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Abstract

The aim of this thesis is to propose bootstrap and empirical likelihood confidence regions

and hypothesis tests for use in statistical shape analysis.

Bootstrap and empirical likelihood methods have some advantages when compared to con-

ventional methods. In particular, they are nonparametric methods and so it is not necessary to

choose a family of distribution for building confidence regions or testing hypotheses.

There has been very little work on bootstrap and empirical likelihood methods in statistical

shape analysis. Only one paper (Bhattacharya and Patrangenaru, 2003) has considered boot-

strap methods in statistical shape analysis, but just for constructing confidence regions. There

are no published papers on the use of empirical likelihood methods in statistical shape analysis.

Existing methods for building confidence regions and testing hypotheses in shape analysis

have some limitations. The Hotelling and Goodall confidence regions and hypothesis tests are

not appropriate for data sets with low concentration. The main reason is that these methods are

designed for data with high concentration, and if this hypothesis is violated, the methods do

not perform well.

On the other hand, simulation results have showed that bootstrap and empirical likelihood

methods developed in this thesis are appropriate to the statistical shape analysis of low concen-

trated data sets. For highly concentrated data sets all the methods show similar performance.

Theoretical aspects of bootstrap and empirical likelihood methods are also considered.

Both methods are based on asymptotic results and those results are explained in this thesis.

It is proved that the bootstrap methods proposed in this thesis are asymptotically pivotal.

Computational aspects are discussed. All the bootstrap algorithms are implemented in

1



“R”. An algorithm for computing empirical likelihood tests for several populations is also

implemented in “R”.
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Chapter 1

Introduction

In this chapter background on shape analysis is given and notation for describing shape data is

presented. Extensive accounts of shape analysis are given in the monographs by Dryden and

Mardia (1998), Small (1996) and Kendall et al. (1999).

In §1.1, the main ideas of statistical shape analysis are considered. A review of the liter-

ature about shape analysis is the topic of§1.2. The mathematical representation of shape and

concepts such as the mean shape are reviewed in§1.3. In§1.4, coordinate systems including

Procrustes coordinate systems and tangent coordinate systems are considered. Two relevant

distributions, the complex normal and complex Bingham distributions, and techniques for their

simulation, are studied in§1.5. How tangent coordinates can be used to obtain confidence re-

gions for the mean shape via a normal approximation is reviewed in§1.6. Hypothesis tests for

a single population are considered in§1.7 and for several populations in§1.8.

Readers who are familiar with shape analysis may wish to skip foward to§1.9.
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1.1 Main Ideas of Shape Analysis

The study of the shape of random objects has received increasing attention in several disci-

plines. Advances in computer technology have made easier the capture and manipulation of

images of objects. This information can be used to answer relevant questions in many dis-

ciplines including biology, medicine, archeology and computer vision. Some examples of

objects which have been studied are mouse vertebrae, gorilla skulls and magnetic resonance

brain scans.

The concept of the shape of an object plays an essential role in this study. Statistical shape

analysis is concerned with summaries and comparisons of shapes of objects.

Some steps have to be carried out in order to represent the shape of an object in a mathe-

matically convenient way. A convenient approach is to place landmarks on the object, which

are points for identifying special locations on the object. The numerical coordinates of the

landmarks are then used to represent an object. These coordinates belong to a space which is

called the landmark space. The information about the shape of an object is what is left after

allowing for the effects of translation, scale and rotation (Kendall, 1984).

A new set of coordinates of an object, which will be called pre-shape coordinates, can be

obtained from the coordinates of that object in the landmark space. Suitable transformations are

used to remove the effects of scale and translation. The new coordinate system also represents

a mapping from the landmark space to the a new space. The new space is called pre-shape

space.

We shall primarily concentrate on shapes of objects in two dimensions, i. e. planar shapes.
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Two important summaries of a random sample of objects, the mean shape and the product

matrix (or ssp), can be calculated using the pre-shape coordinates. The product matrix repre-

sents the variation of the pre-shape coordinates and the mean shape is defined as the eigenvector

associated to the largest eigenvalue of this matrix.

The shape is finally obtained by removing the rotation information in the pre-shape coordi-

nates of an object. The rotation information is eliminated by rotating an object to be as close as

possible to a template. The new set of coordinates of the object are inside a new space, which

is called shape space.

The pre-shape and shape spaces are non-Euclidean spaces. It is therefore difficult to per-

form standard statistical analyses on those spaces. To avoid the difficulties of non-Euclidean

spaces it is possible to define a linear approximation to the space. A tangent space is a local

linear approximation to the space at a particular point. For a given random sample of objects,

the pre-shape coordinates of those objects can be projected on the tangent space at the sample

mean shape. The new coordinates are called tangent coordinates.

Inference methods in shape analysis are often carried out in the tangent space. Such meth-

ods work better when the data are highly concentrated. In the tangent space many commonly

used procedures of standard linear multivariate analysis are available. For example, shape vari-

ability can be studied by applying principal components analysis to the tangent coordinates.

There are some other possible approaches to statistical shape analysis which are not con-

sidered in this thesis. Possibilities include size-and-shape analysis, reflection shape analysis

and reflection size-and-shape analysis. In the size-and-shape statistical analysis of objects, the

information about size is retained, and the information about rotation and location is discarded.
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If one wants to perform a reflection shape study of objects, the information about reflection

should be removed from the shapes of those objects. Similarly, if one wants to perform a

reflection size-and-shape study of objects, the information about reflection should be removed

from the size-and-shapes of those objects (see Dryden and Mardia, 1998, p. 57).

1.2 Literature Review

The first work on statistical shape analysis was done by Kendall (1977). In a later paper,

Kendall (1984) gives a more complete description of the research field. Several important

concepts including shape spaces, shape manifolds, Procrustes analysis and shape densities are

presented and discussed in depth. He also clarifies the differences between statistical shape

analysis and the theory of shape which is studied by topologists.

In Kendall (1984) a system of coordinates is also introduced; we refer to this later as

Kendall’s coordinate system. One interesting fact about this system is that the location is

removed by the use of a special matrix, the Helmert matrix. An important contribution of

Kendall (1984) was the mathematical definition of shape, where he defines a mathematical

space to represent the shape of a labelled set ofk points inm dimensions.

On the other hand, Bookstein (1984, 1986) presents a mathematical basis for the study

of morphometrics. In this case the objects under consideration are from disciplines such as

biology and medicine, and have landmarks chosen according to some biological or medical

features. He also introduces what is known as Bookstein’s coordinate system, which removes

the effects of translation, rotation and scale by manipulating two of the landmarks in such a

way that they will be in fixed position.
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When invited to comment the paper of Bookstein (1986), Kendall (1986) established the

connection between their two theories. Kendall’s labelled set ofk points inm dimensions

corresponds to Bookstein’s landmarks. Even though they use different ways of calculating size

and different coordinates systems, their ideas are quite similar in the sense of representing the

shape of an object as a point in a manifold.

Procrustes analysis can be considered as a methodology for estimating for, a particular

set of objects, the “optimal” scaling transformation, rotation transformation and translation

transformation. The topic of Procrustes analysis was fully studied by Goodall (1991) who

defined the mean shape in terms of Procrustes analysis. If the sum of squared distances between

a point and the pre-shapes is minimal, then this point is said to be the mean shape.

A Gaussian model for the landmarks is also introduced by Goodall (1991). This model

has a parameter for each transformation: scale, rotation and translation. Goodall (1991) also

presented some algorithms to perform Procrustes analysis including an algorithm for ordinary

procrutes analysis which minimizes the sum squares of the distances between two observa-

tions, and a more general method using weighted least squares. He also presented an iterative

algorithm for estimating the transformations with several observations. This second algorithm

is called the generalized Procrustes analysis.

After applying the transformations to the pre-shapes, the Procrustes fit coordinates are

obtained. The mean shape also can be obtained as the mean of those coordinates.

Goodall also defined tests for shapes in the one and two population cases. Those tests were

based on statistics of F-ratio and Hotelling’sT 2 type. The F-ratio test is called Goodall’s test

in the literature.
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Mardia and Walder (1994) considered tests for paired landmark data. They used a Gaussian

model for the landmarks, where for each object there are two observations. The case of two

x-rays for the same object was given as an example. They proposed a paired shape density, and

they used this density to perform inference. They estimated the parameters of this distribution

by maximum likelihood and they derived a likelihood ratio statistic, which can be used for

testing hypotheses and for building confidence regions.

An important probabilistic model for statistical shape analysis is presented by Kent (1994).

This model was the complex Bingham distribution, a complex version of the real Bingham dis-

tribution. One important property of the complex Bingham distribution is complex symmetry.

This complex symmetry means that a vector and any rotated version of this vector will have

the same distribution. This property is useful because shape analysis can be performed while

working with pre-shapes.

The complex Watson distribution, which is a special case of the complex Bingham dis-

tribution, was discussed by Mardia and Dryden (1999). Maximum likelihood estimation and

hypothesis testing procedures are considered, and they also illustrate how to use this distribu-

tion in shape analysis.

Kent (1997) introduced a method for calculating the mean shape which is resistant to out-

liers for landmark data in two dimensions. His model uses an angular central Gaussian dis-

tribution for the pre-shapes. The mean shape is calculated by maximum likelihood estimation

using the EM algorithm.

The geometry of the shape space is studied by Kendall (1984), Le and Kendall (1993) and

Kendall et. al (1999). See also Dryden and Mardia (1998, Ch 5, 7).
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1.3 Mathematical Representation of Shape

Let Y be ak × m matrix of Cartesian coordinates ofk landmarks inm dimensions which is

given by

Y =




y1,1 . . . y1,m

...
...

...

yk,1 . . . yk,m




. (1.1)

A configuration are a set of landmarks on a particular object and the matrixY is usually called

a configuration matrix.

The shape of a configuration matrix is obtained by removing the information about isotropic

scaling, location and rotation. The shape space is the set of all possible shapes. The dimension

of the shape space associated to objects withk landmarks inm dimension is

km − m − 1 − m(m − 1)/2.

The termkm is the total dimension of the configuration matrixY and we subtractm, 1

andm(m − 1)/2 as a consequence of removing location, scale and rotation respectively (see

Dryden and Mardia, 1998, p. 56).

The landmark space is a real spaceR
m where the Cartesian coordinates of each landmark

are represented. For example, for two dimensional objects,m = 2, and the landmark space is

R
2. In this thesis, the focus is exclusively on the casem = 2.

Some transformations need to be performed on the matrixY in order to remove the effects
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of location, scale and rotation. Whenm = 2, the configuration matrix may be written as a

complex vector. Define ak × 1 complex vector

z0 = (y1,1 + iy1,2, . . . , yk,1 + iyk,2)
T = (z0

(1), . . . , z
0
(k))

T , (1.2)

which corresponds to complex coordinates for the landmarks. The superscript0 is used to

indicate that the configuration retains the effects of location, scale and rotation. The details of

each transformation in the casem = 2 will be given below.

The first step is to remove location. This can be done in various ways, depending on the

coordinate system. Kendall’s coordinates will be used here. Details about the Helmert matrix

and Helmert sub-matrix are needed for Kendall’s coordinate system. The Helmert sub-matrix

provides a particular linear transformation which removes location by pre-multiplyingz0 (see

Small, 1996, p. 130, and Dryden and Mardia, 1998, p. 34).

The full Helmert matrixHF is ak × k orthogonal matrix whose first row has all elements

equal to1/
√

k, and has rowj + 1 for j ≥ 1 given by

(hj , . . . , hj ,−jhj , 0, . . . , 0), hj = −{j(j + 1)}−1/2,

with j = 1, . . . , k−1, where the number of zeros elements in the rowj+1 is equal tok−j−1.

For example, if the number of landmarks is 5, the full Helmert matrix is given by
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HF =




1/
√

5 1/
√

5 1/
√

5 1/
√

5 1/
√

5

−1/
√

2 1/
√

2 0 0 0

−1/
√

6 −1/
√

6 2/
√

6 0 0

−1/
√

12 −1/
√

12 −1/
√

12 3/
√

12 0

−1/
√

20 −1/
√

20 −1/
√

20 −1/
√

20 4/
√

20




.

It can be shown by direct calculation that the Helmert matrixHF is an orthogonal matrix.

The location of the complex configurationz0 is removed by multiplying it by the(k − 1) × k

Helmert sub matrix, which is the Helmert matrixHF with the first row removed. The Helmert

sub-matrix will be calledH. The Helmertized configuration is given by

w = Hz0. (1.3)

A configuration is said to becenteredif 1T
k z0 = 0 where1k is a k × 1 vector of ones.

Helmertized configurations are connected to the centered configurations by the following prop-

erty of the Helmert matrix (see Dryden and Mardia, 1998, p. 54):

HT H = Ik − 1

k
1k1

T
k ,

whereIk is ak × k identity matrix and1k is ak × 1 vector of ones. Moreover, sinceHF is

orthogonal, it follows thatHT H = Ik−1. Thus, if the(k × 1) vectorz0 = (z0
(1), . . . , z

0
(k))

T is

a complex configuration, then

(Ik − 1

k
1k1

T
k )z0 = z0 − z̄01k,
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wherez̄0 = k−1
∑k

i=1 z0
(i). Therefore, sincez0 − z̄01k is a centered configuration, it means

that the centered configurations are equal to the Helmertized configurations multiplied byHT .

So it always possible to obtain the Helmertized configurations from the centered configurations

and vice versa.

The scale can be removed from the Helmertized configurationw using

z = w/
√

w⋆w = Hz0/
√

(Hz0)⋆Hz0, (1.4)

wherew⋆ is the complex conjugate transpose ofw. The vectorz is called the pre-shape of the

complex configurationz0. This name was coined by Kendall (1984). Note that a pre-shape is a

shape with rotation information retained.

The concept of pre-shape space will be reviewed because it plays an important role (see

Dryden and Mardia, 1998, p. 59 and Small, 1996, p. 9). The pre-shape space is the space of

all possiblek − 1 complex vectors that do not have translation and scale information. Thus the

pre-shape space is a unity complex hypersphere in(k − 1)−dimensional complex dimensions;

i.e.

CSk−1 = {z ∈ C
k−1 : z⋆z = 1}, (1.5)

whereC
k−1 is (k − 1)−dimensional complex space.

The shape space can be thought of as the pre-shape space with rotation information re-

moved. The rotation information in the pre-shape vectorz can be eliminated by defining the

equivalence class
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[z] = {eiθz : θ ∈ [0, 2π)}, (1.6)

where[z] is identified with any of its rotated versions. Kendall (1984) notes that the shape

space whenm = 2 is the complex projective spaceCP k−2, the space of complex lines passing

thought the origin.

An important problem of shape analysis is to estimate the average shape of a random sam-

ple of configurations. Considerz0
1 , . . . , z

0
n as a random sample of complex configurations from

a population of objectsΠ, where eachz0
i is defined by(1.2).

Let z1, . . . , zn be the pre-shapes ofz0
1 , . . . , z

0
n, wherezi is defined via(1.4) and zi ∈

CSk−1. The full Procrustes mean shapeµ̂ can be found as the eigenvector corresponding to

the largest eigenvalue of the complex sum of squares and product (SSP) matrix which is defined

by (see Kent, 1994)

Ŝ =
n∑

i=1

ziz
⋆
i .

Since the complex matrix̂S satisfies the condition that̂S = Ŝ⋆, this matrix is Hermitian.

Provided that the underlying distribution of the pre-shapes has a density with respect to the

uniform distribution on the pre-shape sphere andn ≥ k − 1, as opposed to being concentrated

on a subspace, then̂S has full rank with probability 1. So, applying the spectral decomposition

theorem for Hermitian matrices which is given in Theorem(A.1) in appendix A ,Ŝ is written

as

Ŝ =
k−1∑

j=1

λ̂jµ̂jµ̂
⋆
j , (1.7)
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whereλ̂1 > λ̂2 . . . > λ̂k−1 > 0 are the eigenvalues, and̂µ1, . . . , µ̂k−1 the corresponding

eigenvectors of̂S.

Provided that̂λ1 > λ̂2, . . . , which will usually be the case in practice, the mean shapeµ̂ is

well defined and is given by

µ̂ = µ̂1. (1.8)

1.4 Coordinate Systems

In statistical shape analysis there several coordinate systems in common use. Each coordinate

system is useful for some aspects of the analysis. Two coordinate systems will be considered

here: full Procrustes coordinates and the tangent coordinates.

Procrustes analysis is a technique to match two objects up. When two or more objects

are considered, they may have different rotations, translations and scales. So the technique of

Procrustes analysis is used to match one object into the other. It is done using the pre-shapes

of those objects since the pre-shapes have the same translation and scale.

For a given sample of pre-shapes, Procrustes analysis is performed by fitting the pre-shape

of each object onto the mean shape. The new coordinates are called Procrustes fits or Procrustes

coordinates and they will be defined below.

Let z1, . . . , zn be a random sample of pre-shapes, and also letw1, . . . , wn be a random

sample of Helmertized configurations.

The configurations have an arbitrary rotation (see Dryden and Mardia, 1998, pp. 44-45).

Thus, before proceeding with statistical shape analysis, it is necessary to rotate all the config-
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urations in such way that they will be as close as possible of the sample mean shape. This is

done by calculating

wP
i = w⋆

i µ̂wi/(w⋆
i wi), i = 1, . . . , n. (1.9)

ThuswP
1 , . . . , wP

n are called the full Procrustes fits or full Procrustes coordinates.

Since the pre-shapes can be written aszi = wi/||wi||, where eachzi is defined in(1.4) and

||wi|| =
√

w⋆
i wi , the Procrustes coordinates can also be calculated from

wP
i = z⋆

i µ̂zi, i = 1, . . . , n.

Another useful system of coordinates is the tangent space coordinates. The concepts of

tangent vectors and tangent space need to be presented before the definition of tangent coordi-

nates (see Small, 1996, pp. 42-46). The tangent space of the shape spaceCP k−2 at the point z

is the vector space of all the tangent vectors toCP k−2 at the pointz. When performing tangent

space inference, the tangent space at the sample mean pre-shape is often used.

The analysis of shape variability may be carried out in the tangent space. This space is a

linearized version of the shape space. One of the main advantages of the tangent space is that

standard multivariate techniques can be used directly.

There are several different types of tangent space coordinates. Here we use the partial

Procrustes tangent coordinates, which are given by

ti = eibθ[Ik−1 − µ̂µ̂⋆]zi, i = 1, . . . , n, (1.10)

wherezi is a pre-shape vector defined in(1.4) andθ̂ minimizes||µ̂− zeibθ||2 and||z|| =
√

z⋆z.
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Suppose thatz1, . . . , zn is a random sample of pre-shapes andt1, . . . , tn their tangent co-

ordinates, where eachzi andti are calculated using(1.4) and(1.10), respectively. Letvi be a

2k − 2 vector which is obtained by stacking the real and imaginary coordinates of eachti. If

ti = xi + iyi, this operation is represented bycvec where

vi = cvec(ti) = (xT
i , yT

i )T , (1.11)

wherexi = Re(ti) is the real part ofti andyi = Im(ti) is the imaginary part ofti. If the

number of landmarks isk, a pre-shape vectorzi has dimension(k − 1) and its corresponding

vector of tangent coordinatesvi, wherevi is given in(1.11), has dimension(2k − 2).

Standard multivariate methods can be applied to the real tangent coordinatesvi. When

the data are highly concentrated, methods based on the multivariate normal distribution can be

applied for the real tangent coordinatesvi (see Dryden and Mardia, 1998, p. 151). Some of

these methods will be considered in the next sections.

1.5 Definition and Simulation of Shape Distributions

This section aims to review two distributions relevant to shape analysis: the complex normal

distribution and the complex Bingham distribution. Methods for simulating these distributions

are also discussed. The complex Bingham distribution is suitable for modelling pre-shapes and

shapes and it will be used to evaluate the computer intensive methods of the next chapters.
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1.5.1 Complex Normal Distribution

Since the multivariate complex normal and multivariate normal distribution are related, it is

necessary to review the multivariate normal distribution.

The multivariate normal distribution is an extension of the univariate normal distribution to

(2k − 2) variables (see Mardia et. al, 1979, p. 37), where the number of variables is chosen as

(2k − 2) to make a connection with the shape context. The probability density function (pdf)

of the multivariate normal of a(2k − 2) real vectorx is given by

f(x|µ, V ) =
1

(2π)(k−1)
|V |−1/2 exp{−1

2
(x − µ)T V −1(x − µ)}, (1.12)

whereV is (2k − 2)× (2k − 2) positive definite matrix,|V | = detV, andµ is a(2k − 2) real

vector.

A multivariate complex normal distribution can be represented as a real multivariate normal

distribution (see Dryden and Mardia, 1998, p. 112). To clarify this relationship, consider the

(k − 1) complex vectorz = (z1, . . . , zk−1)
T and the(2k − 2) real vector

v = (xT , yT )T = (x1, . . . , xk−1, y1, . . . , yk−1)
T , (1.13)

wherexj = Re{zj} is the real part ofzj andyj = Im{zj} is the imaginary part ofzj . Suppose

that

v ∼ N2k−2


(µT

1 , µT
2 )T ,

1

2




Σ1 −Σ2

Σ2 Σ1





 , (1.14)
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whereN2k−2(µ,Σ) denotes a2k − 2 multivariate normal distribution with mean vectorµ and

covariance matrixΣ, Σ2 = −ΣT
2 is skew-symmetric andΣ1 is symmetric positive definite.

The distribution of the complex vectorz is known as the complex normal distribution,

which is denoted byCNk−1(µ,Σ), whereν = µ1 + iµ2 andΣ = Σ1 + iΣ2, (see Dryden and

Mardia, 1998, p. 112). The pdf ofz is given by

f(z) =
1

πk−1|Σ|e
−(z−µ)⋆Σ−1(z−µ). (1.15)

In the real case, it is well-known that the quadratic form(x − µ)T V −1(x − µ) in (1.12)

has aχ2
2k−2 distribution. However, in the complex case, it is2(z − ν)⋆Σ−1(z − ν) which has

aχ2
2k−2 distribution. The need for this factor2 is explained in appendix C.

1.5.2 Simulation Method for the Complex Normal Distribution

Consider the problem of generating a vectorz which has a complex normal distribution with

complex meanµ and Hemitian covariance matrixΣ.

The complex Gaussian vectorz will be represented as a real multivariate Gaussian vector

v; see(1.14). Thenv is simulated using a standard method (See Bratley et al, 1983, p. 152),

andz is obtained fromv by the inverse operation tocvec in (1.11).

The procedure to generate a2(k−1) real Gaussian vectorv in (1.14) is defined as follows.

Let A be a(2k − 2) × (2k − 2) upper triangular matrix such that

AT A =
1

2




Σ1 −Σ2

Σ2 Σ1


 ,

whereΣ1 andΣ2 are(k − 1) × (k − 1) real matrices.
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Let u ∼ N2k−2(02k−2, I2k−2), where02k−2 is a2k − 2 vector of0. Then the vectorv is

given by

v = (µT
1 , µT

2 )T + AT u,

whereµ1 andµ2 are real(k − 1) vectors, andz is obtained by applying the inverse operation

to (1.11) to v.

So thek − 1-dimensional vectorz has complex normal distribution with mean vectorµ =

µ1 + iµ2 and covariance matrixΣ = Σ1 + iΣ2.

1.5.3 Complex Bingham Distribution

One of the most useful distributions for two dimensional landmark datasets is the complex

Bingham distribution. A detailed account of this distribution is given by Kent (1994). This is a

distribution on the space of complex unit vectors, or equivalently, the complex unit sphere.

If z is a random complex unit vector with complex Bingham distribution, the pdf ofz is

given by

f(z) = c(A)−1 exp(z⋆Az), z ∈ CSk−1, (1.16)

whereA is a(k− 1)× (k− 1) Hermitian matrix andc(A) is a normalizing constant. IfA = I,

f(z) becomes a uniform distribution onCSk−1, due to the constraintz⋆z = 1.

The complex Bingham distribution has the property of complex symmetry, which means

thatz ande(iθ)z, whereθ ∈ [0, 2π), have the same distribution (see Kent, 1994, p. 290). This is

an important reason for using this distribution as a plausible model for the analysis of landmark
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data in two dimensions, since a shape distribution should respect the definition of shape given

in (1.6).

1.5.4 Simulation Method for the Complex Bingham Distribution

To simulate from the complex Bingham distribution, which is defined in (1.16), one of the

methods proposed by Er (1998) is reviewed. Initially,(k − 2) truncated exponentials are gen-

erated subject to a linear constraint, and then these random variables are expressed in polar

coordinates to deliver a complex Bingham distribution.

Let TE(λ) denote theexp(λ) distribution conditioned to lie in[0, 1]. A simple algorithm

for simulating theTE(λ) distribution is as follows.

It should be noted thatλ here is the rate.

Algorithm 1.1. Simulation ofTE(λ)

1 - Simulate a uniform random variableu ∈ [0, 1].

2 - CalculateX = −(1/λ) log(1 − u(1 − exp−λ)).

The method for simulating the complex Bingham distribution uses(k − 2) truncated ex-

ponentials to generate a(k − 1) vector with a complex Bingham distribution. Suppose the

eigenvalues ofA areλ̃1 ≤ . . . ≤ λ̃k−2 < λ̃k−1, and writeλj = λ̃k−1 − λ̃j , j = 1, . . . , k − 2.

The input is a(k − 2)-vector

λ̃ = (λ1, . . . , λk−2). (1.17)

Algorithm 1.2. Simulation of Complex Bingham Distribution; Er (1998)
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1 - GenerateS = (S1, S2, . . . , Sk−2)
T whereSj ∼ TE(λj) are independent random

variables simulated using Algorithm1.1.

2 - If
∑k−2

j=1 Sj < 1, write Sk−1 = 1 − ∑k−2
j=1 Sj . Otherwise, return to step 1.

3 - Generate independent anglesθj ∼ U [0, 2π), j = 1, . . . , k − 1.

4 - Calculatezj = S
1/2
j exp(iθj), j = 1, . . . , (k − 1).

The algorithm delivers a(k−1) vectorz = (z1, . . . , zk−1)
T , which has a complex Bingham

distribution. Note that(S1/2
j , θj) are essentially polar coordinates for complex numberzj .

If the parameter matrixA has spectral decompositionA = ΓΛΓ⋆ (see appendix A), with

Γ 6= Ik−1, thenΓz rather thanz should be returned.

1.6 Confidence Regions based on Normal Approximation

The tangent coordinates can be used for building confidence regions based on a normal ap-

proximation. First, it is necessary to study the variability on the tangent space. This variability

can be studied using the method of principal components. The principal component method

can also be used for building approximate normal-based confidence regions on the landmark

space. These issues will be considered in this section.

Consider a random sample of complex configurationsz0
1 , . . . , z

0
n, wherez0

i was defined

in (1.2). Suppose thatv1, . . . , vn are the tangent coordinates of those complex configurations,

wherevi is defined in(1.11). The variability in the tangent space is measured by the sample

covariance matrix of the tangent coordinatesvi, given by the(2k − 2) × (2k − 2) matrix
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Sv =
1

n

n∑

i=1

(vi − v̄)(vi − v̄)T , (1.18)

wherev̄ =
∑n

i=1 vi/n.

The method of principal components can be used to summarize the variability of a random

vector (see Mardia, et. al, 1979, p. 213). The idea of the principal component method is to

reduce the dimension of the sample by focusing on the most important directions of variability.

In the shape analysis context, the idea is to apply the principal component method to the sample

covariance matrix of the tangent coordinates, to obtain the first few principal components and

to project those components back to the landmark space (see Dryden and Mardia, 1998, pp.

47-51).

The matrixSv can be written in terms of the spectral representation

Sv =

p∑

i=1

φiuiu
T
i , (1.19)

wherep = min(2k − 4, n − 1) is the total number of principal components ,φ1 ≥ . . . ≥ φp

are eigenvalues andu1, . . . , up the eigenvectors ofSv (see Mardia et al, 1979, pp. 469).

The shape variability on the tangent space is studied using the principal components via

the equations

v = v̄ + c
√

φjuj , j = 1, . . . , p, (1.20)

wherec is a constant,̄v is defined below(1.18) andφj anduj were defined below (1.19).

Insight can be gained by giving different values to the constantc. Under the assumption

that the tangent coordinates follow a multivariate normal distribution, it can be shown thatc is
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approximatelyN(0, 1) (see Dryden and Mardia, 1998, p. 49). On this basis, a plausible range

of values for c is[−3, 3].

The principal components method can also be used for building confidence regions based

on a normal approximation (NA). The idea of using principal components for building a con-

fidence region for the mean shape is particularly appealing when the observations on the land-

mark space for each landmark follow a bivariate normal distribution. The assumption of nor-

mality is more plausible for highly concentrated data.

The confidence regions obtained by normal approximation, referred to below as NA confi-

dence regions, are calculated using the principal components for tangent coordinates. The NA

method uses those principal component, conveniently relocated by replacingv̄ by the mean

shapeµ̂ (see(1.8)) in (1.20), to obtain the coordinates of the objects in the landmark space.

Only the first and the second principal components are used since with those components it is

possible to construct an ellipse for each landmark and represent it in a2D plot. The axes of

this ellipse are determined by the eigenvectors, and the relative scale along each axes is deter-

mined by the eigenvalues, corresponding to the two leading principal components. Thus NA

confidence regions can be represented graphically by a plot of

µ̂ + c
√

φ1u1 andµ̂ + c
√

φ2u2 (1.21)

where usuallyc ∈ (−3, 3), µ̂ is given in(1.8) andφj anduj were defined below (1.19). See

Dryden and Mardia (1998, p. 50).
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1.7 Tests for One Group of Objects

We consider two methods in current use for testing if the mean shape is equal to a particular

value. One is the one-sample Hotelling’sT 2 test and the other is the one-sample Goodall test.

The first one is less restrictive than the second but more complex. The Goodall test assumes

the joint distribution on the landmark space is complex normal and isotropic (see Dryden and

Mardia, 1998, p. 160), which means that the variance for each landmark is the same. On the

other hand, the Hotelling’sT 2 test assumes normality for the observations on the tangent space

and isotropy is not assumed.

1.7.1 Hotelling’sT 2 Test for a Specified Mean Shape

Consider the assumptions of the one sample Hotelling’sT 2 test. Letz0
1 , . . . , z

0
n be a random

sample of complex configurations,z1, . . . , zn be the pre-shapes of those configurations, where

zi is calculated from(1.4), and letµ̂ be the mean shape of this sample, calculated using(1.8).

Let v1, . . . , vn be the partial Procrustes tangent coordinates of those pre-shapes, wherevi is

obtained from(1.11). Recalling the tangent sample meanv̄ and tangent sample covariance

matrixSv from (1.18), suppose that thevi have a multivariate normal distribution.

The aim of the Hotelling’sT 2 test is to evaluate the hypotheses

H0 : [µ] = [µ0] versus H1 : [µ] unrestricted,

where [µ0] is a pre-specified value for the mean shape. Here[µ] can be thought of as an

equivalent class of pre-shapes. The partial tangent coordinatesγ0 for the mean pre-shapeµ0
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are given by

γ0 = (I2k−2 − cvec(µ̂)cvec(µ̂T ))cvec(µP
0 /||µP

0 ||), (1.22)

wherecvec(.) was defined in(1.11), andµP
0 is the procrustes fit ofµ0, which is calculated

using(1.9). The statistic used for this test is given by

F =
(n − M)

M
(v̄ − γ0)

T S+
v (v̄ − γ0), (1.23)

whereγ0 is given in(1.22), S+
v is the Moore-Penrose generalized inverse (see appendix (A))

of Sv, andM is the dimension of the tangent space and calculated as2k − 4.

This statistic has anFM,n−M distribution underH0. The hypothesisH0 is rejected at the

levelα if F ≥ F (M, n − M, α), whereF (M,n − M, α) is the quantile of the F distribuition

with numeratorM and denominatorn − M for theα significance level.

1.7.2 Goodall’s Test for a Specified Mean Shape

The situation is similar to Hotelling’s test but isotropy is assumed. Letz1, . . . , zn a random

sample of pre-shapes, where eachzi is given by(1.4). Also consider the tangent coordinates

v1, . . . , vn of those pre-shapes, wherevi is defined in(1.11).

Goodall’s test has the assumption that the tangent coordinates follow an isotropic normal

model. So thevi have a multivariate normal distribution with mean vectorµ and covariance

matrixΣ = σ2I2k, whereσ2 is a constant andI2k is the2k × 2k identity matrix (see Goodall,

1991, p. 314 and Dryden and Mardia, 1998, p. 160).

As in Hotelling’sT 2 test, the hypotheses under consideration are
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H0 : [µ] = [µ0] versus H1 : [µ] 6= [µ0].

The Goodall test is based on the squared Procrustes distances. For the pre-shapeszi and

zj , defined in(1.4), this distance is given by

d2
F (zi, zj) = 1 − z⋆

i zjzj
⋆zi, (1.24)

for i = 1, . . . , n (see Dryden and Mardia, 1998, p. 41).

If µ̂, the estimator ofµ, is close toµ, andσ is small, the approximate analysis of variance

(ANOVA) is given by

n∑

i=1

d2
F (zi, µ) =

n∑

i=1

d2
F (zi, µ̂) + nd2

F (µ, µ̂),

(see Dryden and Mardia, 1998, p. 160).

Under the null hypothesisH0, the distribution of the squared Procrustes distances are ap-

proximately chi-squared distributions, e. g.,

d2
F (zi, µ0) ∼ τ2

0 χ2
M ,

whereτ0 = σ/||µ0|| andM = 2k − 4. The proof of this result is derived using a Taylor series

expansion (see Dryden and Mardia, 1998, p. 161).

Using this result and the additive property of independent chi-squared distributions,

n∑

i=1

d2
F (zi, µ0) ∼ τ2

0 χ2
(n−1)M .
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Thus the test statistic (see Dryden and Mardia, 1998, pp. 160-161) is given by

G = (n − 1)n
d2

F (µ0, µ̂)∑n
i=1 d2

F (xi, µ̂)
∼ FM,(n−1)M . (1.25)

1.8 Tests for Several Populations

Two tests to compare the mean shape of two populations are considered in this section. The

first one is the Goodall test and the second is the Hotelling’sT 2. Those tests are extended

versions of the tests of§1.7.

1.8.1 Hotelling’sT 2 Test to Compare the Mean Shape of Two Populations

The test is used to compare the mean of two populations on the pre-shape space. However,

the quantities being used are from the tangent space. This aspect will be clarified after the

definitions of these quantities.

Consider an independent identically distributed (IID) random samplez0
1j , . . . , z

0
njj of com-

plex configurations from the populationΠ[j], wherej = 1, 2. Letz1j , . . . , znjj andv1j , . . . , vnjj

be the pre-shapes and the tangent coordinates ofz0
1j , . . . , z

0
njj , wherezlj andvlj are calculated

from z0
lj using(1.4) and(1.10).

The main assumptions of Hotelling’sT 2 test are normality and homogeneity across popula-

tions of covariances matrices for the tangent coordinates. Suppose that the tangent coordinates

v1j , . . . , vnjj for populationj are IID, and approximately normally distributed with meanµ[j]

and common covariance matrixV.

The null and alternative hypothesis are given by
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H0 : [µ[1]] = [µ[2]] = [µ] versus H1 : [µ[1]], [µ[2]] unrestricted, (1.26)

where[µ] is the common mean shape.

Let µ̂[j] and V̂ [j] be the estimated mean and estimated covariance matrix of the tangent

coordinatesv1j , . . . , vnjj , whereV̂ [j] has divisornj . The Mahalanobis distance betweenµ̂[1]

andµ̂[2] is given by

D = (µ̂[1] − µ̂[2])T V̂ +(µ̂[1] − µ̂[2]),

whereV̂ = (n1V̂
[1]+n2V̂

[2])/(n1+n2−2), andV̂ + is the Moore-Penrose generalized inverse

of V̂ , which is defined in (A.3) in appendixA.

The test statistic is

H =
n1n2(n1 + n2 − M − 1)

(n1 + n2)(n1 + n2 − 2)M
D (1.27)

which, underH0, has anFM,n1+n2−M−1 distribution, whereM = 2k − 4 (see Dryden and

Mardia, 1998, p. 154).

1.8.2 Goodall’s Test to Compare the Mean Shape of Two Populations

Goodall’s test assumes that the tangent coordinates have a jointly Gaussian distribution with an

isotropic covariance matrix.

It should be noted that these assumptions are reasonable for data sets for which the vari-

ances of each landmark are small and similar. The hypotheses are
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H0 : [µ[1]] = [µ[2]] = [µ] versus H1 : [µ[1]], [µ[2]] unrestricted, (1.28)

where[µ] is the common mean.

To obtain the statistic of the test some results about the distribution of some Procrustes

distances need to be used. These results are valid underH0 and withσ small. Therefore this

test is appropriate for highly concentrated data. Set

τ0 = σ/||µ0||,

where||µ0|| =
√

µ⋆
0µ0.

The distribution of the Procrustes distances for each sample is given by

n∑

i=1

d2
F (zi1, µ̂

[1]) ∼ τ2
0 χ2

(n1−1)M , (1.29)

whered2
F (., .) is defined in(1.24), and

n∑

i=1

d2
F (zi2, µ̂

[2]) ∼ τ2
0 χ2

(n2−1)M . (1.30)

The Procrustes distance between the sample mean of the groups is given by

n∑

i=1

d2
F (µ̂[1], µ̂[2]) ∼ τ2

0

(
1

n1
+

1

n2

)
χ2

M . (1.31)

Thus, underH0 and withσ small, using (1.29), (1.30) and (1.31), the statistic

GT =
n1 + n2 − 2

(n1)
−1 + (n2)

−1

d2
F (µ̂[1], µ̂[2])∑n

i=1 d2
F (zi1, µ̂[1]) +

∑n
i=1 d2

F (zi2, µ̂[2])
(1.32)
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has the approximate distributionFM,(n1+n2−2)M (see Dryden and Mardia, 1998, p. 162),

whereM = 2k − 4 as before.

.

1.9 Scope of the Thesis and Motivation

The contents of the following chapters are explained below. Some motivations for the thesis

are given at the end of this section.

Chapter 2 explains how the bootstrap method of Fisher et al. (1996) for building confi-

dence regions for directional data can be adapted to the shape context. It is proved that the

distribution of the test statistic is asymptoticallyχ2 under the null hypothesis and is therefore

asymptotically pivotal. The coverage accuracy of the bootstrap confidence region is compared

numerically to Goodall and Hotelling confidence regions.

Chapter 3 introduces a bootstrap hypothesis test of a common mean shape across several

populations. A proof that the statistic test is asymptotically pivotal under the null hypothesis

is presented. This bootstrap test is compared to corresponding tests based on Goodall and

Hotelling statistics using numerical simulation.

Chapter 4 presents both empirical likelihood confidence regions and hypothesis tests for

shape data. First, it is explained how the empirical likelihood confidence regions of Fisher

et. al. (1996) can be constructed in the shape context. Subsequently, an empirical likelihood

hypothesis test of a common mean shape is introduced. Numerical simulations are carried out

in order to compare these empirical likelihood methods to Goodall and Hotelling procedures.

Conclusions and some ideas for future work are presented in Chapter 5. Bootstrap and
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empirical likelihood methods are compared, and numerical and methodological aspects are

considered. How to apply the methods of this thesis in other areas of shape analysis is also

discussed briefly.

The Goodall and Hotelling’sT 2 tests work well under the assumption of high concentra-

tion, but they perform poorly when applied to data with low concentration. Even though the

majority of shape datasets are highly concentrated, some datasets have low concentration. This

provides motivation for using bootstrap and empirical likelihood methods in the shape analysis

context, because they work well when applied to data having either high or low concentration.

A second motivation is that bootstrap and empirical likelihood methods are nonparametric and

only require weak assumptions about the underlying population.
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Chapter 2

Bootstrap Confidence Regions for the

Mean Shape

The aim of this chapter is to explain how the bootstrap confidence regions developed by Fisher

et al. (1996) can be extended to the statistical shape analysis context. Fisher et al. (1996)

proposed some bootstrap methods for building confidence regions for directional and axial

data. Since there is a relationship between axial data and shape data for landmarks in two

dimensions, it is possible to adapt bootstrap methods for axial data to shape data.

The sections are organized as follows. The main ideas and a literature review of the boot-

strap are given in§2.1. Methodology for constructing bootstrap confidence regions is reviewed

in §2.2. In §2.3 the bootstrap method of Fisher et al. (1996) for axial data is reviewed. The

connection between axial and shape data is explained in§2.4. In§2.5 an asymptotically pivotal

statistic for a sample ofn complex unit vectors is described. The bootstrap method for shape

data, which is adapted from the bootstrap method for axial data, is explained in§2.6. In§2.7
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the asymptotic distribution of the statistic we propose for shape data is derived. Some practical

examples are considered in§2.8. In§2.9 some simulation experiments are performed in order

to compare the bootstrap method for shape data with Goodall and Hotelling procedures.

2.1 Main Ideas and Literature Review of Bootstrap Methods

The main ideas about the bootstrap were introduced by Efron (1979). Efron (1979) presented

the bootstrap as a more general method than the Quenouille-Tukey jackknife. According to

Efron (1979), the jackknife can be considered as a linear expansion method for approximating

the bootstrap.

Before explaining the bootstrap idea it is worth explaining what a functional is. A func-

tional is a function of a function. Thus the notation

ν(F ) where ν : {space of distribution functions} → R
d (2.1)

means thatν(F ) is function of the distribution functionF . For example, ifν(F ) is the variance

function andF is the distribution function of the normal distributionN(µ, σ2), thenν(F ) is

equal toσ2.

To explain Efron’s (1979) original idea, letu = {u1, . . . , un} be a random sample from

a distribution with cumulative distribution function (CDF)F . Suppose that we are interested

in an unknown parameterν = ν(F ), and letF̂n(u) = n−1
∑n

i=1 I(ui ≤ u), whereI(.) is

the indicator function, denote the empirical distribution function based on the sampleu. The

bootstrap estimatorν is given byν̂ = ν(F̂n). The bootstrap idea is to approximate the sampling
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distribution of ν̂ by drawing resamples randomly with replacement from the original sample

u, the main point being that the resampling distribution can be estimated to arbitrary accuracy

using computer simulation.

Efron (1979) also considered the parametric bootstrap. The bootstrap mentioned above

is nonparametric. But it is possible to define a parametric bootstrap by estimatingF by its

parametric maximum likelihood estimator. For example, it is possible to assume thatF has a

normal or any other particular distribution. The resamples with replacement will be not gen-

erated from the sample but from the parametric distributionF , with the parameters estimated

from the sample.

Asymptotic properties of bootstrap methods can be examined using Edgeworth expansions.

A seminal paper was Singh (1981). Singh (1981) showed theoretically that the bootstrap ap-

proximation for a distribution function of a sample mean is generally more accurate than the

limiting normal distribution function approximation. For the case of quantiles he showed that

the bootstrap approximation is as good as the normal approximation.

Bickel and Freedman (1981) showed some examples where the bootstrap approximation

does not work so well. They conclude that for the majority of models with many parameters

the bootstrap typically fails.

Hall (1992) presents very detailed information about bootstrap methods and Edgeworth

expansions. Among other things, he explained the advantage of using an asymptotically pivotal

statistic for bootstrapping (see Hall, 1992, pp. 83-91). A statistic is asymptotically pivotal if its

limit distribution does not depend on unknown quantities (see Hall, 1992, p. 14). Considering

an asymptotically normally distributed statisticT , Hall (1992) showed that bootstrappingT
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reduces the error in the distribution function approximation from ordern−1/2 to ordern−1.

However, if an asymptotically non-pivotal statistic is used the error does not reduce, its size is

n−1/2. Hall’s (1992) discussion is very relevant for the bootstrap methods of this and the next

chapter.

A number of authors have discussed bootstrap methods for confidence regions. A vari-

ety of methods for constructing nonparametric confidence intervals were introduced in Efron

(1982). Some other important results can be found in Abramovitch and Singh (1985), Beran

(1988), Hinkley (1988), Fisher and Hall (1990), and Hall and Wilson (1990), Hall (1988a),

Hall (1988b) and Hall (1990).

Hall (1988a) compares five bootstrap confidence intervals. They come from both para-

metric and nonparametric contexts. Among the five methods, percentile-t and accelerated bias

correction were identified as being superior. He also found that there is not a conclusive differ-

ence between the two methods: they achieve similar accuracy in both theoretical and numerical

performance. Hall’s (1988a) theoretical comparisons were made using Edgeworth expansions.

Asymptotic results clearly demonstrate the advantage of bootstrapping an asymptotically

pivotal statistic for both hypotheses tests and confidence regions. Some papers supporting the

use of pivotal statistics are Beran (1987), Liu and Sing (1987), Hall (1986), Hall (1988a) and

Fisher et. al. (1996).

Bootstrap methods can be applied in many different areas of statistics, including general-

ized linear models, time series, sample surveys and statistical quality control, to name a few.

These applications are covered in textbooks such as Efron and Tibshirani (1983), Davison and

Hinkley (1997) and Chernick (1996).
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In the directional data context, several papers have considered the use of the bootstrap

for constructing confidence regions for the mean direction or mean axis of a population. See

Ducharme et al. (1985), Fisher and Hall (1989) and Fisher et al. (1996). We now describe the

developments in these papers in more detail.

Ducharme et al. (1985) developed a bootstrap method for directional data analysis for

building confidence cones. They reviewed some parametric methods which are based on the

assumption that the underlying distribution is a Fisher distribution. They presented a new

bootstrap method which makes assumptions about the underlying distribution. In particular,

the method of Ducharne et al. (1985) is not asymptotically pivotal except in relatively special

circumstances, e. g. when the underlying population has rotational symmetry.

Fisher and Hall (1989) presented an asymptotic pivotal statistic for constructing confidence

regions for directional data. However, this statistic leaves the sphere in its first step of calcula-

tion. Thus rescaling is needed to return to the surface of the unit sphere.

Fisher et al. (1996) introduced some asymptotically pivotal methods which involve pro-

jecting the true mean direction or mean axis onto the tagent space at the sample mean direction

or axis. This approach has the advantages that it is simply to apply and (unlike the Fisher and

Hall (1990) approach) no rescaling is required.

2.2 Bootstrap Confidence regions

Fisher et al. (1996)’s method for constructing confidence regions for an axis using axial data

is based on the percentile-t method, one of the two methods identified by Hall (1988a) as

being superior. The percentile-t method generalizes to higher dimensions more easily than the
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accelerated bias correction method, the other superior method identified by Hall (1988a) in the

scalar case.

The percentile-t method has some particular steps which need to be reviewed before con-

sidering the method of Fisher et al. (1996) for axial data. The case of a scalar parameter is

considered initially.

Consider the problem of building a confidence interval for a unknown parameterυ of an

unknown population based on the random sampleu = {u1, . . . , un}. Let υ̂ be an estimator of

υ andŝe an estimator of its standard deviation which is denote byse.

The percentile-t method for building a confidence region forυ has the following steps (see,

Efron and Tibshirani, 1993, pp. 160-161). First, considerB resamples

u(b) = {u(b)
1 , . . . , u(b)

n }, b = 1, . . . , B (2.2)

each sampled randomly with replacement, fromu. For eachu(b) calculate

T (b)
u (υ̂) ≡ T (b)

u =
υ̂(b) − υ̂

ŝe(b)
, (2.3)

whereυ̂(b) is the estimator̂υ calculated for theb-th bootstrap sample and̂se(b) is the estimated

standard error of̂υ(b).

The statisticT (b)
u is used to calculate a confidence interval forυ as follows. SetTu[1] <

Tu[2] < . . . < Tu[B − 1] < Tu[B] to be the ordered values ofT
(b)
u , b = 1, . . . , B. Then a

confidence interval forυ is given by

(υ̂ − t(1−α)ŝe, υ̂ − t(α)ŝe),
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where1 − 2α is the confidence level of the interval, andt(α) is theα percentile ofTu[i]. For

example, ifα = 0.05 andB = 100, t(0.05) = Tu[5] andt(0.95) = Tu[95].

The percentile-t method is named thus because the pivotTu corresponds to the studentized

version ofυ̂; see (Hall, 1992, p. 15).

This method can also be used for vector parameters. In this caseυ is an unknown parameter

vector, and̂υ is the estimator ofυ andV̂ is the estimator of the covariance matrix ofν̂ based

on a random sampleu = {u1, . . . , un}. The procedure above is used with the multivariate

analogue of the square of(2.3), which is given by

T 2
u

(b)
(ν̂) = (υ̂(b) − υ̂)T (V̂ (b))

−1
(υ̂(b) − υ̂). (2.4)

The confidence region for the mean vectorυ is built in a similar way to the confidence

interval. GivenB resamples,u(1), . . . ,u(b), selected randomly with replacement, fromu, cal-

culateT 2
u

(b) for b = 1, . . . , B. Let TB[1] ≤ TB[2], . . . , TB[B − 1] ≤ TB[B] be the ordered

values ofT 2(b)
u , whereb = 1, . . . , B. then the confidence region is given by

Rα = {υ : T 2
u (υ) ≤ t(B)

α },

whereTB[B(1 − α)] and1 − α is the nominal coverage level.

For some particular types of statistical analysis such as directional data analysis and statis-

tical shape analysis, it is more difficult to find a pivotal statistic. The difficulties appear because

these kinds of data are non-Euclidean.
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2.3 The Method of Fisher et al. (1996) for Axial Data

Fisher et al. (1996) presented bootstrap confidence regions for directional and axial data which

are based on asymptotically pivotal statistics. The method for axial data is explained in this

section; in§2.4 we explain the relationship between axial data and shape data.

Some notation for axial data is now introduced. Letx be a random vector on the unit sphere

Sd = {x ∈ R
d : ||x|| = 1}, whereR

d is d dimensional real space.

For axial data,x and−x are identified as equivalent. A relevant population characteristic is

the mean polar axis, which is the unit vectorm that is defined to be the eigenvector associated

to the largest eigenvalue ofS = E(XXT ). Thus for a sample of axes

x = {x1, . . . , xn}, (2.5)

the parameterS is estimated bŷS = n−1
∑

xix
T
i . If Ŝ is written in spectral form (see appendix

A)

Ŝ =
d∑

j=1

η̂jm̂jm̂
T
j , (2.6)

whereη̂1 > η̂2 > . . . > η̂d are the eigenvalues, and̂m1, . . . , m̂d the corresponding eigenvec-

tors, the mean polar axis is given by

m̂ = m̂1. (2.7)

Fisher et al. (1996) indicate how to construct a pivotal percentile-t method for axial data. In

a non-Euclidean space addition and subtraction of vectors is not well-defined, so it is not clear
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at the outset how to studentize directional or axial data. Fisher et al. (1996) used the statistic

T (m) = nmT M̂T
d Σ̂−1M̂dm, (2.8)

where the elements of the(d − 1) × (d − 1) matrix Σ̂ are given by

Σ̂jk = n−1(η̂1 − η̂j)
−1(η̂1 − η̂k)

−1 ×
n∑

i=1

(m̂T
j xi)(m̂

T
k xi)(m̂

T xi)
2, (2.9)

whereη̂1 ≥ η̂2 ≥ . . . ≥ η̂d are the eigenvalues, and̂m, m̂2, . . . , m̂d the corresponding eigen-

vectors ofŜ in (2.6), and the(d − 1) × d matrixM̂d is given by

M̂d = [m̂2, . . . , m̂d]
T . (2.10)

Fisher et al. (1996) use the idea of pivoting on the tangent space to the sphereSd at the

sample mean axiŝm. The tangent plane for this case can be represented by the hyperplane

Tbm = {t ∈ R
d : tT m̂ = 0}, which is the space of all vectors orthogonal tom̂. Thus the

rows of the matrixM lie in the tangent space at̂m, andM̂dm = 0d−1. The product̂Mdm =

M̂d(m−m̂) projectsm onto the tangent plane at̂m. The matrixΣ̂ is the asymptotic covariance

matrix ofM̂dm. ThusT in (2.8) can be considered an asymptotically pivotal statistic for axial

data, which is an analogue of(2.4) for multivariate data. Further details about how to bootstrap

these statistics will be given in§2.6.

Using the statistic (2.8), Fisher et al. (1996) present the following bootstrap algorithm,

referred to asAlgorithm 2.1,for building a confidence region for the mean axis given in (2.7).

Algorithm 2.1. Bootstrap Method for Building Confidence Regions for the Mean Axis
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Step 1- For a samplex of axial data, defined in (2.5), calculate the matrixΣ̂ and the matrix

M̂d, which were defined in(2.9) and(2.10), respectively.

Step 2- GenerateB resamplesx(b) = {x(b)
1 , . . . , x

(b)
n }, b = 1, . . . , B, randomly with replace-

ment, from the original samplex.

Step 3- For each resample, calculate the quantitiesΣ̂, M̂d andT usingx(b). Those quantities

will be denoted̂Σ(b) , M̂
(b)
d andT̂ (b), respectively. The statistiĉT (b) is given by

T̂ (b) = T (b)(m̂) = nm̂T (M̂
(b)
d )

T
(Σ̂(b))

−1
M̂

(b)
d m̂.

Step 4- After the step (3), the values{T̂ (b); b = 1, . . . , B} are sorted, into order, giving

T̂ (b)[1] 6 T̂ (b)[2] 6 . . . 6 T̂ (b)[B − 1] 6 T̂ (b)[B],

and lett(B)
α be the chosen value corresponding to the levelα. For instance, ifB = 100 and

α = .1, the chosen value ist(100)
0.1 = T100[90].

Step 5- The confidence region based on(2.8) with coverage probability1 − α is given by

Rα = {m : T (m) 6 t(B)
α }. (2.11)

The method of Fisher et al. (1996) has some advantages when compared with the methods

of Fisher and Hall (1989) and Ducharme et al. (1985). The Fisher and Hall (1989) method

is asymptotically pivotal, but involves some awkward scaling while typically the method of

Ducharme et. al. (1985) is not asymptotically pivotal. In contrast, the statisticT is asymptoti-

cally pivotal and this is achieved without leaving the surface of the sphere.

Fisher et al. (1996) showed that the coverage error, which is defined by
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coverage error = coverage probability − nominal coverage probability,

of the confidence region given by(2.11) is of sizeO(n−2); the order notationO(.) is reviewed

in appendix B. Equivalently, ifm0 is the true mean shape, then under mild conditions,Pr[m0 ∈

Rα] = 1 − α + O(n−2). The details of the proof about the theoretical coverage accuracy are

given in appendix B of that paper. Edgeworth expansions for bootstrap quantities are used in

this proof (see also Hall, 1992, Chap. 5). The proof of those results will not be explained here

since they are beyond the objectives of this thesis.

2.4 Relationship Between Axial data and Shape Data

In this section the connections between axial and shape data will be explained (see Kent, 1992,

pp. 118-9). LetSk = {x ∈ R
k : ||x|| = 1} denote the real unit sphere inRk. Define

ℵk = {uuT : u ∈ Sk}. Note that the real unit vectorsu and−u are mapped onto the same

element ofℵk, and thatℵk is the space ofk × k symmetric, rank 1, projection matrices.

A p × p matrix R is called orthogonal ifRT R = Ip. Let O(p) be the space ofp × p

orthogonal matrices and defineSO(p) = {R ∈ O(p) : |R| = 1}, the space ofp × p rotation

matrices.

Axial data can be understood in three distincts ways:

(a) an equivalence class of vectors inR
k in which a non-zero vectorx is identified with the

axis{rx : r 6= 0};

(b) an unsigned unit vector on the real sphere±u ∈ Sk;

47



(c) a projection matrixuuT ∈ ℵk.

On the other hand, shape data withk landmarks andm dimensions can be represented

either as

(a) an equivalence class ofk × m matrices in which we identifyX 6= 0

with {rXR : r > 0 andR ∈ SO(m)} or

(b) an equivalence class of standardizedk × m matrices in which we identifyU with

{UR : R ∈ SO(m)}. Note: we say thatU is standardized iftr(UT U) = 1.

Shape data in two dimensions can be represented as:

(a) an equivalent class of complexk−vectors in which we identifyz with {rzeiθ : r >

0, θ ∈ [0, 2π)};

(b) an equivalent class of rotated unit vectors inCSk−2, [u] = {eiθu : θ ∈ [0, 2π)} ⊂

CSk−2;

(c) a projection matrixuu⋆.

In the planar case, a pre-shapez ∈ CSk−1 can be written asz = x + iy where||z||2 =

||x||2 + ||y||2 = 1 butz can be embedded in the real sphereS2k by stackingx andy forming a

vector(xT , yT )T .

2.5 Modified T-statistic for Complex Unit Vectors

A modified version of the statistic (2.8) can be used for complex vectors. The quantities (2.8),

(2.9) and (2.10) need to be redefined. Letz1, . . . , zn be a random sample of pre-shapes, where

eachzi was defined in(1.4), and letµ̂1, . . . , µ̂k−1 denote the unit eigenvectors associated with

the eigenvalueŝλ1, λ̂2,. . . , λ̂k−1 of the product matrix which were defined below (1.7).
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For complex unit vectors, which correspond to pre-shapes, the modified form of the statistic

of Fisher et al. (1996) is defined by

T (µ) = 2nµ⋆M̂⋆
k−2Σ̂

−1M̂k−2µ, (2.12)

where, for a sample of pre-shapesz, it is necessary to calculate a(k − 2) × (k − 2) matrix

Σ̂ = (Σ̂jl) and a(k − 2) × (k − 1) matrixM̂k−2, which are defined as follows:

Σ̂jl = n−1(λ̂1 − λ̂j)
−1(λ̂1 − λ̂l)

−1 ×
n∑

i=1

(µ̂⋆
jzi)(z

⋆
i µ̂l)(z

⋆
i µ̂)(µ̂⋆zi), (2.13)

whereµ̂ = µ̂1, and

M̂k−2 = [µ̂2, . . . , µ̂k−1]
⋆. (2.14)

Comments

1. Under the null hypothesisH0 : [µ] = [µ0], where [µ0] is the true population mean

shape, the asymptotic distribution of the statisticT (µ0) in (2.12) is χ2
2k−4 under mild

conditions. A proof is given in§2.7.

2. The statisticT (µ) in (2.12) is invariant with respect to the choice of pre-shapeµ from

the shape equivalence class[µ].

3. The need for the factor2 in (2.12) follows from appendix C.

4. The tabular version of the test of the null hypothesisH0 : [µ] = [µ0] based on the statistic

(2.12) is performed as follows. The null hypothesisH0 is rejected, at the levelα, if
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T (µ0) is larger thanχ2
2k−4(α), which is the quantile of aχ2 distribution with(2k − 4)

degrees of freedom associated to the levelα. In the next section we explain howT (µ0)

can be used to construct bootstrap confidence regions.

2.6 Bootstrap Confidence Regions for the Mean Shape

There some points to note about how to adapt the method of Fisher et al. (1996) for axial data

to shape data. Pre-shapes are complex unit vectors while axial data consists of real unit vectors.

In both cases there is information which is discarded. In the axial case, this corresponds to the

sign of the unit vector; and in the shape case, this corresponds to the rotation information.

Algorithm 2.2. Pivotal bootstrap Confidence Regions for the Mean Shape

The bootstrap method for building a confidence region for the mean shapeµ can be de-

scribed as follows:

Step 1- For a sample of pre-shapesz, defined previously, calculate the matrixΣ̂ and the matrix

M̂k−2 , which were defined in(2.13) and(2.14), respectively.

Step 2- GenerateB resamplesz(b) = {z(b)
1 , . . . , z

(b)
n }, randomly with replacement, from the

original samplez = {z1, . . . , zn}.

Step 3- For each resample, calculate the quantitiesΣ̂, M̂k−2 andT, whereT was defined in

(2.12), usingz(b). Those quantities will be denoted̂Σ(b), M̂
(b)
k−2 andT̂ (b), respectively. So, for

each bootstrap sample, calculate

T̂ (b) = T (b)(µ̂) = 2nµ̂⋆(M̂
(b)
k−2)

⋆
(Σ̂(b))

−1
M̂

(b)
k−2µ̂, (2.15)
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whereµ̂ is the mean shape of the original sample.

Step 4- After concluding Step (3), the values ofT̂ (b) are sorted into order

T̂ (b)[1] 6 T̂ (b)[2] 6 . . . 6 T̂ (b)[B − 1] 6 T̂ (b)[B].

Let t(B)
α be the chosen value corresponding to the levelα.

Step 5- Thus the region based on(2.12) with nominal coverage probability1 − α is given by

Rα = {µ : T (µ) 6 t(B)
α }. (2.16)

To represent graphically the bootstrap confidence regions obtained usingAlgorithm 2.2,

the information about rotation in the bootstrap samples should be accounted for. In Step 3 of

Algorithm 2.2, the rotation of the bootstrap mean shapes is arbitrary. If we wish to represent the

bootstrap confidence regions graphically, as will be illustrated in§2.8, then the bootstrap mean

pre-shapes should be rotated so that they are as close as possible to the sample mean pre-shape

µ̂. However, as noted above, the value of the statisticT (µ) in (2.12) does not change if the

rotation ofµ changes. So the rotation information only needs to be removed when graphical

representations are being considered.

2.6.1 Monte Carlo Simulation Design

If nM Monte Carlo samples are generated, andB bootstrap samples are obtained for each

Monte Carlo sample, this experiment will delivernM confidence regions. LetCP denote the

coverage probability of the region(2.16), thenĈP is estimated by
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ĈP = #{i : T 〈i〉(µ0) 6 t
(B)
(α,i), i = 1, . . . , nM}/nM ,

whereµ0 is the true mean, andT 〈i〉(µ0) is T (µ0) in (2.12) ,andt
(B)
(α,i) is t

(B)
α , both based on the

ith Monte Carlo sample.

2.6.2 Mahalanobis Bootstrap Method

An alternative bootstrap scheme is now described. The steps of theAlgorithm 2.2are the same

except that the statistic(2.12) is replaced by the Mahalanobis statistic which is given in(1.23).

The main difference between this method and the previous one is that the Hotelling statistic

T 2 is used in the bootstrap process. Recall from§1.7.1 thatv contains the partial Procrustes

tangent coordinates andSv is the covariance matrix of the sample of tangent vectors.

Algorithm 2.3. Bootstrap Confidence Region Using HotellingT 2 Statistic

Step 1- For a sample of pre-shapesz, calculate the statistic

F (µ) =
(n − M)

M
(v̄ − γ0(µ))T S+

v (v̄ − γ0(µ)), (2.17)

whereγ0(µ) = (Ikm−m − vec(µ̂)vec(µ̂T ))vec(µp/||µp||), vec(.) is defined in(1.11), S−
v is

the Moore-Penrose generalized inverse ofSv andM = 2k − 4 is the dimension of the tangent

space.

Step 2- GenerateB resamplesz(b) = {z(b)
1 , . . . , z

(b)
n }, randomly with replacement, from the

original samplez.

Step 3- For each resample, calculate the statisticFB.
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Step 4- Sort the vectorFB so thatFB[1] 6 FB[2], . . . , FB[B − 1] 6 FB[B], and letf (B)
α be

the chosen value corresponding to the levelα.

Step 5- Thus the region based on(2.17) with nominal coverage probability1 − α is given by

Rα = {µ : F (µ) 6 f (B)
α }.

2.7 Asymptotic Distribution of the Statistic T

The purpose of this section is to prove that the statisticT , which was defined in(2.12), has a

null asymptoticχ2
(2k−4) distribution, under mild conditions on the underlying population.

To prove this theorem two results, closely related to results which can be found in Watson

(1983, pp. 216-217), will be assumed. It should be noted that the theorems presented by

Watson (1983, pp. 216-217) are valid for real axial data. However, the type of data which are

treated here are pre-shape data, i.e., they involve complex unit vectors. The results in Watson

(1983) can also be derived for complex vectors.

To present the results and the theorem of this section some quantities need to be defined.

Assumez1, . . . , zn are complex unit vectors from a population F and letŜn = n−1
∑n

i=1 ziz
⋆
i

be a(k − 1) × (k − 1) Hermitian matrix andS = E(Ŝn) its population analogue. The

eigenvalues and eigenvectors and other terms associated withŜn are denoted with ahat.

The first result is a central limit theorem for̂Sn which states that

n1/2(Ŝn − S) →d G, (2.18)
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whereG is a (k − 1) × (k − 1) Hermitian matrix. Its entries are jointly normally distributed

with zero mean.

The second result, which can be derived from (2.18) using results analogous to those in

Watson (1983, p. 216), states that

n1/2(P̂1 − P1) →d
∑

k>1

PkGP1 + P1GPk

λ1 − λk
, (2.19)

whereP1 = µ1µ
⋆
1 = µµ⋆, Pj = µjµ

⋆
j , P̂j = µ̂jµ̂

⋆
j andλ1 > λ2 . . . > λk−1 are the eigenvalues

of S. Note the assumption that the largest eigenvalue,λ1, is simple.

Define

a(z) = (µ⋆z)(z⋆µ) (2.20)

whereµ = µ1. Thena(z) ∈ [0, 1] whenz andµ are both complex unit vectors. Also define

R = diag{(λ1 − λ2)
−1, . . . , (λ1 − λk−1)

−1},

where theλj were defined after(2.19). In addition, letM denote the population analogue of

M̂k−2 defined in(2.14).

The following lemma will be used in the proof of the theorem.

Lemma 2.1.LetX1, X2, . . . be an IID sequence of random p-vectors such thatE[X1] = γ is

well defined, andX̄n = n−1
∑n

i=1 Xi. Let Ân(p × 1) be a sequence of random vectors such

that ||Ân − A|| →p 0 asn → ∞, where||B|| =
√

BT B. ThenÂT
n X̄ →p AT γ asn → ∞.
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Proof We have

ÂT
n X̄ − AT γ ≡ (Ân − A)T γ + AT (X̄ − γ) + (Ân − A)

T
(X̄ − γ).

It is sufficient to show that all the terms on the right hand side go to zero. The first term on the

right hand side goes to zero by assumption since

||(Ân − A)T γ|| ≤ ||Ân − A|| ||γ|| →p 0.

The second term goes to zero by the weak law of large numbers, i.e.,

||AT (X̄ − γ)|| ≤ ||A|| ||X̄ − γ|| →p 0.

The third term goes to zero because

||(Ân − A)
T
(X̄ − γ)|| ≤ ||Ân − A|| ||X̄ − γ||,

where both terms on the right hand side go to zero in probability.

Theorem 2.1. Suppose the underlying populationF is such that(i) the largest eigenvalue of

S is distinct (so that the corresponding eigenvector is well-defined);(ii) a(z) = ||µ⋆z||2 does

not have a point mass at 0, i.e.P [a(z) = 0] = 0 and (iii) the smallest eigenvalue ofS is

positive. Then if[µ] = [µ1] is the true mean shape,T (µ), defined in (2.12), has an asymptotic

χ2
2k−4 distribution.

Proof The proof of the theorem is organized in 4 steps.

Step 1- Show||n1/2 M̂k−2µ + n1/2Mk−2 (µ̂ − µ)|| →d 0 asn → ∞.

We have the identity

−n1/2M̂k−2µ = n1/2M̂k−2(µ̂ − µ)

= n1/2Mk−2(µ̂ − µ) + n1/2(M̂k−2 − Mk−2)(µ̂ − µ).
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Thus

||n1/2M̂k−2µ + n1/2Mk−2(µ̂ − µ)|| = ||n1/2(M̂k−2 − Mk−2)(µ̂ − µ)|| →p 0. (2.21)

To obtain(2.21), note that(i) Ŝn →p S implies thatM̂k−2 →p Mk−2, and(ii) ||n1/2(µ̂− µ)|| =

Op(1) as a consequence of(2.18), where the last statement means the following: givenǫ > 0,

there exists a constant C, independent ofn, such that

lim sup
n→∞

P [n1/2||µ̂ − µ|| > C] < ǫ.

Step 2 - Show that

n1/2Mk−2(µ̂ − µ) →d RMk−2Gµ ∼ CNk−2(0k−2, Σ),

whereΣ = cov(RMk−2Gµ) = Rcov(Mk−2Gµ)R. Pre-multiplying the left hand side of

(2.19) by Mk−2 and postmultiplying byµ we obtain

n1/2Mk−2(P̂1 − P1)µ = n1/2Mk−2µ̂µ̂⋆µ,

sinceP̂1 = µ̂µ̂⋆ andMk−2P1µ = 0k−2 by definition of the quantities involved. Moreover,

n1/2Mk−2µ̂µ̂⋆µ = n1/2Mk−2µ̂ + n1/2Mk−2(µ̂
⋆µ − 1)µ̂.

Therefore

||n1/2Mk−2µ̂µ̂⋆µ − n1/2Mk−2(µ̂ − µ)|| = ||n1/2Mk−2(µ̂
⋆µ − 1)µ̂|| →p 0 (2.22)

sinceµ̂⋆µ →p 1 andMk−2µ = 0k−2.
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Now consider the right hand side of(2.19), pre-multiplying byMk−2 and post-multiplying

by µ we obtain

Mk−2




k−1∑

j=2

PjGP1 + P1GPj

λ1 − λj



µ = Mk−2




k−1∑

j=2

1

λ1 − λj
Pj



Gµ

= RMk−2Gµ ∼ CNk−2(0,Σ),

whereΣ is defined above. We have used the fact that, by definition,Mk−2 =
∑k−1

j=2 ej−1µ
⋆
j ,

whereej is the(k − 1)-vector with thejth element1 and all other elements zero; and conse-

quently

Mk−2




k−1∑

j=1

1

λ1 − λj
Pj



 =
k−1∑

j=2

1

λ1 − λj
Mk−2Pj

=

k−1∑

j=2

1

λ1 − λj
ej−1µ

⋆
jµjµ

⋆
j

= RMk−2.

Therefore the result follows from the fact that the left hand side of(2.19), pre-multiplied

by Mk−2 and post-multiplied byµ becomesn1/2Mk−2(µ̂ − µ) and the corresponding right

hand side isRMk−2Gµ which has distributionCNk−2(0, Σ).

Step 3- Show thatΣ̂ = 1
n

∑n
i=1 R̂(M̂k−2 zi)(z

⋆
i M̂ ⋆

k−2 )(µ̂⋆zi)(z
⋆
i µ̂)R̂ →p Σ . Lemma 2.1 can

be applied to prove this.

Thejh element of matrix̂Σ is given by

Σ̂jh =
1

n

n∑

i=1

{R̂(M̂k−2 zi)(z
⋆
i M̂

⋆
k−2 )(µ̂⋆

zi)(z
⋆
i µ̂)R̂}jh
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and can be written in the form

ÂT
jhn−1

n∑

i=1

Xi = ÂT
jhX̄,

whereXi is a vector whose components are of the form

ziαz̄iβziγ z̄iδ : α, β, γ, δ ∈ [1, . . . , k − 1]

and Âjh is a vector whose components are polynomial functions of the components ofR̂,

M̂k−2 andµ̂. By the law of large numbers,1n
∑

Xi converges in probability toE(X1) = γ,

say, where the components ofγ are of the formE(z1αz̄1βz1γ z̄1δ). Moreover, sinceR̂,M̂k−2

andµ̂ converge to their population analoguesR, Mk−2 andµ, say it follows thatÂjh →p Ajh,

whereAjh is obtained fromÂjh by replacingR̂, M̂k−2 andµ̂ by their population values.

Step 4- Σ has full rank.

Definea(z) as in(2.20) and lety = Mk−2z, wherez ∼ F.

Thena(z) ∈ [0, 1] sinceµ andz are both complex unit vectors. Note that

E[yy⋆] = Mk−2SM⋆
k−2 = diag[λ2, . . . , λk−1]

which is positive definite by assumption(iii). Therefore the result will follow if we can show

that, for someǫ > 0, Σ ≥ ǫE[yy⋆], where” ≥ ” should be understood in terms of the partial

ordering of non-negative definite matrices.
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We have

Σ = E[a(z)yy⋆]

= E [a(z)I(a(z) > δ)yy⋆] + E [a(z)I(a(z) ≤ δ)yy⋆] .

≥ E [a(z)I(a(z) > δ)yy⋆]

≥ δE [I(a(z) > δ)yy⋆] .

But it follows from assumption(ii) of the theorem that

E[yy⋆] = limδ→0E[I(a(z) > δ)yy⋆],

and so there exists ãδ > 0 such that

E
[
I(a(z) > δ̃)yy⋆

]
≥ 1

2
E [yy⋆] ,

from which it follows that

Σ ≥ δ̃

2
E [yy⋆] ,

and thereforeΣ is positive definite.

Finally, by steps(1) and(2),

n1/2M̂k−2µ →d CNk−2(0, Σ),

whereCN is a complex normal, which was defined in (1.15). The steps(3) and(4) state that

Σ̂ →p Σ andΣ has full rank. Thus the inverse of̂Σ exists in probability asn → ∞ and the

statistic
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T (µ) = 2nµ⋆M̂⋆
k−2Σ̂

−1M̂k−2µ,

is well defined in the limit. Thus

T (µ) →d χ2
2k−4 (2.23)

as required.

Comments

1. Condition (ii) of Theorem 2.1 is satisfied if the underlying population is continuous.

2. Condition (iii) is satisfied provided the population distribution is not concentrated on a

subspace of lower dimension.

2.8 Practical Applications

Algorithm 2.2is applied to two real datasets. The first example is the dataset consisting ofT2

mouse vertebra (see Dryden and Mardia, 1998, p. 9), which is explained in§2.8.1. The second

example is a dataset of neural spines ofT2 mouse vertebrae, which is discussed in§2.8.2.

2.8.1 Example 2.1

The method of§2.6 was applied to the real dataset consisting ofT2 mouse vertebra, which is

described by Dryden and Mardia (1998, p. 9). This dataset was obtained from an experiment

whose purpose was to evaluate how the body weight of a mouse can affect the shape of its

vertebra. The mice were divided into 3 differents groups of weight: control, large and small.

60



The proposed bootstrap methods are applied to the small group. The sample of shapes is highly

concentrated around the mean shape.

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Re(meanshapeicon)

Im
(m

ea
ns

ha
pe

ic
on

)

1

2

3
4

5

6

Figure 2.1: The labels of the landamrks which will be used in further comments

The labels of the landmarks are give in Figure 2.1. These labels will be used for the com-

ments about the probability region which is consider in the next figure. The order of the labels

is arbitrary.

Before applying this bootstrap method, a probability region for the small group was ob-

tained using the NA confidence region method, which is explained in§1.6, and in particular,

(1.21). This is shown in Figure 2.2. It should be noted that in Figure 2.2 the NA confidence

region is multiplied by
√

n and so it is a probability region for the observations. The nominal

levels of the NA confidence region is taken as 0.90. The dots represent the individuals and
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the ellipses the NA confidence region. The NA probability region is not appropriate for the

landmarks 3, 5 and 6 since many individuals are outside the ellipses of those landmarks. For

the landmarks 1 and 4 the majority of the individuals are in the interior of its confidence el-

lipses. It means that the principal component technique is appropriate to describe the global

variability of the landmarks, but it may not be suitable for representing the marginal variability,

particularly those landmarks with less variability.

In Figure 2.3, a graphical comparison between bootstrap and NA confidence regions for

the mean shape is shown. The nominal levels of the NA and bootstrap confidence regions are

taken as 0.90.

The preceding discussion shows that the NA method can be inappropriate for some real

data cases when too few PCs are used. Additionally, the bootstrap method is more robust in the

sense that there is no degenerate confidence region for particular landmarks.

2.8.2 Example 2.2

The bootstrap method is applied to a second dataset consisting of sets of three landmarks which

are obtained from twenty neural spines ofT2 mouse vertebrae. The two main differences

between this dataset and the previous one are that there is less concentration and the variances

of the landmarks are more homogeneous.

In Figure 2.4, the bootstrap and NA confidence regions are shown. The two methods deliver

similar results for the three landmarks. The procedures to obtain the NA and bootstrap regions

were explained in§2.8.1. The two confidence regions have almost the same size as well. Thus

one can conclude in this example, where the landmarks are homogeneous in relation to the
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Figure 2.2: NA Probability Regions for the Individuals. These regions are obtained using

the principal components method for the tangent coordinates and projecting those components

back to the landmark space. The ellipses are the NA regions for the landmark and the dots are

the observations. This dataset is highly concentrated and the variances of each landmark are

very different.
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Figure 2.3: Bootstrap and NA Confidence Regions. Bootstrap regions are obtained by plotting

the means of all bootstrap samples. The NA regions are smaller than the bootstrap regions
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variability, the first two principal components capture nearly all variability and then the NA

method is appropriate.

2.9 Simulation Results

In shape analysis a simulation experiment can be done either on the pre-shape space or on

the landmark space. To evaluate the methods introduced here the results of some simulation

experiments are presented. The first experiment is performed on the landmark space and the

second on the pre-shape space. The landmark space isR
2 and the pre-shape space was defined

in (1.5).

The experiment was conducted as follows: 1000 samples were generated from a complex

normal distribution. The number of landmarks isk and the number of observations isn. For

each Monte Carlo sample, 200 bootstrap samples were generated. Thus the coverage probabil-

ity for 4 methods were calculated from the 1000 Monte Carlo samples. The two tests described

in §2.3 and the two bootstrap methods from§3 were evaluated.

In Table 2.1 the results of the coverage probability for different values ofσ andn are shown.

In this simulation experiment, for a chosen value for the mean shape, a multivariate complex

normal is added. In this multivariate complex normal the components are not correlated and

σ is the standard deviation for each component. Note that the smallerσ is, the more highly

concentrated the data are. Two of the procedures, the Hotelling test and the Goodall test,

work well only for the highly concentrated distributions. For instance, whenσ = 0.01 and the

sample size is bigger than 40, the estimated coverage probability of these procedures is equal to

the nominal value. For distributions with low concentration, those methods do not work well at
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Figure 2.4: Bootstrap Confidence Regions and NA Confidence Regions. The bootstrap regions

and NA regions are plotted using the same scale. The two regions are very similar for this

dataset whose landmarks have similar variances.
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all. For example, whenσ = 1 and sample size is30, the coverage probability of both methods

is 0.02 which is very far from0.90. The two bootstrap methods work very well when the

value ofσ is smaller than0.5. Whenσ = 1, the coverage probability of the pivotal bootstrap

is not very close to the nominal value. However, it is considerably better than the Hotelling

T 2 bootstrap described in§2.6.2. For example, whenn = 30 the coverage probability of the

pivotal bootstrap is0.84 and that for the HotellingT 2 bootstrap is0.74.

Another simulation experiment using the complex Bingham distribution, which is defined

in (1.16), was carried out. The method of§1.5.4 was used for simulating from this distribution.

To use this method it is necessary to specify the eigenvalues of the matrixA of (1.16). The

vector of the eigenvelues ofA is calledλ̃ and it is given in(1.17).

The experiment is similar to the previous one since the number of Monte Carlo replications

and bootstrap resamples were kept as 1000 and 200, respectively. The nominal value of the

coverage probability is0.90 as before.

In Table2.2 the results of the estimated coverage probability for different values ofλ and

n are shown. There are 4 fixed values forλ and 3 different sample sizesn which are 30, 50

and 100. The values of the eigenvalues are chosen in a way that 4 situations are considered.

Those situations are combinations of the cases of low and high concentration, and isotropic and

non-isotropic Bingham distribution. The Watson distribution is a special case of the complex

Bingham distribution that is obtained when there is a dominant eigenvalue and all remaining

eigenvalues are equal. The two bootstrap methods are much better than the other methods for

the low concentrated cases of both Watson and complex Bingham distributions. For example,

whenk = 4, the eigenvalues are0, 1 and2 and the sample size is100, the coverage probabilities
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σ Sample Hotelling Goodall Pivotal Hotelling’sT 2

Size Test (1.23) Test (1.25) Bootstrap (2.15) Bootstrap (2.17)

0.01 30 0.92 0.91 0.92 0.93

40 0.90 0.90 0.90 0.90

50 0.90 0.90 0.90 0.90

80 0.91 0.90 0.90 0.90

0.2 30 0.83 0.80 0.93 0.92

40 0.81 0.79 0.90 0.89

50 0.79 0.78 0.89 0.89

80 0.80 0.79 0.90 0.90

0.3 30 0.67 0.63 0.93 0.93

40 0.66 0.63 0.90 0.89

50 0.63 0.60 0.89 0.88

80 0.63 0.60 0.90 0.90

0.4 30 0.46 0.40 0.93 0.91

40 0.43 0.37 0.90 0.89

50 0.41 0.39 0.89 0.88

80 0.40 0.38 0.90 0.90

0.5 30 0.29 0.22 0.92 0.89

40 0.25 0.21 0.90 0.89

50 0.24 0.21 0.89 0.88

80 0.23 0.21 0.91 0.90

1 30 0.02 0.02 0.84 0.71

40 0.02 0.01 0.83 0.72

50 0.01 0.01 0.84 0.74

80 0.00 0.00 0.88 0.80

Table 2.1:Coverage probabilities for the Confidence Region for the Mean Shape. The simu-

lation is performed with an isotropic complex normal distribution on the landmark space.σ

is the variance of the complex normal distribution. The nominal coverage probability is 0.90.

The number of landmarks isk = 4.
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Parameters Sample Hotelling Goodall Pivotal Hotelling’sT 2

Eigenvalues of the Size Test Test Bootstrap Bootstrap

Complex Bingham (1.23) (1.25) (2.15) (2.17)

0 0 800 30 0.900 0.890 0.899 0.909

50 0.900 0.892 0.898 0.894

100 0.906 0.901 0.903 0.901

0 50 850 30 0.900 0.891 0.899 0.909

50 0.900 0.892 0.898 0.894

100 0.906 0.899 0.903 0.901

0 0 1 30 0.023 0.015 0.822 0.719

50 0.013 0.008 0.864 0.745

100 0.008 0.011 0.871 0.823

0 1 2 30 0.057 0.049 0.863 0.769

50 0.036 0.032 0.870 0.811

100 0.020 0.024 0.891 0.857

Table 2.2:Coverage probabilities for the Confidence Region for the Mean Shape. Four dif-

ferent special cases of the complex Bingham distribution are considered: complex watson dis-

tribution, highly concentrated; Bingham distribution, highly concentrated; complex Watson

distribution, low concentrated and Bingham distribution highly concentrated.

for the Hotelling and Goodall tests are almost zero, but the results are0.89 and0.86 for the

pivotal bootstrap and HotellingT 2 bootstrap, respectively, both of which are reasonably close

to the nominal value0.90. For low concentrated distributions, the results show that the coverage

probability of the pivotal bootstrap is closer to0.90 than the HotellingT 2 bootstrap.

In Table2.3, results of simulation experiments with a fixed sample sizen = 30 and several

values for the paramaters are presented. For very highly concentrated distributions all the

methods produce similar results. For low concentrated distributions, the pivotal bootstrap and
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Parameters Hotelling Goodall Pivotal Hotelling’sT 2 TabularT Test

Eigenvalues of the Test Test Bootstrap Bootstrap (2.12)

Complex Bingham (1.23 ) (1.25) (2.15) (2.17)

0 0 200 0.897 0.882 0.899 0.909 0.857

0 0 30 0.866 0.856 0.901 0.904 0.857

0 0 25 0.851 0.850 0.902 0.903 0.858

0 0 20 0.837 0.845 0.903 0.903 0.859

0 0 15 0.817 0.810 0.897 0.899 0.859

0 0 10 0.772 0.742 0.901 0.893 0.860

0 0 8 0.72 0.696 0.898 0.882 0.857

0 0 7 0.669 0.649 0.901 0.888 0.857

0 0 5 0.533 0.485 0.897 0.891 0.846

0 0 4 0.433 0.378 0.901 0.896 0.854

0 0 3 0.290 0.247 0.897 0.879 0.844

0 0 2 0.125 0.097 0.880 0.831 0.782

0 0 1 0.023 0.015 0.821 0.719 0.672

Table 2.3:Coverage probabilities for the Confidence Region for the Mean Shape for the sample

size 30. In this case, 1000 Monte Carlo samples and 200 bootstrap samples are generated from

the complex Watson distribution.

Hotelling’s T 2 bootstrap perform well. For example, when the eigenvalues of the complex

Bingham are0, 0, 3 the coverage probability of the pivotal bootstrap is0.897, and the Goodall

and Hotelling Tests have coverage probabilities 0.290 and 0.247.

In Table 2.4, the results of a simulation experiment where the vector of parameters is

(0, 0, 1) are shown for several sample sizes. When the sample size increases, the pivotal boot-

strap, Hotelling’sT 2 bootstrap and the tabularT test all improve in accuracy. The coverage

probabilities of the Goodall and Hotelling’sT 2 do not change much.
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Sample Hotelling Goodall Pivotal Hotelling’sT 2 TabularT Test

Size Test (1.23) Test (1.25) Bootstrap (2.15) Bootstrap (2.17) (2.12)

30 0.023 0.015 0.821 0.719 0.672

40 0.012 0.011 0.843 0.734 0.686

50 0.013 0.008 0.863 0.745 0.723

60 0.012 0.013 0.863 0.796 0.749

70 0.015 0.010 0.865 0.782 0.771

80 0.011 0.009 0.858 0.799 0.775

90 0.010 0.007 0.874 0.812 0.779

100 0.008 0.011 0.872 0.823 0.785

110 0.014 0.012 0.865 0.833 0.787

120 0.007 0.006 0.871 0.836 0.798

130 0.008 0.007 0.879 0.848 0.815

140 0.008 0.009 0.876 0.840 0.802

150 0.004 0.005 0.873 0.849 0.810

160 0.006 0.005 0.882 0.846 0.814

170 0.007 0.012 0.873 0.856 0.827

180 0.010 0.011 0.881 0.853 0.825

190 0.009 0.009 0.868 0.857 0.817

200 0.013 0.008 0.862 0.849 0.820

250 0.008 0.008 0.874 0.874 0.841

1000 0.005 0.004 0.895 0.893 0.888

Table 2.4:Coverage probabilities for the confidence region for the mean shape for a very low

concentrated distribution. The nominal value of the coverage probability is0.90. The values of

the eigenvalues of the complex Bingham are (0, 0, 1).
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Chapter 3

Bootstrap Tests in Statistical Shape

Analysis

A suitable bootstrap method for testing equality of the mean shape ofd distinct populations is

introduced in this chapter. The method presented here follows general guidelines for bootstrap

hypotheses tests given by Fisher and Hall (1990) and Hall and Wilson (1991). According

to these authors, bootstrap tests should follow the same principles as bootstrap confidence

regions in that, when possible, tests should be based on statistics which are pivotal under the

null hypothesis. On the other hand, the resampling scheme is not the same as for confidence

regions. Bootstrap resampling should be done under the null hypothesis even if the observed

samples are far from satisfying the null hypothesis. The bootstrap test presented here is related

to, but extends, the bootstrap approach of Chapter 2. An important feature is that the sample of

each population should be rotated in a such way that the rotated mean shape of each sample will

be equal to a common mean shape, so that resampling takes place under the null hypothesis.

The outline of the chapter is as follows. Basic concepts about bootstrap hypothesis tests
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are reviewed in§3.1. §3.2 describes the procedure for calculating the unitary matrices which

are used to rotate the observations of each group so that the rotated samples satisfy the null

hypothesis of a common mean shape. The bootstrap method is described in§3.3. The null

asymptotic distribution of the test statistic is derived in§3.4 and is shown to beχ2. An example

is studied in§3.5 and simulation results are presented in§3.6.

3.1 Bootstrap Hypothesis Testing

This section explains some issues about bootstrap hypothesis tests. It was mentioned before

that even though hypothesis tests and confidence regions are related, differences between the

two techniques imply that bootstrap tests require separate study. Some particular situations are

considered to explain bootstrap hypothesis testing methodology. The problem of calculating a

bootstrap test for a one parameter hypothesis is addressed, and some guidelines are reviewed

and applied to this problem. These guidelines are also applied to the nonparametric one-way

analysis of variance, which will be explained further.

Let ũ1, . . . , ũn be a random sample drawn from the populationF, whereF has an unknown

parameterν = ν(F ). Suppose that a procedure to test

H0 : υ = υ0 versusH1 : υ 6= υ0, (3.1)

whereυ0 is given, needs to be developed.

The bootstrap approach is as follows. The first step is to arrange that the random sample

ũ1, . . . , ũn satisfies the null hypothesis by applying a suitable transformation. This issue will

be discussed later on in this section. Letu1, . . . , un be the transformed sample, assumed to
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satisfyH0. GenerateB samples fromu1, . . . , un. Those samples will be namedu(b), where

b = 1, . . . , B. SetTu to be a statistic for the sampleu andTu(b) to be the corresponding

statistic for the bootstrap sampleu(b). Assume that larger values ofTu are “more extreme”

with respect to the null hypothesis. The p-value of the test is calculated by

p-value =
(number ofTu(i) ≥ Tu) + 1

B + 1
.

Nonparametric bootstrap tests have the advantage that it is not necessary to choose a partic-

ular parametric family of distributions forF. Bootstrap methods for hypothesis tests are studied

by Beran (1988), Hinkley (1988), Fisher and Hall (1990) and Hall and Wilson (1991). Fisher

and Hall (1990) and Hall and Wilson (1991) have presented two main guidelines for bootstrap

hypothesis testing: use a statistic which is asymptotically pivotal under the null hypothesis;

and resample under the null hypothesis.

The first guideline is similar to that which is used for constructing bootstrap confidence

regions, and aims to keep the level error of bootstrap tests to a minimun.

The second guideline, resampling under the null hypothesis, is necessary because p-values

are based on the distribution of the test statistic under the null hypothesis.

This issue will be discussed for a simple problem to give some intuition as to why it influ-

ences the level error of bootstrap tests. Consideru1, . . . , un to be a random sample drawn from

the populationF, whereF has an unknown scalar meanν = ν(F ), and suppose that one wants

to test the hypotheses(3.1), assuming without loss of generality thatν0 = 0. This condition

means that the resampling should be done using a centred version of the sample which is given

by u1 − υ̂, . . . , un − υ̂, whereυ̂ is the sample mean. It is intuitively reasonable, particularly
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if the null hypothesis is far from true. If the resampling is based onu1 − υ0, . . . , un − υ0, the

bootstrap value of the statisticTu(i) will be bigger than the sample valueTu in the majority of

the cases, and so the bootstrap p-value will be unreliable.

Since the problem of a bootstrap one-way analysis of variance is closely related to the

bootstrap test that will be introduced in this chapter, this case also will be considered in this

section (see Fisher and Hall, 1990, p. 178). Suppose that{uij , 1 ≤ i ≤ nj} is a random sample

from the populationΓj , where the populationΓj has meanυj and varianceςj , j = 1, . . . , p.

It should be noted that this is a very general situation. The populationsΓj can belong

to a broad class of distributions. If the variancesςj are assumed to be the same, then it is a

homoscedastic problem.

The one-way analysis of variance has the hypothesis

H0 : ν1 = ν2 = . . . = νp = ν versusH1 : ν1, ν2, . . . , νp unrestricted (3.2)

Following the first guideline for a bootstrap hypothesis test, Fisher and Hall (1990) obtained

an asymptotically pivotal statistic in the one-way analysis of variance. For the homoscedastic

one-way analysis of variance, Fisher and Hall (1990) concluded that the F-ratio statistic is not

asymptotically pivotal. The F ratio is given by

T1 = (n − p)
{∑p

j=1 n.j(r̄.j − r̄..)
2}

{∑n
i=1

∑p
j=1(rij − r̄.j)2)}

,

where the variablerij = uij − νj is used to simplify the mathematical expression ofT, and

n ≡ ∑p
j=1 nj , r̄.j ≡ n−1

j

∑p
j=1 rij andr̄.. ≡ n−1

∑n
i=1

∑p
j=1 rij .
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So Fisher and Hall (1990) considered another statistic, which was proposed by James

(1951), and is given by

T =

p∑

j=1






{
nj(nj − 1)(r̄.j − r̄..)

2
}

∑n
i=1(rij − r̄.j)2




 , (3.3)

Fisher and Hall (1990) showed thatT is asymptotically pivotal, and also that the level

error of this bootstrap test isO(n−2). The asymptotic distribution ofT is χ2
d−2 and it does not

depend on theςj ’s. It should be noted that those results are obtained under the homoscedastic

assumption for theςj ’s (see Fisher and Hall, 1990, p. 181).

The resampling scheme is also performed according to the bootstrap test’s guidelines. Con-

sider the bootstrap samples(u[j])
(b)

= u
(b)
1j , . . . , u

(b)
1j for {b = 1, . . . , B}. It is also necessary

to calculate the bootstrap version ofT , which is given by

T (b) =

d∑

j=1

nj(nj − 1)(r̄
(b)
.j − r̄(b)

.. )
2

∑n
i=1 (r

(b)
ij − r̄

(b)
.j )

2 , (3.4)

where the variablerij ≡ uij − ū.j . It should be noted that the Fisher and Hall (1990) method

usesrij ≡ uij − ū.j instead ofrij ≡ uij − µ.j . This agrees with the second guideline for

bootstrap tests.

The next sections present a bootstrap test in the shape context which is analogous to the one-

way analysis of variance. This test satisfies both guidelines for bootstrap hypothesis testing.

3.2 Rotations Determined by Geodesics

In this section a method for rotating a sample in such way that the mean shape of this sample

is equal to a fixed vector is described. The aim of the bootstrap method that will be introduced
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in the next section is to test the null hypothesis that the mean shape ofd populations are equal

against the alternative that there are no constraints. Since one of the main principles of boot-

strap testing is that its resampling scheme should be performed under the null hypothesis, the

method described in this section will be used to make the mean shape of the sample of each

population be equal to a common mean.

The rotation procedure will be described for both real and complex vectors, starting with

the real case. Suppose thata andb are unit vectors inRd, and that we wish to moveb to a along

the geodesic path which connectsa to b. If |aT b| < 1, a rotation matrix can be determined as

follows. Define a unit vector

c =
b − a(aT b)

||b − a(aT b)|| ,

where for any vectord, ||d|| = (dT d)1/2. Provided|aT b| < 1, the unit vectorc is well defined

since||b− a(aT b)||2 = 1− (aT b)2 > 0, where||b|| =
√

(bT b). Suppose thatα = cos−1(aT b)

andA = acT − caT .

Proposition 3.1. Rotation Matrix for Real Vectors. Assume thata, b ∈ R
d are unit vectors

such that|aT b| < 1, and letα, A andc be as defined above. The matrix

Q = exp(αA) = Id +
∞∑

j=1

αj

j!
Aj

satisfies the following.

a) Q is ad × d rotation matrix.

b) Q can be written as

Q = Id + (sinα)A + (cos α − 1)(aaT + ccT )

c) Qb = a

d) for anyz ∈ R
d such thataT z = 0, bT z = 0, we haveQz = z.
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Comments

1. The itemd) can be interpreted as saying that, on the orthogonal complement of the sub-

space

{λa + µb : λ, µ ∈ R},

the matrixQ acts as the identity transformation.

2. The path of minimum distance on the unit sphere inR
d connectingb to a is given by

{x(θ) = exp(θA)b : θ ∈ [0, α]}.

3. Matrix exponentials are discussed briefly in appendix A.

The rotation matrix for complex unit vectors is obtained in similar way. However, in the

application to shape analysis, a pre-shapeb̃ has to be chosen from the shape[b] of b, where[.]

was defined in(1.6), b ∈ C
d andb⋆b = 1. Thenb̃ moves toa along a horizontal geodesic in

the pre-shape space, which corresponds to a geodesic in the shape space. For practical reasons,

b is replaced by

b̃ =
b(b⋆a)

|b⋆a| ,

so that̃b⋆a = |b⋆a| is real. After this change the results are very similar to the real case. Define

c̃ =
b̃ − a(a⋆b̃)

||b̃ − a(a⋆b̃)||
,

Ã = ac̃⋆ − c̃a⋆ andα̃ = cos−1(a⋆b̃).
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Proposition 3.2. Unitary Matrix for Complex Vectors. Assume thata, b ∈ C
d satisfy||a||2 =

a⋆a = 1 andb⋆b = 1, and suppose|b⋆a| < 1. Let c̃, Ã and α̃ be defined as above. Then the

matrix

U = exp(α̃Ã) = Ip +
∞∑

j=1

α̃j

j!
Ãj

satisfies the following.

(a) U is d × d unitary matrix.

(b) U can be written

U = Id + (sin α̃)Ã + (cos α̃ − 1)(aa⋆ + c̃c̃⋆). (3.5)

(c) Ub̃ = a.

(d) For anyz ∈ C
d such thata⋆z = 0, b⋆z = 0, the matrixU is the identity transformation,

i.e. ,Uz = z.

The proofs of Proposition 3.1 and 3.2 are similar but only the proof of the Proposition 3.2

is presented since this is the result which is relevant to the formulation of the bootstrap test of

§3.3.

Proof of the Proposition 3.2

Proof of (a) Since

Ã⋆ = (ac̃⋆ − c̃a⋆)⋆ = c̃a⋆ − ac̃⋆ = −Ã,

it follows that

U⋆ =



Ip +
∞∑

j=1

α̃j

j!
Ãj




⋆

= Ip +
∞∑

j=1

(−1)j α̃j

j!
Ãj

= exp(−α̃Ã).

79



Therefore

UU⋆ = exp(α̃Ã) exp(−α̃Ã) = Id,

and soU is unitary.

Proof of (b) The proof of this result has a few steps. Sincea⋆c̃ = 0, the following result about

the matrixÃ2 is derived.

Ã2 = (ac̃⋆ − c̃a⋆)(ac̃⋆ − c̃a⋆)

= ac̃⋆ac̃⋆ − ac̃⋆c̃a⋆ − c̃a⋆ac̃⋆ + c̃a⋆c̃a⋆

= −(aa⋆ + c̃c̃⋆)

In addition to that, the matrix̃A has the property that̃A3 = −Ã, because

Ã3 = Ã2Ã

= −(aa⋆ + c̃c̃⋆)(ac̃⋆ − c̃a⋆)

= −aa⋆ac̃⋆ + aa⋆c̃a⋆ + c̃c̃⋆ac̃⋆ + c̃c̃⋆c̃a⋆

= −ac̃⋆ + c̃a⋆

= −Ã

Thus the matrixÃ follows the general order

Ãk = (−1)j(aa⋆ + c̃c̃⋆) k = 2j

and
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Ãk = (−1)jÃ k = 2j + 1,

wherej = 1, 2, . . .

Using the results above we have

U = Id +
∞∑

j=1

α̃j

j!
Ãj

= Id +




∞∑

j=0

α̃2j+1

(2j + 1)!
(−1)j



 Ã +




∞∑

j=1

α̃2j

(2j)!
(−1)j



 (−Ã2)

= Id + (sin α̃)Ã + (cos α̃ − 1)(aa⋆ + c̃c̃⋆).

Proof of (c) To prove thatUb̃ = a it is necessary to use the fact that

b̃ = (cos α)a + (sinα)c̃

and

Ãb̃ = (ac̃⋆ − c̃a⋆)(cosα)a + (sinα)c̃

= −(cos α)c̃ + (sinα)a.

So the productUb̃ is calculated as

Ub̃ =
(
Id + (sin α̃)Ã + (cos α̃ − 1)(aa⋆ + c̃c̃⋆)

)
b̃

= (cos α̃)a + (sin α̃)c̃ + sin α̃(−(cos α̃)c̃ + (sin α̃)a) + (cos α̃ − 1)((cos α̃)a + (sin α̃)c̃)

= (sin2 α̃ + cos2 α̃)a + (sin α̃ cos α̃ − sin α̃ cos α̃)c̃

= a.
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Proof of (d) The productUz can be written as

Uz = (Id + (sin α̃)A + (cos α̃ − 1)(aa⋆ + c̃c̃⋆)) z

= z + (sin α̃)Az + (cos α̃ − 1)(aa⋆z + c̃c̃⋆z).

On the other hand, sincea⋆z = 0, b̃⋆z = 0, for anyz ∈ R
p, it is seen that̃c⋆z = 0 and

Ãz = 0. So all the terms ofUz are zero apart from the first and thenUz = z.

Comment

The set{x̃(θ) = exp(θÃ)b̃ : θ ∈ [0, α̃]} is a horizontal geodesic in the pre-shape sphere,

and therefore corresponds to a geodesic in the shape space.

3.3 Description of the Bootstrap Test

The bootstrap method from Chapter 2 and in particular the pivotal statistic(2.12) can be ex-

tended to the problem of comparing the mean shapes ofd groups. The basic concepts from

Chapter 2 need to be defined for the case of several populations. Lety[j] ≡ {Yij , 1 ≤ i ≤ nj}

be a random sample of configurations from population
∏j , where1 ≤ j ≤ p denotes the

population.

Let w[j] = {w1j , . . . , wnj} be the Helmertized configurations ofy. The complex sum of

squares and product matrix forw[j] is defined by

Ŝ[j] =

nj∑

i=1

wijw
⋆
ij/(w⋆

ijwij) =
n∑

i=1

zijz
⋆
ij ,

wherezij = wij/||wij ||, i = 1, . . . , nj are the pre-shapes for thejth group.

The spectral form of̂S[j] is given by
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Ŝ[j] =
k−1∑

q=1

λ̂[j]
q µ̂[j]

q µ̂[j]⋆
q ,

whereλ̂
[j]
1 > λ̂

[j]
2 . . . > λ̂

[j]
k−1 > 0 are the eigenvalues, and̂µ[j]

1 , . . . , µ̂
[j]
k−1 the corresponding

eigenvectors. Thus the full Procrustes mean shape forx is given byµ̂[j] ≡ µ
[j]
1 .

A bootstrap method is introduced to test

H0 : µ[1] = µ[2] = . . . = µ[p] = µ versusH1 : µ[1], . . . , µ[p] unrestricted. (3.6)

The quantitieŝΣ andM̂k−2, introduced in(2.13) and(2.14), have to be defined for the

case of several populations. Let̂M
[j]
k−2 andΣ̂[j] be the matriceŝMk−2 andΣ̂ for samplej. So

for the Helmertized configurationsw[j], the (k − 2) × (k − 2) matrix Σ̂[j] = (Σ̂
[j]
ql ) and the

(k − 2) × (k − 1) matrixM̂
[j]
k−2 are given by:

Σ̂
[j]
ql = n−1(λ̂

[j]
1 − λ̂[j]

q )−1(λ̂
[j]
1 − λ̂

[j]
l )−1 ×

n∑

i=1

((µ̂[j]
q )

⋆
z
[j]
i )((z

[j]
i )

⋆
µ̂

[j]
l )((z

[j]
i )

⋆
µ̂[j]

q )((µ̂
[j]
l )

⋆
z
[j]
i )

(3.7)

and

M̂
[j]
k−2 = [µ̂

[j]
2 , . . . , µ̂

[j]
k−1]

⋆. (3.8)

Before giving a detailed account of the bootstrap test, it is explained how the common mean

is computed. Define

FB(µ) =

p∑

j=1

µ⋆(M̂
[j]
k−2)

⋆
(Σ̂[j])−1M̂

[j]
k−2µ. (3.9)
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The common mean,̂µ, is defined as the complex unit vectorµ which minimizesFB(µ).

From Lemma A.1,̂µ is given by the unit eigenvector corresponding to the smallest eigenvalue

of

p∑

j=1

(M̂
[j]
k−2)

⋆
(Σ̂[j])

−1
M̂

[j]
k−2. (3.10)

The test statistic is defined as

minµ:µ⋆µ=1FB(µ) = FB(µ̂) =

p∑

j=1

µ̂⋆(M̂
[j]
k−2)

⋆
(Σ̂[j])−1M̂

[j]
k−2µ̂. (3.11)

It should be noted thatFB(µ̂) is the eigenvalue corresponding toµ̂. FB(µ̂) is also an extended

version of(2.12).

The statisticFB(µ̂) has an asymptoticχ2 distribution under the hypothesis(3.6). The proof

is given in§3.4.

The bootstrap test to compare the hypotheses given in(3.6) usingΣ̂[j] andM̂
[j]
k−2 has the

following steps:

Algorithm 3.1. Bootstrap Hypothesis Test of(3.6)

Step 1 - Obtain the values of̂µ[j], M̂
[j]
k−2 and Σ̂[j] for the pre-shape samplesz[j], where

1 ≤ j ≤ p.

Step 2- Obtain the pooled estimate of the common mean shapeµ̂, defined as the eigenvec-

tor of (3.10) corresponding to the smallest eigenvalue.

Step 3- Rotate the pre-shapes of each group using Proposition3.2. After this step the new

sample mean shapes{µ̂[j], j = 1, .., p} will all be equal toµ̂.
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Applying (3.5), we calculate a unitary matrix which rotateŝµ[j] along a ”horizontal”

geodesic in the pre-shape space to coincide withµ̂. Let R(µ̂[j], µ̂) be this matrix. So the

new set of pre-shapesRz[j] = R(µ̂[j], µ̂)z[j], j = 1, . . . , p will satisfy the null hypothesis.

Step 4 - ProduceB bootstrap resamples fromRz[j] for j = 1, . . . , p and letRz[j](b)

denote those resamples forj = 1, . . . , p groups, whereb = 1, . . . , B. For each bootstrap

sampleb calculateµ̂[j](b), M̂
[j](b)
k−2 andΣ̂[j](b) as the bootstrap versions ofµ̂[j], M̂

[j]
k−2 andΣ̂[j],

respectively. Set{F (b)
B (µ̂), b = 1, . . . , B} as the statistic value for the bootstrap samples.

Step 5- Compute the p-value of the boostrap test using

p-value =
(number ofF (b)

B ≥ FB(µ̂)) + 1

B + 1
,

whereFB(µ̂) is (3.11) calculated using the original sample.

3.4 Asymptotic Distribution of FB(µ)

The asymptotic distribution ofFB is now derived. Three lemmas will be stated and proved.

After that, some assumptions are stated, and then a theorem about the asymptotic distribution

of FB and its proof are given.

The notation is chosen to facilitate the proofs of the lemmas and of the theorem.

Lemma 3.1.Suppose thatV (c×c) is a complex Hermitian matrix of rankr < c. LetA be any

complexr× c matrix such that the following holds:(i) the columns ofA⋆ lie in the orthogonal

complement of the null space ofV , where the orthogonal complement is defined in(A.2) and

the null space is defined in(A.1); and (ii) AV A⋆ is invertible. Then

V + = A⋆(AV A⋆)−1A,
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whereV + is the Moore-Penrose inverse ofV (which, by uniqueness ofV +, must be indepen-

dent of the particular choice of A.)

Proof. Since V is Hermitian of rankr, it admits a spectral decompositionV = UΛU where

Λ (r × r) is a diagonal matrix with non-zeros entries, andU (p × r) satisfiesU⋆U = Ir. By

assumption(i), each column ofA⋆ can be represented as a linear combination of the columns

of U⋆, i.e. there exist anr × r matrixR such thatA = RU⋆. For suchA,

AV A⋆ = RU⋆UΛU⋆UR⋆ = RΛR⋆

and, sinceΛ is invertible and, by(ii), AV A⋆ is invertible, it follows thatR is also invertible.

Therefore

A⋆(AV A⋆)−1A = UR⋆(RΛR⋆)−1RU⋆

= UR⋆(R⋆)−1Λ−1R−1RU⋆

= UΛ−1U⋆

= V +.

Lemma 3.2. Suppose that forj = 1, .., p, yj,n = yj are independent sequences (indexed by

n = 1, 2, . . .) of random vectors and suppose that, for eachj, n1/2(yj − µ) →d Nk(0k,Ωj),

where eachΩj has full rankk. Suppose that the symmetric matrixΩ̂j,n = Ω̂j is a weakly

consistent estimator ofΩj for eachj, and define

µ̂0 =




p∑

j=1

Ω̂−1
j




−1

p∑

j=1

Ω̂−1
j yj .

Then, asn →∞,
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n(µ̂0 − µ)T




p∑

j=1

Ω̂−1
j



 (µ̂0 − µ) →d χ2
k

and

n

p∑

j=1

(yj − µ̂)T Ω̂−1(yj − µ̂) = n

p∑

i=1

(yj − µ)T Ω̂−1
j (yj − µ)

−n(µ̂ − µ)T

(
p∑

i=1

Ω̂−1

)
(µ̂ − µ) →d χ2

(p−1)k.

Proof. The basic idea of the proof is first stated. If for eachn theyj were exactly normal and

the Ω̂j were exactly equal to the trueΩj for j = 1, . . . , p, then the limiting results stated in

the lemma would be exactly true by standard theory for the normal linear model. The limiting

results follow directly from the fact that each statistic is a jointly continuous function of the

Ω̂j .

Consider

yj − µj ∼ Nn(0k, n
−1Ωj).

The likelihood function is given by

L(µ1, . . . , µp) = const −
n∑

i=1

n

2
(yi − µi)

T Ωi
−1(yi − µi),

where const denotes a constant term. Letµ̂0 be the MLE underH0. It is calculated by setting

∂L
∂µ = 0k, where

∂L

∂µ
=

∂L(µ, . . . , µ)

∂µ
= n

p∑

i=1

Ω−1
i (yi − µ).

The equation∂L
∂µ = 0 gives

p∑

i=1

Ω−1
i (yi − µ̂0) = Ok.
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Therefore
p∑

i=1

Ω−1
i yi =

(
p∑

i=1

Ω−1
i

)
µ̂0

and

µ̂0 =

(
p∑

i=1

Ω−1
i

)−1 p∑

i=1

Ω−1
i yi.

The expectation and covariance ofµ̂0 are given by

E(µ̂0) =

(
p∑

i=1

Ω−1
i

)−1 (
p∑

i=1

Ω−1
i

)
E(yi)

= µ

and

Cov(µ̂0) =
1

n

(
p∑

i=1

Ω−1
i

)−1 (
p∑

i=1

Ω−1
i

)(
p∑

i=1

Ω−1
i

)−1

=
1

n

(
p∑

i=1

Ω−1
i

)−1

respectively.

Thus, underH0,

µ̂0 ∼ Nk



µ,
1

n

(
p∑

i=1

Ω−1
i

)−1


 .

Also, underH0, using the Fisher-Cochran theorem (see Rao, 1972, pp. 185-187), we have

(µ̂0 − µ)T

(
p∑

i=1

Ωi

)
(µ̂0 − µ) ∼ χ2

k.
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The proof in the general case follows from the fact that theyj are independent of each other

and forj = 1, . . . , p,

n1/2Ω̂
−1/2
j (yj − µ) →d Nk(0k, Ik)

under the assumption of the lemma.

Lemma 3.3.LetA[ǫ] = A0+ǫA1+ǫ2A2+ . . . denote a Hermitian matrix defined in terms of a

power series in the real variableǫ (so, in particular, each member of the sequenceA0, A1, . . .

is Hermitian). Suppose thatA0 has an isolated eigenvalueλ0 and corresponding unit vector

u0. Then for allǫ sufficiently small,A[ǫ] has an isolated eigenvalueλ[ǫ] = λ0+ǫλ1+ǫ2λ2+. . .

and corresponding unit eigenvectoru[ǫ] = u0 + ǫu1 + ǫ2u2 + . . . , with

λ1 = u⋆
0A1u0, (3.13)

λ2 = u⋆
0{A2 − A1(A0 − λ0I)+A1}u0, (3.14)

and

u1 = (A0 − λ0I)+A1u0, (3.15)

where(A0 − λ0I)+ is the Moore-Penrose inverse of(A0 − λ0I).

Proof. Writing A[ǫ]u[ǫ] = λ[ǫ]u[ǫ] in expanded form we obtain

(A0+ǫA1+ǫ2A2+. . .)(u0+ǫu1+ǫ2u2+. . .) = (λ0+ǫλ1+ǫ2λ2+. . .)(u0+ǫu1+ǫ2u2+. . .),

and the expressions forλ1, λ2 andu1 are obtained by equating the coefficients ofǫ0 = 1, ǫ and

ǫ2 to zero. We obtain the following three equations.

coefficient ofǫ0 = 1 : A0u0 = λ0u0; (3.16)

coefficient ofǫ1 = ǫ : A1u0 + A0u1 = λ1u0 + λ0u1 (3.17)
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and

coefficient ofǫ2 : A1u1 + A2u0 + A0u2 = λ2u0 + λ0u2 + λ1u1. (3.18)

Sinceu⋆
0u1 = 0, which follows by equating the coefficient ofǫ to zero in the constraint

||u[ǫ]||2 = 1, it follows from (3.16) that u⋆
0A0u1 = 0. Taking the scalar product of each

side of(3.17) with u⋆
0, and using(3.16) and the fact thatu⋆

0u0 = 1, we obtain

LHS = u⋆
0(A1u0 + A0u1) = u⋆

0A1u0 + λ0u
⋆
0u1 = u⋆

0A1u0

RHS = u⋆
0(λ1u0 + λ⋆

0u1) = λ1u
⋆
0u0 + λ0u

⋆
0u1 = λ1,

where LHS is the scalar product ofu⋆
0 and the left hand side of(3.16), and RHS is the scalar

product ofu⋆
0 and the right hand side of(3.16). Therefore, equating the LHS and RHS,

λ1 = u⋆
0A1u0.

Using(3.17) to obtainu1, we have

(A0 − Iλ0)u1 = −(A1 − λ1I)u0

from which it follows that

u1 = −(A0 − λ0I)+(A1 − λ1I)u0

= −(A0 − λ0I)+A1u0,

sinceu0 is in the null space of(A0 − Iλ0)
+.

Pre-multiplying both sides of(3.18) by u⋆
0, we obtain

λ2 = u⋆
0(A0 − λ0I)u2 + u⋆

0A1u1 + u⋆
0A2u0 − λ1u

⋆
0u1.

90



Sinceu⋆
0u1 = 0 andu⋆

0(A0 − λ0I) = λ0u
⋆
o − λ0u

⋆
0 = 0, this equation can be written as

λ2 = u⋆
0A1u1 + u⋆

0A2u0

= u⋆
0{A2 − A1(A0 − λ0I)+A1}u0.

This completes the proof.

Consider thep samplesx[j] and other definitions of§3.3. Using Lemma 4.2, there exists a

function defined locally, such that̂M
[j]
k−2 = f(µ̂[j]).

We make two assumptions when deriving the asymptotic distribution ofFB(µ), which is

defined in(3.11). The first assumption can be calledasymptotically balanced sampling. Let

ni = ni(n) denote the size of samplei (i = 1, . . . , p), viewed as a function of the sample size

indexn. Then it is assumed thatni(n) = nwi(n) where

lim inf
n→∞

min
i=1,...,k

wi(n) > 0 and lim sup
n→∞

max
i=1,...,k

wi(n) < ∞. (3.19)

If (3.19) fails then the contribution of those samples whose sample size is of smaller order than

the largest sample size becomes asymptotically negligible.

In addition to (3.19) , suppose that, forj = 1, . . . , p,

n1/2M̂jµ →d CNk−1(0, Σ
[j]), Σ[j] of full rank, n → ∞ (3.20)

and assumêΣ[j] is a consistent estimator ofΣ[j]. Note that, from the proof of Theorem 2.1,

(3.20) will hold provided that populationj satisfies conditions(i), (ii) and(iii) of Theorem

2.1.
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Theorem 3.1. Assume all the conditions of (3.19) and (3.20). Then the statisticFB(µ̂) has an

asymptoticχ2
(p−1)(2k−4) distribution under the null hypothesis of a common mean shape.

Proof. Before considering the details , a general idea of the proof is given. The statistic used

is the smallest eigenvalue ofA[n−1/2] in (3.21), and the proof has two steps:

Step 1: Using Lemma 3.3, the smallest eigenvalue ofA[n−1/2] is asymptotically equivalent

to λ2 in (3.22) with A2 andA1 defined below, andA+
0 given by Lemma3.1.

Step 2: Recognise thatλ2 has the same structure as the RHS of the final term in Lemma

3.2.

Define

A[n−1/2] =

p∑

j=1

(M̂ [j])
⋆
(
Σ̂[j]

)−1
M̂ [j], (3.21)

whereM̂ [j] and
(
Σ̂[j]

)−1
were defined in§3.3. The termA[n−1/2] is going to represent a

Hermitian matrix defined in terms of a power series in the real variablen−1/2. The right side of

the equation is the kernel of the statistic(3.11) which is given in(3.9). ThusA can be written

A[n−1/2] =

p∑

j=1

(M + M̂ [j] − M)⋆
(
Σ̂[j]

)−1
(M + M̂ [j] − M).

ExpandingA,

A[n−1/2] = A0 + n−1/2A1 + n−1A2,

where

A0 =

p∑

j=1

M⋆
(
Σ̂[j]

)−1
M = M⋆




p∑

j=1

(
Σ̂[j]

)−1



M

A1 = n1/2
p∑

j=1

{(
M̂ [j] − M

)⋆ (
Σ̂[j]

)−1
M + M⋆

(
Σ̂[j]

)−1 (
M̂ [j] − M

)}
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and

A2 = n

p∑

j=1

(
M̂ [j] − M

)⋆ (
Σ̂[j]

)−1 (
M̂ [j] − M

)
.

Note that(i) for l > 3, Al is the matrix of zeros; and (ii) since

||n1/2
(
M̂ [j] − M

)
|| = Op(1),

where||A1|| and||A2|| are bothOp(1). In the above,||.|| is any suitable matrix norm such as

the Euclidean norm{tr(A⋆A)}1/2.

We now use Lemma 3.3 to determine an expansion for the smallest eigenvalue ofA[n−1/2].

We have

λ0 = µ⋆A0µ = 0 and λ1 = µ⋆A1µ = 0,

sinceMµ = Ok−1. Therefore the leading term in the expansion of the smallest eigenvalue is

λ2 = µ⋆A2µ − µ⋆A1A
+
0 A1µ. (3.22)

Now, if we calculateA1µ, sinceMµ = 0, all the terms withM on the left side ofA1 are

null, and then

A1µ = n1/2M⋆




p∑

j=1

(
Σ̂[j]

)−1
M̂ [j]



µ,

and so

µ⋆A⋆
1A

+
0 A1µ = nµ⋆




p∑

j=1

M̂ [j]⋆
(
Σ̂[j]

)−1⋆



MA+
0 M⋆




p∑

j=1

(
Σ̂[j]

)−1
M̂ [j]



µ.
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But using Lemma 3.1 withA+
0 andM,

A+
0 = M⋆(MA0M

⋆)−1M

= M⋆



MM⋆
p∑

j=1

(Σ̂[j])
−1

MM⋆




−1

M

= M⋆




p∑

j=1

(
Σ̂[j]

)−1




−1

M,

and thus

MA+
0 M⋆ =




p∑

j=1

(
Σ̂[j]

)−1




−1

.

Consequently,

µ⋆A⋆
1A

+
0 A1µ = nv⋆




p∑

j=1

(
Σ̂[j]

)−1



 v

where

v =




p∑

j=1

(
Σ̂[j]

)−1
M̂ [j]



µ.

Also, sinceMµ = 0,

µ⋆A2µ = nµ⋆




p∑

j=1

M̂ [j]⋆
(
Σ̂[j]

)−1
M̂ [j]



µ

we may apply Lemma 3.2 as follows to obtain the limitingχ2 result forFB(µ). Put

yj = (ℜ(M̂
[j]
k−2µ)T ,ℑ(M̂

[j]
k−2µ)T )T , Ωj =

1

2




ℜ
(
Σ[j]

)
−ℑ

(
Σ[j]

)

ℑ
(
Σ[j]

)
ℜ

(
Σ[j]

)




with a corresponding definition̂Ωj in terms ofΣ̂[j]. By assumption(3.20) we haven1/2yj →d

N2k−4(02p−2,Ωj). Also, by assumption̂Σ[j] is a consistent estimator ofΣ[j], soΩ̂j is a con-

sistent estimator ofΩj , and therefore Lemma 3.2 may be applied. This concludes the proof of

the theorem.
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3.5 Some Applications

The bootstrap test was applied to two datasets from Dryden and Mardia (1998). The p-values

of the bootstrap tests are compared to those obtained using Goodall and Hotelling tests, which

are reviewed in§1.7.1 and§1.7.2.

The first dataset considered was the Gorillas Skulls (see Dryden and Mardia,1998, p. 10),

which has 8 landmarks from 29 male and 30 female Gorillas. The p-values of the bootstrap,

Goodall and Hotelling test were less than 0.0001 in each case. The bootstrap agrees with the

other two tests in this example, where there is a very significant difference between the means

of the two populations.

The second dataset is related to schizophrenic patients (see Dryden and Mardia,1998, p.

11). For this dataset, 13 landmarks are placed on a 2D image of the brains of 14 schizophrenic

and 14 normal patients. The p-values for the bootstrap, Goodall and Hotelling tests were

0.0004, 0.0007 and 0.6579. Thus the bootstrap test agrees with the Goodall test. Even though

the Goodall test has very strong assumptions, which are not satisfied in this example, it does

not mean that the bootstrap test gives the wrong answer. The assumptions of the Hotelling test

are very strong for this case as well, and so one should not trust its results. A bigger sample

size would allow a better comparison between the tests and so we have carried out a simulation

study.

3.6 Simulation Study

We consider two additional methods to test if the mean shapes of two populations are equal or

not. These tests are Hotelling’sT 2 test and Goodall’s test that were described in§1.8.
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In all the simulation experiments the number of Monte Carlo runs is 1000, and for each

run 200 bootstrap samples were used. In each Monte Carlo run, two samples from complex

Bingham distributions are generated. To evaluate the power of the tests, the true mean of one

of the populations is rotated by an angleφ. The parameters of these distributions are changed

in each experiment in order to study some situations of interest.

In Figure 3.1 a diagram of the Monte Carlo simulation is presented. This diagram shows

one Monte Carlo experiment for the case of two populations. The steps of this diagram were

repeated1000 times in each case. The output of a pass though the diagram is a p-value. So at

the end of the process the algorithm will deliver a1000 × 1 vector, and the final p-value will

be the average of the components of this vector.

The case of low concentrated distributions is considered in Table 3.1. The variances of the

two populations are very different since the eigenvalues of the second population are equal to

the eigenvalues of the second times15. The tests are evaluated under the null hypotheses and

the size of the test is chosen asα = 0.05. The results show that the p-values of the bootstrap

test are closer to0.05 than those from the Hotelling and Goodall tests. For example, when the

parameter vector of the first population isλ = (0, 1, 2) and the sample size is100, the observed

significance level of the bootstrap test, Hotelling test and Goodall test were0.057, 0.201 and

0.966, respectively . So the Goodall test completely loses its precision and the Hotelling test is

not accurate for the situation considered.

Since the p-values of the tests are very different for low concentrated distributions, their

power will be comparable for highly concentrated distributions only.

The results of a simulation experiment with highly concentrated and isotropic distributions
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are presented in Table 3.2. In each Monte Carlo iteration two samples from Complex Bingham

distributions with parametersλ = (0, 400, 400) were simulated. For this case the two methods

are expected to work well and they do. In particular, all the assumptions of the Goodall test are

satisfied and therefore this test is the most powerful for the situation considered. In all the cases

the Goodall test is more powerful than the Hotelling test and the power of this one is smaller

than that of the bootstrap test. For example, whenn = 30 andφ = 0.126 the power of the tests

has the order Goodall(0.981) > Bootstrap(0.968) > Hotelling (0.961).

The results for nonisotropic and highly concentrated distributions are shown in Table 3.3.

Two complex Bingham samples with parametersλ = (0, 50, 100) are generated in each Monte

Carlo run. The Goodall test is less powerful than the other two test as expected since this

test is designed for isotropic distributions. On the other hand, bootstrap and Hotelling tests

have similar power. For example, when the sample size is100 and φ = 0.031, the tests

have the following order in relation to the power Hotelling(0.662) > Bootstrap(0.656) >

Goodall(0.541).

In Table 3.4 the simulation results for the case that the populations are highly concentrated

and have different variances are presented. In this simulation experiment one complex Bingham

sample is generated with the parametersλ = (0, 50, 100) and the other one with parameters

λ = (0, 100, 200).
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Rotate
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Figure 3.1: Simulation study diagram. This diagram is for the case of two populations. The

details of each step are given in the algorithm. It corresponds to one iteration of a Monte Carlo

simulation.
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Bingham n Bootstrap Goodall Test Hotelling Test

eigenvalues (3.11) (1.32) (1.27)

0, 1, 2 30 0.071 0.924 0.214

50 0.066 0.954 0.204

100 0.057 0.966 0.201

0, 2, 4 30 0.063 0.716 0.184

50 0.052 0.743 0.192

100 0.037 0.781 0.181

0, 4, 6 30 0.045 0.444 0.149

50 0.049 0.425 0.149

100 0.051 0.419 0.144

0, 6, 8 30 0.041 0.268 0.129

50 0.057 0.246 0.115

100 0.053 0.265 0.118

Table 3.1:Observed significance level of the tests for populations with low concentration and

heterogeneous variance structure. The vector of eigenvalues of the first and second populations

are (0, 1, 2) and(0, 15, 30), respectively. The nominal significance level is0.05.
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Sample φ Bootstrap Goodall Test Hotelling Test

Size (3.11) (1.32) (1.27)

30 0.000 0.046 0.053 0.051

0.003 0.047 0.060 0.055

0.031 0.114 0.157 0.125

0.063 0.420 0.483 0.425

0.094 0.791 0.839 0.787

0.126 0.968 0.981 0.961

50 0.000 0.035 0.041 0.043

0.003 0.032 0.057 0.044

0.031 0.180 0.234 0.196

0.063 0.615 0.689 0.629

0.094 0.967 0.980 0.963

0.126 1 1 1

100 0.000 0.050 0.056 0.053

0.003 0.051 0.069 0.053

0.031 0.369 0.416 0.378

0.063 0.929 0.957 0.934

0.094 1 1 1

0.126 1 1 1

Table 3.2:Power of the tests for isotropic and highly concentrated distribution. The angular

distance between the two true mean shape isφ. The true eigenvalues of the populations are

(0, 400, 400).

100



Sample φ Bootstrap Goodall Test Hotelling Test

Size (3.11) (1.32) (1.27)

30 0.000 0.046 0.070 0.051

0.003 0.050 0.070 0.054

0.031 0.218 0.181 0.212

0.063 0.770 0.653 0.756

0.094 0.982 0.966 0.984

0.126 1.000 1.000 1.000

50 0.000 0.036 0.057 0.043

0.003 0.039 0.062 0.043

0.031 0.340 0.271 0.350

0.063 0.947 0.877 0.943

0.094 1.000 1.000 1.000

0.126 1.000 1.000 1.000

100 0.000 0.049 0.066 0.054

0.003 0.051 0.070 0.055

0.031 0.656 0.541 0.662

0.063 1.000 1.000 1.000

0.094 1.000 1.000 1.000

0.126 1.000 1.000 1.000

Table 3.3:Power of the tests for nonisotropic and highly concentrated distributions. Two highly

concentrated complex Bingham distributions are simulated with parameter vector (0,50,100).

The angular distance between the two mean shapes isφ.

101



Sample φ Bootstrap Goodall Test Hotelling Test

Size (3.11) (1.32) (1.27)

30 0.000 0.048 0.071 0.058

0.003 0.048 0.072 0.060

0.006 0.051 0.077 0.066

0.009 0.060 0.081 0.070

0.019 0.112 0.106 0.123

0.028 0.226 0.186 0.236

50 0.000 0.038 0.061 0.046

0.003 0.044 0.064 0.049

0.006 0.056 0.068 0.059

0.009 0.070 0.076 0.081

0.019 0.184 0.153 0.201

0.028 0.376 0.291 0.380

100 0.000 0.045 0.066 0.054

0.003 0.053 0.072 0.062

0.006 0.070 0.080 0.072

0.009 0.105 0.097 0.112

0.019 0.354 0.261 0.369

0.028 0.702 0.575 0.705

Table 3.4: Power of the tests for highly concentrated populations with different dispersion

structure. The parameters of the simulated complex Bingham distributions were0, 50, 100 and

0, 100, 200.
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Chapter 4

Empirical Likelihood Methods in

Shape Analysis

Empirical likelihood (EL) methods for building confidence regions and for testing hypotheses

in the context of statistical shape analysis are studied in this chapter. The empirical likelihood

method of Fisher et al. (1996) for building confidence regions for the mean direction and the

mean axis can be used for building confidence regions for the mean shape. Those methods will

be adapted to the shape context since the pre-shapes are complex unit vectors and not real unit

vectors such as axes or directions. An extension of the method of Fisher et al. (1996) will be

used to compare the means of several groups of objects.

The next sections are organized as follows. Before considering the shape context, the

general idea and a literature review of EL are considered in§4.1. The formal definition and the

main properties of empirical likelihood are given in§4.2. More details about EL are considered

in §4.3, with a focus on inference for a univariate mean. In§4.4, the method presented by

Fisher et al. (1996) for building a confidence region for the mean direction is reviewed. The
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EL method for the mean shape is presented in§4.5. A method to produce a set of mutually

orthogonal unit vectors, which is an important step of the EL algorithm, is presented in§4.6. In

§4.7 the algorithm to calculate the EL is shown. Bootstrap calibration can be used to improve

the accuracy of the EL methods, and§4.8 explains how to perform this task. A Monte Carlo

simulation study of the EL methods is described in§4.9, and numerical results obtained in

this study are discussed in§4.10. Graphical checking of the distribution of the EL statistic is

considered in§4.11. The EL method is applied to a real data example in§4.12. The problem

of using EL for hypothesis tests for several populations is addressed in§4.13. A method of EL

hypothesis testing for statistical shape analysis is introduced in§4.14.

4.1 Main Ideas and Literature Review of Empirical Likelihood

Likelihood methods are very effective. They can be used to construct tests with good power

properties, and they provide efficient estimators and small confidence regions.

However, nonparametric methods may be better than likelihood methods in some circum-

stances; especially when little is known about the underlying distribution. The main disadvan-

tage of likelihood methods is that a family of distributions has to be assumed for the data. This

problem can be avoided if nonparametric methods are used. In some real problems it may be

hard to find a suitable parametric family of distributions. This often happens when the sample

size is small but it can also happen in situations when the sample size is large.

Empirical likelihood (EL) is a type of nonparametric likelihood which can be used to obtain

a nonparametric version of the theorem of Wilks (1938), which delivers an asymptotic chi-

squared distribution of log likelihood ratios and therefore can be used for building confidence
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regions and for testing hypotheses. More details about this theorem will be seen in§4.2.

There are many points to note about EL methods. EL does not assume a parametric family

of distributions for the data. EL methods are generally very accurate when used with bootstrap

calibration, a very powerful method. The shape of EL confidence regions are data-determined

which does not happen with bootstrap confidence regions. EL automatically produces a pivotal

statistic, and avoids the complications which can arise in constructing pivotal bootstrap statistic.

The first paper to introduce EL methods was published by Owen (1988). In that paper

an EL method for the sample mean was presented. The method was based on a nonparametric

analogue of Wilks (1938) theorem for parametric log-likelihood ratios. Owen (1988) presented

a proof that the empirical log likelihood ratio has an asymptoticχ2 distribution under the

null hypothesis, and he also compared his method to the bootstrap method in a simulation

experiment using aχ2 distribution. He found out that the bootstrap-t was more accurate than

the EL method in that particular setting.

In a second paper, Owen (1990) derives multivariate empirical likelihood regions for func-

tions of several means. Multivariate means, covariance matrices and regression parameters are

special cases of functions of means. For the multivariate mean, Owen (1990) illustrates in a

numerical example that the shapes of empirical likelihood regions are determined by the data.

He obtained a region different from an ellipse for the mean of a bivariate normal.

Owen (1991) introduced empirical likelihood methods for more complex regression mod-

els. He considered several models, including robust regression, heterocedastic regression and

one-way anova.

Asymptotic properties of empirical likelihood methods and Bartlett correction have been
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studied by several authors. The Bartlett correction is a scaling of the log likelihood ratio statis-

tic which reduces the error of the asymptoticχ2 distribution under the null hypothesis from

O(n−1) to O(n−2). So this scalar transformation can also be applied to the empirical likeli-

hood to reduce the order of the error fromO(n−1) to O(n−2).

DiCiccio et al. (1991) showed that the empirical likelihood is Bartlett correctable. It is

a very good property of the EL method since it is the unique nonparametric method which is

Bartlett correctable. They derived a general formula which can be used for parameters which

can be expressed as functions of means, variance, covariance, correlation, skewness, kurtosis,

mean ratio, mean difference and variance ratio.

DiCiccio et al. (1991) also showed that the bootstrap is not Bartlett correctable in any

useful sense. Their arguments are based on the Edgeworth expansion. They showed that the

Edgeworth expansions for bootstrap statistics have terms that cannot be removed by a simply

scalar transformation like the Bartlett correction. Thus it is of considerable interest that EL is

Bartlett correctable.

On the other hand, Jing and Wood (1996) showed that exponential empirical likelihood

is not Bartlett correctable. They compare the relevant expansions of exponential empirical

likelihood and empirical likelihood. They showed that a particular term of the expansion for

the exponential empirical likelihood does not have the orderO(n−4), which is a necessary

condition for it be Bartlett correctable.

The key reference for empirical likelihood and its applications is Owen (2001). Hall and La

Scala (1990) give a very good review, introducing the ideas clearly. Owen also presents a list

of related methods including the Bayesian bootstrap (Rubin, 1981), the nonparametric tilting
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bootstrap (Efron, 1981), the survey sample estimator (Hartley and Rao, 1968) and the method

of sieves (Grenander, 1981).

4.2 Definition and Properties of Empirical Likelihood

Owen’s (1988) original idea was to use an empirical likelihood ratio to construct a confidence

interval for the mean. To make this idea clear, the EL method for a functional will be reviewed.

Recall that the concept of a functional is defined in(2.1).

Let m = m̃(F ) be a population characteristic, such as the mean or the variance, of a

populationF , {u1, . . . , un} a random sample fromF and w = (w1, . . . , wn) a vector of

positive weights which sum to1. Let Fw denote the discrete probability distribution supported

by the sample{u1, . . . , un, } defined byFw(A) =
∑n

i=1 wiI(ui ∈ A), whereA is any set in

the sample space andI(.) is the indicator function.

The EL form is defined as

EL(m) = max
wi≥0

n∏

i=1

wi subject to
n∑

i=1

wi = 1 and m̃(Fw) = m. (4.1)

There are some points to note about this definition.

i) If the constraintm̃(Fw) = m is ignored, the EL is maximized whenwi = 1/n for all i.

This result is easily shown using the Lagrange multiplier method. The Lagrange multiplier

method to maximize a functionf(w) subject to the constraintg(w) = 0 has the following

steps. One first calculates the value ofw = wλ which solves

G(w) = ∇f(w) − λ∇g(w) = 0, (4.2)

and then obtainsλ to solveg(wλ) = 0, where∇ is the gradient operator.
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For the situation considered, ignoring the constraintm̃(Fw) = m, the functions used in the

Lagrange multiplier method are

f(w) =

n∑

i=1

log wi and g(w) = 1 −
n∑

i=1

wi. (4.3)

The equation∇f(w) = λ∇g(w) becomes(1/w1, . . . , 1/wn) = −λ(1, . . . , 1) which gives

wi = 1/n

for all i.

However, the idea of EL is to find the set ofw′
is which maximizes their product subject

to the constraints̃m(Fw) = m. This can be achieved by introducing additional Lagrange

multipliers. In §4.2 and§4.3, we explain how to calculate EL for mean direction and mean

shape, respectively.

ii) A major property of the EL method is that it admits a nonparametric version of Wilks’s

(1938) theorem.

Before discussing the Wilks’s theorem for empirical likelihood, we review Wilks’s theorem

for parametric likelihood. Suppose thatu = {u1, . . . , un} is random sample of(q×1) random

vectors, where eachui has pdff(ui; υ), whereυ is a (r × 1) parameter vector. If a discrete

variable was considered,ui would have a probability mass function (pmf). The following

results are also valid for a pmf.

The likelihood function forυ in the case of an IID sample is defined by

L(υ|u) ≡ f(u1, . . . , un|υ) =

n∏

i=1

f(ui|υ), (4.4)
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and the log-likelihood is given by

l(υ|u) =
n∑

i=1

log f(ui; υ). (4.5)

Suppose that parameter space is denoted byΥ. Also denote byΥ0 ⊂ Υ a subset of strictly

lower dimension thanΥ.

The maximum likelihood estimator (mle)̂υ of υ under the hypothesisΥ is defined as

υ̂ = arg max
υ∈Υ

L(υ|u),

whereu is fixed. For testing the nested hypotheses,

H0 : ν ∈ Υ0 andH1 : ν ∈ Υ, (4.6)

an asymptotic procedure can be used. Wilks (1938) proposed a theorem based on the large

sample distribution of the likelihood ratio

λ(u) =
supυ∈Υ0

L(υ|u)

supυ∈Υ L(υ|u)
, (4.7)

whereL(ν|u) is defined in(4.4). For the particular case thatf is a pmf, intuitively the numera-

tor of λ(u) represents the maximum probability ofu when the parameters values are inside the

set of values of the null hypothesis. The denominator is the maximum probability calculated

under the more general alternative.

Theorem 4.1. If Υ0 hasf0 free parameters andΥ hasf1 free parameters in the hypotheses

(4.6), then under mild regularly conditions, and assuming that the hypothesisH0 holds, the

likelihood ratio(4.7) satisfies

−2log(λ(u)) → χ2
f1−f0

, (4.8)

whenn → ∞ (see Casella and Berger, 1990, p. 381).
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It is possible to present a nonparametric version of Wilks’s theorem based on the empirical

likelihood ratio. This EL ratio and its computation will be presented in§4.3 for the case of a

scalar mean.

4.3 Empirical Likelihood for a Univariate Mean

The properties of EL and the EL ratio will be illustrated for the case of a univariate mean.

The nonparametric version of the Wilks’s theorem is presented (see Owen, 1988, p. 28). The

algorithm for calculating the EL ratio and how to use this ratio to define hypothesis tests and

confidence intervals is also reviewed (see Owen, 2001, p.p. 21-24).

Consider again a random sampleu1, . . . , un from a population with distribution function

F (u) = P (U ≤ u). Suppose thatF itself is unknown with meanν = E(ui) andvar(ui) <

∞, whereE(.) andvar(.) denote the expectation and the variance, respectively. It should be

noted that we can think ofν as being a functional ofF , i. e.,ν = ν̃(F ), whereν̃ is the mean

functional. WhenFw(.) =
∑n

i=1 wiI(ui≤.) thenν̃(Fw) =
∑n

i=1 wiui.

Suppose that one wants to test the hypothesesH0 : ν = ν0 andH1 : ν unrestricted.

The EL ratio is given by

EL(ν0)

EL(ν̂)
,

whereEL(ν0) is the EL evaluated underH0 andEL(ν̂) is the maximised EL underH1. Thus,

using definition (4.1),

EL(ν0) = max
wi≥0

n∏

i=1

wi subject to
n∑

i=1

wi = 1 and
n∑

i=1

wiui = ν0.
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Also, from the discussion following(4.3),

EL(ν̂) = n−n.

For the parameterν the profile EL is defined as

R(ν) =
EL(ν)

EL(ν̂)
= max

wi≥0

{
n∏

i=1

(nwi) |
n∑

i=1

wiui = ν, and
n∑

i=1

wi = 1

}
. (4.9)

To find the weightswi, i = 1, . . . , n, the Lagrange multipliers method, which was explained

in §4.2, is used (see Owen, 2001, p. 22). The functionG, defined in(4.2), becomes

G(w) =
n∑

i=1

log(nwi) − λ1

n∑

i=1

wi(ui − ν) − λ2

(
n∑

i=1

wi − 1

)
,

whereλ1 andλ2 are Lagrange multipliers.

The first step of the Langrange multiplier method is to differentiate the functionG and

calculate the critical values of this function, where the critical values are the points where the

derivate function is zero. The derivatives of the functionG are

∂G

∂wi
=

1

wi
− λ1(ui − ν) − λ2,

for i = 1, . . . , n.

Solving
∑n

i=1 wi
∂G
∂wi

= 0, we obtainn − λ2 = 0 or λ2 = n.

Thus, setting∂G
∂wi

= 0,

wi =
1

n

1

1 + λ1(ui − ν)
, (4.10)

whereλ1 solves

n∑

i=1

wi(ui − ν) =
1

n

n∑

i=1

ui − ν

1 + λ1(ui − ν)
= 0,
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and can be obtained numerically.

One of the important properties of EL is that it can be used to obtain a nonparametric

version of Theorem 4.1. The details of this result in the case of a scalar mean are given in the

following theorem.

Theorem 4.2. Let u1, . . . , un be independent identically distributed random variables with

common distributionF (u). Let ν0 = E(ui) and suppose that0 < V ar(ui) < ∞. Then

as n → ∞ the log empirical likelihood ratio satisfies

−2logR(ν0) →d χ2
1. (4.11)

Proof. Using expression(4.10) for wi, and viewing it as a function ofλ, define

f(λ) =
n∑

i=1

wi(ui − ν)

=
1

n

n∑

i=1

ui − ν

1 + λ(ui − ν)
.

Using Taylor’s expansion around the pointa, we have

f(λ + a) =
∞∑

k=0

λkf [k](a)

k!
= f(a) +

λf [1](a)

1!
+

λ2f [2](a)

2!
+ . . . , (4.12)

wheref [k] is thek-th derivative off. Assumingλ is small and therefore ignoring the terms

afterk = 1, the value ofλ is obtained from

1

n

n∑

i=1

(ui − ν) − λ
1

n

n∑

i=1

(ui − ν)2 = 0,

and it is given by

λ =
ū − ν

S(ν)
, (4.13)
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whereS(ν) = 1
n

∑n
i=1 (ui − ν)2.

To find the asymptotic distribution of the profile empirical likelihood ratio, it is necessary to

apply the Taylor approximation to the expression ofR(ν), which is given in(4.9). Substituting

(4.10) in (4.9), one can write

−2 log R(ν) = 2
n∑

i=1

log(1 + λ(ui − ν)).

The second step is to apply Taylor’s approximation to this function. Thus, one has to apply

(4.12) to

f(λ) =
n∑

i=1

log(1 + λ(ui − ν)).

Since

f [1](a) =
n∑

i=1

(ui − ν)

1 + a(ui − ν)

and

f [2](a) = −
n∑

i=1

(ui − ν)2

(1 + a(ui − ν))2
,

we havef(0) = 0, f [1](0) =
∑n

i=1(ui − ν) andf [2](0) =
∑n

i=1(ui − ν)2.

ThusR(ν) can be approximated by

R(ν) = 2λ
n∑

i=1

(ui − ν) − λ2
n∑

i=1

(ui − ν)2 (4.14)

and one can substitute the value ofλ, given in(4.13), in (4.14). This gives

R(ν) = 2
(ū − ν)

S(ν)

n∑

i=1

(ui − ν) − (ū − ν)2

S(ν)2

n∑

i=1

(ui − ν)2

= 2n
(ū − ν)2

S(ν)
− n

(ū − ν)2

S(ν)

= n
(ū − ν)2

S(ν)

=

(√
n(ū − ν)√

S(ν)

)2

.
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By the law of large numbers,S(ν0) →p var(ui) underH0 and by the central limit theorem,

(√
n(ū − ν)√

S(ν)

)
→d N(0, 1),

and therefore

R(ν) =

(√
n(ū − ν)√

S(ν)

)2

→d χ2
1.

The proof of this result for the case thatν is a vector, which is broadly similar, is given by

Owen (2001, pp. 219-222).

4.4 Empirical Likelihood Regions for The Mean Direction

The EL method of Fisher et. al. (1996) for directional data is now reviewed since it is closely

related to the method for shape data that will be explained in§4.5.

Let m be a unit vector inR3, som is a point on the sphereS3 = {m ∈ R
3 : ||m|| = 1}.

Any vectorm ∈ S
3 can be written as

m = (cos(θ), sin(θ) cos(φ), sin(θ) sin(φ))T , (4.15)

where0 ≤ θ ≤ π and0 ≤ φ ≤ 2π.

Let x = {x1, . . . , xn} be a random sample of unit3−vectors from a populationF. In the

case of a mean direction, the empirical likelihoodEL(m) at a candidate mean directionm is

defined as follows:

EL(m) = max
wi≥0

n∏

i=1

wi subject to
n∑

i=1

wi = 1 andm̃(w) ≡
n∑

i=1

wixi/||
n∑

i=1

wixi|| = m.
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Since the sphereS3 is not a Euclidean space, the constraint
∑n

i=1 wixi/||
∑n

i=1 wixi|| = m

cannot be used directly in the Lagrange multiplier method. The reason is thatm is constrained

to lie in the unit sphere. The constraint needs to be represented in a suitable form for the

Lagrange multiplier method to be applicable.

Let us first consider the case of a mean direction inR
3. The suitable constraints are given

by

mT
1 m = mT

2 m = mT
1 m2 = 0, (4.16)

where the unit vectorsm1 = m1(m) andm2 = m2(m) are chosen to be mutually orthogonal

and orthogonal tom.

It should be noted thatm in (4.15) can represent any direction. However, the question is

how to representm1 andm2 as a function ofm in a such way that(4.16) is true ifm is written

in the form(4.15). If m is written in the form(4.15), thenm1 andm2 can be written

mT
1 = (cos θ cos φ, cos θ sinφ,− sin θ), (4.17)

and

mT
2 = (− sinφ, cos φ, 0). (4.18)

Note that this is just one of an infinite number of possible choices.

The function to be maximised by the Lagrange multiplier method is given by

G(w) =

n∑

i=1

log(wi) + λ0(1 −
n∑

i=1

wi) − λ1m
T
1

n∑

i=1

wixi − λ2m
T
2

n∑

i=1

wixi,

whereλ0, λ1 andλ2 are Lagrange multipliers corresponding to the three constraints. The first

step is to calculate the partial derivatives

∂G

∂wi
=

1

wi
− λ0 − λ1m

T
1 xi − λ2m

T
2 xi, (4.19)
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and set them to zero. After that, we may solve
∑n

i=1 wi(∂G/∂wi) = 0 to obtainλ0.

Since

m =
n∑

i=1

wixi

||∑n
i=1 wixi||

and
n∑

i=1

wi = 1,

we have

n∑

i=1

wi
∂G

∂wi
= n − λ0 − λ1m

T
1

n∑

i=1

wixi − λ2m
T
2

n∑

i=1

wixi,

= n − λ0 − λ1||
n∑

i=1

wixi||mT
1 m − λ2||

n∑

i=1

wixi||mT
2 m

= n − λ0,

so the solution isλ0 = n.

Replacingλ0 by n in (4.19) and setting∂G/∂wi = 0, the weights are given by

wi =
1

n(1 + λ1mT
1 xi + λ2mT

2 xi)
, (4.20)

redefiningλ1 andλ2 by λ1/n andλ2/n, respectively, for notational convenience.

In order to obtain a confidence region, consider a coordinate system such that the sample

mean direction̂m =
Pn

i=1 xi

||
Pn

i=1 xi||
is given by

m̂T = (0, 0, 1).

Let log R(m) be the empirical log-likelihood ratio which is given by

log R(m) = log{EL(m)/EL(m̂)}.

The EL confidence region with confidence coefficientα for the mean direction is given by

Rα = {m : log R(m) 6 ρα}, (4.21)
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whereρα is chosen to satisfyP (log R(m0) 6 ρα) = 1 − α, under the null hypothesis

H : m = m0,

wherem0 is the true value.

4.5 Empirical Likelihood Regions for the Mean Shape

This section describes how to adapt the EL method for axial datasets of Fisher et al. (1996)

to shape datasets. The empirical likelihood confidence region for the mean shape is calculated

similarly to the mean axis. The steps are similar but the constraints will be different.

Consider a random sample of preshapesz = {z1, . . . , zn}, as described in§ 2.1. Here, the

relevant constraint is thatm is an eigenvector of the matrixS(w) =
∑n

i=1 wiziz
⋆
i correspond-

ing to the largest eigenvalue, where thewi are non-negative weights which sum to1 and are to

be determined.

If Re(a) andIm(a) represent the real and imaginary part of a complex vectora, then the

constraints are given by

Re{m⋆
jS(w)m} = 0, Im{m⋆

jS(w)m} = 0, j = 1, . . . , k − 2.

It should be noted that the number ofmj vectors isk − 2 becausek − 1 is the dimension of a

Helmertized vector and one of thosek−1 vectors is the mean shapem. So there are onlyk−2

vectors remaining.

Define

γj(w) = m⋆
jS(w)m (4.22)
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and

δij = m⋆
jziz

⋆
i m =

∂γj(w)

∂wi
. (4.23)

Using the definitions(4.22) and(4.23), the profile empirical likelihood function for the mean

shape is given by

EL(µ) = max
wi≥0

n∏

i=1

wi subject to
n∑

i=1

wi = 1 (4.24)

and
k−2∑

j=1

{λ(R)
j Re(γj(w)) + λ

(I)
j Im(γj(w))} = 0. (4.25)

Thus the function to be maximised by the Lagrange multiplier method is given by

G(w) =
n∑

i=1

log wi + λ0(1 −
n∑

i=1

wi) +
k−2∑

j=1

{λ(R)
j Re(γj(w)) + λ

(I)
j Im(γj(w))}.

The partial derivatives ofG are given by

∂G(m)

∂wi
=

1

wi
− λ0 +

k−2∑

j=1

{λ(R)
j Re(δij) + λ

(I)
j Im(δij)}. (4.26)

Multiplying by wi and summing, it is seen that

n∑

i=1

wi
∂G

∂wi
= n − λ0

n∑

i=1

wi +
k−2∑

j=1

{λ(R)
j

n∑

i=1

wiRe(δij) + λ
(I)
j

n∑

i=1

wiIm(δij)}.

At the optimumw,
∑n

i=1wi = 1, δj(w) = 0, and ∂G
∂wi

= 0, so thatn − λ0 = 0, i.e. λ0 = n.

The optimum weights can now be calculated from(4.26) :

wi =
1

n
(
1 +

∑k−2
j=1

{
λ

(R)
j Re(δij) + λ

(I)
j Im(δij)

}) i = 1, . . . , n.

whereλ
(R)
j andλ

(I)
j have been redefined asλ(R)

j /n andλ
(I)
j /n. Substituting forwi in the

constraints, it is seen thatλ
(R)
j andλ

(I)
j must satisfy

n∑

i=1

{
1 +

k−2∑

j=1

(
λ

(R)
j Re(δij) + λ

(I)
j Im(δij)

)}−1

δim = 0, m = 1, 2. (4.27)

The analogue of Theorem4.2 in the case of the mean shape is given by the following result.
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Theorem 4.3. If the population mean shape[m0] is well-defined and the population distribu-

tion has a density with respect to the uniform distribution onCSk−1, then

−2log{EL(m0)/EL(m̂)} →d χ2
2k−4, (4.28)

wherem0 is any pre-shape corresponding to[m0].

The idea of the proof is similar to that given in the scalar mean case. See Owen (2001) for

the proof of the vector mean case.

4.6 Explicit Calculation of a set of Orthogonal Unit Vectors

When applying the empirical likelihood approach to directional data or shape data consisting

of, respectively, unit vectors inRk or C
k, it is necessary to perform the following task repeat-

edly: given a unit vectorm, determine a set of mutually orthogonal unit vectorsm1, . . . , mk−1

which are orthogonal tom. This can be done conveniently using the following results.

Lemma 4.1. (The real case.) Suppose thatc ∈ R, wherec > −1, andb ∈ R
k are such that

m =
(
b
c

)
is a unit vector inRk, i. e. c2+||b||2 = 1. Define the(k−1)×k matrixA = [A1 : A2]

by

A1 = Ik−1 − (1 + c)−1bbT , A2 = −b,

where, by implication,A1 is (k − 1) × (k − 1) andA2 is (k − 1) × 1. Then(i) Am = 0k−1

and(ii) AAT = Ik−1.

Lemma 4.2. (The complex case.) Supposec ∈ C, c 6= 0, b ∈ C
k−1, andm =

(
b
c

)
is a complex

unit vector inC
k , so thatc⋆c + ||b||2 = 1. Define the(k − 1) × k matrixA = [A1 : A2] by

A1 =
c

|c|Ik−1 −
c

|c|(1 + |c|)−1bb⋆, A2 = −b

whereA1 is (k−1)×(k−1) andA2 is (k−1)×1. Then(i) Am = 0k−1 and(ii)AA⋆ = Ik−1.

Comment. Givenm, we may choosem1, . . . ,mk−1 as follows: in the real case, as the columns

of AT ; and in the complex case, as the columns ofA⋆.
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The proofs of the lemmas are very similar. Only Lemma 4.2 is proved here since it is the

one which is relevant for the method of the next section.

Proof of Lemma 4.2

(i) From the definitions,

Am = [A1 : A2]

(
b

c

)

= A1b + A2c

=
c

|c|b −
c

|c|(1 + |c|)−1(b⋆b)b − cb

=
c

|c|b + (c − c

|c|)b − cb

= 0k−1,

sinceb⋆b = 1 − |c|2.

(ii) Note that

[
A1 : A2

][
A1 : A2

]⋆
= A1A

⋆
1 + A2A2

⋆,

and

A1A
⋆
1 =

( c

|c|Ik−1 +
(
c − c

|c|
) bb⋆

||b||2
)( c

|c|Ik−1 +
(
c − c

|c|
) bb⋆

||b||2
)⋆

=
c⋆c

|c|2 Ik−1 +
[(

c − c

|c|
)(

c − c

|c|
)⋆

+
c

|c|
(
c − c

|c|
)⋆

+
c⋆

|c|
(
c − c

|c|
)] bb⋆

||b||2

= Ik−1 − (1 − c⋆c)
bb⋆

||b||2

= Ik−1 − bb⋆,

since||b||2 = b⋆b = 1 − c⋆c.
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Therefore, sinceA2A
⋆
2 = bb⋆, we have

A1A
⋆
1 + A2A

⋆
2 = Ik−1 − bb⋆ + bb⋆ = Ik−1

as required.

4.7 Algorithm

The algorithm to find EL estimates is reviewed in this section. The estimating equations given

in (4.27) are in closed form. So the set of Lagrange multipliersλ
(R)
j andλ

(I)
j should be eval-

uated numerically. A algorithm which uses Owen’s algorithm for multivariate vectors is in-

troduced. This involves separating the real and imaginary parts of the pre-shape vectors and

applying Owen’s algorithm to those two parts in the way explained below.

Let LEL(m) be the empirical likelihood(4.24) and(4.25) evaluated atm. To calculate

LEL(m) the following steps should be performed.

Algorithm 4.1. Calculating the Empirical Likelihood

Step 1- Givenm, find a set of mutually orthogonal unit vectorsm1, . . . , mk−2 also orthogonal

to m, using Lemma 4.2.

Step 2- Calculate a vectorδi with components

δT
i = [Re(δi1), Im(δi1), . . . , Re(δik−2), Im(δik−2)],

wherei = 1, . . . , n andδij = m⋆
jziz

⋆
i m.

Step 3- The vectorδ1, . . . , δn can be used in an empirical likelihood procedure for a2(k − 2)

real vector to find̂λ which maximizes
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n∑

i=1

log(1 + λT δi).

Thus Step3 uses Owen’s S-Plus function which is explained in Appendix D.

Step 4- The weights are given by

wi =
1

n(1 + λ̂T δi)
.

Step 5- The loglikelihood ratio is

WEL(m) = −2
n∑

i=1

log(nwi). (4.29)

After calculating the empirical log-likelihood, the confidence region can be defined by

Rα = {m : WEL(m) ≤ lα}, (4.30)

whereα is the chosen confidence level. Asymptotically,LEL(m) has aχ2
2k−4 distribution by

Theorem 4.3, hence the constantlα is approximately given by

P (χ2
2k−4 ≤ lα) = 1 − α.

Bartlett correction was mentioned in the introduction. It is a scalar transformation that,

when applied to a log likelihood ratio statistic, reduces the order of the error under the null

hypothesis fromO(n−1) to O(n−2). Bartlett correction or bootstrap calibration can be used

to improve the coverage probability ofRα. Thus corrected values forlα would be used. The

bootstrap calibrated version oflα is presented in§4.8.
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4.8 Bootstrap Calibration

The combination of EL and bootstrap methods delivers very accurate results. The empirical

loglikehood ratio statistic has an asymptoticχ2 distribution (see Hall and La Scala (1990))

under the null hypothesis. Bootstrap calibration using this statistic will reduce coverage error

from O(n−1) to O(n−2); see Fisher et al. (1996).

The bootstrap algorithm in this case can be described as follows:

Algorithm 4.2. Bootstrap Calibration of the Empirical Likelihood

Step 1- GenerateB resamplesz(b), randomly with replacement, from the original sample

z = {z1, . . . , zn}.

Step 2- For each bootstrap samplez(b), calculate the EL at a point̂µ, using algorithm4.1

of §4.7 with some minor changes. In the Step 1 of this algorithm, the EL is now evaluated

at the sample mean shapeµ̂. Thus(4.29) is used to calculateL(b) for the resamplez(b) as

L(b) = L
(b)
EL(µ̂). The values ofL(b) are stored in aB × 1 vectorLB.

Step 3- Let lBα be the bootstrap version oflα. lBα can be calculated from the ordered values

LB[1] ≤ LB[2], . . . , LB[B − 1] ≤ LB[B].

For instance, ifB = 100 and the nominal level of the confidence region isα = 0.10, then

lBα = LB[90].

Step 4- The empirical likelihood region with bootstrap calibration is given by

RB
α = {m : WEL(m) ≤ lBα }. (4.31)
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4.9 Monte Carlo Simulation Study

A simulation experiment was performed to examine the coverage accuracy of EL confidence

regions. Two types of EL confidence regions were compared: those obtained using the limiting

χ2 distribution under the null hypothesis, and those obtained using the bootstrap calibration.

As discussed in the previous section, bootstrap calibration uses the bootstrap to calculate a

percentile which is then used to determine an empirical likelihood confidence region.

Using the notation of§2.6.1, the Monte Carlo simulation is performed generatingnM

Monte Carlo samples andB bootstrap samples for each Monte Carlo sample. The output

of this experiment isnM confidence regions obtained using the two methods above.

Let µ̂i be the sample mean shape of theith Monte Carlo sample. Also letCTab andCBC

denote the estimated coverage probability of the confidence regions(4.30) and(4.31), defined

by

ĈTab(EL) = #{i : WEL(µ̂i) 6 lα, i = 1, . . . , nM}/nM ,

whereWEL(µ̂i) is WEL(µ) for the ith Monte Carlo sample, andlα is obtained fromχ2
2k−4

tables, and

ĈBC(ELB) = #{i : LEL(µ̂i) 6 lB(α,i), i = 1, . . . , nM}/nM ,

wherelB(α,i) is lBα for theith Monte Carlo sample, obtained by bootstrap calibration.
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4.10 Simulation Results

In Table 4.1 the results of a simulation experiment involving the complex Bingham distribution

are presented. This experiment is similar to the one described in§2.9 but in this case the

”tabular” EL and EL with bootstrap calibration methods are used. The Hotelling and Goodall

tests were also considered. The number of Monte Carlo samples is 1000 in each cell of the

table. For each Monte Carlo sample, 200 bootstrap samples were used. The nominal coverage

of the confidence region is0.90. The results show that for highly concentrated distributions the

estimated coverage probabilities of the 4 methods are close to the nominal value0.90. On the

other hand, for distributions with low concentration about the mean shape and sample size 100,

the estimated coverage probabilities of the Hoteling and Goodall methods are very far from

0.90, while the estimated coverage probability of the EL (tabular) and EL (bootstrap), is still

very close to0.90. For the low concentrated distributions, if the sample size is 30, the estimated

coverage probability of the EL method is far from0.90. Thus the bootstrap calibration improves

the EL method in this case. Generally, when the sample size is small, say 30, theχ2 distribution

is not a good approximation for the distribution of the EL.

Another experiment, using the complex Bingham distribution, is presented in Table 4.2.

This table considers the same statistics as in Table 4.1. The number of Monte Carlo and boot-

strap samples are 1000 and 200, respectively. The sample size is 30. The nominal coverage

of the coverage accuracy is0.90. The first values of the parameters of the complex Bingham

distribution define very highly concentrated distributions. The last values of the parameters

define very low concentrated distributions. For highly concentrated distributions, the observed
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Parameters - EigenvaluesSample EL EL Bootstrap Hotelling Goodall

of the Complex Bingham Size (4.25) (Algorithm 4.2) Test(2.12) Test(1.25)

0 0 800 30 0.794 0.885 0.900 0.890

50 0.856 0.892 0.900 0.892

100 0.893 0.901 0.906 0.901

0 50 850 30 0.795 0.884 0.893 0.828

50 0.856 0.893 0.893 0.823

100 0.893 0.904 0.899 0.858

0 0 1 30 0.840 0.890 0.023 0.015

50 0.887 0.904 0.013 0.008

100 0.888 0.900 0.008 0.011

0 1 2 30 0.845 0.891 0.057 0.049

50 0.887 0.909 0.036 0.032

100 0.903 0.908 0.020 0.024

Table 4.1:Coverage probabilities of the tabular EL, EL with bootstrap calibration, Hotelling

and Goodall confidence regions for the mean shape. An algorithm to generate a complex Bing-

ham was used in 4 special cases: eigenvalues 0, 0 and 800, which is a highly concentrated

complex Watson distribution; eigenvalues 0, 450 and 800, which represents a highly concen-

trated Bingham distribution; eigenvalues 0, 0 and 1, which is a low concentrated complex

Watson distribution and eigenvalues 0, 1 and 2, which is a low concentrated complex Watson

distribution.

coverage accuracy of EL (Bootstrap), Hotelling and Goodall are similar, but EL (Tabular) is

less accurate. For very low concentrated distributions, the observed coverage probabilities of

the Goodall and Hotelling tests are very far from the nominal value0.90, while EL (Bootstrap)

retains accuracy very well.
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Parameters - Eigenvalues EL EL(Bootstrap) Hotelling Goodall

of the Complex Bingham (4.25) (Algorithm 4.2) Test(2.12) Test(1.25)

0 0 200 0.795 0.885 0.897 0.882

0 0 30 0.800 0.886 0.866 0.856

0 0 25 0.803 0.887 0.851 0.850

0 0 20 0.802 0.886 0.837 0.845

0 0 15 0.803 0.890 0.817 0.810

0 0 10 0.813 0.889 0.772 0.742

0 0 8 0.820 0.891 0.72 0.696

0 0 7 0.822 0.892 0.669 0.649

0 0 5 0.833 0.900 0.533 0.485

0 0 4 0.859 0.915 0.433 0.378

0 0 3 0.866 0.899 0.290 0.247

0 0 2 0.839 0.890 0.125 0.097

0 0 1 0.840 0.890 0.023 0.015

Table 4.2:Coverage probabilities for the Confidence Region for the Mean Shape for the sample

size 30. The parameters of the complex Watson distribution varies from a very highly concen-

trated case(0, 0, 200) to a very low concentrated case(0, 0, 1). The nominal value for the

coverage probability is 0.90
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4.11 Graphical Representation of the EL’s Asymptotic Distribu-

tion

Theory suggests that the histogram of the log EL ratio should have a shape similar to that of a

χ2 distribution due to Wilks theorem. Since the histogram of realizations of a random variable

gives an approximate graphical representation of its pdf, the histogram of the log EL ratio

should be similar to the density of aχ2 distribution with2k − 4 degrees of freedom.

In Figure 4.1, a graphical representation of the EL indicates that its asymptotic distribution

broadly agrees with the theoretical considerations. The EL variable is obtained from 400 sam-

ples of size 100 from a highly concentrated complex Watson distribution with parameters 0,

0 and 800. The histogram of the EL of Figure 4.1 has a shape broadly similar to that of aχ2

distribution with2k − 4 = 4 degrees of freedom.

In Figure 4.2, a graphical representation of EL, calculated for bootstrap samples, indicates

that this statistic has also an appropriate asymptotic distribution. The bootstrap samples were

obtained according to the following scheme. A Monte Carlo sample of size 100 was generated

from a complex Watson distribution with parameters 0, 0 and 800, the same parameters of the

previous simulation experiment. For this Monte Carlo Sample, 400 bootstrap samples were

selected. The histogram of the EL for the 400 bootstrap samples suggests that the distribution

of this statistic is roughlyχ2 with 4 degrees of freedom.

4.12 Analysing Real Data

The empirical likelihood method is applied to the neural spines of T2 mouse vertebra. This

data set was considered in§2.8.2. The number of bootstrap samples was 200.
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Figure 4.1: Histogram of the EL. The EL is calculated for 400 samples from a very highly

concentrated complex Watson distribution with parameters (0,0,800). The line is the density of

the chi-square with 4 degrees of freedom.
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Figure 4.2: Histogram of the EL for the 400 bootstrap samples. The bootstrap samples were

obtained from a Monte Carlo sample of a very highly concentrated complex Watson distribution

with parameters (0,0,800). The line represents the density of the corresponding chi-square.

130



On the left side of Figure4.3 the mean shapes of the bootstrap samples are shown. Those

correspond to the EL bootstrap samples that are inside the bootstrap calibrated convex hull.

Thus this set of points is a good representation of the EL bootstrap calibrated confidence region

on the landmark space.

On the right side of Figure4.3 the NA confidence regions, which were defined in(1.21),

are shown.

From the simulation results, it was seen that EL (Bootstrap) confidence regions have better

coverage probability than NA confidence regions. On the other hand, Figure4.3 shows that EL

bootstrap calibrated confidence regions are bigger than the NA confidence regions, which were

defined in(1.21). Since the data set considered has low concentration, this real example illus-

trates that this difference should be noted, and EL (Bootstrap) methods are more appropriate

for low concentrated data sets than EL (Tabular), Goodall and Hotelling methods.

4.13 Empirical Likelihood Tests for Several Samples

Contrary to the bootstrap methods, EL confidence regions and hypothesis tests are very closely

related. Bootstrap confidence regions and hypothesis tests are treated separately in the liter-

ature. However, EL was originally developed to be a nonparametric version of the Wilks’s

theorem (see comments above Theorem4.2), and the EL ratio is used for both confidence re-

gions and hypothesis tests. Once a confidence region has been calculated, hypothesis tests can

be derived naturally.

The case of hypothesis tests for several samples will be considered. The situation is that of

the one way analysis of variance (ANOVA) (see Owen, 2001, pp. 87-90).
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Figure 4.3: The graph on the left has the bootstrap EL means shape inside the bootstrap cal-

ibrated EL Confidence Region. A rule using bootstrap calibration is defined to decide if the

mean shape of a bootstrap sample is inside or outside the confidence region. This rule is used

to choose the samples that appear on the graph. The graph on the right presents the normal

approximated confidence regions. Those regions are built by using the principal components

in the tangent space. Those principal components are projected back to the landmark space to

deliver this graphical representation.
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Considerp groupsu[1], . . . , u[p]. Supposeu[j] = {uij : i = 1, . . . , nj}, whereu has

distributionF (ν[j], ψ[j]), whereν[j] is a unknown location parameter andψ[j] is an unknown

scale parameter. Thus the groups can have different dispersion structure. In the experimental

design literature, each group corresponds to the levels of a factor.

Consider the following hypotheses

H0 : ν = ν[1] = . . . = ν[p] versusH1 : ν[1], ν[2], . . . , ν[p] unrestricted.

The anova statistic is given by

F =

1
p−1

∑p
j=1 nj(ū.j − ū..)

2

1
n−p

∑p
j=1

∑nj

i=1(uij − ū.j)2
,

whereū.j = 1
nj

∑nj

i=1 uij and ū.. =
∑p

j=1

∑nj

i=1 uij . If the variancesv[j] are equal and the

observationsuij are normally distributed, the statisticF has anFp−1,n−p distribution. EL

provides an interesting nonparametric alternative to the classical one-way anova. It does not

need the assumptions that the observations are normally distributed and that the variances of

the different groups are the same. So the EL method can be applied in other cases where the

normality assumption is not suitable.

4.14 Empirical Likelihood Hypothesis Tests in Shape Analysis

This section introduces EL methods to test hypotheses in shape analysis. The approach we

describe is a natural extension of the EL method for building confidence regions. We focus on

p-sample problems where there is interest in testing for a common mean shape in each ofp

populations.
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Considery[j] ≡ {Yij , 1 ≤ i ≤ nj} as a random sample of configurations fromp popula-

tions of objectsΠ[j], where1 ≤ j ≤ p. Let z[j] = {zij : i = 1, . . . , nj} be the pre-shapes of

y[j]. Let the matricesS[1], . . . , S[p] be the product matrices of the groups1, . . . , p, given by

S[j](w) =

nj∑

i=1

wijzijz
⋆
ij ,

nj∑

i=1

wij = 1.

We now define the EL ratio in the case of several samples.

Even thoughEL[j] is similar to(4.25), this function can be more precisely defined. Again

the constraint is thatm is an eigenvector of the matrixS[j](w) corresponding to the largest

eigenvalue, wherewi are non-negative weights to be determined.

The constraints are given by

Re{m⋆
l
[j]S[j](w)m} = 0, Im{m⋆

l
[j]S[j](w)m} = 0, l = 1, . . . , k − 2, j = 1, . . . , p.

Define

γl(w) = m⋆
l S

[j](w)m (4.32)

and

δ
[j]
il = m⋆

l zijz
⋆
ijm =

∂γ
[j]
l (w)

∂wi
. (4.33)

Using the definitions(4.32) and(4.33), the profile empirical likelihood ratio function for

the mean shape is given by
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EL[j](m) = max
wij≥0

{ nj∏

i=1

nwij

∣∣∣∣∣

nj∑

i=1

wij = 1 and C2 = 0

}
, (4.34)

whereC2 =
∑k−2

l=1 {λ
(R)[j]
l Re(γ

[j]
l (w)) + λ

(I)[j]
l Im(γ

[j]
l (w))}.

An EL method is presented to test the hypothesis

H0 : m[1] = m[2] =, . . . , m[p] = µ versusH1 : m[1],m[2], . . . , m[p] unrestricted (4.35)

The main computational challenge is to maximize the EL underH0. In other words, to maxi-

mize the function

p∏

j=1

EL[j](m) (4.36)

overm, whereEL[j](m) is defined in(4.34). A numerical procedure from the computer pro-

gramR was used to calculate(4.36). This procedure is calledBFGS . TheBFGS procedure is

a quasi-newton method that finds the optimum value for a parameter vector of a given function.

The details about this procedure are given by Nocedal and Wright (1999).

The following theorem parallels Theorem 3.1.

Theorem 4.4.Considers the hypotheses(4.35), in the case where there arek landmarks. Then

provided that each population satisfies the conditions of Theorem 2.1, the test statistic

2log[max
H1

EL/max
H0

EL]

has an asymptoticχ2
(p−1)(2k−4) distribution underH0.
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Bingham n EL EL Hotelling Test Goodall Test

eigenvalues (Tabular) (Bootstrap) (1.32) (1.27)

0, 6, 8 30 0.06 0.05 0.18 0.33

50 0.11 0.08 0.12 0.25

100 0.15 0.14 0.13 0.29

0, 4, 6 30 0.10 0.08 0.21 0.44

50 0.14 0.13 0.19 0.42

100 0.12 0.11 0.14 0.42

0, 2, 4 30 0.10 0.06 0.18 0.69

50 0.08 0.04 0.18 0.72

100 0.08 0.07 0.18 0.75

0, 1, 2 30 0.04 0.03 0.25 0.92

50 0.06 0.04 0.20 0.95

100 0.09 0.04 0.22 0.95

Table 4.3:Observed significance level of the tests for populations with low concentration and

heterogeneous variance structure. This experiment is similar to the one of Table 3.1 but the

number of Monte Carlo samples is only 100. The vector of eigenvalues of the first and second

populations are(0, 1, 2) and(0, 15, 30), respectively. The nominal significance level is0.05.

4.15 Simulation Experiment

This section presents a simulation study to compare the EL test with Hotelling and Goodall

two sample tests. The computation of the EL method is very computationally intensive. For

example, we estimated that, for 1000 Monte Carlo samples and 200 bootstrap resamples for

each Monte Carlo sample, our program would take at least 10 months to finish. Thus this

simulation experiment was done with 100 Monte Carlo samples and 200 bootstrap samples for

each Monte Carlo sample.
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4.16 A Real-data Example

The EL method for hypothesis tests is applied to the schizophrenic dataset (see Dryden and

Mardia, 1998, p. 11). This example has 14 schizophrenic and 14 normal patients. The number

of landmarks placed in each object is 13.

The EL method cannot be applied in this example if the total number of landmarks is

considered. The algorithm cannot find the estimates of the parameters for this case. Thus

to apply the EL method in this example, only four landmarks are considered. The labels of

those landmarks are 1, 2, 4 and 13. The observed significance level of the tests based on

EL (Tabular), EL (Bootstrap), Goodall and Hotelling tests were 0.4633, 0.7462, 0.0002 and

0.0147, respectively. The performance of the EL methods differs from that of the Goodall and

Hotelling tests. This example is very challenging for EL method since the sample size is small.
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Chapter 5

Conclusions and Directions for

Further Research

The aim of this thesis was to show how to apply computer intensive methods such as bootstrap

and empirical likelihood methods in statistical shape analysis.

The final conclusions about using bootstrap and empirical likelihood methods in shape

analysis are presented in this chapter. Also, some suggestions for further work are given. The

chapter is organized as follows:§5.1 gives a comparison of the two approaches, considering

methodological and numerical aspects. Some comments about directions for further research

are given in§5.2 .

5.1 Comparing the Two Methods

Since two distinct approachs are considered, the reader might wonder which one is the most

appropriate for statistical shape analysis. The conclusion is not simply that one is definitely

better than the other. It depends on the objectives of the reader and also the computational

resource available since the computing time is a very relevant point. In addition to the aims of
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the reader, one should bear in mind that there is a huge diference between developing a new

method and using a method which already exists in a particular problem.

The structure of this chapter is as follows. The positive and negative points of each method

are summarized first; and then the two methods are compared. In these comparisons we attempt

to clarify the diferent perspectives between someone who is developing and someone who is

just using the method. The simulation results from the previous chapters are also used to

compare the two methods.

5.1.1 Bootstrap Methods

Bootstrap methods are often easy to implement once a suitable statistic has been identified.

The user who wishes to apply the bootstrap method of this thesis for a real dataset just needs to

implement the steps of the bootstrap Algorithm 2.2, in the one sample case, or Algorithm 3.1,

in the multisample case.

However, if it is necessary to develop a new bootstrap method, the derivation of the theo-

retical basis can be very hard work; see the proofs given in§2.7 and§3.4. The difficulties are

more pronounced when it is necessary to find an asymptotically pivotal statistic. The proof that

a statistic is asymptotically pivotal can be a very laborious task.

5.1.2 Empirical Likelihood Methods

The computational effort with empirical likelihood can be very intensive. A numerical opti-

mization procedure is one of the steps of the EL Algorithm 4.1, for example; and this step can

be very intensive. Also, when the EL method is used with bootstrap calibration, which is the

case in Algorithm 4.2, the numerical optimization step is done for each bootstrap sample which
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involves a substantial computational effort. This is particularly noticable in the case of hypoth-

esis tests. For example, the processing time of the program which applies bootstrap calibration

using the function(4.36), is about10 months if the number of Monte Carlo samples is 1000,

the number of bootstrap resamples is 200 and the sample size is 100.

For someone who wants to develop a new nonparametric method for a particular problem,

empirical likelihood seems to be attractive since it uses a statistic that is automatically pivotal

under very mild conditions, an advantage not shared by the bootstrap. However, EL needs

bootstrap calibration if good coverage accuracy of confidence regions is to be achieved. This

involves a big computational effort.

Owen’s algorithm (see appendix D) makes it easier to implement EL methods in some

circunstances, including the shape context considered here. Since this algorithm is numerically

very stable it helps researchers in the field of empirical likelihood.

5.1.3 Simulation Results

In this section some numerical comparisons between bootstrap and EL methods are presented.

The tables of this section are obtained from combining columns from tables in previous chap-

ters. At this stage is not necessary to compare the bootstrap and empirical likelihood methods

to Hotelling and Goodall tests since these comparisons were already done previously.

The coverage probabilities of the EL and bootstrap confidence regions are displayed in

Table 5.1, which is obtained from Table 2.2 and Table 4.1. Thus all the conditions of the

experiment are the same as in those tables: 1000 Monte Carlo samples were used and 200

bootstrap resamples were draw from each sample. The third and fourth columns are from the
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Eigenvalues of Sample EL EL Pivotal Hotelling’sT 2

the Complex Size Bootstrap Bootstrap Bootstrap

Bingham (4.25) Algorithm 4.2 (2.15) (2.17)

0 0 800 30 0.794 0.885 0.899 0.909

50 0.856 0.892 0.898 0.894

100 0.893 0.901 0.903 0.901

0 50 850 30 0.795 0.884 0.899 0.909

50 0.856 0.893 0.898 0.894

100 0.893 0.904 0.903 0.901

0 0 1 30 0.840 0.890 0.822 0.719

50 0.887 0.904 0.864 0.745

100 0.888 0.900 0.871 0.823

0 1 2 30 0.845 0.891 0.863 0.769

50 0.887 0.909 0.870 0.811

100 0.903 0.908 0.891 0.857

Table 5.1: Coverage probabilities for the Confidence Region for the Mean Shape of the EL

and bootstrap methods. Four different special cases of the complex Bingham distribution are

considered. The third and fourth columns are from the Table 4.1 and the last two columns are

from Table 2.2. The results here are based on 1000 Monte Carlo samples and 200 bootstrap

resamples for each Monte Carlo sample.

Table 4.1 and the last two columns are from Table 2.2. Since the nominal level is0.90, the

EL with bootstrap calibration is the most accurate method and the EL (Tabular) is the least

accurate. Also, the asymptotically pivotal bootstrap is more accurate than the Hotelling’sT 2

bootstrap. For example, when the parameters of the complex Bingham are 0, 1 and 2 and the

sample size is 30, the coverage probability of the EL with bootstrap calibration is 0.891 and

this is closer 0.90 than the 3 other methods.

More coverage probabilities of the EL and bootstrap confidence regions are displayed in
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Eigenvalues of the EL EL Pivotal Hotelling’sT 2 ModifiedT Test

Complex Bingham (4.25) Bootstrap Bootstrap Bootstrap (2.12)

Algorithm 4.2 (2.15) (2.17)

0 0 200 0.795 0.885 0.899 0.909 0.857

0 0 30 0.800 0.886 0.901 0.904 0.857

0 0 25 0.803 0.887 0.902 0.903 0.858

0 0 20 0.802 0.886 0.903 0.903 0.859

0 0 15 0.803 0.890 0.897 0.899 0.859

0 0 10 0.813 0.889 0.901 0.893 0.860

0 0 8 0.820 0.891 0.898 0.882 0.857

0 0 7 0.822 0.892 0.901 0.888 0.857

0 0 5 0.833 0.900 0.897 0.891 0.846

0 0 4 0.859 0.915 0.901 0.896 0.854

0 0 3 0.866 0.899 0.897 0.879 0.844

0 0 2 0.839 0.890 0.880 0.831 0.782

0 0 1 0.840 0.890 0.821 0.719 0.672

Table 5.2:Coverage probabilities for the Confidence Region for the Mean Shape for the sample

size 30 of the EL and bootstrap methods. In this case, 1000 Monte Carlo samples and 200

bootstrap samples are generated from the complex Watson distribution. The second and the

third columns are from Table 4.2 and the last three columns are from Table 2.3.
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Eigenvalues of the n Bootstrap EL EL

Complex Bingham (3.11) (4.25) bootstrap

Algorithm 4.2

I:0, 1, 2 30 0.071 0.04 0.03

II:0, 15, 30 50 0.066 0.06 0.04

100 0.057 0.09 0.04

I:0, 2, 4 30 0.063 0.10 0.06

II:0, 30, 60 50 0.052 0.08 0.04

100 0.037 0.08 0.07

I:0, 4, 6 30 0.045 0.10 0.08

II:0, 60, 90 50 0.049 0.14 0.13

100 0.051 0.12 0.11

I:0, 6, 8 30 0.041 0.06 0.05

II:0, 90, 120 50 0.057 0.11 0.08

100 0.053 0.15 0.14

Table 5.3:Observed significance level of the tests for populations with low concentration and

heterogeneous variance structure. The vector of eigenvalues of the first and second populations

are (0, 1, 2) and (0, 15, 30), respectively. The nominal significance level is0.05. The first

column of results come from Table 3.1 and the last two columns are from Table 4.3.

Table 5.2. The conditions of the experiment are the same as in Tables 4.2 and 2.3: 1000

Monte Carlo samples are generated from complex Watson distributions, where those distri-

bution varies from low concentration, with eigenvalues 0, 0 and 1, to a high concentration

with eigenvalues 0, 0 and 200. The number of bootstrap resamples per Monte Carlo sample is

200. The results show that the estimated coverage probability of the EL method with bootstrap

calibration is the closest to the nominal value 0.90, specially for low concentrated distributions.

The observed significance levels of the bootstrap test and the empirical likelihood tests
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are displayed in Table 5.3. One should bear in mind that the bootstrap results are based on

1000 Monte Carlo samples and 200 bootstrap resamples; and the EL results are based on 100

Monte Carlo samples and 200 bootstrap resamples, and therefore the results are not directly

comparable. However, the table at least shows that EL and EL bootstrap methods give similar

results to the asymptotically pivotal bootstrap method. For example, when the eigenvalues of

the complex Bingham distribution are 0, 1 and 2, which is a low concentration case, the ob-

served significance values of the EL (Tabular) and EL with bootstrap calibration are very close

to the nominal value 0.05, especially for the sample sizes 30 and 50. It shows the EL (Tabular)

and EL with bootstrap calibration tests are very competitive in relation to the asymptotically

pivotal bootstrap.

5.2 Further Work

This section presents several possible directions for future work in statistical shape analysis.

One direction is to use other methods for the problems considered in this thesis, e.g., build-

ing confidence regions and testing hypotheses. A second direction is to use computer intensive

methods, like the bootstrap and empirical likelihood, in other problems of shape analysis. Some

details about both directions will be given.

5.2.1 A Bayesian Method

Only classical computer intensive methods have been used in this thesis. It would be of interest

to develop Bayesian methods for tackling the problem of comparing the mean shapes of several

groups of objects. A Bayesian approach to problems in shape analysis is given by Dryden and
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Mardia (1998, p. 149), who consider the case that a random sample of pre-shapesz1, . . . , zn

has a complex Watson distribution with modeµ and known concentration parameterκ. They

use a complex Bingham distribution for the priorf(µ). In mathematical terms,

f(µ|z1, . . . , zn) ∝ f(z1, . . . , zn|µ)f(µ)

∝ exp (κ
n∑

i=1

z⋆
i µµ⋆zi) exp (µ⋆Aµ)

∝ exp (κ

n∑

i=1

z⋆
i µµ⋆zi + µ⋆Aµ)

∝ exp{µ⋆(kS + A)µ},

whereS =
∑n

i=1 ziz
⋆
i is the product matrix.

So the posterior distribution is also a complex Bingham and since the prior and posterior

are in the same family of distributions the prior is called conjugate.

This Bayesian model is restrictive since the Bingham distribution is assumed for the prior

and the Watson distribution is assumed for the data. A possible research topic would be to con-

sider other models for shape datasets. Since these possibilities are analytically very complex,

it would be necessary to use a computer intensive method called Markov chain Monte Carlo

(MCMC) to implement the Bayesian approach.

5.2.2 Size-and-Shape

In §1.3, the definitions of complex configuration, Helmertized configuration, pre-shape and

shape were given. Recalling from that section that shape is the remaining information when

location, scale and rotation are removed, it is possible to consider another way of doing shape

analysis. In this way the information about scale is retained. This type of analysis is called size-
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and-shape analysis. Mathematically, a size-and-shape study is performed using the pre-shapes

(1.4) with the scale information retained. This is given by

w = Hz0,

which is defined in(1.3).

The bootstrap and empirical likelihood methods of this thesis can be applied in a size-and-

shape study. Figure 5.1 shows a bootstrap confidence region obtained by applying the Algo-

rithm 2.2 to the Helmertized configurationsw1, . . . , wn of the dataset of example 2.1, which

is T2 mouse vertebra. These numerical results look reasonable and illustrate the feasibility of

applying the methods of this thesis to the analysis of size-and-shape.

5.2.3 Shape Variation

Shape variation is studied by using principal components on the tangent space. This topic was

seen in§1.6. The study of shape variation uses the sample covariance matrix on the tangent

spaceSv which was given in(1.18).

The idea for studying shape variation is to apply the principal components method to the

matrix Sv and then to project the two first principal components to the landmark space. Thus

the shape variation is represented by

µ̂ + c
√

φ1u1 andµ̂ + c
√

φ2u2,

which were defined in(1.21).

A topic for further research is to use the principal components from bootstrap resamples and
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Figure 5.1: Bootstrap Confidence Regions for a Size-and-Shape Case
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to try to find ways of improving the coverage of bootstrap confidence regions in the landmark

space.
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Appendix A

Matrix Results

Some basic results which are used in the thesis will be reviewed in this appendix.

ConsiderL : V → W, whereL is a linear transformation andV andW are two complex

vectors spaces of dimensionsdv anddw. The kernel ofL is defined by

ker(L) = {v ∈ V : Lv = 0}. (A.1)

Also consider that the orthogonal complement of the subspaceV is defined as

V ⊥ = {u : u⋆v = 0}. (A.2)

The spectral decomposition theorem for complex Hermitian matrices is now stated. It

plays a very important role in what follows. Some other basic properties of complex numbers,

matrices and vectors are needed as well (see e.g. Fraleigh and Beauregard, 1995, pp. 454-486).

Let c = a + bi, wherea andb are real numbers andi =
√
−1. The number̄c = a − bi is

said to be the complex conjugate ofc.

If C = [Cjk] is ap×p complex matrix, the conjugate transpose ofC is given byC⋆ = [c̄kj ].
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A complex matrixC is said to be Hermitian if it is equal to its conjugate transpose, i.e.,

C⋆ = C. It should be noted that the eigevalues of a Hermitian matrix are real even though the

eigenvectors are complex vectors (see Kent, 1994).

Theorem A.1. (Spectral Decomposition theorem for Hemitian Matrices)

LetC be ap × p Hermitian matrix. Then we may write

C =
s∑

j=1

ξjPj ,

whereξ1 < . . . < ξs are the distinct eigenvalues ofC and ξj has multiplicityrj , where
∑s

j=1 rj = p; and thePj(p × p) are Hemitian projective matrices(P ⋆
j = Pj andP 2

j = Pj).

Another useful concept is the generalized inverse of a real symmetric matrixR (a × a). If

the symmetric matrixR has rankp ≤ a, the Moore-Penrose generalized inverse ofR is given

by

R+ =

p∑

j=1

κ−1
j γjγ

T
j , (A.3)

where theκ′
js are the non-zero eigenvalues ofR and theγj ’s are their corresponding eigevec-

tors (see Dryden and Mardia, 1998, p. 152).

Minimizing the quadratic forma⋆Ca, whereC is a Hermitian matrix anda is a complex

unit vector, is a relevant topic for the Chapter 3, when bootstrap hypothesis tests are considered.

It is also relevant for Procrustes fit. This result for real symmetric matrices is given by Mardia

et. al. (1979, p. 479) and for Hermitian matrices see Mirsky (1955, p. 388).

Lemma A.1. Let C be a(p × p) Hermitian matrix with eigenvaluesǫ1 6 ǫ2 . . . 6 ǫp. Then

mina:a⋆a=1 a⋆Ca = ǫ1.

Proof.
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From Theorem A.1 we may writeC = TET ⋆, whereT = [τ1, . . . , τp], E = diag [ǫ1, . . . , ǫp] ,

andτ1, . . . , τp are unit eigenvectors ofC. Then for any complex unit vectora,

a⋆Ca = a⋆TET ⋆a

= y⋆Ey

=

p∑

i=1

ǫi|yi|2,

wherey = (y1, . . . , yp)
T = T ⋆a.

Thus to minimizea⋆Ca consider

a⋆Ca =

p∑

i=1

ǫi|yi|2

≥ ǫ1

p∑

i=1

|yi|2

≥ ǫ1,

since
∑p

i=1 |yi|2 = 1.

Thus the minimum is attained whena = τ1.

Power series of matrices and convergent matrix sequences are also relevant topics; see

Mirsky (1955) for further background. A power series for a complex square matrixA is defined

by

∞∑

m=0

cmAm,

wherecm is a scalar and by definitionA0 = Ip, the identity matrix. A matrix power series

∑∞
m=0 cmAm is said to be absolutely convergent if
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∞∑

m=0

cm||A||m < ∞

where||.|| is a suitable matrix norm, or distance.

On the space ofp × p complex matrices the Euclidean matrix distance is defined by

||A|| = {tr(A⋆A)}1/2,

wheretr(.) denotes the trace of a matrix. If{Am}m≥1 is a sequence of complex matrices, we

say thatAm → A if ||Am − A|| → 0 asm → ∞.

For any square complex matrixA, we define the exponentialexp (A) by

expA =
∞∑

s=0

1

s!
As.

Note thatexpA is convergent for any matrixA.
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Appendix B

Order Notation

Suppose thatan andbn are sequences of real numbers. The notation

an = O(bn) (B.1)

means that

lim sup
n→∞

|an|
|bn|

< ∞.

For example, ifan = µ + nσ2, whereµ andσ2 are constants, thenan = O(n) since

lim sup
n→∞

|µ + nσ2|
|n| = σ2.

In this thesis, only the order notationO(.) for sequences of real variables will be used. The

order notation is used to represent the accuracy of confidence regions and hypothesis tests.
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Appendix C

The Factor 2 in (2.12)

The claim that a2 is required in(2.12) will follow from (1.14) if it can be shown that

(z − µ)⋆Σ−1(z − µ) = ((x − µ1)
T , (y − µ2)

T )

(
Σ1 − Σ2

Σ2 Σ1

)−1(x − µ1

y − µ2

)
,

whereΣ = Σ1 + iΣ2, ΣT
1 = Σ1, ΣT

2 = −Σ2 andµ = µ1 + iµ2.

Write Σ−1 = Σ1 + iΣ2. Then the identity(Σ1 + iΣ2)(Σ
1 + iΣ2) = Ik−1

implies that

Σ1Σ
1 − Σ2Σ

2 = Ik−1 and Σ1Σ
2 + Σ2Σ

1 = Ok−1. (C.1)

Moreover, (C.1) implies that

(
Σ1 − Σ2

Σ2 Σ1

)−1

=

(
Σ1 − Σ2

Σ2 Σ1

)
.

Because



Σ1 −Σ2

Σ2 Σ1







Σ1 −Σ2

Σ2 Σ1


 =




Σ1Σ
1 − Σ2Σ

2 −Σ1Σ
2 − Σ2Σ1

−Σ2Σ
1 + Σ1Σ

2 Σ1Σ
1 − Σ2Σ

2




which implies that

(
Σ1 − Σ2

Σ2 Σ1

)(
Σ1 − Σ2

Σ2 Σ1

)
= I2k−2.
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Therefore,

(z − µ)⋆Σ−1(z − µ)

= (x − µ1 − i(y − µ2))
T (Σ1 + iΣ2)(x − µ1 + i(y − µ2))

= (x − µ1)
T Σ1(x − µ1) + (y − µ2)

T Σ1(y − µ2)

−(x − µ1)
T Σ2(y − µ2) + (y − µ2)

T Σ2(x − µ1)

= ((x − µ1)
T (y − µ2)

T )

(
Σ1 − Σ2

Σ2 Σ1

)(
x − µ1

y − µ2

)

= ((x − µ1)
T (y − µ2)

T )

(
Σ1 − Σ2

Σ2 Σ1

)−1(x − µ1

y − µ2

)

as required.
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Appendix D

Owen’s Empirical Likelihood

Program for a Vector Mean

The EL ratio for a vector mean is defined as

R(µ) = max
wi≥0

{
n∏

i=1

(nwi) |
n∑

i=1

wiui = ν and
n∑

i=1

wi = 1

}
. (D.1)

Adopting a Lagrange multiplier approach, we consider

G =

n∑

i=1

log(nwi) − nλT

(
n∑

i=1

wi(ui − ν)

)
+ γ

(
n∑

i=1

wi − 1

)
,

whereλ ∈ R
d are the multipliers to be determined. The steps to find the maximum ofG are the

same as the scalar case, see§4.3. We find thatγ = −n andλ ∈ R
d. The weights are estimated

as

wi =
1

n

1

1 + λT (ui − µ)
.

Also as in the univariate case, replacingwi in the first constraint
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n∑

i=1

wi(ui − µ) = 0d,

gives

1

n

n∑

i=1

ui − µ

1 + λT (ui − µ)
= 0d. (D.2)

Soλ must satisfy thed equalities of(D.2).

There is another way to solve this problem using convex duality. Convex duality in this

context results in a maximization overn variables withd + 1 constraints becoming a mini-

mization overd variables. The number of variables would bed + 1 but the multiplierγ is

already known.

The convex dual of(D.2) is given by

log R(µ) = log

n∏

i=1

nwi = −
n∑

i=1

log(1 + λT (ui − µ)) ≡ L(λ).

The system(D.2) is equivalent to

∇L(λ) = 0,

where∇ is the gradient ofL(.).

It should be noted thatL(λ) hasn inequality constraints because the cases ofwi ≤ 0 should

be excluded. So thosen inequality constraints are

1 + λT (ui − µ) ≥ 0, i = 1, . . . , n. (D.3)
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Thus the maximization problem, defined by(D.1), is equivalent to minimizingL(λ). This

is the convex duality formulation for this particular problem.

It is possible to discard the constraints(D.3). It is done by defining a pseudo-logarithm

function. This function, when used inL(λ), delivers

L⋆ = −
n∑

i=1

log⋆(1 + λT (ui − µ)).

So to minimize this new function is not necessary to impose any constraint.

The algorithm of Owen uses the formulation above to find the empirical likelihood for a

parameter vector. The explanation above was to clarify the main points of the algorithm. The

technical details can be found at the website

http://www-stat.stanford.edu/owen/empirical/el.S.
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