈∀k:: k\m ∧ k\n ≡ k\(x−y) ∧ k\y〉

= { [k\(x−y) ∧ k\y ≡ k\x ∧ k\y] }

〈∀k:: k\m ∧ k\n ≡ k\x ∧ k\y〉 .

316

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

The proof for the second assignment is similar and left to the reader.

2

11.6.2 To prove that x+y can be used as a bound function, we have to prove that it

decreases at each iteration and that it is bounded below. Because x and y are positive

numbers, x+y is also positive; this means it is bounded below. As a result, the formal

requirements for it to be a bound function are:

(x+y)[x := x−y] < C ⇐ x+y = C , and

(x+y)[y := y−x] < C ⇐ x+y = C .

The first can be proved as:

(x+y)[y := y−x] < C

= { substitution }

x+(y−x) < C

= { associativity }

(x+y)−x < C

= { x+y = C }

C−x < C

= { 0 < x }

true .

The second is similar and left to the reader.

2

11.6.3 We want to prove the following property:

(11.7.1)

[〈Σs, t : m×t = n×s ∧ s≤m ∧ t≤ n ∧ (0 < s ∨ 0 < t) : 1〉 = m▽n] .

We begin by observing that (11.7.1) holds when m = 0 or when n = 0 (we leave the

proof to the reader). When 0 < m and 0< n, we can simplify the range of (11.7.1). First,

we observe that

(0 < s≤m ≡ 0 < t≤ n) ⇐ m×t = n×s ,

since

317

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

0 < t≤ n

= { 0 < m }

0 < m×t≤m×n

= { m×t = n×s }

0 < n×s≤m×n

= { 0 < n, cancellation }

0 < s≤ m .

As a result, (11.7.1) can be written as

(11.7.2) [〈Σs, t : m×t = n×s ∧ 0 < t≤ n : 1〉 = m▽n] .

In order to use Euclid’s algorithm, we need to find an invariant that allows us to con-

clude (11.7.2). If we use as invariant

(11.7.3) 〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉 = x▽y ,

its initial value is the property that we want to prove:

〈Σs, t : m×t = n×s ∧ 0< t≤ n : 1〉 = m▽n .

Its value upon termination is

〈Σs, t : (m▽n)×t = (m▽n)×s ∧ 0 < t≤m▽n : 1〉 = (m▽n)▽(m▽n) ,

which is equivalent (by cancellation of multiplication and idempotence of ▽) to

〈Σs, t : t = s ∧ 0 < t≤m▽n : 1〉 = m▽n .

It is easy to see that the invariant reduces to true on termination (because the sum on

the left equals m▽n), making its initial value also true.

It is also easy to see that the right-hand side of the invariant is unnecessary as it is

the same initially and on termination. Therefore, we can simplify (11.7.3) and use as

invariant

(11.7.4) 〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉 .

Its value on termination is

〈Σs, t : (m▽n)×t = (m▽n)×s ∧ 0 < t≤m▽n : 1〉 ,

318

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

which is equivalent to

〈Σs, t : t = s ∧ 0 < t≤m▽n : 1〉 .

As said above, this sum equals m▽n.

Now, since the invariant (11.7.4) equals the left-hand side of (11.7.2) for the initial val-

ues of x and y, we only have to check if it remains constant after each iteration. This

means that we have to prove (for y < x ∧ 0< y):

〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉

= 〈Σs, t : (x−y)×t = y×s ∧ 0< t≤ y : 1〉 ,

which can be rewritten, for positive x and y, as:

〈Σs, t : (x+y)×t = y×s ∧ 0< t≤ y : 1〉

= 〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉 .

The proof is as follows:

〈Σs, t : (x+y)×t = y×s ∧ 0 < t≤ y : 1〉

= { distributivity and cancellation }

〈Σs, t : x×t = y×(s−t) ∧ 0< t≤ y : 1〉

= { range translation: s := s+t }

〈Σs, t : x×t = y×s ∧ 0 < t≤ y : 1〉 .

Note that the simplification done in (11.7.2) allows us to apply the range translation

rule in the last step without having to relate the range of variable s with the possible

values for variable t.

2

11.6.4 The goal is to determine reasonable sufficient conditions for a natural-valued

function f to distribute over▽, i.e., for the following property to hold:

(11.7.5) [f .(m▽n) = f .m▽ f .n] .

For simplicity, we restrict all variables to natural numbers. This implies that the domain

of f is also restricted to the natural numbers.

We explore (11.7.5) by identifying invariants of Euclid’s algorithm involving the func-

tion f . To determine an appropriate loop invariant, we take the right-hand side of

(11.7.5) and calculate:

319

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

f .m▽ f .n

= { the initial values of x and y are m and n, respectively }

f .x▽ f .y

= { suppose that f .x▽ f .y is invariant;

on termination: x = m▽n ∧ y = m▽n }

f .(m▽n) ▽ f .(m▽n)

= { ▽ is idempotent }

f .(m▽n) .

Property (11.7.5) is thus established under the assumption that f .x▽ f .y is an invariant

of the loop body. The next step is to determine what condition on f guarantees that

f .x▽ f .y is indeed invariant. Noting the symmetry in the loop body between x and y,

the condition is easily calculated to be

[f .(x−y) ▽ f .y = f .x▽ f .y ⇐ 0 < y < x] .

Equivalently, by the rule of range translation (x := x+y), the condition can be written

as

(11.7.6) [f .x▽ f .y = f .(x+y) ▽ f .y ⇐ 0 < x ∧ 0 < y] .

Formally, this means that

“ f distributes over ▽ ” ⇐ (11.7.6) .

Incidentally, the converse of this property is also valid:

(11.7.6) ⇐ “ f distributes over▽ ” .

The simple calculation proceeds as follows:

f .(x+y) ▽ f .y

= { f distributes over▽ }

f .((x+y)▽y)

= { [(m+n)▽n = m▽n] }

f .(x▽y)

= { f distributes over▽ }

f .x▽ f .y .

320

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

By mutual implication we conclude that

“ f distributes over ▽ ” ≡ (11.7.6) .

We have now reached a point where we can determine if a function distributes over▽.

However, since (11.7.6) still has two occurrences of▽, we want to refine it into simpler

properties. Towards that end we turn our attention to the condition

f .x▽ f .y = f .(x+y) ▽ f .y ,

and we explore simple ways of guaranteeing that it is everywhere true. For instance,

it is immediately obvious that any function that distributes over addition distributes

over▽. (Note that multiplication by a natural number is such a function.) The proof is

very simple:

f .(x+y) ▽ f .y

= { f distributes over addition }

(f .x+ f .y) ▽ f .y

= { [(m+n)▽n = m▽n] }

f .x▽ f .y .

We can formulate the following lemma, which is a more general requirement:

Lemma 11.7.7 All functions f that satisfy

〈∀x, y:: 〈∃a, b : a▽ f .y = 1 : f .(x+y) = a× f .x + b× f .y〉〉

distribute over▽.

Proof

f .(x+y) ▽ f .y

= { f .(x+y) = a× f .x + b× f .y }

(a× f .x + b× f .y) ▽ f .y

= { [(m+a×n)▽n = m▽n] }

(a× f .x) ▽ f .y

= { a▽ f .y = 1 and [(m×p)▽n = m▽n ⇐ p▽n = 1] }

f .x▽ f .y .

321

SCENARIO 11: CONSTRUCTING EUCLID’S ALGORITHM

2

Note that since the discussion above is based on Euclid’s algorithm, lemma 11.7.7 only

applies to positive arguments. We now investigate the case where m or n is 0. We have,

for m = 0 :

f .(0▽n) = f .0▽ f .n

= { [0▽m = m] }

f .n = f .0▽ f .n

= { [a\b ≡ a = b▽a] }

f .n \ f .0

⇐ { obvious possibilities that make the expression valid

are f .0 = 0, f .n = 1, or f .n = f .0; the first is the

interesting case }

f .0 = 0 .

Hence, using the symmetry between m and n we have, for m = 0 or n = 0:

(11.7.8) f .(m▽n) = f .m▽ f .n ⇐ f .0 = 0 .

The conclusion is that we can use (11.7.8) and lemma 11.7.7 to prove that a natural-

valued function with domain IN distributes over▽. We do not know if the condition in

lemma 11.7.7 is necessary for a function to distribute over ▽, but we do not know any

function distributing over▽ that does not satisfy the condition. This is a good problem

to give to interested students.

2

11.8 Further reading

We recommend [BF10], which is on using Euclid’s algorithm to prove and construct

theorems. The main material of this scenario was taken from there.

322

SCENARIO 12

The King Who Loved Diagonals

12.1 Brief description and goals

This scenario is about a recreational problem that can be solved by using the solutions

to two exercises from scenario 11. It can be used to practise formal modelling and to

learn interesting properties related with the greatest common divisor of two numbers.

12.2 Problem

A very rich king wanted to thank one of his knights for leading his soldiers in a victori-

ous battle. So he chose four large rooms of his castle that had the floor equally tiled. In

each of these rooms, he drew a straight diagonal line connecting two opposite corners.

Where the line crossed exactly four tiles, he placed one gold coin. (He actually ordered

someone to draw the lines and place the coins. After all, he was the king!)

The four rooms were all of different sizes:

• Room 0: (211−1)×(213−1) tiles, i.e., 2047×8191 tiles

• Room 1: (215−1)×(220−1) tiles, i.e., 32767×1048575 tiles

• Room 2: (217−1)×(221−1) tiles, i.e., 131071×2097151 tiles

• Room 3: (220−1)×(222−1) tiles, i.e., 1048575×4194303 tiles

On the day that all coins were placed, he explained to the knight what he has done. He

told him the sizes of the four rooms and he allowed him to collect all the gold coins

from one of the rooms (and only one!).

Which room should the knight choose so that he collects a maximum number of gold

coins?

323

SCENARIO 12: THE KING WHO LOVED DIAGONALS

12.3 Prerequisites

Scenario 11 (in particular, exercises 11.6.3 and 11.6.4).

12.4 Resolution and notes

The first step in our solution is to model the problem. A natural way to model it is by

interpreting the floor as a Cartesian coordinate system, where the corners of the tiles

represent integer coordinates. In that case, we can say that the diagonal of a room of

size p×q is the straight line connecting the origin to the point (p,q). Moreover, using

this model, we can say that the king placed one gold coin at each point of the diagonal

line with positive integral coordinates.

But we know from exercise 11.6.3 of scenario 11, that the number of points with positive

integral coordinates on the straight line joining the origin and the point (p,q) is the

greatest common divisor of p and q, p▽q. Thus, the four rooms have the following

number of gold coins:

• Room 0: (211−1)▽(213−1) gold coins

• Room 1: (215−1)▽(220−1) gold coins

• Room 2: (217−1)▽(221−1) gold coins

• Room 3: (220−1)▽(222−1) gold coins

We cannot compute these values immediately, because the arguments are too large.

This suggests that we investigate properties that allow to simplify the computation of

these values. Looking at the shape of the numbers, we see that both arguments are one

less than powers of 2. So, if we define the function M as

M.k = 2k−1 ,

then the number of gold coins in room 0, for example, is M.11▽ M.13. Now, a property

that is connected to problem decomposition is distributivity. If function M distributes

over▽, we have

M.k▽ M.j = M.(k▽j) .

This would help, because it is much easier to calculate the gcd of the exponents than

to calculate the gcd of the powers. From exercise 11.6.4 of scenario 11, we know that a

324

SCENARIO 12: THE KING WHO LOVED DIAGONALS

function f that satisfies

〈∀x, y:: 〈∃a, b : a▽ f .y = 1 : f .(x+y) = a× f .x + b× f .y〉〉

distributes over▽.

So, the function M distributes over▽, if there are integers a and b such that

M.(k+j) = a× M.k + b× M.j ∧ a▽M.j = 1 ,

that is

2k+j−1 = a×(2k−1) + b×(2j−1) ∧ a▽(2j−1) = 1 .

An obvious instantiation for a is 1 (because it makes the second conjunct trivially true).

Choosing a = 1, we calculate b:

2k+j−1 = (2k−1) + b×(2j−1)

= { arithmetic }

2k+j−2k = b×(2j−1)

= { multiplication distributes over addition }

2k×(2j−1) = b×(2j−1)

⇐ { Leibniz }

b = 2k .

We thus have

2k+j−1 = 1×(2k−1) + 2k×(2j−1) ∧ 1▽(2j−1) = 1 ,

and we can conclude that function M distributes over▽:

(2k−1)▽(2j−1) = 2k
▽j−1 .

Thus, the four rooms have the following number of gold coins:

• Room 0: 211▽13−1 gold coins

• Room 1: 215▽20−1 gold coins

• Room 2: 217▽21−1 gold coins

• Room 3: 220▽22−1 gold coins

Clearly, the knight should choose room 1! The value of 15▽20 is 5, whilst 11▽13 = 17▽21 = 1

and 20▽22 = 2. Choosing room 1, the knight would collect 31 gold coins.

325

SCENARIO 12: THE KING WHO LOVED DIAGONALS

12.5 Notes for the teacher

Model the problem The first step in our solution is to model the problem. We suggest

the teacher to ask the students how would they model it. A natural way to model it is

by interpreting the floor as a Cartesian coordinate system, where the corners of the tiles

represent integer coordinates. In that case, we can say that the diagonal of a room of

size p×q is the straight line connecting the origin to the point (p,q). Moreover, using this

model, we can say that the king placed one gold coin at each point of the diagonal line

with positive integral coordinates. It is very important that the students understand

how the model reflects the data from the problem statement.

Use of relevant properties It is assumed (see the prerequisites) that the students

have solved exercises 11.6.3 and 11.6.4 from scenario 11. Therefore, they should know

from exercise 11.6.3 that the number of points with positive integral coordinates on the

straight line joining the origin and the point (p,q) is the greatest common divisor of p

and q, p▽q. This means that the four rooms have the following number of gold coins:

• Room 0: (211−1)▽(213−1) gold coins

• Room 1: (215−1)▽(220−1) gold coins

• Room 2: (217−1)▽(221−1) gold coins

• Room 3: (220−1)▽(222−1) gold coins

We recommend the teacher to ask the students if they know how to compute this num-

bers easily. The goal is to introduce the investigation of properties that allow to simplify

the computation of these values. We recommend the teacher to ask the students if they

notice any similarity in the arguments of ▽. Looking at the shape of the numbers, we

see that both arguments are one less than powers of 2. So, if the teacher defines the

function M as

M.k = 2k−1 ,

then the number of gold coins in room 0, for example, is M.11▽ M.13. Now, a prop-

erty that is connected to problem decomposition is distributivity. And if function M

distributes over▽, we have

M.k▽ M.j = M.(k▽j) .

We suggest the teacher to ask the students if they think distributivity helps. The goal is

to understand that it helps, since it is much easier to calculate the gcd of the exponents

than to calculate the gcd of the powers.

326

SCENARIO 12: THE KING WHO LOVED DIAGONALS

Distributivity proof From exercise 11.6.4 of scenario 11, the students should know

that a function f that satisfies

〈∀x, y:: 〈∃a, b : a▽ f .y = 1 : f .(x+y) = a× f .x + b× f .y〉〉

distributes over▽.

So, the teacher can ask the students how they can use this result with function M.

Function M distributes over ▽ if there are integers a and b such that

M.(k+j) = a× M.k + b× M.j ∧ a▽M.j = 1 ,

that is

2k+j−1 = a×(2k−1) + b×(2j−1) ∧ a▽(2j−1) = 1 .

We suggest the teacher to ask the students for possible values for the variable a. Ob-

vious instantiations for a are 1, 2j, and 2j−2 (because they make the second conjunct

trivially true). Choosing a = 1, we calculate b:

2k+j−1 = (2k−1) + b×(2j−1)

= { arithmetic }

2k+j−2k = b×(2j−1)

= { multiplication distributes over addition }

2k×(2j−1) = b×(2j−1)

⇐ { Leibniz }

b = 2k .

(We recommend the teacher to leave all the steps for the students.) We thus have

2k+j−1 = 1×(2k−1) + 2k×(2j−1) ∧ 1▽(2j−1) = 1 ,

and we can conclude that function M distributes over▽:

(2k−1)▽(2j−1) = 2k
▽j−1 .

Conclusion It should be easy for the students find out what is the room with the

maximum number of gold coins:

• Room 0: 211▽13−1 gold coins

327

SCENARIO 12: THE KING WHO LOVED DIAGONALS

• Room 1: 215▽20−1 gold coins

• Room 2: 217▽21−1 gold coins

• Room 3: 220▽22−1 gold coins

Clearly, the knight should choose room 1! The value of 15▽20 is 5, whilst 11▽13 = 17▽21 = 1

and 20▽22 = 2. Choosing room 1, the knight would collect 31 gold coins.

Generalisations The teacher may want to generalise function M to the function of

exercise 12.6.1.

12.5.1 Questions that the teacher should ask

Model the problem

• Do you understand the problem?

The teacher has to be sure that the students understand what is required.

Drawing some examples can help the students.

• How can we model the problem?

A natural way to model the problem is by interpreting the floor as a Carte-

sian coordinate system, but we suggest the teacher to discuss other possibil-

ities with the students. Once the model is presented, it is important that the

students understand how it reflects the problem.

Use of relevant properties

• Do you know any property that can be used to solve the problem?

The students should be aware that the number of points with integral pos-

itive coordinates on the straight line joining the origin and a point (p,q) is

p▽q.

• Can you easily compute these four values?

The goal of this question is to introduce the investigation of properties that

allow to simplify the computation.

• Do you notice any similarity between the arguments of ▽?

The students should realise that both arguments are one less than powers of

2. This suggests the introduction of function M.

328

SCENARIO 12: THE KING WHO LOVED DIAGONALS

• Do you think distributivity helps? Why?

The goal is to make sure that the students understandwhy distributivity can

be used to solve the problem.

Distributivity proof

• What values can we choose for variable a?

The goal of this question is to help the students simplify the proof. The

second conjunct suggests three instantiations; the simplest can be used to

calculate a value for b.

12.5.2 Questions that the teacher should not ask

Model the problem

• Can we model the floor as a Cartesian coordinate system?

We think it is better to allow the students to think how they can model the

problem, rather than suggesting ways of doing it.

Use of relevant properties

• Can we use the result we have seen in scenario 11?

This question should only be asked if the students fail to recognise that the

results they have seen in scenario 11 can be used.

• Can you see that both arguments are one less than powers of 2?

We think this question reveals information that can easily be discovered by

the students. Moreover, it is more valuable for the students to discover this

by themselves.

12.5.3 Concepts that the teacher should introduce

Cartesian plane

Distributivity

329

SCENARIO 12: THE KING WHO LOVED DIAGONALS

12.6 Extensions and exercises

Exercise 12.6.1 (Generalisation) Prove that, for all integers k and m such that 0< km,

the function f defined as

f .m = km−1

distributes over the greatest common divisor.

2

12.7 Solutions to extensions and exercises

12.6.1 From exercise 11.6.4 of scenario 11, we know that a function f that satisfies

〈∀x, y:: 〈∃a, b : a▽ f .y = 1 : f .(x+y) = a× f .x + b× f .y〉〉

distributes over▽.

So, the function f distributes over▽, if there are integers a and b such that

km+n−1 = a×(km−1) + b×(kn−1) ∧ a▽(kn−1) = 1 .

An obvious instantiation for a is 1 (because it makes the second conjunct trivially true).

Choosing a = 1, we calculate b:

km+n−1 = (km−1) + b×(kn−1)

= { arithmetic }

km+n−km = b×(kn−1)

= { multiplication distributes over addition }

km×(kn−1) = b×(kn−1)

⇐ { Leibniz }

b = km .

We thus have

km+n−1 = 1×(km−1) + km×(kn−1) ∧ 1▽(kn−1) = 1 ,

and we can conclude that function f distributes over▽:

(km−1)▽(kn−1) = km
▽n−1 .

2

330

SCENARIO 12: THE KING WHO LOVED DIAGONALS

12.8 Further reading

We recommend [BF10], which is on using Euclid’s algorithm to prove and construct

theorems.

331

Index

2 (the block operator), 264

⇔ (if and only if), 19

≡ (equivales), 18, 69

6≡ (inequivales), 216

abs (absolute value function), 75
▽ (greatest common divisor), 76

△ (least common multiple), 80

\ (division relation), 75

[] (everywhere brackets), 68

MATHIS, 9

Disquisitiones Arithmeticae, 102

Elements, 3, see also Euclid

How to Solve It, see Pólya, George

1945, 10

Abstraction, 34

Algebraic symmetry, see Symmetry

Algorithm, 14

calculation of, 53

definition of, 1

formal manipulation of, 25, 247

identifying algorithmic problems, 14

inversion, 59

Algorithm inversion, 59

alternative commands, 61

definition, 60

iterative commands, 62

non-determinism, 63

sequential composition, 60

Algorithmic problem solving, 1

at Nottingham, 9

education and research on, 8

principles of, 13–35

teaching of, 148

techniques for, 36–64

Algorithmic proofs, 3, 124

Alloy specification language, 160

American Mathematical Monthly, 139

Assignment axiom, 26, 253

Associativity, 18

associative reading, 18

Boolean equality, 18, 194

Avoid guessing, 183

Avoid unnecessary detail, see Concision

Back, Ralph-Johan, 8

Backhouse, Roland Carl, 8, 9, 139, 246

Bag, see Multiset

Bell, Tim, 9

Bijection, 92, 93, 96

Binary tree, 44, 94

binary search tree, 94

Bird, Richard, 8, 101

Bitwise exclusive-or, 248

Boolean equality, 18, 192

continued equivalences, 195

Bound function, see Program termination

Bracket notation, 19, see also Notation, 224

Brilhart, John, 124

Brocot, Achille, 144

Brute-force, 154

Calculational method, 8, 17, see also Proof

332

INDEX

format, 184

feedback from students, 158

symbol manipulation, 186, 255, 295

Calkin-Wilf tree, see Rational numbers

Cartesian coordinate system, 85

Case analysis, 22, 24, 32, 100, 154, 209

Chain, 296

Chess moves, 49

Chinese remainder theorem, see Congru-

ences

Computational thinking, 9

PROBEs, 10

Concision

appropriate naming, 53, 59

importance of, 32

reducing the state space, 34

structural properties, 32

Congruences, 102, 266

basic properties, 103

cancellation properties, 112

Chinese remainder theorem, 117

congruent numbers, 102

continued congruences, 107

in practice, 111

modular exponentiation, 114

modulus, 102

noncongruent numbers, 102

nonresidue, 102

residue, 102

set of residues, 105

Conjunction, 22

Conjunctive reading, 18

Construction versus verification, 27

Constructive proof, 15, 136

Context-dependent parsing, 18

Contributions, 5

Control groups, 161

Conventional proofs, 2

Coprime numbers, 2, see alsoGreatest com-

mon divisor, 93

De Moor, Oege, 8

De Morgan rules, 208

Dedekind, Julius Wilhelm Richard, 124

Denumerable, 92

Determinant, see Matrices

Dickson, Leonard E., 124

Dijkstra, Edsger W., 7, 90

E. W. Dijkstra Archive, 8

Diophantus of Alexandria, 124

Disjunction, 22

Distributivity, 22, 48, 173

in logic puzzles, 216

relation with naming, 51

relation with problem decomposition,

48

Divide-and-conquer, 37

Divisibility theory, 68

division ordering, 76

division relation, 75

integer division, 68

number of divisors, 181

Division algorithm

invariant, 70

recursive algorithm, 73

specification, 69

termination proof, 70

Duncker, Karl, 10

Educational experiments, 158

Educational material, 148

Eindhoven quantifier notation, seeQuanti-

fiers

Eisenstein array, 140

Eisenstein, Ferdinand G. M., 93

333

INDEX

Eisenstein-Stern tree, see Rational numbers,

140

Empty boxes, see also Invariants

problem statement, 52

solution, 53

Equational logic, 33

Equivalence, see Boolean equality

Euclid, 3, see also Euclid’s algorithm

Euclid’s algorithm

as a construction interface, 87–102

as a verification interface, 81–87

construction of, 77, 303

definition of, 3

extended version, 84

invariant, 77

inversion of, 128

termination proof, 57

Euclid’s lemma, 82

Euler, Leonhard, 124

Existence theorems, 15, 53, 118

Extended Euclid’s algorithm, 84

Extreme principle, 301

Feijen, Wim, 20

Fellows, Mike, 9

Fermat, Pierre de, 124

Fibonacci numbers

definition of, 2

relation with gcd, 90

Formalism

formal modelling, 173

on the use of, 17

Free information, see Symmetry

Functional specification, 25, 120

Future work, 161

Galois connection, 68, 163

Gardner, Martin, 11

Gauss, Carl Friedrich, 102, 124

gcd, see Greatest common divisor

Generating functions, 163

Gibbons, Jeremy, 101

Girard, Albert, 124

Go To statement, 7

Goal-oriented investigations, 27, 173, 184

Goat, Cabbage and Wolf

naming the elements of the problem,

34

problem statement, 14

Goldbach, Christian, 124

Graphs

local degree of a vertex, 28

Greatest common divisor, 2, 79, 112, 151,

287, 303
▽, 76, 288

different orderings, 79

distributivity properties, 82, 87, 307,

324

geometrical property, 85, 316, 324

Greatest lower bound, see Infimum

Gries, David, 8

Guarded command language (GCL), 3, 247

Hadamard, Jacques, 10

Handshaking Lemma, 227

problem definition, 29

Hardy, Godfrey Harold, 65

Hardy, Kenneth, 137

Hermite, Charles, 124

Hoare triples, 7, 25, 40, 247

Hoare, Charles Antony Richard, 7

Homomorphism, 98

Honsberger, Ross, 154, 226, 286

Indirect equality, 69

Infimum, 76, 79, 297

334

INDEX

Infix notation, see Notation

Invariants, 4, 52, 81

empty boxes, 244

knockout tournament, 244

moving a heavy armchair, 238

mutilated chessboard, 244

seen as constants, 86

the chameleons of Camelot, 266

Investigative mathematics, 247

Isomorphism, 44

Knights and Knaves, see Logic puzzles

Knockout tournament, see Invariants

Knuth, Donald E., 3

Lagrange, Joseph-Louis, 124

Lattice, 296

Least common multiple, 80, 114, 287

△, 80, 288

Legendre, Adrien-Marie, 102

Leibniz’s rule, see Substitution of equals for

equals

Lester, David, 101

Lexicographic ordering, 59, 98

Logic puzzles, 22, 154

a logical race, 216

distributivity, 216

Knights and Knaves, 192

Portia’s casket, 23, 203

simultaneous equations on Booleans,

22

Logical implication, 203, 207

Manipulation

syntactic, 17, 295

without interpretation, 17, 295

mathmeth.com - Discipline in Thought, 8

Matrices

determinant, 94, 131

transposition, 95

Mendes, Alexandra, 291

Mersenne function, 48, 151

relation with gcd, 91

Mersenne, Marin, 124, see also Mersenne

function

Method-oriented, 150, 152

Michalewicz, Matthew, 11

Michalewicz, Zbigniew, 11

Modular exponentiation, see Congruences

Monotonicity, 184, 186

Moving a heavy armchair, see Invariants

MPC, see Relatedwork (mathematics of pro-

gram construction)

Multiple assignments, see Simultaneous as-

signments

Multiset, 293

Muskat, Joseph B., 137

Mutilated chessboard, see Invariants

Mutual implication, 32

NetLogo, 160

Newman, Moshe, 93

noisrevni mhtiroglA, see Algorithm inver-

sion

Nonconstructive proof, 15

Notation

infix, 17

introducing new, 19, 224

relevance of, 17

Nuclear pennies game, 44

Nursery rhyme

As I was going to St. Ives, 10

One-to-one correspondence, 92

Ordering relations, 184

Overflow, 253

Pólya, George, 28, 148, 153, 191

335

INDEX

How to Solve It, 10, 153

Pappus, 28

Parity, 49

even, 49

standard solutions to problems on, 50

Partial order, 76

Perfect square, 173

Polynomials, 162

Portia’s casket, see Logic puzzles

Postcondition, 25

Precondition, 25

Preorder, 75

Problem decomposition, 37

relation with distributivity, 48

Program inversion, seeAlgorithm inversion

Program termination, 57, 287

bound function, 57, 70, 287

Programming trick, 247

Proof format, 173

relevance of, 19

Puzzle-based learning, 11

Quantifiers, 29

Eindhoven quantifier notation, 19, 68,

227

unique existential quantifications, 216

Randomised trials, 161

Rational numbers

are denumerable, 96

Calkin-Wilf tree, 97

Eisenstein-Stern tree, 97, 140

enumerations, 92–102

lowest form, 93

mediant, 146

Newman’s algorithm, 142

Stern-Brocot tree, 97, 142

Recreational problems, 148, 151

Regressive planning, see Goal-oriented in-

vestigations

Rejection

is part of academic life, 139

Related work, 6–11

Computer Science Unplugged, 9

classical problem solving, 10

mathematics of program construction,

6

structured derivations, 8

Rhind Mathematical Papyrus, 10

Safety properties, see Invariants

Schneider, Fred, 8

Schoenfeld, Alan H., 10

Sequential composition, 37

Serret, Joseph Alfred, 124

Seven-trees-in-one, 44

Simultaneous assignments, 27

Smith, Henry J. S., 124

Smith-Cornacchia algorithm, 137, see also

Sum of two squares

Solution-oriented, 150, 152

Square numbers, 173

St. Petersburg City Olympiad, 287

Stern, Moritz A., 93, 140

Stern-Brocot tree, see Rational numbers

Subatomic particles, 280

Substitution of equals for equals, 19, 21,

24, 206

Sum of two squares, 16, 124, 136

main theorem, 136

Supremum, 297

Symmetry, 39

algebraic symmetry, 46, 173

free information, 39, 42

river-crossing problems, 39

the jealous couples, 40

336

INDEX

Syntax-driven investigations, 255, 295

Synthesis, 27

Teaching scenarios, 148

catalogue of, 149, 155, 173

glossary, 162

homework, 154

how to create, 150

project assignments, 154

promoting self-discovery, 149, 153

questions not to ask, 153

questions to ask, 153

The chameleons of Camelot, 160, 263

generalisation, 280

invariant, 266

non-determinism, 264

problem decomposition, 38

problem statement, 15

removing the non-determinism, 267

solution, 264

The jealous couples

naming the elements of the problem,

35

problem statement, 35

solution, 40

The kingwho loved diagonals, 323, see also

Greatest common divisor

The Risks Digest, 7

Theorem of Pythagoras, 153

Totally ordered set, 296

Turing, Alan Mathison, 57

Unitpotency, 249

van de Snepscheut, Jan, 8

van Gasteren, Antonetta J. M., 8, 59, 81

Wagon, Stan, 124, 137

Weakest precondition, 253

Wertheimer, Max, 10

Weyl, Hermann, 13

Whiteboards

a problem for, 287

use of, 178

Whitehead, Alfred North, 158

Wilf, Herbert, 161

Williams, Kenneth S., 137

Witten, Ian, 9

Working backwards, see Goal-oriented in-

vestigations

Zagier, Don, 124

Zeitz, Paul, 301

337

	Titlepage
	Dedication
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Algorithmic problem solving: what is it all about?
	1.2 A first example
	1.2.1 A conventional proof
	1.2.2 An algorithmic proof

	1.3 Contributions
	1.4 Related work
	1.4.1 Mathematics of program construction
	1.4.2 Calculational proofs and structured derivations
	1.4.3 Education and research on algorithmic problem solving
	1.4.4 Classical problem solving

	1.5 Structure and organisation

	2 Principles of Algorithmic Problem Solving
	2.1 Identifying algorithmic problems
	2.2 On the use of formalism
	2.3 Goal-oriented investigations
	2.4 On concision and avoidance of unnecessary detail

	3 Techniques for Algorithmic Problem Solving
	3.1 Problem decomposition
	3.2 Symmetry
	3.3 Distributivity
	3.4 Invariants
	3.5 Proving program termination
	3.6 Algorithm Inversion

	4 A Calculational and Algorithmic Approach to Elementary Number Theory
	4.1 Introduction
	4.2 Divisibility theory
	4.2.1 Integer division
	4.2.2 Division relation
	4.2.3 Constructing Euclid's algorithm
	4.2.4 Greatest common divisor

	4.3 Euclid's algorithm as a verification interface
	4.3.1 Exploring the invariant
	4.3.2 on the left side
	4.3.3 A geometrical property

	4.4 Euclid's algorithm as a construction interface
	4.4.1 Distributivity properties
	4.4.2 Enumerating the rationals

	4.5 The theory of congruences
	4.5.1 Basic properties of congruences
	4.5.2 Modular exponentiation
	4.5.3 On a simple version of the Chinese remainder theorem

	4.6 Designing an algorithmic proof of the two-squares theorem
	4.6.1 Euclid's algorithm
	4.6.2 Inverting Euclid's algorithm
	4.6.3 Reversed sequences of vectors
	4.6.4 Length of the sequence of vectors
	4.6.5 Sum of two positive squares
	4.6.6 Discussion

	4.7 Conclusion
	4.8 Appendix: historical remarks on the trees of rationals
	4.8.1 Stern's paper
	4.8.2 Brocot, the watchmaker
	4.8.3 Conclusion

	5 Supporting the Teaching of Algorithmic Problem Solving
	5.1 Teaching scenarios
	5.2 How to create a teaching scenario
	5.2.1 Brief description and goals
	5.2.2 Problem statement
	5.2.3 Prerequisites
	5.2.4 Resolution
	5.2.5 Notes for the teacher
	5.2.6 Extensions and exercises
	5.2.7 Further reading

	5.3 A catalogue of teaching scenarios

	6 Conclusion
	6.1 Future work

	References
	I Teaching Scenarios for Teaching Algorithmic Problem Solving
	1 Exploring Algebraic Symmetries
	1.1 Brief description and goals
	1.2 Problem
	1.3 Prerequisites
	1.4 Resolution and notes
	1.5 For the teacher
	1.5.1 Questions that the teacher should ask
	1.5.2 Questions that the teacher should not ask
	1.5.3 Concepts that the teacher should introduce

	1.6 Extensions and exercises
	1.7 Solutions to extensions and exercises
	1.8 Further reading

	2 Calculating Orderings Between Two Numbers
	2.1 Brief description and goals
	2.2 Problem
	2.3 Prerequisites
	2.4 Resolution and notes
	2.5 For the teacher
	2.5.1 Questions that the teacher should ask
	2.5.2 Questions that the teacher should not ask
	2.5.3 Concepts that the teacher should introduce

	2.6 Extensions and exercises
	2.7 Solutions to extensions and exercises
	2.8 Further reading

	3 The Island of Knights and Knaves
	3.1 Brief description and goals
	3.2 Problem
	3.3 Prerequisites
	3.4 Resolution and notes
	3.5 Notes for the teacher
	3.5.1 Questions that the teacher should ask
	3.5.2 Questions that the teacher should not ask
	3.5.3 Concepts that the teacher should introduce

	3.6 Extensions and exercises
	3.7 Solutions to extensions and exercises
	3.8 Further reading

	4 Portia's Casket
	4.1 Brief description and goals
	4.2 Problem
	4.3 Prerequisites
	4.4 Resolution and notes
	4.5 Notes for the teacher
	4.5.1 Questions that the teacher should ask
	4.5.2 Questions that the teacher should not ask
	4.5.3 Concepts that the teacher should introduce

	4.6 Extensions and exercises
	4.7 Solutions to extensions and exercises
	4.8 Further reading

	5 A Logical Race
	5.1 Brief description and goals
	5.2 Problem
	5.3 Prerequisites
	5.4 Resolution and notes
	5.5 Notes for the teacher
	5.5.1 Questions that the teacher should ask
	5.5.2 Questions that the teacher should not ask
	5.5.3 Concepts that the teacher should introduce

	5.6 Extensions and exercises
	5.7 Solutions to extensions and exercises
	5.8 Further reading

	6 A Calculational Proof of the Handshaking Lemma
	6.1 Brief description and goals
	6.2 Problem
	6.3 Prerequisites
	6.4 Resolution and notes
	6.5 For the teacher
	6.5.1 Questions that the teacher should ask
	6.5.2 Questions that the teacher should not ask
	6.5.3 Concepts that the teacher should introduce

	6.6 Extensions and exercises
	6.7 Solutions to extensions and exercises
	6.8 Further reading

	7 Moving a Heavy Armchair
	7.1 Brief description and goals
	7.2 Problem
	7.3 Prerequisites
	7.4 Resolution and notes
	7.5 Notes for the teacher
	7.5.1 Questions that the teacher should ask
	7.5.2 Questions that the teacher should not ask
	7.5.3 Concepts that the teacher should introduce

	7.6 Extensions and exercises
	7.7 Solutions to extensions and exercises
	7.8 Further reading

	8 Exchanging the Values of Two Variables
	8.1 Brief description and goals
	8.2 Problem
	8.3 Prerequisites
	8.4 Resolution and notes
	8.5 Notes for the teacher
	8.5.1 Questions that the teacher should ask
	8.5.2 Questions that the teacher should not ask
	8.5.3 Concepts that the teacher should introduce

	8.6 Extensions and exercises
	8.7 Solutions to extensions and exercises
	8.8 Further reading

	9 The Chameleons of Camelot
	9.1 Brief description and goals
	9.2 Problem
	9.3 Prerequisites
	9.4 Resolution and notes
	9.5 Notes for the teacher
	9.5.1 Questions that the teacher should ask
	9.5.2 Questions that the teacher should not ask
	9.5.3 Concepts that the teacher should introduce

	9.6 Extensions and exercises
	9.7 Solutions to extensions and exercises
	9.8 Further reading

	10 Will This Algorithm Terminate?
	10.1 Brief description and goals
	10.2 Problem
	10.3 Prerequisites
	10.4 Resolution and notes
	10.5 Notes for the teacher
	10.5.1 Questions that the teacher should ask
	10.5.2 Questions that the teacher should not ask
	10.5.3 Concepts that the teacher should introduce

	10.6 Extensions and exercises
	10.7 Solutions to extensions and exercises
	10.8 Further reading

	11 Constructing Euclid's Algorithm
	11.1 Brief description and goals
	11.2 Problem
	11.3 Prerequisites
	11.4 Resolution and notes
	11.4.1 T
	11.4.2 T

	11.5 Notes for the teacher
	11.5.1 Questions that the teacher should ask
	11.5.2 Questions that the teacher should not ask
	11.5.3 Concepts that the teacher should introduce

	11.6 Extensions and exercises
	11.7 Solutions to extensions and exercises
	11.8 Further reading

	12 The King Who Loved Diagonals
	12.1 Brief description and goals
	12.2 Problem
	12.3 Prerequisites
	12.4 Resolution and notes
	12.5 Notes for the teacher
	12.5.1 Questions that the teacher should ask
	12.5.2 Questions that the teacher should not ask
	12.5.3 Concepts that the teacher should introduce

	12.6 Extensions and exercises
	12.7 Solutions to extensions and exercises
	12.8 Further reading

