
Baykasoğlu, Adil (1999) Multiple objective decision 
support framework for configuring, loading and 
reconfiguring manufacturing cells. PhD thesis, University 
of Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/11672/1/301690.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


University of Nottingham 

Department of Manufacturing Engineering and Operations Management 

MULTIPLE OBJECTIVE DECISION SUPPORT FRAMEWORK FOR 

CONFIGURING, LOADING AND RECONFIGURING 

MANUF ACTURING CELLS 

by 

Adil BA YKASOGLU, B.Sc., M.Sc. 

Thesis Submitted to the University of Nottingham for the Degree of 

Doctor of Philosophy 

April-l 999 



This thesis is dedicated to the memory of Ataturk 
and my fiancee, Emine. 



ACKNOWLEDGEMENTS 

There are a number of people and institutions that I would like to thank. 

• Professor Dr. Nabil N Z. Gindy, my supervisor, for his invaluable support, 

guidance and encouragement throughout the study. 

• Dr. Sameh M Saad, a good friend, for his invaluable concern and readiness to 

help. 

• Ms. Roxana Belecheanu, a very good friend, for her help in checking the 

manuscript. 

• Carole, Badr, Sahana, Halit, Suleyman, Taylan, Steve, Nick, James, Alex, Thierry, 

Medhi and many other very good friends, for their constant concern and friendship. 

• Professor Dr. Ali I Sonmez and Dr. Turkay Dereli for their moral support and 

encouragement. 

• My Family and my fiancee, Emine for her great patience while I was away from 

her. 

• The Turkish Higher Educational Council for their invaluable financial support. 

• The University of Gaziantep for the grant. 



Acknowledgements 

List of Figures 

List of Tables 

Abbreviations 

TABLE OF CONTENTS 

The list of papers produced from this research 

ABSTRACT 

CHAPTER ONE 

1. INTRODUCTION 

1.1 PROBLEM IDENTIFICATION AND SIGNIFICANCE 

1.2 RESEARCH OBJECTIVES 

1.3 THESIS ORGANISATION 

CHAPTER TWO 

.. 
\"11 

.. 
Xll 

X1\' 

A-I 

1-1 

1-1 

1-5 

1-6 

2. REVIEW AND ANALYSIS OF THE LITERATURE 2-1 

2.1 INTRODUCTION 2-1 

2.2 OVERVIEW OF MODERN HEURISTIC OPTIMISATION 

TECHNIQUES 2-1 

2.2.1 Genetic Algorithms (GA) 2-4 

2.2.1.1 The General GA Algorithm 2-5 

2.2.1.2 Some Example Applications of GA to Engineering Problems 2-5 

2.2.2 Tabu Search (TS) 2-8 

2.2.2.1 The General TS Algorithm 2-9 

2.2.2.2 Some Example Applications of TS to Engineering Problems 2-11 

2.2.3 Simulated Annealing (SA) 2-1 

2.2.3.1 The General SA Algorithm ｾ Ｍ Ｑ

2.2.3.2 Some Example Applications of SA to Engineering Problems 2-1 

2.3 MULTIPLE OBJECTIVE DECISION MAKING 2-1 

2.3.1 Pareto Optimality ｾ Ｍ Ｑ



2.3.2 Techniques for Multiple Objective Optimisation 

2.3.2.1 Utility Function Fonnulation 

2.3.2.2 Global Criterion Fonnulation 

2.3.2.3 Goal Attainment Method 

2.3.2.4 Bounded Objective Function Fonnulation 

2.3.2.5 Game Theoretical Method 

2.3.2.6 Lexicographic (constraint) Method 

2.3.2.7 Genetic Algorithms 

2.3.2.7.1 Population based non-Pareto approach 

2.3.2.7.2 Pareto based approach 

2.3.2.7.3 MOGA: Multi objective genetic algorithm 

2.3.2.8 Goal Programming Method 

2.4 MANUFACTURING SIMULATION AND SIMULATION 

OPTIMISATION 

2.4.1 Methodology of a Simulation Study: A Short Review 

2.4.2 Simulation with SIMAN 

2.4.3 Simulation and Optimisation 

2.5 CELLULAR MANUFACTURING AND CELL FORMATION 

2.6 LOADING AND SCHEDULING IN CELLULAR MANUFACTURING 

2.6.1 Cell Loading 

2.6.2 Cell Scheduling 

2.7 RECONFIGURA TION ISSUES IN CELLULAR MANUFACTURING 

2.7.1 Problems Associated with Cellular Manufacturing Systems 

2.7.2 The Reconfiguration concept 

2.7.3 Reconfiguration from the Cellular Manufacturing Viewpoint 

2.9 CONCLUSIONS OF THE LITERATURE REVIEW 

CHAPTER THREE 

2-19 

2-20 

2-22 

2-22 

2-1'+ 

2-26 

2-27 

2-27 

2-28 

2-28 

2-30 

2-33 

2-36 

2-39 

2-44 

2-50 

2-51 

2-53 

2-55 

2-5S 

2-5t 

Ｒ Ｍ Ｕ ｾ

2-6( 

3. AN OVERVIEW OF THE PROPOSED FRAMEWORK 3-1 

3.1 INTRODUCTION 3-1 

3.2 AN OVERVIEW OF THE RECONFIGURATION PROBLEM IN CMS 3-2 --

11 



3.3 THE PROPOSED FRAMEWORK 

3.3.1 Production Planning 

3.3.2 Generic Process Planning 

3.3.3 Cell Configuration 

3.3.4 Cell Loading 

3.3.5 Parametric Simulation System 

3.3.6 Multiple Objective Optimisation 

3.3.7 Reconfiguration ( Virtual Cell Fonnation) 

3.4 CONCLUSIONS 

CHAPTER FOUR 

4. APPLICATION OF TABU SEARCH TO THE GENERAL PROBLEM OF 

MULTIPLE OBJECTIVE OPTIMISATION: DETERMINATION OF PARETO-

3-4 

3-7 

3-8 

3-8 

3-8 

3-9 

3-10 

3-10 

3-11 

OPTIMAL SET 4-1 

4.1 INTRODUCTION 4-1 

4.2 TABU SEARCH BASED APPROACH TO FIND PARETO OPTIMAL 

SET IN MOO 4-2 

4.2.1 Development of a Tabu Search Algorithm 4-3 

4.2.2 Numerical Examples and Comparative Work 4-15 

4.3 CONCLUSIONS 4-23 

CHAPTER FIVE 

5. DEVELOPMENT OF TABU SEARCH ALGORITHM TO SOLVE 

PRE-EMPTIVE GOAL PROGRAMMING MODELS 5-1 

5.1 INTRODUCTION 5-1 

5.2 A TABU SEARCH BASED APPROACH TO SOLVE PRE-EMPTIVE 

GOAL PROGRAMMING MODELS 5-2 

5.2.1 Preemptive Goal Programming 5-3 

5.2.2 The TS Algorithm 5-5 

5.2.3 Numerical Examples and Comparative Work 5-9 

5.2.4 Application of the proposed algorithm to simulation optimisation 5-1: 

5.3 CONCLUSIONS 5-1" 

III 



CHAPTER SIX 

6. DEVELOPMENT OF MULTIPLE OBJECTIVE MANUFACTURING CELL 

FORMATION MODULE 

6.1 INTRODUCTION 

6.2 MATHEMATICAL FORMULATION OF THE MULTIPLE OBJECTIVE 

CELL FORMATION PROBLEM 

6.3 APPLICATION OF MULTIPLE OBJECTIVE TABU SEARCH 

6-1 

6-1 

6-3 

ALGORITHM TO SOLVE THE MATHEMATICAL MODEL 6-15 

6.4 EXAMPLE APPLICATIONS AND THE COMPARATIVE WORK 6-17 

6.5 CONCLUSIONS 6-26 

CHAPTER SEVEN 

7. DEVELOPMENT OF MULTIPLE OBJECTIVE CELL LOADING MODULE 7-1 

7.1 INTRODUCTION 7-1 

7.2 PROBLEM STATEMENT 7-3 

7.3 MODELLING AND SOLUTION APPROACH 7-8 

7.3.1 Mathematical Modelling 7 -10 

7.3.2 Application of Multiple Objective Tabu Search Algorithm to Solve 

Loading Model 

7.3.3 Simulation and Scheduling Module (SSM) 

7.3.4 Generation of the Loading and Scheduling Scenario (The simulation 

optimisation cycle) 

7.4 EXPERIMENTAL WORK 

7.5 CONCLUSIONS 

CHAPTER EIGHT 

8. DEVELOPMENT OF MULTIPLE OBJECTIVE RECONFIGURATION 

7-12 

7-1'+ 

7-17 

7-18 

7-27 

MODULE 8-1 

8.1 INTRODUCTION 8-1 

8.2 THE RECONFIGURATION STRATEGY 8-4 

1 \" 



8.3 MATHEMATICAL MODELLING OF VIRTUAL CELL FORMATIOK 

PROBLEM 8-5 

8.3.1 Application of Multiple Objective TS Algorithm to Solve Virtual Cell 

Model 8-8 

8.4 EXPERIMENTAL WORK 8-11 

8.5 CONCLUSIONS 8-18 

CHAPTER NINE 

9. SUMMARY, CONCLUSIONS AND FURTHER RESEARCH 9-1 

9.1 INTRODUCTION 9-1 

9.2 SUMMARY OF THE THESIS 9-1 

9.3 THE RESEARCH CONTRIBUTIONS 9-3 

9.4 SUGGESTIONS FOR FUTURE WORK 9-13 

REFERENCES AND BIBLIOGRAPHY R-1 



APPENDICES 

Appendix I : C/C++ code for Example 2 of Chapter 5 

Appendix II : Additional test problems for Chapter 5 

Appendix III : Resource Elements 

Appendix IV : FORTRAN-90 code for the cell configuration module 

Appendix V : Application of MOCACEF 1.0 

Appendix VI : Frames for loading and reconfiguration modules 

Appendix VII : Continuation of the experimental work from Chapter 9 

I-I 

II-5 

III-II 

1\'-21 

\'-49 

VI-58 

VII-61 



LIST OF FIGURES 

Chapter-l 

Figure 1.1 Research areas and their inter-relationships 

Chapter-2 

Figure 2.1 A pictorial comparison of classical and heuristic 

optimisation strategies 

Figure 2.2 Graphical explanation of Pareto optimality 

Figure 2.3 The search directions in VEGA 

Figure 2.4 Various search directions ofMOGA 

Figure 2.5 The simulation cycle 

Figure 2.6 SIMAN software organisation 

Figure 2.7 Three different approaches to relate part processing requirements to the 

available machine tools 

Chapter-3 

Figure 3.1 Changes in cellular manufacturing system design in relation the changing 

1-8 

2-3 

2-17 

2-28 

2-30 

2-34 

2-38 

2-49 

production requirements 3-3 

Figure 3.2 The proposed integrated framework for reconfiguring CMSs 3-5 

Figure 3.3 Parametric simulation optimisation system 3-9 

Figure 3.4 Formation ofVCs in relation to changing production requirements 3-11 

Chapter-4 

Figure 4.1 The flowchart of the basic TS algorithm 4-3 

Figure 4.2 Neighbourhood move spaces of different move approaches 4-6 

Figure 4.3 The flowchart of the TS algorithm to find Pareto optimal solutions 4-11 

Figure 4.4 Part of a step by step manual solution for the example problem 4-12 

Figure 4.5 Computer simulation results for the test problem 4-13 

Figure 4.6 Behaviour of the algorithm while searching for Pareto optimal set in 

MOO 4-14 

\,11 



Figure 4.7 Computer simulation result for Example 1 4-18 

Figure 4.8 Computer simulation result for Example 2 4-20 

Figure 4.9 Graphical comparison of extreme points obtained from PSM, GA and 

MOTS 4-22 

Figure 4.10 Computer simulation result for Example 3 4-23 

Chapter-5 

Figure 5.1 Step by Step manual solution of the example problem 

Figure 5.2 The flowchart of simulation optimisation strategy 

Chapter-6 

Figure 6.1 Analysis of capacity deviations in a cell 

Figure 6.2 Neighbour solutions generation 

Figure 6.3 Comparison of extra resource requirement to configure cells 

Figure 6.4 Comparison of cell utilisation levels 

Chapter-7 

Figure 7.1 Components of loading problem in CMS 

Figure 7.2 Graphical description of the CMS loading problem 

Figure 7.3 An example string for a part type and determination of its alternative cells 

5-9 

5-16 

6-10 

6-16 

6-24 

6-25 

7-2 

7-4 

assigiunent (machining time data is not shown in the string) 7-5 

Figure 7.4 Construction of the MIG graph for a hypothetical CMS with eight part 

types and three manufacturing cells 7-6 

Figure 7.5 A simplified flowchart of the loading system 7-9 

Figure 7.6 Neighbour solutions generation 7-13 

Figure 7.7 Simulation and scheduling module 7 -17 

Figure 7.8 Parametric simulation system 7-18 

Figure 7.9 Layout of the prototype CM system 7-19 

Figure 7.10 The conversion behaviour of the performance measures considered 

in the case study 7-25 

Figure 7.11 Part assignment scenario generated by the loading system 7 -'26 

V 111 



Figure 7.12 A part of production schedule generated by the loading system 7-27 

Chapter-8 

Figure 8.1 The conversion behaviour of the perfonnance measures 8-15 

Figure 8.2 Output ofreconfiguration module as the new set of virtual cells and 

corresponding part assignment 8-16 

Figure 8.3 A small part of production schedule generated automatically for the 

new set of virtual cells 8-17 

Figure 8.4 Perfonnance improvements after reconfiguration 8-1 7 

Appendix III 

Figure IlL 1 FGSs in a c1assicallathe III-13 

Figure III.2 FGSs in a milling machine III -14 

Figure IIL3 RE based representation of a machining facility with three machines III-IS 

Figure III.4 REs based representation of the manufacturing cell III-20 

Appendix VII 

Figure VII. 1 Conversion behaviour of the loading module 

Figure VII.2 Part assignment scenario for the best solution found 

Figure VII.3 Conversion behaviour of the reconfiguration module 

Figure VII.4 The output of the reconfiguration module: new VCs and corresponding 

ｰ ｾ assignments 

Figure VII.5 A portion of the production schedule generated automatically 

by the reconfiguration module 

IX 

VII-63 

VII-64 

VII-66 

VII-67 

VII-68 



LIST OF TABLES 

Chapter-3 

Table 3.1 An example assumed part list 3-7 

Chapter-4 

Table 4.1 Comparison of extreme points obtained from plain stochastic method, 

genetic algorithms and multiple objective TS 4-22 

Chapter-5 

Table 5.1 Solution summary for Example 1 

Table 5.2 Solution summary for Example 2 

Table 5.3 Solution summary for Example 3 

Chapter-6 

5-11 

5-12 

5-14 

Table 6.1 Machine tools and their capabilities based on REs in the test model 6-18 

Table 6.2 Part data: processing time (min), total demand, processing sequences 6-18 

Table 6.3 The output summary ofMOCACEF 1.0 6-19 

Table 6.4 Part-machine matrix 6-20 

Table 6.5 The initial solution obtained from the p-median model 6-21 

Table 6.6 The final solution for the p-median model after eliminating inter-cell 

movements 6-21 

Table 6.7 Solution summary for p-median model 6-22 

Table 6.8 The initial solution obtained from Seifoddini and Wolfe (1986)'s method 6-23 

Table 6.9 Final solution for Seifoddini and Wolfe (1986)'s method 6-23 

Table 6.10 Solution summary for Seifoddini and Wolfe (1986)' s method 6-24 

Chapter-7 

Table 7.1 Dispatching rules 

Table 7.2 Due date assignment rules 

Table 7.3 Virtual cell capabilities based on REs 

x 

7-15 

7-16 

7-20 



Table 7 A Part list: generic part process plans --20 

Appendix III 

Table III. 1 The capability matrix Mk for the example manufacturing cell III-19 

Table III.2 Clustering FGSs to form REs for the example manufacturing cell III-19 

Appendix V 

Table V.I Machines and their capabilities based on REs V -49 

Table V.2 Annual machine capacity V-50 

Table V.3 Parts processing requirements as generic process plans based on REs V-51 

Table VA RE based part processing sequence data V-52 

Table V.5 Part processing time and annual demand V-53 

Table V.6 Output of the MOCACEF 1.0 V-54 

Appendix VII 

Table VII. I The new part list and the correspond generic process plans VII-61 

Xl 



AGV 

BMS 

CIM 

CM 

CMS 

CNC 

exp 

FGS 

FMS 

GA 

GP 

GT 

HMS 

JIT 

M/C 

max 

min 

MIG 

MOO 

MOTS 

MOCACEF 1.0 

MRP 

OMA 

PGP 

PSM 

RE 

RMS 

SA 

SSM 

ABBREVIATIONS 

Automated Guided Vehic1e 

Biological Manufacturing Systems 

Computer Integrated Manufacturing 

Cellular Manufacturing 

Cellular Manufacturing Systems 

Computer Numerical Control 

Exponential Function ( e) 

Form Generating Schema 

Flexible Manufacturing Systems 

Genetic Algorithms 

Goal Programming 

Group Technology 

Holonic Manufacturing Systems 

Just in Time 

Machine Tool 

Maximum 

Minimum 

Minimum Interaction Graph 

Multiple Objective Optimisation 

Multiple Objective Tabu search 

MUltiple Objective Capability based Cell Formation Tool Version 1 

Material Requirements Planning 

Optimisation Modelling Approach 

Pre-emptive Goal Programming 

Plain Stochastic Method 

Resource Elements 

Response Surface Methodology 

Simulated Annealing 

Simulation and Scheduling Module 

.. 
XlI 



TS 

VC 

VCMS 

Tabu Search 

Virtual Cells 

Virtual Cellular Manufacturing Systems 

X 111 



THE LIST OF PAPERS PRODUCED FROM THIS RESEARCH 

1. Baykasoglu, A., Owen, S. and Gindy, N., (1999) Solution of goal programming models 

using a basic taboo search algorithm. Accepted for publication in Journal of 

Operational Research Society. (It will be published in the September-1999 issue) 

2. Baykasoglu, A., Owen, S. and Gindy, N., (1999) A taboo search based approach to find 

the pareto optimal set in multiple objective optimisation. Accepted for publication in J. 

of Engineering Optimization. (It will be published in the August-1999 issue 'vol:31-no:6') 

3. Baykasoglu, A., Gindy, N., (1999) MOCACEF 1.0: Multiple objective capability based 

approach to form part-machine groups for cellular manufacturing applications. 

Accepted for publication in Int. J. of Production Research. 

4. Saad, S. M., Baykasoglu, A., Gindy, N., (1999) A new integrated system for loading 

and scheduling in cellular manufacturing. Submitted to Production Planning and 

Control. 

5. Baykasoglu, A., Saad, S. M., Gindy, N., (1998) A loading approach for cellular 

manufacturing systems, FAlM'1998: 8th International Conference on Flexible 

Automation and Intelligent Manufacturing, July 1-3 1998, Portland, Oregon, USA, pp. 

215-226. 

6. Baykasoglu, A., Gindy, N., Saad, S. M., (1998) A framework for the reconfiguration of 

cellular manufacturing systems. IMS-98, 2nd Int. Symposium on Intelligent 

Manufacturing Svstems, 6-7 August 1998, Sakarya, Turkey, pp. 565-573. 

7. Baykasoglu, A., Gindy, N., (1999) Loading flexible cells: Tabu search based 

simulation optimisation approach, paper to be appeared in the 15th International 

Conference on Production Research, 9-13, August-1999, Limerick, Ireland. 

XIY 



8. Baykasoglu, A., Saad, S. M., Gindy, N., (1999) A study on loading cellular 

manufacturing systems with multiple objectives. To be submitted to Int. J. of Computer 

Integrated Manufacturing 

9. Gindy, N., Baykasoglu, A. and Saad, S. M., (1999) An Integrated Framework for 

Reconfiguration of Cellular Manufacturing Systems Using Virtual Cells. To be 

submitted to Production Planning ana Control. 



Adil Baykasoglu Abstract 

ABSTRACT 

The potential advantages of Cellular Manufacturing Systems (CMS) are very well 

known in industry. However it is also shown that their performance is very sensitiye 

to changing production requirements. The detrimental effects of changing production 

requirements on the performance of CMS can be alleviated by "implementing better 

manufacturing cell designs", "employing effective part loading strategies" and 

"reconfiguration" . 

This thesis proposes a decision support framework that provides solution strategies 

for manufacturing cell design, cell loading and reconfiguration problems. There are 

three main modules in the proposed framework, named as cell formation, loading 

and reconfiguration. Each module can handle multiple objectives and integrates 

several planning and design functions, by considering the capabilities of 

manufacturing resources. Reconfiguration decisions are made explicitly in the 

proposed framework by answering the questions "when to reconfigure?" and "how to 

reconfigure?". In order to answer these questions, the modules of the proposed 

framework are interconnected. The cell formation module creates the initial set of 

cells. The loading module makes the 'part to cell assignment' and the scheduling in 

each production period. The reconfiguration module regenerates manufacturing cells, 

if the loading module can not find a satisfactory solution. 

The cell formation module solves the part-machine cell formation problem by 

simultaneously considering multiple objectives and constraints. Overlapping machine 

capabilities and generic part process plans are taken into account in the model 

formulation. A new approach for the evaluation of machine capacities is also 

presented. Results of the comparative study show that the proposed cell formation 

method gives better results than several other cell-formation procedures. The 

manufacturing cells are formed with improved capacity utilisation levels and reduced 
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extra machine requirements. The method is also more likely to produce independent 

manufacturing cells with higher flexibility. 

The loading module solves the 'part to cell assignment' and 'cell scheduling' 

problems simultaneously for cellular manufacturing applications. Alternative parts to 

cell and machine assignments are considered by making use of generic part process 

plans in the model formulation. A parametric simulation model is developed to 

determine cell schedules for a given part assignment scenario. The proposed loading 

system can assess performance ofJhe CMS in each production period. Therefore a 

decision can be made about its reconfiguration. It is also shown that the efficiency of 

CMSs facing changing production requirements can be improved and/or sustained by 

using the proposed loading strategy. 

The reconfiguration module takes the existing cell configuration as the current 

solution and generates a new solution from it, to enhance its performance. The model 

is objective driven and considers multiple objectives and constraints within a goal 

programming framework. The virtual cell concept is applied as the reconfiguration 

strategy. In the virtual cell approach the physical locations of machines are not 

changed, only cell memberships of machines are updated after reconfiguration. The 

results of the test studies showed that it is possible to improve the performance of 

CMS by reconfiguring it using virtual cells. 

The cell formation, loading and reconfiguration problems issues discussed in this 

thesis are combinatorially complex multiple objective optimisation problems. 

Additionally simulation is used to evaluate several of the objective functions used in 

the modelling of loading and reconfiguration problems. Classical optimisation 

algorithms have various limitations in solving such problems. ｔ ｨ ･ ｲ ･ ｦ ｯ ｲ ･ ｾ Tabu 

Search (TS) based multiple objective optimisation algorithms are developed. The 

proposed TS algorithms are general-purpose and can also be used to solve other 

multiple objective optimisation problems. The results obtained from several test 

problems show the proposed TS algorithms to be very effective in solving multiple 

objective optimisation problems. More than 500/0 improvement in solution quality is 

obtained in some test problems. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 PROBLEM IDENTIFICATION AND SIGNIFICANCE 

Today's manufacturing environment is mainly characterised by rapid and frequent 

changes. In such an environment, production is generally made to order, the 

preferences of customers are hard to forecast and product mix changes regularly and 

in some cases drastically. In these circumstances, manufacturing companies must 

adapt to the changing requirements of the market forcing them to increase flexibility 

and responsiveness. 

Cellular Manufacturing Systems (CMS) have been accepted as modem solutions to 

many of today's market requirements. During the last two decades, their popularity 

has increased. Industrial applications have also proven that it is virtually impossible 

to implement a large-scale automated manufacturing system without using cellular 

concepts (Kusiak, 1990). 

CMS have many theoretically and practically proven advantages (Kusiak and Chow, 

1988, Burbidge, 1987, Wemmerlov and Johnson, 1997). These include: 

• Reduction in production lead time 

• Reduction in work-in-process 

• Reduction in labour 
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• Reduction in set up time and tooling 

• Reduction in rework and scrap materials 

• Superior quality and productivity 

• Reduction in order time delivery 

• Reduction in control effort 

• Reduction in scheduling and production planning complexity 

• Improvement in human relations 

• Reduction in paper work 

Additionally, cellular manufacturing-is one of the best approaches for implementing 

advanced manufacturing technologies like CIM, FMS and JIT (Gallagher and 

Knight, 1986, Reisman et. aI., 1997). 

However, CMSs also have some difficulties or disadvantages. The majority of 

industrial applications have shown that most of the benefits are obtained from 

organisations that have a degree of part standardisation and moderate batch sizes 

(Marsh, et. aI., 1997). The main problem areas frequently mentioned in the literature 

include: 

• CMS performance is sensitive to changes in product design, part mix, demand 

etc. (Sasani, 1990, ｓ ｾ ｩ ｦ ｯ ､ ､ ｩ ｮ ｩ and Djassemi, 1996,1997). 

• To ensure that parts are completely processed within a cell, to eliminate inter-cell 

movement and related control and quality problems, some machines may have to 

be duplicated i.e. additional capital investment is necessary (Irani et. al., 1993). 

• Since there is an overall increase in the number of machines, as compared with a 

job shop, typically the average machine utilisation is lower. In addition, since 

production volumes for part families rarely correspond to integer machine 
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requirements, duplication of the same machines among different cells could result 

in poor capacity utilisation and higher production costs. When the part-mix 

changes, an imbalance in cell loading happens which leads to an imbalance in 

machine utilisation. In other words, since the shop cannot even respond to short-

time fluctuations in demand, dedicating machines to specific parts typically results 

in unbalanced utilisation (Vakharia and Kaku, 1994, Dahel and Smith 1993). 

• Cell systems are less flexible than functional job-shops, due to division of the 

shop into a number of independent cells. As a result, their performance can 

actually worsen unless properly designed (Vakharia and Kaku, 1994, Abedzadeh 

and O'Brien, 1996). 

• Due to the costs of machine relocation, cell systems are costly to construct (Adil 

et. aI., 1996). 

Based on the investigations in the literature (Chapter 2), it is noticed that some of the 

important reasons behind the performance problems of CMSs facing changing 

production requirements are generally the outcome of the following (Wemmerlov 

and Ryer, 1987, 1989, Wemmerlov and Johnson, 1997): 

• Improper initial design of manufacturing cells: Most cell formation techniques 

form part and machine groups based on only one criterion. The criterion is 

generally defined as maximising similarity or minimising inter-cell movement 

without considering many other parameters, like processing sequences, machine 

capacities, load balance etc. These parameters may have important effects on the 

performance of generated cell designs (Wemmerlov and Johnson. 1997). 

Therefore, more advanced cell formation procedures are required for generating 

better cellular manufacturing configurations. 
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• Unavailability of effective cell loading strategies: In cellular manufacturing 

applications, it is generally assumed that for any part type there is only one 

feasible cell that is initially designed for the family of this part type, and one 

process plan is available (Choobineh, 1984, Liang and Dutta, 1990). HoweveL in 

a dynamic manufacturing environment part spectrums change over time and the 

performance of a CMS is closely related to the effective assignment of parts to its 

cells and their scheduling that is known as loading (Greene and Sadowski, 1986, 

Baykasoglu et. al., 1998-a). The loading problems of CMSs have not received 

serious attention in the literature. In order to effectively operate CMSs facing 

changing production requirements, loading problems should be addressed and 

studied furtheL 

• Unavailability of a reconfiguration strategy: Even if initial manufacturing cells 

are designed successfully and effective loading strategies are employed, in some 

production periods, occurrences of low performance may not be prevented. In 

such cases existing manufacturing cells should be reconfigured to improve the 

performance of CMSs. 

In order to improve the performance and retain the advantages of CMSs in a dynamic 

manufacturing environment, the issues mentioned above should be explored. The 

literature review of this research (Chapter 2) has also indicated that, there is a need to 

employ andlor develop heuristic optimisation procedures for solving cell formation, 

loading and reconfiguration problems due to limitations of classical optimisation 

procedures (Dhingra and Lee, 1994). The importance of a framework which can 

integrate various production functions, like process planning and manufacturing 
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system simulation has also been suggested by researchers to improve performance of 

manufacturing systems (Liles and Huff, 1990, Song and Hitomi, 1996). 

1.2 RESEARCH OBJECTIVES 

The main objectives of this research are to develop a cell formation technique and a 

reconfiguration framework for cellular manufacturing applications. 

The main purpose of developing a cell formation technique is to generate a good 

initial shop floor configuration by considering multiple design objectives and 

constraints. As discussed in Chapter 2, the majority of existing cell formation 

procedures are based on single design criteria and they do not consider many 

important parameters, like alternative machines for part processing, part processing 

sequences, machine capacities etc., which are necessary for an effective cell design. 

The main target in developing a reconfiguration technique is to ensure that the eMS 

is working under the "best possible conditions". Reconfiguration of a CMS is a 

complex problem that has received little attention in the available literature. In order 

to make a decision about reconfiguration, the perfonnance of the CMS should be 

determined. This requires solution of the cellular manufacturing loading problem, 

which has also received little attention in the literature.' It is observed that cell 

formation, loading and reconfiguration problems are interconnected. Therefore one 

of the aims of this work is to develop a framework that can be used as a decision 

support tool for solving these problems. Cell formation, loading and reconfiguration 

problems can be better solved if several production functions like process planning 

and manufacturing simulation are integrated. One of the objectives of this thesis is to 
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integrate some of these functions to achieve a robust cell formation, loading and 

reconfiguration framework. 

Many of the problems mentioned above have some of the following characteristics: 

• They have multiple objectives. 

• They have multiple constraints. 

• They are known complex combinatorial optimisation problems. 

The applicability of classical optimisation procedures is limited for these types of 

problems (Dhigra and Lee, 1994). Therefore, the research also aims to develop 

effective heuristic optimisation procedures which can be used for solving multi-

objective, multi-constraint complex cell formation, loading and reconfiguration 

problems in cellular manufacturing applications. 

1.3 THESIS ORGANISATION 

The remaining chapters of this thesis are organised as follows: 

-

A detailed review and analysis of the literature related to the topics being studied in 

this thesis is presented in Chapter 2. 

An overvIew of the proposed integrated multiple objective decision-support 

framework for configuring, loading and reconfiguring CMSs is given in Chapter 3. 

The development of Tabu search (TS) based general purpose multiple objectiYe 

optimisation (MOO) algorithms, and their application to some test problems. are 

presented in Chapters 4 and 5. Chapter 4 presents the solution of the general problem 
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of MOO i.e. Pareto Optimality by the proposed TS algorithm. Chapter 5 explains the 

solution of pre-emptive goal programming models by the proposed IS algorithm. 

Pre-emptive goal programming is used for modelling multiple objective cell 

formation, loading and reconfiguration problems. 

The development of a multiple objective capability based manufacturing cell 

formation model is presented in Ch(i:pter 6. 

The proposed integrated model for loading cellular manufacturing system with 

multiple objectives is presented in Chapter 7. This chapter also explains the 

development of the TS based parametric simulation optimisation algorithm, which is 

used in the loading and reconfiguration of CMSs. 

The proposed strategy and algorithm for the reconfiguration of cellular 

manufacturing systems is explained in Chapter 8. 

Conclusions are given in Chapter 9, together with suggestions for future research. 

Supporting material is included in the Appendices. 
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The Figure 1.1 below shows various work areas, which have been researched in this 

project and their inter-relationships. 

Manufacturing Cell 
Formation 
(Chapter 6) 

Manufacturing Cell 
Loading 

(Chapter 7) 

Multiple Objective 
Optimisation 

(Chapters 4 & 5) 

Reconfiguration 
(Chapter 8) 

Manufacturing 
System Simulation 

(Chapter 7) 

Figure 1.1 Research areas and their inter-relationships 
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CHAPTER TWO 

2. REVIEW AND ANALYSIS OF THE LITERATURE 

2.1 INTRODUCTION 

This chapter presents a detailed survey of the relevant literature related to the study 

reported in this thesis. The content-of the thesis relates to a number of different 

topics, namely, heuristic techniques in optimisation and multiple objective 

optimisation, cellular manufacturing, cell design, reconfiguration, loading and 

manufacturing system simulation. The thesis contributes to these domains, therefore 

each section in this chapter is devoted to one or more of these areas. 

2.2 OVERVIEW OF MODERN HEURISTIC OPTIMISATION TECHNIQUES 

Many engineering problems (design, planning, control etc.) can be cast as 

optimisation problems (Fogel, 1995). The fundamental process of optimisation 

begins with some candidate solutions and iteratively refines and improves them 

through various procedures. 

Classical optimisation methods limit the usage of Optimisation Modelling Approach 

(OMA) to model and solve many real life engineering problems (Dhingra and Lee, 

1994). This is mainly due to their inherent solution mechanisms. Their solution 

procedures are built upon the type of objectives, constraint functions (linear, non-

linear. posynomial, signomial etc.) and variables (integer. real, binary etc.) used in 
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the problem formulation (Schoenauer and Xanthakis, 1993, Smith and Tate, 1993. 

Michalewicz, et. a!., 1996, Yokota, et. a!., 1996). Their efficiency is also strictly 

dependent on the structure of the solution space (convex, non-convex, uniform, non-

uniform, continuous, discontinuous etc.), size of the solution space and number of 

variables and constraints used in problem formulation (Homafair, et. al., 1994, Fogel, 

1995, Lin and Hajela, 1992, Wi enholt, 1993). They also do not offer a general 

solution strategy that can be applied to a large number of problem formulations in 

which different type of variables, objectives and constraint functions are used 

(Malasri, et. al., 1996). For example, the Simplex Algorithm can be used to solve 

models with linear objective and constraint functions, Branch and Bound Algorithms 

can be used to solve linear models with integer variables. Geometric programming 

can be used to solve non-linear models with a posynomial or signomial objective 

function etc. 

Many engineering problems require usage of different types of variables, objective 

and constraint functions simultaneously in their formulation. Therefore, classical 

optimisation procedures are generally not adequate for their solution (Man, et. al., 

1996, Zhang and Wang, 1993, Lin and Hajela, 1992). Researchers have exported 

great effort to adapt many engineering problems to these classic optimisation 

procedures. Many diverse example applications can easily be found in the literature. 

Some specific applications from the author's previous research relating to scheduling. 

process planning and cutting conditions optimisation can be referred to as examples 

(Baykasoglu, 1995, Kayacan, et. aI., 1996, Sonmez, et. aI., 1999. Sonmez and 

Baykasoglu, 1998, Sonmez, et. aI., 1996, Filiz, et. aI., 1996). It is very hard to 

formulate a real life problem that suits a specific solution procedure. In order to 
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achieve this, it is necessary to make some modifications and/or simplifying 

assumptions to the original problem parameters (rounding variables, softening 

constraints etc.) during formulation. This affects the solution quality (Michalewicz. 

et. al., 1996). 

A new set of efficient, problem and model independent general purpose heuristic 

optimisation techniques were proposed by researchers to overcome drawbacks of 

classical optimisation procedures and to enable efficient use of OMA. These 

techniques should be flexible and modifiable and/or adaptable to suit specific 

problem requirements (Chipperfield, et. a/., 1994) (see Figure 2.l). Three of these 

widely accepted and applied techniques, namely: Genetic Algorithms, Tabu Search 

and Simulated Annealing are briefly explained in the following sub-sections. These 

techniques are still maturing and are attracting wide research interest. 

Classical 
Optimisation 
Techniques 

Modem 
Heuristic 
Optimisation 
Techniques 

PROBLEM 

PROBLEM 

Not easy 

Easy 

SOLUTION 
TECHNIQUE 

Problem 
dependent 

IF Unear Programming Model USE 
(Simplex); 
IF Integer Programming Model USE 
(Branch and Bound); 

SOLUTION 
TECHNIQUE 

General 
purpose 

Any model USE (Genetic Algorithms) 
Any Model USE (Tabu Search) 
Any Model USE (Simulated Annealing) 

Figure 2. 1 A pictorial comparison of classical and heuristic optimisation strategies 
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2.2.1 Genetic Algorithms (GA) 

Genetic Algorithms are adaptive search methods based on an abstract model of 

natural evolution. GAs were developed by Holland in the 1970s and onlv recentlv 
'" '" 

has their potential for solving optimisation problems been explored (Michalewicz, 

1996, Gen and Cheng, 1997). The basic idea is to maintain a population of candidate 

solutions that evolves under a selective pressure that favours better solutions. 

Generally, a GA is an iterative procedure that operates on a finite population of N 

chromosomes (solutions). The chromosomes are fixed strings with binary values (0 

or 1 called alleles) at each position (or locus). Each chromosome of the population is 

evaluated according to a fitness function. Members of the population are selectively 

interbred in pairs to produce offspring (new solutions). Genetic operators are used to 

facilitate the breeding process that results in offspring inheriting properties from their 

parents. The offspring are evaluated and placed in the population, possibly replacing 

the weaker members of the last generation. Thus, the search mechanism consists of 

three phases: evaluation of the fitness of each chromosome, selection of the parent 

chromosomes, and application genetic operators to the parent chromosomes. The 

new chromosomes resulting from these operations form the population for the next 

generation and the process is repeated until the system ceases to improve. 

The theoretical basis for the genetic algorithm is the Schemata Theorem (Holland, 

1992, Michalewicz, 1996, Gen and Cheng, 1997), which states that individual 

chromosomes with good, short, low-order schemata or building blocks (i.e. beneficial 

parts of the chromosome) receive an exponentially increasing number of trials in 

successive generations. 
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2.2.1.1 The General GA Algorithm 

Procedure GeneticAlgorithm 
Start 

Literature Review 

//start with an initial generation 
G = 0; 
//initialise a random generation of fixed-format strings 
Pop = InitPopulation (G); 
//evaluate the fitness of individuals in the population 
evaluate (G); 

repeat 
//increase generation counter 
G=G+1; 

Chapter? 

//generate new population using fitness-proportionate 
reproduction 
Pop1 = select (Pop); 
//crossover genes 
Pop1 = crossover (Pop1); 
//mutate genes 
Pop1 = mutate (Pop1); 
//evaluate fitnesses of new population 
evaluate (Pop1); 
fireplace population with new generation 
Pop = Pop1; 

until StopCriterion 
end 

There are various alternatives and modifications of this algorithm but the essential 

structure is normally similar (Lee and Takagi, 1993, Hsu, et. aI., 1996, Punch, et. aI., 

1993, Liepins, et. al., 1987). One common change is to incorporate the reproduction 

operation into the crossover and mutation operations - individuals are selected 

fitness-proportionately, crossed over (or mutated) and inserted into the new 

generation in a single operation. 

2.2.1.2 Some Example Applications of GA to Engineering Problems 

• Dereli et. al. (1998) used GA to determine the best possible positions of cutting 

tools on the turret or magazine of CNC machine tools to be used for machining 

components in order to achieve the optimality of process plans. Another work 
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from a similar domain is Mizugaki et. al. 's (1994) paper. They applied GA to 

milling tool selection problem. 

• GA has been applied to complex production scheduling-rescheduling and 

sequencing problems by Fang, et. al. (1995), Jain and Elmaraghy (1997), Murata, 

et. al. (1996-a,b). 

• Chipperfield and Fleming (1996) applied GAs to the design of a multivariable 

control system for a gas turbine engine. Pearce and Cowley (1996) used a GA to 

calibrate a gas turbine engine. 

• Balakrishan and Jacob (1996) developed a GA for product design problems. They 

also concluded that GA is superior to Dynamic Programming procedures 

according to their application. 

• Ettl and Schwehm (1994) developed a GA based design methodology for Kanban 

controlled production lines using queuing networks. 

• Stockton and Quinn (1995) presented the application of GAs to aggregate 

production-planning problems. Their work incorporates many aspects of aggregate 

production planning. They concluded that GA can be applied to this problem. 

Husbands et. al. (1995) also studied production planning problems by using GAs. 
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• Vancza and Markus (1991) discussed the flaws of classical planning methods and 

outlined a new approach by which a large portion of domain-related knowledae 
ｾ

can be represented and passed to a learning method using genetic algorithms. 

• Suresh et. al. (1995) applied GAs to facility layout problems. They represented a 

GA for solving the quadratic assignment problem formulation of the facility 

layout problem. Kazerooni et. al. (1996) presented a GA based integrated 

approach for solving cellular manufacturing layout problems. Gupta et. al. (1996) 

also developed a GA based approach to cell composition and layout design 

problems. 

• Homafair et. al. (1995) presented an example application of GA to the famous 

travelling salesman problem. They concluded that performance of GA is highly 

dependent on representation and choice of neighbourhood operators for the 

travelling salesman problems. 

• There are several applications of GAs to manufacturing cell formation problems. 

Joines et. al. (1996) developed an integer programming model for cell formation 

problems and applied GAs for its solution. Hwang and Sun (1996) developed a 

GA based heuristic procedure for cell formation problems. Venugobal and 

Narendran (1992), Hon and Chi (1994), Hsu and Su (1998) have also presented 

GA based cell formation strategies. 
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Due to its adaptive and problem independent nature, there are also current efforts to 

apply GA to multiple objective optimisation and simulation optimisation problems. 

This issue and related literature will be reviewed later in this chapter. 

2.2.2 Tabu Search (TS) 

Tabu search is a heuristic problem-independent optimisation method. It was first 

suggested by Glover (1986) and since then has become increasingly used. The basic 

idea of the method, described by Glover (1990,1993), is to explore the search space 

of all feasible solutions by a sequence of moves. A move from one solution to 

another is the best available. However, to escape from locally optimal but not 

globally optimal solutions and prevent cycling, some moves, at one particular 

iteration, are classified as forbidden or tabu. Tabu moves are based on the short-term 

and long-term history of the sequence of moves. A simple implementation, for 

example, might classify a move as tabu if the reverse move has been made recently 

or frequently. Sometimes, when it is deemed favourable, a tabu move can be 

overridden. Such aspiration criteria might include the case which, by forgetting that a 

move is tabu, leads to a solution which is the best obtained so far. 

Suppose that! is a real valued objective function on a search space S, and it is 

required to find a h ES such that !(h) has maximal value. For NP-complete problems, 

this requirement needs to be relaxed for finding a h ES such that !(h) is close to the 

maximal value Glover (1990). This is because any known algorithm to determine the 

maximal solution requires time that is exponential in the problem size. Sub-optimal 

problems may be solved by halting when a certain threshold for an acceptable 

solution has been found or when a certain number of iterations has been completed. 
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A characterisation of the search space S for which TS can be applied is that there is a 

set of k moves Q={q]'q], .... ,qJ and the application of the moves to a feasible solution 

S ES leads to k usually distinct, solutions Q(S)={q/m),q](m), .... ,q/m)). The subset 

N(s)Q2(s) of feasible solutions is known as the neighbourhood of s. The method 

commences with a (generally random) solution SO ES and determines a sequence of 

solutions So ,S] ,S] , .... ,Sn ES. At each iteration, Sj+] is selected from the neighbourhood 

N(s). The process of selection is first to determine the tabu set T(s)cN(s) of 

neighbours of Sj and the aspirant set A(s) eT(s) of tabu neighbours. Then Sj+l is the 

neighbour of Sj which is either an aspirant or not tabu and for which f(sj+J is maximal; 

that is f(sj+ J q(s *) t7 s* E(N(s)-T(s)) uA(s). 

2.2.2.1 The General TS Algorithm 

Procedure TabuSearch 
Start 
K=l ; 
Generate initial solution Si 

Repeat 
Identify N(s) cS (Neighbourhood set); 
Identify T(s) c.1:V(s) (Tabu set) ; 
Identify A(s) cT(s) (Aspirant set) i 
Choose S*E(N(s)-T(s))UA(s) I for which £(s*) is maximal; 
s=s* ; 
k=k+li 

until StopCriterion 
end 

Note that it is possible to avoid convergence at a local maximum, that f(sJ+) <f(s). 

The conditions for a neighbour to be tabu or an aspirant will be problem specific. For 

example, a move may be tabu if it could lead to a solution which has already been 

considered in the last m iterations or which has been repeated many times before. A 
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tabu move satisfies the aspiration criteria if, for example, the value of f(s *) \vith 

s* ET(s) satisfiesf(s*»f(sJ t7i, OSiS}. 

2.2.2.2 Some Example Applications of TS to Engineering Problems 

TS has been applied to many diverse engineering problems. However, its literature is 

not as rich as GAs because it is a relatively new technique, although there is a 

growing interest in the research community. Example applications include: 

• Islam and Eskioglu (1997) developed a TS algorithm to solve the single machine 

mean tardiness problem. They also compared the TS based technique with three 

other methods (i.e. Simulated Annealing and two heuristic algorithms) and 

concluded that TS provides a better solution than the other three approaches. Kato 

et. al. (1997) proposed an effective neighbourhood for the minimisation of mean 

tardiness of job shops by using TS. Taillard (1994), Laguna et. al. (1991) also 

applied the TS to scheduling problems. 

• AI-Fawzan and AI-Sultan (1998) applied TS to determine the production rate, 

period batch size and production sequence when production rate, set-up cost and 

unit processing cost are sequence dependent in a production planning problem. 

• Siarry and Berthiau (1997) applied TS to optimise multi-modal functions with 

continuous variables. They concluded that TS could successfully find optimum 

solutions. 
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• Bland and Dawson (1991) applied TS to design optimisation problems 

successfully. They solved electronic-circuit design problems with TS based 

algorithms. 

• Hertz and Werra (1987) developed TS algorithms to solve graph-coloring 

problems. Hertz (1991) also applied TS to large-scale time tabling problems. 

• Sun et. al. (1995) proposed a TS algorithm for the manufacturing cell formation 

problem. They modelled the problem as a graph-partitioning problem. Their 

algorithm solves this problem through improving cell configuration using the TS 

technique. 

2.2.3 Simulated Annealing (SA) 

Simulated annealing is a problem independent random search procedure that was 

initially proposed by Kirkpatrick et. al. (1983). The basic difference between GA, 

TS and SA is that GA and TS always work with a population of solutions while SA 

works on one solution at a time. 

Annealing is the physical process of heating up a solid above its recrystallisation 

temperature, followed by cooling it down until it crystallises into a state with the 

desired lattice structure. During this process, the free energy of the solid is 

minimised. Practice shows that the cooling must be done carefully in order not to get 

trapped in locally optimal lattice structures with crystal imperfections. 
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In combinatorial optimisation, it is possible to define a similar process (Rutenbar, 

1989). This process can be formulated as the problem of finding among a potentially 

very large number of solutions, a solution with minimal cost. Now, by establishing a 

correspondence between the cost function and the free energy, and between the 

solutions and the physical states, One can introduce a solution method in the field of 

combinatorial optimisation based on the simulation of physical annealing processes. 

The resulting method is called simulated annealing. 

The physical annealing process modelled by using computer simulation is based on 

Monte Carlo techniques as follows; Given a current state i of the solid energy E;, then 

a subsequent state j is generated by a perturbation mechanism which transforms the 

current state into a next state by a small distortion. The energy of the next state is Ej . 

If the energy difference, ErE;, is less than or equal to 0, the state j is accepted as the 

current state. Otherwise it is accepted with a certain probability which is equal to 

exp((E;-E)/T), T is temperature. This probability is known as the acceptance 

criterion. This algorithm known as metropolis algorithm and is the basis of SA 

algorithm for optimisation problems. 

The design of SA depends on three key concepts. The first is referred to as the 

temperature (or control parameter) and is essentially the parameter that controls the 

probability that a cost increasing solution will be accepted (for a minimisation 

problem). During the course of SA the temperature will be reduced ー ･ ｲ ｩ ｯ ､ ｩ ｣ ｡ ｬ ｬ ｹ ｾ

reducing the probability of accepting a cost-increasing solution. The second key 

concept is equilibrium, or a condition in which it is unlikely that further significant 

chanoes in the solution will occur with additional sampling. For example, if a large 
o 
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number of interchanges have been attempted at a given temperature without finding a 

better solution, it is unlikely that additional sampling will be productive. The third 

key concept is the annealing schedule, which defines the set of temperatures to be 

used and how many interchanges to consider (or accept) before reducing the 

temperature. If there are too few temperatures or not enough interchanges are 

attempted at each temperature, there is a great likelihood of stopping with a sub-

optimal solution. 

2.2.3.1 The General SA Algorithm 

The main steps of SA are; initial solution, generation of a neighbourhood solution, 

acceptance/rejection of generated solution, and termination. 

Assume that (S,j) is an instant of an optimisation problem and i and) are two 

solutions with costs f(i} and fO}, respectively. Then the acceptance criterion 

determines whether ) is accepted from i by applying the following acceptance 

probability: 

1 if f()) <= f(i) 

P, {accept j} = exp( f (i) ｾ f (j) ) if f (j) > f (i) 
2. 1 

C E R + denotes control pa ram eter (tempera ture ). 

If C
k 
denotes the value of control parameter, Lk the number of transitions generated at 

the kth iteration then a SA algorithm can be shown as follows; 
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Procedure SimulatedAnnealing 
Start 

End 

Ini tialise (i c L ) start I 0 I 0; 

k=O; 
i=i start ; 

repeat 
for 1=1 to Lk do 
start 

end; 

generate (j from SJ; 
if f(j)<=f(i) then i=j 
else 
if exp [ (f (i) -f (j)) /ck ] >random [0 ,1) 

k=k+1 ; 
Ca1cu1ateLength (Lk ) i 

Until StopCriterion 

then i=j 

As it is seen from the algorithm the probability of accepting a worse solution is 

determined by comparing the acceptance probability with a random number 

generated from a uniform distribution on the interval [0,1]. 

2.2.3.2 Some Example Applications of SA to Engineering Problems 

• Chen and Srivastava (1994), Sofianopoulou (1997) proposed SA algorithms to 

solve manufacturing cell formation problems. Selim and Alsultan (1991) used SA 

for clustering problems. 

• Connolly (1992) developed a comprehensive computer program to solve zero-one 

integer linear programming problems with SA based algorithms. Zhang and Wang 

(1993) proposed SA based algorithms to solve mixed-discrete non-linear 

optimisation problems. Lin et. al. (1993) developed SA based algorithms to solye 

NP-hard combinatorial optimisation problems. Goffe et. al. (1994) made an 

extensive study about global optimisation of statistical functions \\'ith SA. 
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• Wilhem and Ward (1987) developed a SA algorithm to solye quadratic 

assignment based fonnulation of facility layout problems. Liu et. al. (1994) also 

applied SA to facility layout problems. 

• Gangadharan and Raj endran (1994) developed a SA heuristic for scheduling flow-

shops with the twin-objective of minimising make-span and total flow time. Liu 

(1997) proposed a SA algorithm to minimise the mean flow time in flow-shop 

scheduling problems. Satake et. ai. (1998) also proposed a SA based algorithm to 

minimise make-span in flow-shop scheduling problems. Raghu and Rajendran 

(1995) developed due date setting methodologies for job shops by employing SA. 

• Elperin et. al. (1990) proposed Monte Carlo annealing procedures for machine 

design optimisation applications. They also presented an application for the cost 

optimisation of a speed reductor. 

• Chen and Tsai (1996) developed an optimisation algorithm based on SA for the 

optimisation of cutting conditions in multi-pass turning operations. 

• Marett and Wright (1996) applied SA to multiple objective optimisation problems. 

However, in their application they employed a secondary method for the 

evaluation of multiple objectives (i.e. weighting approach). The original SA 

algorithm was not extended. Similar approaches \'ia applying other secondary 

methods (i.e. Game theory approach) were also proposed by Bennage and Dhingra 

(1995) for structural design problems. 
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Due to its problem independent nature, SA also applied to simulation optimisation 

problems by various researchers. This issue and related literature will be reviewed 

later in this chapter. 

2.3 MULTIPLE OBJECTIVE DECISION MAKING 

Many design problems require simultaneous optimisation of multiple, and in many 

cases conflicting, objectives. In the Operational Research literature these problems 

are known as Multiple Objective Optimisation (MOO) problems. Generally a MOO 

problem is of the following form: 

mIn or max F(X) 

such that; 

XES = [XIX E An ,gJX) 5: ai' h j(X) = b j ] i=1,2, ... ,m, j=1,2, ... ,n 

Where, X is an n-dimensional vector of the decision variables; 

2.2 

F(X)= ({lX), h(X), ... , fiX)} is the set of objective functions; and S is the set of 

feasible solutions, bounded by m inequality constraints (gj) and n equality (h) 

constraints a· and b· are constants. For continuous variables A =!Jl, for discrete 
'I } 

variables A contains the set of permissible values. 

2.3.1 Pareto Optimality 

Pareto optimality is an economics term for describing a solution for mUltiple 

objectives (Ignizo, 1982). It is generally used to characterise optimal solutions to a 

ｾ Ｑ Ｐ Ｐ problem. The Pareto optimal (non-dominated) solution is defined as follows: a 

solution .¥* E S is Pareto optimal if and only if there exists no XES such that 

ｾ Ｍ Ｑ Ｖ
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f/X) <j/X*) for i=1,2,3, ... ,k with f(X)< f(X*) for at least one value of i. In other 

words, the solution X* is Pareto optimal if no objective function can be improved 

without worsening at least one other objective function. Figure 2.2 shows four 

geometric examples of Pareto optimality. 

a) Not Pareto optimal because Z can 
increase without reducing X or Y 

c) Pareto optimal and global optimum if 
objective function is total area of X + Y +Z 

b) Pareto optimal 

d) Pareto optimal 

Figure 2. 2 Graphical explanation of Pareto optimality 

In these figures, the circles represent objectives that are satisfied best when the area 

of the circle is maximised. The constraints are that the circles may not overlap and 

must fit within the triangle. 

2-11 
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One might further impose a global objective function in this case that is equal to the 

sum of the circle areas. Only one of these figures is globally optimal (Figure 2.2-c) 

whereas three of them are Pareto optimal (Figure 2.2-b,c,d). One figure is not Pareto 

optimal because the area of one circle may be enlarged without violating the 

constraints (Figure 2.2-a). 

Pareto optimality is a predicate. While one may be able to assign a quantitative 

metric, such as the area of the circle, the answer as to whether the global solution is 

Pareto optimal is "yes" or "no". It does not matter initially how much a circle can be 

enlarged, only that it can be. How much is to be evaluated after the possibility is 

noted. A corollary is that Pareto optimality does not address local extrema with 

respect to any utility. Neither does Pareto optimality provide a method for choosing 

among preferences or alternatives. 

Nevertheless, tracking Pareto optimality is an important function. Detection of a lack 

of Pareto optimality is an alert to an opportunity to improve the design that otherwise 

might be missed, especially when no one expert understands all of the problem 

dependencies. Once such a lack has been detected, then special purpose algorithms 

can provide various evaluation functions th<l:t are likely to be domain-specific. 

Tracking Pareto optimality does not preclude such methods and it does not require an 

objective function that must compare "apples and oranges" in complex domains: it is 

a domain-independent function. 

The set of Pareto optimal solutions usually consists of an infinite number of points 

and additional information is required to order the Pareto optimal set. This makes it 
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possible to bring additional considerations that are not included in the optimisation 

model, thus making the MOO approach a flexible technique for most design 

problems. Several techniques have been proposed for solving the MOO problem. 

Each method, in general, generates a different Pareto optimal solution that reflects 

the decision-maker's preference structure. 

2.3.2 Techniques for Multiple Objective Optimisation 

Many attempts have been made to find Pareto optimal solutions in MOO (e.g. 

Murata et. aI., 1996, Osyczka and Kundu, 1996, Dhingra and Lee, 1994, Chipperfield 

and Fleming, 1996, Gen, et. aI., 1997). The most commonly used techniques are: 

• Utility function formulation (Weighting method) 

• Global criterion formulation 

• Goal attainment method 

• Bounded objective function formulation (£-constraint method) 

• Game theoretical method 

• The (lexicographic) constraint method 

• Non-inferior set estimation method 

• Genetic algorithms 

• Goal programming method 

The next few subsections discuss some of these techniques which are used to 

generate Pareto optimal solutions for the mathematical programming model given by 

Equation 2.2. Each of these techniques requires additional information from the 

decision-maker, and in general, generates a different Pareto optimal set. 
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In order to avoid working with different objectives in different units, the objectiYe 

functions fi (X) are transfonned into new objective functions (Fj) constructed as 

follows 

i = 1,2, ..... , k 
2.3 

2.4 

Here, the positive constant multipliers ml ,m2 , .... ,mk are chosen so that at any 

feasible starting vector X 0 this scaling procedure ensures that all the objective 

functions are equal at a particular value of X o. Hereafter, it will be assumed that k 

objective functions correspond to the k scaled objective functions given by equation 

2.3. Further, it will be assumed that the MOO problem given by Equation 2.2 is non-

convex, so that only locally Pareto optimal solutions are guaranteed. The non-

convexity assumption holds for most practical engineering problems. 

2.3.2.1 Utility Function Formulation 

In the Utility Function fonnulation approach, the MOO problem given by Equation 

, 

2.2 is converted to 

max V(f) 

Such that; 

gi (X) ｾ ai Vi 

hj(X) = bj Vj 

2. 5 

where V (1) is the utility function of mUltiple obj ective functions. The rationale for 

using V(l) is that the decision-maker has some utility associated with each of the k 

objectiYe functions. A utility function U can ha\'e many forms. The most common 
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fonn assumes that the decision-maker's utility function is additively separable with 

respect to all objective functions. Therefore, if Vi (Fj) is the utility function 

corresponding to the objective function Fi , an overall utility function V is defined as 

k 

V(P) = LVi(Fi) 2.6 

i= 1 

An optimum solution vector X* is found by maximising the total utility function 

V(F) (Equation 2.6) subject to the constraint set. A special form of Equation 2.6 that 

has been extensively used in MOO problems is given by 

k 

V = - L wiFj(X) 2. 7 

i= 1 

where wi is a scalar weighting factor associated with the i th objective function and 

indicates its relative importance. This additively separable form of the utility function 

(Equation 2.7) is also commonly referred as the" Weighting method", and serves as a 

sufficient condition for the calculation of Pareto optimal solutions (Ignizo, 1982). 

The main advantage of the utility function formulation is its simplicity. It is easier to 

assess k unidimensional utility functions (V/s) than to assess U(F) directly. 

Similarly, it is easier to get Wi IS from the decision-maker. The disadvantage of this 

approach is that, there are few cases where utility function is really additively 

separable, and wi may depend not only on the achievement level of Fj but also upon 

the achievement level of Fi relative to Fj , for i "* j . Further, if the problem is non-

convex, this approach may miss all but a finite number of Pareto optimal solutions 

(Ignizo, 1982). 
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2.3.2.2 Global Criterion Formulation 

This method belongs to a category of MOO techniques that require no articulation of 

preferences on the part of the decision-maker, once the problem objectives and 

constraints have been defined. This entails that the decision maker be willing to 

accept whatever solution is obtained by minimising some global criterion F(X), for 

example, the sum of the squares of the relative deviations of the individual objective 

functions from the feasible ideal solutions. In other words, an optimum solution X* is 

found by minimising 

k-

F(X) = I[ (Fj(X) - Pi (xt))/ Pi (xt) ]P 
i=I 

Such that; 

ｧ ｩ Ｈ ｘ Ｉ ｾ ｡ ｩ Vi 

hj(X) = bj Vj 

2. 8 

The value of p corresponds to the utility function of the decision-maker and is 

usually taken as 2. Xi* is the feasible ideal solution corresponding to the i
th 

objective 

function, and is obtained by minimising Fj (X) with respect to the constraint set 

XES. For 1 < p < 00, each solution obtained by solving Equation 2.8 is Pareto 

optimal, compromise solutions with p = 00 correspond to a min-max criterion for 

which Pareto optimality is not guaranteed (Ignizo, 1982). 

2.3.2.3 Goal Attainment Method 

This method requires setting up goals mI' m2 , ... , mk and weights WI' W2 , ... , ),\,'k for 

the objective functions F1, F2 , ...• Fk respectively. The weights Wi relate the relative 

to under or over attainment of the desired goals (m j ). The following problem is 

solved to determine the optimal solution X* 
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mIn z 

Such that; 

gi(X) < a i Vi 

hj(X) = bj Vj 

Fj(X) - wiz < mi Vi 

wi > 0 Vi 

Literature Review Chapter 2 

2. 9 

where Z is a scalar variable unrestricted in sign. The weights Wi are normalised so 

that 

2. 10 

In the case of under-attainment of the desired goals, a smaller weighting coefficient 

is associated with the more important objective functions. In the case of over 

attainment of the desired goals, a smaller weighting coefficient is associated with the 

less important obj ective functions. The optimum solution obtained using the goal 

attainment formulation is fairly sensitive to the goal vector (m) and the weighting 

vector (w) given by the decision-maker. Depending upon the prescribed values of 

the goal vector, it is possible that the weighting vector (w) does not dictate the 

optimum solution at all. Instead, the optimum solution X* is determined by the 

nearest non-dominated solution point from (m) . This may require that (w) be varied 

parametrically to generate the entire set of Pareto optimal solutions. Further, if the 

goal vector is not chosen properly, there is no guarantee that the goal attainment 

formulation will terminate at a Pareto optimal solution. 
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2.3.2.4 Bounded Objective Function Formulation 

In this method, the minimum and maximum acceptable achievement levels for each 

objective function Fj are specified by the decision-maker as Ii and U i respectively. 

Then, an optimum solution X* is found by solving the following problem 

min Fr(X) 

Such that; 

gi (X) < ai '\Ii 

h j (X) = b j '\I j 

Ii < Fj (X) < U i '\I i i =1= r 

2. 11 

This technique, also referred to as 5-constraint method (Ignizo, 1982), can be shown 

to lead to weak Pareto optimal solutions. However, if the optimal solution to the 

above problem is unique, then the resulting solution is Pareto optimal. Further, by 

systematically varying Ii and U i 
, the bounded objective fonnulation can generate 

the entire set of Pareto optimal solutions for even non-convex problems. A difficulty 

with this method is to prescribe values for Ii and U i prior to any preliminary 

solution. Since the designer has to specify these values in an infonnation void, this 

may result in the mathematical programming problem given by Equation 2.11 having 

inconsistent constraints. Another question that needs to be addressed in this approach 

is which objective should be used for Fr (X) . 

2.3.2.5 Game Theoretical Method 

In this method, the MOO problem is viewed as a co-operative game theory problem 

involving several players, one corresponding to each of the objective functions. The 

system is assumed to be under the control of these intelligent adversaries, each 

2-24 



ｬ ｑ ｾ Ｚ Ｚ Ｚ Ｉ ｌ ｾ Ｉ ｌ ｌ ､ Ａ Ｚ Ｚ Ｍ Ｇ ｾ ｌ Ｔ Ｇ ｌ ｾ Ｍ Ｌ Ｌ ｾ ｜ ｊ Ｉ Ｎ ｩ ｾ ﾷ Ｌ Ｎ Ｇ ｌ ｳ ｬ ｾ Ｇ ＼ Ｇ ｜

_\9MfliTl ｾ ｾ Ｑ Ｚ ｽ Ｂ Ｚ ［ Ｈ Ｈ ｄ ｉ Ｇ Ｐ ｆ ｌ Ｌ ｩ Ｈ
Adil Baykasoglu Literature Review Chapter 2 

willing to compromise his (her) own objective in order to improve the overall 

solution. The basic approach can be summarised as follows 

• Using X 0 as a starting point, solve k single objective optimisation problems given 

by 

mIll Fj(X) 

Such that; 

gi(X) ｾ ai Vi 

hj(X) = bj Vj 

Let the optimum solutions be Xi*' i = 1,2, ... , k. 

• Construct a supercriterion or bargaining model S as 

k 

S = I1 [Fiu - Fi (X:) ] 
i=l 

where 

Fiu = max[Fi(X;)] i,j = 1,2, ... ,k 

2. 12 

2. 13 

2.14 

and X: represents the Pareto optimal solution obtained by solving the following 

problem: 

k 

mIn Fw(w,X) = L wiFi(X) 
i=l 

Such that; 

gi(X) < ai Vi 

hj(X) = hj Vj 

k 

LWi =1 
i=l 

w>O Vi 1-

2.15 

• Maximise the supercriterion and find the optimal convex combination Il' of the 

objective functions and the corresponding optimal solution to the problem. l.e . 

. r = .r:,. The game theory approach as presented above not only yields a Pareto 
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optimal solution, but also results in an optimum set of relative weights for the k 

obj ective functions. 

2.3.2.6 Lexicographic (constraint) Method 

In this method, the objectives are ranked in order of importance by the decision-

maker. An optimum solution X* is obtained by minimising the objective functions, 

starting with the most important one and proceeding according to the order of 

importance of the objectives. The rationale for this method is that individuals tend to 

make decisions in this manner (Ignizo, 1982). 

Let, the subscripts of the objectives denote not only the objective function number, 

but also the priority of the objective. The solution procedure is given as follows: 

Step 1: Starting with X 0' minimise Fl (X) subject to the constraint set. Let the 

resulting optimum solution be denoted as X; and Ft· 

Step 2: Starting from X;, minimise F2 (X) subject to the constraint set, and an 

additional constraint of the form O.95Ft :$ Fl eX) < L05F1* . Let the resulting solution 

Step 3: Proceeding as outlined in Step 2, at the i th stage the resulting problem is given 

as: Starting from ｘ ｩ ｾ ｢ minimise Fj (X) subject to the constraint set, and i-I 

additional constraint of the form O.95Fj* :$ Fj(X) :$l.05Fj*' j = L2, ... ,i -1. 

For a problem involving k criteria, there are a total of k! ways in which the objective 

functions can be ranked by the decision-maker. Since the solution obtained using the 
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lexicographic method is fairly sensitive to the ranking of the objectives given by the 

decision-maker, one should exercise caution in applying this method when some 

objective functions are of nearly equal importance. 

2.3.2.7 Genetic Algorithms 

In order to extend GA to MOO problems, several approaches have been proposed. 

Almost all approaches that have been already proposed can be categorised into a 

population based non-Pareto approach or a Pareto based approach by their selection 

schemes (Foncesa and Fleming, 1993, Osyczka and Kundu, 1996, Gen, et. aI., 1997). 

In the following sub-sections, some of these algorithms are briefly explained. 

2.3.2.7.1 Population based non-Pareto approach 

The vector evaluated GA (VEGA) proposed by Schaffer (1985), is the first attempt to 

apply GA to MOO. It can be classified as a population-based approach because its 

selection procedure to form k sub-populations is implemented according to each of 

the k objectives separately. The outline of the VEGA can be written as follows: 

Step 1: Initialisation 
Step 2: Evaluation 
Step 3: Selection to form k sub-populations using each of the k 

Objectives 
Step 4: Genetic operations 
Step 5: Elite strategy 
Step 6: Termination test 

Thus the VEGA has n search directions. Its search directions for the case of the two 

objective optimisation problem can be shown as in Figure 2.3. As it is expected from 

Figure 2.3, this approach can easily find the solutions Al and A·t but it is not easy to 

find the solutions A2 and A3. 

.., .,-
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Figure 2. 3 The search directions in VEGA 

2.3.2.7.2 Pareto based approach 

Chapter ., 

Hom, Nafpliotis and Goldberg (1994) proposed the Niched Pareto GA (NPGA) , 

which can be classified as a Pareto based approach. In NPGA, the Pareto domination 

tournament is employed as a selection procedure. Firstly, two candidates for selection 

are picked at random from the current population, and a comparison set consisting of 

a predefined number of individuals is also selected from the current population. Each 

of the candidates is then compared by at least one solution of the comparison set but 

the other is not dominated, the latter is selected for a crossover procedure. If neither 

or both are dominated by the comparison set, a fitness sharing technique is adopted. 

The outline of the NPGA is as follows: 

Step 1: Initialisation 
Step 2: Evaluation 
Step 3: Selection 

Step 3.1: Select two candidate solutions from the current 
population, and select a certain number of 
solutions to form a comparison set. 

Step 3.2: Compare each candidate solution with the comparison 
set and determine a winner. If a single winner 
cannot be determined, go to Step 3.3. Otherwise, 
end this step. 

Step 3.3: Fitness sharing. 
Step 4: Genetic operations 
Step 5: Termination test 
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2.3.2.7.3 MOGA: Multi-objective genetic algorithm 

MOGA is proposed by Murata and Ishibuchi (1995). It may be classified as a 

population based approach because a selection procedure based on the following 

weighted sum of the k objectives is performed to form a couple of solutions for a 

crossover procedure: 

2. 16 

where wI, W2 , ... , Wk are non-negative random weights for the k objectives, which 

satisfy WI + w2 +, ... ,+wk = 1. The search directions of the MOGA are shoWn in 

Figure 2.4. While the weighted sum approach tends to fail to find a non-convex 

Pareto front, this approach can keep all nondominated solutions found during the 

execution of the algorithm. This is because the algorithm separately keeps a tentative 

set of non-dominated solutions that are found during the execution of the algorithm. 

A pre-specified number of solutions in the tentative set of nondominated solutions 

are selected and added to the current population as elite solutions. The MOGA can be 

written as follows: 

Step 1: Initialisation 
Step 2: Evaluation 
Step 3: Selection. Repeat the following procedure to select parent 

Solutions. 
Step 3.1: Randomly specify the weight values in equation 2.16 
Step 3.2: Select a pair of parent solutions according to the 

selection probability. 
Step 4: Genetic operations 
Step 5: Elite strategy 
Step 6: Termination test 
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Figure 2. 4 Various search directions of MOGA 

2.3.2.8 Goal Programming Method 

Chapter 2 

In goal programming, there are two basic models; the Archimedian model and the 

Preemptive model. The Archimedian model deals with generation of candidate 

solutions whose criterion vectors are closest, in a weighted L p metric sense to the 

utopian set in the criterion space. The preemptive model, on the other hand, generates 

solutions whose criterion vectors are most closely related in a lexicographic sense, to 

points in the utopian set. The Archimedian model is described in this section, the 

Peemptive model is explained in detail in the following sections and a TS algorithm 

is developed in this study for its solution (Chapter 5). It is also used as the main 

framework for solving MOO models through this study. 

In the simplest version of Archimedian goal programming, a decision-maker sets 

goals and relative weights for each of the objective functions that he (she) wishes to 

attain. An optimum solution X* is then defined as the one that minimises the 
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weighted sum of the deviations from the set goals. Thus, the goal programming 

formulation of a multiple objective problem leads to 

min [i:WAd; +dif ]lI
P 

l=l 

Such that; 

gi(X) < ai Vi 

hl(X) = bl VI 

F· (X) - d -+: + d -: = m . V)· 
1 1 1 1 

d; > 0 Vj 

dj > 0 Vj 

d-+: d-: = 0 V)· 
1 1 

p>l 

2. 17 

Where, m j are the goals set by the designer for the jth objective function, and d; and 

dj are the under and over achievement from the target goals for the jth objective 

function. The value of p is based on a utility function chosen by the designer. If the 

* goals m j are set equal to F j obtained by minimising individual objective functions 

Fj , it is not possible to obtain an over achievement of the goals m j 'So Consequently, 

the d j need not to be defined. Thus the goal programming formulation given by 

Equation 2.17 reduces to 

min ｛ ｾ ｗ ｊ Ｈ ､ ［ ｙ rp 

Such that; 

gi(X)<ai Vi 

h/(X)=b, VI 

p > 1 

d; = Fj(X) - Fj* (X) Vj 

d : > 0 V' 1 - ) 

2. 18 

The croal constraints in the above formulation are soft constraints in the sense that 
b 

they do not restrict the original feasible region S. In effect, they augment the feasible 
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region by casting S into higher dimensional space, thereby creating the augmented 

goal programming feasible region. 

In their helicopter design research, Rao et. al. (1990) applied some of the above 

techniques (Global criterion formulation, Utility function formulation, Goal 

attainment method, Bounded obj ective function formulation, Game theory approach, 

Lexicographic method, Archimedian goal programming) and compared their relative 

efficiency. They concluded that none of the applied techniques could be considered 

superior to all other techniques in all circumstances. Murata and Ishibuchi (1997) 

compared the efficiency of GA based techniques in their flow-shop scheduling study. 

There was no significant difference between the efficiencies of the GA based 

techniques that are presented above. 

2.4 MANUFACTURING SIMULATION AND SIMULATION OPTIMISATION 

Simulation is simply the use of a computer model to mimic the behaviour of a 

complicated system and thereby gain insight into the performance of that system 

under a variety of circumstances (Thesen and Travis, 1991). In modelling and 

optimising manufacturing systems with structural and qualitative variables, 

simulation is sometimes the only possible method of evaluation. This is because the 

system configuration such as part routings, facility layout, queuing discipline, and 

many other factors cannot be quantified reasonably and thus, there does not exist an 

analytical expression of the objective function or the constraints for most of the 

design issues. 
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Manufacturing systems are generally modelled by applying discrete event simulation 

concepts (Shimizu, 1991, Norman and Norman, 1986, Swain and Farrington, 1994). 

A discrete-event simulation model is one in which system state changes only at a set 

of discrete points in time called event times (i.e. arrival of a part, fInishing processing 

on a machine etc.). Between two successive event times, system-state does not 

change (Banks and Carson, 1986). There are many text-books where detailed 

information about discrete event simulation concepts can be found. For further detail 

refer to Pegden, et. al. (1995). 

Performing a simulation analysis is generally not mathematically complex, but is 

requires a careful implementation of certain procedures from model building to the 

statistical analysis of outputs (Sargent, 1994, Cheng, 1993, Kelton, 1994, Charnes, 

1993). 

2.4.1 Methodology of a Simulation Study: A Short Review 

Simulation is an extensively used method for reconfIguration, analysis, controlling of 

existing systems and design of new systems (Belmclhdi and Nadif, 1995, Spedding, 

et. al., 1997, Taboun and Bhole, 1993). Simulation is also a very valuable tool for 

educational purposes (Smith, 1989, Southern, 1979). It generally requires a 

complicated programming effort. However, a successful simulation study does not 

only consist of computer programming, but should also consider various other 

aspects in order to achieve its aims (Bakir, 1996). 

The success of a simulation study is closely related to the achievement of the steps 

shown in Figure 2.5 (Prakash and Shannon, 1993, Saad, 199.+). HO\l,:en:f, some 
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studies may not necessarily contain all the steps shown in Figure 2.5 in the order 

stated. Some studies may contain steps that are not included in the figure. 

Furthermore, a simulation study is not a strictly sequential process but often requires 

repeated iterations through several of the steps. For instance, if the real system does 

not yet exists, there is no real data to be collected (data acquisition step), and some 

appropriate estimates must be made, and then the subsequent model may be validated 

(Saad, 1994). 

a. Problem Formulation 

! 
b. Model Building 

! 
c. Data Acquisition 

! 
1-+ r-+ d. Model Translation 

! 
e. Verification 

! 
f. Validation 

! 
g. Strategic & Tactical Planning 

! 
h. Experimentation 

! 
i. Analysis of Results 

! 
j. Implemetation & Documentation 

Figure 2.5 The simulation cycle (Prakash and Shannon, 1993) 

a. Problem formulation 

• State the objectives clearly 

• Determine variables and constraints 

• Determine the measures of performance 
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b. Model building 

• Detailed study of the system to understand it for developing an appropriate model 

• Preparing a flow chart of the model 

c. Data acquisition 

• Data should be collected to determine input parameters and probability 

distributions (e.g. part arrival time, transportation time etc.) 

• Data should be collected to validate the model (e.g. average perfonnance 

measures etc.) 

d. Model translation 

• Selection of an appropriate high level programming language or a simulation 

language. 

• Preparation of programming code 

e,f Verification and validation 

• Debugging 

• Checking intemallogic of the model to assure that each entity followed the 

correct logic and process 

• Sensitivity analysis 

• Comparison of simulation outputs with real data and other checks 

g. Strategic and tactical planning 

• What are the factors that affect the measures of performance? 

• How many factors will be taken into account at one time? 

• How many experiments will be required? 

• How long each replication will take etc.? 

h. Experimentation 

• Determination of relationships between dependent and independent variables 

2-35 



Adil Baykasoglu Literature Reviev" 

• Comparison of different operating policies 

• Evaluation of system behaviour 

• Sensitivity analysis 

• Optimisation etc. 

i. Analysis of results 

• Interpretation and presentation of results to the decision maker 

• Determination of the best system design etc. 

The statistical issues related to the simulation (i.e. determination of input probability 

distributions, analysis of simulation output etc.) can be easily analysed by the built in 

functions of many advanced simulation software packages, for example SIMAN-

ARENA (Pedgen, et. a/., 1995). 

2.4.2 Simulation with SIMAN 

SIMAN is a simulation program for quickly and accurately implementing certain 

simulations on a computer. Its modelling framework is based on the system theoretic 

concepts developed by Zeigler (Pedgen and Ham, 1982). Within this framework, a 

fundamental distinction is stressed between the system model and the experimental 

frame. The system model defines the static and dynamic characteristics of the 

system. The experimental frame defines the experimental conditions under which the 

model is run to generate specific output data. For a given model, there can be many 

experimental frames resulting in many sets of output data. By separating the model 

structure and the experimental frame into two distinct elements, different simulation 

experiments can be performed by only changing the experimental frame, \\ithout 

chanaina the system model (Pegden and Ham. 1982). This characteristic of ｓ ｉ ｾ ｬ ａ Ｉ ｊb b ｾ ...., 
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also gives the opportunity to easily parametrise a simulation model bv usina yarious 
ｾ b 

experimental blocks. 

The SIMAN software package used in this work divides the simulation process into 

three distinct activities: 

• System model development 

• Experimental frame development 

• Data analysis 

As shown in Figure 2.6 the SIMAN software consists of five individual processors 

which interact through four data files. The model processor is used to construct block 

diagram component models. The data file defining the block diagram generated by 

the processor is referred to as the model file. The experimental processor is used to 

define the experimental frame for the system model. The data file defining the 

experimental frame is referred as the experiment file. The link processor is used to 

combine the model and experiment file to produce the program file. The program file 

is input to the run processor that executes the simulation runs and writes the results to 

the output files. If an event is included in the system model, the user-written high 

level language subroutines are linked to the run processor before the simulation runs 

are executed. The output processor is used to analyse, format, and display the data 

contained in the output files. 

') ." 
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Figure 2.6 SIMAN software organisation (Pedgen and Ham, 1982) 

To define a SIMAN program, blocks are defined and combined in different ways. 

Through these blocks entities move. Entities may represent such things as jobs, cars, 

or other items. Associated ,,"ith each entity is a set of attributes, denoted A(]). 
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A(2), .... ,A(n). Each attribute is a number, but can be interpreted in many different 

ways. For instance, one might set A(1) to be the time the entity entered the system, 

A(2) might be 0 if the entity represents a job of type X and 1 if it represents a job of 

type Y, A(3) is the service time of the entity, and so on. 

These entities flow through a system of blocks. Blocks describe the actions an entity 

can take. In SIMAN, most blocks either modify an attribute, place entities in queues, 

or manipUlate resources. Resources represent machines, workers, and other items 

that handle entities. There are many blocks in SIMAN and very complex problems 

can be modelled easily with them (Pedgen, et. aI., 1995). It is possible to input the 

necessary data into these blocks and run the simulation. However, BLOCKS and 

ELEMENTS are not necessary; it is also possible to create a SIMAN program with 

any ASCII word processor. 

2.4.3 Simulation and Optimisation 

In simulation models there are no functional relationships that can be manipulated by 

using techniques such as linear programming, geometric programming etc. to obtain 

the optimum combination values of decision variables. Therefore, a simulation model 

cannot be directly used for optimisation. However, it is possible to learn under what 

conditions a system performs most effectively and efficiently, by indirect use of a 

model for optimisation purposes through heuristic procedures. 

Optimisation \vith a simulation model needs to use some kind of search technique. 

Since simulation itself is not an optimisation technique. It is necessary to combine 
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simulation with an optimisation procedure. It is possible to incorporate such methods 

for an optimum seeking procedure in a computer program. 

The objective function in simulation models is expressed in terms of outputs of the 

models. In a sense a simulation model can be thought of as a stochastic objective 

function, whereby feasible input variables for the decision variables are converted 

into a value for the objective function. Because the objective function is not 

expressed in terms of the decision variables, optimisation techniques cannot be 

directly applied to the problem. There are two basic approaches to develop a 

technique to optimise the simulated systems: 

• Direct search techniques 

• Response surface methodology 

The first category of approaches, such as pattern search (Clayton, et. al., 1982), 

simplex method of NeIder and Mead (1965), combine an optimisation search 

procedure that does not require derivative information with a method for statistical 

comparison of two or more different systems. Clayton et. al. (1982) developed a 

modified pattern search procedure to optimise multi-response simulation models 

within a goal programming framework. They discuss-ed the merit of their approach in 

detail. A military application is also mentioned in their paper (Clayton, et. al., 1982). 

Another early application of simulation optimisation is the work done by Nolan et. 

al. (1972). They presented a recursive optimisation and simulation for the analysis of 

transportation systems. Garcia-Diaz et. al. (1981) proposed an integer programming 

based simulation optimisation strategy for solving the multi-machine interference 

problem. They applied various search procedures for solving the problem. 
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Mollaghasemi and Evans (1994), Teleb and Azadiar (1994) developed some heuristic 

direct search procedures to solve multiple objective simulation optimisation 

problems. However, as reported by Clayton et. al. (1982), these classical approaches 

have some disadvantages and limitations. One of the disadvantages is that these 

algorithms do not guarantee that a global optimal solution will be found and 

generally they produce local optimal solutions. A second disadvantage is that they 

are not efficient in the sense ｯ ｦ ｟ ｾ ･ ｱ ｵ ｩ ｲ ｩ ｮ ｧ the fewest number of evaluations of 

simulations in order to achieve an optimum. Due to these known disadvantages, 

researchers in this particular area started to apply modem heuristic optimisation 

techniques for simulation optimisation. Haddock and Mittenthal (1992) applied 

simulated annealing for simulation optimisation. Their purpose was to investigate the 

feasibility of using a simulated annealing algorithm in conjunction with a simulation 

model to find the optimal parameter levels at which to operate a system. They 

applied their procedures to a small size hypothetical FMS system and demonstrated 

that the simulated annealing algorithm can result in an optimal or near-optimal 

solution to the problem. Lee and Iwata (1991) studied the problem of part ordering in 

a FMS through simulated annealing based simulation optimisation. Manz et. at. 

(1989) also applied simulated annealing to simulation optimisation. Their purpose 

was to find optimal parameter levels at which to operate a manufacturing system. 

Tautou and Pierreval (1995) applied genetic algorithms to simulation optimisation. 

Their specific application was to optimise configuration of a workshop producing 

plastic yoghurt pots by considering operational issues. Another application of genetic 

algorithms to simulation optimisation is the work done by Fujimoto et. at. (1995). 

They presented two heuristic approaches to a production-scheduling problem in 

ｆ ｾ Ｑ ｓ ｳ Ｎ These approaches are integrated to seek efficiently the best combination of 
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dispatching rules in order to obtain an appropriate production schedule under specific 

perfonnance measures. Sauer et. al. (1997) applied genetic algorithms to simulation 

optimisation. Their aim was to schedule FMSs. Joshi et. ai. (1996), Bley and \Vuttke 

(1997) also applied genetic algorithms to simulation optimisation problems. 

However, the majority of these studies are based on single objective function 

optimisation. 

The second approach is to use the traditional response surface methodology (RSM). 

In this approach an approximating first and second order equation is fitted to the 

simulation response perfonnance measure, using the series of simulation replications 

based on an appropriate experimental design. RSM has two primary disadvantages 

(Ferrel, et. aI., 1975). First, the RSM method is generally used with a simulation 

method to evaluate an objective function several times for each finite difference 

required along each factor or variable. The analyst configures the model, simulates 

with that configuration, and compares the alternative configuration outputs so as to 

improve the perfonnance measure. This man-model interactive procedure requires 

many simulation runs and may lead to long computation times if each evaluation 

involves running a large simulation model. Secondly, there can be no guarantee that 

the results of an RSM procedure will always identify a truly optimal design. Ferrel 

et. ai. (1975) reviewed and criticised the combination of simulation with various 

optimisation techniques. They stated that both the RSM and direct search methods 

have drawbacks, namely that the simulation results do not form an explicit 

mathematical objective function, and there is random variation in the output of 

simulation runs, and the number of computer runs must be limited. Smith (1976) 

developed a modular computer program to guide the optimum seeking solutions. He 
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concluded that his automated RSM program might be used for constrained and 

unconstrained optimum seeking in conjunction with deterministic or Monte Carlo 

simulations. Biles (1977) proposed a RSM-based multiple objective simulation 

optimisation approach by employing a non-linear goal programming framework. 

In all the above simulation optimisation approaches, structural issues are not 

considered. Only the best possible level of variables and/or their combination (e.g. 

speed of transporters, set of dispatching rules etc) are estimated using a simulation 

model to optimise some performance measures. If structural changes are concerned 

(i.e. the composition of manufacturing cells, layout of the manufacturing system etc.) 

in the system under study then a unique simulation model is required for the 

evaluation of each configuration. Thus a simulation model generator is needed to 

automatically create simulation models in relation to the input provided by an 

optimum-seeking algorithm. 

Based on the above review and observations, it is possible to divide simulation 

optimisation procedures into two broad categories: 

• Non-parametric simulation optimisation: As noted above in this type of 

simulation optimisation approaches, only the level and/or combination of system 

variables are determined to optimise previously defined performance measure(s). 

• Parametric simulation optimisation: In this type of simulation optimisation 

approach, structural changes are also considered. Therefore, a simulation model 

generator is required to generate and/or update the simulation models 

automatically during simulation optimisation. 
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The literature on parametric simulation optimisation is scarce. Ketcham and \Vatt 

(1989) proposed a simulation model generator for parametric simulation, by using 

spreadsheet like interfaces and a FORTRAN program that produces the simulation 

code. The work done by Malhotra and Mellichamp (1997) can be useful for 

parametric simulation optimisation studies. They developed a simulation code 

generator by using relational database management approaches. Morgan (1998) also 

briefly explained an automatic simulation model generator by using Microsoft Excel 

spreadsheets and the Visual Basic computer programming language. Such systems 

can be integrated with optimisation procedures to produce general-purpose 

parametric simulation optimisation software. A conference paper by Zhang and 

Azadivar (1997) presents an object-oriented approach for automatic generation of 

simulation models for a FMS. They also discussed the issue of using genetic 

algorithms to optimise simulation. 

2.5 CELLULAR MANUFACTURING AND CELL FORMATION 

In accordance with different production strategies (e.g. mass production, batch 

production, job shop production etc.) manufacturing systems were structured in 

several ways (i.e. functional, flow-line, cellular) (Kusiak, 1990). If a manufacturing 

environment can be characterised by high and stable demand with little product 

variety then the manufacturing system is normally laid down based on the operations 

sequences of products (i.e. flow-line) in order to obtain high efficiency. If a 

manufacturing environment can be characterised by low to medium and unstable 

demand with high product variety then a functional structure based on functionality 

of machines is preferred in order to increase the flexibility. After the introduction of 

the Group Technology (GT) concept, cellular manufacturing systems (C\1S) 
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emerged. They are hybrid in nature and the main purpose is to bring together the 

advantages of previous approaches (Kusiak, 1987, 1990). 

Several researchers have pointed out that the success of CMSs is mostly dependent 

on the success of their design (Shafer and Meredith, 1990). However, designing 

CMSs is known as a difficult problem (Kusiak and Chow, 1988, Zhou and Askin, 

1998). 

Several approaches have been proposed to design CMSs. A comprehensive review 

has been recently given by Reisman et. al. (1997). A classification of the strategies 

adopted is summarised as follows in this thesis: 
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a) Visual method 

b) Part Coding & Classification (Chang, et. aI, 1991, Logar and Peklenik, 1991) 

• Monocode • Polycode • Hybrid code 

c) Production flow analysis (Burbidge, 1975) 

• Matrix formulation approaches 

* Similarity coefficient based methods (Seifoddini and Vi olfe, 1986, 

1994, Offodile and Grznar, 1997, Kerr and Balakrishnan, 1996) 

* Matrix rearrangemenrmethods (Chow and Kusiak, 1988) 

• Graph theory based approach (Hadley, 1996, Lee and Garcia-Diaz, 1993) 

• Mathematical programming approaches 

* Integer programming (Gunasingh and Lashkari, 1989, Adil, et. a!., 

1996, Boctor, 1991, Offodile, 1992, Srinivasan, 1990) 

* Linear programming (Harhalakis, et. a!., 1994) 

* Dynamic programming (Steudel and Ballakur, 1987) 

* Multiple objectives and goal programming (Han and Ham, 1989, 

Wei- and Gaither, 1990, Akturk and Balkose, 1996) 

• Mathematical programming & modern heuristic techniques (i.e. SA, GA, 

TS) (Hon and Chi, 1994, Moon, et. a!., 1997, Hwang and Sun, 1996, 

Joines, et. a!., 1996, Chen and Srivastava, 1994, Sun, et. a!., 1995, Zhou 

and Askin, 1998, Hsu and Su, 1998) 

• Heuristic methods (AI-Qattan, 1990, Khator and Irani, 1987, Sarker and 

Balan, 1996, Ballakur and Steudel, 1987, Purcheck, 1985) 

• Expert systems (Basu, et. a!., 1989, Kusiak, 1990) 

• Neural networks (Kamal and Burke, 1996, Chu, 1993, Moon, 1990) 

• Fuzzy set theory (Gindy, et. a!., 1995,1996, Xu and Wang, 1989) 

• Pattern recognition (Wu, et. a!., 1986) 

• Simulation (Kamrani, et. a!., 1998) 

d) Capability based approach 

• Fuzzy set theory (Gindy. et. a!., 1996) 

• Mathematical programming & heuristic techniques (Baykasoglu and 

Gindy.1999-c) 
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Visual method: In this method, part families are fonned by an expert based on his 

(her) experience. It is not a systematic approach and cannot be applied if the number 

of parts are high (Kusiak, 1990). 

Part coding: In this approach, every part in the system is coded alphanumerically in 

relation to their shapes, sizes and production features. Based on the part codes part 

families can be fonned. Part coding is also very useful in design-retrieval processes 

and this is one of the main aims of this method (Gallagher and Knight, 1986). By 

visual and part coding methods only part families can be fonned, machine cell 

fonnation is a secondary process. Visual and coding methods are also known as part-

oriented methods (Wang and Roze, 1997). In part oriented methods, very much time, 

effort and money goes into accurate coding and the creation of an elaborate database 

which provides a weak connection between component features and machine tool 

grouping (Wang and Roze, 1997). For this reason, research on cell formation 

problems is mostly concentrated on the process based approach (i.e. production flow 

analysis). 

Production .flow . analysis: In this method the machine route of every part is 

detennined and transferred into a part/machine incidence matrix. This matrix 

provides the main data for the formation of part and machine cells. Cell fonnation 

techniques developed based on this strategy are called production-oriented methods 

(Wang and Roze, 1997). In production oriented methods only one route for each part 

is assigned. However, many times it is not possible to show the correct route of a part 

on an incidence matrix. This is because an entry in a part-machine incidence matrix 

only indicates whether a machine is used to process a part. not the number of times a 
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machine is needed and in which order machines need to be used (Cheng, et. al., 

1995). Moreover, there can be many possible alternative routes for each part and it is 

not easy to show these data on an incidence matrix. On the other hand, ignoring 

alternative routes can reduce the possibility of formation independent manufacturing 

cells and can cause excess machine duplication. Several researchers considered 

alternative process plans for the parts that prevent formation of independent cells by 

adding extra columns to the ｩ ｮ ｣ ｩ ､ ｾ ｮ ｣ ･ matrix (Kusiak, 1990, Adil, et. al., 1996). 

However, for a successful cell formation all possible alternatives should be 

evaluated. This is because alternative routes can have a big effect on the utilisation of 

the available capacity in the system. 

Capability based approach: This approach is based on a capability/requirements 

analysis and included into the above classification after this research. This approach 

has the potential to overcome several shortcomings of the existing approaches. In this 

approach, capabilities of production resources and processing requirements of 

products are determined by using a common representation scheme known as 

Resource Elements (RE) (Gindy et. aI., 1996). Therefore, it is possible to determine 

the unique and overlapping capabilities of production resources and make use of this 

knowledge while forming manufacturing cells. Machining operations can also be 

used to define machine capabilities. However, using operations can increase the 

detail in problem modelling and solution requirements because there are hundreds of 

operations available in a typical job shop. This increases the solution space and 

therefore the problem size considerably. Additionally, operations are machine-

specific and not easy to relate to capability representation (Gindy et. aI., 1996). REs 

can effecti\'ely define unique and overlapping capabilities of production resources 

2--lS 
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and processing requirements of parts. Employing REs can reduce the problem into a 

manageable size in cell formation applications (REs are explained in Appendix III). 

Figure 2.7 depicts the three representation schemes (i.e. machine-based, operation-

based and RE based) that have been used in cell formation practices. 

Classical approach 
(Machine based) 

Parts 

Alternative way 
(Operations based approach) 

Capability (RE) Approach 

* Not possible to 
represent alternative 
machines for processing. 

* No knowledge about 
machine capabilities. 

Operations 

* Too much 
* Operations are machine specific, 

and not easy to relate capability 
representation. 

Parts 

* Less detail. 
* REs are machine-independen 
Facility-specific capability 
units able to uniquely 
represent the manufacturing 
facili 

Figure 2.7 Three different approaches to relate part processing requirements to the 

available machine tools in cell formation applications 

Based on the above approaches, there are three main strategies to form part-machine 

cells (Moon, 1990): 

• Formation of machine cells first, then determination of part families. 

• Formation of part families first, then determination of machine cells. 

• Simultaneously forming part and machine cells. 
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In the literature, part family and machine cell formation problems are CTenerallv 
b '" 

formulated separately. This increases the solution time and whichever problem is 

solved first can constrain the other in obtaining independent manufacturing cells. 
'-' 

Therefore, it is advantageous to solve part-machine cell formation problem 

simultaneously (Moon, 1990). Moreover, many practical constraints have not been 

considered in many cell formation formulations (e.g. number of machines and parts 

in each cell, capacity constraints etc.). This is mainly due to the capability of the 

techniques employed for cell formation that do not allow consideration of these 

factors. Mathematical programming formulations are one of the most suitable 

alternatives for the cell formation problems because, they can integrate many 

important factors in the objective function and constraints (Sofianopoulou, 1997). 

However, powerful techniques are required for the solution of mathematical 

programming formulations. As discussed previously, modem heuristics techniques 

(i.e. TS, GA, SA) can be used for this purpose (Goldberg, 1989, Reeves, 1995). 

2.6 LOADING AND SCHEDULING IN CELLULAR MANUFACTURING 

Generally, CMSs are ｣ ｯ ｮ ｳ ｩ ､ ｾ ｲ ･ ､ as dedicated manufacturing systems and they are 

not regarded as alternatives for dynamic manufacturing environments (McCarthy and 

Ridgway, 1995). This is because dividing the whole manufacturing shop into a 

number of cells reduces its flexibility. This can adversely affect the performance 

(Seifoddini and Djassemi, 1996, 1997). However, by employing effective loading 

strategies, the performance of CMSs facing changing production requirements can be 

sustained. Loading is a controlling issue of CMS. Greene and Sadowski (1980,1983) 

divided the control of eMS into two activities: 
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• Cell loading 

• Cell scheduling 

These two activities, which are a part of the planning and control of individual 

production units, lies at the very heart of the performance of manufacturing systems 

(Stoop and Wiers, 1996). 

• Cell loading is the determination of which cell (or cells), among the alternative 

cells the part will be assigned to. 

• Cell scheduling on the other hand is the internal control of the jobs within each 

cell. 

In a cellular manufacturing environment loading and scheduling problems should be 

solved simultaneously to optimise the performance (Greene and Sadowski, 1980, 

1983, Baykasoglu, et. al., 1998-a). 

2.6.1 Cell Loading 

Loading of Flexible Manufacturing Systems is studied extensively in the literature 

Chen and Chung (1991), Kim (1993), Chen and Askin (1990), Stecke and Solberg 

(1981), Kusiak (1995), Wilson (1992). But, no serious attention has been given to the 

loading problems for the CMS. The CMS loading problem was first defined by 

Greene and Sadowski (1980,1983). They explained the dimensions and complexity 

of the problem and suggested some simple heuristics for eMS loading. They also 

performed simulation experiments under different operating conditions to test their 
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loading heuristics. They. also developed a mixed-integer linear programming model 

for concurrently loading and scheduling cellular manufacturing systems (Greene and 

Sadowski, 1986). But the resulting formulation was not efficient even for a very 

small problem. Khator and Moodie (1979) developed a machine loading procedure 

by using part codes (Opitz code), they tried to develop a machine capability index 

which shows how well a machine can process a given part. They also carried out 

some simulation experiments on a hypothetical job shop to prove the superiority of 

their method. Elmaraghy and Gu (1989) proposed a feature-based part assignment 

method. In their work, machining requirements of part features were compared with 

machining capabilities (available operations) of existing manufacturing cells and 

parts were assigned to the cells which completely satisfied their processing 

requirements. The possibility of having inter-cell movement, operating conditions 

and performance measures of the system was not considered in their work. 

Choobineh (1984) developed a cell loading procedure. In his work, the existence of 

more than one feasible cell that can satisfy all processing requirements of each part is 

assumed. Then, each part is assigned to one of the candidate cells by solving a linear 

programming model with the objective of optimising total production costs. The 

possibility of having inter-cell movement was not considered in his work. Irastorza 

and Deane (1974) studied the loading problem for job shops with objectives of load 

balancing. They were only concerned with selecting new jobs to be released to the 

shop. Liang and Dutta (1990) also studied the loading problem of functional job 

shops. They expressed the importance of using alternative process plans and how 

these improved the shop performance. They developed a mixed-integer programming 

model for the loading problem with the objective of minimising total production cost. 

Tilsley and Lewis (1977). Ang and \Yilley (1984). Seifoddini and Djassenli (1996), 
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Albino and Garavelli (1997) proved that performance of a dedicated cellular 

manufacturing system can be considerably improved by assigning parts to alternative 

cells under dynamic manufacturing circumstances. 

2.6.2 Cell Scheduling 

Scheduling, by definition, is the determination of the order of the jobs onto each 

machine and the determination of the precise start time and completion time of each 

job on each machine. In reality, most viable control schemes do not perform cell 

scheduling but rather employ cell sequencing. Sequencing is limited to the 

determination of the order of the jobs onto each machine, and does not address 

timing (Sonmez and Baykasoglu, 1998). 

In the eMS context, the control of each cell is nothing more than the scheduling of 

individual, small job shops and/or modified flow shops (Vaithianathan and Roberts, 

1982, Greene and Sadowski, 1983). Therefore, most of the scheduling techniques 

developed for various types of systems can also be applied to eMS with minor or no 

modifications. 

The scheduling or sequencing problem is formally stated as follows in the literature 

(Holthaus and Ziegler, 1997): n jobs are to be processed by m machines within a 

given time period in such a way that given objectives are optimised. Each job 

consists of a specific set of operations that have to be processed according to a gi\"cn 

technical precedence order (process plan). An operation may require a deterministic 

or a stochastic processing time. If the precedence order of the operations is identical 

for all jobs the problem is called a flow shop scheduling problem in contrast to a job 
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shop scheduling problem where the jobs may have different sequences of operations 

(Yang, et. aI., 1994). If the set of jobs to be scheduled is available at the beginning of 

the scheduling process the problem is called static, whereas if the set of jobs to be 

processed is continuously changing over time the problem is called dynamic. In a 

deterministic problem all parameters are known with certainty. If at least one 

parameter is probabilistic the problem is called stochastic. The aim of the planning 

process is to find a schedule for processing all jobs optimising one or more goals 

(e.g. minimising mean tardiness, maximising throughput etc.) For efficient planning 

and controlling of production operations the detailed scheduling of all jobs has to be 

done in a short period of time, in real time at best. 

In theory it is possible to determine optimal schedules for static sequencIng 

problems. In practice the computation of optimal schedules for large problems is 

impossible since these problems belong to the class of NP hard problems (pinedo, 

1995). Therefore the existence of algorithms which are polynomial bounded in the 

problem size is very likely. The time requirements for calculating optimal processing 

of orders for a job shop scheduling problem occurring in practice would be beyond 

any scope of time. In recent decades many heuristic. methods have been developed to 

solve deterministic scheduling problems (Pinedo, 1995). For scheduling dynamic and 

stochastic job shops a variety of dispatching rules has been proposed (Blackstone, et. 

aI., 1982, Ramaswamy and Joshi, 1994). The role of a dispatching rule is to select the 

next job to be processed from a set of jobs awaiting service. The dispatching rule 

selected can be very simple or extremely complex. Simulation models have been 

formulated to analyse their efficiency under yarious conditions and \vith respect to 
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different goals (Huang, 1984, Holthaus and Ziegler, 1997, Gindy and Saad, 1996, 

Brah, 1996). 

There are many published papers addressing scheduling problems. In addition, there 

are thousands of industrial firms that have generated their own scheduling techniques 

of which there is little published knowledge. Pinedo (1995) provides an excellent 

textbook survey of the entire field _of scheduling. 

2.7 RECONFIGURATION ISSUES IN CELLULAR MANUFACTURING 

2.7.1 Problems Associated with Cellular Manufacturing Systems 

CMSs can be highly inefficient, since they are generally designed with a fixed set of 

part families in mind whose demand levels are assumed to be stable and their life 

cycles are considered to be sufficiently long. In fact, once a cell is formed, it is 

usually dedicated to a single part family with limited allowance for inter-cell flows. 

While such organisation may be adequate when part families are clearly identifiable 

and demand volumes are stable, they become inefficient in the presence of significant 

fluctuations in demand of existing products or with the frequent introduction of new 

ones. Wemmerlov and his colleagues (Wemmerlov and Hyer, 1987,1989, 

Wemmerlov and Johnson, 1997) made an extensive investigation of US industry and 

reported some of the problems. They concluded that there is a need to develop more 

effective cell formation techniques that produce more robust designs in order to 

lessen the deteriorating effect of changing production requirements. However. 

reconfi auration of CMS must also be considered to improve the performance of 
b 

eMS, in addition to the advancements in cell formation procedures. 
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2.7.2 The Reconfiguration concept 

Usually, facility layout studies result from changes that occur in the requirements for 

space, equipment and people. If requirements change frequently, then it is desirable 

to plan for change and to develop a flexible layout that can be modified, expanded, or 

reduced easily (Tompkins, et. al., 1996). Flexibility can be achieved by utilising 

modular equipment, general-purpose production equipment and material handling 

devices etc. The change in the design of existing products, the processing sequences 

for existing products, quantities of production and associated schedules, and the 

structure of organisation and/or management philosophies (e.g. centralised, 

decentralised, hierarchical etc.) can lead to changes in layout. When these changes 

occur frequently, it is important for the layout to accommodate them. Such layouts 

are called flexible layouts (Abedzadeh and O'Brien, 1996). An important part of the 

response to change is the need to rearrange workstations or modify the system 

structure based on changing functions, volumes, technology, product mix and so on. 

A re-Iayout problem arises when the location of an existing facility is a decision 

variable, i.e. in an existing facility a re-Iayout problem exists where the configuration 

and location of the existing facilities must be determined (Driscoll and Sawyer, 

1985). With the introduction of new parts and changed demands, new part families 

and machine groups have to be identified. One possible way of minimising inter-cell 

movements is to relocate machines. Gupta and Seifoddini (1990) concluded that one-

third of USA companies undergo major dislocation of production facilities every two 

years. 

As mentioned above, over time the mix of parts, the volume of production for each 

part and the routing for each part in the system will change. If everything remains 
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constant for a long period of time, a dedicated set of facilities would be more 

appropriate but where this is not the case, there is a need to focus on a dynamic 

layout problem or a re-layout issue. The objective function in a dynamic layout 

problem is generally defined as the minimisation of flow costs plus rearrangement 

costs for a series of static layout problems (Rosenblatt, 1986, Lacksonen and 

Enscore, 1993, Barad and Aharonson, 1997, Driscoll and Sawyer, 1985). In a 

dynamic layout problem, rearrangement costs are added whenever an area contains 

different departments in consecutive time periods. 

According to Lacksonen and Enscore (1993), the dynamic layout problem arises 

when we must balance the trade-off between the increased flow costs of inefficient 

layouts and added rearrangement costs. Afentakis, Millen and Solomon (1990) stated 

that when system characteristics (e.g. part mix) change, they can cause a significant 

increase in material handling requirements, consequently, it shows a need to consider 

re-Iayout. They defined two cost components for re-Iayout, cost ofreconfiguration or 

relocation of equipment and cost of lost production. The cost of reconfiguration 

depends on the number of machines moved and/or the number of links in material 

handling changed. 

Traditionally, the effectiveness of a layout has been connected to the flow of 

materials. Material handling cost is commonly used to evaluate alternative layout 

designs. The relative location of facilities in a functional layout has been detennined 

under the criterion of material handling cost minimisation. Usually, the nlaterial 

handlina cost is assumed to be an incremental linear function of the distances 
b 

between the components of the system under study. Total estimated annual material 
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handling cost for a particular design is used to provide a quantitatiye measure of the 

flexibility of design. There are several papers available in the literature that studied 

the facility re-layout problems (Rosenblatt, 1986, Lacksonen and Enscore, 1993, 

Barad and Aharonson, 1997, Driscoll and Sawyer, 1985). However, in all these 

studies, functionally divided job shops were considered. Although, the inefficiency 

of cellular shops under changing environments has been criticised (S as ani , 1990), 

their reconfiguration has not been seriously investigated. 

2.7.3 Reconfiguration from the Cellular Manufacturing Viewpoint 

Rheault, et. al. (1995) defined the main characteristic features of today's dynamic 

manufacturing environments as follows: variable and stochastic demand, variable 

size of production lots, frequent and unpredictable changes in product mix, highly 

variable processing and set-up times, variable production sequences, and strong 

competition. As mentioned previously, the performance of eMS deteriorates when 

faced with changing production requirements (Sasani, 1990, Seifoddini and 

Djassemi, 1996). One of the reasons for performance deterioration in cellular 

manufacturing applications is the unsuitability of the existing configuration for 

changing production needs (Vakharia and Kaku, 1994). 

To reduce the level of performance deterioration, reconfiguration of facilities should 

be considered. The reason for reconfiguration is clearly related to performance 

deterioration assessed bv several performance measures i.e. utilisation levels, 

throughput, material handling cost etc. Unacceptable performance may necessitate 

reconfiguration. However, in functionally divided job shops only material handling 

cost is considered as the criteria for initiating the reconfiguration action. This might 
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be understandable, because in a functional shop functionally identical machines are 

collected in the same department and parts are routed from department to department 

based on their processing requirements. Therefore, those departments that haye 

maximum load transfer between each other should be close. There is no 

reconfiguration action inside these departments therefore, only the relative locations 

of departments need to be changed. It is obvious that reconfiguration decisions are 

only related to material handling criteria for functional shops because, it is the only 

recognisable measure that can be improved by reconfiguration. On the other hand, 

the functioning logic of CMS is quite different. In a CMS material-handling cost is 

not the only measure that might trigger the reconfiguration. For example, in some 

production periods, there might not be inter-cell part transfer between cells so 

material handling cost is acceptable. But, due to demand fluctuations, a machine type 

in one cell might be heavily utilised, simultaneously in another cell an identical 

machine might not be utilised at all. In such cases, throughput levels decreases, 

tardiness and flow time increases, etc. Changing the cell membership of the idle 

machine can improve the overall performance of the shop. As can be seen from this 

simple example, in cellular shops many performance measures can be an indicator 

for reconfiguration. However, it is not easy to define a trade-off function for 

physically moving machines in a CMS because, estimation of the effects of moving 

machines between cells is generally not easy. For example, even if a machine has a 

very low utilisation in a cell, its removal to another cell might not improve the 

performance of CMS, due to detrimental effects of removing the machine from its 

original cell. After removal, another machine might become heavily utilised in the 

cell or it may not be possible to remove the machine without allowing inter-cell part 
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transfer due to unavailability of alternative capability in the cell. Additionally·, under 

changing production conditions it is not easy to validate machine relocation costs. 

Due to the complex nature of this problem, there is not a known simple strategy for 

the reconfiguration of CMS. Several researchers (McLean et. al., 1982, Kusiak, 

1990, Mohamed, 1996, Kochikar and Narendran, 1998, Montreuil, et. al., 1992, 

Drolet, et. al., 1990) proposed the logical cell concept as a mechanism for 

dynamically reconfiguring cellular manufacturing systems. In logical cell formation, 

there is no physical machine movement between cells, only the cell memberships of 

machines are updated. This eliminates the difficulties of evaluating trade-off between 

reconfiguration cost versus gains obtained from the reconfiguration. However, there 

is not a known procedure that relates the formation of logical cells to multiple 

perfonnance measures. 

2.8 CONCLUSIONS OF THE LITERATURE REVIEW 

The following conclusions are drawn from the literature review: 

• Classical optimisation procedures have shortcomings to solve complex 

engineering problems like cell fonnation, loading and reconfiguration. 

• Althou oh there are some studies in the literature which show possible application 
0' 

of genetic algorithms to multiple objective optimisation, modem heuristic 

optimisation techniques have been generally applied to single objecti\·e 

optimisation problems. 

• Classical optimisation procedures have seyeral difficulties in solying simulation 

optin1isation problems. 
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• Manufacturing cell fonnation problems are generally modelled as single objectiYe 

optimisation problems without considering multiple objectives and some 

important constraints (capacities, demand etc.). Additionally, most of the models 

are only suitable for small problems. 

• Although the loading problem of Flexible Manufacturing Systems is studied 

extensively, loading problem of CMS did not receive enough attention in the 

literature. 

• Although the reconfiguration of functionally divided job shops has been studied 

by several researchers, reconfiguration of CMS has not received serious attention 

in the literature. 
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CHAPTER THREE 

3. AN OVERVIEW OF THE PROPOSED FRAMEWORK 

3.1 INTRODUCTION 

This chapter presents an overvIew of the "Multiple objective decision support 

framework for configuring, loading and reconfiguring cellular manufacturing 

systems". The framework contains a number of interconnected modules and a variety 

of techniques are developed and used in each module. The main goal of the proposed 

framework is to guide reconfiguration decisions for eMS facing changing production 

requirements. 

The life cycle of manufacturing cells starts with the initial cell formation process 

(configuration module). The reconfiguration is performed if manufacturing cells 

cannot satisfy the required performance levels set by the decision-maker. 

Reconfiguration is achieved by generating virtual manufacturing cellsl
. The 

efficiency of the existing virtual cells is evaluated with the proposed loading system 

(loading module) at the beginning of each loading period. If the system performance 

measures are not satisfactory then the reconfiguration module generates new virtual 

cells. 

In the proposed framework generic capability units which are known as Resource 

Elements (RE) (REs are explained in Appendix III) are used to define processing 

I Logical grouping of manufacturing resources 
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capabilities of virtual cells and processing requirements of products. REs are capable 

of representing shared and unique capability boundaries between virtual cells and 

resources in each virtual cell. Therefore, inherent flexibilitY can be better utilised 

while designing and controlling CMSs. 

Cell formation, loading and reconfiguration decisions are made based on multiple 

objectives in the proposed framework. Tabu search based multiple objective 

optimisation algorithms are developed in order to evaluate multiple objectives. 

This chapter gives a brief explanation about the framework and its modules. Detailed 

explanations about each module will be given in the subsequent chapters of the 

thesis. 

3.2 AN OVERVIEW OF THE RECONFIGURATION PROBLEM IN CMS 

In cellular manufacturing applications, cell formation is usually considered as a long-

term decision. Various factors can be considered at the cell formation stage in order 

to create a robust CMS design. But due to frequent changes in production 

requirements in today's markets, performance deterioration is usually inevitable. 

Therefore, a decision-support mechanism is required to guide the reconfiguration 

actions to reduce or eliminate the detrimental effects of changing production 

requirements. The behaviour of a manufacturing system in accordance with changing 

production requirements can be better described schematically as shown in Figure 

3.l. 

ｾ ｕ ｮ ｲ ･ ｡ ｬ ｩ ｳ ｾ ､ potential of a manufacturing system in supplying altemati\'e resources for part processing. 
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Initial 

ｾ ｃ ｯ ｮ ｦ ｩ ｧ ｵ ｲ ｡ ｴ ｩ ｯ ｮ ｾ

Manufacturing 
Environment 

Chapter 3 

Application of 
Proposed 

Control Strategies 

Deviation from 
Initial Design 

"---
D .. fr / eVlatlons om 

ｾ Proposed Control 
Strategies 

Figure 3.1 Changes in cellular manufacturing system design in relation to changing 

production requirements 

The objectives of reconfiguration are to improve system performance measures to 

satisfy "market demand" and "management goals" by making better utilisation of 

resources. In order to achieve reconfiguration, there are two important questions to 

be answered, the first one is "When to reconfigure?" and the second one is "How to 

reconfigure?" It is not easy to estimate the effects that changing production 

requirement on CMS performance. Therefore, a simulation and optimisation system 

is necessary in order to analyse the effects of changing production requirements on 

the CMS performance and to optimise its performance and configuration. In the 

proposed framework, the interaction between process planning. loading, 

manufacturing system simulation and cell fom1ation is considered. The interaction 

between process planning and loading through simulation can give an indication 
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about when to reconfigure CMS by analysing its perfonnance. Reconfiguration is 

very similar to configuration problem in many ways. Solution of the configuration 

(factory design) problem leads to hard cell boundaries. On the other hand the , 

reconfiguration problem is logical i.e. its solution determines soft cell boundaries 

(virtual cells) to deal with changing production requirements. If requirements stay 

constant for long periods then virtual cells may lead to hard cell boundaries. The 

following section introduces and briefly explains the proposed integrated framework 

that can be used for reconfiguration purposes. 

3.3 THE PROPOSED FRAMEWORK 

The proposed framework is depicted in Figure 3.2. As discussed in Section 2.7.3 of 

Chapter 2, the virtual cell concept is used as a reconfiguration strategy in the 

proposed framework. Reconfiguration IS achieved by generating virtual 

manufacturing cells (VC). A virtual cell is an objective driven logical grouping of 

manufacturing resources. Its creation can be decided by a production planning 

system. If current cells cannot cope with the new production requirements then a new 

set of VCs is generated. The main difference between a VC and a classical GT cell is 

in the dynamic nature of the VCs; whereas the physical location and identity of 

traditional GT cell is fixed, the VC is not fixed and may vary with changing 

production requirements in each loading period if necessary. The VC concept as 

defined above is a powerful concept, which allows the flexible reconfiguration of 

shop floors in response to changing production requirements (Drolet et. aI., 1995). 

On the other hand, VCs may demand more effective production control and if not 

generated carefully may result increased material handling requirements. 

3--+ 
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To guide and achieve reconfiguration of CMS several decision making activities are 

interconnected in the proposed framework as shown in Figure 3.2. These activities 

include: 

• Production planning 

• RE based generic process planning 

• Cell formation 

• Cell loading 

• Manufacturing system simulation 

• Multiple objective optimisation 

• Reconfiguration via virtual cell generation 

Operation of the framework can be summarised as follows: The cell formation 

module generates initial hard boundary cells. In each production period a part list is 

produced by the production planning system which contains production requirements 

of parts in terms of Resource Elements. A multiple-objective Tabu search based 

simulation optimisation system is employed to load manufacturing cells by using the 

data provided by the part list. If previously defined performance indicators (total 

inter-cell traffic, mean tardiness, system utilisation level, throughput etc.) are 

unsatisfactory then the reconfiguration (creation of new virtual cells) is considered. 

Therefore, the "When to reconfigure?" question is answered here. The 

reconfiguration action is performed by a multiple-obj ective Tabu search based 

parametric simulation (refer to Chapter 2, section 2.4.3 for definition) optimisation 

model which generates possible virtual cell configurations and selects the one which 

best satisfies the desired performance levels (i.e. total inter-cell traffic, mean 
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tardiness, system utilisation level, throughput etc.). Therefore, the "HOH' to 

reconfigure?" question is answered here. 

In this study, cell formation (configuration), loading, multiple obj ective optimisation, 

parametric simulation and reconfiguration modules are developed. The availability of 

a production planning system (e.g. MRP-II) is assumed which can produce part lists 

for each production period. A generic process planning system (which can determine 

part processing requirements in terms of RE) and an RE-based scheduling system 

were previously developed in the Responsive Manufacturing Centre of the University 

of Nottingham (Gindy et. ai.,1993, 1996). Each of the developed modules can also be 

used as stand-alone programs for their specific applications. Brief explanations about 

each module are given in the following sub-sections, detailed explanations with 

applications and comparisons are given in the subsequent chapters of this thesis. 

3.3.1 Production Planning 

Availability of an MRP-II type production planning system (PPS) is assumed. The 

interaction of the PPS with the proposed framework is shown in Figure 3.2. The PPS 

produces the end item requirements based on the demand for products in each 

production period. The output of PPS is a part list for each loading period. An 

example of an assumed part list is shown in Table 3.1. 

Table 3.1 An example assumed part list 

PART PROCESSING PROCESSING DEt\IAND DUE DATE 

NAME (NO) REQUIREMENTS (RE#) TIME (min) 

PART-l RE I-RE5-RE3 75-160-36 100 33davs 

PART-2 RE7-RE5-RE6-RES 56-33-86-53 75 20 

PART-3 REI-RES Ｙ Ｗ Ｍ Ｑ Ｙ ｾ 50 17 

PART-4 RE6-RE7 Ｑ Ｗ ｾ Ｍ Ｔ ｾ 100 IS 

PART-5 REI-RE2-RE5 85-85-67 80 22 
... ... ... .. 

... ..., 
,)-1 
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3.3.2 Generic Process Planning 

For each part in the part list, the output of the generic process planning system is a 

machine independent process plan expressed in tenns of the REs needed for its 

execution. In this study 'part lists' are 'test part lists'. It is assumed that GENPLAN 

generated processing requirements of parts in the 'test part lists' in terms of REs. For 

detailed explanations about GENPLAN refer to Gindy et. al., (1993). REs are 

explained in Appendix III. 

3.3.3 Cell Configuration 

Initial manufacturing cells are generated in this module. The capability-based 

multiple objective cell formation technique (MOCACEF 1.0) generates the initial 

cellular configuration. The basic logic in MOCACEF 1.0 is to match processing 

requirements of parts with the capabilities of available machines. Manufacturing cells 

are fonned simultaneously by considering multiple objectives and constraints within 

a goal programming structure. The obj ective is to generate manufacturing cells with 

better utilisation levels, less machine duplication and higher flexibility. This module 

is explained in detail in Chapter 6 where some example applications along with a 

comparative study are presented. 

3.3.4 Cell Loading 

Loading of existing and/or reconfigured manufacturing cells is performed in this 

module. The Capabilities of the manufacturing cells and multiple performance 

measures are considered within a Tabu search based parametric-simulation 

optimisation framework that is formally represented as a goal programming model. 
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Detailed explanations about this module are given in Chapter 7 where some example 

applications are also presented. 

3.3.5 Parametric Simulation System 

A parametric simulation system is developed to obtain the performance of possible 

reconfigurations and loading scenarios. The general structure of the system is shown 

in Figure 3.3. When the loading or reconfiguration module generates a new solution, 

then the simulation model is automatically updated for the present solution vector by 

a specially developed C/C++ computer program (translator) to obtain its 

performance. 

No 

Initialisation 

Tabu Search based 
Multiple Objective 

Optimisation Model 

are stopping 
onditions satisfied? 

Yes 

Display to 
decision maker 

Translator 
(Interface program which 

updates SIMAN experimental 
file) 

Simulation 
Model 

Are the results >-N:....:..:..o _________________ _ 
satisfactory? 

Figure 3.3 Parametric simulation optimisation system 
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The simulation module also determines the cell's schedule for the best solution 

obtained. The RE based simulation scheduling approach is proposed and extensively 

studied by Gindy and Saad (1996, 1997, 1998). 

3.3.6 Multiple Objective Optimisation 

Tabu search based general-purpose mUltiple objective optimisation algorithms are 

developed for solving the complex cell formation, loading and reconfiguration 

problems. In chapters 4 and 5 Tabu search algorithms are explained in detail. 

3.3.7 Reconfiguration ( Virtual Cell Formation) 

The performance of the current configuration is evaluated by the simulation system 

for the coming production period and a decision about reconfiguration is made in this 

module. Based on the capabilities of the machines, and production requirements of 

products, candidate virtual cell scenarios which satisfy previously defined constraints 

(cell size etc.) are generated and the one which best satisfies the performance targets 

(total inter-cell traffic, mean tardiness, system utilisation level, throughput etc.) is 

adopted before actual production starts. The model is formally represented in a pre-

emptive goal programming framework and solved by the multiple objective Tabu 

search algorithm. In the present approach a virtual cell configuration can be 

considered as a stage in which production system performance is satisfactory. If the 

system performance deteriorates due to changing production requirements, a new 

configuration that can satisfy the required performance levels is generated (see 

Figure 3.4). Detailed explanations on the reconfiguration module along \\'ith an 

application are giyen in Chapter 8. 
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Figure 3.4 Fonnation of virtual cells in relation to changing production requirements 

3.4 CONCLUSIONS 

In this chapter, the multiple objective decision support framework for cell formation, 

cell loading and reconfiguration is introduced. Modules that made up the framework 

are briefly explained for motivational purposes. Each of these modules can also 

separately be used as stand-alone programs for their specific applications. Detailed 

explanations about their construction and application are gIven in the following 

chapters of this thesis. 
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CHAPTER FOUR 

4. APPLICATION OF TABU SEARCH TO THE GENERAL 

PROBLEM OF MULTIPLE OBJECTIVE OPTIMISATION: 

DETERMINATION OF PARETO-OPTIMAL SET 

4.1 INTRODUCTION 

The design of complex engineering systems usually involves several competing 

objectives that cannot easily be combined into a single objective function. This 

section introduces the application of Tabu Search (TS) to solve the general problem 

of multiple objective optimisation (MOO) which finds the Pareto optimal set in 

MOO optimisation. In MOO applications there are usually many viable solutions for 

the problem. Pareto optimality is generally used to characterise these solutions. As 

explained in Chapter 2, Pareto optimal solutions generally consist of many solutions 

and additional techniques (like goal programming etc., refer to Chapter 2) are 

required to order them and determine a single solution which meets decision-maker's 

specifications. However, before attempting to use any special technique for finding a 

Pareto optimal solution to a MOO, its ability to determine the Pareto optimal set 

should be known. Having this in mind, this chapter investigates the applicability of 

TS in finding Pareto optimal solutions in MOO applications. 
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4.2 TABU SEARCH BASED APPROACH TO FIND PARETO OPTIMAL 

SET IN MOO 

TS belongs to the class of problem-independent, heuristic, global-optimisation 

methods and can handle any type of objective functions and constraints (Glover, 

1993, Bland and Davson, 1991, Siarry and Berthiau, 1997). It has generally been 

applied to combinatorial ｯ ｰ ｴ ｩ ｭ ｩ ｳ ｡ ｴ ｩ ｯ ｾ problems by considering a single obj ecti ve 

function (Islam and Eskioglu, 1997, Reeves, 1995). 

As explained in Chapter 2, the basic TS algorithm operates in the following way: it 

starts from a randomly selected, feasible seed solution (s); from this seed solution, a 

set of neighbourhood solutions (s *) is generated using a number of previously 

determined movement strategies. The objective function is evaluated for each 

solution in s * and the best neighbour replaces the seed solution, even though it may 

be worse than s: in this way it is. possible to escape local minima (or maxima) of the 

objective function. The algorithm iterates until some given stopping condition is 

reached. There is a danger that the algorithm as described above may recycle old 

solutions and become trapped in a loop. To avoid this situation, the last m seed 

solutions are stored in a list, which is called the tabu list. The neighbours of the 

current solution that appear in the tabu list are systematically eliminated, so at each 

iteration the algorithm is forced to select a solution not recently explored. The main 

stages of the basic TS algorithm are: initial solution, generation of neighbours, 

selection and updating, as shown in Figure 4.1. 
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Start 

Initial Solution 
Randomly select a feasible 
solution s as initial current 

oint 
ｉ ｾ

Generation of neighbours 
Apply to s available moves to 
generate n feasible neighbours 
not belonging to the tabu list 
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Select the bestneighbour of s 

as the new current pOint 

Update 
Update the tabu list and the 

current best solution 

Stopping conditions No reached =:::-_____ ---1 

Yes 

Exhibit the best point 
found 

Stop 

Figure 4.1 The flowchart of the basic TS algorithm 

Chapter 4 

There are more complex versions of TS that improve its search capability, but in this 

chapter the focus is on the basic TS algorithm to demonstrate its application in 

finding Pareto optimal solutions for MOO problems. Most of the refinements can 

easily be incorporated into the proposed algorithm to handle specific application 

req uirements. 

4.2.1 Development of the TS Algorithm 

"The idea of applying TS to multiple objective optimisation comes from its solutioll 

structure in working with more than one solution (neighbour/rood solutions) at a time. 

This gives TS the opportunity to evaluate multiple objective functions simultalleou\!y", 
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(Baykasoglu et. ai., 1999-a, b) To enable the TS algorithm to work with more than one 

objective, the selection and updating stages of the basic TS are redefined. The other 

stages are similar to the original algorithm. Two more lists are defined in addition to 

the tabu list. The first is the Pareto list, which collects selected non-dominated 

solutions found by the algorithm. The second is the candidate list, which collects all 

other non-dominated solutions that are not selected as Pareto optimal solutions in the 

current iteration. These solutions_ ｾ ｡ ｹ become seed solutions if they maintain their 

non-dominated status in later iterations. The candidate list gives the opportunity to 

diversify the search. 

The elements of the proposed TS algorithm for finding Pareto optimal solutions in 

MOO problems with different types of variables (integer, zero-one, discrete or 

continuous) and objective functions (linear, non-linear, convex, non-convex) are 

defined as follows: 

Initial Solution: 

Any randomly generated or known feasible solution vector. 

Generation of neighbourhood solutions: 

To create a neighbour for any type of variable, new values are fonnulated as follows: 

• Integer Variables: A move is the change of a variable from one integer value to 

another, with a random step size. 

x ｾ = x· + integer[(2*random() - l)*stepii] 
1 I 

of. 1 
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• Zero-One Variables: A move is the change of a variable from zero to one or "ice , 

versa. 

ｘ ｾ = {I if xi = ° 
I ° if Xi = 1 

.f. 2 

• Discrete Variables: A move is the change of a variable from one pre-specified 

discrete value to another. 

* 
xi = d(l+mtefJ:XfJ2*randorr( Ｉ Ｍ ｬ Ｉ Ｊ Ｎ ｳ ｴ ｾ D if Xi = dZ 4. 3 

• Continuous variables: A move is the random change of a variable value. 

* xi = Xi + (2 * random( ) - 1) * stepci 4.4 

where 

Xi: Value of the i tlt variable prior to the neighbourhood move. 

X/ : Value of the i tlt variable after the neighbourhood move. 

random(): Random number generator, where random( )E(O,l). 

stepii: Integer step size of integer variable for the move. 

stepdi : Integer step size of discrete variable for the move. 

stepci : Real value step size of continuous variable for the move. 

d, : The I tlt element of the discrete variable subset,xI. 

integer[ ]: Function to convert a real value to an integer value. 

For multivariate problems, neighbourhood moves can be realised in two ways: 

i- Changing an individual variable each time (orthogonal move) 

ii- Changing all variables simultaneously (combined move) 
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For different types of problems (i.e. constrained, unconstrained), these two 

approaches may have different effects on the solution efficiency. Intuitively, for 

constrained problems, the combined move approach moves farther away from the 

current solution than does the orthogonal move. However, it may result in more 

infeasible neighbourhood moves, when the current solution is close to the boundaries 

of constraints or close to the global optimum (or the trade off curve). Thus it would 

require more computational time in each iteration when the algorithm is approaching 

the [mal solution or the trade off curve. Figure 4.2 shows the neighbourhood moves 

of two approaches with two variables-respectively. 

X2 

Feasible 
Region 

L-__________________________ ｾ ｘ Ｑ

Figure 4.2 Neighbourhood move spaces of different move approaches 

In Figure 4.2, 0 is the current solution. A2, A4 and AI, A3 indicate the points after 

orthogonal random moves (with the same step size) of variable Xl and X2, 

respectively. gl' ｋ ｾ Ｎ g3 are the constraints which define the feasible region of 

solutions. AI2. A14, A23, A34 are the points reached by neighbourhood moyes 

changing Xl and X2 simultaneously. It can be seen from the Figure .+,.,+ that 

orthogonal mo\'es A I, A3. A.+ are \\'ithin the constraint boundaries while combined 
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move, A14, A34 fall outside the. feasible region. However, at an earlier stage of the 

search, the combined approach will move faster towards the optimum solution or 

trade off curve than will the flIst approach. This is because combined step size of the 

second approach is larger than the first one. In this study both approaches have been 

applied to the same problems. For constrained problems orthogonal move strategy 

requires less computational time to converge than the combined move approach and 

there is no significant difference between the solution qualities obtained by these two 

approaches. For unconstrained problems, combined move strategy leads the 

algorithm converging faster than the orthogonal approach. This research suggests that 

the orthogonal move approach should be employed for constrained problems and the 

combined move approach for unconstrained problems. 

According to the types of variables used in the model, the appropriate movement 

strategies are used to generate a previously determined number of feasible, non-tabu, 

neighbourhood solutions from the current seed solution. Neighbourhood solutions 

must also be non-dominated by the current seed solution. 

Selection of the seed solution: 

Based on the Pareto optimality logic (domination and non-domination), the selection 

of the best neighbourhood solution as the new seed solution is performed in the 

following manner: 

i. For each neighbourhood solution vector, the corresponding objective function 

values are calculated. In the example given below. the neighbourhood size is three 

and there are two real variables and two objective functions to be maximised. 
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Objective function 
values of 

neighbourhood 
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(60.0847.09) 
(58.7946.54) 
(60.3946.86) 

ii. Candidate seed solutions within the neighbourhood solutions are identified. 

Candidate seed solutions should not be dominated by other neighbourhood solutions, 

solutions in the Pareto list or solutions in the candidate list. This process is illustrated 

below, using the same example. 

Seed solution followed by 
objective function values 

Neighbourhood solutions 
(non-tabu, feasible and not 

dominated by the seed solution) 

(4.84.6)(52.4 40.93) 

(0: Candidate solutions) 

Pareto List 
(00) (0 0))( 
(0.50.5) (16.97 13.44) X 
(1 1) (24 19) X 
(22) (33.94 26.87) X 
(3 3) (41.57 32.91) X 
(3.83.6) (46.57 36.26) X 
4.8 4.6 52.4 40.93 

(6.36.1) 
(66) 

(6.4 6) 

Candidate List 
(4 3) (46.93 33.98) X 
(34) (42.64 36.93) 

(X: Eliminated solution from previous iterations) 

Objective function 
values of 

neighbourhood 
solutions 

(60.0847.09) 0 
(58.7946.54) 
(60.3946.86) 0 

iii. One of the candidate solutions is randomly selected as the new seed solution. This 

process is illustrated below using the same example. 

Seed solution followed by 
objective function values 

(4.8 4.6)(52.4 40.93) 

Neighbourhood solutions 
(non-tabu. feasible and not 

dominated by the seed solution) 

(6.36.1) 
(66) 

(6.4 6) 

(e: Randomly selected new seed solution) 
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If there are no candidate solutions in the current neighbourhood, the oldest solution 

from the candidate list is selected as the seed solution. 

It can be understood from the above selection strategy that the main interest is not 

dominated solutions, it is aimed to find the Pareto optimal solutions which do not 

dominate each other. Consequently, a single global optimum solution is not searched. 

The approach presented here is totally different from the single objective and many 

of the MOO approaches (refer to Chapter 2) which reduce the MOO problem to a 

single objective optimisation problem by applying some additional techniques (i.e. 

weighting, game theory etc.). In these approaches a non-improving solution (which is 

the best current neighbour in TS) can be accepted as the current solution if it is not 

tabu. If it is tabu and passes a previously defined aspiration criterion it is still 

accepted, even if it is worse than the previous current solution. This strategy works 

well and has the ability to find a global optimum solution in the single objective 

optimisation. But, it is not easy (or may not be possible) to evaluate multiple 

objectives simultaneously and determine the Pareto optimal solutions with this 

strategy. This is because it concentrates only on single objective function 

evaluations. For this reason the present strategy is offered which works with two 

more dynamic lists namely Pareto list and Candidate list. Their functioning is 

explained through this chapter. As is stated at the beginning of this section, the 

Candidate list (which collects potential candidate Pareto optimal solutions and 

updates their status dynamically) enables the search process to avoid abandoning 

potential solutions while searching and to diversify the search (this case is similar to 

attempting to avoid falling into trap of local optima in global optimisation). The 
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Pareto list collects the seed (or currently selected) potential Pareto optimal solutions 

and dynamically updates their status. 

Updating the lists: 

The initial feasible solution vector is recorded as the first known Pareto solution 

vector. In each iteration solutions that are dominated by any neighbourhood solution 

are removed from both the Pareto and Candidate lists. Then the seed solution is 

added to the Pareto list, and other candidate solutions are put into the Candidate list. 

This process is shown on the same example below. 

Pareto List 
(00) (0 O)X 
(0.5 0.5) (16.97 13.44) X 
(1 1) (24 19) X 
(22) (33.94 26.87) X 
(3 3) (41.57 32.91) X 
(3.83.6) (46.57 36.26) X 
(4.84.6) (52.4 40.93) X 
6.4 6 60.3946.86 
(X : Eliminated solution) 

Candidate List 
(43) (46.93 33.98) X 
(3 4 ) (42.64 36.93) X 
(6.36.1) (60.0847.39) 

Selected seed solutions for an arbitrarily defined number of previous moves are 

considered as tabu, since reusing one of them may trap the algorithm into cycling 

through recent moves. In the present algorithm, the tabu list contains m solutions, 

corresponding to the last m seed solutions. The tabu -list is circular, i.e. when it is full 

a new item replaces the head of the list. 

Termination: 

If a previously determined number of iterations is reached, or if the candidate list is 

empty and the algorithm cannot find any new candidate solutions, the program 

terminates. 

The flowchart of the developed algorithm is shown in Figure -+.3. 
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Selection of new seed solution 
select the oldest solution from the candidate list as 

Initial Solution 
Randomly select a feasible solution s as the seed 
.. Add s to the Tabu list and the Pareto list 
.. Empty the candidate list 

Neighbourhood Generation 
Apply variable-movement strategies tos to 
generate n feasible neighbours not belonging to the 
tabu list and not dominated by the seed solution 

Identify Candidate Solutions 
The following conditions must be satisfied for a 
neighbourhood solution to become a candidate: 
.. A neighbour solution must not be dominated by 
any other neighbourhood solution 
.. A neighbour solution must not be dominated by 
any solutions in the Pareto list or the candidate list 

the new seed No·----

Add s to the Pareto and tabu lists 

Yes 

Selection of new seed solution 
Randomly select a candidate solution from the 
neighbourhood to become the new seed s 

Update tabu, Pareto and candidate lists 
.. Eliminate all solutions from the Pareto and 
candidate lists which are dominated by any 
neighbourhood solution 
• Add s to the Pareto list and the tabu list 
.. Add remaining candidate neighbours to the 
candidate list 

Yes 

Print the Pareto list (i.e. 
Pareto optimal solutions have 
been found by the program) 

Chapter 4 

No 

Figure 4.3 The flowchart of the TS algorithm to find Pareto optimal solutions 

To illustrate how the proposed algorithm works, a small part of a step by step manual 

solution of the following test problem, given in Winston (1994), is depicted in Figure 

4.4. 
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6.3,6.1 160.08,47.090 
ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ ｯ Ａ Ｇ ｾ Ｖ Ｌ Ｖ Ｑ Ｕ Ｘ Ｎ Ｗ Ｙ Ｌ Ｔ Ｖ Ｎ Ｕ Ｔ ｾ Ｖ Ｌ Ｖ Ｎ Ｖ Ｑ Ｕ Ｙ Ｎ Ｒ Ｖ Ｌ Ｔ Ｘ Ｎ Ｓ Ｓ 0 

6.4,6 I 60.39,46.86 -::::: 5.9,6.7 I 58.93,48.54 e 
4.8,7 I 54.4,48.45 

Taboo List 
0,0 I 0,0 
0.5,0.5116.97,13.44 
1,1 124,19 
2,2 I 33.94,26.87 
3,3 141.57,32.91 
3.8,3.6146.57,36.26 
4.8,4.6 I 52.4,40.93 
6.4,6 1 60.39,46.86 
5.9,6.7 58.93,48.54 

Pareto List 
0,0 I 0,0 
0.5,0.5116.97,13.44 
1,1 124,19 
2,2 I 33.94,26.87 
3,3141.57,32.91 
3.8,3.6 146.57,36.26 
4.8,4.6152.4,40.93 
6.4,6 I 60.39,46.86 
5.9,6.7 58.93,48.54 

Candidate List 
2.8,3 I 40.39,32.67 
4,3146.39,33.98 
3,4 1 42.64,36.93 
6.3,6.1 160.08,47.09 
6,6.6 I 59.26,48.33 

@ Selected seed solution 

o Candidate seed solutio 

• ¢ Loss of candidate 
or Pareto status 

Figure 4.4 Part of a step by step manual solution for the example problem 

The computer implementation of the developed algorithm for this example problem 

is depicted in Figure 4.5. All candidate solutions are shown as the algorithm 

converges towards the trade-off curve when the curve is reached, the candidate list 

provides the mechanism to explore along the Pareto front and generate a large set of 

Pareto optimal solutions. The shape of the trade-off curve is identical to the one 
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given in Winston (1994) using the GINO optimisation software and the constraint 

method, but the proposed algorithm found a much higher number of Pareto optimal 

solutions (i.e. 9 Pareto optimal solutions reported in Winston (1994), TS algorithm 

found 204 Pareto optimal solutions). 

65 

60 

55 

50 

f2(x) 

45 ... ... 
ｾ

" ... -40 \ - -
35 

Ｓ Ｐ ｌ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ ｲ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ ｾ ｲ ｟ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ ｾ
40 45 50 55 60 65 70 

fl(x) 

Figure 4.5 Computer simulation results for the test problem 

To further demonstrate the behaviour of the algorithm while searching for the Pareto 

optimal solutions, a schematic representation of a problem with two maximisation 

objectives is depicted in Figure 4.6. 
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Figure 4.6 Behaviour of the algorithm while searching for Pareto optimal set in MOO 
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In Figure 4.6 the initial seed solution is shown by number 1. Solutions 2, 3 and 4 are 

generated from solution 1, all of which are feasible and not dominated b\' solution 1 - . 

Solution 4 is dominated by other neighbour solutions so it is not a candidate seed 

solution. There are two candidate seed solutions, namely solutions 2 and 3. 

In the next iteration, solution 3 is selected randomly as the seed solution. Solutions Ｕ ｾ

6 and 7 are generated; solutions 5 and 6 are candidates. Solution 2 loses its candidate 

status and solution 3 loses its Pareto status (because both are dominated by solution 

5). Solution 6 is randomly selected as the seed solution for the next iteration. 

Solutions 8, 9 and 10 are generated from solution 6. Solutions 8, 9 and 10 are all 

candidate solutions (i.e. they are not dominated by the current seed, Pareto solutions 

or other candidate solutions) and solution 6 loses its Pareto solution status. Solution 

10 is randomly selected as the current seed solution. Solutions 11, 12 and 13 are 

generated. There is no candidate seed solution in this iteration, so the oldest 

candidate solution (solution 5) is selected as the seed solution. Solutions 14, 15 and 

16 are generated from solution 5. Solutions 1 and 5 lose their Pareto solution status. 

Solution 15 is selected as the current seed solution and so on. As can be seen from 

Figure 4.6, in every iteration solutions move towards the trade-off curve 

simultaneously. 

4.2.2 Numerical Examples and Comparative 'York 

Three examples from the literature are presented below to show and compare the 

efficiency of the proposed algorithm. To effectiYely use the deyeloped algorithm. 
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parameters such as variable step-size, number of solutions in the neighbourhood and 

the starting values of the variables should be carefully selected. It is possible to use 

trial runs of the algorithm as a guide to interactively select the most appropriate 

settings. A C++ computer program has also been developed for application to a wide 

range of problems during this study. 

Example 1: 

The following non-linear multiple objective model with two continuous variables has 

been previously solved by Murata, Ishibuchi and Tanaka (1996). They used genetic 

algorithms (MOGA, which was explained in Chapter 2) to find Pareto optimal 

solutions. 

mIn 11 (x) = Ｒ ｾ
mIn 12 (x) = xl (1 - x 2 ) + 5 

S.t. 

1 < Xl < 4 

1 <x2 < 2 

xl,x2 E 9t 

The computer simulation results of the proposed algorithm for this test problem are 

depicted in Figure 4.7. The algorithm is converged 6 seconds. As can be seen from 

the graph, hundreds of solutions are obtained on the concave Pareto front. The shape 

of the trade-off curve is identical to the one given in Murata, Ishibuchi and Tanaka 

(1996), but the TS based algorithm found many more solutions (around 400/0 more) 

than the genetic algorithm (MOGA) method and the issue of weighting objectives is 

avoided. The Pareto optimal solution set lies generally on the boundary of the 

feasible solution space for a given MOO problem (Ignizo, 1982). In order to test the 

Pareto optin1ality of the obtained solutions the generated trade-off curye can be 
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inspected by trying to find some better possible solutions vectors around it. This 

simple test can give an idea about the Pareto optimality of the generated solutions. 

Two such inspections are presented here. In the first inspection the possibility of 

having a solution vector (x}=?, X2=?) which results better objective function values 

(i.e. (f1(x1)=3.4, flxJ=1.9» is investigated. This objective function values are very 

close to the Pareto optimal solution (f}(x 1P)=3.5, fix2p)=2) (x1P=3.0625, x2p=1.98 

feasible) detected by the TS algorithm (see Figure 4.7). If we substitute these new 

objective function values and solve for the resulting equations (i.e. 3.4 = Ｒ ｾ and 

1.9 = Xl (1- x2) + 5) for X1 and X2 the result will be (X1 = 2.89, x2= 2.073) this is an 

infeasible solution (i.e. second constraint is violated, X2 is greater than 2), therefore it 

is possible to say that the TS algorithm has detected a potential Pareto optimal 

solution. In the second inspection the possibility of having a solution vector (X3=?' 

X4=?) which results objective function values (f1(x3)=2.4, fix 4)=3.4) which are better 

then the ones (f1(x3P)=2.5, flx 4P)=3.5) (x3P=1.5625, x4p=1.96 feasible) detected by 

the TS algorithm is investigated. The following solution is obtained (x3=1.44, 

x4=2.111) this is again an infeasible solution (i.e. X4 is greater than 2), therefore it is 

possible to say that the TS algorithm has detected another Pareto optimal solution. 

Several other inspections were also made but in all trials no better solutions obtained. 

Although this tests give an idea about the Pareto-optimality of the generated 

solutions further research is necessary to guarantee the Pareto-optimality of the 

generated solutions. 
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Figure 4.7 Computer simulation result for Example 1 

4.5 

The following model is a non-linear problem with six continuous variables that was 

given by Osyczka and Kundu (1996). 
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mIn It (x) = -25«XI - 2)2 + (X2 - 2)2 + (X3 _1)2 + (X4 - 4)2 + (X5 _1)2) 

mIn 12 (x) = (Xl _1)2 + (X2 _1)2 + (X3 -1)2 + (X4 _1)2 + (X5 -1)2 + (X6 _1)2 

s.t. 

Xl +X2 -2 ｾ 0 

6-xI - x2 ｾ 0 

2 - x2 + Xl ｾ 0 

2 - Xl + 3X2 ｾ 0 

4-(X3-3)2_X4 ｾ ｏ

(X5 _3)2 +X6 -4 ｾ 0 

o ｾ Xl ｾ 10 

o ｾ x2 ｾ 10 

o ｾ X3 ｾ 10 

o ｾ x4 ｾ 10 

o ｾ X5 ｾ 10 

o ｾ X6 ｾ 10 

xl' ...... 'X6 Em 

The simulation results of the TS algorithm for this test problem are shown in Figure 

4.8. As can be seen from the figure, the trade-off curve is detected successfully, with 

hundreds of Pareto optimal solutions. Osyczka and Kundu (1996) applied genetic 

algorithms to determine the Pareto optimal set for this problem. The maximum 

number of Pareto optimal solutions they found was only 34. The proposed TS 

algorithm is converged in 35 seconds for this problem. 
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This test is a design optimisation problem for a multiple disc brake that was 

previously solved by Osyczka and Kundu (1996). They used both a plain stochastic 

method and genetic algorithms. The problem uses a mixture of continuous and 

integer variables; details of the problem can be found in Osyczka and Kundu (1996). 

The model is given as follows: 
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min flex) =4.9*10-5(xi -Xf)(X4 -1) 

nun f2 (x) = (9.82 * 106 
(xi - xf)) I (X3X4 (xi - xf)) 

min f3 (x) = X3 

S.t. 

(X2 - Xl) - 20 > 0 

30-2.5(x4 + 1) > 0 

0.4 - x3 I 3.l4(xi - xf) > 0 

1-2.22*10-3X3(xi -Xf)/(xi _xf)2 2: 0 

2.66*10-2X3X4(xi -x?)/(xi Ｍ ｸ ｦ Ｉ Ｍ Ｙ Ｐ Ｐ ｾ 0 

55 < Xl < 80 

75 < X2 < 110 

1000 < X3 < 3000 

2 <X4 < 20 

xl' .... ,x3 E9t 

X4 integer 

For the above problem Osyczka and Kundu (1996) reported finding 19 Pareto 

optimal solutions using the plain stochastic method, and 133 solutions with the 

genetic algorithms method after 20000 evaluations. The tabu search based algorithm 

with the following parameters: neighbourhood size=20, tabu list size=20, step size 

for real variables 0.01, step size for integer variable=l, found 5964 Pareto optimal 

solutions after 20000 evaluations which took 82 seconds. Osyczka and Kundu also 

reported the extreme points (i.e. minimum value points for each separate criterion) 

obtained from both methods. The extreme points obtained by the three methods are 

compared in Table 4.1, and the comparison is also depicted in Figure 4.9. 
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Table 4.1 Comparison of extreme points obtained from plain stochastic method, 

genetic algorithms and multiple objective TS 

Method Minima X[x j ,X2,X3,X4Y F (X) = rjJx) ,fix) ,fix)] 1 

Plain stochastic minh(x) [62.6,83.5,2920.9,11] [1. 79,2. 77 ,2920.9] 

method (PSM) minJ;(x) [70.4,106.6,2948.4,11] [3.76,2.24,2948.4] 

min,h(x) [75.9,106.3,2309.2,11] [3.25,2.80,2309.2] 

Genetic minh(x) [65.8,86.1,2982.4,10] [1.66,2.87,2982.4 ] 
algorithms (GA) 

minJ;(x) [78.7,108.3,2988.3,11] [3.25,2.11,2988.3] 

min,h(x) [72.6,109.2,2255.1,11] [3.91,2.86,2255.1 ] 

Multiple objective minh(x) [56.3042,76.4646,1183.29,2] [0.131156,41.3532,1183.29] 

TS minJ;(x) [79.9156,103.962,2981.64,11 ] [2.16656,2.15876,2981.64] 

(MOTS) min,h(x) [63.6256,86.0813,1000.03,8] [1.15309,10.8508,1000.03] 

2.5 

2 

-+-- min f1 (X) 
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--- min f2(X) 

1 --.-min f3 (X)/l 000 
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PSM GA MOTS 

Figure 4.9 Graphical comparison of extreme points obtained from PSM, GA and MOTS 

The trade-off surface obtained from computer simulations for this test problem is 

given in Figure 4.10. 
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Figure 4.10 Computer simulation result for Example 3 

4.3 CONCLUSIONS 

Chapter -+ 

4 

Any optimisation technique that is able to work with more than one solution vector 

in its inherent solution mechanism, like TS, can be used for solving MOO problems. 

Based on this observation the applicability ofTS to the general problem of MOO (i.e. 

finding a Pareto optimal set) is investigated in this chapter. This study is also the first 

direct application of TS to MOO without requiring additional techniques like 

weighting, game theory etc. It is shown that TS has a big potential to solve MOO 

problems. 

The proposed TS algorithm to find a Pareto optimal set is explained in detail in this 

chapter. A comparative study has also been carried out. In almost every application 

the solutions found were at least as good, if not better than, the reported results. In 
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some test problems more than %50 improvement in solution quality is obtained. The 

TS based algorithm also finds far more Pareto optimal solutions than the techniques 

that are compared in this chapter. The computational time requirements of the 

proposed algorithm seems also reasonable it takes a couple of seconds to solve a 

small problem and a couple of minutes for a moderate size problem. However a 

detailed study for the computational time estimation is necessary. The proposed 

algorithm is implemented in the C/C++ computer programming language and all the 

computational work is performed on a Pentium-200 PC with 32MB Ram. 

'+-2'+ 



Adil Baykasoglu Tabu Search for Goal Programming Models Chapter 5 

CHAPTER FIVE 

5. DEVELOPMENT OF THE TABU SEARCH ALGORITHM TO 

SOLVE PRE-EMPTIVE GOAL PROGRAMMING MODELS 

5.1 INTRODUCTION 

A Pareto optimal set generally consists of many viable solutions for a Multiple 

Objective Optimisation (MOO) problem. Therefore an additional technique is 

required to order the Pareto optimal set and determine a single solution that closely 

meets the decision-maker's objectives. In Chapter 4 it has been shown that TS has 

the ability to solve MOO. In this chapter TS is applied to pre-emptive goal 

programming models (PGP). PGP is one of the best-known techniques to model 

MOO problems (Ignizo, 1982). Its ability to find a Pareto optimal solution in MOO 

applications has been proven (Ignizo, 1976). It tries to find a Pareto optimal solution 

that satisfies multiple objectives which are ordered based on the preference of the 

decision-maker in a multiple objective decision making problem (McMillan, 1975). 

TS is a heuristic, general-purpose optimisation technique which works with a 

neighbourhood of solutions to optimise a given objective function. It has been widely 

applied to single objective optimisation problems in the literature. It has been shown 

in Chapter 4 that TS can also be directly applied to MOO problems. Because it 

handles more than one solution at a time, this gives it an opportunity to eyaluate 
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mUltiple objective functions simultaneously. In this chapter, the development of the 

TS algorithm to solve pre-emptive goal programming models is shown. Application 

of the proposed TS algorithm to analytic and simulation optimisation problems is 

explained and some example applications are presented in order to test its 

performance. This algorithm (with some problem-related enhancements) is employed 

to solve the manufacturing cell formation, loading and reconfiguration problems 

studied in this thesis. 

5.2 A TABU SEARCH BASED APPROACH TO SOLVE PREEMPTIVE 

GOAL PROGRAMMING MODELS 

Goal programming (GP) was proposed by Chames and Cooper (1961) to solve MOO 

problems. It has been studied by many researchers (Ijiri, 1965, Ignizo, 1976,1982) 

and successfully applied to many diverse, real-life problems (Myint and Taboocanon, 

1994, Gokcen and Erel, 1997, Kornbluth, 1982, Ramanathan and Ganesh, 1995). Pre-

emptive goal programming is a special case of GP, in which goals are ordered based 

on the preference of the decision-maker and they are optimised simultaneously 

favouring higher order goals. In non pre-emptive models (Archimedian goal 

programming), the goals are assigned weights and summed up then considered 

simultaneously as explained in Chapter 2. In this study, focus is on pre-emptive goal 

programming, due to the difficulties associated with the determination of weights in 

non pre-emptive goal programming. However, the proposed algorithm can also be 

applied to Archimedian goal programming models. 

The most widely kno\\"n methods for soh"ing GP models are as follows: 
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• Simplex based approaches (separable programming, approximation programming 

etc. (Ijiri, 1965) 

• Direct search approach (modified pattern search (Clayton, Weber and Taylor, 

1982)) 

• Interactive approach (Dyer, 1972) 

• Gradient based approach (Ijiri, 1965, Ignizo, 1982) 

These methods have two main limitations. In many cases, they cannot guarantee to 

find the global or near-global optimum solution because they are local optimisation 

methods (Homaifar et. al., 1994). Many of them are dependent on the form of the 

mathematical model (linear, integer, non-linear, etc.), so they require the analytical 

form of the model, otherwise the solution is not possible (Michalewicz, 1996). In 

many real-life problems the analytical form of some objectives and constraints may 

not be available, in such cases, simulation is employed to determine the values of 

these functions. An effective solution technique should be able to operate in such 

cases and should not be dependent on the form of the analytical model, as discussed 

in Chapter 2. The proposed TS-based technique overcomes these disadvantages of 

traditional techniques and can be applied to a variety of pre-emptive goal 

programming models. It can also be used in simulation optimisation applications as 

explained in a separate subsection later in this chapter. 

5.2.1 Pre-emptive Goal Programming (PGP) 

PGP is a powerful mathematical programming method developed to solve problems 

with conflicting linear or non-linear objectives and linear or non-linear constraints. 

The user is able to provide levels, or targets, of achievement for each objective and 

can prioritise the order in which goals are to be achieved. It tries to find an optinlal 
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solution that satisfies as many, of the goals as possible, by favouring the order 

specified. It is formally given as follows: 

m m m 

lexrnin{zl = ｾ Ｈ ｷ ｾ ､ ｴ + wii di-),z2 = ｾ Ｈ ｷ ［ ｩ ､ ｴ + w2z,di-),··· ... ,Zq = L(w¢d/' + ｗ ［ Ｌ ､ ｬ ｾ Ｉ ｽ
1=1 1=1 i=l 

such that; 

+. (X) + ､ ｾ - d:+" = b, z' - 12 m Ji 1 1 1 - , , •..•••• , 

gj(X) ｾ 0 j = 1,2, ........ ,ml 5. 1 

hk (X) = 0 k = 1,2, ........ ,m2 

i = 1,2, ........ ,m 

where 

Z/,Z2, .. ,Zq are in the priority order that they will be optimised (Z/»>Zl»> .... 

dt is the positive deviation variable representing the over-achievements of goal i 

d j' is the negative deviation variable representing the under-achievements of goal i 

Wq/ is the positive weight assigned to d/' at priority q 

Wqj' is the negative weight assigned to di' at priority q 

X is an n-dimensional decision vector 

J; is a function of goal constraints 

gj is a function of real inequality constraints 

hi is a function of real equality constraints 

hi is the target value of goal i 

m is the number of goal constraints 

m
J 
is the number of real inequality constraints 

m: is the number of real equality constraints 
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5.2.2 The TS Algorithm 

To enable the standard TS algorithm to work with more than one goal (objective) and 

to solve PGP models, selection and updating stages of traditional TS algorithm 

(refer to Figure 4.1 of Chapter 4) are redefined in this study. Other stages are similar. 

The elements of the proposed TS algorithm for solving any kind of pre-emptive goal 

programming problems (linear/integer/non-linear/zero-one) are defined as follows: 

Initial Solution: 

Any randomly generated feasible solution vector or, a previously known good 

solution vector. Knowledge about a good initial solution vector can decrease 

computational time and may increase the speed of convergence (Reeves, 1995). 

Generation of neighbourhood solutions: 

Based on the types of variables used in the model, a previously determined number 

of feasible, non-tabu, neighbourhood solutions (nneigh) are generated from the 

current solution by applying the movement strategies that were explained in Chapter 

4, section 4.2.1. 

Selection of the current best solution vector: 

Based on the pre-emptive goal programming logic, the selection of the best current 

solution vector from the neighbourhood solutions is performed in the following 

manner. 

l. For each neighbourhood solution vector. calculate the goal deviations in the 

order of priorities specified in the problem. In the example given below, 

nei ahbourhood size is four and there are four integer variables and five goals. 
b 
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Neighbourhood solutions 
(non Tabu & feasible) 

(5 89 11) 
(5 99 11) 
(69911) 
(69912) 

Goal deviations 
(in the priority order) 

(3 2 0 1 2) 
(43042) 
(23221) 
(2 3 03 1) 

Chapter 5 

11. Check the first priority goal deviation for each neighbour's solution vector, and 

select the one that results in the minimum deviation. If there is more than one 

alternative neighbour solution· for the first priority goal, check the second 

priority goal and choose the one with the smallest deviation, and so on. This 

process is illustrated below using the same example. 

Neighbourhood solutions 
(non Tabu & feasible) 

(589 11) Ill. 

(599 11) II" 

(69911) "" 
*(699 12) II" 

... Replaces the current 
solution vector 

Goal deviations 
(in the priority order) 

(3 2 0 1 2) 
(43042) 
(2322 1) 
(23031) 

Updating the best known solution vector: 

The initial feasible solution vector is also recorded as the best-known initial solution 

vector. By applying the methodology described above, the best-known solution 

vector is updated in each iteration provided it gives a more optimal solution. This 

process is shown on the same example below. 

1 sf case: 
The best known solution vector and 
its goal deviations (in priority order) 

The current best solution vector and its 
goal deviations (in priority order) 

(6 9 9 14) II" (2 3 0 5 1) 

The best known solution is not improved (do not update) 

2nd case: 
The best known solution vector and 
its ｾ ｯ ｡ ｬ de\"iations in rioritv order) 

(69912)'-(23031) 

The current best solution vector and its 
goal deviations (in riori order 

(6991-l) 1·(13001) 
" The best known solution 

The best known solution is improved, so update the solution. 
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Tabu list: 

Accepted solutions for an arbitrarily defined number of preVIOUS moves are 

considered as Tabu, because to allow one of them may trap the algorithm into cycling 

through recent, previous moves. In our algorithm, the Tabu list contains m solutions, 

corresponding to the m last 'current best' solutions: the Tabu list is circular, when it 

is full a new item replaces the head of the list. 

Termination: 

If a previously determined number of iterations (iter) is reached, or if there is no 

improvement in the best known solution in the last t iterations the algorithm 

terminates. 

Guidelines for the determination of tabu search parameters: 

Tabu list size (m), number of iterations (iter), convergence criteria (t), and 

neighbourhood size (nneigh) and step size for the variables constitute tabu search 

parameters. Determination of these parameters generally depends on the problem at 

hand. There is not a known unique analytic strategy or methodology to fix these 

parameters in the available literature. It is a common practice to solve the problem 

with different sets of these parameters to find the best possible combination of the 

parameter set. Within these parameters, determination of step sizes and 

neighbourhood size for real and integer variables is particularly important. If the 

ranges of variables are too wide and neighbourhood size is small and corresponding 

step sizes are chosen very small then computational time may increase considerably 

to find a good solution. With the same conditions, if step sizes are chosen too big 

then it may be possible to miss the optimal solution. As guidance for setting up the 

Tabu search parameters the usage of the following rule is advised after this study. 
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• RULE: If the ranges of variables are wide then using big step sizes is suggested, 

otherwise smaller step sizes can be preferred. If step sizes are big then the number 

of neighbourhood solutions in each iteration should be increased othenvise 

smaller number of neighbourhood solutions may safely be used. Make sure that 

the convergence criteria are satisfied before terminating, therefore the number of 

iterations should be big enough to assure convergence. 

To illustrate how the algorithm works, a step by step manual solution is performed 

on the following integer pre-emptive goal programming problem, given in Winston's 

book (1994); 

lexmin { z 1 = (d 1 + d ( ), Z 2 = (d i + d; ), Z 3 = (d:; + d; ) } 

S.t. 

7XI +3X2 +d1-d( =40 

10xI +5x2 +di -d; =60 

5xl + 4x2 + d:; - d; = 35 

100xl + 60x2 ｾ 600 

xl ,X2 ,d1 ,d( ,di ,d; ,d:; ,d; ｾ 0 

The optimum solution of the problem is given as; X J =6, X 2 =0, ZJ =2, Z2 =0, Z3 =5 

The solution steps of the proposed Tabu search algorithm are depicted in Figure 5.1. 

As can be seen from Figure 5.1, the Tabu search algorithm can easily converge to the 

optimum solution. 
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Tabu list size=3 

Neighbourhood size=3 

Step size=2 

.. 

Chapter 5 

L (6,01 2,0,5 ) 

/ 

L (5,1 12,5,6) '\ (4,1 19,15.1 1) 
(4,2 1 6,7,IO)'\. (5,015,10,10) (3,2113,20.12) 

(4,313,5,3) ｾ (3,417,10,4) (3,417,10,4) 
L (2,1 123,35,21) Ｈ Ｓ Ｌ Ｓ Ｑ Ｑ Ｐ Ｌ Ｑ Ｕ Ｌ Ｘ Ｉ ｾ (3,417,10,4) (4,1 19,15,11) 

(1,212740 22),\ Ｈ Ｒ Ｌ Ｒ Ｑ Ｒ Ｐ Ｌ Ｓ Ｐ Ｌ Ｑ Ｗ Ｉ ｾ (3,1116,24,16) (3,2113,20,12) 
(1,3124,35,18) (3,2113,20,12) 

Tabu List Current Best Solution 

ｾ Goal 

1 * 
Solution V. deviations 

ｾ
1,2 

! 
27,40,22 

4;3- 2,2 20,30,17 

4,2 3,3 10,15,8 
4,3 3,5,3 5,1 
4,3 3,5,3 6,0 

...... ----- ............ --........ Ｚ Ｎ Ｎ Ｎ Ｍ ｾ Ｎ ｾ Ｍ ｾ ｾ Ｍ Ｍ 5,1 2,5,6 
6,0 2,0,5 

ｾ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｌ Ｍ Ｍ ......... Ｍ Ｍ Ｎ Ｍ Ｎ Ｇ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ｾ ---- Ｍ Ｍ ｾ Ｎ Ｌ Ｎ

,; 

'" l; , .. 

'f, C"" iii' 

Figure 5.1 Step by Step manual solution of the example problem 

5.2.3 Numerical examples and comparative work 

The proposed algorithm has been applied to various types of pre-emptive goal 

programming problems collected from the literature. In each application the 

algorithm successfully found good solutions in comparison to the reported solutions. 

By using the C/C++ computer programming language a general-purpose computer 

program has also been developed for solving various types of pre-emptive goal 

programming problems. The computer program is implemented on a Pentium PC P5-

200 with 32 MB RAM. Three test problems with continuous, integer and zero-one 

variables are presented below. Additional test problems are given in Appendix II. 
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Example 1 

The following model is given in EI-Sayed et. al.(1989)'s paper for optimising a 

three-bar truss. They used the linear goal programming techniques, with successiye 

linearisation for the non-linear equations, to obtain the solution for the non-linear 

goal programming problem. 

lexmin{zl = (d;- + di + d{ + di + d; + di + d:)} 
S.t. 

5.28xr + 3.74xi + Ｕ Ｎ Ｒ Ｘ ｸ ｾ + d;- - d( = 3.575 

(0.1781 xr)+di -d{ =1.0 
2 - ---+ 

(0.2551 X2 + d3 - d3 = 1.0 

(0.178 1 ｸ ｾ Ｉ + di - d: = 1.0 

xl ,x2,x3,d;-,d( ,di ,d{ ,di ,d; ,di ,dt ｾ 0 

A detailed solution summary is given in Table 5.1. Upper half of the table presents 

the known solution. In the lower part of the table TS solution is reported. In order to 

reflect the effect of different parameter settings on the solution quality four different 

parameter settings are reported. Only the parameters that have the most significant 

effect on the solution are reported here (i.e. step size (for real and integer variables) 

and number of neighbourhood solutions in each iteration). Within these parameters 

'step size' is the most important one for continuous and integer variables. Number of 

iterations is taken big enough to assure convergence (i.e. 8000) in all applications. 

Convergence criterion is set to 100 iterations (i.e. if there is no improvement in the 

best solution vector in 100 consecutive iterations then algoritlun terminates.). Tabu 

list size is set to 10. The same setting is used in all test problems. 
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Table 5.1 Solution summary for Example 1 

Reported solution Goal satisfaction Computation Explanations 

Levels time 

x] 0.4239, x? 0.5047,x3 0.4239 ZJ 0.725 Not reported 

Tabu search solutions 

Parameter set: 19.72% 

Stepc=0.3, nneigh=10 zJ=0.582107 4 sec. Improvement 

Solution: 

Xl =0.482522, x?=0.615669 - , , 

x3=0.418525 

Parameter set: 11.84% 

Stepc=0.3, nneigh=5 zJ=0.639129 3.5 sec. Improvement 

Solution: 

Xl =0.68565, x2=0.508105, 

x3=0.42306 

Parameter set: 33.02% 

Stepc=O.I, nneigh=7 zJ=0.485615 3.7 sec. improvement 

Solution: 

Xl =0.430716, X] =0.507644, 

x3=0.561096 

Parameter set: 28.6% 

Stepc=O.I, nneigh=4 z]=0.517619 3.2 sec. improvement 

Solution: 

Xl =0.544277, Xl =0.51736, 

x3=0.43777 
, 

As the results indicate setting of Tabu search parameters affects the solution quality 

with continuous variables. In this problem, the range of variables is small (i.e. 

between 0 and I), therefore selection of a smaller step size gives better results (as 

stated by the parameter setting rule in the previous section). It is also better to 

increase the neighbourhood size. However, good solutions can still be obtained with 

a relatively smaller neighbourhood size. It is also worth mentioning that at all 

settings Tabu search performed consistently better. 
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Example 2 

The following model is given in Daellenbach et. al. (1983)'s book for solving an 

advertising media selection problem. They used the simplex method for solving this 

linear integer pre-emptive goal programming problem. 

lexmin{zl = (dl + dr),Z2 = (di + d{),Z3 = (2d3 + dt)} 
S.t. 

3000xI + 2000x2 ｾ 16000 

xl ｾ Ｔ

X2 ｾ Ｕ

0.04XI + 0.06X2 + dl- - dr = 0.32 

0.072xI + 0.036x2 + di - d{ = 0.288 

xl -2X2 +d3 -dt =0 

xI,x2 Integer & dl ,dr ,di. ,d{ ,d3 ,dt 2:: 0 

A detailed solution summary is given in Table 5.2., and a simplified version of the C 

programming code for this problem can be found in Appendix I. 

Table 5.2 Solution summary for Example 2 

Reported solution Goal satisfaction levels Computation time Explanations 

x]=2,x]=4 z]=O, z]=O, z3=12 Not reported Optimum 

Tabu search solutions 

Parameter set: 

Stepi=3, nneigh= 10 z]=O, z]=O, z3=12 2.5 sec. Optimum 

Solution: x]=2, X.] =4 

Parameter set: 

Stepc=3, nneigh=5 z]=O, z]=O, z3=12 2.5 sec. Optimum 

Solution: X] =2, X.] =4 

Parameter set: 

Stepc= 1, nneigh=7 - -0 - -0 - -12 .::.]- . ｾ Ｚ '':'3- 4 sec. Optimum 

Solution: x] =2, x: =4 

Parameter set: 

Stepc= 1, nneigh=4 - -0 - -0 - -I? -}- .. - ｾ Ｌ ｾ Ｓ - 4 sec. Optimum 

Solution: x] =2, x:=4 
I 
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As can be seen from the results, in all parameter settings Tabu search found the 

optimal solution for this problem. It may also be possible to say that Tabu search is 

less sensitive to the setting of parameters for integer variables than continuous ones. 

Example 3 

--
The following model is taken from De et. al.(1982)'s paper for optimally solving a 

capital budgeting problem. They used an implicit enumeration methodology to obtain 

the solution for the zero-one linear pre-emptive goal programming problem. 

lexmin{zl = (d; ),z2 = Cd} ),z3 = Cd; ),z4 = Cd:; + d4 + d; + d6 + d;)} 

s.t. 

45.48xl + 37.32x2 + 47.47x3 +30.23x4 +31.37xs +d}-dt =110.55 

150xl + 120x2 + 90x3 + 20x4 + 80xs + di. - d; = 250 

66.32xl + 48.37x2 - 41.17x3 - 30x4 - 40xs + d:; - d{ = 4.95 

58.13xl + 58.l3x2 + 48.13x3 - 30x4 + 38.61xs + d4 - d: = 6.05 

58.13xl + 39.20x2 + 87.66x3 + 72.l2x4 + 29.20xs + d; - d; = 7.56 

58.70xl + 49.24x2 + 96.72x3 + 68.80x4 + 29.24x5 + d6 - d; = 7.92 

105.5xl + 83.4x2 + 92.4x3 + 46.8x4 + 54.1xs + di - d; = 300 

1.086xl + 1.624x2 + 0.946x3 + 0.370x4 + 0.438x5 + di - d; = 3.8 

xI,x2,x3,x4,x5 =Oor 1 
- + - + - d+ d- d+ d- d+ d- d+ d- d+ d- d+ > 0 d1 ,d l ,d2 ,d2 ,d3 , 3' 4' 4' 5' 5, 6, 6' 7' 7, 8, 8 -

A detailed solution summary for this problem is given in Table 5.3. The step size for 

zero-one variables is fixed, therefore in this application the number of neighbourhood 

solutions and the size of the Tabu list are varied in order to observe their effects on 

the solution quality. 
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Table 5.3 Solution summary for Example 3 

Reported solution Goal satisfaction levels ! Computation Explanations 

time 

Xl 0, X2 1, X3 1,x4-1,x5-O z;-O, Z2-0, Z3=0, z4=27.75 Not reported Optimum 

Tabu search solutions 

Parameter set: 

Nneigh=20, m=lO, z;=O, z]=O, Z3=0, z4=27.75 10.5 sec. Optimum 

Solution: 

xl=O, x2=1, x3=1, x4=1, X5=0 

Parameter set: 

Nneigh=10, m=lO, z;=O, z]=O, Z3=0, z4=27.75 6.2 sec. Optimum 

Solution: 

xj=O, x2=1, x3=1, x4=1, X5=0 

Parameter set: 

Nneigh=5, m=20, z;=O, z]=O, Z3=0, z4=27.75 4 sec. Optimum 

Solution: 

xj=O, x2=1, x3=1, x4=1, X5=0 

Parameter set: 

Nneigh=3, m=15, z;=O, z]=O, Z3=0, z4=27.75 3.8 sec. Optimum 

Solution: 

xj=O, x2=1, x3=1, x4=1, X5=0 

As can be seen from the results, in all parameter settings Tabu search found the 

optimal solution. It may also be possible to say that_ Tabu search is less sensitive to 

the setting of parameters for zero-one variables than continuous and integer variables. 

Many other test problems have also been solved successfully. Some of these test 

problems are given in Appendix II. Comparisons were also made with LINDO™ 

(LINDO, 1996) software for solving linear and integer goal programming problems. 

In general, there is not a significant difference between computational times 

(computational time in Tabu search depends on the determination of tabu search 

parameters), but the quality of the solutions with the present Tabu search algorithm 
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were about 10%-35% better, especially with continuous variables. However a more 

intensive research may be useful in determining the effect of setting Tabu search 

parameters on the quality of solutions obtained and the computational time 

requirements. 

5.2.4 Application of the proposed algorithm to simulation optimisation 

As explained in the previous sections, a typical optimisation problem is to maximise 

(minimise) real valued function(s) where feasible points are restricted to some 

constraint set. If this problem is analytically intractable, as is often the case in 

manufacturing applications, then the decision-maker may choose to simulate the 

system. The optimisation of all or some objective functions which cannot be stated 

(or at least easily) analytically is the objective of simulation optimisation. In other 

words, the aim is to determine the inputs, or parameters, which optimise the outputs, 

or objective functions, of the simulation experiment. Note that the values of the 

simulation outputs are actually realisations of a random variable because of the 

random nature of the process described by the inputs. In addition, when an objective 

function is defined using the simulation outputs, it also becomes stochastic in nature. 

For the purposes of optimisation, the simulation is simply a black box that computes 

a realisation of the function value for a given combination of the parameter values. 

Optimisation strategies In many of the classic optimisation techniques reqUIre 

mathematical operations (i.e. derivative, integration etc.) (Michalewicz, 1996). Thus, 

they require analytical forms of the objective functions and constraints. Therefore 

they cannot be applied directly to simulation optimisation. Additionally, they are 
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generally applicable to convex functions and cannot find global optimum solutions 

easily. As its counterparts simulated annealing and genetic algorithms, tabu search, 

and its extension multiple objective tabu search as presented here, is a heuristic 

technique developed to solve complex optimisation problems. It does not depend on 

the form of the objective functions and constraints and does not perform 

mathematical operations like taking derivatives or integration, etc. It works with 

solution strings and only requires the performance of each solution which can be 

determined from an analytical equation (if available) or from a simulation model. 

The optimisation strategy is the same and does not depend on the evaluation strategy 

of objective functions. So the proposed TS based MOO algorithms can readily be 

used for simulation optimisation or hybrid analytic/simulation optimisation. The 

flowchart shown in Figure 5.2 depicts the simulation optimisation strategy applied in 

this research work. 

No 

Start 

Tabu Search based 
MOO Model 

Display to 
decision maker 

Stop 

Solution 
vector 

Perfonnance 
indicators 

No 

Simulation 
Model 

Figure 5.2 The flowchart of simulation optimisation strategy 
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5.3 CONCLUSIONS 

The proposed TS algorithm to solve pre-emptive goal programming models has been 

explained in detail in this chapter. A detailed comparative study has also been carried 

out. The proposed algorithm is also the first application of TS to solve pre-emptive 

goal programming models. It has been observed that TS is a promising candidate to 

solve pre-emptive goal programming models. In every application the solutions 

found were at least as good, if not better than, the reported results. In some 

applications 10-35% improvement in solution quality has been obtained. The 

application of TS to multiple objeetive simulation optimisation problems is also 

explained in this chapter. TS is also a good candidate for multiple objective 

simulation optimisation problems due to its problem-independent nature. 
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CHAPTER SIX 

6. DEVELOPMENT OF MULTIPLE OBJECTIVE 

MANUFACTURING CELL FORMATION MODULE 

6.1 INTRODUCTION 

Chapter 6 

In this chapter, the configuration module of the framework is explained. A new 

approach is proposed to simultaneously form independent part/machine cells. The 

cell formation strategy is based on capability/requirement analysis. Therefore, it can 

be named as a capability based approach for configuring cellular manufacturing 

systems (eMS). A part list that contains Resource Elements (RE) based generic part 

process plans constitutes the main input for the cell formation model. The 

capabilities of available machine tools are also defined in terms of REs. It is possible 

to consider overlapping capabilities of machines by using RE definition while 

forming manufacturing cells. Therefore, the opportunity of forming independent 

manufacturing cells increases. A processing requirement in the operation sequence of 

a part can be processed on any machine that can satisfy its RE requirements. 

Consequently, all process planning options of parts can be automatically considered 

for independent cell formation decisions. 

Manufacturing cells are formed by matching capabilities of existing machines with 

the RE based processing requirements of parts. While forming the manufacturing 

cells the following issues are concerned: 
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• Fonned cells sizes should be within the user-defined limits. Cell SIzes are 

generally constrained in order to have proper control on cells and reduce the 

scheduling complexity. However there are no specific known limits on cell ｳ ｩ ｺ ･ ｳ ｾ

because cell size is generally problem dependent and set by the designer in 

relation to some other design requirements and constraints (i.e. material handling 

restrictions due to robots, scheduler's capability etc.) (Gallagher and Knight, 

1986, Kusiak, 1990). 

• Fonned cells should be self-sufficient i.e. enough capacity in each cell and no (or 

minimum) inter-cell movement. Cell independence is the main objective of 

cellular manufacturing applications (Burbidge, 1987). An increase in cell 

interactions generally causes an increase in controlling complexity, increase in 

material handling cost, decrease in part quality etc. Therefore it should be avoided 

if possible. 

• Fonned cells should be able to offer flexibility to handle changing production 

requirements. Due to rapid changes in product requirements, especially in today's 

market, flexibility should be considered in the design (re-design) of 

manufacturing cells (Dahel and Smith 1993, Vakharia and Kaku, 1994). 

• Parts in the same cell should be similar in terms of processing requirements and 

operation sequences. If parts in the formed cells follow similar processing routes, 

the following benefits are likely to occur: reduction in intra-cell material handling 

cost, easiness in automation, easiness in process control, increased part quality, 

etc. (Tam, 1990). 

• Load should be balanced between formed cells in order to prevent heavy 

utilisation of some cells and lower utilisation of others. This objective is 
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important for enhancing operating efficiency of formed cells (Han and Ham, 

1989). 

All the above issues are given major importance by Wemmerlov et. al.,(l987. 1989, 

1997) and Vakharia and Wemmerlov (1990) for a successful cell formation practice. 

The cell formation problem is formally stated as a pre-emptive goal programming 
Ｍ ｾ

model and solved by the multiple objective tabu search algorithm which has been 

introduced in Chapter 5. A comparative study is also done to present the efficiency of 

the proposed approach. 

6.2 MATHEMATICAL FORMULATION OF THE MULTIPLE 

OBJECTIVE CELL FORMATION PROBLEM 

Formation of the part/machine cells is formally stated as a pre-emptive goal 

programming model. The main characteristics of the model are as follows: 

• It simultaneously forms part/machine cells for cellular manufacturing 

applications. As discussed in Chapter 2-Section 2.5 simultaneous cell formation 

approach is advantageous. 

• It minimises dissimilarity between parts in each formed cell. 

• It minimises total load unbalance between formed cells. 

• It minimises extra capacity requirements while converting an existing job shop to 

a cellular shop. To achieve the main goal of cellular manufacturing (i.e. fonning 

independent manufacturing cells) extra copies of some machines might be 

required while fonning the manufacturing cells in order to prevent inter-cell 

movements resulting from capability or capacity inadequacies (Adil et. al., 1996). 
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However, extra capacity requirements must be minimised when possible to 

minimise the costs of implementing CMSs. 

• It maximises flexibility of formed cells via maximising the number of different 

REs in each formed cell. 

• Maximum and minimum number of parts and machines in each cell and cell 

independence are considered as the constraint functions. 

• Capabilities of machines in the facility and processing requirements of parts (as 

generic process plans) are both defined in terms of REs in the model. 

• The total number of cells is defined by the decision-maker. 

The following notation is used in the mathematical model: 

i,l :Part indexes. 

j : Machine index. 

k : Cell index. 

r: RE index. 

m : Number of parts. 

n : Number of machines. 

g : Number of cells. 

nRe : Number of REs. 

Indexes 

Parameters 

DSjf : Dissimilarity between parts i and 1. 

CLk : Load on cell k. 

A CL : Average cell load. 

ｾ Ｚ Capacity ofmachinej (minutes/year). 

Qi : Demand for part i. 

fir: Processing time for RE r in part i ｾ ｭ ｩ ｮ ｵ ｴ ･ ｳ Ｉ Ｎ

H . . Minimum nUTI1ber of machines in a cell. 
j mill· 
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Mmax: Maximum number of machines in a cell. 

P min : Minimum number of parts in a cell. 

P max : Maximum number of parts in a cell. 

FEMIXkr : 1 if RE r is available in cell k, 0 otherwise. 

Pjr: 1 ifRE r is available on machine j, 0 otherwise 

qir: 1 ifRE r is required by part i, 0 otherwise 

W/I W2 : Weights of part similarity equation. 

Variables 

ｾ ｫ : 1, if machine j is in cell k, 0 otherwise. 

J(k : 1, if part i is in cell k, 0 otherwise. 

di, d/: Under and over achievement of 'dissimilarity goal'. 

do, dr/: Under and over achievement of 'cell load unbalance goal'. 

d;, d/: Under and over achievement of 'flexibility goal'. 

Chapter 6 

dk-, dk + : Shows the amount of deviation from the total available capacity in cell k. 

drk-, drk + : Shows the amount of deviation from the total capacity available for RE r 

in cell k. 

Mathematical formulation 

(1) Goal structure 

In the mathematical modelling of the cell formation problem, objective functions are 

described as goal constraints that are explained in the following paragraphs. The 

purpose of the optimisation is to minimise the deviations from these goals by 

considered highly prioritised goals first. Goals could be ordered according to their 

relative importance. The result of this ordering process is a goal structure. The goal 

structure will differ depending on the situation and the preferences of the designer. 

Equation 6.1 represents the lexicographical order of deviational variables to be 

n1inimised. 
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g nRE 

Lexmin{(d;),(L L (d k + d;k),(di + d;),(d;))} 6.1 
k=l r=l 

In equation 6.1, dissimilarity goal is selected as the most important goal to be 

achieved. Capacity goal, cell load unbalance goal and flexibility goal are the 2nd 3rd 

and 4th important goals to be achieved. However, the developed cell formation 

system lets the designer to change the order of goals if required. 

(2) Dissimilarity goal constraint 

Part similarity (or dissimilarity) can be characterised by two dimensions: a) 

commonality in machine requirements, and b) similarity patterns of production 

sequences. Although both of them are important, GT research has tented to focus its 

attention primarily on the former. In this study both of them are considered and given 

equal importance. Part dissimilarity based on commonality of machine requirements 

is determined by using the following equation: P D S if = 1 - (Pin PI / Pi U PI) . 

Where, PDSi/ is dissimilarity level between parts i and I based on RE requirements, 

numerator shows number of common RE between parts i and I, and denominator 

shows total number of RE requirements for parts i and I. Part dissimilarity (SDSi/) 

level between parts i and 1 which is based on RE based generic processing sequences 

is determined by using a dynamic programming procedure proposed by Tam (1990). 

The procedure is given as follows: 
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Input: 

Pi = {REl,RE2 .......... REn} /* operationsequence for part i */ 
PI = {REl,RE2 .......... REm} /* operation sequence for part I */ 

Output: 
SDSu 

Algorithm: 
step_l-+ Create an n*m matrix D; 
step _ 2-+ Initialise D[O][O]=O; 

step _3-+ Initialise the first row (D[O][k], O<=k<=n) to be the sequence 0, 1 ,2, ..... n; 

Chapter 6 

step _ 4-+ Initialise the first column (D[j] [0], O<=j<=m) to be the sequence 0,1,2, .... m; 
step_5-+ fore k=l; k=n; k++) 

{ 

} 

fore j= 1; j=m; j++) 
{ 

} 

if (PI [k] = = P2[j]) __ 
substitute = D[k-l][j-l]; 

else 
substitute = D[k-I][j-I]+I; 
delete = D[k-I][j]+l; 
addition = D[k][j-l]+l; 

D[k][j] = min(substitute, delete, addition); 

step_6-+ SDSu = D[n,m]; 

The overall dissimilarity level (DSi/) between two parts i and I is defined as the 

weighted sum of the above dissimilarity indices that is calculated by the following 

equation; 

DSu = wI * PDSi/ + w2 * SDSi/ 6.2 
Where, W J and W.; are weights associated with each dissimilarity index. In equation 

Dissimilarity goal constraint that is given by equation 6.3 determines deviations from 

the dissimilarity goal in formed cells. Dissimilarity goal is set to zero in equation 3 

(i.e. the target is to obtain 0/00 part dissimilarity in each formed cell). 

g m m 

L L L DSi/X;kXlk + d; - d; - 0 6.3 

k=1 ;=1 1=1 
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(3) Capacity goal constraints 

In this work, operation sequences of parts are not defined based on machine 

requirements (i.e. machine routes are not known initially), an operation of a part can 

be executed by any machine which can satisfy the corresponding RE requirement in 

the processing sequence. Therefore standard machine capacity-requirement equations 

proposed in the literature cannot be applied (Co and Araar 1988, Moon et. al. 1997. 

Cheng et. al. 1996, Sankaran 1990, Gunasingh and Lashkari 1989, Dahel and Smith 

1993, Wei and Gaither 1990, Rajamani et. al. 1992) because without knowing the 

specific machine routes, total load on the corresponding machines cannot be 

determined. In fact, parts may have many alternative machine routes in a cell and 

they can be re-routed for some reasons (e.g. machine breakdown etc.). Additionally, 

classical machine capacity equations are not sensitive to overlapping capabilities 

. between machines and their usage may results excess capacity in cells by calling for 

the addition of extra machines. In this work, instead of focusing on individual 

machine capacities, the overall capacities of cells are considered and modelled with 

transportation-like equations below. 

m nRE 

L L X ik q ir t ir Q i + d k - d: - ° Vk 

n 

L YjkPjrHj 
j=l 

i=l r=l 

m 

L X ik q ir t ir Q i + d r-k - d r+k 

i = 1 

o V r, k 

6.4 

6.5 

Equation 6.4 calculates the deviation from the total available capacity in each celli. In 

ideal conditions deviations are equal to zero (i.e. satisfaction of the capacity goal). 

I Total capacity for a machine is defmed in terms of total number. of ｭ ｩ ｾ ｵ ｴ ･ ｳ a machine is available 
for part processing in the entire planning horizon. However other ｴ ｾ ･ ｾ ｭ ｴ ｳ can also be. used. But the 
same unit should be used for all time-related data (i.e. part processmg tIme etc.). CapaCIty of a cell IS 

equal to summation of capacities of its machines. 
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This means that there is potentially no excess capacity in the system (i.e. total 

capacity in each cell is equal to total processing time requirement from each cell). 

Negative deviation means that potentially available capacity in the cell is not 

sufficient (i.e. total capacity in some cells is less than total processing time 

requirements). However, in some situations, although the total potential capacity 

seems enough (i.e. total capacity in some cells is higher than total processing time 

requirements, but total capacity in any cell is not less than total processing time 

requirement), there may still be insufficient capacity for a number of processing 

capabilities (REs) in a cell (i.e. all the parts assigned to a cell demands too much 

processing for an individual operation but only a few machines have the required 

capability, in such cases although total capacity of the cell seems enough there will 

be capacity problems). 

Deviations from total available capacity for individual processing capability units 

(RE) in each cell are calculated by using equation 6.5. A positive deviation means 

that there is enough capacity for the corresponding capability unit in the cell for the 

corresponding processing requirement of the parts assigned to the cell. If the 

summation of the negative deviations in equations 6.4 and 6.5 are equal to zero, then 

the capacity in the corresponding cells is certainly enough to satisfy the total 

processing requirements of the corresponding parts assigned to them. An explanatory 

table is given in figure 6.1 that shows working of equations 6.4 and 6.5. 
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iRE-I is not available 
on machine 3 

, Total processing time requirement for RE-4 . 
, from the parts that assigned to Cell I . 

" Ｍ Ｍ ｾ

:L ti2=2000 

* 
* 3500 

3000 

\ ....•....•. 

---"1 \\ 

:L ti4=5000 

4000 

* 

* 
H]+H3+ H4=10500 

d]-=500 

\ 
\ 
\ 

Ｍ Ｍ Ｍ Ｍ Ｍ ｾ .. 

lMachine 4 is in Cell I i. 

, \\_\4-. _. 

!Negative deviation ! \ 
i IOOO units extra capacity is required for: \ 
epability unit 4 (i.e. RE-4) in CellI' 

jPositive deviation 
!There is no capacity shortage for 
jcapability unit I (i.e. RE-I) in cellI 
L. __ ._ .. ____ .. __________ . __ • __ . _______ ._ .. _j 

, 
iTotal potentially available capacity in 
[Cell Iseems enough (i.e. positive 
:deviation), however there is a capacity 
lshortage in Cell 1 because not all . 
[negative deviations are equal to zero i.e. ; 
Ithere is an extra 1000 units capacity 
:requirement for RE-4. 

Figure 6.1 Analysis of capacity deviations in a cell 

The following useful data can be obtained from the deviational variables; total extra 

capacity requirements in a cell that should be satisfied (dk-), total excess capacity in a 

cell (d
k 
+ ), total potentially excess capacity for a particular capability unit in a cell 

(d
r
/), (it is not possible to make use of all potentially excess capacity of a particular 

capability unit, if it is greater than dk -'-), total extra capacity Iequirement for a 

particular capability unit in a cell that should be satisfied (drkl In the case of extra 

capacity requirements while reconfiguring from a job shop to a cell shop, the 

proposed model determines which specific capability units are required after 

considering all overlapping capabilities between machines. Therefore, it is possible 

to invest in the correct machines that have just the required capabilities. 
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Consequently, money can be saved by reducing the effects of the non-integer 

machine requirements problem (Sule, 1991). Additionally, capacity utilisation levels 

can be increased by this approach which is known as a problem in cellular 

manufacturing applications. 

(4) Cell load unbalance goal constraint 

Load should be balanced between formed cells (i.e. unbalance should be minimised) 

in order to prevent heavy utilisation of some cells and lower utilisation of others. 

This objective is important for enhancing operating efficiency of formed cells (Han 

and Ham, 1989). Equation 6.6 represents the cell load unbalance goal constraint in 

the present model. 

g 

L (CL k - ACL)2 / g + dB - d; = 0 6.6 

k = 1 
In equation 6.6, ACL is average utilisation of the cells that is calculated by using 

equation 6.7: 

g 

ACL-(LCLk)/g=O 
k = 1 

Utilisation of each cell CLk, is calculated by using ･ ｱ ｾ ｡ ｴ ｩ ｯ ｮ 6.8; 

m nRE n 

eLk - (L L X ik q ir t ir Q ilL Yjk H j) . 0 V k 
i=l r=l j=l 

(5) Flexibility goal constraint 

6.7 

6.8 

Formed cells should be able to offer flexibility to handle changing production 

requirements. Due to rapid changes in product requirements, especially in today's 

market, flexibility should be considered in the design of manufacturing cells (Dahel 

and Smith 1993, Vakharia and Kaku 1994). In this work, cell flexibility is measured 

by counting the number of different REs ayailable in a cell. This definition is similar 
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to the definitions given by Dahel and Smith (1993), Vakharia and Kaku (1994). But 

they considered the total number of different machine types available in cells. In fact, 

it may not be possible to assign all machine types to each cell because of economic 

and control reasons (i.e. cell size). But, it may be possible to design cells in such a 

way that availability of different capability units in each cell is maximised. By 

employing this approach, flexibility of cells can be increased without increasing their 

size beyond the specified limits. Equation 6.9 represents the cell flexibility goal 

constraint. 

g nRE 

I I F EM IX kr + d -; - d: = nRE * g 6.9 

k=l r=l 

In equation 6.9, cell flexibility goal is equated to nRE*g which means we want to 

make all RE available in each cell (i.e. maximum flexibility). The total number of 

REs in each cell is determined by using equation 6.10: 

n 

FE M IX kr - L (Yjk P jr) / (( Yjk P jr ) + K) = 0 \:j k ,r 

where; K -

j=l 

I if I ljk P jr = 0 
j 

else 

o 

(6) Hard constraints 

6.10 

In a goal programming model hard constraints shape the feasible search space. 

Satisfaction of hard constraints is compulsory. 

The first set of hard constraints (equations 6.11 and 6.12) ensure that each part and 

machine are assigned to only one cell. 
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L X ik - 1 = 0 '\I i 
k = 1 

g 
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6.11 

L Y jk - 1 = 0 \/ j 6.12 
k = 1 

Size of the manufacturing cells is also hard constrained in the proposed cell 

formation model. In order to have proper control on cells and reduce the scheduling 

complexity cell sizes are generally constrained in cell formation applications. 

However there is not known limits and a consensus on cell sizes. Because cell size is 

generally problem dependent and set by the designer in relation to some other design 

requirements and constraints (i.e. material handling restrictions due to robots, 

scheduler's capability etc.) (Gallagher and Knight 1986). In the proposed cell 

formation model cell size constraints are given by equations 6.13-6.16. 

m 

L X ik - Pm in > 0 '\Ik 6.13 

i = 1 

n 

L Yjk - M min > 0 \/k 6.14 

j=l 

m 

P max - L X ik > 0 '\Ik 6.15 

i = 1 

n 

M max -L Yjk > 0 \/k 6.16 

j=l 

Constraints 6.13 and 6.14 ensure that, number of parts and machines in each cell 

should not be lower than the specified limits. Constraints 6.15 and 6.16 ensure that 

the number of parts and machines in each cell should not be higher than the specified 

limits. 
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The last hard constraint is related to the capability of the fonned cells. Constraint 

6.17 ensures that processing requirements of part families can be totally satisfied by 

the machines in their cells. 

n m 

I Yjk P jr + r - I X ik q ir > 0 V r, k 
j=l i=l 

o if IJ}kPjr = 0 
j 

In equation 6.17, r else 

-

A big number 

Constraint 6.18 ensures integrality. 

(7) Model size 

6.17 

6.18 

The final explanation for the proposed model is about its size, (m+n )*g zero-one 

variables are needed for a problem of n machines, m parts, and g cells. The number 

of zero-one variables of this model is far fewer than that of the famous p-median 

fonnulation (Kusiak, 1987), which is m*m. It should also be mentioned that, p-

median model is developed to find the part families or the machine cells only. For 

example, a problem with 50 parts, 20 machines and 4 cells requires 280 zero-one 

variables in the present model, whereas the p-median model needs 2500 zero-one 

variables which is almost eight times more. This feature is especially important for 

solving big size cell formation problems within a reasonable computation time. 
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6.3 APPLICATION OF MULTIPLE OBJECTIVE TABU SEARCH 

ALGORITHM TO SOLVE THE MATHEMATICAL MODEL 

The multiple-objective Tabu Search (TS) algorithm that has been developed in 

Chapter 5 is employed to solve the above mathematical model. However, a number 

of problem-specific features are incorporated into the original TS algorithm. The 

original TS algorithm can also be used without any change. TS is a flexible technique 

and incorporation of some problem specific features (if possible) may improve its 

speed while converging to a solution (Glover, 1990,1993). 

The following problem related enhancements have been made to speed up the 

original multiple objective TS algorithm: 

Generation of the neighbourhood solutions: 

Instead of using the neighbourhood generation functions that were presented in 

Chapter 4, Section 4.2.1., the following strategy is employed for the generation of 

neighbourhood solutions: 

• Randomly select a machine from a randomly determined cell whose total number 

of machines is not less than or equal to M min. Assign this machine to a randomly 

selected cell whose total number of machines is not more than or equal to Mma:c 

• Randomly select a part from a randomly determined cell whose total number of 

parts are not less than or equal to P min' Assign this part to a randomly selected cell 

whose total number of parts are not more than or equal to P ma.t and can satisfy all 

processing requirements of the part. 

• Apply the above steps to generate a previously determined number of 

neighbourhood solutions. 
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By employing this strategy one can easily generate feasible neighbourhood solutions 

that satisfy all hard constraints (Equations 6.12-6.18). Figure 6.2 depicts a solution 

vector and generation of 3 neighbourhood solutions from it for a (4 parts, -+ 

machines, 2 cells) hypothetical cell formation example. 

An example solution vector 

cell-l cell-2 

ｾ .04 

1 ｏ ﾷ ﾷ ﾷ ﾷ ﾷ ﾷ ｾ Machine-l 

o Ｑ ﾷ ﾷ ﾷ ﾷ ﾷ ﾷ ｾ Machine-2 

Machine-3 is in cell-l ｾ ﾷ ﾷ ﾷ ﾷ ﾷ ﾷ Ｑ 0 ...... ｾ Machine-3 

o 1 ...... ｾ Machine-4 

0 1 ...... ｾ Part-l 

0 1 ...... ｾ Part-2 

1 ｯ ﾷ ﾷ ﾷ ﾷ ﾷ ﾷ ｾ Part-3 - , 

1 0 ...... ｾ Part-4 

1 0 0 1 
o 1 0 1 
1 0 1 0 
o 1 0 1 
----- ｾ -----
o 1 0 1 
o 1 1 0 
1 0 1 0 
1 0 1 0 

1 0 1 0 
o 1 0 1 
1 0 0 1 
o 1 0 1 
-----:=:::) -----
o 1 0 1 
o 1 0 1 
1 0 1 0 
1 0 0 1 

1 0 0 1 
o 1 0 1 
1 0 1 0 
o 1 0 1 
-----:=:::) -----
o 1 1 0 
o 1 0 1 
1 0 1 0 
1 0 1 0 

Neighbour-l Neighbour-2 -:\eighbour-3 

Figure 6.2 Neighbour solutions generation (randomly selected part and machine are bolded) 
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Tabu list: 

Instead of putting the whole solution vectors in the tabu list as tabu solutions (see 

Chapter 5-Section 5.2.2) only indices of randomly selected and reassigned part-: 

machine pairs are put into the tabu list. 

Aspiration criteria: 

Only the indices of part-machine pairs as the solution features are put into the tabu 

list. However, reselection of these features in later iterations might generate different 

solution vectors, because these features themselves are not the solution vectors. 

Therefore global optimum solution can be missed if these solution features are 

directly considered as tabu. In order to prevent this situation in TS applications an 

aspiration criterion needs to be defined to override the tabu status of solution 

features when necessary (Glover, 1990). 

The aspiration criterion is defined as follows: Any move that improves the best 

known solution (see Chapter 5-Section 5.2.2) is accepted, even if the move is tabu. If 

the whole solution vectors are put into the tabu list, then there is no need to define an 

aspiration criterion. However, in large problems this might not be favourable. 

6.4 EXAMPLE APPLICATIONS AND THE COMPARATIVE WORK 

The multiple objective TS algorithm to solve the above model is programmed in 

FORTRAN. Several test problems with various sizes have been solved with the 

developed computer program for testing the model and the efficiency of the 

developed algorithm. It takes approximately two minutes to obtain a good quality 
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solution for a medium-sized problem (i.e. 20 machines and 30 part types with 10 

different REs). 

The example application is performed on the test model that is used through this 

study and explained in the following chapter. It contains twelve machines and seven 

machine types. Machine tools available in the test job shop and part data for the 

example application are given in Tables 6.1 and 6.2 below: 

Table 6.1 Machine tools and their capabilities based on REs in the test model 

Resource Elements 
Machine Tools # Copies 1 2 3 4 5 6 7 8 9 10 11 Capacity 

·IOOO(min/ 
year) 

I-Drill Press-l I • 68 
2-MHP Machiniy!'& Centre-l 3(a,b,0 • * * * * * • • 66 
3-Colchester Lathe-l 2(a,b) * * * * 64 
4-MHP MT50 NC Lathe-2 2(a,bl * * * * • 64 
5-CNC GrindiJ!g Machine-I 2(a,b) * * 64 
6-Jones & Shipman Cyc. Grinder I * 65 
7- Jones & Ship. Surf. Grinder 1 • 64 

Table 6.2 Part data: processing time (min), total demand, processing sequences 

Demand RE Based 
Parts REI RE2 RE3 RE4 RES RE6 RE7 RES RE9 REIO REII *1000 Operation 

Sequences2 

I 6 8 9 3 REI-2-4 
2 5 6 4 1 1-2-3 
3 2 6 8 2.5 5-6-7 
4 4 5 1.52 8-5 
5 5 6 8 1.48 7-4-5 
6 5 5 6 3.5 8-6-7 
7 7 7 8 1 8-9-10 
8 6 5 9 2 9-10-11 
9 7 5 3 3 5-1-: 

10 4 5 2 3-l 
II 5 5 4 4.5 5-6-Y 

12 7 8 8 1 : L S-9 

13 1 3 5 3 5-8-10 

14 5 4 5 25 8-'7-5 
15 6 2 2.5 1-2 

16 6 3 1.9 ,--

17 4 5 7 2.4 6-7-\ 

18 5 5 :; 2 1.2 8-9-1 (1-1 : 

l.3 '-'"' 5 - -19 5 
20 1 5 :! 3 7-';C,-Ci 

ｾ RE based operation sequence of parts represents the order in which REs need to be used. 
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The TS algorithm was iterated 1500 times with a neighbourhood size of 5 and tabu 

list size of 15, number of cells is 3, maximum and minimum number of parts and 

machines in each cell were defined as 9,4 and 5,3 respectively. In around 3 minutes 

of computational time the algorithm converged to a solution (on a Pentium-200 PC 

with 32MB RAM). All necessary data i.e. similarity matrices etc. are calculated by 

the computer program. The output summary of the developed computer program 

which was named as MOCACEF_1.0 (Multiple Objective CApability based CEll 

Formation) is shown in Table 6.3 below; 

Table 6.3 The output summary ofMOCACEF 1.0 

Cell Machines REs Parts Operation Cell Extra Comments 

Number Availability Sequences Capacity Capability 

Utilisation Requirement 

1 1 4 and 6 4 8-5 0.74 NIL 

2a are not 7 8-9-10 

7 available 8 9-10-11 

12 10-8-9 

13 5-8-10 

18 8-9-10-11 

2 3a All REs are 1 1-2-4 0.76 NIL 

5a available 2 1-2-3 

4a 9 5-1-2 

2b 10 3-4 

15 1-2 

16 3-4 

19 5-2 

3 2c All REs are 3 5-6-7 0.89 NIL 

4b Available 5 7-4-5 

5b 6 8-6-7 

6 11 5-6-9 

3b 14 8-7-5 

17 6-7-8 

20 7-8-9 
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The example comparisons are made with two very well known and widely accepted 

production flow analysis based techniques from the literature (Kusiak, 1987, 

Seifoddini and Wolfe, 1986). To be able to solve the example problem with these 

techniques, a part-machine matrix is required, as this is the main input for them. One 

such matrix is generated from the Tables 6.1 and 6.2. Obviously, there are many 

possible alternative part-machine matrices that can be derived. Only one such matrix 

is reported here for comparative purposes. The final part-machine matrix is shown in 

Table 6.4. In Table 6.4 (RE-l) of Part-l is assigned to Machine-l that can supply 

(RE-l), (RE-2 and RE-4) of Part-l are assigned to Machine-3 that can supply (RE-2 

and RE-4). Different assignments can also be done for Part-I (which results different 

part-machine matrices) all other parts are matched with machines similarly. If more 

than one RE of a part is assigned to the same machine then processing times for these 

REs are summed in the part-machine matrix (for Part-I, processing times for RE-2 

and RE-4 are summed in the part-machine matrix, i.e. the new processing time is 

8+9=17, see Table 6.4). It is obvious that some valuable information (processing 

sequences, alternative machines etc.) is not visible in part-machine matrices. 

Table 6.4 Part-machine matrix 

M/P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 6 7 6 

2 15 5 11 22 20 4 9 23 3 9 2 3 12 17 9 

3 17 2 5 5 4 5 

4 8 5 5 

5 14 3 5 

6 6 4 

7 4 6 I 5 5 

The solution obtained from the p-median model of Kusiak (1987) is summarised in 

Tables 6.5. 6.6. and 6.7 
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Table 6.S The initial solution obtained from the p-median model 

1 3 9 11 15 6 17 2 4 5 7 8 10 12 13 14 16 18 19 20 

1 * * * 
5 

,. 
* * 

6 * * 
2 * * * * * * * * * * * * * * * 
3 * * * * * * 
4 * * * 

7 * * * * * 

Table 6.6 The final solution for the p-median model after eliminating inter-cell 

movements 

1 3 9 11 15 6 17 2 4 5 7 8 10 12 13 14 16 18 19 20 Load Machine # Mach. 

1 

5 

2 

3 

4 

6 

2 

2 

3 

4 

7 

*1000 Req. 

18 21 15 54 0.79 

35 9 22.5 66.5 1.04 

40.5 5 45.5 0.69 

51 5 56 0.88 

15 15 0.23 

21 9.6 30.6 0.47 

38.5 28.8 67.3 1.02 

15 7.6 22 40 8 23 9 22.5 5.7 20.4 27 200.2 3.03 

7.4 10 7.6 6 31 0.48 

11.84 15 26.84 0.41 

6.08 8.88 3 12.5 6 36.46 0.57 

In Table 6.6, the load on each machine is calculated by summing total processing 

time requirements from each machine i.e. Load on Machine-l is 18+21 + 15=54 (as 

demand for each part is divided by 1000, load should be mUltiplied with 1000). The 

machine requirement in each cell for each machine type is found by dividing the total 

load on each machine type by its capacity i.e. number of type 1 machine required in 

Cell-l is 54/68=0.79 (l machine of type 1 is required). 
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Table 6.7 Solution summary for p-median model 

Cell Machines REs Parts Operation Cell Extra Comments 
Number Availability Sequences Capacity Machine 

Utilisation Requirement 
1 1 All REs 1 1-2-4 0.61 NIL 

2a are 3 5-6-7 
3a Available 9 5-1-2 
4a 11 5-6-9 
5a 15 1-2 
5b 

2 2b 4 and 5 6 8-6-7 0.5 1 more Cell utilisation is 
6 are not 17 6-7-8 copy of calculated 

available machine 2 including extra 
is required copies of machine 

2 
3 2c 6 is not 2 1-2-3 0.65 3 more Cell utilisation is 

3b available 4 8-5 copies of calculated 
4b 5 7-4-5 machine 2 including extra 
7 7 8-9-10 are required copies of machine 

8 9-10-11 2 
10 3-4 
12 10-8-9 
13 5-8-10 
14 8-7-5 
16 3-4 
18 8-9-10-11 
19 5-2 
20 7-8-9 

In Table 6.7 a, b, c represent copies of the same machine type. Cell capacity utilisation 

is calculated by dividing total load in a cell by its capacity. The capacity of a cell is 

equal to summation of capacities of its machines. As an example from Table 6.7 

capacity utilisation in Cell-1 is (54+66.5+45.5+56+ 15)/(68+66+64+64+2*64)=0.61. 

The solution obtained from Seifoddini and Wolfe (1986)'s method is summarised in 

Tables 6.8, 6.9 and 6.10. 
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Table 6.8 The initial solution obtained from Seifoddini and Wolfe (1986)' s method 

1 3 9 11 15 6 17 2 4 5 - 8 10 12 13 1.+ 16 18 19 20 

1 * * * 
5 * * * 
6 * * 
2 * * * * * * * * * * * * • • * 
3 * * • * • • 
4 * * * 

7 • • * * • 

Table 6.9 Final solution for Seifoddini and Wolfe (1986)'s method 

1 3 9 11 15 6 17 2 4 5 7 8 10 12 13 14 16 18 19 20 Load Machine # Mach. 

*1000 Req. 

1 18 21 15 54 0.79 1 

5 35 9 22.5 66.5 1.04 2 

2 40.5 5 45.5 0.69 1 

3 51 5 56 0.88 1 

4 15 15 0.23 1 

6 21 9.6 30.6 0.47 1 

2 38.5 28.8 15 82.3 1.25 2 

2 7.6 22 40 8 23 9 22.5 5.7 20.4 27 185.2 2.81 3 

3 7.4 10 7.6 6 31 0.48 1 

4 11.84 15 26.84 0.41 1 

7 6.08 8.88 3 12.5 6 36.46 0.57 1 
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Table 6.10 Solution summary for Seifoddini and Wolfe (1986)'s method 

Ce]J Machines REs Parts Operation Cell Extra 
Number Availability Sequences Capacity Machine 

Utilisation Requirement 

1 1 All REs 1 1-2-4 0.61 NIL 
2a are 3 5-6-7 
3a Available 9 5-1-2 
4a 11 5-6-9 
5a 15 1-2 
5b 

2 2b 4 and 5 6 8-6-7 0.57 1 more 
6 are not 17 6-7-& copy of 

available 2 1-2-3 machine 2 
is required 

3 2c 6 is not 4 8-5 0.72 2 more 

3b available 5 7-4-5 copies of 

4b 7 8-9-10 machine 2 

7 8 9-10-11 are required 
10 3-4 
12 10-8-9 
13 5-8-10 
14 8-7-5 
16 3-4 
18 8-9-10-11 
19 5-2 
20 7-8-9 

Results of the comparative study are depicted in Figures 6.3 and 6.4. 
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Figure 6.3 Comparison of extra resource requirement to configure cells 

6-2-l 



Adil Baykasoglu Cell Formation Module Chapter 6 
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ctl 0.5 CJ) 

-+-Cell-1 
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Figure 6.4 Comparison of cell utilisation levels 

The proposed approach is also applied to other example problems. A case study with 

real data is given in Appendix V. The following observations have been made after 

the computational experiments. The proposed algorithm converges quickly to the 

good solutions for small problems (i.e. it takes maximum 3 minutes for problems 

with 12 machines, 15 parts and 10 REs). For medium size problems it requires 

around 8 minutes to produce a good quality solution (i.e. 20 machines, 25 parts and 

12-15 REs). For bigger size problems it requires more than 15 minutes to converge a 

good quality solution. The selection of Tabu search parameters may also effect the 

quality of the solutions. However, an extensive experimental study is required to 

access the computational time performance in relation to quality of the generated 

solutions. Quality of the generated solution can be assessed by determining the lower 

bounds for a given problem. 
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6.5 CONCLUSIONS 

A capability-based approach to solve manufacturing cell formation problems is 

proposed in this chapter. The model is formally stated as a pre-emptive goal 

programming problem. Minimising dissimilarity between parts in each cell, 

minimising total load inbalance between cells, minimising extra capacity 

requirements while configuring the cellular shop and maximising cell flexibility are 

considered as the objectives to be_ optimised. Maximum and minimum number of 

parts and machines in each cell and cell independence are considered as the 

constraints. The developed mathematical model is solved with the multiple objective 

TS algorithm that was developed in Chapter 5. Some problem-specific additions to 

the original TS algorithm are also discussed and presented. The proposed model 

simultaneously solves cell formation problems. Although the proposed model is 

sophisticated, its size is noticeably smaller than those of some other known models 

(e.g. Kusiak's p-median model). A new approach is also proposed for capacity 

feasibility analysis that reduces the detrimental effects of non-integer machine 

requirements (Sule, 1991). 

As the results of comparative work show, the capability based cell formation 

technique used in MOCACEF 1.0 gives better results. The manufacturing cells are 

formed with improved capacity utilisation levels and reduced extra machine 

requirements. It is also more likely to design independent manufacturing cells with 

higher flexibility by using the RE concept in cell formation. These factors are also 

known as the main shortcomings of CMSs. 
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In the present approach used in MOCACEF 1.0 overlapping capabilities between 

machines, and alternative machines for part processing can be automatically taken 

into account while forming cells. This is the main reason why the present cell 

fonnation model produced better results. Therefore it can be concluded that the 

capabilities of production resources must be realised while solving cell formation 

problems. This issue is especially important when the existing job shop contains 

many highly automated machining centres. These machines generally have a 

considerable amount of overlapping capability. Hence, it is not advantageous to 

assign a fixed machine route for components (if not necessary for other reasons) 

which eliminates the opportunity of utilising the alternative resources and flexibility 

available in the job shop. However it is also needs to be stated that consideration of 

all alternative machines for part processing may increase component movement 

between machines and therefore may increase the material handling cost. 

A Computer program MOCACEF 1.0 has been developed during this study as part of 

a decision support-framework to solve cell formation problems. A stand-alone 

version of MOCACEF 1.0 in FORTRAN-90 is given in Appendix IV. 
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CHAPTER SEVEN 

7. DEVELOPMENT OF MULTIPLE OBJECTIVE CELL 

LOADING MODULE 

7.1 INTRODUCTION 

In dynamic manufacturing environments, part families constantly change due to 

changes in design, demand and introduction of new part types. Under these 

circumstances the loading (or part assignment) problem should be considered 

seriously in order to retain the performance of CMS. As was discussed in Chapter 2, 

Greene and Sadowski (1980,1983) classified loading as a controlling activity with 

scheduling under the general topic of "controlling CMS". Loading was responsible 

for distributing parts among feasible cells and scheduling was responsible for 

controlling parts inside cells (i.e. distributing parts among machines in each <;ell and 

their timing). Due to confusion between the terms loading and scheduling in job-shop 

applications, the latter one is considered to contain the former one or vice-versa in 

some other environments. In this Chapter, loading is considered as the main 

controlling activity in CMS and it is defined as follows: loading in eMS is the 

determination of how a part should be assigned to a cell (or cells) in the current 

production period to meet the required performance levels. The determination of 

'how to assign' can be named as the part assignment problem and the determination 

of the performance is related to the operation of system \"ia activities such as 
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scheduling. Therefore, the loading problem can be considered as the combination of 

part to cell assignment and cell scheduling problems in CMS (see Figure 7.1). 

Part to cell 
assignment 

eMS loading 
problem 

+ Cell scheduling 

Figure 7.1 Components of loading problem in CMS 

Loading in CMS is a complex problem. It requires simultaneous solution of the part 

to cell assignment and cell scheduling problems by considering specific system 

constraints and multiple obj ectives. In CMS applications, manufacturing cells are 

considered as independent units inside the factory. The minimisation of interaction 

between cells is necessary to have a true CMS and its potential advantages (Kusiak, 

1990). Increasing the interaction between cells increases the complexity of the 

system and many advantages of CMS disappear. Therefore, the CMS loading 

problem should be considered from this perspective, loading alternatives that result 

in minimum component movements between cells should be determined, and the one 

that closely meets the performance requirements should be found. The overall 

efficiency of CMSs facing changing production requirements can be improved by 

such a loading strategy. 
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In this chapter, a loading approach for CMSs is proposed. As briefly explained in 

Chapter 3, the proposed approach is composed of two integrated sub-modules. In the 

first module the Multiple Objective Tabu Search is used to generate the loading 

scenarios then, in the second module the Simulation based Scheduling System is used 

to obtain the performance of the generated loading scenarios and the final production 

schedule respectively. The parts list (see Chapter 3) that contains the RE-based 

process plans is the main input of the proposed loading system. The process plans in 

the parts list are machine-independent abstract process plans. The final machine-

based process plans are the outcome of the loading system. 

In the following sections of this chapter, the loading problems in cellular 

manufacturing applications are defined, refinements to the original multiple obj ective 

Tabu search algorithm are explained, the simulation and scheduling module is 

presented, and an example application is illustrated. 

7.2 PROBLEM STATEMENT 

The loading problem in CMS can be represented in a schematic form, as shown in 

Figure 7.2. The parts list contains a set of jobs that must be assigned to the existing 

manufacturing cells for processing in the current production period. The processing 

requirements of each part type are defined in terms of REs. The machining capability 

of each machine tool in each cell is also represented by a set of REs. The overall 

capability of each cell is the union of capabilities of its resources as explained in 

Appendix III. Each part is represented by a string that contains necessary information 

in tenns of RE for processing (i.e. operation numbers, RE requirements, machining 
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times etc.). Each cell is also represented by a string that contains information about 

its processing capability in terms of REs (see Figure 7.2). 
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Figure 7.2 Graphical description of the eMS loading problem 
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It may not be possible to assign all operations of a part type to only one cell because 

such a target cell that can satisfy all processing requirements may not be available. 

Inter-cell movement must be considered in such cases. The set of cells for each part 

type is defined as the alternative cells assignment that results minimum inter-cell 

movement. An example network to determine these alternatives is shown in Figure 

7.3. 
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Chapter -: 

Figure 7.3 An example string for a part type and detennination of its alternative cells 

assignment (machining time data is not shown in the string) 

The set of alternative cells assignments for all parts in the part list constitute a 

directed graph (MIG: Minimum interaction graph (Baykasoglu, et. al., 1998-a). MIG 

represents all possible part-to-cell assignment alternatives that results minimum cell 

interaction in the eMS (a hypothetical example MIG graph is shown in Figure 7.-+) 
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Figure 7.4 Construction of the MIG graph for a hypothetical CMS with eight part 

types and three manufacturing cells 
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In Figure 7.4 Part-l is assigned to Cell-l for all of its operations (i.e. operations 

1,2,3,4 as shown on the arrow) that correspond REI, RE2, RE3, RE2 because Cell-l 

can supply all these REs. There is no other cell that can satisfy all processing 

requirements of Part-I, all other assignments result in inter-cell movement, therefore 

only this assignment is included in the MIG graph. 

A solution amongst the alternative solutions available on the MIG graph that best 

satisfies the multiple performance requirements (i.e. mean tardiness, overall 

utilisation and total throughput) should be found. If it is not possible to find such a 

solution then system reconfiguration should be considered. This kind of decision-

making problem may frequently occur in a eMS facing changing production 

requirements. 

The size of the solution space is directly related to the problem size. If the problem 

size gets bigger the solution space increases enormously. In such cases complete 

enumeration of all possible solutions on the MIG graph may not be computationally 

feasible. The total number of part assignment scenarios, LS (i.e. size of the part 

assignment problem) can be determined by the following equation: 

N 

LS=TIRIj 7.1 
i= 1 

where N is the total number of parts and RTi is the number of alternative routes for 

part i (see Figure 7.3». For a problem with 20 parts and each part having 3 

alternatiw; cell assignments there are 3486784399 possible part assignment 

scenarios. It is clear that for the solution of large problems, a complete enumeration 

..., ｾ
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Adil Baykasoglu Development of Multiple Objective Cell Loading A10dule Chapter 7 

strategy is not feasible. Therefore, effective heuristic procedures are required. The 

Tabu search algorithm (see Chapter 5) is employed to solve CMS loading problems. 

From its nature, the problem is a multiple objective type and there are priorities 

between certain types of objectives. For example in this study cell interaction is 

considered as the most important objective since inter-cell movements in a CMS 

should be minimised as much as possible in order to obtain the true CMS with most 

of its advantages. The CMS loading problem is formally represented as a pre-emptive 

goal programming model. The multiple-objective Tabu search algorithm that was 

introduced in Chapter 5 is used to solve the mathematical model. The problem 

specific modifications to the original TS algorithm are explained in detail in the 

following sections. At a lower level, within a cell, (see Figure 7.2), during the 

assignment of parts to machines (the production schedule), practitioners may want to 

optimise more than one objective at the same time. A simulation based scheduling 

approach is employed to generate and simulate the production schedule dynamically. 

Therefore, the objective is to introduce an integrated system by which the part 

assignment and scheduling scenario (i.e. loading) to be finalised is not only based 

upon a high level of decision-making, but also upon the operational level within 

cells. Consequently, the generated solution is unlikely to be inapplicable. 

7.3 MODELLING AND SOLUTION APPROACH 

The loading problem is represented in a pre-emptive goal programming framework 

with the following performance measures: cell interaction, mean tardiness in the 

system, system utilisation and total throughput from the sJ'Stem. The first objective 

function value is obtained from an analytically defined equation and the last three are 
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obtained from the simulation and scheduling module. The objective is to solve the 

loading problem in an integrated environment and to make a decision on the final 

part assignment and scheduling scenario based upon the system performance 

measures obtained from the simulation. The multiple-objective tabu search based 

algorithm is used for solving the simulation optimisation model. The simulation and 

scheduling module (Gindy and Saad, 1996,1997,1998) is developed by using the 

SIMAN V (Pegden, et. al., 1990) simulation language and C/C++ general-purpose 

computer programming language. A simplified flowchart of the proposed integrated 

system is presented in Figure 7.5. The following sub-sections explain in detail the 

entities of the proposed system. 

No 

START 

Part 
List 

Multiple objective 
tabu search 

(Part to Cell Assignment) 

Yes 

Display the best 
solution found 

( STOP) 

RE based Process 
Planning System 

(Generic Part Process 
Plans) 

Part assignment 
vector 

Performance 
vector 

Part to cell 
assignment 

Simulation 
& 

Scheduling 

measures 

Figure 7.5 A simplified flowchart of the loading system 
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7.3.1 Mathematical Modelling 

The following notation is used in the mathematical model: 

i: Part index 

0: Operation index 

k: Cell index 

Indexes 

Parameters 

MC: Number of cells in the current production period 

Chapter 7 

NOPi : Number of operations in part i (each operation corresponds to aRE) 

Rio: RE type (defined by a number) corresponding the o'th operation of part i 

C(RiO)k : If RE corresponding the o'th operation of part i is available in cell k 1, otherwise 0 

MT : Mean tardiness in the CM system (determined by the simulation module) 

MU : Mean utilisation of the CM system (determined by the simulation module) 

TT: Total throughput in the CM system (determined by the simulation module) 

goal_l: Acceptable level of inter-cell movement 

goal_ 2: Acceptable limit for tardiness 

goal_ 3: Desired level of system utilisation 

goa 1_ 4: Desired level of throughput 

Variables 

ｾ ｯ ｫ Ｚ 1 if o'th operation (corresponding RE) of part i is assigned to cell k, 0 otherwise 

dc-,d/: Under and over achievement of goal_l 

dr-,d/: Under and over achievement of goal_2 

du-,d/ : Under and over achievement of goa 1_3 

dq-.dq + : Under and over achievement of goal_ 4 

7-10 
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The pre-emptive goal programming model is given as follows; 

m ｎ ｏ ｾ Ｍ ｬ Me 

L L L IXiok-Xi(o+l)kl+d;-d;=goal_1 
i=l 0=1 k=l 

Me 
I X iok = 1 Vi,o 
k=l 

Me 

L C(Rio)k - X iok > 0 Vi,o 
k=l 

Chapter 7 

7.2 

7.3 

7.4 

7.5 

7.6 

7.7 

7.8 

7.9 

Equation 7.2 represents the lexicographical order of deviational variables to be 

minimised. Equation 7.3 represents the first goal constraint (cell interaction). For a 

part assignment scenario this equation calculates the total number of inter-cell 

movements. Equations 7.4, 7.5 and 7.6 are second, third and fourth goal constraints 

respectively. For a part assignment scenario the values of performance indicators, 

MT, MU and TT are determined from the simulation and scheduling module which is 

explained in subsection 7.3.3. Equation 7.7 ensures that every operation of a part are 

assigned to only one cell. Equation 7.8 ensures that, if an operation of a part is 

assigned to a cell the RE requirement corresponding to that operation is available in 

that cell. 
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7.3.2 Application of Multiple Objective Tabu Search Algorithm to Solve 

Loading Model 

The multiple-objective TS algorithm that was developed in Chapter 5 is employed to 

solve the loading model. However, a number of problem specific features are 

incorporated into the original TS algorithm. The original TS algorithm can also be 

used without any change. The following problem-related modifications are made to 

speed up and improve the performance of the original multiple objective TS 

algorithm: 

Generation of neighbourhood solutions: 

Instead of using neighbourhood generation functions that were presented in Chapter 

4-Section 4.2.1., the following movement strategy is applied for generating the 

neighbourhood solutions from the current solution (the current solution is the initial 

solution in the first iteration of the TS, in the subsequent steps it is the best 

neighbourhood solution): 

• Step-l: Select a part randomly from the current solution. 

• Step-2: Select a cell randomly. 

• Step-3: Starting from the first operation ill the processIng sequence of the 

randomly selected part assign it to the randomly selected cell if it can supply the 

required RE by this operation, if not select another cell randomly which can 

supply it. Continue with the next operation in the processing sequence, if the RE 

required by this operation can be supplied by the current cell assign it to this cell 

otherwise choose another cell randomly which can supply it. Continue to this 

process until all operations of the part are assigned. 

• Step-4: Iterate Steps 1 to 3 until required number of neighbourhood solutions are 

generated from the current solution. 
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By employing this strategy one can easily generate feasible neighbourhood solutions 

that satisfy all hard constraints (Equations 7.7, 7.8). An illustrative example is shown 

in Figure 7.6, in which there are three parts (l st part has 3 operations, 2nd part has 3 

operations and 3th part has 4 operations), three cells and neighbourhood size is 2. 

1st operation is 2 d ti· 3rd operation is . n opera on IS . 

as"gned to ｃ ｾ ｓ ｾ ｾ ｡ ｳ Ｂ Ｌ ｧ ｮ ･ ､ to eel" 

/./0\ 100010 

cell-1 cell-2 cell-3 

( 

Part-1 0 0 1 0 0 0 1 0 
Solution Part-2 1 0 0 0 0 1 0 0 1 
vector 

Part-3 0 1 0 0 1 0 0 1 0 0 0 1 

Neighbour solution-1 

100 100 o 1 0 100 100 001 

100 001 001 ===l 100 001 001 
o 1 0 010 01 0 001 010 010 010 001 

Neighbour solution-2 

100 100 010 100 100 010 

100 001 001 ===l 010 001 001 

o 1 0 010 010 001 o 1 0 o 1 0 o 1 0 001 

Figure 7.6 Neighbour solutions generation (randomly selected parts are bolded) 

Tabu list: 

Indices of randomly selected and reassigned parts are put into the tabu list. 

Aspiration criteria: 

Any move which improves the best known solution is accepted, even if the move is 

tabu (see also Chapter 6-Section 6.3 for more details about aspiration criteria). 
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7.3.3 Simulation and Scheduling Module (SSM) 

In general, scheduling in a manufacturing system is the process of assigning the 

starting and completion times to jobs. Managers generally want to process these jobs 

as efficiently as possible, optimising perhaps flow time in the system, tardiness, 

utilisation of equipment or some other objective. The problem of satisfying more 

than one objective is formulated as a mUltiple objective optimisation problem in 

which the goal is to minimise or maximise not a single objective function but several 

functions simultaneously. As mentioned in section 7.3.1 above, four different 

objective functions are considered in the proposed integrated system. Three of them 

(mean tardiness, system utilisation, and throughput) are obtained from the simulation 

and scheduling module (SSM). 

In the SSM, the simulation model of a manufacturing facility that can be operated as 

a collection of Resource Elements has been built by Saad (Gindy and Saad, 1997). 

Dispatching rules are used as the basis for generating the production schedule. The 

objective of creating dynamic scheduling is to be adaptive and able to respond 

quickly and effectively to changes. The basic idea of the scheduling system is the use 

of generic (machine independent) process plans associated with each part and leaving 

the decision of matching parts to machines according to the processing requirements 

of the parts (in terms of Resource Elements) and the processing capabilities of the 

machines (also in terms of Resource Elements) to a later stage, to improve 

performance levels. Then the final part assignment scenario and the production 

schedule are generated simultaneously. 
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The simulation and scheduling module provides a wide range of dispatching and due-

date assignment approaches to schedule the production and also to help the manager 

to better set due-dates for the jobs. The comparison between these rules is beyond the 

scope of this study, however a detailed comparison has been done by the other 

members of the Responsive Manufacturing Centre (Gindy and Saad, 1996, 1997, 

1998). In this research the Earliest Due-Date rule is used as a dispatching rule (i.e. 

select the job which has the earliest due-date) and the Total Work Content rule as a 

due-date assignment approach (i.e. set the job's allowance equal to the sum of its 

total processing time plus an allowance proportion to the total work content). 

However, any other dispatching and due-date assignment rules can be used if 

required. It is also worth to noting that the research done by Gindy and Saad (1996, 

1997) has shown that RE-based scheduling is less sensitive to the selection of these 

rules. It was also shown, that the RE-based scheduling strategy significantly 

outperforms the traditional machine-based scheduling strategies. In Tables 7.1 and 

7.2 a set of most commonly used dispatching and due date assignment rules are given 

(Blackstone, 1982, Brah, 1996). 

Table 7.1 Dispatching rules 

Name of the dispatching rule Symbol Definition 
Earliest Due-Date EDD Select the job which has the earliest due date: 

JOB·· =DD· lj I 

Minimum Slack Time MST Gives priority to the minimum slack time: 
I 

JOB·· =DD· -t+(TPT - LOP.) lj I I lj 

1=0 

Smallest Remaining Slack per SOPN Gives priority to the minimum remaining slack per 

Operation operation: 

JOBij = DD[ t / (Oi - 0i(t)) 

Shortest Processing Time SPT Select the job that has smallest operation time: 

JOB· = OP· lj lj 
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Table 7.2 Due-date assignment rules 

Name of the due date Symbol Definition 
assiwzment rule 
Total Work Content TWK Set job's allowance is equal to the sum of its total 

processing time plus a constant an allowance proportion 
to the total work content: 
TWJ(. =aTPT 

I I 

Processing Plus Waiting PPW Set job's allowance is equal to the sum of its total 
processing time plus an allowance for non-productive 
inter-operation activities (i.e. waiting in queues etc.): 

- -
PPWj = TPIj + TPT(a -1)0; /0 

Constant Slack Approach SLK Set job's allowance is equal to the sum of its total 
processing time plus a constant slack calculated based 
on the mean processing time of all jobs in the system: 

-

SLK; = TPIj + TPT(a-1) 

In Tables 7.1 and 7.2, i is the job index, j is the operation index, DD; is the due date 

of job i, OPij is the processing time required for thejth operation of job i, lOBi} is the 

priority index of the ith job at the jth operation, t is the present time, TPT; is the total 

processing time of job i, 0; is total number of operations of job i, alt) is total number 

of operations of job i already done at time t, a is the due-date tightness, TPTis the 

mean processing time and 0 is the mean number of operations. 

c 

Figure 7.7 displays the simulation and scheduling module (SSM). As can be seen, the 

inputs to the SSM are the part assignment scenario and the process plans for each 

job, and the outputs are the production schedule and the performance indicators. The 

SSM includes the presentation of the existing resources in a system, scheduling 

engine in terms of dispatching rules, due-date assignment approach and the operation 

and control policies of the system. 
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ｾ

ｾ ｉ ｉ ｉ, 
EDD: Earliest DJe-Dite 
MST: Minimnn Slack TIrre 

SOPN: Srrnllest rermining Slack per Operation 
SPT: Shortest Processing TlJ're 

PPW: Processing Plus Wcliting approoch 
1WK: Total \\brk approach 
SLK : Constant Slack approach 

Figure 7.7 Simulation and scheduling module 

7.3.4 Generation of the Loading and Scheduling Scenario (The simulation 

optimisation cycle) 

The proposed integrated system starts with an initial solution that is randomly 

generated using the Tabu search algorithm or starts with a known feasible solution. A 

set of neighbourhood solutions which represent the possible part assignment 

scenarios are generated by the Tabu search algorithm. Then these solutions are 

passed to the simulation and scheduling module for evaluation. Each time a part 

assignment scenario is generated the simulation model is automatically modified (via 

the parametric simulation approachl) for this scenario by a specially developed 

C/C++ subroutine to represent the new situation. Figure 7.8 graphically depicts the 

parametric simulation system. 

1 In parametric simulation approach a part or whole) of the simulatIon program IS ､ ｹ ｮ ｾ ｭ ｩ ｣ ｡ ｬ ｬ ｹ
regenerated i.e. the model itself is a parameter in relation to ne\\ requlIements l.e. new 
neighbourhood solutions \ here new feasible part to cell assignment are generat d see al 0 hapter 

ｾ ection 2.4.3. 
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Multiple 
Objective 

Tabu Search 

->< '-' c: -

X Translator .... Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ ｉ .. ｾ (Interface program which updates 
SIMAN expenmental file) 

ｾ

ｾ Ｂ Ｇ ｉ

, , - -Simulation 
""'-----I Model .... 

X: Part assignment vector 

f, (X) , ... J n(X): Perfonmance indicators 

E:J : SIMAN Experimental file 

Figure 7.8 Parametric simulation system 

Chapter 

The optimisation cycle starts once the simulation and scheduling module sends back 

the perfonnance vector to the Tabu search algorithm (refer Figures 7.5 and 7.8), at 

this stage the Tabu search algorithm calculates deviational variables, selects the best 

current solution, updates the best known solution and generates new neighbourhood 

solutions. This process continues until convergence. After convergence, the system 

will stop and generate two different outputs: first, the part assignment scenario with 

the perfonnance indicators associated with this particular scenario, second, the 

detailed production schedule. 

7.4 EXPERIMENTAL WORK 

The proposed system has been applied to a hypothetical manufacturing facilit ! 

containing 12 machine tools that perfonn a wide ariet of machining operations .g. 
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turning, milling, drilling etc. The machine tools are assigned to four virtual 

manufacturing cells as an initial solution (the prevIous production periods) and 

represented as a collection of resource elements (see Table 7.3) and the parts are 

dispatched to the system according to their RE-based generic routes (see Table 7.4). 

The parts and materials are transported in the system by an AGV system. There are 5 

AGVs available in the system. The layout of the system is shown in Figure 7.9. The 

AGV net is also represented in Figure 7.9. 

eMS 

System Input 
& 

Staging Area 

System Exit 

'----link_1 Ｍ Ｍ Ｍ ｉ ｉ ｾ ＼

---link_1S 

link_12 link 21 

[7Jot[]j 
> ...... ___ -link_11 

Figure 7.9 Layout of the prototype eM system 
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Table 7.3 Virtual cell capabilities based on REs 

Resource Elements 
Virtual Machine Tools 1 2 3 4 5 6 7 8 9 10 11 
Cells 

I-Drill Press-l * 

1 2-MHP Machining Centre-l * * * * * * * * 
3-Colchester Lathe-l * * * * 
4-MHP MTSO NC Lathe-2 * * * * * 

2 9-CNC Grinding Machine-2 * * 
10-J&S Cyc. Grinder * 
7-MHP MTSO NC Lathe-l * * * * * 

3 8-MHP Machining Centre-2 * * * * * * * * 
II-Colchester Lathe-2 * * * * 
12- J&S Surf. Grinder * 

4 S-MHP Machining Centre-3 * * * * * * * * 
6-CNC Grinding Machine-l * * 

Production of 20 different part types is required. Part processing requirements and 

related technical information as generic process plans in terms of REs are listed in 

the part list that is shown in Table 7.4. All values in the table are assumed values to 

test the system. 

Table 7.4 Part list: generic part process plans 

Part # # Operations #RE Operation # Operation # Operation # Operation # 
(NOP) 1 2 3 4 

1 3 3 REI(60)* RE2(80) RE4(90) 
2 3 3 REI(SO) RE2(60) RE3(40) 
3 3 3 RES(20) RE6(60) RE7(80) 
4 2 2 RE8(40) RES(SO) 
S 3 3 RE7(SO) RE4(60) RES(80) 
6· 3 3 RE8(SO) RE6(SO) RE7(60) 

7 3 3 RE8(70) RE9(70) RE 1 0(80) 

8 3 3 RE9(60) REIO(SO) REI 1(90) 

9 3 3 RES(70) REl(SO) RE2(30) 

10 2 2 RE3(40) RE4(SO) 

1 I 3 3 RES(SO) RE6(SO) RE9(40) 

12 3 3 REIO(70) RE8(80) RE9(80) 

13 3 3 RES (1 0) RE8(30) REIO(SO) 

14 3 3 RE8(SO) RE7(40) RES(SO) 

IS 2 2 REl(60) RE2(20) 

16 2 '1 RE3(60) RE4(30) 

17 3 3 RE6(40) RE7(SO) RE8(70) 

18 ｾ ｾ RE8(SO) RE9(SO) RE 1 O(SO) REl1(20) 

19 2 2 RES(50) RE2(50) 

20 3 3 R£7(10) RE8(SO) RE9(30) 

* RE#(A): Resource Element number(Processmg tIme + set up tIme) 
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The proposed integrated system (the loading module) was applied to the above case. 

The inter-cell movement limit (i.e. goal) was set to zero, the tardiness goal was set to 

zero, the utilisation goal was set to %65, and the total throughput goal was set to 

5000 parts. The number of iterations was 250 and in each iteration three 

neighbourhood solutions were generated. This required 750 simulation experiments. 

The following operating assumptions are made in the simulation: 

• Deterministic processing time at each machine tool. 

• Set up time is included in the operation time. 

• Production orders arrive at the system using exponential distribution for the 

demand in the planning period. 

• Machine breakdown and corrective maintenance work do not occur during the 

production run. 

• Due dates are calculated using the TWK approach as explained in section 7.3.3. 

• Dispatcher uses EDD rule as explained in section 7.3.3. 

The proposed integrated system was developed and executed on a PC 32 MB RAM 

and 200 MHz. The time required to finish the 250th iteration was 123 minutes. This 

means that the proposed system requires modest computing power to generate the 

solution. The time will vary depending upon the computing power available and the 

size of the problem (i.e. the number of neighbourhood solutions and the number of 

iterations ). 

The results obtained from the experimental study are shown in Figures 7.10-7.12, 

The interpretation of results shows that inter-cell movement goal has nearly been 

satisfied (i.e. only one part type requires inter-cell mo\'ement), This may be due to 
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the existing overlapping capabilities between machine tools and cells that gIve 

flexibility in loading the entire system. Although the system converged to a good 

solution, the satisfaction level of objectives may not be acceptable to the decision-

maker. In this case one possible action that can be taken is the modification of the 

existing configuration to Improve the solution (reconfiguration action). 

Reconfiguration IS explained in the following chapter by continuing the same 

example. Figure 7.10 shows the conversion behaviour of the performance measures 

considered in this research work. Figure 7.1 O-a displays the convergence of inter-cell 

movement performance. Figure 7.-10-b displays the convergence of the mean 

tardiness performance and so forth. As more important measures are improving the 

less important measures may not improve or may temporarily deteriorate. There is a 

deterioration between iteration numbers 3-18 in the mean tardiness performance 

because in the same interval the inter-cell movement objective is improving which 

was considered as the most important objective. The same behaviour can also be 

observed for the other performance measures. Nevertheless, when a higher 

importance measure stabilises the lower importance measures continue to improve to 

better values as can be seen from convergence graphics in Figure 7.10. Consequently 

all objectives are tried to be optimised simultaneously. 

Typical part-to-cell assignment and production schedule information for the best 

solution generated from the developed integrated loading system are presented in 

Figures 7.11 and 7.12 respectively. Figure 7.11 depicts the part to cell assignment 

output that consists of information about the route of each part to be processed in the 

system and some performance indicators associated with this particular part-to-cell 

assignment scenario. For example. part type number 1 needs three different 

ｾ - .,.., 



Adil Baykasoglu Development of Multiple Objective Cell Loading Module Chapter -; 

operations, first is Resource Element number 1 which will be provided from cell 

number 1, second, is Resource Element number 2, the part is going to get this 

resource from cell 1 and the third, is Resource Element number 4 which is aoina to 
::;, ::;, 

be provided by cell 1 as well, and so forth for the rest of the twenty part types in the 

list. The performance indicators that have been used to make a decision on the final 

loading are shown at the bottom of Figure 7.11, they are: inter-cell load transfer, 

mean tardiness, overall system utilisation and the total throughput from the system. 

Figure 7.12 depicts a part of the generated production schedule. As can be seen from 

Figure 7.12, scheduling output consists of information about the machine route of 

each part in each cell and their start and finish times. For example, Part Type-12 

(which is assigned to cell-I, see Figure 7.11) with ID number 2 is processed on 

Machine-2 for its first operation (which corresponds to REI0) between 0-70 sec., for 

its second operation (RES) is processed on Machine-2 between 70-150 sec., for its 

last operation (RE9) is again processed on Machine-2 between 151-231 sec. and so 

forth for the rest of the parts. 

5 

4.5 
ｾ

Q,) 4 -en 
c::: 
C'a 3.5 ｾ-Q,) 
0. 3 >. -1:: 2.5 C'a 
0. 

(j) 2 
ｾ
ｾ

.! 1.5 
c::: 

C'a 1 
'0 
I- 0.5 

... ... 
"., ... --_.-

co ('t') 0 l"- V ...... co L.() N 
co 0 N C") L.() I"- co 0 N 

...... ...... ...... ...... ...... ..- N N 

Num ber of iterations 

Figure 7.10-a. Total inter-cell movement 
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Figure 7.10 The conversion behaviour of the performance measures considered in 

the case study 

As shown in Figure 7.12 the final routes of the parts are given based on the machines 

to be used for their processing. These are also the final process plans of the parts that 

have been determined by the SSM module. The SSM module started with the generic 

part process plans and selected the suitable machines based on the shop conditions 

(simulation process) successfully that defines the final process plans and produced 

schedules for the given manufacturing environment. Consequently, the integration of 

process planning and loading is achieved. 
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@ opt_load. txt - Notepad I!lIil a 
file ｾ ､ ｩ ｴ ｾ ･ ｡ ｲ ｣ ｨ tielp 

================================================== • 
PROGRAM RE-MOCL 

Multiple Objectiue Tabu Search Based Integrated 
System for Loading CMS 

================================================== 

Optimum Part to Cell Assignments 
--------------------------------
Part Type-)1 { 1 (1) , 2 (1) , 4 (1) } 
Part Type-)2 { 1 (4), 2 (4), 3 (4)} 
Part Type-)3 { 5 (3), 6 (3), 7 (3)} 
Part Type-)4 { 8 (2), 5 (2)} 
Part Type-)5 { 7 (2), 4 (2), 5 (2)} 
Part Type-)6 { 8 (4), 6 (4), 7 (4)} 
Part Type-)7 { 8 (1) , 9 (1), 10 (1)} 
Part Type-)8 { 9 (2), 10 (2), 11 (2)} 
Part Type-)9 { 5 (2), 1 (2), 2 (2)} 
Part Type-)10 { 3 (2), 4 (2)} 
Part Type-)11 { 5 (4), 6 (4), 9 (4)} 
Part Type-)12 { 10 (1), 8 (1), 9 (1)} 
Part Type-)13 { 5 (4), 8 (4),10 (4)} I 
Part Type-)14 { 8 (4), 7 (4), 5 (4)} 
Part Type-)15 { 1 (1),2 (1)} 
Part Type-)16 { 3 (2), 4 (2)} 
Part Type-)17 { 6 (3), 7 (3), 8 (4)} 
Part Type-)18 { 8 (2), 9 (2), 10 (2), 11 (2)} 
Part Type-)19 { 5 (3), 2 (3)} 
Part Type->20 { 7 (1), 8 (1), 9 (1)} 

I 
Some Performance Indicators 

Total Intercell Traffic =1.0 
Mean Tardiness in the System =461.42 
Overall System Utilisation =55.04 
Total Troughput from the System =4334.0 

ｾ ｾ
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Figure 7.11 Part assignment scenario generated by the loading system 
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14/17 OperationNo: 
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8/18 OperationNo: 

12/ 5 OperationNo: 
22/ 4 OperationNo: 
18/10 OperationNo: 
30/ 5 OperationNo: 
32/ 3 OperationNo: 
26/13 OperationNo: 

1 V Cell: 1 Machine: 
1 V Cell: 2 Machine: 
1 V Cell: 3 Machine: 

2 RE: 10 Start: 0 ｆ ｾ ｮ ｾ ｳ ｨ Ｚ 70 
8 RE: 8 Start: 28 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 68 
9 RE: 6 Start: 37 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 77 

1 V Cell: 2 Machine: 7 RE: 7 Start: 58 Finish: 108 
1 V Cell: 2 Machine: 11 RE: 7 Start: 60 Finish: 110 
1 V Cell: 2 Machine: 8 RE: 8 Start: 68 ｆ ｾ ｮ ｾ ｳ ｨ Ｚ 118 
2 V Cell: 2 Machine: 12 RE: 5 Start: 68 ｆ ｩ ｮ ｾ ｳ ｨ Ｚ 118 
2 V Cell: 1 Machine: 2 RE: 8 Start: 70 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 150 
2 V Cell: 3 Machine: 4 RE: 7 Start: 77 Finish: 127 
1 V-Cell: 3 Machine: 10 RE: 6 Start: 89 Finish: 129 
2 V Cell: 2 Machine: 7 RE: 4 Start: 109 Finish: 169 
2 V Cell: 2 Machine: 11 RE: 4 Start: 110 ｆ ｾ ｮ ｾ ｳ ｨ Ｚ 170 
1 V Cell: 2 Machine: 8 RE: 3 Start: 118 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 178 
1 V Cell: 1 Machine: 1 RE: 1 Start: 127 Finish: 187 
3 V Cell: 4 Machine: 5 RE: 8 Start: 128 Finish: 198 
2 V Cell: 3 Machine: 4 RE: 7 Start: 129 Finish: 179 
3 V Cell: 1 Machine: 2 RE: 9 Start: 151 Finish: 231 
1 V Cell: 4 Machine: 6 RE: 5 Start: 167 Finish: 177 
3 V Cell: 2 Machine: 12 RE: 5 Start: 169 ｆ ｾ ｮ ｾ ｳ ｨ Ｚ 249 
2 V Cell: 2 Machine: 8 RE: 9 Start: 178 Finish: 228 
2 V Cell: 2 Machine: 7 RE: 4 Start: 178 Finish: 208 
2 V Cell: 1 Machine: 3 RE: 2 Start: 188 Finish: 208 
2 V Cell: 4 Machine: 5 RE: 8 Start: 198 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 228 
3 V Cell: 4 Machine: 5 RE: 8 Start: 228 Finish: 298 
1 V Cell: 2 Machine: 8 RE: 3 Start: 228 ｆ ｾ ｮ ｾ ｳ ｨ Ｚ 268 
3 V Cell: 2 Machine: 7 RE: 10 Start: 228 Finish: 278 
3 V Cell: 2 Machine: 12 RE: 5 Start: 249 Finish: 329 
1 V Cell: 2 Machine: 8 RE: 8 Start: 268 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 308 
2 V Cell: 2 Machine: 11 RE: 4 Start: 268 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 318 
1 V Cell: 2 Machine: 7 RE: 7 Start: 283 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 333 
1 V Cell: 3 Machine: 9 RE: 5 Start: 295 ｆ ｾ ｮ ｩ ｳ ｨ Ｚ 315 

3 ｾ ｾ ･ ｾ ｾ Ｚ 4 Machine: 5 RE: ｾ ｏ ｟ ｓ ｴ ｡ ｲ ｴ Ｚ ｟ Ｚ ｾ Ｘ ｟ ｾ ｾ ｾ ｩ ｾ ｨ Ｚ ｟ ｾ Ｚ Ｘ ｾ

CAP !NUM d 

Figure 7.12 A part of the production schedule generated by the loading system 

7.5 CONCLUSIONS 

An integrated system for loading CMSs is proposed and explained in detail with an 

application example in this chapter. The proposed system constitutes the loading 

module of the multiple objective decision-support framework that can e aluate 

performance of the CMS and gives an indication for reconfiguration action. It is able 

to integrate process planning and loading decisions ia a parametric simulation 

optimisation strategy that is formally represented in a goal programming structur . 
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The problem modelling and solution strategy implemented in the present CMS 

loading approach, contains the following distinguishable features which have not 

been not considered in the literature: 

• A multiple objective simulation optimisation approach is proposed where the 

simulation model is a parameter that is modified according to different part-to-cell 

assignments (i.e. parametric simulation optimisation strategy). Based on the 

literature review of this thesis no equivalent approach for solving loading 

problems of CMS has been found (see Chapter-2). By using the present hybrid 

modelling strategy many characteristics of a CMS such as part arrival times, 

queuing times etc. which are not easy to formulate analytically can be modelled in 

simulation, and optimisation can be achieved by the TS algorithm. Therefore it is 

possible to obtain realistic results for implementation. 

• In the present approach part-processing requirements are not defined in terms of 

machines; generic part process plans are used which provide an opportunity to 

utilise alternative machines for part processing. By using this strategy, a seamless 

integration of process planning with loading is achieved. Although integration of 

process planning and scheduling was considered in the literature (Chryssolouris 

and Chang, 1985, Carvalho and Gindy, 1995), it has not been considered in 

solving CMS loading problems. Achievement of this integration is a result of 

using REs in problem modelling. REs can define part processing requirements and 

machine capabilities in the same language. Therefore one can create a simulation 

model that dynamically matches part-processing requirements with suitable 

machines by considering the current status of the CMS (in a simulation study). 

The RE based scheduling strategy used in this research was proposed by Gindy 

and Saad (1996). It was shown in their research that RE-based scheduling is more 
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advantageous than machine-based scheduling in achieving higher manufacturing 

system performance. However, RE-based scheduling may demand more material 

handling. It can be concluded that, due to using the same language (RE) in 

defIning part processing requirements and machine capabilities, integration of 

loading (part to cell assignment + cell scheduling) and process planning can be 

achieved within a simulation optimisation framework such as the one presented in 

this chapter. 

• In the present model, the possibility of inter-cell movement is considered. This 

issue has not been addressed in the past research (Greene and Sadowski, 

1983,1986, Elmaraghy and Gu, 1989). Research on CMS has generally 

concentrated on the cell formation problem, the CMS loading problem has not 

receive enough attention. Therefore the current research may be useful in fIlling 

this gap. 

The paper published by Greene and Sadowski (1986) is the only available paper 

which presents a mathematical modelling approach for CMS loading problems (i.e. 

simultaneously determining part to cell assignment and cell scheduling) (see also 

Chapter 2-Section 2.6). Therefore it may be useful to compare characteristics of their 

model with the present model. In their model the following assumptions were made: 

A part can only be assigned to one cell and existence of at least one such cell for all 

parts is assumed, no cell has more than one machine of any type, cells do not have to 

have a machine of every type, part routes are machine based and fIxed, a part type 

can visit any machine a maximum of once, additionally their dynamic characteristics 

such as part arrivals, queue lengths etc., were not considered. As explained above, 

none of these assumptions are made in the present model. Therefore eMS 

en\'ironments can be presented more realistically. Consequently better loading 
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solutions can be obtained. They also concluded in their paper that their model is 

suitable only for very small problems due to the number of variables necessary for 

modelling. The present model does not require many variables because it uses a 

hybrid-modelling approach and only part-to-cell assignments constitute model 

variables. Scheduling is achieved by simulation. However, the present model 

demands high computational power. It took 123 minutes to solve the test problem 

that has 20 part types, 12 machines, 4 cells and 11 REs. 

Several other test problems have also been solved by the proposed loading system. 

One more example with relatively bigger size is shown in Appendix VII. However, 

more computational work can be useful to estimate the quality of the generated 

solutions in relation to maximum number of iterations. It may also be useful to 

investigate the effect of changing the orders of objectives on the quality of generated 

solutions. These issues require comprehensive computational experiments with the 

proposed model therefore can be considered as future work. 

The results of this study shows that it can be possible to improve and/or sustain the 

performance of CMSs facing changing production requirements through loading 

mechanisms like the one presented here. Implementation of such mechanisms is also 

useful while making decisions about CMS reconfiguration, because they can assess 

the performance of CMS facing changing production requirements. A computer 

program named as RE _MOCL (Resource Elements based Multiple Objecti\'e Cell 

Loading) has been developed with C/C++ and SIMAN to implement the loading 

module. 
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CHAPTER EIGHT 

8. DEVELOPMENT OF MULTIPLE OBJECTIVE 

RECONFIGURA TION MODULE 

8.1 INTRODUCTION 

Chapter 8 

In this chapter the reconfiguration module of the integrated decision support 

framework is presented. Reconfiguration decisions are known to be complex decision 

making problems (Rheault et. at., 1995). It is necessary to consider the 

reconfiguration of cellular manufacturing systems (CMS) in some production periods 

due to unsatisfactory performance levels (high tardiness, low throughput etc.) which 

is related to changing production requirements. As discussed in Chapter 2 

performance problems are common in manufacturing environments due to constantly 

changing needs. The sensitivity of CMSs to changes is also very well known (Sasani, 

1990, Kochikar and Narendran, 1998, Seifoddini and Djassemi, 1996, 1997). 

Therefore, it is necessary to find some ways to reconfigure CMSs to reduce or even 

to eliminate performance deterioration under changing manufacturing environments. 

However, there is not a known strategy to reconfigure CMSs as discussed in Chapter 

2. One logical approach can be the use of the virtual manufacturing cell (Ve) 

concept. This concept was proposed by The National Bureau of Standards (NBS) 

(McLean et. aI., 1982). It is based on the belief that the factory of the future could be 

served by a hierarchical structure that could dynamically alter its subsystem 

allocations as requirements changed. This concept is similar group technology where 
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job families are processed in manufacturing cells. The major differences between a 

virtual cell (VC) and group technology is in the dynamic nature of the virtual 

manufacturing cell; whereas the physical location and identity of traditional group 

technology cells is fixed, the VC is not fixed and will vary with changing 

requirements. The VC is a powerful concept, which allows the flexible 

reconfiguration of shop floors in response to changing requirements. 

Drolet and her colleagues, (Drolet et. ai., 1989,1990, Montreuil et. al., 1992) further 

studied the VC concept and developed algorithms for creating and scheduling them. 

In their Virtual Cellular Manufacturing Systems (VCMS) framework, when a job 

order needs a set of workstations to be put together, a VC controller takes over the 

control of these workstations and makes communication possible between them. A 

workstation is either a member of a pool of available workstations or member of a 

VC. VCs are created by using minimum-spanning-tree algorithms (MST). The 

candidate machine tool set for the most prioritised job order is determined first, then 

the sub-set which has the minimum travelling distance score is determined by the 

MST algorithm, finally a VC controller is created and assigned to the job order. The 

same procedure is iterated for the remaining job orders. If a machine is member of 

more than one VC, the most prioritised job has the priority for processing. However, 

there are some drawbacks in their way of creating VCs that can negatively affect the 

performance of CMS. The possibility of using other objectives for creating VCs was 

not considered. If multiple jobs are required to be processed simultaneously, the 

minimisation of travel distance for each job separately might not result in a good or 

competitive shop performance. A comparison with FIFO scheduling \vas made by 

Chatterjee (1992) and no performance superiority was obseryed. The processing 
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requirements of parts are defined based on machine requirements and the possibility 

of using alternative machines was not considered in their framework. The realisation 

of machine capabilities can be beneficial for creating VCs. As a final remark there is 

no mechanism to avoid machine sharing when possible, in fact, machine sharing! 

increases the complexity of the control considerably. 

There is no explicit decision making for reconfiguration in VCMS. Reconfiguration 

is a natural process and happens continuously when ajob order arrives. As concluded 

by Drolet et. aZ.(1995), their framework can be applied to highly automated factories 

of the future which have not more than 20 highly productive machines and a flexible 

automated material handling system. However, by using virtual cell definition it is 

also possible to make reconfiguration decisions explicitly and to find globally 

optimal solutions. In the present approach, reconfiguration decisions are made 

periodically in discrete production periods. When the CMS is found not to perform 

well after loading then a reconfiguration action is triggered. Therefore 

reconfiguration is an explicit decision and it is based on performance indicators 

determined by the loading system. Reconfiguration is achieved by generating virtual 

cells. The virtual cell formation is logically similar to McLean et. al. (1982)'s and 

Drolet et. al. (1989) virtual cell definition i.e. while forming VCs only cell 

memberships of machines are updated, machines are not dislocated physically. 

However in the present approach, formation of virtual cells is decided based on the 

system performance measures in discrete time periods and while forming them, 

alternative machines for part processing are considered and machine sharing is 

avoided when possible. 

1 Assigning a machine to more then one virtual cell. 
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The following definition is used for virtual cells in this thesis (Gindy, 1997, 

Baykasoglu et. aI., 1998-b): A virtual cell is an objective driven logical grouping of 

manufacturing resources. In this chapter, a hybrid mathematical programming-

simulation optimisation model is proposed to generate virtual cell configurations. It 

is also aimed to understand whether it is possible to improve the performance of 

CMS by using virtual manufacturing cells. 

8.2 THE RECONFIGURATION STRATEGY 

In this work reconfiguration is performed by creating virtual cells based on the 

following strategy, VC creation is decided by the higher level planning systems i.e. 

production planning system. If the current set of virtual cells cannot cope with the 

new production requirements launched by the production planning department (as 

part lists) then a new set of VCs is generated. Multiple performance measures and 

capabilities of available machine tools as REs are considered in VC generation. 

Interaction between VCs (inter-cell movement or machine sharing) is also 

minimised. Therefore the framework can easily be applied to traditional CMSs. 

As summarised in Chapter 3 the following steps are followed for reconfiguration. 

The performance of the current configuration is evaluated by the simulation-

optimisation based loading system for the coming production period and a decision 

with regard to reconfiguration is made. If the performance of the current 

configuration was found unsatisfactory then reconfiguration is done before actual 

production starts. Based on the capability of the available resources and production 

requirements of parts in the coming production period, candidate virtual cell 

scenarios which satisfy the previously defined constraints (e.g. cell size etc.) are 
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generated and the one which best satisfies the performance measures (inter-cell 

movement, mean tardiness, overall utilisation and total throughput) is adopted. The 

model is formally represented in a pre-emptive goal programming framework and 

solved by the multiple objective Tabu search algorithm proposed in Chapter 5. 

8.3 MATHEMATICAL MODELLING OF VIRTUAL CELL 

FORMATION PROBLEM 

The virtual cell formation problem is formally represented as a pre-emptive goal 

programming model with the following performance measures; cell interaction, mean 

tardiness in the system, mean system utilisation and average throughput from the 

system. The first objective function value is obtained from an analytical equation that 

was presented in Chapter 7, and the last three are obtained from the parametric 

simulation/scheduling module that was also explained in Chapter 7. 

The pre-emptive goal programming model for virtual cell formation is gIven as 

follows: 

8.1 

Constraints 

m ｎ ｏ ｾ Ｍ Ｑ gmax 

:L L L IXiOk-Xi(O+I)kl+d;-d;=goal_l 8.2 

i=1 0=1 k=1 
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8.5 

ｳ Ｍ ｾ
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where: 

j: Machine index 
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8.6 
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8.8 

8.9 
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8.11 

8.12 

Pj(Rio): IfRE corresponding to the o'th operation of part i is available on machine} 1, 

otherwise 0. 
I , 

g: Number virtual cells 

gmax: Maximum number of virtual cells 

gmin: Minimum number of virtual cells 

Mmin: Minimum number of machines in a virtual cell 

Mmax: Maximum number of machines in a virtual cell 

ｾ Ｇ ｏ ｫ Ｚ 1 if o'th operation (corresponding RE) of part i is assigned to virtual cell k, 0 

otherwise. 

r'k: 1 if machine j is assigned to virtual cell k. 0 otherwise ) . 
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Zk: 1 if virtual cell k is formed, 0 otherwise 

For the rest of the notation refer to Chapter 7-Section 7.3.1 

Equation 8.1 represents the lexicographical order of the deviational variables to be 

minimised that is similar to objective function that has been presented in Chapter 7. 

Equation 8.2 represents the first goal constraint (cell interaction). For a concurrent 

virtual cell creation scenario this equation calculates the total number of inter-cell 

movements. Equations 8.3, 8.4 and 8.5 are second, third and fourth goal constraints 

respectively. The numeric values of MT (mean tardiness in CMS), MU (mean system 

utilisation of eMS) and TT (total throughput from the eMS) are obtained from the 

simulation/scheduling module. Equation 8.6 ensures that each operation of a part 

type is assigned to only one virtual cell. Equation 8.7 ensures that every machine is 

assigned to only one virtual cell. Equations 8.8 and 8.9 limit the number of machines 

assigned to each virtual cell if it is formed. Equation 8.10 ensures that, if an operation 

of a part is assigned to a virtual cell the RE corresponding to that operation is 

available in that cell. Maximum and minimum number of virtual cells are determined 

by using Equation 8.12. The solution of the above model is achieved by the multiple-

objective Tabu search algorithm that has been developed in Chapter 5. The problem 

specific adjustments to the original Tabu search algorithm in order to improve its 

effectiveness are explained in the following section. The above model may produce 

some cells with machine assignment but no part assignment (due to excess capacity, 

non-required REs in some periods, etc.). These cells are merged and considered as a 

pool cell. 
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As it can be seen from the above formulation, the objectives of the virtual cell 

fonnation (i.e. reconfiguration) are similar to the loading model's (see Chapter 7) 

objectives and constraints are similar to the initial cell fonnation model's (see 

Chapter 6) constraints. This fact explains the logic behind the virtual cell fonnation 

process. The main purpose of the virtual cell fonnation process is to improve the 

operational performance (tardiness, throughput etc.) of the CMS in the existing 

production period by satisfying design constraints (i.e. cell size etc.). In the virtual 

cell formation step, demand in the current loading period is taken into account, 

therefore the time span is limited to that period (it may be longer if demand does not 

change or affect performance in the following loading periods). However, in the 

initial cell formation process, satisfaction of the design objectives is the main 

purpose. In the initial cell fonnation step gross demand for the entire planning 

horizon is taken into account to determine the overall structure of the CMS system. 

8.3.1 Application of Multiple Objective TS algorithm to Solve Virtual Cell 

Formation Model 

The multiple-objective Tabu Search (TS) algorithm that has been developed in 

Chapter 5 is employed to solve the virtual cell fonnation model. However, a number 

of problem-specific features are incorporated into the original TS algorithm to 

improve its convergence speed. The original TS algorithm can also be used without 

any change. The following problem-related modifications are made: 

Initial Solution: 

The worst performing virtual cell configuration in the preceding production period 

constitutes the initial solution. 
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Generation of neighbourhood solutions: 

Instead of using the neighbourhood generation functions that were presented in 

Chapter 4-Section 4.2.1., the following movement strategy is applied for generating 

neighbourhood solutions from the current solution (the current solution is the initial 

solution in the first iteration of Tabu search, in the subsequent steps it is the best 

neighbourhood solution): 

• Step-l: (Determination of cell sets) Determine the set of cells which has more 

machines than Mmin and less than Mmax and call this set as Cmm. Determine the set of 

cells which has Mmin number of machines and call this set as Cqm. Determine the set 

of cells which has Mmax number of machines and call this set as Cxm. If the total 

number of cells is less than gmax in the current configuration then, call the 

remaining empty set as Cern. 

• Step-2: Select a non-empty cell randomly (call it as feeder cell). Then, select Mmin 

number of machines randomly from this cell. 

• Step-3: Select another cell randomly which does not belong to Cxm set (target cell). 

If the selected cell belongs Cem set then assign all M min number of machines to that 

cell. If the selected cell belongs Cqm or Cmm set then, assign only one of the 

randomly determined machine to that cell. Then update the cell set statues and 

pick up another cell randomly from Cqm or Cmm sets and assign one machine then 

update cell set statutes and continue the same procedure until all machines are 

assigned. 

• Step-4: Check all cells for the parts that have operations assigned to them but they 

cannot satisfy these operations (i.e. they do not have corresponding RE because 

machine reassignments). Collect these parts in a set and call this set as ｐ ｾ Ｎ If p" is 
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empty then randomly select a part from a randomly determined non-empty cell 

and put it into Pu' 

• Step-5: Starting from the first operation in the processing sequence of the first part 

in the set Pu, assign it to the randomly selected non-empty cell if it can supply the 

required RE for this operation, if not select another non-empty cell randomly 

which can supply it. Continue with the next operation in the processing sequence, 

if the RE required by this operation can be supplied by the current cell assign it to 

this cell otherwise choose another cell randomly which can supply it. Continue to 

this process until all operations of the part are assigned. Apply the same procedure 

to the other parts in the set Pu' 

• Step-6: Iterate Steps 1 to 5 until the required number of neighbourhood solutions 

are generated from the current solution. 

By applying the above heuristic movement strategy it is possible to generate feasible 

solutions quickly and it is an effective strategy for achieving the first goal. 

Tabu list: 

Indices of randomly selected and reassigned machines and part pairs are put into the 

tabu list. 

Aspiration criteria: 

Any move that improves the best known solution is accepted, even if the move is 

tabu (see also Chapter 6-Section 6.3 for more details about aspiration criteria). 
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8.4 EXPERIMENTAL WORK t 

The best loading scenario that was obtained by the loading module in Chapter 7 was 

considered not good enough to satisfy performance targets set by the decision-maker 

(the decision-maker goals were set to 0 for inter-cell part type transfer, 0 for mean 

tardiness, 65% for system utilisation, and 5000 for total throughput). The 

performance measures obtained from the loading module with the given virtual cell 

configuration were 1 inter-cell part type transfer, 461.42 mean tardiness, 55.04%) 

system utilisation, and 4334 total throughput. In particular, mean tardiness, system 

utilisation and total throughput goals were candidates for further improvement. The 

decision to improve the performance measures by reconfiguration (i.e. regenerating 

VCs to better satisfy the current production requirements) is taken. All the technical 

data necessary for reconfiguration were given in section 7.4 of Chapter 7. 

The number of iterations in the reconfiguration module was 250 and in each iteration 

three neighbourhood solutions were generated. This required 750 simulation 

experiments. Every time a feasible candidate neighbour is generated by the Tabu 

search algorithm the simulation experiment file is automatically regenerated for this 

solution to reflect the new scenario. The time required to finish 250 iterations was 

125 minutes on a Pentium 200 PC with 32MB RAM. The computational time is 

directly dependent on the size of the problem, number of iterations, the number of 

neighbourhood solutions generated in each iteration and the computational power 

available. 

t The experimental work of this section is a continuation of the experimental work that was presented 

in Chapter 7-Section 7.-+. 
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The results obtained from the experimental study are shown in Figures 8.1-8.3. The 

interpretation of the results show that the inter-cell movement goal and the mean 

tardiness goal are totally satisfied after generating a new set of virtual cells. The 

system utilisation is improved from 55.040/0 to 60.318% in the new virtual cell 

configuration which is now nearer to the decision-maker's goal which was 65%. The 

total throughput goal is improved from 4334 to 4970 in the new virtual cell 

configuration which is nearer to decision-maker's goal of 5000. The results obtained 

from this experiment show that performance measures can be improved by using 

virtual cells as a reconfiguration strategy. 

In Figure 8.1 the conversion behaviour of the performance measures considered in 

this research work are shown. Figure 8.1-a displays the best neighbourhood solutions 

for the inter-cell part type transfer objective and how the developed system reduced 

inter-cell movement to zero in iteration number 2 (see also zoomed section between 

iteration numbers 1 to 3 in Figure 8.1-a and iteration numbers between 14 to 55 in 

Figure 8.1-b). The purpose of these zoomed parts is to help in understanding why the 

other performance measures, 'utilisation' and 'throughput' have changed to worse 

values between these iteration numbers. Because, 'inter-cell movement' and 'mean 

tardiness' improved during these iterations. In short, objectives with lower priorities 

may deteriorate temporarily while objectives with higher priorities are improving. 

While more important objectives are not improving, less important objectives 

continue to improve. All objectives can also improve simultaneously. As a result all 

objectives are optimised simultaneously. 
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The outputs of the reconfiguration module are the new set of virtual cells, part to cell 

assignment and schedules for virtual cells that are presented in Figures 8.2 and 8.3. 

The performance improvement by the new virtual cell configuration is also shown in 

Figure 8.4. This figure depicts the best possible performance without generating a 

new set of virtual cells and the best possible performance after generating a new set 

of virtual cells. As can be seen from the figure all performance measures are 

considerably improved. 

Further experimental work is carried out with another, demand scenario where the 

above final configuration constitutes the initial configuration. Detailed explanations 

and results are given in Appendix VII. The results obtained in Appendix VII has also 

proved that VCs are a valid candidate for the CMS reconfiguration. However, further 

research and extensive computational study can be useful to determine the optimality 

of the generated solutions and to determine the best possible set of TS parameters 

(number of iterations etc.) in order to minimise the computational time requirements 

in obtaining an acceptable solution. 
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OUTPUT OF RECONFIGURATION PROGRAM (!'E\V ves & PART ASSIG:\:\lE:"IT ) 

VCs after Reconfiguration 

Virtual Cell->l 
Machine->5 
Machine->6 
Machine->8 
Machine-> 11 
Resource Elements in the Virtual Cell 
RE->I, RE->2, RE->3, RE->4, RE->5, RE->6, RE->7, RE->8, RE->9, RE->IO, RE->ll 
Virtual Cell->2 
Machine->7 
Machine-> 12 
Resource Elements in the Virtual Cell 
RE->I, RE->2, RE->4, RE->5, RE->7, RE->lO 
Virtual Cell->3 
Machine->1 
Machine->3 
Machine->4 
Resource Elements in the Virtual Cell 
RE->I, RE->2, RE->4, RE->5, RE->6, RE->7 
Virtual Cell->4 
Machine->2 
Machine->9 
Machine-> 1 0 
Resource Elements in the Virtual Cell 
RE->I, RE->2, RE->3, RE->4, RE->6, RE->7, RE->8, RE->9, RE->IO, RE->ll 

Part assignments for new VCs 
--------------------
Part Type-> 1 { 1 (1), 2 (1), 4 (1)} 
Part Type->2 { 1 (4),2 (4), 3 (4)} 
Part Type->3 { 5 (3),6 (3), 7 (3)} 
Part Type->4 { 8 (1),5 (1)} 
Part Type->5 { 7 (3), 4 (3), 5 (3)} 
Part Type->6 { 8 (4), 6 (4), 7 (4)} 
Part Type-> 7 { 8 (4), 9 (4), 10 (4)} 
Part Type->8 { 9 (1), 10 (1), 11 (1)} 
Part Type->9 { 5 (3), 1 (3),2 (3)} 
Part Type-> 1 0 { 3 (4),4 (4)} 
Part Type->11 { 5 (1), 6 (1), 9 (1)} 
Part Type->12 { 10 (4), 8 (4), 9 (4)} 
Part Type-> 13 { 5 (1), 8 (1), 10 (1)} 
Part Type->14 { 8 (1), 7 (1), 5 (1)} 
Part Type->15 { 1 (3),2 (3)} 
Part Type-> 16 { 3 (1), 4 (1)} 
Part Type-> 17 { 6 (1), 7 (1), 8 (1)} 
Part Type-> 18 { 8 (1), 9 (1), 10 (1), 11 (1)} 
Part Type-> 19 { 5 (1), 2 (1)} 
Part Type->20 { 7 (1), 8111,9 (l)} 

Figure 8.2 Output of reconfiguration module as the new set of virtual cells and 

corresponding part assignment 
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8.S CONCLUSIONS 

In this chapter, the reconfiguration module of the integrated framework is explained. 

The virtual cell concept is used as the reconfiguration strategy. A hybrid modelling 

strategy that is composed of mathematical programming, Tabu search and parametric 

simulation is implemented for generating virtual cells. The proposed model is tested 

with the test problem detailed in Chapter 7. The results obtained from this test 

problem and other tests (one more _test study is reported in Appendix VII) showed 

that the virtual cell concept is a valid option for the reconfiguration of CMS. By 

using the virtual cell concept, rapid and economic reconfiguration of CMS is 

possible, because reconfiguration with virtual cells does not require physical 

dislocation of machines. Implementing virtual cells can prevent performance 

deterioration of a CMS facing changing production requirements. 

As discussed in Chapter 2, reconfiguration of CMS has not received much attention 

in the literature. Some of the proposed strategies like the 'virtual cellular 

manufacturing' framework of Drolet et. aI., (1995), 'holonic manufacturing' 

framework (Markus et. al.,1996), 'random manufacturing' framework (Iwata et. aI., 

1996) are mainly controlling schemes. Although their implementation can result in 

dynamic reconfiguration, they don not make explicit decisions about reconfiguration, 

and their applicability to traditional CMS may be limited. The proposed 

reconfiguration model is inspired from the virtual cell concept of McLean et. al. 

(1982). In the present implementation of virtual cells, reconfiguration decisions are 

made explicitly via interconnecting and integrating, process planning, loading and 

cell formation actiYities within a multiple objectiYe simulation-optimisation 
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framework. The proposed framework can be used for the reconfiguration of 

traditional as well as modem CMS. 

The reconfiguration module is implemented in the C/C++ computer prograrruning 

language and the SIMAN simulation language on a Pentium 200 PC with 32 MB 

RAM. 
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CHAPTER NINE 

9. SUMMARY, CONCLUSIONS AND FURTHER RESEARCH 

9.1 INTRODUCTION 

In this chapter, a brief summary and the main contributions of the work reported in 

this thesis are presented. Further research areas are also discussed. 

9.2 SUMMARY OF THE THESIS 

Chapter 1 of the thesis gave an introduction to the research and explained the 

research objectives and organisation of the thesis. 

Chapter 2 presented a detailed review and analysis of the literature related to the 

topics being studied. 

Chapter 3 gave an overview of the proposed multiple objective decision support 

framework for configuring, loading and reconfiguring cellular manufacturing 

systems. Brief descriptions about modules (cell formation, loading, reconfiguration, 

multiple objective optimisation and simulation) of the framework were given and 

their interconnection has been explained. 

Chapter 4 presented the application of Tabu search to the general problem of multiple 

objectiye optimisation (Pareto optimality). A computer algorithm and program ha\'e 
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been developed to assess the potential of Tabu search in finding Pareto optimal 

solutions in multiple objective optimisation. Various test problems from different 

domains have been solved with the proposed algorithm and results ha\'e been 

compared. 

Chapter 5 presented application of Tabu search for solving pre-emptive goal 

programming models. Pre-emptive goal programming is used in formulating the 

multiple objective decision making problems studied in this thesis. A Tabu search 

based algorithm and a computer program have been developed in this chapter to 

solve pre-emptive goal programming models. Test problems from various domains 

have been solved with the proposed algorithm in order to evaluate its performance in 

solving pre-emptive goal programs. The obtained results have been also compared. 

In Chapter 6, a multiple-objective simultaneous manufacturing cell formation model 

was developed. The application of a multiple-objective Tabu search algorithm for the 

solution of the proposed cell formation model was explained. An example 

application and comparative work were also carried out to test the efficiency of the 

proposed model. 

In Chapter 7, a simulation-optimisation based integrated model for loading a cellular 

manufacturing system with multiple objectives was developed. Development of the 

parametric simulation model was explained. Application of the Tabu search 

algorithm was shown for solving the proposed loading model. An example 

application with the prototype model was explained and the model characteristics 

were compared with some other approaches. 
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In Chapter 8, the reconfiguration of cellular manufacturing systems by use of virtual 

cells was explained. The proposed reconfiguration procedure and Tabu search based 

multiple objective simulation optimisation algorithm were explained. Characteristics 

of the proposed model were discussed and an example application with the prototype 

model was described. 

9.3 THE RESEARCH CONTRIBUTIONS 

Although the conclusions and achievements of this research were discussed 

specifically at the end of each chapter, in this part of the thesis, an overview of the 

results of the whole work will be discussed. 

a) Multiple Objective Optimisation 

Many engineering problems can be represented as optimisation problems. However, 

it is important to have general-purpose problem and model independent optimisation 

procedures that can be applied for their solution. During this study, Tabu search (TS) 

based optimisation algorithms have been developed to solve general purpose 

Multiple Objective Optimisation (MOO) problems. TS is a widely accepted heuristic 

optimisation technique. The problem-independent nature of TS makes it a good 

candidate for engineering optimisation problems. TS has generally been applied to 

single objective optimisation problems. However, TS has a potential to be directly 

applied to MOO problems without requiring extra procedures such as weighting and 

summing up objective functions. This is mainly due to its inherent solution 

mechanism in which it works with a population of solutions. This observation led to 

the direct application ofTS to the MOO problems. 
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• First the applicability of TS to the general problem of MOO (i.e. fmding Pareto 

optimal set) was investigated in Chapter 4. Before attempting to use a special 

technique like TS to find a Pareto optimal solution for a MOO problem, its ability 

to determine the Pareto optimal solution set needs to be known. Having this in 

mind a general purpose TS algorithm was developed in Chapter 4, to test the 

ability of TS in finding Pareto optimal solutions. Results of the comparative study 

presented in this thesis are as follows: 

In the first test study a comparison was made with the GINO software that uses 

the constraint method (Winston, 1994). The GINO software found 9 Pareto 

optimal solutions whereas the proposed TS algorithm found 204 Pareto optimal 

solutions for the given problem (see Chapter 4). 

In the second test study a comparison was made with the Murata et. al. (1996) 

genetic algorithm (MOGA). The proposed TS algorithm found 400/0 more Pareto 

optimal solutions than MOGA. 

In the third test study a comparison was made with the Osyczka and Kundu (1996) 

genetic algorithm. The maximum number of Pareto optimal solutions found by 

their algorithm was only 34, whereas the proposed TS algorithm found hundreds 

of Pareto optimal solutions and determined the exact shape of the trade-off curve 

for the given problem. In the fourth test study, a comparison was again made with 

the Osyczka and Kundu (1996) genetic algorithm using a different problem. This 

time their genetic algorithm found 133 Pareto optin1al solutions whereas the 

proposed TS algorithm found 5964 Pareto optimal solutions. Additionally the 
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extreme points obtained by the proposed IS algorithm were around 50% better 

then their extreme points. By using the same test problem, a comparison was also 

made with the Plain Stochastic Method (PSM). PSM found only 19 Pareto 

optimal solutions, less than both Osyczka and Kundu (1996) genetic algorithm 

and the proposed IS algorithm. The results show that the proposed TS algorithm 

has the ability to solve MOO problems. A C++ computer program was developed 

during the study to implement the proposed algorithm. 

• After showing that TS has the ability to solve MOO problems, a general purpose 

TS algorithm was developed to solve pre-emptive goal programming models 

(PGP). PGP is a widely accepted framework for modelling multiple objective 

decision making problems (Ignizo, 1982). Multiple objective decision making 

problems of this thesis have been also formulated by using PGP. The proposed TS 

algorithm was tested with various test problems from literature, In five of the test 

problems collected from literature (Winston, 1994, Sundaram, 1978, 

Schniederjans and Kwak, 1982, Ignizo, 1982 and the LINDO manuals (LINDO, 

1996)), the optimal solutions were known. The proposed TS algorithm found 

these optimal solutions in all test runs (see Chapter 5 and Appendix II). The 

optimal solution was not known for the test problem published in EI-Sayed et, al. 

(1989), For this test problem, the proposed TS algorithm found a solution that was 

around 25% better than the best known solution. The solution obtained for the test 

problem published in Schniederjans and Santhanam (1989) was also better than 

the known solution (see Appendix II). Due to its problem-independent nature, the 

proposed algorithm is also a good candidate for the simulation optimisation 

applications. The application of the proposed IS algorithms to the simulation 
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optimisation problems has also been explained. A C++ computer program has also 

been developed during the study to implement the proposed TS algorithm. 

The results of this research show that TS is a good candidate for solving MOO 

problems. The developed algorithms are a direct application of TS to MOO problems 

(Baykasoglu et. al., 1999a-b). According to the detailed literature review, TS has not 

been directly applied to MOO optimisation problems before. As explained above (see 

also Chapters 4 and 5) the proposed TS algorithms have the ability to solve MOO 

problems. 

b) Manufacturing Cell Formation 

As pointed out by many researchers, cellular manufacturing systems are good 

candidates for improving the performance of job shops and implementing advanced 

manufacturing technologies, like ClM, FMS etc. (Wemmerlow and Johnson, 1997). 

However, formation of manufacturing cells is a key issue for a successful 

implementation of these systems. According to Shafer and Meredith (1990) the 

success of cellular manufacturing systems is mostly dependent on the success of their 

design. Zhou and Askin (1998) defined cell formation as the most important stage in 

designing a cellular manufacturing system. Due to its importance, cell formation 

received big attention in the literature. There are many procedures available in the 

literature for forming manufacturing cells and the corresponding part families. 

However, as discussed in Chapter 2 and Chapter 6, these procedures have several 

disadvantages in modelling and solving cell formation problems. For example, the 

majority of these techniques optimise only a single criterion although cell fonnation 

in practice must also be a multiple objective optimisation problem. Another 
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disadvantage is that they cannot offer mechanisms that can effectively evaluate 

alternative routes, machines etc. Also, they don't take into account machine 

capacities, part processing times, demand, processing sequences etc. A new cell 

fonnation technique is proposed in this study in order to overcome some of the 

disadvantages of the existing cell fonnation procedures. The proposed technique has 

the following distinguishable features: 

• Many cell fonnation methodologies create part and machine cells in a sequential 

manner. In contrast with these methodologies, the proposed technique creates 

manufacturing cells and corresponding part families simultaneously. As 

mentioned in Chapter 2-Section 2.5, the simultaneous cell fonnation approach is 

advantageous. 

• As mentioned above (see also Chapters 2 and 6) the majority of cell formation 

methodologies are based on single objective optimisation and do not consider 

several other important objectives and constraints. The cell formation problem is a 

multiple-objective decision making problem and has some constraints. In the 

proposed technique, the cell formation problem is modelled as a multiple 

objective optimisation problem. Part similarities based on their operation 

requirements and operation sequences, load balance between cells, flexibility of 

cells (in tenns of maximising their capability scope), inter-cell movement and cell 

size constraints have been considered (see also Chapter 6). The proposed model 

uses Resource Elements (RE) to define part processing requirements and machine 

capabilities (REs have been explained in Appendix III). REs can define both part 

processing requirements and machine capabilities in the same language. 

Therefore, the proposed model can evaluate all possible process plans \\"hile 

fonning part-machine cells. Knowledge of capability in cell formation increases 
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the chance of more realistic problem formulation. This increases the possibility of 

minimising extra capacity requirements, minimising inter-cell movements and 

maximising cell capacity utilisation in cell formation. The present model also 

proposes also a new formulation for capacity calculations, which does not require 

the actual machine based routes for the individual parts. The formulation uses 

transportation like equations. These features of the proposed model distinguish it 

from the existing cell formation models. Therefore manufacturing cell formation 

can be better achieved with the proposed model. 

• The TS-based ｭ ｵ ｬ ｴ ｩ ｰ ｬ ･ Ｍ ｯ ｢ ｪ ･ ｣ ｴ ｩ ｶ ･ ｾ ｟ ｯ ｰ ｴ ｩ ｭ ｩ ｳ ｡ ｴ ｩ ｯ ｮ algorithm that was developed in 

Chapter 5 has been employed to solve the manufacturing cell formation model. 

Some problem-related enhancements have been also discussed in Chapter 6, in 

order to improve the capability of the TS algorithm. The proposed cell formation 

model is also superior to the one proposed by Kusiak (1987) and to some other 

cell formation models, in terms of its size, because it requires less variables, even 

though it is a more comprehensive formulation. This issue is especially important 

in solving large problems optimally, within a reasonable computation time. 

• The proposed cell formation technique was compared with several other cell 

formation techniques available in the literature. The comparisons made with 

Kusiak (1987), and Seifoddini and Wolfe (1986) production flow analysis based 

methods showed that the proposed technique forms manufacturing cells with less 

machine duplication and better cell utilisation levels. Additionally, the proposed 

technique can determine what capability is required and how much capacity is 

needed if there is a need for extra capacity. It recognises part-processing , 

sequences while forming part families and several other important data, obj ecti ｜ ｴ ｾ ｓ
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and constraints, as explained before (see also Chapter 6). These have been 

generally not taken into account in most other cell formation procedures. 

• A computer program named MOCACEF 1.0 was also developed during this 

study. A FORTRAN 90 version of this program is available in Appendix IV. 

c) Loading of Cellular Manufacturing Systems 

As discussed in Chapters 2 and 7, part families constantly change under dynamic 

manufacturing environments, due to design and demand changes and the introduction 

of new part types. Under these circumstances the loading problem should be 

considered seriously in order to retain or improve the efficiency of cellular 

manufacturing systems. Cell loading is simply the determination of cell (or cells) to 

which a part should be assigned in order to satisfy the required system performance 

levels (see also Chapter 7). No serious attention has been given to the loading 

problem of CMS and the problem has not been totally addressed in the literature. 

During this research, this problem is studied in detail. A loading framework has been 

developed, for assigning parts to cells and scheduling manufacturing cells 

simultaneously. A parts list that contains machine-independent abstract process plans 

based on REs is the main input in the proposed loading system. Using these abstract 

process plans in cell loading enables the utilisation of alternative machines for part 

processing and results in seamless integration of process planning with loading. Parts 

were assigned to manufacturing cells based on their RE requirements and scheduled 

in each cell with a RE-based simulation-scheduling system (Gindy and Saad, 1996). 

This system can dynamically match part processing-requirements \"'ith the suitable 

machines, by considering the current status of the cellular manufacturing system. 
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A multiple objective simulation optimisation approach was proposed for the fonnal 

modelling of the loading problem. The model is hybrid in nature, i.e. some objectiyes 

were defined analytically others were obtained from a parametric simulation model. 

The model was implemented using the SIMAN simulation language and C++. Based 

on the literature review of this thesis no equivalent approach for solving the loading 

problems of eMS has been proposed before (see Chapter-2). Many characteristics of 

CMS cannot be formulated analytically. Therefore simulation must be used for 

modelling these characteristics (i.e. part arrivals, queuing times etc.). But 

optimisation cannot be achieved using only simulation. For this reason simulation 

must be integrated with the TS algorithm which optimises the loading model. Some 

problem-related enhancements were also discussed and explained in Chapter 7, in 

order to improve the capability of the TS algorithm for solving the proposed loading 

model. In this way it is possible to obtain realistic results for implementation. 

The characteristics of the loading model have also been compared to the Greene and 

Sadowski (1986) loading model in Chapter 7. Their model is the only formal model 

available in the literature for loading of CMS. Unlike the loading model proposed in 

this thesis, the Greene and Sadowski (1986) model makes several assumptions which 

limit the model capabilities!. Consequently, it is less realistic than the TS-based 

model. As they concluded, their model can only be applied to very small problems, 

due to large number of variables necessary for modelling. The present TS-based 

model does not have these limitations (see Chapter 7). As was also mentioned in 

1 Some of these assumptions are: 'a part can only be assigned to one cell (no ｰ ｯ ｳ ｳ ｩ ｢ ｩ ｬ ｩ ｾ Ｇ of cell 
interaction) and there is at least one such cell for all parts', 'no cell has more ｴ ｨ ｡ ｾ one machrne ｾ ｦ Ｌ an?' 
type', 'cells do not have to have a machine of every type', Ｇ ｾ ｡ ｲ ｴ routes are machme ｢ ｡ ｳ ｾ ､ ｡ ｮ ､ tJxed, 
'a part type can visit any machine a maximum of once', addItIOnally dynamlc charactenstlcs like part 

arrivals, queue lengths. etc. were not considered. 
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Chapter 7, research on CMS has been generally concentrated on the cell formation 

problem, but the cell-loading problem has not received much attention. Therefore, 

this current research is useful in filling this gap. 

The results obtained using the proposed loading mechanism have also proven that it 

is possible to improve and/or sustain the performance of CMS facino chancino 
_ b b b 

production requirements. Implementation of such mechanisms is also useful while 

making decisions about reconfiguration of manufacturing cells, because they can 

assess the performance ofCMS. 

d) Reconfiguration of Cellular Manufacturing Systems 

As discussed in previous chapters (1,2,3 and 8) in some production periods it is 

necessary to consider the reconfiguration of cellular manufacturing systems (CMS), 

due to unsatisfactory performance levels (high tardiness, low throughput etc.) It was 

also observed that, even though the reconfiguration of functionally divided job shops 

received some attention in the literature (Lacksonen and Enscore, 1993, Rosenbaltt, 

1986), reconfiguration of CMS did not receive enough attention. However, the 

sensitivity of CMS to changing production requirements is very well known and 

several papers have been published on this issue (Sasani, 1990, Seifoddini and 

Djassemi, 1996,1997). As discussed in Chapter 2-Section 2.7.3, reconfiguration of 

CMS is a very complex problem and the reconfiguration strategies applied for 

functional job-shops are not totally adequate for CMS. 

The virtual cell concept of McLean el. al. (1982) offers a practical strategy to 

reconfigure ｃ ｾ Ｑ ｓ Ｎ The reconfiguration approach proposed in this thesis was inspired 
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from their virtual cell concept. As discussed in Chapter 8, virtual cells have also been 

studied by Drolet and her colleagues (Drolet et. al.,1989,1990). But there are distinct 

differences between their implementation of virtual cells and the present approach. In 

their implementation, virtual cells were created continuously when a job order 

arrived. Based on the machine requirements of arriving jobs, first candidate machines 

were determined then virtual cells were generated via minimising the material 

travelling distance. There is no explicit decision made about reconfiguration in their 

application, i.e. reconfiguration is a natural process and happens continuously when a 

job order arrives. Additionally, in their implementation the possibility of using other 

performance measures for creating virtual cells was not considered. For instance, if 

multiple jobs are required to be processed simultaneously on the shop floor, the 

minimisation of travel distance for each job separately might not result in a good 

shop performance (ChatteIjee, 1992). Capabilities of machines (i.e. alternative 

machines for part processing) were not considered while forming the virtual cells 

even though this might be beneficial. There is no mechanism to avoid machine 

sharing in their implementation. Machine sharing increases the complexity of control 

(Kusiak, 1990). They also concluded that their way of implementing virtual cells is 

only suitable for highly automated factories (Drolet, 1990) (see also Chapter 8). 

In the present approach, the reconfiguration is also considered as an ongoing activity. 

However, virtual cell creation is explicitly decided in discrete time periods (i.e. at the 

beginning of each loading period), via interconnecting and integrating process 

Plannina loadina and cell formation activities. Virtual cell formation is considered as 
0' 0 

an objective driven activity. In other words, it is decided when performance measures 
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(utilisation, tardiness etc.) obtained from the loading system (Chapter 7) are found to 

be unsatisfactory. 

A framework was proposed to guide and achieve reconfiguration activities based on 

the above logic, as explained in Chapter 3. In the present approach, Resource 

Elements (Appendix III) were used to defme part processing requirements and 

capabilities of machines. ａ ｬ ｴ ･ ｭ ｡ ｴ ｾ ｶ ･ machines for part processing were considered 

and machine sharing was avoided. A hybrid MOO model based on pre-emptive goal 

programming was proposed for generating virtual cell configurations (Chapter 8). 

The multiple-objective TS algorithm developed in Chapter 5 was applied to find the 

solution of the reconfiguration model. Problem-related enhancements to the IS 

algorithm have also been presented in Chapter 8. 

The proposed framework can be used for the reconfiguration of traditional, as well as 

modem CMS. Moreover, test studies described in Chapter 8 and Appendix VII have 

shown that is possible to improve the performance of CMSs facing changing 

production requirements by reconfiguring them using virtual cells. 

9.4 SUGGESTIONS FOR FUTURE WORK 

Future work that can be considered as the modification of the proposed procedures 

and the framework developed in this study can be extended to the following areas: 
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a) Multiple Objective Optimisation 

• On many occasions it may not be possible to set precise goals in a pre-emptive 

goal programming model. Additionally, the user can allow violation of some hard 

constraints in order to increase the flexibility of solving the mathematical model. 

These kinds of issues are generally modelled as fuzzy mathematical programming 

models. The proposed TS algorithm was applied to solve crisp MOO problems. 

However, the present algorithm can also be applied to solve fuzzy MOO problems 

with some modifications. This requires further research. 

• The pre-emptive goal programming models developed ill this thesis (i.e. cell 

formation model, loading model and reconfiguration model) can also be 

formulated as fuzzy goal programs and solved with the fuzzy version of the 

proposed TS algorithm. This may results in a better and more realistic problem 

representation. However there is a need to develop algorithms for their solution. 

As pointed out above, the present TS algorithm can be extended to solve the fuzzy 

version of these models. 

• More computational work is necessary in order to investigate the effects of TS 

parameters on the solution quality. Determination of these parameters is also 

necessary in order to reduce computational time requirements and improve 

solution quality. 

• In this research, quality of the solutions obtained from the multiple-objective TS 

algorithms are judged by comparing them with the known solutions of the test 

problems. However more research work is necessary in order to determine the 

optimality of solutions generated by the proposed TS algorithms. One possible 

way of doing this might be the determination of the lower and upper boundaries of 

the test problems where possible. 
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b) Simulation Optimisation 

• In the present work a parametric simulation optimisation model was developed to 

solve the loading and reconfiguration models of this thesis. However, there is a 

need for general-purpose parametric simulation optimisation tools that can be used 

for various manufacturing applications, like the ones studied in this thesis. Further 

research is needed to develop general-purpose parametric simulation models that 

can be combined with optimisation models. This might be achieved by developing 

general-purpose systems that can automatically generate simulation models based 

on the data provided by the optimisation routines. Object-oriented or classical 

relational data base systems can be used for this purpose. Afterwards, each model 

can be evaluated with the optimisation system. Development of such systems is 

beyond the scope of this research. However, these systems can enable the designer 

to create better cell designs and make better reconfiguration decisions. Extensive 

research is required, as the topic has been scarcely addressed in the past. 

c) Cell formation 

The proposed cell formation model can be extended in a number of ways: 

• In the present model, the flexibility of cells is defined in terms of number of 

different Resource Elements (RE) contained in cells. This flexibility increases the 

chance of accommodating future product mixes without increasing the inter-cell 

part movements. Other flexibility criteria like maximising the repetition of each 

RE in each formed cell can also be considered. This indicates the routing 

flexibility in each cell. However, incorporation of several flexibility types into the 

cell formation model is not easy and straightforward because_ they might be 

conflicting (e.g. increasing number of different types of RE in each cell might 

9-15 



: 11- i _ 

Adil Baykasoglu Summary. Conclusions and Further Research Chapter 9 

reduce the possibility of increasing repetition of each RE). One possible way of 

dealing with this kind of situations might be the investigation of the amount of 

flexibility needed to achieve the desired operational performance of the eMS. 

• In the present cell formation model only machine resources are considered. Non-

machine resources like humans and robots may also be considered in the initial 

cell formation step even though these resources are generally assigned to cells 

after determining the part-machine clusters. Their consideration in the initial cell 

formation stage might be advantageous even though it requires the determination 

of relations between various resources (e.g. relations between robot, machine and 

part). This might result in a very complicated formulation. 

• The mathematical model can also be extended by including several other 

constraints and objective functions based on specific user requirements. For 

example, cell utilisation levels can be constrained by specifying upper and lower 

utilisation limits for cells. 

• Extensive computational research IS necessary in order to determine truly the 

computational time performance of the proposed cell formation algorithm and the 

optimality of the generated solutions. 

d) Cell Loading 

• The present cell-loading model demands too much computational power. This is 

also true for the reconfiguration model. This is mainly due to the number of 

simulation experiments required to solve the model. One possible way to reduce 

the computational time requirements might be achieved by replacing the 

simulation model with a well-trained neural network. It is also possible to deyelop 

a meta-model of the proposed loading (or reconfiguration) system to saye the 
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computational time. The loading (or reconfiguration) model and a neural network 

may run in parallel and later the neural network may be replaced with the 

simulation model. This might significantly reduce the computational time 

requirements. 

e) Cellular Manufacturing Reconfiguration 

• In the present reconfiguration model, the virtual cell concept was used to 

reconfigure the eMS. The physical reconfiguration of the CMS was not 

considered. In order to deal with physical reconfiguration of a manufacturing 

system, several other issues should also be considered in problem modelling such 

as the movement cost of machines, replacing material handling links etc. All these 

add to the reconfiguration cost. Then reconfiguration decisions require resolution 

of the trade-off between performance improvement and cost of reconfiguration. 

However the literature is almost empty about the physical reconfiguration of CMS 

and development of such methods can be useful and this subject deserves further 

research effort. 

• Intelligent procedures can be incorporated into the reconfiguration framework to 

forecast future demand, keep records of system performance measures in relation 

to various demand situations, and estimate the trend of system performance. These 

may help in determining the reconfiguration time. 

• Extensive computational research IS also necessary for loading and 

reconfiguration algorithms in order to determine their truly computational time 

performances and the optimality of the generated solutions. The effects of TS 

parameter setting on the solution quality need also be investigated. However, in 

these models the main computational burden is coming from the simulation 
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therefore the future work should concentration on the minimisation of the number 

of simulation experiments. One possible way may be the incorporation of an 

expert system which can make estimations on the performance of some feasible 

solutions generated by the TS algorithm which are believed (or obvious) to have 

poor performances and therefore disregard these solution vectors (i.e. do not 

simulate them and assign them unfavourable performance values in order the 

reduce their change of being selected in the search). 
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APPENDICES 

Appendix I : C/C++ code for Example 2 of Chapter 5 

The C/C++ code for the 1 st example problem that was explained in Chapter 5 is given 

below which shows a simple implementation of the proposed multiple objective tabu 

search algorithm. The random number generator and the 'round functions are not 

given. The overall best solution is not updated in this program, the output simply 

shows the value of the variables followed by the objective function vector for each 

best neighbour in each iteration. 

#include <stdio.h> 
#include <malloc.h> 

typedef struct _ TabuItem 
{ 

double xl, x2; 1* copy of the variables *1 
} Tabultem; 

TabuItem* TabuList[10]; 1* circular list of 10 items*1 
int TabuIndex; 

1* objective vector, this is really an array of three (d+ d-) pairs *1 

double objective[6]; 
1* variables themselves, plus some admin*1 

1* tells us if the solution is Tabu *1 

int InTabuListO 
{ 

int i; 
for(i=O; i<lO; i++) 

if(TabuList[i]) 
if(TabuList[i]->x 1 ==x 1 && TabuList[i]->x2==x2) 

return 1: 
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return 0; 
} 

/* add the old solution to the Tabu List */ 

void AddToTabuListO 
{ 

if(TabuList[TabuIndex ]) 
free(TabuList[TabuIndex]); /* overwrite old items */ 

TabuList[TabuIndex]=(TabuItem*)malloc(sizeof(TabuItem)); 
TabuList[Tabulndex ]->x 1 =x I_copy; 

TabuLi st [Tabulndex ]->x2=x2 _copy; 
TabuIndex=(Tabulndex+ 1)% 1 0; /* circular list * / 

} 

/* calculates d+, d- from the actual deviation */ 

void CalculateDeviations(double dey, double* d_minus, double* d--'plus) 
{ 

} 

if(dev<O.O) 
{ 

*d_minus=O.O; *d--'plus=O.O-dev; 
} 
else 
{ 

*d_minus=dev; *d--'plus=O.O; 
} 

/*Fill in the objective vector,(with the necessary factors)*/ 

void CalculateObjective VectorO 
{ 

} 

double dey; 
dev=0.32 - (0.04*xl + 0.06*x2); 
CalculateDeviations(dev, &objective[O], &objective[l]); 
dev=0.288 - (0.072*xl + 0.036*x2); 
CalculateDeviations( dev, &obj ective [2], &obj ective [3 ]); 
dev=O.O - (xl - 2.0*x2); 
Cal cula teDevia ti ons( dev, &0 bj ecti ve [ 4], &obj ecti ve [ 5]); 

obj ective [4] *=2; 

/* these must not be violated */ 

int ConstraintsO 
{ 

if((3000.0*xl + 2000.0*x2 <= 16000.0) && (xl <= '+.0) && 
(x2 <= 5.0) && (xl>=O.O) && (x2>=0.0)) 

"\ 
J 

return I; 
return 0; 
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/* return 1 if a neighbour can be found, 0 otherwise */ 
/* update * _best if the neighbour is an improvement * / 

int EvaluateNeighbourO 
{ 

int i, step, iter=O; 
double objective_copy[6]; 

for(i=O; i<6; i++) /*make a copy of the objective vector*/ 
objective _ copy[i]=objective[i]; 

} 

while( iter++< 1 000) 
{ 

step = round«2.0*randomO-1.0)*2.0); /*implement these 
functions yourself! * / 

if(randomO<0.5) /* choose a variable at random */ 
xl =x 1 +step; 

else 
x2=x2+step; 

if(ConstraintsO && !InTabuListO) 
{ 

CalculateObjective VectorO; 
for(i=O; i<6; i+=2) 
{ 
/* if there is an improvement, update the best and 

return */ 

if« objective[i]+objective[i+ 1]) < 

{ 

} 

(objective _ copy[i]+objective _ copy[i+ 1]») 

x 1_ best=x 1; x2 _ best=x2; 
return 1; 

/* if there is an decrease in quality, just return */ 

if« objective[i]+objective[i+ 1]) > 
(objective _ copy[ i]+objective _ copy[ i+ 1]») 

return 1; 
/* otherwise, keep looking through the objective */ 

} 
return 1; /* the objective vectors are identical */ 

ｾ Ｑ ］ ｘ ｬ ｟ ｃ ｏ ｐ ｙ ［ x2=x2_copy; /*restore old values and loop */ 

} 
return 0; /* a neighbour cannot be found * / 

/* the tabu search itself * / 

void SolveO 
{ 

int i, iter=O; 
\vhile(iter++ < 500) 
{ 
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} 
} 

xl_copy=xl; x2_copy=x2; /*get a copy of the initial 
values */ 

CalculateObjective VectorO; 
printf("%2.2f%2.2f -> ", xl, x2); 
printf("%2.2f %2.2f %2.2f\n", objective[O]+objective[ 1], 

obj ective[2]+objective[3 ],objective[ 4 ]+obj ective[ 5]); 
for(i=O; i<3; itt) /* evaluate 3 neighbours */ 

if(!EvaluateNeighbour(i)) 
return; 

AddToTabuListO; 
xl =x I_best; x2=x2 _best; 

void mainO 
{ 

} 

int i; 
xl=l.O; x2=1.0; /* initial values for the variables */ 
xl best=xl; x2 best=x2; 
fOr{i=O; i<lO; i++) /* initialise the tabu list */ 

TabuList[i]=O; 
Tabulndex=O; 
SolveO; 

I--t 
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Appendix II : Additional test problems for Chapter 5 

Test Proble A-1 

Sundaram (1978) presented the application of goal programming technique in metal 

cutting applications. He proposed an approach that can be employed for multiple 

objective optimisation of single pass turning operations. Detailed explanations about 

model development can be found in his paper. The pre-emptive goal programming 

model with continuous variables is-given as follows; 

lexmin{zl = (d(),Z2 = (d l-),z3 = (d{)} 

s.t. 

3.98624xl + 3.47409x2 + 0.91986x3 S 28.68294 

Xl + 0.7542x2 + 0.9005x3 S 9.63939 

x3 - d( + dl = 1.38629 

Xl + x2 + d{ - di = 7.07165 

5.65249 < Xl < 6.52209 

0.40547 < x2 < 0.73237 

xl,x2,X3,d( ,d1- ,d{ ,di ｾ 0 

He gave the following solution: x]=6.23637, x2=0.40548, x3=1.38629, Zj=O, 21=0.43 

The solution obtained from the Tabu search algorithm is as follows: 

Parameter Set: Stepc=O.l, nneigh=7, m=10, iter=8000, t=100 

Computation time: 5.3 sec. 

Solution: x j =5.84832, x1=0.631812, x3-1.38629, Zj 0, z: ° (optimum) 

Tabu search successfully found the optimum solution (i.e. all deviations are equal to 

zero) for this test problem. 
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Test problem A-2 

Schniederjans and Kwak (1982) proposed an alternative method for soh-ina croal 
:;, ｾ

programming problems. Their procedure is based on Baumol' s simplex method for 

solving linear programming problems with minor modifications. In their paper they 

solved the following test problem optimally. 

lexmin{zl = (dt ),z2 = (d: ),z3 = (5d:; ),z4 = (3di ),z5 = (d()} 
s.t. 

Xl +X2 +dt-dt = 80 

Xl +d:; = 70 

x2 +di = 45 

xl +X2 +di -d: = 90 

xI,x2,d1 ,dt ,d:; ,d; ,di ,d; ,d4 ,d: > 0 

The solution obtained from the Tabu search algorithm is as follows: 

Parameter Set: Stepi=2, nneigh=10, m=10, iter=8000, t=IOO 

Computation time: 4.2 sec. 

Solution: 

Test problem A-3 

The following test problem is taken from Ignizo (1982)'s book. It represents an 

integer goal programming formulation of a product mix problem. The problem was 

solved optimally by the simplex method. 
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lexmin{zl =(d1 +d2 +d;),z2 = (d;),z3 = (ds)} 
S.t. 

Xl + X2 + d1 - dr = 30 

x3 + x4 + d2 - d{ = 30 

3xl + 2x3 + d:; - d:; = 120 

3x2 + 2x4 + di - d: = 20 

10xI+9x2 + 8x3 + 7x4 + ds -d; = 800 

xi ｾ 0 i = 1, ... ,4 

d-:- d: >0 '-1 5 l'l - l- , ... , 

The solution obtained from the Tabu-search algorithm is as follows: 

Parameter Set: Stepi=2, nneigh=10, m=lO, iter=8000, t=lOO 

Computation time: 4.3 sec. 

Solution: 

Test problem A-4 

Appendices 

The following integer linear pre-emptive goal programming example is adopted from 

LINDO optimisation software's manuals. It represents a staff-scheduling model. 

LINDO software uses a ,simplex-based method. LINDO solved the problem around -+ 

seconds optimally. 
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lexroin{zl = Ｈ ､ ｴ Ｉ ｾ ｚ Ｒ = (di)) 

s.t. 

9XI + 9x2 + 9x3 + 9x4 + 9xs +9x6 + 9x7 +d1-dt = 0 

Xg +X9 +XlO +Xll +X12 +X13 +X14 +di -di. = 7 

xl +X2 +X3 +X4 +Xs -Xg > 3 

xl +X3 +X4 +Xs +X6 -X9 ｾ 3 

Xl + x4 + Xs + x6 + x7 - xlO > 8 

xl +X2 +Xs +X6 +X7 -XlI ｾ 8 

xl +X2 +X3 +X6 +X7 -X12 > 8 

x2 + x3 + X4 + x6 + X7 - x13 ｾ 3 

x2 +x3 +x4 +xs +x7 -x14 ｾ 3 

Xg < 1 

x9 < 1 

xlO < 1 

xll < 1 

x12 < 1 

x13 < 1 

x14 < 1 

xi >0 i=1, .... ,7 

Xg,X9,XlO,xll,x12,x13,x14 = 0 or 1 

d1- ,dt ,di ,d{ > 0 

The solution obtained from the Tabu search algorithm is as follows: 

Parameter Set: Stepi=2, nneigh=lO, m=10, iter=8000, t=100 

Computation time: 11.2 sec. 

Solution: 
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Test problem A-5 

Schniederjans and Santhanam (1989) proposed a zero-one linear pre-emptive goal 

programming formulation for the journal selection and cancellation problem. They 

used Boumol' s simplex method in their solution. Detailed explanation about model 

formation can be found in their paper. The mathematical model is given as follows. 

lexmin{zl = (di),z2 = (d4"),z3 =(d; +d;),Z4 = (d;),z5 = (d;)} 

S.t. 

300xI + 220x2 + 4OOx3 + 7OOx4 + 350x5 + 260x6 + 270x7 + 360x8 + 250x9 + 210xlO + 260xll 

+ 320x12 + 2OOx13 + 520xI4 + 2OOx15 + di - dr = 2000 

200xI +50x2 +4OOx3 + 60x4 + 70x5 + 160x6 + 351x7 + 130x8 + 85x9 + 70xlO + 215xll + 45x12 

+ 66x13 + 130xl4 + 312x15 +di. -d; =0 

110xI + 120x2 + 2OOx3 + 80x4 + 1OOx5 + 210x6 + 152x7 + l11xg + 95x9 + 65xlO + 98x11 + 35x12 

+ 43x13 + 120xl4 + 110xl5 + d:; - d; = 0 

5xI + 5x2 + 2x3 + 4x4 + 3xs + 5x6 + 2x7 + lxg + 6x9 + 5xlO + 3xll + 4xl2 + 5x13 + 4xl4 

+ 1xIS +d4" -d: = 9999 

70xI + 70x2 + 90x3 + 9Ox4 + 60xs + 9Ox6 + l05x7 + 85xg + 70x9 + 4OxlO + 65xll + 45xl2 

+ 50x13 + 70xI4 + 90xIS + d; - d; = 0 

2xI + 1x2 + 2x3 + 2x4 + 2xs + 3x6 + 2x7 + 2x8 + 2x9 + 3xlO + 2xll + lxl2 

+2x13 + 3xl4 +4xIS +d"6 -d; =0 

Xl ,X2 ,X3 ,X4 ,Xs ,X6 ,x7 ,x8 ,X9 ,XlO,XII ,X12 ,X13,XI4 ,X15 = Oar 1 

- d+ d- d+ d- d+ d- d+ d- d+ d- d+ > 0 dl , I , 2, 2' 3, 3' 4, 4, S, S, 6' 6 -

X =1 x =0 x =1 x =0 Z1=0 z2=9976, z3=785, z4=275, z5=11 17 , 13 , 14 , 15' , 

The solution obtained from the Tabu search algorithm is as follows: 

Parameter Set: nneigh=10, m=10, iter=8000, t=100 

Computation time: 13.5 sec. 

Solution: x
1
=1,x:=1,x

3
=Lx.:-1,x5-1,X6 Lx- Lxs 1, X 9 LXlo l.x;; 1. 

X 
=1 x =1 x = 1 x = L .: ,=0, .: ,=9944, ':3=3993, ':.J= 1 090, ':5= 33 

-;: , 13 ' I.J •• 15 ., -
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The solution obtained from the Tabu search algorithm satisfied the first goal 

completely and the satisfaction level for the second most important goal is better than 

the given solution. Satisfaction levels for other goals are not as good as the given 

solution. However, the objective of preemptive goal programming is to satisfy the 

more important goals first. Therefore the solution obtained from the Tabu search 

algorithm is the better solution. 
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Appendix III : Resource Elements Concept 

The way in which the capabilities of resources are defined plays an important role in 

designing, planning, controlling and the efficiency of the production. The classical 

way of defining manufacturing systems and their capabilities does not proyide 

sufficient level of detail in describing shared and unique boundaries between 

production resources. The main idea of the Resource Elements (RE) is to define the 

shared and unique capabilities of production resources. The operation level is yery 

detailed and the full resource level (i.e. machine level) is too general. REs allow the 

inherent flexibility available in a machine shop to be revealed and therefore can be 

better utilised. 

REs have been proposed by Gindy et. al. (1996) in order to define machine tool 

capabilities and part processing requirements with a common language. This enables 

better modelling of various manufacturing design and operating functions. Moreover, 

using REs can result in seamless integration of several manufacturing functions such 

as process planning and scheduling (Carvalho and Gindy, 1995), process planning 

and loading (Baykasoglu, Saad and Gindy, 1998). 

Machine Resources and Form Generating Schemas 

Machines are the main resources in any manufacturing facility. The capability 

boundaries of each machine are very well known and the operations that they can 

perform are also very well known. Nevertheless, some operations can be perfomled 

on more than one machine, and some machines can perfonn many different 

operations (e.g. a machining centre combines capabilities of 3 lathe ｾ ｕ Ｑ ､ 3 milling 
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machine). Therefore, in planning applications, representing component requirements 

in terms of whole machines is inappropriate as this does not show the availability of 

possible multiple routings. 

There is a close relationship between the capabilities of machines and the operations 

they can perform. Machining operations give shape to a workpiece by removing 

material from predefmed ｬ ｯ ｣ ｡ ｴ ｩ ｾ ｮ ｳ on that workpiece. A potential machining 

operation is represented as a Form Generating Schema (FGS). A machining 

operation (drilling, turning etc.) is defined only when the machine where this 

operation is going to be performed is selected. 

FGSs are generic machine-independent capability patterns and they are used for 

representing processing requirements of parts and capabilities of machine tools. A 

FGS is a technologically meaningful combination of a cutting tool of a specific 

geometry, a set of relative motions between part and the cutting tool, and the typical 

levels of technological output that can be associated with using that combination of 

tool and relative motion (Gindy, et. al. 1996). Several examples of FGS's that can be 

obtained from a milling machine and a classical lathe are shown in Figures III.l and 

III.2. 

ｉ ｉ ｉ Ｍ ｬ ｾ
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Cutting Tool Motion Set FGS 

*Extemal Roughing Tools Rk TIc ti External Rough Turning 

*Extemal Finishing Tools Rk TIc Ti ti Ext. Prof. Tum. (Tapering) 

Rk Ti tk Facing 

Rk TIc ti Ext. Finish Turning 

*Internal Roughing Tools Rk TIc ti Internal Rough Turning 

*Internal Finishing Tools Rk Tk Ti ti Int.. Prof. Tum. (Tapering) 

Rk Tk ti Int. Finish Turning 

*External Threading Tools Rk Tk ti Ext. Threading 

*Internal Threading Tools Rk Tk ti Int. Threading 

* Drill Rk Tk Drilling 

*Core Drills Rk Tk Core Drilling 

* Step Drills Rk Tk Step Drilling 

*Counterbore Rk TIc Counter boring 

*Center Drills Rk Tk Center Drilling 

*Gun Drills Rk TIc Gun Drilling 

* Countersink Rk Tk Countersinking 

* Reamers RkTIc Reaming 

*Grooving Tools Rk Ti Grooving or Cutting off 

Rk Ti tk Recess Grooving 

Rk Tk F ace Grooving 

*Internal Grooving Tools Rk Ti Internal Grooving 

Rk Ti tk Internal Recess Grooving 

*Knurling Tools Rk TIc ti Knurling 

*Ext. Fonn Cutting Tools Rk Ti External Fonning 

*Int. Fonn Cutting Tools Rk Ti Internal Fonning 

*Chamfer Tool Rk Tk ti Chamfering 

Figure IILl FGSs in a classical lathe 
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Cutting Tool Motion Set FGS I 

* Drill RkTk Drilling 

*Core Drills Rk Tk Core Drilling 

* Step Drills ｾ Ｍ ｒ ｫ Tk Step Drilling 

*Counterbors RkTk Counter Boring 

*Center Drills RkTk Center Drilling 

*Gun Drills Rk Tk Gun Drilling 

* Countersink Rk Tk Countersinking 

* Reamers Rk Tk Reaming 

*Boring Bars Rk Tk ti Boring 

*Slot Drills RkTk Slot Drilling-l 

Rk Ti tk Slot Drilling-2 

Rk Ti Tj tk Slot Drilling-3 

Rk Ti tj Slot Drilling-4 

*End Mills Rk Ti tk End Milling-l 

Rk Ti tj End Milling-2 

Rk Ti Tj tk End Milling-3 

*Face Mills Rk Ti tk Face Milling 

Figure 111.2 FGSs in a milling machine 

In Figures 111.1 and 111.2: R, T designates fonnative motions (R for rotations and T 

for translations), r, t designates positioning motions (r for rotations and t for 

translations) and i, j, k are motion axes. 

Once a FGS is allocated to a machine tool. it becomes a machining operation, The 

way in \\'hich a FGS is executed is dependent on the machine tool that the FGS ｬ ｾ

III -14 



Adil Baykasoglu 
Appendices 

attached to (Gindy et. at., 1996). Although the relative motion set and the tool used 

are the same, the way in which the operation is executed may differ from machine to 

machine (e.g. execution of drilling operation on Lathe and on a Drilling ｾ Ｑ ｡ ｣ ｨ ｩ ｮ ･ . 

and the level of technological output may also differ. 

Resource Elements (RE) 

A machining facility would be better defmed as a collection of FGSs that are REs. 

The group of resources contained in a manufacturing facility is described by using a 

set of REs. Each RE represents a collection of FGSs and is such that the exclusive 

and the shared capability boundaries between the available resources contained in a 

manufacturing facility are uniquely identified (Gindy et. aI., 1996) (see Figure III .3). 

Machine 2 

Machine 2 
Machine 1 

Machine 3 

. hi" t Tty with three machm s Figure 111.3 RE based representatIOn of a mac nmg aCll 



Adil Baykasoglu 
Append:C25 

Capability Based Representation ora Machining Facility 

Considering that, for a particular machining facility, there is a group of FGSs that do 

not appear separately, i.e. a resource containing a certain FGS, belonging to that 

group, also holds all the other FGSs of the same group. In this case that group of 

FGSs can be considered as a basic unit. This group ofFGSs is considered to be a RE. 

This is the basic principle of Resource Elements. A machining facility can be either 

defined as a list of FGSs or, more effectively, as a list of REs. The number and the 

capability of each one of the REs is specific for each machining facility. 

RE Ri in 9t is formally defined as (Gindy et. aI, 1996): 

i) Ri n Rj = 0 

ii) fk E Ri ｾ fk fl R j 

(V Ri , R j) E 9t 

(3Ri , R j) E 91 6.1 

where, 9t is the overall capability of the machining facility and h is a FGS, which is 

part of the capability of the machining facility. Equation 6.1.i shows that REs are 

mutually exclusive and equation 6.1.ii represents that FGS can belong to only one 

RE. 

The overall FGSs capabilities contained in a facility can be defined as: 

F=fl'f2,···············,fn 
6.2 

where, f are individual FGSs, and F is the full set of FGS perfonned by the 

machining facility. 

f FGS Th apabilitv of a ｲ ･ ｳ ｯ ｵ ｲ ｣ ｾ .\1 in a 
A resource is represented by the set 0 s. e c - ' 

facility M, can be shown by a vector: 
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6.3 

where, mik is equal to 1 ifFGS J; belongs to resource k, 0 otherwise. 

The REs in a machining facility are defined by an iterative procedure (Gindy et. al .. 

1996). For each two FGSs/p and/q in F: 

IF V M k EM: m pk = mqk , THEN _ cluster f p & fq together 

Each RE Rj is represented by a vector: 

R· ER ) 

where, r ij is 1 if J; is a part of RE Rj , 0 otherwise. 

The uniqueness of the REs is defined by; 

Vi = 1,2 ... n 

6.-+ 

6.5 

6.6 

Equation 6.6 guarantees that each FGS belongs to only one RE and that there is no 

overlapping between RE. The algorithm for dividing a machining facility into a set of 

REs is given as follows (Gindy et. al., 1996). 

Step-l: Define the full set of FGSs in F. 

Step-2: Define the capability of each resource in the facility using FGSs. 

Step-3: Select FGS J;. 

Step-4: Selectjj (j"# i). 

Step-5: Ifmik= mjk for each resource in the facility Mik=l,J, ... m) then cluster togetherh &) 

Step-6: Repeat steps 3,4 and 5 for all i, j=1,2, ... n. 

Step-7: Define each cluster ofFGS as aRE. 

Step-8: Using the clusters ofFGSs, represent each resource in the facility as a set of REs. 
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The REs defined for a resource are dependent on the capabilities of the other 

resources in the machining facility. The distribution of REs for the same resource can 

change when other resources are either added into or removed from the machining 

facility. Once the above methodology has been applied, the machining facility is no 

longer seen as a group of resources. Instead, the FGSs of a machinin CT facility can 
ｾ -

now be described by the list of REs it contains and the number of repetitions of REs 

give an indication of the flexibility of the manufacturing facility. This concept 

simplifies and enhances manufacturing tasks such as production planning and 

control, process planning, shop floor design, scheduling etc. and also allows for 

accurate comparison between the components technological needs and the 

manufacturing capabilities available in the manufacturing facility (Gindy et. ai., 

1996). 

The main characteristic features of REs can be summarised and listed as follows: 

• REs are mutually exclusive, in other words there is no overlap between REs they 

are unique (i.e. set of FGS in each RE are totally different and each FGS can 

belong to only one RE). Some other important characteristics of REs are as 

follows; 

• A resource that provides a RE is capable of performing all tasks within that RE. 

• A resource may provide many REs or only one RE. 

.. a RE has the change to access all the resources that • A component requlnng '-' 

provide that RE. 

• REs are unique planning and scheduling entities 
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Example 

Consider a manufacturing cell with seven machines and their FGSs are shown in 

Table III. 1. 

Table 111.1 The capability matrix Mk for the example manufacturing cell 

FGS# FGS# FGS# FGS# FGS# FGS#6 FGS# FGS# FGS:; FGS# FGS= FGS" 
1 2 3 4 5 ! 8 9 10 11 12 

Machine-l • 
Machine-2 • • • • • 
Machine-3 • • • • • 
Machine-4 • • i 

Machine-5 • I 

Machine-6 • • • • • • 
Machine-7 • • 
FGS#l: Drilling, FGS#2: Turning, FGS#3: Boring, FGS#4: Grooving ......... 

By applying the clustering procedure (Gindy et. al., 1996) that is defined above, the 

REs based representation of the manufacturing cell can be obtained. The procedure 

starts with the clustering of each pair of FGSs in the facility F complying with the 

conditions defined in the algorithm and gradually increasing the size of the clusters 

until all possible combinations of FGSs are considered. The resulting REs for the 

example machining cell are shown in Table IIL2 the schematic representation of the 

cell is given in Figure IlI.4. 

-Table IIL2 Clustering FGSs to fonn REs for the example manufacturing cell 

. 
FGS# FGS# FGS# FGS# FGS# FGS# FGS# FGS# FGS" FGS# FGSII FGS= 

1 2 3 4 5 6 7 8 9 10 11 12 

Machine-l • 
Machine-2 • • • • • 
Machine-3 • • • • • 
Machine-4 RE-l RE-2 • • RE-4 

Machine-5 RE-3 • RE-6 ｒ ｅ Ｍ ｾ

• Machine-6 • RE-S • • • • 
Machine-7 • • ｾ

---
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Machine-6 

Machine-2 
Machine-3 
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Machine-7 

8 
CELL 

Machine-4 

8 
8 

Figure 111.4 REs based representation of the manufacturing cell 
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Appendix IV : FORTRAN-90 code for the cell configuration module 

The FORTRAN-90 code for the tabu search based multiple objective capability 

based concurrent cell configuration model (MOCACEF 1.0) is given below .. -\n 

example application with real manufacturing data is also given in Appendix V \\-ith 

the corresponding data files. 

PROGRAM MOCACEF 1.0 

INTEGER Z(100),X(100, 10),Y(1 00, 1 O),XOPT(l 00, 1 O),YOPT(l 00, 1 0) 
INTEGER PMIN,PMAX,MMAX,ZOPT( 1 O),Zl(l 0),X1(1 00, 1 0),Y1( 100, 10) 
INTEGER P(100,50),M(100,50),NRE,P _ QAN(100),TOTCRE(20,50) 
INTEGER I,J,K,RE,ISEED,NPART,NMACH,GMAX,MMIN,Y3(100,10) 
INTEGER Z2( 10),X2( 100, 10),Y2(1 00, 10),Z3(1O),X3( 100, 1 0) 
INTEGERCOPT_X(100,10),COPT_Y(100,10),COPT_Z(10),DUMMY 
INTEGER TALIST_P(40, 100),TALIST_M( 40, 100),N _ITER, TOTCRE3(20,50) 
INTEGER TABUSIZE,COUNTER,NRESPONS,GXYZTOP,GXYITOP,Y4(100,10) 
INTEGER TOTCRE 1 (20,50), TOTCRE2(20,50), TOTCRE4(20,50) 
INTEGER C_TOTCRE(20,50),O_TOTCRE(20,50),Z4(100),X4(100,10) 
REAL M_CAP(50),P _MT(100,100),DSM(100,100),CBESTV(10) 
REAL BEST_ V(10),RES_ V(10),RES_ V1(10),RES_ V2(1O),RES_ V3(10) 
REAL GOAL1,GOAL2,GOAL3,GOAL4,OBJ1,OBJ2_3,OBJ4,OBJ5 
REAL CL(20),CAP _FAC(20),CAP _FAC1 (20,50),RES_ V4(1O) 
REAL CL 1 (20),CELLCAP 1 (20),RECAP1 (20,50) 
REAL CL2(20),CELLCAP2(20),RECAP2(20,50) 
REAL CL4(20),CELLCAP4(20),RECAP4(20,50) 
REAL CL3(20),CELLCAP3(20),RECAP3(20,50) 
REAL C CL(20),C _ CELLCA(20),C _ RECAP(20,50) 
REAL 0-CL(20),O _ CELLCA(20),O _ RECAP(20,50) 

OPEN(UNIT=7,STATUS='UNKNOWN',FILE='C:\RECON_OUT\TS_CONVGTXT') 
OPEN(UNIT=l,STA TUS='OLD',FILE='C:\RECON _IN\JOB _RE.TXT') 
OPEN(UNIT=2,STATUS='OLD',FILE='C:\RECON_IN\MACH_RE.TXT') 
OPEN(UNIT=3,STA TUS='OLD',FILE='C:\RECON _IN\MACH _ CAP.TXT') 
OPEN(UNIT=4,STATUS='OLD',FILE='C:\RECON_IN\PRO_TIME.TXT') 

C 
C DATA INPUT FROM DATA FILES 
C 

READ(1,*) NPART,NRE 
DO 1=l,NPART 

READ(1,*) (P(I,J),J=l,NRE) 
ENDDO 

READ(2, *) NMACH,NRE 
DO 1=l,NMACH 

READ(2, *) (M(1,J),J= 1 ,NRE) 
ENDDO 

DO 1=1 Ｌ ｾ ｬ ｜ ｬ ａ ｃ ｈ
READ(3,*) M_ CAP(l) 

ENDDO 
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DO I=l,NPART 
READ(4,*) (P_MT(I,J),J=l,NRE) 

END 0 0 

DO I=l,NPART 
READ ( 4, *) P _ QAN(I) 

ENDDO 

CLOSE(UNIT=l) 
CLOSE(UNIT=2) 
CLOSE(UNIT=3) 
CLOSE(UNIT=4 ) 

READ * , MMIN,MMAX,PMIN,PMAX,GMAX 
READ*, TABUSIZE,N_ITER 

NRESPONS=4 
C READ*, GOALl,GOAL2,GOAL3 

GOALl=O 
GOAL2=O 
GOAL3=O 
GOAL4=REAL(NRE*GMAX) 

ISEED=9999 

CALL DISSIMIL(P,NP ART,NRE,DSM) 
CALL INRANSOL(ISEED,GMAX,NP ART,NMACH,P ,M,DSM,NRE,MMIN ,MMAX,PMIN 
+ ,PMAX,M _ CAP,P _ MT,P _ QAN ,X,Y,Z) 

C CALL INFESS(GMAX,X,Y,Z) 

C 
C INITIALISATION 
C 

DO l=l,NPART 
DOK=l,GMAX 

ENDDO 

COPT _ X(I,K)= X(I,K) 
ENDDO 

DO J=l,NMACH 
DOK=l,GMAX 

ENDDO 

COPT Y(J,K)=Y(J,K) 
ENDDO 

DOK=l,GMAX 
COPT_Z(K)=Z(K) 

ENDDO 

CALL OBJFUNC(X,Y,Z,P,M,DSM,NMACH,NPART.NRE.MMIN,GMAX. 
+ MMAX,PMAX,PMIN,M_ CAP,P _MT,P _ QA?\.TOTCRE,GXYITOP.GXYZTOP,OBJl. 
+ OBJ2_3,OBJ4,OBJ5,CL,CAP _FAC,CAP _FACl) 

C 
C CALCULA TION OF DEVIATION YECTORS 
C 
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RES_ V(I)=ABS(GOALI-OBJ1) 
RES_ V(2)=OBJ2_3 
RES_ V(3)=ABS(GOAL3-0BJ4) 
RES_ V(4)=GOAL4-0BJ5 

C 
C INITIALISATION 
C 

DO I=I,NRESPONS 
BEST_ V(I)=RES_ V(I) 

ENDDO 

DO I=I,NPART 
DOK=I,GMAX 

TALIST_P( 1,«GMAX-I)*(I-I))+«I-I)+K) )=COPT XCI K) 
ENDDO - , 

ENDDO 

DO J=I,NMACH 
DOK=I,GMAX 

TALIST_M( 1,«GMAX-I)*(J-I))+«J-I)+K) )=COPT Y(J K) 
ENDDO - , 

ENDDO 

C 
C STARTING TABU SEARCH 
C 

COUNTER=I-, 
DO 

COUNTER=COUNTER+I 

Appendices 

CALL MOVEMENT(ISEED,GMAX,NPART,NMACH,P,M,DSM,NRE,MMIN,MMAX 
+ ,PMIN,PMAX,M _CAP ,P _MT,P _ QAN,TABUSIZE,TALIST _P ,TALIST_M 
+ ,COPT_X,COPT_Y,COPT_Z,XI,YI,ZI,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4) 

CALL OBJFUNC(XI,YI,ZI,P,M,DSM,NMACH,NPART,NRE,MMIN,GMAX, 
+ MMAX,PMAX,PMIN,M_ CAP,P _MT,P _ QAN,TOTCRE,GXYITOP,GXYZTOP,OBJ 1, 
+ OBJ2_3,OBJ4,OBJ5,CL,CAP _FAC,CAP _FACI) 

DOK=I,GMAX 
DORE=I,NRE 

RECAP 1 (K,RE)=CAP _FACl(K,RE) 
TOTCRE 1 (K,RE)=TOTCRE(K,RE) 

ENDDO 
CL 1 (K)=CL(K) 
CELL CAP 1 (K)=CAP _F AC(K) 

ENDDO 

C CALCULA TION OF DEVIATIONS 

RES_ Vl(I)=ABS(GOALl-OBJ1) 
RES_ VI (2)=OBJ2_3 
RES Vl(3)=ABS(GOAL3-0BJ4) 
RES VI(4)=GOAL4-0BJ5 

CALL ｏ ｂ ｊ ｆ ｕ ｎ ｃ Ｈ ｘ Ｒ Ｌ ｙ Ｒ Ｌ ｚ Ｒ Ｌ ｐ ｊ ｜ ｌ ｄ ｓ ｍ Ｌ ｎ ｍ ａ ｃ ｈ Ｌ ｎ ｐ ａ ｒ ｔ Ｌ ｎ ｒ ｅ Ｌ ｜ Ｑ ｜ ｮ ｾ Ｎ ｇ ｜ ｬ ｘ ｜ Ｎ
ｾ MMAX,PMAX,PMIN,M_ CAP,P _MT.P _ ｑ ａ ｎ Ｌ ｔ ｏ ｔ ｃ ｒ ｅ Ｌ ｇ ｾ ｙ ｉ ｔ ｏ ｐ Ｌ ｇ ｾ ｙ ｚ ｔ ｏ ｐ Ｌ ｏ ｂ ｊ 1, 
+ OBJ2_3,OBJ4,OBJ5.CLCAP _FACCAP _FACl) 
DOK=I,GMAX 
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ENDDO 

DORE=l,NRE 
RECAP2(K,RE)=CAP_FACl(K,RE) 
TOTCRE2(K,RE)=TOTCRE(K,RE) 

ENDDO 
CL2(K)=CL(K) 
CELLCAP2(K)=CAP _FAC(K) 

RES_ V2(1)=ABS(GOALI-OBJ1) 
RES_ V2(2)=OBJ2_3 
RES_ V2(3)=ABS(GOAL3-0BJ4) 
RES _ V2( 4 )=GOAL4-0BJ5 

CALL OBJFUNC(X3,Y3,Z3,P,M,DSM,NMACH,NP ART,NRE,MMJN,GI\L-\X. 
+ MMAX,PMAX,PMIN,M_ CAP,P _MT,P _ QAN,TOTCRE,GXYITOP,GXYZTOP,OBJl, 
+ OBJ2 _3,OBJ4,OBJ5,CL,CAP _FAC,CAP _FACl) 

DOK=l,GMAX 

ENDDO 

DORE=l,NRE 
RECAP 3 (K,RE)=CAP _FACl(K,RE) 
TOTCRE3(K,RE)=TOTCRE(K,RE) 

ENDDO 
CL3(K)=CL(K) 
CELLCAP3(K)=CAP _FAC(K) 

RES V3(l)=ABS(GOALl-OBJ1) 
RES_ V3(2)=OBJ2_3 
RES V3(3)=ABS(GOAL3-0BJ4) 
RES_ V3(4)=GOAL4-0BJ5 

CALL OBJFUNC(X4,Y 4,Z4,P,M,DSM,NMACH,NP ART,NRE,MMIN,GMAX, 
+ MMAX,PMAX,PMIN,M_CAP,P _MT,P _QAN,TOTCRE,GXYITOP,GXYZTOP,OBJl, 
+ OBJ2_3,OBJ4,OBJ5,CL,CAP _FAC,CAP _FACl) 

DOK=l,GMAX 

ENDDO 

DO RE=l,NRE 

ENDDO 

RECAP4(K,RE)=CAP _F AC 1 (K,RE) 
TOTCRE4(K,RE)=TOTCRE(K,RE) 

CL4(K)=CL(K) 
CELLCAP4(K)=CAP _FAC(K) 

RES_ V4(l)=ABS(GOALI-OBJ1) 
RES_ V4(2)=OBJ2_3 
RES V4(3)=ABS(GOAL3-0BJ4) 
ｒ ｅ ｾ V4(4)=GOAL4-0BJ5 

C 
C SELECTION OF CURRENT BEST SOLUTION VECTOR 

C 

DO I=l,NRESPONS 
CBESTV(I)=RES_ Vl(I) 

ENDDO 

DO I=l,NPART 
DOK=l,GMAX 

COPT_X(I.K)=Xl(I,K) 

ENDDO 
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ENDDO 

DO J=l,NMACH 
DOK=l,GMAX 

ENDDO 

COPT_ Y(J,K)=Yl(J,K) 
ENDDO 

DOK=l,GMAX 
COPT_Z(K)=Zl(K) 

ENDDO 

C _ CELLCA(K)=CELLCAP 1 (K) 
C _ CL(K)=CL 1 (K) 

DOK=l,GMAX 
DORE=l,NRE 

C _ RECAP(K,RE)=RECAP 1 (K,RE) 
C _ TOTCRE(K,RE)=TOTCRE 1 (K,RE) 

ENDDO 
ENDDO 

DUMMY=O 
IF(RES_ V2(1).LT.CBESTV(1)) THEN 

DUMMY=DUMMY+l 
ELSEIF(RES_ V2(l).EQ.CBESTV(1).AND.RES_ V2(2).L T.CBESTV(2)) THEN 

DUMMY=DUMMY+l 
ELSEIF(RES _ V2( 1 ).EQ.CBESTV( 1 ).AND.RES _ V2(2).EQ.CBESTV(2) 
+ .AND.RES_ V2(3).LT.CBESTV(3)) THEN 

DUMMY=DUMMY+l 
ELSEIF(RES _ V2(l ).EQ.CBESTV(l ).AND.RES _ V2(2).EQ.CBESTV(2) 
+ .AND.RES_ V2(3).EQ.CBESTV(3).AND.RES_ V2(4).LE.CBESTV(4)) THEN 

DUMMY=DUMMY+l 
ENDIF 

IF(DUMMY.GE.l) THEN 
DO I=l,NRESPONS 

CBESTV(I)=RES_ V2(I) 
ENDDO 

DO I=l,NPART 
DOK=l,GMAX 

COPT _ X(I,K)= X2(I,K) 
ENDDO 

ENDDO 

DO J=l,NMACH 
DOK=l,GMAX 

COPT _ Y(J,K)=Y2(J,K) 
ENDDO 

ENDDO 

DOK=l,GMAX 
COPT Z(K)=Z2(K) 
C CELLCA(K)=CELLCAP2(K) 
C = CL(K)=CL2(K) 

ENDDO 

DOK=l,GMAX 
DORE=l,NRE 

C RECAP(K,RE)=RECAP2(K.RE) 
C -TOTCRE(K.RE)=TOTCRE2(K.RE) 
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ENDIF 

ENDDO 
ENDDO 

DUMMY=O 
IF(RES_ V3(1).LT.CBESTV(1)) THEN 

DUMMY=DUMMY+l 

Appendices 

ELSEIF(RES_ V3(1).EQ.CBESTV(1).AND.RES_ V3(2).LT.CBESTV(2)) THE?\ 
DUMMY=DUMMY+l 

ELSEIF(RES_ V3(1).EQ.CBESTV(1).AND.RES_ V3(2).EQ.CBESTV(2) 
+.AND.RES_ V3(3).LT.CBESTV(3)) THEN 

DUMMY=DUMMY+I 
ELSEIF(RES_ V3(1).EQ.CBESTV(I).AND.RES_ V3(2).EQ.CBESTV(2) 
+ .AND.RES_ V3(3).EQ.CBESTV(3).AND.RES_ V3(4).LE.CBESTV(4» THE:-'-

DUMMY=DUMMY+I 
ENDIF 

IF(DUMMY.GE.l) THEN 

END IF 

DO I=I,NRESPONS 
CBESTV(I)=RES_ V3(I) 

ENDDO 

DO I=l,NPART 
DOK=l,GMAX 

ENDDO 

COPT X(I,K)=X3(I,K) 
ENDDO 

DO J=I,NMACH 
DOK=I,GMAX 

COPT _ Y(J,K)=Y3(J,K) 
ENDDO 

ENDDO 

DOK=l,GMAX 

ENDDO 

COPT Z(K)=Z3(K) 
C _ CELLCA(K)=CELLCAP3(K) 
C _ CL(K)=CL3(K) 

DOK=I,GMAX 
DORE=l,NRE 

C RECAP(K,RE)=RECAP3(K,RE) 
C = TOTCRE(K,RE)=TOTCRE3(K,RE) 

ENDDO 
ENDDO 

DUMMY=O 
IF(RES_ V4(1).LT.CBESTV(1)) THEN 

DUMMY=DUMMY+l . 
ELSEIF(RES_ V4(1).EQ.CBESTV(1).AND.RES_ V4(2).LT.CBESTV(2» THE\ 

DUMMY=DUMMY+I 
ELSEIF(RES V 4( 1 ).EQ.CBESTV( 1 ).AND.RES _ V 4(2).EQ.CBESTV(2) 
+ .AND.RES -V3(3).LT.CBESTV(3)) THEN 

DuMMY=DUMMY+l . ., 
ELSEIF(RES V4(1).EQ.CBESTV( l).AND.RES_ ｜ Ｇ Ｔ Ｈ Ｒ Ｉ Ｎ ｅ ｑ Ｎ ｃ ｂ ｅ ｓ ｔ ｾ (-) . -
+.AND.RES V4(3).EQ.CBESTV(3).AND.RES_ V-.f(-.f).LE.CBEST\ (-.f» ｔ ｈ ｅ ｾ

DuMMY=DUMMY+l 

END IF 
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C 

IF(DDMMY.GE.l) THEN 

END IF 

DO I=l,NRESPONS 
CBESTV(I)=RES V 4(D 

ENDDO -

DO I=l,NPART 
DOK=l,GMAX 

COPT_X(I,K)=X4(I,K) 
ENDDO 

ENDDO 

DO J=l,NMACH 
DOK=l,GMAX 

ENDDO 

COPT_ Y(J,K)=Y4(J,K) 
ENDDO 

DOK=l,GMAX 

ENDDO 

COPT _ Z(K)=Z4(K) 
C _ CELLCA(K)=CELLCAP4(K) 
C _ CL(K)=CL4(K) 

DOK=l,GMAX 
DORE=l,NRE 

C _ RECAP(K,RE)=RECAP4(K,RE) 
C _ TOTCRE(K,RE)=TOTCRE4(K,RE) 

ENDDO 
ENDDO 

C UPDATING THE BEST SOLUTION VECTOR 
C 

DUMMY=O 
IF(CBESTV(l).LT.BEST_ Vel)) THEN 

DUMMY=DUMMY+I 
ELSEIF(CBESTV(1).EQ.BEST_ V(1).AND.CBESTV(2).L T.BEST_ V(2)) THEN 

DUMMY=DUMMY+l 
ELSEIF(CBESTV( 1 ).EQ.BEST _ V( 1 ).AND.CBESTV(2).EQ.BEST _ V(2) 
+ .AND.CBESTV(3).LT.BEST_ V(3)) THEN 

DUMMY=DUMMY+l 
ELSEIF(CBESTV(1 ).EQ.BEST _ V( 1 ).AND.CBESTV(2).EQ.BEST _ V(2) 
+ .AND.CBESTV(3).EQ.BEST_ V(3).AND.CBESTV(4).LE.BEST_ V(4)) THEN 

DUMMY=DUMMY+l 
ENDIF 

IF(DUMMY.GE.l) THEN 
DO I=l,NRESPONS 

BEST V(I)=CBESTV(I) 
ENDDO 

DO I=l,NPART 

ENDDO 

DOK=l,GMAX 
XOPT(I,K)=COPT _ X(I,K) 

ENDDO 

DO J=l,)J\lACH 
DO K=l.G\lAX 

YOPT(J,K)=COPT_ Y(J.K) 
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C 

ENDIF 

ENDDO 
ENDDO 

DOK=l,GMAX 
ZOPT(K)=COPT _ Z(K) 
0_ CELLCA(K)=C _ CELLCA(K) 
0_ CL(K)=C _ CL(K) 

ENDDO 

DOK=l,GMAX 
DORE=l,NRE 

0_ RECAP(K,RE)=C _ RECAP(K,RE) 
0_ TOTCRE(K,RE)=C TOTCRE(K RE) 

ENDDO -, 

ENDDO 

WRITE(*,*)(BEST_ V(I),I=l,NRESPONS) 

C UPDATING THE TABU LIST 
C 

IF(COUNTER.LE.TABUSIZE) THEN 
DO l=l,NPART 

DOK=l,GMAX 
TALIST_P( 1,«GMAX-l)*(I-l »+«1-1 )+K) )=COPT X(I,K) 

ENDDO -

ENDDO 

END IF 

DO J=1,NMACH 
DOK=l,GMAX 

TALIST_M( 1,«GMAX-l)*(J-1»+«(J-l)+K) )=COPT_Y(J,K) 

ENDDO 
ENDDO 

IF(COUNTER.GT.TABUSIZE) THEN 

ENDIF 

DO I=l,NPART 

ENDDO 

DOK=l,GMAX 
TALIST_P(MOD(COUNTER,TABUSIZE), 
+ «GMAX-l)*(I-l»+«I-1)+K) )=COPT_X(I,K) 

ENDDO 

DO J=l,NMACH 
DOK=l,GMAX 

TALIST M(MOD(COUNTER,TABUSIZE), 
+ «GMAX-1)*(J-l»+«J-l)+K) )=COPT _ Y(J,K) 

ENDDO 
ENDDO 

WRITE(*,*)(BEST_ V(I),I=l,NRESPONS) 
WRITE(7,121) BEST_ V(l),BEST_ V(2),BEST_ V(3),BEST_ V(4) 

121 FORMAT(FIO.2,F10.2.F10.2,F10.0) 

IF( COUNTER. GT.N _ITER) THEN 
EXIT 

ENDIF 
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ENDDO 

CALL OUTPUT(XOPT ,YOPT ,ZOPT,NP ART,NMACH,GMAX,NRE, 
+ O_CELLCA,O_RECAP,O_CL,O_TOTCRE) 

CLOSE(UNIT=7) 

END 

C 
C FUNCTION PRINTING THE BEST SOLUTION OBTAINED 
C 

-..f.ppendices 

SUBROUTINE ｏ ｕ ｔ ｐ ｕ ｔ Ｈ ｘ ｏ ｐ ｔ Ｌ ｙ ｏ ｐ ｔ Ｌ ｚ ｏ ｐ ｔ Ｌ ｎ ｐ ａ ｒ ｔ Ｌ ｎ ｍ ａ ｃ ｈ Ｌ ｇ ｍ ａ ｘ Ｌ ｾ Ｇ ｒ ｅ Ｌ ｏ CELLCA 
+ ,O_RECAP,O_CL,O_TOTCRE) -

INTEGER XOPT(lOO,lO),YOPT(lOO,lO),ZOPT(lO),NPART,NMACH,GMAX 
INTEGER RE,I,J ,K,NRE,O _ TOTCRE(20,50) 
REAL 0_ CL(20),O _ CELLCA(20),O _RECAP(20,50) 

OPEN(UNIT=77 ,STA TUS='UNKNO\VN' ,FILE='C:\RECON _ OUT\OPT _SOL. TXT') 

WRITE(77,*)'===================== 
WRITE(77,*), MOCACEF 1.0' 
WRITE(77, *)'A TABU SEARCH BASED MULTIPLE OBJECTIVE MA THEMA TICAL' 
WRITE(77,*)' PROGRAMMING MODEL FOR CONCURRENTLY FORMING ' 
WRITE(77,*)' PART FAMILIES & MACHINE GROUPS 
WRITE(77, *)' VIA RESOURCE ELEMENTS 
WRITE(77, *)' 
WRITE(77,*)' 
WRITE(77, *)' 
WRITE(77, *)' 
WRITE(77, *)' 
WRITE(77, *)' 
WRITE(77,*)' 
WRITE(77,*) 

By: Adil BA YKASOGLU 

University of Nottingham 
Dept. of Manufacturing Eng. & Operations Mang. ' 

1998 ' 

WRITE(77,*)'==================== 
, 

C WRITE(77,*) 'OPTIMUM OBJ. FUNC. VALUE:',BOBJ 
WRITE(77, *) 
WRITE(77,40) GMAX 
40 FORMAT('NUMBER OF PRODUCTION CELLS:',I2) 

WRITE(77, *) 
WRITE(77, *) '==:=== 
WRITE(77,*) 'PART FAMILIES' 
WRITE(77,*)' ' 
WRITE(77,*) 

DOK=l,GMAX 
WRITE(77,41) K 
41 FORMAT(,CELL NUMBER->',I2) 
WRITE(77, *)'-------------' 

DO I=l,NPART 
IF(XOPT(I,K).EQ.1) THEN 

WRITE(77,50) I 
50 FORMAT(,PART-',I2) 

ENDIF 
ENDDO 

WRITE(77,*) 
ENDDO 
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WRlTE(77,*) '====== 
WRlTE(77, *) 'MACHINE GROUPS' 
WRlTE(77,*) '====== 
WRlTE(77, *) 

DOK=l,GMAX 
WRITE(77,42) K 

42 FORMAT(,CELL NUMBER->',I2) 
WRITE (77 , *)' -------------' 
WRITE(77,61) O_CL(K) 
WRITE(77, *) 

!F( 0_ CELLCA(K).L T .O)THEN 
WRITE(77,62) 0 _ CELLCA(K) 
WRITE(77, *) 

END IF 

!F(O _ CELLCA(K).GE.O)THEN 
WRITE(77,63) O_CELLCA(K) 
WRITE(77, *) 

ENDIF 

61 FORMAT('Cell Capacity Utilisation is = ',FIO.2) 
62 FORMA T( FIO.2,' Units of EXTRA Capacity is Required 

+ (i.e. CELL IS BOTTLENECK)') 
63 FORMAT( FIO.2,' Units of EXTRA Capacity is Available') 

DO J=l,NMACH 
!F(YOPT(J,K).EQ.1) THEN 

WRlTE(77,65) J 
65 FORMA TCMACHINE-',I2) 

END IF 
ENDDO 
WRITE(77, *) 

ENDDO 

WRlTE(77,*) "=================== 
WRlTE(77, *) 'DISTRIBUTION OF RESOURCE ELEMENTS BETWEEN CELLS' 
WRlTE(77, *) , , 
WRlTE(77 , *) 

DOK=l,GMAX 
WRITE(77,43)K 

43 FORMA TCCELL NUMBER->',I2) 
WRITE(77, *)'-------------' 
DORE=l,NRE 

IF (O_TOTCRE(K,RE).NE.O) THEN 
WRITE(77,70) O_TOTCRE(K,RE),RE 

70 FORMA T(I2,' Copies of RE-',I2) 
END IF 
!F(O _ RECAP(K,RE).L T.O) THEN 

71 
ENDIF 

ENDDO 
WRITE(77, *) 

ENDDO 

CLOSE(UNIT=77) 

WRITE(77,71) -1 *O_RECAP(K,RE),RE 
FORMAT( F10.2,' Units of EXTRA Capacity is Required for RE-',I2) 
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RETURN 
END 

c 
C FUNCTION FOR DETERMINATION OF OVERALL DISSIMILARITY MATRIX 
C 

SUBROUTINE DISSIMIL(P,NPART,NRE,DSM) 

INTEGER I,L,P(lOO,50),NPART,NRE 
REAL DSIM(lOO,lOO),SDISSIM(lOO,lOO),DSM(100,100),W1,W2 

OPEN(UNIT=44,STA TUS='UNKNOWN' ,FIL1?'C:\RECON _ OUT\C _ DSM.TXT) 

CALL PDS(P,NP AR T,NRE,DSIM) 
CALL SDS(NP ART,SDISSIM) 

W1=O.5 
W2=O.5 

DO I=l,NPART 
DO L=l,NPART 

DSM(I,L)=W1 *DSIM(I,L)+W2*SDISSIM(I,L) 
ENDDO 

ENDDO 

DO I=2,NPART 
WRITE( 44,41 )(DSM(I,L ),L= 1,1 -1) 

41 FORMAT(20F5.2) 
ENDDO 

CLOSE(UNIT=44 ) 

RETURN 
END 
C 
C FUNCTION FOR CALCULATION OF PRODUCTION REQUIREMENT 
C BASED DISSIMILARITY COEFFICIENTS BETWEEN PARTS 

C 

SUBROUTINE PDS(P,NPART,NRE,DSIM) 

INTEGER I,L,RE,ITRS,UNIO,NPART,NRE,P(lOO,50) 
REAL DSIM(100,100) 

OPEN(UNIT= 1 O,STA TUS='UNKNOWN',FILE='C:\RECON _ OUT\PDSM.TXT) 

DO I=1,NPART-1 
DO L=I+1,NPART 

ITRS=O 
UNIO=O 
DORE=l,NRE 

IF(P(I,RE).NE.O.AND.P(L,RE).NE.O.:\l\'D. 
+ P(I,RE).EQ .P(L,RE)) THEN 

ITRS= ITRS+ 1 
ENDIF 
ｉ ｆ Ｈ ｐ Ｈ ｉ Ｌ ｒ ｅ Ｉ Ｎ ｎ ｅ Ｎ ｏ Ｎ ｏ ｒ Ｎ ｐ Ｈ ｌ Ｎ ｒ ｅ Ｉ Ｎ ｾ ｅ Ｎ ｏ Ｉ THE): 

END IF 
ENDDO 

ｕ ｎ ｉ ｏ ］ ｬ ｾ ｉ ｏ Ｋ ｬ
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DSIM(I,L)=I-(REAL (ITRS)/(UNIO)) 
DSIM(L,I)=DSIM(I,L) 
DSIM(I,I)=O 
DSIM(L,L )=0 

ENDDO 
ENDDO 

DO I=2,NPART 
WRITE( 1 0,20)(DSIM(I,L ),L=1 ,1-1) 

20 FORMA T(20F5 .2) 
ENDDO 

CLOSE(UNIT=IO) 

RETURN 
END 

C 
C FUNCTION FOR CALCULATION OF OPERATION SEQUENCE BASED 
C DISSIMILARITY COEFFICIENTS BETWEEN PARTS 
C 

SUBROUTINE SDS(NPART,SDISSIM) 

INTEGER I,J,II,I2,Ll,L2,NP ART,SQM( 100, 1 OO),SDSM( 1 00,1 OO),NOP( 1 00) 
INTEGER DISSIM( 1 00, 100),ADD,DELETE,SUBSTI,BIG VAL 
REAL SDISSIM(100,100) 

OPEN(UNIT=20,ST A TUS='OLD' ,FILE='C:\RECON _ IN\PRO _SEQ. TXT') 
OPEN(UNIT=21,STATUS='UNKNOWN',FILE='C:\RECON_OUT\SDISSIM.TXT') 

DO I=I,NPART 
READ(20, *) NOP(I) 

ENDDO 

DO I=I,NPART 
READ(20, *) (SQM(I,J),J=l,NOP(I)) 

ENDDO 

C 
C CALCULATION OF DISSIMILARITY COEFFICIENTS 

C 

DO I=I,NPART-l 
DO L=I+l,NPART 

DO II =l,NOP(I)+ 1 
SDSM(II,l)=II-l 

ENDDO 
DO Ll=I,NOP(L)+1 

SDSM( I,L 1 )=L 1-1 
ENDDO 
DO 12=2,NOP(I)+ 1 

DO L2=2,NOP(L)+ 1 
IF(SQM(I,I2-1 ).EQ.SQM(L,L2-1)) THEN 

SUBSTI=SDSM(I2-1.L2-1) 

ELSE 
SUBSTI=SDSM(I2-1.L2-1)+ 1 
DELETE=SDS\1(I2-ｌ ｌ Ｒ Ｉ ｾ 1 
ADD=SDS\Il12.L2-1 )-1 

ｉ ｖ Ｍ Ｓ ｾ
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ENDIF 

SDSM(U,L2)=MIN(SUBSTI DELETE ADD) 
DISSIM(I,L)=SDSM(I2 L2) , , 

ENDDO ' 
ENDDO 
DISSIM(L,I)=DISSIM(I,L) 
DISSIM(I,I)=O 
DISSIM(L,L )=0 

ENDDO 
ENDDO 

BIG VAL=O 
DO I=2,NPART 

DO L=l,I-l 

IF(DISSIM(I,L).GT.BIG_ VAL) THEN 
BIG_ VAL=DISSIM(I,L) 

END IF 
ENDDO 

ENDDO 

DO I=l,NPART-l 
DO L=I+l,NPART 

SDISSIM(I,L)=REAL (DISSIM(I,L))IBIG VAL 
SDISSIM(L,I)=SDISSIM(I,L) -
SD ISSIM(I,I)=O 
SDISSIM(L,L )=0 

ENDDO 
ENDDO 

DO I=2,NPART 
. ｾ ｗ ｒ ｉ ｔ ｅ Ｈ Ｒ Ｑ Ｌ Ｕ Ｐ Ｉ Ｈ ｓ ｄ ｉ ｓ ｓ ｉ ｍ Ｈ ｉ Ｌ ｌ Ｉ Ｌ ｌ ］ Ｑ Ｌ ｉ Ｍ ｬ Ｉ

50 FORMA T(20F5.2) 
ENDDO 

CLOSE(UNIT=20) 
CLOSE(UNIT=21) 

RETURN 
END 

C 

Appendices 

C FUNCTION FOR CALCULATION OF OBJECTIVE AND CONSTRAINT FUNCTIONS 
C 

SUBROUTINE OBJFUNC(X,Y,Z,P,M,DSM,NMACH,NPART,NRE,MMIN,GMAX, 
+ MMAX,PMAX,PMIN,M CAP,P MT,P QAN,TOTCRE,GXYITOP,GXYZTOP,OBJL - - -
+ OBJ2_3,OBJ4,OBJ5,CL,CAP _FAC,CAP_FACl) 

INTEGER I,K,L,J,RE,NRE,II,JJ,Z( 1 O),X( 1 00,10), Y( 1 00, 1 0) 
INTEGER XTOP,YTOP,TOPYZl,TOPYZ2,GXYITOP,MC2(100),P2(100) 
INTEGER TOPXZl,TOPXZ2,TOTALl,TOTAL2,NPART,NMACH,GMAX 
INTEGER R,GXTOP,GYTOP,GTOTALl,GTOTAL2,GXYZTOPJ\1\;1f'JJCM 
INTEGERMMAX,PMIN,PMAX,GTOTAL3,GTOTAL4,TOTAL3,TOTAL'+ 
INTEGER P(100,50),M(100,50),Pl(100,50),Ml(100,50),INCELLi'.1 
INTEGER P _ QAN( 100),FEMIX(20,50),REPRE,TOTCRE(20,50) 
REAL M _ CAP(50),P _ MT( 1 00,1 OO),CAP_RE 
REAL CAP_FAC(20),CAP _AV,CAP _REl,CAP _AVl,CAP _FACl(10.50) 
REAL DSM(l00,100),CL(20),ACL,TOTUTL,OBJ1,OBJ2,OBB.OBJ'+.OBJ5 
REAL OBJ2 3 
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C 
C EQUALITY CONSTRAINTS 
C 

C 
C CONSTRAINT-l 
C 

GXTOP=O 
DO I=I,NPART 

XTOP=O 
DOK=I,GMAX 

ENDDO 

C 

XTOP= XTOP+(X(I,K)*Z(K» 
ENDDO 
GXTOP=GXTOP+ XTOP-l 

C CONSTRAINT-2 
C 

GYTOP=O 
DO J=I,NMACH 

YTOP=O 
DOK=I,GMAX 

YTOP=YTOP+(Y(J,K)*Z(K» 
ENDDO 
GYTOP=GYTOP+ YTOP-l 

ENDDO 

C 
C CONSTRAINT-3 
C 

INCELLM=O 
DOK=I,GMAX 

DO I=l,NMACH 
DORE=l,NRE 

Ml(I,RE)=O 
ENDDO 

ENDDO 
DO J=l,NPART 

DORE=l,NRE 
PI (J,RE)=O 

ENDDO 
ENDDO 
DORE=l,NRE 

MC2(RE)=O 
ENDDO 
DORE=l,NRE 

P2(RE)=O 
ENDDO 
DO I=l,NPART 

IF(X(I,K).EQ.l) THEN 
DORE=l,NRE 

PI (I,RE)=P(I,RE) 

ENDDO 
DO II=l,NPART 

- '=- I. l ... \,. ｾ

DO RE=l,NRE . . , 
IF(Pl( 1 ,RE).EQ.O.AND.Pl(Il---l ,RE).EQ.UA);OP -( RE).1 U n) 

+THEN 
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ENDDO 

ELSE 

END IF 
ENDDO 

ENDDO 
END IF 

P2(RE)=O 

P2(RE)=1 

DO J=l,NMACH 
IF(Y(J,K).EQ.l) THEN 
DORE=l,NRE 

Ml(J,RE)=M(J,RE) 
ENDDO 
DO JJ=l,NMACH 

ENDDO 
ENDIF 

DORE=l,NRE 
IF(Ml(l,RE).EQ.O.AND.Ml(JJ+l,RE).EQ.O. 
+AND.MC2(RE).EQ.O) THEN 

ENDDO 

MC2(RE)=O 
ELSE 

MC2(RE)=1 
ENDIF--

ENDDO 

ICM=O 
DORE=l,NRE 

IF(P2(RE).EQ.l.AND.MC2(RE).EQ.O) THEN 

END IF 
ENDDO 

ICM=ICM+l 

INCELLM=INCELLM+ICM 
ENDDO 

GXYITOP=ABS( GXTOP)+ ABS(GYTOP)+ ABS(INCELLM) 

C 
C NON-EQUALITY CONSTRAINTS 
C 

c 
C CONSTRAINT-4 
C 

GTOTAL2=O 
DOK=l,GMAX 

TOTAL2=O 
TOPXZl=O 
DO I=l,NPART 

TOPXZl =TOPXZl + X(I,K) 

ENDDO 
TOTAL2=TOPXZ I-PMIN*Z(K) 
IF(TOTAL2.LT.O) THEN 

R=l 
ELSE 

R=O 
END IF 
GTOTAL2=GTOTAL2+R *TOTAL2 

ENDDO 

Appendices 



-Adil Baykasoglu 

C 
C CONSTRAINT-5 
C 

GTOTALl=O 
DOK=l,GMAX 

TOTALl=O 
TOPYZl=O 
DO J=l,NMACH 

TOPYZl=TOPYZl+Y(J,K) 
ENDDO 
TOTALl=TOPYZl-MMIN*Z(K) 
IF(TOTAL1.LT.O) THEN 

R=l 
ELSE 

R=O 
END IF 
GTOTALI =GTOTALI +R * TOTAL 1 

ENDDO 

C 
C CONSTRAINT-6 
C 

GTOTAL4=O 
DOK=l,GMAX 

TOTAL4=O 
TOPXZ2=O 
DO I=l,NPART 

ENDDO 

C 

TOPXZ2=TOPXZ2+ X(I,K) 
ENDDO 
TOTAL4=PMAX*Z(K)- TOPXZ2 
IF(TOTAL4.LT.O) THEN 

R=l 
ELSE 

R=O 
ENDIF 
GTOTAL4=GTOTAL4+R *TOTAL4 

C CONSTRAINT-7 
C 

GTOTAL3=O 
DOK=l,GMAX 

TOTAL3=O 
TOPYZ2=O 
DO J=l,NMACH 

TOPYZ2=TOPYZ2+ Y(J,K) 

ENDDO 

ENDDO 
TOTAL3=MMAX*Z(K)- TOPYZ2 
IF(TOTAL3.LT.O) THEN 

R=l 
ELSE 

R=O 
END IF 
GTOTAL3=GTOTAL3+R*TOTAL3 

Appendices 
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GXYZTOP=ABS(GTOTALl!+ABS(GTOTAL2)+ABS(GTOTAL3)+ABS(GTOTAL4) 

C 
C CALCULATION OF CELL UTILI SA TIONS 
C 

DOK=l,GMAX 
CAP AV=O 
DO J=l,NMACH 

CAP _AV=CAP _AV+M_CAP(J)*Y(J,K) 
ENDDO 
CAP RE=O 
DO I=l,NPART 

DORE=l,NRE 
CAP _RE=CAP _RE+X(I,K)*P _MT(I,RE)*P _QA);(I) 

ENDDO 
ENDDO 

IF(CAP _A V.NE.O) THEN 
CL(K)=CAP _ RE/CAP _A V 

ELSE 

ENDIF 
ENDDO 

C 

CL(K)=O 

C CALCULATION OF AVERAGE UTILISATION OF CELLS 

C 

TOTUTL=O 
DOK=l,GMAX 

TOTUTL=TOTUTL +CL(K) 

ENDDO 

ACL=TOTUTLIREAL(GMAX) 

C 
C DETERMINATION OF FLEXIBILITY MATRIX TOTCRE 

C 

DOK=l,GMAX 
DORE=l,NRE 

REPRE=O 

ENDDO 
ENDDO 

DO J=l,NMACH 
REPRE=REPRE+(Y(J,K)*M(J,RE)) 

ENDDO 
TOTCRE(K,RE)=REPRE 

ｾ CALCULATION OF OBJECTIVE FUNCTION-l (i.e. PART SL\llLARITY) 

C 

OBJ1=O 
DO K=l,GMAX 

DO 1= 1, NP ART 
DO L=l,NPART . ",' . 

OBJ1 =OBJ1 +(DSM(LL)*O.5*X(I.K)· X(L.K)) 

ENDDO 
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ENDDO 
ENDDO 

C 
C OBJECTIVE-2 
C 

DOK=I,GMAX 
CAP_AV=O 
DO J=I,NMACH 

CAP _AV=CAP _AV+M_ CAP(J)*Y(J,K) 
ENDDO 
CAP RE=O 
DO I=I,NPART 

DORE=I,NRE 
CAP _RE=CAP _RE+X(I,K)*P _MT(I,RE)*P QAN(I) 

ENDDO -
ENDDO 
CAP_FAC(K)=CAP AV-CAP RE 

ENDDO --

OBJ2=0 
DOK=I,GMAX 

IF (CAP _FAC(K).LT.O) THEN 
OBJ2=OBJ2+ABS(CAP _FAC(K)) 

END IF 
ENDDO 

C 
C OBJECTIVE-3 
C 

DOK=I,GMAX 
DORE=I,NRE 

CAP AVI=O 
DO J=I,NMACH 

CAP _A V 1 =CAP _AVI+M_CAP(J)*Y(J,K)*M(J,RE) 

ENDDO 
CAP REl=O 
DO I=l,NPART 

CAP RE 1 =CAP _REI + X(I,K)*P _MT(I,RE)*P _ QAN(I) 

ENDDO .' 
CAP _FACl(K,RE)=CAP _A VI-CAP _REI 

ENDDO 
ENDDO 

OB13=O 
DOK=l,GMAX 

DO RE=I,NRE 
IF(CAP _FACI(K,RE).LT.O) THEN 

OB13=OB13+ABS(CAP _FACI(K,RE)) 

END IF 
ENDDO 

ENDDO 

OBJ2 3=OBJ2+0B13 

C 
C OBJECTIVE-4 
C 

ｏ ｂ ｊ ｾ ］ ｏ
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DOK=l,GMAX 
OBJ4=OBJ4+( (CL(K)-ACL)**2 IGMAX ) 

ENDDO 

C 
C CALCULA nON OF OBJECTIVE FUNCTION-5 
C 

OBJ5=0 
DOK=l,GMAX 

DORE=l,NRE 
IF(TOTCRE(K,RE).NE.O) THEN 

END IF 
ENDDO 

ENDDO 

OBJ5=OBJ5+ TOTCRE(K,RE)/TOTCRE(K,RE) 

RETIJRN 
END 

C 
C FUNCTION FOR GENERATING THE 
C INITIAL FEASIBLE RANDOM SOLUTION 
C 

SUBROUTINEINRANSOL(ISEED,GMAX,NP ART,NMACH,P,M,DSM,NRE, 
+ MMIN,MMAX,PMIN,PMAX,M _ CAP,P _MT,P _ QAN,X, Y,Z) 

INTEGER I,J,K,X(100,10),Y(100,10),Z(10),PMIN,PMAX,MMIN,MMAX,NRE 
INTEGER ISEED,GMAX,NP ART,NMACH,P QAN( 1 OO),P(1 00,50),M( 1 00,50) 
INTEGER GXYITOP ,GXYZTOP, TOTCRE(20,50) 
REAL P _MT(l 00, 100),M_ CAP(50),DSM(100,lOO),OBJ1,OBJ2_3,OBJ4,OBJ5 
REAL CL(20),CAP _FAC(20),CAP _FACl(20,50) 

DO 
DO I=l,NPART 

DOK=l,GMAX 

ENDDO 

X(I,K)=O 
ENDDO 
K =NINT(ran(iseed)*(GMAX-l)+ 1) 
X(I,K)=l 

DO J=l,NMACH 
DOK=l,GMAX 

Y(J,K)=O 
ENDDO 
K=NINT(ran(iseed)*(GMAX-l)+l) 
Y(J,K)=l 

ENDDO 

DOK=l,GMAX 
Z(K)=l 

ENDDO 

Appendices 

CALL OBJFUNC(X,Y,Z,P,M,DSM,NMACH,NP ａ ｒ ｔ Ｎ ｎ ｒ ｅ Ｌ ｩ ｜ Ｎ ｬ ｜ ｬ ｦ Ｉ ［ Ｌ ｇ ｜ ｌ ｜ ｾ Ｌ Ｎ
+ MMAX,PMAX,PMIN,M _ CAP,P _MT,P _ QAN,TOTCRE,GXYITOP,GXl ZTOP,OBJ 1, 

+ OBJ2_3,OBJ4,OBJ5,CL,CAP _FACCAP _FACl) 

IF(GXYITOP.EQ.O.AND.GXYZTOP.EQ.O)THEN 
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ENDIF 
ENDDO 

RETURN 
END 

C 

Aependices 

EXIT 

g FUNCTION FOR GENERATING THE INITIAL FEASIBLE RANDOM SOLCTIO:\" 

SUBROUTINE INFESS(GMAX,X,y,Z) 

INTEGER I,J,K,X( 1 00, 10), Y( 1 00,1 O),Z( 10),GMAX 
OPEN(UNIT=2,STA TUS='OLD',FILE='C:\RECON _ IN\incelld. TXT) 

READ (2, *)NP AR T,NMACH 
DO I=l,NPART 

READ(2, *) (X(I,K),K=l,GMAX) 
ENDDO 

DO J=l,NMACH 
READ(2,*) (Y(J,K),K=l,GMAX) 

ENDDO 

DOK=l,GMAX 
READ(2, *) Z(K) 

ENDDO 

CLOSE(UNIT=2) 

RETURN 
END 

C 
C FUNCTION FOR CREATING FEASIBLE, NON-TABU NEIGHBOUR SOLUTIONS 
C 

SUBROUTINE MOVEMENT(ISEED,GMAX,NPART,NMACH,P,M,DSM,NRE,MMIN, 
+ MMAX,PMIN,PMAX,M_ CAP,P _MT,P _ QAN,TABUSIZE,TALIST_P,TALIST_M 
+ ,X, Y ,Z,X 1, Y 1,Z 1 ,X2, Y2,Z2,X3, Y3,Z3,X4, Y 4,Z4) 

INTEGER I,J,K,Z 1 (1 O),X 1 (100,10), Y 1 (100,10) 
INTEGER Z(10),X(100,10),Y(100,10),TOTCRE(20,50) 
INTEGER Z2(10),X2(100, 10),Y2(100, 10),Z4(lO),X4(lOO,lO),Y4(100,lO) 
INTEGER Z3(10),X3(100, 10),Y3(100, 10) 
INTEGER A,B,AA,BB,SAMEl,SAME2,SIM_TV(50),SIM_TW(50) 
INTEGER SIM_NV(20),SIM_NW(20),SAMESV _M(50,500),SAMESV _P(50,500) 
INTEGER GMAX,NPART,NMACH,NRE,MMIN,MMAX,PMIN,PMAX,ISEED 
INTEGER P(100,50),M(100,50),P_QAN(lOO),TALIST_P(40,lOO) ,TABUSIZE 
INTEGER TALIST M(40,100),GXYITOP,GXYZTOP,DUMMY 
REAL M_CAP(50)j> _MT(100,lOO),DSM(lOO,lOO),OBJ1,OBJ2_3,OBJ4,OBJ5 
REAL CL(20),CAP _FAC(20),CAP _FACl(20,50),COBJLCOBJ2_3,COBJ4,COBJ5 

CALL OBJFUNC(X,Y,Z,P,M,DSM,NMACH,NPART,NRE,MMIN,GMAX, 
+MMAX,PMAX,PMIN,M_ CAP,P _MT,P _ ｑ ａ ｾ Ｌ ｔ ｏ ｔ ｃ ｒ ｅ Ｌ ｇ ｘ ｙ ｉ ｔ ｏ ｐ Ｌ ｇ ｘ ｙ ｚ ｔ ｏ ｐ Ｌ
+COBJ1,COBJ2_3,COBJ4,COBJ5,CL,CAP _FAC,CAP _FACl) 

C First vector 
DO 

JV--W 
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C Initialisation 

DO I=l,NPART 
DOK=l,GMAX 

Xl (I,K)=X(l,K) 
ENDDO 

ENDDO 

DO J=l,NPART 

ENDDO 

DOK=l,GMAX 
Y1(J,K)=Y(J,K) 

ENDDO 

DOK=l,GMAX 
Zl(K)=Z(K) 

ENDDO 

C Changing X1(I,K) 

I=NINT(ran(iseed)*(NP ART -1)+ 1) 
DO K=l,GMAX 

IF(X1(I,K).EQ.1) THEN 
Xl (I,K)=O 

END IF 
ENDDO 
K=NINT(ran(iseed)*(GMAX-1)+ 1) 
X1(I,K)=1 

C Changing Yl(J,K) 
J=NINT(ran(iseed)*(NMACH-l)+ 1) 
DOK=l,GMAX 

IF(Yl(J,K).EQ.l) THEN 
Yl(J,K)=O 

ENDIF 
ENDDO 
K=NINT(ran(iseed)*(GMAX-l)+ 1) 
Yl(J,K)=l 

CALL OBJFUNC(Xl,Yl,Zl,P,M,DSM,NMACH,NPART,NRE,MMIN, 
+ GMAX, MMAX,PMAX,PMIN,M_ CAP,P _MT,P _ QAN,TOTCRE,GXYITOP, 
+GXYZTOP,OBJ1, OBJ2_3,OBJ4,OBJ5,CL,CAP _FAC,CAP _FACl) 

DO I=l,NPART 
DOK=l,GMAX 

SAMESV P( 1,«GMAX-l)*(I-l»+«(l-l)+K) )=Xl(I,K) 
ENDDO 

ENDDO 
DO J=l,NMACH 

DOK=l,GMAX 
SAMESV _M( 1,«GMAX-l)*(J-l»+«(J-l )-K) )=Yl(J,K) 

ENDDO 
ENDDO 

C Checking tabu list 
DO K=l,TABUSIZE 

SIM TV(K)=O 
SIM TW(K)=O 

ENDDO 

DO K=l,TABUSIZE 

Iv·-n 
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AA=O 
DO J=I,GMAX*NMACH 

ENDDO AA =AA + ABS(SAMESV _ M( 1 ,J)-TALIST _ M(K,J)) 

SIM_TV(K)=AA 
BB=O 
DO I=l,GMAX*NPART 

BB=BB+ABS(SAMESV _P(l,I)-TALIST P(K I)) 
ENDDO - , 

SIM_TW(K)=BB 
ENDDO 

SAME2=O 
DO K=l,TABUSIZE 

IF(SIM_ TV(K).EQ.O.AND.SIM _ TW(K).EQ.O) THEN 
SAME2=SAME2+ 1 

END IF 
ENDDO 

DUMMY=O 
IF(OBJ1.LT.COBJ1) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBJ1.EQ.COBJl.AND.OBJ2_3.LT.COBJ2_3) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBJl.EQ.COBJ1.AND.OBJ2 3.EQ.COBJ2 3 - -
+.AND.OBJ4.LT.COBJ4) THEN 

DUMMY=DUMMY+1 
ELSEIF(OBJ1.EQ.COBJ1.AND.OBJ2_3.EQ.COBJ2_3 
+.AND.OBJ4.EQ.COBJ4.AND.OBJ5.LE.COBJ5) THEN 

DUMMY=DUMMY+1 
ENDIF 

IF(SAME2.EQ.O.AND.GXYITOP.EQ.O.AND.GXYZTOP.EQ.O) THEN 

ADpend:Ce5 

EXIT 
ELSEIF(DUMMY.GE.l.AND.GXYITOP.EQ.O.AND.GXYZTOP.EQ.O) THEN 

EXIT 
END IF 

ENDDO 

C Second vector 
DO 
C Initialisation 

DO I=l,NPART 
DOK=l,GMAX 

X2(I,K)=X(I,K) 
ENDDO 

ENDDO 
DO J=l,NPART 

ENDDO 

DOK=l,GMAX 
Y2(J,K)=Y(J,K) 

ENDDO 

DOK=l,GMAX 
Z2(K)=Z(K) 

ENDDO 

C Changing X2(I,K) 
1= NINT( ran( iseed) * (NP ART -1 Ｉ ｾ 1 ) 
DOK=l.GMAX 

IF(X2(I,K).EQ.l) THE); 

.. 
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X2(I,K)=O 
ENDIF 

ENDDO 
K =NINT(ran( iseed)*( GMAX-l)+ 1) 
X2(I,K)=l 

C Changing Y2(J,K) 
J=NINT(ran(iseed)*(NMACH-l)+ 1) 
DOK=l,GMAX 

IF(Y2(J,K).EQ.l) THEN 
Y2(J,K)=O 

ENDIF 
ENDDO 
K=NINT(ran(iseed)*(GMAX-l)+l) 
Y2(J,K)=1 

CALL OBJFUNC(X2,Y2,Z2,P,M,DSM,NMACH,NPART,NRE,MMIN. 
+GMAX, MMAX,PMAX,PMIN,M _ CAP,P _ MT,P _ QAN,TOTCRE,GX):lTOP, 
+GXYZTOP,OBJ1,OBJ2 3,OBJ4,OBJ5,CL,CAP FAC,CAP FACl) - --

DO I=l,NPART 
DOK=l,GMAX 

SAMESV _PC 2,((GMAX-l)*(I-l»+((I-l)+K) )=X2(I,K) 
ENDDO 

ENDDO 
DO J=l,NMACH 

DOK=l,GMAX 
SAMESV _M( 2,((GMAX-l)*(J-l»+((J-l)+K) )=Y2(J,K) 

ENDDO 
ENDDO 

C Checking same solution vectors 
SIM_NV(l)=O 
SIM NW(l)=O 

A=O 
DO J=l,GMAX*NMACH 

A=A+ABS(SAMESV _M(1,J)-SAMESV _M(2,J» 

ENDDO 
SIM_NV(l)=A 

B=O 
DO I=l,GMAX*NPART 

B=B+ABS(SAMESV _P(l,I)-SAMESV _P(2,!» 

ENDDO 
SIM_NW(l)=B 

SAMEl=O 
IF(SIM_NV(l).EQ.O.AND.SIM_NW(1).EQ.O) THEN 

SAME 1 =SAME 1 + 1 

END IF 

C Checking tabu list 
DO K=l,TABUSIZE 

SIM_TV(K)=O 
SIM_ TW(K)=O 

ENDDO 

DO K=LTABUSIZE 
AA=O 
DO J=LGMAX*NMACH 
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Adil Baykasoglu 

AA==AA+ABS(SAMESV M(2 J)-TALIST :'vf(K J) 
ENDDO -, - . '. 

SIM_TV(K)=AA 
BB=O 
DO I=l,GMAX*NPART 

BB=BB+ABS(SAMESV _P(2,I)-TALIST P(K I» 
ENDDO - , 

SIM _ TW(K)=BB 
ENDDO 

SAME2=O 
DO K=l,TABUSIZE 

IF(SIM _ TV(K).EQ.O.AND.SIM _ TW(K).EQ.O) THEN 
SAME2=SAME2+ 1 

ENDIF 
ENDDO 

DUMMY=O 
IF(OBJ1.LT.COBJ1) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBJ1.EQ.COBJ1.AND.OBJ2_3.LT.COBJ2_3) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBJ1.EQ.COBJ1.AND.OBJ2_3.EQ.COBJ2_3 
+ .AND.OBJ4.LT.COBJ4) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBJ1.EQ.COBJ1.AND.OBJ2_3.EQ.COBJ2_3 
+ .AND.OBJ4.EQ.COBJ4.AND.OBJ5.LE.COBJ5) THEN 

DUMMY=DUMMY+l 
END IF 

Appendices 

IF(SAMEl.EQ.O.AND.SAME2.EQ.0.AND.GXYITOP.EQ.0.AND.GXYZTOP.EQ.0) 
+ THEN 

EXIT 
ELSEIF(DUMMY.GE.l.AND.SAME 1.EQ.O.AND.GXYITOP.EQ.0.AND. 
+ GXYZTOP.EQ.O) THEN 

EXIT 
END IF 

ENDDO 

C Third vector 
DO 
C Initialisation 

DO I=l,NPART 
DOK=l,GMAX 

X3(I,K)= X(I,K) 
ENDDO 

ENDDO 
DO J=l,NPART 

ENDDO 

DOK=l,GMAX 
Y3(J,K)=Y(J,K) 

ENDDO 

DOK=l,GMAX 
Z3(K)=Z(K) 

ENDDO 

C Changing X3(I,K) 
I=NINT(ran(iseed)*(KPART-l)+ 1) 
DO K=l,GM..\X 

IF(X3(l,K).EQ.l) ｔ ｈ ｅ ｾ

J\' -44 
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X3(I,K)=O 
ENDIF 

ENDDO 
K=NINT(ran(iseed)*(GMAX-1)+ 1) 
X3(I,K)=1 

C Changing Y3(J,K) 
J=NINT(ran(iseed)*(NMACH-1)+ 1) 
DOK=1,GMAX 

IF(Y3(J,K).EQ.1) THEN 
Y3(J,K)=O 

ENDIF 
ENDDO 
K=NINT(ran(iseed)*(GMAX-1)+ 1)-
Y3(J,K)=1 

CALL OBJFUNC(X3,Y3,Z3,P,M,DSM,NMACH,NP ART,NRE,MMIN. 
+GMAX,MMAX,PMAX,PMIN,M _ CAP,P _ MT,P _ QAN, TOTCRE,GXYITOP. 
+GXYZTOP,OBJ1, OBJ2_3,OBJ4,OBJ5,CL,CAP _FAC,CAP _FAC1) 

DO I=l,NPART 
DOK=1,GMAX 

ENDDO 

SAMESV _PC 3,«GMAX-l)*(I-l»+«(I-l)+K) )=X3(I,K) 
ENDDO 

DO J=1,NMACH 
DOK=1,GMAX 

SAMESV _M( 3,«GMAX-l)*(J-l»+«(J-l)+K) )=Y3(J,K) 
ENDDO 

ENDDO 

C Checking same solution vectors 
DO K=1,2 

C 

SIM_NV(K)=O 
SIM _NW(K)=O 

ENDDO 

DO K=1,2 
A=O 
DO J=l,GMAX*NMACH 

A=A+ABS(SAMESV _M(K,J)-SAMESV _M(3,J) 

ENDDO 
SIM_NV(K)=A 
B=O 
DO 1=1 GMAX*NPART 

, B=B+ABS(SAMESV _P(K,I)-SAMESV _P(3,I» 

ENDDO 
SIM_NW(K)=B 

ENDDO 

SAME1=O 
DOK=12 ' 

'IF(SIM_NV(K).EQ.O.AND.SIM_NW(K).EQ.O) THE\ 

END IF 
ENDDO 

SAME 1 =SAME 1 + 1 

Checking tabu list 
DO K=LTABUSIZE 

SIM_TV(K)=O 
SIM_ T\\'(K)=O 
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ENDDO 

DO K=l,TABUSIZE 
AA=O 
DO J=l,GMAX*NMACH 

AA=AA+ABS(SAMESV M(3 J)-TALIST M(K,J)) 
ENDDO -'-

SIM_TV(K)=AA 
BB=O 
DO I=l,GMAX*NPART 

BB=BB+ABS(SAMESV P(3,I)-TALIST P(K,I)) 
ENDDO --
SIM_TW(K)=BB 

ENDDO 

SAME2=0 
DO K=l,TABUSIZE 

IF(SIM_TV(K).EQ.O.AND.SIM_TW(K).EQ.O) THEN 
SAME2=SAME2+ 1 

END IF 
ENDDO 

DUMMY=O 
IF(OBJ1.LT.COBJ1) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBJ1.EQ.COBJ1.AND.OBJ2 3.LT.COB12 3) THE); 

- -
DUMMY=DUMMY+l 

ELSEIF(OBIl.EQ.COBIl.AND.OBJ2_3.EQ.COB12_3 
+ .AND.OBJ4.LT.COBJ4) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBIl.EQ.COBIl.AND.OBJ2_3.EQ.COB12_3 
+ .AND.OBJ4.EQ.COBJ4.AND.OBJ5.LE.COB15) THEN 

DUMMY=DUMMY+l 
END IF 

IF(SAME 1.EQ.0.AND.SAME2.EQ.0.AND.GXYITOP .EQ.O.AND .GXYZTOP .EQ.O) 
+ THEN 

EXIT 
ELSEIF(DUMMY.GE.l.AND.SAMEl.EQ.O.AND.GXYITOP.EQ.O.AND. 
+ GXYZTOP.EQ.O) THEN 

EXIT 
END IF 

ENDDO 

C Fourth vector 
DO 
C Initialisation 

DO I=l,NPART 

ENDDO 

DOK=l,GMAX 
X4(I,K)= X(I,K) 

ENDDO 

DO J=l,NPART 
DOK=l,GMAX 

Y 4(J,K)=Y(J,K) 
ENDDO 

ENDDO 
DO K=l,GMAX 

Z4(K)=Z(K) 
ENDDO 
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C Changing X4(I,K) 
I=NINT(ran(iseed)*(NP ART-1)+ 1) 
DOK=1,GMAX 

IF(X4(I,K).EQ.1) THEN 
X4(I,K)=O 

ENDIF 
ENDDO 
K=NINT(ran(iseed)*(GMAX-1)+1) 
X4(I,K)=1 

C Changing Y4(J,K) 
J=NINT(ran(iseed)*(NMACH-1)+ 1) 
DOK=1,GMAX 

IF(Y4(J,K).EQ.1) THEN 
Y4(J,K)=O 

END IF 
ENDDO 
K=NINT(ran(iseed)*(GMAX-1)+1) 
Y4(J,K)=1 

CALL OBJFUNC(X4,Y4,Z4,P,M,DSM,NMACH,NPART,NRE,MMIN, 
+GMAX,MMAX,PMAX,PMIN,M_ CAP,P _MT,P _ QAN,TOTCRE,GXYITOP. 
+GXYZTOP,OBJ1,OBJ2_3,OBJ4,OBJ5,CL,CAP _FAC,CAP _FACl) 

DO I=1,NPART 
DOK=1,GMAX 

SAMESV P( 4,«GMAX-l)*(I-l))+«I-l)+K) )=X4(I,K) 
ENDDO 

ENDDO 
DO J=1,NMACH 

DOK=l,GMAX 
SAMESV _M( 4,«GMAX-l)*(J-l)+«(J-l)+K) )=Y4(J,K) 

ENDDO 
ENDDO 

C Checking same solution vectors 
DO K=1,2 

SIM_NV(K)=O 
SIM_NW(K)=O 

ENDDO 

DOK=1,3 
A=O 
DO J=l,GMAX*NMACH 

A=A+ABS(SAMESV _M(K,J)-SAMESV _M(4,J» 

ENDDO 
SIM_NV(K)=A 
B=O 
DOI=lGMAX*NPART 

, B=B+ABS(SAMESV _P(K,I)-SAMESV_P(4,I» 

ENDDO 
SIM_NW(K)=B 

ENDDO 

SAMEl=O 

DO K=L3 THE'\; 
IF(SIM_NV(K).EQ.O.AND. S1:\1_ :\\V(K).EQ.O) . 

ENDIF 
ENDDO 

SAME 1 =SAME 1 ｾ 1 

IV -47 

Appendices 



Adil Baykasoglu 

C Checking tabu list 

ENDDO 

RETURN 
END 

DO K=l,TABUSIZE 
SIM_TV(K)=O 
SIM_TW(K)=O 

END DO 

DO K=l,TABUSIZE 
AA=O 
DO J=l,GMAX*NMACH 

AA=AA+ABS(SAMESV M(4 J)-TALIST M(K J)) 
ENDDO -' -' 

SIM_TV(K)=AA 
BB=O 
DO I=l,GMAX*NPART 

BB=BB+ABS(SAMESV _P(4,I)-TALIST P(K I)) 
ENDDO - , 

SIM_TW(K)=BB 

ENDDO 

SAME2=0 
DO K=l,TABUSIZE 

IF(SIM_ TV(K).EQ.O.AND.SIM_ TW(K).EQ.O) THEN 
SAME2=SAME2+ 1 

END IF 
ENDDO 

DUMMY=O 
IF(OBJ1.LT.COBJ1) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBJ1.EQ.COBJl.AND.OBJ2_3.L T.COBJ2_3) THEN 

DUMMY=DUMMY+! 
ELSEIF(OBJ1.EQ.COBJ1.AND.OBJ2_3.EQ.COBJ2_3 
+ .AND.OBJ4.LT.COBJ4) THEN 

DUMMY=DUMMY+l 
ELSEIF(OBJ1.EQ.COBJ1.AND.OBJ2_3.EQ.COBJ2_3 
+ .AND.OBJ4.EQ.COBJ4.AND.OBJ5.LE.COBJ5) THEN 

DUMMY=DUMMY+l 
ENDIF 

IF(SAMEl.EQ.0.AND.SAME2.EQ.0.AND.GXYITOP.EQ.0.AND.GXYZTOP.EQ.0) 
+ THEN 

EXIT 
ELSEIF(DUMMY.GE.l.AND.SAMEl.EQ.O.AND.GXYITOP.EQ.O.AND. 
+ GXYZTOP.EQ.O) THEN 

EXIT 
END IF 
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Appendices 

Appendix V : Application of MOCACEF 1.0 

The computer program (MOCACEF 1.0) which was given in Appendix I\" is applied 

to a real job shop that has 22 machines and produces 20 different part types. The data 

files and computer program output for this case study are given in the following 

Tables. 

Table V.I Machines and their capabilities based on REs 

Machines 

Machine-l 
Machine-2 
Machine-3 
Machine-4 
Machine-5 
Machine-6 
Machine-7 
Machine-8 
Machine-9 
Machine-l0 
Machine-II 
Machine-12 
Machine-13 
Machine-14 
Machine-15 
Machine-16 
Machine-17 
Machine-18 
Machine-19 
Machine-20 
Machine-21 
Machine-22 

(MACH_RE.TXT) 

Resource Elements 
12345678911111111112222222222333 

01234567890123456789012 
00100000000000000000000000000000* 
00000000000000000110011000000000 
00000000110001100000000000000000 
00000000000000000000000111111110 
00000000000000000000000111111110 
00000001101010000000000000000000 
00000001101010000000000000000000 
00000001101010000000000000000000 
11010110000000000000000000000000 
11010110000000000000000000000000 
00001000000000000000000000000000 
00001000000000000000000000000000 
00000000000100010000000000000000 
00000000000000001000000000000000 
00000000000000000111011000000000 
00000000000000000111011000000000 
00000000000000000000000011011110 
00000000000000000000000111111111 
00000000000000000000000111111110 
11010110000000000000000000000000 
11110110000000000000000000000000 
00000000000000000000100000000000 

* 1: RE is available from the corresponding machine. 
0: RE is not available from the corresponding machine 
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Table V.2 Annual machine capacity 

(MACH_CAP. TXT) 

Machines Annual 
capacity(min) 

Machine-l 140000 
Machine-2 140000 
Machine-3 140000 
Machine-4 140000 
Machine-5 140000 
Machine-6 140000 
Machine-7 140000 
Machine-8 140000 
Machine-9 140000 
Machine-l0 140000 
Machine-II 140000 
Machine-12 140000 
Machine-13 140000 
Machine-14 140000 
Machine-15 140000 
Machine-16 140000 
Machine-17 140000 
Machine-18 140000 
Machine-19 140000 
Machine-20 140000 
Machine-21 140000 
Machine-22 140000 



Adil Baykasoglu 

Table V.3 Parts processing requirements as generic process plans based on REs 

Parts 

Part-l 
Part-2 
Part-3 
Part-4 
Part-5 
Part-6 
Part-7 
Part-8 
Part-9 
Part-l 0 
Part-II 
Part-12 
Part-13 
Part-14 
Part-15 
Part-16 
Part-17 
Part-18 
Part-19 
Part-20 

(JOB_RE.TXT) 

Resource Elements 
12345678911111111112222222222333 

01234567890123456789012 
00000000000000000000000001001100 
00001110000000000000000000000000 
10001000000000000000000000000000 
00000000000000001000100000000000 
11001000000000000000000000000000 
00000001010101100000000000000000 
00000001101100000000000000000000 
00000000000000000000000011000001 
00000001110100000000000000000000 
00000000010101010000000000000000 
00000000000000001110100000000000 
00000000000000001010100000000000 
00000000000000000011100000000000 
00000110000000000000000000000000 
00000000000000000000110000000000 
00000000000000000000000110001000 
00000001110100000000000000000000 
00000000000000000000000110001001 
10101000000000000000000000000000 
00000000000000000000000001000001 

1: RE is required by the corresponding part, 
0: RE is not required by the corresponding part 
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Table V.4 RE based part processing sequence data 

(PRO_SEQ. TXT) 

Parts # Operations based RE based Operation Sequence 
on Res 

Part-I 3 292630 
Part-2 3 765 
Part-3 2 1 5 
Part-4 2 1721 
Part-5 3 152 
Part-6 5 10 12 148 15 
Part-7 4 98 11 12 
Part-8 3 25 3226 
Part-9 4 1089 12 
Part-I 0 4 16 10 12 14 
Part-II 4 17181921 
Part-12 3 171921 
Part-I 3 3 1921 20 
Part-14 2 67 
Part-I 5 2 2221 
Part-I6 3 292425 

Part-17 4 1089 12 

Part-I 8 4 292425 32 

Part-19 3 153 

Part-20 2 2632 

Appendices 
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Parts 

Part-l 
Part-2 
Part-3 
Part-4 
Part-5 
Part-6 
Part-7 
Part-8 
Part-9 
Part-l 0 
Part-II 
Part-12 
Part-13 
Part-14 
Part-IS 
Part-16 
Part-17 
Part-I 8 
Part-19 
Part-20 

Table V.S Part processing time and annual demand 

(PRO_TIME. TXT) 

Processing + set-up time requirements for Resource Elements 

0000000000000000000000000 11800 1282700 
0000 8686560000000000000000000000000 
Ｙ Ｗ Ｐ Ｐ Ｐ Ｑ ｾ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ Ｐ
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 194 0 0 0 0 0 0 0 0 0 0 0 
85 85 0 0 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 21 0 99 0 66 0 14 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
00000007236060 1800000000000000000000 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 55 92 0 000 0 110 
000 0 0 0 0 35 35 960 68 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 
000000 000 118 0 12027 0 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 66 46 0 42 0 0 0 0 0 0 0 0 0 0 0 
0000000000000000 190 1980 13 00000000000 
000 000 00 0 0 0 0 0 0 0 0 0 0 36 160 75 00 0 0 0 000 0 0 0 
00000 17444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0000000000000000000044 1740000000000 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 85 0 0 0 67 0 0 0 
o 0 0 0 0 0 0 24 33 129 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0000000000000000000000053 53 000 8400 106 
75 0 36 0 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
00000000000000000000000001980000013 

Annual 
Demand 
550 
400 
800 
800 
520 
540 
510 
520 
400 
500 
500 
600 
780 
850 
400 
502 
515 
540 
400 
400 

In addition to above data, the following design constraints are specified; maximum 

and minimum number of machines in each cell are 10 and 3 respecti vel y, maximum 

and minimum number of parts in each cell are 10 and 4 respectively. 

The following parameters are used in the multiple-objective tabu search algorithm, 

neighbourhood size is taken as 4, tabu list size is taken as 15, maximum number of 

iterations is taken 600. 

The program is converged to a solution in 13 minutes. The detailed output of the 

program is given below. 
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1-. 

Table V.6 Output of the MOCACEF 1.0 

(OPT_SOL.TXT) 

NUMBER OF PRODUCTION CELLS: 4 

PART FAMILIES 

CELL NUMBER-> 1 

PART- 2 
PART- 3 
PART- 5 
PART- 14 
PART- 19 

CELL NUMBER-> 2 

PART- 6 
PART-7 
PART- 9 
PART-IO 
PART- 17 

CELL NUrvffiER -> 3 
--------------------------
PART-4 
PART-II 
PART-I2 
PART-13 
PART-I 5 

CELL NUMBER-> 4 
--------------------------
PART-I 
PART-8 
PART-I 6 
PART-I 8 
PART-20 

MACHINE GROUPS 
= 

CELL NUMBER-> 1 
-------------------------
Cell Capacity Utilisation is = .88 

99060.00 Units of EXTRA Capacity is Available 

MACHINE- 8 
MACHINE- 9 
MACHINE-II 
MACHINE-I2 
MACHINE-I 9 
ｬ ｶ ｬ ａ ｃ ｈ ｉ ｾ ｅ Ｍ Ｒ Ｑ
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CELL NVMBER-> 2 
--------------------------

Cell Capacity Utilisation is = .79 

149915.00 Units of EXTRA Capacity is Available 

MACHINE-3 
MACHINE-6 
MACHINE-l 0 
MACHINE-13 
MACHINE-17 

CELL NUMBER-> 3 
--------------------------
Cell Capacity Utilisation is = .92 

70620.00 Units of EXTRA Capacity is Available 

MACHINE- 2 
MACHINE- 5 
MACHINE-7 
MACHINE-I4 
MACHINE-16 
MACHINE-22 

CELL NUMBER-> 4 

Cell Capacity Utilisation is = .92 

52996.00 Units of EXTRA Capacity is Available 

MACHINE-l 
MACHINE-4 
MACHINE-I5 
MACHINE-18 
MACHINE-20 

DISTRIBUTION OF RESOURCE ELEMENTS BET\VEEN CELLS 

CELL NUMBER-> 1 

2 Copies of RE- 1 
2 Copies of RE- 2 
1 Copies of RE- 3 
2 Copies of RE- 4 
2 Copies of RE- 5 
8440.00 Units of EXTRA Capacity is Required for RE- 5 

2 Copies of RE- 6 
2 Copies of RE- 7 
1 Copies of RE- 8 
1 Copies of RE- 9 
1 Copies of RE-ll 
1 Copies of RE-13 
1 Copies ofRE-24 
1 Copies ofRE-25 
1 Copies of RE-26 
1 Copies ofRE-27 
1 Copies of RE-28 
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1 Copies ofRE-29 
1 Copies ofRE-30 
1 Copies ofRE-31 

CELL NUMBER-> 2 
--------------------------
1 Copies ofRE- 1 
1 Copies of RE- 2 
1 Copies of RE- 4 
1 Copies of RE- 6 
1 Copies of RE- 7 
1 Copies of RE- 8 
2 Copies of RE- 9 
1 Copies of RE-l 0 
77295.00 Units of EXTRA Capacity is Required for RE-IO 
1 Copies of RE-ll 
1 Copies ofRE-12 
1 Copies of RE-13 
1 Copies of RE-14 
1 Copies of RE-15 
1 Copies ofRE-I6 
1 Copies of RE-25 
1 Copies of RE-26 
1 Copies ofRE-28 
1 Copies ofRE-29 
1 Copies ofRE-30 
1 Copies of RE-31 

CELL NUMBER-> 3 

1 Copies of RE- 8 
1 Copies of RE- 9 
1 Copies of RE-l1 
1 Copies of RE-13 
1 Copies of RE-1 7 
2 Copies of RE-18 
2 Copies of RE-19 
1 Copies ofRE-20 
1 Copies of RE-21 
120100.00 Units of EXTRA Capacity is Required for RE-21 
2 Copies ofRE-22 
2 Copies of RE-23 
1 Copies of RE-24 
1 Copies of RE-25 
1 Copies ofRE-26 
1 Copies ofRE-27 
1 Copies ofRE-28 
1 Copies of RE-29 
1 Copies ofRE-30 
1 Copies of RE-31 

CELL NUMBER-> 4 
--------------------------
1 Copies of RE- 1 
1 Copies of RE- 2 
1 Copies of RE- 3 
1 Copies of RE- 4 
1 Copies of RE- 6 
1 Copies of RE- 7 
1 Copies of RE-18 
1 Copies of RE-19 



Adil Bavkasodu 

1 Copies ofRE-20 
1 Copies ofRE-22 
1 Copies ofRE-23 
2 Copies ofRE-24 
2 Copies ofRE-25 
2 Copies ofRE-26 
2 Copies ofRE-27 
2 Copies ofRE-28 
2 Copies ofRE-29 
2 Copies ofRE-30 
2 Copies ofRE-31 
1 Copies ofRE-32 

As the above results represent, the program can successfully determine cellular 

configuration. Unlike the existing models, it can also determine which capability 

units are required to satisfy the total demand. So, it is possible to invest on machines 

whose minimum capability requirements are known (i.e. RE-5 in Cell-I, RE-IO in 

Ce1l2, RE-21 In Cell-3). Therefore, the number of machine duplications can be 

reduced .. ｾ Ｎ
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Appendix VI : Frames for loading and reconfiguration modules 

A brief description of functions (subroutines) to implement the loading and 

reconfiguration modules of multiple objective decision support framework are giyen 

in Frames D.l and D.2 below. Full program listings are around 4000 lines of CIC+-

code. 

II 
II 
II 

Frame D.I 

MULTIPLE OBJECTIVE TABU SEARCH ALGORITHM FOR 
LOADING CMS 

#inc1ude <stdio.h> 
#inc1ude <math.h> 
#inc1ude <stdlib.h> 
#inc1ude <string.h> 
#inc1ude <process.h> 
#inc1ude <conio.h> 
#inc1ude <fstream.h> 

II function definitions 

void in_conf(int gmax_ic,int npart_ic,int nmach_ic,int x_ic[][lS][8], 
int y _ic[][8],int z_ic[],int nop[]); /* function for reading the virtual cell 
configuration of the manufacturing shop *1 

void performa(int nparty,int nmachy,int gmaxy,int xy[][ lSJ[8],int y y[][8], 
int zy[],int nopy[],float per_ vec[]); /* function to interact with 
simulation module and transfer performance measures * / 

voia objfunc(int npart_o,int gmax_o,int nop_o[],int x_o[][lS][8],int *objval): /* function to 
determine inter-cell part type transfer level */ 

void output(int npart_o,int nmach_o,int gmax_o,int nop_o[],int pre_sCLo[J[lS], 
int xopt_o[][lS][8],float best_obj[]); /* function to print out part assignment 

and schedule * / 

void p move(long idum3,int npartym,int gmaxym,int nopym[],int 
- mc_reym[][SO], int pre_SCLPm[][lS],int zym[],int xym[][lSJ[8],int 

x lym[][lS][8],int x2ym[][lSJ[8J,int x3 ym[J[ lS][8],int *i 1, 
int *i2,int *i3); /* function to generate neighbourhood solutions *1 

void SIMANout(int npart_02,int nmach_02,int gmax_o2,int nop_02[], 
int x 02[][lS][8], int y_02[][8].int z_o2[]); /* function (translator) to 
ｧ ･ ｮ ｾ ｡ ｴ ･ andlor modify SIMAN experimental file for each neighbourhood 

solution *1 

\T5S 
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ｾ Ｚ ｴ ｣ Ｑ ｡ ｸ ｫ Ｍ ｦ ｩ ｦ Ｌ ｾ ｴ ｢ ｾ ｬ Ｍ Ｚ Ｍ ｦ ｛ ｝ Ｌ ｩ ｮ ｦ ｴ ｘ ｟ ｾ ｝ ｛ ｬ ｓ ｝ ｛ Ｘ ｝ Ｌ ｩ ｮ ｴ *constrl,int *constr2): 1* function 
ec eaSI 1 Ity 0 solutIon vectors *1 

void fplv(long ｩ ､ ｾ ｭ Ｘ Ｌ ｩ ｮ ｴ ｮ ｰ ｡ ｾ ｟ ｡ Ｌ ｩ ｮ ｴ n?p_a[],int mc_a[] [SO],int pre sCLa[][15]. 
ｉ ｾ ｴ gmax_a,Int ｺ ｟ ｡ ｛ ｝ Ｌ ｬ ｉ ｾ ｴ x_a[] [lS][8]); 1* If the ー ｲ ｾ ｧ ｲ ｡ ｭ used as a stand 
a ｯ ｮ ｾ ｰ ｲ ｯ ｧ ｲ ｡ ｾ for loadmg and scheduling this function generates initial 
ｾ ｾ ｬ ｾ ｳ ｾ ｾ ｬ ･ loadmg vector andlor can obtain initial solution from another data 

void flO; 1* funtion to interface with simulation *1 

int FindValues(float** tardiness, float* utilization, float* total, float* machl C, 
floa\ mach2U, float* macn3U, float* mach4U, float* mach5U, 
float mach6U, float* mach7U, float* mach8U float* mach9U 
ｾ ｯ ｡ ｴ Ｊ ｾ ｡ ｣ ｨ ｬ ｏ ｕ Ｌ float* machllU, float* mach'12U); 1* ｦ ｵ ｮ ｣ ｴ ｩ ｯ ｾ to import 
sImulatIOn output *1 

float ranI (long *idum); 1* function to generate random variables */ 

Frame D.2 

II 
II MULTIPLE OBJECTIVE TABU SEARCH ALGORITHM 
II FOR RECONFIGURING CMS 

II 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <process.h> 
#include <conio.h> 
#include <fstream.h> 

II function definitions 

void feasible(int mmin_mf,int mmax_mf,int nmach_mf,int gmax_mf,int yl_mf1][8], 
int zl_mf[],int *gxytop, int *gtotall, int *gtotal2); 1* fuction to generate initial 
feasuble virtual cell configuration if we start from a random initial solution andlor 

we import the solution from MOCACEF 1.0*1 

void in conf(int gmax_ic,int npart_ic,int nmach_ic,int x_ic[][ 15][8]. 
int y_ic[][8],int z_ic[],int nop[]); 1* function to read initial virtual cell configuration 

*1 

void performa(int nparty,int nmachy,int gmaxy,int ｸ ｾ ｛ ｝ ｛ Ｑ Ｕ ｝ ｛ Ｘ ｝ Ｌ ｩ ｮ ｴ ｹ ｾ ｛ ｝ ｛ Ｘ ｝ Ｌ
int zy[],int nopy[],float per_ vec[]):* function to interact \\'ith 
simulation module and transfer performance measures *1 

void new conf(float goal1.float ｧ ｯ ｡ ｌ ｾ Ｎ float goal3. float goal .... 
ｬ ｾ ｮ ｧ idum9,int mmin_mv,int mmax_mv,mt nmach_mv.mt npart_mv, 
int gmax_mv,int gmin_mv.int xopt_IDv[][15][8].lllt yopt_m\·[][8]. 
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int zopt_mv[],int y2_mv[] [8],int z2_mv[],int x2_mv[][15][8], 
int y3_mv[] [8],int z3_mv[],int x3_mv[][15][8],int y4_mv[] [8], 
int z4_mv[],int x4_mv[][15][8],int nop_mv[], 
int tabusize,int tabulist[] [300], 
float obj_ vec2[],float obj_ vec3 [],float obj_ vec4[]); 1* funtion to generate 
neighbourhood solutions * / 

void c_load(float goall,int gmax_s,int npart_s,int nmach_s,int nop_s[], 
int x_s[] [1 5] [8],int y_s[] [8],int z_s[],int xopt_s[][15][8], 
float bestve[]); 1* function used by funtion new _ conf while generating 
neighbourhood solution. This function assigns parts *1 

void objfunc(int npart_o,int gmax_o,int nop_o[],int x_o[][l5][8],int *objval): 

Appendices 

void output(int npart_o,int nmach_o,int gmax_o,int nop_o[],int xopt_o[][15][8],int 
yopt_ o[] [8],int zopt_ o[],float best_ obj []); 

void SIMANout(int npart_02,int nmach_02,int gmax_02,int nop_o2[],int x_o2[][l5][8], 
int y_02[][8],int z_02[]); 

int FindValues(float* tardiness, float* utilization, float* total, float* machl U. 
float* mach2U, float* mach3U, float* mach4U, float* mach5U, float* mach6U, 
float* mach7U, float* mach8U, float* mach9U, float* mach10U, float* machl1 U. 
float* mach12U); 

void flO; 

float ranI (long *idum); 
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Appendix VII : Continuation of the experimental work form Chapter 9 

In chapter 9, a good perfonning virtual cell configuration was found. Here, one more 

step is going to be taken. It is assumed that in the coming production run, there are 

some changes in the part list (i.e. a new part list). There are design changes on part 

types 4, 9 and 16 (see Table 7.4 in Chapter 7). Consequently, some of the processing 

requirements of these part types are changed and there is a demand for two new part 

types, namely part type 21 and 22: The new part list with the corresponding generic 

process plans is shown in Table VILI below. 

Table VII.t The new part list and the correspond generic process plans 

Part Type # # Operations #RE Operation # Operation # Operation # Operation # 
JNOP;) 1 '") 3 4 

1 3 3 REl(60)* RE2(SO) RE4(90) 
2 3 3 REl(SO) RE2(60) RE3(40) 
3 3 3 RES(20) RE6(60) RE7(SOl 

4 (redesign) 3 3 RES(40) RE5(40) RE9(30) 
5 3 3 RE7(SO) RE4(60) RES(SO) 
6 3 3 RES(SO) RE6(SO) RE7(60) 
7 3 3 RES(70) RE9(70) REI0(SO) 
S 3 3 RE9(60) REI01S0) REl1{90) 

9 (redesign) 3 3 RES(70) REl(30) RE4J201 
10 2 2 RE3(40) RE4(SO) 
1 1 3 3 RES(SO) RE6(SO) RE9(40) 

12 3 3 REI0(70) RES(SO) RE9(SO) 

13 3 3 RES (1 0) RES(30) RElO(SO) 

14 3 3 RES(SO) RE7(40) RES(SOl 

IS 2 2 REl(60) RE2(20) 

16 (redesign) 3 3 RE3(40) RE4(30) RE6(20) 

17 3 3 RE6(40) RE7(SO) RES(70) 

18 4 4 RES(SO) RE91S0) REI0(SO) RE 11(20) 

19 2 2 RES(SO) RE2(SO) 

20 3 3 RE7(I0) RE8(SO) RE9(30) 

21Cnew) 4 4 RE3(20) RE4(2S) RE6(401 REIO(SO) 

22(new) 2 2 RES(SO) RE8(SO) 
+ et u * RE#(A): Resource Element number (Processmg tIme s p time 

. d" ort framework is first The loading module of the multiple objectIve eClSlOn supp 

used to load the system. If the solution is satisfactory then it is going to be suggested 

for the implementation, if not a new set of \'irtual cells are going to be generated by 
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the reconfiguration module which may better satisfy the current demand. The 

decision-maker's goals were set to zero for inter-cell part type transfer, zero for mean 

tardiness, 65 percent for system utilisation and 5000 for total throughput. The loading 

module was iterated 250 times with 3 neighbour solutions in each iteration. The 

loading module converged to a solution in 125 minutes. The convergence graphics 

and the best solution found are shown in Figures VILI and VIL2 below. 

Ｗ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ

ns 1 -o 
ｾ ｯ ｾ ﾷ Ｍ ｾ Ｍ Ｍ ﾷ Ｂ Ｍ Ｎ .. -· ........................ .. .............. """ .. " 

In 
II) 
4) 
r:::: 
"'0 
ｾ

co -r:::: 
co 
4) 

ｾ

ｾ ｾ ｾ ｾ ｾ ｾ ｾ ｾ ｾ ｾ ｾ ｾ ｾ

9000 

8000 

7000 

6000 

5000 
4000 

3000 

2000 

1000 

0 

N ｾ ｾ 00 0 N ｾ ｾ 00 0 N ｾ
...- ...- ..... ...- ...- N N N 

Number of iterations 

... 
ｾ

4 • 

It 

..... ("'") L!) t-- 0> ..... (") L!) t-- 0> ..... (") 
N ｾ ｾ 00 ..... ("'") L!) t-- 0> N ｾ..... ..... ..... ...- ..... N N 

Number of iterations 

VU-62 



Adil Baykasoglu 

51 
50 
49 

c 48 0 
:;: 

47 ca 
.!!? 46 := 
::J 45 
E 44 Q) - 43 I/) 

>-
CI) 42 

41 
40 

...-

4200 
4100 
4000 -::J 3900 Co 

s::. 3800 C) 
::J 
0 3700 
ｾ

s::. 
3600 -cu - 3500 0 

I-
3400 
3300 
3200 

Number of iterations 

ｾ ｪ

ｾ• 
ｾ

Ｎ ｾ

-Ｎ ｾ ｾ Ｎ ｾ Ｎ Ｍ Ｍ Ｍ

ｾ N ｾ ｾ ｾ ｾ ｾ ro m 0 ｾ N 
N ｾ ｾ ro 0 N ｾ ｾ m ｾ M 

ｾ Ｎ Ｎ Ｎ Ｍ ｾ Ｎ Ｎ Ｍ Ｎ Ｎ Ｍ ｎ ｎ

Number of iterations 

Figure VII.t Conversion behaviour of the loading module 
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m opt_load4a - Notepad Blil f3 
file fdit ｾ ･ ｡ ｲ ｣ ｨ ;f,Help 

================================================== 
PROGRAM RE-MOCL 

Multiple Objectiue Tabu Search Based Integrated 
System for Loading CMS 

By: Adil BAYKASOGLU 
==================================================1 

Optimum Part Loading 
--------------------
Part Type->1 { 1 (3), 2 (3), 4 (3)} 
Part Type->2 { 1 (1), 2 (1), 3 (1)} 
Part Type->3 { 5 (1), 6 (1) , 7 (1) } 
Part Type->4 { 8 (1), 5 (1) , 9 (1)} 
Part Type->5 { 7 (1), 4 (1) , 5 (1) } 
Part Type->6 { 8 (1) , 6 (1) , 7 (1) } 
Part Type->7 { 8 (4), 9 (4), 10 (4)} 
Part Type->8 { 9 (4), 10 (4),11 (4)} 
Part Type->9 { 5 (1), 1 (1), 4 (1)} 
Part Type->10 { 3 (1), 4 (1)} 
Part Type->11 < 5 (1), 6 (1), 9 (1)} 
Part Type->12 < 10 (1),8 (1), 9 (1)} 
Part Type->13 { 5 (4), 8 (4), 10 (4)} 
Part Type->14 < 8 (1), 7 (1), 5 (1)} 
Part Type->15 < 1 (3),2 (3)} 
Part Type->16 < 3 (1), 4 (1), 6 (1)} 
Part Type->17 { 6 (1), 7 (1), 8 (1)} 
Part Type->18 { 8 (1), 9 (1), 10 (1), 11 (1)} 
Part Type->19 { 5 (2), 2 (2)} 
Part Type->20 < 7 (4), 8 (4), 9 (4)} 
Part Type->21 { 3 (1), 4 (1),6 (1), 10 (1)} 
Part Type->22 { 5 (4), 8 (4)} 

Some Performance Indicators 

Total Intercell Traffic =0.0 
Mean Tardiness in the System =1373.7 
Overall System Utilisation =50.33 
Total Troughput from the System =4107 

ｾ Ｂ Ｚ Ｎ ｾ ﾷ ﾷ ｾ ｾ Ｎ ｾ ［ Ｚ Ｇ ｩ ［ ［ ｾ ｾ Ｑ ［ ｾ ［ .• ｾ Ｌ ｾ ｩ ｾ Ｚ ｾ Ｚ ｾ ｾ ｾ ｾ Ｚ ｴ Ｌ ﾷ ｾ ｩ ｾ ｪ ｾ ｜ ｾ ｾ ｩ ｾ ｾ ｬ ｾ Ｚ ｾ ｬ ｾ ｬ ｩ ｾ ｾ ｾ ｩ ｩ ｩ ｩ ｾ Ｚ ｾ Ｚ ｾ ｾ ｾ Ａ ｾ Ｚ Ｎ ﾷ ｾ Ｚ ｾ ｾ ｾ ｩ ｀ Ｑ ｾ ｾ ［ ｾ Ｚ ｾ ［ ｾ ｩ Ｚ Ｚ ｌ ｾ ［ ﾷ ｾ ﾷ Ｚ ｾ Ｌ ＼ ' 
. , .......... ｟ Ｎ Ｂ Ｂ Ｇ Ｇ Ｇ Ｇ ｟ ｾ ｲ ｟ Ｎ ［ ｟ .... Ｇ Ｇ Ｇ Ｎ Ｎ Ｎ Ｎ Ｌ Ｌ Ｌ ｾ Ｎ Ｂ ｴ Ｇ ｾ ｾ Ｇ Ｂ Ｇ Ｎ Ｎ Ｌ Ｌ Ｌ Ｍ Ｎ Ｎ Ｍ Ｎ Ｍ Ｌ Ｌ Ｎ Ｌ ..... Ｌ Ｎ Ｂ ｟ Ｊ Ｎ Ｎ Ｌ Ｎ Ｇ Ｇ Ｇ Ｇ Ｇ Ｎ Ｎ Ｎ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｌ Ｌ Ｌ Ｍ Ｎ ｾ ｾ ｾ ...... Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｌ Ｌ Ｎ Ｎ Ｇ ｖ ｾ .... .,..'''''''''''''''- ........... "'-..... ｾ .• ,.., ... ｾ .- ,-'" 
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As the results showed, only the inter-cell movement goal was met with the existing 

virtual cell configuration. Other objectives are not satisfied. Therefore, the 

reconfiguration module was executed to generate a new virtual cell configuration that 

could better satisfy the decision-maker's goals. The reconfiguration module was 

iterated 250 times with 3 neighbour solutions in each iteration. The reconfiguration 

module converged to a better solution in 124 minutes. The convergence graphics, the 

best solution obtained and a part of the generated optimal schedule are shown in 

Figures VII.3, VIl.4 and VIl.5 below. The input to the reconfiguration module are the 

best solution obtained from the loading module and the current virtual cell 

configuration. Therefore, reconfiguration module tries to improve this solution. Inter-

cell movement goal was satisfied in the loading module and, it was considered as the 

most important objective therefore it is not going to get worse in the reconfiguration 

module, but the other objectives will improve if possible. 
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Figure VII.3 Conversion behaviour of the reconfiguration module 
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OUTPUT OF THE RECONFIGURATION PROGRAM 
(NEW VCs & PART ASSIGNMENT) 

VCs after Reconfiguration 

Virtual Cell-> 1 
Machine->3 
Machine->6 
Machine->8 
Resource Elements in the Virtual Cell 
RE->I, RE->2, RE->3, RE->4, RE->5, RE->6, RE->7, RE->8, RE->9, RE->10, RE->11 
Virtual Cell->2 
Machine->2 
Machine->4 
Machine->9 
Resource Elements in the Virtual Cell 
RE->I, RE->2, RE->3, RE->4, RE->5, RE->6, RE->7, RE->8, RE->9, RE->10, RE->ll 
Virtual Cell->3 
Machine->1 
Machine->5 
Machine->7 
Machine-> 10 
Resource Elements in the Virtual Cell 
RE->1 RE->2 RE->3 RE->4 RE->6 RE->7 RE->8 RE->9 RE->10 RE->11 , , , , , , , , , 
Virtual Cell->4 
Machine-> 11 
Machine-> 12 
Resource Elements in the Virtual Cell 
RE->I, RE->2, RE->4, RE->5, RE->7 

Part Loading (assignment) for new ves 

Part Type->1 { 1 (4),2 (4), 4 (4)} 
Part Type->2 { 1 (1),2 (1),3 (1)} 
Part Type->3 { 5 (1),6 (1), 7 (I)) 
Part Type->4 { 8 (2), 5 (2), 9 (2)} 
Part Type->5 { 7 (2), 4 (2), 5 (2)} 
Part Type->6 { 8 (3), 6 (3), 7 (3)} 
Part Type->7 { 8(2), 9 (2), 10 (2)} 
Part Type->8 { 9 (1), 10 (1), 11 (I)} 
Part Type->9 { 5 (4),1 (4),4 (4)) 
Part Type->10 {3 (2),4 (2)) 
Part Type->11 { 5 (1),6 (1),9 (I)} 
Part Type-> 12 { 10 (3), 8 (3), 9 (3)} 
Part Type-> 13 { 5 (2), 8 (2), 10 (2)} 
Part Type->14 { 8 (1), 7 (1), 5 (I)} 
Part Type->15 { 1 (1),2 (1)) 
Part Type-> 16 { 3 (3),4 (3), 6 (3)} 
Part Type-> 17 { 6 (2), 7 (2), 8 (2)} 
Part Type->18 { 8 (3), 9 (3),10 (3),11 (3)} 
Part Type-> 19 { 5 (2), 2 (2)} 
Part Type->20 { 7 (1),8 (1),9 (I)} 
Part Type->21 { 3 (3),4 (3), 6 (3), 10 (3)} 
Part Type-> 22 { 5 (1), 8 J 1 )} 

Figure VII.4 The output of the reconfiguration module: new VCs and corresponding 

part assignments 
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Sim_out - WordPad I!II!JEf 
file ｾ ､ ｩ ｴ :{IeW insert F.Qrmat Help 

ICourier New ('Western) 

, I ' 1 " I ' 2 ' ｾ , 3 ' I ' 4 ' I ' 5 ' I ' 6 ' I ' 7 ' I ' 8' I ' 9' I '10' I ,,,, I '12' I ' 13 ' I ' 14' , 

\part ID/ Type 
Part ID/ Type 
PartID/Type 
Part ID/ Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 
PartID/Type 

For Help, press Fl 

2/13 OperationNo: 
2/13 OperationNo: 
4/ 5 OperationNo: 
6/19 OperationNo: 
2/13 OperationNo: 
6/20 OperationNo: 
8/20 OperationNo: 

10/ 6 OperationNo: 
12/ 5 OperationNo: 

6/19 OperationNo: 
14/18 OperationNo: 
8/20 OperationNo: 

10/ 6 OperationNo: 
18/11 OperationNo: 
4/ 5 OperationNo: 

22/ 4 OperationNo: 
24/17 OperationNo: 
16/18 OperationNo: 
10/ 6 OperationNo: 
26/14 OperationNo: 
18/11 OperationNo: 
22/ 4 OperationNo: 
24/17 OperationNo: 
12/ 5 OperationNo: 
20/16 OperationNo: 
26/14 OperationNo: 
4/ 5 OperationNo: 

22/ 4 OperationNo: 
14/18 OperationNo: 
20/16 OperationNo: 
18/11 OperationNo: 
26/14 OperationNo: 
24/17 OperationNo: 
20/16 OperationNo: 
16/18 OperationNo: 
14/18 OperationNo: 
12/ 5 OperationNo: 
32/ 3 OperationNo: 

1 V Cell: 2 Machine: 
2 V Cell: 2 Machine: 
1 V Cell: 2 Machine: 
1 V Cell: 2 Machine: 
3 V Cell: 2 Machine: 
1 V Cell: 1 Machine: 
2 V Cell: 1 Machine: 
1 V Cell: 3 Machine: 
1 V Cell: 2 Machine: 

9 RE: 5 Start: 0 FInIsh: 0 
2 RE: 8 Start: 10 FInIsh: 40 
4 RE: 7 Start: 28 FInIsh: 78 
9 RE: 5 Start: 37 FInIsh: Ｘ ｾ
2 RE: 10 Start: 41 fInIsh: 91 
3 RE: 7 Start: 48 fInIsh: 58 
8 RE: 8 Start: 58 FInIsh: 08 
5 RE: 8 Start: 58 FInIsh: 106 
4 RE: 7 Start: 78 FInIsh: 126 

2 V Cell: 2 Machine: 2 RE: 2 Start: 91 FInIsh: 141 
1 V Cell: 3 Machine: 5 RE: 8 Start: 108 fInIsh: 158 
3 V Cell: 1 Machine: 8 RE: 9 Start: 108 fInIsh: 138 
2- V Cell: 3 Machine: 10 RE: 6 Start: 109 fInIsh: 159 
1 V Cell: 1 Machine: 6 RE: 5 Start: 124 FInIsh: 174 
2 V Cell: 2 Machine: 4 RE: 4 Start: 128 FInIsh: 186 

2 RE: 8 Start: 144 FInIsh: 184 
9 RE: 6 Start: 146 FInIsh: 186 
5 RE: 8 Start: 158 FInIsh: 208 
7 RE: 7 Start: 159 FInIsh: 219 
8 RE: 8 Start: 167 FInIsh: 217 
6 RE: 6 Start: 174 FInIsh: 224 
9 RE: 5 Start: 186 FInIsh: 226 
2 RE: 7 Start: 187 FInIsh: 237 
4 RE: 4 Start: 188 FInIsh: 248 
5 RE: 3 Start: 208 FInIsh: 248 
8 RE: 7 Start: 217 FInIsh: 257 
9 RE: 5 Start: 226 FInIsh: 306 
2 RE: 9 Start: 237 FInIsh: 267 
5 RE: 9 Start: 248 fInIsh: 298 
7 RE: 4 Start: 249 ｆ ｉ ｮ ｬ ｾ ｨ Ｚ 279 
8 RE: 9 Start: 257 fInIsh: 297 
6 RE : 5 Start: 257 ｆ ｉ ｮ ｬ ｾ ｨ Ｚ 307 
2 RE: 8 Start: 267 FInIsh: 337 

1 V Cell: 2 Machine: 
1 V Cell: 2 Machine: 
1 V Cell: 3 Machine: 
3 V Cell: 3 Machine: 
1 V Cell: 1 Machine: 
2 V Cell: 1 Machine: 
2 V Cell: 2 Machine: 
2 V Cell: 2 Machine: 
2 V Cell: 2 Machine: 
1 V Cell: 3 Machine: 
2 V Cell: 1 Machine: 
3 V Cell: 2 MachIne: 
3 V Cell: 2 Machine: 
2 V Cell: 3 Machine: 
2 V Cell: 3 Machine: 
3 V Cell: 1 Machine: 
3 V Cell: 1 Machine: 
3 V Cell: 2 Machine: 
3 V Cell: 3 MachIne: 10 RE: 6 Start: 279 ｆ ｉ ｮ ｬ ｾ ｨ Ｚ 299 
2 V Cell: 3 Machine: 5 RE: 9 Start: 298 fInIsh: 348 
3 V Cell: 3 MachIne: 7 RE: 10 Start: 299 ｆ ｬ ｮ ｬ ｾ ｨ Ｚ 349 
3 V Cell: 2 Machine: 9 RE: 5 Start: 306 FInIsh: 386 
1 V Cell: 1 Machine: 6 RE: 5 Start: 307 ｆ ｉ ｮ ｬ ｾ ｨ Ｚ 327 ｾ

ｬ ｎ ｕ ｾ

Figure VII.S A portion of the production schedule generated automatically by the 
1 

reconfiguration module 

The interpretation of the results show that inter-cell movement and tardiness goal 

have been satisfied as the most prioritised objectives. The system utilisation lev 1 is 

improved from 50.33% to 60% in the new VC configuration which is no\\ dos r t 

the decision-maker's target. The total throughput has been impro ed from 41 7 t 

4973 which is also very close to the decision-maker s target. 
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