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Abstract

The aim of this thesis is to propose bootstrap and empirical likelihood confidence regions
and hypothesis tests for use in statistical shape analysis.

Bootstrap and empirical likelihood methods have some advantages when compared to con-
ventional methods. In particular, they are nonparametric methods and so it is not necessary to
choose a family of distribution for building confidence regions or testing hypotheses.

There has been very little work on bootstrap and empirical likelihood methods in statistical
shape analysis. Only one paper (Bhattacharya and Patrangenaru, 2003) has considered boot-
strap methods in statistical shape analysis, but just for constructing confidence regions. There
are no published papers on the use of empirical likelihood methods in statistical shape analysis.

Existing methods for building confidence regions and testing hypotheses in shape analysis
have some limitations. The Hotelling and Goodall confidence regions and hypothesis tests are
not appropriate for data sets with low concentration. The main reason is that these methods are
designed for data with high concentration, and if this hypothesis is violated, the methods do
not perform well.

On the other hand, simulation results have showed that bootstrap and empirical likelihood
methods developed in this thesis are appropriate to the statistical shape analysis of low concen-
trated data sets. For highly concentrated data sets all the methods show similar performance.

Theoretical aspects of bootstrap and empirical likelihood methods are also considered.
Both methods are based on asymptotic results and those results are explained in this thesis.
It is proved that the bootstrap methods proposed in this thesis are asymptotically pivotal.

Computational aspects are discussed. All the bootstrap algorithms are implemented in



“R”. An algorithm for computing empirical likelihood tests for several populations is also

implemented in “R”.
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Chapter 1

Introduction

In this chapter background on shape analysis is given and notation for describing shape data is
presented. Extensive accounts of shape analysis are given in the monographs by Dryden and
Mardia (1998), Small (1996) and Kendall et al. (1999).

In §1.1, the main ideas of statistical shape analysis are considered. A review of the liter-
ature about shape analysis is the topi¢ b2. The mathematical representation of shape and
concepts such as the mean shape are reviewgtl® In§1.4, coordinate systems including
Procrustes coordinate systems and tangent coordinate systems are considered. Two relevant
distributions, the complex normal and complex Bingham distributions, and techniques for their
simulation, are studied ifil.5. How tangent coordinates can be used to obtain confidence re-
gions for the mean shape via a hormal approximation is reviewgt.t Hypothesis tests for
a single population are considerediih7 and for several populations§a.8.

Readers who are familiar with shape analysis may wish to skip fowdyt. o



1.1 Main ldeas of Shape Analysis

The study of the shape of random objects has received increasing attention in several disci-
plines. Advances in computer technology have made easier the capture and manipulation of
images of objects. This information can be used to answer relevant questions in many dis-
ciplines including biology, medicine, archeology and computer vision. Some examples of
objects which have been studied are mouse vertebrae, gorilla skulls and magnetic resonance
brain scans.

The concept of the shape of an object plays an essential role in this study. Statistical shape
analysis is concerned with summaries and comparisons of shapes of objects.

Some steps have to be carried out in order to represent the shape of an object in a mathe-
matically convenient way. A convenient approach is to place landmarks on the object, which
are points for identifying special locations on the object. The numerical coordinates of the
landmarks are then used to represent an object. These coordinates belong to a space which is
called the landmark space. The information about the shape of an object is what is left after
allowing for the effects of translation, scale and rotation (Kendall, 1984).

A new set of coordinates of an object, which will be called pre-shape coordinates, can be
obtained from the coordinates of that object in the landmark space. Suitable transformations are
used to remove the effects of scale and translation. The new coordinate system also represents
a mapping from the landmark space to the a new space. The new space is called pre-shape
space.

We shall primarily concentrate on shapes of objects in two dimensions, i. e. planar shapes.



Two important summaries of a random sample of objects, the mean shape and the product
matrix (or ssp), can be calculated using the pre-shape coordinates. The product matrix repre-
sents the variation of the pre-shape coordinates and the mean shape is defined as the eigenvector
associated to the largest eigenvalue of this matrix.

The shape is finally obtained by removing the rotation information in the pre-shape coordi-
nates of an object. The rotation information is eliminated by rotating an object to be as close as
possible to a template. The new set of coordinates of the object are inside a hew space, which
is called shape space.

The pre-shape and shape spaces are non-Euclidean spaces. It is therefore difficult to per-
form standard statistical analyses on those spaces. To avoid the difficulties of non-Euclidean
spaces it is possible to define a linear approximation to the space. A tangent space is a local
linear approximation to the space at a particular point. For a given random sample of objects,
the pre-shape coordinates of those objects can be projected on the tangent space at the sample
mean shape. The new coordinates are called tangent coordinates.

Inference methods in shape analysis are often carried out in the tangent space. Such meth-
ods work better when the data are highly concentrated. In the tangent space many commonly
used procedures of standard linear multivariate analysis are available. For example, shape vari-
ability can be studied by applying principal components analysis to the tangent coordinates.

There are some other possible approaches to statistical shape analysis which are not con-
sidered in this thesis. Possibilities include size-and-shape analysis, reflection shape analysis
and reflection size-and-shape analysis. In the size-and-shape statistical analysis of objects, the

information about size is retained, and the information about rotation and location is discarded.
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If one wants to perform a reflection shape study of objects, the information about reflection
should be removed from the shapes of those objects. Similarly, if one wants to perform a
reflection size-and-shape study of objects, the information about reflection should be removed

from the size-and-shapes of those objects (see Dryden and Mardia, 1998, p. 57).

1.2 Literature Review

The first work on statistical shape analysis was done by Kendall (1977). In a later paper,
Kendall (1984) gives a more complete description of the research field. Several important
concepts including shape spaces, shape manifolds, Procrustes analysis and shape densities are
presented and discussed in depth. He also clarifies the differences between statistical shape
analysis and the theory of shape which is studied by topologists.

In Kendall (1984) a system of coordinates is also introduced; we refer to this later as
Kendall's coordinate system. One interesting fact about this system is that the location is
removed by the use of a special matrix, the Helmert matrix. An important contribution of
Kendall (1984) was the mathematical definition of shape, where he defines a mathematical
space to represent the shape of a labelled skeipaints inm dimensions.

On the other hand, Bookstein (1984, 1986) presents a mathematical basis for the study
of morphometrics. In this case the objects under consideration are from disciplines such as
biology and medicine, and have landmarks chosen according to some biological or medical
features. He also introduces what is known as Bookstein’s coordinate system, which removes
the effects of translation, rotation and scale by manipulating two of the landmarks in such a

way that they will be in fixed position.
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When invited to comment the paper of Bookstein (1986), Kendall (1986) established the
connection between their two theories. Kendall's labelled sét pbints inm dimensions
corresponds to Bookstein’s landmarks. Even though they use different ways of calculating size
and different coordinates systems, their ideas are quite similar in the sense of representing the
shape of an object as a point in a manifold.

Procrustes analysis can be considered as a methodology for estimating for, a particular
set of objects, the “optimal” scaling transformation, rotation transformation and translation
transformation. The topic of Procrustes analysis was fully studied by Goodall (1991) who
defined the mean shape in terms of Procrustes analysis. If the sum of squared distances between
a point and the pre-shapes is minimal, then this point is said to be the mean shape.

A Gaussian model for the landmarks is also introduced by Goodall (1991). This model
has a parameter for each transformation: scale, rotation and translation. Goodall (1991) also
presented some algorithms to perform Procrustes analysis including an algorithm for ordinary
procrutes analysis which minimizes the sum squares of the distances between two observa-
tions, and a more general method using weighted least squares. He also presented an iterative
algorithm for estimating the transformations with several observations. This second algorithm
is called the generalized Procrustes analysis.

After applying the transformations to the pre-shapes, the Procrustes fit coordinates are
obtained. The mean shape also can be obtained as the mean of those coordinates.

Goodall also defined tests for shapes in the one and two population cases. Those tests were
based on statistics of F-ratio and Hotellin@'$ type. The F-ratio test is called Goodall’s test

in the literature.

12



Mardia and Walder (1994) considered tests for paired landmark data. They used a Gaussian
model for the landmarks, where for each object there are two observations. The case of two
x-rays for the same object was given as an example. They proposed a paired shape density, and
they used this density to perform inference. They estimated the parameters of this distribution
by maximum likelihood and they derived a likelihood ratio statistic, which can be used for
testing hypotheses and for building confidence regions.

An important probabilistic model for statistical shape analysis is presented by Kent (1994).
This model was the complex Bingham distribution, a complex version of the real Bingham dis-
tribution. One important property of the complex Bingham distribution is complex symmetry.
This complex symmetry means that a vector and any rotated version of this vector will have
the same distribution. This property is useful because shape analysis can be performed while
working with pre-shapes.

The complex Watson distribution, which is a special case of the complex Bingham dis-
tribution, was discussed by Mardia and Dryden (1999). Maximum likelihood estimation and
hypothesis testing procedures are considered, and they also illustrate how to use this distribu-
tion in shape analysis.

Kent (1997) introduced a method for calculating the mean shape which is resistant to out-
liers for landmark data in two dimensions. His model uses an angular central Gaussian dis-
tribution for the pre-shapes. The mean shape is calculated by maximum likelihood estimation
using the EM algorithm.

The geometry of the shape space is studied by Kendall (1984), Le and Kendall (1993) and

Kendall et. al (1999). See also Dryden and Mardia (1998, Ch 5, 7).
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1.3 Mathematical Representation of Shape

Let Y be ak x m matrix of Cartesian coordinates bflandmarks inm dimensions which is

given by

=1 -~ : (1.1)
Yea1 -+ Yem
A configuration are a set of landmarks on a particular object and the mvatsxisually called
a configuration matrix.
The shape of a configuration matrix is obtained by removing the information about isotropic
scaling, location and rotation. The shape space is the set of all possible shapes. The dimension

of the shape space associated to objects iiindmarks inm dimension is

km —m—1—m(m—1)/2.

The termkm is the total dimension of the configuration matiixand we subtract, 1
andm(m — 1)/2 as a consequence of removing location, scale and rotation respectively (see
Dryden and Mardia, 1998, p. 56).

The landmark space is a real sp&@ where the Cartesian coordinates of each landmark
are represented. For example, for two dimensional objects, 2, and the landmark space is
R2. In this thesis, the focus is exclusively on the case- 2.

Some transformations need to be performed on the mgtiixorder to remove the effects

14



of location, scale and rotation. When = 2, the configuration matrix may be written as a

complex vector. Define & x 1 complex vector

2V = (y171 +W12, . Y1 Tt ’L'y]g’2)T = (2?1)7 ey Z?k))T, (1.2)

which corresponds to complex coordinates for the landmarks. The supefsipised to
indicate that the configuration retains the effects of location, scale and rotation. The details of
each transformation in the case= 2 will be given below.

The first step is to remove location. This can be done in various ways, depending on the
coordinate system. Kendall’'s coordinates will be used here. Details about the Helmert matrix
and Helmert sub-matrix are needed for Kendall's coordinate system. The Helmert sub-matrix
provides a particular linear transformation which removes location by pre-multiptyigsee
Small, 1996, p. 130, and Dryden and Mardia, 1998, p. 34).

The full Helmert matrixd ©" is ak x k orthogonal matrix whose first row has all elements

equal tol /v/k, and has row + 1 for j > 1 given by

(hjy -+ hyj,—jh;,0,...,0), hj=—{j(G+1)} 2

with j = 1,...,k—1, where the number of zeros elements in the jawi is equal tak —j —1.

For example, if the number of landmarks is 5, the full Helmert matrix is given by

15



1/V5 1/V5 1/v/5 1/vV5 15
—1/vV2 1/V2 0 0 0
H = 16 —1/v6 2/V6 0 0
—1/V12 —1/V/12 —1/V12  3//12 0
—1/v/20 —1/v/20 —1/v/20 —1/v/20 4/v/20

It can be shown by direct calculation that the Helmert makfik is an orthogonal matrix.

The location of the complex configuratiefi is removed by multiplying it by th¢k — 1) x k
Helmert sub matrix, which is the Helmert matdk!” with the first row removed. The Helmert

sub-matrix will be called?. The Helmertized configuration is given by

w = H2". (1.3)

A configuration is said to beenteredif 172° = 0 wherel; is ak x 1 vector of ones.
Helmertized configurations are connected to the centered configurations by the following prop-

erty of the Helmert matrix (see Dryden and Mardia, 1998, p. 54):

1
H'H =1, — El’“lT’

wherely, is ak x k identity matrix andl;, is ak x 1 vector of ones. Moreover, sindé’" is
orthogonal, it follows thati” H = Ij—;. Thus, if the(k x 1) vectorz® = (z{,), ..., 2(,))" is

a complex configuration, then

1
(Ik — %1]{;1%)20 =20_ Zolk,

16



wherez? = k1 Zle Z?i)' Therefore, since’ — z°1, is a centered configuration, it means
that the centered configurations are equal to the Helmertized configurations multipigt. by

So it always possible to obtain the Helmertized configurations from the centered configurations
and vice versa.

The scale can be removed from the Helmertized configuratiosing

2z =w/Vww= Hz°/\/(Hz0)*Hz0, (1.4)

wherew™* is the complex conjugate transposeuwofThe vector: is called the pre-shape of the
complex configuration®. This name was coined by Kendall (1984). Note that a pre-shape is a
shape with rotation information retained.

The concept of pre-shape space will be reviewed because it plays an important role (see
Dryden and Mardia, 1998, p. 59 and Small, 1996, p. 9). The pre-shape space is the space of
all possiblek — 1 complex vectors that do not have translation and scale information. Thus the
pre-shape space is a unity complex hypersphetg in 1) —dimensional complex dimensions;

i.e.

CS*l={zeCrF 12 =1}, (1.5)

whereC*~1 is (k — 1)—dimensional complex space.
The shape space can be thought of as the pre-shape space with rotation information re-
moved. The rotation information in the pre-shape veetoan be eliminated by defining the

equivalence class
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[2] = {2 : 0 € [0,2m)}, (1.6)

where|z] is identified with any of its rotated versions. Kendall (1984) notes that the shape
space whem: = 2 is the complex projective spac”*—2, the space of complex lines passing
thought the origin.

An important problem of shape analysis is to estimate the average shape of a random sam-
ple of configurations. Considef, . . ., 2z as a random sample of complex configurations from
a population of objectll, where each! is defined by(1.2).

Let z1,...,2, be the pre-shapes af ..., 2%, wherez; is defined via(1.4) and z; €
CS*=1. The full Procrustes mean shapecan be found as the eigenvector corresponding to

the largest eigenvalue of the complex sum of squares and product (SSP) matrix which is defined

by (see Kent, 1994)

Since the complex matri% satisfies the condition that = S*, this matrix is Hermitian.
Provided that the underlying distribution of the pre-shapes has a density with respect to the
uniform distribution on the pre-shape sphere and k& — 1, as opposed to being concentrated
on a subspace, thehhas full rank with probability 1. So, applying the spectral decomposition
theorem for Hermitian matrices which is given in Theorg#nl) in appendix A S is written

as

S =S\, (1.7)



WhereX1 > XQ... > Xk_l > 0 are the eigenvalues, and, ..., ux_1 the corresponding
eigenvectors of.
Provided thaﬁl > /):2, ..., which will usually be the case in practice, the mean shajse

well defined and is given by

(1.8)

=)
I

=)

"

1.4 Coordinate Systems

In statistical shape analysis there several coordinate systems in common use. Each coordinate
system is useful for some aspects of the analysis. Two coordinate systems will be considered
here: full Procrustes coordinates and the tangent coordinates.

Procrustes analysis is a technique to match two objects up. When two or more objects
are considered, they may have different rotations, translations and scales. So the technique of
Procrustes analysis is used to match one object into the other. It is done using the pre-shapes
of those objects since the pre-shapes have the same translation and scale.

For a given sample of pre-shapes, Procrustes analysis is performed by fitting the pre-shape
of each object onto the mean shape. The new coordinates are called Procrustes fits or Procrustes
coordinates and they will be defined below.

Let z1,..., 2, be a random sample of pre-shapes, and alsa/et. ., w, be a random
sample of Helmertized configurations.

The configurations have an arbitrary rotation (see Dryden and Mardia, 1998, pp. 44-45).

Thus, before proceeding with statistical shape analysis, it is necessary to rotate all the config-
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urations in such way that they will be as close as possible of the sample mean shape. This is
done by calculating
wl = wipw;/(wiwg), i =1,...,n. 1.9)
ThUSw{’, ..., w are called the full Procrustes fits or full Procrustes coordinates.
Since the pre-shapes can be writtenas w;/||w;||, where each; is defined in(1.4) and

|Jwi|| = /w}w; , the Procrustes coordinates can also be calculated from

P

wi =z iz, i=1,...,n.

Another useful system of coordinates is the tangent space coordinates. The concepts of
tangent vectors and tangent space need to be presented before the definition of tangent coordi-
nates (see Small, 1996, pp. 42-46). The tangent space of the shap& &facdeat the point z
is the vector space of all the tangent vector€ #8*—2 at the point:. When performing tangent
space inference, the tangent space at the sample mean pre-shape is often used.

The analysis of shape variability may be carried out in the tangent space. This space is a
linearized version of the shape space. One of the main advantages of the tangent space is that
standard multivariate techniques can be used directly.

There are several different types of tangent space coordinates. Here we use the partial
Procrustes tangent coordinates, which are given by

t; = €Ol — gz, i=1,...,n, (1.10)

wherez; is a pre-shape vector defined(in4) andg minimizes||x — zei(ﬂ |2 and||z|| = Vz*z.
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Suppose thaty, . . ., 2z, is a random sample of pre-shapes and. . , t,, their tangent co-
ordinates, where each) andt; are calculated usingl.4) and(1.10), respectively. Let; be a
2k — 2 vector which is obtained by stacking the real and imaginary coordinates ot gdth

t; = x; + 1y;, this operation is represented &yec where

v = cvec(t;) = (z, y!)7T, (1.11)

wherez; = Re(t;) is the real part of; andy; = Im(¢;) is the imaginary part of;. If the
number of landmarks i8, a pre-shape vecter has dimensiorik — 1) and its corresponding
vector of tangent coordinates, wherev; is given in(1.11), has dimensiofi2k — 2).

Standard multivariate methods can be applied to the real tangent coordipatéten
the data are highly concentrated, methods based on the multivariate normal distribution can be
applied for the real tangent coordinatggsee Dryden and Mardia, 1998, p. 151). Some of

these methods will be considered in the next sections.

1.5 Definition and Simulation of Shape Distributions

This section aims to review two distributions relevant to shape analysis: the complex normal
distribution and the complex Bingham distribution. Methods for simulating these distributions
are also discussed. The complex Bingham distribution is suitable for modelling pre-shapes and

shapes and it will be used to evaluate the computer intensive methods of the next chapters.
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1.5.1 Complex Normal Distribution

Since the multivariate complex normal and multivariate normal distribution are related, it is
necessary to review the multivariate normal distribution.

The multivariate normal distribution is an extension of the univariate normal distribution to
(2k — 2) variables (see Mardia et. al, 1979, p. 37), where the number of variables is chosen as
(2k — 2) to make a connection with the shape context. The probability density function (pdf)

of the multivariate normal of &k — 2) real vectorr is given by

GV e sV @) 12)

whereV is (2k — 2) x (2k — 2) positive definite matrix|V'| = detV, andu is a(2k — 2) real

f(l'“‘a V) =

vector.
A multivariate complex normal distribution can be represented as a real multivariate normal
distribution (see Dryden and Mardia, 1998, p. 112). To clarify this relationship, consider the

(k — 1) complex vector = (z1,...,2,_1)" and the(2k — 2) real vector

v = (xTv yT)T - (.’El, <oy T—1,Y1, - - - 7yk*1>T7 (113)

wherez; = Re{z;} is the real part of; andy; = Im{z;} is the imaginary part of;. Suppose

that

Y1 —23a

v~ Nogo | (uf,p5)", (1.14)

N | =
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whereNyy,_o(1, ¥) denotes &k — 2 multivariate normal distribution with mean vecterand

covariance matrix;, ¥, = —¥7' is skew-symmetric anl; is symmetric positive definite.
The distribution of the complex vectar is known as the complex normal distribution,

which is denoted by’ Ny_1(u, 3), wherev = uy + ipg andy = 3 + i3, (See Dryden and

Mardia, 1998, p. 112). The pdf afis given by

1

— —(z=p)* =" (z—p)
eIk (1.15)

f(2)

In the real case, it is well-known that the quadratic farm— p)? V=1 (z — p) in (1.12)
has ay2, , distribution. However, in the complex case, iRi& — v)*~ (2 — v) which has

axgH distribution. The need for this fact@ris explained in appendix C.

1.5.2 Simulation Method for the Complex Normal Distribution

Consider the problem of generating a vectarhich has a complex normal distribution with
complex mean, and Hemitian covariance matrix.

The complex Gaussian vectowill be represented as a real multivariate Gaussian vector
v; see(1.14). Thenv is simulated using a standard method (See Bratley et al, 1983, p. 152),
andz is obtained fromv by the inverse operation t@ec in (1.11).

The procedure to generat@@ — 1) real Gaussian vecterin (1.14) is defined as follows.

Let A be a(2k — 2) x (2k — 2) upper triangular matrix such that

1] 21 —Xe
ATA ==

2
Yo g
whereX; and>; are(k — 1) x (k — 1) real matrices.
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Letu ~ Nog_o(02x—2, Iok_2), WhereOqy,_o is a2k — 2 vector of0. Then the vectop is

given by

v= (1, m3)" + AT,

wherey; andpug are real(k — 1) vectors, and is obtained by applying the inverse operation
to (1.11) tow.
So thek — 1-dimensional vector has complex normal distribution with mean vectos

11 + iue and covariance matriX = 31 + 3.

1.5.3 Complex Bingham Distribution

One of the most useful distributions for two dimensional landmark datasets is the complex
Bingham distribution. A detailed account of this distribution is given by Kent (1994). This is a
distribution on the space of complex unit vectors, or equivalently, the complex unit sphere.

If z is a random complex unit vector with complex Bingham distribution, the pdf ief

given by

f(2) = c(A)Lexp(z*Az), ze CSF L, (1.16)

whereAisa(k —1) x (k— 1) Hermitian matrix and:(A) is a normalizing constant. A = I,
f(2) becomes a uniform distribution daS*~!, due to the constraintz = 1.

The complex Bingham distribution has the property of complex symmetry, which means
thatz ande(™®) 2, whered [0, 27), have the same distribution (see Kent, 1994, p. 290). This is

an important reason for using this distribution as a plausible model for the analysis of landmark
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data in two dimensions, since a shape distribution should respect the definition of shape given

in (1.6).

1.5.4 Simulation Method for the Complex Bingham Distribution

To simulate from the complex Bingham distribution, which is defined in (1.16), one of the
methods proposed by Er (1998) is reviewed. Initially— 2) truncated exponentials are gen-
erated subject to a linear constraint, and then these random variables are expressed in polar
coordinates to deliver a complex Bingham distribution.

Let TE(\) denote thexxp(\) distribution conditioned to lie if0, 1]. A simple algorithm
for simulating thel' E(\) distribution is as follows.

It should be noted that here is the rate.
Algorithm 1.1. Simulation ofl'E(\)

1 - Simulate a uniform random variablec [0, 1].

2 - CalculateX = —(1/A) log(1 — u(1 — exp™)).

The method for simulating the complex Bingham distribution uges 2) truncated ex-
ponentials to generate (@ — 1) vector with a complex Bingham distribution. Suppose the
eigenvalues oft areX; < ... < A\p_o < A\p_y, andwriteh; = \g_y1 — Aj, j=1,...,k —2.

The input is &k — 2)-vector

A= (A1, Ar_2). (1.17)

Algorithm 1.2. Simulation of Complex Bingham Distribution; Er (1998)
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1 - GenerateS = (S1,52,...,S¢—2)T whereS; ~ TE()\;) are independent random
variables simulated using Algorithin.

2-16 Y527 55 < 1, write S,y = 1 — Y57 5. Otherwise, return to step 1.

3 - Generate independent angles~ U[0,27), j =1,...,k— 1.

4 - Caleulatez; = S}/% exp(if;), j = 1,..., (k — 1).

The algorithm delivers 8k —1) vectorz = (z1,. .., z,_1)" , which has a complex Bingham
distribution. Note tha(SJw, 6,) are essentially polar coordinates for complex number

If the parameter matrixl has spectral decompositioh = T'AT™* (see appendix A), with

T" # I;_1, thenI'z rather thare should be returned.

1.6 Confidence Regions based on Normal Approximation

The tangent coordinates can be used for building confidence regions based on a normal ap-
proximation. First, it is necessary to study the variability on the tangent space. This variability
can be studied using the method of principal components. The principal component method
can also be used for building approximate normal-based confidence regions on the landmark
space. These issues will be considered in this section.

Consider a random sample of complex configuratiohs. ., 2%, where:? was defined
n (1.2). Suppose thaty, . .., v, are the tangent coordinates of those complex configurations,

wherev; is defined in(1.11). The variability in the tangent space is measured by the sample

covariance matrix of the tangent coordinatgsgiven by the(2k — 2) x (2k — 2) matrix
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Sy =

S|

zn:(w —0)(v; — )7, (1.18)
i=1
wherev = Y | v;/n.

The method of principal components can be used to summarize the variability of a random
vector (see Mardia, et. al, 1979, p. 213). The idea of the principal component method is to
reduce the dimension of the sample by focusing on the most important directions of variability.
In the shape analysis context, the idea is to apply the principal component method to the sample
covariance matrix of the tangent coordinates, to obtain the first few principal components and
to project those components back to the landmark space (see Dryden and Mardia, 1998, pp.
47-51).

The matrixS, can be written in terms of the spectral representation

Sy = i diuiy (1.19)
i=1
wherep = min(2k — 4,n — 1) is the total number of principal componentg;,> ... > ¢,
are eigenvalues and, . . . , u, the eigenvectors of, (see Mardia et al, 1979, pp. 469).
The shape variability on the tangent space is studied using the principal components via

the equations

v="0+c\/djuj, j=1,...,p, (1.20)
wherec is a constanty is defined below(1.18) and¢; andu; were defined below (1.19).
Insight can be gained by giving different values to the constabinder the assumption

that the tangent coordinates follow a multivariate normal distribution, it can be shownithat
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approximatelyN (0, 1) (see Dryden and Mardia, 1998, p. 49). On this basis, a plausible range
of values for c i§—3, 3].

The principal components method can also be used for building confidence regions based
on a normal approximation (NA). The idea of using principal components for building a con-
fidence region for the mean shape is particularly appealing when the observations on the land-
mark space for each landmark follow a bivariate normal distribution. The assumption of nor-
mality is more plausible for highly concentrated data.

The confidence regions obtained by normal approximation, referred to below as NA confi-
dence regions, are calculated using the principal components for tangent coordinates. The NA
method uses those principal component, conveniently relocated by replabynghe mean
shapen (see(1.8)) in (1.20), to obtain the coordinates of the objects in the landmark space.
Only the first and the second principal components are used since with those components it is
possible to construct an ellipse for each landmark and represent Rih@ot. The axes of
this ellipse are determined by the eigenvectors, and the relative scale along each axes is deter-
mined by the eigenvalues, corresponding to the two leading principal components. Thus NA

confidence regions can be represented graphically by a plot of

I+ c\/drur andi + e/ paus (1.21)

where usually: € (—3,3), i is given in(1.8) and¢; andu; were defined below (1.19). See

Dryden and Mardia (1998, p. 50).
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1.7 Tests for One Group of Objects

We consider two methods in current use for testing if the mean shape is equal to a particular
value. One is the one-sample Hotelling'$ test and the other is the one-sample Goodall test.
The first one is less restrictive than the second but more complex. The Goodall test assumes
the joint distribution on the landmark space is complex normal and isotropic (see Dryden and
Mardia, 1998, p. 160), which means that the variance for each landmark is the same. On the
other hand, the Hotelling? test assumes normality for the observations on the tangent space

and isotropy is not assumed.

1.7.1 Hotelling’sT? Test for a Specified Mean Shape

Consider the assumptions of the one sample Hotellifig'sest. Letz?, ..., 20 be a random
sample of complex configurations,, . . ., z, be the pre-shapes of those configurations, where
z; is calculated fron{1.4), and let be the mean shape of this sample, calculated udirgg.

Let v1,...,v, be the partial Procrustes tangent coordinates of those pre-shapes,wisere
obtained from(1.11). Recalling the tangent sample mearand tangent sample covariance

matrix .S, from (1.18), suppose that the, have a multivariate normal distribution.

The aim of the Hotelling'd™ test is to evaluate the hypotheses

Hy : [pu] = [po] versus Hy : [p] unrestricted

where [1] is a pre-specified value for the mean shape. Hgfecan be thought of as an

equivalent class of pre-shapes. The partial tangent coordingties the mean pre-shape
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are given by

10 = (Ioi—z — evec()evee(i"))cvee(t /118 |]), (1.22)

wherecvec(.) was defined in(1.11), andx? is the procrustes fit ofiy, which is calculated
using(1.9). The statistic used for this test is given by
(n— M)

F =@ =0)" 8/ (@ =), (1.23)

where~ is given in(1.22), S;' is the Moore-Penrose generalized inverse (see appendix (A))
of S,, andM is the dimension of the tangent space and calculat@d as4.

This statistic has aif'y ,,— s distribution undetH,. The hypothesidi is rejected at the
levela if F¥> F(M,n— M,«), whereF'(M,n — M, «) is the quantile of the F distribuition

with numeratorM and denominator — M for the o significance level.

1.7.2 Goodall's Test for a Specified Mean Shape

The situation is similar to Hotelling’s test but isotropy is assumed. zket. ., z, a random
sample of pre-shapes, where eaglis given by(1.4). Also consider the tangent coordinates
v1,. .., v, Of those pre-shapes, whergis defined in(1.11).

Goodall’s test has the assumption that the tangent coordinates follow an isotropic normal
model. So they; have a multivariate normal distribution with mean vegtoand covariance
matrix ¥ = o2Iy;,, whereo? is a constant and;, is the2k x 2k identity matrix (see Goodall,
1991, p. 314 and Dryden and Mardia, 1998, p. 160).

As in Hotelling’s 7™ test, the hypotheses under consideration are
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Ho : (] = o] versus Hi : [u] # [uol.

The Goodall test is based on the squared Procrustes distances. For the prezshafdes

zj, defined in(1.4), this distance is given by

d%(zi, zj) =1 — 27222, (1.24)

fori =1,...,n (see Dryden and Mardia, 1998, p. 41).
If 72, the estimator of:, is close tou, ando is small, the approximate analysis of variance

(ANOVA) is given by

Y db(zi,u) =) di (i, 1) + ndk (i, 1),
=1 =1
(see Dryden and Mardia, 1998, p. 160).

Under the null hypothesi#ilj, the distribution of the squared Procrustes distances are ap-

proximately chi-squared distributions, e. g.,

d%(ziv NO) ~ TSX?\/IJ
wherery = o/||po|| andM = 2k — 4. The proof of this result is derived using a Taylor series

expansion (see Dryden and Mardia, 1998, p. 161).

Using this result and the additive property of independent chi-squared distributions,

n
Z d%‘(«zb o) ~ 7'02X%n_1)M-
=1
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Thus the test statistic (see Dryden and Mardia, 1998, pp. 160-161) is given by

d(po, 1)
G = (n — 1)71% ~ FM,(TL—I)J\J' (125)

1.8 Tests for Several Populations

Two tests to compare the mean shape of two populations are considered in this section. The
first one is the Goodall test and the second is the Hotelliig’s Those tests are extended

versions of the tests ¢fL.7.

1.8.1 Hotelling’s7T? Test to Compare the Mean Shape of Two Populations

The test is used to compare the mean of two populations on the pre-shape space. However,
the quantities being used are from the tangent space. This aspect will be clarified after the
definitions of these quantities.

Consider an independent identically distributed (IID) random sarz’rip]e. . zgjj of com-
plex configurations from the populatidi’!, wherej = 1,2. Letz;, ..., zn,; andvyj, ..., v,
be the pre-shapes and the tangent coordinate%- af. ., zgﬂ., wherez;; andv;; are calculated
from z}; using(1.4) and(1.10).

The main assumptions of Hotellingl¥’ test are normality and homogeneity across popula-
tions of covariances matrices for the tangent coordinates. Suppose that the tangent coordinates
v15, - - -, Un,; fOr population;j are 11D, and approximately normally distributed with maafi

and common covariance matix

The null and alternative hypothesis are given by
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Ho : [V = [P = [1] versus Hy : [p!Y], [1)] unrestricted (1.26)

where[y] is the common mean shape.
Let i) and VU] be the estimated mean and estimated covariance matrix of the tangent
coordinatesys j, .. ., vn,;, whereVl/l has divisorn;. The Mahalanobis distance betwegt!

andz? is given by

D = (@l - @)V @t - o),
wherel = (ny VI 4nyV1) /(ny +ny—2), andV + is the Moore-Penrose generalized inverse
of 17, which is defined in (A.3) in appendiA.

The test statistic is

nlng(nl +ng — M — 1)

H—
(n1 4+ n2)(ny +ne —2)M

(1.27)

which, underHy, has anF ,, +n,—n—1 distribution, whereM = 2k — 4 (see Dryden and

Mardia, 1998, p. 154).

1.8.2 Goodall's Test to Compare the Mean Shape of Two Populations

Goodall’s test assumes that the tangent coordinates have a jointly Gaussian distribution with an
isotropic covariance matrix.
It should be noted that these assumptions are reasonable for data sets for which the vari-

ances of each landmark are small and similar. The hypotheses are
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Ho : [V = [P = [1] versus Hy : [p!Y], [1)] unrestricted (1.28)

where[y] is the common mean.
To obtain the statistic of the test some results about the distribution of some Procrustes
distances need to be used. These results are valid dfidand witho small. Therefore this

test is appropriate for highly concentrated data. Set

70 = o/l|poll;

where||uo|| = \/uto-

The distribution of the Procrustes distances for each sample is given by

> di(zin, i) ~ 18X 1y (1.29)
=1

whered.(.,.) is defined in(1.24), and

> A (zi2, ) ~ 18Xy 1y (1.30)
=1

The Procrustes distance between the sample mean of the groups is given by

- IR 1 1
> di () ~ g ( - ) Xar- (1.31)
i=1 o n2

Thus, undeltdy and witho small, using (1.29), (1.30) and (1.31), the statistic

- 2 (nl 2

(n1) ™"+ (n2) ! Xoimy d(zin, pl) + Y00 d(zi2, i)
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has the approximate distributiofy; (,,, 1,2y (S€€ Dryden and Mardia, 1998, p. 162),

whereM = 2k — 4 as before.

1.9 Scope of the Thesis and Motivation

The contents of the following chapters are explained below. Some motivations for the thesis
are given at the end of this section.

Chapter 2 explains how the bootstrap method of Fisher et al. (1996) for building confi-
dence regions for directional data can be adapted to the shape context. It is proved that the
distribution of the test statistic is asymptoticajly under the null hypothesis and is therefore
asymptotically pivotal. The coverage accuracy of the bootstrap confidence region is compared
numerically to Goodall and Hotelling confidence regions.

Chapter 3 introduces a bootstrap hypothesis test of a common mean shape across several
populations. A proof that the statistic test is asymptotically pivotal under the null hypothesis
is presented. This bootstrap test is compared to corresponding tests based on Goodall and
Hotelling statistics using numerical simulation.

Chapter 4 presents both empirical likelihood confidence regions and hypothesis tests for
shape data. First, it is explained how the empirical likelihood confidence regions of Fisher
et. al. (1996) can be constructed in the shape context. Subsequently, an empirical likelihood
hypothesis test of a common mean shape is introduced. Numerical simulations are carried out
in order to compare these empirical likelihood methods to Goodall and Hotelling procedures.

Conclusions and some ideas for future work are presented in Chapter 5. Bootstrap and
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empirical likelihood methods are compared, and numerical and methodological aspects are
considered. How to apply the methods of this thesis in other areas of shape analysis is also
discussed briefly.

The Goodall and Hotelling’§™ tests work well under the assumption of high concentra-
tion, but they perform poorly when applied to data with low concentration. Even though the
majority of shape datasets are highly concentrated, some datasets have low concentration. This
provides motivation for using bootstrap and empirical likelihood methods in the shape analysis
context, because they work well when applied to data having either high or low concentration.
A second motivation is that bootstrap and empirical likelihood methods are nonparametric and

only require weak assumptions about the underlying population.
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Chapter 2

Bootstrap Confidence Regions for the

Mean Shape

The aim of this chapter is to explain how the bootstrap confidence regions developed by Fisher
et al. (1996) can be extended to the statistical shape analysis context. Fisher et al. (1996)
proposed some bootstrap methods for building confidence regions for directional and axial
data. Since there is a relationship between axial data and shape data for landmarks in two
dimensions, it is possible to adapt bootstrap methods for axial data to shape data.

The sections are organized as follows. The main ideas and a literature review of the boot-
strap are given if2.1. Methodology for constructing bootstrap confidence regions is reviewed
in §2.2. In§2.3 the bootstrap method of Fisher et al. (1996) for axial data is reviewed. The
connection between axial and shape data is explaing2i4n In§2.5 an asymptotically pivotal
statistic for a sample af complex unit vectors is described. The bootstrap method for shape

data, which is adapted from the bootstrap method for axial data, is explaig@dinin §2.7
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the asymptotic distribution of the statistic we propose for shape data is derived. Some practical
examples are consideredjB.8. In§2.9 some simulation experiments are performed in order

to compare the bootstrap method for shape data with Goodall and Hotelling procedures.

2.1 Main Ideas and Literature Review of Bootstrap Methods

The main ideas about the bootstrap were introduced by Efron (1979). Efron (1979) presented
the bootstrap as a more general method than the Quenouille-Tukey jackknife. According to
Efron (1979), the jackknife can be considered as a linear expansion method for approximating
the bootstrap.

Before explaining the bootstrap idea it is worth explaining what a functional is. A func-

tional is a function of a function. Thus the notation

v(F) where v : {space of distribution functions— R? (2.1)

means that (F) is function of the distribution functio’. For example, ii-(F') is the variance
function andF is the distribution function of the normal distributiovi(u, o2), thenv(F) is
equal too?.

To explain Efron’s (1979) original idea, let = {u1,...,u,} be a random sample from
a distribution with cumulative distribution function (CDIF). Suppose that we are interested
in an unknown parameter = v(F'), and Ietﬁn(u) =n 13" I(u < u), wherel(.)is
the indicator function, denote the empirical distribution function based on the sample

~

bootstrap estimataris given by = v(F,,). The bootstrap idea is to approximate the sampling
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distribution of v by drawing resamples randomly with replacement from the original sample
u, the main point being that the resampling distribution can be estimated to arbitrary accuracy
using computer simulation.

Efron (1979) also considered the parametric bootstrap. The bootstrap mentioned above
is nonparametric. But it is possible to define a parametric bootstrap by estinfatoygits
parametric maximum likelihood estimator. For example, it is possible to assumg ties a
normal or any other particular distribution. The resamples with replacement will be not gen-
erated from the sample but from the parametric distribufiprvith the parameters estimated
from the sample.

Asymptotic properties of bootstrap methods can be examined using Edgeworth expansions.
A seminal paper was Singh (1981). Singh (1981) showed theoretically that the bootstrap ap-
proximation for a distribution function of a sample mean is generally more accurate than the
limiting normal distribution function approximation. For the case of quantiles he showed that
the bootstrap approximation is as good as the normal approximation.

Bickel and Freedman (1981) showed some examples where the bootstrap approximation
does not work so well. They conclude that for the majority of models with many parameters
the bootstrap typically fails.

Hall (1992) presents very detailed information about bootstrap methods and Edgeworth
expansions. Among other things, he explained the advantage of using an asymptotically pivotal
statistic for bootstrapping (see Hall, 1992, pp. 83-91). A statistic is asymptotically pivotal if its
limit distribution does not depend on unknown quantities (see Hall, 1992, p. 14). Considering

an asymptotically normally distributed statisfi; Hall (1992) showed that bootstrappifig
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reduces the error in the distribution function approximation from order? to ordern—!.
However, if an asymptotically non-pivotal statistic is used the error does not reduce, its size is
n~1/2. Hall's (1992) discussion is very relevant for the bootstrap methods of this and the next
chapter.

A number of authors have discussed bootstrap methods for confidence regions. A vari-
ety of methods for constructing nonparametric confidence intervals were introduced in Efron
(1982). Some other important results can be found in Abramovitch and Singh (1985), Beran
(1988), Hinkley (1988), Fisher and Hall (1990), and Hall and Wilson (1990), Hall (1988a),
Hall (1988b) and Hall (1990).

Hall (1988a) compares five bootstrap confidence intervals. They come from both para-
metric and nonparametric contexts. Among the five methods, percentile-t and accelerated bias
correction were identified as being superior. He also found that there is not a conclusive differ-
ence between the two methods: they achieve similar accuracy in both theoretical and numerical
performance. Hall's (1988a) theoretical comparisons were made using Edgeworth expansions.

Asymptotic results clearly demonstrate the advantage of bootstrapping an asymptotically
pivotal statistic for both hypotheses tests and confidence regions. Some papers supporting the
use of pivotal statistics are Beran (1987), Liu and Sing (1987), Hall (1986), Hall (1988a) and
Fisher et. al. (1996).

Bootstrap methods can be applied in many different areas of statistics, including general-
ized linear models, time series, sample surveys and statistical quality control, to name a few.
These applications are covered in textbooks such as Efron and Tibshirani (1983), Davison and

Hinkley (1997) and Chernick (1996).
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In the directional data context, several papers have considered the use of the bootstrap
for constructing confidence regions for the mean direction or mean axis of a population. See
Ducharme et al. (1985), Fisher and Hall (1989) and Fisher et al. (1996). We now describe the
developments in these papers in more detalil.

Ducharme et al. (1985) developed a bootstrap method for directional data analysis for
building confidence cones. They reviewed some parametric methods which are based on the
assumption that the underlying distribution is a Fisher distribution. They presented a new
bootstrap method which makes assumptions about the underlying distribution. In particular,
the method of Ducharne et al. (1985) is not asymptotically pivotal except in relatively special
circumstances, e. g. when the underlying population has rotational symmetry.

Fisher and Hall (1989) presented an asymptotic pivotal statistic for constructing confidence
regions for directional data. However, this statistic leaves the sphere in its first step of calcula-
tion. Thus rescaling is needed to return to the surface of the unit sphere.

Fisher et al. (1996) introduced some asymptotically pivotal methods which involve pro-
jecting the true mean direction or mean axis onto the tagent space at the sample mean direction
or axis. This approach has the advantages that it is simply to apply and (unlike the Fisher and

Hall (1990) approach) no rescaling is required.

2.2 Bootstrap Confidence regions

Fisher et al. (1996)’s method for constructing confidence regions for an axis using axial data
is based on the percentile-t method, one of the two methods identified by Hall (1988a) as

being superior. The percentile-t method generalizes to higher dimensions more easily than the
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accelerated bias correction method, the other superior method identified by Hall (1988a) in the
scalar case.

The percentile-t method has some particular steps which need to be reviewed before con-
sidering the method of Fisher et al. (1996) for axial data. The case of a scalar parameter is
considered initially.

Consider the problem of building a confidence interval for a unknown parameitan
unknown population based on the random sampte {u4, ..., u,}. Letv be an estimator of
v andse an estimator of its standard deviation which is denotady

The percentile-t method for building a confidence regionfbas the following steps (see,
Efron and Tibshirani, 1993, pp. 160-161). First, consiBeresamples

u(b) = {ugb), .. u(b)}, b= 1> .. ->B (22)

»'n

each sampled randomly with replacement, fronfror each1®) calculate

50 _ 5

(@) = T = : (2.3)

se®
wheret(®) is the estimatof calculated for thé-th bootstrap sample and® is the estimated
standard error ob(®).

The statisticZ\” is used to calculate a confidence interval foas follows. Sefl,[1] <
Tu2] < ... < T,[B — 1] < T,[B] to be the ordered values (ﬂfb), b=1,...,B. Thena

confidence interval fov is given by

@ —t15e, 0 — t@se),
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wherel — 2« is the confidence level of the interval, atil) is thea percentile off,[i]. For
example, ifa = 0.05 andB = 100, t(*%) = T,,[5] andt(*9) = T,[95].

The percentile-t method is named thus because the pjvobrresponds to the studentized
version ofv; see (Hall, 1992, p. 15).

This method can also be used for vector parameters. In thisxgass unknown parameter
vector, andy is the estimator ob andV is the estimator of the covariance matrixiobased
on a random sample = {ui,...,u,}. The procedure above is used with the multivariate
analogue of the square @.3), which is given by

_1/\

Ti(b)(ﬁ) _ (ﬁ(b) B @)T(f}(b)) (v(b) —9). (2.4)

The confidence region for the mean vectors built in a similar way to the confidence
interval. GivenB resamplesy(®), ..., u(®, selected randomly with replacement, framncal-
cuIateTg(b) forb = 1,...,B. LetTg[l] < Tp[2],...,TB[B — 1] < Tgp[B] be the ordered

values ofo(b), whereb = 1,..., B. then the confidence region is given by

Ro = {v:T;(v) <t}

whereTs[B(1 — «)] and1 — « is the nominal coverage level.
For some particular types of statistical analysis such as directional data analysis and statis-
tical shape analysis, it is more difficult to find a pivotal statistic. The difficulties appear because

these kinds of data are non-Euclidean.
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2.3 The Method of Fisher et al. (1996) for Axial Data

Fisher et al. (1996) presented bootstrap confidence regions for directional and axial data which

are based on asymptotically pivotal statistics. The method for axial data is explained in this

section; ing2.4 we explain the relationship between axial data and shape data.

Some notation for axial data is now introduced. kéte a random vector on the unit sphere
S? = {z € R?: ||z|| = 1}, whereR? is d dimensional real space.

For axial datay and—z are identified as equivalent. A relevant population characteristic is
the mean polar axis, which is the unit vectorthat is defined to be the eigenvector associated

to the largest eigenvalue 6f= E(X XT). Thus for a sample of axes

x={x1,...,zn}, (2.5)

the paramete$ is estimated by = n—' 3" z;z7 . If §is written in spectral form (see appendix

A)

d
& A AT
S = anmjmj , (2.6)
j=1
wherern; > 1 > ... > 1y are the eigenvalues, ama, . . . , 7y the corresponding eigenvec-

tors, the mean polar axis is given by

M = . 2.7)

Fisher et al. (1996) indicate how to construct a pivotal percentile-t method for axial data. In

a non-Euclidean space addition and subtraction of vectors is not well-defined, so it is not clear
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at the outset how to studentize directional or axial data. Fisher et al. (1996) used the statistic

T(m) = an]\/erf]_ll\/idm, (2.8)

where the elements of tHe — 1) x (d — 1) matrix 3 are given by

Sik =n"" (= 0;) " (i — i) x Z(m;‘rwz)(mfl"i)(mei)z, (2.9)
i=1

wheren; > 7o > ... > 7y are the eigenvalues, and, 9, . . . , 74 the corresponding eigen-

vectors ofS' in (2.6), and the(d — 1) x d matrix My is given by

My = [, ..., 1ha]T. (2.10)

Fisher et al. (1996) use the idea of pivoting on the tangent space to the fthar¢he
sample mean axig:. The tangent plane for this case can be represented by the hyperplane
Tm = {t € R? : t"'m = 0}, which is the space of all vectors orthogonalio Thus the
rows of the matrix) lie in the tangent space 4t, and]\?dm = 04—1. The productﬁdm =
J/\/[\d(m —m) projectsm onto the tangent plane at. The matrix®. is the asymptotic covariance
matrix of M\dm. ThusT in (2.8) can be considered an asymptotically pivotal statistic for axial
data, which is an analogue (f.4) for multivariate data. Further details about how to bootstrap
these statistics will be given i2.6.

Using the statistic (2.8), Fisher et al. (1996) present the following bootstrap algorithm,

referred to af\lgorithm 2.1 for building a confidence region for the mean axis given in (2.7).

Algorithm 2.1. Bootstrap Method for Building Confidence Regions for the Mean Axis
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Step 1- For a sample of axial data, defined in (2.5), calculate the maftband the matrix
M,, which were defined i92.9) and(2.10), respectively.

Step 2- GenerateB resamples() = {xgb), e ,xﬁf’)}, b=1,...,B, randomly with replace-
ment, from the original sample

Step 3 For each resample, calculate the quantiﬁeg\/id andT usingx®). Those quantities

will be denoted=®) | M éb) and7'®), respectively. The statistit® is given by

TO) = TO() = ninT (M) (E©) ' MO,
Step 4 After the step (3), the valug'®);b = 1, ..., B} are sorted, into order, giving

TON) <TO)RI<...<TWB -1 < TW[B],

and Iett&B) be the chosen value corresponding to the lexeFor instance, ifB = 100 and

a = .1, the chosen value -[%%?0) = T100[90].

Step 5 The confidence region based @h8) with coverage probability — « is given by

Ry = {m: T(m) < tP)}. (2.11)

The method of Fisher et al. (1996) has some advantages when compared with the methods
of Fisher and Hall (1989) and Ducharme et al. (1985). The Fisher and Hall (1989) method
is asymptotically pivotal, but involves some awkward scaling while typically the method of
Ducharme et. al. (1985) is not asymptotically pivotal. In contrast, the stdfiss@symptoti-
cally pivotal and this is achieved without leaving the surface of the sphere.

Fisher et al. (1996) showed that the coverage error, which is defined by
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coverage error = coverage probability — nominal coverage probability,

of the confidence region given §9.11) is of sizeO(n~2); the order notatio(.) is reviewed

in appendix B. Equivalently, if1 is the true mean shape, then under mild conditidhsyng €

Ro] = 1 — a+ O(n~2). The details of the proof about the theoretical coverage accuracy are
given in appendix B of that paper. Edgeworth expansions for bootstrap quantities are used in
this proof (see also Hall, 1992, Chap. 5). The proof of those results will not be explained here

since they are beyond the objectives of this thesis.

2.4 Relationship Between Axial data and Shape Data

In this section the connections between axial and shape data will be explained (see Kent, 1992,
pp. 118-9). LetS* = {z € RF : ||z|| = 1} denote the real unit sphere &". Define

Xy = {uu® : u € S¥}. Note that the real unit vectors and —u are mapped onto the same
element of;, and that¥, is the space of x k symmetric, rank 1, projection matrices.

A p x p matrix R is called orthogonal ifR" R = I,. Let O(p) be the space of x p
orthogonal matrices and defits)(p) = {R € O(p) : |R| = 1}, the space op x p rotation
matrices.

Axial data can be understood in three distincts ways:

(a) an equivalence class of vectorgifiin which a non-zero vectar is identified with the
axis{rz : r # 0};

(b) an unsigned unit vector on the real sphetec S*;
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(c) a projection matrixiu’ € N,.

On the other hand, shape data witHandmarks andn dimensions can be represented
either as

(a) an equivalence class kfx m matrices in which we identifX # 0

with {rXR :r > 0andR € SO(m)} or

(b) an equivalence class of standardiZzeck m matrices in which we identify/ with
{UR: R € SO(m)}. Note: we say thal/ is standardized ifr(UTU) = 1.

Shape data in two dimensions can be represented as:

(a) an equivalent class of compléx-vectors in which we identify with {rze® : r >
0,6 € [0,2m)};

(b) an equivalent class of rotated unit vectorsds*=2, [u] = {e"u : 6 € [0,27)} C
C5k-2.

(c) a projection matrixu*.

In the planar case, a pre-shape CS*~! can be written as = z + iy where||z||? =
||]|% + ||y||> = 1 butz can be embedded in the real sph&P& by stackingr andy forming a

vector(z?, yT)T.

2.5 Modified T-statistic for Complex Unit Vectors

A modified version of the statistic (2.8) can be used for complex vectors. The quantities (2.8),
(2.9) and (2.10) need to be redefined. kgt . ., z, be a random sample of pre-shapes, where
eachz; was defined ir{1.4), and leti, . .., fix—1 denote the unit eigenvectors associated with

the eigenvalue§1, Xg,. . ,Xk,l of the product matrix which were defined below (1.7).
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For complex unit vectors, which correspond to pre-shapes, the modified form of the statistic

of Fisher et al. (1996) is defined by

T(n) = QnM*M\g_Qi_le_gu, (2.12)
where, for a sample of pre-shapest is necessary to calculate(& — 2) x (k — 2) matrix

S = (fljl) and a(k — 2) x (k — 1) matrix Mj,_, which are defined as follows:

Si=ntn = ) T 0 = M) T )Y () (2 ) () (). (2.13)
=1

wheren = 11, and

My—s = [fiz, ..., fi—1]". (2.14)

Comments

1. Under the null hypothesi#, : [u] = [uo], Where|[u] is the true population mean
shape, the asymptotic distribution of the statigfig.o) in (2.12) is x3,_, under mild

conditions. A proof is given i§2.7.

2. The statisticI’(x) in (2.12) is invariant with respect to the choice of pre-shapom

the shape equivalence cldgs.
3. The need for the fact@in (2.12) follows from appendix C.

4. The tabular version of the test of the null hypothé$is: [1] = [uo] based on the statistic

(2.12) is performed as follows. The null hypothedi, is rejected, at the level, if
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T(po) is larger thany3, ,(a), which is the quantile of &? distribution with (2k — 4)
degrees of freedom associated to the levdh the next section we explain ho( )

can be used to construct bootstrap confidence regions.

2.6 Bootstrap Confidence Regions for the Mean Shape

There some points to note about how to adapt the method of Fisher et al. (1996) for axial data
to shape data. Pre-shapes are complex unit vectors while axial data consists of real unit vectors.
In both cases there is information which is discarded. In the axial case, this corresponds to the

sign of the unit vector; and in the shape case, this corresponds to the rotation information.
Algorithm 2.2. Pivotal bootstrap Confidence Regions for the Mean Shape

The bootstrap method for building a confidence region for the mean ghapa be de-
scribed as follows:
Step 1- For a sample of pre-shapesdefined previously, calculate the mattband the matrix
Mj,_, , which were defined i92.13) and(2.14), respectively.
Step 2- GenerateB resamples(®) = {z%b), - 727(11;)}, randomly with replacement, from the
original sample: = {z1, ..., 2z, }.
Step 3 For each resample, calculate the quantiﬁ]eé@k,g andT, whereT was defined in
(2.12), usingz®). Those quantities will be denotéAth[”),J\Zgbj2 and7'®), respectively. So, for

each bootstrap sample, calculate

~

T® = 7O() = 2nf* (M)

* o~ —1 /\(b) R

(=) M, g, (2.15)
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wherey is the mean shape of the original sample.

Step 4 After concluding Step (3), the values Bf®) are sorted into order

TON) <TOR <...<TWB -1 < TW[B].

Let t&B) be the chosen value corresponding to the level

Step 5 Thus the region based @@.12) with nominal coverage probability — « is given by

Ro = {p: T(p) <t} (2.16)

To represent graphically the bootstrap confidence regions obtained Aigiogthm 2.2
the information about rotation in the bootstrap samples should be accounted for. In Step 3 of
Algorithm 2.2 the rotation of the bootstrap mean shapes is arbitrary. If we wish to represent the
bootstrap confidence regions graphically, as will be illustraté@i8, then the bootstrap mean
pre-shapes should be rotated so that they are as close as possible to the sample mean pre-shape
. However, as noted above, the value of the statiBtig) in (2.12) does not change if the
rotation of x changes. So the rotation information only needs to be removed when graphical

representations are being considered.

2.6.1 Monte Carlo Simulation Design

If np; Monte Carlo samples are generated, dhdbootstrap samples are obtained for each
Monte Carlo sample, this experiment will delivej, confidence regions. Le&fp denote the

coverage probability of the regiqR2.16), thenCp is estimated by
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Cp=#{i: T (o) <ty i =1, e} /n,

wherepq is the true mean, anfl®® (1) is T'(p0) in (2.12) ,andtéf’i) is ), both based on the

ith Monte Carlo sample.

2.6.2 Mahalanobis Bootstrap Method

An alternative bootstrap scheme is how described. The steps Afgbdathm 2.2are the same
except that the statist{@.12) is replaced by the Mahalanobis statistic which is give(li23).

The main difference between this method and the previous one is that the Hotelling statistic
T? is used in the bootstrap process. Recall frgii7.1 thatv contains the partial Procrustes

tangent coordinates arf{, is the covariance matrix of the sample of tangent vectors.
Algorithm 2.3. Bootstrap Confidence Region Using Hotellifig Statistic

Step 1- For a sample of pre-shapgscalculate the statistic

(n — M)

v (@ = 0()" S (0= 0(m), (2.17)

F(p) =

whereo (1) = (Igm—m — vec(i)vec(i))vec(u? /||1P|]), vec(.) is defined in(1.11), S, is
the Moore-Penrose generalized invers&pind M = 2k — 4 is the dimension of the tangent
space.

Step 2- GenerateB resamples(®) = {ng), o ,zﬁf’)}, randomly with replacement, from the
original samplez.

Step 3 For each resample, calculate the statigtic
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Step 4 Sort the vectolF's so thatFp[1] < Fp[2],...,Fp[B — 1] < Fp[B], and Ietfc(xB) be
the chosen value corresponding to the level

Step 5 Thus the region based @@.17) with nominal coverage probability — « is given by

Ro = {p: F(u) < fP}.

2.7 Asymptotic Distribution of the Statistic T

The purpose of this section is to prove that the statistisvhich was defined i12.12), has a
null asymptotic><%%_4) distribution, under mild conditions on the underlying population.

To prove this theorem two results, closely related to results which can be found in Watson
(1983, pp. 216-217), will be assumed. It should be noted that the theorems presented by
Watson (1983, pp. 216-217) are valid for real axial data. However, the type of data which are
treated here are pre-shape data, i.e., they involve complex unit vectors. The results in Watson
(1983) can also be derived for complex vectors.

To present the results and the theorem of this section some quantities need to be defined.
Assumezq, . .., z, are complex unit vectors from a population F anddgt= n~! Yo i)
be a(k — 1) x (k — 1) Hermitian matrix andS = E(S,) its population analogue. The
eigenvalues and eigenvectors and other terms associatedétte denoted with hat

The first result is a central limit theorem fgg which states that

n'/2(S, — 8) 4G, (2.18)
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whereG is a(k — 1) x (k — 1) Hermitian matrix. Its entries are jointly normally distributed
with zero mean.
The second result, which can be derived from (2.18) using results analogous to those in

Watson (1983, p. 216), states that

~ PGP, + PGP,
n'2(P - pp) 43 F Ai_A; k (2.19)
k>1

~

wherePy = pypf = pp*, Py = pjps, Pj = pipy andAy > Ap... > A, are the eigenvalues
of S. Note the assumption that the largest eigenvalyeis simple.

Define

a(z) = (W'z)(z"p) (2.20)

wherep = p1. Thena(z) € [0, 1] whenz andy are both complex unit vectors. Also define

R =diag{(M\ — X2) ", ..., (A1 — A1) M),

where the\; were defined afte2.19). In addition, let)/ denote the population analogue of
M, defined in(2.14).

The following lemma will be used in the proof of the theorem.

Lemma 2.1.Let X, X», ... be an IID sequence of random p-vectors such gt ] = v is
well defined, and\,, = n=1 Y7 | X;. Let Xn(p x 1) be a sequence of random vectors such

that|| A, — A|| 20 asn — oo, where||B|| = VBTB. ThenAZ X 2 AT~ asn — co.
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Proof We have

PO ~ _ ~ T _
X —ATy = (A - ATy +AT(X =)+ (4 —4) (X —7).

It is sufficient to show that all the terms on the right hand side go to zero. The first term on the

right hand side goes to zero by assumption since
1(A = AT < [|An = All ] 0.
The second term goes to zero by the weak law of large numbers, i.e.,
IAT(X = < JAI X =] 20.
The third term goes to zero because
(A = 4)" (X = || < |An = A IX =],
where both terms on the right hand side go to zero in probability.

Theorem 2.1. Suppose the underlying populatiéhis such thati) the largest eigenvalue of
S is distinct (so that the corresponding eigenvector is well-defingd)a(z) = ||*2||? does
not have a point mass at 0, i.€?[a(z) = 0] = 0 and (zi7) the smallest eigenvalue 6fis
positive. Then ifu] = [u1] is the true mean shap)(.), defined in (2.12), has an asymptotic

X34 distribution.
Proof The proof of the theorem is organized in 4 steps.
Step 1- ShOWHnI/Q/Z\Z;C,gu + 012 My_o(fi — p)|| %0 asn — co.
We have the identity
—n'PMyop = 02 My _o(fi — p)
= n"2Myo(fi — ) + 02 (My—g — My—2)(fi — po).
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Thus
12 Mg+ 0> My s (i = )| = [In'/> (M = My—3) (i — p)l| 20.  (2.21)

To obtain(2.21), note that(i) S, &S implies thatM),_, 2 My_», and(ii) ||n/2(7i — p)|| =
O,(1) as a consequence (#.18), where the last statement means the following: giwveno0,

there exists a constant C, independent ofuch that

limsup P[n'/?||j — pl| > C] < e.

n—oo

Step 2 - Show that
n' Mo (fi — p1) 5 RMy_oGp ~ CNj_2(0p—2, X),

where¥ = cov(RMy_2Gu) = Recov(My_oGu)R. Pre-multiplying the left hand side of

(2.19) by M}, and postmultiplying by: we obtain
n' My o(PL— P = n'*My_ofifi*p,
sinceﬁl = up* andMj_o P = 0o by definition of the quantities involved. Moreover,

nPMy it = nM2My_ofi + A Mo (B p — 1A

Therefore
[[n*/? My —ofifi* i = 0> My —s(fi = )| = [[n*/* My o (i — Dl 20 (2.22)

since* 21 and My _op = Og_o.
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Now consider the right hand side (£.19), pre-multiplying byM/;._» and post-multiplying

by 1. we obtain

k—1
PjGPl + PlGPj
My [Z NN

k-1
1
= My o !Z MPJ'] Gu
=2

= RMk—QG:U’ ~ CNk_Q(O,E),

=2

whereX is defined above. We have used the fact that, by definifiép,, = Z;:; €j—1/15,

wheree; is the (k — 1)-vector with thejth elementl and all other elements zero; and conse-

quently

k—1 1 k—1 1
M, P = M. _oP;
k—1 1
_ . x ok
T Ly ottt
j=2
= RMj_»

Therefore the result follows from the fact that the left hand side2af9), pre-multiplied
by M;_, and post-multiplied by: becomes:!'/2M;,_»(fi — 1) and the corresponding right
hand side iR M}, oG which has distributiorC' N _5(0, X).

Step 3- Show that® = L 3" | R(My_»2) (2 My _,)(i*%) (2} 1)k 2 £. Lemma 2.1 can
be applied to prove this.

The jh element of matrixs is given by

~ 1~ —~ ~ SRS
Zin = D ARMy—o2:)(2F Mi_) (5" 2) (5 18) R}
1=1
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and can be written in the form
n
A\?hnil Z XZ = A\;—'hX,
=1
whereX; is a vector whose components are of the form
ZiaZifZiyZis a, 3,7, b€ [1a sk — 1]

and Ajh is a vector whose components are polynomial functions of the componetts of
Mj,_o andji. By the law of large numbers}l— >~ X, converges in probability t&(X;) = +,
say, where the components pfare of the formE (z1,21521215). Moreover, sincel:Z,Mk_Q
and/: converge to their population analoguRs M > andy, say it follows thatﬁjh 2 Ajp,
whereA ;, is obtained fromA ;, by replacingR, M;,_, andj: by their population values.
Step 4- X has full rank.

Definea(z) as in(2.20) and lety = Mj,_»z, wherez ~ F.

Thena(z) € [0, 1] sincex andz are both complex unit vectors. Note that
Elyy*] = My—2SMj_y = diag[As, . .., Ag—1]

which is positive definite by assumptidiiz). Therefore the result will follow if we can show
that, for some > 0, ¥ > eE|[yy*], where” > " should be understood in terms of the partial

ordering of non-negative definite matrices.
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We have
¥ = Ela(2)yy"]

Ela(z)I(a(2) > d)yy™] + Ela(2)I(a(z) < d)yy™].

> FEla(z)I(a(z) > 0)yy*]

> OE[I(a(z) > d)yy’].

But it follows from assumptioriii) of the theorem that

Elyy*] = lims_oE[I(a(2) > 0)yy*],

and so there exists@&> 0 such that
from which it follows that

and therefore is positive definite.

Finally, by stepg1) and(2),

n1/2ﬁk—2:u E)CNIC—Q(O? E)a

whereCN is a complex normal, which was defined in (1.15). The st@psind(4) state that

S 2 ¥ and¥ has full rank. Thus the inverse &f exists in probability ag: — oo and the

statistic
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T(p) = 2np* Mi_o5 7 Mo,

is well defined in the limit. Thus

T(1) X34 (2.23)

as required.

Comments

1. Condition (ii) of Theorem 2.1 is satisfied if the underlying population is continuous.

2. Condition (iii) is satisfied provided the population distribution is not concentrated on a

subspace of lower dimension.

2.8 Practical Applications

Algorithm 2.2is applied to two real datasets. The first example is the dataset consisfit?g of
mouse vertebra (see Dryden and Mardia, 1998, p. 9), which is explaif@dBii. The second

example is a dataset of neural spine§'@fmouse vertebrae, which is discussed2rB.2.

2.8.1 Example 2.1

The method 0£2.6 was applied to the real dataset consistin@®imouse vertebra, which is
described by Dryden and Mardia (1998, p. 9). This dataset was obtained from an experiment
whose purpose was to evaluate how the body weight of a mouse can affect the shape of its

vertebra. The mice were divided into 3 differents groups of weight: control, large and small.
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The proposed bootstrap methods are applied to the small group. The sample of shapes is highly

concentrated around the mean shape.

0.2 0.4
N

Im(meanshapeicon)

-0.2
|

T T T T T
-0.4 -0.2 0.0 0.2 0.4

Re(meanshapeicon)

Figure 2.1: The labels of the landamrks which will be used in further comments

The labels of the landmarks are give in Figure 2.1. These labels will be used for the com-
ments about the probability region which is consider in the next figure. The order of the labels
is arbitrary.

Before applying this bootstrap method, a probability region for the small group was ob-
tained using the NA confidence region method, which is explaingd.i, and in particular,
(1.21). This is shown in Figure 2.2. It should be noted that in Figure 2.2 the NA confidence
region is multiplied by,/n and so it is a probability region for the observations. The nominal

levels of the NA confidence region is taken as 0.90. The dots represent the individuals and
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the ellipses the NA confidence region. The NA probability region is not appropriate for the
landmarks 3, 5 and 6 since many individuals are outside the ellipses of those landmarks. For
the landmarks 1 and 4 the majority of the individuals are in the interior of its confidence el-
lipses. It means that the principal component technique is appropriate to describe the global
variability of the landmarks, but it may not be suitable for representing the marginal variability,
particularly those landmarks with less variability.

In Figure 2.3, a graphical comparison between bootstrap and NA confidence regions for
the mean shape is shown. The nominal levels of the NA and bootstrap confidence regions are
taken as 0.90.

The preceding discussion shows that the NA method can be inappropriate for some real
data cases when too few PCs are used. Additionally, the bootstrap method is more robust in the

sense that there is no degenerate confidence region for particular landmarks.

2.8.2 Example 2.2

The bootstrap method is applied to a second dataset consisting of sets of three landmarks which
are obtained from twenty neural spines’™® mouse vertebrae. The two main differences
between this dataset and the previous one are that there is less concentration and the variances
of the landmarks are more homogeneous.

In Figure 2.4, the bootstrap and NA confidence regions are shown. The two methods deliver
similar results for the three landmarks. The procedures to obtain the NA and bootstrap regions
were explained i32.8.1. The two confidence regions have almost the same size as well. Thus

one can conclude in this example, where the landmarks are homogeneous in relation to the
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Figure 2.2: NA Probability Regions for the Individuals. These regions are obtained using

the principal components method for the tangent coordinates and projecting those components
back to the landmark space. The ellipses are the NA regions for the landmark and the dots are
the observations. This dataset is highly concentrated and the variances of each landmark are

very different.
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Bootstrap Regions NA Regions
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Figure 2.3: Bootstrap and NA Confidence Regions. Bootstrap regions are obtained by plotting

the means of all bootstrap samples. The NA regions are smaller than the bootstrap regions
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variability, the first two principal components capture nearly all variability and then the NA

method is appropriate.

2.9 Simulation Results

In shape analysis a simulation experiment can be done either on the pre-shape space or on
the landmark space. To evaluate the methods introduced here the results of some simulation
experiments are presented. The first experiment is performed on the landmark space and the
second on the pre-shape space. The landmark spR2eaisd the pre-shape space was defined
in (1.5).

The experiment was conducted as follows: 1000 samples were generated from a complex
normal distribution. The number of landmarkstignd the number of observationsris For
each Monte Carlo sample, 200 bootstrap samples were generated. Thus the coverage probabil-
ity for 4 methods were calculated from the 1000 Monte Carlo samples. The two tests described
in §2.3 and the two bootstrap methods fr§were evaluated.

In Table 2.1 the results of the coverage probability for different valuesaoidn are shown.
In this simulation experiment, for a chosen value for the mean shape, a multivariate complex
normal is added. In this multivariate complex normal the components are not correlated and
o is the standard deviation for each component. Note that the smaalferthe more highly
concentrated the data are. Two of the procedures, the Hotelling test and the Goodall test,
work well only for the highly concentrated distributions. For instance, when0.01 and the
sample size is bigger than 40, the estimated coverage probability of these procedures is equal to

the nominal value. For distributions with low concentration, those methods do not work well at
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Figure 2.4: Bootstrap Confidence Regions and NA Confidence Regions. The bootstrap regions
and NA regions are plotted using the same scale. The two regions are very similar for this

dataset whose landmarks have similar variances.
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all. For example, when = 1 and sample size %0, the coverage probability of both methods

is 0.02 which is very far from0.90. The two bootstrap methods work very well when the
value ofo is smaller thard.5. Wheno = 1, the coverage probability of the pivotal bootstrap

is not very close to the nominal value. However, it is considerably better than the Hotelling
T? bootstrap described i§2.6.2. For example, whem = 30 the coverage probability of the
pivotal bootstrap i9.84 and that for the Hotellingd™? bootstrap i€).74.

Another simulation experiment using the complex Bingham distribution, which is defined
in (1.16), was carried out. The methodsdf5.4 was used for simulating from this distribution.

To use this method it is necessary to specify the eigenvalues of the mMatriX1.16). The
vector of the eigenvelues of is called) and it is given in(1.17).

The experiment is similar to the previous one since the number of Monte Carlo replications
and bootstrap resamples were kept as 1000 and 200, respectively. The nominal value of the
coverage probability i8.90 as before.

In Table2.2 the results of the estimated coverage probability for different valuesamid
n are shown. There are 4 fixed values foand 3 different sample sizeswhich are 30, 50
and 100. The values of the eigenvalues are chosen in a way that 4 situations are considered.
Those situations are combinations of the cases of low and high concentration, and isotropic and
non-isotropic Bingham distribution. The Watson distribution is a special case of the complex
Bingham distribution that is obtained when there is a dominant eigenvalue and all remaining
eigenvalues are equal. The two bootstrap methods are much better than the other methods for
the low concentrated cases of both Watson and complex Bingham distributions. For example,

whenk = 4, the eigenvalues afe 1 and2 and the sample size 190, the coverage probabilities
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o | Sample| Hotelling Goodall Pivotal Hotelling’s T2
Size | Test (1.23)| Test (1.25)| Bootstrap (2.15) Bootstrap (2.17
0.01 30 0.92 0.91 0.92 0.93
40 0.90 0.90 0.90 0.90
50 0.90 0.90 0.90 0.90
80 0.91 0.90 0.90 0.90
0.2 30 0.83 0.80 0.93 0.92
40 0.81 0.79 0.90 0.89
50 0.79 0.78 0.89 0.89
80 0.80 0.79 0.90 0.90
0.3 30 0.67 0.63 0.93 0.93
40 0.66 0.63 0.90 0.89
50 0.63 0.60 0.89 0.88
80 0.63 0.60 0.90 0.90
0.4 30 0.46 0.40 0.93 0.91
40 0.43 0.37 0.90 0.89
50 0.41 0.39 0.89 0.88
80 0.40 0.38 0.90 0.90
0.5 30 0.29 0.22 0.92 0.89
40 0.25 0.21 0.90 0.89
50 0.24 0.21 0.89 0.88
80 0.23 0.21 0.91 0.90
1 30 0.02 0.02 0.84 0.71
40 0.02 0.01 0.83 0.72
50 0.01 0.01 0.84 0.74
80 0.00 0.00 0.88 0.80

Table 2.1:Coverage probabilities for the Confidence Region for the Mean Shape. The simu-
lation is performed with an isotropic complex normal distribution on the landmark space.
is the variance of the complex normal distribution. The nominal coverage probability is 0.90.

The number of landmarks is= 4.
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Parameters Sample| Hotelling | Goodall | Pivotal | Hotelling’s 7?2
Eigenvalues of thg  Size Test Test | Bootstrap| Bootstrap
Complex Bingham| (1.23) (1.25) (2.15) (2.17)

00800 30 0.900 0.890 0.899 0.909
50 0.900 0.892 0.898 0.894

100 0.906 0.901 0.903 0.901

050 850 30 0.900 0.891 0.899 0.909
50 0.900 0.892 0.898 0.894

100 0.906 0.899 0.903 0.901

001 30 0.023 0.015 0.822 0.719
50 0.013 0.008 0.864 0.745

100 0.008 0.011 0.871 0.823

012 30 0.057 0.049 0.863 0.769
50 0.036 0.032 0.870 0.811

100 0.020 0.024 0.891 0.857

Table 2.2: Coverage probabilities for the Confidence Region for the Mean Shape. Four dif-
ferent special cases of the complex Bingham distribution are considered: complex watson dis-
tribution, highly concentrated; Bingham distribution, highly concentrated; complex Watson

distribution, low concentrated and Bingham distribution highly concentrated.

for the Hotelling and Goodall tests are almost zero, but the result8.89eand 0.86 for the
pivotal bootstrap and Hotelling? bootstrap, respectively, both of which are reasonably close
to the nominal valu@.90. For low concentrated distributions, the results show that the coverage
probability of the pivotal bootstrap is closer@®0 than the Hotellingl™? bootstrap.

In Table2.3, results of simulation experiments with a fixed sample size 30 and several
values for the paramaters are presented. For very highly concentrated distributions all the

methods produce similar results. For low concentrated distributions, the pivotal bootstrap and
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Parameters Hotelling | Goodall | Pivotal | Hotelling’sT? | TabularT Test
Eigenvalues of the  Test Test | Bootstrap| Bootstrap (2.12)
Complex Bingham (1.23) (1.25) (2.15) (2.17)

00200 0.897 0.882 0.899 0.909 0.857
0030 0.866 0.856 0.901 0.904 0.857
0025 0.851 0.850 0.902 0.903 0.858
0020 0.837 0.845 0.903 0.903 0.859
0015 0.817 0.810 0.897 0.899 0.859
0010 0.772 0.742 0.901 0.893 0.860
008 0.72 0.696 0.898 0.882 0.857
007 0.669 0.649 0.901 0.888 0.857
005 0.533 0.485 0.897 0.891 0.846
004 0.433 0.378 0.901 0.896 0.854
003 0.290 0.247 0.897 0.879 0.844
002 0.125 0.097 0.880 0.831 0.782
001 0.023 0.015 0.821 0.719 0.672

Table 2.3:Coverage probabilities for the Confidence Region for the Mean Shape for the sample
size 30. In this case, 1000 Monte Carlo samples and 200 bootstrap samples are generated from

the complex Watson distribution.

Hotelling’s 72 bootstrap perform well. For example, when the eigenvalues of the complex
Bingham are), 0, 3 the coverage probability of the pivotal bootstra|p.i897, and the Goodall
and Hotelling Tests have coverage probabilities 0.290 and 0.247.

In Table 2.4, the results of a simulation experiment where the vector of parameters is
(0,0,1) are shown for several sample sizes. When the sample size increases, the pivotal boot-
strap, Hotelling’sT? bootstrap and the tabuldt test all improve in accuracy. The coverage

probabilities of the Goodall and Hotelling&? do not change much.
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Sample| Hotelling Goodall Pivotal Hotelling’s72 | Tabular? Test
Size | Test(1.23)| Test (1.25)| Bootstrap (2.15) Bootstrap (2.17 (2.12)
30 0.023 0.015 0.821 0.719 0.672
40 0.012 0.011 0.843 0.734 0.686
50 0.013 0.008 0.863 0.745 0.723
60 0.012 0.013 0.863 0.796 0.749
70 0.015 0.010 0.865 0.782 0.771
80 0.011 0.009 0.858 0.799 0.775
90 0.010 0.007 0.874 0.812 0.779
100 0.008 0.011 0.872 0.823 0.785
110 0.014 0.012 0.865 0.833 0.787
120 0.007 0.006 0.871 0.836 0.798
130 0.008 0.007 0.879 0.848 0.815
140 0.008 0.009 0.876 0.840 0.802
150 0.004 0.005 0.873 0.849 0.810
160 0.006 0.005 0.882 0.846 0.814
170 0.007 0.012 0.873 0.856 0.827
180 0.010 0.011 0.881 0.853 0.825
190 0.009 0.009 0.868 0.857 0.817
200 0.013 0.008 0.862 0.849 0.820
250 0.008 0.008 0.874 0.874 0.841
1000 0.005 0.004 0.895 0.893 0.888

Table 2.4:Coverage probabilities for the confidence region for the mean shape for a very low
concentrated distribution. The nominal value of the coverage probabilityp{s The values of

the eigenvalues of the complex Bingham are (0, 0O, 1).
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Chapter 3

Bootstrap Tests in Statistical Shape

Analysis

A suitable bootstrap method for testing equality of the mean shagelistinct populations is
introduced in this chapter. The method presented here follows general guidelines for bootstrap
hypotheses tests given by Fisher and Hall (1990) and Hall and Wilson (1991). According
to these authors, bootstrap tests should follow the same principles as bootstrap confidence
regions in that, when possible, tests should be based on statistics which are pivotal under the
null hypothesis. On the other hand, the resampling scheme is not the same as for confidence
regions. Bootstrap resampling should be done under the null hypothesis even if the observed
samples are far from satisfying the null hypothesis. The bootstrap test presented here is related
to, but extends, the bootstrap approach of Chapter 2. An important feature is that the sample of
each population should be rotated in a such way that the rotated mean shape of each sample will
be equal to a common mean shape, so that resampling takes place under the null hypothesis.

The outline of the chapter is as follows. Basic concepts about bootstrap hypothesis tests
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are reviewed irg3.1. §3.2 describes the procedure for calculating the unitary matrices which
are used to rotate the observations of each group so that the rotated samples satisfy the null
hypothesis of a common mean shape. The bootstrap method is descrig®8.inrhe null
asymptotic distribution of the test statistic is derived 3 and is shown to bg?. An example

is studied ing3.5 and simulation results are presentefdr6.

3.1 Bootstrap Hypothesis Testing

This section explains some issues about bootstrap hypothesis tests. It was mentioned before
that even though hypothesis tests and confidence regions are related, differences between the
two techniques imply that bootstrap tests require separate study. Some particular situations are
considered to explain bootstrap hypothesis testing methodology. The problem of calculating a
bootstrap test for a one parameter hypothesis is addressed, and some guidelines are reviewed
and applied to this problem. These guidelines are also applied to the nonparametric one-way
analysis of variance, which will be explained further.

Letdy,. .., a, be arandom sample drawn from the populatiomvhereF" has an unknown

parameter = v(F'). Suppose that a procedure to test

Hy : v =y versusHi : v # vy, (3.1

whereuvy is given, needs to be developed.
The bootstrap approach is as follows. The first step is to arrange that the random sample
a1, ..., U, satisfies the null hypothesis by applying a suitable transformation. This issue will

be discussed later on in this section. kgt...,u, be the transformed sample, assumed to
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satisfy Hy. GenerateB samples fromuy, . .., u,. Those samples will be named®, where
b=1,...,B. SetT, to be a statistic for the sampleand T, (b) to be the corresponding
statistic for the bootstrap samplé?). Assume that larger values @, are “more extreme”

with respect to the null hypothesis. The p-value of the test is calculated by

(number ofT, (i) > T,) + 1
B+1 ’

p-value =

Nonparametric bootstrap tests have the advantage that it is not necessary to choose a partic-
ular parametric family of distributions fdr. Bootstrap methods for hypothesis tests are studied
by Beran (1988), Hinkley (1988), Fisher and Hall (1990) and Hall and Wilson (1991). Fisher
and Hall (1990) and Hall and Wilson (1991) have presented two main guidelines for bootstrap
hypothesis testing: use a statistic which is asymptotically pivotal under the null hypothesis;
and resample under the null hypothesis.

The first guideline is similar to that which is used for constructing bootstrap confidence
regions, and aims to keep the level error of bootstrap tests to a minimun.

The second guideline, resampling under the null hypothesis, is necessary because p-values
are based on the distribution of the test statistic under the null hypothesis.

This issue will be discussed for a simple problem to give some intuition as to why it influ-
ences the level error of bootstrap tests. Consiger. . , u,, to be a random sample drawn from
the populatior¥’, whereF' has an unknown scalar mear= v(F'), and suppose that one wants
to test the hypothesd8.1), assuming without loss of generality that = 0. This condition
means that the resampling should be done using a centred version of the sample which is given

by u; — 0,...,u, — 0, wherev is the sample mean. It is intuitively reasonable, particularly
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if the null hypothesis is far from true. If the resampling is basedipr vy, . .., u, — vy, the
bootstrap value of the statistic, (i) will be bigger than the sample valdg in the majority of
the cases, and so the bootstrap p-value will be unreliable.

Since the problem of a bootstrap one-way analysis of variance is closely related to the
bootstrap test that will be introduced in this chapter, this case also will be considered in this
section (see Fisher and Hall, 1990, p. 178). Supposgthatl < i < n;} is a random sample
from the populatio”;, where the populatiofi; has mean; and variance;, j = 1,...,p.

It should be noted that this is a very general situation. The populafiprean belong
to a broad class of distributions. If the varianggsre assumed to be the same, then itis a
homoscedastic problem.

The one-way analysis of variance has the hypothesis

Hy:vi=vy=...=v,=vVersust : vy, va, ..., v, unrestricted (3.2)

Following the first guideline for a bootstrap hypothesis test, Fisher and Hall (1990) obtained
an asymptotically pivotal statistic in the one-way analysis of variance. For the homoscedastic
one-way analysis of variance, Fisher and Hall (1990) concluded that the F-ratio statistic is not

asymptotically pivotal. The F ratio is given by

2 _iny(F—7.)%
(O i iy —75)2)}

where the variable;; = u;; — v; is used to simplify the mathematical expressiorfofand

T) = (n—p)

n= Z?:l nj, T; = nj_1 Zﬁ-’:l ri;andr =n"1Y" E§:1 Tij.
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So Fisher and Hall (1990) considered another statistic, which was proposed by James

(1951), and is given by

nj(nj —1)(r; — 7. )2
TZ{{ > i (rij — 75)? }}7 .

J=1

Fisher and Hall (1990) showed th@tis asymptotically pivotal, and also that the level
error of this bootstrap test 3(n~2). The asymptotic distribution df is X3_2 and it does not
depend on the;’s. It should be noted that those results are obtained under the homoscedastic
assumption for the;’s (see Fisher and Hall, 1990, p. 181).

The resampling scheme is also performed according to the bootstrap test’s guidelines. Con-
sider the bootstrap sample@[ﬂ)( u(ll;), . ulj) for {b = 1,..., B}. Itis also necessary

to calculate the bootstrap version®f which is given by

2

b _ -
i ny(n; = () — )
n _(b)12
EEDVERIGIESY
where the variable;; = u;; — @ ;. It should be noted that the Fisher and Hall (1990) method

, (3.4)

usesr;; = w;; — uj instead ofr;; = w;; — p;. This agrees with the second guideline for
bootstrap tests.
The next sections present a bootstrap test in the shape context which is analogous to the one-

way analysis of variance. This test satisfies both guidelines for bootstrap hypothesis testing.

3.2 Rotations Determined by Geodesics

In this section a method for rotating a sample in such way that the mean shape of this sample

is equal to a fixed vector is described. The aim of the bootstrap method that will be introduced
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in the next section is to test the null hypothesis that the mean shapyeapiulations are equal
against the alternative that there are no constraints. Since one of the main principles of boot-
strap testing is that its resampling scheme should be performed under the null hypothesis, the
method described in this section will be used to make the mean shape of the sample of each
population be equal to a common mean.

The rotation procedure will be described for both real and complex vectors, starting with
the real case. Suppose thaindb are unit vectors ifR?, and that we wish to moueto a along
the geodesic path which conneat$o b. If |a”b| < 1, a rotation matrix can be determined as

follows. Define a unit vector

. b—a(a’b)
[Ib— a(a”b)[|’

where for any vectod, ||d|| = (d”'d)'/2. Provided|a”'b| < 1, the unit vector is well defined
since||b — a(a®b)||?> = 1 — (aTb)? > 0, where||b|| = /(b7b). Suppose that = cos*(aTb)
andA = ac’ — ca”.

Proposition 3.1. Rotation Matrix for Real Vectors. Assume thab ¢ R? are unit vectors

such thadaTb| < 1, and leta, A andc be as defined above. The matrix

(e 9]

ol
Q =exp(ad) =1+ Z ﬁAJ
j=1
satisfies the following.

a) Q is ad x d rotation matrix.

b) @ can be written as
Q=1+ (sina)A + (cosa — 1)(aa” + cc?)

c)Qb=a

d) for anyz € R? such thata” z = 0, bT 2 = 0, we haveQz = z.

77



Comments

1. The itemd) can be interpreted as saying that, on the orthogonal complement of the sub-
space

{da+pb: A\ peR},
the matrix@ acts as the identity transformation.

2. The path of minimum distance on the unit spher®fnconnectingb to « is given by

{z(0) = exp(BA)b: 0 € [0, al}.

3. Matrix exponentials are discussed briefly in appendix A.

The rotation matrix for complex unit vectors is obtained in similar way. However, in the
application to shape analysis, a pre-shapas to be chosen from the shapleof b, where[ ]
was defined in(1.6), b € C% andb*b = 1. Thenb moves toa along a horizontal geodesic in
the pre-shape space, which corresponds to a geodesic in the shape space. For practical reasons,

bis replaced by

[; _ b(b*a)
 fbral
so thath*a = |b*al is real. After this change the results are very similar to the real case. Define

b — a(a*b)
16— a(a*b)[|’

E:

A = aé* — éa* anda = cos~!(a*b).

78



Proposition 3.2. Unitary Matrix for Complex Vectors. Assume thab ¢ C? satisfy||a||> =
a*a = 1 andb*b = 1, and supposéh*a| < 1. Leté, A and & be defined as above. Then the

matrix

N Rl N
U=exp@d)=1,+Y %AJ

j=1
satisfies the following.
(@) U is d x d unitary matrix.
(b) U can be written
U =1+ (sina)A + (cosa — 1)(aa* + éc). (3.5)

() Ub = a.
(d) For anyz € C? such thata*z = 0, b*z = 0, the matrixU is the identity transformation,
i.e., Uz = z.

The proofs of Proposition 3.1 and 3.2 are similar but only the proof of the Proposition 3.2
is presented since this is the result which is relevant to the formulation of the bootstrap test of
§3.3.

Proof of the Proposition 3.2

Proof of (a) Since

A* = (ac* — éa*)* = éa* — ad* = —A,
it follows that
*
* S dj A7
Ut o= [L+)] w4
j=1
s &l -
= I+ Z(—l)JﬁAJ
j=1
= exp(—aA).
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Therefore

UU* = exp(a@A) exp(—aA) = I,

and saU is unitary.
Proof of (b) The proof of this result has a few steps. Sinté = 0, the following result about

the matrixA? is derived.
A% = (a* —éa*)(ad" — éa*)
= ac’ac” — ac’ca* — ¢a*ac” + ca*ca*
= —(aa* + éc")
In addition to that, the matrid has the property that®> = — A, because
A3 = A%A
= —(aa* + éc*)(ac” — ¢a™)
= —aa*ac* + aa*céa* + ¢c*ac* + ccréa*
= —ac* +ca*

-

Thus the matrix4 follows the general order

AR = (=1)(aa* + &%) k=2j

and
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AF = (=1YA  k=2j+1,

wherej = 1,2, ...

Using the results above we have
o] dj o
U = Id + Z 7'./4']
— 7!
7j=1

O g2+l A
= I+ gh%+nw4y A +

J
= I;+ (sin@)A + (cos & — 1)(aa* + &&*).

Proof of (c) To prove that/b = « it is necessary to use the fact that
b= (cosa)a + (sina)é
and
Ab = (aé — éa*)(cos)a + (sina)é
= —(cosa)¢+ (sina)a.

So the product/b is calculated as

Ub = (Id + (sin@)A + (cos @ — 1)(aa* + 65*)) b
= (cosa)a + (sin@)¢ + sin @(—(cos &)¢ + (sin@)a) + (cos & — 1)((cos &)a + (sin &)¢)

= (sin® @ + cos? @)a + (sin & cos & — sin @& cos @)é
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Proof of (d) The productUz can be written as

Uz = (Ig+ (sina)A+ (cosa — 1)(aa” + ¢c¥)) 2

= z+4 (sin@)Az+ (cosa — 1)(aa*z + ¢¢*z).

On the other hand, sinegz = 0, b*z = 0, for anyz € R?, it is seen that*z = 0 and
Az = 0. So all the terms of/ z are zero apart from the first and then = 2.
Comment

The set{i(#) = exp(AA)b : 6 € [0,a]} is a horizontal geodesic in the pre-shape sphere,

and therefore corresponds to a geodesic in the shape space.

3.3 Description of the Bootstrap Test

The bootstrap method from Chapter 2 and in particular the pivotal statisti2) can be ex-
tended to the problem of comparing the mean shapesgrbups. The basic concepts from
Chapter 2 need to be defined for the case of several populationgl/lLet {Vij, 1 <i<n;}
be a random sample of configurations from populalﬂ)ﬁ wherel < j < p denotes the
population.

Let wiil = {wy, ..., wy;} be the Helmertized configurations pf The complex sum of

squares and product matrix fat’) is defined by

Gl — o ® * a0 — ¥
Sl = E :wljwij/(wijwlj) = E :szij,
j i=1

=1

wherez;; = wj;/||wij||, i = 1,...,n; are the pre-shapes for thieh group.

The spectral form o6 is given by
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k—1
Sll — Zig]ﬁg}ﬁg‘h
q=1
whereX[lj] > X[Qﬂ ez Xg]_l > 0 are the eigenvalues, arﬁéﬂ, e ,ﬂgf]_l the corresponding
eigenvectors. Thus the full Procrustes mean shape ifogiven byzl/! = M[lj].

A bootstrap method is introduced to test
Hy:pl = pl = =Pl = pversusHy : Y, ..., yP! unrestricted  (3.6)

The quantities and Mj,_», introduced in(2.13) and(2.14), have to be defined for the
case of several populations. LTHIILJEQ andSl! be the matriceﬁ/fk_g andy for samplej. So
for the Helmertized configurationsl’), the (k — 2) x (k — 2) matrix U1 = (igj}) and the

(k—2) x (k— 1) matrix ]\7,@2 are given by:

e R D DRSS (DD (CONRIC D DD

ql [ 7
=1

(3.7)

and

MY, =g (3.8)
Before giving a detailed account of the bootstrap test, it is explained how the common mean

is computed. Define

(M) ST (3.9)

Il
.M"@

Fp(p)

<
Il
-
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The common meary;, is defined as the complex unit vecterwhich minimizesEg (u).
From Lemma A.17 is given by the unit eigenvector corresponding to the smallest eigenvalue

of

p .
S (i) (S Y. (3.10)

Jj=1

The test statistic is defined as
P RN N7
mings =1 Fp(p) = Fp() = Y i (M) (S0 M . (3.11)

It should be noted that'z (12) is the eigenvalue correspondingio £z (f2) is also an extended
version of(2.12).

The statistidFz (7i) has an asymptotig? distribution under the hypothesi3.6). The proof
is given in§3.4.

The bootstrap test to compare the hypotheses givés. @) usingi[ﬂ and]\//f,@2 has the
following steps:

Algorithm 3.1. Bootstrap Hypothesis Test (f.6)

Step 1- Obtain the values ofil/], J\ZEQ and >/l for the pre-shape sample§!, where
1<j<p.

Step 2- Obtain the pooled estimate of the common mean sfiagefined as the eigenvec-
tor of (3.10) corresponding to the smallest eigenvalue.

Step 3- Rotate the pre-shapes of each group using PropositibrAfter this step the new

sample mean shap¢gl’!, j = 1, .., p} will all be equal toji.
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Applying (3.5), we calculate a unitary matrix which rotat@! along a “horizontal”
geodesic in the pre-shape space to coincide withLet R(7il!, 7i) be this matrix. So the
new set of pre-shapeszV! = R(al], 71)2U1, j = 1,..., p will satisfy the null hypothesis.

Step 4- ProduceB bootstrap resamples frolizll for j = 1,...,p and let RzV(p)
denote those resamples for= 1,...,p groups, wheré = 1,...,B. For each bootstrap
sampleb calculateril/1(®), J\/Z,ﬂg’) andl1®) as the bootstrap versions !, ]\7,@2 and ),
respectively. Se{FfBb) (), b=1,..., B} as the statistic value for the bootstrap samples.

Step 5- Compute the p-value of the boostrap test using

(number of ?) > Fy (7)) + 1
B+1 ’

p-value =

whereFp(pi) is (3.11) calculated using the original sample.

3.4 Asymptotic Distribution of Fiz(u)

The asymptotic distribution of'z is now derived. Three lemmas will be stated and proved.
After that, some assumptions are stated, and then a theorem about the asymptotic distribution
of Fip and its proof are given.

The notation is chosen to facilitate the proofs of the lemmas and of the theorem.

Lemma 3.1.Suppose thalt’ (c x ¢) is a complex Hermitian matrix of rank< c. Let A be any
complex- x ¢ matrix such that the following holdg:) the columns ofi* lie in the orthogonal
complement of the null space 6t where the orthogonal complement is definedAm2) and
the null space is defined (M.1); and (ii) AV A* is invertible. Then

V= A (AVA*) 1A,
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whereV T is the Moore-Penrose inverse &t (which, by uniqueness &, must be indepen-
dent of the particular choice of A.)

Proof. Since V is Hermitian of rank, it admits a spectral decompositiéh = UAU where

A (r x r) is a diagonal matrix with non-zeros entries, dndp x r) satisfiesV*U = I,. By
assumptior(i), each column ofA* can be represented as a linear combination of the columns

of U™, i.e. there exist an x r matrix R such thatd = RU*. For suchA,

AV A* = RU"UAU*UR* = RAR*

and, since\ is invertible and, by(ii), AV A* is invertible, it follows thatR is also invertible.

Therefore

A*(AVA*)™1A = UR*(RAR*)"'RU*
= UR*(R") 'A'R'RU*
= UAU*

= VT

Lemma 3.2. Suppose that fof = 1,..,p, y;» = y; are independent sequences (indexed by
n = 1,2,...) of random vectors and suppose that, for each'/?(y; — ) % Ni (0, Q;),
where each); has full rankk. Suppose that the symmetric matﬁ;,n = ﬁj is a weakly

consistent estimator &?; for eachj, and define

1
p p
o= | 29| 20y
j=1

J=1

Then, agr —o0,

86



p
n(fio— )" [ D | (o — 1) Sx3
and

p
(=) —0) = nY_ (i —mw Yy —p)
1 =1

p
—n(i —p)" <Z Q_1> (= 1) G 1)k
i=1

Proof. The basic idea of the proof is first stated. If for eacthey; were exactly normal and

n

p
Jj=

the ﬁj were exactly equal to the trde; for j = 1,...,p, then the limiting results stated in
the lemma would be exactly true by standard theory for the normal linear model. The limiting
results follow directly from the fact that each statistic is a jointly continuous function of the
a,.
Consider
Yj =y~ Nn(Ok,n_IQj).

The likelihood function is given by

n

n _
L(p, ..., pp) = const — Z E(yl — )" (s — ),
i=1

where const denotes a constant term. ebe the MLE undeiy. It is calculated by setting

aL
o= 0%, where

oL 8L(/"77M> —1
ou ou nz

The equationg—ﬁ = 0 gives



Therefore

7

P
Qi1> fo
-1

P

» -1
fio = (ZQf) > 9y
=1 =1

The expectation and covariancejgf are given by

p
Zgilyi=<
i=1

and

p

E(jio) = ( Qf) (ZQf)E(yi)

=1
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Also, underHy, using the Fisher-Cochran theorem (see Rao, 1972, pp. 185-187), we have

(1o — p1)™ <Z Qz) (fio — 1) ~ Xi-
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The proof in the general case follows from the fact thaythare independent of each other

andforj =1,...,p,

2052 (y; — ) <4 Ni(Ox, Ii)

under the assumption of the lemma.

Lemma 3.3.Let Ale] = Ag+eAj +e2A5+. .. denote a Hermitian matrix defined in terms of a
power series in the real variable(so, in particular, each member of the sequergeA,, ...

is Hermitian). Suppose that, has an isolated eigenvalug) and corresponding unit vector
up. Then for alle sufficiently smallAfe] has an isolated eigenvalude] = A\g+eA;+e2Xa+. ..

and corresponding unit eigenvectofe] = ug + euy + €2ug + ..., with

)\1 = u6A1U0, (313)
)\2 = UB{AQ — Al (AO — /\0])+A1}UO, (314)

and
ur = (Ao — Xol) " Aquy, (3.15)

where(Ag — \gI)™ is the Moore-Penrose inverse @iy — A\o1).
Proof. Writing Ale|ule] = A[e]u[e] in expanded form we obtain
(A0+6A1+62A2—|-. . .)(u0+6u1 +€2U2+. . ) = ()\0+6)\1 +€2/\2—|—. . .)(U0+EU1 +€2U2+. . .),

and the expressions foi, A\, andu, are obtained by equating the coefficientsbt= 1, € and

€% to zero. We obtain the following three equations.
coefficient ofe¥ =1 : Agug = Aouo; (3.16)

coefficient ofe! = ¢ : Ajug + Aguyg = A\ug + Aouq (3.17)
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and
coefficient ofe? : Ajuq + Asug + Agus = Aoug + Aous + A\qug. (318)

Sinceuju; = 0, which follows by equating the coefficient efto zero in the constraint
llule]]|*> = 1, it follows from (3.16) that u§Aou; = 0. Taking the scalar product of each

side of(3.17) with w§, and using(3.16) and the fact thatjuo = 1, we obtain

LHS = uS(Aluo + Aoul)

uaAluo + )\ngul = ugAluo

RHS = u6(A1u0 + )\6’&1) = )\1U6U0 + Aou’gul =)\,

where LHS is the scalar product of and the left hand side ¢8.16), and RHS is the scalar

product ofuf and the right hand side ¢8.16). Therefore, equating the LHS and RHS,

A1 = ugAiug.
Using(3.17) to obtainu;, we have
(Ag —INo)ur = —(A1 — Ail)ug
from which it follows that
up = —(Ag— Aol)T (A1 — MI)ug
= —(Ao — XoI) " Aqu,
sinceuy is in the null space ofAg — T\g) ™.
Pre-multiplying both sides af3.18) by uj, we obtain
Ao = up(Ao — Aol)ug + ugAiug + ugAsug — Ajugus.
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Sinceufu; = 0 anduj(Ag — Mol) = Xoujy — Aoug = 0, this equation can be written as

Ay = u6A1u1+u6A2u0

= UB{AQ — Al(Ao — )\0[)+A1}UO.

This completes the proof.

Consider they samplescl’) and other definitions df3.3. Using Lemma 4.2, there exists a
function defined locally, such théﬂ@z = f(abh.

We make two assumptions when deriving the asymptotic distributidfiz@f:), which is
defined in(3.11). The first assumption can be calladymptotically balanced samplind et
n; = n;(n) denote the size of sampldi = 1, ..., p), viewed as a function of the sample size

indexn. Then it is assumed tha(n) = nw;(n) where

liminf min w;(n) > 0and lim sup max wi(n) < oo. (3.19)

n—oo i=1,....k n—oo t=1,...,
If (3.19) fails then the contribution of those samples whose sample size is of smaller order than
the largest sample size becomes asymptotically negligible.

In addition to (3.19) , suppose that, fpe=1,...,p,

n'2Mip -5 CNy,_1(0, V), $U! of full rank, n — oo (3.20)

and assumé&l/ is a consistent estimator &fl. Note that, from the proof of Theorem 2.1,
(3.20) will hold provided that population satisfies conditionsi), (i) and (iii) of Theorem

2.1

91



Theorem 3.1. Assume all the conditions of (3.19) and (3.20). Then the stafi$t{¢/) has an
asymptoticx%pfl)(%%) distribution under the null hypothesis of a common mean shape.
Proof. Before considering the details , a general idea of the proof is given. The statistic used
is the smallest eigenvalue dfin—'/2] in (3.21), and the proof has two steps:

Step 1 Using Lemma 3.3, the smallest eigenvalueldf—'/2] is asymptotically equivalent
to A2 in (3.22) with A, and 4, defined below, andl; given by Lemmas.1.

Step 2 Recognise thak, has the same structure as the RHS of the final term in Lemma
3.2.

Define

iS]

2 = 3 (310) (gm)‘lﬁ[ﬂ, (3.21)

7=1
—~ . ~r.a\ —1
where MUl and (Zm) were defined ir§3.3. The termA[n—'/2] is going to represent a
Hermitian matrix defined in terms of a power series in the real variablé?. The right side of

the equation is the kernel of the statistic11) which is given in(3.9). Thus A can be written

~ra\ —1 —
V%) =S (M + MV )*(zm> (M + MY — M.
7=1
ExpandingA,
AV = Ag+nY2 A, + 0t Ay,
where

Ay = jZ:M* (i[ﬂ)_lM = M (jzp; (i[ﬂ)1> M
Wi{(w ~u)’ (gm)‘l M4 M*@m)‘l (301 - M)}
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and
L4 /\[ ] * /\[] —1 A[ 1
AQ—_’I’L]El(IM] —JM) (EJ) <l\4j —1%).

Note that(:) for [ > 3, A; is the matrix of zeros; and (ii) since
In'2 (311 = 0 ) || = Oy(),

where||A;|| and||A2|| are bothO,(1). In the above||.|| is any suitable matrix norm such as
the Euclidean nornfitr(A*A)}1/2.

We now use Lemma 3.3 to determine an expansion for the smallest eigenvalue &f2].
We have

Ao = M*AQ/L =0 and )\ = /L*Alu =0,

sinceM 1 = O_1. Therefore the leading term in the expansion of the smallest eigenvalue is
)\2 == ,LL*AQILL - ,LL*AIAOJFALLL. (322)

Now, if we calculateAd; i, sinceM p = 0, all the terms withM on the left side ofd; are

null, and then

LSRN
A =n'?M* ( <2[ﬂ) M[J]) L,

7j=1

and so

j=1

p 1 p _
j=1
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But using Lemma 3.1 wittd and M,

Af = M*(MAM*)'M

p

-1
- M (MM* 3 (i[ﬂ)lMM*) M

j=1
-1
LS|
= M* (Z (ZM) ) M,
j=1
and thus B
p
MAS M = (Z (50) 1)
j=1
Consequently,
P -
W ATAS A = no* (Z (f][ﬂ) 1) v
j=1
where

we may apply Lemma 3.2 as follows to obtain the limitiggresult for Fz(11). Put

T T ol \T\T 1| RE) - (=)
yi = (RIMZop)", S(M op)" )", Q=5

S (b % (s0)
with a corresponding definitiof?; in terms ofS:l]. By assumptior(3.20) we haven'/2y; -
Nai_4(02,_2,9;). Also, by assumptiortl! is a consistent estimator af], so(); is a con-

sistent estimator df2;, and therefore Lemma 3.2 may be applied. This concludes the proof of

the theorem.
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3.5 Some Applications

The bootstrap test was applied to two datasets from Dryden and Mardia (1998). The p-values
of the bootstrap tests are compared to those obtained using Goodall and Hotelling tests, which
are reviewed ir§l1.7.1 anck1.7.2.

The first dataset considered was the Gorillas Skulls (see Dryden and Mardia, 1998, p. 10),
which has 8 landmarks from 29 male and 30 female Gorillas. The p-values of the bootstrap,
Goodall and Hotelling test were less than 0.0001 in each case. The bootstrap agrees with the
other two tests in this example, where there is a very significant difference between the means
of the two populations.

The second dataset is related to schizophrenic patients (see Dryden and Mardia,1998, p.
11). For this dataset, 13 landmarks are placed on a 2D image of the brains of 14 schizophrenic
and 14 normal patients. The p-values for the bootstrap, Goodall and Hotelling tests were
0.0004, 0.0007 and 0.6579. Thus the bootstrap test agrees with the Goodall test. Even though
the Goodall test has very strong assumptions, which are not satisfied in this example, it does
not mean that the bootstrap test gives the wrong answer. The assumptions of the Hotelling test
are very strong for this case as well, and so one should not trust its results. A bigger sample
size would allow a better comparison between the tests and so we have carried out a simulation

study.

3.6 Simulation Study

We consider two additional methods to test if the mean shapes of two populations are equal or

not. These tests are Hotelling’® test and Goodall’s test that were describegir8.
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In all the simulation experiments the number of Monte Carlo runs is 1000, and for each
run 200 bootstrap samples were used. In each Monte Carlo run, two samples from complex
Bingham distributions are generated. To evaluate the power of the tests, the true mean of one
of the populations is rotated by an angleThe parameters of these distributions are changed
in each experiment in order to study some situations of interest.

In Figure 3.1 a diagram of the Monte Carlo simulation is presented. This diagram shows
one Monte Carlo experiment for the case of two populations. The steps of this diagram were
repeated 000 times in each case. The output of a pass though the diagram is a p-value. So at
the end of the process the algorithm will delivet@0 x 1 vector, and the final p-value will
be the average of the components of this vector.

The case of low concentrated distributions is considered in Table 3.1. The variances of the
two populations are very different since the eigenvalues of the second population are equal to
the eigenvalues of the second times The tests are evaluated under the null hypotheses and
the size of the test is chosenas= 0.05. The results show that the p-values of the bootstrap
test are closer t0.05 than those from the Hotelling and Goodall tests. For example, when the
parameter vector of the first populatiomis= (0, 1, 2) and the sample size 190, the observed
significance level of the bootstrap test, Hotelling test and Goodall test@@s&, 0.201 and
0.966, respectively . So the Goodall test completely loses its precision and the Hotelling test is
not accurate for the situation considered.

Since the p-values of the tests are very different for low concentrated distributions, their
power will be comparable for highly concentrated distributions only.

The results of a simulation experiment with highly concentrated and isotropic distributions
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are presented in Table 3.2. In each Monte Carlo iteration two samples from Complex Bingham
distributions with parameters = (0, 400, 400) were simulated. For this case the two methods
are expected to work well and they do. In particular, all the assumptions of the Goodall test are
satisfied and therefore this test is the most powerful for the situation considered. In all the cases
the Goodall test is more powerful than the Hotelling test and the power of this one is smaller
than that of the bootstrap test. For example, whea 30 and¢ = 0.126 the power of the tests

has the order Gooda(.981) > Bootstrap(0.968) > Hotelling (0.961).

The results for nonisotropic and highly concentrated distributions are shown in Table 3.3.
Two complex Bingham samples with parametgrs (0, 50, 100) are generated in each Monte
Carlo run. The Goodall test is less powerful than the other two test as expected since this
test is designed for isotropic distributions. On the other hand, bootstrap and Hotelling tests
have similar power. For example, when the sample sizB)isand ¢ = 0.031, the tests
have the following order in relation to the power Hotelli(@662) > Bootstrap(0.656) >
Goodall(0.541).

In Table 3.4 the simulation results for the case that the populations are highly concentrated
and have different variances are presented. In this simulation experiment one complex Bingham
sample is generated with the parameters: (0,50, 100) and the other one with parameters

A = (0,100, 200).
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Generate a sample
from population 1

Calculate
pre-shapes

Generate a sampl
from population 2

1%

Calculate
pre-shapes

Comp.]\/fk_g(fl) , Calculate Comp.J\/Fk_Q(@) ,
$1 anda™ fiandFs (1i) S, andi®
Rotate Calculate Rotate
using Ry R; andR> using R
Resample from Calculate Resample from

7 = Ri(71) Fp (i) U2 = R2(%2)
Compute
p-value

Figure 3.1: Simulation study diagram. This diagram is for the case of two populations. The
details of each step are given in the algorithm. It corresponds to one iteration of a Monte Carlo

simulation.
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Bingham | n | Bootstrap| Goodall Test| Hotelling Test
eigenvalues (3.11) (1.32) (1.27)
0,1,2 30 0.071 0.924 0.214
50 0.066 0.954 0.204
100| 0.057 0.966 0.201
0,2,4 30 0.063 0.716 0.184
50 0.052 0.743 0.192
100| 0.037 0.781 0.181
0,4,6 30 0.045 0.444 0.149
50 0.049 0.425 0.149
100 0.051 0.419 0.144
0,6,8 30 0.041 0.268 0.129
50 0.057 0.246 0.115
100| 0.053 0.265 0.118

Table 3.1:0Observed significance level of the tests for populations with low concentration and
heterogeneous variance structure. The vector of eigenvalues of the first and second populations

are (0, 1, 2) and(0, 15, 30), respectively. The nominal significance leve).i5.
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Sample| ¢ Bootstrap| Goodall Test| Hotelling Test
Size (3.11) (1.32) (1.27)
30 0.000| 0.046 0.053 0.051

0.003| 0.047 0.060 0.055
0.031 0.114 0.157 0.125
0.063| 0.420 0.483 0.425
0.094| 0.791 0.839 0.787
0.126| 0.968 0.981 0.961
50 0.000| 0.035 0.041 0.043
0.003| 0.032 0.057 0.044
0.031| 0.180 0.234 0.196
0.063| 0.615 0.689 0.629
0.094| 0.967 0.980 0.963
0.126 1 1 1
100 | 0.000| 0.050 0.056 0.053
0.003| 0.051 0.069 0.053
0.031| 0.369 0.416 0.378
0.063| 0.929 0.957 0.934
0.094 1 1 1
0.126 1 1 1

Table 3.2:Power of the tests for isotropic and highly concentrated distribution. The angular
distance between the two true mean shapg. i he true eigenvalues of the populations are
(0,400, 400).
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Sample| ¢ Bootstrap| Goodall Test| Hotelling Test
Size (3.11) (1.32) (1.27)
30 0.000| 0.046 0.070 0.051

0.003| 0.050 0.070 0.054
0.031| 0.218 0.181 0.212
0.063| 0.770 0.653 0.756
0.094| 0.982 0.966 0.984
0.126| 1.000 1.000 1.000
50 0.000| 0.036 0.057 0.043
0.003| 0.039 0.062 0.043
0.031| 0.340 0.271 0.350
0.063| 0.947 0.877 0.943
0.094| 1.000 1.000 1.000
0.126| 1.000 1.000 1.000
100 | 0.000| 0.049 0.066 0.054
0.003| 0.051 0.070 0.055
0.031| 0.656 0.541 0.662
0.063| 1.000 1.000 1.000
0.094| 1.000 1.000 1.000
0.126| 1.000 1.000 1.000

Table 3.3:Power of the tests for nonisotropic and highly concentrated distributions. Two highly
concentrated complex Bingham distributions are simulated with parameter vector (0,50,100).

The angular distance between the two mean shapgs is
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Sample| ¢ Bootstrap| Goodall Test| Hotelling Test
Size (3.11) (1.32) (1.27)
30 0.000| 0.048 0.071 0.058

0.003| 0.048 0.072 0.060
0.006| 0.051 0.077 0.066
0.009| 0.060 0.081 0.070
0.019 0.112 0.106 0.123
0.028| 0.226 0.186 0.236
50 0.000| 0.038 0.061 0.046
0.003| 0.044 0.064 0.049
0.006| 0.056 0.068 0.059
0.009| 0.070 0.076 0.081
0.019| 0.184 0.153 0.201
0.028| 0.376 0.291 0.380
100 | 0.000| 0.045 0.066 0.054
0.003| 0.053 0.072 0.062
0.006| 0.070 0.080 0.072
0.009| 0.105 0.097 0.112
0.019| 0.354 0.261 0.369
0.028| 0.702 0.575 0.705

Table 3.4: Power of the tests for highly concentrated populations with different dispersion
structure. The parameters of the simulated complex Bingham distribution®)wixel 00 and
0, 100, 200.
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Chapter 4

Empirical Likelihood Methods in
Shape Analysis

Empirical likelihood (EL) methods for building confidence regions and for testing hypotheses
in the context of statistical shape analysis are studied in this chapter. The empirical likelihood
method of Fisher et al. (1996) for building confidence regions for the mean direction and the
mean axis can be used for building confidence regions for the mean shape. Those methods will
be adapted to the shape context since the pre-shapes are complex unit vectors and not real unit
vectors such as axes or directions. An extension of the method of Fisher et al. (1996) will be
used to compare the means of several groups of objects.

The next sections are organized as follows. Before considering the shape context, the
general idea and a literature review of EL are consideréd.ib. The formal definition and the
main properties of empirical likelihood are givergih.2. More details about EL are considered
in §4.3, with a focus on inference for a univariate mean.g4, the method presented by

Fisher et al. (1996) for building a confidence region for the mean direction is reviewed. The
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EL method for the mean shape is presente@dib. A method to produce a set of mutually
orthogonal unit vectors, which is an important step of the EL algorithm, is preserédbinn

§4.7 the algorithm to calculate the EL is shown. Bootstrap calibration can be used to improve
the accuracy of the EL methods, ag#l8 explains how to perform this task. A Monte Carlo
simulation study of the EL methods is describedg#9, and numerical results obtained in
this study are discussed $4.10. Graphical checking of the distribution of the EL statistic is
considered ir§4.11. The EL method is applied to a real data exampktit2. The problem

of using EL for hypothesis tests for several populations is addres$ddliB. A method of EL

hypothesis testing for statistical shape analysis is introducg4l irfh.

4.1 Main ldeas and Literature Review of Empirical Likelihood

Likelihood methods are very effective. They can be used to construct tests with good power
properties, and they provide efficient estimators and small confidence regions.

However, nonparametric methods may be better than likelihood methods in some circum-
stances; especially when little is known about the underlying distribution. The main disadvan-
tage of likelihood methods is that a family of distributions has to be assumed for the data. This
problem can be avoided if nonparametric methods are used. In some real problems it may be
hard to find a suitable parametric family of distributions. This often happens when the sample
size is small but it can also happen in situations when the sample size is large.

Empirical likelihood (EL) is a type of nonparametric likelihood which can be used to obtain
a nonparametric version of the theorem of Wilks (1938), which delivers an asymptotic chi-

squared distribution of log likelihood ratios and therefore can be used for building confidence
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regions and for testing hypotheses. More details about this theorem will be sge?.in

There are many points to note about EL methods. EL does not assume a parametric family
of distributions for the data. EL methods are generally very accurate when used with bootstrap
calibration, a very powerful method. The shape of EL confidence regions are data-determined
which does not happen with bootstrap confidence regions. EL automatically produces a pivotal
statistic, and avoids the complications which can arise in constructing pivotal bootstrap statistic.

The first paper to introduce EL methods was published by Owen (1988). In that paper
an EL method for the sample mean was presented. The method was based on a honparametric
analogue of Wilks (1938) theorem for parametric log-likelihood ratios. Owen (1988) presented
a proof that the empirical log likelihood ratio has an asymptafticdistribution under the
null hypothesis, and he also compared his method to the bootstrap method in a simulation
experiment using &2 distribution. He found out that the bootstrap-t was more accurate than
the EL method in that particular setting.

In a second paper, Owen (1990) derives multivariate empirical likelihood regions for func-
tions of several means. Multivariate means, covariance matrices and regression parameters are
special cases of functions of means. For the multivariate mean, Owen (1990) illustrates in a
numerical example that the shapes of empirical likelihood regions are determined by the data.
He obtained a region different from an ellipse for the mean of a bivariate normal.

Owen (1991) introduced empirical likelihood methods for more complex regression mod-
els. He considered several models, including robust regression, heterocedastic regression and
one-way anova.

Asymptotic properties of empirical likelihood methods and Bartlett correction have been
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studied by several authors. The Bartlett correction is a scaling of the log likelihood ratio statis-
tic which reduces the error of the asymptotit distribution under the null hypothesis from
O(n~1) to O(n~2). So this scalar transformation can also be applied to the empirical likeli-
hood to reduce the order of the error fréntn 1) to O(n=2).

DiCiccio et al. (1991) showed that the empirical likelihood is Bartlett correctable. It is
a very good property of the EL method since it is the unique nonparametric method which is
Bartlett correctable. They derived a general formula which can be used for parameters which
can be expressed as functions of means, variance, covariance, correlation, skewness, kurtosis,
mean ratio, mean difference and variance ratio.

DiCiccio et al. (1991) also showed that the bootstrap is not Bartlett correctable in any
useful sense. Their arguments are based on the Edgeworth expansion. They showed that the
Edgeworth expansions for bootstrap statistics have terms that cannot be removed by a simply
scalar transformation like the Bartlett correction. Thus it is of considerable interest that EL is
Bartlett correctable.

On the other hand, Jing and Wood (1996) showed that exponential empirical likelihood
is not Bartlett correctable. They compare the relevant expansions of exponential empirical
likelihood and empirical likelihood. They showed that a particular term of the expansion for
the exponential empirical likelihood does not have the o@ér—*), which is a necessary
condition for it be Bartlett correctable.

The key reference for empirical likelihood and its applications is Owen (2001). Hall and La
Scala (1990) give a very good review, introducing the ideas clearly. Owen also presents a list

of related methods including the Bayesian bootstrap (Rubin, 1981), the nonparametric tilting
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bootstrap (Efron, 1981), the survey sample estimator (Hartley and Rao, 1968) and the method

of sieves (Grenander, 1981).

4.2 Definition and Properties of Empirical Likelihood

Owen’s (1988) original idea was to use an empirical likelihood ratio to construct a confidence
interval for the mean. To make this idea clear, the EL method for a functional will be reviewed.
Recall that the concept of a functional is definedan).

Let m = m(F) be a population characteristic, such as the mean or the variance, of a
populationF', {ui,...,u,} a random sample fron¥ andw = (wy,...,w,) a vector of
positive weights which sum tb. Let F,,, denote the discrete probability distribution supported
by the samplguy, ..., u,, } defined byF,,(A) = >~ , w;I(u; € A), whereA is any set in
the sample space ard.) is the indicator function.

The EL form is defined as

n

EL(m) = gg}gll_ll w; subject to Zz; w; =1 and m(F,) = m. (4.1)
There are some points to note about this definition.
i) If the constraintn(F,,) = m is ignored, the EL is maximized when, = 1/n for all .
This result is easily shown using the Lagrange multiplier method. The Lagrange multiplier

method to maximize a functiofi(w) subject to the constraint(w) = 0 has the following

steps. One first calculates the valuewof w), which solves
G(w) = V f(w) — AVg(w) = 0, (4.2)

and then obtaing to solveg(w,) = 0, whereV is the gradient operator.
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For the situation considered, ignoring the constraigf;,) = m, the functions used in the

Lagrange multiplier method are

flw) = zn:log w; and g(w) =1— zn:wi. (4.3)

i=1 i=1

The equatiorV f(w) = AVg(w) becomeg1/wy,...,1/w,) = —A(1,...,1) which gives

w; =1/n

for all i.

However, the idea of EL is to find the set ofs which maximizes their product subject
to the constraintsi(F,,) = m. This can be achieved by introducing additional Lagrange
multipliers. In§4.2 and§4.3, we explain how to calculate EL for mean direction and mean
shape, respectively.

i) A major property of the EL method is that it admits a nonparametric version of Wilks’s
(1938) theorem.

Before discussing the Wilks’s theorem for empirical likelihood, we review Wilks’s theorem
for parametric likelihood. Suppose that= {uy, ..., u,} is random sample gf; x 1) random
vectors, where each; has pdff(u;;v), wherev is a(r x 1) parameter vector. If a discrete
variable was considered,; would have a probability mass function (pmf). The following
results are also valid for a pmf.

The likelihood function for in the case of an 11D sample is defined by

n

L(vjw) = f(us, ..., unlv) = [ ] f(uilv), (4.4)

=1
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and the log-likelihood is given by

I(vlu) = log f(ui;v). (4.5)
=1

Suppose that parameter space is denoted bflso denote byYy C T a subset of strictly
lower dimension thaff.

The maximum likelihood estimator (mlé)of v under the hypothesi¥ is defined as

A I
U = arg max (v[u),

whereu is fixed. For testing the nested hypotheses,
Hy:veTYgandH; :v e, (46)

an asymptotic procedure can be used. Wilks (1938) proposed a theorem based on the large

sample distribution of the likelihood ratio

supyer, L(vv)

, 4.7
supuer L(v0) 47

A(u) =

whereL(v|u) is defined in(4.4). For the particular case thgtis a pmf, intuitively the numera-

tor of A(u) represents the maximum probabilitywofvhen the parameters values are inside the
set of values of the null hypothesis. The denominator is the maximum probability calculated
under the more general alternative.

Theorem 4.1. If Y has f; free parameters and” has f; free parameters in the hypotheses
(4.6), then under mild regularly conditions, and assuming that the hypottiésisolds, the

likelihood ratio (4.7) satisfies
—2log(\(u)) = x%_j,. (4.8)
whenn — oo (see Casella and Berger, 1990, p. 381).
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It is possible to present a nonparametric version of Wilks’s theorem based on the empirical
likelihood ratio. This EL ratio and its computation will be presente@4r8 for the case of a

scalar mean.

4.3 Empirical Likelihood for a Univariate Mean

The properties of EL and the EL ratio will be illustrated for the case of a univariate mean.
The nonparametric version of the Wilks’s theorem is presented (see Owen, 1988, p. 28). The
algorithm for calculating the EL ratio and how to use this ratio to define hypothesis tests and
confidence intervals is also reviewed (see Owen, 2001, p.p. 21-24).

Consider again a random samplg . .., u, from a population with distribution function
F(u) = P(U < u). Suppose thak’ itself is unknown with meaw = E(u;) andvar(u;) <
oo, whereE(.) andvar(.) denote the expectation and the variance, respectively. It should be
noted that we can think of as being a functional of, i. e.,v = v(F), wherer is the mean
functional. WhenF,(.) = >, wil (y,<.) theno(F,) = >0 wiu,.

Suppose that one wants to test the hypothégesr = 1y and H; : v unrestricted

The EL ratio is given by

EL(v)
FL()

whereE L(vp) is the EL evaluated undéf, and £ L (V) is the maximised EL undéf; . Thus,

using definition (4.1),

n n n
EL(vp) = ﬁ%Hwi subjectto Y w; =1 and > wiu; = 1.
=i=1

i=1 i=1
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Also, from the discussion followingt.3),
EL(w)=n"".
For the parameter the profile EL is defined as

i) = g%; :Eiiﬁ{ﬂwwz-) | Z;wu = v,and le = 1}. (4.9)

=1

To find the weightsv;, i = 1,...,n, the Lagrange multipliers method, which was explained

in §4.2, is used (see Owen, 2001, p. 22). The funcfiomlefined in(4.2), becomes

G(w) = Zlog(nwi) -\ sz(ul —V)— A2 <Z w; — 1) )
=1 =1 =1
where\; and ), are Lagrange multipliers.
The first step of the Langrange multiplier method is to differentiate the functi@nd

calculate the critical values of this function, where the critical values are the points where the

derivate function is zero. The derivatives of the functi®mare

oG 1
awi = EZ — Al(ui — l/) — )\2,

fori=1,...,n.
Solving > | w; §< = 0, we obtainn — Ay = 0 0r Ay = n.
Thus, settin%ﬁ =0,

(4.10)
where)\; solves

1 U; — UV
i(wp—v)=—» ——F—— =0,
Zw(u V) nzl+)\1(ul_y)

i=1 i=1
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and can be obtained numerically.

One of the important properties of EL is that it can be used to obtain a nonparametric
version of Theorem 4.1. The details of this result in the case of a scalar mean are given in the
following theorem.

Theorem 4.2. Let uq,...,u, be independent identically distributed random variables with
common distributionF'(u). Letyy = E(u;) and suppose thal < Var(u;) < oo. Then

as n — oo the log empirical likelihood ratio satisfies

—2logR(1p) 2. (4.11)

Proof. Using expressioi.10) for w;, and viewing it as a function of, define
FO) =) wilu; —v)
i=1
- l zn: U; — V
on =1+ AMu —v)

Using Taylor's expansion around the pointwe have

0k p[k] 1] 2 r[2]
f(>\+a)zz)\fk|(a):f(a)+)\f1,(a)+)\f2' (a)+..., (4.12)
— ! ! !

where (¥ is the k-th derivative off. Assuming is small and therefore ignoring the terms

afterk = 1, the value of) is obtained from

%Z(ui_y)_)\%Z(ui—V)ZZO,
i=1 '

and it is given by

(4.13)



whereS(v) = L % | (u; — v)*.

To find the asymptotic distribution of the profile empirical likelihood ratio, it is necessary to

apply the Taylor approximation to the expressioRf ), which is given in(4.9). Substituting

(4.10) in (4.9), one can write

—2log R(v) = 2210g(1 + AMu; —v)).

=1

The second step is to apply Taylor's approximation to this function. Thus, one has to apply

(4.12) to
FO) =" log(1+ A(w; —v)).
=1

Since

and

f[2}(a):7i (ul-—ll)2
— (1+a(u; —v))*
we havef (0) = 0, f11(0) = 377, (u; — v) and fBI(0) = 307, (ws — v)?.

ThusR(v) can be approximated by

N R N e ) o VI
R(v) = 25( > (ui—v) > (ui—v)

v) 4o S(v)? i=1
IR N G
S(v) Sw)
@
S)
_ (ﬁ(u—v)>2
S)

(4.14)



By the law of large numbers(vy) 2var(u;) underHy and by the central limit theorem,

<\/ﬁ(a - ”)) 4 N(0,1),
S(v)

and therefore

B 2
R@) = (ﬁ(g (‘V)”) 4

The proof of this result for the case thats a vector, which is broadly similar, is given by

Owen (2001, pp. 219-222).

4.4 Empirical Likelihood Regions for The Mean Direction

The EL method of Fisher et. al. (1996) for directional data is now reviewed since it is closely
related to the method for shape data that will be explainéd ib.
Let m be a unit vector irR3, som is a point on the sphei® = {m € R3 : ||m|| = 1}.

Any vectorm € S? can be written as
m = (cos(8), sin(0) cos(¢), sin(f) sin(¢))?, (4.15)

where0 < 0 < 7 and0 < ¢ < 2.
Letx = {x1,...,z,} be a random sample of uriit-vectors from a populatio®’ In the
case of a mean direction, the empirical likelihabd.(m) at a candidate mean directiom is

defined as follows:

n n n n
EL(m) = gg)élljl w; Subject to; w; = 1 andm(w) = ;wzxz/\] ;wzsz =m.
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Since the spher8? is not a Euclidean space, the constrainf_, w;z;/|| > i, wiz;|| = m
cannot be used directly in the Lagrange multiplier method. The reason is tisatonstrained

to lie in the unit sphere. The constraint needs to be represented in a suitable form for the
Lagrange multiplier method to be applicable.

Let us first consider the case of a mean directioRin The suitable constraints are given

by

mIm =mIm=mImy =0, (4.16)

where the unit vectorsy; = my(m) andmsy = msy(m) are chosen to be mutually orthogonal
and orthogonal ton.

It should be noted that: in (4.15) can represent any direction. However, the question is
how to represent:; andms as a function ofn in a such way that4.16) is true ifm is written
in the form(4.15). If m is written in the form(4.15), thenm; andmsy can be written

ml = (cos 6 cos ¢, cos @ sin ¢, — sin 6), (4.17)

and
ml = (—sin ¢, cos ¢,0). (4.18)
Note that this is just one of an infinite number of possible choices.

The function to be maximised by the Lagrange multiplier method is given by

n n n n
G(w) = Z log(w;) + Ao(1 — sz) —\mi z wir; — Aamd Zwixi,
=1 =1 =1 =1
where)y, A1 and ), are Lagrange multipliers corresponding to the three constraints. The first

step is to calculate the partial derivatives

1
aG = — — )\0 - Alm{xi — )\gmgaci, (4.19)
8wi w;
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and set them to zero. After that, we may sovg_, w;(0G/dw;) = 0 to obtain\.

Since

W;T;
m = E and g w; = 1,
HZZ | Wiy | '

we have

zn:wi gucj = n-— Ao — Alm{ Zn:wixi — )\ngzn:wi.ri,

i=1 =1

n n
= n—Xo— Ml D wizilmm = || > wii|[mIm
=1 =1

= n—- )\07
so the solution is\g = n.

Replacing\y by n in (4.19) and settingG/ow; = 0, the weights are given by

1
n(1+ MmTx; + Aoml ;)

Ww; =

(4.20)

redefining\; and )\, by A\ /n and\y/n, respectively, for notational convenience.
In order to obtain a confidence region, consider a coordinate system such that the sample

mean directiorn = H%n L Z,H is given by
= (0,0,1).
Letlog R(m) be the empirical log-likelihood ratio which is given by

log R(m) = log{ EL(m)/EL(m)}.

The EL confidence region with confidence coefficiarfor the mean direction is given by

R, ={m:log R(m) < pa}, (4.21)
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wherep,, is chosen to satisfy’(log R(mo) < po) = 1 — «, under the null hypothesis
H :m = my,

wheremy is the true value.

4.5 Empirical Likelihood Regions for the Mean Shape

This section describes how to adapt the EL method for axial datasets of Fisher et al. (1996)
to shape datasets. The empirical likelihood confidence region for the mean shape is calculated
similarly to the mean axis. The steps are similar but the constraints will be different.

Consider a random sample of preshapes{z1, ..., z,}, as described if§ 2.1. Here, the
relevant constraint is that is an eigenvector of the matri(w) = > | w;z;z} correspond-
ing to the largest eigenvalue, where thegare non-negative weights which sumitand are to
be determined.

If Re(a) andIm(a) represent the real and imaginary part of a complex vecttren the

constraints are given by
Re{mj;S(w)m} = 0, Im{mjS(w)m} =0, j=1,...,k —2.

It should be noted that the numbersf; vectors isk — 2 becausé — 1 is the dimension of a
Helmertized vector and one of thoke- 1 vectors is the mean shape So there are only — 2
vectors remaining.

Define

vj(w) = mjS(w)m (4.22)
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and

0ij = mjzizim = 8783(10) (4.23)
Wi

Using the definitiong4.22) and(4.23), the profile empirical likelihood function for the mean

shape is given by

EL(u) = maXle subject to Zwl =1 (4.24)
=1
k—2 » ;
and >\ Re(y;(w)) + A Im(y;(w))} = 0. (4.25)
j=1

Thus the function to be maximised by the Lagrange multiplier method is given by

Zlongﬂo 1—Zwl +Z{/\ [ Re(n;(w)) + A Im(y; (w))}.

The partial derivatives ofr are given by

oG(m) 1 =R )
o = —)\0+j§::1{)\j Re(d;j) + A} /Tm(5;)}. (4.26)

Multiplying by w; and summing, it is seen that

n n k—2 n n
0G R I

Z wi% =n— Ay Z w; + Z{)\g ) Z wiRe(éij) + )\§ ) Z wiIm(dij)}

=1 =1 7j=1 =1 =1

At the optimumuw, 77 jw; = 1, 6;(w) = 0, and §& = 0, so thatn — Ao = 0, i.e. \g = 7.

The optimum weights can now be calculated fron26) :

1 .
w; = 1=1,...,n.

(1 + Z { (F) Re((sw) + )\(I)Im(éw)})

whereA§R) and )\§ ) have been redefined aé /n and /\j )/n. Substituting forw; in the

constraints, it is seen thaﬁR) and)\(.I ) must satisfy
-1

Z{1+Z( i) + AV Im(s;, ))} Som =0, m=1,2. 4.27)

The analogue of Theorem? in the case of the mean shape is given by the following result.
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Theorem 4.3. If the population mean shapie| is well-defined and the population distribu-

tion has a density with respect to the uniform distributioné$*—!, then
~2log{EL(mo)/EL()} X34, (4.28)

wheremy is any pre-shape corresponding t@].

The idea of the proof is similar to that given in the scalar mean case. See Owen (2001) for

the proof of the vector mean case.

4.6 Explicit Calculation of a set of Orthogonal Unit Vectors

When applying the empirical likelihood approach to directional data or shape data consisting
of, respectively, unit vectors iR* or C¥, it is necessary to perform the following task repeat-
edly: given a unit vectom, determine a set of mutually orthogonal unit vecters . .., mx_1

which are orthogonal te:. This can be done conveniently using the following results.

Lemma 4.1. (The real case.) Suppose that R, wherec > —1, andb € R are such that
m = (°) is aunitvector inR*, i. e. c>+||b||* = 1. Define the(k—1) x k matrix A = [A; : A
by

Ay =Ty — (1407007, Ay = —b,
where, by implicationA; is (k — 1) x (k — 1) and Az is (k — 1) x 1. Then(i) Am = 0j_1
and (ii) AAT = I;,_4.

Lemma 4.2.(The complex case.) Suppase C, ¢ # 0,b € CF~1, andm = (°) is a complex
unit vector inC* , so thatc*c + ||b||> = 1. Define the(k — 1) x k matrix A = [A; : Ay] by

Ay = Sn = S+ je)) b, Ay = —b
|| c]

whereA; is (k—1)x (k—1)andAyis (k—1) x 1. Then(i) Am = 01 and(ii) AA* = Ij,_;.

Comment. Givenm, we may chooseu, ..., mx_1 as follows: inthe real case, as the columns

of AT; and in the complex case, as the columnsiof
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The proofs of the lemmas are very similar. Only Lemma 4.2 is proved here since it is the
one which is relevant for the method of the next section.
Proof of Lemma 4.2

(i) From the definitions,

Am = [A1A2}<lc)>

= A1b+ Asc
C C

= —b——(1+ )" (b*D)b — cb
le| el
C C

= —b+(c——)b—cb
(e

- Ok:—la

sinceb*b = 1 — |¢|*.

(i) Note that
[A1 2 Ao] [Ar: Ao]" = A1 AT + AsAY%,

and

AL A%

(ﬁ%4+@ﬁﬂﬁ}ﬂQﬁ4+@ﬁﬂﬁ%y

* * bb*

= %I’H (e ﬁ) (- y;) t TZ\(C_ \Zy) + %(C_ ﬁ)} o|P
bb*

Tole

= Ir1—(1-cc

= Iz — b,
since|[b||* = b*b = 1 — ¢*c.
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Therefore, sincely A5 = bb*, we have

AlAi( + A2A§ =11 — bb* + bb* = I

as required.

4.7 Algorithm

The algorithm to find EL estimates is reviewed in this section. The estimating equations given
in (4.27) are in closed form. So the set of Lagrange multiplkél@ and)él) should be eval-
uated numerically. A algorithm which uses Owen'’s algorithm for multivariate vectors is in-
troduced. This involves separating the real and imaginary parts of the pre-shape vectors and
applying Owen'’s algorithm to those two parts in the way explained below.

Let Lrr(m) be the empirical likelihood4.24) and (4.25) evaluated ain. To calculate

Lgr,(m) the following steps should be performed.

Algorithm 4.1. Calculating the Empirical Likelihood

Step 1- Givenm, find a set of mutually orthogonal unit vectors, ..., mx_o also orthogonal
tom, using Lemma 4.2.

Step 2 Calculate a vectad; with components

5ZT = [Re(éﬂ), Im(éil), e ,Re(éik,g), Im(éik,g)],

wherei = 1,...,nandd;; = m;z;z;m.
Step 3 The vectory, .. ., d, can be used in an empirical likelihood procedure fa@fia— 2)

real vector to find\ which maximizes
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D “log(1+ AT6).

=1

Thus Ste@® uses Owen'’s S-Plus function which is explained in Appendix D.

Step 4 The weights are given by

wi=—
Step 5 The loglikelihood ratio is
Wgr(m) = —2Zlog(nwi). (4.29)
=1

After calculating the empirical log-likelihood, the confidence region can be defined by

Ro ={m : Wgr(m) <l,}, (4.30)

wherea is the chosen confidence level. Asymptotically;;,(m) has axgH distribution by

Theorem 4.3, hence the constéants approximately given by

P(X%k—4 <la)=1-a.

Bartlett correction was mentioned in the introduction. It is a scalar transformation that,
when applied to a log likelihood ratio statistic, reduces the order of the error under the null
hypothesis fromO(n~!) to O(n~2). Bartlett correction or bootstrap calibration can be used
to improve the coverage probability &f,. Thus corrected values féx would be used. The

bootstrap calibrated version bf is presented i§4.8.
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4.8 Bootstrap Calibration

The combination of EL and bootstrap methods delivers very accurate results. The empirical
loglikehood ratio statistic has an asymptoti¢ distribution (see Hall and La Scala (1990))
under the null hypothesis. Bootstrap calibration using this statistic will reduce coverage error
from O(n~1) to O(n=2); see Fisher et al. (1996).

The bootstrap algorithm in this case can be described as follows:

Algorithm 4.2. Bootstrap Calibration of the Empirical Likelihood

Step 1- GenerateB resamples(?), randomly with replacement, from the original sample
z={z1,...,2n}.

Step 2- For each bootstrap samplé), calculate the EL at a poirit, using algorithmi.1
of §4.7 with some minor changes. In the Step 1 of this algorithm, the EL is now evaluated
at the sample mean shape Thus(4.29) is used to calculaté?) for the resample?) as
L® = LY (7). The values of.(*) are stored in & x 1 vectorL.

Step 3 Let!Z be the bootstrap version &f. IZ can be calculated from the ordered values

LB[l] < LB[Q],. . .,LB[B — 1] < LB[B}

For instance, ifB = 100 and the nominal level of the confidence regiorvis= 0.10, then
1B = L[90].
Step 4 The empirical likelihood region with bootstrap calibration is given by
RPZ = {m : Wgr(m) <18} (4.31)
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4.9 Monte Carlo Simulation Study

A simulation experiment was performed to examine the coverage accuracy of EL confidence
regions. Two types of EL confidence regions were compared: those obtained using the limiting
x? distribution under the null hypothesis, and those obtained using the bootstrap calibration.
As discussed in the previous section, bootstrap calibration uses the bootstrap to calculate a
percentile which is then used to determine an empirical likelihood confidence region.
Using the notation 0£2.6.1, the Monte Carlo simulation is performed generating
Monte Carlo samples an®® bootstrap samples for each Monte Carlo sample. The output
of this experiment is; confidence regions obtained using the two methods above.
Let iz; be the sample mean shape of itteMonte Carlo sample. Also l&tr,, andCpe

denote the estimated coverage probability of the confidence regicdly and(4.31), defined

by

Crap(EL) = #{i : Wer (i) <layi=1,...,n05} /10,

whereWg (1i;) is Wgr(n) for theith Monte Carlo sample, and is obtained fromxgk_4

tables, and

Cpc(ELg) = #{i: Lpp(fi;) < la,i),i =1,...,nm}/nu,

Wherel(B ) is 15 for theith Monte Carlo sample, obtained by bootstrap calibration.

a,l
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4.10 Simulation Results

In Table 4.1 the results of a simulation experiment involving the complex Bingham distribution
are presented. This experiment is similar to the one describ&d.enbut in this case the
"tabular” EL and EL with bootstrap calibration methods are used. The Hotelling and Goodall
tests were also considered. The number of Monte Carlo samples is 1000 in each cell of the
table. For each Monte Carlo sample, 200 bootstrap samples were used. The nominal coverage
of the confidence region £90. The results show that for highly concentrated distributions the
estimated coverage probabilities of the 4 methods are close to the nominad\@#lu©n the

other hand, for distributions with low concentration about the mean shape and sample size 100,
the estimated coverage probabilities of the Hoteling and Goodall methods are very far from
0.90, while the estimated coverage probability of the EL (tabular) and EL (bootstrap), is still
very close td.90. For the low concentrated distributions, if the sample size is 30, the estimated
coverage probability of the EL method is far frén90. Thus the bootstrap calibration improves

the EL method in this case. Generally, when the sample size is small, say 38 distribution

is not a good approximation for the distribution of the EL.

Another experiment, using the complex Bingham distribution, is presented in Table 4.2.
This table considers the same statistics as in Table 4.1. The number of Monte Carlo and boot-
strap samples are 1000 and 200, respectively. The sample size is 30. The nominal coverage
of the coverage accuracy s90. The first values of the parameters of the complex Bingham
distribution define very highly concentrated distributions. The last values of the parameters

define very low concentrated distributions. For highly concentrated distributions, the observed
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Parameters - EigenvaluesSample| EL EL Bootstrap Hotelling Goodall
of the Complex Bingham Size | (4.25) | (Algorithm 4.2) | Test(2.12) | Test(1.25)

00800 30 0.794 0.885 0.900 0.890

50 0.856 0.892 0.900 0.892

100 | 0.893 0.901 0.906 0.901

050 850 30 0.795 0.884 0.893 0.828

50 0.856 0.893 0.893 0.823

100 | 0.893 0.904 0.899 0.858

001 30 0.840 0.890 0.023 0.015

50 0.887 0.904 0.013 0.008

100 | 0.888 0.900 0.008 0.011

012 30 0.845 0.891 0.057 0.049

50 0.887 0.909 0.036 0.032

100 | 0.903 0.908 0.020 0.024

Table 4.1:Coverage probabilities of the tabular EL, EL with bootstrap calibration, Hotelling
and Goodall confidence regions for the mean shape. An algorithm to generate a complex Bing-
ham was used in 4 special cases: eigenvalues 0, 0 and 800, which is a highly concentrated
complex Watson distribution; eigenvalues 0, 450 and 800, which represents a highly concen-
trated Bingham distribution; eigenvalues 0, 0 and 1, which is a low concentrated complex

Watson distribution and eigenvalues 0, 1 and 2, which is a low concentrated complex Watson

distribution.

coverage accuracy of EL (Bootstrap), Hotelling and Goodall are similar, but EL (Tabular) is

less accurate. For very low concentrated distributions, the observed coverage probabilities of

the Goodall and Hotelling tests are very far from the nominal valge, while EL (Bootstrap)

retains accuracy very well.
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Parameters - Eigenvalues EL EL(Bootstrap) | Hotelling Goodall
of the Complex Bingham (4.25) | (Algorithm 4.2) | Test(2.12) | Test(1.25)
00200 0.795 0.885 0.897 0.882
0030 0.800 0.886 0.866 0.856
0025 0.803 0.887 0.851 0.850
0020 0.802 0.886 0.837 0.845
0015 0.803 0.890 0.817 0.810
0010 0.813 0.889 0.772 0.742
008 0.820 0.891 0.72 0.696
007 0.822 0.892 0.669 0.649
005 0.833 0.900 0.533 0.485
004 0.859 0.915 0.433 0.378
003 0.866 0.899 0.290 0.247
002 0.839 0.890 0.125 0.097
001 0.840 0.890 0.023 0.015

Table 4.2:Coverage probabilities for the Confidence Region for the Mean Shape for the sample
size 30. The parameters of the complex Watson distribution varies from a very highly concen-
trated cas€0, 0, 200) to a very low concentrated cage, 0, 1). The nominal value for the

coverage probability is 0.90
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4.11 Graphical Representation of the EL's Asymptotic Distribu-

tion

Theory suggests that the histogram of the log EL ratio should have a shape similar to that of a
x? distribution due to Wilks theorem. Since the histogram of realizations of a random variable
gives an approximate graphical representation of its pdf, the histogram of the log EL ratio
should be similar to the density ofi& distribution with2k — 4 degrees of freedom.

In Figure 4.1, a graphical representation of the EL indicates that its asymptotic distribution
broadly agrees with the theoretical considerations. The EL variable is obtained from 400 sam-
ples of size 100 from a highly concentrated complex Watson distribution with parameters 0,
0 and 800. The histogram of the EL of Figure 4.1 has a shape broadly similar to thgtof a
distribution with2k — 4 = 4 degrees of freedom.

In Figure 4.2, a graphical representation of EL, calculated for bootstrap samples, indicates
that this statistic has also an appropriate asymptotic distribution. The bootstrap samples were
obtained according to the following scheme. A Monte Carlo sample of size 100 was generated
from a complex Watson distribution with parameters 0, 0 and 800, the same parameters of the
previous simulation experiment. For this Monte Carlo Sample, 400 bootstrap samples were
selected. The histogram of the EL for the 400 bootstrap samples suggests that the distribution

of this statistic is roughly? with 4 degrees of freedom.

4.12 Analysing Real Data

The empirical likelihood method is applied to the neural spines of T2 mouse vertebra. This

data set was considered§R.8.2. The number of bootstrap samples was 200.
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Figure 4.1: Histogram of the EL. The EL is calculated for 400 samples from a very highly
concentrated complex Watson distribution with parameters (0,0,800). The line is the density of

the chi-square with 4 degrees of freedom.
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Figure 4.2: Histogram of the EL for the 400 bootstrap samples. The bootstrap samples were
obtained from a Monte Carlo sample of a very highly concentrated complex Watson distribution

with parameters (0,0,800). The line represents the density of the corresponding chi-square.
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On the left side of Figure.3 the mean shapes of the bootstrap samples are shown. Those
correspond to the EL bootstrap samples that are inside the bootstrap calibrated convex hull.
Thus this set of points is a good representation of the EL bootstrap calibrated confidence region
on the landmark space.

On the right side of Figuré.3 the NA confidence regions, which were defined ir21),
are shown.

From the simulation results, it was seen that EL (Bootstrap) confidence regions have better
coverage probability than NA confidence regions. On the other hand, Figusbows that EL
bootstrap calibrated confidence regions are bigger than the NA confidence regions, which were
defined in(1.21). Since the data set considered has low concentration, this real example illus-
trates that this difference should be noted, and EL (Bootstrap) methods are more appropriate

for low concentrated data sets than EL (Tabular), Goodall and Hotelling methods.

4.13 Empirical Likelihood Tests for Several Samples

Contrary to the bootstrap methods, EL confidence regions and hypothesis tests are very closely
related. Bootstrap confidence regions and hypothesis tests are treated separately in the liter-
ature. However, EL was originally developed to be a nonparametric version of the Wilks’s
theorem (see comments above Theorke®), and the EL ratio is used for both confidence re-
gions and hypothesis tests. Once a confidence region has been calculated, hypothesis tests can
be derived naturally.

The case of hypothesis tests for several samples will be considered. The situation is that of

the one way analysis of variance (ANOVA) (see Owen, 2001, pp. 87-90).
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Figure 4.3: The graph on the left has the bootstrap EL means shape inside the bootstrap cal-
ibrated EL Confidence Region. A rule using bootstrap calibration is defined to decide if the
mean shape of a bootstrap sample is inside or outside the confidence region. This rule is used
to choose the samples that appear on the graph. The graph on the right presents the normal
approximated confidence regions. Those regions are built by using the principal components
in the tangent space. Those principal components are projected back to the landmark space to

deliver this graphical representation.

132



Considerp groupsulll, ... ulPl. Supposeul! = {u;; : i = 1,...,n;}, whereu has
distribution F'(vU!, 411y wherevU! is a unknown location parameter ané! is an unknown
scale parameter. Thus the groups can have different dispersion structure. In the experimental
design literature, each group corresponds to the levels of a factor.

Consider the following hypotheses

Hy:v=vY=_ . =u0P versusHy : v 18 ... vIP! unrestricted.
The anova statistic is given by

oot 2 (T — @)’

o 2 i (uig — )%

wherew; = ;- 3717, u; anda., = 320, 3717, wy;. If the variances)l! are equal and the

F:

observations:;; are normally distributed, the statisti¢ has anfF,_; ,_, distribution. EL

provides an interesting nonparametric alternative to the classical one-way anova. It does not
need the assumptions that the observations are normally distributed and that the variances of
the different groups are the same. So the EL method can be applied in other cases where the

normality assumption is not suitable.

4.14 Empirical Likelihood Hypothesis Tests in Shape Analysis

This section introduces EL methods to test hypotheses in shape analysis. The approach we
describe is a natural extension of the EL method for building confidence regions. We focus on
p-sample problems where there is interest in testing for a common mean shape in pach of

populations.
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Consideryl’l = {Y;;,1 < i < n;} as a random sample of configurations frprpopula-

tions of objectd10], wherel < j < p. Let 2Vl = {2;; : i = 1,...,n;} be the pre-shapes of
yUl. Let the matricess!, . . ., S| be the product matrices of the groups. . , p, given by
nj 5

We now define the EL ratio in the case of several samples.

Even though® LU is similar to(4.25), this function can be more precisely defined. Again
the constraint is thatn is an eigenvector of the matrigl’(w) corresponding to the largest
eigenvalue, where; are hon-negative weights to be determined.

The constraints are given by

Re{m ISVl (w)m} = 0, Im{m; VS0l (w)ym} =0, 1=1,... . k=2, j=1,...,p.

Define

y(w) = m; Sl (w)m (4.32)

and

. (w)
ijm a Gwl '

(4.33)

j
5 = miziy2

Using the definitiong4.32) and(4.33), the profile empirical likelihood ratio function for

the mean shape is given by
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nj
E’L[J] — max {H nw;; wa =1and(C2= 0} y (434)

wl7>0 1

whereC2 = S F 2O UIRe (4 (w)) + A Im(h7 (w))}.

An EL method is presented to test the hypothesis
Ho:mM =mBP = ... mlPl = versusHy : m!Y, m!?, ... mP unrestricted  (4.35)

The main computational challenge is to maximize the EL uri@grin other words, to maxi-

mize the function

p
[T ELY(m) (4.36)
j=1

overm, where ELV!(m) is defined in(4.34). A numerical procedure from the computer pro-

gramR was used to calculat@.36). This procedure is calleBFGS. The BFGS procedure is

a quasi-newton method that finds the optimum value for a parameter vector of a given function.

The details about this procedure are given by Nocedal and Wright (1999).
The following theorem parallels Theorem 3.1.
Theorem 4.4. Considers the hypothesgs35), in the case where there aktdlandmarks. Then
provided that each population satisfies the conditions of Theorem 2.1, the test statistic
2log[n}1{zix EL/ max EL]

has an asymptoti;sg%pfl)(zk%) distribution underHy.
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Bingham | n EL EL Hotelling Test| Goodall Test
eigenvalues (Tabular) | (Bootstrap) (1.32) (1.27)
0,6,8 30 0.06 0.05 0.18 0.33
50 0.11 0.08 0.12 0.25
100, 0.15 0.14 0.13 0.29
0,4,6 30 0.10 0.08 0.21 0.44
50 0.14 0.13 0.19 0.42
100, 0.12 0.11 0.14 0.42
0,2,4 30 0.10 0.06 0.18 0.69
50 0.08 0.04 0.18 0.72
100| 0.08 0.07 0.18 0.75
0,1,2 30 0.04 0.03 0.25 0.92
50 0.06 0.04 0.20 0.95
100| 0.09 0.04 0.22 0.95

Table 4.3:0Observed significance level of the tests for populations with low concentration and
heterogeneous variance structure. This experiment is similar to the one of Table 3.1 but the
number of Monte Carlo samples is only 100. The vector of eigenvalues of the first and second

populations arg0, 1, 2) and(0, 15, 30), respectively. The nominal significance leve).ig5.

4.15 Simulation Experiment

This section presents a simulation study to compare the EL test with Hotelling and Goodall
two sample tests. The computation of the EL method is very computationally intensive. For
example, we estimated that, for 1000 Monte Carlo samples and 200 bootstrap resamples for
each Monte Carlo sample, our program would take at least 10 months to finish. Thus this
simulation experiment was done with 100 Monte Carlo samples and 200 bootstrap samples for

each Monte Carlo sample.
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4.16 A Real-data Example

The EL method for hypothesis tests is applied to the schizophrenic dataset (see Dryden and
Mardia, 1998, p. 11). This example has 14 schizophrenic and 14 normal patients. The number
of landmarks placed in each object is 13.

The EL method cannot be applied in this example if the total number of landmarks is
considered. The algorithm cannot find the estimates of the parameters for this case. Thus
to apply the EL method in this example, only four landmarks are considered. The labels of
those landmarks are 1, 2, 4 and 13. The observed significance level of the tests based on
EL (Tabular), EL (Bootstrap), Goodall and Hotelling tests were 0.4633, 0.7462, 0.0002 and
0.0147, respectively. The performance of the EL methods differs from that of the Goodall and

Hotelling tests. This example is very challenging for EL method since the sample size is small.
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Chapter 5

Conclusions and Directions for

Further Research

The aim of this thesis was to show how to apply computer intensive methods such as bootstrap
and empirical likelihood methods in statistical shape analysis.

The final conclusions about using bootstrap and empirical likelihood methods in shape
analysis are presented in this chapter. Also, some suggestions for further work are given. The
chapter is organized as follow§5.1 gives a comparison of the two approaches, considering
methodological and numerical aspects. Some comments about directions for further research

are given ing5.2 .

5.1 Comparing the Two Methods

Since two distinct approachs are considered, the reader might wonder which one is the most
appropriate for statistical shape analysis. The conclusion is not simply that one is definitely
better than the other. It depends on the objectives of the reader and also the computational

resource available since the computing time is a very relevant point. In addition to the aims of

138



the reader, one should bear in mind that there is a huge diference between developing a new
method and using a method which already exists in a particular problem.

The structure of this chapter is as follows. The positive and negative points of each method
are summarized first; and then the two methods are compared. In these comparisons we attempt
to clarify the diferent perspectives between someone who is developing and someone who is
just using the method. The simulation results from the previous chapters are also used to

compare the two methods.

5.1.1 Bootstrap Methods

Bootstrap methods are often easy to implement once a suitable statistic has been identified.
The user who wishes to apply the bootstrap method of this thesis for a real dataset just needs to
implement the steps of the bootstrap Algorithm 2.2, in the one sample case, or Algorithm 3.1,
in the multisample case.

However, if it is necessary to develop a new bootstrap method, the derivation of the theo-
retical basis can be very hard work; see the proofs give2.in ands3.4. The difficulties are
more pronounced when it is necessary to find an asymptotically pivotal statistic. The proof that

a statistic is asymptotically pivotal can be a very laborious task.

5.1.2 Empirical Likelihood Methods

The computational effort with empirical likelihood can be very intensive. A numerical opti-
mization procedure is one of the steps of the EL Algorithm 4.1, for example; and this step can
be very intensive. Also, when the EL method is used with bootstrap calibration, which is the

case in Algorithm 4.2, the numerical optimization step is done for each bootstrap sample which
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involves a substantial computational effort. This is particularly noticable in the case of hypoth-
esis tests. For example, the processing time of the program which applies bootstrap calibration
using the functior{4.36), is aboutl0 months if the number of Monte Carlo samples is 1000,

the number of bootstrap resamples is 200 and the sample size is 100.

For someone who wants to develop a new nonparametric method for a particular problem,
empirical likelihood seems to be attractive since it uses a statistic that is automatically pivotal
under very mild conditions, an advantage not shared by the bootstrap. However, EL needs
bootstrap calibration if good coverage accuracy of confidence regions is to be achieved. This
involves a big computational effort.

Owen’s algorithm (see appendix D) makes it easier to implement EL methods in some
circunstances, including the shape context considered here. Since this algorithm is numerically

very stable it helps researchers in the field of empirical likelihood.

5.1.3 Simulation Results

In this section some numerical comparisons between bootstrap and EL methods are presented.
The tables of this section are obtained from combining columns from tables in previous chap-
ters. At this stage is not necessary to compare the bootstrap and empirical likelihood methods
to Hotelling and Goodall tests since these comparisons were already done previously.

The coverage probabilities of the EL and bootstrap confidence regions are displayed in
Table 5.1, which is obtained from Table 2.2 and Table 4.1. Thus all the conditions of the
experiment are the same as in those tables: 1000 Monte Carlo samples were used and 200

bootstrap resamples were draw from each sample. The third and fourth columns are from the

140



Eigenvalues of Sample| EL EL Pivotal | Hotelling’s T2
the Complex | Size Bootstrap Bootstrap| Bootstrap
Bingham (4.25) | Algorithm 4.2 | (2.15) (2.17)
00800 30 0.794 0.885 0.899 0.909

50 0.856 0.892 0.898 0.894

100 | 0.893 0.901 0.903 0.901

050 850 30 0.795 0.884 0.899 0.909
50 0.856 0.893 0.898 0.894

100 | 0.893 0.904 0.903 0.901

001 30 0.840 0.890 0.822 0.719
50 0.887 0.904 0.864 0.745

100 | 0.888 0.900 0.871 0.823

012 30 0.845 0.891 0.863 0.769
50 0.887 0.909 0.870 0.811

100 | 0.903 0.908 0.891 0.857

Table 5.1: Coverage probabilities for the Confidence Region for the Mean Shape of the EL

and bootstrap methods. Four different special cases of the complex Bingham distribution are
considered. The third and fourth columns are from the Table 4.1 and the last two columns are
from Table 2.2. The results here are based on 1000 Monte Carlo samples and 200 bootstrap

resamples for each Monte Carlo sample.

Table 4.1 and the last two columns are from Table 2.2. Since the nominal le&¥@Disthe

EL with bootstrap calibration is the most accurate method and the EL (Tabular) is the least
accurate. Also, the asymptotically pivotal bootstrap is more accurate than the Hotélling’s
bootstrap. For example, when the parameters of the complex Bingham are 0, 1 and 2 and the
sample size is 30, the coverage probability of the EL with bootstrap calibration is 0.891 and
this is closer 0.90 than the 3 other methods.

More coverage probabilities of the EL and bootstrap confidence regions are displayed in
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Eigenvalues of the EL EL Pivotal | Hotelling’s7? | Modified T Test
Complex Bingham (4.25) Bootstrap Bootstrap| Bootstrap (2.12)
Algorithm 4.2 (2.15) (2.17)

00200 0.795 0.885 0.899 0.909 0.857
0030 0.800 0.886 0.901 0.904 0.857
0025 0.803 0.887 0.902 0.903 0.858
0020 0.802 0.886 0.903 0.903 0.859
0015 0.803 0.890 0.897 0.899 0.859
0010 0.813 0.889 0.901 0.893 0.860
008 0.820 0.891 0.898 0.882 0.857
007 0.822 0.892 0.901 0.888 0.857
005 0.833 0.900 0.897 0.891 0.846
004 0.859 0.915 0.901 0.896 0.854
003 0.866 0.899 0.897 0.879 0.844
002 0.839 0.890 0.880 0.831 0.782
001 0.840 0.890 0.821 0.719 0.672

Table 5.2:Coverage probabilities for the Confidence Region for the Mean Shape for the sample
size 30 of the EL and bootstrap methods. In this case, 1000 Monte Carlo samples and 200
bootstrap samples are generated from the complex Watson distribution. The second and the

third columns are from Table 4.2 and the last three columns are from Table 2.3.
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Eigenvalues of the n | Bootstrap| EL EL
Complex Bingham (3.11) | (4.25) bootstrap
Algorithm 4.2

10, 1,2 30 0.071 0.04 0.03

1:0, 15, 30 50 0.066 0.06 0.04

100| 0.057 0.09 0.04

l:0,2,4 30 0.063 0.10 0.06

11:0, 30, 60 50 0.052 0.08 0.04

100| 0.037 0.08 0.07

1:0, 4,6 30 0.045 0.10 0.08

11:0, 60, 90 50 0.049 0.14 0.13

100| 0.051 0.12 0.11

10, 6, 8 30 0.041 0.06 0.05

[1:0, 90, 120 50 0.057 0.11 0.08

100| 0.053 0.15 0.14

Table 5.3:0bserved significance level of the tests for populations with low concentration and
heterogeneous variance structure. The vector of eigenvalues of the first and second populations
are (0, 1, 2) and (0, 15, 30), respectively. The nominal significance levelig5. The first

column of results come from Table 3.1 and the last two columns are from Table 4.3.

Table 5.2. The conditions of the experiment are the same as in Tables 4.2 and 2.3: 1000
Monte Carlo samples are generated from complex Watson distributions, where those distri-
bution varies from low concentration, with eigenvalues 0, 0 and 1, to a high concentration
with eigenvalues 0, 0 and 200. The number of bootstrap resamples per Monte Carlo sample is
200. The results show that the estimated coverage probability of the EL method with bootstrap
calibration is the closest to the nominal value 0.90, specially for low concentrated distributions.

The observed significance levels of the bootstrap test and the empirical likelihood tests
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are displayed in Table 5.3. One should bear in mind that the bootstrap results are based on
1000 Monte Carlo samples and 200 bootstrap resamples; and the EL results are based on 100
Monte Carlo samples and 200 bootstrap resamples, and therefore the results are not directly
comparable. However, the table at least shows that EL and EL bootstrap methods give similar
results to the asymptotically pivotal bootstrap method. For example, when the eigenvalues of
the complex Bingham distribution are 0, 1 and 2, which is a low concentration case, the ob-
served significance values of the EL (Tabular) and EL with bootstrap calibration are very close
to the nominal value 0.05, especially for the sample sizes 30 and 50. It shows the EL (Tabular)
and EL with bootstrap calibration tests are very competitive in relation to the asymptotically

pivotal bootstrap.

5.2 Further Work

This section presents several possible directions for future work in statistical shape analysis.
One direction is to use other methods for the problems considered in this thesis, e.g., build-

ing confidence regions and testing hypotheses. A second direction is to use computer intensive

methods, like the bootstrap and empirical likelihood, in other problems of shape analysis. Some

details about both directions will be given.

5.2.1 A Bayesian Method

Only classical computer intensive methods have been used in this thesis. It would be of interest
to develop Bayesian methods for tackling the problem of comparing the mean shapes of several

groups of objects. A Bayesian approach to problems in shape analysis is given by Dryden and
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Mardia (1998, p. 149), who consider the case that a random sample of pre-shapesz,
has a complex Watson distribution with modeand known concentration parameterThey
use a complex Bingham distribution for the prif(). In mathematical terms,

fplzr, o oyzn) o< flz1y.oyznlp) f(1)

n
o exp (kY 2 pptz) exp (1t Ap)
i=1
n
xexp (Y 2tz Ap)
=1
o< exp{u*(kS + A)u},
whereS = """ | z;z7 is the product matrix.
So the posterior distribution is also a complex Bingham and since the prior and posterior
are in the same family of distributions the prior is called conjugate.
This Bayesian model is restrictive since the Bingham distribution is assumed for the prior
and the Watson distribution is assumed for the data. A possible research topic would be to con-
sider other models for shape datasets. Since these possibilities are analytically very complex,

it would be necessary to use a computer intensive method called Markov chain Monte Carlo

(MCMC) to implement the Bayesian approach.
5.2.2 Size-and-Shape

In §1.3, the definitions of complex configuration, Helmertized configuration, pre-shape and
shape were given. Recalling from that section that shape is the remaining information when
location, scale and rotation are removed, it is possible to consider another way of doing shape

analysis. In this way the information about scale is retained. This type of analysis is called size-
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and-shape analysis. Mathematically, a size-and-shape study is performed using the pre-shapes

(1.4) with the scale information retained. This is given by

w :HZO,

which is defined irn(1.3).

The bootstrap and empirical likelihood methods of this thesis can be applied in a size-and-
shape study. Figure 5.1 shows a bootstrap confidence region obtained by applying the Algo-
rithm 2.2 to the Helmertized configurations,, . . ., w, of the dataset of example 2.1, which
is T2 mouse vertebra. These numerical results look reasonable and illustrate the feasibility of

applying the methods of this thesis to the analysis of size-and-shape.
5.2.3 Shape Variation

Shape variation is studied by using principal components on the tangent space. This topic was
seen in§1.6. The study of shape variation uses the sample covariance matrix on the tangent
spaceS,, which was given ir(1.18).

The idea for studying shape variation is to apply the principal components method to the
matrix .S,, and then to project the two first principal components to the landmark space. Thus

the shape variation is represented by

fi + cv/érur andfi + e/daus,

which were defined irf1.21).

Atopic for further research is to use the principal components from bootstrap resamples and
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Bootstrap Regions
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Figure 5.1: Bootstrap Confidence Regions for a Size-and-Shape Case
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to try to find ways of improving the coverage of bootstrap confidence regions in the landmark

space.
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Appendix A

Matrix Results

Some basic results which are used in the thesis will be reviewed in this appendix.
ConsiderL : V. — W, whereL is a linear transformation anld andW are two complex

vectors spaces of dimensioisandd,,. The kernel ofL is defined by

ker(L) ={v eV :Lv=0} (A.1)

Also consider that the orthogonal complement of the subspaesalefined as

Vi ={u:uv =0} (A.2)

The spectral decomposition theorem for complex Hermitian matrices is now stated. It
plays a very important role in what follows. Some other basic properties of complex numbers,
matrices and vectors are needed as well (see e.g. Fraleigh and Beauregard, 1995, pp. 454-486).

Letc = a + bi, wherea andb are real numbers and= /—1. The numbeg = a — bi is
said to be the complex conjugatecof

If C = [C}] is apx p complex matrix, the conjugate transpos€at given byC* = [¢;].
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A complex matrixC' is said to be Hermitian if it is equal to its conjugate transpose, i.e.,
C* = (. It should be noted that the eigevalues of a Hermitian matrix are real even though the
eigenvectors are complex vectors (see Kent, 1994).

Theorem A.1. (Spectral Decomposition theorem for Hemitian Matrices)

LetC be ap x p Hermitian matrix. Then we may write

S
C=) &P,
j=1
where&; < ... < & are the distinct eigenvalues 6f and ¢; has multiplicityr;, where

>_j=17j = p; and theP;(p x p) are Hemitian projective matrice’s = P; and P? = Pj).

Another useful concept is the generalized inverse of a real symmetric niatrix< a). If

the symmetric matrix? has rankp < a, the Moore-Penrose generalized inversdias given

by

p
RT =" k7'yn], (A.3)
j=1

where thef;-s are the non-zero eigenvalues®fand they;’s are their corresponding eigevec-
tors (see Dryden and Mardia, 1998, p. 152).

Minimizing the quadratic formu*Ca, whereC' is a Hermitian matrix and is a complex
unit vector, is a relevant topic for the Chapter 3, when bootstrap hypothesis tests are considered.
It is also relevant for Procrustes fit. This result for real symmetric matrices is given by Mardia
et. al. (1979, p. 479) and for Hermitian matrices see Mirsky (1955, p. 388).
Lemma A.1. LetC be a(p x p) Hermitian matrix with eigenvalues < e;... < ¢,. Then

ming.grq=1 a*Ca = €.

Proof.
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From Theorem A.1 we may writ€ = TET*,whereT’ = [rq,..., 7], E = diag[e1,. .., €],

andry, ..., 7, are unit eigenvectors @f. Then for any complex unit vecta,

aCa = a*TET*a

= y'Ey
P
= Z Ei‘yi‘Qv
i=1
wherey = (y1,...,y,)T = T*a.

Thus to minimizea*Ca consider

P
aCa = Z ei\yi\z

i=1
p

€1 Z |yi\2
i=1

€1,

v

v

i P 2 _
since) P, |yil° = 1.

Thus the minimum is attained when= 7.

Power series of matrices and convergent matrix sequences are also relevant topics; see

Mirsky (1955) for further background. A power series for a complex square matsxiefined

by

(o)
E emA™,
m=0

wherec,, is a scalar and by definitiod = I,,, the identity matrix. A matrix power series

Sy emA™ is said to be absolutely convergent if

m=0
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[e.e]

D eml|Al™ < 00

m=0

where||.|| is a suitable matrix norm, or distance.

On the space gf x p complex matrices the Euclidean matrix distance is defined by

1Al = {tr(A7A)}'72,

wheretr(.) denotes the trace of a matrix.{f4,, },,>1 is a sequence of complex matrices, we
say thatd,, — A if ||4,, — A|| — 0 asm — .

For any square complex matrix, we define the exponentiakp (A4) by

1
exp A = Z EAS'
s=0

Note thatexp A is convergent for any matrix.
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Appendix B

Order Notation

Suppose that,, andb,, are sequences of real numbers. The notation

an = O(bn) (B.1)

means that

limsupM < 00.
n—oo ‘bn|

For example, ifs,, = 1 + no?, wherep ando? are constants, then, = O(n) since

. |+ no?| 9
limsup——— =0
L Y

In this thesis, only the order notati@®.) for sequences of real variables will be used. The

order notation is used to represent the accuracy of confidence regions and hypothesis tests.
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Appendix C

The Factor 2 in (2.12)

The claim that & is required in(2.12) will follow from (1.14) if it can be shown that

s = ) e () (2T,

whereY = %1 + Y, X' =%, ¥T = — % andp = p1 + ips.
Write =1 = ©! + %2, Then the identity X, + i¥5) (2! 4+ i%2?) = I
implies that

U2 -2 ¥? =1, and 2122 + o2 = 0. (C.1)

Moreover, (C.1) implies that
D AN O S 3
Yo ¥ S\x2 )

Y1 X9 ILI P DITDILINED I YL RN Y DI ) O

Because

Yo X1 »2 ol —2221 + 2122 2121 — 2222

which implies that
DAY ok o N
S, ¥ )\x2 oxt) T e
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Therefore,

(= - =z p)
= iy ) (S S iy )
= (z—p1) S @ — ) + (y — p2) "2y — p2)
—(@ = ) T2y — p2) + (y — p2) T2z — )
= (- (G ) (21
- el () (2

as required.
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Appendix D

Owen’s Empirical Likelihood

Program for a Vector Mean

The EL ratio for a vector mean is defined as

R(p) = max {ﬁ(nwz) \ iwiui = v and iwi = 1} : (D.1)
‘= i=1 i=1

i=1

Adopting a Lagrange multiplier approach, we consider

G = Zlog(nwi) —n\T (Z wi(u; — 1/)) + (Z w; — 1> ,
i=1 i=1 i=1

where) € R? are the multipliers to be determined. The steps to find the maximueneoé the

same as the scalar case, §48. We find thaty = —n and € R?. The weights are estimated

as

1 1

wz_ﬁl—F)\T(ui—,u)'

Also as in the univariate case, replacingin the first constraint
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> wi(u; — p) = 0,

=1

gives

1 @& U; — b
— ——— =04. D.2
n e A=) ®2

So )\ must satisfy thel equalities of( D.2).

There is another way to solve this problem using convex duality. Convex duality in this
context results in a maximization overvariables withd + 1 constraints becoming a mini-
mization overd variables. The number of variables would de- 1 but the multipliery is
already known.

The convex dual of D.2) is given by

log R(p) = loanwi =— Zlog(l + M (u; — ) = L(N).
i=1 i=1

The systen{D.2) is equivalent to

whereV is the gradient of.(.).
It should be noted thdt(\) hasn inequality constraints because the cases;of 0 should

be excluded. So thoseinequality constraints are

L+ M(uy—p) >0, i=1,...,n. (D.3)
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Thus the maximization problem, defined @.1), is equivalent to minimizind.(\). This
is the convex duality formulation for this particular problem.
It is possible to discard the constrair{ts.3). It is done by defining a pseudo-logarithm

function. This function, when used ia(\), delivers

L,=- Zlog*(l + A (us — ).
i=1

So to minimize this new function is not necessary to impose any constraint.
The algorithm of Owen uses the formulation above to find the empirical likelihood for a
parameter vector. The explanation above was to clarify the main points of the algorithm. The

technical details can be found at the website

http://www-stat.stanford.edu/owen/empirical/el.S
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