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Abstract

We investigate the dynamics of the geometric transitios®a@ated to compactified
spacetimes. By including the effects of gravity we are ablmlow the evolution of

collapsing cycles as they attempt to undergo a topologygihgrtransition. We per-
form investigations where we add a perturbation to the mauomemf a static solution
and observe the consequences this has on the spacetimaglémkevidence of black

hole formation or collapsing cycles which could lead to siiag geometry.

First we look into two possible four dimensional spacelikéuions to the Einstein
equations called instantons. These both have a two-sptiearigin, these are called
bolt singularities. We introduce an initial perturbatianreduce the two-sphere to a
point. Rather than achieving this singular geometry we firad ¢ither a horizon forms,
shielding a curvature singularity, or the cycle re-expaafisr an initial contraction
phase. For the case where a horizon forms we identify the $ta&¢ with a known

analytic black-hole solution.

In seven dimensions we simulate the gravitational dynaofitise conifold geometries
(resolved and deformed) involved in the description ofaiartompact spacetimes. As
the cycles of the conifold collapse towards a singular geéonvee inevitably find that
a horizon develops, shielding the external spacetime. hetare of the black hole is

examined and we find a candidate for the final state of thepgsgla

In ten dimensions we investigate the time evolution due &wigational dynamics of a
spacetime which is commonly used in brane-cosmology amstompactifications
called the Klebanov-Strassler geometry. Here black halesametimes formed but
more commonly the cycles are seen to re-expand after regaehiminimum value,

showing the stability of the solution against perturbagiamich would change its size.
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Chapter 1

Introduction

The term classical physics has been changed as our unabrgtai physics has pro-

gressed, at each stage it has referred to physics which aged modern.

Within the 1800’s some physicists thought that theorieseftdnian motion, the grav-
itational force, thermodynamics and Maxwell’s equatiohslectromagnetism meant
that physics was close to completion and only had a few snifitudties. However
these topics were later considered to be only classicalighyghen the small details
turned out to be huge gaping holes in our understanding. sHotdach demanded
changes to our thoughts on what particles were made of, th@afuental electron
interactions underlining chemistry, the fuel of stars amdnethe space and time we

occupy.

General relativity interprets gravity as a geometric dfimed has been adopted as a
better description of gravity than Newton’s laws due to gaheelativity’s ability to
correct earlier difficulties (such as an error in the orbitMércury) and make new
predictions which have later been verified (curving of lifioim distant stars around
the Sun). General relativity differs from Newton’s gravitysome of the predictions it
makes, it predicts that there will be gravitational radiatmoving at the speed of light,
there will be exotic objects called black holes, light widl bent around massive objects
which can form optical illusions such as Einstein rings ghtican get redshifted,
objects will age at different rates in gravitational fieldedageneral relativity even

predicts (though it was not acknowledged as a predictiohatime) that the whole



Introduction 3

universe can change in size. Some of these predictions esre\erified but others

have not yet been directly detected.

However (despite some features not yet being seen) evemajeaktivity has now
been delegated to the regime of classical physics, corsldeell understood and sur-

passed by theories which are quantised.

Quantum field theory has made the most accurate predictionrdfme by predicting
a property of the electron called the magnetic moment. #ast quantum mechanical
method to describe fields such as the electromagnetic fieldt amediates these fields
and forces using vector bosons. This theory is also resditivin that it is compatible
with special relativity however it does not include gravatyd does not include general

relativity.

While each of these two improvements to the physics of thb &8htury are excep-
tionally good at describing physics in their own regime ytbannot yet be combined
together into a single theory of quantum gravity. In mosesasich a combined theory
is not needed because many physics problems do not need btitese improve-
ments. While dealing with the interactions of particleg #ifects of gravity can be
mostly disregarded due to how weak this force is in comparisdhe electromagnetic
and nuclear forces. These stronger forces are very weltidesan quantum mechan-
ics. On the scale of massive stars, galaxies and the unjitbesguantum nature of the
forces can be disregarded (even the existence of electreetiagn and nuclear forces

is totally ignored in many cases).

However in some of the most interesting places in the unévetch as black holes
and the moments after the big bang, both of these effects beusbnsidered simul-
taniously. These events will only finally be understood ifea® consider the quantum
mechanics while at the same time incorporating the veryamibackground of general

relativity.

Quantum mechanics still has the privilege of being considienodern, however this
title is now threatened by new and upcoming methods of peystich we hope will
soon surpass both general relativity and quantum mechtmbzcome the new mod-

ern theory of physics. A good example of such a theory isgttieory.
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1.1 String theory

String theory is a leading research topic which attemptsitiyke this gap by being both
a quantum theory and also a theory which very naturally ipo@ates gravity. It relies
on the idea that there exist small one dimensional objeats gach timeslice called
strings. These have a tension which determines their fadosize but they can be
stretched, split or jointed in time, they may be closed withend points or open with
two end points. Later other objects can be added to completnentheory of strings
such as D-branes, surfaces upon which open strings may etde ®¥ring theory
appeals due to the possibility of quantum gravity it alscspres new challenges to
overcome such as the low predictive power due to string thieeing very dependent

upon the background and the need for extra dimensions oéspac

1.2 Extra dimensions

Extra dimensions are not exclusive to string theory and weggested long before
string theory came about. It was suggested by Theodor Kdlpzathe 1920’s that
extra dimensions could unite electromagnetism and fouedsional gravity into one
theory of five dimensional gravity. Later Oskar Klein[2]@npreted this process phys-
ically as making one of the dimensions into a very small eirdlhis circle would have
to be very small so that the dimension would so far have gonecognised, not being

seen as a dimension but only as another force called the@ieagnetic force.

We still use a similar process of compactification (makingeisions small) to hide
the extra dimensions of string theory and produce a four dgiomal gravity theory,

just as in the Kaluza-Klein case this results in additioreld8 and forces like elec-
tromagnetism. Compactifications in ten or eleven dimerssi@mve a great freedom of
choice, with a range of possibilities in size and shape ofrite¥nal manifold. These
possible ways to compact the extra dimensions are callestiting vacua within string

theory and the predictions of string theory are highly dejeerh upon the choice of

vacuum, this is the cause of the low predictive power of gttireory.
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1.2.1 Extra dimensions with regard to spherical symmetry

As we wish to investigate possible transitions we requirelat®n which can change
dynamically in time. Spherically symmetric vacuum solagon four dimensions will

not evolve dynamically as is shown by Birkhoff’s theorem[3]
"A spherically symmetric vacuum solution in the exteriogien is necessarily static”

This is equivalent to the claim that there is no monopoleatiain[4]. It means that if
we wish to perform interesting dynamical simulations intbeuum while maintaining
spherical symmetry we must go to higher dimensional sibnati This is true even
using the Maxwell energy momentum tensor since there is alogue of Birkhoff’s

theorem which is applicable to solutions of the Einsteinxiveall field equations also.

This theorem is avoided by going to five dimensions or higimet this allows inter-
esting dynamical situations which depend on only one codgioa (a radius) and do
not have any energy momentum tensor (vacuum). The extrandiores permit more

interesting gravitational instantons capable of evolvmtime.

1.3 Branes

Compactification is not the unique method of hiding extraetisions, other objects
called D-branes have been added to string theory as objeotswhich open strings
may end. They are called "D” due to making the ends of strifggydirichlet bound-
ary conditions and stay attached to the brane[5, 6, 7]. Bgimgd to D-branes im-
poses requirements on strings (for example strings witlpeints on two different
branes will have a minimum length which is equivalent to aimumm relativistic mass)
and the particle states which can emerge are determinecebg tequirements so the
branes are crucial to the nature of emergent particles. ¥éeraite that branes can be
dynamical and change in time in response to strings, thex®fh great many possi-
bilities and outcomes for particle physics. The suggestfambraneworld cosmology
hides the extra dimensions by making us and all we see continadower dimen-
sional brane[8]. This hides the extra dimensions withomgactification by making

gravity our only way to test for the extra dimensions in whiase they could easily
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have gone unseen. This is a method of hiding dimensions winictill not cover in

the following chapters.

1.3.1 Compactification with incorporated branes

Though we do not consider braneworld cosmologies we will enake of D-branes
as a source of fluxes into a spacetime. A D-brane will act aslém®entary charge
of Ramond-Ramond fluxes[7] and we will use these fluxes in age® of flux com-
pactification which is described in more detail in section.2. This process adds an
expectation value to the fluxes in the vacuum and overcome® s the common
difficulties which can be problematic for compactificatiatificulties which we in-
vestigate in section 2.7.1. Adding D-branes to the comfiedtspace can enhance
the predictive power of string theory, the branes act to nsakee string vacua both
static and stable and so these become preferable choicasud and the degeneracy
is reduced. Despite being stable even these vacua can clmtige in response to
high energy effects or change only for a short period of timaking changes between

these vacua possible. It is this evolution which we hopevestigate.

1.4 Outlook

In the coming chapter we will discuss in more detail stringaity’s need for the extra
dimensional compact manifolds and the method of flux conifi@ation to change a
ten dimensional theory to a theory with only four extendedetsions which could
be seen by us as an effective theory. We discuss the consexpuehthe distinct
topologies this manifold takes and the effect of the comtuirsumoduli which define
the manifold. Then we discuss how the moduli and even thddaggaould possibly

be changed in time and the ramifications this would have forgstheory.

Then in the later chapters we shall go into detail about theshsimulations we per-
formed, these are separated into chapters based upon thenafrdimensions of the
spacetime. In chapter 3 we discuss early investigatiorfeipeed by taking a known

static instanton in four spacelike dimensions and proceezhtise this to evolve in a
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fifth timelike dimension, this is an example of a Cauchy peabl We perform this to
both an Eguchi-Hanson instanton and a Taub-bolt instatitese both possess points
with a blown up cycle at the tip. We wished to find whether theleyould be col-
lapsed to zero size by some initial momentum, while at theesame avoiding the
creation of a black hole spacetime. This would be a necessgurement for a flop

transition, a process we describe later.

Following this, in chapter 4 we take our initial surface todbe dimensional and per-
form a similar operation upon instantons which are six disi@mal geometries which
asymptote to a "conifold” which is an instanton with a corhismgularity at its tip.

It can be resolved in two distinct ways, one where the tip tséased to a two-cycle
(resolved conifold) or a method which makes the tip into a¢hcycle (deformed coni-
fold), we perform simulations on both these geometriessgoalier if a "conifold tran-

sition” is a possibility. This is a more consequential titias which would change the

topology of the spacetime drastically, it is described inremtetail later.

In chapter 5 we go on to a ten dimensional simulation whichtstaith a warped
deformed conifold. This is ten dimensional with fluxes andldanake part of the
manifold used in a flux compactification of string theorysitiso used in a great many

models which require a stable throat in which to move probek as branes.

We end with a discussion of our findings and some appendigagyg more thorough
description of the equations of motion which we used to evthe systems numeri-

cally.



Chapter 2

Some background physics and maths

2.1 Manifolds

A set of pointsX can be formed into manifolds of various mathematical stmgta
topological manifold can be thought of as being continudtus topology also means
that the region close to a point looks like a patchRéfgiving n to be the dimension
of the manifold. This requires the introduction of a topgldg the set of points, the
topology is a collection of open subséf$ of the points. If all these open subsets
are continuous and so can be described by coordindtésalled a chart), then the
whole of X is continuous and the manifold is called topological. Thustuity is not
dependent upon the chart so there is some choice of vifiith use. If we can always
find another collection of open subsets which only keeps tefimimber of theé/*’s

then the manifold is called compact. This compactness isjgpty of the topology.

2.1.1 Topology of a manifold

The manifold’s topology is not determined by the exact shap&ze but by the way
the manifold is put together. One feature of the topologhésdenus of the manifold
(thus making the topology of a doughnut the same as the tgpalba coffee cup, a

common example).
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2.1.2 Differentiable and Riemannian manifolds

Upon such a topological manifold we can improve on the caitiynwe would want to
make the manifold differentiable. This requirement meaaefiave open subsets which
agree within their overlapping regions (making the traasg functions between the
different patches differentiable). If this is imposed ibals functions to be differenti-
ated upon the manifold without having conflicting resultsgagions of overlap between

the patches. Giving such a manifold a metric makes it a Ri@maammanifold.

The metric (if it exists) is unlikely to be unique and therdikely to be a range of
possibilities (as a doughnut differs from a teacup only snnitetric). Some of these
may be discrete but many will only differ by continuous paesaens we call these

parameters moduli.

2.1.3 Holonomy

Once endowed with a metric, manifolds also have a propertykras their holonomy
which depends upon the topology and also the Levi-Civitanegations (which are
solely dependent upon the metric). Using the Levi-Civitareections we can perform
parallel transport of a vector around some path upon thefoldnParallel transporting
a vector around a closed path will not in general leave it angled, upon returning to
its starting position it may point in a different directidBy choosing different starting
points and different closed paths we can possibly changertaetation of the vector
in a great many ways, for a sphere we can change any vectoytother. However
this is not always the case, no path on a perfect doughnutf(atr sheet) will change
the vector. The group of all these transformations is calecholonomy, spheres have

SO(n) holonomy, tori have identity holonomy.

2.1.3.1 Almost complex structure and complex manifolds

It may be possible to endow an even dimensional manifold attalmost complex
structure[9] defined by a (1,1) tensdr This structure is a map which also obeys

J? = —1. It has the eigenvalues: with eigenvectors which we take to be the complex
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coordinates. Note that any even dimensional manifold aisoith a tensor field locally
however upon a complex manifold,can be be defined globally. The existence of such
a globally defined/ is a requirement for a manifold to be complex and its exisgtenc

depends upon the topology.

A manifold with the the additional feature that the tramsitifunctions between all
the charts be holomorphic (a much stronger condition thahdferentiability as it
implies that the function is infinitely differentiable andrcbe described by its Taylor

series) is called a complex manifold.

The existence of a complex structure does not mean that iticgua, there may be
multiple ways to define the complex coordinates. As we choosgeset of coordinates
(one J) we select one from the range of possible complex manifoldeynof these

will differ only by continuous parameters we call the conxgdéructure moduli.

2.1.3.2 Symplectic and Kahler manifolds

A manifold with a closed almost complex structure is callgahplectic and a manifold
which is symplectic and complex is Kahler. This is actuallyequirement on the
manifold along with its connection and it means that all temh the metric can be
found from the derivatives of one function, the Kahler i (which need only be
defined locally). The Kahler manifold hé&d) holonomy wherei is the dimension,
if the holonomy is further reduced t6p (%) (where the dimension is a multiple of
four) then the manifold is called hyper-Kahler. While thetnic of a Kahler manifold
is more tightly constrained than a Riemannian manifold; till not generally unique

and will still vary by continuous parameters called the kélmoduli.

2.1.4 ldentifying the topology of a manifold

Though the topology must be determined in full using setyyebere exist invariants
specific to the topology of the spacetime, these charatitemismbers help identify the

specific topology.
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2.1.4.1 Euler characteristicy

The Euler characteristic is a topological constant whick alassically defined for the
surfaces of polyhedra in terms of the number of faces, edy#sertices possessed. It
is defined for higher dimensional topological spaces in $eofran alternating sum of

the numbers and dimension of cells upon the space,

wherek; gives the number of cells of dimension

e.g. upon a two dimensional surfakgis the number of vertices (0d cells); gives
the number of edges (1d cells) ahgdis the number of faces (2d cells). This constant
always takes the value 2 for the topology of a two-sphere taldvays takes the value

O for a torus.

However the important point for our uses is the knowledge ithis invariant for a
single topology. Any change to this characteristic numhésivow beyond doubt that
the topology of the space has been changed by some procekyyregesses are the

most drastic form of topology changing transition.

2.1.4.2 Betti numbers, Hodge numbers and intersection nundss

The Betti numbers of a manifold are topological invariantéal extend the concept
of the genus (number of holes) into higher dimensions. /itheBetti numbeb,, is the
number ofn-dimensional independent generators of the homology ¢t®@jpSo for
a connected manifoléh=1, all points are linked by a common generatgris related
to the genus of the manifold and the higher Betti numbers gigeer dimensional

equivalents of the genus. Any change to these numbers tediaachange of topology.

Betti numbers also describe the possibility of closed déffitial forms on the manifold,
any exact differential form will be closed but there is alke possibility of closed
forms which are not exact. If the group of all closed p-fornigal are equal up to an

exact form is labelledi? the thepth Betti numbei, gives the dimension aff”.

The differential forms can be split depending upon theietythe vector space of one-

forms can be split into a space of type (1,0) forms and anaih€d,1) forms. The
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dimensions of these vector spaces are called the Hodge ms[@hé:'° and h%!,

these numbers can be arranged into a Hodge diamond. Note that
S qn hP9 = b, (2.2)

These new Hodge numbers are also topological invariantsh@adnanifolds with
different Hodge numbers must be topologically distinct.wdwger the reverse is not

true, Hodge structures are not unique to topologies.

In cases where different topologies share the same Hodgawte and Betti numbers,
the difference may be seen by the intersection numbers dbffedogies. These are
again topological invariants which describe the numberoafiis where cycles (closed

surfaces of specified dimension) intersect (weighted bgneition)[5].

2.1.5 Calabi-Yau manifolds

Manifolds which occupy: dimensions are called Calabi-Yau manifolds if they obey
a small selection of properties. They are named after a mattieian who made a
conjecture about the existence of a Ricci-flat metric uparhsuanifolds and then a
second who proved it. The requirements upon the manifoletGddabi-Yau demand
that it is compact, complex, Kahler and it must also hav&d) for its holonomy

group, this is equivalent to the requirement that its torsianish[11].

The key theorem concerning these manifolds is that theyitifilave a uniqgue met-
ric which is Ricci flat (they also need to obey another regtnicupon the Chern class
however this is simple to determine, see [12, 13]). The ainje and theorem that
these manifolds shall admit a Ricci flat metric is not a tligae since this is not in

general true for compact manifolds, often even Kahler foéts have topological ob-
structions to Ricci flatness. These topological difficdiiee avoided by the restriction
to SU(d) holonomy. Showing that the Ricci flat metric exists does abis what the

metric is but is enough for us to continue to use them in stitiegry.

A conformal Calabi-Yau manifold is a manifold whose metsa¢lated to that of a

Calabi-Yau by a conformal factor.
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2.1.6 Moduli

The moduli are the continuous parameters which identify maaifold from the nu-
merous possibilities of Calabi-Yau manifolds (or confolr@alabi-Yau manifolds).
They can be split into the complex structure moduli and tladl&r moduli. Small
changes to these parameters give rise to small continudasvtions to the mani-
fold. These moduli will become important when we use the fodshias the vacuum

of our spacetime.

2.2 Horizons and singularities

Spacetimes may include both horizons and singularitieth Beese are closely linked
to the existence of a black hole though this is not a given hacktare multiple theo-
rems which attempt to show that horizons imply singulasified singularities require
horizons. There are a range of different horizons and a rahgiferent singulari-

ties, some of these depend upon the coordinate system arelearbe removed by
an adequate coordinate choice, others however are phyfieats which cannot be

avoided.

2.2.1 The event horizon

The event horizon is a boundary within a spacetime, it sumiswa region from which
timelike and null paths cannot leave and so cannot affectoarnyide observer. The
event horizon seals off all internal events from any extealeserver. This means
that points within the event horizon are never within thet ight cone of the outside
observer and so cannot be observed or influence the outdjdg[1The presence and
position of an event horizon is not dependent upon the coatdisystem used. On a
thermodynamic side-note, the event horizon has a spag¢ialvanich has been shown to
always increase if two black holes combine. With the discptieat black holes radiate
with some temperature, the area has been taken as the eatrapyack hole[15], this
Bekenstein-Hawking entropy prevents the second law ofitbdynamics from being
violated by the creation of black holes[16, 17, 18]. The ¢wemizon, though it is well
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defined within a complete spacetime, can be hard to iderftifyeido not yet know
the future evolution of a dynamical spacetime. Other horszoan be detected upon
a single Cauchy surface or timeslice so can be of more usemencal simulation,

which run for a finite time and so will not show the event honizo

As we perform our simulation, one possible outcome can beirbation of a black
hole. In fact this is the expected result for sufficientlytigitial energy input. This
is defined by the existence of an event horizon within the espiace, however this is
not easy to test for a single given time. The event horizonaions all points for which
all null geodesics are unable to divergeZo (the future null infinity), this is only
known once the entire future evolution of the system has bekmlated. Since we do
not intend to run each simulation infinitely far into the frtewe must use a different

method to detect the creation of the black hole.

2.2.2 Apparent horizons

In contrast to the event horizon, an apparent horizon[1(algo known as a marginally
outer trapped surface) is defined locally in time and so caddbected upon a single
time-slice and as soon as it forms. An apparent horizon epasses a region of space
where outgoing null geodesics have zero expansion. Thisisnbat, upon the single

timeslice and at the apparent horizon

_ [d Area] _ 2.3)
null

In more general cases, upon any spacelike surface (notsatdes timeslice) with

extrinsic curvatures;;, the apparent horizon has the unit normaihich obeys

(K is the trace ofi;;). The lack of expansion indicates that the null geodesiasaio
diverge and so these points must be within an event horizdhpotts behind the
apparent horizon are also behind some event horizon, thideaised to show that
an event horizon has formed. The converse is not true géy)etta¢ event horizon
may contain points not enclosed in an apparent horizon, evant horizon may exist

where no apparent horizon has been formed. As the situamistto a steady state
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the two should coincide and the apparent horizon become®@ gmproximation to

the event horizon.

2.2.3 Other horizons

Though the event horizon acts as the boundary of any blaekvelmay produce, and
the apparent horizon will allow us to prove that the blaclehwhs been formed, other
horizons exist which will play less important roles. Chatgad rotating black holes
will include an additional inner horizon and rotating bldukles are surrounded by an
ergosphere within which rotation is unavoidable. The Cguatrizon of a spacelike
surfaceS encompasses all the events which are entirely determinduehpitial con-
dition upon the baseq. There also exist cosmological horizons which mark thetlimi
of our observations due to the finite age of the universe,ghdbese horizons exist

they will not feature in our systems.

2.2.4 Singularities

The intuitive picture of a singularity, as a region of spavetwhich exhibits catas-
trophic behaviour, can lead to points looking singular wihéce in fact regular. Re-
gions where the metric is zero (preventing it from being itilséée) or where the metric
is not defined or infinite will look like singularities upondtirinspection, however they
may not be. There exist coordinate singularities which cameinoved by a suitable
choice of coordinate system. Singularities can be provdretoue singularities if the
curvature of the spacetime diverges, however coordinatgarities may also cause
the curvature tensoii,) to diverge. To be sure of a divergence of the curvature we
must show that scalar quantities formed from the curvatege( R, R, R ypeq R
etc) diverge, these scalars are independent of the cotedihaice and so will diverge
in any coordinate system. Though this method will identifguavature singularity, it

may not find other singularities such as the conical singidarof section 2.2.6.

Due to this range of different types of singularity, some diich involve a diverging
curvature and others which do not, we need to define the pres®ra singularity in

terms of geodesics. A geodesic is said to be incomplete ¥ tiase finite range of
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affine parameter, despite being inextensible in at leastdimeetion (they have been
fully extended in some direction but still have finite affirendth), the incomplete
geodesic may be null, timelike or spacelike. An incompletetike geodesic indicates
that an observer may not exist after a finite time, this opeetble feature indicates
a singularity. We also have a singularity if a null geodesimcomplete (this method
would also give singularities if we artificially removed pts from the manifold, so we
also need the additional condition that the spacetime @msible). An incomplete
null geodesic or an incomplete timelike geodesic indicheefresence of a singular-
ity. The existence of such incomplete geodesics can be shoamme cases by the

singularity theorems.

2.2.5 Singularity theorems

These theorems show[14] that singularities are a truefeatithe results of physical
processes such as gravitational collapse, though theylgtiedight on the nature or
properties of the singularities produced. They rely on ag#ions about the nature of
the matter and energy in question and the nature of the specefhese theorems can

be used to show that singularities do in fact exist withinglent horizons.

2.2.6 Conical singularities

A key feature of what follows is called a conical singularithese are singular space-
times despite having no bad behaviour of the curvature tenBelow is a simple
example in 2+1 dimensions but we will later discuss the s of conical singu-
larities in higher dimensions and also the possibility gflaeing the singular tip and
SO recovering a smooth, non singular manifold. A key poinofar following work is
that the way we replace the tip, and so the resulting nonagangnanifold may not be

unique, alternative resolutions with differing topologimay be acceptable.
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e.g. radial cone

The three dimensional Minkowski metric can be written iniahdoordinates as
ds* = —dt* +dr* +r*d0*: 0 <r<oo: 0<6<2m. (2.5)

However we can change this space by redefining the rangerogking it less than
a new valugd, < 2m, this has the effect of removing a wedge from the space at the
origin, we also need to exclude the origin itself from thecgene, it is now a conical

singularity
ds* = —dt* +dr* +r*d0*: 0<r<oo: 0<6 <6y <2m. (2.6)

This process has left the local metric unchanged (meaniagtinvature tensor still
vanishes everywhere) however the spacetime is now singuiarspacetime takes the
form of a cone, with a singular point at the top but being flat amooth everywhere

else.

2.2.7 Cosmic censorship

This conjecture claims that any singularity cannot be olesedue to a surrounding
event horizon[4], a singularity without any horizon is ealla naked singularity and
such an artifact will be excluded if this conjecture holdsucls a naked singularity
would be observable from the outside and even the posgibiliits existence would
cause determinism to fail (the future evolution of spacettould not be determined
from the current state). The circumstances under whickctmgecture holds is still an

open question.

2.3 Black hole spacetime solutions

Black hole spacetimes have been proposed as early as theelfitiny[20], using only
Newton’s laws of gravitation. The black hole had a gravitadil field so strong that
light could not escape making them totally dark. Modern dagloholes are even more

ominous since the inescapable trap caused by their graxtéyes to all objects and
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not just to light. We can say that a spacetime contains a latkif there are events
which are not within the causal history of the future null mitfy, they are behind an
event horizon. So if a spacetime contains an event horizeedfon 2.2.1 then itis a
black hole solution (by extension if a spacetime contairs@arent horizon of section
2.2.2 then it must contain an event horizon and so it too isekdhole solution). The
presence of this event horizon means that events behingl doenpletely hidden from

the outside and so cannot be observed or influence outsidéseve

2.3.1 Black hole properties

The event horizon of the black hole has a defined area whiowslus to think of
the black hole having a size even if we never define or use aawéthin its interior.
The area of the event horizon is shown to never decrease jfavetttiple black holes
merge then the sum of all the areas must increase[21]. Aldedgke discovery that
black holes are not perfectly black and radiate, the areheoétvent horizon has been
associated with the entropy of the black hole, partially tu¢he lack of a way to
decrease it within general relativity (without the intr@tion of quantum processes)

which is analogous to the second law of thermodynamics[21].

The black hole also has a defined energy (closely linked tortass, M) which by
energy conservation must match the energy used to form #uok blole. One method
of defining the energy of a whole spacetime which is asymgati flat was given by
Arnowitt, Deser and Misner and is appropriately called tli@#M\energy[22, 23]. An-
other definition of energy for asymptotically AdS spacetivees presented by Abbott
and Deser[24] though other measures of the energy existasuttte Bondi energy[4].
An important measure of energy for us is the gravitationanitanian, which can
be applied to spacetimes which are not asymptotically flatlso allows there to be
horizons within the spacetime (though it implies that thacgtime inside continues
to evolve just as the outside does). This Hamiltonian agmatdsthe ADM energy
or that of Abbott and Deser, in the appropriate circumstsi2&d. This Hamiltonian
compares the action of the spacetime to the action of sortierstay background and

takes this difference to be the spacetime’s Hamiltonian.

The surface gravity of the black hole tells us the effect uienenergy which a small
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change in area will have, since we treat the area like an gntn@ can compare this
value to the temperature of thermodynamics. This comparssems to hold since
the surface gravity is proportional to the Hawking tempan@tthe surface gravity is
constant over a stationary black hole horizon (just as tm@égature is constant within
a state of thermal equilibrium) and the surface gravity caroe reduced to zero by

physical processes (just like the temperature of thermaiycs).

In Einstein Maxwell theory the black hole will also have aigewhich directly gives
the electric field outside the black hole. The charge aloni Wie mass and any

rotation uniquely define any stationary black hole in 4d EEmsMaxwell theory.

2.3.2 Black hole uniqueness

Just as a 4d stationary black hole with charge, mass andomiatunique. This has
been called the no-hair theorem and it means we can limitdksiple stationary black
hole solutions which could result from any classical sirtiala This uniqueness some-
times extends to higher dimensions also. A common resutgfdilowing simulations
is the formation of a black hole solution which then tends siaionary black hole
solution, in one of these cases in section 3.7 we identifyekalt to be a unique black

hole.

2.3.3 Black hole effects

The principal effect of the black hole is the enclosure ofnésavithin it. Events in

string theory have been envisaged which could be both ifdeetb see and used to
add weight to the claims of string theory, of note are topgloganging transitions
or brane collisions. If we believe that some fascinatingnés# general relativity,

supergravity or even string theory has happened we musthktk that it can have
some effect on the outside observer, us. If the events akytbidden behind an event
horizon and cannot be seen then they cannot be an influencethipaniverse which

we would wish to describe, giving no predictions or obselwaiffects.
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2.3.4 Black hole evaporation

Classical black holes have an area which (like the entroph@fmodynamics) can
never shrink and so black holes will always be there oncelthgg been created, how-
ever with the inclusion of quantum mechanical effects the® been the suggestion
that the black holes will radiate while at the same time redym mass and in area.
If the black hole continues to radiate faster than it acguir@wv mass it will eventually
reach a very small size and go on to vanish completely ledvaignd either a com-
mon background such as a Minkowski spacetime or possiblegefit, this is called

its evaporation.

2.4 Cauchy problems

We intend to find the future evolution of a spacetime to seaittevoidable effects of
changes we make. These simulations are commonly referrasl @auchy problems,
they involve taking somé — 1 dimensional spacelike timeslice, the Cauchy surface or
initial surface, and proceeding to use the Einstein egnatio construct a sequence of
subsequent spacelike hypersurfaces and inferring frosettiexd dimensional space-
time. A fundamental difference from other numerical sintiolas is that the system we
evolve is not defined at a position in space and at a time,tlie space and the time!
Simulations in general relativity have great freedom ingheice of coordinate system,
extending even to a choice of what time will be. This all corftem the tensor nature
of the Einstein equations and from the equivalence priedigklf. The initial surface
we will start with can be described in any coordinate systewh distances between
the points of this system can (and will) change throughceittiurse of the dynamical

simulation.

As we choose the time coordinate we have to choose both adaasé a shift5*[26,

27, 23]. These are determined by our choice of normal to thediicen*,

nt = —aVht 2.7)
Bf =t — an*. (2.8)

The lapser describes the proper time separating timeslices as vieweaibbervers
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moving only along the time direction (it will very likely dér across the spacetime).
A large lapse means that fewer timesteps are needed to deolat times. A small
lapse increases time resolution and makes for a more aequagram. The shift*
allows the spatial coordinates to alter as time evolves dod @hanges to the nature
of a timeslice. Choices of lapse and shift do not change theipal results, they
represent the coordinate freedom of the late time evolutiowever changing them
must be accompanied by a change to any initial momenta irr dodeeep the same
physical system, changing them leads to a new time coomlarad so an alteration to
the momentum. Choosing the best slicing can improve thaesifiy, stability and the

accuracy and there are a range of suggested possibilities[2

2.4.1 Moduli space approximation

It is possible to predict the outcome of some features ofpleatime evolution before
resorting to a full numerical investigation using methodshsas those suggested for
BPS monopoles in [28]. These give existing parameters tiependence and use the
Lagrangian to find equations of motion for just these few pet@rs, this is a low en-
ergy approximation as it does not permit the full evolutibsacetime, keeping many
features and profiles constant which would otherwise chawtgle these approxima-
tions are good only for low energies and may become invatet af short time period
they can be used to predict the evolution of a feature of tlaeetpmne which would
otherwise be considered static. Such features may inchelenbtion of monopole
configurations, the evolution of a topological defect or¢hanging size of a cycle in
a spacetime. These methods can be used to predict the evabdikey features of the
string compactification such as the moduli of the vacuum folthipredicting whether

they will be stable against small additions of momentum.

2.4.2 Numerical Simulations

In order to study the evolution of the spacetime beyond tixedoergy analytic ap-
proximations we need to permit all the functions which defireemetric to evolve and

not just some of the parameters which define the static cdsg usually requires a nu-
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merical simulation due to the number of inseparable secaaet differential equations
needed to satisfy the Einstein equations. These simutatian be made applicable to
higher energy initial momentum and go on to late times beybedapproximations.
The numerical simulations often allow new features to asib&h are not permitted in
moduli space approximations, an example would be a stasie wéiich never has an
event horizon regardless of the values of the parametears toelld however be a hori-
zon in the numerical simulation as the lack of one is an adifieffect coming from
the restricted evolution. Methods for numerical simulati@ry so we must choose

wisely to best evolve our spacetime.

2.4.2.1 ADM simulations

In order to simulate the evolution of spacetime numericatyneeded to select a good
system of coordinates and make good gauge choices. We tallovell established
(but not unique) techniques used for Cauchy formulatiomsioferical relativity com-
monly call an ADM formulation. Previously they have beendupeimarily for four
dimensional spacetimes however we applied these techsigueur higher dimen-
sional simulations, taking advantage of the symmetries séllected some of the less
complicated methods and algorithms of numerical simutatiod elaborated on these
as necessary to form a resultant program both stable andadecun addition to the
numerical algorithms used to evolve the system we had tetdai¢h initial conditions

and boundary conditions on both inner and outer boundaries.

2.4.2.2 Inner boundaries

These pose potentially catastrophic problems for numleralativity, singularities

which will form in black hole spacetimes bring infinite termvich cannot be dealt
with by the simulation. Possible ways to deal with this imigwsing a slicing which
freezes the origin, not evolving it, however this will not skdor extended periods of
time. Alternatively it is possible to apply cosmic censa@psbf section 2.2.7 to argue
that the singularity is hidden behind an event horizon, ikmot affect the outside and
so we can remove it from the region simulated. This howewvguires a knowledge

of the event horizon which may not be available at the timeheruse of an apparent
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horizon (if it exists) and the difficulties of a moving boumgar boundaries which
only appear at later times. Luckily many of our own simulafialid not start with
singularities, and formed them well after the apparentzZuoorihad already formed.
This was sufficient to produce our results because by thettimsingularity ended the
simulation we already knew that there was a horizon and wkl@dso already make

a good estimate of its final area.

2.4.2.3 Outer boundaries

While the time slices of the spacetime extend all the way écsthacelike infinity?, it

is almost essential to select only a small region to simukaeering all space outside
from the simulation. This region should be large enough timatouter effects do not
change the results. This artificial outer boundary brindgeoproblems however as
outgoing waves can be reflected from it or grow to high fregiesncausing instabil-

ities. We tried to avoid problems by moving this surface fani the area of interest
and selecting initial momenta which decayed asymptoticaliucing the effects and

possible instabilities at this distance from the origin.

2.4.2.4 Runge Kutta method

Given that we wish to evolve a system using a first order dgifigal equation

Ly riew. 2.9

we would wish to use methods of higher order than the simplerinethod, both for
their increased accuracy and the better stability. It i$goable to use a fourth order
Runge Kutta method[29], which involves making a small tstEp to a position half
way through the actual step, calculating the derivativéiatgoint and then using this
approximation to the derivative as we attempt to progreds@is time. In order to
progress a distance df¢ from stepn to n + 1 using the fourth order Runge Kutta

method we first find the derivative at the current timestep.
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Using this we approximate the value of the derivative at atplaalf way between the

current point and the next one, we then improve upon it.

Atk

by = At f(tu+ 5 b + ), (2.11)
Atk

ky = At f(tn+7,yn+52). (2.12)

We then make an approximation about the derivative at thet pee are heading for

Knowing that none of these approximations shall be perfeetuse all four as we

progress to the next timestep

ki + 2ky + 2ks + ky

- (2.14)

Yn+1 = Yn

In this way we treat each timestep in the same manner anddgtidhe prior behaviour
as we propagate, it is a fourth order method, generally supera first or second order

method, and adequate for our time evolution purposes.

2.4.25 Adams-Bashforth-Moulton method

An alternative to the Runge Kutta method, this algorithmolaes storing informa-
tion about the past evolution for use as we progress to a meestep. The act of
storing earlier information makes this a multistep met@8dB0], the function and its
derivative from multiple timesteps are required to progresthe future. The Runge
Kutta method uses only the information upon this timestef find the nexty,, ., by

storing previous information about the derivatives atieatimestepsf,,_:, f.—» and

fn_3, we can reach fourth order without estimations regardingaé step to a mid-

point. This requires less computation at any one timestépniowe information to be
stored and used at later times. The method begins with agboeditep and is later
refined by a corrector step. The predictor calculation iswtbusing the fourth order

Adams-Bashforth algorithm,

redictor At
yrredietor — g 4 o5 (55 = 59fums +37fuz = 9fma). (2.15)
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The corrector step uses this prediction to refine our finagsit@p using the Adams-

Moulton method

fn+1 = f(tn-l-layzrffhcwr)v (216)

At
yztf:{ector = Un + ﬂ (9fn+1 + 19fn - 5fn—1 + fn—Z) . (217)

The predictor equation is an explicit ong,{; appears only on the left hand side)
whereas the corrector equation is implicit, by combininghbof these we formed a

predictor-corrector algorithm.

We tended to find that this method was faster than, but couldumdfor as long as, the

Runge Kutta method.

2.5 Supersymmetry

This suggestion came about by attempts to combine addifitieanal symmetry with
the existing theories. People wanted a group which wouldioeenwith the Poincare
group (including translations, rotations and boosts)ilegtb non trivial physics. Non
were found and a theorem was later introduced by ColemanMandula [31] which
used a small number of assumptions regarding the S-matnendegenerate vacuum
and the spectrum of particles to show that no symmetry wasitglesvithin the context
of Lie groups. A different type of symmetry was later suggdsthis theory bypassed
the earlier proof by expanding the Lie group concept[32]rtcliide generator§)’,
which obey anticommutation relations, the anti-commutafadwo generators being

defined as:
{QL, QL) = QL Q4+ Q} QL. (2.18)

The exact algebra is not necessary here but can be found iy lnoaks on the topic
such as [33, 34]. The supersymmetric charges will transggmspinors under Lorentz
group transformations (leading to the subscriptthere may be more than one such
spinor (described by the indéx The number of spinors can be 1,2,4 or 8, described
by N=1,N=2,N=4 or N=8 supersymmetry (N higher than eightgsi problems in the

form of at least one particle with spin higher than two). Ltimj N to eight also limits



Some background physics and maths 26

the number of dimensions to eleven[5]. This choice in the Inemnof spinors along

with other choices lead to a whole range of supersymmetgiortes and models.

2.5.1 Properties and predictions

The existence of supersymmetry has immediate implicafmmtée possible particles,
acting with the supersymmetry generators mixes partidebfi@rent spin, it acts to
mix bosons and fermions. It forces each fermionic partiolddve a bosonic super-
symmetric partner with a different spin but the same mas® @hch boson must have
a fermion particle). These particles could include a heauyigde which is stable, this

particle would be a candidate for dark matter.

The additional particles predicted by supersymmetry Hedghierarchy problem of the
Higgs mass. Field theory predicts the size of the Higgs nwafsgltat about the Planck
scale, this is due to the very large contributions by quantuechanical interactions.
These large radiative corrections are reduced by the inttozh of supersymmetry as
the supersymmetric particles cancel the interactions edidoe the mass contribution.
This predicts a Higgs mass around the scale of supersymimegtaking, this may be

much smaller than the Planck scale and so preferable in iewpzriment.

One benefit comes to those hoping to unify both the nucleaefoto the electromag-
netic force into a grand unified force. The gauge couplinghe$e forces would be
expected to meet at a common energy scale, the scale at whighsroken, how-
ever by looking at the running of these coupling constanssdbes not seem to be the
case. If we add the minimal supersymmetry to the standarceh{®5SM, minimal
supersymmetric standard model) then the coupling come @deér to meeting at a

common energy scale, giving increased strength to theegxistof a GUT theory.

The failure to observe any such partner particles (or eveicfes with masses close to
those predicted) shows that any manifest supersymmetrymews broken symmetry.
However breaking the symmetry threatens its predictivegr@amd risks jeopardising

all the potential benefits supersymmetry brings.
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2.6 Supergravity and superstrings

If we promote supersymmetry to a local symmetry, while afszuding general rela-
tivity we form a theory of supergravity. These theories castavith different numbers
of supersymmetries (N) and in various dimensional spa&stintf we wish to avoid
particles with a spin greater than two we must limit the nunabelimensions to eleven
and N is limited to eight. These supergravity theories cafobraed by taking the ef-
fective action at the low energy limit of some other theorgtsas a superstring theory.
Using different superstring theories at the start will fesusupergravity theories with
different fields. We will discuss a few of these in passingadaborate further on type
[IB string theory since this supergravity theory will be dses an effective Lagrangian
later in our simulations. Initial formulations of stringetbry were not supersymmetric
and included only a bosonic sector. These were later sugpitsd with fermionic
fields in order to create a superstring theory. The stringslywe a range of fields
depending upon the state and boundary conditions whicmtheidual string adopts.
One of these fields being the spin-two massless particle zasa graviton (the quan-
tum boson of the gravitational force). Some of the fields nedxt censored by means
of a GSO projection [35], primarily to remove a tachyon. Ratd theories are in
general hindered by the possibility of gravitational anbesaand divergences, if we
attempt to add Yang-Mills fields we can also generate gaugenales/divergences
in the gauge currents. There are five superstring theorieshvageem to avoid these
anomalies which differ on the details of the strings. Fromheaf these strings we can
take a low energy limit to find a supergravity or we can begithwhe supergravity
at the start. The field theory which exhibits Poincare irasace while also having the

greatest collection of supersymmetry is eleven dimensmnaergravity.

2.6.1 11d supergravity

Eleven dimensional supergravity has features which makegtlar to work with, we
know of a classical action which may be used to describe it §8@ it had possible
explanations for the four dimensions we can see [37]. It eEnIstudied in the past

and even considered as a theory of everything for a while ghewsupergravity alone
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could not be the full theory of everything due to problemshwibnrenormalisability
and a high cosmological constant, though it is still thougfhés a good low energy
approximation. Supergravity was later complemented bghshg a ten dimensional

theory which had superstrings in it.

2.6.2 1lA superstrings

If we restrict ourselves to only closed strings then we geetly string theories. These
have the maximal amount of supersymmetry, the full 32 sup@eges. One result of
the supersymmetry are two fermionic partners to the grayitalled gravitinos these
are massless. One of these theories, designated IlA, hasehimal spectrum, i.e. itis
left-right symmetric. If we take the low energy limit then \&ee left with the content

of massless patrticles in the form of [IA supergravity.

2.6.2.1 1lA supergravity

If we take the low energy effective field theory of the type BAperstring we arrive
at a theory including gravity and some fields. This masslessgent is determined

primarily by the large amount of supersymmetry.

It was noted that unexpectedly the dimensional reductidgheéleven dimensional su-
pergravity to ten dimensional supergravity gives the sarassthess content[38]. Both
methods produce the same action containing a ten dimenspaeetime metric, a
scalar which we call the dilaton, an antisymmetric tensone-form and a three-form
flux. Itis later considered that this is not a coincidencelaints at a deeper connection

between the two.

2.6.2.2 Massive lIA supergravity

We can generalise the IIA supergravity theory at the expehksing its simple con-
nection to eleven dimensional supergravity by includingdditional field, a ten-form
field (to complete the 2,4,6 and 8 pattern of even fields)[3}e €quation of motion

means that this field must be a constant, with no propagagggees of freedom, but
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it can still contribute an energy density and so have physgigalications. This field

does indeed result from the llA superstring.

2.6.3 1IB superstrings

We can introduce chirality as we form our closed string tiidmy a different choice
when we carry out the GSO projection. This results in thattiym gravitinos have
the same chirality and an asymmetry between left handedightihandedness. This
theory is free of gravitational anomalies since all anoasatiancel in the low-energy

supergravity approximation.

2.6.3.1 1IB supergravity

If we take the low energy limit of 1IB superstring theory weiae at a theory of su-
pergravity. This theory of ten dimensional supergravitpag obtainable directly by
compactifying some eleven dimensional theory, it showsnlassless content of the
[IB superstrings. This spectrum includes the graviton]ataln ¢, another scalat’y, 2
antisymmetric two-forms3 andC', and a four-formC,. We write the Lagrangian for

lIB supergravity in the Einstein frame as follows[39, 5],
1IB 1 1 o, 1
‘CIO = R*H+§d¢/\*d¢—§€ FIA*F1_1F5/\*F5
1 1 1
—§e_¢H AsH — ie‘ng, A *Fy — 504 A H A Fs, (2.19)

where the fields comprise[40] our dilatgn an axionF;, an NS-NS three-form field
H, an R-R three-form field"; and a self dual five-form field streng#}. These are

linked to the potentials via,

F = dC, (2.20)
Fy, = dCy—CydB (2.21)
Fs = dCy+ %B A dCy — %CZ A dB (2.22)
H = dB. (2.23)

There is a great deal of gauge freedom there, even thouglotingdtential C, ap-

pears in the Chern-Simons term of the Lagrangian this testiligauge invariant. We
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need to separately impose the self duality condition uppby hand, as it is uncon-

strained by the Lagrangian
F5 = *F5, (224)

we need to impose this at the level of the equations of moton,at the level of
the Lagrangian or else the kinetic term 6f vanishes trivially. The Lagrangian does

however give all the other equations of motion for these $ield

d(xF5) = —F3AH (2.25)
de® xF3) = FyANH (2.26)
de* x F\) = e xI[3NH (2.27)
dle® «H) = e’ Fy ANxFy— Fy A Fy (2.28)
dxdp = —e*? xFy ANF, — %aﬁ >|<F3/\F3+%e_¢ *x HANH (2.29)

The fluxes also contribute to the energy momentum tensochwheans that our space-
time will not be Ricci flat but will obey the Einstein equatiaith the Einstein tensor
(B.15) [41],

G® = TP (2.30)
T = f—gaagcb‘ (2.31)

Leading to the equation of motion (written in terms of fluxes)

1 1 1
Ryny = §aM ¢ Oy ¢+ 5 e* Foy mFay v + 9% Eisy ar “F5) Nabea
1

1
+16+¢ (F(s) M abF(3) Nab — 19 (3) 2 gMN) (2.32)

1 . 1
+1€ ¢ (HM bHNab_EHQgMN) .

2.6.4 Other string theories

In addition to type Il string theory there are an additiortalee theories involving
strings which are just as important, they include open g$riend the fascinating het-

erotic strings.
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2.6.4.1 | superstrings

If we also add open strings to the theory then we get a typeoryhé involves intro-
ducing gauge groups in the form of quantum numbers assdaiatk the string ends.
This theory hasV = 1 supersymmetry and the gauge group'{3(32), it turns out to
be finite and free of anomalies[42]. It has the advantageedifpng the gauge group
to uniquely beSO(32), this group is sufficiently large to yield sufficient low egegr
gauge groups upon compactification, along with masslessidaic generators. The
fact that this superstring theory contains gauge fields @atso chiral makes it appeal-
ing to study. The anomaly cancellation is a result of the gr8@(32) and the same
theoretical properties are shared by another gréigxE8. The gauge grouy8xE£'8
can not be used in the setting of open strings however sieaihot be formed by the
method of adding quantum numbers to string ends. Both okthgasige groups can

however be exploited in heterotic strings.

2.6.4.2 Heterotic superstrings

Heterotic strings[43, 44, 45] take advantage of the inddpeh nature of the left
handed and right handed components. The two can be tregtaderically provided
each sector is internally consistent. The difference caenekeven to the number of
degrees of freedom they experience and the nature of thermoide left movers
and the right movers act as though they were in different dsimas, one (usually the
right-movers) being those of the ten dimensional fermiatitng but the other from
the twenty six dimensional bosonic theory, it has some gthenfrom both. This the-
ory is free of tachyons but in order to avoid possible grawmiteal or gauge anomalies
we must carefully choose how to compactify the additioretiesin dimensions of the
bosonic coordinates, this compactification is performednug sixteen dimensional
torus and allows us to form either tt$#)(32) or the E8xE8 gauge groups. The low
energy limit of these strings is always & = 2 ten dimensional supergravity but
there are two different Yang-Mills gauge groups which caulefrom the low energy
limit, SO(32) and E8xE8. These theories (mostly thHesx £8 one) offer the solutions
which most closely resemble the standard model, creating @f interest in the way

the remaining ten dimensions may be compactified.
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2.6.5 D-branes

A further object which can be added to complement stringrhé&oa D-brane. D-
branes initially acted as a surface upon which open string&dcend[6], forcing the
string end to stay on the brane is equivalent to imposingcB&i boundary conditions
upon the endpoint leading to the title D-brane. The possdslfor strings are in-
creased by these branes, they can still differ in vibratiomades and they can also
differ in their attachment to branes, leading to a very righeaty of particles. D-branes
themselves are also dynamical and evolve according to ¢lagiraction (Dirac-Born-
Infeld action). D-branes are classified by their dimensieading to titles such as

"D3-brane”, a brane occupying three dimensions.

The existence, position and state of the D-branes will beiakin determining the

possibilities of particles. The particles arise from thetesf the strings and the string
states will be dependent upon the branes. If two branes pegated by some distance
then there is the possibility of a string stretched betwéentivo. This string has a
minimum length (the distance between the branes), thederddi the string means
this length corresponds to a minimum energy and the ressitivnature of the energy
means this leads to a minimum mass. The distant placemehée dfraines has led to
a massive particle. D-branes will also act to break somersypenetry, the extent
of supersymmetry breaking will depend on the branes, tHaggment and also their
mutual intersections. This can be useful in obtaining tiesowith reduced supersym-
metry and can also restrict our brane placement if we wantésgove some of the
supersymmetry. It is common to wish to break most of the sypemetry leaving

only N=1 supersymmetry, this allows us to retain all the aizges of supersymmetry.

Just as the presence of a charged particle will contribusesasirce of the electric field
so Dp-branes can act as the elementary charge of the p-fomoiikRamond fields

and will contribute as a source to these fields[7].

2.6.6 Unifying superstring theories and supergravity

The observation that the IIA low-energy action can be olataiby compactifying one

dimension of eleven dimensional supergravity leads usltevathere could be a more



Some background physics and maths 33

fundamental reason for this, maybe these theories are neeggydconnected.

Just as there is a duality between IIA string theory and grpeity, there are also
dualities which connect the string theories to each other.c&@led S-duality (also
called a strong-weak duality) links a type | string theoryhngtrong coupling to the
SO(32) heterotic string theory where the coupling is weakv{ge versa). S-duality
also duals type IIB superstring theory to itself with a diéfiet coupling. T-dualities
dual type Il supergravities to each other and heteroticrgppeities to each other, they
work by changing the internal manifold we compactify uporewhve reduce to lower

dimensions in the following chapters.

In these ways all the string theories are now thought of torbfeed as possible ways
to reduce some "M theory” which is eleven dimensional andt@ios membranes,
the higher generalisation of strings. This higher dimemsidheory must also have
a low energy limit matching eleven dimensional supergyaviven if string theories
are already the dimensionally compacted form of a higheedsional theory, further
compactification will be needed to reach the four dimendiphgsical world, we need

to compactify another six of the dimensions.

2.7 Compactifications

For any string theories to be applicable to our own univeneg heed to be seen by
us as our own 3+1 dimensional spacetime[46]. This requivasthe additional six
dimensions go unobserved, this is possibly due to theirlsizal as a compact six di-
mensional manifold. The idea of extra dimensions which asean due to their small
compact size, was presented as early as 1919. Then it was floathcompactification
was capable of unifying the electromagnetic theory withvigyaas a five dimensional
theory. If we compactify a five dimensional metric by makingeadimension #*)

periodic,
=2t + 2R (2.33)

we can split the metric to a 4 dimensional metric (generatnaty is still seen upon

the remaining four dimensions), a scalgysJ and a vectord,s). This has changed the
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theory involving only gravity to be seen as a theory with atgeand a scalar field,
this has massless modes which act like electromagnetismramity coupled together

in four dimensions.

The possibility of compactifying dimensions so as to redieeobservational dimen-
sion of the spacetime while at the same time introducing nelddito the theory is a
useful tool in string theory as it allows the extra dimension string theory to have
gone unnoticed. The manifolds we could compactify upon cany ¥n their sizes
and also their topologies. This manifold’s topology wouién be responsible for the
number of generations of particles we see and also othertymanumbers, though
the gauge field on the manifold (suchi&8x £8) would also contribute some quantum
numbers of its own. This gives great incentive for us to finel nlature and topology
of this internal manifold and so hopefully explain some afagons of physics and

make some predictions with string theory.

When we perform the compactification there is the potergiteak all the supersym-
metry and so lose all the useful benefits we observe in se2tlanWe would want at

least N=1 supersymmetry to still be observed after we pertbie compactification.

Our compactification should arrive at a spacetime with foserded dimensions and

a six dimensional compact manifold called the internal ricthi We would hope to
arrive at a vacuum with the maximal amount of space-time sgtnmn the four di-
mensions which are not compact, this means the extendedsioms form either a
Minkowski metric (with Poincare invariance), de SitterfwiSO(2, 3) invariance) or
anti-de Sitter (withSO(1, 4) invariance). The maximal symmetry also means that the
vacuum expectation for all the fermionic fields should varasd the bosonic fluxes
should be comprised of only internal forms or four-formslod hon-compact space-

time (which is the hypervolume and treats all the extendetedsions equally).

2.7.1 Flux free compactification

If no fluxes are present then demanding some remaining supserstry and also keep-
ing maximal 4D spacetime symmetry means that there must &xsvariantly con-

stant spinor[47, 11] (this comes from the requirement thatdravitino must have
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vanishing expectation value).

The existence of the covariantly constant spinor is a stebatgment with topological
and differential implications for the choice of manifoldhi¥ imposes a restraint upon
the possible internal manifolds we can select, it in factrigts our choice to a man-
ifold with SU(3) holonomy. It also means that there is a real two-fofrwhich can
act as an almost complex structure and a complex (3,0) formaking them complex
manifolds. This means that the manifold is a Calabi-Yau fedhiof section 2.1.5
which we already know can be given a Ricci flat metric (evemgiowe generally do
not know the metric explicitly) and so are perfect candiddte our internal compact
manifold. The covariantly constant property means thatfdlie dimensional space-
time must be an unwarped Minkowski metric (one with a trigeale factor). These

compactifications will also preserve N=2 supersymmetry.

Calabi-Yau manifolds are not unique and there exist a langeber of possible Calabi-
Yau manifolds with distinct topology and so selecting on@logy over others seems
to be a free choice. The choice of topology will determine dbservations we see
about particles and so if we cannot find a preferred topolbgw tstring theory loses
much of its predictive power and so cannot be used or verifyeahly experiment. The
Calabi-Yau manifold is not even defined uniquely by its tagyl and there will exist
infinitesimal deformations which preserve the Calabi-Yandition. These are called
the metric moduli and these give rise to light scalar fieldscivtare unacceptable to
phenomenology due to their unobserved long range effectsasithe violation of the
equivalence principle. Such violations have not been oleseand so such fields are
tightly constrained[48, 49], as such a method is introduogmtevent these fields being

seen, we add expectation value to the fluxes in the compadtitfrc

2.7.2 Flux compactifications

Adding fluxes to the six dimensional internal manifold alfer more freedom in our
compactification, the fluxes lead to a non-zero energy-maumetensor meaning that
the spacetime is no longer Ricci flat and the internal magifslnot restricted to a
Calabi-Yau, though there are still many restrictions dudéequations of supergrav-

ity. As we still want to maintain the maximal amount of foundinsional symmetry
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we arrive at a metric of the form.
ds? = e*4W) Gupdatdz” + gundy™dy"” (2.34)

where goes from O to 3 and: goes from 1 to 6.g,, must be a four dimensional
metric with maximal symmetry, either Minkowski, de Sitteramti de Sitter. The term
e?A) is called the warp factor and it permits the extended fouredisional manifold

to vary across the internal manifold however it cannot brigsgkmaximal symmetry
of the four space and so does not break Lorentz invarianceirofooir dimensional

observations. In order to avoid breaking all the supersytnnwee need to have su-
percurrents which are well defined globally which means ¢van with fluxes (even
fluxes which may break the supersymmetry spontaneouslyiweeed an internal

manifold g,,,,,dy™dy™ without the full SO(6) holonomy group. With the addition of
fluxes our internal manifold need not be a Calabi-Yau madifait should still be a

conformal Calabi-Yau manifold.

With the addition of flux to the compactified dimensions we na#go solve the dif-
ficulty of moduli because the fluxes make some values of theulhpdeferred by
introducing a potential to the deformations of the manifolthe potential has min-
ima which act as the vacuum and any other internal manifoldldvaot be a static
situation. In the dimensionally reduced picture the additf fluxes works to counter
the problem of light moduli fields by giving them a mass, withsa the moduli no
longer act to infinite range and so can exist without vioptiests of the equivalence

principle.

2.7.3 String landscape

The range of possible string vacua is huge and very divensge tis a large range
of topologies which each have their own collection of comtins parameters and on
top of this we can add an unimaginable variety of fluxes saulyeD-branes. This
immense collection of possibilities has been dubbed thegstandscape[50]. As we
mentioned earlier the addition of fluxes to the range of vdmirays the advantage of
a superpotential which means that local minima of this pidéare the only vacua

which can be stable and of these the global minima will beguadfie. Without this
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superpotential there would be no method of vacua selectidrsa no way to decide
upon a good candidate (it would have to be identified by olagems and so string
theory would make no predictions about particle propextiegth the superpotential
we can isolate the preferred static vacua to predict the omatibns of moduli and flux

which will be preferred.

We would wish to know whether the topology also could be ptedi by the superpo-
tential. Unlike the other features defined by continuouaeaters, the topology would
seem to be a discontinuous choice leading to isolated islamthe string landscape.
The prefered moduli can then be reached dynamically bedhese is a continuous
path of finite length in the landscape along which the vacuauiccdynamically flow

in the early universe. On first impression it does not seerntkiggie is any such path
to changing the topologies. The possibility of being "traghin one topology with no

path to change would severely limit the predictions strimgpty could make.

2.8 Topology transitions

Despite the discontinuous nature of the topologies a plessiethod for changing
the topology in time has been suggested, this method offerpossibility of finite
paths between manifolds with different topology and soying the seemingly disjoint

regions of the string landscape.

The hope comes from manifolds which possess conical singetsand singular points[51,
52, 13]. While these manifolds are usually not consideregaaisof the string land-
scape they can be reached by taking some of the moduli toahsaiute limits, such

as taking the moduli giving the diameter of a circle to zermc8 the moduli can be
changed continuously, it is possible that the vacuum coaidicuously change until
one of these singular manifolds is reached at the limit. Hhatlne singular manifold
can be the limit of a topology, it does not have to possess aatefopology itself, and

so one singular manifold could be the limiting case of twdedént topologies. If this

is the case then it has been suggested that the singularatganifuld form the link
between different topologies and allow a path in moduli spaetween vacua with

differing topology. By continuously deforming the modulevarrive at the singular
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manifold, then we treat the singular manifold as the limithed new topology and be-
gin to continuously deform the new moduli to move away from $ingular point and
back to a defined string vacua. One way to picture these tramsbetween manifolds
is to study the cycles within them, for example it may be tleatain cycles collapse to

zero size on one side of the transition and expand as diffeyefes on the other.

These processes differ between individual cases but tlentegt the transition can
be seen by looking at which topological invariants are clednigy the process. A
more mild form of transition is called the flop transition whiwill change only the
intersection numbers of the topology[53], this is desaibemore detail in chapter
3. The most profound transitions will change the Hodge nus)libe Betti numbers
and the Euler number of the topology, these are drastic @sataghe vacuum and one

example is the conifold transition which is discussed indhapter 4 .

A lower dimensional analogy to this is the transition fromme tdimensional surface
of a sphere to the two dimensional surface of a torus (doughfinese two closed
surfaces have different topology however they share a camimit which is a mani-

fold with a singular point which looks like a sphere so sqeaistinat it intersects itself
at one point or it can be viewed as a doughnut so fat that treelas shrunk to a point.
By passing through this "manifold” it may be possible to plass one topology to the
other, by continuously deforming the doughnut making iefiaind fatter we can form
the singular manifold, then instead of deforming the doughwe treat this manifold
as a sphere and continuously reduce the squashing of theespbearrive at a new

topology (this process could also be reversed).

If the transition is possible it would offer a way to change tbpology of the string
vacuum and so to unify two disjoint regions of the string lscape. By finding a
great many of these transition types, each linking two togiels, it may be possible
to interconnect all the string landscape together and somivent the risk of getting
trapped in a topology. This restores some predictive powstring theory by making

it possible to move to a flux vacua more favourable, given tipegotential.

There are many reasons why this process may fail, we wishetd #gey can possibly

be overcome.



Some background physics and maths 39

2.8.1 Obstacles to transitions

The clearest danger point is the moment of transition, the&ion of the singular
point and the moment at which the topology changes. This dglato the transition
needs to be thoroughly assessed if any transition is to ddeviaRemarkably this
seemingly catastrophic event can be made regular withimggineory[54] and the low
energy dynamics can be studied both for flop transitionsfih,57] and the more
severe transitions capable of changing Hodge numbersgs3%. This is interpreted

as D-branes wrapping the cycles and making new light staisaa.

Another possible danger while performing the collapse fram the gravitational
properties of the collapsing cycle, there is the risk thaizoms could form as the size
of the cycle reduces, this is a risk even before the singuartps reached. The ap-
pearance of a horizon would mean that the point of transitionld be hidden behind
the event horizon of a black hole and so would be of no consegut the outside
observer. This would mean that the low energy theory wouloh@pplicable and that

there are risks to the transition which would go unseen inlamwyenergy description.

It is these gravitational effects which we wish to investéggand we wish to find the
risk to topology changing transitions being manifest as mauide the gravitational
effects. We start with a five dimensional flop transition aheint move to the more

severe transitions in higher dimensional situations.



Chapter 3

Five dimensional evolution

Five dimensions offer a great many more possible situatibas can even be con-
ceived in our usual four dimensions. Notably there is thesial#y in five dimensions

of dynamical spherical vacuum solutions. Such an evolusamot permitted in four

dimensions, as is shown by Birkhoff’'s theorem. Previous awcal work has been
performed in five dimensions[60] and we can use these teohri@s we progress
to the higher dimensional simulations of string theory, beer first we discuss our
own work in five dimensions. These five dimensional studiesstigate some transi-
tions between topologies however these are only of gramitak interest, in the later
chapters we will progress to transitons possible in six disi@nal compact manifolds

which could be used in string theory.

3.1 Five dimensional gravitational instantons

A gravitational instanton is a collective name for some @fsblutions to the classical
field equations. They exist in 4 dimensions of space (no jiraed have a finite action.
Within our simulations we use such instantons as a singledlice through the (4+1)
spacetime we are interested in, we use this timeslice asitined condition which we

go on to evolve to later time. Being solutions to the field d¢mures themselves, the

instantons would not evolve were some initial momentum petiad.
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3.1.1 Features of gravitational instantons

The gravitational instantons alone, before we introdudena toordinate or any mo-
mentum, exhibit interesting mathematical properties Whiave been named "nuts”
and "bolts”[61]. These points are apparently singulasitihen the metric is written
using polar coordinates and tt5é/(2) one-forms, however they can be shown to be
only coordinate singularities if the metric is changed tat€sian coordinates. Like
the coordinate singularity at the origin of the polar conades, the manifold is regular
despite the presence of these objects. Given a metric wiittéerms of theSU (2)

forms,
ds* = dr* +a(1)? o? + b(1)* 05 + c(7)? ag, (3.1)

this metric is called a Bianchi type IX metric. The metric la@$ut” singularity at the

origin (r = 0) if that, near tor = 0,
=0 == (3.2)

This singularity is the singularity of the polar coordinaystem. Alternatively a metric
possesses a bolt singularity if, closerte- 0

2 32 g 2 ()%
a® = b = finite c —<2> T (3.3)

wheren is some integer. This apparent singularity can be thoughsdhe coordinate
singularity of anR? provided the range of the angular coordinatés aptly chosen.
The topology of the manifold is locallig?xS? where theR? shrinks to a point as

7 — 0. However theS? two-cycle remains even at the tip of the origin.

3.2 Flop transitions

If we begin with a spacetime containing a bolt singularitg gmoceed to evolve it in
time then itis conceivable that the size of the two-spheutdtbe changed dynamically
and so would act like a scalar moduli. The size changing i tivould be viewed in
the four dimensional theory as a scalar field varying in tiniteis also conceivable

that the scalar could be dynamically changed to lower anéilaxalues, even going
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all the way to zero. If the value could be taken to zero we woettbver the singular
manifold C? /Z,. Having recovered the singularity at the origin it may besilole
to go on to instigate a "flop transition” [55, 56, 57]. This alves the dynamical
reduction of the two-cycle at the origin to zero and then lh@aup another new two-
cycle at the origin. This would result in the change of theotogy of the spacetime,
however this change is less drastic than other topologygdshbecause it leaves the
Hodge numbers unchanged and has no effect on the spectrurassieas moduli.
Previous investigations involving only the moduli and tHeiw energy dynamics[55,
56, 57] have omitted the possible gravitational effectsrugh@ collapsing cycles. The
gravitation may cause a horizon to form in the higher dimemel theory, this in turn
would render the moduli investigation inapplicable and miat the dynamics of the
topology changing transition are more complicated thamawesnergy theory implies.
In order to establish whether there is a possibility of flgnsitions being carried out
dynamically or whether the creation of black holes with hons is inevitable, we
must carry out analytical approximations and numericalusations upon individual

instantons.

3.3 The Eguchi-Hanson instanton

One particular instanton of great interest to us is the EgHemson instanton. This
instanton is spherically symmetric in 4 dimensions of spate metric is a regular
self-dual, hyper-Kahler metric in four-dimensions and liae asymptotic structure of
C?/Z, (62, 63), i.e. itis a resolution of th€? /Z, conical singularity. It is constructed
as a cohomogeneity-one metric with squashed three-spagrbe level surfaces and

has the explicit form

Ashu(l) = alp) ™ dp’ + 10 (6% + 03) + alp)od] (3.4
alp) = 1—(%) : (3.5)

We have used the conventional left-invariant one-formS©f2) which satisfy (B.18)
and the parametéris a constant parameter i.e. a modulus of the solution. Fham t

above form of the metric we see that there is an apparentlsirityuat p = [, we get
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a clearer understanding of its nature if we look close torégson using the following

coordinates,

R2
p=1+—r (3.6)

This results in the metric taking the form

ds*|p—o — [dR® + R’03] + g(of +03), (3.7)
which clearly shows that the apparent singularityzat 0 (p = [) is just a coordinate
artefact, and that the manifold looks locally like a prodatflat space and a two-
sphere of radiug/2; this type of removable singularity is a bolt singularity3B It is
the finite size of this two-sphere which has resolved theudargy, by takingl to zero
in (3.4) we can see the metric beconi®s'Z,. (TheZ, comes from an identification

required to make the origin of the resolved space reguldr)[62

3.4 Dynamical evolution of the Eguchi-Hanson instan-

ton

3.4.1 Moduli space approximation

Using a moduli space approximation as described in sectibd 2ve can find a low
energy prediction for what the dynamics of the evolution rbay This analytical
approximation involves giving the moduli a small time degemce and calculating
the resultant Einstein-Hilbert action. It relies on theuasption that the form of the
spacetime remains as a Eguchi-Hanson instanton and onipdldeli changes. By

introducing a new timelike coordinate and allowing the mothuchange in time we
get a new metric,

i (1 (O)) b et e (1 (2) ) o] oo

This metric gives the Einstein-Hilbert action to be
S = / dt d*z\/—gR (3.9)
- / dt [ﬂ(t)?l(tf] . (3.10)
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This action shows the Lagrangian to be
L = 721(t)21(t)2. (3.11)
This Lagrangian can be used in the Euler Lagrange equations

0 = % 221(1°1(1)] — [221(0)i1)?]
0 = 20)(t)? +1(t)21(t) — I(t)i(t)?

0 = 1))+ 1) ()
1,
0 = 5@[&)]. (3.12)

Equation (3.12) show&)? is linear in time. This is a promising result, if this ap-
proximation holds true then it suggests that once an imti@nentum causes the size
of the two-cycle to reduce, it will continue to fall lineaslyanishing within a finite
time and so giving the conical singularity needed for the flapsition. To see if this
approximation holds true we must perform a numerical sitiaupon a metric with
more freedom to evolve in time and space and to leave the fban &guchi-Hanson

instanton.

3.4.2 Numerical evolution of the Eguchi-Hanson instanton

In order to test the accuracy of the moduli space approxonand to establish the
possibility of initiating a flop transition we must perforrmamerical simulation upon

a metric with the capacity to evolve freely in time[64, 65].

3.4.3 Time dependent metric

To aid the stability of the algorithm, particularly in esliahing sensible boundary

conditions, we require that

1. Allthree variables and all three momenta to remain eveifiaite at the origin.

2. All three variables and all three momenta to tend to fimteybe zero) values

asymptotically.
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3. We minimise the amount of division by variables in all efipuras of motion.

To that end we evolved the following form for the metric

2 4
ds? = —dt? + [1 +4(7) } AAdr? 4 P2 [1 +(5) ] e25 (02 + 02)

+ 72 [1 + (%)1 e*Col, (3.13)
where
A= A(rt), (3.14)
B = B(r,t), (3.15)
C=C(rt). (3.16)

In order to impose all the necessary boundary conditionsie¢,0keeping the equa-
tions regular at the origin, we used techniques outline®@) $7]. This involved the

introduction of three new variablds,, Dz and D, to replace the spatial derivatives,

, 4r

273
Dgp = B+—— A
_ v r
Do = C +l2+r2' (3.19)
We also introduced the momemkd,, Kz and K, defined as
Ky = —A, (3.20)
Ky = —B, (3.21)
Ko = —C, (3.22)

where indicates derivative with respect to time and ' indicatesvdive with respect
tor. TheD; were chosen so as to be odd at the origin as these were simpiddny
conditions to impose. Actually, the full set of boundary diions at the origin may

be found by requiring local flatness [66], in which case we find

Alt,r) ~ A%t) +O(r?), (3.23)
Da(t,r) ~ O(r), (3.24)
Ku(t,r) ~ K9(t) +0O(r?), (3.25)
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with similar relations for the functionB8(¢, r), C(t,r), Kg(t,r), Kc(t, ) at the origin.
We also find that

Aty =C°(t), K= K. (3.26)

By giving the metric functions some initial momentum thetsgdaart of the metric
will cease to remain Eguchi-Hanson, however it will retadm& Eguchi-Hanson fea-
tures, at least for early times. Notably, the bolt singtyaait the origin will remain,
still describing a two-sphere of radidgt)/2. We used the value @8 at the origin to
define thisL(¢) at later times.

L(t) = 2exp(B°(t)) (3.27)

Note that forL(t) to vanish, therB(t, » = 0) must diverge.

3.4.4 The Einstein equations

We found the equations of motion and the constraint equsiticom the Einstein-

Hilbert action,

S = /dt d*z\/—gR. (3.28)
In a vacuum this action leads to the conclusion that the mebreys the Einstein field
equations
1
R,uu - ig,uuR == 07 (329)

which is solved by a Ricci flat metric
R, =0. (3.30)

This set of equations can be split into three equations wtedtribe the evolution
of K4, K and K¢, and a further two equations which impose additional cairsts

upon the system.

3.4.4.1 Constraint equations

The metric produced the following constraints, equatioimsctv the variables must
always conform to. These were imposed as initial conditems later monitored to

test the program’s accuracy.
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If we define some new parameters

= art(1+(3)") e, (3.31)

Then the Hamiltonian constraint comes frdtg, = 0 and is given by

c? 4
0= — KA(2KB+KC>_KB<KB+2KC)+E_b_2

1 1 1. 2D
+ —2<—DA(DC+—)+2DB(DC+—)+ C)
a T T T

1
+ ?(—2DADB+3D?3+2D;B+D5+D2,). (3.32)

Additionally the momentum constraint comes frdty, = 0 and is
1 1
KA<D0+2DB+;)IQK/B—FK/C—FQKBDB—FKC(DC—F;). (333)

Apparently singular terms within these constraints didproduce any instabilities as
they do not feed back into the equations used to evolve thersyshey were only used
for testing purposes. We kept a check that the constraintaireed small; typically

they were of order 0.005.

3.4.4.2 Equations of motion

We found the equations of motion from the field equationsgitiie ADM formalism
[23, 68]. Also we added multiples of the momentum and Hamiéo constraints to

remove as many potentially singular terms from our equataimotion. This resulted



Five dimensional evolution 48

in the following equations of motion.

= —Kyu
= —Kp
= —K¢
> 2 2 02 4 1 2 1
Ky = KA—KB_2KBKC+6_4_b_g_'_?(DB_'_zDB(DC_'_;))
> o 2 2C2 4
KB - 2KB+KBKC+KBKA_6—4+Z)—2
1 1
+—5(Dp Da =2 D — Dy = D (Do + =)
E 2 2 302 4 1 2 ,
Ko = —Kj+ K3 —2KpKat S0 =55+ (3 Dh = 2D Da+2Df)
Dy = —K)
Dp = —Kj
Do = —Kg, (3.34)

wherea, b andc are defined in (3.31). The only potentially singular term agmng
(which could have produced instabilities)/is; /r, analytically this is regular aBp is

odd. Numerically it was sufficiently stable to allow the pragn to run its course.

3.4.5 Initial conditions

In the parametrisation of (3.13), using the coordinate R of (3.6) and the Eguchi-
Hanson instanton of (3.4) we find that our initial conditidas the metric functions

take the form

e (- (5)) ()
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If we impose vanishing momenta then this would constitutexarct solution of the
equations of motion. As a check of our numerics we do indeatithat the system
remains static. As we want to evolve the Eguchi-Hanson mé&bward the conical

singularity we must impose some non-vanishing momenturthimetric functions.

3.4.5.1 Initial momentum

Adding the initial momentum is not a trivial task given thangral relativity imposes
constraints coming from the gauge fixing (section 3.4.4Chg two constraints, Hamil-
tonian and momentum, mean that ontg = 0,7), B(t = 0,7) andC(t = 0,7) are
fixed according to (3.35) there is only one free functiontefiescribe the momentum.
To fix this function we take our motivation from the moduli spaapproximation of

section 3.4.1 and find that initially we have

. L [1?—1?

so we are able to choose dnand derive from thiskz. We imposed thaf, was

required to be:

1. even at the origin.
2. finite and negative at the origin.
3. vanishes far from the origin.

4. continuous and differentiable to first order.

The first condition ensures thatg is even, the second means that we push the Eguchi-
Hanson space towards the conical singularity. The thirdlitimm is imposed so that
only the form near the origin is important, and that the nompact nature of Eguchi-
Hanson does not affect the evolution. The final conditiorgi& smooth profile for us

to evolve.

Only one of the three moment&;;, was specified explicitly by., with the other two
being derived from the constraints (3.32) and (3.33) usidghaorder Runge-Kutta

algorithm.
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We require a momentum which tends to zero sufficiently gyi¢klmake the energy
we introduce finite. We found that a momentum which tendedatash as a Gaussian
gave a black hole solution with an ever-increasing areas Enot a physical result
as a black hole of divergent area could only be caused by arpation of infinite

energy. The momentum needs to decay faster than a Gaussias auch we chose

an L which was exactly zero outside some radius.
We decided on at, taking the form:

. —Lo (1 — (&)2)2 <70
i = o(1=Gel)" <y (3.37)
0 r>7r0
where L, is a positive constant (the magnitude lofat the origin) and r0 is another

constant which determines the outer radius of the non-zero

3.4.6 Results

Depending upon our input parameteks,and r0, there were three possible outcomes

to adding the momentum:

1. For sufficiently lowL, and r0, there was insufficient initial momentum to ob-

serve the creation of either a black hole or a singular tapolo

2. For an intermediate range in the parameters the systeduged an apparent
horizon. After initially increasing, the area of the appdneorizon converged to

a constant value.

3. For large initial parameters the system already contiaareapparent horizon

simply due to the initial conditions.

3.4.6.1 Bouncing cycles - case 1

In the case that very little initial momentum was added todtgin, with sufficiently
low L, and r0, the evolution of the spacetime did not result in areespt horizon
and so there was the possibility of avoiding creating a blaalke. In order to test the

outcome of these cases we monitored the size of the two-wydleh was centred on
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Figure 3.1: The change to the size of the two-cycle over time in a sitmatiith no apparent
horizon creationr0 = 0.4, Lo = 1.2

the origin. The collapse of this two-cycle to a point wouldizate the production of a
singular topology, having produced this manifold with agsilar point it may then be
possible to go on to initiate a flop transition as describeskiction 3.2. We plotted the
size of this two-cycle against time shown in Fig. 3.1, thisws that the size of the two-
cycle does begin to fall, initially looking like it could fdinearly as the approximation
of section 3.4.1 predicts. However this approximation ig/\epiickly violated and the
collapse begins to slow down, in time the two-cycle ceas#lagsing and begins to
increase again. The area of the two-cycle is seen to riseealb®sgtarting value and
continue rising. The two-cycle never falls to zero and no flapsition could ever be

initiated.

3.4.6.2 Collapsing cycles - case 2

In this case a black hole forms, which was not initially prés&Ve focus on a single
example where we took) = 1.0, L, = 2.3. In Fig. 3.2 we plot the time dependence
of L as measured at the origin, and also give the area of the Imoriboth in units
of I. What the figure shows is thatis monotonically decreasing, with* decreasing
approximately linearly in the initial phase. This is comsig with the expectations

from the moduli space approximation of section 3.4.1. Ham@veat some point an
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Figure 3.2: The falling area of the two-cycle and the creation and cagerece of the apparent
horizon.70 = 1.0, Lo = 2.3

apparent horizon forms ¢~ 0.11 in the simulation) which then implies an event hori-
zon exists - something the moduli space approximation doeaatount for. At this
point we can no longer trust any low-energy dynamics derfveth the moduli space

approximation.

We also see from Fig. 3.2 that the area of the apparent honmoeases initially, but
then settles down to a fixed value. Presumably this correiptmthe formation of
what would become a static black hole; we shall discuss thifiér in section 3.7.
The figure also shows that, as defined at the origin, reaches zero in finite coordinate
timet¢ (¢t ~ 0.3 in the simulation). This corresponds to a divergence in tletrim
function B(¢, ) and is in fact a curvature singularity. Fortunately thisidden behind

the horizon.

In order to get a clearer understanding of the causal stioftour solution we present
in Fig. 3.3 a plot showing various radial outgoing null gesids. Superimposed on
this is the curve showing the location of the apparent horizd/e see that initially
the null rays continue outwards and, given the asymptdyidatally flat structure
of Eguchi-Hanson, reach null infinity. However, some timgidahe outgoing null
rays near the origin turn around and head towards 0. The presence of such null

rays indicates that a horizon has formed, and this is confiroyethe existence of the



Five dimensional evolution 53

; praFent_Horizon'
- null geodesics (outgoing radial)

Y LW A L U 0 N N1 O Y O b U R T — ket ol

Zl AR AL RS K F N -

Lime
=
=
[d3]

3\

0,1 .1..T' ..... :.f?..z ....... E: ........ LA f ......... i: ........ ;.E ...... :...f ..... !

Figure 3.3: The apparent horizon and the outgoing congruence of nulhlrgéodesics. Those
behind the horizon can be seen to be trapped.

apparent horizon.

In Fig. 3.3 the apparent horizon is formedtat 1.1 however the event horizon must
have already existed before the creation of the apparemdmor In fact all the null
geodesics which are contained behind the horizon must Haxays been contained
behind an event horizon. In the case in Fig. 3.3, the eventdromust have existed
from the start of the simulation and already had an are@5. In contrast Fig. 3.4
there is no event horizon at the start of the simulation heirull geodesics upon the

initial surface manage to escape and so are not behind anylewezon.

3.4.6.3 Results for a range of initial conditions

The black hole’s area and the extent to which the angularesgns broken (squash-
ing) depends on the initial conditions; in our parametigaf3.37) this means chang-
ing L, andr0. A range of graphs resulting from varyirig while keeping-0 constant
are shown in Fig. 3.5 and the final areas are summed up in irBEgAS we increase
the value ofL, it causes the size of the two-cycle at the origin to fall mosftsy,
resulting in the earlier termination of the simulation. Karesults in the apparent

horizon being formed earlier and converging to a higher.area
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Figure 3.4: The apparent horizon and the outgoing congruence of nuklrgdodesics in a case
where the event horizon is formed at a later time and doesxisttwithin the initial surface

For values ofZ which are very small the system never produces any sort @fdrgmo
singularity is formed and the value éfdrops for a small amount then begins to rise
again, there is not enough energy to form a black hole or aifanity. Alternatively, if
we takeL, to be very large then the initial data already contains armegy horizon,
rather than forming one dynamically. The results we preseiftig. 3.6 cover the
intermediate range where there is enough localised enerfgyrin a black hole, but
not so much that it is there at the start of the simulation. ith B.6, wherer) =
1.0, the apparent horizon forms dynamically fof < L, < 2.8 and its area can be
seen to converge and be measured. Over the duration of thkasiom the squashing
parameter was seen to converge for the rahfe< L, < 2.8, and in all these cases
it converges to a value greater thaf. This will be seen to be consistent with the
numerical squashing parameter being identified with théyéiodorm of k., given in

(3.46), which must also remain greater than one at the hwrizo

Alternatively we can let:0 vary while we keep the size df, fixed at 2.3, the results
are given in the form of graphs shown in Fig. 3.7. Altering iadue ofr0 causes

little or no change to the evolution of the two-cycle at thigior, however it does cause
the apparent horizon to form at a larger radius (with a higiea) though the profile

evolves and asymptotes in the same way.
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Figure 3.5: The effect of changing the value &f, while keeping-0 = 1.0



Five dimensional evolution 56

15

101

Area

Lo

2
O
9 1.57 1
S
©
&
o 1 i
S
<
(%2)]
@©
-]
o 0.5f ]
0p)
0 1 1 1 1 1 1
0 0.5 1.0 15 . 20 2.5 3.0 3.5
Lo

Figure 3.6: The effect on the final area and extent of squashing (only dbres for which it has
converged) at the horizon due to differing the initlgl (»0 = 1.0).
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If we vary both the values af, andr0 we can find the resulting area in a great many
cases. this is shown in Fig. 3.8. The range in which a horipom$ at a late time is
shown and given a shading scale to indicate the area of thiabino Within the region
marked A, there is insufficient energy to form a horizon at &kgion B marks the

existence of a horizon within the initial conditions.

3.4.7 Smoother initial momentum

We also attempted to add momentum with a profile smootherttedof (3.37), which
was only smooth to second order, and there was a questionvesetiber this could
have influenced the result. We performed another seriesrafiations, this time with

a profile smooth to a higher order, given by

. —Lo (1= (Z)2)n <70
i = o(1=Ger)" <y (3.38)
0 r>1r0

The higher the value of the higher the derivative to which the momentum is smooth,
we tried a range of values going from the starting value ofttma highest value of six.
This resulted in the same possible outcomes, the cycle cmuldce or alternatively a
black hole apparent horizon was created before the cyclapsad to zero. The ques-
tion of whether there was a bounce or a horizon and the ardedparent horizon
created again depend upon the exact starting parametech défine the momentum.
Using a smoother form of the momentum and achieving sucHasimasults showed
that our black hole creation was not caused by the order oimitial momentum’s

differentiability.

In Fig. 3.9 we show the effect of changing the order (the valuein (3.38)) without
changing the parameters, in all these cases the size of theywle bounces but the
exact details change (such as the time taken to bounce angdrbaaunced the bounce

iS).

3.4.8 Conclusions from numerics

Using a variety of initial momentum with different strengthnge and profiles which

are smooth to different orders we have produced the rangesafts described, some
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of which have apparent horizons and so black holes. Our atmouks find no evidence
that the addition of momentum to an Eguchi-Hanson instaocgmresult in a conical
singularity. This is seen by monitoring the size of the twale at the origin and seeing
that it never collapses to zero size without being enclosadilack hole event horizon.

We will later go on to describe the properties of the resglbrack hole.

3.5 The Taub-bolt instanton

An alternative gravitational instanton which also extshat bolt singularity is Taub-
bolt[69]. It too is a spherically symmetric four dimensibmestanton though it is not
self-dual, nor is it Kahler. We can describe it by the cohgereity-one metric[62] in

a spherical form using the one-forms®f/(2) which satisfy (B.18),

2 2
2 r°—N 2
= d
dsTaubbolt (T —2N)(’I“—N/2) r
(r—2N)(r—N/2) ,
r2 — N2 3

+(r* — N?)(o? + o2). (3.39)

+4N?

The bolt exists at = 2V, this is a bolt coordinate singularity as is seen by the subst

tution

R2
= 2N + —. 3.40
T + SN ( )

This results in the metric taking the form
2

ds®|p—o — [dR2 + Rzag] +3N?*(0} + 03), (3.41)

which clearly shows that the apparent singularitat 0 (- = 2/NV) is a bolt singular-

ity (3.3), it has a two-cycle blow up of radiug3N. This single modulugV describing

the size of the bolt singularity, is the single modulus weitt to smoothly collapse to
zero in order to initiate a flop transition by making the twacle at the origin vanish.
In collapsing the two-cycle we may inadvertently cause tteaton of a black hole
solution and not a collapsed cycle, this may be an unavadailiticome. We also ap-
plied similar numerical techniques to simulate additiomaimentum to this instanton

in our attempt to collapse the two-cycle at its tip.



Five dimensional evolution 59

3.6 Dynamical evolution of the Taub-bolt instanton

3.6.1 Moduli space approximation

Performing a moduli space approximation upon the Taub<dmblttion involves using

the Einstein-Hilbert action upon a metric with a time depardnodulus:

2 g2 r? — N(t)? 2
S e O ROl
FAN(£)? (r— 2JZ§t)_)(JQ(;)£V(t)/2)U§
+(r?* = N(t)*)(0? + o2). (3.42)
This leads to the Lagrangian
L= —187N(t)2N(1)", (3.43)

which in turn gives the prediction thaf? will be linear in time, sinceV? is propor-
tional to the area of the blown up two-cycle, this predictgadr fall in area. If this
prediction holds it will allow the size of the two-cycle toniah in a finite time, we
must evolve the system numerically to see the accuracy ®ptiediction and look for

the creation of black hole horizons.

3.6.2 Numerical evolution of the Taub-bolt instanton

Following methods nearly identical to those of sectionBwe went on to perform a
numerical simulation of the evolution of the Taub-bolt argibn to see how our results
compared. This required that we use a metric with the capscévolve freely in time,
where not just the modulus but all the metric functions age fo evolve independently

in time and in the one codimension of space (the radius). Téteieris given by:

R2
ds*> = —dt* + <1 + m) e2ALR) g 2

R2
- 620(t,R)0_§
(4+ %)

R4
+N? (1 + W) BB (52 4 52), (3.44)

_|_
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We again used the vacuum Einstein equations to give bothtieqaaf motion, with
which to evolve the system, and also some constraint equstitich had to be im-
posed upon our initial momentum and which could later be tseest the evolution,

these are all listed in appendix C.

3.6.3 Initial perturbation

To produce any evolution we had to apply a perturbation tarthiel conditions, de-

fined by its magnitude and its length scale, we chose a profi@iing the form

B o~ Ny (70) (3.45)

3.6.4 Results

This initial momentum produces dynamical change to theedpae, the effect of this
change was invariably to create an apparent horizon. Unlikeprevious simula-
tion which used the Eguchi-Hanson metric as the initial d¢od, we never caused
a bounce event and always created a black hole spacetimadnsthe fall in the area
of the two-cycle at the tip of the bolt was not linear, its exarofile was dependent on
the parameters of the initial momentum, the strength of tbmmentum and the range it
extended away from the origin. As is shown in Fig. 3.10 and Bif@1, changing these
two parameters has little effect upon the final area of thesgy horizon, although it
has more influence upon the time it takes to create an apgasenbn and the time it

takes for the area of the two-cycle to drop to zero.

3.6.5 Conclusions from numerics

Adding momentum to the Taub-bolt instanton never resultegtieé creation of a coni-
cal singularity at the origin of the spacetime. Insteadvitagls resulted in the creation
of an apparent horizon and so created a black hole spacefingecreation and final
properties of the black hole (such as the area) seem to benmdily dependent on

changes to the initial momentum. The black hole outcomergsoeven when we add
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only a little momentum, though at these small momenta theergence is not suffi-
cient to determine the final area. The nature of the resultak hole is described

below.

3.7 The Five dimensional black hole solution

By the time the program ends (due to the curvature singulatit = 0) the apparent
horizon has settled to a single area which can be measureslndtiaral question is
"what is the final state?”. Given that we cannot run the sitaohes beyond the curva-
ture singularity we can only offer a conjecture to answes thiestion. However, given
that the horizon has converged to a constant value we bdliexet is reasonable to
suggest a five-dimensional black-hole is in the process whifty. The black-hole
which fits our requirements was written down in its Kaluzaikldimensionally re-
duced form in [70, 71]. Written in its five-dimensional fortng black hole looks like
[72]

ds* = —fdt2+k72dr2+%2[k(af+a§)+o—§}, (3.46)

fr) = “2;727"3) (3.47)
(r3 —rira

k(r) = ﬁ (3.48)

and describes a static black-hole with a squashed thresresfdr a horizon at = r, .
The radial coordinate rangeis< r < r,, and the parameter rangelis< r;, < 7.
If we accept that this is the end state of the Eguchi-HansdheoiTaub-bolt collapse
then we are free to evaluate the squashing fundtief at the horizon, provided it too

has settled to a single value before the program’s end.

The asymptotic structure of the black-hole is interestmthat it is not asymptotically
flat, rather it is asymptotically locally flat and takes thenfid72]
2
ds? = —dT?+dR?+ R2dQg + %X? (3.49)
So, locally this looks likeéR(:3) x S, where the circle has radius,/2. we can find

the parameters, andr., by evaluating the area of the horizon, and the squashing
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parameter on the horizok () = k),

Ty o~ (area/k‘i)% (3.50)

| ks
= 51
Too Ty - (3.51)

This result gives us a rather novel method for dynamical @wtification. Suppose

that instead of starting with a compact manifold, where diporof Eguchi-Hanson
space has been glued in, we start with the full Eguchi-Harsgate with its four
"large” spatial dimensions. Then our results show that ¢vislves to a space where
one of the spatial dimensions compactifies to a circle, gitimee "large” dimensions

and one "small”.

3.7.1 Uniqueness of the squashed 5d black hole

Since the black hole is known to be squashed and five dimeaiswith spherical
symmetry the possibilities for the final black hole are veargited and we believe
that there is only one static black hole solution which thewation can be tending
towards. As described in appendix D it seems that the blatkihd3.46) is the only
possible black hole which could be coming out of our simolatiKnowing the form of
the black hole analytically means that we have some hopeetfigevhat will happen

if that hole evaporates.

3.7.2 Evaporation of the black hole

As described in section 2.3.4, the resultant black hole Ishbegin to quantum me-
chanically radiate until it eventually evaporates leavomdy a relic. The consequence
of an evaporating black hole of the form (3.46) has been studreviously and it has
been seen that the relic left behind can be a Taub-nut irstfg®, 73, 60]. Since our
initial instanton can classically collapse to a black hdléhe form (3.46) and this
black hole can later quantum mechanically evaporate lgavihaub-nut instanton by
combining these two effects there has been a transitioneotdpology. This is not

the flop transition discussed earlier (which is still rulad by the black hole forma-
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tion) but requires that a black hole be formed mid-procesddabar evaporate, which

classical GR does not allow but could be permitted quantuchi@cally.

3.8 Five dimensional summary

Five dimensions offers possibilities above and beyonddlemceivable in four di-
mensions. We have investigated the possibilities of tteoms within five dimensions,
notably the flop transitions in which the two-cycle at thedifa bolt singularity is col-
lapsed to zero and then re-expanded and in doing so thenaissition of the topology.
These flop transitions depend on the possibility that théeoyan be successfully re-
duced to zero size. The moduli space approximation (whicblwes predicting the
behaviour based only on low energy changes to the moduldigisethat such a col-
lapse may be possible however this prediction disregarel$passibility of creating
black holes. Numerical simulation has shown that the avaaif black holes is a sig-
nificant risk to any flop transition, and even if no horizonlisated the moduli space
approximation does not hold for later times. In fact evergfoange of initial momen-
tum with differing profile, strength and range, and even ¥av tlifferent possible bolt
singularities, there was no creation of conical singuksitvithout creating black hole
horizons around them, this impedes the initiation of flopsraons. We now go on to

ask if these findings are still true for more severe trans#io higher dimensions.
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Chapter 4

Seven dimensional evolution

Though our ambition was to perform simulations in the tenafisions of superstring
theory, we first progress from five dimensions to seven dimess The Calabi-Yau

manifolds which are used as an internal manifold for comfieation in string theory

are all six dimensional (seven dimensional when we evolvgia) and so these simu-
lations will have applicability to compactification and tpblogy changing transitions.
In seven dimensions there have already been studies[745546, 77, 52] into more
drastic transitions than the previous flop transition,ezhtionifold transitions they rely

on the more elaborate instantons possible in higher diroeasi

4.1 Singular conifold instanton

One example of a singular manifold is the singular conifofd] a Calabi-Yau three-
fold, it takes the form of a cone with a five-dimensional bdsehe region close to the

singular point can be described by a quadrati€in

=4

D (W) =0 (4.1)

A=1
wherew” are four complex coordinates. The conifold can have a Riatirfletric
given by[74, 78]

ds® = dr® + r*ds3, .. 4.2)

Such a base is labelléf™!) and has the topology a§°xS?[74], it can be written
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in terms of twoSU(2) groups. Using the two distinct sets of the conventionat left
invariant one-forms of5U (2) which obey the equations of (B.20), we can write the

base of the conifold in a form known as the Sasaki-Einsteitrime

1 1
dsiaay = E(U% +o3+ 351+ 353) + 5(03 + 23)% (4.3)

The reason to investigate the singular conifold is that thguar point at its tip can be
made smooth in two distinct ways, due to t#i&.S? topology (as opposed to a trivial
S5 topology), we can expand the two-cycle at the origin, givimg resolved conifold,

or expand the three-cycle to produce a deformed conifold.

4.2 Resolved conifold instanton

The resolved conifold is the alteration to the singular tmidiachieved by expanding
the singular point into as?[79, 74]. It is further defined by a parameter determining
the radius of the5?, we call this parameter. In the limit that this radius drops to zero,
we recover the singular conifold. Using the one-forms oR(®.to representU(2)

the resolved conifold can be expressed as follows.

r? + 6a? 1
ds?,, = + 100 dr? + ETQ(Jf + 032)
Lo 5 e o T2 (1?4902 N
-+ 6(60& +r )(21+22)+§ m (0'3"—23) . (44)

At the origin this metric does not degenerate to a pointgimdtwe find art? which

can be seen by setting r=0,
ds?|,—0 = a*(2] + X3). (4.5)

This is a two-sphere of aredra? (crossed with a 1+1 Minkowski geometry) which
has replaced the origin of the singular conifold, and in daso has smoothed the
manifold. Clearly the resolved conifold approaches thguliar conifold in either the

highr or low « limits.
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4.3 Deformed conifold instanton

There also exists the deformed conifold solution, whictsws®ther method to rectify
the singularity of the singular conifold [74, 80, 78, 81]. involves expanding the
singularity to the form of arb®. This is also described by a parameter, one which
defines the radius of the*, callede. This is defined by

=4

Z(u/‘)z = (4.6)

A=1

Using two sets of left-invariant one-forms which satisfy4B), and defining< by

Wl

- (sinhl(Qr) —2r)" | 4.7)
23 sinh(r)

we can write a Ricci flat metric upon the deformed conifold as,

2 _
per = 2 |3K3 3K3

+% sinh? (g) ((01 — 21)2 + (o9 + Z2)2)

+ Lot (5) (o1 430+ (02 - 327)

4
3 K 1 1
€3 [ 0+ L (o + 55)? (4.8)

At the origin, this metric is also smooth as it does not degareto a point but to
an S3 [74, 82], this three-sphere has replaced the origin and moved the conical

singularity.

In the limit of high» values we can see that this tends to the same form as theaingul

conifold by noting that for large

9\ 3
K — (_) , (4.9)
67”
and so for large,
4 N 2
3
Ao — S (S) ar? (4.10)
6 \ 2
3 a oot (1, 2 2 2 1 2
+ 16-5(26 ) 6(01+Zl+02+22)+§(03+23) :

This can be written, in terms of a new radial coordingtas

P = Zeg (QGQT)%, (4.11)

1 1
ds’,—ee = dp®+p° (6 (07 + 21+ 05 +33) + 5o+ 23)2) . (412



Seven dimensional evolution 72

This clearly shows that the asymptotic forms of both the @liagconifold and the

deformed conifold are the same, they only differ sufficigistbse to the origin.

We can alternatively write the deformed conifold in terms$hef more convenient one-
forms, theg’ forms described in section B.3.
4
9 . e3 K 1 9 1 5\ 2 . 2 (T 1\2 2\ 2
dsDef = T %dr + % (g ) + sinh (§> ((g ) + (g ) ) (413)

+ cosh? (g) ((93)2 + (94)2)} .

4.4 Conifold transitions

The fact that there are two distinct ways of smoothing thgudisr point at the tip of
the singular conifold means that another type of topologgnging transition can be
conceived. Called a conifold transition, it involves cpling the three-cycle at the tip
of a deformed conifold and then re-expanding the tip in thenfof the two-cycle ex-
hibited by a resolved conifold[74, 53]. This process resmtchanging the three-cycle
into a two-cycle, which is a more drastic process than wasritel in section 3.2
because it results in changing Hodge numbers and it chahgepéctrum of massless
moduli fields which could be observed. This process will edoua seven dimen-
sional setting which means it has direct applications tadpelogy changes between
Calabi-Yau manifolds with distinct topologies. The toppfachange can occur in the
opposite direction also, where a two-sphere is reducedne tintil it collapses all the
way to zero then the tip is re-expanded as a three-sphergirMaives the creation of
a singular manifold within the process. Though it would selat that these singular-
ities would destroy the low energy theory also, it is a featirstring theory that these
potentially singular situations can actually be interpdein a consistent and definitive
manner[74, 54, 75, 76, 77, 52] or at least the associatedemeitics can be described.
The physics which the singular transitions imply is lesd wetlerstood and its full im-
plications will be of great importance to string theory.Héte transitions are possible
they could allow us to unify the string landscape and formegaipredictions of string
models. These transitions rely on the ability to collapsedycle all the way to zero
and continuously re-inflate it as a cycle of a different disien. Possible problems

may hamper this process, and they have been investigatadviops work concen-
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trating on the low energy dynamics in the reduced dimensibeary. The possibility
of creating black holes in the higher dimensional theoryfisrooverlooked and it is
this risk which we attempt to investigate numerically. TWil involve simulating the
addition of momentum to the smooth instantons to see if thgusar spacetime can be

created without an apparent horizon to accompany it.

4.5 Dynamical evolution of the resolved conifold

4.5.1 Moduli space approximation

In order to estimate the low energy dynamics of the resolwetfald we can allow
the modulusy to vary in time to a small extent [28]. This involves introdug a new,
time dependent modulus, which we calte@) wherea(0) = «. This is comparable to
allowing the size of the two-cycle to change in time, whil@foing ther dependence
to remain that of the resolved conifold. Having made thisuagstion we can find
the dynamics by using the Einstein-Hilbert action and thwature resolved conifold
metric, including this new dependence, we get an effectviem
d 2

Serf = /dt (ﬁ\/&> . (4.14)
This gives the approximation thm is linear in time, implying that if we set
a(t) on a course towards hitting zero, then the moduli approxonatays that it will
reach zero in finite time. As = 0 corresponds to the singular geometry then we
see no obstruction to the geometry becoming singular witiigapproximation. By
extending this approximation to include the full gravitetal dynamics we hope to

achieve a better understanding of this process.

4.5.2 Numerical evolution of the resolved conifold

Having described the resolved conifold instanton and magdeediction for the dy-
namics its moduli may undergo, we must go on to test that ptiedi and find the
full effects gravity will have upon the dynamics of the systeln contrast to the low

energy approximation, we now give the metric total time dej@mce and allow it to
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vary freely in time[83, 65], following only the Einstein egfions and constraints of

symmetry.

4.5.3 Time dependent metric

To perform the simulations we need a suitable form for therimethich is general
enough to give a consistent time evolution of the equatidnsation, but with enough
symmetry to ensure that numerical simulation is possibte.b6th the deformed and
resolved conifold simulations we evolve a metric with founétions, each of which
has an associated momentum. In order to improve numeradalist, and to simplify
the application of boundary conditions, we follow the methaf section 3.4.3 and
choose functions which extract out various factors suchttfefunctions we evolve
are initially finite and asymptote to constant values, meeethey are symmetric under

T — —T.

ds® = —dt* + A% (t,r)dr* + r*B(t,r)(o} + 03)
+ (6ag? +r)C2(t,r)(ST+53)  (4.15)

+ T2D2(t, r)(os + 23)2.

At r = 0 we need to impose some boundary conditions, these followdpyiring local
flatness at the origin [66] and by maintainidg B, C' and D as even functions at the

origin.

A%ty = Bt) =), (4.16)
Alt,r)y ~ A(t)+O(r?),
B(t,r) ~ Bt)+0(r?), (4.17)
C(t,r) ~ C'O(t)+(9(7’2),
D(t,r) ~ D°t)+ O(r?).
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4.5.4 The Einstein equations

Given that we are using the Einstein-Hilbert action, withemy modification to gravity
and with no fluxes or other additions to the action, and alsonigadecided upon a
metric, we can go on to find the resulting Einstein equatiohgkvwill give both our

equations of motion and constraints for the coming evolytsee appendix E.1.

4.5.5 Initial conditions

By comparing (4.15) and (4.4), we can read off the initialaitions for the resolved

conifold,

r2 + 60y 2
AT = 25 00,7
1
B(0,r) = NG (4.18)
1
C(O,T) = %,
1 /124 9ap?
DO = 5\ 7 Ga

This is a static metric, so if no initial momentum is addedntim® evolution occurs
(this was used to test stability of our code). To see any dycelraffects we must add

additional momentum.

455.1 Initial momentum

We added momentum and in doing so initiated the dynamicalgasy making sure
that the momentum and Hamiltonian constraints were satisber specific algorithm
was to add momentum to C (which describes the size of the plerg) according to
the form given below (4.19). This depends upon two parareefieing the strength of
the momentum®) and the range the momentum extended away from the origjn (

The momentum foB was taken as (4.20), in order to aid the stability of the tgs t
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actually has the tendency to maintain an unsquashed thregesclose to the origin.
4 N2
C(0,r) = —P (Ti) o (%) (4.19)
0
B(0,r) _ D(0,7)
B(0,r)  D(0,r)’

(4.20)

The form of the momentum is required to fall off sufficientast asymptotically so that
we are not adding an infinite amount of energy, the exponatdcay in (4.19) achieves
that and means we could have a final state of a finite mass blalek The other
two initial conditions for theC' and D momenta were determined by the momentum

constraint and the Hamiltonian constraint.

45.6 Results

We monitored the evolving system for the formation of an appghorizon as de-

scribed in section 2.2.2. For radial null geodesics we matewr

d Area
0= { dt :|null 7 #.21)
0 Area 0 Area dr
B [ at :| r * |: 07“ :| t |:E:| null ’ (422)

at the apparent horizon. We also measure the area of theesypp@rizon at each time
slice and so discover its evolution. For our simulations wd that its area increased
monotonically but, as shown in Fig. 4.1, asymptotes to atemsalue. This constant
value we took to be a good approximation to the area of thdtinegwevent horizon.
The exact value it asymptotes to will depend upon the ex@dlimomentum we put
in.

In addition to the area of the horizon another property ofréselltant black hole is the
squashing of the angular part of the metric. This exists leethe function®, C' and
D within (4.15) are not determined solely by the area at thezbar their various ratios
are referred to as the squashings of the metric at the horidos parameters defining
the extent of the squashing also change in time but, like thhiedn area, converge as
time goes on, as shown in Fig. 4.2 for a particular examplee félst that both the
apparent horizon area, and the squashing at the horizorsgnepéoting to constant

values is evidence that the final state is settling on a dtédk hole.
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Figure 4.1: The area of the apparent horizon of the collapsing resoleadald, changing in time,
for the parameter® = 0.5 andry = 3.
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Figure 4.2: The squashing values of (what was initially) the resolvetifodd, seen to be converg-
ing in time. Note the slow change to the squashing (d/b) duleganitial condition (4.20)
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4.5.6.1 Results for a range of initial conditions

We varied the parametei® andr, and assessed the resulting size of any resultant
black hole, the results are presented in Fig. 4.3. For srahlkeg ofP andr, we were

not able to reliably extract a value for the final area of thpaapnt horizon and so
this portion of the plot has been left blank. This was due &l#éinge timescale needed
to produce such black holes, and was beyond the dynamic @ngé simulations.
What we see from the data is that for all the cases which cautdlably tested we did
observe the formation of a black hole. This is in contradcgton to the results of the
Eguchi-Hanson system examined in section 3.4.2 as theraavessult for which the
modulus bounced, in fact there were no simulations whicmdtdesult in the creation

of a horizon (though sometimes the area could not be megsured

While Fig. 4.3 shows only the final area of the resultant blzale, it is also interesting

to view the time evolution which leads to this value asymiptily. If we change the
strength while keeping the range at some fixed value we can families of results
as shown in Fig. 4.4. Note that increasing the strength satlseapparent horizon
to form at an earlier time and to have a higher area at all timesidition to having

a higher final area (which we have already seen in Fig. 4.3Je Nt for very high
strengths P > 0.55), the program has to be terminated at an earlier time siree th
size of the two-cycle at the origin has dropped to zero eafbetunately the area has

already converged by this point.

Similar graphs can be plotted for which the strength is fixettbe range is varied,
as in Fig. 4.5. These have to be plotted as a log scale due fwrdfeund change the
variation ofry has on the final area. Note that for lower strength and rangeatie of
convergence is lower and so for the lowest strengths thedneal of the simulation is
not a good estimate for the event horizon area (hence thésts jaoe not included in
Fig. 4.3).

4.5.6.2 Moduli space comparison

In section 4.5.1 we presented a prediction for the behawabw(t) based on the moduli

space approximation, given that the static resolved ctzhifoa solution for any fixed
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a; this led us to conclude thafa(t) should evolve linearly in time. We would like
to check this result against the full numerical solutioret the have obtained, but this
involves some ambiguity in defining what we meandgnce the metric has evolved
away from the precise form of the resolved conifold. Thabisay, once the profile
functions have evolved away from the functional form given($.18), how do we
extract a value for? In practise we chose to defingt) using the value of’(¢, r) at

the origin,C(¢,0) to extract a value fok/«(t) by comparing expressions (4.15) and
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(4.4),
Va(t) = V6a,C(t,0). (4.23)

As shown in Fig. 4.6 the time evolution gf« is indeed linear in the initial stages,

however this prediction only holds for early times.

45.7 Conclusions

From these numerical simulations of the evolution of thelkesd conifold, it seems
that a conical singularity cannot be formed. Instead of fogra spacetime with a
conical singularity (from which we could perform a conifdicnsition) we get an
apparent horizon, indication of a true event horizon ana¢éenblack hole spacetime.
The formation of this black hole spacetime seems unavoéida@n though we tried a
range of initial momentum, extending even to very small motue. While changing

the initial momentum cannot avoid creating a black hole,ilk @ause changes to the
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Figure 4.6: The evolution of the the moduli of the resolved conifold atyvearly times. The
approximation predicts this shall be linear.

process of creation and the evolution of the apparent horiZer some profiles of
initial momentum it is possible to extract reliable informoa about the nature of the

resultant black hole (most notable is the final area of thekatmle).

4.6 Dynamical evolution of the deformed conifold

We performed a second numerical simulation, this time wingj the collapse of a
three-sphere at the origin, the deformed conifold instahes such a three-sphere and

SO0 we go on to simulate the changes to this instanton as we adwnum[83, 65].

4.6.1 Time dependent metric

We wanted a simulation capable of going on for a long timegast long enough to
see the creation of the apparent horizon or the collapseea$there. To this end we
choose a metric for which we have explicitly extracted thabpgmatic terms, leaving

us with smooth, finite functions to evolve, as well as allogvirs to make the profiles
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symmetric under — —r. We therefore take the simulation metric to be
AN 2
ds* = —dt* + (A(t r) cosh <§>> dr?
+ ( (t,r) smh< ) (gl + 92 2) (4.24)
+ 9

]
+ (cunwn(3)) (6 + ()
)

2
+ ( trcosh() 03—1—23

so that,A, B, C'and D are all even at the origin and also they asymptote to constant
values. This allows for more accurate application of boupdanditions arising due
to maintaining even variables at the origin (implying (4)2&nd from requiring local

flatness at the origin as described in [66] (leading to (4.26)

Alt,r)y ~ A(t)+O(r?),
B(t,r) ~ Bt)+0(r?), (4.25)
C(t,r) ~ C°%)+O(r?),
D(t,r) ~ D°t)+ O(r?),
A°(t) = B%t), C°(t)= D) (4.26)

These conditions are imposed at the boundary.

4.6.2 The Einstein equations

The Einstein-Hilbert action gives us the equations we ustdve and constrain the

simulation, these are given in appendix E.2.
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4.6.3 Initial conditions

By comparing (4.24) and (4.8), we can read off the initialditions to be

A(0,7)* =

652 cosh® ()
o (r
BoP = et @.27)
oo - Jaxif)
D(0,7)* = &

As these are derived from the static deformed conifold theiie@l conditions will
yield a static metric, as was indeed found in our simulatlonway of a check for the

code.

4.6.3.1 Initial momentum

We added momentum of the following form

co,r) _ ZD)(O,T) _ p (1)46—(%)27 (4.28)

To

to initiate the dynamics, with the momenta for thand B functions being determined
by the constraint equations (E.9). By choosing thend D momenta so related we
are making the choice of maintaining the form of the threleese, at least initially.
As in the resolved conifold initial conditions we note thia¢ inomentum decays away
sufficiently fast that the energy input is finite, allowing fbe possibility of forming a

finite mass black hole.

4.6.4 Results

We used the same methods as described in section 2.2.2 th $eathe appearance
of an apparent horizon, thus indicating the presence ofiadmrThe results are qual-
itatively similar to the collapse of the resolved conifoldth an apparent horizon ap-
pearing in all the cases we examined, these apparent herwxaha time development

which involved the area growing initially but then asympigtto a constant value and
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so we are able to establish a final value for their area in masts; which we take to

be a good approximation to the area of the black hole horizon.

4.6.4.1 Results for a range of initial conditions

The final area of the black hole depends upon the initial maomerwe have added,
which we characterised by a magnitufeand a spatial extent, in (4.28); varying
these produced the range of final areas displayed in Fig. Fbi7 small values of?
or ro the area of the apparent horizon did not converge suffigieapidly to acquire
an accurate value for the horizon area, so we have left sgobn®blank in Fig. 4.7

however, for all cases an apparent horizon was observedrto fo

In addition to plotting the final area we can also show the eggehorizon’s appear-
ance and growth in time, as seen in Fig. 4.8 and in Fig. 4.9sdfigures also show
that for initial momentum which are too small, the area ofdpearent horizon is not
sufficiently converged to read off a final area and so cannadoerately plotted in
Fig. 4.7, examples includg = 0.9 P = 2.6 andry = 1.2 P = 2.2. Despite the lack
of a measured area, these initial conditions clearly reswdh apparent horizon (and

hence an event horizon) and so cannot be used for any cotriéolsition.

4.6.5 Conclusions

From these numerical simulations of the evolution of thedekd conifold, we again
cannot form the conical singularity necessary for any toggkransition to take place.
We inevitably get an apparent horizon, an event horizon amdd a black hole space-
time. Again a range of possible initial momenta were testativae still got a black
hole solution (though other details such as the area andtaewere dependent upon

this initial condition).

4.7 The Seven dimensional black hole solution

For both the case of a collapsing resolved conifold and apsihg deformed conifold

we have seen that an apparent horizon always forms, for @icelf initial momen-
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tum, and this therefore implies the presence of an eventtioriWWe have also seen
that quantities such as the area of the apparent horizortharsdjuashing modes of the
angular part settle down to a constant value by the end oftin@ation. This suggests

that the final state of such collapses is a static black halesarwe hope to suggest a

possible candidate for the resultant black hole.

We suggest a metric of the form

ds? = —f(r)dt* + %d + b(r)X(o? + o)
+ o(r)?(224+ %) (4.29)

+ d(r)*(o3 + 33)?,

as a candidate for the final state. So starting from this angatfound the equations
for the profile functions by requiring Ricci flatness, thesegiven in the appendix E.3
Unfortunately we were unable to derive an analytic solutmthese equations, but we
have been able to solve them numerically, showing that Blensolutions exist, one
such solution with an event horizonsat= 1 is presented in Fig. 4.10. At the location
of the event horizon we have thAtvanishes, withif /dr finite and non-zero, showing
thatitis simply a coordinate singularity. At the horizon se= that the profile functions
b, c andd are all different, indicating that the horizon has a squdstmgular geometry.
We also see that the profile functiaof),associated to th€ (1) directiono; + >3 tends
to a constant, rather than increasing linearly asdc do. This shows that the spatial
section of the black hole is not asymptotically a conifoltiisToehaviour was also seen
in the case of collapsing cycles in section 3.4.6 where taekdhole formed in section

3.7 picks out &/ (1) direction to acquire a constant radius asymptotically.

These are candidates for the black holes formed by the salafthe resolved conifold
or, with appropriate coordinate transformations, the aeéa conifold. We should of
course be careful about the asymptotic structure of theisalwhich should not be
altered by the collapse process near the origin. The dianmpbetween the initial
condition being asymptotically conifold and the black hakymptotics is explained
because the collapse takes an infinite amount of time to betoenblack hole, with a
wave propagating outward from the collapse such that tleeiortis given by the black

hole, and the exterior by the conifold.
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Figure 4.10: The defining functions of the static black hole, with horizmmditionsr = 1, f/ =
4,f=0,b=$V3andd = 2.

4.8 Seven dimensional summary

In order to study the processes leading to the collapse ofoasphere or a three-
sphere, we have performed numerical simulations of twewbfit, but related, cases
of collapse. The resolved conifold, which involves a cddiag two-sphere, and the
deformed conifold, which involves a collapsing three-sph&hese spaces are formed
by two different methods of smoothing out a singular comifand it is using this
singular conifold geometry that allows string theory tanjthe moduli spaces of these

two regular, distinct geometries[54].

We have found that horizons are formed by the collapse oksyidl either of the two

regular conifold solutions. These horizons take the forrwai-sphere crossed with a
squashed three-sphere. Such a horizon was formed in alaties eve studied, which
is different to the situation found in five dimensional siations where a study of
the collapsing cycle in an Eguchi-Hanson geometry reveedsgs where the cycle
stopped collapsing, with no horizon being generated in@e&.4.6. However, there
is a very large possible range of initial conditions, and ubé&juitous formation of a

horizon may be an artifact of our choice.
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Having established that horizons can form we have also f@updssible candidate
for the resulting black hole, by numerical means. This isagisblack hole which
also has a horizon comprising of a two-sphere crossed witjuashed three-sphere.
An intriguing feature of this black hole, and one that it gsawith the black hole of

section 3.7, is that the asymptotic geometry contains atanhsadius circle.

In cases where the horizon size is greater than the scale stitings the field theory
should be a valid approximation, but this may not be the cBlsis. presents us with the
natural extension of this work, as we have not yet introdugdstringy effects(that
may resolve the singularity) such as those of section A @&spite the importance of
these effects if horizons form at string scales, we shall géoantroduce the super-

gravity effects as we increase the dimensions to ten.



Chapter 5

Ten dimensional evolution

The procession from seven dimensions to ten brings many aymukcations to the
results we produce. Ten dimensions are well used withingtheories as superstring
theories actually require there to be ten dimensions. Qlggthat we see three ex-
tended dimensions in our space and one timelike dimengismften thought that the
remaining six are compactified into a closed manifold. Wthkeprevious simulations
may have applications for this internal manifold, the cogmesults will better encom-

pass the effects we may see within the supergravity appatiomto string theory.

We shall introduce the fluxes which arise by supergravity amdpredicted by string
theory. While these can be consistently turned off and sdtrigsa purely gravitational
situation, we do not believe this to be the a good choice dubkdstrengths of flux
compactification. Introducing these fluxes is necessargitwant results applicable to

flux compactified internal manifolds.

The ten dimensional simulation also introduces the thréenebed spacelike dimen-
sions. Even if we insist that the 4 extended dimensions hawemal symmetry (mak-
ing them conformally Minkowski, de Sitter or anti-de Sijtdre conformal scale factor
shall still be dependent uponandt. Changes to the scale factor in time and in space
will result in changes to the dynamics of the internal mddifdue to the effects of
Hubble damping whereby growth of the scale factor dampsggnehich would oth-
erwise remain in the internal manifold. The reduction in éimergy density can slow

the changes to the internal manifold or prevent the energgitiefrom forming black
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holes.

All these effects are possible but a true simulation willwghbthey are realised in
an actual case. This requires a starting initial manifold argood choice of initial

momentum.

There exists a solution which represents a supersymmedforrded conifold that is
held in place by the presence of fluxes [80], and has found rapplications in the
realm of flux compactification [84] and brane inflation [850ch calculations rely on
this static Klebanov-Strassler geometry, without takinip iaccount its own dynam-
ics. If the dynamics of the Klebanov-Strassler geometrypheesignificant then these

calculations would need to be re-visited.

5.1 The Klebanov-Strassler static solution

A static warped throat solution exists which was found byld@leov and Strassler [80].
This in turn made use of the deformed conifold which we désctin section 4.3. This
static six dimensional manifold can act as a good approximab a region of the six
compact dimensions used in a flux compactification. The neimgiextended dimen-
sions could be formed by a product of the deformed conifolith\&i 3+1 Minkowski

metricds, 3.
dS%O = d81,3 + ds%ef' (51)

However this approach is only the simplest case, the Kleb&tmssler solution also
includes D-branes along with the fluxes of type IIB superiyasnd the resulting

energy momentum tensor produces a warped metric and a widmoed.

5.1.1 D-brane sourced fluxes

If we introduceN D3-branes and further supplement this withD5-branes wrapped
around the two-sphere of a deformed conifold (these haveiquely been coined
"fractional D3-branes”) then it corresponds to taking aabalYau manifold with de-

formed conifold singularity and introducing a large fluxdabgh the three-sphere[86,
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87]. The effect of combinings . s with (fractional) D-branes is to source fluxes which
contribute to the Energy-Momentum tensor of the Einsteuraéiqn. The fluxes of the
static case are described in terms of the metric coordirmtdshe one formg® as

described in section B.3.

5.1.1.1 Dilaton

The dilaton in this static solution is a constant, which igegi by the string coupling

of the IIB string theory,

e? = g, = constant. (5.2)

5.1.1.2 Neveu-Schwarz flux

The NS two-form field takes the form

B=DB,(r)g"' Ng* + Bs(r) > A g* (5.3)
where
h(r) —
Bu(r) = g %(cosb(r) _1) (5.4)
Bs(r) = QSM%(COSh(T) +1) (5.5)

)
This leads to the three-form field strengdthby (2.23).

5.1.1.3 Ramond-Ramond fluxes

The Klebanov-Strassler solution has @p term and so has no one-form Ramond-

Ramond flux which means there is no axion

There is a potential which sources the Ramond-Ramond toreeflux,

sinh(r) —r 5 5 4
=M — 5.7
Cy 2smn() 9 NI TN (5.7)
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this potential contributes to a three-form flux via (2.21h addition there is also a
contribution to this three-form flux coming from the chargairces which we have
placed at the origin, this comes from the stackl@fD3-branes and contributes an

additional (closed) term to the flux in the direction of theveh up spherg® A ¢ A g*,
giving

Fs=Mg°Ag>Ag*+dC,. (5.8)

The final Ramond-Ramond flux is the five-form, self daal Its self duality condition
along with the equation of motion and our choicesfgfand H lead to the solution
that,

5.1.2 Warp factor

The fluxes cause a warping of the metric, changing it from aiRet metric to a metric
with curvature, this is appropriate since the fluxes contgtio the energy momentum
tensor. The new fluxes require a change to the metric (5.1jnmgpdahe Minkowski
scale factor depend upon the radius of the deformed corgfmtponent and so we get
conformal symmetry breaking (for non-zekd). Thisr dependence is introduced by

means of a functiom(r).

ds3y = h™2(r) (dsy) + h2 (r) (ds,;) (5.10)

The introduction of thig(r) changes the scales and removes the conformal invariance.

The nature ofi(r) in the static case is given by a differential equation.

dh(r) 23 r coth(r) —1 .
= o2 TR T2 (sinh(2r) — 2
o « 1 sinhz(r) (sinh(2r) T)

wl=

3 (5.11)

To totally defineh(r) we also need a boundary condition (to complement the 1st orde
differential equation), Klebanov and Strassler imposedisg&iction that,» must vanish
at highr, this fully definesh(r) which is plotted in Fig. 5.1.

lim A(r) =0. (5.12)

r—00
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Figure 5.1: The warp factor vanishes at high r

The vanishing warp factor means that the radius of the thpbere (which grew like
7 in dsp. ;) now grows only very slowly, in fact the radius only growsdik'/* leading

to the expression "throat”, Fig. 5.2.

5.1.3 Superpotential and stabilised moduli

The introduction of the flux leads to a potential which can dentd from the Hamil-

tonian constraint, as is described in [21] and used in [88]s Ppotential is then used
to find a prediction to the evolution of the moduli field. Tadia slice through this
moduli space along which only the volume of the three-splsgpermitted to change,
we find the potential as a function of this volume[89]. Thisthwoel results in a poten-
tial of the form plotted in Fig. 5.3. The potential diverge=y quickly as the volume
gets small, it permits a minima at a position determined leydtiner moduli and pa-
rameters (such as M), and tends to grow (albeit quite sloagythe volume gets very

large. The minima represents the static warped deformeatisolution of Klebanov
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Figure 5.2: The radius of the three-sphere growing only very slowly ghtri

200 —
150 —
100 —
\Y

50
0_

| | | |

0 1 2 3 4

Volume

Figure 5.3: The potential as a function of the volume of the three-spmeRtanck units
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and Strassler. The scale of the compactified dimensionswsseb by the fluxes, the
size of the three-sphere at the origiof (4.6)) is stabilised according to the minima
of the potential and is no longer a free modulus, in the statse it must conform to

2 , 3/8
€ = (M) ) (5.13)

(&%

This potential shows that other values of epsilon are ndicsémd it gives a good
estimation as to how unfavourable other values of the madeli We will later use
our knowledge of the behaviour of the moduli to estimate Hmwiolume of the three-
sphere (a physical property of the throat which is initiaéiated to the value af) will

evolve.

5.2 Uses of the Klebanov-Strassler solution

The Klebanov-Strassler solution is not compact and so bisrcandidate for a global
flux compactification, however it is thought that the wargedat possessed by the so-
lution may be a good approximation to some other warped thvbech makes up part
of a compact manifold which could be used for compactificatldsing the Klabanov-
Strassler solution has allowed people to find the effectsawiriy a warped throat as
part of the internal compact manifold. Internal manifoldgwthroats can lead to use-

ful consequences for the four extended dimensions.

Warped throats have been used in a wide range of inflation Imsdeh as warm in-
flation, DBI inflation, spinflation, hybrid inflation and brannflation where further
branes and anti-branes are included in the compactificagipnoduce slow roll infla-
tion scenarios[90, 91, 92, 93].

It has been suggested that the warped throat in the extrandiores could be preventing
us from seeing dark matter[94]. Matter which is trapped mghavitational potential

of the throat will be hidden from us if the standard model talied elsewhere. Itis also
suggested that this hidden dark matter could later be aetdxnt its decay (probably

via other intermediate particles) into standard modeligas.

There have been attempts to recreate the standard modkséakcat the tip of the

throat. Some[95] attempt this by finding a D-brane configaratreating the local
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properties of the model (e.g. massless matter, gauge groaping of coupling) and
then combining this with a compactification manifold to detme global features.
Localising the model to the tip of the throat can naturallyate a hierarchy due to the
strong warping near the tip, this could go to explain thesdé@hce between the Planck
scale and the electroweak scale[96] which would go to furtxplain the features
and scales within the standard model. In the throat there IRa&cale below the UV

compactification scale which helps justify the hierarch§[9

5.3 Dynamical evolution of the Klebanov-Strassler so-

lution

The Klebanov-Strassler solution is a static solution ansh&mld not change in time (it
has a timelike killing vector which we take to be the time) wéwer it is possible that
the Klebanov-Strassler solution matches a single timeslfcan evolving spacetime
which will go on to change at later times. If this timeslicgaken as the initial condi-
tion we arise at a situation where a Klebanov-Strassletisolgchanges in time due to
an initial momentum which causes it to evolve. The futurd@won of the timeslice is

a Cauchy problem and can be found using the Einstein fieldtiemqsa This evolution

also prompts the fluxes to change so these too must be allonddihge according to

the equations of motion.

5.3.1 Moduli and perturbative approximations to the dynamics

Some approximations to the dynamical changes the Kleb&t@ssler solution will
undergo can be made by looking only at the changes to one ohtigeili at a time.
These dynamics will likely only be true for short periods iohé¢ (as was the case in
section 3.4.6.1) but they can give a good approximation ¢éodynamics of a single
feature. The feature we choose to follow is the volume of lined-sphere at the tip of
the solution. Our approximation relies heavily upon theeptil we found in section
5.1.3, not only does this give the value of the moduh the static case, it also shows

that the moduli is stable. This implies the volume is alsoadblst property. Since we
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do not have an analytic expression for the potential theigtieds we make will also

not be analytic (unlike section 3.4.1) however they stidegus the behaviour.

The steep potential of smaller than the static case leads to the prediction that the
volume will be especially stable against effects which wiay to reduce the volume.
The potential raises to a high value as we approach a vagistsia it should be very
difficult to produce a very small volume. Also the moduli isstable at these small

values so it is unlikely that the volume will remain at resdri

If the size of the three-cycle begins to rise then the sammslare true, the potential
raises ag goes up and so the growth of the volume is not predicted tarnomfor ever
but should tend to slow down, we would also predict that it lddand to fall back to

its stable value however the shallower potential givestaseweaker restoring force.

These predictions rely on a potential formed by the assumpliat only one modulus
changes. This shall not be the case however as any initialentum applied shall
not change only one modulus but will directly or indirectBuse other features of the
spacetime solution to change. These other changes arecooirded for by this type of
approximation and these predictions are incapable ofigébr black hole formation

so further investigation of the dynamics must be performed.

Earlier work[98, 99, 100] has attempted to discover the dyina of warped throats
by using perturbative methods. These permit only very sinilal momentum to

be added to the initial surface and are only applicable ttesdaelow those of later
numerical investigation. If the momentum were added in aeg@rfashion then it
would tend to violate what we call our momentum constrainhgbbeing a solution
to all the Einstein equations. This has sometimes been sgklteby the inclusion of
compensators which act to correct this difficulty. They canviewed as Lagrange

multipliers used to enforce the otherwise violated comstsa

These perturbative methods have gone to show that the tisretdble against suffi-
ciently tiny introductions of momentum[98, 99, 100]. Howethe results can only be
applicable to low order and to low energy scales so a full moakinvestigation of

the dynamics must still be performed.
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5.3.2 Numerical evolution of the Klebanov-Strassler solubn

If we start with the static solution then no change will happs we move to later times,
however with only a small initial perturbation the metricdathe fluxes are observed
to evolve. It is our intention to introduce an initial pettation that changes the size
of the three-sphere at the origin of the deformed conifotiigible outcomes include
the formation of a black hole solution; the collapse of thee¢hsphere to a naked
singularity; or the sphere may change size without collapsil the way to zero. To

observe the effects of an initial deformation we use a moreegg metric and flux

ansatz, a system with the capacity to be time dependenthamdobserve the effects

we can incite with a small initial perturbation[89].
5.3.3 Time dependent spacetime ansatz

5.3.3.1 Spacetime coordinates

We choose a metric that is capable of changing in time andsis alble to evolve

numerically at the origin.

ds?y = T2(t,r) h™2(r) (dsys)

+d2(t,r) h2(r) —e3 K(r) (ﬁ) ((¢>)?), (5.14)

where K (r) is defined in (4.7). The profile® (¢, r),a(t,r),b(t,r),c(t,r) andd(t,r)

define the metric at all times.

We also had to impose boundary conditions at the origin ofsiheulation. These

conditions were to ensure that local flatness remainedeattiates[66].

Cz(ta T)|r:0 = dQ(ta T)|r:07 (515)
b*(t,7)|r=0 = a*(t,7)]r=o- (5.16)

We also required that all these profile functions were alvesagn at the origin.
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T(t,r) ~ T°t)+0O(r?),
a(t,r) ~ a®(t) + O(r?),
b(t,r) ~ b(t)+O(r?), (5.17)
c(t,r) ~ @) +00?),
d(t,r) ~ d°(t) +O(r?),

a(t) = b(t), L) =d(t) (5.18)

At later times the size of the three-sphere at the origin @fobnd fromc°(¢) and
d°(t).

5.3.3.2 Flux ansatz

Of course we must also allow the fluxes to change with timeHeg almost certainly

will when the metric is numerically evolved).

Initially the axion is constant and the equations of motibavg this can continue to be

the case even at later times,

F =0 (5.19)

Also the dilaton is initially constant at all points howetieis is now required to change

at later times,
¢ = o(t,r). (5.20)

The M fractional branes that we have placed at the originmatlchange but will al-
ways give R-R flux through the three-sphere, however thenpiat€’, can now change

in time, but is dependent upon only a single function we €all¢, r),
Co=Colt,r) (" Ng®>+9* Ng"). (5.21)

F3 is still the combination of the flux from the M fractional bemand the potential
Cy asin (5.8).
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The NS-NS three-form flux{, is initially described by two separate functionsrof

labeledB,, () and Bg(r), these are used as a descriptiorBoh (5.3).

We now promote these radial profiles to time dependent fonsti
B = B,(t,r)g" Ng* + Bs(t,r)g* A g (5.22)

giving just these two functions time dependence alldivéo change at later times

according to (2.23).

Even at later times the R-R five-form flux is still determingdthe other fluxes ac-

cording to (5.9).

This means that all the fluxes are defined by the metric and goefile functions,
o(t, 1), Colt,r), Bo(t,r) andBg(t,r). Itis these functions that we will evolve using

the equations of motion.

In addition to the equations of motion, we also imposed bamdonditions on these
functions, we required thas, (¢, ) and Bs(t,r) be odd,¢(t,r) be even and’,(t, )
be even and must vanish at the origin, as can be seen from tla¢i@ts of motion in

appendix F.3.

o(t,r) ~ ¢°t) +O(r?),

Ba(t,r) ~ O(r),

Bs(t,r) ~ O(r), (5.23)
Cot,r) ~ 0+0(r?).

This choice of fluxes is capable of acting as the initial ctods and also evolving

consistently to later times.

5.3.4 Initial conditions

By comparing the static warped deformed conifold metri@ @}, and our time depen-

dent ansatz (5.14), we can read off the initial metric coadg a term at a time.

T%(0,7) = a*(0,7) = b*(0,7) = *(0,7) = d*(0,7) =1 (5.24)
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Flux is added when we giv&/ a non-zero value (we introduce fractional branes), its
strength depends upon our string coupling.,, and the number of braned. The
initial values of the fluxes can be found by comparing the emisesection 5.3.3.2 to

the solution in section 5.1.1.

€¢(07T) = Gstring, (525)
r coth(r) —1
Ba(07 T) - gstringM 9 Sil’l(hg’f’) (COSh(T) - 1)7 (526)
r coth(r) —1
Bs(0,7) = gstringM 5 sin(h()r) (cosh(r) + 1), (5.27)
Co0.r) = pSmh)—r (5.28)
’ 2sinh(r)

This also requires that(r) is still defined as it was in (5.11) and also tends to zero

asymptotically. We found(r) numerically as we input the initial conditions.

These initial conditions give the static solution, so if glé momenta (e.g7) are
zero to begin with then no evolution should occur. If insteastart with non zero
momenta we perturb the metric away from the static case andjcaon to see the

future evolution.

5.3.4.1 Initial momentum

In order to best represent a physical system we make ourrpation localised by
choosing a momentum which will vanish as we go to larg&o we add momentum

going like:
—=—= —Pe", (5.29)

So a positive value oP will cause the size of the three-sphere at the origin toatyti
fall but this may only be temporary, whereas a negatiweill cause the three-sphere

to grow (the symmetry betweerandd maintains the local flatness (5.15)).

Our initial momentum must also conform to the constraintsrughe Hamiltonian and
the momentum imposed by the Einstein equations (in appén#)x This requirement
was used to numerically find the initial valuesiofndb, we started by imposing the

constraint

alp—o >0 bly—o > 0. (5.30)
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The choice ofl” was made to aid the numerical integration:

T
Z — pe.

- (5.31)

We kept the values of the string coupling and the number ofifyaal branes consistent
throughout all plotted simulations/ g;,..,, = 120 andM = 30, we also specified the

warpinga so that the static solution wasat 1.

5.3.5 Results

In order to best summarise the results of our perturbed @oalwe were constantly
watching the size of the three-cycle at the origin of the Sotu If this shrinks it shows
that the origin is becoming closer to that of a conifold, agmhing the formation of
a conical singularity, with the three-sphere vanishinghgehe most extreme case.

Alternatively we can find other outcomes, such as the foiwnatf black holes.

We will attempt to discover if and when black holes have fadrbg looking for ap-
parent horizons on the timeslice. If the area of the appdrerizon converges upon
a constant value then we can take this value to be a good ¢stiméhe area of the

resultant event horizon.

5.3.5.1 Bounce of the cycle

In order to prompt the size of the three-sphere to drop wedhice a momentum of
the form described in section 5.3.4.1 with > 0, this forces a drop in the size of
the sphere but our results show that this is a temporaryteffecis seen in Fig. 5.4,

after quickly reaching some minimum value (which dependshenstrength of the

momentum) the size of the three-sphere then proceeds tq gmaing back to a value
close to its starting value. This is an expected behaviogesthe size of the three-
sphere is no longer a free modulus, in the static case it sragted by the fluxes

passing through the cycle. Since the string coupling anchthmber of branes are
unchanged by the momentum the static value or ground stateclsanged and so the
three-sphere will tend to return to this value. The size efttiree-sphere tends to flow

to the flux-preferred value. This can be seen to be true artkiguiealised even for
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Figure 5.4: The size of the three-sphere begins to fall but reaches amaittien returns to its
starting value

initial momenta hundreds of times the warped deformed ssal@wing the restoring
force to be very strong indeed. This is expected behavioettalthe swift divergence

of the potential at low radius, as shown Fig. 5.3.

In these cases we were constantly checking for the formafiarblack hole however
no apparent horizon is formed and so we believe the soluidree of black hole

formation.

5.3.5.2 How low can it go?

Though the size of the three-sphere can be seen to returs itial value, it first
drops to a minimum value dependent upon the initial momentlirwe continue to
increase the scale of initial momentum we can ask how low wefaece the three-
sphere to drop, could it be that there is some (very high) nmbame which causes the
sphere to drop to zero before it stops falling? We can finddhest value which the

three-sphere falls to for a range of initial momentum. Asvaman Fig. 5.5 the size
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Figure 5.5: The smallest size the three-sphere reaches for a range oéntam

does drop with the initial momentum but it drops at a decrepsate and it would
take a huge momenta to even approach zero (it actually leo#tsoagh the asymptotic
behaviour may not be to zero but to a constant, lowest p@ssphere size). We can

fit this profile well to an exponential function of the form,
ap + Boe 0P, (5.32)

(also plotted in Fig. 5.5) we can see that causing the sploevartish (if it is pos-
sible) would require incredible initial momentum way begldhe capabilities of our

simulation.

5.3.5.3 Growth of the cycle

We also consider cases with similar initial momentum butyale P < 0. These will
tend to cause the size of the sphere at the origin to grow. PAgiai would expect
(from our potential) this growth to be only temporary and tih@ size would fall back
towards the starting value, as the static case is still deterd by the fluxes and it is
this value we would expect the size of the tip to flow to. We dotbés slowing of the
growth as is shown in Fig. 5.6, but slowing down takes so Idrag the restoration of
the size is not seen within the timescale of the simulatibis, ¢tan be attributed to a

shallow restoring potential. We believe that the threeesptwould eventually return
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Figure 5.6: The size of the three-sphere begins to grow but at a dedelgrate

to the starting value (the static case) but this takes a weny fime. This situation was

also free of apparent horizons.

5.3.5.4 Black hole formation

Relaxing the condition (5.30) was also attempted. This niadesituation far more
susceptible to the formation of black hole horizons, detalet by shells obeying the
apparent horizon condition of section 2.2.2. The presehe® apparent horizon can
often occur already in the initial conditions due to a higiti@ momentum giving an

extrinsic curvature, but the late time creation and growtlaro apparent horizon is
also a strong possibility, as shown in the example of Fig. $hese horizons would
be intolerable if we wished to achieve results such as ioflatiopology change or
moduli stabilisation for the purposes of string phenomeggl any interesting effects
would be enclosed behind the horizon. Even very weak inialditions (P| = 1)

already contain apparent horizons before the simulatiamssand weaker conditions
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Figure 5.7: P = 0.7: The size of the horizon area begins to grow but at a deceigredte
still form them within a small time.

This shows that adding even a small initial momentum to gmeite metric functions
(9, and g1, goo in this case) introduces a risk of creating black holes. A motum
which would solely change the size of the three-sphere &ldised by the Hamilto-
nian and momentum constraints, other changes to the iod@ralitions must be applied

and the nature of these will determine the creation of a bihadé.

5.4 Ten dimensional summary

So in summary, we have attempted to change a warped thradiosoto a singular
manifold by adding some initial momentum to a known staticison with a warped
throat, the Klebanov-Strassler solution. The productibeuzh a singular manifold
would be essential for the initiation of a transition whiabutd go on to change the

topology of the internal manifold.

In cases where we insert momentum which tends to increassizbeof the three-
sphere then the growth slows down on a much longer timessad@a would expect
on physical grounds by diluting flux-lines rather than sqiregthem. This leads to a

shallow potential in this direction, and a geometry that rensusceptible to growth
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than collapse of the three-sphere. We believe the growthdxexentually stop and the
size of the three-sphere would tend back to its startingeydlowever this is not seen

in simulation due to the much larger timescales involved.

More applicable were cases which reduced the size of the-$pkere and like the
other simulations in lower dimensions we found no comboratf initial momentum

which could bring about the reduction of the three-cycle fmant while at the same
time preventing the creation of a black hole spacetime. mescases of momenta
which would tend to reduce the volume of the tip we found the glze was stable
against the change and went on to return to its starting valbés is attributed to a

steep restoring potential which accompanies the branetharillixes of the Klebanov-
Strassler solution. This restoration of the cycle preveittiom collapse and impeded
the possibility of the transition. In other cases the mommewuld form an apparent
horizon in the spacetime and so obscure the cycle from andeutdserver, again

preventing a transition.

While these findings suggest that the transition cannot beeaed, they do not rule it
out. Due to the limitless possibilities for initial momentwf both the spacetime and
the fluxes, we cannot test all the possible combinations anglescannot show that
transitions are totally prevented, however these resoltsugigest that transitions will

fail.

The results do numerically verify that the tip of the threagtable against perturbations
and so a warped throat can be used as a background for mamybitesses described
in section 5.2, without fear of it collapsing to zero size ver® changing size much at
all. The results also show that the creation of black holetswis by changing the
throat is a risk and any of the models which use this throatishcheck that the added

effects are of a type and scale which will not result in a blacle.



Chapter 6

Discussion

One of the earlier problems we discussed in string theorythasequirement that it
must be in a ten dimensional spacetime (and M theory would al¥en dimensions).
These extra dimensions have never been seen and need twbetadcfor. One pos-
sible resolution of this problem is compactification whiclkeans that the additional
dimensions have previously gone unnoticed due to theirlssimd. The small size
dimensions would only be made visible by very high energyeexpents beyond the

capabilities of foreseeable accelerators.

Compactification possibilities are confined to an unwarpet i dinkowski metric and
some internal manifold which is Calabi-Yau. These comfiaations retain N=2 su-
persymmetry and they are plagued by the possibilities oedegte moduli which
would be visible as scalars in the low energy theory and weidthte the equiva-
lence principle. Flux compactification offers more freedoirmanifold and additional
strengths. It brings the possibility of moduli stabilisatiwhereby the potentially dif-
ficult scalar fields which arise due to the degeneracy of thepeatification under
continuous deformations are given a potential with a localimma. This is a stable
point from which they will be resistant to change and it wolddseen as a mass in the
scalar field, preventing the force being of infinite range aodld restore the equiva-

lence principle.

While compactification and flux compactification allow us §gphss the difficulty of

the unseen extra dimensions, much of the uniqueness of siti@ory is lost due to the
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large number of possible compactification methods, eachfaldrmve can compactify

upon leads to an alternative effective theory and would eatisng theory to make
different predictions about particle masses, interastiand couplings. Without pre-
dictive possibilities string theory will lose all the phgai applications it may have had

and cannot be verified as a true description of the universe.

6.1 Hopes of transition

Just as fluxes assign potential to the moduli space, poteviigh hopefully have

local minima in which the moduli sit, so too will each topojoigave a different range
of potentials, with some global minimum isolating one tampyl and one point within
its moduli space. If it is possible for the universe to ar@tehis topology and to fall
to this minimal point in the potential we can predict the pajes of the universe by
finding the effective theory at this topology and at these ufiodlVith such predictions

we can test string theory by experiment.

These predictions require that it is possible to change faonarbitrary topology to
the preferred topology. While the moduli can vary continglguo arrive at the min-
imum, the topologies are discrete and separate, so consnassage between them
would seem to be impossible. The use of manifolds exhibitiogical singularities
was thought to offer a method by which this marvel could beeadd, by changing
moduli continuously to arrive at a conical singularity (wihidoes not have a single
defined topology) then continuously expanding the conicajidarity to a manifold
with different topology we could continuously arrive at tjiebal minima, this would
connect the different points by continuous (and finite) pathmoduli space. This

would recover some of the predictive power of string theory.

This method brings with it risks however, most obviously #re events at the conical
singularity and the change of topology while singular. Tis& has been well studied
and it has been found that the conical point can be made sémsthim string theory
and the risk can be bypassed. We however intently studiedrténgtational effects
of the process, notably the collapse of the cycle to a sizdlsnaugh to initiate

the transition. The reduction of the cycle to such a sma# sipuld require a great
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concentration of energy in a small region. This presentsitieof creating black
holes which would prevent the process being seen by an eudbgkrver. The observer
would merely see the concentrated energy forming a black$altion as is predicted
by existing theory, we could not verify string theory or gainy insight about the

effects enclosed within the event horizon of the black hole.

6.2 Dynamical studies

In chapter 3 we investigated transitions within five dimensi these would not be as
drastic as some other transitions we suggested but thegesill applied and they
worked to indicate the possible outcomes. The first cycle tengpted to collapse
belonged to an Eguchi-Hanson instanton, its collapse wbaleéd been the start of a
flop transition, a change of topology under which many of thotogical invariants
are left unchanged. This could not be initiated howeverdideshe predictions of the
moduli space approximation) as the cycle could not be cedldpln low energy cases
the cycle began to shrink in response to our initial condgibut this soon changed and
the cycle re-expanded and grew beyond its starting sizaghehenergy situations, the
creation of a black hole was inevitable. Such a black-hosedmainteresting asymptotic
structure, namely there is a compact circle at infinity, dmslleads us to an unexpected
mechanism for compactificaction. If, instead of picturihg Eguchi-Hanson space as
a portion of a compact internal space, we start with the fgliéhi-Hanson space,
with its four large dimensions, we see that the final stateal@smpact dimension and

corresponds to the Kaluza-Klein black-hole of [70].

The other five dimensional instanton we studied was the Telianstanton, it too pos-

sessed a cycle which could not be reduced to a singular poititis case however the
creation of a black hole was always the cause of the diffi@rtythe cycle could never
return to the starting value once it had been perturbed. imtlisated that the outcome
resulted in the initial instanton and the initial momentwmhjle one instanton with a

two-cycle invariably created a black hole, a different amsbn’s outcome depended
upon the nature of the initial momentum even though it tocspssed a two-cycle at

its tip.
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In chapter 4 we went on to simulate the possible dynamicaiticre of conical singu-
larities in even higher dimensional situations. The paksilof transitions in seven
dimensions is even more intriguing than five, this is becafisiee conifold transitions
of seven dimensions which offer a way to change the topolegy enore drastically
than the five dimensional flop transition. While a flop traesitwould change just the
intersection numbers, a conifold transition would changeldg® numbers also. This
may have more profound effect upon any lower dimensionatioes (someone look-
ing at only the particles of the low energy effective theotie process could change
the spectrum of particles even introducing the possibilftyew types of particle com-
ing into existence. This would be a more substantial chamteeteffective theory than

would be seen during a flop transition.

The results we presented in this chapter however have siegigbst this too cannot be
dynamically achieved due to the inevitable creation of blaale spacetimes. In these
simulations with seven dimensions and general relativigy dreation of black holes
seemed to be inevitable, just as it was for the Taub-bolamtsn of five dimensions.
The tendency to return to the starting value (seen in the lgdanson instanton) was

never observed in these seven dimensional simulations.

In chapter 5 we performed our largest simulation, using alterensional spacetime
and introducing the fluxes of type IIB supergravity. This \as the simulation which
we thought most applicable to our own situation and to othgoing work since
ten dimensions are predicted by string theory and the stgetg which arises from
string theory is a major topic of study at the moment. Thiswation was not only
applicable for models involving transitions which coulcalge the topology, but it will
have applications to any theories which attempt to use tlebafiov-Strassler warped
throat. This acted as a numerical test as to the stabilitigisfsolution, it is often taken
to be the case that this solution is highly stable due to édltixes passing through the
tip of its warped throat. The numerical simulations workedest these assumptions
under deformations larger than small perturbations anttidest stability at even very
larger perturbations still (though there is a minimum sdaw which perturbative

methods are superior).

These results produced a range of possible outcomes, npidependent upon the
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scale of initial momentum but also dependent upon the exatare and which terms
within the metric received the momentum. In section 5.3.5dgeussed situations
which could only change the tip of the solution temporarithgugh the size did in-
crease due to our initial momentum it soon returned to theirsgavalue. We also

found that the restoration occurred even with very strongalnmomentum which

showed the tip to be very stable against this form of changecdld raise the initial
momentum so high without reducing the tip to zero size thgt Bi.5 suggested this
could not be done using this form of initial momentum. Cagdime three-cycle to
expand was also possible but we believe this too is only a ¢eanp change, though
the time taken to return was much larger than the time it t@oklfe cycle to recover

from shrinking.

Alternatively there were some forms of initial momentum ehicreated black hole
solutions, these black holes would obscure the tip of theathirom the outside and
would have to be accounted for in any theory using the thrbatming these black

holes would prevent the possibility of topology change also

6.3 Evaporation of the black holes

While it seems classically that the topology change canedtitiated but is prevented
by the black holes which are often produced, when we includetym mechanics we
know that black holes do not in fact exist forever. Insteaglifack hole will radiate

energy and will decrease in size until its area vanishestdietdaporates”. In section
2.3.3 we discussed that the interior of the black hole is detaly disclosed from the
rest of the spacetime and so has an unknown topology. Thiasrbat the relic left

behind after evaporation may not have the same topologyeasphacetime in which
it was formed which presents an alternative method of tapotihhange by a classical
collapse of the spacetime to a black hole followed by a quarguaporation to a new

black hole free spacetime.



Discussion 116

6.4 Closing statement

Our investigations have shown that the risks gravity posésology changing transi-
tions being realised in classical GR are very significantedave found no case where
a singular manifold has been formed without a surroundiaglbhole to shroud the
effects from any outside observers. This is a great impeulinoehe unification of the
regions of the string landscape with different topology andeduces the hope that
the predictive power of string theory could be restored bgngjing the topology in

response to the superpotential generated by flux compatitfincs.

However the inclusion of some quantum mechanics meanshedtlack holes could
later evaporate leaving a relic of unknown topology. Thisldact to change the topol-
ogy by means of an intermediate black hole. This or any otlethad of changing the
topology could be enougth to unite the string landscape amdtarn some predictive

power to string theory.

String theory needs to make some predictions if we are tadesdf we ourselves are
comprised of some vibrating strings and whether our fouretisions are the left overs

of a higher dimensional compactification.
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Appendix A

Conventions and computation

A.1 Conventions

In the following we will use a mostly plus metric signaturelam antisymmetric tensor

obeying
€0123.. = +1. (A.1)
This is used in the definition of the ten dimensional Hodgd,dieen by
xebo = e e (A.2)

We have used units such that 1 andh = 1. We defined®®7G = 1 which means that
Gab —_ Tab_

A.2 Computational methods

All the numerical work was written from scratch in C++ and gimulations were
carried out upon a desktop computer. The longest ten dimealsimulations took up
to a week to run, lower dimensional problems took considgials time. Any spatial
derivatives which needed to be taken were performed usimgiidhf order five-point
stencil. Apparent horizons were detected using an alguoribscribed in [19]. Plots

were made using gnuplot.
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Groups, forms and sets

B.1 Coset space geometry

We will work within groups formed by the quotient of a Lie gmw@& and a subgroup
of G which we call H (i.,e. H C G). In order to find the line element of G/H and
its associated curvatures we employ a coset method[82, 10H is generated by
{H;;i=1..dimH} and if G is generated byH;, F,;a=1..dimG-dimH, then the group
G/H can be generated hy,. The commutators of the generators can be written in

terms of structure constants; k defined by.

[H;, Hj] = Ci; " Hy, (B.1)
[Hi7 Ea] - Cia b Eba (BZ)
By, EBy) = Cop " Eq + Cop ' H. (B.3)

If we let L be a general element of the group G then we can thénealkeft invariant

one-forms9* andh’ by the expressions

Y = L~ YL, (B.4)
Y = 0°E, + h'H,. (B.5)

When we construct the line element we use onlyéthéorms,

ds® = gu0°6°. (B.6)
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The ambiguity in the choice of L gives rise to various diffgrene-forms. Using the

expression (B.4) we can find that

d¥ = dL ' AdL,
= —L'dLAL7YL,

= —XAX. (B.7)
Combining the equations (B.5) and (B.7) we can find that,

d0"E, +dh'H; = —0°N0"E,E, —0* AW E,H; — h' NO"H;E, — h' A W/ H; H;,
1 . 1.
= 50"/ 0°[E., Ey] — 0° AW [E,, Hj] — S A [H:, Hj],
1 . _
= 50N 0" (Cap*Eq+ Cup" Hy) — 0" AW (Coy " Ey)

—%hi AR (Ci % HY) . (B.8)

The equation (B.8) can be split into two separate equatimgs/e,

1 ,

de* = —ieb AGCh® — hP N O°Cip @ (B.9)
: 1 1 4

dht = _590 ANOPCL, " — 5hﬂ ARFCy " (B.10)

With these equations for the differentials of the one-fomescan go on to calculate

the curvatures.

There is an additional constraint upon the coefficients eflthe element (B.6), the

constraint that,
0= Cha Cgcb + Chb Cgac- (Bll)

This restriction ensures that Riemann curvature tensgriooludes terms of the form
6 and has no dependence ugdnThe Levi-Civita connections are expressed in terms

of one-formsu®, defined by their metric compatability,
Agap — W pGac — W agep = 0, (B.12)
and also their lack of any torsion,

do* + w*,0° = 0. (B.13)
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Using these connections we can go on to calculate the cuevignsors by the equa-

tion,
R pegf® N O = d (W) + W e AwSy. (B.14)

This can then give the Ricci tensors and the Ricci scalaGhviniturn give the Einstein

tensor,
Ry = R.a (B.15)
R = ¢™Ry (B.16)
1
Gab = Rab_igabR- (817)

It is these tensors, used in the Einstein equation, which tjie equations of motion

used to evolve the system.

B.2 The Special unitary group; SU(2)

One elegant way to write a metric in higher dimensional sjgasing the special uni-
tary group. This group can conveniently be used to repres#mee-sphere[62] since
its parameter space can be identified with the manifold ofttree-sphere. ThiSU(2)
also acts as a (double) covering of SO(3) and so could alsedubas a representation
of rotations. This section describes the conventions we baed when writingU (2)
forms. We have used the conventional left-invariant omrea&y which are defined by

the exterior derivitive

1
dO’i = _i‘fijko'j N Ok. (818)

This is equivalent to the requirement upon the Lie algebth@tU (2) generators
[Uiv O'j] = Eijk’gk" (Blg)

In fact we will later use two distinct sets of the conventibleft-invariant one-forms
of SU(2) both of which obey the equations of (B.18),
do® = —Eeijkaj A O’k,

) 1 .
Y = _§e,jkzmz’f. (B.20)
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Though (B.18) is sufficient to define the one-forms, theressitemultiple represen-
tations of SU(2) which could be used. Since we intend to use the forms to reptes
a three-sphere it is most intuitive to investigate theirgemies using some angular

coordinates. We used the representation

oy = sinydf — sinf cosy do,
oy = coshdf + sinf siny do, (B.21)
o3 = di+ cosdp.

where
O<v<dm, 0<f<m 0< ¢ <227 (B.22)

Within this representation we can find the properties ofdttierms such as their vol-

ume and relation to the three-sphere and the two-sphere.

The Three-sphereS?

The SU(2) group can be used as a representatios“ofvhen we use all three one-

forms, the line element is then given by

ds? = (g)Q (0% + 02 +02) . (B.23)

It then follows that the volume element is

AV = (2)3 710207 (B.24)

which can be calculated within our angular representation.

/010203 = / (siny df — sinf cosy do) (cosyp df + sin siny do) (dip + cosd de)
= / (df sinf do) (cosy® + siny®) (di + cosf do)
= / (sinf dO de di))

- /sm@d@/dgb/dw

= [—cost] [¢7" [¢
= 1672 (B.25)
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This can give the volume of ouf®

/dV - (2)3/0—10203

vV o= 273 (B.26)

which is the correct volume for asf with radius r.

The Two-sphereS?

We can also use the forms 6t/(2) to represent a two-sphere, though it would require
a different metric. Using just two of the forms gives the daguine element we

recognise.

ds* = r* (o] +03)
= 72 (cosw2 + sinwz) (d92 + sin?f d¢2)
= 1r* (d6* + sin*0 d¢*) . (B.27)

This line element, along with the correct range of anguldmes as given in (B.22)

gives us the52. It has volume

/0102 = / (sinyy df — sinf cosy do) (cosyp db + sinf siny do)
= /(sin@ df do)

= /smede /d¢

= [—cost]g [¢]5
= 4. (B.28)

As before we can again form a volume from tl5is

/dV = 7’2/0'10'2

V o= 4mr? (B.29)

which is the expected volume for &t with radius r.
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B.3 ¢'one-forms

Within the coming analysis it is convenient to define a set ré-forms which are
commonly used throughout. Labelgdthese are not a closed Lie group but a quotient.

They are defined in terms of the two setsSéf (2) forms, (B.20), to be

g = (' =32H/V2 (B.30)
7 = (2+32H)/V2 (B.31)
¢ = (' +32H/V2 (B.32)
¢t = (P =-2H)/V2 (B.33)
¢ = (F+5%). (B.34)

Following section B.1 we see that the exterior derivativiesastain combinations are
permitted, other combinations do not produce forms exjbiéssn terms of theg
forms. The exterior derivatives expressiblegncomprise of a limited number of

combinations of two-forms,

dlg' Ng*) = —%(91 NG ANG+ g NGt NG, (B.35)
d(g*Ng') = %(g1 NSNS+ NG NG, (B.36)
dg' Ng*+*NgY) = ("N AP+ NG NG, (B.37)
dig* Ng* +g* Ng®) = 0. (B.38)

Along with a small number of three-forms ,

d(g' Ng* Ng®) =0, (B.39)
d(g® Ng* N g®) =0, (B.40)
dg* NG NG +g* NgtAg°) = 0. (B.41)

These restrictions can be used to limit the possibilitiedlioxes and potentials.



Appendix C

Five dimensional Einstein equations

for Taub-Bolt

The choice of metric (3.44) means that we can find the Ricoisegxpressed in terms
of A,B and C. These equations will allow our profile functip#s B and C to be

evolved dynamically in time and will also give two additiomsuations which must
hold. These additional constraint equations must be ingpwsgally and can be used

to test the numerics at later times.

We describe these more conveniently by defining some newifunsc

R2
o = (1 + ﬁ) €2A(t’R),

/6 _ N2 (1 + R_4) e?B(t,R)
= N ,

_ R? 2C(t,R) (C 1)
T = me ' '
N2
. R
Ki=-A Dy=A+—"_
. ATS T NI R
. 2R3
Ky =-B Dp=B"+———
B B + N1t Ry
. R
KC - —C DC - Cl - m (C2)

Using these we can write the equations which come from thiskiaog curvature.
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C.1 Equations of motion

The Ricci terms must be used to evolve the metric into theéytihey gave the evolu-

tion of the functions which describe the spacetime.

. 4
Ka = Ki—Kji—2KpKo+ - ——
p* g
1 1
— (D% +2Dg (D¢ + —
4 (D} +2 D5 (De + )
: 9 2y 4
K = 2KB+KBKC+KBKA_E+B

1 1
+E(DB Dy —2D} — Dy — D (De + ﬁ))
4
o4

. 3
Ko = —K§+Kg—2KBKA+6—Z—

1
+E(3 D% —2Dp Dy +2DY). (C.3)

C.2 Constraint equations

There were two remaining non-zero Ricci terms, these gove thie constraint equa-

tions:
v 4
0= — KA(2KB+KC)_KB(KB+2KC)+E_B
1 1 1. 2D¢c
— | =Da(Dc+ =) +2Dp(De+ =)+ ——
+ a( Al C+R)+ B ( C+R)+ R)
1
+ a(—2DADB+3ng+2ng+D’C+Dg), (C.4)
and

1 1
KA(DC+2DB+§):QKJ’_E;+K’C+2KBDB+KC(DC+E). (C.5)

These are refered to as Hamiltonian and momentum contiamak must be imposed

as we initiate the simulation.



Appendix D

Uniqueness of the squashed 5d black

hole

In order to see if the black hole described in section 3.7esaihly option for a final
state, we must find if it is unique. Firstly we write a metripalle of giving the most
general form obeying the symmetries of (3.46).

K 1 [b(r)?
O PIGE

ds* = —f(r)dt* + (07 + 03) +d(r)*o3 | . (D.1)

We make a gauge choice by defining r using the expression:

f=1-" (D.2)

Then we can solve the Einstein equation foy, directly, with no loss of generality

giving the expression

(D.3)

A coordinate rescaling and parameter redefinition perméstmplification (still with

no loss of generality)

r—kr, M— M, (D.4)
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resulting in the expressions

fry=1- 3 (D.5)
k() % (D.6)

while leavingb(r) andd(r) still unknown functions of-. Next we write these remain-

ing unknown functions as a series

b(T) = % (bo + 627“2 + b47’4 + b67’6 + 687“8 + blo’l“lo + b127“12...) s (D7)

d("“) = (dO + d27’2 + d47’4 + d67“6 + dg’l“g + dlo’l“lo + d127’12...) . (D8)

[Nl B

Expand the Einstein equations fB%; and R,, in » and make each term in the power

series vanish. This will give us the values of the coeffigénptandd,,

b 1

by= 7 (0F—1), =g (d—1)(d5+1)
b 3

b=+ (0 = 1P, da = (] — 15+ 1)

(D.9)

We then have to attempt to find the pattern to this series dficimmts. We found the

coefficients to be given by

b
b = 3 (V28— )", (D.10)
B 1(20—1)(di—1)
d, = dy iz]?[n < 5 ) (D.11)
This gives us the ability to write the infinite sum as an anelgkpression
M?b,
b<r) - M2 _'_ bgTQ . TQ? (D.12)
d(r) Mdo (D.13)

- \/Mz—i-dérz—r?.

This is enough to define the most general 5d black hole whigy®othe symmetries
of (3.46). It seems to have one more degree of freedom thamittegarged version of
(3.46) with the three parametérgd, and M. However by the coordinate transforma-

tion
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R=d(r)r (D.14)
T = dt, (D.15)
= (D.16)
do
M dy
Ry = ——, D.17
i (D.17)
we arrive at the metric
2 2
ds®* = —F(R)dT? + K(R) dR* + L [K(R)(0} + 03) + 03], (D.18)
F(R) 4
M2
A2/ D2
K(R) = =M/ (D.20)

(1= R?/R%)*

We see that this is identical to the uncharged case of (3'®&% is the only possible

black hole solution which could result from our collapsingfdimensional instantons.



Appendix E

Seven dimensional Einstein equations

In both our seven dimensional simulations we used the vadtinstein-Hilbert action

to evolve the initial surface to later times. The equatiarsgaven in full here.

E.1 Resolved conifold Einstein equations

The choice of metric (4.15) means that we can find the Ricoisegxpressed in terms
of A,B,C and D. These equations will allow our profile funetsy A,B,C and D to be

evolved dynamically in time and will also give two additioruations which must
hold. These additional constraint equations must be intgpwstally and can be used

to test the numerics at later times.

We describe these more conveniently by defining the new ifumet

d(t,r) = r*D*(t,r), (E.1)
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each with associated momenta and derivative.

b %
Ky = - Dy = —
b b b ab’
. /
I(c:E Dc:C_7
Q ac
d d’
K;=— D; = —
d d d CLd7
K, =2 (E.2)
a

Using these we can find the equations from the vanishing twnea

E.1.1 Equations of motion

The first four Ricci terms must be used to evolve the metria the future, they gave

the evolution of the four functions which describe the spiaoe

Riy =Ry = Ky+ K, (K, + 2K, + 2K, + Ky)
—%—D (2Dy + 2D, + D )+i—d—2
a b b c d) T3 T 0
Rys = Ry = K.+ K. (K, + 2K, + 2K, + K;)
—Qé—D (2D +2D.+ D )+l—d—2
a ereh ¢ G2 g
Rys = Ky+ Kq (K, + 2Ky + 2K, + Ky)
D, 2@
——4 _D;(2Dy+ 2D.+ Dg) + — + —,
a a (2D + - d>+2b4+2c4
Ry = K.+ K, (K,+ 2K, + 2K, + K;)
D, D. D
—2=t _9—<c_ 4 _ (2D} +2D?+ D).
a a a
(E.3)
E.1.2 Constraint equations
There were two remaining non-zero Ricci terms,
R, = 2 <Db + KbDb> +2 (Dc + KCDC> + (Dd + KdDd> :
Ry = — <K + K24 2K, + 2K2 + 2K, + 2K2K 4 + Kg) . (ED

These are refered to as Hamiltonian and momentum constiamck must be imposed

as we initiate the simulation.
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E.2 Deformed conifold Einstein equations

Ansatz (4.24) produces the Ricci curvature dependent upBrCAand D (along with

their derivatives) these are used as the equations of matidrtonstraint equations.

E.2.1 Equations of motion

Four of the Einstein equations were used to evolve the spaeatynamically, the
future state of the system is described by the four functie®sC and D. These are
changed in time using the equations of motion which are fdundnsuring the Ricci

curvature vanishes.

Writing these Ricci terms is easier with the newly definedcfans

a(t,r) = <A(t,r) cosh <f>)
t,r) = (B(t,r) sinh ( )
)

).
c(r t :( (t,7) cosh ( ))
)-

d(t,r) = ( (t,r cosh( ) (E.5)
We also associate each with functions describing momemtéhenderivative:
b v
Ky, =- Dy =—
b b b ab’
b /
Kc - E Dc = 0_7
C' ac
d d’
K;= - Dy =—
d d d adv
K, =2 (E.6)
a

The four Ricci terms below are used to form the equations dfano
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R,y = K,+K,(K,+ 2K, + 2K, + K,)
D, _D. D,

C

—2=t _9—c_ 4 _ (2D} +2D?+ D)),

a a a
Ry =Ry = K,+K, (Ko + 2Ky + 2K, + Ky)
D/
_7b — Dy, (2D, + 2D, + Dy)
b2 C2 d2
Tt ser T SRR s
Rss =Ry = K.+ K, (K,+2K,+2K.+ K,)
D/
——¢ D, (2Dy + 2D, + D)

a
N 1 N 2 b2 d?
2¢2 ' 8h2d2  8c2d?  8c2h?’
R55 = Kd + Kd (Ka + QKb + QKC + Kd)
D/
_Fd — Dy (2Dy 4 2D, + Dy)
d2 b2 02
e T e T 2R 1

(E.7)

E.2.2 Constraint equations

The two remaining non-zero Ricci terms acts as constragggsations which are not
used to evolve the system but should continue to hold pravidey are true in the

initial conditions

K!
Rtr = —2 (717 + Db<Kb - Ka))

Kl
-2 (—C + D.(K, — Ka))
a

K
- 7 + Dd<Kd - Ka) ) (E8)
Ry = —(Ro+ K2 420K, + 2K} + 2K, + 262K, + K3) . (E9)

These are called the Hamiltonian constraint and the momenanstraint, they were

monitored during the course of the simulation to ensure ticaracy was sufficient.
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E.3 Static black hole equations

As we wish to find a candidate for a black hole solution in sediemensions in section
4.7, we use the Einstein equations to find vacuum solutiotis evient horizons. The
need for Ricci flatness imposes restrictions upon the prédietion of the metric

(4.29). These are calculated to be,

g IV A&y ey
T T 2 b c d

" fid 4 d? de 20 dd

1! f/d/ d3 dlb/ d3 d/C/
d" = — 2 -
Frelam T Tape T
0 = f’ 2_()/+2_C’+é, +d_2+d_2_§_§
N b c d 204 2¢t b2 2

V> \°  vd  vd  dd
2(Z) +2(S) +825 41428 1429 E.10
+f<<b)+<c)+bc+bd+dc> (E.10)
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Ten dimensional equations

Using the supergravity equations of section 2.6.3.1 aloitig tive spacetime ansatz of
section 5.3.3 leads to very elaborate equtions of motiorordier to write these in a

more concise form we define new functions:

T(t,r) =  T(t,r)h™2(r)

1 1 4 1
~2 o 2 1 4
a“(t,r) = a“(t,r) h2(r) 563 K(r) <3K3(r))
- 1
Pt,r) = B(tr) h2(r) 5eb K(r) (sinh(r/2))
1 1
Et,r) = At,r) ha(r) 563 K(r) (cosh?(r/2))
~ 1 1 1
B(t,r)y = d(t,r)h2(r) 56% K(r) (3 = (T)) . (F.1)
We also associate each metric function with functions deisg momenta and the
derivative:
Z; 77
[(~ — == D~ - —=
T " ab
< ~
Ki=—=  Di=~
Tc ac
7 7
[(~ — i Dd" — —=
Td ad
K=
Ta
T T’
I(~ - = D~ - —=. F2
T2 Toar (F2)
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We also give the fluxes a momenta and derivative function:
CaT2x27 P42 3
Ky -2t p _plcd
b? ab?
. al?bh?d TY0%d
Kp, = Bg 2 Dp, = lﬁ a2
o a1
Ke, = CodaT?  Dg, = 0;7
o B T4~2~2d
K, — ¢al?ed Dy — ¢ LY (F.3)
a
We also use the fact that the fluxes have traces given by
@\ N\ M-C, .C
Fg?= —12 =2 +12( f‘) +6—=—+6=— (F.4)
The abc 2d b2d
. 2 . 2
B, B B\’ Bi\?
H?= —6<~~> —6<~~ﬁ> +6<%) +6< f)
Te2 Tb? ac? ab?
Bs — B, \’
+12 (ﬁi) : (F.5)

20éd
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F.1 Equations of motion

The Ricci terms result from the metric ansatz and equatiobyB

}%rr -

’ﬂz| N

+ Ky (Ka+ 3K7 + 2K + 2K; + K)
D/

a

SVEL L L

2 2 2 2

Rop = &+ K7 (Ka+3K7+ 2K; + 2K; + K)

D@T — Dj«(4DT + QDE +2D; + DJ)

Riy= 2+ Kj(Ka+ 3Kz +2K; + 2K; + K)

D/

—=b — D;(4D; + 2D; + 2D; + D)

b1 (2D — 2¢% — 8d* + 168%d?)

16b2~2d2
Ry = %4 K (Kq+ 3K + 2K + 2K; + K;)
—L _ D.(4Dj +2D; + 2D + D;)

L (261 — 2bt — 8d! + 1662d?)

16b2~2d2

Rss = 54+ Kj(Kq + 3K7 + 2K; + 2K; + K;)
D/

——=4 — D;(4Dj + 2D 4 2D: + Dy)

timeT (16d* — 4b* — 4¢* 4 8b%2). (F.6)

The flux ansatz and equation (2.32) give another set of empsafor the same Ricci

terms:
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R = g (WGPt OaBﬁ)Q

242 4 b2&2d

1 '\’ 1

- 1) 4 ~o¢ o F 2

+7¢ ( (abé) 5 (Fo ))

1 B’ \? B,\? 1
et |2 e 2(=2) — = (H?
i <<ab2) i (dé?) i)

1 ((M — C,)Bas + CaBﬁ)2
Rxw = = =
1 b2e2d
1 1
+7¢° <—12 (F<3>2))

1 ((M — C)Ba + CaBﬁ)2
Rll = Z ~ =
b2c2d

. 2
1 Co\’ c C'\? 1
+-e? 2 =) —2[=2] +2( =) ——= (Fj3°
1" ( <b2d) (Tbé) (&bé) iz (Fo ))
1 Bi—B\2 _(B.\ _/BN\? 1
—ef |2 ) -2 = 2(=2) ——=(H?
s ( 2bcd ) (T@) - (a@) 12( )

1 ((M — C)Bo + oa35>2
R33 - Z ==
b2c2d

. 2
1 M—C,\? C (C’)2 1
+2e? | 2 ) 2 == ) +2(—=2) — —(F3?2
4 ( ( éd ) (Tbé) ) “120e)
. 2
1 By — B\ > B B,\? 1
+e? 2<M) —2( =2 +2< ﬁ) ——(H?)
4 2béd T2 ab? 12

1 ((M—Ca)BaJrCaBg)z
Rss = 1

b2e2d
1 C,\? M-C\° 1
—e? 2 =& 2 ) — — (F5 2
+46 ( (bzd) + ( &2 ) 12( ®) )>
1 Bs— B, \* 1
“e |4 (22 (g2 F.7
e <( ) )) (F7)

By combining (F.7) and (F.6) we arrive at our equations ofiorofor the terms in the

metric.
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F.2 Constraint equations

The two Ricci terms which will be used as constraints alsoe@om the metric ansatz
and equation (B.15):
Rtt = ( + K2 D2 )
2 2
—3(4 + K2 - DT)
+ K2 DTDE)
+ K2 — D;D;)

—2(
—2(%
(I; + K% — DsDy),

Rtr - 3( T + K D K&DT)
~2(% 4 (K — Ka)Dy)
—2(% + (Kz — Kz)Dz)

/

—(% 4 (K; - K,)D,). (F.8)

Another set of expressions for the Ricci terms comes fronfltixeansatz and equation
(2.32):

Ry = = ¢¢/
4 Tbc abc
1 B B, Bs \ [ Bj

Combining these relations gives us the constraint equatidnich must be obeyed

upon the initial surface and should continue to be true tinout the simulation.
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F.3 Flux equations

These equations come from (2.25) and allow us to evolve tRedlto later times.

. . ~T4
€_¢ <¢KBQ — ¢/DBQ — KBQ + D . —+ CLQ—(Z (Bg — Ba)>

ar* (M — C,
B (Ezézci : (M = Ca) Ba + CaBp)
(F.10)
' , : ,ar?
e <¢KBB — ¢ Dp, — Kp, + DBB Y (Bs — Ba))
aT*C,
= B2é2d~ ((M - Ca) Ba + CaBﬁ)
(F.11)
~ i 72 ~2
@ / / : / aTl b C
& <¢KCQ - ¢ DCa + KCa - DCQ + 2—d~ <—§(M — Ca) + B_zca>>
—aT
- 20282 (M = C4) Ba + CoBg) (Bs — Ba)
(F.12)
: , 2 ., 2 ., al* (P . E
Ryt Dy = =5 <cZaT2 Co ™ a0 <§<M —Ca) 450
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