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Abstract

The implementation and running of physical security systems is costly

and potentially hazardous for those employed to patrol areas of inter-

est. From a technial perspective, the physical security problem can be

seen as minimising the probability that intruders and other anomalous

events will occur unobserved. A robotic solution is proposed using an

artificial immune system, traditionally applied to software security, to

identify threats and hazards: the dendritic cell algorithm. It is demon-

strated that the migration from the software world to the hardware world

is achievable for this algorithm and key properties of the resulting system

are explored empirically and theoretically. It is found that the algorithm

has a hitherto unknown frequency-dependent component, making it ideal

for filtering out sensor noise. Weaknesses of the algorithm are also dis-

covered, by mathematically phrasing the signal processing phase as a

collection of linear classifiers. It is concluded that traditional machine

learning approaches are likely to outperform the implemented system in

its current form. However, it is also observed that the algorithm’s inher-

ent filtering characteristics make modification, rather than rejection, the

most beneficial course of action. Hybridising the dendritic cell algorithm

with more traditional machine learning techniques, through the intro-



iv

duction of a training phase and using a non-linear classification phase is

suggested as a possible future direction.
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Chapter 1

Introduction

“...as if a shuttle should weave of itself, and a plectrum should

do its own harp playing.” - Aristotle, The Politics [circa 230

B.C.]

1
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1.1 Motivation

1.1.1 Physical Security Systems

In financial terms, building security is a large business. In 2006 the

UK Security Industry Authority (SIA) estimated the private security

industry to be worth approximately 4 billion in the United Kingdom

alone [128]. The roles of security staff are diverse. However primary

goals include the prevention of unauthorised intrusion, the inspection of

rooms for missing items and the detection of dangerous events, such as

fires or other factors that could compromise a building’s integrity. All

of these goals can be summarised under the broader heading of “the

detection of anomalous events”.

The current solution to this problem set is “manned security”. This

describes a solution where a number of security staff patrol a building

looking for anomalous events. This is not without its hazards. Coming

between a malicious intruder and their goal obviously carries a great deal

of risk. For this reason amongst others, hybridisation of manned security

systems with static sensor networks is a common practice. Most basi-

cally, this occurs in the form of using closed-circuit television (CCTV)

to augment a staffed solution. These sensors provide additional decision-

making data for the staff and also record events in a manner that can

be admissible as evidence for court proceedings and/or investigations.

In addition, CCTV allows a single guard to monitor multiple points of

interest regardless of their physical location. While CCTV is the most

common static sensor type, others are widely used, such as X-ray ma-

chines, chemical sensors, water sensors and smoke alarms.

However, existing building security solutions are not without their

problems. Systems making use of CCTV suffer from “information over-

load” and the detection rate of “situations of note” reduces dramatically
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as the number of screens observed by a single operator rises. Tickner

et al. [137] estimated that the detection rate for a human operator fell

from 83% for a four camera system, to 64% for a 16 camera system. In

addition, the quality of a static sensor system is obviously highly de-

pendent on the initial placement of the sensors. This is highlighted by

the breadth of work which has been done in the field of optimum sensor

placement algorithms and is typified by computer science’s classic “Art

Gallery Problem” where the objective is to identify the minimum num-

ber of static “guards” required to provide full coverage of an irregular

shaped room [112]. This is made more complex when non-visual sensors

are also used. Devices such as mass-spectrometers, X-ray scanners and

environmental detectors typically have a very limited effective range. As

a result, in order for such sensor types to be useful, they are required

to be placed in bottle necks (e.g. security checkpoints at airports) or

at specific points of concern, (e.g. water sensors on the ground floor of

buildings prone to flooding and smoke alarms in hallways and stairways.)

Once the location of static sensors has been committed, people with the

intention of maliciously bypassing them can attempt to find alternative

routes in order to avoid detection. Where it is not possible to circum-

navigate a static sensor, they are vulnerable to problems of occlusion

and frame of reference. In situations where the sensor’s line of sight is

occluded or the frame of reference is insufficient to provide data about a

specific target, the majority of static sensors are limited to simple pan,

tilt, zoom operations which are not sufficient for all scenarios.

Wholly manned security solutions have additional drawbacks. Manned

security is obviously reliant on rest-periods for the people involved and

the results and quality of detection are highly variable as a result. For

the purposes of investigations, a wholly manned security solution has

no stored log of events other than the highly-subjective human memory.
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During regular operation, security staff are vulnerable to social prejudices

that could make them less effective at stopping certain groups of people.

In addition, manned security has considerably more running costs than

other solutions as it requires labour and training of staff.

1.1.2 Robotic Security

A solution to the building security problem that has been explored in

the literature is a robotic system. While the focus on the specific aspects

of the problem change within the literature, there is some agreement on

the basic architecture such a solution would have. This basic architec-

ture is similar to a static sensor system, with a human guard at a control

station, observing the outputs of autonomous vehicles [20,32,115]. Imple-

mented naively this solution could potentially make the system worse, as

attempting to observe situations of interest is a more complex task with

a moving image than a static one. However, an autonomous solution

would mean that a certain amount of local processing could be done on

the sensor inputs and situations of interest could be highlighted auto-

matically. This level of intelligence could be implemented for a static

sensor system, however there are further advantages that a robotic so-

lution can offer, which a static solution cannot. Primarily, the sensors

can be moved around the situation of interest, providing a much richer

data set. This can be used to overcome occlusion and to move sensors

with a limited effective range closer to the situation as it unfolds. Prob-

lems with bypassing sensors are also reduced, as an autonomous solution

means that the “blind spots” of the system are constantly moving. Work

has been done on increasing the unpredictability of the patrol routes for

such systems, to take full advantage of this property [80]. Obviously

an autonomous solution is not reliant on rest periods, has an electronic

record of events and is not vulnerable to the social prejudices of a wholly

July 20, 2010



1.1. Motivation 5

manned solution. A robotic security guard would also have sociologi-

cal benefits. The nature of the security application is such that a robot

would be minimally invasive into the regular workings of a building, but

would allow people to become more accustomed to the presence of robots

in the workplace. This would help to remove many of the social barriers

when introducing robots into other positions within society.

The implementation of a working robotic security solution poses many

challenges to the scientist. A final solution will be required to implement

goal-based path planning, sensor fusion and perform classifications based

on the environmental conditions to decide if the situation that the de-

vice is in, is within the standard usage of a building or not. All this

must be done using noisy, often conflicting sensor data and in a clut-

tered human-orientated environment. These requirements place several

strict constraints over any candidate solution. Firstly, the solution must

be computationally inexpensive enough to allow the robot to robustly

perform the basic tasks of path planning and obstacle avoidance. A

computationally expensive solution would starve these systems of CPU

time and would lead to the robot’s reaction times falling to levels unsuit-

able for navigating a real-world environment. A second, related, issue

is that the system should be scalable. For a system to be effective for

all building sizes, it must be able to support multiple robots operating

in parallel. While there is no strict requirement that these devices need

to work together, (though it is obviously advantageous) it is necessary

that they perform the vast majority of their processing locally to make

the system robust against network failure and to prevent limitations of

server-side computation placing upper bounds on the number of robots

that the system can incorporate. Thirdly, the final system must have

some form of adaptive intelligence to enable it to adapt to the usage

characteristics of a specific building. Without this, the system will re-

July 20, 2010



1.2. Thesis Structure 6

quire a significant level of manual adjustment before it is possible to

apply it to a previously unencountered building.

1.1.3 Artificial Immune Systems

A family of algorithms known for being scalable and adaptive are those

associated with the field of artificial immune systems, (AISs). In addi-

tion, some algorithms within this field have been shown to be compu-

tationally inexpensive, compared to their counterparts from other areas

of computer science [42,105]. This field attempts to develop models and

subsequently algorithms based on the operation of the (typically mam-

malian) immune system. There are many appealing properties of the

immune system that make it suitable as the basis for computational al-

gorithms. The system is scalable, asynchronous and exhibits properties

of memory and signature-based processing [21]. One algorithm of par-

ticular interest within a security context is the dendritic cell algorithm

(DCA). This algorithm, based on the operation of biological dendritic

cells, has been used successfully within computer security [47]. The at-

traction of this algorithm stems from its low computational cost, sensor

fusion [46] and its capability to make decisions based on multiple, often

conflicting, data sources. While its batch processing nature means that

it is not directly applicable to a robotic security problem, it is of interest

to see if an algorithm that has been successfully applied to computer

security can make the transition into a physical security problem.

1.2 Thesis Structure

This thesis is primarily an investigation of the dendritic cell algorithm,

using the robotic security problem as a case study application to provide

complex, noisy data. As a result, the structure of the thesis is as follows:
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1.3. Research Questions 7

Chapter 2 is a critical analysis and review of the related literature from

the fields of artificial immune systems and robotics; Chapter 3 presents

the development and experimental validation of a robotic dendritic cell

algorithm; Chapter 4 explores the findings of the prototype through a

theoretical analysis of the algorithm in the frequency domain; Chapter 5

discusses the short-comings of a frequency driven technique for param-

eter tuning and population-wide modelling; Chapter 6 uses the findings

from the previous chapters to develop an adaptive security system based

on the dendritic cell algorithm; Chapter 7 presents a theoretical analysis

based on linear classifier systems to analyse how the dendritic cell algo-

rithm stands up against more common machine learning techniques and

Chapter 8 contains a discussion and suggested future work.

1.3 Research Questions

In this section the research questions that this thesis intends to address

will be presented. Each question will subsequently be discussed in turn

and the motivation for exploring these issues will be explained.

1.3.1 Migrating from Software to the Physical World

Can an immune-inspired, anomaly detection algorithm be

adapted to solve threat detection problems in the physical

world, through the medium of a robot?

Robots provide computer science with the opportunity to give previously

abstract software agents the means to interact with the real world. This

is particularly pertinent to bio-inspired algorithms, where the underlying

mechanism is abstracted from a physical system to begin with. In these

cases, the return to an embodied system acts to close the loop between

the physical world and the computational abstractions taken from it, and
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goes some way to validating that the abstraction retains some properties

that make it able to function in the real world. Artificial intelligence

and image processing are both heavily connected to robotics, with some

researchers claiming that artificial intelligence is an unachievable goal

without a robotic solution bridging the gap between the software and

the real world [117]. The possibility that an algorithm designed to safe-

guard the virtual resources of a computer could also safeguard physical

resources is an appealing one. However, the decoupled approach of de-

veloping software and then porting it to robotics has been criticised in

the past for generating unwieldy computational systems or unrealistic

abstractions [16]. Despite this, at the application level, it is still possible

that there are strategies that can still be imported. By demonstrating

that it is possible to move some, or all of a computer security decision

making algorithm to a robotic platform, a step is taken towards char-

acterising those algorithms that are able to make this transition. In

addition the successful implementation of such a system has the obvious

practical benefits of demonstrating that existing technology is capable of

delivering a physical security solution.

1.3.2 Emergent Properties of the Dendritic Cell Al-

gorithm

Does the dendritic cell algorithm have properties that were

not explicitly added as part of its design, which could be

advantageous to a robotic application?

Little work has been done to explore the dendritic cell algorithm (DCA)

from a theoretical viewpoint. It is the aim of this investigation not to

simply provide another black-box, empirical exploration of the DCA,

but to also examine how a collection of seemingly simple agents are able
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to make collective decisions in the face of conflicting, noisy data. This

exploration will be taken specifically from the perspective of a robotic

application, focussing on issues such as noise and the relationship between

this algorithm and more traditional machine-learning decision making

techniques. For this investigation properties which can be described as

‘emergent’ are defined as “properties that were not explicitly added as

part of the design”. Properties that are considered to be advantageous to

a robotic system are tolerance to noise and the ability to make decisions

in the presence of conflicting information. These are considered useful to

robotics as they are properties which allow intelligent agents to function

despite the noise and complexity of real-world data.

1.3.3 Applying The Dendritic Cell Algorithm to a

Robot

Is it possible to adapt the dendritic cell algorithm from being

a batch system to a system that can operate on a robotic

platform?

Current work on the DCA uses the algorithm as a batch processing sys-

tem. In addition, as a relatively new algorithm, the DCA has not been

reviewed to assess its computational cost. For this application and this

investigation to be successful, it must be possible to transform the ex-

isting algorithm into something that can provide answers fast enough

to be of use within a dynamic environment. However, it is important

that such a transformation should not come at the cost of removing the

core properties of the abstractions that lie at the heart of the algorithm.

An important step in identifying if the algorithm is fit for purpose is to

recognise the hard and soft real-time constraints placed upon the system.
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1.3.4 The Benefits of the Dendritic Cell Algorithm

Are there other algorithms with functional equivalence to the

dendritic cell algorithm, which can outperform it in terms of

reduced computational complexity or superior performance,

for the threat detection problem?

It is not sufficient to simply demonstrate that the DCA is able to ap-

proach the threat detection problem. It must also be demonstrated that

doing so has advantages over other techniques. However, to make such a

claim based on empirical evidence alone carries with it significant risks.

Any direct comparisons with respect to speed or quality of performance

would rely on a functional like-for-like implementation of a comparable

algorithm. As shall be discussed in greater depth in Chapter 2, this is

not a trivial task as the DCA is yet to be fully characterised. Also, many

decision making algorithms in the literature require a training phase, so

an empirical comparison would either entail using a trained algorithm

or the construction of another system based on expert knowledge. Not

only would the comparison between a trained system and the DCA be

non-equivalent, but the selection of training data could unfairly bias the

results of such a comparison. The performance of an expert system ob-

viously relies heavily on the knowledge from the expert and the way

in which it is captured and used, another potential source of bias. A

more sound approach is to theoretically characterise the operations that

the algorithm performs and then explore its relative benefits with other

approaches function by function from a theoretical perspective, thus re-

ducing the risks of bias from input data selection and non-equivalence.
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1.4 Thesis Contributions

This thesis provides several contributions to the fields of robotics and

artificial immune systems.

• It is demonstrated that the dendritic cell algorithm is capable of

running on a real robot without impairing the robot’s ability to

perform its normal tasks such as obstacle avoidance and route plan-

ning. Related publication:

– Oates, R., Greensmith, J., Aickelin, U., Garibaldi, J., and

Kendall, G. The application of a dendritic cell algorithm to a

robotic classifier. In ICARIS ’07:Proceedings of 6th interna-

tional conference on Artificial Immune Systems, 204–215

• The properties of a single, virtual, dendritic cell in the frequency

domain are derived and expressed as a function of the input pa-

rameters to the algorithm. Related publication:

– Oates, R., Kendall, G., and Garibaldi, J. Frequency analysis

for dendritic cell population tuning. Evolutionary Intelligence

1, 2 (June 2008), 145-157

• It is clearly demonstrated that frequency analysis alone is insuffi-

cient to create a full operational understanding of the algorithm.

Related publications:

– Oates, R., Kendall, G., and Garibaldi, J. M. The limitations

of frequency analysis for dendritic cell population modelling.

In ICARIS 08: Proceedings of the 7th international conference

on Artificial Immune Systems, 328–339

– Oates, R., Kendall, G., and Garibaldi, J. Frequency analysis

for dendritic cell population tuning. Evolutionary Intelligence

1, 2 (June 2008), 145-157
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• A novel, adaptive robotic security application is developed through

the interfacing of the dendritic cell algorithm to a neural model.

Related publication:

– Oates, R., Milford, M., Wyeth, G., Kendall, G., Garibaldi,

J. The Implementation of a Novel, Bio-Inspired, Robotic Se-

curity System. In ICRA ’09: Proceedings of the 2009 IEEE

International Conference on Robotics and Automation, 1875–

1880

• The limitations of the dendritic cell algorithm are highlighted and

future improvements suggested by analysing the algorithm using

linear classifier modelling. Related publication:

– Stibor, T., Oates, R., Kendall, G., Garibaldi, J.M.: Geomet-

rical insights into the dendritic cell algorithm. GECCO 2009:

Proceedings of the Genetic and Evolutionary Computation

Conference 2009 1275–1282
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Related Work

“Books serve to show a man that those original thoughts of

his aren’t very new after all.” - Abraham Lincoln (1809-1865)
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2.1 Mobile Robotics

2.1.1 Introduction

The field of robotics is a diverse and challenging research area. A wealth

of active research is being carried out internationally, with the general

aims of improving the reliability and applicability of robotics as a tool.

It is necessary to present a brief explanation of the history and language

of robotics before a full understanding of the current research landscape

can be conveyed. The subject of this document forms part of the field of

mobile robotics, (i.e. the study of intelligent vehicles) as opposed to man-

ufacturing or industrial robotics. Mobile robotics has become a complex,

multi-disciplinary topic requiring mechanical, electrical and electronic

engineering as well as software engineering to make a fully functioning

system. The field’s progress has been supported by the evolution of

micro-electronics and has, unsurprisingly, had a strong connection to the

progress of artificial intelligence. The first two sections of this chapter

provide a review and discussion of the literature pertinent to some of the

key issues in the field of mobile robotics in general and robotic security

in particular. The latter two sections examine a group of biologically in-

spired algorithms known as ‘artificial immune systems’ and applications

of those algorithms on robotic platforms.

2.1.2 Architectures for Mobile Robotics

Many early robotics projects, such as The Stanford Cart [102], used

complex models and symbol systems to represent and reason about the

world. This ‘sense-model-plan-act’ (SMPA) approach has parallels with

the symbol systems approach to artificial intelligence, known colloquially

as GOFAI, (Good Old-Fashioned Artificial Intelligence). However, this

approach was computationally intensive and required sensor information
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to be streamed to a separate computer for analysis before the final model

was generated. This has obvious drawbacks as the models could easily

become out of date and unusable in the time it took to transmit and

compute them.

The separation of robotics, artificial intelligence and image processing

left many researchers looking to more powerful computers as a solution to

the problem of achieving real-time control. However, just as the advent

of trainable, multi-layer neural networks saw sub-symbolic artificial intel-

ligence gain popularity, robotics also went through a transition which led

to the emphasis of the ‘intelligence’ moving from model building to ‘re-

active’ and ‘physically grounded’ architectures. In 1990 Rodney Brooks’

seminal paper “Elephants Don’t Play Chess” [16] launched a scathing

critique on the use of symbolic artificial intelligence as a means of robot

control. In addition, Brooks goes on to draw, explicitly, the parallels

between GOFAI and the ‘sense model plan act’ school of robotics and

provides several examples of robots that have achieved relatively com-

plex behaviours without using a model at all. This paper encapsulated

a growing rejection of SMPA architectures in favour of techniques that

abandoned the concept of using a model of the real-world altogether.

The journey away from modelling had already been started by several re-

searchers who had produced encouraging results from architectures that

simply reacted to the current sensory input to the system, known as

reactive architectures.

In 1984 Braitenberg produced vehicles that performed relatively com-

plex tasks, not only without the use of a model, but without the use of

a digital processor [14]. The “vehicles” experiments relied entirely on

weighted connections between sensors and actuators, demonstrating the

power of systems modelled on the “reflex-arcs” found in biological organ-

isms. Brooks’ earlier research was also part of this rejection of SMPA
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and had produced a robot control architecture known now as ‘the sub-

sumption architecture’ [15]. This architecture shuns the standard, serial

process of sensing, modelling, planning and then finally acting. Instead

it uses a more parallel technique which relies on several, much-simpler

systems reacting to the sensory data directly and each requesting an ac-

tion from the actuators. These behaviours are connected in a hierarchical

fashion which ensures that, in the event of a conflict, the lowest-level be-

haviours take priority over the higher-level behaviours. The aim of the

subsumption architecture was that, at the bottom, behaviours to prevent

damage to the robot or its environment, such as emergency stopping cri-

teria, would take precedence over more complex and ultimately more

‘luxurious’ behaviours, such as reasoning about the world. Such was the

impact of this technique that today many manufacturers of mobile robots

provide APIs (Application Programming Interfaces) that are deliberately

structured in this way, (for example MobileRobots Incorporated’s ARIA

API). Reactive architectures have now been applied to a wide-variety of

robotic control techniques. Under-water navigation, elaborate animal-

inspired behaviours [18, 25, 126] and a variety of obstacle-avoidance and

tracking tasks [15,16,126], have been successfully implemented reactively.

Reactive architectures were far from a panacea. From the outset many

researchers argued about both the technical and philosophical ramifica-

tions of the reactive paradigm. Ziemke [155] summarizes what he feels

are the five key, contradictory definitions of the phrase “embodiment”,

from the most relaxed “structural coupling”, (requiring only that the

agent be capable of changing the state of the environment and vice-

versa), to the most extreme “organismic embodiment”, (requiring the

agent to actually be constructed from organic materials). However, the

philosophical debates were overshadowed by the more practical issues

of the algorithmic limitations of a system without a model. Many re-
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searchers found that not having a model meant that architectures could

be vulnerable to unexpected interactions and fail to infer things from

information that was available to them. The capacity to guard against

uncertainty and infer information from experiences were properties of the

traditional SMPA architectures. In [150] the history of several museum

tour robots is presented, and illustrates many of the problems with the

reactive architecture. These issues include the robot failing to find its

docking bay because the security guards turned off the lights prematurely,

causing the robot to lose its way. It is argued that with a model, and

a dead-reckoning algorithm, the robot would have been more resilient

to this type of sensor failure. Local minima problems were also encoun-

tered, where the reactive controllers failed to spot cyclic behaviours. The

roots of these criticisms stem from the difficulties associated with repre-

sentation within a reactive architecture. With no model, the ‘knowledge’

within the system is represented in a much more abstract way than for an

SMPA architecture. This can make the design and the predictability of

reactive systems extremely complex. In [7] Arkin summarises these issues

and presents a case for hybrid architectures using reactive behaviours for

lower-level systems and behaviours with formal models for higher-level

systems.

2.1.3 Localisation

A fundamental problem with mobile robotics is that of localisation. Many

applications are only achievable if the robot has some estimate of its po-

sition in the environment. For example, reconnaissance tasks are useless

without some knowledge of where the robot’s data is coming from and

transportation tasks are of little use without the robot being able to guar-

antee that the items being transported will reach their goal. Many algo-

rithms exist to localise a robot, such as Kalman filters [66] and Bayesian
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Methods such as particle filters [41]. However, in order to localise a robot

in space, a map of that environment is required to support localisation

hypotheses. This is an acceptable constraint for known environments,

but there are several applications where this is not possible. Situations

where the robot must localise itself and build a map of the environment

at the same time fall under the heading of “simultaneous localisation

and mapping” (SLAM), an active research area in robotics. One of the

most popular techniques for solving SLAM involves iteratively building

a probabilistic map, using a specially modified version of the Kalman

Filter, first proposed in [129]. However, different hardware configura-

tions and environments place different constraints onto the problem and

a large repertoire of SLAM algorithms are now available to the roboticist

to match the diverse challenges posed by these constraints. A relatively

new addition to this repertoire is the biologically inspired RatSLAM al-

gorithm, for vision-based SLAM in dynamic environments.

The RatSLAM Algorithm

In 2003 Milford et al. put forward a prototype algorithm for performing

SLAM using only vision sensors [96]. The initial work was inspired by

biological research that had suggested that rats have collections of cells

which represent their position and orientation in space within their hip-

pocampus [65,87,111,136]. These cells, termed ‘head direction cells’ and

‘place cells’ represent the rat’s estimate of its orientation and position in

space. The initial prototype was able to emulate orientation cells using

a continuous attractor network, (a type of neural network similar to a

Hopfield network). By stimulating the head direction cells, the network

dynamics eventually settle into a state where one cell is significantly more

stimulated than the others. Each cell is associated with a specific angular

range. The ‘winning’ cell is considered to be the most likely estimate of
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the robot’s orientation. Initially the input to the network was based on a

simple vision system which estimated the colour, distance and direction

of a series of coloured cylinders in an artificial environment. Hebbian

learning is used to associate specific ‘local views’ (estimates of cylinder

direction and distance) to a direction cell. This process ensures that if

a specific scene is viewed again, it stimulates the associated local view

cell and updates the robot’s direction estimate. In [93] this work was

extended to be able to support multiple estimates of the robot’s pose

through network dynamics that allowed several collections of cells within

the attractor network to remain stimulated, even in the face of a clear

winner. This extension was demonstrated to operate within an indoor

environment, and was able to estimate both orientation and location for

a mobile robot. In [120] the ‘local view’ cells were significantly improved.

This work demonstrated that the algorithm was able to identify visual

landmarks of note, without the need for an artificial environment. The

new local view cells used feature extraction to associate automatically

generated templates with specific poses. A similarity metric assessed

each scene presented to the robot and checked it against the existing

local view cells. If it matched a given template, that template was al-

lowed to stimulate the pose associated with it. However, if the difference

exceeded a given threshold, a new template was built and added to the

environment. This improved version of the algorithm was not only able

to map an unknown test environment indoors and outdoors, but was also

shown to be robust against ‘kidnapping’, (moving the robot so that its

estimate of its location was compromised) [94,121].

In 2005 the algorithm was improved further through the addition

of ‘experience maps’ [91]. Up until this point the maps produced had

been topologically accurate but spatial information was held in a highly

abstract way which made generating a human-readable map difficult.
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Experience maps were an additional collection of objects that explicitly

linked local view cell information to x, y, θ values. By recording these

and the odometry information that linked them, human-readable maps

could be produced. Again, the visual information presented to the robot

was used to determine which ‘experience’ most closely resembled the

current experience. If no close matches were found, a new experience

was produced. Experience mapping also reduced the number of pose

cells required to represent a given space as the experience map allowed

pose cells to be reused more efficiently [92,95].

The RatSLAM algorithm has been shown to be able to map large

outdoor environments and small indoor environments with no changes

to its parametrisation [90] and has even mapped an entire city-suburb

using only a webcam [97,98].

2.1.4 Swarms of Agents

Robotics provides computer science with the means to bestow previously

abstract algorithms the capacity to directly interact with the physical

world. In section 2.1.2 architectures were introduced which placed the

‘intelligence’ of a system into the interactions between the agent and its

environment. This concept of ‘intelligence through interaction’ has been

taken further by the various fields which utilise swarms of agents. In

these areas agents must not only interact with their environment, but

also other agents attempting to perform the same overall goal. This sec-

tion will explore two fields that utilise swarms of agents, swarm robotics

and particle swarm based optimisation techniques. The aim of this review

is to provide the reader with an insight into the power behind collections

of interacting agents, (such as those found within the dendritic cell al-

gorithm) and to justify the assertion that any candidate solution for the

threat detection problem should be inherently scalable, so that it could
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reap the rewards of a multi-robot implementation in the future.

As with many relatively new disciplines, there is much debate in the

literature about the exact definition of a swarm [125]. For the purposes

of this work, the definition outlined by Hinchey et al. will act as a

guideline [59]. The most fundamental requirement is that a swarm is

a collection of agents, this implies that each member of the swarm has

some individual intelligence. In addition, Hinchey et al. go on to assert

that swarm members must be able to interact with both the environment

and a subset of the swarm group [59], thus allowing complex behaviours

to arise from the interaction of simpler parts.

Arkin describes the properties of swarms that make them such an ap-

pealing concept to robotics developers [7]. Firstly, tasks that are “natu-

rally decomposable” can obviously be performed quickly and efficiently in

parallel by a swarm of robots. Secondly, robotic swarms facilitate “task

enablement”, i.e. there may be tasks that an individual robot cannot

physically or computationally achieve, but a group of similar robots can.

Thirdly, a swarm of robots provides distributed sensing and acting, allow-

ing a robot to make decisions using more complete environmental knowl-

edge and effect actions on several, distant locations. Finally, swarms are

highly fault tolerant, as they typically have a significant amount of func-

tional redundancy. There are of course negative aspects to creating a

robotic swarm. Arkin describes four key issues with the implementation

of a swarm robotic system, as opposed to a single robot system: Inter-

ference; Communications Cost; Uncertainty and System Cost. The issue

of ‘interference’ stems largely from the physical instantiation of robots.

Robots can occlude line of sight and obstruct paths, which can make

goal achievement difficult or impossible. The cost of communications is

a significant problem, as power is a scarce resource for a mobile robot

and any unnecessary transmission is detrimental. Uncertainty can be
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introduced by swarm robotic systems, as with no centralised control, a

poorly designed system can result in agents competing for resources and

reducing the efficiency of the group as a whole. Finally the issue of sys-

tem cost arises from the concept that multiple simple robots may cost

more than a smaller number of more complex robots.

The problems associated with interference, communications cost and

uncertainty are addressable at the system architecture level. By carefully

selecting the protocol and rules for interaction it is possible to limit the

effects of these issues. Amongst the more popular swarm architectures

is the “Alliance” architecture, presented in [114]. This architecture is an

extension of Brooks’ subsumption architecture [15], discussed in section

2.1.2. Like the subsumption architecture, Alliance allows the overall be-

haviour of a robot be determined by the interactions between a series of

simple, low-level controllers. However, these controllers are not always

active. Instead, groups of low-level behaviours are identified that achieve

different, useful actions. In turn the active group or “behaviour set” is

selected by a series of “motivational behaviours” which determine the

best action to take using both local information and the active actions

of near-by robots. By only communicating the active action to nearby

neighbours the communications cost is quite small and there can be no

uncertainty about the intentions of the robots in a given neighbourhood.

However, problems caused by physical occlusion are not fully addressed.

Parker et al. extended the original Alliance architecture to allow the rela-

tionships between actions and motivational behaviours to be dynamically

adjusted to improve group-wide performance [113]

The applications for swarms of robots are varied. In [10] the authors

attempt to discern a taxonomy of the published application areas for

swarm robotics. In the paper, the authors are able to subdivide swarm

robotics into eight smaller groups, though four of these primarily revolve
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around structured movement for problem solving based on flocking. So

far we have considered agents that have been physically instantiated as

robots. However, a common use of the power of flocking is the parti-

cle swarm optimisation technique, an algorithm utilising purely software

agents.

Particle swarm optimisation techniques were first developed in [67].

Since that point they have been successfully applied to a wide range

of applications such as electrical and electronic design problems, control

parametrisation and signal processing problems [118]. In such techniques,

agents are distributed throughout the search space and explore it as a

swarm. The velocity of each member of the swarm is calculated using a

velocity update equation which is typically a linear combination of the

position of the best point found by an agent’s social group, the posi-

tion of the best point found by the individual agent and random noise

variables used to invoke exploration of the space. The social groupings

of the agents are typically predetermined before the search begins, and

the position of the agent is updated by integrating the velocity vector

defined by the velocity update equation. There are various forms of the

velocity update equation, as new variants have been introduced to com-

pensate for problems with unconstrained movement and unstable trajec-

tories through the search space [118]. In [119] an overview is provided of

the more popular velocity update equations and social network topolo-

gies is provided. In [119], Poli et al. also present a series of dynamic

strategies for redefining the network topology as the search is made, in

order to exploit discovered information about the search space. Of in-

terest for this investigation, Poli et al. also describe attempts that have

been made to theoretically analyse particle swarm techniques, concluding

that the stochastic, multi-agent nature of the algorithm makes analysis

using standard techniques difficult.
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Much of the research presented in this section has focussed on spe-

cific algorithms for localisation or cooperative swarms. However, general

research into robotics and agents is rarely conducted from a purely the-

oretical perspective, instead applications are utilised to provide useful,

real-world problems with which to explore the algorithms and hardware

of robotic systems. The rest of this investigation of related work will take

this application-orientated approach to the literature.

2.2 Robotic Security

Chapter 1 introduced the benefits of introducing robotics into a security

setting. A major problem with the concept of robotic security is that

very few researchers in the field agree on a definition of the problem to

be solved. In [60] an attempt is made to make clear distinctions between

several, related problem areas which the author describes as ‘exploratory

missions’. Seven problem types are identified including military recon-

naissance, urban reconnaissance and security patrolling. The two recon-

naissance tasks are separated by the fact that the environment in urban

reconnaissance poses additional challenges in that the field of view is lim-

ited and wireless communication range is restricted. Security patrolling

is described vaguely as the act of keeping “an area safe”, though no def-

initions are provided of the potential hazards. Further work from the

same research group places an emphasis on sensor coverage through the

deployment of multiple ‘scout’ robots from a larger ‘ranger’ robot [123].

In this paper, the threat detection algorithm is a simple motion detec-

tor based on frame differencing. Frame differencing is a severely limited

form of motion detection as it cannot compensate for the movement of

the robot itself, instead requiring that the robot remain stationary dur-

ing its detection phase. This negates many of the advantages of using a
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robot for a security application.

A much more useful definition for robotic security comes from the

work of Massios and Voorbraak [83, 145]. The focus of Massios’ work

is for the surveillance and detection of building fires [82]. Probability

distributions based on the likelihood of fires breaking out are used to

plan an efficient patrol route around an area which will minimise the

cost of any potential fire and minimise the probability that any fire will

go un-noticed. Contributions include a detailed comparison on the per-

formance of several heuristics designed to reduce the planning time for

near-optimal solutions [83]. Massios explicitly states several assumptions

of the work, including that the robot is always perfectly localised, it can

always sense a threat when in the presence of one and there is only one

‘virtual sensor’ to be monitored, considered to be the result of sensor

fusion. These assumptions implicitly define the robotic security problem

as one that requires localisation, threat detection and sensor fusion. In

earlier work, Voorbraak and Massios explicitly state that it is very im-

portant, that in the future, researchers focus on the automatic detection

of threats, to complement their contribution of an efficient routing algo-

rithm [145]. Figure 2.1 is a proposed architecture for a robotic security

system inferred from the work of Massios [83]. The proposed architec-

ture divides the robotic security problem into two parts, ‘routing’ and

‘problem identification’. The routing aspect of the problem is further

subdivided into three parts: the basic avoidance of obstacles, the min-

imisation of the probability that an important event will be missed and

the localisation of the robot within its environment. The problem identi-

fication aspect of the problem is subdivided into two parts: the fusion of

sensor data from multiple sources, allowing the on-board ‘model’ of the

environment to have high fidelity to the real world and the classification

of that data to identify situations of note.
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Figure 2.1: The Structure of the Robotic Security Problem

Automatic threat detection is not a new topic in the world of static

sensors. In [9] a formal logic system is developed using Prolog that is

intended to work with multiple sensor types to identify the presence of

threats using static sensors. By assigning costs to the use and processing-

times associated with each sensor, game theory is applied to determine

which sensors should be used at which times. As with any formal logic

system, this approach cannot detect any events that the developer has

not reasoned about beforehand, nor can it adapt to persistent changes

in the environment, such as long-term engineering works in the field of

view of the system. The work presented is only theoretical with no re-

sults from actual sensor systems. Threat-detection in static sensors has

additional complexity as without the mobility of a robotic solution, once

recognised, a target of interest must be tracked across multiple cameras

as it moves through the observed space. Work presented in [89] suggests

a modified version of the Kalman filter to facilitate multi-sensor track-

ing. However the Kalman filter is sensitive to the parametrisation of the

probability distributions used to represent the noise characteristics of the

sensors and the target’s movement behaviour. Mikic et al. make no at-

tempt to modify these distributions on-line, suggesting an assumption
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that all targets will have the same underlying characteristics [89]. The

results presented are from artificial data, so it is difficult to judge the

practicality of such a system. Strategies from static sensor networks may

not translate to a robotic setting. Static sensors can be connected with

higher fidelity to powerful computer systems, whereas a mobile security

robot may become transiently out of communications range from a given

base-station. In addition, static sensors do not need to compensate for

optical changes that arise from movement, such as optic flow, changes

in lighting conditions and transient occlusion. Despite these limitations,

there are still things to learn from the field of static sensor threat de-

tection. Work based on colour analysis and clustering techniques has

been shown to translate into a robotic setting, with the caveat that a

database of images exists for the robot’s environment which define the

‘normal’ state of the building [20]. This assumption does place a large

memory requirement on the system and is limited to the detection of

missing objects and the presence of non-standard objects. As with the

majority of robotic threat detection literature, the system would be use-

less during the hours of operation of a building, as the presence of any

dynamic object, (such as a person) would trigger an alarm.

2.2.1 Military Case Studies

Combat robots have received considerable coverage in the media, but

the majority of them are simply teleoperated devices with no on-board

intelligence. Within the literature, two military projects to automate

physical security tasks using robotic platforms are documented. Both

projects come from the Mobile Detection Assessment and Response Sys-

tem (MDARS) project, a joint research collaboration between the Amer-

ican army and navy. The aim of the project is to develop a collection of

robots and associated control software, capable of automating many of
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the standard patrol-based security tasks involved with securing a military

base [19]. A military base provides an excellent prototyping area for a

security robot as the environment is known and well-constrained, under

‘friendly control’ and can support limited modifications to make naviga-

tion and sensing easier [33]. As it was recognised that the constraints

and requirements for patrolling the inside of a warehouse are significantly

different to those posed by patrolling an outdoor area, the project was

split into MDARS-I (internal) and MDARS-E (external). Ultimately,

the aim is to reintegrate the projects at the user level, so that a single

operator will be able to monitor both sets of robots [73]. The project’s

overall structure fits the template given in Figure 2.1, separating the

threat detection and routing problems. The MDARS project defines the

physical security problem as both the identification of missing inventory

items and also the detection of fires, flooding and intruders [33].

The external phase of the project uses a modified four-wheel drive

vehicle to travel autonomously around the military base. The external

vehicles check doorways and barriers to ensure that the magnetic locks are

in place and are equipped with RFID scanners to check that inventoried

items are in the locations that they should be [29]. In addition, they are

fitted with thermal imaging cameras to perform intruder detection [115].

A paintball gun is mounted on some of the robots to investigate the

potential use of teleoperated non-lethal weaponry. However, several lim-

itations to the external project bring into question its usefulness. Barrier

detection is performed by polling sensors already built into the doors.

As the location of doors is somewhat constrained, it is curious that the

sensors are not simply polled remotely. The RFID tags on inventoried

objects could easily be detected at bottle-necks by stationary readers,

to prevent them from being taken off-site. Were a malicious intruder to

remove the RFID tag and leave it behind, the robot would consistently
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report that the object is safely stored, potentially introducing a delay

in the detection of missing military equipment. Finally, the intruder de-

tection algorithm is extremely simplistic and cannot perform while the

robot is moving. Instead, the infra-red cameras detect heat and cause

the robot to stop, allowing it to perform motion detection.

The internal project has undergone the most change, with several

robots being prototyped and re-engineered since 1982. The internal

robots perform the same simple intruder detection as the external robots,

using infra-red sensors and low resolution cameras. They also perform

the same RFID-based inventory checking. In order to improve the re-

liability of the robot’s navigation through a warehouse environment, a

hybrid system uses reflective markers to localise itself in certain areas

and a reflexive navigation behaviour to move between the markers [32].

In Chapter 1 the possibility was raised that using robots to perform se-

curity patrols could reduce the effectiveness of the security system by

making the patrol routes predictable and therefore, avoidable. This is

compensated for by the MDARS-I project by identifying ‘idle’ robots

that are neither in service nor charging, and sending them on random

patrols. Despite the constrained nature of a military warehouse, there

are several documented problems that have arisen throughout the his-

tory of the project. In [34] a detailed description is given of the process

of moving the robot from a laboratory space to the real-world and the

associated issues. These included the discovery of software failures that

had previously gone undetected, (overflows from sensor readings due to

the larger space being monitored). Several of the issues were caused by

the brittleness of the system. Most worryingly, the system’s reliance on

a modified environment was undermined, when one of the ‘immovable’

markers was moved by a forklift truck which crashed into one of the

pillars.
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The latest robot to be used as part of the MDARS-I project is Ro-

bart III. This is a highly advanced system which is capable of deploying

additional slave robots to help it to achieve various tasks [24]. The slave

robots are capable of acting as wireless relays to prevent the main sys-

tem losing communications with the robot. In addition, the slave robots

can be deployed at bottlenecks to prevent intruders from leaving a room

unnoticed while the master robot is patrolling it. Despite the extremely

simplistic intruder detection algorithm, Robart III can be put into a

fully autonomous mode, allowing it to fire its non-lethal weaponry at

targets [39]. This weaponry includes a tranquilliser-dart firing Gatling

gun, an optional BB gun and a powerful light and sound system designed

to disorientate humans in close proximity to the robot. Placing the con-

trol of even non-lethal weaponry with such a simplistic intruder detection

system raises significant moral questions. It is of note that the work pre-

sented in this thesis is intended to augment a human-orientated security

solution where any intervention should be performed by humans directly,

limiting the robotic system to highlighting threats to human operators.

Much can be learned from the case studies presented here. The prob-

lems that the MDARS project has encountered highlight the importance

of autonomy for mobile security robots. Even in a military base it was

not possible to guarantee that the robot would have permanent com-

munications with the base station, leaving potential blind spots in the

system. In addition the lack of adaptation by the software meant that

the resulting system was brittle and unable to compensate for changes

in the environment that resulted from the day-to-day operation of the

building. It is also of note that the MDARS-I system fails to perform

any real sensor-fusion, which limits the range of possible threats that it

can detect.

So far this exploration of related literature has focussed on robotics.
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However, robots are a tool and it is difficult, or even impossible, to as-

sess them without either their environment nor their goals to provide

the context for their actions. As a result, the specific application area of

security robotics has been explored, but was found to be lacking scalable

solutions capable of sensor fusion and adaptation. Not only is this a gap

in the knowledge of robotics which could be both useful and interesting

to cover, but the robotic security setting also provides a rich and complex

setting with which computer science can investigate existing algorithms

and explore their limits. An area of research that has been shown to pro-

vide algorithms and solutions which are scalable, capable of adaptation

and data fusion is the field of artificial immune systems. This relatively

new field of research focusses on copying the properties of the biological

immune system, a decentralised system which processes multiple sources

of information and exhibits the ability to learn and adapt [57]. In the

next section the field of artificial immune systems shall be explored, and

it will be demonstrated that there are algorithms within the field that not

only exhibit the properties that are required to solve the robotic security

problem, but also are yet to be fully characterised, so would benefit from

being applied to such a challenging area.

2.3 Artificial Immune Systems

2.3.1 Introduction

Artificial immune systems (AISs) are a diverse collection of algorithms

and models which attempt to capture or mimic the behaviour of some

part of the immune system. While some work has been carried out on

modelling immune functionality purely for the purposes of furthering the

understanding of the system in biological terms, the majority of the work

in AIS is centred around the creation and application of computational
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algorithms.

The remainder of this review of related work has four aims. Firstly,

to explain the basic metaphors that underpin the most common artificial

immune system algorithms. Secondly, to explore, in depth, the exist-

ing research on the dendritic cell algorithm. Thirdly, to introduce and

explore work relating to the theoretical analysis of artificial immune sys-

tems. Finally, to introduce and explore work relating to the application

of artificial immune systems on robotic platforms.

As immunological concepts are not common knowledge, the pertinent

metaphors for the standard immune-inspired algorithms will be intro-

duced. Also, in order to fully explain the attraction of immunology as an

inspiration for computational research, some of the differing viewpoints

from the biological community will also be discussed. However, this work

is from a computer science perspective and, just as it would be incon-

gruous to discuss, for example, the functionality of neuronal sodium-

potassium pumps in a neural networks work, every attempt will be made

to prevent biological content from detracting from the algorithmic per-

spective of this review. A more biologically orientated introduction to

immunology from a technical perspective is given in [116].

2.3.2 Immunological Concepts

Biological systems are often thought of as physically bounded constructs

of cells. The cardiovascular system, for example, is clearly delineated as

the heart, lungs and blood vessels, despite its pervasive interactions with

the rest of the body. However, in modern biology there is little agreement

on the boundaries of such a separation for the immune system. The fun-

damental structure of the body is designed to protect itself from external

pathogens, (such as parasites and bacteria). From the structure of the

epidermis [151], to the chemical contents of cells [127], the microscopic
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and macroscopic design of the body interacts with and participates in

the process of immunity. Like Lovelock’s ‘Daisyworld’ [148], a form of

homeostatic control arises, not through dedicated sensing and acting sys-

tems, but as an emergent property of the physical interactions between

unknowing agents. As a result there are several paradigms for thinking

about the operation of the immune system and the operation of the cells

that participate in it.

The concepts presented here can be found in any introductory im-

munology text such as Chapter 14 of [35], [116] or [151]. An under-

standing of the basic operation of the immune system revolves around

the structure and properties of antigen. Antigen are molecules or frag-

ments of molecules that are associated with cells from the body’s tissue

or from external pathogens (e.g. viruses and bacteria). The differing

structures and make-up of antigen allow them to be used as represen-

tations of their cell of origin in an analogous way to fingerprints. The

first time a pathogen infects a body, the first immune cell that it is likely

to interact with is the immature dendritic cell. The immature dendritic

cell is a ‘phagocyte’, roaming throughout the body absorbing antigen

and cellular debris. Through interacting with the tissue the immature

dendritic cell undergoes a physical change into either a semi-mature den-

dritic cell or a mature dendritic cell. The process which determines this

change is a matter of debate, but under the ‘Danger Theory’ [84, 85],

maturation into a mature dendritic cell is caused by exposing immature

dendritic cells to evidence of cellular damage. Both semi-mature and

mature dendritic cells move into a lymph node.

Lymph nodes contain, amongst other things, a second type of im-

mune cell, known as T cells. T cells are equipped with receptors which

allow them to identify pathogens via their corresponding antigen. The

T cell then attacks the identified pathogen. The match between a T cell
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receptor and the antigen does not have to be perfect. Instead they are

said to have a level of ‘affinity’ or similarity. The receptor shape of a

T cell is generated randomly, thus allowing the immune system to react

to a wide variety of threats. However, this random generation means

that it is possible for a T cell to be created that will attack cells from

the body’s own tissue. To prevent this, a process known as ‘negative

selection’ destroys T cells with a high affinity to the host. T cells will

not attack unless they are presented with antigen fragments by a mature

dendritic cell. Semi-mature dendritic cells also present antigen to T cells,

but have an inhibitory effect. When stimulated by a mature dendritic

cell, T cells move into the tissue and perform one of two roles. Primarily

T cells attack pathogens that match their receptor. However ‘helper T

cells’ do not attack pathogen. Instead they locate a third type of immune

cell: the B cell.

Helper T cells co-stimulate B cells with similar receptors to them-

selves. If a given B cell is also exposed to a pathogen for which its

receptors have a high affinity, it becomes active. Once active, B cells en-

ter a ‘proliferation’ phase where they repeatedly clone themselves. The

cloning process introduces random variation in the receptor shapes via

a process known as hypermutation. Those new cells which either have

a weak affinity for the pathogen, or fail to be stimulated by a helper T

cell, die off. The need for both a pathogen and a T cell to be present

for a B cell to be stimulated means that the successful removal of T cells

that react to the host also prevents B cells from attacking the host. This

process of proliferation of high affinity matches and cell death for low

affinity matches is referred to as ‘clonal selection’ [17]. Those B cells

which survive follow one of two paths. One route, is that a B cell can

differentiate into a plasma cell. Plasma cells mass produce antibodies

which react to the same antigen as the original B cell, destroying the
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associated pathogen. As with much immunology, the second route is a

matter of debate. For the purposes of this discussion the point of view of

Jerne [64] will be presented as it forms the basis of one of the more popu-

lar algorithms. Jerne suggests that B cells can also stimulate each other,

causing continued proliferation after the helper T cell and the pathogen

have gone. By maintaining a population of B cells with similar recep-

tor shapes to the originally stimulated B cell, reinfection by the original

pathogen will be immediately destroyed by the remaining B cells. This

gives the immune system the property of memory.

2.3.3 Common Immune-Inspired Algorithms

As the primary focus of this thesis is a theoretical analysis of the DCA, it

is important to look to other attempts to theoretically analyse artificial

immune algorithms. However, such a discussion would be nonsensical

without first describing the form and function of those algorithms. Here

we will explore the three types of algorithm that have dominated the

field of artificial immune systems for many years. These are: the nega-

tive selection algorithm, based on the phenomena that removes T cells

that react to the host from the population; the clonal selection algorithm,

based on the hypermutation and affinity selection that activated B cells

go through; and idiotypic networks, based on the Jerne’s co-stimulating

B cell hypothesis [64]. Here the ‘vanilla’ implementations of these algo-

rithms are outlined. The interested reader will find [57,138,142] provide

wide ranging literature reviews on all of these algorithms.

Negative Selection

The negative selection algorithm was one of the earliest attempts at pro-

ducing an artificial immune system [37]. The algorithm was developed

by Forrest et al. as a computer security algorithm [36]. The negative se-
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lection algorithm is a supervised learning algorithm, requiring a period of

training. During this period ‘detectors’ are generated at random. In the

work by Forrest et al. these detectors were simply bit strings. Training

data aimed at encapsulating the ‘normal’ operation of a computer was

created by encoding function calls by active processes. This data was

presented to the detector sets and detectors with a high affinity for the

normal activity of the machine were deleted. Affinity was measured using

a metric called ‘r-contiguous bits’. This process compares two bit strings

and states that they match iff. r or more contiguous bits in one string

match r bits in the other. Once a large population of detectors has been

produced that does not match the normal operation of the computer, the

algorithm enters its second phase. In this phase the function calls of the

current computer use are encoded into bit strings in a similar manner

and matched with the generated detector set. By process of elimination,

if a match is found, it is assumed to be ‘abnormal’ behaviour and the

user is informed.

The work of Newborough and Stepney attempts to find a common

framework for expressing population based algorithms, including the neg-

ative selection algorithm [104]. This framework is outlined in Figure 2.2.

In order to clarify the algorithmic properties of the negative selection

algorithm, the description of the negative selection algorithm from [104]

is provided in Figure 2.4. However, in order to provide the reader with

some context, the Newborough and Stepney’s description of the more

commonly used genetic algorithm is also provided, in Figure 2.3 [104].

Clonal Selection

Clonal selection algorithms are a family of optimisation techniques based

on the proliferation and selection of B cells. Several implementations ex-

ist including, (in chronological order) opt-AINET [2], Clonalg [22], the
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Figure 2.2: A Generic Population Algorithm [104]

Individuals: An individual is a set of ‘characteristics’

which define a solution

Characteristics: Characteristics define the space that the

individuals inhabit

Create: This phase introduces novel members into the

population

Evaluate: Evaluates each individual to find its fitness or

affinity to the solution

Test: A test to identify if a termination condition has

been met

Select: Selection criteria to identify individuals from the

current generation to be used in the creation of the next

Spawn: The creation of new individuals for use in the next

generation

Mutate: The changing of selected individuals
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Figure 2.3: The Genetic Algorithm, as expressed in [104]

Individuals: Chromosomes

Characteristics: Genes

Create: Individuals assigned random characteristics,

giving broad coverage of the search space

Evaluate: A ‘fitness function’ evaluates the chromosomes

based on their genes

Test: On termination the the solution is the individual

with the highest fitness

Select: Different variants use different techniques.

Typically the fittest members of the population become

parents to the next generation

Spawn: Characteristics of pairs of selected parents

combined using a crossover mask to generate two new

individuals

Mutate: Genes subject to random perturbation to

reintroduce lost characteristic values
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Figure 2.4: The Negative Selection Algorithm, as expressed in [104]

Individuals: Antibody

Characteristics: Shape receptor

Create: Individuals assigned random characteristics

Evaluate: The shape receptors are compared to the target

region using a ‘lock and key’ metaphor, (typically some

distance metric measuring the difference between the target

and the receptor)

Test: On termination the the solution is a set of

individuals with affinities above a user-specified

threshold

Select: A threshold is applied to the members of the

current population, those above that threshold are

continued to the next generation

Spawn: Individuals identified by Select are passed to the

next generation. Population level maintained by using the

Create policy to introduce new members

Mutate: No mutation
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B cell algorithm [140] and opt-IA [26]. The core functionality of clonal

selection algorithms is similar to the functionality of a genetic algorithm

(GA). Each cell represents a possible solution for the optimisation prob-

lem, in a similar way to a member of the population in a GA. An affinity

function, (analogous to a GA fitness function) evaluates the quality of

each solution. Successful solutions are able to proliferate, using a hyper-

mutation operator to allow the algorithm to traverse the search space.

Unsuccessful solutions are removed from the population. The key differ-

ence between a GA and a clonal selection algorithm is that at no point do

the cells in a clonal selection algorithm perform a cross-over operation.

These algorithms have been applied to several optimisation problems,

though of note is the work of Ciccazzo et al. who not only apply a clonal

selection algorithm to a real-world problem, but also perform a com-

parison with a standard genetic algorithm [23]. The problem domain is

automated analogue circuit design and in this case the clonal selection

algorithm used (eIP), outperforms the GA approach. It is hypothesised

that this may be due to the absence of cross-over, resulting in a less rapid

convergence of the population, which would be a benefit in certain search

spaces.

As with the negative selection algorithm, the algorithmic description

of the clonal selection algorithm presented in [104] is provided in Figure

2.5.

2.3.4 The Dendritic Cell Algorithm

With its first formal proposal in 2005, [45], the dendritic cell algorithm

(DCA) is a relatively new addition to AIS. Several versions of the DCA

have been developed since that point as Greensmith et al. continued to

explore their algorithm. The majority of the development of the DCA

up to 2007 is described in Greensmith’s PhD thesis [42]. In this work,
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Figure 2.5: The Negative Selection Algorithm, as expressed in [104]

Individuals: Two populations, one consisting of antibodies

and one consisting of memory cells

Characteristics: Shape receptor

Create: Antibodies are randomly created, memory cells are

not created, they are introduced at the spawn phase

Evaluate: The shape receptors are compared to the target

region using a ‘lock and key’ metaphor, (typically some

distance metric measuring the difference between the target

and the receptor)

Test: On termination the the solution is the set of memory

cells

Select: The antibody population is selected by identifying

the n best members and applying a threshold to enforce

a minimum standard. All members of the memory cell

population are selected for use next iteration

Spawn: Antibodies are cloned, where the number of clones

is proportional to the fitness/affinity of the parent.

Memory cells are cloned.

Mutate: All clones, (antibodies and memory cells) are

mutated by an amount inversely proportional to their

affinity
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Appendix B provides pseudocode for every version discussed here. This

algorithm forms the majority of the focus for this investigation, as a

result, this algorithm’s discussion will be more detailed than those previ-

ously. What follows within this section is a discussion of the mechanisms

behind the most commonly used version of the DCA, as described in [47]

(pseudocode in Appendix B.4). The aim is to provide the reader with an

engineering-centred model of the algorithm and to remove the biological

terms from its presentation where possible.

The DCA accepts four streams of data as input, three time-varying

signals and an application-specific list of symbols. The time-varying

signals are sourced from application-specific heuristics and are termed

“PAMP”, “Danger” and “Safe”.

• The PAMP heuristic provides a signal which increases proportion-

ally to the presence of data with a strong correlation to a positive

or ’anomalous’ situation. The biological PAMP is a ‘pathogen as-

sociated molecular pattern’, in other words a recognised signature

of a dangerous invader.

• The Danger heuristic provides a signal which increases proportion-

ally to the presence of data with a weaker correlation to a positive

or ’anomalous’ situation.

• The Safe heuristic provides a signal which increases proportionally

to the presence of data with a strong correlation to a negative or

’normal’ situation.

The list of application-specific enumerations, termed “antigen”, acts

as a cyclic buffer, storing the symbols which describe the current envi-

ronment for the algorithm.

An artificial dendritic cell (DC), uses these input signals to produce

three internal signals, termed “CSM”, “IL10” and “IL12” after their
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Figure 2.6: The Block Diagram of a Dendritic Cell

The variable z−n is used to denote a delay of n sampling it-

erations. The output from the summation of the CSM signal

is compared against the migration threshold to determine the

time of migration. At this time the relative size of the other

two summations determines the output signal of the cell.

biological counterparts. ‘CSM’ stands for “co-stimulatory molecule”, an

important part of the immune response process. It is thought to be a

crucial part of the antigen presentation process, where DCs present their

sampled antigen to T Cells [88]. Each of these signals is the integral of

a weighted sum of the input signals (see Figure 2.6).

CSM accumulates throughout the cell’s lifetime and rises proportion-

ally to the cell’s exposure to any input signals. PAMP and Safe signals

typically have a greater impact on the accumulation of CSM than Danger.

IL10 is a cumulative value that rises proportionally to the cell’s exposure

to the Safe signal. IL12 is a cumulative value that rises proportionally
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to the cell’s exposure to PAMP and Danger, but can be decreased by

exposing the cell to Safe signals. Each time a cell polls the environment

to update its internal variables it also removes ’antigen’ from the input

buffer and stores these symbols locally.

At the end of every algorithm cycle the cumulated CSM value of

each cell is compared to its migration threshold. This threshold is allo-

cated to every cell at random, using an application-specific probability

distribution. If the accumulation of CSM is greater than or equal to the

threshold, the cell is said to ’migrate’. The migration process triggers

a decision to be made based on the relative concentrations of IL10 and

IL12. If the cell has accumulated more IL12 than IL10, its decision

is positive, otherwise its decision is negative. When the decision is re-

ported, the cell also presents all of its locally-stored antigen so that the

symbols can be correlated with the decision. When a cell has migrated,

it is removed from the population and a new cell is put in its place.

The migration threshold of the new cell is randomly assigned using the

probability distribution.

A History of the DCA

The initial proposal of the DCA in [45] outlines the algorithm as it is

explained in Appendix B.2. A fixed set of weightings for calculating

the intermediate signals from the input signals was outlined that had

been inspired by biological experiments performed as part of the Danger

Project [3]. As part of the proposal a prototype algorithm had been writ-

ten and applied to the UCI Wisconsin Breast Cancer machine learning

data set [13]. The PAMP and Safe signals were generated as a dual of

one another, based on the status of one of the key factors in the data

set. This has since been found to be a poor design decision as it nei-

ther represents a ‘signature’ of danger, as a PAMP is supposed to be,
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nor does it allow situations where the PAMP signal is suppressed by the

Safe signal to be created [42]. The classification accuracy is reported as

99% although the authors point out that the DCA is not meant to be a

classification algorithm. This is indicative of the early work in the DCA

where its population-based approach and its correlative stage meant that

fitting it into one of the traditional machine learning or algorithmic fields

was difficult. Even so, classification was performed and was achieved by

aggregating all of the cell states from the entire run of the algorithm. If

a specific antigen was found to have more mature cells associated with it

than semi-mature cells, it was considered anomalous.

In [47] the algorithm was applied to a computer security problem,

namely port scan detection. This version of the algorithm had a slightly

different aggregation metric (pseudocode in Appendix B.4). Instead of

simply casting votes for a given antigen the algorithm reported the num-

ber of mature cells that had migrated for a given antigen, as a fraction

of the total number of cells that had sampled that antigen. This metric

is still the most commonly used aggregation technique and is referred

to as the MCAV, (mean context antigen value). This metric has proved

popular, as it effectively provides a probability that a given antigen is

anomalous. This work was the first to raise one of the key properties of

the DCA, the emergence of a ‘guilty by association’ heuristic. In the data

set two ‘innocent’ processes and two ‘malicious’ processes were running

and the aim of the algorithm was to identify which were which. However,

one of the innocent processes was required to run one of the malicious

processes, so there was a regular, temporal correlation between the two.

This meant that dendritic cells with large migration thresholds tended

to see both processes and detect the Danger and PAMP signals from the

latter. As a result one of the innocent processes was assigned an 18%

probability of being malicious. This is in many ways a pleasing result
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as it demonstrates that the algorithm was able to detect an unsuspected

correlation in the data.

The results from both [47] and [45] are summarised within [49]. This

work goes on to use the previous two data sets to further explore the

properties of the DCA. However, this version also introduces a new in-

flammation metric not used in the previous works, (pseudocode in Ap-

pendix B.3). Unfortunately, at this stage, there was still no comparison

between the DCA and an established machine learning algorithm. The

major contribution of [49] is the introduction of an inflammation signal

into the algorithm. Inflammation was selected as another input heuris-

tic that acted as a multiplier to the other input heuristics. Its inclusion

seemed to have a derogatory effect on the experiment, though a thorough

investigation into a range of parametrisation was not performed.

In 2006 Kim et al. performed experiments using the DCA, (as de-

scribed in [47] and Appendix B.4) to detect the ‘interest cache poisoning

attack’ in sensor networks [69]. The paper contributes little to the knowl-

edge base of the DCA as, not only is the ‘interest cache poisoning attack’

an attack specially designed for the paper, but the paper is only concep-

tual, outlining how the algorithm could theoretically be used to detect

such an attack.

Further evidence for the confusion surrounding the functionality of

the algorithm is found in [46], where the authors describe the DCA as a

‘sorting algorithm’, though with little further explanation it is difficult

to understand the justification for this description. In this paper the

version of the algorithm from [47] is compared with several incorrectly

parametrised versions. The aim of this is to demonstrate that the two

functionally similar signals, Danger and PAMP can be interchanged un-

der these conditions, but the correct parametrisation of the Safe signal

is more crucial. In addition, [46] performs sensitivity analysis on the
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signal weightings. The range of values used by the sensitivity analysis

is dubious as, for all of the experiments, the ratios between the weights

is kept constant with the exception of the weighting between the Safe

signal and the IL10 signal, which is held at one for the duration of the

experiments. As a result, rather than exploring the sensitivity of the

weights, as reported, the experiment really explores the effect of differing

the weight ratios between CSM, IL12 and IL10. Even this is not quite

true, as the IL10 weights are fixed throughout the entire experiment.

In 2008 Al-Hammadi et al. carried out a further empirical study,

applying the DCA to a bot net detection problem [4]. In this work a new

technique is put forward for aggregating the results of the algorithm,

called the MAC. This new version of the algorithm is described using the

pseudocode in Appendix B.6. This technique is still a batch process, but

scales the original MCAV calculation for a given antigen by the number

of antigen used to calculate the MCAV in order to add some measure

of confidence to the measurement. This result is then normalised by the

total amount of antigen sampled to return it to a 0–1 range. At first

glance this seems like a sensible metric. However, if one rearranges these

calculations as shown below, an obvious flaw becomes apparent.

MACx =
MCAVx × Antigenx

T
(2.1)

MCAVx =
Maturex

Antigenx

(2.2)

Substituting 2.2 into 2.1

MACx =
Maturex

Antigenx

× Antigenx

T

=
Maturex

T
(2.3)
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Where:

MACx is the MAC value for antigen x

MCAVx is the MCAV value for antigen x

Antigenx is the sum of antigen samples collected for antigen x

Maturex is the total amount of antigen samples that were collected

by mature DCs for antigen x

T is the total amount of antigen sampled by all DCs for the

application.

As a result, the MAC for an antigen is simply the total number of

antigen sampled in a mature context of the same type, as a fraction

of the total number of antigen sampled overall. For large data sets or

applications where the distribution of antigen is not roughly even, this

could result in infrequently occurring antigen types being overwhelmed.

Though it is of note that in smaller data sets, this technique could yield

a lower false positive rate, a known issue with the DCA [42].

In [48] a comparison was made between the DCA and an established

machine learning algorithm, the self-organising map (SOM) [71]. The

comparison was performed using the port scan data set from [47]. As

discussed, it is a challenging task to empirically compare the DCA to

an existing machine learning algorithm as its intended functionality does

not easily fit into any of the established categories. In this version of

the algorithm, the concept of inflammation is reintroduced and combined

with the other innovations introduced by other versions of the algorithm,

the combined algorithm is outlined in Appendix B.5. The inflammation

model uses a Boolean value that either multiplies the other signals by

two or not. The results of the comparison demonstrated that, for that

data set, the DCA out-performed the SOM for classifying anomalous

processes but there was no difference for classifying normal processes.
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While this is a useful result, tests with a broader range of data sets

would have to be performed to characterise the areas where the DCA

performs well. An additional problem with this comparison is that the

SOM is a supervised learning algorithm requiring a training phase. This

means that its performance is heavily dependant on the selection of the

training data. For this comparison only ‘normal’ data was used to train

the SOM for reasons that are not made entirely clear. A fuller set of

tests, exploring the effects of different samples of training data would

also have benefited this investigation.

Lay and Bate approach a different anomaly detection problem in their

two DCA works, [77,78]. Both works focus on an attempt to identify pos-

sible over-runs which cause tasks on a real-time system to fail to meet

their output deadlines. The major contribution of the first paper from

Lay and Bate, [77], is an attempt to dynamically tune the weights for

the signal processing phase of the dendritic cell algorithm. In this ap-

proach, the weights for the signal processing phase of the algorithm are

randomly assigned. Each cell is rewarded or punished based on its per-

formance classifying a simple data set with a known ideal response. If a

cell’s performance is too low, its signal weights are mutated. A moving

average of the punishment/reward system for the entire cell population

is used to determine the threshold for “poor performance”. The results

from this approach are shown to be very different to the results of the

standard DCA, though no statistics are used to demonstrated if they

are significant differences. Sadly, the graphs used to display the data

are difficult to interpret in the black and white format of the conference

proceedings, so it is difficult to independently assess the quality of the

changes made. In the journal paper this adaptive technique is abandoned

in favour of the traditional DCA, (the version presented in [47]). This pa-

per focuses on comparing the DCA with a more common-place statistical
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technique for assessing process over-runs. The comparison demonstrates

that the DCA performs comparably with the statistical technique, but

is heavily dependent on the parametrisation of the DCA. Of particular

note for this work, Lay and Bate also provide a discussion about the

differences between hard and soft real-time constraints. As many of the

future chapters of this thesis will be exploring a robotic system, a sum-

mary of that discussion will be presented here. Lay and Bate make a

distinction between ‘hard’ and ‘soft’ real-time constraints [78]. A “real-

time system” is defined as a system where the quality of a solution is not

simply a function of solution accuracy, but also a function of when that

solution is presented. The constraint placed on the system, in terms of

its timeliness, is said to be a “hard constraint” if failing to meet that con-

straint will cause a serious system failure, resulting in the system being

no longer fit for purpose. If failing to meet a constraint is undesirable,

but not system critical, that constraint is said to be a “soft constraint”.

The history of the DCA contains evidence that it has promise as

an anomaly detection algorithm. Its performance on selected data sets

has been shown to be comparable or better than established machine

learning algorithms, albeit in a limited manner [43, 48, 49]. However,

there is much criticism about its application and possible uses. Much of

this criticism stems from the absence of good analysis of the algorithm

and a working understanding of what problems the algorithm is best

suited to solve. Empirical experiments on new data sets will support

the case for the dendritic cell algorithm by providing more insight into

its application potential. However, only theoretical analysis will be able

to prove its worth against other techniques. Theoretical analysis will

provide definitive ‘rules’ about the types of problem that the DCA can

work with and will shed light on, what is for many, a black-box algorithm.

Ultimately it will be theoretical analysis that will definitively add or
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remove the DCA from the AIS field by demonstrating its merits and

its flaws. Other algorithms within AIS have undergone this process and

have been suffered/benefited accordingly. What follows is a review of the

theoretical analysis that has been performed on AIS algorithms in the

past, which both provides context for the importance of such analysis

and is a potential source of theoretical methods which could be used on

the DCA.

2.3.5 Theoretical Analysis of Artificial Immune Sys-

tems

In 2008 Timmis et al. produced a review paper outlining the state of the

art in theoretical analysis of artificial immune systems algorithms [142].

Here we will revisit some of that work, augment it with some more recent

publications and place the known work on DCA analysis in context.

By far the most analysed family of artificial immune systems are nega-

tive selection algorithms. As discussed in 2.3.3 the original negative selec-

tion algorithm used an affinity measure called r-contiguous bits [36]. At

that early stage, time complexity analysis revealed that the sheer number

of detectors required meant that detector generation was a computation-

ally expensive task, especially for large values of r. An alternative affinity

function called r chunking was suggested in [8]. Three crucial flaws were

pointed out in successive years from 2001 to 2003. Firstly [68] highlighted

the additional time complexity issues as the dimensionality and size of

shape space increases to the sizes required for real world problems. Sec-

ondly, [30] highlighted that positive selection is simply more practical for

most real-world applications. For the majority of real-world tasks, the

space of anomalous behaviours can be huge or even infinite. With a finite

number of detectors, this makes covering the complement of that set, i.e.

the normal behaviours, much more feasible. Thirdly, Freitas and Timmis

July 20, 2010



2.3. Artificial Immune Systems 52

highlighted the risks of arbitrarily picking affinity measures without con-

sidering the possible biases that this could introduce into the behaviour

of the algorithm. In addition to these problems the work of Stibor et al.

highlighted many more shortcomings of the algorithm revolving around

shape space coverage, computational complexity and the inefficiency of

random detector generation [130, 132, 133]. Despite the extent of the

work demonstrating the problems with negative selection Elberfeld and

Textor were able to demonstrate that a solution does exist for producing

detectors in polynomial time for string based negative selection [31].

Theoretical analysis has also been applied to clonal selection algo-

rithms. In [142] a description is given of Markov chain analysis of a

clonal selection algorithm to prove its convergence properties. While it

is possible to show the algorithm does converge, the upper bound of

that convergence is not shown. In 2009, Jansen and Zarges were able to

demonstrate an upper bound for somatic contiguous hypermutations, a

specific type of mutation operator [63].

Idiotypic networks have had very little theoretical analysis performed

on them. This is likely to be due, in part, to the diverse nature of the

algorithms. In [142] techniques based on differential equation analysis

are suggested as possible approaches for exploring this type of algorithm.

Such techniques have been extremely successful when applied to complex,

biological networks based on neuronal interaction [152].

It is thought by the author that the work of McEwan et al. is partic-

ular importance to the field of AIS [86]. This work questions one of the

fundamental principles of artificial immune systems, the computational

representation of affinity. This concept permeates all three of the most

commonly used algorithms in the field, so improvements and optimisa-

tions have the potential to yield a wide variety of positive results. As

discussed earlier in this section, affinity is generally performed within
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some form of shape space, which can suffer from the ‘curse of dimension-

ality’. McEwan argues that, while kernel methods can help when the

data starts as a low dimensional vector but needs to perform operations

in high dimensional space before returning to a lower dimension, they

cannot help when the input data starts as being high dimensional. In-

stead it is suggested that the mechanics of receptors and other constructs

within the immune system may be more analogous to feature extraction,

selecting lower dimensional, yet representative samples of the available

data.

Some theoretical analysis has been attempted on the DCA. In [44]

Greensmith presents a modified version of the algorithm that removes all

stochastic elements from the algorithm and reduces the dimensionality of

the input data by ignoring the PAMP signal. This simplification is aimed

at making algorithm analysis easier in the future. The paper presents

a revisiting of the port scan detection data set, to verify that the core

functionality of the algorithm is still present. The work of Gu et al. has

also explored properties of the DCA [51,52]. These papers have explored

techniques for using the DCA as a real time algorithm, partially based

on the work presented in Chapter 3 of this thesis.

2.4 Robotic Applications of AIS

Biologically inspired algorithms are at their best when the link between

the software and the underlying biological principles is not a purely se-

mantic one. There are a great number of benefits to be gained from

stripping away biological complexity from an algorithm, but that pro-

cess assumes a deeper level of connection to the biological inspiration

than simply a naming convention. A great deal of robotics literature

from AIS suffers from this purely semantic link. What is presented here
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is a summary of applications with a more fundamental connection to

models of the immune system.

Some of the earliest robotics work from AIS was mobile robot con-

trollers. Watanabe et al. present an idiotypic network where the cells

represent behaviours [147]. In a similar way to Brooks’ subsumption ar-

chitecture [15] the complexity of the robot’s behaviour comes from the

interaction of simple robotic behaviours. Instead of using a hierarchical

approach, Watanabe et al. allow the behaviours to be excitatory or in-

hibitory of each other, with additional input from the sensors. Designing

the mechanics of such a network would be a challenging task, so a ge-

netic algorithm is used to design the network dynamics using a simulator.

The results demonstrate that the technique is able to find the optimal

solution for a simple collection problem.

Lau and Ko present a framework for search and rescue robots based on

the interaction of T cells with the inflammatory response called the ‘gen-

eral suppression control framework’ or GSCF [70, 76]. Each behavioural

component of the robot is modelled as a T cell with a receptor that gives it

antigen specificity. The receptor models the behaviour’s appropriateness

in a given situation. The robot’s sensors feed into an affinity evaluator

which selects the appropriate behaviour based on that receptor. A series

of signatures such as the location of a target or the immediate presence

of an obstacle cause an anti-inflammatory reaction, suppressing the cell

behaviours and stopping the robot. Unfortunately, no statistical results

are presented on the effectiveness of the algorithm. Hart et al. go fur-

ther than simply arbitrating behaviours and instead propose a system for

growing the behaviours themselves [56]. The system also uses an affinity

metric to determine the appropriateness of a given behaviour, but the

behaviours themselves can also stimulate or inhibit other behaviours in

the style of an idiotypic network. An initial set of behaviours are given
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to the robot as a starting point. New behaviours are presented to the

network and pruned if they are unable to stay stimulated. Stimulation

depends on the sensory input to the robot and the interaction with the

other cells. A simulated implementation of the system demonstrated that

the robot was able to create new experiences and was able to correlate

simple actions to their effects. Later work by Whitbrook et al. gener-

ates the simple behaviours using a genetic algorithm and uses an on-line

reinforcement learning technique to form those behaviours into an idio-

typic network [149]. This technique performs the behaviour generation

in a simulator and then applies it to a search and rescue task on a real

robot. Several experiments were performed leaving out various stages

of the architecture and replacing them with more traditional controllers,

however the idiotypic network-based controllers outperformed the others

and never failed to locate the target.

As a meta-heuristic for optimisation, clonal selection can readily be

applied to a wide variety of problems. In [79] clonal selection is used

to find the optimal parametrisation for the PID, (proportional, integral

and differential) controller on an underwater autonomous vehicle (for

an overview of PID control see [146]). The results of the clonal selec-

tion technique are compared to the results obtained from the standard

Ziegler-Nichols technique for identifying PID control parameters [154].

In the experiment, clonal selection identifies a set of parameters that ap-

pear to give a much better performance than the traditional technique.

In particular, the yaw controller produced by the clonal selection algo-

rithm is much better. However, there are two, key problems with these

results. Firstly the results are obtained via simulation. While simulation

techniques can be an excellent way to try ideas, their correspondence

to the real world performance of a robot can be tenuous. Secondly the

affinity function used by the clonal selection algorithm fails to consider
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any other stability criteria than the overall error. The Ziegler-Nichols

technique does not just promise a fast solution; it also guarantees a sta-

ble solution, deliberately avoiding some regions of parameter space to

prevent the controller from being too close to instability. A fairer com-

parison could be achieved if the affinity function were altered to factor

these conditions into the search.

The work of Neal and Timmis attempts to incorporate concepts of im-

munity into robotic systems to make them more robust to failure [103].

As purely mechanical devices, robots are vulnerable to wear over pro-

longed periods of use. However, the failure of a single system need not

mean that a robot becomes inoperable, as long as the failure of that sys-

tem is identified. A controller architecture is described that combines a

neural network with ideas from artificial immunology and artificial en-

docrinology.

In this architecture the role of the immune system is to remove com-

ponents from the controller that have been identified as detrimental and

to identify environmental or fault based changes that require controller

adjustment. The neural network element of the system provides the di-

rect control, but its behaviour is adjusted and manipulated by the other

two components of the system. The initial stages of this work have been

applied to real robotic systems by Timmis et al. in 2009 though it cur-

rently focuses on the interplay between the endocrine system and the

neural controller [143]. Lau et al. have also presented a framework for

using AIS for fault detection, with the emphasis on foraging tasks for

swarms of robots [75]. Faults are characterised as anomalies and can

include environmental hazards that prevent agents from achieving goals.

This work is carried out from an immuno-engineering perspective as out-

lined in [141]. As a result this initial research focuses on characterising

the problem rather than a direct application of AIS.
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Since work presented in this thesis was published there has also been

an application of the dendritic cell algorithm to a mobile robotic plat-

form. In [101] a modified version of the DCA is presented for detecting

faulty sensors. This version of the DCA has a fixed migration threshold

and a modified, integer representation of CSM. The cell population for

this implementation is considerably smaller, with each cell monitoring

a single sensor. Each cell stores the history of its past eight migra-

tion states. If all are mature, the sensor is considered to be faulty and

the robot no longer responds to it. A type of adaptation is introduced

by having partial redundancy between the sensors. This should pre-

vent neighbouring sensors from reporting drastically different values and

therefore allow anomalous readings to be detected. The results from a

simulator and a real robot experiment were presented. Two faults were

artificially introduced, a stuck sensor, reporting the last ‘good’ value

continuously and a sensor reporting random noise. The results demon-

strated that the DCA was able to detect these faults. While the author

does point out that the small number of cells allows the algorithm to

be implemented on a micro-controller with very limited resources, its

departure from the population-based nature of the algorithm does ef-

fectively reduce it to a slight variation of a hand-tuned linear classifier,

(see Chapter 7). In addition, its reliance on neighbouring sensors sharing

partial information could potentially cause problems in highly cluttered

environments with legitimate structures that cause neighbouring sensors

to report drastically different values. Such situations should only occur

transiently while the robot is moving, so the counter should protect the

robot against them, but there will be situations where the robot may be

stationary while performing a complex task. A better solution may be

to make the duration of the counter dependent on the encoder data from

the wheels and hence the movement of the robot.

July 20, 2010



2.5. Conclusions 58

2.5 Conclusions

The information collected within this review can now be used to frame

the research questions presented in Chapter 1 within the context of the

current state of the art within the fields of artificial immune systems and

robotics.

2.5.1 Migrating from Software to the Physical World

Can an immune-inspired, anomaly detection algorithm be

adapted to solve threat detection problems in the physical

world, through the medium of a robot?

The current state-of-the-art in security robotics has several key limita-

tions. Most importantly, all of the systems encountered were unable

to tolerise against dynamic objects, constraining them to being used in

empty warehouses or outside the hours of operation for a building. Sec-

ondly, the inability of the robots to perform threat detection while mov-

ing severely limits their applicability in the real world. In AIS computer

security applications there has already been a recognition that ‘normal’

requires a more complex description. It would be totally impractical to

have a computer security system that treated all network activity as a

threat. As a result, there are already algorithms, such as negative se-

lection and the DCA that attempt to differentiate between normal and

anomalous behaviour in a more intelligent way.

2.5.2 Emergent Properties of the Dendritic Cell Al-

gorithm

Does the dendritic cell algorithm have properties that were

not explicitly added as part of its design, which could be

advantageous to a robotic application?
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While the dendritic cell algorithm has potential as a threat detection

algorithm, it is yet to be fully characterised in the literature. As a

population-based and highly stochastic algorithm, it is likely that there

are emergent properties that are yet to be identified. Of particular in-

terest is the algorithm’s ability to deal with imprecise and noisy data, a

feature of robotic systems. As highlighted by the problems with other

AIS techniques, it is important to ensure that abstractions of immune

concepts are not simply ‘re-inventing the wheel’ so any investigation with

the DCA at its core, must assess it from a theoretical stand point, not

simply an empirical one.

2.5.3 Applying The Dendritic Cell Algorithm to a

Robot

Is it possible to adapt the dendritic cell algorithm from being

a batch system to a system that can operate on a robotic

platform?

As discussed, there is little work on theoretically analysing the DCA.

However, there is precedent for alternatives to the batch system of gen-

erating the MCAV. This suggests that the core functionality of the algo-

rithm is independent of the cell analysis phase. When this investigation

was begun, the implementations of the DCA were all performed within

the ‘libtissue’ framework and very slow. It is an important step to guar-

antee that the algorithm can be made light-weight enough to run on a

robot on-line for the system to be a feasible solution. The work of Lay

and Bate, while not directly applicable, raises important issues relating

to identifying soft and hard real-time constraints within the system which

must be addressed to answer this question [78].
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2.5.4 The Benefits of the Dendritic Cell Algorithm

Are there other algorithms with functional equivalence to the

dendritic cell algorithm, which can outperform it in terms of

reduced computational complexity or superior performance,

for the threat detection problem?

While weaknesses in the current solutions to the robotic security problem

have been identified, a solution based on the DCA should be critically

appraised. With so few results published in the literature, it is difficult

to see how a direct like-for-like comparison could be produced. However,

its performance should be at least as good as a random classifier, to

demonstrate that information about the problem is being used to make

appropriate decisions. In addition, it should be clarified if the DCA

has functional equivalence to other techniques, or a collection of other

techniques, and if such a system could outperform the algorithm.
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Chapter 3

The Robotic Dendritic Cell

Algorithm

“You see, but you do not observe. The distinction is clear.”

- Sir Arthur Conan Doyle (Sherlock Holmes), A Scandal in

Bohemia (1892)
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3.1 Introduction

The work presented in this chapter is based on [107].

As discussed in Chapter 1, technologies and protocols designed to

enforce security are now pervasive in society. Many houses now have

burglar alarms and CCTV is common-place in towns and cities. Both

Chapters 1 and 2 highlight the need for each robot within a robotic

security system to be able to run as a self-contained agent. As a result

any algorithm employed by a robotic security system must prove itself to

be capable of running in its entirety on a mobile robot, without having

a detrimental effect on core functions, such as obstacle avoidance.

At the time that this research was carried out the dendritic cell algo-

rithm (DCA) had not been used as a real-time algorithm. In order for it

to be useful as a processing algorithm for a mobile robot it is necessary to

address architectural limitations that have previously constrained it to be

a batch processing algorithm. Once engineered for use with a real-time

processing system, the DCA must be interfaced to a robotic operating

system. In addition to these modifications, the implementation of any

version of the DCA requires the input heuristics to be specified and de-

signed. Finally, it is necessary to parametrise the population distribution

for the specific application. This is vitally important as it has been shown

in [42] that the performance of the DCA is significantly effected by the

correct identification of this distribution.

At the prototype stage it is important to verify that the performance

of the DCA is of a sufficient quality to pursue. Later chapters will explore

the DCA’s performance relative to other classification techniques using

theoretical analysis. In this chapter the target shall be to outperform the

calculated classification rate based on the expected results for a classifier

operating at random. To outperform such a classifier is a minimum

requirement of any potential algorithm.
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In short the hypotheses that this chapter shall explore are as follows:

• It is possible to modify the DCA to work on a real-time system

while retaining the core properties of the DCA. This hypothesis is

rejected if the algorithm is unable to return classifications within

the soft real-time constraint of being within 5 seconds of witnessing

an event or if the algorithm requires more computation time than

the hard real-time constraint of 250ms per allocated processing slot.

More information about these constraints is provided in Section

3.2.4.

• Untrained and using unfiltered sensor data, the DCA outperforms

a random classification technique. This hypothesis can be accepted

if a single parametrisation can be found which causes the average

classification error for the DCA to be lower than a random classifier,

theoretically calculated from the layout of the environment.

In Section 3.2 the modifications required to implement the DCA on

a real-time system are discussed. In Section 3.3 an experiment is de-

signed to test the classification accuracy of the system. In Section 3.4

the preliminary results are presented and analysed and problems with

the prototype are highlighted. In Section 3.5 a modification to the orig-

inal system is presented that corrects one of the major short-comings of

the initial system. In Section 3.6 the results of the improved system are

presented and analysed. Finally, Section 3.7 discusses the contributions

made by these experiments and work that has subsequently been carried

out by other researchers.
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3.2 Adapting the DCA for use on a Robotic

Platform

3.2.1 Robotic Platform

Throughout this work, the platform used for all physical robotics exper-

iments is a MobileRobots Pioneer 3DX. This robotic system has a broad

variety of sensors, including a laser range finder (LRF), an array of sonar

sensors and a pan-tilt-zoom camera. On-board processing is performed

using an 850MHz Pentium III processor running Debian Linux, (kernel

version 2.6.10). A full technical specification can be found in Appendix

C. The manufacturer’s “Aria” library is used to control the device. The

Aria control system is an object-orientated (C++) library which is struc-

tured to support a standard robot control architecture known as “the

subsumption architecture”. All software compilation is performed using

g++ version 4.0.2.

The hardware architecture of the system is controlled via a single in-

terface board which enables communications between the computer and

all of the transducers with the exception of the vision system. The inter-

face board receives commands via the on-board serial port on the moth-

erboard. The camera’s pan-tilt-zoom mechanisms and image transfer are

controlled via a direct serial connection to the camera itself.

It is of note that the Pioneer 3DX is extremely computationally pow-

erful. This means that it makes an excellent prototyping platform for

algorithms as it can withstand a large processing load. However, it is

acknowledged that enabling the DCA to work on such a powerful plat-

form does not necessarily mean that all robotic platforms will have the

necessary computational power.
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3.2.2 DCA Optimisation

The starting point for this work is the DCA version outlined in Appendix

B.4, as described in [47]. This version of the DCA was a batch process-

ing algorithm. This meant that little effort had gone into improving the

running speed of the system. In addition, this version was developed as

part of a larger project and relied on several libraries which implemented

simulations of tissue and other biologically inspired constructs. For the

purposes of optimisation the DCA has been re-implemented in C++ us-

ing only the commonly used standard template library (STL) to support

faster manipulation of collections of objects.

The next step of speeding up the DCA was to identify how to minimise

the processing performed by each cell. This was achieved by rearranging

the block diagram in Figure 2.6. Primarily any computation that does

not require any persistent state can be moved outside each cell and into

the ’tissue’ (signal pre-processing). This reduces the overall processing

requirements for the DCA as any computation that can be performed

instantaneously from the input signals can be done once per iteration for

the entire population, rather than once per cell, per iteration.

Equation 3.1 demonstrates a simple, generic rearrangement that al-

lows a further optimisation to be carried out.

X > Y ≡ (X − Y ) > 0 (3.1)

This rearrangement allows two important changes to be made. Firstly,

substituting IL12 for X and IL10 for Y , results in a comparison between

their difference and 0. A comparison between a number and 0 is slightly

computationally faster than a comparison between two non-zero values.

Secondly, rather than storing IL10 and IL12 separately, one can rep-

resent them both as a single, abstract quantity K, thus reducing the

memory requirements of each cell. Equation 3.2 defines K as the instan-
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taneous difference between the two original intermediate variables.

K = IL12 − IL10 (3.2)

If the summation of K is greater than 0 the outcome is positive. If

the summation of K is less than or equal to 0, the outcome is negative.

As both IL10 and IL12 are expressible as weighted sums of the three

input signals, K can be expressed as a single weighted sum, where the

weights are given by Equation 3.3.

Wsk = Ws12 − Ws10 (3.3)

Where: WXY is the weighting between input signal X and internal signal

Y.

This allows K to be computed directly from the input signals, remov-

ing the need to calculate IL10 and IL12 altogether.

Figure 3.1 is the new block diagram for a DC. In this new model,

CSM and K can be considered as inputs from the signal preprocessing

to the cell population. This reduces the number of instructions per cell,

per iteration from twenty one to two. Dr. Julie Greensmith provided

test data from the experiments published in [47] to allow verification

that the new system is functionally equivalent to the original DCA. The

results are available from http://www.cs.nott.ac.uk/ rxo/thesis/ and the

raw data is available from Dr. Julie Greensmith on request. A paired

Wilcoxon test could not reject the hypothesis that the two were from the

same sample set using a significance of 0.05.

3.2.3 DCA Modifications

This section discusses the final stage of the process which lead from the

version of the DCA outlined in Appendix B.4 to the version outlined

in Appendix B.7. Transforming the DCA into a near-real-time system
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Figure 3.1: The Optimised Block Diagram for a Dendritic Cell

Only processing contained within the dotted line needs to be

carried out on a per cell basis. All other processing can be

performed within the tissue.
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required a modification of the way the DCA reports its outputs. In the

original DCA it was possible to produce the MCAV for every antigen over

the entire data set. To enable a close to real-time response the DCA was

modified to calculate and report the MCAV at the end of each one second

time window. In the event that no cells mature within a given window

this statistic is reported to the log and the system continues. Since

this investigation was published, additional work has been carried out

by Gu et al. which compares this technique with an antigen-orientated

segmentation technique [52].

As the antigen is generated based on a specific robot location, it is

possible that an ineffective amount of antigen will be generated. One

solution for this is to add multiple copies of each antigen to the DCA

environment as suggested in [144]. A novel extension to the DCA for

this application is an antigen multiplication function. This function adds

varying amounts of each antigen depending on the speed of the robot.

Areas passed through slowly are made to contribute more antigen than

areas passed through quickly. This is done because areas passed through

quickly contribute less signal to the DCA environment, as less time is

physically spent within that area. The weighting function is given in

equation 3.4. The aim of the function is to add between 2 and 102 copies

of each antigen to the input buffer depending on the speed of the robot.

The lower limit of 2 is to ensure that at least two cells sample an antigen

and the upper limit was selected to guarantee that in the upper case, all

cells sampled the given antigen.

W (v, θ̇) =

⌊

75

(
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∣

∣
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)
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⌋

(3.4)

In equation 3.4 v is the velocity of the robot, θ̇ is the rotational velocity

of the robot and W is the amount of antigen added to the environment.

The smallest amount of antigen that can be added is 2, when the
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robot is at maximum velocity and maximum rotational velocity. The

maximum amount of antigen that can be added is 102, when the robot

is totally stationary.

The full pseudocode for this new version of the DCA can be found in

Appendix B.7.

3.2.4 Interfacing to a Robotic Operating System

Developing a robotic system is a demanding task as robust, real-time

control is difficult to achieve. Brooks’ “subsumption architecture” (first

proposed in [15]), has been shown to be an effective way of designing

robotic control systems [16]. Such architectures rely on the development

of a family of simple “behavioural modules” that interact to produce

more complex behaviour. For example, the complex behaviour of wan-

dering through a dynamic environment, without hitting obstacles can

be achieved through the interaction of two trivial behavioural modules.

Figure 3.2 illustrates a simple subsumption architecture. The lower pri-

ority behaviour simply moves the robot forwards at a constant velocity.

In the event of a higher priority behaviour detecting an obstacle, it can

subsume the output of the low priority behaviour and steer the robot

away or, in emergencies, stop. The interaction between the two modules

ensures that the robot is always moving when possible, without hitting

obstacles. This architectural style has now become so common-place that

software libraries for the creation of robot controllers are often structured

specifically to support it. This is true of the Aria library provided to con-

trol the Pioneer robot.

The Aria Library

The Aria library provided to control the Pioneer robot is geared towards

creating subsumption-based programmes. Aria is an object-orientated
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library which allows the programmer to create individual behaviours,

(termed ‘actions’ in the Aria language) and collections of behaviours,

(termed ‘action groups’ in the Aria language.) Action groups are wrapped

in a container class called a ‘mode’ which activates the action group and

stores additional information such as help tips and text descriptions of the

intended behaviour implemented by the action group. Action groups are

hierarchical, as with the subsumption architecture, and each behaviour

within a task is allocated an integer value determining its importance.

The integers are within the range of 0 to 100, with 100 meaning a high-

priority action which is required to be run as often as possible, and 0

meaning a low-priority action, which can be run infrequently. Tasks with

higher priorities have the ability to over-ride the movement commands

of lower priority tasks, as with the subsumption architecture.

The robotic DCA is implemented as a stand-alone action for com-

patibility with a subsumption architecture. Figure 3.3 illustrates the

architecture which implements a simultaneous wandering and DCA clas-

sifying behaviour. Note that, as is standard for diagrams of subsumption

architectures, the highest priority behaviours are illustrated at the bot-

tom and the lowest priority behaviours are illustrated at the top. This

stems from the original paper, where the distance from the bottom is

used to symbolise the ‘distance’ that the action is from directly interact-

ing with the sensors and transducers [15]. This action group extends the

Aria library’s standard ‘wander’ architecture with an additional module

for image processing and an additional module for executing the DCA.

In this action group, the DCA is given priority 10, the camera process-

ing is given priority 25 and the other actions occupy the range 50 - 100.

This ensures the fundamental behaviour of moving around safely within

the environment is prioritised above all other actions. In addition to the

wandering and classifying action group, there is also a tele-operation, (re-
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Figure 3.2: A Simple Subsumption Architecture

Figure 3.3: The DCA as Part of a Subsumption Architecture

motely controlling the robot from a networked machine) and classifying

action group. The image processing behaviour has been given a higher

priority than the DCA to ensure that the robot’s internal representation

of the environment is updated more regularly than the DCA samples it.

Real-Time Constraints

Hypothesis 1 discusses the soft and hard real-time constraints that the

system must comply with for it to be said that the DCA has been im-

plemented on a real-time system. Inspired by the definitions discussed

in Lay and Bate’s work the constraints put on the system have been

separated into hard and soft real-time constraints [77, 78]. As discussed

in Chapter 2, the definition of a real-time system is a system where the
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quality of a solution is not simply a function of solution accuracy, but

also a function of when that solution is presented. Hard real-time con-

straints cause serious system failure if they are not met where as soft

real-time constraints only cause undesirable effects. From a functional

perspective, the soft-real time constraint is that the classification of a

given situation as being normal or anomalous is reported quickly enough

for a user to respond to that potential threat. This is set at 5 seconds,

this time limit means that the robot will not have travelled very far before

realising that there is a potential threat, allowing the operator to hypo-

thetically engage the tele-operated action group and investigate further

manually. The hard real-time constraint is that a single iteration of the

DCA should not require more than 250ms. This limit is set by the robot

operating system in order to prevent the bumper and obstacle avoidance

actions from being starved processor time. Obviously, were this to hap-

pen, the robot would crash into obstacles and potentially damage itself

or an individual or item in its environment.

3.3 Experimental Conditions

3.3.1 Experiment Design

To accept or reject both hypotheses discussed in Section 3.1 it is neces-

sary to devise an experiment that will test the DCA’s performance as

a classifier on a real robot. For this prototype an artificial environment

was created with a tightly controlled layout. By controlling the envi-

ronment so tightly it is possible to explore the effects of changing the

parametrisation of the DCA with confidence that the effects of changes

in the environment are not unduly influencing the results. The layout of

the environment is shown in Figure 3.4. Obstacle A is a pink cylinder,

with a height less than 330mm. This means that the object is visible to
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the sonar array’s conic field of view but not visible to the LRF’s planar

field of view. Obstacle B is also a pink cylinder, with a height greater

than 330mm. This interacts with both the LRF and the sonar array.

By choosing appropriate heuristics for the DCA’s inputs it is hoped to

produce a system that will react to the cylinders in the environment.

The short cylinder should trigger an ‘anomalous’ response where as the

tall cylinder should have its response inhibited by the Safe signal. An

additional advantage of controlling the environment is that it is possible

to identify which areas should be associated with an anomalous response

and which areas should be associated with a normal response prior to

the experiment. This is done by implementing a simply ray-tracing algo-

rithm in Java. Figure 3.5 is a screen shot of the theoretical performance

generated by the ray-tracer. It is acknowledged that errors in object

placement and possibly even the ray-tracing program could introduce an

experimental bias. However, this technique is preferable to the alterna-

tive of using a human operator to determine the “truth” for the reasons

outlined in Chapter 1.

3.3.2 Signal Heuristic Selection

For the version of the DCA outlined in [49] (Appendix B.3) three signals

are used as inputs to the DCA. These signals are the Safe signal, the

Danger signal and the PAMP signal. The former acts to suppress the

full maturation of the dendritic cells, whilst the other two stimulate the

maturation. All signals contribute to the migration of the cells.

It was necessary to select appropriate sensors to provide the inputs

to the DCA running on the prototype. The decision was made to in-

terface the PAMP signal to the robot’s vision system, the Safe signal to

the robot’s LRF and the Danger signal to the sonar array. Chapter 2

introduced the concept that PAMP signals are signatures of pathogens
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Figure 3.4: The Robot Pen

The starting conditions for each experiment. Cylinder A is the

‘dangerous’ obstacle, cylinder B is the ‘safe’ obstacle.
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Figure 3.5: The Output from the Ray-Tracing Program

A screen shot of the programme used to determine the “true”

state of each segment in the pen. Segments marked in white

are normal and segments marked in black are anomalous. Note

that occlusion of the shorter cylinder by the taller cylinder is

taken into account.
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that the immune system of a species evolves to identify. It is possible to

connect the sonar or the vision system to the PAMP signal, however, the

vision system provides much richer environmental data than the ranged

sensors, thus it is the most applicable for implementing a signature based

signal. As discussed, the relative heights of the LRF and the sonar array,

in conjunction with their respective field of view (FOV) shapes, mean

that it is possible for a floor-mounted object to trigger the sonar array

without triggering the LRF. This holds with the biological analogy of the

Safe signal being used to suppress existing environmental factors.

For the PAMP signal the input from the camera is transformed into

a real-valued time-varying signal using the histogram back-projection

algorithm [135]. The back-projection algorithm uses a single training

image to identify the colour properties of an object of interest. All pixel

groups within the image that share the same statistical properties are

identified and contours are drawn around those clusters. To increase

the robustness of the algorithm to changes in the ambient light, the

HSV colour space was used, (as opposed to the RGB colour space where

different light levels cause non-linear movement throughout the space for

the same hue). The final output from the image processing library is

the area, in pixels, of the largest region which matches the properties

of the test image. To normalise this output within the range of 0–100,

(as is expected by the DCA) this area was scaled. The scaling factor

used was calculated from test data generated by a seven minute random

walk around the pen. 0 corresponded to an area of 0 pixels and 100

corresponded to a value 50% greater than the median value of the trial.

Anything above 100 was considered to be saturated at 100. The value of

%150 of the median value was selected to prevent outliers from making

the scaling range insensitive. All aspects of the image processing was

performed using Intel’s “OpenCV” library.
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Table 3.1: Object Distance and Signal Strength for Ranged Sensors

Distance (mm) Safe Signal Strength

0 100

300 90

600 50

900 20

1200 0

The LRF is used as the source for the Safe signal so objects taller

than 330mm will produce high values of the inhibitory signal. The field

of view (FOV) of the LRF extends from -90◦ to +90◦ (where 0◦ is directly

in front of the robot). A 44◦ FOV is used, ranging from -22◦ to +22◦. A

narrow FOV reduces the risk of erroneous interference from walls. The

distance to the closest object within the Safe FOV is returned to the

signal processor. The signal processor calculates the magnitude of the

Safe signal. This is performed using a look up table which relates distance

to signal strength. For values that lie between those specified in the look

up table, linear interpolation is used to calculate the signal strength. The

values used are given in Table 3.1. For clarity, the response is plotted in

Figure 3.6.

The Danger signal is sourced from the sonar array which has a 360◦

FOV. The Danger signal FOV coincides with the Safe signal FOV. The

same look up table (see Table 3.1) is used to normalise the sonar to pro-

vide the Danger signal. The values from the look-up table were selected to

roughly approximate a decay based on the Gaussian distribution, where

the width of the distribution was selected to hit zero at approximately

1200mm. This places a greater emphasis on objects close to the robot
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Figure 3.6: Safe Signal vs Distance

A plot of Table 3.1, showing the Safe signal as a function of

distance.
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and an exponentially smaller emphasis on objects as they become further

away. The upper limit of 1200mm was chosen based on the parameters

of the robot pen.

3.3.3 Antigen Heuristic Selection

In a practical robotic security solution, the antigen could be a vector

based on the estimated location of the anomalous situation. Object-based

approaches for antigen generation within a robot system have been put

forward by Krautmacher et al. in [72]. For this simple implementation

the antigen is an integer number which uniquely identifies a segment of

the test pen. This encapsulates a small range of positions and orienta-

tions of the robot. The actual position and orientation of the robot is

estimated using a ‘dead reckoning’ algorithm. Dead reckoning estimates

the position and orientation of the robot from encoders mounted on the

wheels, the fixed starting position of the robot and the diameter of the

tyres. The antigen generated enumerates a 300mm grid square within

the pen and a 30◦ segment within that square. Generating antigen based

on the current location of the robot is more practical than object-based

antigen, which requires a deeper knowledge of the environment to com-

pute.

3.3.4 Experiment Parameters

Each run of the experiment allowed the robot to wander around the test

pen for ten minutes. As discussed, the version of the DCA used for

these experiments is outlined in Appendix B.7 The parametrisation of

the DCA relies heavily on the values assigned to the cells which dictate

when they perform a classification, termed the “migration threshold”.

The values are typically assigned to the cells using a random, uniformly

distributed process, centring on a median and ranging from ±50% of
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the median. The classification experiment was repeated three times for

each value of migration threshold median. In each ten minute experiment

approximately 800 segment classifications are performed. Table 3.2 shows

the migration medians and tolerances for each experiment. In addition

the experiments are assigned names to allow them to be referenced more

easily.

Table 3.2: Migration Parameters for Each Experiment

Migration Median Migration Bounds Experiment Name

15 ± 7 E1

30 ± 15 E2

60 ± 30 E3

120 ± 60 E4

240 ± 120 E5

A threshold of 0.6 is applied to the MCAV values from the DCA.

Values less than or equal to 0.6 are counted as a negative or ‘normal’

classification, values above are counted as a positive or ‘anomalous’ clas-

sification.

3.4 Initial Results

The DCA was able to perform its classifications in a timely manner,

(within 5 seconds of an event) and did not trigger any timing errors from

the robot operating system, (meaning that its computational load did

not require more than 250ms). This means that the first hypothesis is

not rejected. Figure 3.7 shows the false positive and false negative rates

for the DCA. To provide a benchmark for the success of the DCA the

theoretical response of a random classifier is marked on the results. The
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random classifier’s false positive and false negative rates are calculated

using equations 3.6 and 3.5.

P (FP) = P (Negative ∩ Positive Reported) = 0.794 × 0.5 = 0.397 (3.5)

P (FN) = P (Positive ∩ Negative Reported) = 0.206 × 0.5 = 0.103 (3.6)

Where P (FP) is the probability of a false positive and P (FN) is the

probability of a false negative. The values for the probability of a negative

or a positive occurring are estimated from the proportion of negatives and

positives within the ray-traced simulation i.e. the ratio of black segments

to white segments in Figure 3.5. It is acknowledged that the route the

robot takes also influences the true probability of those events. Though

with no explicit bias designed into the route, the true probabilities should

be approximately equal to those estimated. The high proportion of neg-

ative segments to positive segments means that the random classifier’s

false positive rate is very high. Every parametrisation used outperformed

this estimate. However, the rarity of positive events means that the ran-

dom classifier’s false negative rate is very low. In fact, none of the at-

tempts managed to beat the performance of a random classifier. This

means that the second hypothesis cannot be accepted.

The reason for this poor performance becomes apparent if one ex-

plores the performance of the DCA over time. The raw data was split

into segments, each representing one minute of the robot’s performance.

This is illustrated in Figure 3.8. Each point on the chart shows the mis-

classified antigen rate from the beginning of the experiment up to the

time indicated on the x-axis. Each series is the average classification

error from three runs with the specified migration rate.

The classification error rates rise throughout the experiments. By

taking the samples of false positives after one minute and the samples
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Figure 3.7: Error Rates from the Initial DCA Experiments

The dotted lines indicate the performance of a random classifier.

The vertical axis is measured in terms of a fraction of the total

number of classifications made. The error bars indicate the

minimum and maximum error values.
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Figure 3.8: The Classification Error Rates Changing Over Time

Part (a) is the false positive rate and part (b) is the false neg-

ative rate.
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of false positives after ten minutes, a Wilcoxon test was able to reject

the hypothesis that the two sets of data have the same medians (with

a confidence of 95%), demonstrating that some statistically detectable

difference has occured. Likewise, a similar Wilcoxon test on the false

negatives also demonstrated a statistically detectable change, rejecting

the hypothesis that the samples had the same medians. This is impor-

tant as the error rate should be approximately the same throughout the

experiment. It is theorised that this can be attributed to integration

errors from the dead reckoning algorithm causing the robot’s concept of

where it is in the world to drift. This is supported by the fact that this is

the only time-dependant element of the system. To minimise the effects

of this external error influencing the performance of the DCA it was de-

cided to make a change to the system used to localise the robot in the

environment.

3.5 Localisation Experiment

There are many techniques available to improve the localisation of a

robot, however particle filters (first suggested in [40]) are amongst the

most common. Particle filters rely on generating several estimates of

the pose of a robot, (in terms of the robot’s translation in x and y and

the angle of the robot, θ). By loading in a map of those environmental

factors which are expected to remain static, (i.e. the walls of the pen)

the particle which corresponds to the most likely position of the robot,

(given the current ranged-sensor data and how that relates to the map)

is considered to be the location of the robot. The Aria libraries that are

provided with the robot have a particle filter function as standard. This

was added to the system and run in parallel with the rest of the software.

In addition to the particle filter, the run time of each experiment was
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reduced from 10 minutes to 2 minutes. It was identified that the robot’s

path was a complete circuit, so the additional passes contributed little

to the end results. In fact, as this experiment is designed to explore the

DCA’s performance, it was advantageous to limit the effects of integrated

localisation errors.

3.6 Results

The effect of the particle filter is visible from the two contrasting plots

of telemetry data from the robot taken from two runs within the same

pen in Figure 3.9. The black line is a plot of the telemetry without a

particle filter. Integration errors from the dead reckoning algorithm are

introduced by the wheels slipping instead of producing useful torque. The

accumulation of these errors produces a stereotypical “spirograph” effect,

with the same shape being incrementally redrawn by an increasingly

erroneous rotational offset.

A Wilcoxon test on the false positives was unable to reject the hypoth-

esis that the data after 1 minute had a different median to the data after

2 minutes (confidence level of 95%). This doesn’t prove that the data

has the same median, but suggests an improvement in the consistency.

A similar Wilcoxon on the false negative data did reject the hypothesis

that they had the same medians, suggesting that some changes in per-

formance do occur. Performing the same statistical test for difference

on the results from the experiments after 2 mins before and after the

localisation changes, also rejects the hypothesis that they are the same

(confidence at 95%). With the effects of localisation error reduced, it is

possible to better judge the performance of the DCA. Figure 3.10 illus-

trates the results from the experiments with the particle filter localisation

implemented. For additional clarity Table 3.3 also contains these results.
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Figure 3.9: Telemetry Data With and Without the Particle Filter

The black line is the telemetry without the particle filter. The

“spirograph” effect of a similar shape being repeated, slightly

offset is a classic sign of integration errors in the dead-reckoning

system. The red lines overlap significantly more as the estimate

is repeatedly corrected.
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Table 3.3: Results from the Localised Classification Experiment

E1 E2 E3 E4 E5

False Positive Rates 0.1370 0.1288 0.0987 0.1347 0.0978

False Negative Rates 0.0596 0.0916 0.0884 0.1032 0.1735

All of the false positive rates are better than the random classifier

performance. Three out of five false negative rates are better than a

random classifier performance. This allows the second hypothesis of the

experiment to be accepted as three parametrisations have been found

which outperform the random classifier. It is an intuitive result that

there would be a trade-off between a system which errs on the side of

caution, (resulting in a high false negative rate) and a system which is

more susceptible to triggering (resulting in a higher false positive rate).

An additional phenomena is also present in the DCA. As all cells receive

the same input signals, cells with smaller migration thresholds will tend

to migrate after observing a smaller amount of data than cells with larger

migration thresholds. This means that small migration thresholds can

lead to snap judgements based on noise or sudden changes in circum-

stance and that large thresholds can have their classification coloured by

old, sometimes out-of-date data. These effects mean that the migration

threshold distribution must be selected very carefully.

These results support the concept that the DCA is a potentially useful

algorithm for a robotic security system. Despite the data being unfiltered,

the DCA demonstrated that, if parametrised correctly, it can perform at

least better than a random classifier.
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Figure 3.10: Error Rates from the Modified DCA Experiments

The dotted lines indicate the performance of a random classi-

fier. The vertical axis is measured in terms of a fraction of the

total number of classifications made. The error bars show the

minimum and maximum errors.
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3.7 Conclusions

This experiment has demonstrated several, key points. Firstly that the

DCA, a previously batch-processing algorithm, can be modified to work

with a real-time system. Both the hard and soft real-time constraints

were met, meaning that the system provided a timely response for as

well as providing sufficient computer time for vital functions. Secondly,

the importance of using a good localisation algorithm has been clearly

shown. The performance of the DCA without the particle filter enabled

was worse than a random classifier in terms of its false negative rate.

The cause of this was that the mapping produced by the antigen gen-

eration function was losing its correspondence to the robot’s location.

Localisation algorithms are typically computationally expensive and the

requirement to pre-load a map limits the adaptability of the system.

However, a statistically detectable improvement was produced by adding

the localised data.

This suggests several areas of further work. The first area concerns

the DCA’s tolerance to noise. The reaction of the DCA to the unfiltered

inputs seems to be tolerant to noise. The multiple time scales that the

cells sample over, as a result of their varied migration thresholds, would

seem to be influencing the way the DCA handles input data. As noise is a

typically high-frequency signal, it is a valid hypothesis that the frequency

of a signal within the input data has some effect on the weighting it

receives in the decision-making process. Chapter 4 is an exploration of

this hypothesis, utilising frequency-domain analysis of a single dendritic

cell. Now that the performance of the DCA has been shown to be at least

promising in this limited experiment, further work developing a localised,

adaptive system that can use more complex heuristics should be carried

out to generate a feasible security system. This is explored in Chapter

6. It is also crucial to compare the performance of this DCA with an
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established, equivalent system in order to gauge exactly how well it is

performing. This is done through a theoretical analysis of the algorithm

in Chapter 7.

3.7.1 Summary

In this chapter a new, optimised version of the DCA was designed and

implemented on a mobile robot. The new version was able to produce

results as the robot patrolled around an arena demonstrating that the

system was both fast enough to prevent interference with the primary

functions of the robot and produce results on-line instead of in a batch

fashion. The parametrisation of the DCA was explored for a mock secu-

rity scenario which featured a signature based metric for the PAMP sig-

nal, a Danger signal that had a high false positive rate and an inhibitory

Safe signal that prevented the system reacting to anomalies that had been

identified as acceptable. It was found that with the correct parametrisa-

tion, the DCA can at least outperform a purely random classifier at this

task.

3.7.2 Contributions

Novel contributions provided by this chapter are:

• The use of an antigen multiplication function, as opposed to a static

antigen multiplier.

• The conversion of a batch-processing version of the DCA into one

suitable for use on a real-time system. The interested reader is di-

rected to [52] which provides a full exploration of real-time methods

for the DCA, including the technique used for this experiment.

• The implementation of the abstract K variable, which makes pos-

sible future analysis of the DCA.
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Chapter 4

Frequency Analysis of the

Dendritic Cell Algorithm

“I don’t think necessity is the mother of invention. Invention,

in my opinion, arises directly from idleness, possibly also from

laziness - to save oneself trouble.” - Agatha Christie, An

Autobiography (1977)
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4.1 Introduction

The work in this chapter is based on [108].

Despite a large volume of research being carried out on the DCA,

its behaviour in neither the time nor the frequency domain is well un-

derstood. Results from Chapter 3 suggested that the algorithm treats

signals of differing frequency differently, but the relationship between the

algorithm’s input parameters and its behaviour in the frequency domain

has never been characterised.

In this chapter a single dendritic cell will be modelled in the frequency

domain as a digital filter. Section 4.2 demonstrates how the mathematics

of the signal processing equations can be rephrased as a filter. Section

4.3 outlines an experiment to compare the results of the resulting model

with the original algorithm and Section 4.4 presents the results of that

experiment. Section 4.5 discusses the findings of the chapter and the

limitations of the single-cell model.

4.2 Modelling the DCA as a Filter

To analyse the flow of information through the DCA, it was decided to

model a single cell as a filter. The transfer function of the cell should

provide insight into the information that is used to make a decision and

the information that is ignored. As presented in Chapter 3, the algo-

rithm’s signal processing phase relies on two internal signals, CSM and

K. The CSM signal controls the rate of cell output and the K signal is

the ‘useful’ information being processed. For the purposes of this model

K(t), (K varying in time) will be considered the input being filtered by

the cell. Despite recording additional information, the workings of the

DCA here are identical to those presented in Appendix B.7. To model

a cell as a filter, it was necessary to perform signal reconstruction from
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the output of the DCA. The standard technique for assessing the output

from the DC, (Dendritic Cell) population is to calculate the MCAV [47].

The MCAV is a symbol-specific (i.e. antigen-specific) calculation that

identifies all of the cells that have voted for a given symbol within a fixed

time-frame. An average is then calculated for that symbol. A value of

one is attributed to cells with a positive vote and zero to cells with a

negative vote. Thresholding the MCAV provides a final decision for the

presented symbol. This technique has the advantages of being both com-

putationally inexpensive and able to provide a measure of confidence.

The further the result is from 0.5, the more confident the result.

However, this technique does not allow us to make detailed inferences

about the input signal K. For this analysis, a different technique will be

used to allow a reconstruction of the K signal and thus allow inferences

to be made about the information passed by the algorithm. Alternatives

to the MCAV are not without precedent. In [4] an alternative that takes

into account the volume of antigen as well as the output signals is used to

make more informed decisions about which antigen represents malicious

code. The DCA version used in [4] is outlined in Appendix B.4. In this

case we shall pass the time the cell spent accumulating signals (measured

in sample steps) with the accumulated K signal. By dividing the latter

by the former we can estimate the mean value of K that the cell was

exposed to. This is given in Equation 4.1. Were the window size for

a cell to approach 0, the reconstructed signal would be identical to the

input signal.

K̂ =

∑WL−1
n=0 K[n]

WL

(4.1)

Where

WL is the length of time the cell is accumulating signal.

K̂ is the estimate of K
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This technique not only allows an estimate of the K signal to be

constructed but the magnitude of K̂ also provides a measure of confidence

in the decision.

For the purposes of this investigation we will simplify the model by

assuming a constant CSM value of C, which allows the window length

to be calculated using Equation 4.2.

WL =

⌈

Mi

C

⌉

(4.2)

Where

Mi is the migration threshold of cell i

C is the constant value of CSM

The fraction is rounded up as the cell can only migrate after an integer

number of steps and will only do so if the accumulated CSM is greater

than Mi.

Inspection of Equations 4.1 and 4.2 allows us to infer that the output

of a single cell will be an average value of K, taken over WL steps and

reported every WL steps.

4.2.1 Equivalence to Other Filters

The simplest technique for deriving the frequency response of a DC is

to identify equivalence with established filters with known frequency re-

sponses. The description of the cell’s output, given in Section 4.2, is

similar to that of a moving-average filter with a length of WL. Equation

4.3 describes the behaviour of a moving average filter in the time domain,

(taken from [153]).

y[n] =

∑n

i=(n−(L−1)) x[i]

L
(4.3)
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Where

n is the current time step

y is the output of the filter

x is the input to the filter

L is the length of the filter

Figure 4.1 compares the output of a moving average filter with the

output from a DC. A moving average filter continuously reports the av-

erage of the previous L values for each value of n. In contrast, the output

of a DC can be viewed as a series of pulses at the sample rate of the al-

gorithm. The majority of those pulses are 0’s, however every WL pulses

the magnitude is the output of the moving average filter at that point

in time. This type of system can be realised using the transfer function

expressed using the block diagram in Figure 4.2.

The transfer function of the moving average filter in the frequency

domain is known to be given by Equation 4.4.

Y (ω) =

∑L−1
g=0 e−jgω

L
(4.4)

For this investigation the imaginary constant will be indicated by j as

is standard for engineering applications. ω is the frequency of the signal

and L is the length of the filter.

In [134] the transfer function of a downsampled, then upsampled filter

in the frequency domain is given by Equation 4.5.

V (ω) =

∑M−1
g=0 X(ω + (2gπ))

M
(4.5)

Where X(ω) is the original transfer function to be downsampled, M is

the downsampling factor and V (ω) is the effective transfer function.
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Figure 4.1: The Output from a DC for Constant C and Mi

The x-axis is in sample steps and the y-axis is arbitrary. The

red line is a randomly generated input signal. The green line

is a moving average of that signal with a window size of 3.

The specific values of Mi and C are irrelevant, it is the ratio of

the two variables which determines the window size. The blue

impulses are the value of the average every 3 steps. It is of

note that this output is independent of the version of the DCA

used.

Figure 4.2: A Dendritic Cell in the Frequency Domain

The first box is a moving average filter of window length WL, the

second box is a downsampler and the third box is an upsampler.

July 20, 2010



4.2. Modelling the DCA as a Filter 97

To apply Equation 4.4 to the DCA we must substitute the window

length L for the DC window length WL. To apply Equation 4.5 to the

DCA we must first substitute the downsampling factor M for the DC

window length WL. It is now possible to substitute the transfer function

in Equation 4.4 for X in Equation 4.5 to find the frequency response of

the DC. This result is given in Equation 4.6.

H(ω) =

∑WL−1
g=0

∑WL−1
b=0 e−jb((ω+(2gπ)))

W 2
L

(4.6)

This is an important proof as it is common in engineering applica-

tions to precede a downsampling block with a filter [61]. Such a filter-

downsampling pair is called a “decimator”. This structure is used when a

device with a high data output rate is connected to a device with a lower

input rate. The downsampling reduces the rate to match the input rate

of the lower-frequency device, but the filter ensures that those samples

which do get through are indicative of the set of samples for that time

frame. A filter precedes the downsampler because if the original input

signal contains any frequencies that satisfy the inequality in Equation

4.7, the downsampling process will introduce harmful aliasing artefacts

into the output.

f >
fs

2M
(4.7)

Where

fs is the sampling frequency

M is the downsampling factor

In engineering terms, the ’cut-off frequency’ or ’corner frequency’, fc

of a filter is an important property. The gain for all frequencies greater

than fc is considered to be negligible enough for these frequencies to be

ignored. Any frequency below fc is said to be ’passed’. This frequency
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is generally considered to be the point where the gain has dropped to

1/
√

2. The cut-off frequency for a moving average filter is defined by

Equation 4.8 [153].

fc =
0.443fs

L
(4.8)

In the case of a DC, the downsampling factor and the filter window

length are both equal to WL. With the inequality in equation 4.7 and the

expression for fc in equation 4.8 in terms of the ratio of fs to WL, it is

trivial to demonstrate that the highest frequency that the DC filter will

pass is 0.443fs/WL, well beneath the ‘dangerous frequency’ of 0.5fs/WL.

This result means that the DC will never make decisions based on data

erroneously introduced by aliasing effects.

4.3 Verification of the Model

In order to verify this model we can compare the predicted frequency re-

sponse with the actual frequency response of a single DC with a constant

CSM input and migration threshold. This was generated by making K

equal to various sine waves at different frequencies and recording the

magnitude of the resultant sine waves from both the model and the den-

dritic cell. To have confidence in the model this must be performed for

a variety of CSM values and migration thresholds.

All of the experiments are performed using frequencies between 0

and the Nyquist frequency of the system. The Nyquist frequency, fn, of

a system is half the system’s sampling rate. This is a valid test as the

frequency response of a system from 0 to fn is exactly the same as the

frequency response for the system from any Xfn to (X + 1)fn where X

is an even number. For frequency responses in regions Y fn to (Y + 1)fn

where Y is an odd number, the response is the mirror of the response
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Table 4.1: The Parameter Values Used for Experiments 1-9

For experiments 1-9 fs is held at 1Hz

Migration Thresholds (Mi) CSM Signal Values (C)

30 10

60 20

120 30

Table 4.2: The Parameter Values Used for Experiments 10-21

For experiments 10-21 C is held at 10

Migration Thresholds (Mi) Sampling Frequencies(fs)

30 0.5

60 1

120 2

4

10

from 0 to fn. Thus, establishing that the model is accurate from 0 to

the Nyquist frequency establishes that the model is accurate for any

frequency.

Two sets of experiments were run. Firstly, nine runs of the experiment

were performed keeping the sampling rate at 1Hz, testing every migration

threshold against every CSM signal value listed in Table 4.1.

Secondly a further fifteen experiments were performed, keeping the

CSM signal at 10 and using every value of the migration threshold with

every sampling frequency in Table 4.2.
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Figure 4.3: The Output from the Worst Performing Model Prediction

The green line represents the model’s prediction and the red

line represents the actual frequency response of the algorithm

for Mi = 120 and CSM = 30

4.4 Results

In all cases the response followed a similar overall shape. The gain has

an initial drop from 1 to 0 and in the higher frequencies, oscillations in

the gain value can be observed. These oscillations are known as “ripple”.

The total, absolute error over the entire frequency range for the model

can be defined as the Euclidean distance between its predictions and the

actual response from 0 to the Nyquist frequency. In the worst case, (Mi

= 120, C = 30) the total, absolute error was approximately 0.69 and is

shown in Figure 4.3.

It is clear from the plot that the error arises from circumstances where

the actual DC gain transiently drops. This is not a serious concern for
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this investigation as we are interested in the frequency ranges that are

passed / rejected by the DCA. It is the general shape of the response

that is important. These transient drops are the result of the sample

rate causing the peaks of the input sine waves to be consistently missed.

As a result the algorithm ‘sees’ a different input wave to the intended

one.

Figure 4.4 shows the effects of changing the CSM value for a constant

value of Mi (60). As the CSM value is increased the initial drop-off

slope becomes slower. The ripple in the cut-band becomes larger with a

lower CSM. Both of these aspects are generally considered to be negative

features in a filter. A gradual cut-off slope means that more of the

unwanted frequencies are close enough to the cut-off frequency to have an

effect on the output signal. A high magnitude of ripple means that some

higher frequencies have a disproportionately high effect on the output

signal. This reinforces the idea that low values of migration threshold

relative the CSM signal can lead to too much information being passed

into the output. High values of the migration threshold relative to CSM

cause a fast drop-off in the cut band, but this means that if the useful

information is in the cut band, its information will be lost. In all of these

cases the model predicts the performance of the algorithm accurately.

Predictably, increasing the migration threshold had the inverse effect

to increasing the CSM value. This supports previously seen experimental

behaviour of the algorithm. Again the model’s predictions were accurate

across the entire range. These results can be seen in Figure 4.5.

For the next set of experiments the sampling frequency of the algo-

rithm was altered. For all experiments the effect was to simply scale

the same shaped frequency response between 0 and the new Nyquist

frequency. This can be seen in Figure 4.6. In all cases the error rate

was identical for all migration threshold / CSM pairs for all sampling
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Figure 4.4: Gain vs Frequency(Hz) for Varying CSM Values

For these experiments the value of the migration threshold is

set to 60 and the CSM value is 10, (red) 20, (green) and 30,

(blue). In each case the purely solid line is the model prediction

and the solid line with markers is the actual response.
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Figure 4.5: Gain vs Frequency(Hz) for Varying Migration Thresholds

For these experiments the value of the CSM is held at 20 and

the migration threshold is 30 (red), 60 (green) and 120 (blue).

In each case the purely solid line is the model prediction and

the solid line with markers is the actual response.
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Figure 4.6: Gain vs Frequency for Varying Sampling Frequencies

The CSM was held at 10, the migration threshold was held at

60 and the sampling frequency was changed from 0.5 (red), 1

(green), 2 (blue), 4 (pink) and 5 (turquoise).

frequencies. It is an intuitive result that given a stationary CSM, an

increasing sampling rate will proportionally increase the rate at which

the cells migrate

4.5 Analysis and Discussion

For all parameters the predictions from the model were very accurate.

The significant effect of changing the ratio between the migration thresh-

old and the CSM signal highlights the importance of correctly parametris-

ing the algorithm. This further emphasises the need for a more informed

way of selecting the migration threshold. Figures 4.4, 4.5 and 4.6 clearly
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demonstrate that correct selection of the migration threshold will signif-

icantly alter which information is passed and which information is cut.

As the DCA always acts as a low pass filter any application which relies

on high frequencies to make a decision will require bass cut filters to be

incorporated within the signal generation heuristics.

The scaling effects of varying the sampling frequency had no impact

on the accuracy of the model. The scaling effect is an important result as

it demonstrates that selecting the correct sampling frequency for a given

application is crucial. When applying the DCA to real-time systems this

means that the algorithm is potentially vulnerable to drift in the sampling

rate. However, it is likely that this is rectified by the population-based

nature of the algorithm, so long as the spectrum of migration thresholds

is picked appropriately.

The construction of an accurate frequency domain model of a DC has

ramifications for the usage of the algorithm in the future. With repre-

sentative samples of the CSM and K signals for a given application it

may now be possible to tune the probability density function for the mi-

gration thresholds of the population to provide an optimum response for

the application, a concept which is explored in Chapter 5. By selecting a

migration threshold that rejects data that could be potentially mislead-

ing to the decision making process it is theorised that the error rate of

the algorithm could be significantly reduced. This of course assumes that

the irrelevant information has a higher frequency than the useful infor-

mation. This assumption is true for many complex problems as sources

of noise are generally transient perturbations, thus occupying higher fre-

quencies [61]. The experiment in Chapter 3 uses unfiltered input data

so much of the misleading information comes from high-frequency sensor

noise.
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4.5.1 Limitations of the Frequency Model

The assumptions made to derive the model limit how useful the results

are for predicting the response of the DCA. Here we discuss the key

assumptions and the effects that these assumptions have on the model.

Constant CSM

The model assumes that the CSM signal is kept constant over the lifetime

of the cell. This is unlikely, as the K signal and the CSM signal are both

weighted sums of the same three input signals, so whilst it is possible for

one to move independently of the other, it is highly unlikely. However, it

is doubtful that this is a factor in the model’s accuracy. The CSM signal

is accumulated by a cell over its lifetime. This means that any constant

model of CSM is equivalent to any selection of the CSM signal with the

same cumulated total over the lifetime of the cell. The implication of

this is that the model allows the user to inspect the cell’s behaviour for

a small range of CSM values. Thus predictions based on this model only

hold for transient periods of the algorithm’s use.

Antigen Correlation

The model makes no attempt to take into account the antigen correlation

of the algorithm, so it can make no predictions about how this element of

the algorithm is effected by the input parameters. For applications where

the correlation between antigen presentation and signal presentation is

trivial, this is unimportant. For example, if there is no delay between the

antigen being presented and its effects being felt in the input signals, the

results of the model would be adequate for representing the application’s

needs. However, when there is a delay between antigen presentation

and the resulting signal presentation, or where the relationship between

antigen presentation and signal presentation is combinatorial, (i.e. no one
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antigen is responsible for a positive decision, but certain combinations of

antigen can cause this to happen) the model will be less useful. It is of

note that there are no applications of the DCA in the literature where

combinatorial effects have been investigated. The model could be used

in the future to investigate the effects of Mi on cases where there is a

time delay between antigen presentation and signal presentation, as the

phase of the K̂ signal will provide information about the lag introduced

by the algorithm and thus, the largest possible time between sampling

an antigen and a cell migrating.

Single-Cell Modelling

The model only considers a single cell operating in isolation from the rest

of the population. This considered to be the most significant drawback

to the practical use of this model for migration threshold tuning. The

DCA relies on the use of a population of cells to ensure that samples

are processed regularly and to gather a wide range of data from multiple

frequencies. By ignoring the interaction between a population of cells it

is likely that the model is an oversimplification. For this reason it was

decided to extend the model to incorporate multiple cells.

4.5.2 Conclusions

The DCA has been optimised in this chapter to improve the speed of

execution for future implementations of the algorithm. This optimised

model has been evaluated mathematically to derive the transfer function

for a single DC under the condition that the CSM value is held constant.

The accuracy of this model was verified experimentally and found to be

an excellent indicator for the performance of a DC with a constant CSM

input. Insight has been gained into the relationship between the CSM

signal, the migration threshold and the sampling frequency of the DCA.
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A low migration threshold has been shown to indicate a more gradual

reduction in gain as frequency is increased. This increase in the volume

of information being used in the decision making process is intuitive. In

contrast, a high migration threshold means that higher frequencies are

cut from the decision making process.

The derivation process demonstrated that a useful measure of the

output of a DC is K̂. This estimate of the overall signal that the cell

was exposed to during its sampling phase provides an indication of how

certain the cell is of the final decision. Cells with low magnitudes of K̂

have been exposed to low signal values or approximately equal amounts of

positive and negative signal. This could potentially be incorporated into

future versions of the DCA to provide an alternative to the MCAV that

is more resilient when cells are exposed to multiple, conflicting events

during their sampling phase. A negative feature of this technique is that

it requires some measure of ’age’ in order to calculate the estimate, a

measurement which is not found in the biological model.

4.5.3 Summary

In this chapter a model was produced of a single dendritic cell’s fre-

quency response. The model’s validity was demonstrated empirically.

By examining the DCA from the frequency domain it was possible to

use well-established techniques from the field of signal processing to ex-

plore properties of the algorithm. These include its inherent ability to

remove potentially misleading aliasing frequencies and its equivalence to

a series of known frequency domain structures. It was observed that

these structures are commonly used in the field of signal processing to

lower the bandwidth from one unit to another, while maintaining crucial

information.
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4.5.4 Contributions

Novel contributions provided by this chapter are:

• A mathematical model of a dendritic cell’s behaviour in the fre-

quency domain which has provided an insight into how the algo-

rithm chooses which information to use and which information to

ignore as part of the decision making process.

• Verification of that model’s correspondence to the real algorithm’s

performance.
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Chapter 5

Population Tuning and Multi

Cell Modelling

“Viewed as a geometric figure, the ant’s path is irregular,

complex, hard to describe. But its complexity is really a

complexity in the surface of the beach, not a complexity in

the ant.” - Herbet A. Simon, The Sciences of the Artificial

(1996)

110



5.1. Introduction 111

5.1 Introduction

The work presented in this chapter is based on experiments published

in [108] and [109].

Sensitivity analysis carried out on the DCA has shown that appro-

priate selection of the migration thresholds is crucial to the performance

of the algorithm [42]. This result is supported by the experiments in

Chapter 3 and the theoretical analysis in Chapter 4. These findings are

likely to be caused by the windowing phenomena that occurs as a cell

samples signal from the environment. This phenomena means that if a

migration threshold is too low, a cell will migrate too quickly and will

not be able to gather a representative sample of the input signals. If a

migration threshold is too high, the cell will migrate too slowly and will

mis-classify the gathered antigen. A balance between these two extremes

is found in part by the population-based nature of the algorithm. How-

ever, this is still dependant on a suitable selection of migration thresholds

within the population.

Currently no techniques exist for tuning the DCA’s migration thresh-

olds. Generally applications are tuned experimentally using trial and

error. This can be time-consuming and does not guarantee to find an

optimal set. In Chapter 4 a model was presented that provided a clearer

insight into the strategies used by the algorithm to select which informa-

tion is used as part of the decision-making process and which information

is ignored. It is proposed that such a model should be able to provide

a tuning methodology for the DCA’s input parameters, based on remov-

ing those frequencies that are deemed to contain misleading, noisy data.

This work is based on the DCA version outlined in Appendix B.7.

This chapter is organized as follows: in Section 5.2 a tuning methodol-

ogy is designed, based on the mathematical model presented in Chapter 4;

in Section 5.3 an experiment is performed to test the performance of the
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tuning methodology; the results of the experiments are discussed in Sec-

tion 5.4; Section 5.5 discusses the results of the experiments and outlines

the limitations of frequency analysis for generating a tuning methodology.

5.2 Tuning the DCA using the Frequency

Domain Model

Chapter 4 provides an equation which relates frequency of input signal to

gain (4.6), considering a dendritic cell as a filter. This relationship relies

on the CSM and K signals that are presented as inputs to the cell and the

cell’s migration threshold property. CSM and K will be dependent on

the application-specific heuristics, but the migration threshold is a user-

defined parameter. The premise that this can be used as the basis for

an effective tuning strategy relies on the underlying assumption that the

data to be removed has a higher frequency than the data to be observed.

For the majority of real-world applications, this assumption holds.

It is necessary to overcome two, crucial problems before a tuning

methodology can be created. Firstly, as the model only accepts a con-

stant level of CSM as an input, a value must be identified which captures

the CSM value for the problem being solved. Secondly, once that value

has been identified, the ‘corner frequency’ or ‘cut-off frequency’ of the

filter must be calculated. In standard filter design, this is the frequency

at which all data above that frequency is considered to be ‘cut’ or re-

moved and all data below that frequency is considered to be ‘passed’ or

kept. This is commonly held to be the frequency at which the gain of

the system drops below 1/
√

2 [153].

Identifying these values for a given application will obviously involve

analysing a sample of test data from the application-environment. An

expert should be able to identify ‘events of interest’ within this sample.
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Here, an ‘event of interest’ is defined to be a situation where the CSM

and K signals have increases in magnitude which highlight a situation

that is of use for the application area. The peak of interest with the

smallest magnitude in CSM will provide information about the minimum

sensitivity required by the system. Using the division of the peak’s height

by the peak’s width as the approximate value of CSM will ensure that

in systems where the smallest magnitude peak is a narrow pulse, that

the CSM used in the model will be relatively large compared to that

of a peak with a similar magnitude but a wide pulse. A large value of

CSM, for a given cut-off frequency, implies that the resulting migration

threshold will be set to a smaller, more sensitive value, resulting in a cell

better equipped to deal with higher-frequencies. The cut-off frequency

will be classed as the median frequency of the events of interest for the

application being tuned for. Using the median value will remove the

effects of outliers.

Below the final tuning methodology is defined.

Step One Take an indicative sample of the typical values of K and

CSM that the system will encounter for the application.

This sample acts as a training example for the tuning methodology.

As with any training sample, the underlying assumption that it is in-

dicative will cause the algorithm performance to suffer if the data is not

indicative of the application.

Step Two Identify the median period between events of interest. The

application-specific heuristics should highlight these events with peaks in

the CSM and K values.

Identifying the period at which the events of interest are occurring in

the data is motivated by the need to identify a corner frequency for the

filter. As filters have a smooth response, using this period to calculate
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the corner frequency will not in practice remove all frequencies directly

above it, allowing some of the higher frequency events of interest to pass

through, albeit slightly attenuated.

Step Three Identify the length of the event of interest with the lowest

CSM value associated with that event. Events of interest will generate

a spike in the CSM value of the system. The smallest spike is indicative

of the most difficult event to extract from the input data. Record the

median value of the spike and its duration.

The model used to calculate the parameters requires a CSM value

to operate. By using the lowest CSM value associated with an event of

interest, the aim is to ensure that the resultant system can detect even

the smallest event required.

Step Four Calculate the target corner frequency. The target corner

frequency is the inverse of the period calculated in step two. As discussed

in step 2 the filtering process has a very gradual cut off, the fact that

this is an approximation should not prevent any useful information from

passing through to the decision making process.

Step Five Calculate the constant CSM value for the model. The me-

dian value of the spike identified in step three, divided by the duration

of that spike provides a good approximation of the value of C. C is the

constant CSM value to use in the model. By dividing the median value

by the length of the spike we ensure that the quantity of CSM is sufficient

to generate a single window for a DC to monitor. This is the smallest

artefact within the signal that is examined.

Step Six The transfer function is used to search the space of avail-

able frequency responses to find one with a corner frequency which is
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approximately equal to the target corner frequency.

This search is a simple exhaustive search going in integer steps from

1 to 500.

5.3 Revisiting the Robotic Classification Prob-

lem

In order to test this methodology the experiment outlined in Chapter

3 was repeated using the migration threshold values specified by the

methodology.

5.3.1 Tuning The Algorithm

A sample of the CSM and K values for a typical run of the experiment

were taken. The sample rate used was 4Hz. Figure 5.1 shows the first

400 samples covering a period of 10 seconds, from the robot.

The estimated peaks from the sample in Figure 5.1 are given in Table

5.1. The median distance of 30.5 samples gives a target corner frequency

of approximately 0.131Hz.

The event of interest with the lowest CSM signal was identified as

the small peak in CSM between samples 297 and 302 where the robot

moved so the anomalous cylinder briefly came into view of the camera.

This is evident in the data as the K signal associated with this period is

positive. Here, the term ‘interesting’ refers to any event that the robot

should report back to the user. The median CSM value between these

points is approximately 22.9. This equates to a constant CSM value of

approximately 4.5.

After searching the parametrised space of frequency responses a mi-

gration threshold of 54 was identified as an optimal result. This result

was compared to the results from Chapter 3. In addition, the experi-
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Figure 5.1: A Plot of the Magnitude of K and CSM Against Time

The time is measured in sample steps. A 10 second sample

from the robot application. The pink line is the K signal and

the blue line is the CSM value.
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Table 5.1: The Sample Numbers of the Peaks Within Figure 5.1

Sample Number Distance From Last Peak

42 N/A

62 20

114 52

133 19

178 45

205 27

230 25

264 34

299 35

321 22

356 35

380 24
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Table 5.2: Results From Using a Distribution of ±50%.

“FN” is used to denote “False Negative” and “FP” is used to denote

“False Positive”.

Mi Average FP Average FN

FP % Deviation FN % Deviation

15 13.697 0.132 05.959 0.070

30 12.877 0.098 09.164 0.103

54 04.769 0.089 10.089 0.117

60 09.872 0.159 08.838 0.093

120 13.469 0.157 10.317 0.150

240 09.781 0.170 17.351 0.175

ments were repeated, but using a distribution width of ±10% (as op-

posed to the standard ±50%). By reducing the distribution width, the

overlap between the populations is reduced and the effects of the tuning

methodology can be more clearly seen.

5.4 Results of the Tuning Experiments

Table 5.2 shows the results from the experiments on the robot using a

distribution of ±50%. The error rates presented are the average percent-

age of incorrect readings over 10 blocks of twelve seconds. For illustrative

purposes, the data is plotted in Figure 5.2.

Examining the results presented in Table 5.2 and Figure 5.2, the

tuning algorithm appears to have performed comparably with the other

parameters in terms of the false positive rate. 4.769% is less than half

the false positive rate of the best result found using trial and error, a

migration threshold of 60. It also has one of the smallest standard devia-
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Figure 5.2: The Results from the Tuning Experiment

Using a migration distribution of ±50%. The dashed lines indi-

cate the performance of a random classifier.
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Table 5.3: Results From Using a Distribution of ±10%

“FN” is used to denote “False Negative” and “FP” is used to denote

“False Positive”.

Mi Average FP Average FN

FP % Deviation FN % Deviation

15 07.054 0.129 07.838 0.091

30 09.113 0.101 07.406 0.093

54 15.007 0.193 07.706 0.091

60 05.000 0.127 06.830 0.105

120 11.697 0.103 12.305 0.140

240 02.500 0.079 09.687 0.116

tions of the set, suggesting that the entire range of migration thresholds

around the tuned value appear to work well for the problem. However,

this is not the case when exploring the more taxing problem of the false

negative rate. The tuned result barely outperforms a random classifier

and is the fourth worst performing parametrisation of the algorithm. The

most likely cause of this is that that the techniques for calculating the

constant value of CSM and the target corner frequency are flawed and

lead to an incorrect value of the migration threshold to being generated.

Another possible cause is the broad spectrum of migration thresholds.

By using a distribution with a width of ±(0.5Mi) the effect of tuning

may be lost. To explore this idea the experiments were repeated using a

narrower band of migration thresholds.

The results presented in Figure 5.3 and Table 5.3 are from the sec-

ond set of experiments, using the narrower migration threshold band.

Applying the Wilcoxon test to the two sets of data with a migration

median of 54, (p-values of 0.172 for the false positive rates and 0.843
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Figure 5.3: The Results from the Tuning Experiment

Using a migration distribution of ±10%. The dashed lines indi-

cate the performance of a random classifier.
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for the false negative rates) failed to confirm that the two sets of data

had significantly different medians (using a 95% confidence threshold).

This is unsurprising as the two data sets both have the same central

point for their migration threshold distribution. Comparing the mean

false positive rates demonstrates that the narrower migration threshold

distribution worsens the mean error. However, the standard deviations

between the two data sets indicate that narrowing the distribution width

actually increases the range of the false positive rates. These factors indi-

cate that narrowing the migration threshold distribution causes the false

positive rate to jump to much worse values for short periods of time, but

for the majority of cases, remains approximately the same. This suggests

that the tuning methodology has failed to capture the CSM value appro-

priately for all cases and that a wider distribution has simply masked

this short-coming by including cells that are appropriate for the cases

where the tuned threshold fails. This is supported by the fact that the

false positive rates for a migration median of 60 are much better in the

narrow band case, indicating that slightly higher migration thresholds

would ‘wash-out’ the poor performance of the other cells. Comparing

the false negative rates between the wider and narrower migration bands

for the tuned results, indicates that the band has had a limited effect.

5.5 Discussion

The transient poor performance of the system when using the tuned

value indicates that the identification of a stationary equivalent to the

varying CSM signal is not a trivial task. In addition, if variances in

the CSM signal are causing one value of the migration threshold to be

good in some cases, but bad in another, it is much more important for a

tuning methodology to not simply identify a median point about which
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the cells’ migration thresholds are to be distributed, but to identify a

good distribution shape for best dealing with the sampled CSM data.

As a result, a much better understanding of how an entire population of

cells reacts in the frequency domain is required.

5.5.1 Multi-Cell Modelling

In order to model multiple cells in the frequency domain, it is neces-

sary to specify how they will interact in the time domain. To produce

a population-wide K̂ we must find a reliable way of combining the data

from a population of cells. For the purposes of this investigation it was

decided to simply periodically sample the cell population and check for

migrated cells. The K̂ output from each migrated cell would be averaged

together to produce an population-wide estimate of K for that window.

By averaging together the output from multiple cells, the process of gen-

erating a multi-cell model is made much easier. In the frequency domain,

the averaged output from multiple filters can be modelled as simply the

sum of the gains. The averaging process has no effect on the shape of

the response, but scales it to be in the range 0-1. To explore the effects

of this multi-cell model a 2 cell system was created using one cell with a

migration threshold of 90 and one cell with a migration threshold of 110.

The CSM signal was held at 20 and the sampling rate was held at 1Hz.

The outputs of the cells were checked every algorithm cycle. All of the

experiments were carried out using the Octave environment.

Figure 5.4 shows the frequency response of the actual system and the

predicted output from equation 4.6 in Chapter 4. The two lines clearly

diverge significantly more than the other models. The source of the dif-

ference is a combination of the asynchronous nature of the dendritic cell

algorithm and the way in which the actual system gain is calculated. To

calculate the gain of the actual system, the peak value of the output is
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Figure 5.4: The Frequency Response of the Two Cell System

The thick, dark line is the predicted response and the light,

dashed line is the actual response.

recorded by the simulator. As the cells have different migration thresh-

olds there will be occasions when one cell reports and the other does not.

On other, rarer occasions, both cells will synchronise and report at the

same time. As the maximum peak is recorded as a measure of gain, the

cell with the larger gain for that frequency will dominate the results from

the simulator. This can be verified by comparing the measured response

from the algorithm with the maximum of the two single-cell model pre-

dictions. In Figure 5.5 the output from the actual system clearly follows

the maximum path of the two model predictions. Figure 5.6 shows an ex-

ample of the asynchronous system outputting three different sized gains

for a single input frequency.

The construction of a model capable of predicting the response of

a population of DCs is a non-trivial task. The asynchronous nature of

the population means that the differing phases of the cells will have a
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Figure 5.5: The Revised Frequency Response of the Two Cell System

The thick, dark line was generated by using the largest gain out

of the two, single cell predictions for each frequency. The light,

dashed line is the actual response.
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Figure 5.6: An Example of the Output for a Two-Cell DCA

The sample frequency is 1Hz and the input frequency is a sine

wave at 0.125Hz with a magnitude of 1. The first peak is the

gain of the cell with a migration threshold of 90 (approximately

0.48), the second peak is the gain of the cell with a migration

threshold of 110 (approximately 0.31) and the third peak is the

average gain of each cell (approximately 0.40)
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significant effect on the output of the system. Effectively the relationship

between gain and input frequency has ceased to be expressible using

conventional means, as the gain for a given frequency is a range of values,

depending on the relative phases of the cell population. For a two cell

system there are four possible gains for each frequency, the gain of cell

1, the gain of cell 2, the average gain of cell 1 and cell 2 and a gain of

zero, when neither cell migrates. It is possible to derive that the number

of possible gains for a single input frequency, for a population of cells is

given by:

Ng = 2P (5.1)

Where Ng is the number of possible gains and P is the number of

cells in the population. This a worst-case that assumes that it is possible

for all cells to simultaneously drift in and out of phase with one another.

For a standard 100 cell implementation of the DCA this evaluates to

approximately 1.27 × 1030. Whilst it is possible to calculate the average

response, it is questionable if this will be sufficient to provide enough

information to effectively tune the system. It is possible that the cells

drifting in and out of phase with one another adds another level of fil-

tering to the system. A transient spike will be picked up by some, but

not all of the cells migrating at a given interval, thus the average output

over the population will potentially remove some of the noise from the

inputs.

These results cast doubt on the usefulness of traditional frequency-

based techniques for modelling the DCA. An effective, multi-cell model,

potentially needs to be able to take into account the differing phases of the

cells, but even for standard implementations the space of possible gains

is huge. The average response could be calculated with knowledge of how

often combinations of cells drift in and out of phase with one another.
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This is calculable for a constant CSM system by using the different values

of WL. Such a model would only be a guideline for the general case of the

algorithm and the computational complexity of evaluating such a model

could potentially outweigh the benefits of automated parameter tuning

vs. the trial and error approach.

Since this work was published, Gu et al. have explored an alterna-

tive technique for automatically parametrising the algorithm based on

principal component analysis. This still requires the migration thresh-

old distribution to be manually tuned, but attempts to automatically

generate the source of the input signals (PAMP, Danger and Safe) from

available domain data [54].

5.5.2 Summary

In this chapter a tuning methodology was designed to automatically iden-

tify the input parameters for the DCA, given a sample of training data.

The methodology was explored empirically, but was found to be inferior

to a trial and error approach to identifying the parameters. This poor

performance was attributed to limitations of the model. An attempt was

made to improve the model by extending it to take into account the ef-

fect of multiple cells operating simultaneously. It was identified that the

asynchronous nature of cell migration, enforced by the broad spectrum of

migration thresholds, creates a one to many relationship between input

frequency and gain. This is not a relationship that standard frequency

analysis techniques are able to model and suggests that this line of en-

quiry has been exhausted. However, Chapter 3 raised other questions

about the DCA that are still in need of investigation. Namely, the prac-

ticality of using the DCA for a real-world anomaly detection algorithm

and the DCA’s performance in that field compared to traditional ma-

chine learning algorithms. These issues shall be explored in Chapters 6
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and 7.

5.5.3 Contributions

Novel contributions provided by this chapter are:

• An initial tuning methodology for the DCA has been designed, but

was demonstrated to be of limited practical use.

• It was demonstrated that while standard frequency analysis tech-

niques are good at modelling the behaviour of a single dendritic cell,

they are not a useful tool for future analysis of an entire population

of dendritic cells.

• The reason for the tuning methodology’s failings and the frequency

analysis’ inability to model a collection of cells was identified. The

asynchronous nature of cell migration increases the complexity of

modelling a population of cells to the point that standard frequency

analysis tools are unable to further explore the algorithm.
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Chapter 6

A Robotic Security

Application

“Quis custodiet ipsos custodes? (Who will guard the guards

themselves?)” - Juvenal, Satire VI [circa 100 A.D.]
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6.1 Introduction

The work presented in this chapter is based on the experiments published

in [110].

Chapter 3 identified the importance of good localisation for imple-

mentations of the DCA using location as antigen. Such a system applied

to building security also requires the use of heuristics that will assist

the algorithm in identifying anomalous or dangerous situations. In this

chapter we present a technique for implementing a robotic security sys-

tem that combines a neural-inspired algorithm for localisation and map-

ping and an immune-inspired algorithm for adaptive anomaly detection.

By combining these two algorithms it is hoped that a scalable security

solution can be constructed which takes advantage of localisation data

to detect anomalous situations. This investigation is based on the DCA

version outlined in Appendix B.7.

This chapter is structured as follows: in Section 6.2 a biologically

inspired security system is outlined, which uses both the RatSLAM al-

gorithm and the DCA; in Section 6.3 an experiment is designed to test

this prototype system; in Section 6.4 the results of this experiment are

presented and in Section 6.5 the meaning of these results is discussed.

This chapter concerns the merging of the DCA to the RatSLAM

algorithm. As much information as possible is provided though, due to

intellectual property issues concerning the commercial exploitation of the

RatSLAM algorithm, information about the code and parametrisation is

limited.
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6.2 A Bio-Inspired Physical Security Sys-

tem

6.2.1 Combining the DCA with RatSLAM

As discussed in Chapter 2, RatSLAM is a biologically inspired algorithm

for mapping and localising within a dynamic environment.

A crucial stage in the implementation of the DCA is the selection

of appropriate input heuristics. For this application normality can be

viewed as the standard operation of the building. For a physical security

application the most analogous source of a PAMP signal would be a

specific recognition algorithm for a universally dangerous situation, such

as a building fire or the absence of an item of specific interest. It is

the interaction between the neural model and the immune model that

is of interest so this signal will be left out. Using the DCA without the

PAMP signal for simplicity has precedent in other areas [44], (though

for that publication, the authors also made significant changes to the

algorithm itself, as outlined in Appendix B.8). For the Danger signal it

was decided to monitor RatSLAM’s localisation score, S. In RatSLAM

a low score implies that the robot is lost and a high score indicates that

the input data corresponds to the algorithm’s current estimate of pose.

From analysis of the algorithm’s performance it is possible to discern

that any value of S greater than 80% represents a good estimate of pose

1, while any value below that represents an increasingly poor estimate,

with 0% representing a total localisation failure. Using this knowledge

1From personal communication with Dr. Michael Milford
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the Danger heuristic was generated using equation 6.1.

Danger(S) =















100 − S, if S ≥ 20

0, otherwise

(6.1)

The purpose of the Safe signal is to ensure that the immune response

is tolerised against circumstances where a certain level of abnormality

is acceptable. An example of this mechanism in action within biology

is found in the stomach, which is filled with foreign proteins as part of

its normal operation so an immune response would be unwanted. As

discussed in Chapter 2, the RatSLAM algorithm stores “experiences” to

assist in the mapping of an environment. The number of experiences

required to map dynamic environments is higher than the number of

experiences required to map largely static or uniform environments. As

a result it is possible to quantify the typical level of ’abnormality’ for

a given environment by calculating the density of the experience points

around that position. Figure 6.1 demonstrates the variation between

experience point density for four regions of space. In order to convert

experience density for a given point in space into a usable Safe heuristic

it is necessary to define two parameters: the radius r of the circle to

be drawn around that point; and the upper density N to be used that

will correlate to 100% signal output. These parameters will be explored

as part of this investigation. It is of note that the RatSLAM algorithm

regularly prunes experiences that have been unhelpful. In this way the

algorithm should adapt to night-time conditions and re-tolerise against

busy environments in the morning after a period of adjustment. The

Safe signal is expressed in equation 6.2

Safe(x, y) =
100 ×

∑E

i=0 f(x, y, xE, yE)

N
(6.2)

Where N is the number of points required to achieve the maximum
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Safe signal of 100, E is the total number of experience points created and

f(x, y, xE, yE) is given in equation 6.3.

f(x, y, xE, yE) =















1, if
√

(x − xE)2 + (y − yE)2 < r

0, otherwise

(6.3)

In previous robotic applications of the DCA a grid-based system was

used to relate pose to an enumeration of state. This was ultimately

flawed as using an enumerated type to describe a physical position in

space limited the area that the algorithm could be used in. RatSLAM

uses a toroidally mapped, three-dimensional grid to represent pose. It has

been shown that this wrapping of the representation of space is effective

over significant distances [99]. As there is clearly a finite number of pose

cells within the RatSLAM algorithm, it is easy to map the most active

pose cell as the antigen being presented to the dendritic cell population.

6.3 Monitoring a Cluttered Office Environ-

ment

The DCA has shown itself to be capable of operating on a robotic system,

(see Chapter 3) and robust to noise, (see Chapter 4). The focus of

this experiment is to explore the algorithm operating within a real-world

environment. To fully test the practicality of the system, the environment

should be unmodified and contain both static and dynamic obstacles.

The hypothesis of this experiment is that the DCA will outperform a

random classifier at the same task.

To explore the properties of the security system, it was presented with

captured data from a cluttered, unmodified office environment. This data

was gathered using a Pioneer 3DX robot using a camera attached to a
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Figure 6.1: Generating the Safe Signal

The experience density for a given point in space is calculated

by identifying the number of experiences (crosses) that are con-

tained within a circle of radius r centred on that point. The

parameter N scales the number of experiences to be between 0

and 100 where 100 correlates to N or more experiences. Using

this metric, the points at the centre of circles a and b would

generate high levels of Safe signal and the points at the centre

of circles c and d would generate low levels of Safe signal.
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parabolic mirror for localisation and a laser range finder for obstacle

avoidance. Approximately 30 minutes of data was analysed. Logged

data was used to aid repeatability for exploring the parametrisation of

the system.

For the RatSLAM part of the system, the standard parametrisation

and physical configuration was used. The visual input was from the lower

half of a feed from a parabolic camera attached to the top of the robot.

Laser and sonar sensors were used for obstacle avoidance.

It is standard practice to use a uniform distribution of migration

thresholds centred around 15, 30, 60, 120 and 240 when identifying the

appropriate range to use [42]. In each case the width of the distribu-

tion is set to ±10% of the centre. As the Safe signal heuristic is also

parametrisable, a range of values of r will also be explored. The results

for r = 0.05, 0.1.0.2, 0.3 and 0.5 will be presented here, (units in metres).

N will be set to the maximum experience density found in the first few

minutes of test data.

In each experiment, the performance of the algorithm will be com-

pared to the results of a human operator identifying people walking

around within the environment. Rather than simply identifying peaks

where the algorithm successfully identifies a threat, the instantaneous

difference between the human operator and the algorithm will be calcu-

lated, thus penalising the algorithm for a late identification or for pre-

maturely returning to the “safe” state. For the purposes of analysis the

output from the first 300 frames, (30 seconds) will be ignored. In this

time the robot is considered to be lost, as it attempts to localise in the

environment so the output from the algorithm is invalid.

In each case the width of the migration distribution will be set to

±10% of the centre point. Table 6.1 shows the number of experience

points required for each radius size to generate 100% Safe signal.
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Table 6.1: Parameter Values Used for N

In each case N is the number of experiences within the circle

that caused 100% output from the Safe signal.

r (m) N

0.05 10

0.1 19

0.2 28

0.3 35

0.5 48

6.4 Results

A full video of the experiment can be found at

http://www.cs.nott.ac.uk/˜rxo/thesis/

Figure 6.2 displays the results from 25 experiments using different values

of r and the migration threshold distributions.

Increasing the radius of effect for the Safe signal reduced the false

positive rate considerably. However, there was a sudden fall from 0.1 to

0.2 which was associated with the largest rise in the false negative rate.

None of the chosen parametrisation outperformed a random classifier in

terms of their false negative rate.

6.5 Discussion

The input parameters had a noticeable effect on the performance of the

algorithm which was to be expected for a system which relies so heavily

on expert knowledge for tuning. It is arguable that as a security system
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Figure 6.2: The Results from the 25 Experiments

The small x-axis labels indicate the centre point of the migra-

tion threshold and the larger x-axis labels indicate the groups

of experiments with the same r value. The dashed lines indicate

the theoretical results of a random classifier based on the ratios

of positive and negative events from the human classification.
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the performance of the algorithm with a radius of 0.3 and a migration

threshold distribution centred on 240 had the best performance. This

combination of inputs gave a false positive rate of 0.02 and a false negative

rate of 0.07. As an augmentation of a manned security system these are

promising results as the low false positive rate is likely to prevent alerts

from being ignored by the operator. However, as the true positive rate,

as determined by a human operator, was such an unlikely event, the

theoretical performance of a random classifier was hard to beat. In a

genuine security situation it is likely that the majority of what a security

guard observes is “normal” behaviour and requires no intervention, a key

advantage of this system is that it performs consistently regardless of how

long it is in service. Figure 6.3 shows the first 3000s of the output of the

best performing system over time.

With such a large migration threshold centre, it is likely that some

of the false negatives have been caused by a delay between the input

data being presented to the algorithm and the algorithm generating an

immune response. In addition, the output from the algorithm appears

to be pulsing (due to the larger differences between the cells), which is

generating more false negatives. Assuming that any real system would

raise an alert for several seconds at a time from the first immune response,

it is likely that the performance of the system will be better than it

originally appears. Certain key pulses are missed. This is likely to be

for two reasons. Firstly, the algorithm is only observing the bottom half

of the video feed, which could potentially mean that some inputs were

missed. For example the pulse at iteration 9800 corresponds to the image

in figure 6.4 which has a limited effect on the lower half of the image.

Secondly the human operator was only looking for individuals walking

within the environment. The algorithm would ignore those pulses found

in areas that were usually busy. The missed pulse at 2960 corresponds to
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Figure 6.3: The Output from the Best Performing System

The first 3000s of the best performing system. The red line

is the output from the system and the blue line is the output

from the human operator
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Figure 6.4: Problems With Occlusion

The figure (circled) has the bottom half of their body occluded

by an object. As only the bottom half of the image is processed

by the algorithm, this generates a false negative.

an office environment, where the objects, such as chairs etc are regularly

moved. In this case the Safe signal rises consistently to approximately 20

which inhibits the response to someone walking in front of the camera.

For a security system, ignoring areas which are typically cluttered and

crowded is an advantage with obvious potential drawbacks.

In the future this system would benefit from the addition of a PAMP

signal to recognise specific situations. As the PAMP signal is supposed

to be a signature of known threats, it would be analogous to provide the

robot with a smoke detector for identifying fires or an RFID detector to

identify if specific pieces of equipment were present or not. This could

be achieved using a standard classifier trained on data from artificial re-

creations of those circumstances, or in the case of fires, a heat or smoke

sensor could be physically connected to the robot. Additional sources of

Danger and Safe to encapsulate information such as time of day could

potentially vastly increase the usefulness of this system. For example it

would be possible to automatically increase the Danger signal at night

to increase the reactivity of the system or suppress the system when the

robot’s pose estimate moved into a foyer or other such area.
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6.5.1 Summary

This chapter presented the design and implementation of a bio-inspired

robotic security system. The system uniquely combined a neural model

of a hippocampus with an immune system model. The neural model

provided both sensor fusion and robot localisation. The immune system

was able to utilise metrics used by the neural model to provide anomaly

detection. The system demonstrated the ability to learn the “normal”

state of a building and was able to adapt to long term changes. Empirical

exploration demonstrated that the system was able to outperform a ran-

dom model. This supports the supposition that the algorithm is making

use of the data presented to it, but as yet there is no information about

how well the algorithm will perform compared to traditional machine-

learning techniques. However, minimising the bias in a direct empirical

comparison would be extremely challenging due to the fact that there is

no direct functionally equivalent algorithm available. In addition, com-

paring the DCA against a system that made use of training data would

potentially bias the results, depending on the quality of the training data.

As a result, the next logical step is to return to a theoretical perspective,

this time examining the algorithm as a one class classifier.

6.5.2 Contributions

Novel contributions provided by this chapter are:

• A novel physical security system which combines the anomaly de-

tection properties of an immune model with the adaptive properties

of a neural model.

• The production of a synergistic bio-inspired model which takes ad-

vantage of key metrics to facilitate both anomaly detection and

localisation and mapping.
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Chapter 7

Geometric Analysis of the

DCA

“Geometry is not true, it is advantageous.” - Henri Poincare

(1854-1912)
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7.1 Introduction

The work presented here is based on [131].

Chapter 6 describes the implementation of a novel, bio-inspired phys-

ical security system. While it was possible to ascertain the algorithm’s

performance against a theoretical, random base-line, how well it performs

against other techniques is not known. Comparing the DCA to known

machine learning algorithms has been attempted before [48], however it

is problematic. As discussed in Chapter 4, the DCA performs a variety of

roles, filtering information, performing temporal correlation with antigen

and eventually performing a classification for each sampled antigen based

on the associated environmental signals. To perform a näıve comparison

between the DCA and another algorithm which fulfils only one of the

roles that it performs is difficult. If the base-line outperforms the algo-

rithm for one application, it is difficult to be sure that it will outperform

the DCA over all. If it outperforms the DCA at its specialty, but does

not provide any of the other functionality, what weight should be placed

on the DCA’s additional functions? If one were to construct a hybrid

algorithm, using traditional machine learning and signal processing tech-

niques (say, for example, a population-based filtering algorithm and an

ensemble classifier), how would we attribute success/failure to individual

components? Could the system be let down by a poor choice of training

data? Could the frequency responses of the filters be introducing a bias?

All of these issues limit the usefulness of a direct, empirical comparison.

Instead it was decided to pick apart the elements of the DCA and com-

pare them to the behaviours of stand-alone algorithms from a theoretical

stand-point. This makes comparisons fairer and the results more useful

from a practical perspective. To some extent, Chapter 4 has already

begun this process by treating the algorithm as a filter. In this chapter

the classification phase of the algorithm is analysed by demonstrating its
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equivalence to an established machine learning algorithm.

For this analysis the Deterministic DCA [44] shall be used. Amongst

other changes, this version of the algorithm ignores the PAMP signal and

concentrates on the interplay between the Danger and Safe signals. It is

outlined in full in Appendix B.8. Ignoring the PAMP signal reduces the

dimensionality of the input data and makes analysis simpler to visualise.

It is of note that the techniques outlined here will work for all versions

of the DCA, but the two dimensional version is simpler to visualise on

paper.

7.2 Linear Classification

Linear classifiers are a well-established form of machine learning. Within

machine learning, the classification problem can be viewed as determining

whether an example input, presented to the classifier in the form of an

N -dimensional vector, has membership to a given set or not. Classifiers

are typically supervised learning algorithms, with two distinct phases: a

training phase and a classification phase. In the training phase the linear

classifier is presented with a series of N -dimensional vectors, each with

a corresponding label indicating if the example is a member of the set to

be identified or not. During this phase a learning algorithm is applied

which attempts to construct an (N−1)-dimensional hyperplane, (a single

point for one dimensional space, a line for two dimensional space and so

on) which will act to separate set members from set non-members. As

explained, in the classification phase, observations of the training set are

used to identify if the presented example is part of the set of interest or

not. There are a huge number of different implementations and learning

algorithms within this field. However, once trained, linear classifiers can

always be expressed as a weight vector w and a bias term w0 which define
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Figure 7.1: A Linear Classification Example

In this representation the members of the set of interest, (rep-

resented by crosses) can be separated by the dashed red line.

Each example is represented by a point in the input signal space.

The dashed red line can be represented by a weight vector w

and a bias w0.

the position of the hyperplane in the input signal space. The orientation

of the dividing hyperplane is always perpendicular to the vector described

by w and its offset from the origin is proportional to the w0 bias. In the

two dimensional case, the y-intercept of the decision boundary is given

by the ratio between w0 and w2, the second term of the w vector. These

concepts, in their two dimensional case are illustrated in Figure 7.1.

The weight vector representation of a linear classifier is implemented

using the dot product. This mathematical concept is an operation which

can be performed on two vectors of equal length. In this case the first

vector is the weight vector that represents the linear classifier and the
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second vector is the N -dimensional vector representing the point in signal

space to be classified. The dot product is simply the sum of the products

between corresponding elements of each vector and is represented by

equation 7.1.

w.x =
N

∑

i=0

wi × xi (7.1)

In [100] the significant limitations of linear classifiers were outlined.

These were seen as a severe limitation to neural networks as a whole.

However, non-linear classification methods, such as multi-layer percep-

trons, have found techniques to compensate for these limitations [58].

These limitations revolve around the linear nature of the classification

boundary, which not only severely limits the datasets for which they can

be applied to, but prevents any benefit from applying them in a cascade

as the linear combination of several linear classifiers can ultimately be

expressed as a single linear classifier.

7.3 Representing The DCA as an Ensem-

ble Classifier

The deterministic DCA uses equations 7.2 and 7.3 to calculate the inter-

mediate control signals for each cell.

CSMn = Sn + Dn (7.2)

Kn = Dn − 2Sn (7.3)

Where Dn is the current sample of the danger signal, Sn is the current

sample of the safe signal, CSMn is the current CSM value and Kn is the

current value of the K signal.
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The means of collating the outputs from a population of cells varies

between versions. A comparison between two popular collation tech-

niques for the DCA is performed in [4]. The most common technique is

to use the “mean context antigen value” or MCAV [47]. This technique

has been discussed in previous chapters and can be seen in pseduocode

form in Appendix B.4.

As discussed in Section 7.2, for typical classifier analysis it can be

instructive to view the positions of the classification hyperplanes with

respect to the input signal space. However, the DCA does not operate

on the input signals directly, rather the sum of the signals experienced

over a given cell’s lifetime. This presents a challenge as the population

is asynchronous and a cell can migrate at any time relative to the rest of

the population depending on its input history. Conventional techniques

for visualising linear classifiers that use their input history (as opposed

to their instantaneous inputs) usually treat each sample as a new input

dimension. However, the number of samples a dendritic cell analyses

varies depending on signal magnitude via the CSM gating mechanism,

so the resulting space would have varying dimensionality between cells

and input magnitudes. To overcome this challenge, rather than using

the instantaneous input signals as axes, we can use the cumulated input

signals. In this space the algorithm becomes easier to explore.

Each cell generates two planes in this space. The first is the decision

boundary. The cell will not make a decision, (i.e. migrate) until its cur-

rent decision boundary is reached. At the first instance where the cell’s

decision boundary is reached, the point is compared to the second plane,

the classification boundary, to decide if the cell is voting for normality

or ‘anomalousness’.
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The inequality defining when a cell migrates is given in equation 7.4

Mi ≤
T

∑

n=0

CSMn (7.4)

Where Mi is the migration threshold of cell i and T is the index of the

current sample. Substituting the definition for CSMn from equation 7.2

into equation 7.4 and rearranging for
∑

safe gives equation 7.5.

T
∑

n=0

Sn = −1 ×
T

∑

n=0

Dn + Mi (7.5)

Where
∑

Sn is used as the y axis and
∑

Dn is used as the x axis. How-

ever, this only holds in the individual cell’s frame of reference. To express

equation 7.5 in the global co-ordinate frame, the line must be offset by

the starting position of the cell in signal space, (xP , yP ). Equation 7.5

shows that all decision boundaries are parallel going from (xP + Mi, 0),

to (0, yP + Mi) with a constant gradient of -1. The classification bound-

ary can be defined similarly, using the inequality in equation 7.6, which

defines ‘normality’.
T

∑

n=0

Kn > 0 (7.6)

Substituting equation 7.3 and rearranging as before provides equation

7.7, the classification boundary.

T
∑

n=0

Sn = 0.5 ×
T

∑

n=0

Dn (7.7)

This also gives a constant gradient, of 0.5 in this case, implying that

all of the classification boundaries are also parallel. This demonstrates

that not only can an individual cell be modelled as a linear classifier,

but a population of cells is limited to only produce those classification

boundaries that can be expressed as combinations of parallel planes.

Rearranging equations 7.5 and 7.7 into the dot product representation

for a linear classifier yields equations 7.8 and 7.9 respectively.

yD(x) = 〈WD,x〉 − Mi (7.8)
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Where yD is the decision boundary, WD is a vector representing the

weightings of the Safe and Danger signals towards the CSM signal and

Mi is the migration threshold of the cell being considered. For the current

version of the DCA WD is [1, 1, 1, 1, ...] and x is [Dn, Sn, Dn−1, Sn−1...]

where the length of the vectors is defined by the number of samples

required to satisfy equation 7.4.

yC(x) = 〈WC,x〉 (7.9)

Where yC is the classification boundary and WC is a vector representing

the weightings of the safe and danger signals towards the K signal. For

the current version of the DCA WC is [1,−2, 1,−2, ...] and x is the same

varying length vector described in equation 7.8.

7.3.1 Visualising a Single Dendritic Cell

Figure 7.2 illustrates the visualisation of the decision boundary and clas-

sification boundary for a single dendritic cell.

The x axis is the cumulated danger signal that the cell has been ex-

posed to and the y axis is the cumulated safe signal that the cell has

been exposed to. Each cross represents a change in the input signal ex-

perienced by the cell and the connecting solid black line represents the

path through the signal space that the algorithm’s previous inputs have

described. It is of note that this path is constrained to move neither

to the left nor in a downwards direction. This is because the input sig-

nals are positive values only and the input space is cumulative. The

‘cell start point’ is the point at which the cell last migrated and had its

cumulated CSM and K signal reset to 0. The thin, solid line indicates

the decision boundary, the first input signal that breaches that bound-

ary will lead to a classification. If the input signal causes the path to

enter the white region, (marked ’A’) the cell will classify all collected
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Figure 7.2: A Single Dendritic Cell’s Cumulative Input Signal Space

antigen as being “safe”. Conversely, if the input signal enters the black

region, (marked ’B’) the cell will classify all collected antigen as being

“anomalous”. These two regions are divided by the thin, dashed line,

which illustrates the classification boundary for the cell. If the next sig-

nal change fails to breach the decision boundary, no classification shall

be returned by the cell and it shall simply wait until sufficient data has

been sampled.

To illustrate how this would work in practice, consider two data

sources presenting input data to the cell, one stream indicative of a nor-

mal situation and another indicative of an anomalous situation. Each

time a new item of data was presented to the cell, the line representing

the input history of the cell, (solid, marked with ’x’s) would navigate

through the space. The cell would not respond to that input until the

line passed through the dashed line, marked the ‘Decision Boundary’.
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The first data item that caused the input history to breach the deci-

sion boundary would be classified as normal or anomalous. This decision

would be based on the position of that point with respect to the ‘clas-

sification boundary’. If the point was above it, (the region marked with

’A’) the cell would report a normal situation and if the point was be-

low it, (the region marked with ’B’) the cell would report an anomalous

situation.

7.3.2 Visualising a Population of Dendritic Cells

In order to visualise a population of cells, it is necessary to define how

the output of the cells will be combined. For this chapter it shall be

assumed that the MCAV is calculated after every iteration. To simplify

analysis, it will also be assumed that there is only one type of antigen

being classified. The first assumption is reasonable for a real-time imple-

mentation of the algorithm. The second assumption is not realistic in an

application sense. However, it is instructive for demonstrating the dif-

ferent classification region shapes that the cell population can construct.

For the multi-cell visualisation, the same key can be used to identify the

positions of the classification and decision boundaries, but instead of a

black and white region, a grey-scale map will be produced that illustrates

the possible outcomes for the next signal input. As before, black illus-

trates an anomalous region, (i.e. the probability that the data is normal

approaches 0) and white illustrates a normal region, (i.e. the probabil-

ity that the data is normal approaches 1). To illustrate a population of

cells, random data shall be presented to the algorithm, with a Gaussian

distribution. By using Gaussian distributions for both signal sources, it

is hoped that the generated data will exemplify ‘normality’ for the most

part, but will also produce situations where ‘anomalous’ signal charac-

teristics will be generated at the extremes of the Gaussian curves. Two
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sets of data shall be used, both with a standard deviation of 1, but the

first shall use a mean of 5 and the second shall use a smaller mean of

2. In each case a population of 100 cells will be used, with a uniformly

distributed set of migration thresholds, ranging from 15 to 45, (a stan-

dard range for the DCA.) The two different values for the mean of the

Gaussian distributions will alter the ratio of signal strength to migration

threshold for the cells, a property which is known to alter the response

from the algorithm, (see Chapter 4). Larger steps should cause more cells

to migrate in unison and larger steps should maintain greater diversity

in the population throughout the lifetime of the algorithm.

7.4 Results

Figure 7.3 illustrates four steps through the algorithm, using randomly

generated input data with a mean of 5. Step five was chosen as a starting

position as it allows the algorithm to settle into its usual operation. At

step 0 all cells have been exposed to exactly the same amount of signal

(i.e. 0), so the classification boundaries are all exactly the same.

In Figure 7.3(a) there are only three distinct classification bound-

aries, (the dashed lines). This is because the cells have formed into

three groups of cells. This separation is also observable by inspecting

the decision boundaries, which have clearly split into three clusters. The

gaps between the decision boundary groups are formed by the magni-

tude of the input data to the algorithm. Large steps cause many cells

to migrate at once. The black circles on the data path mark the steps

at which the cells that are part of the current population were last re-

set. Only three circles exist, showing that this population has no cells

older than three iterations. The shape of the classification regions are all

constructed from an averaging of linear classification boundaries. The

July 20, 2010



7.4. Results 154

shading demonstrates that in certain regions the classification is highly

sensitive to change. As a result, in the boundary between normal and

anomalous, small changes in the input signal can result in drastically

different classification outputs. In this case it is even possible for a

counter-intuitive situation to arise, where increasing the danger signal

slightly can cause the classification to become normal. This is because

cells that have been exposed to more normal signal in their overall life-

time can be forced to migrate by either signal, and can outnumber the

cells voting for ‘anomalousness’. This is a potential source of error for

the classification, as it cannot be pre-trained or controlled, it is simply a

function of the input data. Figure 7.4 is an expanded view of an example

boundary region between
∑

Safe = 20 and
∑

Safe = 40. Here it is pos-

sible to discern that the shading is not gradiated, but pseudo-randomly

distributed, according to the density of the overlapping decision bound-

aries and the previous inputs. This expanded view shows that at the

boundaries between the white (normal) and black (anomalous) regions

the varitation in colour is not always through equally distributed shades

of grey. The solid diagonal lines travelling from the top left corner of the

plot towards the bottom right corner, represent decision boundaries of

cells within the population. The shades of grey are proportional to how

anomalous the population wide classification will be, (darker indicating

more anomalous). In this space, the presentation of safe signal causes the

input data point to travel upwards and the presentation of danger causes

the input data point to travel to the right. The patterns of shading show

that in certain rare cases, there are points within this landscape where if

the input data line were travel directly upwards, it would enter a darker

region than if it were to travel to the right. This illustrates the above

point, that sometimes safe signal can sometimes actually cause a more

anomalous classification than danger signal!
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In Figure 7.3(b) many of the cells are forced to migrate as the input

signal path passes through their decision boundaries. All of the cells in

this case classify their collected data as normal, though this is unsur-

prising given that the random input signals have equal means and that

the safe signal is weighted more heavily than the Danger signal in the

decision making process. Note how the first and second set of cells are

pushed closer together by the migration process. This highlights a fur-

ther potential problem with the algorithm, as the number of cells that

migrate, for a given input, is going to be exceptionally hard to predict,

as the density of decision boundaries is going to be highly dependant on

the input data.

In Figure 7.3(c) the input signal fails to breach any decision bound-

aries. This results in the classification boundaries staying as they are. In

practical terms, this would represent the algorithm not generating any

output, and waiting to receive more data.

Finally, in Figure 7.3(d), several cells migrate and widen the ‘grey

area’ between normal and anomalous. The wider region is indicative of

the size of the signal that caused the migration to occur. In other words,

the width of the classification boundaries is representative of the diversity

in accumulated CSM for the cells in the population.

By using a Gaussian distribution with a smaller mean the effects of

smaller input signals, relative to the selected migration thresholds can

be observed. Figure 7.5 shows steps 5 through 8 for the algorithm, using

randomly generated data with a mean of 2.

In Figure 7.5(a) there are only two distinct classification boundaries.

The black spot on the origin is a sign that many of the cells are yet to

migrate. The light colour of the region at the anomalous/normal border

indicates that in fact, very few cells have migrated. Again, the large

width of that region is indicative of the large distribution of accumulated
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Figure 7.3: DCA Boundaries Moving (Gaussian input, mean=5)

These figures illustrate the 5th, 6th, 7th and 8th iterations of

the algorithm responding to randomly generated input data.

The population size is 100, and the migration thresholds are

between 15 and 45. The input data is generated using a Gaus-

sian probability distribution, with a mean of 5 and a standard

deviation of 1.
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Figure 7.4: An Expanded View of an Example Boundary Region

Here we can see that the classification distribution is not gradi-

ated, but varies significantly for minor changes in input signal.

CSM within the population.

Figure 7.5(b) shows the input signal path moving with a gradient ap-

proximately equal to the gradient of the classification boundaries. This

is the equivalent of receiving sufficient volumes of conflicting data in the

short term to cause the certainty of the classification to drop. However,

in this case, the majority of the cells are yet to migrate, so the longer-

term view of the input signals causes the population to be heavily biased

towards a normal classification. Contrasting the positions of the decision

boundaries between Figure 7.5(b) and Figure 7.3(b) demonstrates some

of the effects of smaller magnitudes of input data. The decision bound-

aries are more clustered together, indicating that if the signal strength

remains at this level, the population will continue to output classifica-

tions at a quite steady rate, rather than the more erratic output from a

larger input signal magnitude. This is further supported by Figures 7.5(c)

and 7.5(c) where each subsequent presentation of input data causes an

additional set of cell migrations.

The large number of black spots in Figure 7.5(d) indicates that the

population has a diverse number of classification boundaries, though they

July 20, 2010



7.5. Conclusions 158

are extremely close together.

7.5 Conclusions

The equations defining the decision and classification boundaries for the

DCA raise many issues with the algorithm. Demonstrating equivalence

to a collection of linear classifiers, implies that all of the known weak-

nesses of linear classifiers can be levelled at the DCA. These include the

severe limitations on the data sets that the algorithm will be able to as-

sess. This is made worse by the fact that the gradients of the boundaries

are constant, applying still further restrictions onto the regions in signal

space that the algorithm can discriminate between. It is likely that for

the performance of the DCA on complex data sets to be competitive

with other classification-based techniques that it will become necessary

to introduce non-linearity into the classification boundaries. In contrast

to learning machines where the model is inferred from the data set, the

DCA requires the user to construct a model a priori to fit the hard coded

weights. However, as with all expert system solutions, the optimal sepa-

ration for the problem is unlikely to be found by the user. An alternative

to this is discussed in [55]. In this work, the author suggests that a kernel

method could be introduced to the DCA to expand the possible regions

in signal space that could be discriminated between. This would in it-

self be challenging, as parametrising the appropriate kernel would be a

non-trivial task. This overcomes the limitation of the achievable classi-

fication shapes, but not the issues associated with requiring the user to

generate the model. In fact, this task is made more difficult through the

introduction of non-linearity.

On a positive note for the DCA it is apparent that the way in which

these linear classifiers are combined is a function of the input data and
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Figure 7.5: DCA Boundaries Moving (Gaussian input, mean=2)

These figures illustrate the 5th, 6th, 7th and 8th iterations of

the algorithm responding to randomly generated input data.

The population size is 100, and the migration thresholds are

between 15 and 45. The input data is generated using a Gaus-

sian probability distribution, with a mean of 2 and a standard

deviation of 1.
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therefore, usually non-linear. This means that it is not possible to rep-

resent the entire population as a single linear classifier. However, this

benefit is of limited use as, for non-trivial applications, the input data

is not known prior to the execution of the algorithm. Another positive

point for the DCA is that neural networks do not by default have deci-

sion boundaries, only classification boundaries. The phenomena whereby

the DCA delays making a decision while it aggregates information is not

found within a standard neural network implementation. As this is the

mechanism which gives the DCA its robustness to noise (see Chapter 4),

this may be a property that should be carried through to any revised

versions of the DCA.

In this chapter a novel visualisation technique for exploring the DCA

was suggested. The technique has made it possible to make predictions

about how the algorithm will react to input data. It also makes it possible

for inferences about the flow of data and the shape of the classification

boundaries to be made. For the first time it is possible to predict sig-

nal combinations that will result in the algorithm’s behaviour becoming

highly sensitive to subtle changes in signal magnitude, and in the future

may facilitate better tuning of the algorithm based on test data. The vi-

sualisation technique also makes it possible to comment on the diversity

of the population and how that impacts on the classification for a given

sample of input data. In short, the technique allows a deeper insight into

the families of problems for which the DCA is an appropriate tool.

This model has a weakness in that it does not include the antigen

sampling phase of the algorithm. However, as the antigen sampling phase

has no direct link to the classification phase the results of the analysis

still hold.
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7.5.1 Summary

This chapter demonstrates how a dendritic cell can be modelled as a

linear classifier. This has allowed a novel visualisation techqniue to be

presented that makes it possible to explore how the algorithm as a whole

reacts to its input signals. The equivalence of a single DC to a linear

classifier indicates that known weaknesses of linear classifiers could be

present in the DCA. These include the inability to solve linearly insepa-

rable problems. In addition, with no training phase, the DCA is reliant

on the system designer to transform the domain knowledge from the

problem into a linearly separable problem.

7.5.2 Contributions

Novel contributions provided by this chapter are:

• A geometric analysis of the DCA demonstrating areas of equiva-

lence to linear classifiers.

• A new technique for visualising the DCA’s operation within its

input signal space.
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Chapter 8

Conclusions and Discussion

“The open mind never acts: when we have done our utmost

to arrive at a reasonable conclusion, we still. . . must close

our minds for the moment with a snap, and act dogmatically

on our conclusions.” - George Bernard Shaw, Androcles and

the Lion (1912)
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In order to frame the conclusions from this work in an appropriate

context they will be discussed with reference to the original research

questions discussed in Chapter 1.

8.1 Migrating from Software to the Physi-

cal World

Can an immune-inspired, anomaly detection algorithm be

adapted to solve threat detection problems in the physical

world, through the medium of a robot?

The initial experiment presented in Chapter 3 demonstrated that it was

at least possible to migrate a computer security algorithm into the phys-

ical world through the medium of a robot. It raised several important

practical issues, such as the need for good quality, enumerable localisa-

tion. ‘Good quality’ as the system’s performance requires the robot to

not only classify the ‘anomalousness’ of its surroundings but also commu-

nicate that information in a useful fashion to an end user. ‘Enumerable’

as computer security algorithms are typically applied on running pro-

cesses with unique identifiers, so making the transition into the physical

world is made easier by applying a similar classification to the robot’s

surroundings. Initially problems with localisation were combated using

a standard continuous measure of space, augmented with a particle filter

which was then transformed into a grid pattern and presented to the

dendritic cell algorithm as an antigen stream. This was computationally

costly and required the system to be given a pre-constructed map of the

prospective environment. However, in Chapter 6 a more elegant solution

was presented, making use of the RatSLAM algorithm’s pose cells to

represent space, facilitate better localisation and build its own, scalable

map of the environment.
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It has been demonstrated that the algorithm’s performance is statis-

tically different when it has an effective localisation technique, and that

it performs better than a theoretical classifier acting randomly on the

input data.

In the future this could be further improved by returning to a more

‘computer security’ approach and introducing signatures of known threats,

through the PAMP signal. These could include detectors for fires, chem-

ical agents or any application-specific threat which could be accurately

characterised. The system is already able to accept multiple sources of

Danger and Safe signal, so other social factors could be incorporated into

the system with ease, such as increasing the Danger signal at night when

the system should be more wary of intruders.

8.2 Emergent Properties of the Dendritic

Cell Algorithm

Does the dendritic cell algorithm have properties that were

not explicitly added as part of its design, which could be

advantageous to a robotic application?

The work in Chapter 3 not only showed that the algorithm could make

the transition from computer security to physical security, but it also

demonstrated that the algorithm seemed capable of handling raw, un-

filtered signals from physical sensors, with no modification. Chapter 4

went on to prove this hypothesis using frequency analysis to construct an

accurate model of a single dendritic cell and demonstrating clearly that

the cell had a frequency-dependent component. This frequency-based

removal of noise is a significant find for the dendritic cell algorithm and

clearly improves its usefulness for robotic applications. A crucial finding

was that reducing the migration threshold for a cell, increases the fre-
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quency range that it is able to pass, making the algorithm more sensitive

to changes in input signal.

However Chapter 5 demonstrated several limitations on the practical

use of this emergent property. While the failure of the author to con-

struct a working tuning methodology based on frequency rejection is in

no way evidence that such a thing cannot be managed, it pointed at a

deeper problem surrounding the complexity of such a task. This was

confirmed by the analysis of a population of dendritic cells which indi-

cated that the one-to-one mapping between gain and frequency assumed

by most traditional frequency analysis, simply does not hold for the den-

dritic cell algorithm as the population can asynchronously drift in and

out of phase with one another. It is the belief of this author that simpli-

fying the algorithm by removing the asynchronous migratory behaviour

of the cells would be to deny the algorithm of one of its most interest-

ing and, potentially, one of its more useful features. Not only does this

population-based approach allows decisions to be made over several dif-

ferent time-scales, it also holds with the original, biological influence of

the algorithm. This property is clearly visible in the visualisation used in

Chapter 7, where small increases in the Danger signal could occasionally

cause counter-intuitive classifications of antigen as being ‘normal’.

8.3 Applying The Dendritic Cell Algorithm

to a Robot

Is it possible to adapt the dendritic cell algorithm from being

a batch system to a system that can operate on a robotic

platform?

This question is answered in part by addressing the movement of the

DCA from the software world to the physical world discussed in Section
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8.1. Again Chapter 3 lays the foundations for making the claim that it is

possible, with the introduction of time-based segmentation, to increase

the turn-over of antigen processing. However there is additional work in

Chapter 4 which illustrates several key optimisations to the algorithm,

which vastly reduce the computational complexity of the algorithm by

moving several calculations outside of the dendritic cell and into the sig-

nal preprocessing layer, (sometimes termed ‘tissue’). This optimisation

not only made the implementation of a practical robotic system in Chap-

ter 7 possible, but also provided the basis for much of the theoretical

analysis that occurred in Chapters 4, 5 and 7, as it removed the bio-

logically named signals and transformed them into an easier to analyse,

single variable system.

8.4 The Benefits of the Dendritic Cell Al-

gorithm

Are there other algorithms with functional equivalence to the

dendritic cell algorithm, which can outperform it in terms of

reduced computational complexity or superior performance,

for the threat detection problem?

This work’s purpose is ultimately to answer this question. Again, it is

important to acknowledge Chapter 3’s demonstration that it is possible

to move the DCA from the software world to the physical world. Chapter

4 demonstrated that the algorithm did indeed present some benefits as

it filters noisy input data as part of its standard implementation. While

Chapter 5 does conclude this line of enquiry, by suggesting that this is

as much information as frequency analysis will be able to provide us on

this algorithm, it also suggests that the population-based nature of the

algorithm introduces a previously unexplored level of complexity. Moving

July 20, 2010



8.5. Limitations 167

on from frequency analysis, Chapter 6’s empirical study demonstrates

that not only does the algorithm have emergent filtering properties, but

it can also both perform information fusion and work synergistically with

a SLAM system to solve the classification stage of the security problem.

Despite these promising results, Chapter 7 indicates that the performance

of the algorithm is limited by the known weaknesses of linear classifiers.

In addition, constant gradients of the decision making boundaries impose

additional restrictions on the algorithm’s ability to make useful decisions.

While other machine learning techniques do not provide the noise removal

that the DCA does, they can be trained and adapted to suit a much more

diverse range of application areas and in all likelihood, outperform the

DCA at the the areas that it has been used on.

8.5 Limitations

Like any investigation, this work has limitations that should be explored

and minimised in the future. Any robotic investigation must make the

choice of whether to explore the system in simulation or in reality. The

key advantage of using a simulator is that multiple configurations can be

run extensively and compared. However, a simulation will never provide

the rich variation of problems that a real robotic experiment will. A real

robot was used for all of the empirical studies performed in this thesis.

The pen used in Chapters 3 and 5 was kept the same for all experiments,

to explore how the parametrisation effected the results for that problem.

Unfortunately this also meant that no statements could be made about

how well the algorithm performed in general, only about how it performed

for that specific scenario. Again, by keeping the pen as an artificial

environment, the beneficial effects of running a real robot are reduced.

The alternative would be to run the robot in a totally unconstrained
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environment, but this would limit the repeatability of the experiment.

Chapter 6 used a different approach. Data was recorded on a real robot

and replayed back to the algorithm. This was an acceptable solution as

the feasibility of running the algorithm on the Pioneer had already been

verified, (though admittedly without the additional computational load

of running RatSLAM). This approach introduced a new problem, as in an

unconstrained environment, there is no way to impartially calculate the

baseline for “truth” in the experiment, (if that were possible, the problem

would be solved). Instead a human classified the data, introducing a new

source of potential bias.

As discussed in the Chapters 4 and 5, there are several weaknesses

with the model of the DCA in the frequency domain. The most dramatic

of these is the inability to model the interaction between multiple cells.

After highlighting the importance of parametrisation of the system, it was

still not possible to develop a successful tuning mechanism. In addition,

the tuning mechanism suggested failed to take into account the fact that

some applications may respond better to different probability density

functions for selecting the migration thresholds of the cells.

Across many chapters it was clearly demonstrated that the DCA

could be modified to operate on a robot to provide a solution to the phys-

ical security problem. However, no empirical comparison was performed

against a competing system. This is partially offset by the demonstration

of equivalence to linear classifiers, (Chapter 7) and decimators, (Chap-

ter 4), so the well documented discussions about their weaknesses can

be applied to the DCA. However, the magnitude of the effect of these

weaknesses cannot be assessed without an empirical study.
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8.6 Future Work

8.6.1 The DCA

A criticism from [42] is that the DCA has a propensity to have a high

false positive rate. Looking back to the biological model, negative selec-

tion of T cells prevents false positives from biological dendritic cells from

influencing the body. While the dendritic cell algorithm has obvious ab-

stractions that place a large degree of separation between the algorithm

and the biological dendritic cell, a possible improvement is the introduc-

tion of a similar barrier in order to improve the algorithm’s false positive

rate. This could simply be in the form of identifying signatures of “nor-

mality” at the antigen level and simply preventing those antigen from

being allowed to report as anomalous. This is the functional equivalent

of a DC being unable to locate a T cell with a high affinity to antigen

that it has classed as dangerous, due to the negative selection process.

This work has highlighted several useful features of the DCA, in-

cluding its inherent filtering, its capacity to make decisions over several

time-scales and the potential it has for working with other biologically

inspired algorithms. It has also pointed out several limitations, largely

to do with the difficulties tuning and adapting the algorithm to new and

complex data sets. It is the belief of this author that the DCA does have

potential as a useful tool for roboticists and computer scientists alike,

with some changes to its structure. To reliably adapt to different appli-

cations it is unavoidable that some form of tuning and learning should

be introduced. Population based machine learning algorithms are not

without precedent and include ensemble classifiers such as the “mixture

of experts” system outlined in [58]. Where the DCA has the poten-

tial to stand out from such systems is its inherently asynchronous and

multi-timescale nature. Traditional ensemble classifiers rely on different
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classifiers being experts at specific regions of the input signal space, or

families of problems. Instead, the internal structure of the classifiers

throughout the population could be different. By ensuring that cells can

accepting different numbers of input samples, as is the way in the existing

algorithm, the multi-timescale nature of the algorithm can be retained.

This could actually be achieved by simply applying a decimator to the

incoming data, to condense and filter the information before sending it

on to a classifier. At the time of writing the authors had not found any

precedent for such a system in the literature. Such an architecture has

the potential to graft the best elements of the dendritic cell algorithm

onto well-established machine learning techniques.

8.6.2 Robotic Security

The field of robotic security is still in its infancy. There is little work in

the literature and much of that has been identified as severely lacking

in terms of practical use. Most notably, the heuristics for automatically

detecting problems were found to be extremely simplistic and often re-

quired the robot to be stationary to be effective. This thesis attempts to

not only define the robotic security problem, but also structure the prob-

lem into its respective sub-problems, which should allow techniques from

other areas to be imported. For example, the routing problem could be

approached by combining the work of Massios and Voorbraak [81–83,145]

with combinatorial optimisation techniques. More advanced image-based

algorithms from image processing and artificial intelligence could be im-

ported to solve the automatic detection problem. This work also leaves

the open question “Are there techniques which could take advantage of

a multi-robot system, not just in terms of increasing coverage, but in

terms of making more informed decisions using distally separate data

sources?”. It is the view of this author that the field of artificial im-
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mune systems could lend a great deal to this question, by creating a

self-organising network of robots, with the aim of achieving a ubiqui-

tous maintenance solution, rather than a simple threat-detection. Such

a system could control the ambient temperature, lighting and other en-

vironmental controls of a building in addition to providing security. In

such a model, the human security guards would be an extension of the

system, acting in an analogous way to the T Cells and B Cells of the

immune system, by responding directly to threats. Inflammation models

could be used to deliberately alter the sensitivity of the system in pos-

sible problem areas, and even dynamically alter the environment. For

example shutting security doors to create bottle necks or changing envi-

ronmental controls, (rapidly altering lighting levels, increase in ambient

temperature) to disorientate or slow down intruders. However, any sys-

tem which could manifest changes in the physical world would need to

be thoroughly ethically explored before implementation. Even a non-

lethal automated response must not be allowed to act without a human

choosing whether or not such ‘force’ is warranted, as the programmer of

such a system could never pre-empt every eventuality and any sweeping

generalisations would inevitably create situations where an individual’s

rights could be compromised.

8.6.3 Artificial Immune Systems

This work has examined the field of artificial immune systems and specif-

ically explored the dendritic cell algorithm. The field of AIS has tradi-

tionally focussed on models and algorithms based on the behaviour of an

individual cell-type. This approach could be viewed as an extension of the

cellular biology on which the field relies, where cells are often examined

in isolation to ensure the validity of experiments. However, this approach

is not necessarily appropriate for a chiefly computational field. Rather
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than exploring the immune system from a cellular perspective, why not

maintain a bottom up approach, but explore the system from a func-

tional perspective? Questions such as “What characteristics are required

for decentralised control?” and “Are there advantages to morphologi-

cal diversity in systems with the functional property of homoeostasis?”

could easily be explored computationally, and shed light on a broader

range of topics. Such an approach seems to have a greater chance of

giving information back to biologists, as it asks generic questions about

how functional phenomena can be implemented, allowing hypotheses to

be created about information flow and individual behaviour that are ir-

respective of the minutiae of their bio-chemical implementation. Thus,

hypotheses can be constructed for specific biological systems, based on

these established generic properties.

The artificial immune systems community has no immediate need for

a ‘killer-app’ to make it a more main-stream topic, rather, it is uniquely

situated to create models and techniques with applications in biology and

engineering, rooted in the properties of complex groups of heterogeneous

agents.
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A.1 Negative Selection

Adapted from [38]

Input:

S, the set of ‘normal’ examples

a(x,y), an affinity (similarity) function between x and y

T, a user defined threshold for similarity

Output:

P, a set of ‘mature’ T-Cells that do not match any example in

S

WHILE (stopping criterion not met)

t := Random ‘immature’ T-Cell;

FOR (every example s, in S)

Evaluate a(t,s);

END;

IF (a(t,s) > T for any s)

THEN discard t;

ELSE add t to P;
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A.2 opt-AINET

Taken from [124]

Input:

g(x), the objective function

T, Threshold of what constitutes an improvement Output:

P, a population of candidate solutions

P := Randomly generated cells;

WHILE (stopping criterion not met)

FOR (each cell c in P)

Evaluate g(c);

Add Clone(c) to the population;

Mutate(c) based on the fitness of its parent;

Determine the fitness of all new clones;

END;

FOR (each parent cell, p in P)

Select fittest clone for survival;

END;

Gn := Average fitness of the population;

IF (Gn - Gn−1 > T)

THEN Restart loop;

ELSE

Remove least fit cells from population;

Replace cells with randomly generated cells

July 20, 2010



A.3. Clonalg 195

A.3 Clonalg

Adapted from [5]

Input:

Ab, the initial population of antibodies

Ngen, the maximum number of generations,

n, number of antibodies to be cloned

d, the number of antibodies to be removed and replaced

L, Length of the clone receptor

β, mutation rate

decode(x), a function which calculates the solution and evaluates

its quality

Output:

Ab, A population of antibodies representing candidate solutions

f, A series of values in the range 0-1 representing the quality

of the solutions

FOR (t = 1 to Ngen)

f := decode(Ab);

Abn := select(Ab, f, n);

C := clone(Abn, β, f);

C* := hypermut (C, f);

f* := decode(C*);

Abn := select(C*, f*, n);

Ab := insert (Ab, Abn);

Abd := generate(d, L); (Randomly generate d antibodies of length

L)

Ab := replace(Ab, Abd, f);

END;
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f := decode(Ab);
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A.4 The B Cell Algorithm

Adapted from [5]

Input:

g(x), the objective function

s(x), the contiguous somatic hypermutation function

Output:

P, A population of candidate solutions

WHILE(stopping criterion not met)

P := Random population of individuals

FOR (each cell, v, in P)

evaluate g(v);

v’ := clone(v);

add v’ to clonal pool C;

END;

c := Random clone from C;

Randomly change each element of c;

FOR (each clone c, in C)

c := s(c);

evaluate g(c);

IF (c has higher affinity than its parent, v)

THEN v := c;

END;
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A.5 opt-IA

Adapted from [27]

Input:

l, the length of the B-Cell representation

d, the size of the B-Cell population

dup, the number of clones to make per static clone operation

τB, the maximum age of a cell

c, constant controlling the behaviour of the hypermutation operator

g(x), objective function

Output:

P, a population of B-Cells representing candidate solutions

NOTE:

InverseHypermutation(P,c,l) is a function which mutates a number

of elements in each member of population P, inversely proportionally

to the fitness of that member

P := Randomly Generated Population;

Evaluate g(P);

WHILE(stopping criterion not met)

P’ := StaticClone(P);

P’ := InverseHypermutation(P’,c,l);

Evaluate g(P’);

P’ = Age(P’,τB);

P = Fittest, Unique Survivors of (P’);
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Pseudocode for DCA

Versions Used

B.1 Data Structures

While many data structures have been used to implement the DCA the

fastest technique has proved to be using a sequence of arrays to represent

the cell population. In each case an array of doubles can be used to store

the intermediate variables, (the current state of CSM, IL10, 1L12 and/or

K) and an array of integers can be used to keep track of which antigen

have been detected by the algorithm.

199
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B.2 Version 0.0

Introduced in: [45]

Used in: [45]

Signal Weights:

PAMP-CSM = 2

PAMP-IL10 = 0

PAMP-IL12 = 2

Danger-CSM = 1

Danger-IL10 = 0

Danger-IL12 = 1

Safe-CSM = 2

Safe-IL10 = 3

Safe-IL12 = -3

Input:

Pt a heuristic providing a time-varying PAMP signal from 0-1

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

At a heuristic providing a time-varying vector of antigen identifiers

Output:

Aid, a list of antigen identifiers with no duplications

AC, a list of binary classifications for the values in Aid
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Algorithm:

P := 100 New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = 10;

END;

WHILE (Update(Pt, Dt, St, At) still has data)

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

Ps := A subset of 10 random cells in P;

FOR (every cell c in Ps)

Store a;

Calculate CSM;

Calculate IL10;

Calculate IL12;

IF (CSM > 10)

THEN

Remove c from P;

IF (IL10 > IL12)

THEN Vote 0 for all stored antigen in c;

ELSE Vote 1 for all stored antigen in c;

Replace c with a new cell with Migration=10;

END;

END;

END;

FOR (each antigen a in Aid)

IF (more 0 votes than 1 votes for a)

THEN AC entry for a := 0;
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ELSE AC entry for a := 1;
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B.3 Version 1.0

Introduced in: [49]

Used in: [49]

Signal Weights:

PAMP-CSM = 2

PAMP-IL10 = 0

PAMP-IL12 = 2

Danger-CSM = 1

Danger-IL10 = 0

Danger-IL12 = 1

Safe-CSM = 2

Safe-IL10 = 3

Safe-IL12 = -3

Input:

Pt a heuristic providing a time-varying PAMP signal from 0-1

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

It a heuristic providing a time-varying Inflammation signal 0-2

At a heuristic providing a time-varying vector of antigen identifiers

R a range specifying the upper and lower bounds for the migration

thresholds

Pn the number of cells in the population

Output:

Aid, a list of antigen identifiers with no duplications

AC, a list of binary classifications for the values in Aid
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Algorithm:

P := Pn New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = RandomValue(R);

END;

WHILE (Update(Pt, Dt, St, It, At) still has data)

Pt := It*Pt;

Dt := It*Dt;

St := It*St;

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

Store a in a random cell from P;

END;

FOR (every cell c in the population P)

Calculate CSM;

Calculate IL10;

Calculate IL12;

IF (CSM > Migration Threshold[c])

THEN

Remove c from P;

IF (IL10 > IL12)

THEN Vote 0 for all antigen stored in c;

ELSE Vote 1 for all antigen stored in c;

Replace c with a new cell with Mig = RandomValue(R);

END;

END;

END;
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FOR (each antigen a in Aid)

IF (more 0 votes than 1 votes for a)

THEN AC entry for a := 0;

ELSE AC entry for a := 1;
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B.4 Version 2.0

Introduced in: [47]

Used in: [46,47,50]

Signal Weights:

PAMP-CSM = 2

PAMP-IL10 = 0

PAMP-IL12 = 2

Danger-CSM = 1

Danger-IL10 = 0

Danger-IL12 = 1

Safe-CSM = 2

Safe-IL10 = 3

Safe-IL12 = -3

Input:

Pt a heuristic providing a time-varying PAMP signal from 0-1

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

At a heuristic providing a time-varying vector of antigen identifiers

R a range specifying the upper and lower bounds for the migration

thresholds

Pn the number of cells in the population

Output:

Aid, a list of antigen identifiers with no duplications

AMCAV , a list of gradiated classifications for the values in

Aid in the range 0-1
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Algorithm:

P := Pn New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = RandomValue(R);

END;

WHILE (Update(Pt, Dt, St, At) still has data)

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

Store a in a random cell from P;

END;

FOR (every cell c in the population P)

Calculate CSM;

Calculate IL10;

Calculate IL12;

IF (CSM > Migration Threshold[c])

THEN

Remove c from P;

IF (IL10 > IL12)

THEN Vote 0 for all antigen stored in c;

ELSE Vote 1 for all antigen stored in c;

Replace c with new cell with Mig = RandomValue(R);

END;

END;

END;

FOR (each antigen a in Aid)

Entry for a in AMCAV := (Number of 1 votes for a/ Total number

of votes for a);
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B.5 Version 2.1

Introduced in: [43]

Used in: [43,48]

Signal Weights:

PAMP-CSM = 2

PAMP-IL10 = 0

PAMP-IL12 = 2

Danger-CSM = 1

Danger-IL10 = 0

Danger-IL12 = 1

Safe-CSM = 2

Safe-IL10 = 3

Safe-IL12 = -3

Input:

Pt a heuristic providing a time-varying PAMP signal from 0-1

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

It a heuristic providing a binary time-varying Inflammation signal

At a heuristic providing a time-varying vector of antigen identifiers

R a range specifying the upper and lower bounds for the migration

thresholds

Pn the number of cells in the population

Output:

Aid, a list of antigen identifiers with no duplications

AMCAV , a list of gradiated classifications for the values in
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Aid in the range 0-1

Algorithm:

P := Pn New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = RandomValue(R);

END;

WHILE (Update(Pt, Dt, St, It, At) still has data)

IF (It == true)

THEN

Pt = 2*Pt;

Dt = 2*Dt;

St = 2*St;

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

Store a in a random cell from P;

END;

FOR (every cell c in the population P)

Calculate CSM;

Calculate IL10;

Calculate IL12;

IF (CSM > Migration Threshold[c])

THEN

Remove c from P;

IF (IL10 > IL12)

THEN Vote 0 for all antigen stored in c;

ELSE Vote 1 for all antigen stored in c;

Replace c with new cell with Mig = RandomValue(R);
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END;

END;

END;

FOR (each antigen a in Aid)

Entry for a in AMCAV := (Number of 1 votes for a/ Total number

of votes for a);
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B.6 Version 2.2

Introduced in: [4]

Used in: [4]

Signal Weights:

PAMP-CSM = 4

PAMP-IL10 = 0

PAMP-IL12 = 8

Danger-CSM = 2

Danger-IL10 = 0

Danger-IL12 = 4

Safe-CSM = 3

Safe-IL10 = 1

Safe-IL12 = -6

Input:

Pt a heuristic providing a time-varying PAMP signal from 0-1

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

At a heuristic providing a time-varying vector of antigen identifiers

R a range specifying the upper and lower bounds for the migration

thresholds

Pn the number of cells in the population

Output:

Aid, a list of antigen identifiers with no duplications

AMAC, a list of gradiated classifications for the values in Aid

in the range 0-1
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Algorithm:

P := Pn New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = RandomValue(R);

END;

WHILE (Update(Pt, Dt, St, At) still has data)

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

Store a in a random cell from P;

END;

FOR (every cell c in the population P)

Calculate CSM;

Calculate IL10;

Calculate IL12;

IF (CSM > Migration Threshold[c])

THEN

Remove c from P;

IF (IL10 > IL12)

THEN Vote 0 for all antigen stored in c;

ELSE Vote 1 for all antigen stored in c;

Replace c with new cell with Mig = RandomValue(R);

END;

END;

END;

FOR (each antigen a in Aid)

Entry for a in AMCAV := (Number of 1 votes for a/ Total number

of votes for a);
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Entry for a in AMAC := ((Entry for a in AMCAV )*(Total Votes

for a))/(Total Antigen Processed)
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B.7 Version 3.0

Introduced in: [107]

Used in: [107,108,110]

NOTE: In [108, 110] the value of the input heuristic Xt is set

permanently to 1.

Signal Weights:

PAMP-CSM = 2

PAMP-K = 2

Danger-CSM = 1

Danger-K = 1

Safe-CSM = 2

Safe-K = -6

Input:

Pt a heuristic providing a time-varying PAMP signal from 0-1

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

At a heuristic providing a time-varying vector of antigen identifiers

Xt a heuristic providing a time-varying antigen multiplier from

1-102

R a range specifying the upper and lower bounds for the migration

thresholds

Pn the number of cells in the population

SegLim the number of samples to take before calculating MCAV

values

Output:

Aid,t, a time-varying list of antigen identifiers with no duplications
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AMCAV,t, a time-varying list of gradiated classifications for

the values in Aid in the range 0-1

Algorithm:

P := Pn New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = RandomValue(R);

END;

count := 0;

WHILE (true)

count = count + 1;

Update(Pt, Dt, St, Xt, At)

FOR (i = 1 to Xt)

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

Store a in a random cell from P;

END;

END;

Calculate CSM;

Calculate K;

FOR (every cell c in the population P)

IF (CSM > Migration Threshold[c])

THEN

Remove c from P;

IF (IL10 > IL12)

THEN Vote 0 for all antigen stored in c;

ELSE Vote 1 for all antigen stored in c;

Replace c with new cell with Mig = RandomValue(R);
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END;

IF (count == SegLim)

THEN

FOR (each antigen a in Aid,t)

Entry for a in AMCAV,t := (Number of 1 votes for a/

Total number of votes for a);

END;

Output(Aid,t,AMCAV,t);

Reset(Aid,t,AMCAV,t, Votes);

END;
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B.8 Version 4.0

Introduced in: [44]

Used in: [44,131]

Signal Weights:

Danger-CSM = 1

Danger-K = 1

Safe-CSM = 1

Safe-K = -2

Input:

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

At a heuristic providing a time-varying vector of antigen identifiers

R a range specifying the upper and lower bounds for the migration

thresholds

Pn the number of cells in the population

Output:

Aid, a list of antigen identifiers with no duplications

AKα, a list of gradiated classifications for the values in Aid.

Higher magnitudes indicate high certainty, negative values indicate

‘normal’ and positive ‘safe’

Algorithm:

P := Pn New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = A uniform distribution of R;
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END;

Pcounter = first cell;

WHILE (Update(Dt, St, At) still has data)

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

Store a in the cell specified by Pcounter;

Pcounter = next cell; END;

Calculate system wide CSM;

Calculate system wide K;

FOR (every cell c in the population P)

IF (CSM > Migration Threshold[c])

THEN

Remove c from P;

Store K against all antigen stored in c;

Replace c with new cell with the same migration as

original

END;

END;

END;

FOR (each antigen a in Aid)

Entry for a in AKα := Average K value reported for each antigen

type
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B.9 Version 4.1

Introduced in: [53]

Used in: [53]

Signal Weights:

PAMP-CSM = 2

PAMP-K = 2

Danger-CSM = 1

Danger-K = 1

Safe-CSM = 1

Safe-K = -2

Input:

Pt a heuristic providing a time-varying PAMP signal from 0-1

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

At a heuristic providing a time-varying vector of antigen identifiers

R a range specifying the upper and lower bounds for the migration

thresholds

Pn the number of cells in the population

Output:

Aid, a list of antigen identifiers with no duplications

AKα,t, a list of gradiated classifications for the values in Aid.

Higher magnitudes indicate high certainty, negative values indicate

‘normal’ and positive ‘safe’

Algorithm:
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P := Pn New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = A uniform distribution of R;

END;

Pcounter = first cell;

count := 0;

WHILE (true)

Update(Pt, Dt, St, At)

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

Store a in the cell specified by Pcounter;

Pcounter = next cell; END;

Calculate system wide CSM;

Calculate system wide K;

FOR (every cell c in the population P)

IF (CSM > Migration Threshold[c])

THEN

Remove c from P;

Store K against all antigen stored in c;

Replace c with new cell with the same migration as

original;

END;

END;

IF (count == SegLim)

THEN

FOR (each antigen a in Aid,t)

Entry for a in AKα,t := Average K value reported for

each antigen type
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END;

Output(Aid,t,AKα,t);

Reset(Aid,t,AKα,t, Stored K values);

END;
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B.10 Version 4.2

Introduced in: [54]

Used in: [54]

Signal Weights:

PAMP-CSM = 2

PAMP-K = 2

Danger-CSM = 1

Danger-K = 1

Safe-CSM = 1

Safe-K = -2

Input:

Pt a heuristic providing a time-varying PAMP signal from 0-1

Dt a heuristic providing a time-varying Danger signal from 0-1

St a heuristic providing a time-varying Safe signal from 0-1

Xt a heuristic providing a time-varying antigen multiplication

signal between 15 and 100

At a heuristic providing a time-varying vector of antigen identifiers

R a range specifying the upper and lower bounds for the migration

thresholds

Pn the number of cells in the population

Output:

Aid, a list of antigen identifiers with no duplications

AKα,t, a list of gradiated classifications for the values in Aid.

Higher magnitudes indicate high certainty, negative values indicate

‘normal’ and positive ‘safe’
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Algorithm:

P := Pn New Cells;

FOR (every cell c in the population)

Migration Threshold[c] = A uniform distribution of R;

END;

Pcounter = first cell;

count := 0;

WHILE (true)

Update(Pt, Dt, St, Xt, At)

FOR (every antigen a in At)

IF (a never encountered before)

THEN Add a to Aid;

FOR (i = 1 to Xt)

Store a in the cell specified by Pcounter;

Pcounter = next cell; END;

END;

Calculate system wide CSM;

Calculate system wide K;

FOR (every cell c in the population P)

IF (CSM > Migration Threshold[c])

THEN

Remove c from P;

Store K against all antigen stored in c;

Replace c with new cell with the same migration as

original;

END;

END;

IF (count == SegLim)
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THEN

FOR (each antigen a in Aid,t)

Entry for a in AKα,t := Average K value reported for

each antigen type

END;

Output(Aid,t,AKα,t);

Reset(Aid,t,AKα,t, Stored K values);

END;
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Specification of the Pioneer

P3-DX Robot

C.1 Robot Base

Manufacturer: MobileRobots Inc. Length: 45cm

Width: 40cm

Height without accessories: 24.5

Ground Clearance: 6.5cm

Weight (with min. battery capacity): 9kg

Rated Payload of base platform (with included battery): 17kg (flat sur-

face), 10kg (@ 13% grade)

Absolute Maximum Payload of base platform (with included battery):23kg

(flat surface), 14kg (@ 13% grade)

Body: Powder-coated 1.6mm aluminium

IP Rating: 20

Operating Temperature Range: 0oC to 35oC

Battery Voltage: 12V

Battery Capacity: 7Ah per battery

Battery Chemistry: Sealed lead-acid
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Battery Access: Hinged, latched access door (hot swappable)

Continuous run time, (base platform, new batteries): 8hrs (no laser or

computer)

Full Recharge time: 2.4 (high cap charger), 12 (standard charger)

Docking station available: Yes

Drive: 2-wheel differential drive, with rear balancing caster

Wheel composition: Foam filled nylon, hard casters

Drive Wheel Diameter: 20cm

Drive Wheel Width: 5cm

Pushing force: 6kg

Swing radius: 27cm, (32cm without bumpers)

Max Translation Speed: 1.2 ms−1

Max Traversable Step: 2.5cm

Max Traversable Gap: 5cm

Max Traversable Slope: 25%

Traversable Terrains: Wheelchair accessible

C.2 Sensors

Note, the Pioneer 3DX has several possible sensor configurations, the

configuration for the robot used in this thesis is listed here.

C.2.1 Sonar Sensors

Position: 8 front-facing, 8 rear-facing

Range: 15cm-500cm
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C.2.2 Laser Sensor

Position: 1 front-facing

Light source: Infrared (905nm)

Laser class: 1 (EN/IEC 60825-1), Eye-safe

Field of view: 180o

Scanning frequency: 75 Hz

Operating range: 0m - 80m

Max. range with 10% reflectivity: 10m

Angular resolution: 0.25o, 0.5o, 1o

Fog correction: no

Resolution: 1mm

Operating voltage: 24V dc 15%

Power consumption: 20W

Enclosure rating: IP 65

Protection class: 2, insulated

Weight: 4.5kg

Dimensions: 156mm x 155mm x 210mm

Housing: Aluminium die-cast

Ambient operating temperature:0oC - 50oC

Storage temperature: -30oC - 70oC, with heating plate -12oC - +50oC

Permissible relative humidity: 90%, non-condensing

C.3 On-Board Computer

vendor id : GenuineIntel

cpu family : 6

model : 8

model name : Pentium III (Coppermine)
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stepping : 10

cpu MHz : 848.335

RAM: 250MB

Linux Version: 2.6.10, no.4 Wed Oct 19 16:53:04 BST 2005 i686 GNU/Linux

Linux Flavour: Debian
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Glossary of Terms

Antigen

In biology antigen is any molecule that is detected by the immune-system.

In the DCA antigen is a unique identifier that communicates the presence

of a specific element within the environment.

Affinity

A measure of similarity, usually between a cell receptor and an antigen.

Aria

An object-orientated control library for creating robotic behaviours. Made

by MobileRobots Inc. See also, Pioneer.

B-Cell

In biology B-Cells are cells within the immune system which generate

antibodies to attack intruders. They also play a role in immune memory.

They are the inspiration for the clonal selection algorithm in artificial

immune systems.
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CCTV

Abbreviation for “Closed Circuit Television”. A common augmented

security technique relying on cameras to monitor distally separate loca-

tions.

Classification Boundary

Part of DCA terminology. The abstract boundary in signal space which

separates regions that represent anomalies and regions that represent

normal inputs. See also, Decision Boundary

Clonal Selection

A process which causes cells with high-affinity matches to antigen present

in the immediate environment to proliferate and cells with low-affinity

matches to die out. The basis of a common artificial immune algorithm.

See also B-Cell.

CSM

Abbreviation for “Costimulatory Molecule”. In biology this is a chemical

which facilitates the communication process. In the DCA this is used as

a measure of sampled information.

Cut off Frequency

In frequency analysis, the frequency at which it is assumed a frequency

dependent component ceases to pass information.

Danger

In biology danger signals are chemical markers indicating necrosis, (un-

expected cell death). This suggests the presence of a harmful pathogen.

In the DCA this is a time varying input which rises to indicate the pres-
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ence of a suspected anomaly.

DC

Abbreviation for “Dendritic Cell”. In biology, a dendritic cell is part of

the immune system, which is responsible for absorbing antigen from the

body. DCs are also referred to as “antigen presenting cells” as they go

on to locate T-Cells within the lymph node and present samples of the

antigen that they have absorbed.

DCA

Abbreviation for “Dendritic Cell Algorithm” an artificial immune sys-

tems algorithm based on the operation of DCs.

Decision Boundary

Part of DCA terminology. The abstract boundary in signal space which

separates regions that represent situations when a given cell has not sam-

pled enough input signal to attempt a classification and regions where

a given cell has sampled enough input signal to attempt a classification.

See also, Classification Boundary

Dendritic Cell

See DC

FOV

Abbreviation for “Field of View”. The shape in physical space that de-

scribes the region where a sensor can detect targets.

IL10

Abbreviation for “Interleukin 10”. In biology IL10 is a chemical signal
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used to communicate to cells within the immune system. In the DCA

this is the name a variable which keeps track of how much evidence the

cell has aggregated for a ‘normal’ classification. See also IL12

IL12

Abbreviation for “Interleukin 12”. In biology IL12 is a chemical signal

used to communicate to cells within the immune system. In the DCA

this is the name a variable which keeps track of how much evidence the

cell has aggregated for an ‘anomalous’ classification. See also IL10

Linear Classifier

A machine learning construct which attempts to identify set membership

based on training data. Linearity refers to the shape that the classifica-

tion boundary describes in signal space.

LRF

Abbreviation for “Laser Range Finder”. A time-of-flight device for de-

tecting physical obstacles based on laser reflections. LRFs have a planar

shaped FOV. See also Sonar.

MCAV

Abbreviation for “Mature Context Antigen Value”. A technique for in-

terpreting the output from the DCA. See Appendix B.4.

Migration Threshold

DCA terminology. The threshold of CSM that a cell will absorb before

performing a classification. Defines the shape and position of the deci-

sion boundary.
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Negative Selection

In biology negative selection is the process where by immune cells with

the potential to harm the body are removed before being allowed to inter-

act with other cells. The basis of an artificial immune system algorithm

of the same name.

Neural Network

A machine learning algorithm, commonly used to perform classification

tasks.

PAMP

Abbreviation for “Pathogen Associated Molecular Pattern”. In biology

a PAMP is a signature that identifies a specific threat with a known re-

sponse. In the DCA PAMP is used as a signal which rises proportionally

to the presence of evidence of an anomaly.

Pioneer

A family of robot made by MobileRobots Inc, see Aria.

Ripple

In frequency analysis ripple is an undesired rise (and generally a subse-

quent fall) of gain with respect to increased input frequency, after the

cut off frequency.

Safe

in biology Safe signal is a chemical marker used to indicate apoptosis,

(desired cell death). In the DCA safe is used as an inhibitory signal

which rises in proportion to evidence of ‘normal’ operation.
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SOM

Abbreviation for “Self-Organising Map” an unsupervised machine learn-

ing algorithm used to produce a low dimensional representation of high

dimensional data where distance in the new representation provides some

measure of similarity.

Sonar

A time-of-flight device for detecting physical obstacles based on sound

wave reflections. Sonar devices have cone-shaped FOVs. See also LRF

STL

Abbreviation for “Standard Template Library”. An open source collec-

tion of object-orientated data structures.

T-Cell

A T-Cell is an immune system cell used primarily to attack pathogens.

They interact with DCs and are the inspiration for the negative selection

algorithm in artificial immune systems.
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