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Abstract 

The Mannose receptor (MR) is a type I membrane molecule involved 

in both haemostasis and pathogen recognition. Its extracellular domains have 

broad ligand specificities: the cysteine-rich (CR) domain is involved in 

sulphated sugar binding, the C-type lectin-like domains (CTLDs) are 

responsible for the detection of sugars terminated in mannose, fucose or N-

acetylglucosamine, and the fibronectin-type II (FNII) domain mediates 

collagen binding.  

Its recently discovered collagen binding ability raised the question of 

MR facilitating cellular adhesion which would then influence its function as an 

endocytic receptor in collagen-rich mammalian tissues. For this purpose, the 

level of MR-mediated endocytosis, and MR expression was analyzed by using 

bone-marrow-derived macrophages (BM-Mĭ) plated on extracellular matrix 

(ECM) proteins including fibronectin (not a MR ligand), collagen type I or IV 

(MR-ligands). The results showed no difference in the level of MR-mediated 

endocytosis and MR expression at both mRNA and protein levels upon Mĭ 

adhesion to collagen. This suggests that MR interaction with collagen may 

simply be crucial for tissue remodelling and wound healing, rather than 

adhesion. 

MR is also expressed in a soluble form (sMR) which is comprised of 

the extracellular region of intact cell-associated MR (cMR). Even though its 

precise role is not yet clear, enhanced sMR production was previously shown 



ii  

 

to help Pneumocystis carinii to evade M phagocytosis by forming a 

protective coat around the organism. In this work, the mechanism responsible 

for the fungi-induced MR-shedding was studied by treating Mĭ with fungal 

particles in the presence and the absence of a wide-range of inhibitors. After 

treatment in serum-free conditions, the cell lysate and cell culture supernatants 

were analyzed by western blot, for cMR and sMR expression respectively.   

It was shown that fungi species other than P. carinii can also trigger 

sMR production, and that this effect mainly takes place through -glucan 

recognition. Using bio-active particulate -glucan, it was also demonstrated 

that MR cleavage upon -glucan recognition requires dectin-1-mediated 

signalling involving Syk, PI3K, and, partially, Raf-1 and that is mediated by a 

non-secreted metalloproteinase.  

Dectin-1-mediated MR-shedding may partially explain the 

contradictive data on the involvement of cMR in the development of immunity 

against fungi, as well as other pathogens recognised by dectin-1. The ability of 

pathogens to evade or activate the immune response may depend on the 

balance between sMR and cMR expression levels.  
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1. INTRODUCTION 

 

1.1. The Immune Response: An Overview 

 The immune system is comprised of both innate and pathogen-specific 

adaptive immunity.  Innate immunity provides the first line of defence, and its 

components are mostly present before the beginning of infection. In contrast, 

adaptive immunity is not triggered until there is an antigenic challenge to the 

host, and responds with high degree of specificity. This branch also exhibits a 

“memory” property which enables the host to neutralise the pathogen upon its 

second entry more quickly and effectively. Lymphocytes and antibodies are the 

main components of adaptive immunity.  

 

1.1.1. Innate immune response 

 Innate immunity is comprised of at least three types of defensive 

barriers: an anatomical barrier, which involves mechanical (e.g. skin and 

mucous membranes), chemical (e.g. low pH, and chemicals released by 

epithelial cells) and biological factors (e.g. resident/native flora); cellular 

barriers (e.g. macrophages (Mĭ), dendritic cells (DC), natural killer (NK) 

cells, and mast cells); and humoral barriers (e.g. complement system). Once 

the anatomical barrier is evaded, pathogens are faced with the humoral and 
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cellular barriers that are able to initiate an immediate response leading to 

inflammation.  

 

1.1.1.i. Cellular barriers of the innate immune system 

1.1.1.i.a Macrophages 

Mĭ are found in almost all tissues and are derived from monocytes 

circulating in the blood-stream (discussed below). Since most pathogens enter 

the host body through the mucosa of the gut and the respiratory system, tissue 

Mĭ constitute the first line of defence against an invading pathogen, and 

throughout the innate immune response they are involved in several different 

processes (Soehnlein and Lindbom, published online in 2010). One such 

activity is the removal and the killing of invading microorganisms by 

phagocytosis. Even though monocytes can also phagocytose, differentiation 

into Mĭ enhances its phagocytic ability. As a first-line of defence, Mĭ also 

play a crucial role in the coordination of the immune response through the 

release of inflammatory mediators such as cytokines (e.g. interleukin (IL)-1ȕ, 

IL-6, IL-12, and tumor necrosis factor (TNF)-Į) and chemokines (e.g. CXC 

chemokine ligand (CXCL)-8, CC chemokine ligand (CCL)-4, and CCL2) 

involved in the induction of inflammation and the activation of other immune-

system cells. Activated Mĭ also express high levels of class II major 

histocompatibility complex (MHC) molecules that enable them to function as 

an antigen-presenting cell (APC) involved in the initiation of adaptive immune 
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response (discussed below) (Soehnlein and Lindbom, published online in 

2010, Taylor et al., 2005b).  

 

1.1.1.i.b. Dendritic cells 

DC acquired their name from their long membrane extensions that look 

like the dendrites of nerve cells. Through the blood-stream, immature DCs 

migrate from the bone marrow to the tissues where they are involved in the 

internalization of antigens by phagocytosis or endocytosis. Even though they 

are able to degrade antigens they take up, their main role is not the clearance of 

invading pathogens, rather, following the uptake of microorganism immature 

DCs mature into cells which are capable of activating helper T-cells (TH-cells) 

and migrate to secondary lymphoid organs (Geissmann et al., published online 

in 2010) (Lee and Iwasaki, 2007, Melief, 2008, Satthaporn and Eremin, 2001). 

 

1.1.1.i.c. Natural killer cells 

Natural killer (NK) cells were initially identified by their ability to 

destroy tumour cells in the absence of any previous immunization with the 

tumour. Today, they are also known to facilitate the early immune response 

against infections with certain viruses and intracellular bacteria.  NK cells are 

non-T, non-B lymphoid cells with well-characterised intracellular granules rich 

in perforin and granzymes which are able to induce apoptosis of the target cell 

upon release, and granulysin which has a direct antimicrobial activity. NK cells 
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can detect abnormal cells through two different ways. In some cases, NK cells 

distinguish the target cell through the detection of the reduced expression level 

of MHC class I molecules and the unusual profile of surface antigens by 

inhibitory and activating receptors respectively. NK cells cannot target the 

cells that express normal levels of MHC class I molecules. However, the 

inhibitory signal is lost during infection due to the reduced expression of MHC 

class I molecules. Another way of targeting cell detection by NK cells is 

known as antibody-dependent cell-mediated cytotoxicity and is mediated 

through the recognition of antibodies bound to the target cell by the Fc 

receptors (FcR) expressed on the NK cell surface (e.g. FcRȖIII) (Caligiuri, 

2008) (Shibuya, 2003). 

 

1.1.1.i.d. Mast cells 

Even though mast cells are best known for their role in allergic 

responses, they are also believed to facilitate the protection of internal surfaces 

of the host against pathogens, and are involved in the immune response against 

parasitic worms.  During their development, mast cells migrate to peripheral 

tissues, such as skin, mucosa and airways where they differentiate into their 

mature forms. Their intracellular granules contain a mixture of chemical 

mediators (e.g. histamine, leukotrienes) that increase the vascular permeability 

required for the induction of inflammation (discussed below). Degranulation is 

mainly triggered by the signalling through FcİRI (specific for IgE) expressed 

on the mast cell surface (Gilfillan and Tkaczyk, 2006). 
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1.1.2. Inflammation 

The cellular barrier of innate immunity can discriminate self from non-

self through the recognition of repetitive structures unique to microorganisms, 

called pathogen-associated molecular patterns (PAMPs), directly by the cell-

associated pattern recognition receptors (PRRs) (e.g. Toll-like receptors) or 

indirectly by soluble PRR (e.g. mannose binding lectin, MBL) or complement 

fragments (e.g. C3b) (Lee and Kim, 2007). Apart from inducing phagocytosis, 

pathogen recognition also results in the secretion of cytokines (e.g. IL-1ȕ, IL-

6, IL-12, TNF-Į), chemokines (e.g. CXCL8, CCL4, CCLβ) and lipid mediators 

(e.g. prostaglandins, leukotrienes, and platelet-activating factor) that are 

quickly produced through an enzymatic degradation of membrane 

phospholipids (Soehnlein and Lindbom, published online in 2010).  

The secreted products initiate the process known as inflammation 

which involves the recruitment of immune cells and molecules of innate 

immunity into the sites of infection. The recruitment is promoted by the 

dilation and increased permeability of blood vessels, as well as by the 

enhanced expression of cell-adhesive molecules by endothelial cells (e.g. P-

selectin and E-selectin) (Soehnlein and Lindbom, published online in 2010, 

Huang and Vita, 2006). The resultant increased local blood flow and leakage 

of fluid into tissues causes heat, redness, swelling and pain. Additionally, 

inflammation also helps the activation of adaptive immunity by increasing the 

flow of lymph with microbes and antigen-bearing cells to nearby lymphoid 
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tissues where the adaptive immune response is activated (Lee and Iwasaki, 

2007). 

Neutrophils are the predominant cell type initially recruited to the site 

of infection as a result of the CXCL8 chemokine released by the Mĭ in 

response to an invading pathogen. In turn, neutrophils are also involved in the 

recruitment of Mĭ to the site of inflammation through the production of 

chemokines such as macrophage inflammatory proteins (MIP-1Į and -1ȕ) 

(Soehnlein and Lindbom, published online in 2010, Arndt et al., 2002). 

Therefore, the initial phase of an inflammatory response is mostly dependent 

on Mĭ and neutrophils, and as the response progresses, other cell types such 

as monocytes and immature DC are also recruited to contribute to the 

destruction of an invading microorganism. The recruited monocytes can 

differentiate into Mĭ as well as DCs depending on the signals received from 

the surrounding environment (Soehnlein and Lindbom, published online in 

2010, Gordon and Taylor, 2005). 

 

1.1.3. Adaptive immunity 

1.1.3.i. T-cell activation 

The adaptive immune response is triggered in the secondary lymphoid 

organs as a result of the activation of naïve TH-cells by APCs (e.g. DC, which 

are specialised in the activation of naïve T-cells). Following antigen 

internalization via phagocytosis or endocytosis, APCs are able to process the 
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antigen into smaller peptides and present the processed peptides in the context 

of MHC II molecules on the cell surface. This antigen processing is mediated 

by the endocytic pathway, which is comprised of three increasingly acidic 

compartments: early endosome (pH ~6.0-6.5), late endosome (pH ~5.0-6.0), 

and lysosome (pH ~4.5-5.0) (Male, 2006, Leyva-Cobian and Carrasco-Marin, 

1994). 

Especially during the immune response against intracellular pathogens 

(e.g. virus) not infecting APC directly, or against not endogenously expressed 

tumour antigens, APC can also present the internalized exogenous antigens in 

the context of MHC class I molecules through the process called „cross-

presentation‟ (Burgdorf et al., 2008). The underlying mechanism responsible is 

not yet clear. However, it is suggested that the internalized material can exit 

the endocytic pathway and enter the cytosolic pathway, which facilitates the 

processing of endogenous antigens (e.g. viral proteins), and involves the same 

route followed during the degradation of misfolded intracellular proteins 

(Burgdorf et al., 2007, Heath and Carbone, 2001).  

In contrast to the cells expressing antigenic peptides in the context with 

MHC class II molecules, the cells displaying antigen-MHC class type I 

complex are destroyed by CD8+ TC-cells, and therefore are named target cells. 

Since almost all nucleated cells express MHC class I, they can all be 

designated as target cells. 

The detection of antigen:MHC complex by T-cells is mediated through 

the T-cell receptors (TCRs). However, the signal transduced by the recognition 
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of the antigen-MHC complex is not enough for T-lymphocyte activation on its 

own. It requires an additional, antigen-nonspecific, co-stimulatory signal 

induced by the engagement of T-cell CD28 with B7 family member molecules 

on APC (signal two). In the absence of this second signal, antigen-MHC 

complex interaction with TCR leads to the state of non-responsiveness, called 

clonal anergy, which is characterized by the inability of cells to proliferate and 

by minimal cytokine production (especially IL-2) (Fathman and Lineberry, 

2007, Krammer et al., 2007, Dure and Macian, 2009). 

 

1.1.3.ii. Effector T-cell subsets 

 There are two distinct large groups of naïve T-cells (CD4+ and CD8+ 

T-cells) which detect different types of MHC molecules. CD4+ T-cells are 

involved in the detection of antigens in association with class II MHC 

molecules, which are expressed only by APCs, while  CD8+ T-cells are 

responsible for the recognition of cells displaying antigens bound to class I 

MHC molecules.  

Upon activation, CD8+ T-cells differentiate into CD8+ cytotoxic T-cells 

(also known as cytotoxic lymphocytes or CTL), which aim to destroy target 

cells. Most CD8+ T-cells cannot become activated solely by the APCs, and 

therefore require help from CD4+ helper T-cells. Helper T-cells both release 

IL-2 and induce an increased level of co-stimulatory activity on the same APC 

which helps to drive CD8+ T-cell proliferation (Zhang et al., 2009). Like NK 
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cells, activated CTLs mediate cell killing mainly through the release of 

perforin and granzyme that trigger apoptosis in the target cell. They also 

express the membrane-bound effector molecule Fas ligand (CD178) which, 

upon interacting with Fas on the target cell, signals apoptosis (Choy, published 

online in 2010).   

In contrast to CD8+ T-cells, CD4+ T-cells differentiate into a number of 

effector T-cells (TH1, TH2, TH17, and regulatory T cells) which are determined 

by the cytokines secreted by the APC. Therefore, the receptors involved in 

microbial detection and the intracellular signalling triggered are of crucial 

importance for the determination of the appropriate type of immune response 

(Gutcher and Becher, 2007). For instance, among the PRRs involved in the 

detection of fungi, dectin-1 and dectin-2 were previously shown to promote the 

differentiation of TH17 cells (LeibundGut-Landmann et al., 2007) (Robinson et 

al., 2009).   

TH17 cells are induced by cytokines IL-6, IL-21, and IL-23, and 

mediate immune responses against extracellular pathogens. TH17 cells derived 

their name from the ability to release IL-17 which has a key role in the 

induction of inflammatory responses by triggering the release of many 

inflammatory cytokines (e.g. IL-6) and chemokines (e.g. IL-8). TH17 cells can 

also recruit and activate neutrophils during immune response, and were shown 

to promote many organ-specific autoimmune diseases (Zhu and Paul, 2008).  

Both TH1 and TH2 cells are induced by the cytokines (interferon (IFN)-

Ȗ and IL-12, and IL-4, respectively) that suppress TH17 cell-mediated immune 
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responses. Both of these T-cell subsets can be distinguished from each other by 

the cytokines they produce: TH1 cells mainly produce IFN-Ȗ and IL-2, while 

TH2 cells secrete predominantly IL-4 and IL-5 (McGhee, 2005).  

TH1 cells mediate the immune response against intracellular pathogens 

(Zhu and Paul, 2008). They increase the microbicidal activity of Mĭ by both 

producing pro-inflammatory cytokines (e.g. TNF-Į, granulocyte-Mĭ colony-

stimulating factor (GM-CSF) and IFN-Ȗ) and interacting with the specific 

antigen:MHC type II complex, and CD40 on the Mĭ surface (Suttles and 

Stout, 2009) (Murphy, 2008). They are also involved in the induction of 

opsonising antibody production (mainly IgG) by B-lymphocytes.  

TH2 cells are associated with humoral immunity. They mediate the 

immune response against extracellular parasites (e.g. helminths) and are also 

involved in the induction and persistence of allergic diseases (Zhu and Paul, 

2008).  TH2 cells produce cytokines (e.g. IL-4, IL-5, and IL-13) that induce B-

cell activation, differentiation, proliferation, and production of alternative 

immunologlobulin types, especially IgE. IgE is the antibody responsible for 

allergies as it degranulates both mast cells and basophils, leading to the release 

of active mediators such as histamine, and serotonin (Zhu and Paul, 2008). TH2 

cells are also involved in the activation of naïve B-cells, in order to proliferate 

and release IgM.  

 Among the CD4+ T-cell subsets, regulatory T cells (Treg) function to 

suppress T-cell responses by limiting the immune response and preventing 

autoimmune responses. They develop in conditions free of pathogen-related 
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danger signals, which are characterised by a high abundance of transforming 

growth factor (TGF)-ȕ and lack of IL-6, IFN-Ȗ, and IL-12 (Zhu and Paul, 

2008, Sakaguchi et al., 2008).  

 

1.1.3.iii. B-cell activation  

In many infections, pathogens multiply in the extracellular spaces of 

the body and spread through extracellular fluids. The protection of 

extracellular spaces is mediated by the humoral immune response in which 

antibodies produced by B-lymphocytes have a key role. 

As with T-lymphocytes, B-cell activation requires two different 

signalling mechanisms. One signalling comes from the B-cell receptor (BCR) 

whose antigen-specificity is mediated by membrane-anchored antibodies 

(mIg). Besides Mĭ and DC, B-cells are also involved in antigen presentation 

to T-cells. Upon mIg engagement, the bound antigen is internalized and then 

processed within the endocytic pathway into short peptides to be presented 

with class II MHC molecules on the cell surface. B-cells require BCR-

mediated signalling to function as an APC in TH-cell activation. The increased 

expression of both co-stimulatory and MHC class II molecules enable the 

interaction between T- and B-cells forming a T-B conjugate (Murphy, 2008).  

The T-B conjugate formation supports the activation and proliferation 

of the B-cells through both cytokine production and the up-regulation of a TH-

cell membrane protein, CD40L (aka CD154). The CD40-CD40L interaction 
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delivers the required signal two which acts in concert with signal one to drive 

the resting B-cell into the cell cycle (Haxhinasto et al., 2002, Harwood and 

Batista, published online in 2010).  

Once activated, B-cells start to express receptors for various cytokines 

including IL-2, IL-4, and IL-5. The engagement of these receptors by the TH-

cell-derived cytokines further support B-cell proliferation as well as enabling 

B-cell differentiation into antibody secreting plasma cells and memory B-cells, 

class-switching, and affinity maturation (Mallat et al., 2009, Harwood and 

Batista, published online in 2010). 
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1.2. Macrophages 

Since the later chapters are on Mĭ interaction with fungal pathogens, 

the following section will focus on the Mĭ and membrane-anchored receptors 

involved in triggering an anti-fungal immune response.  

Mĭ belong to the mononuclear phagocyte system which is composed 

of cells that share the same common haematopoietic precursors that 

differentiate into blood monocytes (Hume et al., 2002). Following their 

migration into tissues, monocytes undergo maturation, and differentiate into 

various cell types according to the signals in the tissue microenvironment. 

Apart from Mĭ, other differentiated cell types include osteoclasts and 

myeloid-derived DCs (Gordon and Taylor, 2005). 

The name „macrophage‟ is derived from the Greek words macros and 

phagein, which means “big” and “to eat”, respectively. They constitute an 

effective branch of the phagocytic barrier against the invading pathogens, and 

like DCs, facilitate the cross-talk between innate and adaptive immunity by 

acting as APCs. However, their APC function is mostly restricted to the 

secondary immune responses during which Mĭ facilitate the activation of 

already primed (memory) T-cells. Upon pathogen recognition, they release a 

wide-range of secretory products that influence the migration and activation of 

other immune cells (e.g. neutrophils during the initial phases of inflammation) 

(Gordon and Taylor, 2005).  
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Nevertheless, the importance of Mĭ is not restricted solely to 

microbial detection, and they are also involved in the recognition of self-

molecules required for maintaining heamostasis. This contributes to the 

resolution of inflammation which is activated once the pathogen is neutralised. 

As mentioned above, inflammation involves the release of a wide-range of 

secretory mediators which, apart from facilitating the entry of leukocytes to the 

sites of injury, and the communication between the immune cells, trigger 

deleterious effects for the tissue environment. During the resolution of 

inflammation, the tissue debris and secreted inflammatory enzymes are 

removed to allow tissue remodelling.  

Mĭ are mostly positioned at strategic points within tissues, while some 

remain mobile travelling throughout the body. The tissues in which Mĭ can 

reside include lymphoid organs, as well as non-lymphoid organs like the liver 

(kupffer cells), lung (alveolar Mĭ), nervous system (microglia), epidermis 

(langerhans cells), reproductive organs and serosal cavities. They are also 

abundant within the lamina propria of the gut and the interstitium of organs 

such as the heart, pancreas, and the kidney (Taylor et al., 2005b).  

 

1.2.1. Monocyte heterogeneity 

Like other mononuclear phagocytes, Mĭ are differentiated from 

circulating monocytes which descend from hematopoietic stem cells (HSCs) 

that undergo myeloid differentiation and produce multipotent precursors 
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(Figure 1.1). These precursors give rise to common lymphoid progenitor cells 

(CLPs), and lineage-restricted common myeloid progenitor cells (CMPs) 

which, in response to the macrophage colony-stimulating factor (M-CSF), 

differentiate into monoblasts, pro-monocytes and eventually monocytes 

(Serbina et al., 2008) (Mosser and Edwards, 2008). After their release into the 

peripheral blood, monocytes circulate for several days before migrating to the 

tissues. Depending on the signals received from the microenvironment, the 

recruited monocytes then become tissue-Mĭ, DCs or osteoclasts 

(multinucleate cells that resorb bone) (Gordon and Taylor, 2005).  

The circulating monocytes constitute approximately 5-10% of the 

peripheral-blood leukocytes in humans and show morphological heterogeneity 

such as variability of size, granularity and nuclear morphology. In humans, 

monocytes are divided into two subsets according to the differential expression 

of CD14 (part of the receptor involved in lipopolysaccharide, LPS, 

recognition) and CD16 (also known as FcȖRIII): CD14hiCD16-, and 

CD14+CD16+ cells (Passlick et al., 1989, Gordon and Taylor, 2005). Among 

those, CD14+CD16+ cells resemble mature tissue Mĭ, and express higher 

levels of MHC class II molecules and CDγβ (alternatively known as FcȖRII). 

They are smaller in size and less granular than CD14hiCD16- monocytes 

(Strauss-Ayali et al., 2007).  
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Figure 1.1: Mĭ and DC differentiation in mice. HSCs differentiate into myeloid (MP) and 

lymphoid (LP) committed precursors in bone marrow. MPs produce monocyte, Mĭ and DC 

precursors (MDPs), which give rise to monocytes, some populations of Mĭ, and common DC 

precursors (CDPs). The two monocyte subsets Ly6C+ and Ly6C-, are released from the bone 

marrow to enter the blood circulation. Some studies suggested that Ly6C+ monocytes can 

shuttle between the blood and bone marrow and lose Ly6C expression. CDPs differentiate into 

preclassical dendritic cells (pre-DCs), and plasmacytoid dendritic cells (PDCs). Among those 

pre-DCs give rise to CD8Į+ and CD8Į- cDCs in lymphoid tissues, and CD103+ lamina propria 

DCs (lpDCs) in nonlymphoid tissues. Under steady-state conditions, Ly6C- and Ly6C+ 

monocytes differentiate into alveolar Mĭ, and CX3CR1+ lpDCs respectively. During 

inflammation Ly6C+ monocytes can differentiate into monocyte-derived DCs, for example, 

TNF and inducible nitric oxide synthase (iNOS)-producing DCs (TipDCs), inflammatory Mĭ, 

and myeloid-derived suppressor cells (MDSCs) associated with tumours. They are also 

thought to give rise to microglia and Langerhans cells (dashed arrow), which can renew 

independently from the bone marrow (curved arrow). Additionally during inflammation HSCs 

can also enter the peripheral tissues (dahes arrow) to differentiate into myeloid cells. Today it 

is still not clear whether LPs contribute to PDCs and cDCs (dashed arrow) (Geissmann et al., 

published online in 2010).  
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In mice, monocytes can be divided into two main subsets according to 

their expression of CCR2 (CC-chemokine receptor-2), CD62L (L-selectin), 

CX3CR1 (CX3C-chemokine receptor 1), and Ly6C (part of the GR1 epitope): 

CCR2+CD62L+CX3CR1lowLy6C+, and CCR2-CD62L-CX3CR1hiLy6C-. Among 

those CCR2+CD62L+CX3CR1lowLy6C+ subset corresponds to human 

CD14hiCD16- monocytes which are also CCR2+CX3CR1low, while CCR2-

CD62L-CX3CR1hiLy6C- subset corresponds to human CD14+CD16+ which 

also express high levels of CX3CR1 (Table 1.1) (Geissmann et al., published 

online in 2010) (Gordon and Taylor, 2005).   

The two subsets also differ in the expression of adhesion molecules and 

chemokine receptors. That results in both monocyte subsets displaying 

differences in their susceptibility to infections, as well as migration patterns 

(Geissmann et al., published online in 2010, Strauss-Ayali et al., 2007). Due to 

the expression of CCR2 and CD62L, which are involved in inflammatory cell 

recruitment, CCR2+CD62L+CX3CR1lowLy6C+ are rapidly recruited to the areas 

of damage, or inflamed tissue, and therefore are alternatively known as 

inflammatory monocytes. In contrast, CCR2-CD62L-CX3CR1hiLy6C- are 

called resident monocytes, since they persist longer in the blood and are 

recruited to non-inflamed tissues (Strauss-Ayali et al., 2007) (Geissmann et al., 

published online in 2010) (Geissmann et al., 2003).  
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Table 1.1: Monocyte subsets in mice and humans. CD14hiCD16- and 

CCR2+CD62L+CX3CR1lowLy6C+ subsets in humans and in mice are regarded as inflammatory 

monocytes, and are associated with a higher phagocytic and cytokine production ability than 

the resident monocytes (CD14+CD16+ in humans and CCR2-CD62L-CX3CR1hiLy6C- in mice) 

which have a higher co-stimulatory activity (Strauss-Ayali et al., 2007, Grage-Griebenow et 

al., 2001, Gordon and Taylor, 2005). 

 

Additionally, adaptive transfer experiments showed that the Ly6C+ 

monocytes can shuttle between the blood and the bone marrow, and loose 

Ly6C expression (Figure 1.1). Furthrmore, it was suggested that 
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CCR2+CD62L+CX3CR1lowLy6C+ monocytes pass through an intermediate 

phenotype of CCR2+CCR7+CCR8+Ly6Cmid, before acquiring the CCR2-

CD62L-CX3CR1hiLy6C- phenotype (Qu et al., 2004).  

The intermediate phenotype was proposed to have similar allogeneic 

cell stimulating capacity to the Ly6C- monocytes, and to express higher CCR7 

and CCR8 mRNA levels than the other two monocyte subsets (Gordon and 

Taylor, 2005). In case of infection, both CCR2+CCR7+CCR8+Ly6Cmid and 

CCR2+CD62L+CX3CR1lowLy6C+ monocytes can respond to pro-inflammatory 

signals, and migrate to inflamed tissues. Following their recruitment to the site 

of infection, they start to express higher levels of CD11c, and MHC class II 

molecules, and differentiate into Mĭ or DCs. Because of the enhanced 

expression of CCR7 and CCR8, the intermediate phenotype is suggested to be 

particularly more prone to migrate to draining lymph nodes and differentiate 

into DCs (Gordon and Taylor, 2005).  

Nevertheless, in most recent studies,  the generation of Ly6C- 

monocytes were not affected by genetic defect in or antibody-mediated 

depletion of Ly6C+ monocytes (Feinberg et al., 2007) (Mildner et al., 2007, 

Geissmann et al., published online in 2010).  

 

1.2.2. Mĭ heterogeneity 

The migration from blood, through the endothelia, the interstitium, and 

epithelia, requires adhesion molecules including integrins (such as ȕ1, ȕ2), 
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immunoglobulin-superfamily molecules (e.g. CD31), and selectins, as well as 

matrix metalloproteinase activity that breaks down the extracellular matrix 

(ECM) proteins and enables the passage between the cells (Gordon, 2003). 

Within the tissues, monocytes migrate along a concentration gradient formed 

by the interaction of proteoglycans, present in the ECM and on endothelial 

cells, with chemokines, cytokines and growth factors (Gordon, 2003).  

Depending on the signalling received from the microenvironment (e.g. 

surface and secretory products of neighbouring cells, and ECM (Gordon, 

2003)) tissue resident Mĭ display a high degree of heterogeneity (differing in 

life span, morphology, and phenotype) that enables them to perform their 

tissue-specific functions, such as bone remodelling by osteoclasts, pathogen 

killing by alveolar Mĭ, and apoptotic cell removal by thymic Mĭ (in 

thymus). Nevertheless, Mĭ heterogeneity can also be observed within a single 

organ. For instance in the spleen, marginal zone Mĭ express an array of PRRs 

and function in clearance of blood-borne pathogens, while metallophilic Mĭ 

that surround the splenic white pulp adjacent to the marginal sinus, express 

high levels of sialoadhesin. Even though the function of metallophilic Mĭ is 

still not yet clear, they are thought to have a role in the initial response to 

systemic infection. The spleen also contains tingible body Mĭ which facilitate 

the removal of apoptotic lymphocytes during germinal centre formation 

(Taylor et al., 2005b).  

 More heterogeneity is derived from the Mĭ activation states that 

further allow Mĭ to adopt their wide-range actions (Taylor et al., 2005b, 
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Gordon, 2003, Mosser, 2003) (Figure 1.2). These include the classical 

activation pathway that results in activated Mĭ (CA-Mĭ) induced by the 

combined effect of IFN-Ȗ and LPS (Nathan, 1991). CA-Mĭ have high 

microbicidal activity, and are associated with pro-inflammatory cytokine 

release and cellular immunity. This is in contrast to the alternative activation 

which facilitates tissue repair, and humoral activity, and is induced by IL-4 or 

IL-13 (Gordon and Taylor, 2005).  

 

 

Figure 1.2: Inflammation-induced Mĭ heterogeneity. During inflammation, the 

inflammatory peripheral-blood monocytes differentiate into different subsets with distinct 

phenotypes and physiological activities according to the signals available in the 

microenvironment (Gordon and Taylor, 2005).  
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Mĭ can also be activated as a result of the engagement of PRRs such 

as Toll-like receptors (TLRs), a process which is known as innate activation 

(Takeda et al., 2003). Like CA-Mĭ, the innate activated Mĭ (IA-Mĭ) possess 

microbicidal activity and release pro-inflammatory cytokines. However, in 

contrast to IA-Mĭ, CA-Mĭ have a higher antigen presentation and 

intracellular pathogen killing ability (Gordon and Taylor, 2005).  

In the absence of any activating signals, such as in conditions following 

the neutralisation of an invading pathogen by the immune response involving 

both IA-Mĭ and CA-Mĭ, and the resolution of the inflammation by activated 

cells such as alternatively-activated Mĭ (AA-M ĭ), Mĭ are found in a de-

activated state. Today, it is still not clear if the fate of the Mĭ is determined 

once, or whether it depends on a change in the microenvironment. The de-

activation is mediated by cytokines such as IL-10 and TGF-ȕ, or by signalling 

through inhibitory receptors, such as the CD200 receptor (CD200R). The de-

activated Mĭ mainly produce anti-inflammatory cytokines and have reduced 

MHC class II expression level (Gordon and Taylor, 2005).  

 

1.2.3. Pathogen recognition 

Microorganisms are detected by immune cells either indirectly by 

soluble PRR (e.g. MBL) or by complement fragments (e.g. C3b) that coat the 

non-self molecules, or directly by PRRs which discriminate the potentially 

hazardous pathogens and their associated secreted products from harmless host 
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cells, by recognizing pathogen-associated molecular patterns (PAMP) (Lee and 

Kim, 2007). 

PRRs can be expressed on the cell membrane as well as in the 

cytoplasm. Cytoplasmic PRRs are evolved to trigger the immune response 

against intracellular organisms such as viral pathogens that can enter the host 

cell to use host machinery to replicate, and intracellular bacteria resistant to the 

phagocytic killing after uptake and which can gain access to the cytosol. They 

are also involved in the modulation of the signalling triggered by PRRs on the 

cell membrane to establish an efficient co-ordination of innate immune 

responses (Creagh and O'Neill, 2006). 

In contrast to cytoplasmic PRRs, cell membrane-anchored PRRs are 

involved in the recognition of extracellular pathogens, and have diverse 

functions such as facilitating the presentation of PAMPs to other PRRs and the 

initiation of major signalling pathways involved in antigen uptake and the 

release of various inflammatory mediators. Among those, C-type lectins (CTL) 

are responsible for the recognition of carbohydrate structures, and together 

with TLRs, they have a central role in triggering the immune response against 

fungi whose cell wall structure is 90% carbohydrate (Geijtenbeek and 

Gringhuis, 2009). As the later chapters are based on the Mĭ interaction with 

fungal pathogens in serum-free conditions, the next section will focus on the 

cell membrane-anchored members of these two receptor families involved in 

triggering anti-fungal immune responses.  
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1.2.3.i.Toll-like receptors  

TLRs are the best characterized signal-generating PRRs, and are major 

cell-surface initiators of the inflammatory response to pathogens. They were 

first detected as a group of Drosophila proteins involved in the dorsoventral 

patterning in the development of embryos (Hashimoto et al., 1988). However, 

their effect was later found not to be development-restricted and they also have 

been shown to facilitate immune responses against fungal infections (Lemaitre 

et al., 1996). Mammalian Toll receptor homologs were detected by subsequent 

studies, and were therefore named as Toll-like receptors (TLRs) (Takeda and 

Akira, 2004).  

Mammalian TLRs are type I integral membrane glycoproteins with an 

extracellular solenoid shaped recognition domain composed of leucine-rich 

repeats (LRR), and a cytoplasmic Toll/IL-IR (TIR) domain responsible for 

triggering an intracellular signalling cascade (Werling et al., 2009). Individual 

TLRs are differentially distributed within the cell and, depending on their sub-

cellular location, TLRs can be categorised into two groups: TLRs that are 

predominantly expressed on the cell surface (e.g. TLR 1, 2, 4, 5, and 6) and 

TLRs that are mostly expressed in endocytic compartments (e.g. TLR 3, 7, 8, 

9) (Lee and Kim, 2007).  

TLRs function as homo- or hetero-dimers (e.g. TLR2-TLR6 and TLR9-

TLR9 complex) or with other PRRs (e.g. TLR4-CD14) (Lee and Kim, 2007). 

The dimerisation is thought to be mediated by TLR-ligand engagement which 

results in a conformation change facilitating the two TIR domains into closer 
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proximity to associate symmetrically. This enforces further structural 

reorganization necessary for adaptor recruitment. The adaptor proteins couple 

to downstream protein kinases and ubiquitin ligases that eventually lead to the 

activation of transcription factors, such as nuclear factor-kappa beta (NF-țB), 

and members of the interferon-regulatory factor (IRF) family (O'Neill and 

Bowie, 2007). 

The NF-țB transcription factors play a crucial role in establishing an 

effective immune response against the invading pathogen. As well as 

regulating the expression of a wide-variety of mediators involved in 

inflammation, the pathway also provides a link between innate and adaptive 

immune responses by inducing the release of mediators such as IL-2 that 

promotes T-cell proliferation and differentiation into effector cells, and TNF-Į 

that enables the migration of APC to a nearby lymph for the activation of naïve 

T-cells. They also induce the cell-surface expression of co-stimulatory factors 

by APC (Beinke and Ley, 2004, Li and Verma, 2002) (Gerondakis and 

Siebenlist, published online in 2010).  

IRFs are mainly involved in anti-viral immune responses by activating 

the transcription of type I IFNs; IFN-Į and IFN-ȕ. Both IFNs mediate their 

intracellular effects through binding to IFN Į/ȕ receptor that stimulates the 

expression of several proteins. Among those β‟-5‟-oligo-adenylate synthase is 

responsible for the activation of ribonuclease (RNAse L) that degrades viral 

RNA, whereas double stranded RNA (dsRNA)-dependent protein kinase 

(PKR) inactivates protein synthesis and thereby blocks viral replication in 
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infected cells (Boo and Yang, published online in 2010). IFNs are also 

involved in the activation of the adaptive immune response through the 

induction of co-stimulatory signal expression in Mĭ and DCs, and in the 

MHC-class type I expression in all cell types, in order to facilitate the 

activation of naïve and cytotoxic T-cells, respectively (Takaoka et al., 2008) 

(Saha et al., published online in 2010) (Tailor et al., 2006).  

TLRs can detect an extremely wide-variety of PAMPs that range from 

intracellular structures, such as double (or single)-stranded RNA, and viral 

DNA to extracellular ligands such as LPS, and flagellin (Figure 1.3). Among 

the family members, TLR2, TLR4, and TLR9 have been reported to trigger 

anti-fungal immune response (Netea et al., 2008).  

 

Figure 1.3: TLR ligands. TLRs are involved in the recognition of wide variety of PAMPs 

from bacteria, viruses, protozoa, and fungi (West et al., 2006).  
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TLR signalling involves a family of five adaptor proteins which are: 

MyD88, MyD88-adaptor-like (MAL, or TIRAP), TIR-domain-containing 

adaptor protein inducing IFN-ȕ (TRIF or TICAM1), TRIF-related adaptor 

molecule (TRAM, TICAMβ), and sterile Į- and armadillo-motif-containing 

protein (SARM) (O'Neill and Bowie, 2007). Among these, MyD88 is a central 

adapter shared by almost all TLRs, and each TLR has distinct signalling 

pathways.  

 

1.2.3.i.a. MyD88-dependent signalling 

MyD88 has an essential role in TLR signalling and innate immunity. 

MyD88 deficient mice were extremely unresponsive to ligands for TLR2, 

TLR4, TLR5, TLR7 and TLR9, and displayed higher resistance to LPS-

mediated toxic effects, as well as impaired immune responses (O'Neill and 

Bowie, 2007).  

Following ligand binding by TLR, MyD88 is recruited to the TLR 

cytoplasmic domain (Akira and Takeda, 2004). This in turn brings other 

members of the interleukin-1 receptor associated kinase (IRAK) family, which 

associates with MyD88 through DD-DD (death domain) interactions (Barton 

and Medzhitov, 2003). So far, four IRAKs hasve been identified: IRAK1, 

IRAK2, IRAK4 and IRAK-M which are all ubiquitously expressed, except for 

IRAK-M, whose expression is monocyte/Mĭ restricted (Wesche et al., 1999). 

Among IRAKs, only IRAK1 and IRAK4 have intrinsic serine/threonine 
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protein kinase activity, and the lack of kinase activity suggests a possible 

negative-regulatory role for both IRAK2 and IRAK-M in TLR-mediated 

signalling (Kawai and Akira, 2006). This was supported by Kobayashi et al, 

who detected an over-production of TLR-induced cytokines by IRAK-M 

deficient cells (Kobayashi et al., 2002).  

MyD88 first activates IRAK4 that is involved in the phosphorylation 

and activation of IRAK-1. IRAK-1 is now able to activate the TNF receptor-

associated factor-6 (TRAF-6), after which the IRAK-1/TRAF-6 complex 

dissociates from the receptor and interacts with additional molecules, resulting 

in the stimulation of the upstream kinases for NF-țB, p38 and JNK (Figure 

1.4) (Akira and Takeda, 2004) (Lee and Kim, 2007) (Takeda and Akira, 2004). 

MyD88 has also been reported to facilitate the induction of IRF7 by 

TLR7, TLR8 and TLR9 (Honda et al., 2004, Honda et al., 2005, Kawai et al., 

2004). It forms a complex with IRAK1, IRAK4, TRAF6 and IRF7 such that 

IRF7 becomes phosphorylated by IRAK-1 (Hochrein et al., 2004). 

Additionally, MyD88 was suggested to promote the activation of IRF5 and 

IRF1 among which the latter appears to interact with MyD88 before being 

translocated to the nucleus (Negishi et al., 2006). 
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Figure 1.4: Signalling mediated by MyD88 and MAL. MyD88 is a central signalling 

adaptor used by all TLRs except for TLR3. It directly interacts with TIR domains and 

facilitates the IRAK-4 and IRAK-1 activation. IRAK-1 is now able to activate the TRAF-6. 

Activated TRAF-6 binds ubiquitin-conjugating enzyme 13 (UBC-13) and a UBC-like protein 

(UEV1A), which facilitate its ubiquitination (Ub-TRAF6). Ub-TRAF6 then engages with 

TGF-ȕ-activated kinase (TAK1) and TAK1-binding proteins, TAB1 and TAB2. That 

ultimately results in TAK-1-dependent activation of NF-țB, and mitogen-activated protein 

(MAP) kinases, such as p42/p44 MAP kinase, p38 MAP kinase and Jun N-terminal kinase 

(JNK). MyD88-mediated signalling also promotes the activation of IRF1, IRF5, and IRF7 (not 

shown). In addition to MyD88, TLR2 and TLR4 also recruit MAL, which mainly functions as 

a bridging adaptor for MyD88 recruitment (West et al., 2006, Liew et al., 2005). 
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1.2.3.i.b. MAL-mediated signalling 

MAL is a key component of the MyD88-dependent pathway triggered 

by TLR2 and TLR4 (Takeda and Akira, 2004). It has a binding domain on its 

N-terminus that mediates its recruitment to the plasma membrane through 

binding to phosphatidylinositol-4,5-biphosphate (PtdIns(4,5)P2) (Kagan and 

Medzhitov, 2006). This is an important step for signalling via TLR4 and 

TLR2, which cannot bind directly to MyD88. Following MAL recruitment to 

the plasma membrane, TLR4 and TLR2 interact with MAL, which serve as a 

bridge to recruit MyD88 (O'Neill and Bowie, 2007) (Figure 1.4).   

 

1.2.3.i.c. TRIF-mediated signalling 

Apart from being the exclusive adaptor in TLR3 signaling, TRIF also 

regulates the TLR4-mediated-MyD88-independent pathway, leading to IRF3, 

and delayed NF-țB activation. In contrast to MyD88, its overexpression was 

shown to induce IFNB promoter, and its deficiency impaired both IFNȕ 

production and IRF3 activation induced by TLR3 and TLR4, while 

inflammatory cytokine production by TLR2, TLR7, and TLR9 was not 

affected. By using knock-out Mĭ, MyD88 contribution to mitogen-activated 

protein kinase (MAPK) activation was demonstrated to be higher than that of 

TRIF. As well as IRF3, like MyD88, TRIF may also be involved in the 

activation of IRF5 (O'Neill and Bowie, 2007). 
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There appears to be two distinct pathways mediating the TRIF-induced 

activation of NF-țB. While the first is thought to be through the TRAF-6-

binding sites found on the N-terminal region of TRIF (Jiang et al., 2004, Sato 

et al., 2003), the second route involves the receptor-interacting protein (RIP) 

homotypic interaction motif (RHIM) on the C-terminus, through which TRIF 

was shown to recruit both RIP1 and RIP3. Among those, while RIP1 induces 

NF-țB activation, RIP3 was shown to negatively regulate the TRIF-RIP1-NF-

țB pathway (Meylan et al., 2004) (Figure 1.5). However, it appears that both 

TLR3 and TLR4 may use TRIF differently, as the lack of RIP1 expression did 

not influence TLR4-TRIF mediated signalling (O'Neill and Bowie, 2007). 

TRIF also mediates IRF activation through TRAF3. Even though the 

mechanism is yet not clear, it is thought to involve the recruitment of TBK-1 (a 

crucial upstream kinase for IRF3) via TRAF-3 and NAK-associated protein 1 

(NAP1) (Sasai et al., 2005). 

In addition to NF-țB and IRF3 activation, TRIF also facilitates TLR4- 

and TLR3-mediated signalling for apoptosis (Kaiser and Offermann, 2005, De 

Trez et al., 2005). Among the other signalling adaptors mentioned, TRIF is the 

only one with such an activity. The pathway appears to be mediated through 

RHIM of TRIF and involve RIP1, FADD and caspase-8 (Han et al., 2004, 

Ruckdeschel et al., 2004).    

As in the case of MyD88 signaling, TRIF signaling can be 

downregulated by endogenous molecules. However most of these are not 

specific to TRIF, and they mainly target MyD88, TRAF6 or downstream 
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components of TRIF signaling. One such TRIF-specific negative regulator, 

that does not affect MyD88 pathway, is SARM which is the fifth TIR adaptor 

and will be discussed later (O'Neill and Bowie, 2007).  

 

Figure 1.5: TRIF-mediated signalling. TRIF signalling is induced by both TLR3 and TLR4 

and can lead to the activation of NF-țB and IRF, as well as to apoptosis. Like MyD88, it 

interacts with TLRs through the TIR domains. It possesses distinct motifs through which it can 

directly or indirectly recruit the effector proteins TBK-1, TRAF-6, and RIP-1. It is still not 

clear how TRIF mediates IRF3 activation through TRAF3, but it is thought to involve TBK-1 

recruitment via TRAF-3 and NAP-1. The NF-țB activation is mediated through two distinct 

pathways which are mediated by TRAF-6 and RIP-1. Among those, RIP-1 is also involved in 

the FADD-mediated activation of TRIF that leads to apoptosis through caspase-8 (O'Neill and 

Bowie, 2007).  
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1.2.3.i.d. TRAM-mediated signalling 

TRAM is the most restricted adaptor involved in TLR signalling and it 

functions exclusively in the TLR4 signalling cascade. Even though it is 

involved in the interaction with TRIF, its role is not TRIF-restricted as TRAM- 

and TRIF-deficient mice displayed different signalling phenotypes in response 

to LPS (O'Neill and Bowie, 2007). 

There have been two biochemical modifications identified which are 

required for TRAM functioning. The first one is the myristoylation of the N-

terminus that enables TRAM recruitment to the membrane (Rowe et al., 2006). 

As in the case of MAL, which recruits MyD88, TRAM functions as a bridging 

adaptor for TRIF, since the mutation of the myristoylation motif was enough to 

abolish its downstream signalling (Oshiumi et al., 2003). The second 

modification is the phosphorylation of serine at position 16 by protein kinase 

Cİ (PKCİ), a key component of LPS-induced signalling (McGettrick et al., 

2006). The downstream elements triggered upon TRAM phosphorylation are 

not yet clear (Figure 1.6).   

It appears that the TRAM-TRIF-mediated pathway is only initiated by 

endocytosed TLR4, as the inhibition of TLR4 endocytosis was reported to 

disrupt its signalling (Kagan et al., 2008). Today the mechanism behind this is 

not yet clear, however it is thought to be mediated by depletion of 

PtdIns(4,5)P2 from the plasma membrane during endocytosis that results in the 

release of the MAL-MyD88 complex from TLR4, enabling TLR4 interaction 

with TRAM-TRIF in endosomes (Murphy et al., 2009). 
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Figure 1.6: TIR-mediated signalling triggered by TLR4. TLR4-signalling is complex in 

terms of signalling adaptor usage as it utilises four signalling adaptors upon LPS binding. As 

in the case of TLR2 signalling, MAL acts as a bridging adaptor for MyD88 and is involved in 

the activation of NF-țB, p38 and JNK MAPK pathways. The MyD88-independent pathway 

involves TRAM, which like MAL, is recruited to the membrane through its attached myristate 

group. TRAM is a substrate for PKCİ and must be phosphorylated to be active. It enables the 

recruitment of TRIF which promotes the activation of IRF and IRF7 through TBK-1, NF-țB 

through TRAF-6, and the apoptosis through RIP-1 dependent pathways. (O'Neill and Bowie, 

2007).  

 

1.2.3.i.e. SARM-mediated signalling 

In contrast to other TIR-domain-containing adaptors, SARM does not 

induce NF-țB activation when overexpressed, and was shown to act as a 

negative regulator of NF-țB and IRF activation (Liberati et al., 2004). Its 

expression was reported to specifically inhibit TRIF-dependent signalling 

through direct interaction with TRIF, without having an influence on the 
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MyD88-dependent pathway or non-TLR signalling by TNF or RIG-1 (Figure 

1.7) (Carty et al., 2006). Further, its deficiency resulted in the enhanced 

polyI:C- and LPS-induced chemokine and cytokine expression by primary 

human peripheral-bood mononuclear cells (O'Neill and Bowie, 2007). 

 

Figure 1.7: Signalling modulation by SARM. The TLR3 and TLR4 signalling also results in 

an enhancement in SARM expression which is involved in the inhibition of TRIF-mediated 

signalling probably by blocking the recruitment of TRIF effector proteins (O'Neill and Bowie, 

2007).  

 

TLR4 signalling was shown to enhance SARM expression indicating a 

specific negative feedback. It is thought to be regulated by the SARM N-

terminus as its deletion was reported to enhance SARM expression (Chuang 



36 

 

and Bargmann, 2005). The TIR-domain is essential for SARM function; 

however how it inhibits the TRIF-mediated effects is still not yet clear. It could 

be because of the TRIF-SARM interaction that may block the recruitment of 

downstream effector proteins by TRIF (such as TRAF-6, and TBK-1), or 

alternatively SARM may recruit an unidentified TRIF inhibitor through its 

SAM motifs (O'Neill and Bowie, 2007).  

 

1.2.3.ii. C-type lectins (CTL): 

 Lectins comprise a wide variety of carbohydrate-binding molecules. In 

1988, Drickamer proposed to categorise animal lectins into various families 

and classify Ca2+ dependent lectins with asialoglycoprotein receptor (ASGR)-

like structure as the C-type lectin family (Drickamer, 1988). After inclusion of 

thousands of members, the C-type lectins are today regarded as a superfamily, 

including both soluble and membrane-anchored proteins with immune and 

non-immune functions characterised by the presence of one or more C-type 

lectin-like domains (CLTDs) (Weis et al., 1998, Zelensky and Gready, 2005).   

 The domain responsible for Ca2+ dependent carbohydrate binding was 

initially identified as  a globular structure in rat MBL, and accordingly named 

as „carbohydrate recognition domain (CRD)‟ (Weis et al., 1991a). Comparing 

CRDs from different C-type lectins revealed a conserved sequence of ~150 

amino acids facilitating the correct structural folding required for carbohydrate 

and Ca2+ binding (McGreal et al., 2004). The nomenclature of the CRD was 
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further modified by crystallographic studies suggesting the distinct folding 

structure of the domain that is different to any known protein folds; therefore 

CRD was replaced by „C-type CRDs‟ (Weis et al., 1991b).  However, these 

domains were then referred to as „C-type lectin-like domains (CTLD)‟ due to 

the discovery of non-standard CRDs without any Ca2+ binding ability, most of 

which is involved in the detection of non-cabohydrate ligands (Vales-Gomez et 

al., 2000). Today, the term CTLD is used to identify these common folds 

possessed by the C-type lectin superfamily members without deducing 

functional similarities (Figure 1.8) (Weis et al., 1998) (McGreal et al., 2004).  

Among the CTLs, only the membrane-anchored members of the 

(Group VI) mannose receptor (MR), (Group V) NK-cell receptors, and (Group 

II) asialoglycoprotein and DC receptor families were shown to facilitate direct 

fungal recognition by the immune cells (Zelensky and Gready, 2005). The 

CTL groups differ structurally, such that the group VI members have multiple 

CTLDs in the extracellular domain, while group II and V members have one, 

which is classical (requires Ca2+ for ligand binding) in group II and non-

classical (does not require Ca2+ for ligand binding) in group V members. 

The following section will focus on the members of Group II (i.e. DC-

SIGN, dectin-2, mincle) and V (i.e. dectin-1) involved in the activation of anti-

fungal immune response, and on the intracellular signalling they trigger. 

Finally, the remaining part of this chapter will discuss the MR, which is the 

only MR family member shown to participate in fungal recognition and which 

is the main focus of this thesis. 
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Figure 1.8: Vertebrate C-type lectins from different groups. Group I- lecticans, II- the 

ASGR group, III- collectins. IV- selectins, V- NK receptors, VI- the MR group, VII- REG 

proteins, VIII- the chondrolectin group, IX- the tetranectin group, X- polycystin I, XI- 

attractin, XII-Eosinophil major basic protein (EMBP), XIII- DiGeorge syndrome critical 

region (DGCR)2, XIV- the thrombomodulin group, XV- Bimlec, XVI- soluble protein 

containing SCP, EGF, EGF, and CTLD domains (SEEC), XVII- Calx-ȕ and CTLD containing 

protein (CBCP) (Zelensky and Gready, 2005). 
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1.2.3.ii.a. DC-SIGN  

DC-SIGN is primarily expressed on phagocytic cells such as DCs and 

Mĭ (Koppel et al., 2005) (Lai et al., 2006) (Tailleux et al., 2005). Its 

expression is mainly upregulated by IL-4, and downregulated in response to 

IFN-Ȗ, TGF-ȕ and dexamethasone (Relloso et al., 2002). It is composed of a 

single CTLD followed by a neck region on the extracellular portion, a single 

transmembrane helix, and a cytoplasmic tail responsible for receptor 

internalization. Through the neck region, which contains tandem repeats of a 

highly conserved 23-amino-acid sequence, DC-SIGN undergoes tetrameric 

clustering which is important in ligand engagement (Khoo et al., 2008) 

(Koppel et al., 2005).   

Up to today there have been eight mouse (i.e. SIGNR1, SIGNR2, 

SIGNR3, SIGNR4, SIGNR5, SIGNR6, SIGNR7, and SIGNR8) and two 

human DC-SIGN orthologues (i.e. DC-SIGN, and DC-SIGNR) identified 

(Powlesland et al., 2006) (Figure 1.9). In humans, DC-SIGNR displays 77% 

amino acid identity with DC-SIGN, and both homologues differ in their ligand 

specificities, such that DC-SIGN can detect both mannose- and fucose-

containing glycans, while DC-SIGNR can only recognise high mannose 

oligosaccharides (Powlesland et al., 2006).  In contrast to DC-SIGN, DC-

SIGNR expression is restricted to endothelial cells in liver, lymph nodes, and 

placental capillaries (Li et al., 2009).  

Like human DC-SIGN, mouse SIGNR1, R3, and R7 have preferential 

binding to fucose over mannose, while SIGNR5 and R8 displayed preferential 
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binding to mannose to an extent similar to that observed for human DC-

SIGNR (Powlesland et al., 2006). Among those, SIGNR1 is the most 

extensively studied murine homologue and is also termed murine DC-SIGN 

(Willment and Brown, 2008). According to the study by Powlesland et al, the 

SIGNR2 and SIGNR6 genes are pseudogenes, as the cDNA prepared did not 

have the signalling sequences required for the expression of functional protein, 

and SIGNR4 does not have any sugar binding ability (Powlesland et al., 2006).  

 

Figure 1.9: Human and mouse SIGNs. The yellow, orange, and purple correspond to CTLD, 

transmembrane domain and cytoplasmic tail, respectively. The light blue indicates related 

segments, while green represents the variable spacer domains in the neck domain (Powlesland 

et al., 2006).    

 

DC-SIGN was shown to facilitate the detection of various pathogens 

including fungi such as Candida albicans, Aspergillus fumigatus and 

Chrysosporium tropicum in a Ca2+-dependent manner (Khoo et al., 2008, 

Cambi et al., 2009) (Serrano-Gomez et al., 2004) (Serrano-Gomez et al., 
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2005).  DC-SIGN can internalize antigens through endocytosis (Koppel et al., 

2005), while its phagocytic activity has not yet been demonstrated 

conclusively (Cambi et al., 2009, Willment and Brown, 2008).  

Upon its engagement, DC-SIGN can trigger intracellular signalling 

through its cytoplasmic tail (with still an unidentified signalling motif), which 

results in NF-țB activation through serine/threonine protein kinase Raf-1 

(Gringhuis et al., 2007). The NF-țB activation by DC-SIGN-mediated 

signalling was shown to modulate TLR-mediated responses at a transcription 

level (Figure 1.10) (Gringhuis et al., 2007) (Geijtenbeek et al., 2003). This 

makes DC-SIGN an important PRR for triggering an effective immune 

response. The signalling triggered by DC-SIGN is still poorly understood, as 

immune responses mediated by the detection of fucose-rich structures by DC-

SIGN were reported to be Raf-1 independent (Geijtenbeek and Gringhuis, 

2009).    
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Figure 1.10: DC-SIGN utilises Raf-1-mediated signalling to modulate TLR signalling. 

DC-SIGN binding to pathogens results in the activation of small GTPase Ras proteins which 

then leads to the phosphorylation of Raf-1 kinase at residues Ser338 and Tyr340, and Tyr341 

by p21-activated kinases (PAKs) and Src kinases respectively. The upstream elements are still 

unknown but thought to involve leukaemia-associated Rho guanine nucleotide exchange factor 

(LARG), and Ras homologue A (RHOA). Raf-1 leads to modulation of TLR-mediated NF-țB 

activation through an unknown mechanism that results in phosphorylation of NF-țB subunit 

p65 at Ser276, which then interact with histone acetyl-transferases CREB-binding protein 

(CBP) and p300. This leads to p65 acetylation, and to an enhanced DNA binding ability, 

promoting an enhanced transcriptional rate of the target genes such as Il8, Il10, Il6, and Il12b 

(A). The Raf-1 pathway triggered by DC-SIGN engagement with the salivary protein Salp15 

from the tick lxodes scapularis is altered by the co-ligation of another receptor such as CD4 

that leads to MEK (MAPK/ERK kinase) but not ERK activation. This results in reduced 

TLR1-TLR2-dependent pro-inflammatory cytokine production by enhancing the degradation 

of Il6 and Tnf mRNA, and impaired nucleosome remodelling at the Il12a promoter as observed 

in the case of Borrelia burgorferi-based models (Geijtenbeek and Gringhuis, 2009).        
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1.2.3.ii.b. Mincle 

Mincle is composed of a single extracellular CTLD followed by a stalk 

region, a transmembrane domain and a short cytoplasmic domain. It does not 

have any signalling motif, but associates with FcR common Ȗ chain (FcRȖ) to 

induce signalling (Figure 1.11) (Graham and Brown, 2009). Its interaction with 

FcRȖ is mediated by the positiviely charged arginine in the transmembrane 

domain (Yamasaki et al., 2008). Mincle expression in peritoneal Mĭ was 

upregulated by LPS, IFN-Ȗ, IL-6 or TNF-Į (Matsumoto et al., 1999), and bone 

marrow (BM)-derived Mĭ exposed to C. albicans were reported to have 

enhanced levels of mincle expression (Wells et al., 2008).  

Mincle was shown to facilitate the immune response against fungal 

species such as S. cerevisiae, C. albicans and Malassezia (Wells et al., 2008) 

(Yamasaki et al., 2009).  Even though it has a mannose-binding motif (EPN) in 

its recognition domain, the interaction appears to detect the specific geometry 

of Į-mannosyl residues, since the mincle-Ig construct displayed specific 

binding to the Į-mannose-polyacrylamide conjugate but not to the mannan 

spots in the glycoconjugate microarray (Yamasaki et al., 2009). Soluble 

mannan was also not able to block mincle-mediated NFAT (nuclear factor of 

activated T-cells) activation in response to Malassezi (Yamasaki et al., 2009).  
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Figure 1.11: Mincle-mediated signalling. Mincle, like dectin-2, interacts with the FcRȖ 

signalling adaptor through positively charged amino acids. Phosphorylation of the ITAM motif 

(on the FcRȖ cytoplasmic tail) creates a docking site for Syk that triggers a signalling pathway 

involved in the modulation of cytokine expression in a TLR-independent manner. Both CLRs 

are thought to couple Syk to NF-țB activation through CARD9-BCL-10-MALT1 complex 

(Geijtenbeek and Gringhuis, 2009).  

 

1.2.3.ii.c. Dectin-2  

Dectin-2 is widely expressed by tissue Mĭ, langerhans cells and DCs 

and is up-regulated during immune responses (Ariizumi et al., 2000a) (Taylor 

et al., 2005c). It shares the same ligand specificity with DC-SIGN, and 

displayed mannose and Ca2+-dependent binding to A. fumigatus, C. albicans, 

Saccharomyces serevisiae, M. tuberculosis, Microsporum audounii, 

Trichophyton rubrum, Paracoccoides brasiliensis, Histoplasma capsulatum 
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and Cryptococcus neoformans (Graham and Brown, 2009) (Barrett et al., 

2009) (Graham and Brown, 2009). In the case of fungal infections, dectin-2 

appears to be mainly involved in the recognition of hyphal, rather than conidial 

forms (McGreal et al., 2006) (Sato et al., 2006). Quite recently, dectin-2 was 

also demonstrated to facilitate the production of cysteinyl leukotrienes (an 

important mediator for allergic inflammation in lungs) in response to the house 

dust mite (Barrett et al., 2009). 

Dectin-2 shares the same structure with mincle, and triggers 

intracellular signalling through FcRȖ (Figure 1.11) (Graham and Brown, 

2009). Strikingly in contrast to other receptors that signal through FcRȖ, its 

association with FcRȖ was reported to be through a short region of cytoplasmic 

domain close to the transmembrane region (Sato et al., 2006).  

In humans, a shortened dectin-2 isoform, which lacks most of the 

transmembrane domain and all cytoplasmic domain, was also identified 

(Gavino et al., 2005). Its exact function is not known yet, however, it may act 

as an antagonist to full-length dectin-2 after being secreted (Graham and 

Brown, 2009). 

The engagement of the full-length dectin-2 results in the 

phosphorylation of the ITAM motif on FcRȖ that enables the subsequent 

recruitment of spleen tyrosine kinase (Syk) (Yamasaki et al., 2008, Barrett et 

al., 2009). The downstream signalling is largely unknown, however it is 

thought to be similar to that triggered by other FcRȖ-associated receptors (such 

as mincle) that promote NF-țB activation through the Syk-CARD9-BCL10-
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MALT1 complex (Hara et al., 2007) (Figure 1.11). Even though dectin-2-

signalling was also shown to induce NF-țB activation, a role for Syk-CARD9-

BCL10-MALT1 complex has not been confirmed yet (Sato et al., 2006) 

(Barrett et al., 2009).  

The NF-țB activation suggests an important role of dectin-2 in 

regulating the adaptive immune response. This is further supported by data 

showing the TLR-independent expression of TNF and IL-6 upon dectin-2 

recognition of C. albicans, Trichophyton rubrum and Microsporum audouinii, 

and house dust mite-mediated production of cysteinyl leukotrienes through 

dectin-2-induced Syk activation (Sato et al., 2006, Barrett et al., 2009). 

Additionally, the dectin-2 role in the induction of TH-17 immune responses 

was recently identified in a systemic C. albicans infection model (Robinson et 

al., 2009). 

 

1.2.3.ii.d. Dectin-1  

Dectin-1 is a phagocytic receptor expressed on DCs, Mĭ, monocytes, 

neutrophils, microglia and weakly on subsets of murine T-cells, human B-

cells, mast cells and eosinophils (Taylor et al., 2002, Brown, 2006). Its high 

expression levels at the possible pathogen entry sites, such as lungs and 

intestines, correlate with its crucial role in triggering the immune response 

(Taylor et al., 2002, Reid et al., 2004). Dectin-1 expression can be influenced 

by various cytokines, steroids and microbial stimuli. Cytokines such as those 
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involved in alternative Mĭ activation and TH-2 immune responses including 

IL-4 and IL-13, enhance dectin-1 cell surface expression while dexamethasone 

and LPS suppress its expression (Willment et al., 2003).   

 It is involved in the detection of ȕ-glucan, which makes up to 50% of 

the fungi cell wall, and accordingly it was shown to have a central role in anti-

fungal immune responses such as those against Pneumocystis carinii, P. 

brasiliensis, C. albicans, Coccidioides posadasii and A. fumigatus (Brown, 

2006).   

Dectin-1 is composed of an extracellular non-classical CTLD that can 

detect ȕ-glucan in a Ca2+-independent manner, followed by a stalk, a 

transmembrane domain, and a cytoplasmic tail. The stalk region is the region 

that is most commonly spliced out in functional dectin-1 isoforms in both 

human and mouse. In mice, dectin-1 mRNA is alternatively spliced to generate 

two functional dectin-1 isoforms; dectin-1A and dectin-1B, among which 

dectin-1B lacks the stalk region. In contrast to mice, humans have at least eight 

dectin-1 isoforms. Among those, isoforms A&B are the only functional 

isoforms involved in ȕ-glucan recognition and have a structural similarity to 

murine isoforms (Willment et al., 2001). 

Upon ligand engagement, the intracellular signalling is mediated by an 

ITAM-like motif on the cytoplasmic tail, named as “hem-ITAM” (Figure 

1.12).  The nomenclature is derived from its unusual characteristic behaviour 

in triggering Syk-dependent intracellular signalling by phosphorylation of a 

single YXXL motif, instead of two (Figure 1.12). The cytoplasmic tail also 
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contains a highly charged tri-acidic motif (DED) in the hem-ITAM motif that 

is required for particle uptake (Underhill et al., 2005) (Brown, 2006). 

Dectin-1-mediated Syk activation was also demonstrated to be required 

for dectin-1 cross-talk with TLR signalling. The cross-talk is important for 

some dectin-1 responses such as TNF-Į, and IL-12 production (Gantner et al., 

2003) (Brown et al., 2003) (Ferwerda et al., 2008). Other then Syk, sor far, 

MyD88, (Dennehy et al., 2008), Raf-1 kinase (Gringhuis et al., 2009) and 

CARD9 (Hara et al., 2007) were found to be essential in this collaborative 

cellular response.  

In addition to the Syk kinase pathway, some of the dectin-1-mediated 

cell responses are regulated by the Syk-independent pathway. The Syk-

independent pathway is still largely uncharacterized and was recently shown to 

involve Raf-1 kinase-mediated non-canonical NF-ț  activation (Figure 1.12) 

(Gringhuis et al., 2009).  

 

 

  



49 

 

 

Figure 1.12: Dectin-1 signalling through Raf-1 and Syk-dependent pathways. Fungi 

recognition by dectin-1 induces phosphorylation of the YXXL (X is any amino acid) in its 

cytoplasmic tail that results in Syk recruitment. The nature of the Syk binding is still unknown, 

as dectin-1 uses only one ITAM-motif for signalling and Syk recruitment is thought to bridge 

two dectin-1 molecules. Activation of Syk leads to the formation of a signalling complex 

comprised of CARD9, BCL10 and MALT1 which promote the activation of the Ițț complex 

through a yet unrecognised pathway. The inhibitor of NF-țB (IțBĮ) is phosphorylated by IțțB 

that targets it to be degraded by proteasomes. Thereby NF-țB, which is composed of either 

p65-p50 or REL-p50 dimers, becomes free to translocate into the nucleus (canonical NF-țB 

pathway). In addition, Syk-mediated signalling can also promote a non-canonical NF-țB 

pathway that involves NF-țB inducing kinase (NIK) and Ițț-Į, which target p100 for 

proteolytic processing to p52. This eventually leads to the nuclear translocation of RELB-p52 

dimers. Dectin-1 can also signal in a Syk-independent manner, which is mediated by the Raf-1 

kinase activated by Ras proteins. The signalling leads to the phoshprylation of p65 at Ser276 

that acts as a binding site for the histone acetyltransferases CBP, or p300 required for the 

acetylation of p65 at different lysine residues. Phosphorylated p65 also attenuates the RELB-

mediated transcription by forming an inactive dimer with RELB that cannot bind to DNA 

(Geijtenbeek and Gringhuis, 2009).  
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1.3. Mannose Receptor (MR) 

The MR was initially identified in the late 1970s as a 175 kDa 

endocytic receptor on rabbit alveolar Mĭ involved in the clearance of 

endogenous glycoproteins (Wileman et al., 1986). It was the first member 

discovered of the MR family of C-type lectins, which was also shown later on 

to include the M-type phospholipase A2 receptor (mPLA2R), DEC-205, and the 

Endo-180 (East and Isacke, 2002, Zelensky and Gready, 2005).  

The MR family members are unique within the C-type lectin 

superfamily since these alone possess multiple CTLDs within a single 

polypeptide backbone. They are also characterised by an N-terminal cysteine-

rich (CR) domain, which acts as a second lectin domain only in MR, followed 

by a single fibronectin type II (FNII) domain responsible for collagen detection 

by all family members. Their cytoplasmic tails contain motifs that help them to 

transport the bound antigen into the cellular endocytic machinery (East and 

Isacke, 2002).   

Even though these receptors share structural similarities, differing only 

in the number of CTLDs within a single polypeptide backbone (eight in the 

case of MR, PLA2R and Endo 180 and ten in the case of DEC205), they 

possess different ligand binding properties, and therefore each family member 

has a different range of functions (East and Isacke, 2002). For instance, the 

PLA2R is involved in the internalization of PLA2 enzymes, DEC-205 can 

internalize antigen for presentation to T-cells, Endo-180 can facilitate 
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extracellular matrix remodelling, while MR has a role in the innate and 

adaptive system (East and Isacke, 2002).  

 

1.3.1. MR structure, expression, and specificity 

MR is a type I membrane protein with a single transmembrane domain 

and a cytoplasmic domain that mediates receptor internalization and recycling. 

The  three types of domains at the extracellular region have different ligand 

specificity; the CR domain  is capable of Ca2+-independent binding to 

sulphated sugars terminated in SO4-3-galactose (Gal) or SO4-3/4-N-

acetylgalactosamine (GalNAc) (Taylor et al., 2005a), the FN II which is 

involved in collagen binding especially collagen type I, II, III, and IV 

(Martinez-Pomares et al., 2006, Napper et al., 2006), and eight tandemly 

arranged CTLD responsible for Ca2+-dependent binding to sugars terminated in 

D-mannose, L-fucose or N-acetylglucosamine (GlcNAc) (Figure 1.13) (Taylor 

et al., 2005a). Two independent studies by Napper et al., and Boskovic et al., 

suggested a structural model for MR which includes two different 

conformations: an extended form and a bent form which was created as a result 

of the interaction between the CR domain and the CTLD4 region, and was 

suggested to facilitate projecting ligand binding competent domains closer to 

their possible substrates (Napper et al., 2001) (Boskovic et al., 2006). 
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Figure 1.13: MR structure. The MR extracellular domains including CR domain (red), FN II 

domain (brown), and CTLD (green) were shown with their predicted N-linked glycosylation 

sites. Among the CTLDs, CTLD4, which is the domain mostly responsible for sugar binding, 

was shown in dark green. 

 

Initially MR was thought to be expressed only on Mĭ, however, it is 

now known that its expression is not Mĭ specific and can also be detected in 

tracheal smooth muscle cells, retinal pigment epithelium, hepatic and 

lymphatic endothelia, kidney mesangial cells, human monocyte-derived DCs, 

and on the subpopulation of murine DCs (Lew et al., 1994, Linehan et al., 

1999, Shepherd et al., 1991, Avrameas et al., 1996, Engering et al., 1997, 

Sallusto et al., 1995, McKenzie et al., 2007). The MR promoter region was 

suggested to have binding sites for the transcription factors PU.1, which is 
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necessary for the proper development of myeloid progenitors, and SP.1 which 

is ubiquitously expressed in all cell types (Egan et al., 1999).  

MR is up-regulated by cytokines IL-10, IL-4 and IL-13 and therefore 

expressed at high levels by Mĭ in alternatively-activated and de-activated 

states (Martinez-Pomares et al., 2003) (Doyle et al., 1994). Other anti-

inflammatory agents such as prostaglandin E (PGE) and dexamethasone were 

also shown to enhance its expression, which is in contrast to the effect induced 

by pro-inflammatory IFN-Ȗ that stimulates classical activation of Mĭ and was 

shown to down-regulate MR expression (Cowan et al., 1992) (Schreiber et al., 

1990, Harris et al., 1992). This suggests a role for MR in restricting self-

damage and resolution of inflammation.  Accordingly, MR was reported to 

mediate the removal of lysosomal enzymes, neutrophil-derived 

myeloperoxidase and tissue plasminogen activator and its deficiency was 

shown to lead to enhanced lysosomal hydrolases in serum (Shepherd and 

Hoidal, 1990) (Noorman et al., 1995) (Lee et al., 2002). 

As an endocytic receptor, MR is constitutively internalised and sent 

back to the plasma membrane even in the absence of any ligand. The majority 

of MR is expressed intracellularly, in a way that the cell surface expression 

corresponds to only 10-30% of total expression (Taylor et al., 2005a, East and 

Isacke, 2002). Therefore, besides enhancing total MR expression, extracellular 

signalling may also regulate MR activity by stimulating the recycling process 

without affecting the rate of protein synthesis as was observed in the case of 



54 

 

collectins (surfactant proteins (SP)-A and-D)-induced MR activity in alveolar 

Mĭ (Kudo et al., 2004).  

Moreover, surface expression can be further regulated by a yet 

uncharacterised mechanism that results in metalloprotease mediated cleavage 

of membrane-anchored MR (cMR) into functional soluble MR (sMR) that is 

comprised of extracellular domains of intact MR (Martinez-Pomares et al., 

1998). The cleavage does not result to any change in ligand binding capacity 

since, like cMR, sMR was also able to interact with carbohydrates, heat-killed 

C. albicans and zymosan, in a mannose- and fucose- dependent manner 

(Martinez-Pomares et al., 1998). As with total cellular expression, sMR 

expression also seems to be up-regulated by IL-4, while IFN-Ȗ and LPS are 

involved in its down-regulation (Martinez-Pomares et al., 1998).  

 

1.3.1.i. Cysteine-rich domain  

The lectin acivity of the CR domain is unique within the family and it 

can bind to sulphated sugars such as those present on the pituitary hormones 

lutropin and thyrotropin, chondroitin sulphates A and B, and sulphated 

oligosaccharides of blood group Lewisa and Lewisx types (Fiete et al., 1998, 

Leteux et al., 2000). To date, there is no exogenous CR domain ligand 

identified and therefore this domain is mainly involved in maintaining 

haemostasis and resolution of inflammation. Additionally, domain binding to 
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chondroitin sulphate-associated extracellular matrix proteoglycans could play a 

part in promoting adhesion of cells to the ECM (Taylor et al., 2005a).  

Moreover, additional CR domain ligands (sulphated glycoforms of 

sialoadhesin and CD45) have been identified in Mĭ subpopulations in 

secondary lymphoid organs proximal to B-cells, and follicular dendritic cells 

during the germinal centre reaction. This suggests a putative role for the 

soluble receptor in delivering mannosylated antigens to secondary lymphoid 

organs (Martinez-Pomares et al., 2005). 

 

1.3.1.ii. Fibronectin type II domain 

         The FNII domain, the most conserved domain among the MR family 

members (East and Isacke, 2002), is responsible for collagen recognition 

(Martinez-Pomares et al., 2006). Despite the highly conserved nature of the FN 

II domain, each family member detects different types of collagen. For 

instance, PLA2R binds to type I and type IV collagen, Endo-180 interacts with 

collagen types I, IV, and V, whereas the MR is involved in the detection of 

collagen type I, II, III, and IV, but not type V (Martinez-Pomares et al., 2006) 

(East and Isacke, 2002).  

Type I and type III collagens are the major fibrillar collagens found in 

connective tissues throughout the body, and type IV collagen is highly 

abundant in the basal lamina. Therefore the collagen-binding activity of MR 

suggests a crucial role in mediating the clearance of collagen fragments during 
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tissue re-modelling and wound healing. Furthermore, a role for the MR in cell 

migration was demonstrated in BM-Mĭ (Sturge et al., 2007) and myeloblast 

cells (Jansen and Pavlath, 2006). In both studies, MR-deficient cells displayed 

a migration defect. 

 

1.3.1.iii. C-type lectin-like domains (CTLDs) 

Initially, the MR family term was used to identify receptors with 

multiple C-type lectin or C-type carbohydrate recognition domains (CRDs). 

Today, it is known that only a few of these domains possess lectin activity, 

which is why they are rather termed CTLD (Zelensky and Gready, 2005). As 

mentioned before, the MR CTLDs are responsible for the binding to sugars 

terminated in mannose, fucose or N-acetyl glucosamine (Taylor et al., 2005a).  

Each CTLD share a common structure with MBL, made up of two Į-

helices and two small anti-parallel beta sheets linked together with both 

covalent and non-covalent interactions. The overall folded structure is 

stabilised by the two conserved disulphide bonds, and the interactions between 

hydrophobic amino acids that lead to the formation of a hydrophobic core. 

Hydrophobic core formation in functional CTLDs facilitates bringing the 

residues required for the Ca2+ ions and sugar residues come into contact (Weis 

et al., 1992) (Apostolopoulos and McKenzie, 2001) (East and Isacke, 2002).  

In MR, only CTLD4 and CTLD5 domains have residues required for 

Ca2+ dependent sugar binding, albeit only CTLD4 can bind to monosaccharide 
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in isolation. Since this interaction is rather weak, multiple CTLDs are required 

to increase avidity and the CTLD4-8 construct was shown to interact with 

multivalent ligands with the same affinity as the whole MR (Taylor et al., 

2005a) (Apostolopoulos and McKenzie, 2001). 

The MR CTLD4 requires two Ca2+ ions for sugar binding; one is placed 

in conserved binding site two and interacts directly with sugars, and the other 

one binds to the residues located on an extended loop unique to the MR 

CTLD4, providing an interaction between ȕ-strands two and three, and 

positioned away from the domain core (Figure 1.14). The loop is thought to 

have a crucial role in releasing MR-bound carbohydrates in the endosomal 

compartment by inducing structural change through mediating pH-dependent 

Ca2+ release upon acidification (Taylor et al., 2005a).                  

Like the CR domain, the CTLD region is also involved in regulating 

the levels of endogenous ligands such as thyroglobulin and lutropin hormones 

(Simpson et al., 1999) (Linehan et al., 2001), as well as in resolving 

inflammation through its interaction with enzymes such as myeloperoxidase, 

and lysosomal hydrolases. 

In contrast to the CR and FNII domains, the CTLDs also help the MR 

to function as a PRR.  Mannose and N-acetylglucosamine are not commonly 

found as terminal residues in mammalian glycoproteins, but they are 

frequently found on the glycoproteins that decorate the surface of many 

microorganisms. The pathogens recognised by MR include; C. albicans 

(Marodi et al., 1991, Martinez-Pomares et al., 1998), Leishmania (Chakraborty 
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et al., 2001, Chakraborty et al., 1998), M. tuberculosis (Tailleux et al., 2003), 

HIV (Nguyen and Hildreth, 2003), P. carinii (Ezekowitz et al., 1991, 

O'Riordan et al., 1995), selected strains of Klebsiella pneumoniae (Zamze et 

al., 2002), Cryptococcus neoformans (Dan et al., 2008), Streptococcus 

pneumoniae (Zamze et al., 2002), and Dengue virus (Miller et al., 2008). 

 

Figure 1.14: Ribbon diagram of MR CTLD4. The disulphide bonds are shown in pink while 

the yellow represents the two segments (regions I and II) connecting the extended loop to the 

core of the CTLD. The principal Ca2+ is shown as a green sphere (East and Isacke, 2002).  

 

1.3.1.iv. Cytoplasmic domain  

The MR is constitutively internalised into early endosomes and sent 

back to the plasma membrane (East and Isacke, 2002) (Taylor et al., 2005a). 

Internalization of the MR is mediated by the tyrosine residue in the FENTLY 
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sequence motif similar to that present in the low density lipoprotein receptor- 

and involves clathrin-coated vesicles (Schweizer et al., 2000). The correct 

endosomal sorting of MR depends on the di-aromatic Y-F motif in which Y 

belongs to the endocytosis motif (Schweizer et al., 2000) (Figure 1.15). The 

transmembrane domain was also suggested to have a role in receptor 

trafficking, since its substitution did impair receptor internalisation (Kruskal et 

al., 1992). In the early endosomes, the receptors are targeted to be sent either 

back to the plasma membrane, or into the late endosomes, which are 

characterised by abundant intravesicular membranes and the presence of active 

lysosomal hydrolases.  

 

 

Figure 1.15: Comparison of cytoplasmic domains of human (hu) and mouse (mu) MR. 

The amino acid sequences are written in single letter code. The FENTLY (red) and di-aromatic 

YF (underlined) sequences are important for receptor internalization and correct endosomal 

sorting, respectively. The conserved di-hydrophobic chain of LV in human, and LM in mouse 

MR are shown in purple.  

 

Furthermore, a distinct di-hydrophobic chain (LV in human, and LM in 

mouse MR) was identified, as in the case of other receptors, including Fc 

receptor (FcR), mannose-6-phosphate receptors and IFN-Ȗ receptors (East and 

Isacke, 2002) (Figure 1.15). An acidic residue in the -4 position to this di-

hydrophobic motif was conserved among all family members, and the 
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equivalent acidic residue in other receptors was shown to be necessary for 

intracellular trafficking from the early endosomes and, in some cases, for 

receptor internalization (Pond et al., 1995, East and Isacke, 2002).  

 To date, no intracellular signalling motifs have been identified on the 

MR cytoplasmic tail. However, in several studies MR engagement was shown 

to induce intracellular signalling leading to the production of several 

inflammatory mediators. This suggests that MR forms a receptor complex with 

a signalling-motif associated receptor, as revealed by Tachado et al, in which 

MR was shown to interact with TLR2 during the detection of P. carinii 

(Tachado et al., 2007) (discussed below). 

 

1.3.2. The role of MR in immunity 

As discussed previously, since mannose, fucose and N-

acetylglucosamine are not commonly found as terminal residues in mammalian 

glycoproteins, MR can function as a PRR through its CTLD. MR was shown 

to recognise various pathogens such as C. albicans (Marodi et al., 1991, 

Martinez-Pomares et al., 1998), Leishmania (Chakraborty et al., 2001, 

Chakraborty et al., 1998), M. tuberculosis (Tailleux et al., 2003), and P. carinii 

(Ezekowitz et al., 1991, O'Riordan et al., 1995). 

However despite its demonstrated role in pathogen recognition, the 

importance of MR in immune response is not clear since MR-deficient mice 

displayed unaltered susceptibility to infections with C. albicans, P. carinii, and 
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leishmaniasis (Lee et al., 2003) (Akilov et al., 2007, Swain et al., 2003). This 

can be due the compensation of MR by other receptors sharing the similar 

pattern of ligand binding (e.g. DC-SIGN, and dectin-2). The following section 

will focus on the current data describing the role of the MR in phagocytosis, 

antigen processing and presentation, and intracellular signalling triggered 

response to pathogen recognition.  

 

1.3.2.i. Phagocytosis 

          The literature on the role of the MR in phagocytosis still includes 

contradictory data. Even though the MR has been shown to be involved in the 

phagocytosis of pathogens, such as M. tuberculosis (Kang et al., 2005), 

Francisella tularensis (Schulert and Allen, 2006) and C. albicans (Marodi et 

al., 1991), CHO cells expressing human MR were found unable to phagocytose 

Mycobacterium kansasii or mannosylated latex beads, despite the occurrence 

of mannosylated glycoprotein endocytosis (Le Cabec et al., 2005). In support 

of this, MR knock-out (KO) mice did not display impaired uptake of C. 

albicans, Leishmania donovani and Leishmania major (Lee et al., 2003) 

(Akilov et al., 2007), and MR was absent from the early stages of C. albicans 

containing phagosome formation (Heinsbroek et al., 2008). Additionally, the 

MR was demonstrated to provide a safe-route of entry for pathogens, since its 

engagement resulted in the suppression of phagosome-lysosome fusion and 

phagosome maturation after phagocytosis of both pathogenic and non-
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pathogenic mycobacteria (Astarie-Dequeker et al., 1999), and Mycobacterium 

avium (Shimada et al., 2006).  

 In some of these studies, the role of MR in phagocytosis was confirmed 

by using mannan, which was being traditionally used as a specific MR 

inhibitor. However, the discovery of other mannan binding receptors, such as 

DC-SIGN and dectin-2, revealed the unreliability of mannan as a MR 

inhibitor. Nevertheless, MR-expressing J774-E Mĭ ingested F. tularansis 

more efficiently than MR-negative cells and the MR role was confirmed by 

using an MR-specific antibody, as well as soluble mannan, as inhibitors 

(Schulert and Allen, 2006). Additionally, non-phagocytic COS-1 cells were 

reported to phagocytose C. albicans and P. carinii upon transfection with MR 

(Ezekowitz et al., 1991, Ezekowitz et al., 1990). When compared with the data 

obtained from CHO cells (mentioned above), these data suggest that the effect 

of the MR on phagocytosis and phagosome maturation might depend on the 

cell-type used.  

 Additionally, research on the mechanism of MR-phagocytosis indicates 

that the cytoplasmic tail is crucial in phagocytosis. Mutation of the single 

tyrosine caused reduction, but not complete inhibition, of the particle uptake 

(Kruskal et al., 1992). The MR phagosomes were found to be associated with 

F-actin, talin, PKCĮ, MARCKS and myosin I, but in contrast to FcRȖ and 

CR3-phagsosomes, vinculin and paxilin are not recruited to MR phagosomes 

(Kerrigan and Brown, 2009). Further studies also revealed the requirement of 

F-actin polymerisation, Cdc42 and Rho activation, PAK1 activity, and Rho 
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effector molecule ROCK, but not Rac, for MR-mediated phagocytosis 

(Kerrigan and Brown, 2009, Zhang et al., 2005b).  

 

1.3.2.ii. Antigen processing and presentation 

Intracellular Mĭ MR was reported to be dominantly expressed in 

Rab5a+ early endosomes. However, in conditions known to induce MR 

expression (e.g. in the presence of IL-4, and PGE), this expression pattern was 

further extended to include the Rab11+ recycling endocytic compartment, as 

well as the Rab7+ late endosomes (Wainszelbaum et al., 2006). This suggests a 

MR role in the transportation of the bound ligand into the late endocytic 

compartment required for antigen presentation, under these conditions.  

Similar co-localisation results suggesting a crucial role for MR in 

antigen presentation in the context of MHC class II and CD1b were also 

observed by Engering et al, Sallusto et al, Prigozy et al (Engering et al., 1997) 

(Prigozy et al., 1997) (Sallusto et al., 1995). Among those, in contrast to 

Prigozy et al which observed MR co-localization with CD1b and 

lipoarabinomannan (LAM) in the MIIC (the compartment where antigen is 

loaded on MHC class II molcules), Engering et al, reported distinct 

localization of the MR and MHC class II molecules, which is thought to be 

because of the recycling nature of MR that results in antigen release in the 

early endosomal compartment. This contradictive data can be explained by the 

type of the MR ligand used (mannosylated-bovine serum albumin (BSA) vs 
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LAM), and the possible contribution of other PRRs, such as DC-SIGN and 

dectin-2, that share similar ligands with MR (discussed above). However, MR 

participation in antigen presentation with MHC class II molecules was further 

supported by the studies of Desgupta et al and McKenzie et al, which proposed 

MR involvement in the therapeutic factor VIII antigen presentation (Dasgupta 

et al., 2007), and the generation of antibody isotype switching upon 

immunization with anti-MR antibody (McKenzie et al., 2007) respectively.    

 MR was shown to present exogenous proteins in context with MHC 

class II molecules, as well as to promote cross-presentation of internalized 

antigens by Burgdorf et al. This was in contrast to pinocytosed lucifer yellow, 

and scavenger receptor-internalized antigen, which were detected in MHC 

class II positive lysosomal compartments. The MR role in cross-presentation 

was further confirmed by Ab25-D1.16 antibody staining specific to the OVA-

derived peptide SIINFEKL in the context of the class I MHC molecule H-2b, 

which was negative in the case of MR-KO APCs in contrast to wt cells. This, 

however, contradicts with the study by Berlyn et al who reported enhanced 

CD4+ T-cell activation upon antigen mannosylation, without any effect on the 

CD8+ branch of the immune response (Berlyn et al., 2001). 

Other studies showing MR influence on MHC class I antigen 

presentation involve the work by Apostolopoulos et al (Apostolopoulos et al., 

1995). The study showed that the tumour-associated antigen MUC1, linked to 

oxidised mannan, was more efficiently directed to the class I pathway than the 

one associated with reduced mannan (Apostolopoulos et al., 1995). This 
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selective passage appears to occur after the internalization step, and depends 

on the aldehyde groups on the oxidised form of the antigen, as revealed by the 

same group (Apostolopoulos et al., 2000). 

 In spite of being contradictive, these data overall suggest the MR role 

in directing the bound ligands to the compartments associated with antigen 

presentation (either through class I or class II MHC molecules), which is 

probably determined by the nature of the antigen and the activation states of 

the cells used. In support, among endotoxin-free and endotoxin-contaminated 

OVA, only the latter was effectively presented with MHC class I molecules 

after internalization via MR. This is in correlation with the translocation of the 

peptide transporter TAP (transporter associated with antigen processing) to the 

endosomal compartments in conditions contaminated with endotoxin (Hotta et 

al., 2006) (Norbury et al., 2004). The recruited TAP facilitates the re-import of 

the processed antigen into the early endosomes to be loaded onto MHC class I 

molecules and transported to the cell surface (Burgdorf et al., 2008).  

 

1.3.2.iii. Intracellular signalling 

MR has also been suggested to play a crucial role in intracellular 

signalling leading to the regulation of gene expression in several studies 

(Zhang et al., 2004, Tachado et al., 2007, Yamamoto et al., 1997, Fernandez et 

al., 2005, Lopez-Herrera et al., 2005, Zhang et al., 2005a, Chieppa et al., 

2003). However, it appears to require the assistance of other receptors in order 
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to trigger any signalling cascade, due to the absence of any signalling motifs in 

its cytoplasmic domain (Shibata et al., 1997) (Zhang et al., 2005a) (Tachado et 

al., 2007). In support, in contrast to phagocytosable mannose-coated beads and 

chitin which stimulated TNF-Į, IFN-Ȗ, and IL-12 production by murine spleen 

cells, non-phagocytosable beads did not induce any change in cytokine 

production. Additionally, treatment with soluble mannan did not cause any 

change in the levels of the above cytokines, while it was able to inhibit chitin-

mediated IFN-Ȗ release. One candidate receptor that the MR is thought to 

cross-talk with is TLR2, as revealed by Tachado et al, which showed the 

requirement of co-expression of both TLR2 and MR for IL-8 secretion in 

response to P. carinii by HEK-293 cells. It appears that both receptors interact 

with each other forming a functional complex on the cell surface during 

pathogen recognition, as demonstrated by the co-precipitation studies in the 

presence of P. carinii (Tachado et al., 2007).  

In a different model, Chieppa et al suggested a direct role of the MR in 

mediating TH-2 and Treg, but not TH-1, chemokine and cytokine induction, by 

using MR specific monoclonal antibodies (Chieppa et al., 2003). Strikingly, in 

the same work, not all MR ligands had the same effect; while mannan, and 

thyroglobulin treatments did not induce any significant change in cytokine or 

chemokine production, mannose-capped LAM and biglycan treatment resulted 

in enhanced IL-10 and reduced IL-12 levels in LPS-maturing DCs.  

One possible mechanism through which MR can deliver a negative 

signal to block pro-inflammatory cytokine release was recently revealed by 
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Pathak et al that showed IRAK-M up-regulation upon MR-engagement 

(Pathak et al., 2005). IRAK-M is a negative regulator for TLR signalling and 

acts through blocking the dissociation of IRAK-1 and IRAK-4 from MyD88 

(Figure 1.16).   

 

Figure 1.16: MR as a complex regulator of immunity. MR is speculated to cooperate with 

other signalling receptors in the modulation of cytokine secretion. It has been shown that MR 

engagement by Man-LAM has a negative effect on the production of IL-12 in response to LPS 

in human DC (a). On the other hand, co-expression of MR and TLR2 is required for IL-8 

production in response to P. carinii (b). Additionally, engagement of MR by a specific mAb or 

selected ligands leads to the production of anti-inflammatory mediators (c). Finally, there is 

strong evidence in support of MR-mediated internalization favouring cross-presentation (d) in 

addition to MHC class II-mediated presentation of exogenous antigens (Gazi and Martinez-

Pomares, 2009).  
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1.4. Aims and Objectives 

  The aim of this research was to characterize the role of MR in Mĭ 

biology. In particular the focus was on the regulation of MR expression (in 

both cell-associated and soluble forms), and function as an endocytic receptor. 

The following were the objectives: 

 Determining whether MR can facilitate cellular adhesion to collagen-

rich surfaces which may influence the endocytic function of MR. This 

was achieved by monitoring the level of MR-mediated endocytosis, and 

MR expression at both protein and mRNA levels after overnight 

incubation of Mĭ on collagen I or IV-coated surfaces.   

 

 Assessing whether the previous observation of enhanced MR-shedding 

in response to P. carinii can also be induced by other fungi species and 

whether the enhanced sMR production has an effect on MR-mediated 

endocytosis and fungi-mediated cytokine release by Mĭ.  

 

 Identifying the main fungal PRR and the associated intracellular 

signaling responsible for the induction of sMR production. This was 

done by using knock-out mice and intracellular signalling inhibitors. 
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 Determining whether MR-shedding can also be triggered by stimuli 

other than fungi. This was achieved by the incubation of Mĭ with 

house dust mite or fixed Staphylococcus aureus.  
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2. THE EFFECT OF EXTRACELLULAR 

MATRIX ON MR FUNCTION AND 

EXPRESSION 

 

2.1. Introduction 

 Extracellular matrix (ECM) constitutes the extracellular part of animal 

tissues, providing structural support and elasticity, as well as cellular 

organisation. In addition, by sequestering growth factors, it can also be 

involved in cellular growth and differentiation. The expression of ECM 

macromolecules exhibit a tissue-specific distribution which results in tissues 

displaying different forms of extracellular medium; ranging from hard 

structures of bone and teeth, to the transparent matrix of the cornea.  

ECM contents are produced and secreted by the underlying cells, and 

mainly by fibroblasts. There are three main types of molecules abundant in 

ECM; collagen fibres, highly viscous proteoglycans, and matrix adhesive 

glycoproteins.  Among those, collagen, which constitutes one-third of all 

protein in mammalian tissues, is the most abundant protein in the animal 

kingdom. To date, more than 20 types of collagen, and at least 30 different 

collagen genes, have been identified. Type I, II and III in connective tissues 

constitute 80-90% of collagen in the body. Collagen fibers provide mechanical 

strenght and flexibility to tissues (Lodish, 2003).  



71 

 

Collagen has also been shown to facilitate various cellular responses, 

such as, cellular adhesion, cell survival, and migration (Leitinger and 

Hohenester, 2007). To achieve this wide-range of functions, cells express 

various collagen receptors involved in direct collagen detection, which include 

integrins, discoidin domain receptors, glycoprotein IV, and leukocyte-

associated IG-like receptor-1 (Leitinger and Hohenester, 2007).  

MR was recently added to the list by the discovery of its collagen-

binding property through its FNII domain (Napper et al., 2006) (Martinez-

Pomares et al., 2006). MR was reported to be the only receptor able to mediate 

collagen internalization by bone marrow (BM)-Mĭ and have high binding 

affinity to collagen types I, II, III, and IV (Martinez-Pomares et al., 2006) 

(Napper et al., 2006, Gazi and Martinez-Pomares, 2009). As collagen is the 

most abundant protein in animals, it was suggested that MR might also serve 

as an ECM adhesion receptor, and accordingly, MR deficiency was shown to 

result in migration defects in BM-Mĭ and myeloblast cells (Sturge et al., 

2007) (Jansen and Pavlath, 2006). 

.  

2.1.1. The aim of the study  

The possible involvement of MR in cellular adhesion suggests that its 

activity as an endocytic receptor would be influenced in collagen-rich tissues. 

The aim of this study was to investigate any effect of Mĭ-collagen adhesion 

on MR expression and function as an endocytic receptor in Mĭ (Figure 2.1). 
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This was done by plating BM-Mĭ on ECM protein (namely collagen I, 

collagen IV and fibronectin(FN))-coated wells overnight (O/N), and screening 

the level of MR-mediated endocytosis by flow-cytometry.  MR expression was 

monitored at both mRNA and protein levels. The effect of ECM adhesion on 

overall Mĭ activity was also studied by screening the zymosan-induced TNF-

Į mRNA expression, and the level of acetylated low-density-lipoprotein (LDL) 

endocytosis. 

 

Figure 2.1: The hypothesis. It was hypothesized that if the MR is involved in cellular 

adhesion, after O/N incubation on collagen-coated plates Mĭ would have either reduced MR 

expression available for receptor-mediated endocytosis (a), or enhanced MR expression, which 

would enable the MR to facilitate both cellular adhesion and receptor-mediated endocytosis 

(b).  
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2.2. Materials and Methods 

2.2.1. Animals 

Wild-type (wt) C57 BL/6 mice were supplied from Charles River, UK, 

and MR knock-out (MR-KO) C57 BL/6 mice were bred at the Biomedical 

Services Unit (BMSU) at the University of Nottingham. Animals were handled 

according to institutional and UK Home Office guidelines and kept under 

specific pathogen-free conditions. They were used at 10-12 weeks of age.  

 

2.2.2. Preparation of L929-conditioned media 

(LCM) 

The L929 cell line was cultured in DMEM medium supplemented with 

10% (v/v) heat inactivated foetal bovine serum (HI FBS, Sigma Aldrich) or 

foetal calf serum (HI FCS, Harlem), 2 mM L-glutamine (Gln, Sigma Aldrich), 

100 U/ml penicillin (Sigma Aldrich) and 100 ȝg/ml streptomycin (Sigma 

Aldrich), on a T-75 tissue culture flask (Nunc) at 37°C for two days after 

which the cells were sub-cultured into four T-75 flasks. After four days of 

incubation at 37°C (reaching 100% confluency), the cells were sub-cultured 

into ten T-225 flasks. The media was then refreshed after three days of 

incubation. After 10-12 days, the L929 conditioned media supernatant (LCM) 

was collected, filtered and frozen at -80°C.  
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2.2.3. Preparation of mouse BM-Mĭ 

The BM cells collected from wt C57 BL/6 mice were cultured in RPMI 

medium 1640 (Sigma Aldrich) supplemented with 10% (v/v) HI FBS or HI 

FCS, 2 mM Gln (Sigma Aldrich), 100 U/ml penicillin (Sigma Aldrich), 100 

ȝg/ml streptomycin (Sigma Aldrich), 10 mM Hepes (Invitrogen) and 15% (v/v) 

LCM (R-10) on a 150 mm Petri dish (Falcon) for seven days at 37°C. 

Following maturation, BM-Mĭ were harvested using PBS containing 10 mM 

EDTA (Sigma Aldrich), and 20 mg/ml Lidocaine (Sigma Aldrich) and plated 

on PBS or ECM-protein coated plates in R-10, or serum-free Opti-MEM with 

50 ng/ml M-CSF (R&D) overnight (O/N).  

 

2.2.4. Preparation of non-tissue cultured 

Bacteriologic Plastic (BP) plates coated with ECM 

proteins 

Type I collagen from rat tails (BD Biosciences), mouse type IV 

collagen (BD Biosciences) and human FN (BD Biosciences) were diluted in 

0.02 N acetic acid, 0.05 N hydrochloric acid (HCl) or PBS (Sigma Aldrich) 

respectively, at a final concentration of 50 ȝg/ml; 400 ȝl and 1.5 ml of each 

suspension was dispensed into 12-well and 6-well non-tissue cultured BP 

plates (Falcon) respectively. After 1 hour of incubation at room temperature 

the wells were washed three times with PBS (Sigma Aldrich), prior the 

adherence of Mĭ.  



75 

 

The ECM protein (collagen I, collagen IV and FN)-coated and 

uncoated 6-well tissue culture (TC) plastic plates were purchased from BD 

Biosciences.  

    

2.2.5. Preparation of protein lysates 

BM-Mĭ plated on PBS or ECM-coated 6-well non-tissue culture BP 

plates (at a concentration of 1x106 cells/well) were washed three times with 

PBS and lysed by incubation with ice-cold lysis buffer (2% (v/v) Triton X-100, 

10 mM Tris-HCl, pH 8, 150 mM NaCl, 10 mM NaN3, 2 mM EDTA) plus 

protease inhibitors (Roche Molecular Biochemicals) (300-400 ȝl per well of a 

6 well plate) for 45 min at 4°C. The lysates and the media were centrifuged at 

2 000 rpm at 4°C for 5 minutes using a bench top centrifuge. Supernatants 

were further centrifuged at 13 000 rpm for 30 mins at 4°C, collected and stored 

at –20°C. Protein concentration was determined using the BCA protein assay 

kit (Pierce) following the manufacturer‟s protocol.  

 

2.2.6. Western blotting 

Cell lysate (3 ȝg for MR-detection or 5 ȝg for CD68 detection) and an 

equivalent proportion of supernatant preparation were loaded and 

electrophoresed in a non-reducing 6% (w/v) sodium dodecyl sulphate-

polyacrylamide (SDS-PAGE) gel and Tris-Glycine-SDS Buffer (TGS) 1X 
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(Bio-Rad). Proteins were transferred overnight to Hybond-C extra 

nitrocellulose membrane (GE Healthcare) using transfer buffer; Tris-Glycine 

Buffer Solution (TG) 1X concentration (Bio-Rad) plus 20% (v/v) methanol. 

After being incubated for 1 hour in blocking buffer (5% (w/v) non-fat milk in 

PBS 0.1% (v/v) Tween20), MR and CD68 were visualised by using a 

combination of anti-MR (clone 5D3, 2 ȝg/ml) or anti-CD68 mAb (clone FA-

11, 5 ȝg/ml), HRP-conjugated anti-rat IgG (Chemicon), and an enhanced 

chemiluminescence reagent (Amersham Pharmacia Biotech), high performance 

chemiluminence film (Hyperfilm, Amersham) and Biomax Cassette (Kodak).  

 

2.2.7. Cell surface biotinylation assay  

The cells were washed three times in PBS (Sigma Aldrich) at 4°C and 

labelled with 0.5 mg/ml sulpho-NHS-LC-Biotin (Pierce) in Ca2+ Mg2+ 

containing PBS (Invitrogen) for 30 minutes on ice. The reaction was stopped 

by incubating the cells in RPMI medium at 4°C for 1-2 minutes. After being 

washed with ice-cold Ca2+ Mg2+ containing PBS, the cells were lysed as 

described in section 2.2.5. Biotinylated proteins were selected by incubating 

the half the volume of cell lysates with immobilised avidin beads (40 ȝl of 

50% suspension, Pierce) for at least 2 hours at 4°C on a rotating tube rack. The 

samples were then centrifuged at 13 000 rpm for 2 mins and the supernatant 

was discarded. The pellet was washed in 1 ml lysis buffer containing protease 

inhibitor for two times by centrifugation at 13 000 rpm for 2 mins before being 

suspended in 50 ȝl 2X SDS Loading buffer. The volume to be loaded on a 



77 

 

SDS-PAGE gel was calculated by using the protein concentration of the non-

avidin-captured fractions of the same sample, determined by using the BCA 

protein assay kit. 

 

2.2.8. Internalization assays 

BM-Mĭ  plated on ECM protein-coated 12-well non-tissue culture BP 

plates (at concentration of 7x105 cells/well) were washed with serum-free 

RPMI or Opti-MEM medium and incubated for 30 min at 37°C in the same 

serum-free media. The cells were then treated with 5 ȝg/ml of the FITC-

labelled sugar polyacrylamide (PAA) substrates (D-mannose-PAA-FITC, SO4-

3-galactose-PAA-FITC) (Lectinity), or acetylated LDL (low-density 

lipoprotein)-FITC (Invitrogen) for 30 minutes in serum-free media. After 

incubation, the cells were washed with PBS, harvested using 1X trypsin-EDTA 

(Sigma Aldrich), and fixed in 1% (v/v) formaldehyde solution in PBS. The 

internalisation was then analysed using flow cytometry and Weasel software.  

 

2.2.9. Lectin ELISA 

All washings were performed in lectin Buffer (10 mM Tris-HCl, pH 

7.5, 10 mM Ca2+, 154 mM NaCl and 0.05% (v/v) Tween-β0) (β50 ȝl /well).  

Sugar PAA substrates (Lectinity), ultrapure mouse laminin (BD 

Biosciences), laminin from human placenta (Sigma Aldrich) and human FN 
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(BD Biosciences) were used to coat the ELISA plate wells (Nunc; Maxisob) by 

incubation in PBS at 4°C overnight (50 ȝl/well, covered with a Parafilm). 

After coating, the plates were washed three times with lectin Buffer. The MR 

domain–Fc construct(s) (Chavele et al., published online in 2010) (Zamze et 

al., 2002) (Martinez-Pomares et al., 2006) diluted in lectin Buffer were added 

and left for incubation for 1 hour at room temperature (50 ȝl per well). During 

inhibition assays, this step was done in the presence of 12.5 mM mannose or 

galactose, and 1 M NaCl. The binding was then detected by incubation with 

alkaline phosphatase-conjugated goat anti-human IgG (gamma-chain specific) 

(Sigma) diluted 1:1000 in lectin Buffer (50 ȝl per well) after washing the plate 

three times with lectin buffer.  After being washed with lectin buffer three 

times and two times with alkaline phosphatase developing buffer (100 mM 

Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl2), the plates were developed 

with p-nitro-phenyl phosphate substrate (Sigma-Aldrich) in alkaline 

phosphatase developing buffer (100 ȝl per well, 1 mg/ml). Absorbance was 

measured at 405 nm.  

 

2.2.10 Zymosan treatment 

BM-Mĭ cultured overnight on 6-well tissue culture-treated, were 

washed three times with 1 ml PBS to eliminate non-adherent cells. The 

adherent cells were then treated with zymosan particles (Molecular Probe) at a 

concentration of 50 particles per cell suspended in Opti-MEM for the indicated 

time period under serum-free conditions.  
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2.2.11. MR immunolabeling 

All washes between each incubation periods were performed in PBS. 

BM-Mĭ incubated over different ECM component coated multi-well 

slides (Nunc) overnight, were fixed with 2% (v/v) paraformaldehyde in Hepes-

buffered saline for 10 minutes and washed with PBS before being 

permeabilised by incubation with PBS containing 0.1% (v/v) Triton X-100 for 

10 minutes. The slides were then blocked by incubation with 5% (v/v) normal 

donkey serum (Sigma Aldrich) in PBS for 30-45 minutes. MR was detected by 

incubation with 10 ȝg/ml rat anti-mouse MR (5D3) antibody for 30 minutes in 

blocking buffer. The same concentration of IgG2a antibody isotype was used 

as the control staining. The binding was then detected by Alexa 488-labelled 

donkey anti-rat secondary antibody (Molecular Probes) incubation for 30 

minutes in blocking buffer. Slides were mounted using DAKO fluorescent 

mounting media (Dakocytomation).  

 

2.2.12. Real-time quantitative PCR (qPCR) 

RNA was extracted and purified from BM-Mĭ, using the RNeasy mini 

kit (Quiagen). The DNase digestion was performed using the RNase-free 

DNase set (Quiagen); 500-1000 ng of total RNA was used in the RT reactions. 

QPCR was performed by using and following the protocol supplied with 

Brilliant SYBR Green QPCR master mix (Strategene). Primers used for 

specific PCR were as follows: 
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Table 2.1: Forward and reverse primer sequences used in qPCR experiments. 

Gene Forward oligonucleotide 

sequence (5‟ γ‟) 

Reverse oligonucleotide 

sequence 

(5‟ γ‟) 

TNF-Į TCTTCTCATTCCTGCTTG

TGG 

GGTCTGGGCCATAGAACT

GA 

MR AGAAAATGCACAAGAGC

AAGC 

GGAACATGTGTTCTGCGT

TG 

HPRT GTAATGATCAGTCAACGG

GGGAC 

CCAGCAAGCTTGCAACCT

TAACCA 

 

2.2.13. Statistical analysis 

 The results were displayed as the mean ± standard deviation (SD) or 

mean ± standard error of the mean (SEM) from three independent experiments. 

Statistical analysis (unpaired t-test) was performed by using GraphPad 

QuickCalcs software. Differences were considered significant if P-values were 

< 0.05. Asterisks indicate the corresponding P-values: * P < 0.05, ** P < 0.01, 

and *** P < 0.001.  
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2.3. Results 

2.3.1. The Mĭ MR can bind to laminin but not to 

fibronectin 

 MR is involved in the detection of two different ECM macromolecule 

classes: chondroitin sulphates of proteoglycans detected by its CR domain and 

collagen detected by its FNII domain (Gazi and Martinez-Pomares, 2009). 

However, up to date, there was no study on MR interaction with the third ECM 

macromolecule class, matrix adhesive glycoproteins.  

FN and laminin are the best known examples of adhesive 

glycoproteins, and therefore were chosen for the binding assays. In order to 

eliminate any false reading coming from entactin, which forms a very tight 

non-covalent complex with laminin, entactin-free ultrapure laminin 

preparations from human placenta were preferred (Niquet and Represa, 1996). 

Possible MR interaction with FN or laminin was investigated by lectin ELISA 

using different MR constructs: CR-Fc binds to sulphated sugars through CR 

domain, CR-FNII-CTLD1-Fc possess sulphated sugar and collagen binding 

abilities, CTLD4-7-Fc is involved in the recognition of sugars terminated in D-

mannose, L-fucose, or N-acetyl glucosamine. The mannan and SO4-3-

galactose coated substrata were used as positive controls. Among the two 

glycoproteins examined, only laminin was able to bind to MR (Figure 2.2). 
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Figure 2.2: MR binds to laminin, but not FN. Analysis by lectin ELISA of the binding of 

FN (A), mouse laminin (B) and human placenta laminin (C) to the MR-domain-Fc constructs: 

CR-Fc, CR-FNII-CTLD-1-Fc, and CTLD4-7-Fc. The data represent the mean optical density 

(OD) at wavelength of 405 nm ± SEM (error bars) obtained from three independent 

experiments. Asterisks indicate the significant increase of MR construct binding (t-test; ***  P 

< 0.001). 
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The MR interaction with laminin appears to be mediated by the 

domains involved in mannosylated carbohydrate recognition, which reflects 

the mannosylated nature of laminin (Cooper et al., 1981) (Figure 2.2 and 

Figure 2.3). The same binding was also reported when laminin from another 

source (mice) was used, suggesting that the MR binding, and the mannosylated 

nature of laminin do not differ between different sources (Figure 2.2).  

 

Figure 2.3: Binding of MR to laminin is mannose-mediated. Analysis by lectin ELISA of 

the binding of human placenta laminin to the CTLD4-7-Fc construct in the presence and 

absence of mannose or galactose. The data represent the mean OD ± SEM obtained from three 

independent experiments. Asterisks indicate the significant increase of MR construct binding 

(t-test; ***  P < 0.001). 

 

The mannose dependence of laminin-MR interaction was further 

confirmed by an inhibition assay in which the binding was competed with 

mannose or galactose (control). In this assay, in contrast to the lectin ELISA 

mentioned above, the CTLD4-7-Fc construct suspension contains either 12.5 
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mM galactose or 12.5 mM mannose. The laminin-CTLD4-7 binding was 

inhibited by the presence of mannose, but not galactose, confirming that the 

laminin interaction is mediated through the mannose binding domains of MR 

(Figure 2.3). 

 

2.3.2. Morphologies of BM-Mĭ adhered to 

different ECM components in the presence of 

serum 

MR function and expression upon Mĭ adhesion to ECM components 

was studied by using BM-Mĭ matured in R-10 supplemented with LCM for 7 

days. Following their maturation, BM-Mĭ were plated on uncoated, and ECM 

protein (collagen I, collagen IV, and FN) coated plates. BM-Mĭ were 

followed at regular time-intervals to detect any significant morphological 

changes. Among the ECM proteins used both collagen types are known to be 

MR-ligands. On the other hand, FN was used as a negative control, since, as 

discussed above, it cannot bind MR.   

During the first 5 hours of incubation, BM-Mĭ adhered to uncoated 

and collagen IV- and FN-coated plates relatively faster than to collagen I-

coated plates. After 5 hours, the BM-Mĭ which adhered to uncoated BP, 

collagen IV and FN largely displayed slightly spread cell morphology, in 

contrast to BM-Mĭ that adhered to collagen I which exhibited a rather round 

morphology (data not shown).  
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However, after 18-24 hours of incubation, the morphologies displayed 

by Mĭ populations on each condition were found to be different. In spite of 

the relatively slow adhesion of Mĭ to collagen I, in comparison to untreated 

wells, during the first 5 hours of incubation, both Mĭ populations showed 

almost identical spread cell morphology. In the case of collagen IV- and FN-

adhered Mĭ, however, the spreading was more extensive, with collagen IV-

adhered M  possessing a more “Mĭ-like” morphology and FN-adhered Mĭ a 

“fibroblast-like” morphology (Figure 2.4). 

To determine if MR has any role in displaying these morphologies, the 

appearances of ECM protein adhered wt and MR-/- BM-Mĭ were compared. 

MR does not seem to be important for the morphologies displayed, as both cell 

types showed the same appearances on the ECM component adhered (data not 

shown).  

The media used to culture the cells for O/N incubation were 

supplemented by FCS (purchased from Harlem). However, at that time 

questions regarding the suitability of the serum used for these studies were 

raised as, thioglycollate-elicited Mĭ would not adhere to tissue culture plastic 

in the presence of this serum, but did in the presence of a different batch of the 

same serum supplied by a different manufacturer (FBS from Sigma Aldrich). 

Therefore, the possible effect of FBS on Mĭ adhesion and displayed 

morphology was examined.  
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Figure 2.4: Representative Mĭ morphology after O/N incubation on different ECM-

protein-coated surfaces. The 7-day old BM-Mĭ were cultured on PBS (control, A), collagen 

I (B), collagen IV (C) or FN (D) coated plates in R-10 media with FCS (original magnification 

X 20) (n > 3). 

 

BM-Mĭ also appeared to adhere better to the coated and un-coated 

plates when grown in FBS-supplemented media. The BM-Mĭ on uncoated 

and collagen IV coated wells adopted a much more fibroblast-like 

morphology, as observed on FN-coated wells, and the BM-Mĭ on collagen I-

coated plates, displayed slightly better adherence upon replacement of FCS by 

FBS (Figure 2.5). 

The cellular activation states were previously suggested by Koyama et 

al (Koyama et al., 2000) to have a crucial impact on cellular adhesion on 
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different ECM components. In order to examine if the BM-Mĭ were being 

activated by FCS or FBS, the levels of TNF-Į (an important cytokine mediator 

of immune regulation and inflammation) in the extracellular milieu were 

analyzed using TNF-Į cytokine ELISA from zymosan-treated and untreated 

Mĭ.    

 

Figure 2.5: Adhesion induced morphological changes in Mĭ plated in media 

supplemented with FBS. 7-day old BM-Mĭ were cultured on PBS (control, A), collagen I 

(B), collagen IV (C) or FN (D) coated plates. In contrast to the previous Mĭ populations, these 

Mĭ were matured and used in R-10 media supplemented with FBS in place of FCS (original 

magnification X 20) (n > 3). 

 

Data showed that the Mĭ incubated in the presence of FCS were 

already activated, as the cell culture supernatant from untreated FCS-cultured 
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cells possessed significantly higher amounts of TNF-Į in comparison to that 

from untreated FBS-cultured Mĭ (Figure 2.6). This reveals that the activation 

of BM-Mĭ by FCS ingredients is responsible for the morphologies displayed 

upon adhesion to plastic and ECM components shown in Figure 2.4 and Figure 

2.5. 

 

Figure 2.6: BM-Mĭ matured in FBS posses significant TNF-Į production even in the 

absence of any immunologic activator.  Capture ELISA analysis of the TNF-Į production by 

Mĭ left untreated or treated with zymosan particles (at a concentration of 100 particles/cell, Z-

100) under the conditions in which the supplementary serum was either FCS or FBS. The data 

represent the mean TNF-Į concentration detected ± SEM obtained from three independent 

experiments. Asterisks indicate a statistically significant increase of TNF-Į production 

compared to FBS-cultured unstimulated cells (t-test; * P > 0.05). 
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2.3.3. Morphologies of BM-Mĭ adhered to 

different ECM components in serum-free 

conditions 

To increase the influence of the ECM components on the Mĭ, the 

morphology of BM-Mĭ plated on ECM-protein-coated wells was also 

examined in serum-free Opti-MEM media supplemented with 50 ng/ml M-

CSF, instead of LCM which contains serum.  

It seems that the inclusion of serum modulates the effects that ECM 

components have on Mĭ appearance. The “fibroblast like” morphology of 

uncoated, collagen IV or FN-adhered Mĭ observed in the presence of FBS, 

was completely lost and, together with collagen-I-adhered BM-Mĭ, they had a 

“Mĭ-like” morphology (Figure 2.7).  
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Figure 2.7: In the absence of serum, BM-Mĭ exhibit different cellular morphology upon 

adhesion to different ECM proteins. The 7-day old BM-Mĭ were cultured O/N on PBS 

(control, A), collagen I (B), collagen IV (C) or FN (D) coated plates in serum-free Opti-MEM 

suppmeneted with M-CSF (original magnification X 20) (n > 3).  

 

Similar differences can also be marked when compared to the 

morphologies observed in FCS-containing conditions. In contrast to Mĭ 

cultured in the presence of FCS, Mĭ in serum-free conditions displayed firmer 

adhesion to uncoated wells: the spreading of the adhered Mĭ were more 

extensive and the incidence of round non-adhered cells was lower. Mĭ also 

displayed better adhesion to collagen-I-coated wells in serum-free conditions. 

On the other hand, the Mĭ on FN-coated surfaces lost their fibroblast like 
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morphology, and had more Mĭ-like morphology in comparison to the Mĭ 

adhered to FN under serum-containing conditions (Table 2. 2). 

 

Table 2. 2: The cell-spreading displayed by BM-Mĭ plated on ECM-protein-coated wells 

changed depending on the presence and the type of serum used during plating. The + 

indicates Mĭ with low spreading, while +++++ implies Mĭ with extensive spreading and 

fibroblast-like morphology, as observed under light microscopy. 

 

Plating  

Conditions 

Adhesion Surface 

PBS Collagen I Collagen IV Fibronectin 

FCS + + +++ +++++ 

FBS +++++ ++ +++++ +++++ 

Serum-free ++++ ++ +++ ++++ 

 

 

2.3.4. ECM adhesion does not alter MR-dependent 

or –independent ligand endocytosis and 

zymosan-induced cytokine mRNA expression 

The recent discovery of the collagen-binding property of MR, 

suggested that MR might also serve as an ECM adhesion receptor, which in 

turn may influence its activity as an endocytic receptor. Therefore, the MR-

mediated endocytic activities of ECM protein-adhered BM-Mĭ were screened 
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by using FITC labelled MR ligands; SO4-3-galactose-PAA and BSA-mannose. 

In order to verify that the change, if any, in MR-mediated endocytosis was 

MR-specific, uptake of FITC labelled acetylated LDL (ac-LDL) was also 

monitored. To exclude any possibility that the manual surface coating of BP 

plates would have artificial effects on Mĭ, ECM protein-coated TC plates 

(purchased from BD Biosciences) were used under serum-free conditions. 

The level of internalized endocytic tracers, both MR- and non-MR 

ligands, by BM-Mĭ was not influenced by the ECM component in all 

conditions mentioned (Figure 2.8). This indicates that ECM adhesion does not 

affect the cellular endocytic machinery, including the MR-mediated pathway, 

and that the collagen binding ability of MR does not interfere with the MR 

endocytic function.  

In addition to monitoring the uptake of endocytic tracers of both MR 

and non-MR-ligands, the possible effect of ECM adhesion on Mĭ function 

was further investigated by investigating zymosan-induced TNF-Į expression 

at the mRNA level. Zymosan is derived from the S. cerevisea cell wall and is 

mainly composed of ȕ-glucans and mannan. It is known to activate several 

Mĭ receptors such as dectin-1, complement receptor (CR)-3, MR, TLR2 and 

TLR4.  
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Figure 2.8: ECM adhesion does not influence MR- and non-MR-mediated endocytic 

machinery. Flow cytometry analysis of sulphated galactose (A-B), mannose-BSA (C), and ac-

LDL (D) internalization by BM-Mĭ cultured O/N on PBS, collagen I-, collagen IV- or FN- 

coated plates. The histograms represent the mean MFI value ± SEM obtained from three 

independent experiments. Same results were reported in the distinct conditions mentioned 

above (i.e. inclusion or exclusion of serum during plating of Mĭ, and using already or 

manually coated plates). 
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After O/N incubation on the ECM component coated substrata, BM-

Mĭ were treated with zymosan particles for 6 hours to monitor the TNF-Į 

mRNA expression levels. Like the receptor-mediated endocytic machinery, the 

mRNA levels of both cytokines were found to be independent of the adhesive 

surface used, in both serum- and serum-free conditions (Figure 2.9). 

 

 

Figure 2.9: ECM adhesion does not influence zymosan-induced TNF-Į mRNA induction. 

QPCR analysis of TNF-Į mRNA expression levels by BM-Mĭ left untreated (Unt.) or treated 

with zymosan particles at a concentration of 50 particles/cell (Z-50). The data represent the 

mean ratio of mRNA expression of TNF-Į to HPRT ± SEM obtained from three independent 

experiments. Asterisks indicate a statistically significant increase of TNF-Į production 

compared to unstimulated cells (t-test; ***  P < 0.001). Same results were reported in the 

distinct conditions mentioned above.  
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2.3.5. ECM adhesion does not influence MR 

expression 

The lack of effect of collagen-adherence on the MR-endocytic activity 

may result from the enhanced levels of MR expression that would enable MR 

to participate in both cellular adhesion and endocytosis. This led us to examine 

the MR expression in Mĭ adhered to the ECM component by using different 

approaches including immunocytochemistry, western blot, cell surface 

biotinylation and qPCR.  

In addition to the cell-associated form, MR is also expressed as soluble 

MR (sMR), which is produced as a result of the proteolytic cleavage of cell-

associated MR (cMR), and was initially discovered in mouse-serum (Martinez-

Pomares et al., 1998). To this day, apart from P. carinii, there had been no 

exctracellular signalling identified to regulate the sMR expression specifically 

(Martinez-Pomares et al., 1998, Fraser et al., 2000). Therefore in addition to 

cMR, sMR expression level was screened at the protein level by using cell 

culture supernatants collected from the same set of BM-Mĭ.  

As can be seen in Figure 2.10, both q-PCR and western blot results 

revealed that as well as sMR, cMR expression at both protein and mRNA 

levels is not affected by the Mĭ adhesion to ECM components, including 

collagen I and IV (Figure 2.10A-B). Additionally, in correlation with the 

internalization assay results (Figure 2.8), surface biotinylation data showed 

that all Mĭ populations had similar expression levels of surface MR available 
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for MR-ligand endocytosis (Figure 2.10A). However, this data may not be 

conclusive due to the presence of FA-11 positive bands (CD68 macrosialin, a 

late endosomal glycoprotein (Kogelberg et al., 2007)) in the surface of 

biotinylated samples, indicating the possible biotinylation of intracellular 

proteins. On the contrary, CD68 cell surface expression was also reported in an 

independent study by Kurushima et al. (Kurushima et al., 2000). 

This led us to examine if the distribution of cMR expression is affected 

by collagen adhesion such that it becomes available for both cellular adhesion 

to collagen-coated surfaces and MR-ligand endocytosis. The 

immunocytochemistry data shows that the cMR in Mĭ are spread all-around 

the cell, and this was not altered when the adhesive surface was changed 

(Figure 2.10C). 

Overall, these data suggests that the lack of effect of collagen-

adherence on the MR-endocytic activity is not as a result of the changes in the 

MR expression and distribution.  
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Figure 2.10 : ECM adhesion does not affect Mĭ MR expression. Western blot analysis of 

cMR, cell surface cMR, sMR, CD68, and cell surface CD68 expression by BM-Mĭ after O/N 

incubation on un-coated and ECM-component coated plates (A). QPCR analysis of MR 

mRNA expression by adhered BM-Mĭ (B). The data represent the mean ratio of mRNA 

expression of MR to HPRT ± SEM obtained from three independent experiments in the 

distinct conditions mentioned above. Fluorescence microscopy analysis of cMR expression by 

BM-Mĭ (original magnification X 100) (C). Signals from FITC conjugated 5D3 were detected 

by green channel, and IgG2a antibody isotype was used as the control staining. Same western 

blot and qPCR results were reported in all conditions mentioned above. The 

immunocytochemistry data was only performed on manually coated slides in serum-free and 

serum-containing conditions.  
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2.4. Discussion 

The MR is an example of a pattern recognition receptor involved in the 

recognition of various pathogens, including C. albicans, L. donovani, and M. 

tuberculosis, as well as in the maintenance of haemostasis through the binding 

to endogenous ligands, such as pituitary hormones lutropin and thyrotropin, 

tissue plasminogen activator, and hydrolytic enzymes (Gazi and Martinez-

Pomares, 2009). It was also suggested to participate in tissue remodelling via 

its association with ECM macromolecules, such as chondroitin sulphate-

associated proteoglycans and collagen.  

However, due to its high abundance in animal tissues, the discovery of 

the collagen binding property of MR raised the question of how the MR 

endocytic function will be affected in tissues rich in collagen. Therefore, in this 

study, the possible effect of the MR-collagen interaction on MR function and 

expression was investigated by using 7-day-old BM-Mĭ incubated O/N over 

surfaces covered with collagen I, IV, or FN. Together with an uncoated 

surface, FN was also used as a control since, as shown in the Figure 2.2, it 

cannot bind MR.  

After O/N incubation on ECM-protein coated substrata in FBS-

containing conditions, collagen I-adhered Mĭ displayed a different, slightly 

less adhered, morphology to that shown by Mĭ on uncoated, collagen IV and 

FN-coated plastic. Similar non-adhesiveness to collagen-I was also reported 

previously for other Mĭ types such as U937, J774-1 and peritoneal exudate 

Mĭ (Koyama et al., 2000), indicating that it is not specific to BM-Mĭ. As 
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suggested for U937 cells by Koyama et al, low Į2 integrin subunit expression 

(of Į2ȕ1 involved) may, at least partly, explain the observed effect. Other 

receptors involved in the detection of collagen I, but not collagen IV, include 

integrin Į11ȕ1, DDR2, and LAIR-1. Among these, LAIR-1 can send inhibitory 

signals via its ITIM signalling motif on the cytoplasmic tail.  

The BM-Mĭ morphology was also influenced by the batch of the 

serum (FCS from Harlem or FBS from Sigma Aldrich) used to supplement the 

media for O/N incubation. A possible explanation is the significant level of 

TNF-Į production in cell culture supernatants collected from the untreated 

BM-Mĭ cultured in media supplemented with FCS. This implies that before 

being plated on ECM-component coated plates, the FCS-cultured Mĭ were 

already activated; something that was previously suggested to influence ECM 

adhesion (Koyama et al., 2000). Differences between the two serum batches 

could be caused by variation in animals, handling and country of origin. 

The cell appearance underwent a further change when the serum was 

removed, confirming a serum-mediated effect on the morphology shown by 

Mĭ. During O/N incubation, serum components may cover the cell surface 

and interfere with the cellular adhesion to ECM components by interacting 

with Mĭ surface receptors, before the cells establish a strong adhesion with 

the adhesive surface (e.g. serum FN can interact with FN receptors on BM-

Mĭ). In this way, the trapped serum contents would not be removed by the 

PBS washes, and would have an effect on the cell morphology displayed.   
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 The endocytosis assay using both FITC-labelled MR- and non-MR-

ligands showed that both MR-dependent and –independent endocytic capacity 

of the Mĭ were not affected by the adhesive surface, including collagen I and 

IV which are known to be MR-ligands. The observed lack of effect was not 

because of any change in the MR expression level which would enable the 

receptor to participate in both adhesion and endocytosis. This was 

demonstrated by both western blot and q-PCR data showing no change in the 

expression levels of MR mRNA and protein levels in the BM-Mĭ populations 

compared. Furthermore, in correlation with the internalization assay results, 

surface biotinylation assay showed no alteration in the surface MR expression, 

available for MR-mediated endocytosis. 

 As an alternative approach to the endocytic studies, the MR expression 

pattern was also investigated by immunocytochemistry. Adhesion to collagen I 

or IV may trigger intracellular signalling which would divert the MR 

expression in a way that it would become concentrated on both Mĭ surfaces 

involved in adhesion and ligand endocytosis. The immunocytochemistry data 

showed no obvious changes in the expression pattern of MR, by the BM-Mĭ 

incubated on ECM-protein coated substrata for O/N.  

However, this does not exclude the possibility of altered MR 

expression on both Mĭ surfaces, as the observed lack of change may be due to 

the detection of out-of-focus light emitted as a result of the excitation of the 

whole specimen. This results in the detection of the fluorescence coming from 

all parts of the Mĭ, rather than specific ones. The out-of-focus light can be 
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eliminated by using confocal microscopy, which is able to isolate and collect a 

plane of focus from within a sample, and in this way it can detect light emitted 

only from the focused parts of the cell. Future studies involving confocal 

microscopy can further help to analyse the MR expression on Mĭ surfaces 

involved in the adhesion to ECM protein-coated wells. 

Apart from receptor-mediated endocytosis, the possible effect of ECM 

adhesion on Mĭ cellular responses was further examined by monitoring 

zymosan-induced TNF-Į mRNA expression levels. In contrast to Rosas et al., 

who did not observe any TNF-Į production by BM-Mĭ in response to 

particulate ȕ-glucan (the active component of zymosan) (Rosas et al., 2008), 

the data shown demonstrates a significant enhancement in the level of TNF-Į 

mRNA synthesis upon incubation with zymosan particles. The observed 

difference can be explained by the involvement of TLRs, which are also 

stimulated by zymosan particles. Accordingly, BM-Mĭ from mice with 

MyD88 (central adaptor molecule for TLR signalling) deficiency were shown 

to lack TNF-Į production in response to zymosan particles (Gantner et al., 

2003). Nevertheless, the level of enhancement in the TNF-Į mRNA synthesis 

did not differ in BM-Mĭ adhered to ECM protein-coated and uncoated 

surfaces.   

Overall, it was suggested that the role of the collagen binding ability of 

MR may be to mediate the clearance of collagen fragments, rather than cellular 

adhesion. MR interaction with collagen, in addition to other ligands of 

endogenous origin such as lysosome enzymes, makes MR a key receptor 
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involved in the resolution of inflammation, tissue remodelling, and wound-

healing. In fact, MR is used as a marker for Mĭ populations, known as 

alternatively-activated Mĭ (AA-M ĭ), which are mainly involved in the 

resolution of inflammation and maintaining heaemostasis once the pathogen is 

neutralized (Daigneault et al., published online in 2010).  

Apart from collagen, another ECM component that MR was shown to 

interact with was chondroitin sulphate-associated proteoglycans. This list was 

further extended in this study which was the first to show the interaction 

between MR and the matrix adhesive glycoprotein class of ECM 

macromolecules. Among the best characterised members of this family, 

laminin, but not FN, was shown to engage with MR in a mannose-dependent 

manner, through the CTLD4-7 region. This is in correlation with the previous 

study by Cooper et al that showed the mannosylated nature of laminin (Cooper 

et al., 1981).  

The other study which emphasizes the importance of MR-ECM 

interaction was Sturge et al., which showed enhanced random migration of 

MR -/- BM-Mĭ (Sturge et al., 2007). In support to the data presented, this 

suggests a putative role for MR in the function of podosomes, which are 

subcellular structures used by myeloid cells for migration, as well as 

internalization, of receptor-bound antigens- e.g. collagen and other matrix 

components detected by MR. The MR function in cell migration was further 

highlighted by the enhanced Mĭ recruitment in the lungs of MR-KO mice 

infected with P.carinii (Swain et al., 2003). 
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To conclude, in this chapter, it was shown that, in spite of inducing 

distinct cell morphologies, substrata coated with ECM component (including 

collagen I and IV) did not have a major effect on murine BM-Mĭ function 

including zymosan-induced cytokine mRNA expression,  MR- and non-MR-

mediated endocytosis as well as MR expression. Therefore MR is proposed to 

function mainly as an endocytic rather than an ECM adhesion receptor, and the 

collagen binding ability of MR might be simply crucial for tissue remodelling 

and wound healing during which MR expression is enhanced by the released 

cytokines such as IL-10, IL-4, and IL-13. With this study, the range of ECM 

components recognized by MR is extended further to include laminin as it was 

shown to bind MR in a mannose-dependent fashion.  
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3. ENHANCED MR-SHEDDING IN 

RESPONSE TO FUNGI SPECIES AND 

HOUSE DUST MITE 

 

3.1. Introduction 

In addition to the cell-associated form (cMR), a soluble form of MR 

(sMR) has been detected previously in the supernatants from cultured human 

and mouse Mĭ, and in human and mouse serum (Taylor et al., 2005a, 

Martinez-Pomares et al., 2006, Martinez-Pomares et al., 1998, Jordens et al., 

1999). sMR comprises the extracellular region of the receptor and is produced 

as a result of proteolytic cleavage of cMR by a metalloprotease (Martinez-

Pomares et al., 2006). Previously Fraser et al observed that P. carinii enhanced 

sMR production, and reported the formation of sMR-coated fungi that could 

not be phagocytosed by Mĭ (Fraser et al., 2000).  

Fungi constitute a part of normal flora in healthy individuals, and the 

innate immune response provides an effective defence against all fungal 

species that are encountered. Fungi-associated diseases in humans are mainly 

caused by opportunistic fungi that represent a small subset and cause infection 

once the immune system is compromised. Because of the increased incidences 

of immunocompromised individuals as a result of HIV infection, and 

immunosuppressant administration to transplant recipients and cancer patients, 
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the clinical relevance of fungal diseases has augmented sharply. Today the 

average mortality from opportunistic fungal infections is still more than 50% 

and it is as high as 95% in bone-marrow transplant recipients (Romani, 2004).   

To date, almost all of the fungal PAMPs involved in anti-fungal 

immunity were found to be carbohydrate structures that make up to 90% of the 

cell wall (Figure 3.1). The associated PRRs are mostly those that can detect 

mannose-rich matrix component, and ȕ-glucan of the inner skeletal 

component. Membrane-anchored receptors involved in the recognition of 

mannosylated macromolecules include C-type lectins; MR, dectin-2, DC-

SIGN, and mincle, and TLRs; TLR2, and TLR4.  The ȕ-glucan component 

was shown to be detected by at least four ȕ-glucan receptors: lactosylceramide, 

scavenger receptors, complement receptor-3 (CR3) and dectin-1. While the 

physiological role of the former two is still unclear, the latter two are the 

primary receptors responsible for ȕ-glucan recognition. Today the PRR 

involved in chitin detection is still not yet clear (Netea et al., 2008). 

 

3.1.1. The aim of the study 

The aim of this study was to investigate if the enhanced shedding of 

MR was fungi- rather than P. carinii-specific and was triggered by the ȕ-

glucan component of the fungi cell wall, which was shown to have a central 

role in the initiation of the anti-fungi immune response (Taylor et al., 2007), 

(Werner et al., 2009, Brown et al., 2003). 
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 MR-shedding was detected by western blot and there were several 

attempts to identify the protease responsible.  The effect of enhanced sMR 

production on Mĭ function was also examined by screening the levels of 

fungi-induced cytokine production and MR- and SR-mediated endocytic 

internalization.  

 

Figure 3.1: The Candida albicans cell wall structure. Fungal cell walls are composed of two 

components: highly immunogenic inner skeletal components (i.e. chitin and ȕ-glucan) which 

are found in proximity to the cell membrane in an inner layer; and the matrix components 

which, in contrast, are located towards the outside of the cell wall. The matrix component is 

rich in highly mannosylated glycosylphosphatidylinositol-linked (GPI)- and Pir- cell wall 

proteins (CWP) which are anchored to the inner skeleton through GPI linkages with ȕ-(1,6)-

glucan and alkali-sensitive linkages with ȕ-(1,3)-glucan, respectively (Netea et al., 2008). 

Even though they are mostly hidden deep inside the cell wall, the surface expression of chitin 

and ȕ-glucan can be detected in restricted regions such as bud scars, as a result of cell wall 

modelling during budding (Ruiz-Herrera et al., 2006).  
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3.2. Materials and Methods 

3.2.1. Animals 

The wt and MR-KO mice were bred and handled as described in 

section 2.2.1.  

 

3.2.2. Cells 

Thioglycollate-elicited mouse Mĭ (thio-Mĭ) were obtained by 

intraperitoneal injection of 4% (w/v) Brewer‟s thioglycollate broth (Sigma 

Aldrich) 4 days before harvest. Mice were sacrificed and the peritoneal cavities 

were rinsed with PBS (Sigma Aldrich) containing 5 mM EDTA. Mĭ were 

cultured O/N on 6-well tissue culture plates (1.25x106 cells per well, BD 

Biosciences) in RPMI medium 1640 (Sigma Aldrich) supplemented with 10% 

(v/v) HI FBS (Sigma Aldrich), 2 mM Gln (Sigma Aldrich), 100 U/ml 

penicillin, 100 g/ml streptomycin (Sigma Aldrich), 10 mM Hepes 

(Invitrogen) (R-10 media) and washed three times with PBS prior use. 

 

3.2.3. Experimental conditions 

Thio-Mĭ were treated with particulate house dust mite (HDM) 

(Allergon), zymosan (Molecular Probes),  A. fumigatus ATCC 13073 strain (a 

kind gift from Gordon Brown from the University of Aberdeen), Heat-killed 
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(HK) and paraformaldehyde-fixed C. albican ATCC 18804 strain (gift from 

Sigrid Heinsbroek from the University of Amsterdam), Staphylococcus aureus 

RN6390B strain (kindly contributed by Alan Cockayne, from the University of 

Nottingham)  at concentrations of ~50 particles per cell in serum-free Opti-

MEM with GlutaMAX (Invitrogen) supplemented with 100 U/ml penicillin, 

100 g/ml streptomycin for 3 hours at 37oC, 5% CO2. Before treatment with 

fixed stimuli, free aldehyde groups were quenched by incubating with 0.1 M 

glycine in PBS, followed by three washes in PBS. 

 For inhibition assays, thio-Mĭ were pre-incubated with ȕ-glucan 

phosphate (kindly contributed by David L. Williams, from East Tennessee 

State University, USA), mannan (Sigma Aldrich), z-VAD-fmk (Calbiochem), 

GM6001 or control for GM6001 (Calbiochem) at indicated concentrations for 

1 hour before treatment, and were present during the incubation with the 

stimuli.  

 

3.2.4. Collection of culture media and preparation 

of cell lysates 

Before starting cell lysate preparation, cell culture supernatants were 

collected after the addition of protease inhibitors (1X final concentration) 

(Roche Molecular Biochemicals), 10 mM EDTA, and 1 mg/ml BSA (Sigma 

Aldrich) to diminish any protein loss due to protease activity or non-specific 

adhesion to the collection tube.  Following PBS washes to remove any non-
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adhered cells, Mĭ were lysed and protein concentration was quantified by 

using the same protocol described in section 2.2.5.  

 

3.2.5. Western blotting 

Equivalent proportions of cell lysates (3 ȝg) and supernatants were 

electrophoresed under the same conditions as described in section 2.2.6.   

 

3.2.6. Internalization assay 

 Thio-Mĭ were plated for 2 hours at 37oC 5% CO2 in non-tissue culture 

treated plastic in Opti-MEM with GlutaMAX (Invitrogen) containing 100 

U/ml penicillin (Sigma Aldrich) and 100 g/ml streptomycin (Sigma Aldrich). 

After 2 hrs Opti-MEM was replaced with R-10 media and cells were 

maintained at 37oC, 5% CO2 O/N and Mĭ selected by washing three times 

with cold PBS. Following a 3-hour treatment with zymosan in the presence 

and absence of GM6001 or GM6001 control, the Mĭ were then incubated for 

30 minutes in serum-free Opti-MEM media containing 5 ȝg/ml of SO4-3-Gal-

PAA-FITC (Lectinity) or Alexa-488 conjugated acetylated low-density 

lipoprotein (Ac-LDL, Invitrogen). The Mĭ were collected by scraping, using 

1X trypsin-EDTA (Sigma Aldrich) and fixed in 1% (v/v) formaldehyde 

solution in PBS. The internalisation was then analysed using Beckman Coulter 

Epics Altra and Weasel software.  
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3.2.7. Cytokine assays 

Levels of TNF-Į, MCP-1 and KC were determined by using the mouse 

TNF  DuoSet, mouse CCL2/JE/MCP-1 DuoSet and mouse CXCL1/KC 

DuoSet (R&D systems) respectively.  

 

3.2.8. Cytokine profiles 

The cytokine profiles of treated Mĭ were determined by using mouse 

cytokine array panel A array kit (R&D systems) and following the 

manufacturer‟s protocol. At the end of the protocol, the cytokine array data on 

the developed X-ray film was quantified by utilising a transmission-mode 

scanner (BD Biosciences). 

 

3.2.9. Preparation of liver necrotic cell extracts 

Mouse liver (12 weeks old) was dissected into minute pieces in a sterile 

environment before been homogenized in sterile PBS by using a Dounce 

homogenizer. The liver homogenate was centrifuged at 2 000 rpm for 5 

minutes and the supernatant was collected. 

 

3.2.10. Statistical analysis 

 Statistical analysis was performed as described in section 2.2.13.  
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3.3. Results 

3.3.1. MR shedding is promoted by the non-

opsonic recognition of fungal particles 

 In order to investigate if  other pathogens in addition to P. carinii 

(Fraser et al., 2000) could promote MR shedding, thio-Mĭ were treated with 

zymosan, fixed A. fumigatus, and fixed and heat-killed (HK) C. albicans, 

under serum-free conditions. However, initially the incubation time for the 

treatments was determined by using different time points: 1.5 hours, 3-hours 

and O/N. In Fraser et al, enhanced sMR production was detected after O/N 

incubation with P. carinii.   

After treatment with zymosan particles, cell culture supernatants and 

cell lysates were analysed, for sMR and cMR levels respectively, by western 

blot. As shown in Figure 3.2A, enhanced levels of sMR were detected in cell 

culture supernatants collected from all time intervals. Since, MR bands 

detected after each time-interval correspond to independent exposures the band 

intensities are not comparable.  

Shorter incubations were preferred to minimise the chances of having 

new protein synthesis. It appears that the sMR accumulation after 1.5 hours 

was not high enough since, in comparison to 3-hour-treated samples, it 

required longer exposure times to give a detection signal as strong as that 
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detected from 3-hour treated samples. Therefore, it was chosen to treat thio-

Mĭ with fungal particles for 3 hours. 

 

Figure 3.2: MR shedding is induced by zymosan, C. albicans and A. fumigatus, and 

requires ȕ-glucan-recognition. Western blot analysis of cMR and sMR expression by thio-

Mĭ incubated with zymosan particles at concentration of 50 particles/cell (Z-50) for 1.5 hours, 

3-hours or O/N (A). The level of cMR and sMR expression by thio-Mĭ treated with fixed A. 

fumigatus, or fixed or HK C. albicans for three hours (B). MR shedding in response to HK C. 

albicans could be inhibited by soluble ȕ-glucan-phosphate (ȕ-Gluc) but not mannan (Man) 

pre-treatment (C). Data are representative of three independent experiments. 

 

Enhanced MR-shedding was also evident after 3-hour treatment with 

other fungi species examined, i.e. fixed A. fumigatus, and fixed and HK C. 

albicans (Figure 3.2B). However, the method of fungi processing appeared to 

have an effect on the level of sMR production as HK C. albicans consistently 

induced more MR shedding than the fixed fungal particles. Due to their 
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complex composition, C. albicans, like other fungi species, mediate their effect 

on Mĭ through a variety of receptors. Among those, ȕ-glucan has been 

previously shown to be the active component involved in fungal detection. As 

during heat-inactivation, the ȕ-glucan component is thought to become more 

exposed on the outer surface (Wheeler and Fink, 2006), it was hypothesised 

that enhanced ȕ-glucan exposure could be responsible for the differences 

observed between HK- and fixed fungi, and that the recognition of -glucan in 

the fungal cell wall could be responsible for their effect on MR cleavage. This 

possibility was investigated by performing the treatment with HK C. albicans 

in the presence of soluble glucan phosphate. Figure 3.2C shows that glucan-

phosphate, but not mannan treatment considerably blocked sMR expression, 

which suggests that fungi-induced MR shedding is mainly mediated through 

the recognition of the ȕ-glucan component of the cell wall. These results also 

demonstrate that the recognition of soluble ȕ-glucan, or mannan per se, are 

insufficient for inducing sMR production.  

 

3.3.2. Fungi-induced MR shedding is blocked by a 

MMP/ADAM inhibitor but not by caspase 

inhibition 

In an attempt to characterize the protease activity responsible for the 

enhanced MR shedding, the effect of caspase inhibiton was examined. 

Previously Gross et al., showed the activation of inflammasome for anti-fungal 
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host defence (Gross et al., 2009). An inflammasome is a multiprotein complex 

of more than 700 kDa whose central effector molecule is the cysteine protease 

caspase-1 that mediates the cleavage, activation and secretion of cytosolic pro-

IL-1ȕ, pro-IL-18 and pro-IL-33 (Pedra et al., 2009). Nevertheless, caspases do 

not appear to have a major role in the fungi-mediated MR shedding as their 

inhibition by z-VAD-fmk did not result in a significant change in the amount 

of sMR produced in response to HK and fixed C.albicans (Figure 3.3A).  

 

 

Figure 3.3: MR shedding is mainly mediated by MMP/ADAM-, but not by caspase-

mediated responses. Western blot analysis of cMR and sMR expression by thio-Mĭ treated 

with fixed or HK C. albicans in the presence and absence of z-VAD-fmk caspase inhibitor (A). 

In contrast to caspase inhibitor, pre-treatment of thio-Mĭ with GM6001 metalloprotease 

inhibitor (Inh), but not GM6001 control (Cont), reduced the level of HK C. albicans-induced 

MR shedding (B). The data is representative of three independent experiments.  
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Another protease family examined for its role in the induction of MR 

shedding was the metalloproteases. In fact, the steady state MR shedding 

detected in the supernatants of murine primary Mĭ was revealed to be 

mediated by a MMP or ADAM activity (Martinez-Pomares et al., 1998). By 

using GM6001, a wide spectrum MMP/ADAM inhibitor, it was investigated 

wheather fungi detection leads to a similar mechanism promoting MR 

shedding. Pre-treatment of Mĭ with GM6001 significantly inhibited sMR 

production, which suggests that the fungi-induced MR shedding, like in the 

case of steady-state sMR production, is MMP or ADAM dependent (Figure 

3.3B). 

 

3.3.3. Zymosan treatment reduces MR-mediated 

endocytosis which cannot be restored by 

inhibition of MR-shedding  

 Under steady state conditions, sMR was previously shown to be 

produced by the proteolytic cleavage of pre-existing full-size cMR (Martinez-

Pomares et al., 1998). This raised the question if Mĭ endocytosis of MR 

ligands is affected upon fungi-mediated MR shedding. Zymosan particles were 

used as an MR shedding inducer, and MR-mediated endocytosis was 

monitored by using SO4-3-Gal-PAA-FITC, which has a higher MR-specificity 

than the other MR-ligands which can also be detected by non-MR receptors 

(e.g. detection of mannose-rich residues by dectin-2, and collagen by 
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integrins). The level of internalized Ac-LDL, a ligand of SRs, was also 

monitored in order to verify if any observed effect is MR-specific.  

As expected, the zymosan treatment diminished the level of MR 

endocytosis. Nonetheless, the reduction is not mediated through MR shedding, 

since GM6001 was not able to restore the level of SO4-3-Gal-PAA-FITC 

internalization, albeit it inhibits sMR production (Figure 3.4A). Therefore it 

appears that the MR-shedding is not the only way through which zymosan can 

diminish MR endocytosis, and it can also trigger other distinct signalling 

pathway(s) independent of metalloprotease activity to target MR functionality.  

This effect however is not solely restricted to MR, since similar 

zymosan-induced reduction (that cannot be reversed by addition of GM6001) 

was also observed in Ac-LDL-internalization (Figure 3.4B). That led us to 

consider if the Ac-LDL-receptors could also undergo ectodomain-shedding.  

Modified LDL are mainly detected by SRs (Pluddemann et al., 2007). 

Among the family members, most of the Mĭ population express SR-A, which 

as well as detecting lipoproteins and other ligands of endogenous origin, was 

also shown to have an important role in establishing an effective immune 

response (Haworth et al., 1997) (Kobayashi et al., 2000) (Pluddemann et al., 

2007).  
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Figure 3.4: Zymosan-induced inhibition of endocytic machinery can not be prevented by 

GM6001. Flow cytometry analysis of sulphated galactose (A), and ac-LDL (B) internalization 

by thio-Mĭ left untreated or treated with zymosan particles for three hours. The data represent 

the mean MFI value ± SEM obtained from three independent experiments. Asterisks indicate a 

statistically significant decrease in the level of endocytosis in comparison to unstimulated cells 

(t-test; ** P < 0.01, ***  P < 0.001). 

 

SR-A shedding was examined by using both cell lysates and cell 

culture supernatants collected from the treated cells. However, the rabbit 
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polyclonal antibody against Mĭ SR (purchased from Abcam) failed to give 

any specific band regardless of the changes introduced to the western blot 

protocol which included longer incubation periods, higher concentrations of 

primary and secondary antibodies, and BSA as blocking buffer (data not 

shown). Hence it is still not yet clear whether the ectodomain shedding effect 

induced by fungal particles is MR-specific. 

Overall these data suggest that zymosan-treatment has a negative effect 

on Mĭ endocytic machinery, and that the reduction in MR endocytosis is 

independent of ectodomain shedding. This may be mediated by the reduced 

expression levels of MR and SR on the cell surface due to the disruption of the 

receptor recycling between intracellular compartments and cell membrane 

(which will be discussed further on the next chapter). Alternatively, it can also 

be explained by a possible lack of membrane availability due to phagosome 

formation. 

 

3.3.4. Inhibition of MR-shedding does not 

influence cytokine production induced by fungi 

 Ectodomain shedding can have multiple, functional roles, including 

down-regulating receptor and adhesion molecules to inhibit receptor-ligand 

interactions, inducing cellular repulsion of interacting cells through the 

disposal of the receptor-ligand complex, and pro-protein processing of 

cytokines such as TNF-Į. Additionally, as in the case of CD44, following 
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receptor shedding, the cleaved cytoplasmic tail can migrate to the nucleus 

inducing transcription of several genes (Garton et al., 2006). 

Even though there had been no signalling motif identified on MR 

cytoplasmic tail, the literature is full of studies suggesting a MR role in 

intracellular signalling. In order to examine whether the ectodomain-shedding 

is a way of MR to perturb intracellular signalling pathway(s) leading to 

cytokine release (e.g. through the release of its cytoplasmic tail that may 

interact with intracellular signalling molecules), the supernatant levels of HK 

C. albicans-induced IL-1ȕ, IL-6, KC, and CCL2 (or MCP-1, monocyte 

chemoattractant protein-1) in the presence and absence of GM6001 were 

monitored by cytokine ELISAs. These cytokines were chosen, since previous 

studies showed cMR involvement in their production (except for KC) in 

response to C. albicans (Yamamoto et al., 1997) (Heinsbroek et al., 2008).  

TNF-Į production also served as a control since its cellular release is known to 

be ADAM-17 mediated and GM6001-sensitive.   

Among these cytokines, the supernatant levels of IL-1ȕ and IL-6 were 

below the detection level, and as expected, the amount of fungi-induced TNF-Į 

was significantly reduced in the presence of GM6001, but not affected by 

GM6001 control (GM6001 cont). On the other hand, the level of fungi-induced 

KC production did not change in the presence of GM6001 and GM6001 cont, 

implying lack of MR shedding effect on cytokine production by Mĭ during 

fungal infections. This was in contrast to the fungi-induced MCP-1 levels 

which displayed a significant change upon the introduction of GM6001. 



120 

 

However, the observed effect appears not to be as a result of the inhibition of 

MR shedding, as treatment with GM6001 cont which is a negative control for 

the GM6001 inhibitor, also resulted in a significant increase in the MCP-1 

level (Figure 3.5C).  
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Figure 3.5: Inhibition of fungi-induced MR shedding does not influence the cytokine 

production examined. Capture ELISA analysis of the TNF-Į (A), KC (B), and MCP-1 (C) 

production by Mĭ left untreated or treated with HK C. albicans in the presence and absence of 

GM6001 metalloprotease inhibitor (Inh) or control (Cont). The data represent the mean 

cytokine concentration detected ± SEM obtained from three independent experiments. 

Asterisks indicate a statistically significant change in cytokine production compared to Mĭ 

treated with HK C. albicans in the absence of GM6001 and GM6001 control (t-test; ** P < 

0.01, *** P > 0.001). 
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3.3.5. Cytokine production in response to 

zymosan or necrotic cells is not affected by MR 

deficiency 

The effect of MR on cytokine production was further examined by 

comparing the cytokine profiles of wt and MR-KO Mĭ. For this purpose, both 

Mĭ populations were either left untreated or treated with different stimuli (i.e. 

zymosan or necrotic cells) O/N in serum-free Opti-MEM before their 

supernatants were collected, centrifuged, and analyzed by using commercially 

available nitrocellulose membranes spotted with capture antibodies specific to 

a wide-range of cytokines. In Figure 3.6, only the cytokines with detectable 

signal are shown. The other released factors that were assayed but could not be 

detected on the membrane included CXCL13, G-CSF, GM-CSF, CCL1, 

CCL11, CD54, IFN-Ȗ, IL-1Į, IL-1ȕ, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, 

IL-13, IL-12 p70, IL-16, IL-17, IL-23, IL-27, CXCL10, CXCL11, M-CSF, 

CCL12, CXCL9, CCL5, CXCL12, CCL17, tissue inhibitor of metalloproteases 

(TIMP)-1, and triggering receptor expressed on myeloid cells (TREM)-1. 

Initially the importance of MR in zymosan-induced cytokine 

production was examined. In support of the data presented in Figure 3.5, MR-

KO and wt Mĭ did not differ in the cytokines they released in response to 

zymosan (Figure 3.6A).  However, the profile displayed by the untreated cells 

showed slight variation upon MR deficiency: MR-KO Mĭ appeared to release 

more IL-1ra, KC, and MIP-2 in the absence of any stimuli (Figure 3.6A).  
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Figure 3.6: MR deficiency did not influence the cytokine production in response to 

zymosan or necrotic cells. Cytokine profile analysis of wt and MR-KO thio-Mĭ left 

untreated (Unt) or treated with zymosan particles (100 particles/cell, Z-100) (A) or necrotic 

cell extracts (1/25 dilution) (B) for O/N. The data represent the mean arbitrary OD values 

detected ± SD obtained from duplicate cultures of a single experiment. 

 

These cytokines were previously shown to facilitate the infiltration of 

leukocytes following the injection of necrotic cells into the peritoneal cavity 

(Tanimoto et al., 2007). Therefore, the observed difference was thought to be 

due to the presence of necrotic cells in the cell suspensions and MR role in the 

regulation of the cytokine release.  This was investigated by incubating both wt 
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and MR-KO Mĭ populations with freshly prepared liver necrotic cells O/N. 

However no change was detected in the cytokine profile displayed by wt and 

MR-KO (Figure 3.6B). 

Even though both of these results indicate that MR may not be involved 

in the cytokine release in response to zymosan or damaged cells, further 

studies are required to verify the conclusion, as both studies were performed 

only once.    

 

3.3.6. Allergen, but not fixed bacteria, can induce 

MR shedding 

 In an attempt to investigate if the enhanced MR ectodomain shedding is 

fungi specific, the levels of sMR production were analysed after Mĭ treatment 

with other inducers, such as Staphylococcus aureus, which is not known to 

have any detectable ȕ-glucan, or house dust mite (HDM, Dermatophagoides 

pteronyssinus) that was previously shown to induce an immune response 

through ȕ-glucan recognition (Nathan et al., 2009). It appears that the ability to 

induce MR shedding is not a fungi-specific effect and can also be induced 

upon incubation with particulate HDM, but not by soluble HDM (data not 

shown) or S. aureus (Figure 3.7).  

Since HDM is also known to have ȕ-glucan in its structure (Nathan et 

al., 2009), the observed induction of MR shedding by HDM further supports 

the importance of ȕ-glucan recognition. However, the proteolytic cleavage 
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responsible appears to be distinct, since in contrast to fungi-treated samples, 

HDM-treated Mĭ released two distinct populations of sMR with different 

molecular weights (~165 and ~130 kDa) (Figure 3.7). Among the two sMR 

populations, the heavy sMR (sMRH) appears similar to the one induced by 

fungi.  

 

Figure 3.7: In addition to fungi, particulate HDM, but not S. aureus can also induce MR 

shedding. Western blot analysis of MR expression by thio-Mĭ incubated with particulate 

HDM, fixed A. fumigatus, or fixed or HK C. albicans (A). The cMR and sMR expression 

levels by Mĭ treated with fixed S. aureus (B). Data are representative of two independent 

experiments.  

 

As well as being Mĭ-derived, the proteases responsible may also come 

from the HDM used, since allergens are generally rich in proteolytic enzymes 

that allow their access to internal tissues (Shakib et al., 2008). Among those 
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Der p 1 is an immunodominant allergen found in the faeces of HDM and is 

involved in destroying tight junctions between the epithelial cells via its 

cysteine protease activity (Shakib et al., 2008, Shakib et al., 1998).  
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3.4. Discussion 

In this chapter of results, it was shown that (i) the induction of MR 

shedding is an early event as it was evident after 3 hours of treatment, (ii) 

enhanced sMR production is not P. carinii specific and can also be induced by 

other fungal particles such as zymosan, A. fumigatus and C. albicans, as well 

as particulate HDM, (ii i) the fungi-mediated sMR production depends on ȕ-

glucan recognition and GM6001-sensitive MMP/ADAM activity, but not on 

caspase, (iv) the inhibition of enhanced MR shedding by GM6001 does not 

influence the levels of cytokines released and does not block the reduction in 

the levels of MR- and SR-mediated endocytosis in response to fungi particles, 

(v) in contrast to fungi, HDM leads to the production of two sMR fragments of 

different molecular weights (MW). 

           Enhanced MR shedding was initially described in response to P. carinii 

after O/N incubation by Fraser et al (Fraser et al., 2000). By using a rather 

shorter incubation period (i.e. 1.5 and 3 hours), it was shown that MR shedding 

is an early event.  It was considered that at these early points there would be 

less chances of having new protein synthesis, and therefore de novo protein 

expression may not be required for initial sMR release upon induction. Future 

studies including transcriptional and translational inhibitors may further help to 

understand this area.  

By using zymosan, A. fumigatus, and both heat-killed and fixed C. 

albicans, it was shown that MR shedding can also be induced by other 
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opportunistic pathogens. In correlation with previous studies which showed 

that ȕ-glucan recognition is the main requirement for inducing anti-fungi 

immune responses (Taylor et al., 2007), (Werner et al., 2009, Brown et al., 

2003), it was demonstrated that the enhanced sMR production is mostly 

induced by the ȕ-glucan component of the fungi cell wall. This clearly implies 

the participation of dectin-1, the main myeloid ȕ-glucan receptor, which will 

be examined in the next chapter. 

Having significant, but not complete, inhibition of HK C. albicans-

induced sMR production by ȕ-glucan phosphate pre-treatment, implies the 

possible involvement of other Mĭ receptors. Apart from ȕ-glucan, another key 

PAMP responsible for triggering the anti-fungal immune response are the 

mannoproteins, which together with ȕ-glucan, make up to 90% of the fungal 

cell wall (Poulain and Jouault, 2004) (Chaffin et al., 1998) (Wheeler and Fink, 

2006).  

The lack of obvious change in the level of fungi-mediated MR 

shedding in the presence of soluble mannan suggests that mannoprotein 

detection may not be responsible for the ȕ-glucan-independent C. albicans-

induced MR shedding. However, the commercial mannan used in these studies 

is derived from S. cerevisiae and it differs from the C. albicans mannan in 

structure and MW that may influence its interaction with PRRs (Williams DL, 

unpublished data). Therefore in the presence of soluble mannan (purchased 

from Sigma Aldrich), there may still be PRRs involved in the detection of C. 

albican mannan that can trigger sMR production. Further studies are required 
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to understand the underlying mechanism responsible for the ȕ-glucan-

independent MR shedding. 

The attempt to identify the enzyme(s) responsible for the proteolytic 

cleavage of MR revealed that the ectodomain shedding was mainly mediated 

by a GM6001 sensitive MMP/ADAM activity. However, as with ȕ-glucan-

phosphate pre-treatment, the inhibition was not complete, which suggests the 

possible involvement of other GM6001-insensitive mechanisms.  

MMPs are zinc-dependent endopeptidases belonging to a subfamily of 

metzincins. Initially they were thought to be responsible solely for the turnover 

and degradation of the ECM, and were named accordingly. However, today 

they are known to have a wide-spectrum of functions, including the release of 

pro-inflammatory cytokines and chemokines (Webster and Crowe, 2006), as 

well as facilitating the shedding of various surface receptors including CD44 

(Yu et al., 1997), ErbB2 receptor (Codony-Servat et al., 1999), and TNF-

receptor (Lombard et al., 1998). 

ADAMs are transmembrane proteases and, like MMPs, belong to the 

metzincin family of metalloproteases. They are known as the major protease 

family responsible for the ectodomain shedding affecting functionally diverse 

proteins including cadherins, Fas ligand, and epidermal growth factor (EGFR) 

ligands  as well as TNF-Į (Huovila et al., 2005). 

Within this family, ADAM-17 was the first ADAM sheddase to be 

identified. It was initially identified by its activity as a TNF-Į convertase, but 
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following studies revealed its participation in the shedding of several other 

cytokines (e.g. CXCL-1, TRANCE) and receptors (e.g. IL-1 receptor II, IL-6 

receptor). The other important ADAM sheddase is ADAM-10 which, like 

ADAM -17, can target a wide-range of proteins including cytokines (e.g. 

CXCL-16, and CX3CL-1), growth factors (e.g. Epidermal growth factors, and 

betacellulin) and receptors (e.g. IL-6 receptor).   

Previous data by Martinez-Pomares et al. showed that the sMR is 

produced as a result of a proteolytic cleavage of the cell-associated MR, and 

accordingly, the flow-cytometry data revealed a significant reduction in the 

MR-mediated internalization by Mĭ (Martinez-Pomares et al., 1998). 

However, this effect was not reversed upon GM6001 treatment, even though it 

was able to inhibit MR shedding. One possible explanation for the observed 

data includes the reduction of surface MR expression through disrupting its 

recycling between the endocytic compartments and the plasma membrane, 

such that it becomes trapped intracellularly without affecting its cellular 

expression level. The flow cytometry analysis of surface MR expression will 

be discussed in the next chapter.  

The observed reduction in the level of endocytic internalization is not 

MR specific, as the same effect was also observed in Ac-LDL uptake. As in 

the case of MR endocytosis, this was thought to be as a result of ectodomain 

shedding of receptor(s) involved in its internalization. In an attempt to clarify 

the mechanism behind this, the level of soluble form of SR-A was screened in 

the supernatants collected from the treated cells. However, the antibody failed 
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to give any specific band, regardless of the changes introduced to the western 

blot protocol. Therefore, it is still open to debate whether the ectodomain 

shedding induced by fungal particles is MR-specific or not. In the next chapter, 

this will be further examined by monitoring the level of another cell surface 

receptor CD44 (a known target for MMPs and ADAMs) in the supernatants 

collected from Mĭ treated with purified ȕ-glucan particles. 

On the other hand, the inability to block the reduction in the level of 

Ac-LDL internalization by GM6001 treatment implies the same type of 

machinery responsible for the decline in the level of MR-endocytic uptake. 

Apart from the reduced expression levels of MR and SR on the cell surface, 

this decrease in the level of endocytosis can also be explained by a possible 

lack of membrane availability due to phagosome formation.  

The importance of MR in fungal infections is not yet clear, as the 

literature is full of conflicting results. For instance, even though the MR-KO 

mice were shown to have a normal host defence during systemic candidiasis 

(Lee et al., 2003), in the studies by Yamamoto et al and Heinsbroek et al, MR 

was shown to mediate IL-1ȕ, IL-6, MCP-1, and TNF-Į, in response to 

infection with C. albicans (Heinsbroek et al., 2008, Yamamoto et al., 1997). 

However, MR lacks any known intracellular signalling motif on the 

cytoplasmic tail that would enable it to contribute to cytokine production. This 

is why MR is thought to form a receptor complex with other receptor(s) (e.g. 

TLR2 (Tachado et al., 2007)) that participate in intracellular signalling.  

sMR  production has previously suggested to assist pathogens to escape 

the immune response (Fraser et al., 2000). In this study, formation of sMR-coat 
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around the fungal pathogen was shown to block its removal by phagocytosis 

(Fraser et al., 2000). That led us to examine if MR-shedding has also any effect 

on cytokine production. This was thought to, at least partially, explain the 

conflicting results for the MR role in cytokine production. 

 The effect of enhanced MR shedding on cytokine production was 

investigated by monitoring the levels of IL-1ȕ, IL-6, MCP-1, and KC in the 

supernatants collected from Mĭ treated with HK C. albicans in the presence 

and absence of GM6001 or GM6001 cont. Among these cytokines, the levels 

of IL-1ȕ, and IL-6 were below the detection level. This was surprising since 

previously Yamamoto et al showed a C. albican- induced expression of these 

cytokines by thio-Mĭ after 1 hour of treatment. However, the levels were 

screened at the mRNA level, and therefore the lack of detection in protein level 

may be as a result of post-transcriptional or post-translational modifications 

controlling their release. On the contrary, in a similar model, Heinsbroek et al 

could not detect any IL-6 expression in the supernatant collected from C. 

albicans-treated thio-Mĭ (Heinsbroek et al., 2008).  

Among the rest of the cytokines examined, the fungi-mediated release 

of KC did not change upon the inhibition of MR shedding by GM6001. In 

contrast, fungi-mediated MCP-1 release was altered upon the introduction of 

GM6001. However, this seems to be nonspecific since a similar increase was 

also detected in samples treated with HK C. albicans in the presence of 

GM6001 cont, which lacks any inhibitory activity. These results suggest the 

lack of MR-shedding effect on the fungi-mediated cytokine release. 

Nevertheless, a 3-hour incubation period may not be enough for C. albicans to 
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be coated with sMR as observed previously (Fraser et al., 2000), and therefore 

the possible effect of sMR production on cytokine release in the later stages of 

fungal infection cannot be excluded. 

In an independent approach, MR-KO thio-Mĭ were used to examine 

any MR effect on the cytokine release in response to zymosan, or liver necrotic 

cells. The necrotic cells were chosen as a stimuli inducer, since in the previous 

attempt, untreated MR-KO Mĭ supernatants were reported to have enhanced 

levels of IL-1ra, KC and MIP-2; the cytokines shown to facilitate the 

infiltration of leukocytes following the injection of necrotic cells into the 

peritoneal cavity (Tanimoto et al., 2007). As both MR-KO and wt Mĭ were 

handled the same way, the enhanced level of cytokine release was thought to 

be due to the MR role in the regulation of cytokine production in response to 

endogenous signals, such as damaged cells.  

Both wt and MR-KO Mĭ displayed the same cytokine profile in 

response to zymosan and liver necrotic cells, suggesting no MR role in 

cytokine production and release in both conditions.  However further studies 

are required to confirm this conclusion since this study was only performed 

once. Additionally, as there are not many free zymosan particles after 3-hours 

of incubation, this data does not exclude the possible effect of sMR in the later 

stages of infection. 

 By using other stimuli it was showed that the MR-shedding is not 

fungi-specific, and it can also be induced by particulate preparations of 

Dermatophagoides pteronyssinus (house dust mite, HDM). The reason behind 

HDM-induced MR shedding is not yet clear. However it may be involved in 
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the allergic immune response by targeting sMR-bound allergens (Deslee et al., 

2002) to the CR-Fc+ cells surrounding the white pulp of the spleen, or 

follicular regions in lymph nodes (Martinez-Pomares et al., 1996).    

The proteolytic cleavage responsible for the HDM-induced MR 

shedding appears to be quite different to that triggered by fungi. In contrast to 

the fungi-mediated shedding which produced a single sMR population (~165 

kDa), HDM treatment resulted in two sMR populations with molecular 

weights of ~165  (sMRH) and ~130 kDa (sMRL). The observed sMRH 

production is in correlation with a very recent study by Nathan et al, which 

showed a ȕ-glucan-mediated activation of the innate immune response by 

HDM, that was inhibited by using ȕ-glucanase, which digest ȕ-glucan 

structures or other ȕ-glucan moieties, such as laminarin or zymosan (Nathan et 

al., 2009).  

The reported ~35 kDa difference between the two sMR populations 

may be due to the cleavage of the N-terminal CR domain, as it was previously 

suggested to result in the production of an additional cMR population (~40 

kDa lighter) in small intestine tissues (Su et al., 2009). Today, the CR domain 

is known to recognise antigens of endogenous origin only. Therefore its 

removal may enhance MR specificity for non-self molecules, and sMR bound 

antigen may be immediately regarded as a foreign material to be destroyed by 

the immune system. Future studies to identify any immune cells that are able to 

recognise sMRL, and determine sMRL functionality, may further help to 

examine this possibility.  
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 As well as being Mĭ-derived, the protease(s) responsible for this 

distinct sMR population, may also come from the allergen, since the mite 

extracts are generally rich in proteolytic enzymatic activity that allow their 

access to internal tissues. Their effects are mediated by breaking down the 

connective tissues and destroying tight junctions between the epithelial cells, 

and involve the cleavage of surface receptors that may also help modulating 

the immune response. For instance, Der p 1 is known to cleave CD23, CD25, 

lung surfactant proteins (SP)-A and D, CD40, DC-SIGN, and DC-SIGNR 

(Shakib et al., 2008).  

  Overall, these data suggest a putative role for ȕ-glucan recognition and 

ADAM/MMP activity in the induction of sMR production, which was shown 

to help P. carinii  to evade the host immune response (Fraser et al., 2000). In 

contrast to Fraser et al, sMR production did not have any effect on the fungi-

mediated cytokine release. This may be due to the short incubation periods 

used, since it would not be enough for the formation of a sMR coat around the 

fungi that would influence its interaction with Mĭ (Fraser et al., 2000). The 

next chapter will be on the identification of the PRR responsible for the ȕ-

glucan-mediated MR-shedding. The first candidate is dectin-1; the main 

myeloid ȕ-glucan receptor. 
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4. THE ROLE OF DECTIN-1 IN FUNGI-

MEDIATED MR-SHEDDING 

 

4.1. Introduction 

Dectin-1 is a member of the group V transmembrane C-type lectin 

family encoded by the natural killer gene complex (NKC) (Huysamen and 

Brown, 2009). It consists of a type II transmembrane domain, a single 

extracellular CTLD that can detect the ȕ-glucan component of the fungi cell 

wall in a Ca2+-independent manner, a stalk, and a cytoplasmic tail with a hem-

ITAM motif. The stalk region is the region that is most commonly spliced out 

in functional dectin-1 isoforms in both human and mouse (Brown, 2006, 

Ariizumi et al., 2000b). As discussed in section 1.2.3.ii.d, dectin-1 can trigger 

both Syk-dependent and Syk-independent-Raf-1-mediated signalling which 

can act independently as well as in cooperation with the TLR pathway.  

Dectin-1 was shown to detect several fungi species including P. carinii, 

S. cerevisiae, C. albicans, and A. fumigatus, and their recognition by dectin-1 

triggers various protective responses such as phagocytosis, killing via 

respiratory burst, and the production of a number of cytokines and chemokines 

such as TNF, CXCL2, IL-1ȕ, IL-1Į, IL-6, CCL3, GM-CSF, and G-CSF 

(Brown, 2006). The dectin-1 role as a crucial fungi recognition receptor was 

also examined in vivo with mixed results, which are probably due to the 
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genetic background of the mice, differences in the fungal strains and/or routes 

of infection used (Netea and Marodi, published online in 2010).  

The importance of dectin-1 engagement was further supported by the 

evidence that pathogens may utilise mannoproteins to mask their ȕ-glucan in 

order to evade the immune response (Gantner et al., 2005) (Wheeler and Fink, 

2006). For instance, hyphal forms of C. albicans cannot be detected by dectin-

1 and accordingly, do not trigger the immune response, as they do not have a 

detectable surface-exposed ȕ-glucan (Gantner et al., 2005). Nevertheless, the 

condition was reversed by disrupting the mannoprotein outer layer which 

would enhance the ȕ-glucan expression on the surface (Wheeler and Fink, 

2006). Likewise, whereas A. fumigatus resting conidia and hyphae do not 

possess surface ȕ-glucan expression, swollen conidia and early germlings can 

be detected by dectin-1, due to exposed ȕ-glucan (Hohl et al., 2005) (Gersuk et 

al., 2006) (Steele et al., 2005). Additionally, the ȕ-glucan component of 

Histoplasma capsulatum was recently shown to be hidden under a layer of Į-

glucan, and Paracoccidioides switches from ȕ-glucan to Į-glucan, to avoid 

detection by dectin-1 (Rappleye et al., 2007).   

Furthermore, in humans, recent identification of polymorphisms in 

dectin-1 was associated with an enhanced colonization with Candida species 

(Plantinga et al., 2009), and patients with dectin-1 deficiency had defective 

production of IL-6, TNF-Į and IL-17 in response to ȕ-glucans and C. albicans 

(Ferwerda et al., 2009).  
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4.1.1. The aim of the study 

In light of the preceding chapter of results which showed the ȕ-glucan 

phosphate-mediated inhibition of fungi-mediated MR shedding, it was 

hypothesized that dectin-1 is responsible for the ȕ-glucan-mediated MR 

shedding.  

The aim of this chapter was to investigate if and how dectin-1, the 

major ȕ-glucan receptor, was responsible for fungi-mediated MR-shedding. 

For this purpose, dectin-1-KO Mĭ were treated with HK C. albicans or 

purified ȕ-glucan particles (from C. albicans), and sMR production was 

examined by western blot. As dectin-1 has two murine isoforms with 

differences in structure and possibly in intracellular signalling, the effect of 

different isoform expression on sMR production was also examined by using 

Mĭ isolated from C57 BL/6 and BALB/c mouse strains that display different 

dectin-1 isoform expression (Heinsbroek et al., 2006). The intracellular 

signalling responsible was investigated by using purified ȕ-glucan particles as 

the fungi model, in the presence and absence of various signalling inhibitors.  
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4.2. Materials and Methods 

4.2.1. Animals 

The wt and MR-KO mice were bred and handled as described in 

section 2.2.1.  

Dectin-1 knock-out (dectin-1-KO) mice and their controls were on a 

129S6/SvEv genetic background. Animals were provided by Dr. Philip 

Taylor, and were maintained in accordance with institutional guidelines at 

Cardiff University, School of Medicine, U.K. 

 

4.2.2. Cells 

Thio-Mĭ were obtained by following the protocol described in section 

3.2.2.  

 

4.2.3. Experimental conditions 

Thio-Mĭ were treated with particulate ȕ-glucan (kindly contributed by 

David L. Williams, from East Tennessee State University, USA) curdlan 

(Wako), ionomycin (Sigma Aldrich), phorbol myristate acetate (PMA, Sigma 

Aldrich) or Pam3CSK4 (Invivogen) at the indicated concentrations in serum-

free Opti-MEM with GlutaMAX (Invitrogen) supplemented with 100 U/ml 

penicillin and 100 g/ml streptomycin for 3 hours at 37oC, 5% CO2.  
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 For inhibition assays, thio-Mĭ were pre-incubated with ȕ-glucan 

phosphate (kindly contributed by David L. Williams, from East Tennessee 

State University, USA), mannan (Sigma Aldrich), Syk kinase inhibitor IV, 

wortmannin, Akt inhibitor VI, Raf-1 kinase inhibitor I, GM6001, GM6001 

control, cytochalasin D, latrunculin A (all from Calbiochem), bafilomycin or 

chloroquine, (Sigma Aldrich) at indicated concentrations for 1 hour before 

treatment, and were present during the incubation with the stimuli.  

 The supernatants collected from MR-KO thio-Mĭ  treated with 

purified ȕ-glucan particles were used to analyse the potential role of soluble 

components in the induction of MR shedding. After 3 hours of treatment, 

supernatants were collected and any ȕ-glucan particle contaminant was 

removed by centrifugation at 13 000 rpm for 20 minutes, using a bench top 

centrifuge. The clarified supernatant was then used to incubate wt Mĭ for 3 

hours. 

 The cell lysates and culture supernatants were collected and protein 

concentration was determined by following the same protocol described in 

section 2.2.5.  

 

4.2.4. Western blotting 

The protocol was described in section 2.2.6. CD44 were visualised 

using rat anti-CD44 mAb (clone KM201, Abcam), in combination with HRP-

conjugated anti-rat IgG (Chemicon). 
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4.2.5. Flow ctometry analysis 

For the endocytosis assay, thio-Mĭ were plated on non-tissue culture 

treated plastic as described in the previous chapter. Following a 3-hour 

treatment with ȕ-glucan, the Mĭ were then incubated for 30 minutes in serum-

free media containing 5 ȝg/ml of SO4-3-Gal-PAA-FITC (Lectinity), or Alexa-

488 conjugated Ac-LDL (Invitrogen). The Mĭ were collected by scraping 

using 1X trypsin-EDTA (Sigma Aldrich) and fixed in 1% (v/v) formaldehyde 

solution in PBS. The internalisation was then analysed using Beckman Coulter 

Epics Altra and Weasel software.  

To examine MR expression on the cell surface, thio-Mĭ plated on non-

tissue culture treated plastic, were collected by scraping using non-enzymatic 

cell dissociation buffer (Sigma Aldrich), washed in FACS block (5% (v/v) 

heat-inactivated rabbit serum, 0.5% (w/v) BSA, 2 mM NaN3, 5 mM EDTA in 

PBS) and incubated in FACS block containing 2.4G2 (10 g/ml) for 30 min at 

4oC. After blocking Mĭ were incubated with Alexa488-labelled anti-MR Ab 

(clone 5D3, Biolegend), for 60 min at 4oC. After staining, cells were washed 

three times with FACS wash (0.5% (w/v) BSA, 2 mM NaN3, 5 mM EDTA in 

PBS) and fixed in 1% (v/v) paraformaldehyde in PBS. Isotype-matched Ab 

were used as controls. Labelling was analysed using a Beckman Coulter Epics 

Altra, and Weasel software.  
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4.2.6. Gelatin zymography 

 A precast SDS-PAGE gel (7.5%), containing 0.1% (w/v) gelatin 

(Invitrogen), was used to separate samples in 2X nonreducing sample buffer 

(0.125 M Tris-HCI, pH 6.8, 20% (v/v) glycerol, 4% (w/v) sodium dodecyl 

sulphate, 0.003% (w/v) bromphenol blue) at 120 V. SDS was removed by 

incubation with renaturing buffer (2.5% (v/v) Triton X-100 in distilled water) 

(Invitrogen) for 30 min at room temperature.  The gels were incubated O/N at 

37°C (Heraeus Incubator, Langenselbold) in developing buffer (20 mM Tris-

HCl, pH 7.6, 10 mM CaCl2 and 0.04% (w/v) NaN3) (Invitrogen) and then 

stained with 0.1% (v/v) Coomassie blue in 40% (v/v) methanol and 10% (v/v) 

acetic acid and destained until clear proteolytic bands appeared on the 

contrasting blue background.  Bands were visualized using the Gene Genius 

Bioimaging System (Cambridge). 

 

4.2.7. Target opsonization 

For Fc-mediated phagocytosis, 6 m latex beads (Polysciences) were 

incubated O/N at 4C in 10 mg/ml bovine serum albumin (BSA, Sigma 

Aldrich) in PBS, followed by three washes in PBS. The beads were then re-

suspended in mouse-derived anti-BSA IgG antibody (Sigma Aldrich) for 1 

hour at room temperature before being washed for three times and stored in 

PBS at 4C (May et al., 2000). 
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4.2.8. Real-time quantitative PCR (qPCR) 

 The protocol was described in section 2.2.12.  

Table 4. 1: Forward and reverse primer sequences used in qPCR experiments. 

Gene Forward oligonucleotide 

sequence  (5‟ γ‟) 

Reverse oligonucleotide 

sequence (5‟ γ‟) 

HPRT  GTAATGATCAGTCAACGGG

GGAC 

CCAGCAAGCTTGCAACCTTA

ACCA 

MMP-9 CAGAGGTAACCCACGTCAG

C 

GGGATCCACCTTCTGAGACT

T 

MMP-8 CTTTCAACCAGGCCAAGG GAGCAGCCACGAGAAATAG

G 

MMP-2 ATAACCTGGATGCCGTCGT TCACGCTCTTGAGACTTTGG 

MMP-3 TTGTTCTTTGATGCAGTCA

GC 

GATTTGCGCCAAAAGTGC 

 

4.2.9. Statistical analysis 

 The statistical analysis was performed as described in section 2.2.13.  
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4.3. Results 

4.3.1. ȕ-glucan particles induce MR shedding 

through dectin-1 engagement  

 Previous results indicated that -glucan recognition is required for 

enhancing sMR production upon the recognition of fungi. The possible effect 

of purified ȕ-glucan particles on sMR production was investigated to see if the 

recognition of particulate -glucan was sufficient for inducing this effect. The 

data proved that particulate -glucan enhanced MR shedding, when used at 

particle per cell ratio similar to that used in the case of C. albicans and A. 

fumigatus, and that it could be inhibited by pre-treatment with soluble glucan 

phosphate. This demonstrates that the observed effect is not mediated by any 

contaminant present in the preparation of particulate -glucan (Figure 4.1A). 

In order to establish the role of the major -glucan receptor, dectin-1, in 

mediating MR shedding, wt and dectin-1-KO thio-Mĭ were treated with 

particulate -glucan. Dectin-1 expression was essential for the induction of 

MR shedding in response to particulate -glucan (Figure 4.1A). The 

importance of dectin-1 was further confirmed by the significant reduction in 

sMR production observed in dectin-1-KO Mĭ in response to HK C. albicans 

(Figure 4.1B). 
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Figure 4.1: The role of dectin-1 in fungi-mediated MR shedding and its specificity to MR. 

The particulate ȕ-glucan-induced sMR production was completely blocked by dectin-1 

deficiency or pre-treatment with soluble ȕ-glucan, but not by mannan (A). There was a 

significant inhibition of fungi-mediated shedding in dectin-1-KO Mĭ (B). Continuous ȕ-

glucan presence is required for MR shedding during 3 hours of incubation, as the removal of 

ȕ-glucan particles after 1 hour significantly reduced the ectodomain shedding (C). While cMR 

and sMR were detected in the cell lysate and supernatant, CD44 could only be detected in cell 

lysates collected from ȕ-glucan treated wt Mĭ (D). Data are representative of three 

independent experiments. 

 

 To examine if the initial dectin-1-induced signalling is enough for the 

enhanced MR ectodomain shedding observed after 3 hours of incubation, the 

ȕ-glucan particles were removed after 1 hour and the Mĭ were then left 

untreated at 37°C in serum-free media for two more hours (i.e. 3 hours in 
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total). As shown in the Figure 4.1C, continuous presence of ȕ-glucan appears 

to be essential for MR shedding, as the intensity of the bands corresponding to 

sMR reduced significantly upon removal of ȕ-glucan particles after 1 hour. 

The selectivity of the signalling triggered was examined by studying 

the effect of particulate ȕ-glucan treatment on the shedding of CD44. CD44 is 

a type I transmembrane glycoprotein with a broad range of functions 

(Nakamura et al., 2004) (Bazil and Horejsi, 1992). CD44 is shed off the cell 

surface as a result of multiple signalling pathways including protein kinase C 

(PKC), as well as the influx of intracellular Ca2+, and is mediated by ADAM -

10, ADAM-17 and MMP-14 activity (Kajita et al., 2001, Okamoto et al., 1999, 

Kawano et al., 2000). As revealed in Figure 4.1D, ȕ-glucan treatment did not 

induce CD44 shedding, which indicates that particulate ȕ-glucan recognition 

does not lead to a general release of receptors from the cell surface.    

 

4.3.2. No difference in ȕ-glucan-induced MR 

shedding between C57 BL/6 and BALB/c mice 

Murine Mĭ express two functional dectin-1 isoforms: dectin-1A and 

dectin-1B which are structurally distinct. Dectin-1A is composed of all 

structural domaina whereas dectin-1B lacks the stalk region. 

According to the q-PCR data shown by Heinsbroek et al (2006), their 

expression is genetically determined such that both dectin-1 isoforms are 

expressed in equal amounts by BALB/c and other related mouse strains (e.g. 
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C3H/HeH and CBA/ca), while dectin-1B is the predominant isoform expressed 

by C57 BL/6, 129/SvEv and B10.BR (Heinsbroek et al., 2006). This 

differential expression appears to be the cause of the previously observed 

differences in the C. albicans-induced production of defensins, chemokines, 

and cytokines between C57 BL/6 and BALB/c mice (Schofield et al., 2005), 

since dectin-1B-expressing cells released significantly more TNF-Į in response 

to zymosan than the dectin-1A expressing cells (Heinsbroek et al., 2006). 

Furthermore, differential expression of dectin-1 isoforms was shown to 

enhance susceptibility to coccidoides in mice (del Pilar Jimenez et al., 2008).  

In an attempt to investigate if this differential dectin-1 isoform 

expression would also have an effect on sMR production following ȕ-glucan 

treatment, the levels of ectodomain shedding and MR- and non-MR mediated 

endocytosis were compared between the two mouse strains by western blot and 

flow-cytometry respectively.  

Flow-cytometry analysis revealed that both Mĭ populations have a 

similar endocytic capacity before the treatment, and displayed similar levels of 

reductions in endocytosis of SO4-3-Gal and Ac-LDL after being incubated 

with ȕ-glucan particles (Figure 4.2A). Accordingly, both mouse strains showed 

the same level of sMR production in response to ȕ-glucan particles (Figure 

4.2B). In support of these data, thio-Mĭ isolated from both mouse strains were 

previously shown to have similar level of cell-surface MR expression 

(Heinsbroek et al., 2006).  
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Figure 4.2: There is no difference between C57 BL/6 and BALB/c mice strains in dectin-

1-mediated reduction of endocytic internalization and MR shedding. Flow cytometry 

analysis of sulphated galactose and ac-LDL internalization by thio-Mĭ, left untreated or 

treated with ȕ-glucan particles (A). The endocytosis level was identical between the mouse 

strains in both untreated and treated samples, and they showed a similar rate of reduction in 

their endocytic capacity upon treatment with ȕ-glucan particles. This is in support of the 

similar amount of MR shedding as detected in the supernatants collected from the same cell 

populations used in the endocytosis assay (B). The enhanced IgG2a binding observed in the ȕ-

glucan treated samples did not allow drawing a reliable conclusion on the cell surface MR 

expression by using flow-cytometry (C). Data are representative of three independent 

experiments. 
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As discussed in the previous section, zymosan-induced reduction of 

MR endocytosis was not reversible by the presence of GM6001, and therefore 

apart from mediating MR shedding, zymosan was thought to decrease surface 

MR expression by another GM6001-insensitive pathway, which may include 

the enhanced internalization of the receptor. That led us to examine the levels 

of surface MR expression after ȕ-glucan treatment in the presence of GM6001. 

However, the attempts failed to provide reliable data as Mĭ displayed 

enhanced non-specific binding to the IgG2a isotype control antibody upon 

treatment with ȕ-glucan particles, creating doubts about the specificity of 5D3 

binding (Figure 4.2C).  

The underlying reason for this enhanced non-specific binding was 

thought to be because of enhanced FcR expression on the Mĭ surface upon 

dectin-1 signalling. However, the non-specific binding was not blocked even 

after the addition of 100 ȝg/ml of rat IgG to the blocking buffer (data not 

shown). A similar type of enhanced binding was also observed in the case 

mouse IgG1 isotype control antibody (data not shown).  

 

4.3.3. ȕ-Glucan mediated MR shedding depends 

on Syk and, partially on Raf-1 kinases  

Upon ligand binding, dectin-1 triggers intracellular signalling through 

Syk-dependent and Syk-independent Raf-1-mediated pathways. Syk kinase 
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was observed to be indispensible for the ȕ-glucan-induced sMR production, 

since MR shedding was completely blocked by Syk kinase inhibition (Figure 

4.3A). However, Raf-1 kinase seemed to be partially responsible for the 

phenomenon, as reduced sMR production was observed only at high 

concentrations of Raf-1 kinase inhibitor (Figure 4.3B). 

Syk-kinase was previously shown to be required for collaborative 

signalling between dectin-1 and TLR-mediated pathways that sustains 

degradation of IțB and enhances nuclear translocation of NF-țB (Dennehy et 

al., 2008). The high Syk-dependence of dectin-1-mediated MR shedding raised 

the question of whether sMR production could be enhanced by the activation 

of TLR signalling. By using a TLR2 agonist (Pam3CSK4), it was shown that 

TLR2 engagement does not affect MR shedding in isolation or in combination 

with -glucan (Figure 4.3C).  

The observed crucial effect of Syk in the enhancement of MR-shedding 

in response to ȕ-glucan particles, led us to examine if the sMR production can 

also be triggered by other ITAM-associated receptors. In an attempt to 

investigate this, latex beads coated with mouse IgG were used. To make sure 

that the antibody Fc fragments are free to engage with FcR, latex beads were 

incubated with BSA and then with mouse anti-BSA antibody. 
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Figure 4.3: Dectin-1-mediated MR shedding is dependent on Syk, and partially on Raf-1. 

Western blot analysis of MR expression by Mĭ treated with ȕ-glucan particles in the presence 

and absence of Syk kinase (A) or Raf-1 kinase inhibitors (B). While Syk inhibition completely 

abrogates MR shedding in response to -glucan, Raf-1 inhibition has a minor effect at high 

concentrations. The ȕ-glucan effect could not be enhanced by the addition of Pam3CSK4 which 

indicates that dectin-1-mediated MR-shedding is independent of TLR-signalling (C). Data are 

representative of three independent experiments. 

 

As can be seen in Figure 4.4, there was not any enhanced sMR 

production in response to IgG-coated latex beads. However, this could also be 

explained by the lack of efficient intracellular signalling, since only 

approximately two particles were successfully internalized by each Mĭ (data 
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not shown). Lack of efficient phagocytosis implies the lack of receptor cross-

linking, which is also required for FcR-mediated signalling (Garcia-Garcia and 

Rosales, 2002).     

 

Figure 4.4: IgG-coated latex beads cannot induce sMR production. Western blot analysis 

of MR expression by thio-Mĭ treated with HK C. albicans or latex beads with/without BSA 

or mouse IgG coat. Data are representative of three independent experiments. 

 

4.3.4. -glucan-induced MR shedding is PI3K, but 

not Akt, dependent  

Phosphoinositides are crucial second messengers for intracellular 

signalling pathways including the one initiated by dectin-1-mediated Syk-

kinase activation (Hiller et al., 2000), (Olsson and Sundler, 2007), (Olsson and 

Sundler, 2006), (Shah et al., 2009), (Lee et al., 2008), (Crowley et al., 1997). 

Among several other downstream elements that phosphoinositide-3 kinase 

(PI3K) activates, Akt (aka Protein kinase B) plays a central role in innate 

immunity, since the PI3K/Akt pathway was shown to be required for the 

production of cytokines such as IL-12, IL-10, as well as for controlling cell 
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proliferation and survival (Weichhart and Saemann, 2008, Martin et al., 2003, 

Polumuri et al., 2007, Koyasu, 2003).  

The potential role of the PI3K/Akt pathway in ȕ-glucan-induced MR 

shedding was investigated by using a PI3K and Akt inhibitors.  Enhanced MR 

shedding was completely blocked upon PI3K inhibition by the PI3K inhibitor 

wortmannin (Figure 4.5A), but Akt inhibition had no effect (Figure 4.5B). 

Therefore, these results suggest that ȕ-glucan induces MR shedding through an 

Akt-independent, PI3K-mediated signalling pathway.  

 

Figure 4.5: Dectin-1-mediated MR shedding utilizes Akt-dependent PI3K pathway. The 

cMR and sMR expression levels by ȕ-glucan-treated Mĭ in the presence and absence of 

wortmannin (A), or Akt inhibitor I (B). While wortmannin completely blocks MR shedding in 

response to -glucan, Akt inhibition had no effect. Data are representative of three independent 

experiments. 



154 

 

4.3.5. -glucan-induced MR shedding is 

phagocytosis-independent but requires actin-

polymerisation 

 Even though dectin-1 is a phagocytic receptor (Herre et al., 2004) 

(Underhill et al., 2005), it does not require phagocytosis to induce 

inflammatory responses (McCann et al., 2005). In fact, dectin-1-mediated 

intracellular signalling is enhanced by frustrated phagocytosis (Hernanz-Falcon 

et al., 2009, Rosas et al., 2008). In order to investigate if phagocytosis is 

required for dectin-1-mediated MR shedding three different approaches were 

used: (i) investigating MR shedding in response to the non-phagocytosable -

glucan particle curdlan, (ii) inhibiting actin polymerisation with cytochalasin D 

or latrunculin A and (iii) inhibiting phagosome acidification. 

As shown in Figure 4.6A, incubation of thio-Mĭ with curdlan particles 

enhanced MR shedding, which suggests that dectin-1-mediated MR shedding 

is independent from particle internalisation. To eliminate the possibility of 

small curdlan fragments being responsible for its effect on MR shedding, only 

curdlan particles repeatedly (three times) retained in a 100 ȝM cut off filter 

were used for these experiments. Microscopical examination of these 

preparations demonstrated that all small fragments had been eliminated. 
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Figure 4.6: Dectin-1-induced sMR production can be induced by curdlan but cannot be 

blocked by bafilomycin or chloroquine. Western blot analysis of MR expression by thio-Mĭ 

treated with curdlan and HK C.albicans (A) at concentrations of four particles/cell (10 ȝg of 

curdlan would contain ~550 particles (Rosas et al., 2008)) and 50 particles/cell, respectively. 

Both particles were found to enhance MR shedding (A). Inhibition of phagosome acidification 

using bafilomycin (B) or chloroquine (C) did not change the level of sMR produced in 

response to ȕ-glucan particles. Data are representative of three independent experiments. 

 

 In support to phagocytosis not being required for MR shedding in 

response to ȕ-glucan particles, inhibition of phagosome acidification using 
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bafilomycin (Figure 4.6B) or chloroquine (Figure 4.6C) did not alter sMR 

production in response to ȕ-glucan. 

Nevertheless, it was observed that inhibitors of actin-polymerisation, 

cytochalasin D (used at 0.5-1 ȝM) and latrunculin A (used at 0.5-5 ȝM), 

blocked sMR production in response to -glucan (Figure 4.7A-B), in spite of 

the ability of the non-phagocytable -glucan particle, curdlan, to promote MR 

shedding. Therefore, two conditions under which dectin-1-mediated signalling 

is enhanced because of the increased receptor engagement have opposite 

effects on MR shedding.  

This could be due to actin polymerisation being required for MR 

stability/recycling, since high concentrations of actin-polymerisation inhibitors 

(5-10 ȝM for cytochalasin D, and 10 ȝM for latrunculin A) reduced the cMR 

expression level in the absence of ȕ-glucan particles (Figure 4.7C).  
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Figure 4.7: ȕ-glucan-induced MR shedding can be blocked by actin-polmerisation 

inhibitors. Both latrunculin A (A) and cytochalasin D (B) inhibited the production of sMR in 

response to -glucan treatment. This was thought to be because of the effect of actin-

polymerisation inhibitors on MR expression, as when used at high concentrations cMR 

expression was decreased in the absence of ȕ-glucan particles (C). Data are representative of 

three independent experiments. 

 

4.3.6. -glucan-induced MR shedding is mediated 

by a non-secreted metalloprotease 

Previously, fungi-mediated ectdomain shedding through ȕ-glucan 

recognition was shown to be mediated by MMP/ADAM activity (Figure 3.3). 
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To investigate if dectin-1 engagement on its own also utilises the same 

mechanism to promote MR shedding, the ȕ-glucan treatment was repeated in 

the presence and absence of GM6001, a wide spectrum MMP/ADAM 

inhibitor. The pre-treatment of Mĭ with GM6001 inhibited sMR production, 

which suggests that dectin-1-induced MR shedding, like in the case of steady-

state and fungi-induced sMR production, is MMP or ADAM dependent 

(Figure 4.8A).  

In an attempt to discern if the metalloprotease responsible for MR 

shedding was secreted into the medium, wt thio-Mĭ were incubated with 

culture supernatants collected from ȕ-glucan-treated MR-deficient Mĭ. It was 

reasoned that this would be a suitable approach, because ȕ-glucan recognition 

is not affected by MR deficiency (Heinsbroek et al., 2008).  As demonstrated 

by the results shown in Figure 4.8B, MR shedding was not altered upon 

treatment with culture supernatants collected from MR-KO Mĭ treated with -

glucan. These results indicate that the protease responsible for MR shedding is 

probably membrane-anchored.  
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Figure 4.8: Dectin-1-induced MR shedding is mediated by a non-secreted 

metalloprotease. GM6001 treatment inhibits MR shedding in response to ȕ-glucan particles 

(A). No enhanced MR shedding by wt Mĭ was observed upon treatment with supernatants 

collected from MR-KO Mĭ incubated with -glucan particles for three hours (B). Analysis of 

cell lysates and supernatants from MR-KO cells demonstrated that detection of MR in samples 

from wt cells was specific. Analysis of metalloprotease activity by gelatin zymography in the 

supernatants and cells lysates from ȕ-glucan and HK C. albicans (C.a.)-treated thio-Mĭ (C). 

Data are representative of three independent experiments. 
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In agreement with these observations, gelatine zymography data does 

not suggest a role for MMP-2 or MMP-9 in MR shedding in response to -

glucan. Only a band corresponding to MMP-9 was visualised in cell lysates 

and supernatants from untreated and -glucan or HK C. albicans-treated thio-

Mĭ, and this band was unaltered by -glucan or HK C. albicans-treatment 

(Figure 4.8C). These observations are in correlation with qPCR results 

demonstrating the lack of MMP-2 and -3-specific mRNA (data not shown) and 

the presence of MMP-9-specific mRNA in thio-Mĭ. Additionally, levels of 

MMP-8- and MMP-9-specific mRNA were not affected by the presence of -

glucan even after O/N treatment (Figure 4.9). 

To examine possible ADAM participation in enhanced MR shedding, 

Mĭ were treated with two pharmacological agents known to activate ADAM 

proteins: ionomycin, and PMA. Ionomycin, acting as a Ca2+ ionophore, 

stimulates ADAM-10 activity whereas treatment with PMA, a potent PKC 

activator, results in ADAM-17 induction (Nagano et al., 2004). Through 

ADAM -mediated processes, both ionomycin and PMA were previously shown 

to mediate ectodomain shedding of various receptors including CD14, TNF-Į, 

CD44 and L1 (Stoeck et al., 2006) (Nakamura et al., 2004) (Liu et al., 2006) 

(Bazil and Strominger, 1991). Among those, CD44 was used as a positive 

control in this study. 
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Figure 4.9: Quantification of MMP-8 and MMP9-specific mRNA in thio-Mĭ treated 

with particulate -glucan. QPCR analysis of MMP-9 (A) and MMP-8 (B) mRNA expression 

by Mĭ treated with ȕ-glucan particles for 3, 6 hours or O/N (B). The data represent the mean 

ratio of mRNA expression of MMP-9 or MMP-8 to HPRT ± SEM obtained from four 

independent experiments.  
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As demonstrated in Figure 4.10, only ionomycin was able to induce 

MR shedding under the conditions tested, while sMR production by PMA-

induced Mĭ was not significantly altered. The effect of ionomycin is very 

dramatic such that the sMR produced is more than that induced by ȕ-glucan 

treatment. However, the observed effect seemed to be a consequence of 

extensive cell death, as revealed by microscopical examination and BCA data 

showing reduced protein concentrations in ionomycin-treated Mĭ. This was 

further supported by the lack of change in the level of sMR produced when 

treatment was done in the presence of 10% (v/v) FBS in order to increase the 

cell survival. The sMR band detected in untreated samples was found to be 

derived from the FBS used, which is in correlation with the previous data that 

reported the presence of sMR in the mouse serum under steady-state 

conditions (data not shown) (Martinez-Pomares et al., 1998).  

The other explanation for the lack of enhanced MR-shedding in FBS-

containing conditions is the presence of bovine serum albumin (BSA), which 

was previously reported to counteract the ionomycin-mediated synoptosomal 

hydrogen peroxide production and Ca2+ movement through binding the 

ionophore. The inhibition was overcome by the addition of excess ionomycin 

(Zoccarato et al., 1989). Accordingly, besides sMR, enhanced soluble CD44 

(~90kDa (Katoh et al., 1994)) production in response to ionomycin was also 

blocked by the addition of FBS. 
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Figure 4.10: CD44 and MR expression upon treatment with ionomycin or PMA. Westen 

blot analysis of cMR, sMR, cCD44 and sCD44 expression by Mĭ treated with 2.5 ȝM (not 

shown) or 5 ȝM ionomycin (Ion) in the presence or absence of 10 % (v/v) serum, or PMA at 

concentrations of 10 ȝM (not shown) and 20 ȝM in serum-free media. Data are representative 

of three independent experiments. 

 

In contrast to ionomycin data, strikingly there was not any detectable 

enhanced CD44 cleavage in response to PMA even at concentrations as high as 

20ȝM. The underlying reason may be because of the differences in the cells 

being used, as most of the studies that showed CD44 shedding in response to 

PMA were done using tumour cells (Gasbarri et al., 2003) (Nagano et al., 

2004) (Murai et al., 2004).  
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4.4. Discussion 

In this study it was shown that: (i) purified ȕ-glucan particles can 

induce MR-shedding on their own and this is not enhanced by the addition of 

the TLR2 ligand Pam3CSK4, (ii) the ȕ-glucan-mediated MR shedding depends 

on dectin-1, Syk kinase, PI3K and membrane-anchored MMP/ADAM activity, 

and partially on Raf-1 kinase, and is independent of phagocytosis and Akt, and 

(iii) there is no difference between C57BL/6 and BALB/c mouse strains in 

terms of ȕ-glucan-mediated MR shedding, and reduction in the cellular 

endocytosis capacity. 

In correlation with the previous chapter showing the ȕ-glucan 

phosphate-mediated inhibition of fungi-mediated MR shedding, by using wt 

and dectin-1-KO Mĭ, it was demonstrated that the ectodomain shedding is 

mostly induced by dectin-1, the main ȕ-glucan receptor expressed by myeloid 

cells. The exclusive role played by dectin-1 was confirmed using dectin-1-KO 

Mĭ in which MR shedding, in response to purified ȕ-glucan particles isolated 

from C. albicans, was not observed. Overall these data suggest that the ȕ-

glucan recognition required for MR shedding is largely mediated by dectin-1.  

Murine Mĭ express two functional dectin-1 isoforms, dectin-1A and 

dectin-1B, which are structurally distinct: dectin-1A is composed of all 

structural domains whereas dectin-1B lacks the stalk region. It was quite 

recently shown that they also differ in intracellular signalling, as dectin-1B 

expressing cells were reported to produce more TNF-Į than the dectin-1A 
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expressing cells (Heinsbroek et al., 2006). As both isoforms were equally 

efficient in zymosan recognition, the stalk region was thought to influence the 

ability of the receptor to interact with other molecules (such as TLR2, CD63), 

as it is often used by other C-type lectins related to dectin-1 to form dimers 

(Heinsbroek et al., 2006) (Marshall and Gordon, 2004).  

This difference in intracellular signalling was proposed to be the cause 

of the observed differences in chemokines, cytokine and ȕ-defensin responses 

to candidiasis between C57 BL/6 and BALB/c mouse strains (Schofield et al., 

2005), as they are known to differ in dectin-1 isoform expression: BALB/c 

mice express both isoforms in equal amounts while C57 BL/6 mice 

predominantly express dectin-1B (Heinsbroek et al., 2006). However, as 

shown in Figure 4.2, Mĭ from both mouse strains responded equally to the ȕ-

glucan particles in terms of MR-shedding, and the reduction in MR- and non-

MR-mediated endocytosis.  

During the induction of MR shedding, there is no requirement for 

dectin-1 to cross-talk with TLR as treatment with the TLR2 agonist, 

Pam3CSK4, on its own or in combination with particulate -glucan, even after 

prolonged incubation periods (e.g. overnight), does not influence sMR 

production. This further confirms S. aureus data shown in Figure 3.7, which is 

known to activate TLR1/TLR2 and TLR2/TLR6 heterodimers (Issa et al., 

2008) (Kurokawa et al., 2009).  Together, these results imply that the sMR 

production is independent of TLR-mediated signalling.  
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Among the two signalling pathways induced by dectin-1, the Syk-

dependent pathway is the most characterised, thanks to the common elements 

shared with other ITAM-mediated pathways, while the Syk-independent 

signalling pathway is still poorly understood, but has been shown to involve a 

Raf-1 kinase activity (Gringhuis et al., 2009). In this study, it was shown that, 

the effect of the Syk-independent pathway on sMR production was 

significantly weaker than that of the Syk-dependent pathway whose inhibition 

completely stopped the enhanced MR shedding.  

The attempt to examine whether other ITAM-associated receptors can 

also induce MR-shedding failed to give reliable results, due to the doubts 

concerning the intracellular signalling. Since only approximately one or two 

particles (out of 50) were internalized by each Mĭ, it was suggested that the 

intracellular signalling triggered by FcR is not sufficient to initiate any cellular 

activity (Garcia-Garcia and Rosales, 2002). Similar levels of latex bead uptake 

by Mĭ were also reported by Chavele et al (Chavele et al., published online in 

2010) implying that in future studies on the effect of FcR on MR-shedding, 

different approaches should be used.  

The partial dependence of the phenomenon on Raf-1 kinase suggests 

the requirement of a possible cross-talk between Syk kinase- dependent and –

independent pathways. This might occur via PI3K, since PI3K and Raf-1 

kinase were previously shown to induce activation of each other in response to 

various growth factors (Wang et al., 2009, Sutor et al., 1999, Wennstrom and 

Downward, 1999, Scheid and Woodgett, 2000). Apart from PI3K, Raf-1 also 
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stimulates downstream kinase MAP kinase/ERK kinase (MEK), which in turn 

activates ERK 1/2 (Yart et al., 2002) (Hagemann and Rapp, 1999) (Wang et 

al., 2009). Future work will need to address the question whether this pathway 

is required for dectin-1-mediated sMR production. 

 The requirement for actin polymerisation in this model is intriguing 

since this does not appear to be caused by a requirement for phagosome 

formation. A possibility that could explain these observations is the 

requirement of actin polymerisation for MR recycling, as suggested by Deslee 

et al. In this study, MR-mediated endocytosis of dextran was shown to be 

reduced significantly in the presence of cytochalasin D (Deslee et al., 2002).  

This would also explain the drastic reduction in cMR levels observed when 

actin-polymerisation inhibitors were used at higher concentrations (5-10 ȝM 

for cytochalasin D and 10 ȝM for latrunculin A), as non-recycled MR could be 

targeted for degradation.  

The data presented suggest the requirement for a cell-associated 

protease, sensitive to the broad metalloprotease inhibitor GM6001, known to 

inhibit both MMPs and ADAMs. In contrast to ADAMs, not all MMPs are 

transmembrane proteins. Membrane-anchored MMPs include MMP-7, MMP-

12, MMP-14, MMP-15, MMP-16, MMP-17, MM-19, MMP-20, MMP-23, 

MMP-24, MMP-25, MMP-26, MMP-28 (Webster and Crowe, 2006).  

The possible ADAM participation was further investigated by treating 

thio-Mĭ with PMA or ionomycin; conditions known to promote ADAM-10 

and ADAM-17 activity respectively (Huovila et al., 2005). Treatment with 



168 

 

PMA for 3 hours did not enhance MR ectodomain shedding. Surprisingly, 

there was no detectable amount of soluble CD44 in PMA-treated samples 

either. However, differences in the cell types and the incubation times used 

could explain the lack of PMA-induced CD44 shedding. Treatment of thio-

Mĭ with ionomycin had no effect on both CD44 and MR cleavage in the 

presence of serum. On the other hand, when ionomycin was added in the 

absence of the serum, sCD44 could be detected and there was a major increase 

in sMR production. This could be a consequence of increased cell death 

observed under these conditions, or of the serum BSA-mediated inhibitory 

effect as previously reported by Zoccarato et al (Zoccarato et al., 1989). The 

observed enhanced levels of MR ectodomain shedding in conditions of 

increased cell death suggests the possible involvement of mincle, an ITAM-

coupled receptor known in the recognition of dead cells as well as fungi 

species including C. albicans (Yamasaki et al., 2008) (Yamasaki et al., 2009, 

Wells et al., 2008). Nevertheless, the preliminary data showed that the uptake 

of dead cells did not enhance MR ectodomain shedding (LMP, personal 

communications). 

 MR shedding promoted by dectin-1 could be regarded as a way of 

modulating MR involvement during fungal uptake. For instance, it could 

explain the surprising redundancy observed for MR in murine models of 

fungal infection (Lee et al., 2003, Swain et al., 2003) that does not correlate 

with observations in human models involving alveolar macrophages and 

cultured peripheral blood mononuclear cells (Netea et al., 2008, Netea et al., 

2006, Zhang et al., 2005b, Zhang et al., 2004). In this regard, the major effect 
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that cellular differentiation has on dectin-1-mediated signalling should be 

considered.  While the cells used during the course of these studies (thio-Mĭ) 

do support robust sMR production upon dectin-1 engagement, this does not 

occur in the case of bone marrow-derived Mĭ (Jia Wang and LMP, personal 

communications). An intriguing possibility is that in human tissue culture-

based studies the relevance of cMR becomes apparent because MR shedding 

might not occur.  Indeed, it is possible that the balance between sMR and cMR 

could set the fate between escape and protection; something that cannot be 

observed under conditions where there is a complete lack of MR expression 

(i.e. MR-KO animals).  

Therefore, further studies on fungi- and non-fungi- induced MR 

shedding may enlighten the mechanism of how pathogens use or abuse MR to 

modulate the immune response, and can also prove to be useful in developing 

new drug strategies. 
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5. GENERAL DISCUSSION AND FUTURE 

STUDIES 

MR is a type-I membrane protein with a single transmembrane region, 

and a cytoplasmic domain that mediates receptor internalization and recycling. 

Through its extracellular region, MR is involved in the recognition of a wide-

range of ligands, including sugars terminated in SO4-3-Gal or SO4-3/4- 

GalNAc by the CR domain, and sugars terminated in D-mannose, L-fucose or 

GlcNAc by the eight tandemly arranged CTLD. In contrast to the CR domain, 

the CTLD are involved in the recognition of both self- (e.g. myeloperoxidase, 

and lysosomal hydrolases) and non-self antigens (e.g. C. albicans, Leishmania, 

M. tuberculosis, HIV and P. carinii) (Gazi and Martinez-Pomares, 2009).  

In addition to these, MR was also shown to recognise collagen 

molecules through its FNII domain. As collagen is the most-abundant protein 

in animals, it was suggested that MR might also serve as an ECM adhesion 

receptor, which in turn may influence its activity as an endocytic receptor. The 

initial studies presented by this thesis focused on the possible effect of Mĭ 

adhesion to collagen on MR function. 

The data showed that the cellular adhesion to collagen I or IV does not 

influence MR-mediated endocytosis. This was not because of the changes in 

the MR expression as revealed by western blot and qPCR data. Therefore, MR 

may not to participate in ECM adhesion and its interaction with collagen may 

simply be crucial for removing collagen from the microenvironment during 
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tissue remodelling and wound healing. It was also shown that in addition to 

collagen and chondroitin sulphates, MR can also recognise another ECM 

component, laminin, in a mannose-dependent manner via its CTLD4-7 

domain.  

Furthermore, the immunocytochemistry data showed no obvious 

changes in the pattern of MR expression by Mĭ upon adhesion to the ECM 

proteins. However, this does not imply an unaltered MR-expression on the Mĭ 

surface in contact with the adhesive surface.  This can be investigated by using 

confocal microscopy, which in contrast to fluorescence microscopy, can detect 

light emitted only from the focused points.  

A recent study by Sturge et al. showed enhanced random migration of 

MR -/- BM-Mĭ (Sturge et al., 2007). This can be explained by the possibility 

that MR expression at the cell surface may be enough to mediate both the cell-

adhesion and antigen internalization through endocytosis. Thereby 

participation of MR in cellular adhesion to ECM protein-coated wells will not 

affect its function as an endocytic receptor. Comparing the cell migration of 

both wt and MR-KO Mĭ on ECM protein-coated plates may further help to 

enlighten this area of research.   

  As well as a cell-associated form (cMR), MR is also expressed in a 

soluble form (sMR), which is comprised of only an extracellular region of 

intact MR (Taylor et al., 2005a, Martinez-Pomares et al., 2006, Martinez-

Pomares et al., 1998, Jordens et al., 1999). Even though it was initially 

suggested to have an important role in transferring mannosylated antigens to a 
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subset of Mĭ population in secondary lymphoid organs (Martinez-Pomares et 

al., 1999), enhanced sMR production was later shown to assist pathogens to 

evade the immune response by the formation of sMR-coated fungi that cannot 

be phagocytosed by Mĭ (Fraser et al., 2000).  

 In this study it was shown that this way of escaping the immune 

response may also be used by other fungal species, since A. fumigatus, C. 

albicans, and the yeast-derived zymosan particles were able to induce 

enhanced sMR production after an incubation period as short as 3 hours. By 

using ȕ-glucan phosphate and soluble mannan as inhibitors, and dectin-1-KO 

mice, MR ectodomain shedding was shown to be mainly triggered by the 

recognition of the ȕ-glucan component of the fungi cell wall by dectin-1. 

Differential expression of dectin-1 isoforms does not appear to have an effect 

on MR-shedding, since the level of ȕ-glucan-induced sMR production did not 

differ between the C57 BL/6 and BALB/c mouse strains.  

 This enhanced sMR production may also explain the previous 

observation by Heinsbroek et al which reported the absence of MR in the early 

phases of phagosome formation (Heinsbroek et al., 2008). According to this 

study, dectin-1 and CR3 accumulates at the phagocytic cup and as the 

phagosome matures, both of these receptors disappear while MR becomes 

recruited to the phagosomes.  

In agreement with the previous studies by Martinez-Pomares et al 

(1998 and 2006) (Martinez-Pomares et al., 2006) (Martinez-Pomares et al., 

1998), it was shown that the dectin-1-mediated signalling induces MR-
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shedding through membrane-anchored ADAM/MMP activity. In an attempt to 

characterise the protease responsible for the shedding, Mĭ were treated with 

PMA or ionomycin. However, the results are not conclusive as PMA 

surprisingly was not able to induce CD44 shedding, and ionomycin-induced 

sCD44 production was inhibited by the addition of FBS.  

The FBS-mediated inhibition was initially thought to be due to the 

inhibition of the extensive cell death that was observed upon ionomycin 

treatment in serum-free conditions. However, preliminary data showed that the 

uptake of dead cells did not enhance MR ectodomain shedding (LMP, personal 

communications). The alternative reason for the observed FBS-mediated 

inhibition is the presence of BSA in the serum, which was previously 

demonstrated to block ionomycin-mediated synoptosomal hydrogen peroxide 

production and Ca2+ movement through binding the ionophore. Therefore, 

using specific ADAM or MMP knock-out mice appears to be a better way to 

identify the MMP/ADAM responsible for the ectodomain shedding.  

It also appears that the signalling responsible for sMR production does 

not require cross-talk between dectin-1 and TLR signalling, and by using a 

wide-range of signalling inhibitors, it was shown that dectin-1 utilizes both 

Syk-dependent and –independent pathways to trigger sMR production. The 

dectin-1-mediated sMR production was highly dependent on Syk-kinase, as its 

inhibition completely blocked the ectodomain shedding. The cross-talk 

between the Syk-dependent and –independent pathways may occur via the 
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Akt-independent PI3K-pathway whose inhibition also completely blocked the 

ectodomain shedding. 

In an attempt to investigate the effect of other ITAM-associated 

receptors on MR-shedding, mouse IgG-coated latex beads were used in place 

of fungal particles. As was shown in Figure 4.4, there was no enhanced sMR 

production in response to coated or uncoated latex beads. However, this may 

be due to the lack of efficient intracellular signalling, since there was not 

sufficient uptake of latex beads.  Therefore, the possibility of other ITAM-

associated receptors (such as Fc-receptors) being able to induce sMR 

production is still open to debate.  

Phagocytosis is not important for dectin-1-mediated MR-shedding as 

curdlan particles are able to trigger sMR production, and the inhibition of 

phagosome maturation did not alter the level of ectodomain shedding. 

However, actin-polymerisation has an important role in the induction of MR-

shedding since the inclusion of cytochalasin D or latrunculin during the 

treatment with ȕ-glucan particles reduced the level of sMR released. As 

suggested previously by Deslee et al (Deslee et al., 2002), actin-polymerisation 

may be required for MR recycling between the plasma membrane and the 

endocytic vesicles. Further studies with inhibitors specific to endocytosis (e.g. 

dynasore (Newton et al., 2006)) and exocytosis (e.g. botulinum toxin type A 

(Kanno et al., 2009)) are required to clarify the role of actin-polymerisation. 

As sMR production was previously suggested to block phagocytosis of 

fungal particles (Fraser et al., 2000), it was hypothesized that it may also affect 
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the cytokine levels released by Mĭ. For this purpose, the levels of released 

KC, MCP-1, IL-6, and IL-1ȕ were screened, since cMR was previously shown 

to facilitate their production (except for KC) in response to C.albicans 

(Yamamoto et al., 1997) (Heinsbroek et al., 2008).  

The capture-ELISA studies suggested that the inhibition of ectodomain 

shedding by GM6001 does not change the KC and MCP-1 levels in the 

supernatants collected after 3 hours of treatment with HK C. albicans, while 

IL-6 and IL-1ȕ production were below the detection level. Although these data 

imply that sMR production does not have a role in fungi-mediated cytokine 

release, its possible role in the later phases of infection cannot be excluded. As 

was observed by Fraset et al, after a prolonged incubation period, sMR may 

form a protective coat around the fungal pathogen that would disrupt its 

interaction with Mĭ (Fraser et al., 2000).  

Following the treatment of Mĭ with fungal particles, MR-mediated 

endocytosis was significantly reduced. However this decrease was surprisingly 

not as a result of enhanced MR-shedding, since the inclusion of GM6001 was 

not able to restore the level of endocytosis. This may be due to possible lack of 

membrane availability due to the phagosome formation which can be 

confirmed by repeating the same study with curdlan particles which cannot be 

phagocytosed because of their large sizes.  

  In addition to fungal particles, it was shown that particulate HDM can 

also trigger MR-shedding, while it is not evident upon treatment with S. 

aureus. This further emphasizes the importance of ȕ-glucan-dectin-1 
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interaction in the induction of sMR production, since in contrast to bacteria, 

HDM was previously shown to induce the immune response through ȕ-glucan 

recognition (Nathan et al., 2009).  

 However the process of MR-shedding appears to differ from the one 

triggered by fungal particles since instead of one, two sMR populations were 

detected in the supernatants collected from HDM-treated samples. Since there 

is not enough information about the second sMR population which could lack 

the CR domain, as the cMR detected in the small intestine, ELISA based 

binding analysis would help to reveal more about its structure and ligands. 

The cross-talk between MR and dectin-1 encourages the re-

examination of the data on the roles of the two PRRs in anti-fungal immune 

response. For instance, previously MR deficient mice did not display any 

changes in susceptibility to fungal infections and showed minor changes in 

lung pathology and fungal burdens upon infection with P. carinii and C. 

albicans, respectively (Swain et al., 2003) (Steele et al., 2003) (Willment and 

Brown, 2008). This lack of significant difference between wt and MR-KO 

mice may be because of the dectin-1-mediated sMR production that may 

reduce the level of cMR expression on the wt Mĭ surface. In fact, MR-

deficient Mĭ were reported to become less efficient in clearing P. carinii 

(Swain et al., 2003). Accordingly, studies with the inhibition of dectin-1 

expression and/or function also require to be readdressed, since the sMR 

production would not be induced in response to fungal particles.   
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 Therefore inhibition of MR-shedding is essential to identify the precise 

roles of dectin-1 and MR during fungal infections. Inclusion of GM6001 is not 

a reliable approach, as it can inhibit a wide-range of MMP/ADAM, and 

therefore can influence the progress of inflammation independent of MR-

shedding (e.g. TNF-Į release). Instead, point-mutation studies would help to 

identify the sequence/region of MR targeted during the ectodomain shedding, 

and facilitate the generation of mice unable to produce sMR. By knocking 

down dectin-1 or MR expression, the sMR-deficient mice can be used to 

identify the precise roles of sMR, cMR and dectin-1 in triggering the immune 

response against fungi.  

 As revealed by Fraser et al, MR-shedding may be another way of 

pathogens to evade the immune response (Fraser et al., 2000). This can be i) 

either through the reduction of cMR expression level on the cell surface, which 

was shown to facilitate phagocytosis, cytokine production, and antigen 

processing and presentation (Gazi and Martinez-Pomares, 2009), ii) or the 

enhancement in sMR production that may form a protective-coat around the 

invading pathogen (Fraser et al., 2000). However like cMR, the sMR role in 

immune response requires further confirmation since, alternatively, it may also 

play an important role in transferring mannosylated antigens to a subset of 

macrophages present in secondary lymphoid organs (Martinez-Pomares et al., 

1999). Therefore, it is possible to say that the balance between cMR and sMR 

expression may have a decisive role in the destruction of the pathogen.     
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