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ABSTRACT 

This thesis explores the representation of probability measures in a coherent Baye- 

sian modelling framework, together with the ensuing characterisation properties of 

posterior functionals. 

First, a decision theoretic approach is adopted to provide a unified modelling 

criterion applicable to assessing prior- likelihood combinations, design matrices, 

model dimensionality and choice of sample size. The utility structure and associated 

Bayes risk induces a distance measure, introducing concepts from differential 

geometry to aid in the interpretation of modelling characteristics. 

Secondly, analytical and approximate computations for the implementation of 

the Bayesian paradigm, based on the properties of the class of transformation 

models, are discussed. 

Finally, relationships between distance measures (in the form of either a 

derivative of a Bayes mapping or an induced distance) are explored, with particular 

reference to the construction of sensitivity measures. 
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Chapter 1: Introduction 

In de Finetti's subjectivist account of Probability theory, the concept of probability is not one 

that is independent of the observer but one that quantifies the observer's personal uncertainty about 

events in a complex world. Nevertheless, the observer must have an operational framework for its 

measurement. This thesis addresses the problem of the specification of a priori beliefs and related 

aspects of a Bayesian statistical modelling framework. 

A foundational result is the de Finetti representation theorem allowing the study of the 

interrelationship between different observers' world views. The general theorem (see, for example 

Hewitt and Savage (1955), Diaconis and Freedman (1986a), Ressel (1985)) explains how coherent 

Bayesians act when confronted with an infinitely exchangeable sequence of observable random 

variables, denoted by X= [X,, X2.... 1. The symmetry condition of infinite exchangeability 

expresses the belief that, for each n, the joint probability measures concerning X are invariant 

under the action Of Sn, the symmetric group on n letters. The concept was initiated by Haag (1924) 

and formalised by de Finetti (1931,1937). The theorem determines the structural nature of the 

beliefs about X as a mixture decomposition by means of a unique measure y(-) as follows, 

Pý, (AXB) f F'(B), u(dF) 
A 

where P,, denotes the joint beliefs under mixing measure y(-) over the space of distributions, P, 

such that conditional on F c-. P they are independent. 

A special case of the above, formulating the parametric modelling framework, is obtained by 

restricting the measure y to a finite dimensional subset of P. Consider a family of probabilities, 

[QO : OE el indexed by eERk, together with a prior measure 4 over 60. Let Qý denote the 0 

infinite product measure on X- for which [X,, X2,... ) are independent with common distribution 

Q9. The general de Finetti representation becomes 

P, (AxB) f Qe (B)li(dO) 
A 

(1.1.1) 

that is, all observers agree on the same conditional model Q Dawid (1982,1986) defines this as 

the conditional I-model interpreted within the notion of an intersubjective model. The de Finetti 

theorem thus justifies the specification of a statistical model (i. e. the joint measure P, (. )) in terms 
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of the conventional separation into prior-likelihood combinations, where it is as if the Xi are an 

independent sample, conditional on Q9. Moreover, if the predictive distribution for 

(Xn+ It Xn+2t 
... 

) given (X,,..., Xn)t denoted by ýUl, is considered, then Bayes theorem emerges 

from the decomposition, 

Pp'(B) f Q'(B)ii,, (dO) 
A 

where the measure y. (-) denotes the posterior measure, as determined by Bayes theorem. 

Clearly the structure imposed via exchangeability on the joint distribution depends heavily on 

the structure of the sample space, the intersubjective model QO sometimes having a definite func- 

tional form: for example, (0,1) exchangeable random variables determine the Bernoulli model. 

However, the de Finetti representation theorem holds for quite abstract topological sample spaces; 

the caveat, from a pragmatic specification perspective, is that in general the mixing measure ju(-) 
assigns its mass over the whole space of probability measures, Y. 

Sometimes careful interpretation of the respective components of the unobservables allows us 

to identify parameters of interest that possess a physical meaning. These parameters will be termed 

extrinsic (Dawid (1985)). The specification of a priori beliefs for such a parameter then directly 

represents our belief about the physical quantity, 0 (Lindley (1972)). Thus, throughout this thesis, 

we shall assume that the class 16 is a subset of T comprised of the set of measures, defined 

on the parameter and modelling spaces. Often this will be further interpretable as 

Data = Structure o Noise 
, 

where o denotes the operation quantifying the interaction between structure and noise (Smith 

(1986)). Clearly, when selecting a possible family (or parameterisation) of measures, an attempt 

should be made to do so by means of extrinsic parameters, thus allowing a reasonable approxima- 

tion to their apriori beliefs to be assessed. Furthermore, existing physical theory may yield 

insight into the necessary functional forms to be employed for the structure component. However, 

for a wide class of problems; for example, specifying priors for hyperparameters or specifying the 

error component, pragmatic choices inevitably have to be made and it seems necessary to be able to 

adopt a formal unified approach to the choice of representation. The following introductory sec- 

tions give an overview of the formal approaches explored in this thesis. 

(1.1) The "what if" principle 

In general, to obtain a formal guide for the handling of such a representation in a purely 

statistical modelling context we will adopt the "what if" principle (Diaconis and Freedman (1986a)) 

together with a concept of approximation in the form of flexibility and tractability of the ensuing 
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statistical model. 

First, the concept of infinite exchangeability must itself be judged as an idealised approxima- 

tion. In a sense we can only feel confident with adopting the consequent mixture representation if 

the results holds, at least approximately, under a relaxation to a more realistic assumption of finite 

or partial exchangeability. Happily, this is the case for a wide range of statistical models; for 

example, exponential families with uniformly bounded fourth moments (Diaconis and Freedman 

(1986c)). An interesting technical result is that the representation in the finitely exchangeable case 

is exact if we allow the possibility of a signed mixing measure (Jaynes (1982a)). 

The "what if' principle encourages a priori assessments induced by the implied modelling 

characteristics, for example, consistency. Moreover, it encompasses retrospective judgements in 

the form of sensitivity measures, for example, derivatives of posterior functionals with respect to 

the prior. Careful judgements of a priori assumptions in the light of the data are allowable on the 

grounds of approximation, for the original prior should only be viewed as an approximation (some- 

times a poor one) to a true prior (Diaconis and Freedman (1986a)), suggesting that the continuity 

(in some sense) of the Bayes map and corresponding risks should be explored. For results in this 

direction, in the parametric case see Berk (1966), in the nonparametric case see Dalal and Hall 

(1980). 

The "what if" principle suggests various interesting techniques for the assessment of statisti- 

cal models and their ensuing modelling characteristics. For example, 

(i) The application of techniques from decision theory together with the principle of maximum 

expected utility to induce modelling criteria. 

(ii) Model elaboration techniques, including the modification of a priori inputs in the light of 

inconsistencies or sensitivity assessments. 

(iii) The extent to which posterior functionals characterise prior measures. 

(1.2) Choice of utility function 

A formal application of the "what if" principle will be adopted to identify an interesting sta- 

tistical modelling criterion via the decision problem of reporting the posterior distribution of the 

parameter of interest 0. Such a procedure requires the specification of a utility structure over the 

space of a priori beliefs, denoted by 16 c Y. Thus the associated expected utility is proposed as a 

criterion to judge the choice of space 16. The principle of maximum expected utility applies to 

yield interesting choices of sub-families of measures contained in 16. Moreover, the Bayes risk can 

be viewed as quantifying the concept of approximation between two measures, for example, prior 
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or likelihood spaces, thus quantifying the notion of approximation and allowing the assessment of 

the playoff between a formal mathematical representation and a tractable statistical model. 

Concerned with the choice of a suitable utility function, Bernardo (1979a) introduces the con- 

cept of a local and honest utility structure. This is sufficient to characterise the logarithmic utility 

function, an appealing choice in itself since it establishes a link between Information theory and 

Bayesian decision theory, thus allowing concepts like the code length of a string to be interpreted 

in a Bayesian setting (Rissanen (1987), Wallace and Freedman (1987)). The characterisation of the 

logarithmic utility structures and other well-known measures including the R6nyi-a distance (R6nyi 

(1961)) are considered. By interpreting the expected utility as inducing a quasi-distance on the 

relevant space of measures, concepts from differential geometry can be employed to assess the sta- 

tistical model: for example, the midpoint, shortest line (geodesic) between two families of proba- 

bility measures. 

The utility structure can be adapted to include the possibility of the model being incorrect. A 

key result for the assessment of the model via its consistency is that the notion of convergence can 

be quantified in terms of a Kullback-Leibler distance (Berk (1966)). Berk's theorem states that 

under an incorrect model the posterior measure asymptotically converges to a subset of the parame- 

ter space, known as the asymptotic carrier, which minimises the Kullback-Leibler distance between 

the assumed family of measures and the true model. Thus a further insight is obtained for the 

induced Bayes risk under a logarithmic utility structure. The unified modelling criterion needs no 

notion of asymptotic normality (where the asymptotic carrier is a point) for the posterior density. 

In the setting of a consistent estimator the asymptotic information gain can be interpreted as the 

missing information concerning the parameter 0. Otherwise, for smooth models, it represents the 

possible amount of information to be gained from the model as a whole and cannot be interpreted 

as a function of the parameter of interest alone. The behaviour of the asymptotic information gain 

is examined in Chapter 3 using results of lbramigov and Wasminsky (1973). The ensuing decom- 

position quantifies, on an information scale, the following components; dimensionality k of the 

parameter of interest, prior information, likelihood curvature and design matrix, through the 

expected logarithm of Fisher's information and the entropy functional of the prior. Thus a unified 

modelling criterion is obtained for the assessment of the relevant modelling components. Renyi 

(1961) shows that the information gain can be placed on a cost scale, this is of central importance 

in the interpretation of the criterion as a Bayesian risk. 

(1.3) Choice of class 16 

The "what if" principle implies that the choice of V must be judged by its implications for 

future modelling decisions. First, tractability of the class is paramount, for the updating of prior to 
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posterior via Bayes theorem must be feasible. Rather surprisingly, the updating can be carried out 

for a variety of large classes of measures; for example, Dirichlet priors, tail free priors, neutral to 

the left and right priors. An elegant theory for such processes was first proposed by Ferguson 

(1974) and consequently extended in many directions (see for example Antoniak (1974), Diaconis 

and Freedman (1983)). The flexibility of such a setting is apparent by virtue of the fact that, under 

a suitable topology, any prior measure can be approximated by a mixture of Dirichlet priors (Dalal 

and Hall (1980)), a completeness property for such prior measures. Secondly, the "what if' princi- 

ple requires the property of consistency and the sensitivity of such a model to be addressed. It is 

here where the fully nonparametric approach appears to falter, for it has been shown that mixtures 

of Dirichlets can lead to inconsistencies (Diaconis and Freedman (1986b)). However, the class of 

Dirichlet priors are consistent and under mild conditions on the underlying density, for example, 

symmetry, the Bayesian formalism is consistent for a surprisingly large class of models. However, 

rather more alarmingly in the nonparametric framework, and to a lesser extent in the parametric 

case, is the possibility of an apparently innocuous prior dominating the effect of the data on the 

posterior, leading to a non-robust inference. Here an application of the "what if" principle in the 

form of a sensitivity or induced risk assessment of the modelling components quantifies dominant 

features. A host of problems can occur in an ill-specified parametric setting; for example, improper 

priors (Efron (1973), Stone and Dawid (1972)), curvature problems with likelihoods (e. g. exponen- 

tial regression (Nfitchell (1967)). Thus any modelling framework should take account of these pos- 

sibilities and provide a warning mechanism for such unwanted properties. Two possible directions 

are as follows: 

First, one could view the asymptotic information gain, by definition, as quantifying the rela- 

tive domination of some components of the statistical model over others. The minimisation of the 

gain would then identify the least sensitive modelling input to the data, the maximisation to the 

beliefs where most is expected to be learnt from the data sequence, thus allowing a general frame- 

work for defining notions of sensitivity and robustness. 

Secondly, one could explore the consequences, under a coherent modelling framework, for 

posterior functionals; for example, the mean and variance, as quantitative measures, or score func- 

tions, in order to induce a priori modelling assessments. Thus the examination of a posteriori 

assumptions that characterise aspects of statistical models is of interest. One such characterisation 

is for exponential families where linearity of the posterior mean of the natural parameter deter- 

mines the class W as that of the conjugate family of prior measures (Diaconis and Ylvisaker (1985), 

Goel and DeGroot (1980)). 
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(1.4) Nonparametric versus parametric modelling 

The bridge between the general (nonparametric) representation and one involving a finite 

dimensional conditioning parameter 0 can be built by a variety of techniques. For example: 

(i) In the spirit of the original de Finetti theorem it may be natural to impose further invariances, 

for example, random centred symmetry, to obtain a more precise characterisation of the mix- 

ture measureu(-, -) (Smith (1981), Ressel (1985), Diaconis and Freedman (1987)). 

(ii) The "what if" principle in the form of an induced expected utility constraint quantifies the 

process of learning in a probabilistic framework, thus formalising the concept of the domina- 

tion of particular features of the statistical model in the learning process. An interesting 

consequence of the induced modelling criterion is that it gauges the rate at which we can 

expect to learn about additional parameters in a statistical model. For smooth likelihood sur- 

faces the proposed rate is 0(n1log n) where n is the sample size, coincidentally the same rate 

as proposed by the prime number theorem. 

(iii) A formal application of the principle of maximum expected utility over a nonparametric class 

16 can be applied to yield optimal sub-families of measures, for example, the location family 

made famous in Huber's (1964) fundamental paper on robust estimation. 

(1.5) Model elaboration 

The preceding discussion places us in a model elaboration framework (Box (1980), Smith 

(1983)), a methodology based on the assumption that it is better to begin with elementary building 

blocks and then to proceed by cementing them together at a rate gauged by the experience gained 

in the light of the data. The unified modelling criterion proposes such an elaborating framework by 

virtue of its three components; assessing likelihood, prior and cost of experimentation, respec- 

tively. Thus to proceed with such a framework, a tractable elaboration in the form of a one param- 

eter embedding is adopted. The Bayes paradigm naturally lends itself to the reporting of such a 

model via a posteriori summaries in the form of marginal or conditional posterior densities. 

Hence the decision theoretic framework determines interesting I-models over 16 upon which 

all observers will eventually agree. It further establishes techniques for the embedding and con- 

necting of two possible families of models, [Pol and [QOj say, that are under consideration, thus 

quantifying the process of moulding together the foundational bricks in an elaborated framework. 

The unification obtained from the modelling criterion based on the concept of missing infor- 

mation is illustrated in detail for the location-scale family. The elementary building blocks consist 

of familiar families including the normal and double exponential densities. Techniques for 
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embedding and connecting these families of models in an optimal sense are determined, the solu- 

tions being interpretable in a differential geometric setting. An appealing technical result is the 

characterisation, via random centred symmetry, of the class of location-scale mixtures of normality. 

Choices of mixture measures in this class are considered. 

A further desirable consideration for a statistical model is its flexibility, in that assigning zero 

a priori probability to a large class of measures can lead to inconsistent results (Cromwell's rule 

(Lindley (1972)). Note that given an unintended zero assignment, Bayes theorem alone cannot 

warn of such a incorrect specification, since the a posteriori probability is also zero. A framework 

for model criticism and elaboration is thus required (Box (1980), Smith (1983)). One possible 

viewpoint (Dawid (1982)) regarding the assessment of the adequacy of a given model is that a 

model is adequate if it does not assign a zero or near-zero probability to any prespecifiable event 

which then occurs. 

The concepts of parameter orthogonality and a priori independence can be viewed as 

decision-theoretic solutions to well-posed decision problems involving information measures, the 

former being related to a relative information gain. However, note that the logarithmic utility 

structure is characterised by the fact that the asymptotic gain is invariant under a one-to-one 

transformation of the parameter (Good (1969), Amari (1982a)). 

(1.6) Differential geometry 

Differential geometry has a natural potential role in the Bayesian framework in the context of 

understanding the structure of a space of probability measures when we require a notion of dis- 

tance. One such notion of distance is induced by considering the Bayes risk of the required deci- 

sion problem (Diaconis and Ylvisaker (1985)). This is constructed by an application of the "what 

if " principle in the form of the Bayes risk associated with the missing information of the model. 

The use of geometrical ideas in classical statistics was made apparent in Rao (1945) and has 

been exploited since by many authors, primarily, Efron (1975), Amari (1982a) and Cencov (1972) 

A recent review is contained in Cox, Reid and Barndorff-Nielsen (1982). Fisher's information is of 

central importance in assessing the properties of the parameter space, and results of these authors 

are directly applicable to the Bayesian methodology by virtue of the equivalence of modelling cri- 

terion and Fisher's information. A striking characterisation showing the central importance of 

Fisher's information in a differential framework is due to Cencov (1972), who shows that it is the 

only invariant Riemannian metric under symmetry conditions. This is a very appealing result to a 

Bayesian since it parallels the notion of exchangeability and the construction of model itself. In 

the Bayesian framework it is natural to consider the geometry of the space of measures and not the 

underlying parameter space. However, by virtue of the decomposition of the modelling criterion, 
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Fisher's information still has an important role to play. Furthermore, locally, the geometry under 

any invariant induced Bayes risk on Y is equivalent to that of Fisher's information (Amari 

(1982a)). Further unification is obtained for the notion of approximation and coding length in a 

differential geometric setting (Campbell (1985)). 

There are further applications of ideas from differential geometry within the "what ijr' frarne- 

work, including the use of quantitative curvature measures for nonlinear models (Bates and Watts 

(1980)). However, we will adopt a more formal Bayesian approach to constructing such quantita- 

tive measures, taking the form of derivatives of mappings, the norm of the latter quantifying the 

"what ir' sensitivity assessment and itself leading to a model selection criterion allowing interpreta- 

tion of least sensitive inputs. 

(1.7) Profile likelihoods 

A central problem in the parametric statistical modelling framework is that of the elimination 

of a generally vector nuisance parameter. The classical approaches based on the likelihood func- 

tion have adopted sufficiency and maximisation techniques, whereas the Bayesian approach is one 

of an averaging process with respect to the a priori beliefs. However, these contrasting techniques 

can be compared within the class of statistical model that possess some form of group structure. 

The latter framework provides a starting point for extending the classical framework, although 

equivalences with the Bayesian approach now take the form of approximations where agreement is 

only for large samples. 

(1.8) Modelling characteristics 

One consequence of the representation (1.1.2) is the need to specify the structure component 

of a statistical model involving, for example, the choice of design or a transformation to simplify 

the operation o (appearing in the context of "Data = Structure o Noise") or the specification of the 

noise component. In a sense, it is possible to view a priori specifications under the modelling 

criterion (see (3.1.2)) by considering contours of equal missing information. Thus the latter 

quantifies the playoff between the choice of design, specification of measures, transformation etc. 

It will be shown that the reference prior has a central role to play in the selection of an optimal 

design. Moreover, the concept of approximation is applicable in the form of projecting one family 

of measures onto a simplified class of measures, itself possibly related to a transformation of the 

parameter of interest. Thus the minimisation of the associated risk leads to a natural selection 

criterion for the specification of the latter. 
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(1.9) Outline of thesis 

The application of the "what if" principle via formal decision theoretic criterion and quantita- 

tive proposals for the investigation of the robustness of proposed models are the main concerns of 

the thesis. These are discussed in the following chapters. 

Chapter 2 reviews the role of distance (or discrimination) measures as candidates for Baye- 

sian utility measures on function spaces, focusing primarily on the logarithmic utility function. The 

relationship with differential geometry is studied, allowing notions of curvature and distance, 

together with concepts of geodesics, to be applied in a Bayesian modelling framework. 

Chapter 3 applies the principle of maximum expected utility in a decision theoretic approach 

in order to identify a Bayesian model selection criterion, the risk being interpreted as inducing a 

distance on the relevant space of measures, thus providing a link up with ideas in differential 

geometry. The central concept is the decision problem of reporting the posterior measure, the risk 

being the asymptotic information gain (or missing information) concerning the parameter 0. 

Hence, a unified approach to the selection of likelihood-prior combinations, incorporating the 

choice of design matrix, is obtained. 

Chapter 4 discusses the nature of the selection of the prior measure under the criterion in 

Chapter 3 (Bernardo (1979b), Good (1969)). The application of such measures to a wide class of 

problems possessing some form of symmetry (invariance with respect to a group) are reviewed. 

The links between the elimination of nuisance parameters via a (modified) profile likelihood and 

marginal Bayes posteriors are reviewed. 

Chapter 5 considers quantitative notions applicable in a modelling framework and illustrates 

these mainly by reference to the exponential family and the location-scale family. The characteri- 

sation properties of posterior functionals such as the mean are determined. The quantitative 

behaviour of means and variances, applicable in a robustness setting, is described for flexible 

classes of a priori input in the form of a scale mixture of normality. 

Chapter 6 views more formal, possible, quantitative measures, via the concepts of differential 

geometry developed in Chapter 2, in the form of derivatives of possible Bayes mappings. These 

are primarily useful as a posteriori summaries, in the form of curvature measures, warning of pos- 

sible departures from the current model in the form of curvature measures. The relationship of 

such curvature measures with the model selection criterion of Chapter 3 and profile likelihoods in 

Chapter 4 are discussed. Furthermore, a survey of the relationships, in the form of inequalities and 

local approximations, between the information measures viewed as Bayesian utility measures are 

explored, with a view to quantifying possible sensitivity departures. 
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Chapter 2: Utility structures for reporting probability beliefs 

In order to formalise procedures to aid us in the specification of interesting choices of beliefs, 

as represented by probability distributions, the principle of maximum expected utility (Lindley 

(1972), Jaynes (1982b), Good (1950)) over a subset6 of the space of all distributions ýP is adopted. 

Thus it is required to specify a utility function on 16, that is u: 16 -> R. In most applications this 

can be viewed in the more general setting of a utility for a pair of distributions P and Q: for 

example, prior and posterior pairs, or a pair (P, Q) where Q is an approximation to the less tract- 

able belief P (de Finetti (1979)). The latter decision problem has an associated Bayes risk, 

Ep(u(P, Q)), denoted by R(P, Q). In general R(P, Q) will not be symmetric in P and Q. 

This chapter reviews the literature on the characterisation of such utility structures, the loga- 

rithmic scoring rule playing a central role as the only utility being local and honest for the report- 

ing of beliefs (Bernardo (1979a)), thus establishing a link with the Kullback-Leibler divergence 

between two probability measures (Kullback and Leibler (1951)). Further characterisations are stu- 

died in the context of the decision problem of simultaneously approximating two distributions. It is 

shown that other well-known measures of distance between probability measures, for example the 

a-distance, can be viewed as Bayesian utility structures. A direct application is to the connecting 

of two families of measures, itself applicable in a variety of statistical problems: for example; 

reporting an expert opinion, building a model elaboration in a hierarchical fashion, or comparing 

competing models (Box (1980), Smith (1983)). 

one natural way of viewing the class 16 is itself defined in terms of a utility, or distance, 

constraint. Here we consider variational techniques for the determination of measures under the 

principle of maximum expected utility over such classes 19, and we can appeal to notions from 

differential geometry to interpret the nature of the solutions: for example; midpoints, shortest lines 

or geodesics. 

(2.1) Decision problems on Y 

In this section we view possible specifications and characterisations of utility functions for 

the class of decision problems of reporting and approximating distributions. Let P, Q (: - 16, then the 

utility of the pair (P, Q) is a function u: 6xg _* R and the expected utility, under the belief P, is 

denoted by Ep(u(P, 
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(2.1.1) Reporting the prior-posterior pair 

Let 0 denote the parameter of interest and x the data. It is required to construct a utility 

function for the decision problem of reporting our beliefs as represented by (p(O), p(O I x)). The 

following characterisation emerges from Bernardo (1979a) and is closely related to Seidler (1959). 

Theorem (2.1.1) : The logarithmic scoring rule is characterised by the assumptions that it is local, 

honest and updates in a linear fashion. 

(i) u(-) is local, 

U(P(. ), X. 1 x» = U(P(0), p(0 1 x» - 

(ii) linear updating, that is a gain in utility of the form 

U(P(O), P(Olx)) = u*(P(Olx))-u*(P(O)) 

for some utility function u* :R -> 

(iii) u*(. ) is honest, that is P=Q is a solution to 

max Ep (u(Q) - u(P)) 
p 

Proof : Consider the calculus of variations of the functional 

B(p(O)) = Eel., ( u*(p(Olx)) - u*(p(O)) ) 

the solution to which are given by the Euler-Lagrange equations (see Hildebrand (1965)), 

d( aB ) aB 

dO ap' ap 

for some constant A. Let p., denote the posterior measure, then by virtue of the local assumption 

on u p., =p is a solution to the above equation. Therefore evaluating at p, 

Du*(p. ) ap. 
(p) 

du* ( 

ap, DP dp 

) 

However, from Diaconis and Freedman (1986) (see also (6.1.1)) we have 

apx (P) ap 

Hence, 
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du* X 

dp p 

which on integration yields 

(p) =A logp +B. 

for some constants A, BER, as required. 

(2.1.2) Approximating P by 

Consider the problem of approximating a distribution P by another, Q say. Here theorem 

1.1) applies to characterise the logarithmic utility. Denote the corresponding Bayes risk by 

I(P, Q) = Ep(u(P) - u(Q)) = Ep log - 
( PQ ) 

which is the Kullback-Leibler divergence between P and Q (Kullback and Leibler (1951)). 

(2.1.3) Simultaneous approximation of the pair (F, G) 

Suppose F, G (=- ýP and it is required to approximate the pair (F, G) by a single distribution 

Of primary concern will be the construction of the mid-point and shortest line through the two 

families F and G. The following notation will be used; let d(Q ; (F, G)) denote the expected utility 

of the distribution Q with respect to the pair (F, G). 

An extension of the ideas in (2.1.2) is to select d(. ) to be of the form 

d(Q ; (F, G» =u *( R(Q, F), R (Q, G) ) (2.1.1) 

comprising the expected utilities of Q approximating F and G separately. 

A natural choice of the utility u*(. ) which enables the mid-point and shortest line to be deter- 

mined is to choose the utility distance for all f, gER to be 

max (f, g) . 

Combining this with (2.1.1), under a logarithmic scoring rule gives the measure 

dl(Q) = max(I(Q, F), I(Q, G». (2.1.2) 

Note that dl(-) is symmetric under interchange of F and G. In general it is not symmetric under 

interchange with Q, in which case the measure 

dl*(Q) = max ( I(F, Q), I(G, Q) ) 
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is obtained. 

(2.1.4) Variational solution to choice of 

The distance (2.1.3) and its variants can now be implemented in a range of decision problems 

for selecting the approximation Q. The technique required is that of the calculus of variations (see 

Hildebrand (1965)). Suppose we have a linear updating utility, then, 

Theorem (2.1.2) : Let the distance d. (Q) be defined by 

d. (Q) = max ( EQ(u(Q) - u(F)), EQ(u(Q) - u(G)) ) 

and coffespondingly define d. *(Q). Assume that as x -ý - the following smoothness condition 

holds, 

QU(Q) -+ 0- 

Then the following solutions are obtained, where 111- 12, E 

(i) inf dl*(Q) satisfies Q 

u(Q) = (1-11)u(F) + ýIu(G) + ; L2 
. 

(ii) inf d,, (Q) satisfies 
Q 

((l-A, )F + ; L, G)u(Q) = X2Q 
. 

(iii) A corollary to (2.1.5) is that inf dj*(Q) satisfies 
Q 

(I -, Z, )F +A, G= 

Proof of (i) : First we recast the problem of determining inf d. (Q) as the equivalent variational 
Q 

problem, 

inf EQ(u(Q) - u(F)) subject to EQ(u(Q) - u(F)) = EQ(u(Q) - u(G)) 
92 

As Q is a density, an equivalent variational problem is 

inf EQ (u(Q) - u(F)) subject to EQ (u(G) - u(F)) =0 and fQ 
Q 

Define the functional R(-), for A,, ý2 E R, by 
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R(Q) = EQ(u(Q) - u(F)) - AIEQ(u(G) - u(F)) - ý2y Q- 1) 
- 

(2.1.6) 

Consider one parameter variations of R(Q) given by the Euler-Lagrange equations (see Hildebrand 

(1965)) 

d (Qu(Q)) - u(F) - ; Ll(u(G)-u(F)) = 12 
dQ 

on integration, 

QU(Q) = ý2Q + (1-11)u(F)Q + Alu(G)Q +A 

for some AER. By the smoothness assumptions, Qu(Q) -> 0 and Q -ý 0 as x -4 -, therefore 

Hence, 

U(Q) = (1-, Il)u(F) + ýju(G) + A2 

as required. 

Proof of (H) : Proceeding as in (i) the required differential equation is 

((1-11)F + A, G) 
du(Q) 

= '12 (2.1.7) 
dQ 

which on integration yields, 

((l -AI)F + AIG)u(Q) = 12Q+A. 

But G, F, Q --+ 0 as x -ý -, implying A= 

Proof of (iii) : Using (2.1.7) with u(Q) = log Q gives 

(I -, I, )F + ý, G = A2Q 
, 

but due to the fact that we are dealing with probability measures, X2 = 1, giving the required result. 

The linear updating structure of theorem (2.1.4) lends itself to many applications and the 

geometries associated with it will be discussed in Section (2.2). Here we list some alternatives 

which prove useful in certain instances. 

Theorem (2.1.3) : Assume that the conditions for theorem (2.1.2) hold, then 

(i) Under the L2 and L '-norms for the risk R(-, . )the linear connection is the shortest line 

Q= (1-. %1)F+t1G. 
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Under Rdnyi's a-distance for the risk R(-, -) the shortest line is represented by the family, 

11(a-1) a-I a (. UIF'I(a-') +. u2G 

Proof -. Consider the case of the L2-norm, the solution follows as in (2.1.6). The functional is now 

R(-) =f (( Q-F)2 + ; Ll( (Q-F)2 _ (Q-G)2) + 12Q). 

0 
The Euler-Lagrange equations yield 

(Q-F) - A,, (Q-G) = A, 

for some ýER, rearranging gives the linear connection. The proof for the Ll-norm follows from 

the triangle inequality and that for R6nyi's distance follows by the same argument as the L2-norm. 

The structure (2.1.3) can be used to characterise further well-known utilities; for example, the 

power utility is a solution to the following variational argument. 

Theorem (2.1.4) : Suppose we have the following decision problem. Assume u(-) is local and 

honest, where honest is defined by the constraint that P is the solution to 

mip 
f Ptu(P) ) subject to f Pu(P) = const 

p 

Then u(. ) is necessarily of the form 

U(P) 7- 41PA' + U2 

for some p 1,92, ) 
A E=- 

Proof : Define the functional R(. ) by 

R(u) =f (Ptu(P) + IIPU(Pt) - A2Pt) 

A one parameter variation of R implies, by the Euler-Lagrange equations, that 

U(Pt) - 
; Llpt au 

äp-t ý -- 
4 

which on integration gives a solution of the form (2.1.7), as required. 

Corollaries : (i) The same solution is attained for the problem, 

mp 
(max f Ptu(P), f Pu(Pt) 

p 

A 

(ii) The logarithmic scoring rule is a special case of the above, as Ilm 
X 

log X. 
A -ý 0 
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The above can be extended to justify the a-distance (R6nyi (1961)) as a Bayesian utility 

measure when formally reporting beliefs (Good (1968,1969)). The required constraint is that of a 

ratio updating for the gain of information, parallelling the linear updating structure of (2.1.1). 

Theorem (2.1.5) : Suppose we have a local and honest utility structure that can be decomposed as 

a ratio, that is, there exists u*(-) such that, 

U(Pý, P) - 
u (P) 

for all Pý, P c. P. Then, for some C, A E=- R, u(-) is necessarily of the form, 

U(pt, P) = CP - 
p t(pt)l - 

Proof : The Bayes risk is given by 

R(P) = Ept(u(Pt, P)) 
, 

by (2.1.8), 

u* (P ) 
R(P) = Ept -i - (u (P) ) 

A one parameter variation, with respect to Pý, given by the Euler-Lagrange equations, is 

u(P1) au Pt 
(2.1.9) 

u(P) apf u(P) 

but Pý =P is a solution to (2.1.9) by the honesty of u(-). Hence, 

au 
-- DPO f -u(-pl 

Therefore, on integration 

u(p) = c(PT-1 

as required. 

Note that division by Pý is required, containing the implicit assumption that pt is absolutely 

continuous with respect to P. Thus, in instances where this fails, for example, truncated parameter 

spaces, the choice of particular utility (or distance) requires caution. 
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(2.1.5) A non-local utility structure 

One clear direction for the extension of the utility structures analysed so far is to construct 

non-local utility structures. Previous techniques based on invariance have been used to characterise 

such structures (Amari (1982a), Rdnyi (1961), Good (1966a)). A direct application is to the possi- 

bility of requiring a utility structure for reporting beliefs p(O I x), but where a further decision prob- 

lem is specified for which the posterior is to be used. The technique employed will be to induce 

the non-local utility for the former decision problem with respect to the loss structure involved in 

the latter. 

Consider the "pure" inference decision problem specified by utility u: 6 -> R and posterior 

measure pej.,, (-), noting the fact that it is a member of the class 16. Then the measures, UnOIx and 

Ex ( UO, I' ), will be useful as a posteriori and a priori risks, respectively, for assessing statistical 

questions. For instance, define 

UOIX = nf u( pe )p(O I x) dO 

Furthermore, assume that a loss structure L(O, 0') exists, where (0,0'*) E 60xW, thus quantifying 

the loss in reporting 0' when 0 is the true value. In order to incorporate this into the structure of 

the former decision problem, an invariance argument (Good (1969)) leads us to consider the class 

of utilities of the form, 

u( po 1.7, (-) )=U( Eo, (U-1( L(O, 0')) )) 

for some function U: R -> R. Hence the curvature of the loss function is taken into account. 

Note that if L(-, -) collapses to the line 0= 0', then (2.1.5) is precisely the assumption of a local 

utility. A further interesting characterisation of non-local utilities in the form of mixtures, using 

Abel's theorem, is given in Good (1966a), Lindley (1972). The above framework has many appli- 

cations in statistical modelling; for example, quantifying the influence of observations, selecting the 

sample size, and choosing the design matrix (see section (3.3.1)). 

Consider the following choice of logarithmic utility structure for U(. ), 

1 
log 

a 

so that the non-local utility becomes, 

U0 Ix 
=1f p(0 1 x) log (f exp( a L(O, 0') )p(O')d0' d0 

. 

The following result of Good (1969) involving the choice of loss structure will be applicable in 

Chapter 3, where an equivalent result with the asymptotic information gain under a local utility 
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structure will be made apparent. Consider the limit as a tends to zero, 

lim UOlx f 
p(O)Iog 

P(o))dO, 

a --* 0 

(A(O) 

where A(O) is related to the curvature of the loss function, 

a2 L(O, 00) 

(0) 
aoao p 

Thus the solution to the reference prior under the above combination of decision problems can be 

deduced from Good (1969) to have the form 

ir(0) -A (0) - 

To obtain a link with the local utility structure and the concept of missing information, consider the 

natural loss structure for the reporting of the likelihood structure as given by 

L(O, 0') =f f(x 1 0)log 
( 

f(x 10') 

) 
dx 

. 

Then (Good (1969)), 

z(0) = (I(o) ), 
where I(. ) denotes Fisher's information. Thus the reference prior reduces to Jeffrey's prior (Jef- 

freys (1961)). 

(2.2) Differential geometry in statistics 

Consider a class W of measures with densities with respect to some dominating measure y 

denoted by p(O). Let 1(-) denote the log density. Typical examples for the nature of the class W 

are: the prior-posterior space, likelihood space or predictive space, depending on the nature of the 

required inference. 

There are many ways of considering the geometry of a statistical model. Primarily we will 

concentrate on the geometry of the parameter space and of the space of distributions ýP. First, the 

geometry associated with the parameter space can be determined via the Fisher's information asso- 

ciated with the family of measures (Rao (1945), Jeffreys (1961)), allowing curves and surfaces to 

be defined. Secondly, and central to the Bayesian methodology, the geometry of the space of dis- 

tributions is considered. Here the geometry will be induced via the Bayes risk of the decision 

problem at hand, the risk being interpreted as a measure of distance (or discrimination) between 

two probability measures. Such associated geometries are discussed in Amari (1982b) and were 

implicit in Jeffreys (1961) for constructing invariant prior measures. The modelling criterion (see 
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(3.1-1)) can be viewed as such a discrimination measure on P. The criterion of maximum expected 

utility for the selection of prior, likelihood and design inputs can be viewed in this geometric set- 

ting. 

(2.2.1) a-connections and a-geodesics 

In the context of a model elaboration with parameter A consider the induced smooth curve 

p(OIA) in 19 together with I(OIA). The parameterisation by A allows us to discuss the associated 

geometries of the model. A function of central importance is the score function with respect to ý, 

denoted by 1, where 

d 
= 

this itself has previously been proposed as a quantitative measure for judging model robustness via 

the marginal beliefs for the data (Box (1980)). It satisfies 

Ee Ix 
d 

1(01A) 
( 

d, ý 

Under suitable smoothness conditions we can define the tangent space, Tp(. ), of 6 at p(-) by 

TP =f g(O) I Ee( g(O) )=01. 

A tangent vector can then be viewed as a linear mapping from the set of smooth functions to the 

real line. Amari (1982b) discusses the use and interpretation of Tp in a statistical context. Further- 

more T can be endowed with an inner product structure by 
P 

f, g>= Eg(f(O)g(O) ). 

The information metric then becomes, 

d )2 
J6 Eolx - 1(0 1 A) 9 I; t(. ) 

( (A 

that is, Fisher's information for the one-parameter family of distributions p(O I A). 

The a-connection and cc-geodesic can now be defined. For a parameter a, the curve s(O, X) 

is a parallel displacement with respect to the a-connection along the curve if it satisfies 

s+ a) sI+ 11 (1 + a)Ee I; L( Sl 0- (2.2.1) 

If the tangent vectors I are parallel displacements then the curve is called an a-geodesic. By (2.2.1) 

they satisfy 
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a)12 + .j (1 + a)I(. ) .2 

Note that the (a = l)-geodesic connects the two measures via the exponential embedding while the 

(a =- l)-geodesic is the linear, or mixture, connection, thus neatly parallelling their corresponding 

roles in the decision -theoretic framework of Chapter 3. The case a=0 leads to a differential equa- 

tion via (2.2.1) similar to that obtained for the minimisation of Fisher's information as required in 

Chapter 3. 

(2.2.2) Geometry of the space of distributions 

Consider now the intrinsic geometry of the space of distributions, Y. Dawid (1977) explains 

this by embedding JIP in a Hilbert space as follows. Let Q be the set of finite measures of which Y 

is a subset. Let y be a a-finite measure such that every member of Y is equivalent to: the map 

Q -> 2-4d___Q1dy embeds Q into an L 2_space, the image of Y being the set 

fgI llgll =2 and g>01, 

that is, a portion of a sphere radius 2. Thus the geometry of the space of distributions will resem- 

ble that of a sphere, where geodesics are parts of great circles. 

The induced distance between two measures p and q is the Hellinger (a = 11) distance, 

defined by 

'( p(p, q) )=1-f 4p-q dy 
. 

Note that locally the geometry for a parameterised family is equivalent to the Riemannian geometry 

as given by Fisher's information, due to the fact that, evaluated at A=0, 

p( P, ý,;, )=( (0) )1. 

A generalisation of the equivalence of the local geometry of any local, honest and ratio updating 

utility structure with the Riemannian geometry of Fisher's information is given in Amari (1982a). 

The construction of the geodesic between two measures is given in Dawid (1977), Amari 

(1982a). The geodesic curve can be parameterised by the elaboration parameter A, for 0 <, A <, 1, 

and is given by 

P(o I A, ) 4- 
_ p(o)) )2 

c(A) (, ýFp(O) + A(ýFq(O) 
A (2.2.2) 

for some suitable normalising constant c(. ). Thus (2.2.2) can be viewed as a candidate for a con- 

tinuous model elaboration of the measures p and q. The interpretation, however, of the model 

parameter I is hard to identify. The Bayes risk associated with such a solution is given by the 
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geodesic distance between p and q, denoted by AH, 

IH =2cos-1f NFp-q- dy 
. 

Thus the Bayes risk for the Hellinger utility can be interpreted as the geodesic distance between the 

two measures. Furthermore the derivative of the prior to posterior map can be defined in such a 

topology (Eplett (1985)) but again a natural interpretation of the resulting measures is lacking. To 

overcome this we instead adopt the variational norm, noting that this is an equivalent metric due to 

the inequality 

I 
-jp(p, q) < V2 < p(p, q) 

Thus from a geometric viewpoint, the two topologies will appear the same, although the 

corresponding distance measures will take different forms. Moreover, the total variational norm 

readily lends itself to interpretation as a utility function and the corresponding measures have easily 

interpretable forms in a robustness setting; see Chapter 6. 

(2.2.3) Geometry of the probability simplex 

Consider a space of measures concentrating on the probability simplex, S'- 1, associated with 

a discrete probability vector p of dimension n. Cencov (1972), Campbell (1985) consider the 

geometry of this simplex in a statistical context. Note that it possesses wide application; for exam- 

ple, when we wish to consider the geometry of a discrete prior or posterior space, or the geometry 

of a discrete likelihood surface parameterised by a vector 0= (01,..., Ok) ERk. The latter will 

induce a geometry on Rk through the metric defined on S'- 1. For convenience assume that 

n-1 =p1 Pi > 0, Epi =1 

1 

i=l 

1. 

The simplex can be embedded in the positive cone, R,, 
, 

by dropping the condition that it forms a 

density. Both sets can be viewed as differentiable manifolds and thus possess geometrical structure. 

Here we review the work of Cencov (1972), Campbell (1985), Amari (1982b), but with emphasis 

on the Bayesian decision theoretic nature of the corresponding metrics. In Chapter 3, a Bayes risk 

will be proposed to assess the statistical model itself inducing a notion of distance. 

To each point PER, +, we can associate a tangent space, itself a vector space, denoted by TP 
- 

The vectors in TP define directional derivatives. A possible set of basis vectors for the space TP is 

given by the coordinate vectors 
a 

api 

A Riemannian metric on R' is an inner product defined on the tangent space in such a way 

that when evaluated at p, < .,. > P. 
is a C' function of p. In a similar fashion to the assumption 
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of exchangeability, we will be interested in characterising Riemannian metrics that possess special 

symmetry properties. The latter condition will be one of invariance under the set of Markov map- 

pings. To define the latter consider a mapping which takes the n dimensional cone to an m dimen- 

sional cone, denoted by 0: Rn+ -> Rm+, which will induce a mapping, 0* : TP -> Tq on the 

corresponding tangent spaces. The function 0*(. ) is known as an isometry if it leaves the inner 

product invariant. 

Theorem (Cencov (1972)) : Consider the Riemannian metric defined by on S'- 1 by 

/aa\= 8ij 
ý -api I -apj lp A 

(2.2.3) 

where 8ij is the Kronecker delta. Then (2.2.3) defines the only Riemannian metric (up to a multi- 

plicative constant) that is invariant under all Markov isometries. 

Proof : See Theorem (11.1) of Cencov (1972). The generalisation to R. ' is given in Campbell 

(1986). 

The metric (2.2.3) now defines the Riemannian distance on the simplex as 

I (d i)2 (dS)2 
p 

z 

A 
(2.2.4) 

thus it is natural to adopt (2.2.4) to explain the geometries of a discrete statistical problem by 

virtue of the characterisation result (2.2.3). Campbell (1985) uses the above structure to unify 

some of the central concepts in statistical modelling methodologies. 

First, a link with Fisher's information can be established. In this case the model consists of a 

parameterised likelihood, pi(O). The induced Riemannian metric on R k' generated by the inner pro- 

duct between tangent vectors 
a 

and 
a 

is given by (2.2.4) is 
a0i a Oj 

aaE1 aPk aPk ( 

aoi Doj 
k=I 

Pk a0i DOj 

the associated matrix being Fisher's information. 

Secondly, in a Bayesian context, the procedure of minimum information divergence or projec- 

tion (Csiszdr (1975)) as a notion of approximation can be explained. Amari (1982b) considers this 

in the concept of an ot-ancillary subspace, Campbell (1985) proves an orthogonality property with 

respect to the metric (2.2.2) when a minimum divergence solution is required under a moment con- 

straint. Note that it is possible to view the modelling criterion (3.1.2) in such a setting, for it is a 

divergence between the prior and posterior measures. 
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Thirdly, the coding theory notion of minimum description, or coding, length has an interpre- 

tation under the distance (2.2.4) (Campbell (1985)). 

(2.3) Discussion 

Utility structures for reporting beliefs on the space of distributions, Y, have been explored 

with a view to constructing model elaborations in a Bayesian statistical framework (see Chapter 3). 

The latter requires the application of the principle of maximum expected utility, the ensuing solu- 

tions are obtained via techniques from the calculus of variations and are generally interpretable as 

the shortest line or midpoint between two measures. The specification of the utility structure itself 

has been explored, the main results being the characterisation of the logarithmic and power utility 

functions. 

Differential geometry provides a means for describing the properties of the space of distribu- 

tions. Such a framework unifies statistical concepts and suggests further directions to explore, for 

example, curvature measures and geodesics. A notion of distance is required and the Riemannian 

metric generated by Fisher's information is mathematically natural by virtue of its invariance pro- 

perties. In Chapter 3 the distance measure will be one induced via the Bayesian risk of reporting 

the posterior measure. However, an equivalence with Fisher's information on the parameter space 

will be established, thus allowing results from differential geometry to apply. 

One interesting link requiring further study is with that of the differential geometry of finite 

state spaces in Physics (see Ingarden (1981)). 



-24- 

Chapter 3: Bayesian model choice :A decision theoretic criterion 

Statistical modelling requires a high degree of flexibility in specifying interesting functional 

forms for subjective a priori beliefs. This is reflected in Bayesian methodology by the general 

version of the de Finetti representation theorem (Hewitt and Savage (1955)) which establishes that 

the coherent modelling and analysis of an infinitely exchangeable sequence requires the 

specification of prior measures over spaces of distribution functions. Concerned with such a 

representation, Smith (1984) remarked that "the task of translating actual beliefs into the required 

mathematical form of measures over function spaces seems - to say the least -a daunting prospect". 

On the sole basis of mathematical convenience we often proceed as if the prior measure con- 

centrates its weight on a particular finite dimensional family, for example, the normal. In itself this 

immediately poses a vast collection of possible elaboration questions; for example, the type of 

functional form, how many parameters, which parameterisation, specification of prior beliefs in 

such a parameterisation, etc ? 

The methodology adopted will be that of a model elaboration formalisation (Smith (1986)). 

In order to quantify, in a unified manner, the process of model elaboration we adopt a formal deci- 

sion theoretic framework under a utility structure, u(-), defined on the prior space, 16. The principle 

of maximum expected utility then characterises interesting classes of simplified measures contained 

in 6. Our analysis proceeds as if these measures are our natural beliefs, with the tenet that any 

inferences drawn will serve as a good approximation to a full, in general nonparametric, analysis 

over ff. Reliable guidelines on elicitation of prior beliefs and interpretation of reported beliefs are 

lacking in the nonparametric setting, although an elegant theory exists for the handling of large 

tractable spaces of prior measures via Bayes theorem (Ferguson (1974), Antoniak (1974)). 

The application of a fully automatic procedure is far removed from the Bayesian methodol- 

ogy. The role, however, of a formal decision theoretic approach as a mathematical artefact to aid 

in identifying interesting directions for exploration in a model building framework seems inevit- 

able. Subjectivists might adopt such a criterion as a working approximation, while others might 

find the objectivity an attractive feature. Furthermore, interpreting the Bayes risk as inducing a 

concept of distance on the space 16 allows notions from differential geometry to aid us in the under- 

standing of the underlying structure of the set of prior measures. For example, equipped with a 

suitable topology, the space of probability measures, Y, can be viewed as a sphere (Dawid (1977)). 
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The specification of beliefs now takes the form of a class 19 and a utility structure defined 

over 16. Consider the generation of interesting classes 6. Two possible directions can be taken: 

First, from a foundational viewpoint, the nature of 16 will typically be one of a symmetry 

constraint for the joint beliefs p(X). For example, partial exchangeability or random centred sym- 

metry, the latter necessarily leading to the class of scale mixtures of normality. Ressel (1985) 

exhibits conditions for the representation of measures in terms of mixtures. It is noted that such 

representations depend heavily on the underlying structure of the sample space; for example, the 

original de Finetti characterisation theory leads to mixtures of binomials. Moreover, there are close 

links with the notion of sufficiency and partial sufficiency (Diaconis and Freedman (1981)). The 

notion of sufficiency playing a central role in the modelling criterion under a logarithmic utility for 

the Kullback-Leibler measure is invariant with respect to sufficiency (Kullback-Leibler (1951)). 

Thus we need only view the assessment of the model via the associated sufficient statistics, in a 

similar manner to the theory of stochastic complexity (Rissanen (1987)). 

Secondly, it seems appealing to generate (in some optimal way) the class is from initial build- 

ing blocks, for example normality. One such elaboration is simply to consider the e-contaminated 

class of normals. This construction can be shown to be optimal, in the sense that it is generated by 

the geodesic between the normal family and an arbitrary measure H, under the variational utility 

structure. 

The asymptotic Bayes risk for reporting the posterior distribution can, in general, be inter- 

preted as the missing information concerning the parameter 0. It will be shown that this yields a 

unified modelling criterion for the selection of; dimensionality, likelihood and prior combinations, 

design matrix. In so doing it unifies, and extends, previously proposed criterion of Schwarz (1978), 

Bernardo (1979b), Rissanen (1987) and is closely related to that of Dawid (1984). 

The appropriate elaboration is characterised by principle of maximum expected utility (Lind- 

ley (1972)), In the parametric setting with a known likelihood and elaboration, the procedure, if 

formally applied, reduces to the determination of the reference prior of the (vector) parameter 0 

(Bernardo (1979b)). 

A fruitful class of problems suggested via the "what if" principle is the choice of a univariate 

elaboration parameter I from a decision theoretic procedure, this requires the specification of the 

current modelling position and a class 16 of possible departures. Then the minimisation of the 

induced Bayesian risk with respect to 6 yields an optimal one parameter variation, indexed by the 

modelling parameter 1, through our current model. A full Bayesian analysis would require a proba- 

bility measure over the whole space 16, but here we select a measure that concentrates with proba- 

bility one on the one parameter variation. The model flexibility is determined via the prior measure 
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on 1, denoted by p(X). 

The flexibility of the approach lies with the input class 16, which can either be infinite dimen- 

sional; for example (. 6 -contaminated by an arbitrary measure H) or specified by a finite dimensional 

indexing parameter. In some sense the one parameter variation can be viewed as the most robust 

departure from the current model with respect to the class 16. For simplicity, suppose the current 

model is given by the normal family parameterised by 0= (y, a 2) 
. 

The following elaborations are 

exhibited as one parameter variations with respect to some 16; the Huber family (Huber (1964)), the 

t-family and the pair (AD, ; Lu) denoting the double exponential and uniform distributions. 

(3.1) Asymptotic information gain 

Ibragimov and H'asminsky (1973) obtained regularity conditions for the Shannon information 

between the prior and posterior. Here we briefly review their results which calculate the missing 

information about a parameter 0. Consider a family of measures [P9 10E 601 where 60 C Rk. Let 

f(x 10) denote the corresponding densities with respect to some a-finite measure y. Furthermore, 

assume that 0 is a random variable with density p(O). Define the gain in information in 0 con- 

tained in the sequence X by 

10 =ff P(O)f(x 1 0)log 
() 

dxd0 
. n 

ex 
Xx) 

Consider the process Z,, (a) defined by 

Zn(a) 
f(xi 0+ O(n) a) 

i=l Axi 10) 

for a suitable normalising constant O(n). By the martingale convergence theorem the above process 

converges to a limiting process as n -> -, denoted by Z(a). Therefore, 

Ino log O(n) -f p(0)109 P(O) - Eo log p(O + O(n) a) Z, (a)da 
f 

P(O) 

Under suitable smoothness conditions on the prior, the dominated convergence theorem implies 

that, as n -> c*, 

lim ( 1. '0 + log Offl) =-f p(O)log p(0) - Eg (log f Z(a) da) 
. 

(3.1.1) 
n>ý 

It will be shown that (3.1.1) provides a unified modelling criterion. Moreover it yields a general 

version of theorem (4.2) in Rissanen (1987) where the information gain is interpreted as a coding 

length. Note that the asymptotic gain is in fact infinite to learn about a continuous parameter. 

However, if the cost of experimentation is allowed for the gain can be stabilised (see (3.1.3)). 
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Consider two possibilities for the behaviour of O(n): 

(i) In the smooth case, O(n) = ll-ýn-, the limiting process is Gaussian, 

Z(a) = exp«I1(O)a)TZ - '(I(O)a)Ta) 2 

where Z is a standard multivariate normal random variable and I(. ) is Fisher's information. There- 

fore, the asymptotic information gain (3.1.1) decomposes as 

lim 118 -k log 
(n )) 

2 27re = P(O)IOg 
( 

P(O) 

) 
dO. (3.1.2) 

Thus, from a formal decision theoretic perspective, for a smooth k dimensional model, equation 

(3.1.1) quantifies the sensitivity of the model to the following choices; dimensionality k, sample 

size n, prior p(O), likelihood f(x 10) and design matrix (via the Fisher information), thus yielding a 

unified modelling criterion. 

A direct application of the above is to the location family where the necessary regularity 

conditions for the two cases 110(n) = -4rn-, n are given in lbragimov and Hasminsky (1973). 

(ii) Consider the non-regular situation for O(n). Depending on the smoothness of f(x 10) the follow- 

ing possibilities occur for I 10(n); n'y for y> 11, n log n. (see lbragimov and H'asminsky (1973)). 

(3.1.1) Information on a cost scale with application to selection of dimensionality. 

The missing information as defined by (3.1.1) leads to a unified modelling criterion. The 

amount of missing information concerning a continuous parameter will be infinite. The first term 

quantifies, as -, 'k log n, the rate at which we can expect to learn about our vector 0, parallel to 

previous model choice criterion; for example, Schwarz (1978), Rissanen (1987), Dawid (1984). 

Clearly, the cost of experimentation must be included in the unified modelling criterion, for other- 

wise the optimal solution would be to sample to infinity and almost surely determine 0. R6nyi 

(1961) proves that the information measure is comparable to a cost scale, so if c is the cost of 

experimentation on an additive scale the criterion (3.1.2) gives risk 

lim '0 
k 

log n+ 
cn) 

. 

(In 

2( 2ire 

) f 
P(O)IOg 

11(0)11 
dO 

( 

p(o) 

) 
(3.1.3) 

Clearly a natural choice for the rate at which we can hope to learn about parameters under such a 

risk structure is given by 

2 cn 

log 
(n) 

27re 
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for this stabilises the asymptotic information gain to the (generally finite) Kullback-Leibler distance 

between Jeffrey's prior and the actual beliefs p(O). The latter explains the nature of Jeffrey's prior 

as one of an approximation to a proper belief p(O) and quantifies the behaviour of individual 

modelling characteristics. 

Note that if (3.1.1) is viewed as an automatic approximation for all n, then a continuous 

elaboration is beneficial only for n >, 16, otherwise a simple discrete mixture seems appropriate. 

For large sample size it is apparent that (3.1.1) gauges the optimal rate at which we can expect to 

learn about unobservables as O(n/log n), allowing us to increasingly elaborate as the data increases, 

an idea previously suggested by many authors, for example, Huber (1973). The term -2k log (2; re) 

can be interpreted as the entropy of ak dimensional standard multivariate normal. 

(3.1.2) Risk under an incorrect model specification 

First, an implicit assumption in the framework of defining the missing information for 0 is 

that the process generating the data is an element, f(x 100) say, of the modelling space, for then the 

posterior converges almost surely to 00. Clearly, in such an instance the divergence between prior 

and posterior measures the missing information about 0. 

Consider the scenario where the sequence X is generated by the measure G(x) 0 Pg. It is then 

known that the posterior converges to the asymptotic carrier, A0, of the set EO (Berk (1966)). The 

decision problem now requires a specification of the loss associated with the family (Pol. Suppose 

our loss structure is additive and defined by the distance of an element of (Pol to the density g(y, -) 

after observing the data x. Thus, an intuitive construction for the Bayes risk for the vector (0, PO) 

is given by 

I, ( 'o, f(y 1 *»( g(-» = 19 + Eg 
(f 

g(y 1 x)log 
() 

dy) 
ffy 10) 

where fty, -) E Pg. That is, the measure of gain in information concerning 0 plus the risk in 

approximating the inference from the true measure G(. ) by that of the family [POI after observing 

data x. Note that, asymptotically, the final term is (see Berk (1966)) 

sup 
0 C= "f 

g(y I O)IOg 
(f(y 

10) 

) 
dy 

, 

in the case g(-) E PO it is zero. Moreover, it is zero if g(x) possess enough symmetry, for example, 

centred symmetry if fP01 is normal, to be decomposed as a mixture of the family fP01. In which 

case g(y 10) = f(y 10), and the models are equivalent after observing the sequence X. In a sense the 

model f(x 10) is robust for all possible mixtures of itself. 
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(3.1.3) Example : The location problem 

Suppose that our model consists of a location family induced via the representation (1.1.1), 

giving rise to a density denoted by f(x - 0) and prior measure p(O). Fisher's information, 1(0), is 

independent of 0, thus write 1(0) = If(. )(. ) noting the dependence on f(-). Under suitable regular- 

ity conditions (Ibragimov and Wasminsky (1973)), the modelling criterion (3.1.2) with k=I 

yields, 

lim 1", 9 
-I log 

(n 
log If(. )(. ) - H(p(O)) 

2 27ce 2 

thus quantifying the missing information concerning the location parameter 0. 

Hence, as in the discrete case, the influence of the prior on the Bayes risk is determined by 

the entropy functional, H(p(O)). Note that maximising this over the space Y yields the improper 

lebesgue measure for the prior p(O). Moreover attention can be focused on the modelling structure, 

f(. ) where the necessary functional minimisation is that of If(. )(-). Thus a link has been established 

between a formal decision theoretic proposal and previous ad hoc suggestions in a classical robust- 

ness context involving Fisher's information. Note that, Huber (1981) has adopted a sceptical stance 

where he states "Bayesian statistics ... confounds the subject with admissible estimation in an 

ad hoc supermodel, and still lacks reliable guidelines on how to select the supermodel and prior so 

we end up with robustness". 

The formal criterion of minimisation of the risk given in (3.1.1) is adopted to select the Baye- 

sian model. In a sense this can be viewed as a Bayesian definition of robustness; for the conse- 

quent modelling structure is by construction least sensitive to data input, thus guarding against 

aberrant observations. Note the parallel concept underlying the reference prior as that of the most 

sensitive prior, that is most to be learnt, to the data input. The equivalence exhibited in (3.1.1) 

with the minimisation of Fisher's information allows results from classical robustness to be applied 

in the Bayesian model choice context. In the latter we are concerned with determining interesting 

forms of intersubjective models which eventually observers will agree on, thus the regularity condi- 

tions on 16 for the uniqueness are required. These are achieved via the equivalence with Fisher's 

information where existence and uniqueness are given by a variational argument (Huber (1981)); 

existence is established for vaguely compact sets 16, uniqueness follows if 16 and the set where the 

density of the minimising distribution are both convex. 

The following theorem can be applied to exhibit the Huber family as a formal Bayesian deci- 

sion theoretic solution to a well-posed modelling problem. 
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Theorem (Huber (1964)) : Consider the class of contaminations of the distribution function G, 

denoted by '6G :: -- [(I 
-, v)G + cH IH arbitrary). Then the variational problem, 

min 
ig" 

has solution given by 

fo(x) = 
(1 

-cý(xO)exp( k(x-xo) )x<, XO 

= (i -eý(X) XO <, x <, X, 

= 
(1-*(xl)exp(-k(x-xl» x, > X, 

where xO < x, are the endpoints of the interval I g'lg I<k, k itself being a function of C. 

The following theorem can now be deduced. 

Theorem : The solution to the formal Bayesian decision problem, 

min 12 
16. 

is given by the Huber family as defined by (3.1.3). 

Proof : By virtue of the decomposition (3.1.2), the following equivalence of holds, 

min Il min if(. )(. ) 
Is,, 16" 

the solution to which is given by (3.1.3). 

(3.1.3) 

A direct application is to a possible elaboration from normality, where G is the normal distri- 

bution function conditional on y and er, denoted 0. Then a one parameter elaboration from nor- 

mality, as determined by the criterion (3.1.2) with solution (3.1.3), is given by 

fH(xj, ý) = 
1-fexp(-u; 

L(x)) ý2-yr 

2 Ix I< 
'ý' Uj(X) Ix 1 

.1 where, suppressing y and a, u; t(x) = -Ix for for Ix the so- 2 

called Huber family. The indexing parameter A is defined in terms of e by 

20(A) 
_ 20(- A) 

A 

By definition of uA, (-) we see that as A varies the double exponential and normal families are 

obtained as limiting cases. Thus the Huber family can be viewed as a model elaboration connect- 

ing these two families, contrasting the exponential embedding (see section (3.4)). 
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Example : The location-scale family 

Consider an infinitely exchangeable sequence, X, for which we shall impose a further sym- 

metry constraint. Let Igs denote the class of distribution functions F that are symmetric about zero. 

In the following we will be interested in mixtures of the form 

ff n 
FX(xl, 

..., Xj rl F(xi - 0) p(dF, d0) 
, 

ex i=l 

where the measure y(-, -) represents the a priori beliefs over 16s x R, corresponding to the modelling 

structure f(-) and the parameter 0. For a multivariate generalisation in the setting of an array of 

partially exchangeable random variables, see Aldous (1981). 

First note that the necessary symmetry property to characterise a mixture of the form (3.1.4) 

is the notion of a conditionally location symmetric process (Freedman and Diaconis (1982)). The 

concept is a natural one given the "what if" principle where we require to report a function of the 

data sequence which in turn will be interpreted as a consistent estimator of the location parameter. 

It naturally extends an idea of Gauss (1821) who originally proposed the mean as an interesting 

summary statistic which also happened to be appropriate for the special case of the normal family 

(Huber (1972)). 

A further decomposition of the representation (3.1.4) for the joint density, Fx(-), is as an 

independent and identical mixture of a location-scale family, denoted by F(. ), given by 

FX(xl,..., x�) = Il F 
Aer g(0, A, er, dF) 

. ff i=1 (ýý0) 
In order to obtain interesting representations of the measure u, the properties of such a representa- 

tion will be assessed by the Bayes risk of the decision problem of reporting the parameter of 

interest, either 0 or a. 

For the location problem the implicit symmetry involved decomposes the modelling criterion 

naturally as a sum of terms, one involving the function F(. ) the other a function of the 

a priori assumptions. The optimal sub-family of measures is obtained by minimising the Bayes 

risk over a space 6 defined, generally, by moment constraints. 

Furthermore, the criterion (3.1.2) proposes Fisher's information as a nonparametric roughness 

measure, previously justified on grounds of approximation via a Kullback-Leibler measure. (Good 

and Gaskins (1971)). Such a roughness penalty leads to the theory of exponential splines. 

The representation (1.1.2) allows flexible modelling of the data distribution through the meas- 

ure Here (ju, a) will be interpreted as extrinsic parameters whereas A, together with F(-), 
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The representation (1.1.2) allows flexible modelling of the data distribution through the meas- 

ure u(-). Here (y, a) will be interpreted as extrinsic parameters whereas ý, together with F(-), 

represents model flexibility. One possible scenario in the parametric setting is to assume a particu- 

lar functional for the part of ju 
that assigns weight to dF. The flexibility of the model then depends 

on the measure ju(0, a, A), the pure modelling component coming from the specification of 

P(A 10, a). 

If we assume that F(. ) is normal, then by varying the prior on A we obtain the space of scale 

mixtures of normality, including the exponential power family (Box and Tiao (1973), West (1987)), 

the t-family (Fraser (1976), Relles and Rogers (1977)) and the logistic distribution (Andrews and 

Mallows (1974)). For a survey of applications for Bayesian robustness, see Dempster (1975), 

Smith (1983). 

By virtue of the fact that the flexibility is determined via the a priori assumption p(A ly, (3), 

the decision theoretic procedure will reduce to the determination of reference-type priors, the infor- 

mation gain and corresponding constraints. However, care must be taken with the interpretation of 

extrinsic parameters as X varies (Simar (1983)). 

The asymptotic information gain can be decomposed in a number of ways depending on the 

nature of the a priori input, for example, under independence and orthogonality (see (3.1.6)) we 

obtain 

IOA 
= Iýl + io 

Furthermore, from the modelling criterion (3.1.2), under a parameterisation for which Jeffrey's 

prior is lebesgue measure, the asymptotic information gain is purely a function of the prior entropy 

under that parameterisation. 

Example : The scale parameter 

Fisher's information for the scale can be decomposed using the transformation x -* Zx . 

I 

PIM, 

equivalently, in terms of a derivative with respect to x, 

(xd 
log P(X) p(x)dx - A dx 

Let G(p) denote the functional 
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G(p) =xd log P(X) p(x) dx 
f( 

dx 

therefore, the asymptotic gain in information about A is 

1'2' =j log GP(-) -f (log ; L)p(; L)d, 1 - H(p(, Z» 
. 

Thus the missing information about A, which induces a distance on the space of possible choices 

for the measure p(. ), shows that we need only consider the properties of the functional Gp(. ). The 

optimal selection for y will then assign its weight to the p(. ) that minimises G over the space 19. 

Example : Solution for a moment class 

Let the space W be defined by the constraint that, conditional on y and A, the first and second 

moments of p(. ) are known, which, by convention can be achieved by the definitions of p and A- 

The following lemma determines the gamma distribution as the optimal selection for p(. ). 

Lemma (3.1) : In the class of measures with given first and second moments, min Gp(-), is 
X-) 

attained by the gamma family. 

Proof : An algebraic proof is contained in Kagan, Linnik and Rao (1973) (theorem 13.1.2). Here 

we give a variational argument where the extremal of the above calculus of variations problem is 

obtained from the Euler-Lagrange equation, 

d 2d 
Id2=2 

dx 

(x 
dx 

log P(X)) +2 
(x 

dx 
log p(x)) alx - 

a2x 
. 

Clearly, a solution on R+ for some a, PER is 

xd log P(X) =a- fix 
dx 

therefore identifying p(x) as the gamma family 

p(x) - x"exp(-, 82x) 
. 

(3.1.4) Further examples 

The nature of the model elaboration clearly depends on the structure of the input class 16. 

Thus it is of interest to determine solutions to a wide range of possible subjective assessments of 

the class 16; for example, a moment, a quantile or a distance constraint (e. g. variational norm). 
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First, suppose that 6 is determined by the natural constraint that the variational distance of 

any element is at most e from the normal; denote this class by WvN. The following result, from 

classical robustness, aids in the construction of a formal Bayesian elaboration. 

Theorem (Huber (1964)) Consider the symmetric variational contaminated neighbourhood of 

normality, denoted by 16vN FI sup I F(x) - <15(x) e, f symmetric 
I- Then the solution to 

x 
the variational problem, min If(. )(-), is given by the symmetric density, 

ww 

fo(x) - (cosyax)2 0<x<, a 

- OW a<x< 

- exp(-b(x-b)) x >, b (3.1.5) 

for suitable a, b. (see also Bickel (1981)). For the case e>0.3, and the handling of quantile 

classes see Sacks and Ylvisaker (1972). 

The form of fo(x) is appealing for large values of a, for then the density is uniform in the 

centre, followed by the normal and finally possesses exponential tails. This adds further support to 

the pragmatic use of the computationally convenient three point mixture class, 14, ANI 41 

(Spiegelhalter (1981)). It should mimic the density (3.1.5) closely, and from a subjective viewpoint 

it readily lends itself to a priori and a posteriori interpretation. 

Secondly, suppose that the class 16 is purely defined by a constraint on the first and second 

moments of f(-), the first moment being implicit by the definition of the location problem. In a 

sense, ensuing solutions can be viewed as an initial model for the basis of experimentation. 

(i) Normal and double exponential families 

The following properties of Fisher's information can be deduced from the Euler-Lagrange 

equations for its functional minimisation (cf. (3.1.6)). Alternatively, they hold by virtue of the fact 

that the normal and double exponential are special cases of the Huber family. 

(i) Let 60 =fFf xdF(x) 0, f symmetric 
1, then the variational problem min 10 is attained 

wo 

by the double exponential distribution 

(ii) Let lg,,, =fFIf xdF(x) = 0, f X2dF(x) = Or2 then the variational problem min I!. has 11 

W,, 

solution given by the normal family. 
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Thus the proposed methodology naturally yields the pair fAD, ANJ as possible elementary 

building blocks for initial input into an analysis. By imposing further structure on the class 16, 

elaborations of such a framework; for example, the exponential connection, the Huber family, the 

class [, ýD, AN, Xul are obtained. 

(ii) Logistic distribution 

Consider the problem of minimising Fisher's information over the space of all probability 

measures Y. The required functional minimisation is that of 

p, p') = 
ý)' 

p+ a(p- 1) 
f( (1p 

where a is a Lagrange multiplier. The Euler-Lagrange equations, 

d aB ý aB 

dx ap) ap =0 

yield the following differential equation for the score function u(x) 
d 

log P(X), dx 

du 121 
dx 2 

By direct substitution a solution for the whole of R, with a=1, is given by 

u(x) = tanh - 2 (X) 
so that the density p(x) is logistic, 

e-x 
P(X) = (1+e - x)2 

(3.1.6) 

Furthermore, as a varies, the logistic distribution with any mean and variance can be obtained. 

Thus the modelling criterion yields the logistic error structure as a formal Bayesian decision- 

theoretic solution. A further interesting property of the above density is that it is a scale mixture of 

normality (Andrews and Mallows (1974)). 

(iii) Application to the scale case 

Lemma (3.1) shows that the gamma family can be considered as an elementary building block 

for the study of a scale parameter. It is possible to input further structure into the minimising class 

16 as it the location case. The solutions can be determined by virtue of the fact that if one requires 

the estimation of the scale parameter of a random variable X then this is equivalent to the 
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estimation of the location parameter for the quantity Y= log X2. Thus the results for the location 

case directly apply. Suppose that the initial model for X is again normal. In order to interpret the 

location results for the scale case we note that the corresponding density for Y is given by 

IIu1 
fy(u) = 727c exp(- Ie+ -2u) 

thus Bayesian solutions will take the form of a Huberised extreme value distribution for contam- 

inated classes. 

Ov) Compact parameter spaces 

The techniques of the previous section can be applied to the compact parameter case and 

generalised to the multivariate case. Here we review some of the classical results of Huber (1974), 

Bickel (1981) concerning minimisation properties of Fisher's information. Then, under criterion 

(3.1.1), these will yield Bayesian model elaborations. 

Theorem : The solution to min If(. )(-) such that f(-) concentrates on the interval 1,11 is, 
f(-) 

ul(x) = Cos 2(%) 1XI 
2 

=0 otherwise 

Furthermore, the extremal value for Fisher's information is, 

= ir . 

Proof : The Euler-Lagrange variational equation is given by 

(.. F 
ul ul)op ir 

2 

_TU 
j 

By direct substitution (3.1.7) satisfies the necessary condition. 

Multivariate case 

(3.1.7) 

Theorem : The distribution ulp(-) that uniquely minimises If(. )(. ) among all spherically symmetric 

f(-) concentrating on the unit sphere is given by 

U (IIXII) = CPIIXII-2tjt2(IIXIly lp (3.1.8) 

where t= -1 -1 if p is odd or divisible by 4, t=- (I - 1) if p is even and not divisible by 4. 
2P ip 

Here J, denotes the Bessel function of the first kind of order t and y, denotes its first zero. 
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Furthermore, 

IUILP (-)=4, yl 
2. 

Proof : Using the rotational symmetry, transform to polar coordinates and re-express the varia- 

tional problem as 

min 
frp 

V'(r))2 

dr subject to f rP - 
lf(r) dr 

A-) 
0 

f(r) 
0 

since the relevant part of the Jacobian is rP - 1. Thus the Euler-Lagrange equations yield the follow- 

ing differential equation for the score function yf 

d 
(r P-1 yf, ) -, yl 2 

rP- 
1(yf')2 

=0 dr 

It is noted that for odd p the expression (3.1.8) can be re-expressed in terms of rational and ele- 

mentary functions (Whittaker and Watson (1927)). For example, the case p=3 gives the solution, 

U13(r) 
I sin 

2 (irr) 
0<r< 

21r r2 

= otherwise 

where yj = 7r. 

Hence it is possible to explore optimal properties of the asymptotic information gain on a 

compact parameter space. The elementary functions, cosine and sine, appear to play a central role. 

The characterisations require extension to include well-known families, for example, the von 

Mises-Fisher distribution. 

(v) Finite mixture models 

Instead of applying modelling criterion (3.1.2) to scale mixtures of normality to obtain flexi- 

ble models, consider the case where we require to elaborate on the location structure itself. This 

then allows the possibility of multimodal densities in our model elaboration procedure, useful in the 

analysis of outliers and clusters. Clearly, by virtue of the lack of symmetric shapes the solutions 

will be correspondingly hard to compute. Here we outline one possible scenario. 

Consider the class of location mixtures of normality with discrete weight a at the origin 

denoted by 

'6L" f(x) f O(x-u)dG(u), dG(O) 
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Here the weight on the original model is a and G(-) represents our mixing measure, such a class 

being useful in the event of possible outliers. The parameter a and criterion (3.1.2) will induce a 

finite mixture model elaboration of the standard normal distribution. The necessary variational 

minimisation is, 

min If(. )(-). ig L 

An analytical solution is not available at present although the conjectured solution (Mallows 

(1978)) is a finite mixture model with geometrical weights on the location family of the form, 

Ax) =I pj O(x - gj) 
i 

where, pj = cpj, gj = jg, po = a, thus giving a symmetric mixture whose weights are uniformly 

spread and decrease geometrically. There are clearly close links here with the Bose-Einstein distri- 

bution, itself a maximum entropy solution. 

(3.2) Calculation of the Bayes risk for a modelling framework. 

Consider the "pure inference" problem of reporting beliefs p(O,, klx), so that the Bayes risk 

under a local and honest utility structure is given by (Bernardo (1979b)), 

IO, x 
=f p(x)(f 

f 
p(O�klx)log 

(P('0"'ý1x) 
dld0 dx. 

After algebraic manipulation, we obtain, 

Io,; t =f p(x)f p(; t I x)log p(A I x) dAdx -f p(A)log p(A) dA +f p(A)I 01 A(p(O I A)) dX 

which leads to a decision theoretic interpretation of the corresponding formulas in Borth (1975), 

Perrichi (1984) where, 

IepL =f P(X I A)f P(o I'l, X)Iog 
( 

P(o 11) 

) 
dOdx 

= P(O 1 X)log 
exp(f p(x 10, X)log p(0 1 X, x» 

dOdx 
. 

p(0 1,1) 

In terms of conditional information gains (3.2.3) can be rewritten as, 

I'O, z 
=+E, 1 (10 1; L) 

, 

expressed as a sum of model information gain about I and an expected within model information 

gain about 0 IA. 



- 39 - 

(3.2.1) Asymptotic information gain 

The techniques employed in section (3.1) can be used to define the concept of the amount of 

missing information about (0, A) by determining the asymptotic information gain. The information 

gain concerning the model parameter A, will describe the behaviour of the model elaboration. 

First, define the entropy function, H(-), by 

H(p(Alx)) = -fp(Alx)logp(; Llx)dAdx. 

The following limits are required as x -+ -. There are two possibilities: 

(i) Suppose AEA is discrete then (Rdnyi (1964), see (3.2.4)), 

H(p(, Z 1 x» -> 0. 

(ii) Suppose A is finite dimensional, under suitable regularity conditions (lbragimov and 

H'asminsky (1973), Bernardo (1979b)), 

p(x JX) LI(p(X 1 x» dt -> - log «I(, Z»') 

where i(A) is Fisher's information. Hence the following limit emerges, 

p(, I)q p(x I I)H(p(A I x)) dx) dl --+ 0 if A discrete 

I f 
p(, I)Iog ((I(A))")dl if A continuous 

The above limit now defines the missing information about (0,1) by 

lim Iol =f p(A)Iog ((I(, X))')dl -f p(A)Iog p(A)d. X +f 

(3.2.2) Determination of p(A) 

Consider the problem of selecting a reference prior for the model parameter ý by maximising 

the asymptotic information gain given by equation (3-2.1). The calculus of variations yields, 

log ((I(A))I) + IOIA - log p(A) =a (3.2.2) 

for some a c= R. The asymptotic conditional information gain P9 11 has the equivalent representa- 

tion, 

lim io 11 f 
P(o I A)Iog 

(1(0 1 X)) 
dO 

00 

( 

P(o Ik) 

) 
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therefore, 

lim Ielý' f 
P(OIA)Iog ((I(OIA))')dO 

-f p(OIA)Iog (p(01; L))dO. (3.2.3) 

Assume that the parameter of interest 0 to be a priori independent of A (i. e. p(O 1, J) = p(O)). Thus 

equation (3.2.4) as a function of A becomes, 

lim Io If p(O I A)log ((1(0 1 A))') dO 
n4ý 

leading to the general solution, 

p(A) oc (I(; L))'exp( f 
p(O)Iog ((I(01; L))i)dO) 

. 

(3.2.3) Examples : Scale mixtures of normality 

Suppose that our beliefs about the infinitely exchangeable sequence X possess orthogonal 

symmetry. Thus the joint density can be represented as a mixture of normals (Smith (1981), Ressel 

(1985)). Let 0, the location parameter, be the parameter of interest and a2 denote the scale. The 

above structure written in terms of conditional distributions gives 

p(x JX, At, a) = N(ju, Xar2) 
. 

Marginalising with respect to p(. klu, a) gives 

(3.2.4) 

p(xl. u, a) = 
fp(xjA,, u, a)p(Ajy, q)dA. (3.2.5) 

Consider the a priori assumption that A is independent of y and a (i. e. p(; Llu, a) = p(X)). 

Then a decision problem, specifying the aim of the model elaboration, will be defined in order to 

characterise the nature of p(, ý) which, via (3.2.5), induces the required flexibility in the functional 

form of p(xly, a). The setting will be that of reporting selected posteriors for the focus of the 

elaboration considered as a "pure inference" question. To model the elaboration process, the 

minimisation of the Bayes risk will be carried out, subject to risk and moment constraints on the 

modelling parameter ý leading, in a sense, to a quantitative robustness with respect to the elabora- 

tion. 

(i) justification of the t-family 

Under the framework of (3.1), define the constraint class C, by 

, 6t =f p(A) I lim I' = a,, EA(A) = AN 
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where IN = 1, the index for the normal family, the moment constraint modelling the current model 

status of the normal family. If 0 is the parameter of interest then a clearly sensible criterion, over 

16,, for the decision problem of reporting the marginal p(Ily, cr), is given by 

max(EA(IOPL)). 
16, 

The Euler-Lagrange equations yield the following solution for p(ý), where m and fl represent the 

Lagrange multipliers for the constraints in 16, 

log ((, (A)) I)- log P(A) +m 10 A=p-1,6. 

Hence, 

p(A) - (I(A))lexp(m Io 1'ýt 
- AP) 

. 

Suppose we have a uniform (reference) prior for 0, thus from the normal framework we obtain, 

wo Ix)) I- ; Ll 

(I(A)), - 
At 

. 

Hence substituting into (3.2) gives the solution for p(l) as the gamma family 

Poo - Allm- 1) 
exp(-. Zp) 

. 

By marginalising out I we can act as if the likelihood has a t-distribution with the degrees of 

freedom depending on the Lagrange multiplier m. 

(ii) justification of the double exponential 

Alternatively, suppose the space of possible mixing measures is 16D -, where 

f 
p(A) I lim IA = a,, E; L(A) = 

AN 16D =n 
11 ý 

The solution for the mixing measure is from (3.3), 

p(, ý) oc exp(-flA) . 

By Andrews and Mallows (1974), the relevant marginalised likelihood corresponds to the double 

exponential distribution. 

If the class 16 is defined via an inverse moment constraint the stable distribution of index a 

half is obtained, a member of the inverse Gaussian family whose use for modelling long-tailed data 

on R' was suggested by Kingman (1978). 
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(iii) Justification of the exponential power family 

Suppose a priori that the infinitely exchangeable sequence X possesses orthogonal symmetry. 

The joint density p(X) can be represented as a scale mixture of normals (see Ressel (1985)), a 

result attributed to Sch6enburg (1938). 

In a hierarchical fashion it seems natural to consider the prior mixing measure to also admit 

such a representation, itself requiring a mixing measure over the normal family. Clearly, repeating 

the above process yields a class of measures that can be represented as EE 
... 

EEM's (elaborated 
... 

etc. ) under the given symmetry condition. Then by marginalising with respect to the final prior 

measure the corresponding likelihood structure is formed. 

An interesting application of such a procedure is given by the three parameter exponential 

power family, for it is a scale mixture of normality with mixing measure given by a stable distribu- 

tion (Kanter (1975), West (1987)). Moreover, the stable family of distributions is closed under 

repeated scale mixing of normality, as the stable distribution of index a is a scale mixture with 

respect to that of index la. 2 

The methodology for section (3.1.2) is applied to determine the reference prior p(, ý). The 

form of which highlights the two special cases AD and Xu which have previously been proposed by 

Spiegelhalter (1981) as a model elaboration with particular application to small sample sizes. In 

view of the general modelling criterion (3.1.2) it seems sensible to increase the model elaboration 

at the rate k= 0(n/log n). The class of Spiegelhalter (that is [ AD, 
'kN, 

Au I) corresponding to 

k=3 should therefore perform well for n< 15. By assumption, the likelihood is given by 

IIX_iil 

2 

log p(x a) = log a(X) -IaI+. 
% 

- 109 19 

with this definition, the Fisher information of o- given I is, 

-1 
i-\4 

The solution for p(A) becomes, 

I 
I-A 

P(A) - VW)l 
(I+A) 

yielding the two special cases A=-1,1, corresponding to the Au and AD distributions, respec- 

tively. 



-43 - 

(3.2.4) Discrete case 

Consider two discrete probability measures, P and Q, with finite probability vectors, denoted 

by (pl, 
- .., p,, ) and (q I, -, q, ). The asymptotic behaviour of the information gain concerning 0 is 

well behaved. Rdnyi (1974) proves that the missing information about a discrete parameter 0 is 

precisely the prior entropy, H(p(O)), furthermore the rate of convergence is exponential with sam- 

ple size, n, gauged by a constant, A<1, in turn related to the a-distance. The result is as follows, 

Theorem (R6nyi (1964)) : Let 0 be a discrete random variable. Let be discrete and 

conditionally independent given 0. Then the following holds, 

0 
l< 

In9 
- H(O) < Al' 

for some constant A, where 

apj i -ad min max fA 
a i*j 

where pi corresponds to the likelihood when 0= Oi. Then 0<I<I and therefore 

I! = H(O) 
, 

(3.2.6) 

independent of the process generating the data. Thus the decision theoretic criterion of maximising 

the missing information about 0 in the discrete case reduces to the maximum entropy principle 

(Jaynes (1982b)). 

Further properties of decision problems can be inferred via the bound (3.2.6). For example, 

the rate of convergence together with an application of the Borel-Cantelli lemmas proves that if we 

select the highest posterior probability the correct decision will be made with probability one. 

A problem that has received little attention is that of the behaviour of the discrete posterior 

weights, for example, in hypothesis testing and the analysis of mixture models. The constraint of 

coherence via the updating mechanism of Bayes theorem imposes constraints on the possible poste- 

rior weights, sometimes restrictive, depending on the nature of the prior assessments. Formally, the 

behaviour of the Bayes map is rather surprisingly related to the Kullback-Leibler distance (Matsu- 

bara (1976)). 

it is also possible to explore probability models with optimal properties with respect to the 

asymptotic information gain as in (3.1.2). One such result concerning the maximisation of entropy 

in a class of probabilistic models is the following. 
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Theorem (Rknyi (1964)) : For every T >, 0, among all homogeneous point processes with a given 

rate A>0, the Poisson process has the greatest entropy in the interval (0, T). 

(3.2.5) Infinite discrete case 

Consider two countably infinite discrete probability measures P and Q which are of the form 

P=( Pl-) P2,, --- 
I and Q=[ ql, q2t... I where (pi, qj > 0). The risk of approximating P by Q as 

defined by the Kullback-Leibler distance is given by 

I(P, Q) pi log 
qi 

(Pi ) 

Here Q might denote the posterior associated with the prior P. Unfortunately, a general result for 

the asymptotic convergence of the posterior measure and asymptotic gain in information is not 

available. In fact the behaviour of the Kullback-Leibler distance is highly non-regular. Here we 

note a result of Csiszar (1967b) showing one such adverse property. Let N(P, e) denote the e- 

neighbourhood of P under the Kullback-Leibler distance measure. Then, for ce > 0, there exists 

QE N(P, e) such that for any el >0 there exists RE N(Q, el) for which I(R, P) = o-0, clearly an 

undesirable feature for a Bayesian risk. In the continuous case, however, the Bayes risk for a 

parameterised family does possess continuity properties, Berk (1966), Loh (1984). However, by 

following Rissanen (1983), we can construct (under suitable smoothness conditions on P) a meas- 

ure Q that stabilises the Bayes risk for all P. 

Theorem : Let P satisfy the following regularity conditions (Rissanen (1983)), 

(i) pi <I for all i, such that there exists M such that pi +1< pi for i>M. 

(ii) H(P) = oo. 

Then there exists Q such that, for all P, 

lim P'log 
qi 

where Q is given by 

qi = 

where for i>1, log*(i) = log i+ log log i+... up to the last non negative term. 

Proof :A direct application of Appendix 2 (Rissanen (1983)). 
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Note that Q defines a proper probability measure and is the universal modelling prior sug- 

gested in Rissanen (1983) by virtue of its minimum description length properties and the fact that it 

satisfies Kraft's inequality. However, its interpretation here is solely within a Bayesian decision 

theoretic framework of reporting the posterior distribution in order that the risk is well behaved, 

and is strongly related to the concept of a reference prior (Bernardo (1979b)). 

(3.2.6) Asymptotic information gain, orthogonality and independence 

Consider a model of fixed dimension parameterised by the vector (0,0), 0 denoting the nui- 

sance parameter. The modelling criterion (3.1.1) proposes the assessment of the full model via the 

asymptotic information gain 110,0). Suppose it is required to select a suitable parameterisation for 

the nuisance parameter 0. Note that the full information gain is invariant to reparameterisation 

whereas the conditional information gain, I! 10, is not. Thus the latter can be applied to assess the 

choice of 0. It possesses a natural interpretation via the relative asymptotic information gain, 

I(0,0) - co 
I! = Eo (I! 10) 

If the orthogonal parameterisation exists then it is an optimal solution by virtue of the fact that it 

maximises the relative asymptotic information gain as follows, by definition, 

Jelo = 
f 

P(o I O)IOg 
(P(010) ) 

dO, 

the conditional Fisher's information, I010, defined by 

, 910 : -- Ioo - 100,00- 1100 
. 

However, in the sense of positive semi-definiteness (Amari (1982)), 

io 10 <, I00 

with equality if and only if I00 = 0, that is 0 is orthogonal to 0. Thus the conditional asymptotic 

information gain is maximised under such a parameterisation as 

JOJO = 
f 

P(O I O)IOg 
(P(O 

0) 

) 
dO 

Furthermore, 

I! 10 
= 1! 19 P(O 0) = P(O) 

Under orthogonality and a priori independence the relative information gain decomposes as 

J(o. 0) 
- JO = Je 
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thus representing the least sensitive parameterisation 

To examine the existence of an orthogonal parameterisation we follow Amari (1982a). 

Theorem (8.2) of the latter reduces the required condition to that of the integrability of a partial 
differential equation. The corollary that for a scalar parameter of interest an orthogonal parameteri- 

sation always exists is of fundamental importance as it gives the concept an operational definition 

for an arbitrary statistical model. The solution, however, of the associated partial differential equa- 

tion is often highly intractable (Hills (1987a)). Sensible approaches suggested on the grounds of 

approximation are available by only requiring local orthogonality. The Riemannian geometry of 

the underlying parameter space and the existence of the stronger condition of a covariance stablis- 

ing transformation is discussed in Kass (1981). Again, however, such a condition fails for some 

simple parametric models (Holland (1973)). 

(3.2.7) Comparison of experiments 

A fruitful area of application of the decision criterion (3.1.2) is to the comparison of informa- 

tion in experiments. This has received little attention in a Bayesian framework since the founda- 

tional work of Lindley (1956), Stone (1959). However, the classical literature (Torgersen (1976), 

(1981)) contains numerous calculations of distance measures which by virtue of the characterisation 

results in Chapter 2 can be interpreted in a Bayesian setting. 

First, consider the problem of combining information from two sources. Suppose the vector 

parameter (0,0) is such that the data decomposes as z= (x, y) with joint density factorising as 

Xx, y 10,0) = P(x 1 0)P(y 10) - 

By virtue of the linearity of Bayes theorem for the logarithmic utility the combination of informa- 

tion can be quantified by the decomposition of information gain, 

111 - 119 Io 
X, yyX 

where IyOj.,, represents the additional information gain about 0 from the component y after observing 

data x. 

An intuitive result is that a priori independence should be characterised by the property that 

no additional information is learnt about 0 in the light of observing y. Formally, if the family PO is 

complete, the following characterisation, holds (Stone and Springer (1965)) 

10 
=0 <=> Ax p(o, o) = P(O)P(O) 

that is 0 and 0 are a priori independent. 
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(3.3) Application of Ressel (1985) for the construction of model elaborations 

Suppose that our current modelling framework is denoted by MO, corresponding to a joint 

belief p(xJMO) for our infinitely exchangeable sequence X. It is required to build an elaborated 

model p(x I MO, A) that collapses to the current model when A= A0. The joint beliefs concerning X 

are determined, by marginalisation, with respect to a measure for A, denoted by p(l). 

p(x) = 
fp(xlMo,; L)p(; L)d; L. 

In order to model the embedding of the current model we will assume that the following smooth- 

ness properties in the form of moment constraints hold, for the prior measure on A 

f ; Lp(; L) = '10 (3.3.1) 

P(Xlml) = 0, (t(x)) (3.3.2) 

for an arbitrary function 0,, and some statistic t(x). 

The constraint (3.3.2) asserts that the ensuing estimation, via p(x IM 1), for the model parame- 

ter is smooth as a function of the statistic t(x). A similar technique is employed in Goldstein 

(1974) where the space of possible estimation functions are polynomial in x (see section (5.4)). 

The possible modelling families defined by assumptions (3.3.1) and (3.3.2) are extensive. First, 

note that the latter induce a constraint on the moments of p(X) given by 

Ex(o,, (t(x))) = Ex(p(xlMl)) = E(A) = Ao. (3.3.3) 

Consider the decision problem of reporting beliefs p(x) relative to the current model, p(x I MO) with 

respect to a local and honest utility structure, with Bayes risk equal to the Kullback-Leibler diver- 

gence between the two models. The model elaboration is determined by minimising the Bayes risk 

under the constraint (3.3.3). The required calculus of variations minimisation is, 

min 
f 

p(x)log 
(P(x 1 

-MO) dx subject to Ex (0,, (t(x))) = 10 
P(X) k P(X) 

) 

Let a,, a2be Lagrange multipliers and consider the functional, 

P(X)(log 
()-a, 

0, (t(x)) - a2 
\ P(X) 

By the Euler-Lagrange equations, the extremal necessarily satisfies, 

log 
( 

P(X) 

)+ 

alo, (t(x)) = a2 
. 

Therefore, 
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P(X) = P(x I Mo) vrn(t(x)) (3.3.4) 

describes the space of possible structures for p(x) where yf,, is arbitrary and t(x) a given statistic. 

The following theorem is given in Ressel (1985) which proves that a constraint of the form 

(3.3.4) is sufficient to characterise the space of possible measures for the functional form of 

p(x I MO, A) as a mixture class. The technique applied is that of harmonic analysis on abelian semi- 

groups. Here we state an abbreviated version of the full theorem. 

Theorem : Let the measure P have the property that 

nn 
P(x) = 

rl P(xj)O(l t(xj)) 

j=l j=l 
(3.3.5) 

for all n >, I and all xEX, where 0(0) = 1. Then 0 has a unique representing measure that concen- 

trates on the (relatively compact Borel) set, 

Wfi 
=fpI1,8(xj)p(t(xi)) =II. (3.3.6) 

Conversely, for each measure y on Wp, the function O(s) =f p(s)dy(p) defines a probability 

measure via (3.3.5). 

Proof : See Ressel p. 907. 

The representation of 0(-), via (3.3.6), yields an integral representation for the marginal 

beliefs about x given by 

n 

P(X) rl fi(xj)p(t(xj))d, 4(p) 
f 

j=l 

The following examples exhibit the power of the approach where the above theorem is applied in 

the context of equation (4.4), identifying suitable forms for#(. ) and 0(-) (see Ressel p. 908). 

Examples : 

(i) Mixtures of Poissons. Let the current model p(x I MO) be i. i. d. Poisson random variables with 

mean one. 

Ax I mo) 
n 

flxj! 

j=l 

n 

If the statistic t(x) = Yxj then the family of mixtures of Poissons are characterised by (3.3.4). 
j=1 

Similarly mixtures of binomials and inverse binomials can be characterised (Freedman (1962)). 
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(ii) Mixtures of uniforms. Let the sample space be N and statistic t(x) = x..,,. If the cuffent 

model is lebesgue measure, then the criterion characterises discrete mixtures of the uniform 

distribution. A further characterisation is given in Dawid (1982). 

(iii) Mixtures of exponentials and normals. The characterisation of mixtures of these families 

can be viewed in a unified manner via symmetry conditions on the associated characteristic 

function of the joint density. 

The current model can be interpreted, via the statistic t(x), as a conditional distribution by the 

equation, see Ressel 
, 

P(XI = xl, ... , 
xn = Xn 1 Y, t(Xj) =s P(x 1 m0)x 

)=s 

(S), 

j=l it(x, j=I 

where Z(-) denotes an indicator function, thus establishing a link with the concept of sufficiency, 

which formally interprets the role of t(x) as one of reducing the elaborated model to the current 

model. 

(3.4) Connecting two distributions 

Suppose our current modelling framework consists of two plausible families of measures 

denoted by YA and YB,, the corresponding densities, with respect to some dominating measure y, 

being given by f(x I a) and g(x I#). Three typical statistical scenarios are, 

(i) Discrimination between possible error structures, for example, normal and double exponential 

on R, log Normal and exponential on R ', Poisson and Geometric on N. 

(ii) Different choices of functional forms for the regression structure, for example, parabolic 

versus piecewise linear. 

(iii) Existence of changepoints whose number might be unknown. 

In order to elaborate on this framework we might find it useful to build a model, which is in 

some sense is optimal, embedding YA and YB. This hierarchical model then allows us to examine 

possible departures from one family to the other, using the posterior distribution for the model 

parameter, A, obtained by Bayes' theorem (Smith (1983)). The elaboration parameter A, can be 

discrete, or continuous, depending on the required application. 

To quantify the sense in which the connection between the families is optimal we cast the 

problem in a deci sion- theoretic setting, adopting the logarithmic utility function which arises natur- 

ally in this context as the only "pure inference" utility (Bernardo (1979a)). The risk function is 
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then interpretable as a Kullback-Leibler distance, defining a risk associated with an arbitrary meas- 

ure Q, induced via the families5)Aand Y]3. 

The application of the above decision theoretic procedure leads to a connection, or "shortest" 

line, between the two families. By varying the possible decision problem the general solution is 

obtained, the exponential embedding playing a central role as being related to the Kullback-Leibler 

distance (see Loh (1984)). This has previously been suggested by virtue of mathematical conveni- 

ence of the additivity of the log-likelihood (Cox (1961,1962), Atkinson (1970), Brown (1971)). 

The procedure for comparing models in a Bayesian framework relies on the associated Bayes 

factor, itself a measure of distance between the two families. In general the two families, f(x I a) 

and g(x Ifl) will be separate families. That is, for an arbitrary parameter value ao, the measure 

f(x I ao) cannot be approximated arbitrarily closely by a member of the family PB. The sense of 

the approximation can be quantified by the Bayes risk which, in turn, is related to the Bayes factor. 

The elaboration technique is applied both to the prior and likelihood spaces. For simplicity, 

the location-scale problem is used to exhibit statistical properties of the elaborated structure. Let 

the families f(x I a) and g(x Ifl) be the normal and double exponential families, respectively. The 

ensuing estimator of location, being adaptive in nature, performs well in relation to previous propo- 

sals (Loh (1984)). 

(3.4.1) Utility structure 

Let QE Y, and F ýý- YA, G ý: - YB 
- Suppose that the families YA, YB are absolutely continuous 

with respect to some measure ju yielding finitely parameterised densities f, g, respectively. The 

results from Chapter 2 are directly applicable where the induced distance between elements Of YA 

andYB is given by 

d(Q*; (F, G» = minmax(I(Q, F), I(Q, G». (3.4.1) 

Following Loh (1984), a solution exists, and Q*E. P whose densities, with respect to 4, take the 

form, 

p(x I a, P, ý) = kx (f(x I a))"(g(X I fl)) 1 -'ýL ;LE[0,11 (3.4.2) 

for some suitable normalising constant k; L. 

A useful geometrical interpretation for Q* is that, if the mid-point between the families 

exists, it is precisely Q* (Loh (1984)). Hence it is natural to use the density Q* as a compromise 

between f and g. By varying ý from zero to one, pa traces out the shortest line (or geodesic), 

which under the decision problem (3.4.1) gives an optimal one parameter model elaboration 
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through f and g. 

It is natural to attempt to justify the linear connection as a decision- theoretic solution. By 

theorem (2.1) it is the shortest line under the total variation utility measure, and will be termed the 

e-contaminated connection. It has a further minimisation property with respect to the logarithmic 

utility measure by virtue of the Pythagorean interpretation for such a utility see Cencov (1972), 

Csiszar (1975). Thus the widely used class of discrete mixtures can be viewed as a geodesic sur- 

face with respect to a Kullback-Leibler measure (Cencov (1972)). 

(3.4.2) Application to prior elaboration 

Consider two possible prior densities p(O) and ir(O), then the Bayes risk induce a distance, 

D(.,. ) between the priors as follows, 

D. (p(O), ir(O)) =f p(O)(u(p(Olx), p(O))-u(7r(Oix), 7r(O)))dO. 

By looking at the asymptotic gain in information the above distance will reduce to the difference in 

gain of information from the two a priori inputs. 

lim Dx(p(O), 7r(O)) =f p(O)Iog dO -f p(O)Iog dO. 
n JON P(01 70) 

Therefore, 

D(p(O), 7r(O)) 
f 

p(O)Iog 
(z(o))dO 

P(O) 

thus inducing the natural measure on the prior space of the implications of approximating one prior 

by the other. 

(3.4.3) Application to location-scale families 

Suppose that f(x I a) and g(x 1,6) are, respectively, the normal and double exponential families. 

The exponential connection given by (3.4.2) between these families can be parameterised as fol- 

lows, 

p(x 10, a, r) = k(47,, r) exp(- 2a 
2(X_0)2 

_ rlX_01) (3.4.3) 

where, for a, r 

0 

20( 
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and 0(-), 0(-) denote the standard normal density and cumulative distribution functions. The 

appropriate definition is given to k(-, -) when either of a or r are zero, corresponding to AD and AN, 

respectively. 

By virtue of the updating mechanism in a Bayesian analysis, the model (3-4-3) together with a 

measure p(O, a, r) yields a Bayesian analogue of the ad hoc adaptive procedures due to Hogg 

(1972,1974) to estimate a location parameter. Heuristically, the maximum likelihood estimators 

are the median and mean for AD and AN respectively. Thus for smooth priors the posterior mean 

will adapt between these two measures. 

(3.5) Approximating statistical models with flexible families. 

The statistical process of summarisation of complex underlying mechanisms in terms of 

simplified interpretable models, via subjective input, lies at the centre of the Bayesian methodology 

(Smith (1983), (1986)). As a first step, without oversimplification, it might be of use to represent 

Data = Structure + Complex Noise (3.5.1) 

but without any interpretation, or formal suggestion, of the form of complex noise we may wish to 

approximate (3.6.1) by 

Transformed Data = Transformed Structure + Simplified Noise 
. 

(3.5.2) 

In general there will exist constraints relating the old structure (3.5.1) to the new (3.5.2), for exam- 

ple, we may wish to retain the same interpretation of the location parameter. Choices of the form 

of simplified noise might incorporate the normal, or double exponential distributions. Neverthe- 

less, the reporting of such oversimplified structures requires some degree of sensitivity analysis, 

warning against possible departures. 

(3.5.1) Decision theoretic setting for projecting . 4312 onto -VA' 

Consider the two families of probability measures 51D, YA indexed by the sets (2, A, which 

usually will be finite dimensional and parameterised in RP. In order to define the notion of approx- 

imating, or projecting, one family onto another we adopt a decision-theoretic approach, thus, allow- 

ing us to induce a distance on the set DxA via the Bayes risk. Consider the distance, denoted by 

d(w, A), generated the logarithmic function (Bernardo (1979a)) 

d(w, A) f 
pe»log 0 

(PPI; 

t 

) 

for all (w,, ý) r= (12, A). The closest member of YA, given by index A*, to an element of YD can be 

defined by 
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d(w, X*) = inf d(w, Ä). 

Therefore, 

d(w, A) = inf (p 
Af O)Iog pw - PO)IOg p! ) 

Hence, A* attains, 

inf 
"f 

(- P. Iog P; L) - (3.5.3) 

A formalisation of such an approach to the approximation of probability measures in the notion of 

an I-projection (Csiszar (1975)), here formally interpreted in a Bayesian decision -theoretic setting. 

(3.5.2) Example : Model choice on R' 

In order to exhibit a possible scenario for moving from (3.5.1) to (3.5.2) suppose our data can 

be modelled as observations from a distribution on R '. For simplicity assume that the structure is 

determined by a location parameterju. Concentrating on the noise term, suppose that 

Complex Noise = generalised gamma (3.5.4) 

Simplified Noise = lognormal 
. 

(3.5.5) 

In the sense of an approximation to the true density we would hope that (3.5.4), denoted by Yn, is 

sufficient. The coffesponding density function is given by 

P. (x) 
-x exp( - 

a 
(3.5.6) 

Unfortunately, the model parameters (a, P, jr) do not lend themselves to a easily interpretable form, 

making specification of a priori beliefs difficult. Therefore we might tentatively assume the struc- 

ture (3.5.5), with the transformation denoted by 0. Denoting this class by YA which is parameter- 

ised by A= (ju, a, 0) where 0e0, the set of all, increasing, one-to-one differentiable transforma- 

tions, the corresponding density function is, 

.1( 

O(X) _, U )2) do 
P; L(X) -C -iexp(-2 a or dx 

(3.5.7) 

that is transformed so that the error structure is normal; the lognormal occurs as a special case 

when 0 is logarithmic. The model "PA now has parameters in an interpretable form, practically 

allowing elicitation of prior beliefs with some degree of confidence. This contrasts with the class 

. P. 0 where, due to the nature of the parameters a careful sensitivity analysis of any prior input 

would be required. 



-54- 

The methodology from (3.5.3) can now be applied, projecting the family YA onto Y12. Sup- 

pose our objective is an appropriate choice of transformation, 0, reflecting the fact that YA is an 

approximation to JDa. Hence we require to determine the behaviour of d(W, A) as a function of 0. 

Let 0*(-) denote the optimal choice with regard to criterion (3.5.3). Thus, neglecting irrelevant 

constants, 

d(Q ; (F, G» = inf 
(-f 

x ß-i exp(-xß)1(0(X)_M)2_Iog 
ýOldx 

(3.5.8) 
0 di 

If the parameter of interest is p, we have the following constraint linking the two models, 

Ep. (x)(O(x)) = 

The following lemma determines the required solution, 

Lemma (3.5.1) : Define the functional B(O) by 

f 
PW(x) 

1 
(0(X) _g)2 _ 1()g 

ý-0- 
dx 

. 
(3.5.9) 

( 

20r2 dx 

) 

Then 0% defined by B(O) = inf B(O), satisfies, 
0 

d20= (ý0)2( 
-ju )+ do d 

og p). dX2 ar2 
I (x 

dx dx dx 

Proof : One parameter variations with respect to 0 are given by the Euler-Lagrange equation, 

d( DB ) DB 

dx Dol d0 

By definition of B, 

d(p)+ 
P(O-y) = 0. 

dx 0' ar2 

Hence, 

do d d2o 
+ 

(! ý0)2(0_'4) 
0 log P(X) - dx dx dX2 dx ar2 

and rearranging gives the required result. 

(3.5.10) 

Thus the solution for the transformation 0 only depends on the score function of p(x), show- 

ing the importance of the latter in assessing a transformation. In a sense this establishes a link with 

concepts from robustness where again it is the score function that quantitatively defines the sensi- 

tivity of an estimation problem. Hence, in certain instances, we can hope to achieve robustness via 

an appropriate choice of transformation 0. 
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Applying lemma (3.5-1) in the context of the previous example leads to the calculation of the 

score function, 

d 
pxp- 1 

-log POXX) dx x 
(3.5.11) 

By direct substitution, it can be shown that O(x) = xA is a solution to (3.5.8) with the score function 

of p, (x) defined by (3-5.11). Thus the Box-Cox transformation family (Box and Cox (1964)) can 

be seen as an one parameter variation for the above decision problem. 

(3.5.3) Examples on power transformations 

The risk (3.5.3) can be applied to select power transformations to normality. Consider pro- 

jecting the density of (xl-l) onto nonnality. The following examples are given in Hernandez 

and Johnson (1979), 

(i) Let X- Gamma, then criterion (3.5.3) yields the approximate solution C= 1/3, originally 

suggested by Wilson and Hilferty (1931). 

(ii) Let X- Inverse Gaussian, then (3.5.3) gives A* = 0, the logarithmic transformation suggested 

in Whitmore and Yalovsky (1978). 

(iii) Let X- Pareto, then (3.5.3) has solution I* =I /NF2-. 

The above setting allows us to unify previously proposed transformations with a formal deci- 

sion theoretic framework. Further suggestions for the binomial family are contained in Bernardo 

(1985b). 

(3.5.4) Construction of a family of transformations 

Suppose we now restrict the class of possible transformations by imposing model constraints, 

in the form of moments, before minimising the functional B(O). In the context of projecting a 

density onto the normal family with risk given by B(O), as defined by (3.5.9), the following moment 

constraint has an intuitive appeal, 

Ep (X)((O(X)_M)2) = a2, (3.5.12) 

thus matching the corresponding moment for the parameters of interest. 

Consider now a possible one parameter variation through the above constraint as defined by 

inf B(O). By definition of B(-), (3.5.9) gives, 
(D 
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B (0) =1- 
(ý-0)dx 

. 
f 

Pto(x)Iog 
di 

A possible variation, by the Euler-Lagrange equations, is given by 

Therefore, 

0. 
dx 0' 

x 
O(x) f 

p(y)dy. (3.5.13) 

For example, suppose the density for X has a Beta(oc, fl) distribution. Then a space of possible 

normalising transformations to search is given by (3.5.13) which includes the logit and inverse sine 

transformations. 

(3.6) A decision theoretic approach to the design of experiments 

A unified approach, using concepts from decision theory, is adopted in order to select 

appropriate design criterion. The properties of the statistical problem, generally that of reporting 

beliefs, are used to define a decision theoretic criterion. However the criterion can be adapted to 

incorporate prediction or control as required. 

Lindley (1956) proposed the use of maximising expected gain in Shannon information 

between prior and posterior, denoted by Ile, as a formal criterion for assessing design of experi- 

ments. There is a wide range of selection criterion and equivalence theorems in the context of 

classical design (see, for example, Whittle (1973), Federov (1972), Silvey (1980)). Much impor- 

tance is placed on Fisher's information in such a framework. Due to the equivalence between the 

asymptotic information gain and Fisher's information as exhibited in the modelling criterion (3.1.2) 

the Bayesian can expect that most classical results to be of direct relevance. For example, under a 

normal linear hierarchical model analytical computations are available leading to Bayesian informa- 

tion design criterion based on posterior variance (Stone (1959), Smith and Verdinelli (1980)). In 

turn under weak a priori information these reduce to D- optimal designs, a result reviewed in sec- 

tion (3.6.1). Further Bayesian results for the linear model are contained in Chaloner (1984) and for 

the nonlinear situation in Zacks (1977). 

To exhibit the power of the approach we consider two possible applications of the criterion 

(3.1.2) with respect to the design. First, A- and D- optimal designs are viewed as Bayesian deci- 

sion theoretic procedures. Secondly, the use of modelling criterion (3.1.2) and the reference prior 

are discussed in a general modelling framework. Further areas of application include the optimal 

selection of sample size previously viewed in a decision-theoretic setting by Lindley (1956), 
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Antelman (1965), the Bayesian procedure generalising previous ad hoc proposals. 

(3.6.1) A- and D- optimality from a decision theoretic perspective 

The design of experiments, although containing a vast selection of different criterion, has 

concentrated mainly on two criteria; A- and D- optimal designs. An equivalence result between 

such designs and the minimisation of Bayesian risk will be shown. 

Consider the normal linear regression model. By assumption our observation, y, is generated 

by the process 

N (XO, V) 

for some p dimensional parameter 0, which itself is a random variable, with prior density, 

p(O) =N (00, VO) 
. 

Following Lindley and Smith (1972), application of Bayes theorem gives the posterior distribution, 

p(Oly) = N(Bb, B), 

where, 

B-1 = 
XTV-lX + VEý-1 

XTV- ly 
+ vo-loo 

- 

(i) A-optimality 

(3.6.1) 

Consider the symmetrised Kullback-Leibler distance between prior and posterior, JIOI as quan- 

tifying the gain in information of the experiment, that is 

J., =f P(Y)f (P(OIY)-P(O))Iog 
( 

p(o) 

) 
dOdy 

. 
(3.6.2) 

By virtue of of normality of the posterior, the inner integral in (1.4) can be determined as, 

-P +1 (tr (Vo-lB + B-lVo) + (Bb-OO)T(VO-1 + B-1)(Bb-00)). 
2 

By linearity of the tr(-) operator, 

E; L (tr (-» = tr (EX (-» 
. 

Hence, 
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Je =11- 1) Vy(Bb» 
. 

_p +2 tr (V0- 'B +B- 'Vo) +2 tr «V0- 1+B 

Finally, the variance term can be calculated as follows, 

V (Bb) = BVy(b)B T 
y 

By definition of b, 

= BXTV- l(V Vy (B b) 
y(y))V-lXBT 

-IXBT + BXTV-IXV -lXBT. Vy(Bb) = BXTV 
OXTV (3.6.3) 

Suppose now that our prior beliefs are vague, in the sense that, we can assume VO = a2I as P 
a2 --> co , where IP is the pxp identity matrix. Substituting into (3.6.3) yields, 

Vy(Bb) -> B+ Vo 
. 

Hence, 

2j 
0p+I 

tr (B - 'I) +I tr ((Vo +B (B + Vo)) nA22 

therefore, 

1 
Jo -p + tr (XTV-lX) +I tr Qp + Ip +B- lIp) 

WE 2 

therefore, 

Jim J,, e 
= tr (XTV - lX) 

or ýý 

Thus maximising the gain in information with respect to the design matrix X is equivalent to an 

A-optimal design. 

(ii) D-optimality 

Consider the information gain of an experiment as defined by the measure, 10,, where 

I. 0 =f P(Y)f P(O ly)log 
( 

p(o) 

) 
dOdy 

, 
(3.6.4) 

that is the Kullback-Leibler directed divergence between p(O I y) and p(O). 

For the normal linear regression model a calculation similar to (3.6.2) gives, 

OXTV - IX log II+V ino - (3.6.5) 
2 
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therefore, 

log IV 01 + log IV -1 + XTV-lX 0 
ilo - 2 

Under vague prior knowledge, VO-1 -> 0, so the criterion of maximising the missing information as 

given by (3.6.5) yields the D-optimal design, 

max I XTV-IX 
X 

A rather more interesting discussion of the general case (5.3.1) is given in Stone (1959). A ques- 

tion of clear importance is how many design points are necessary to be able to achieve the max- 

imum information gain? The result is a generalisation of Chernoff's theorem and is given in Stone 

(1959), the required number of design points is Ilk(k+1+2q) where k is the dimension of the 

parameter of interest and q is the number of nuisance parameters. Further results and examples are 

exhibited in Stone (1959) where a Bayesian interpretation of Wald's design criterion of generalised 

variance is obtained. 

(iii) Design criterion under a non-local utility structure induced by a loss structure 

In many applications of the design of experiments involve a direct purpose, for example, 

reporting the LD50 dose. Clearly in such instances the Bayesian is concerned with the posterior 

measure but further feels it necessary in adopting the loss structure for the quantity to be reported 

to induce a non-local utility structure for assessing the possible design matrices. 

From the utility structure defined in (2.1.5) and the posterior and prior normality as given by 

the equations (3.6.1) the risk is analytically computable. To give any indication of the functional 

form under a non-local utility structure consider a loss function that is quadratic associated with the 

utility U,, O, 1'. Therefore, 

L(O, O') = (0-0')TD-1(0-0') 

after algebraic manipulation (Good (1969)) we obtain, 

O)T(V uaeIx V 
#+a log JI+ aVOD-11 tr(Bb(Vo-a-'D)-l (Bb- 0 -'D)-'(Bb-VO). 

2a 2a 2a 

Thus the maximisation of the above with respect to the design leads to the optimal choice. 

(3.6.2) Reference priors and the design of experiments 

Let [PqJ denote a family of measures where the information gain for the experiment is 

defined by 
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io 
n=f P(Y)f P(O ly)log 

( 

p(o) 

) 
dOdy 

The asymptotic information gain, lim 10, can be interpreted as the amount of missing information 
n -ý a* 

about the parameter of interest 0. Under suitable regularity conditions (see (3.1.2)) this has the 
form, 

lim 1., 9 = P(O)log d0 (3.6.6) 
n >- 

( 

p(0) 

) 

where Ix(-) is Fisher's information. 

In certain instances, when our a priori beliefs are weak we might find it illuminating to use a 

reference prior (Bernardo (1979b)), which, by definition, maximises the missing information about 

the parameter of interest, in this case 

Hence from (3.6.6) the solution to maximising the missing information, over the space Y, is 

Jeffrey's invariance prior. 

7r(o) - 11. (0) 1 '. - 
Thus the reference prior can depend on the design X. 

(3.6.7) 

Suppose our prior beliefs are such that (3.6.6) exists, then the measure (3.6.6) can be inter- 

preted as the Kullback-Leibler distance between our beliefs p(O) and the reference or Jeffrey's 

prior. The optimal design is to select the design such that the reference prior is closest to our 

beliefs p(O), that is the design for which most is to be learnt from our a priori beliefs. Note that 

criterion (3.6.6) is equivalent to an optimal design criterion of the form, 

max ( lim 10) = max (f p(O)Iog (Ilx(0)11)dO). (3.6.8) 
Xn --), -X 

If we employ the reference prior as an approximation to weak a priori beliefs then substitut- 

ing into (3.6.6) gives the criterion, 

n -). 

f (f I Ix(O) I l'dO) dO IiM 
no = 7r(0)109 

2 

that is the prior expectation of the logarithm of the averaged Fisher's information over the parame- 

ter space. 

An interesting example that exhibits the necessity of investigating the dominance of an 

apparently harmless likelihood specification is that of exponential regression. Here the possibility 

of improper posterior densities arises. The use of reference priors overcomes such difficulties and 
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leads to the design criterion (3.6.8). 

Here we outline some examples for the application of modelling criterion (3.1.2). Note that 

the optimal design and the error structure can both be viewed under the unified selection criterion. 
Designs accounting for the possible incorrect specification of the model have previously been dis- 

cussed under a quadratic loss structure, quantifying the estimation procedure (see Federov (1972), 

Atkinson and Federov (1975)). By virtue of the decision problem the criterion (3.1.2) is easier to 

handle and we shall see that the reference prior froms a central role in the determination of the 

optimal design via (3.6.8). 

The class of nonlinear models represents an interesting application for the criterion (3.6.8) 

primarily because the Fisher's information matrix depends heavily on the choice of design matrix 

affecting (3.6.7). Box and Lucas (1959) contains a selection of analytic calculations useful for a 

wide range of nonlinear models. An interesting result concerning the relationship between the 

reference prior and the identifiability of modelling parameters in such a setting is contained in Hills 

(1987b). 

Two particular examples of interest are logistic and polynomial regression. First, under an 

information theoretic criterion Smith and Verdinelli (1980) construct the optimal design for polyno- 

mial regression, applicable in (3.6.8). Moreover, the error structure can be assessed under the same 

criterion, in a similar manner to Rissanen (1987). The optimal design with discrimination between 

such models via the Bayes factor can also be viewed in such a setting Smith and Spiegelhalter 

(1982). Secondly, for an application to logistic regression models see Larntz and Chaloner (1986). 

Again note that the logistic error structure and the design criterion are decision theoretic solutions. 

The handling of nuisance parameters requires care and attention. However decompositions of 

the relevant parts of the modelling criterion do exist for a range of such models, for example, par- 

tially nonlinear models (see Hill (1980)). Further simplification arises under (approximate) ortho- 

gonality of the parameters. 

(3.7) Discussion 

This Chapter develops a unified modelling criterion via the Bayesian decision problem of 

reporting beliefs. The logarithmic utility function is adopted, leading to an information gain which 

quantifies on a cost scale the relevant modelling components of prior-likelihood combinations, 

design matrices, model dimensionality and sample size. Three cases arise for analysing the 

behaviour of the asymptotic information gain; a continuous, a finite discrete or a countably infinite 

discrete parameter of interest. 
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The main concern of this Chapter is that of a model elaboration (Smith (1983)), carried out 

via a sequence of one parameter elaborations that are built up from initial oversimplified families. 

The techniques adopted involve the calculus of variations and two natural possibilities arise; either 
letting the class 16 of possible measures depend on a parameter and then to determine the model 

elaboration which maximises the missing information in V, or to adopt a flexible model elaboration 

indexed by a modelling parameter A, and to determine a selection of reference-type priors for A. 

Examples of the modelling criterion are given for the class of scale mixtures of normality where 

optimal deci sion- theoretic solutions are discussed in detail. Furthermore, the Huber family is exhi- 

bited as a formal Bayesian dec ision- theoretic model elaboration. 

Other applications of the decision -theoretic setting include the selection of data transforma- 

tions and the design of experiments. 

Clearly, there are numerous further applications of the modelling criterion (3.1.2), of particu- 

lar interest are: 

(i) Determining contours of equivalent information gain with respect to the modelling com- 

ponents, for example, the selection of the order and error structure of a time series (see Ris- 

sanen (1979)). 

(ii) The construction and behaviour of Hypothesis tests (Good (1966b), Bernardo (1980)). 

(iii) How the modelling criterion varies with the parameter of interest, for example, prediction in a 

linear modelling framework (San Martini and Spezzaferri (1984), Geisser and Eddy (1979)). 

Another problem of interest is to establishing equivalences between risk structures; for exam- 

ple, prediction in a gamma-gamma hierarchical model and estimation in a t-family model ela- 

boration of normality. 

Other areas for future work are: characterisation properties of Fisher's information, with particular 

reference to hierarchical and multivariate statistical models (for example, characterisations in the 

class of scale mixtures of the multivariate normal including the hyperbolic and generalised inverse 

Gaussian distributions (Barndorff-Nielsen and Halgreen (1977)); the construction of well-posed 

decision problems in the form of distance constraints leading to skewed or multi-modal model ela- 

borations; the application to a priori specification with the aid of an imaginary training sample for 

models of different dimensionality (Smith and Spiegelhalter (1982), Box and Kanemasu (1973)). 
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Chapter 4: Elimination of nuisance parameters; reference priors 

The elimination of nuisance parameters plays a central role in any statistical methodology. A 

fruitful area of application is to the model elaboration framework discussed in Chapter 3. The 

latter scenario consists of a pararneterised family of measures, denoted by [Q. I o) ED) with index- 

ing set D that can be decomposed as i9xA whose elements denote the parameter of interest and 

nuisance parameter, respectively. 

The following sections will contain an overview of the existing methodologies for the elimi- 

nation of the nuisance parameter. These will be illustrated primarily within the class of statistical 

models possessing some form of group structure (see, for example, Fraser (1964), Dawid et al 

(1973), Wijsman (1986), Barndorff-Nielsen and Jupp (1988), Bondar and Milnes (1981)). Such a 

setting allows a unified approach in which to contrast statistical techniques and concepts; for exam- 

ple, marginal and profile likelihoods, reference priors and inconsistencies, analytic and approximate 

inferences. 

First, the Bayesian methodology is clear cut; integrate out the nuisance parameter with 

respect to the prior p(; L 10) to obtain a marginal posterior inference. For a wide class of problems a 

reference prior will be adopted as an approximation to a weak a priori specification (Bernardo 

(1979b)). The interpretation of such an assessment under the unified modelling criterion (3.1.1) 

will be discussed. However caution must be adopted when employing improper prior measures, for 

incoherence and strong inconsistency or marginalisation paradoxes might arise (Stone (1976), 

Dawid et al (1973)). Furthermore, the problem will be apparent in any form of sensitivity analysis 

carried out via the "what if" principle for the assessment of an approximation for a high dimen- 

sional prior. This notion will be quantified by virtue of the decomposition of the information gain 

for the vector (0, A) and explored in Chapter 6. For illuminating examples concerning improper 

priors and the associated properties as judged via the "what if" principle see, for example, Stone 

and Dawid (1972), Dawid et al (1973), Bernardo (1979b). 

Secondly, at first sight, the elegant classical procedures based on sufficiency for handling nui- 

sance parameters seem far removed from the Bayesian setting-the methodologies certainly are. 

The former requires an automatic procedure to determine a function solely of the parameter of 

interest from which the required inference can be drawn. Clearly, any attempt to define such an 

automatic process is fraught with danger, see, for example, Neyman and Scott (1948). However, 
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by first considering the class of models that possess some form of group structure, either that of a 

pure or composite transformation model, a mathematically natural function appears based on the 

distribution of the maximal invariant statistic (Anderson (1982), Barndorff-Nielsen (1983)). The 

above procedure determines the modified profile likelihood, denoted by Lmp(O), a parameterisation 

invariant function of the parameter of interest. Moreover, under such a group transformation struc- 

ture analytical and approximate representations of the modified profile likelihood exist aiding in 

analytical computations for marginal likelihoods with reference priors, see, for example, Lindsay 

(1980), Kalbfleisch and Sprott (1970), Barndorff-Nielsen (1983). 

The following sections will review such procedures indicating the application to reference 

priors and model elaboration. 

(4.1) Profile likelihoods 

A number of approaches to the elimination of nuisance parameters in a classical context via 

the likelihood function have been discussed by Kalbfleisch and Sprott (1970). Such methods have 

been extended in various ways (Cox (1975), Cox and Reid (1987), Barndorff-Nielsen (1983,1988)). 

A central function is the profile likelihood, Lp(O), defined by 

Lp(0) = sugf(XIO�1) = f(XIO�Ze) ü 
Al 

whose primary application is to large sample size situations. 

For the moment a heuristic discussion is adopted. The substitution of A=I is, in a sense, 

pessimistic for hopefully there exists information concerning the nuisance parameter through the 

parameter of interest. It also has the undesirable feature of possibly leading to inconsistencies even 

for simple models (Neyman and Scott (1948)). Conversely, the substitution of 2, = 
10 is rather 

optimistic by virtue of the fact that, in general, there is uncertainty involved in the parameter 0. 

The Bayesian approach, however, is an averaging process with respect to the prior beliefs concern- 

ing 0, thus taking account of the curvature of the likelihood. The modified profile likelihood also 

quantifies the latter for it is defined as a weighted profile likelihood by 

Lmp (0) = 

ai 
1 i0 1- 'Lp(0) 

. 

1 

-a le- 
1 

The first weighting factor is I+ O(n -') under an orthogonal parametrisation, whereas the second 

factor is the observed information for fixed 0 related to a variance stabilising transformation. 

Alternatively, under transformation, 

Lmp(O) 
a2log f(o, J, ) 

Ixx(O, 10) 1 ILAO) 
aax 
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of primary use in small samples under weak information content where the profile likehood is inap- 

propnate. 

A formal approach will be adopted (see Barndorff-Nielsen (1983)) for the justification of the 

above construction in section (4.2.1). 

It is interesting to note that from a geometrical stance the classical approach mimics the 

Bayesian one in the sense that for a defined parameter of interest, here 0, the profile likelihood 

induces a geometrical structure. Barndorff-Nielsen and Jupp (1988) explore such structures in great 

depth. A key concept involved in the explanation of the likelihood structure is that of an L- 

sufficient statistic for the parameter of interest (Rdmon (1984)). 

The following sections contain an overview of some of the existing methodologies and related 

theorems and examples of transformation models. One such survey is contained in Kass (1979). 

(4.1.1) Group transformation models 

Consider a statistical model defined by the triple f X, f(x 112), 0 1. Suppose that a group, G, 

acts on the sample space, X. Furthermore assume that the action has the property, 

f(gx 10» = f(x 1g-, (4.1.2) 

for all g EG, wE d2. Thus the action of G on X induces an action on the parameter space D via the 

identity (4.1.2). Such a statistical model is termed a group transformation model. 

Maximal invariants 

A maximal invariant is a function constant on orbits taking different values on each orbit 

where the G-orbit is defined by 

Gx = jgXj gEGI 

Let X/G denote the space of orbits. Dawid et al (1973) explains how the nuisance parameter can 

be identified in such a decomposition. 

Amena i ity 

A natural topological smoothness condition for a group is that of amenability see, for exam- 

ple, Bondar and Milnes (1981). Basically, this allows the right invariant Haar measure to be 

approximated, in some sense, by a sequence of proper priors. Stone (1979) gives a review and 

interpretation of this concept in relation to improper priors. Emerson and Greenleaf (1967), Bondar 
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and Milnes (1981) contain equivalent conditions and examples of amenable groups. 

Although such mathematical assumptions provide a framework for exploring the interplay 

between the Bayesian and classical methodologies, the regularity conditions are severe in that 

straightforward model assumptions can lead to irregularities, for example, in multivariate analysis 

the group GL' is not amenable (Wijsman (1986)). R 

A further possibility is that of a composite transformation model. Here the group structure is 

is only involved with the nuisance parameter and not the full vector. The invariance property is 

f(gx 1 w) = Xg, XV(x 10, g -,; -) 

for all gEG. where Z(-, -) is known as the multiplier of the group G. Barndorff-Nielsen and Jupp 

(1988) consider approximation formulae for integral decompositions in such models. The tech- 

nique is to apply Laplace's approximation to a ratio of likelihoods of the form 

f(x 10, A) lf(x 100, Ao) for some 00, Ao, thus aiding in the regularity conditions (see Berk (1966)). 

Marginal likelihood 

For group models the following integral representation theorem holds. Heuristically, by vir- 

tue of the fact that the nuisance parameter can be identified with the group structure, an analytical 

integration can be performed for the right invariant Haar measure on the nuisance parameter. 

Theorem (Barndorff-Nielsen (1983)) : Consider a statistical model [ X, f(x 10, g), ex GI with 

densities relative to invariant measure u on X. Let G= HK be a left coset factorisation of G such 

that f(x 10, k) = f(x 10, e) for all x and kEK. Then the distribution of the maximal invariant is 

given by 

f(u 10) =f f(x 10, h)A(h) - ldv(h) 

where v is invariant measure on H, and A is the modular function of the group. 

Moreover, it is possible to examine equivalences between a posteriori statements and classi- 

cal procedures under the restrictive condition of a free group action. It is possible to obtain 

equivalence results between the Neyman-PearSon coverage probability, denoted by 8(0), and the 

Bayes credible probability associated with the posterior calculated under the right invariant prior, 

denoted by a,. The following results exploring such equivalences are contained in Bondar (1977). 

Theorem (Bondar (1977)) : Suppose that a statistical transformation model satisfies mild regular- 

ity conditions. Furthermore assume that the action of the group is free. Then if the credible region 

is exact (that is, a.,, = a) then 
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inf 8(0) <a<, sup P(O) 
0 CE 00 066 

The equality in (4.1.4) can be established for an equivariant set C, that is gCx = Cgx for all x and if 

such a set exists one possible candidate is the highest posterior density (HPD) region (Bondar 

(1977)). 

However, a general theory for such equivalences does not exist and even apparently innocu- 

ous models, for example, the Behrens-Fisher problem, disobey certain assumptions (Bondar 

(1977)). 

(4.1.2) Justification of the modified profile likelihood 

To mimic the construction of the modified profile likelihood for the class of group transfor- 

mation models we require a statistic u(. ) such that its distribution depends only on 0. Furthermore, 

assume that the score function 
a 

log p(x 10,10) depends on the observation x only through the 
ao 

statistic u(-). Such a statistic is said to be L-sufficient for 0 (see, for example, Barndorff-Nielsen 

(1978), Rdmon (1984), Barndorff-Nielsen and Jupp (1988)). 

P(U, I 10, A) = Al 10, A, U)P(U 10, A) 

By assumption, p(u 10, A) = p(u 10), therefore, 

p(U, 1,9 0,4 
p (u ,, 1) = p-(-zi 0, ;., u) 

D(b, 1) 
p(0, llo"z) 

p(U 0) =1 
D(U, X) 

p(i, 0, x, u) 
ai 1 

äre 
1' 

In order to further explore the above structure, the exact or approximate distribution of the relevant 

densities is required. A general formula (Barndorff-Nielsen (1983)) for the distribution of the max- 

imum likelihood estimator is given by 

p(t a) =c 
IL 

where L the normalised likelihood function, is observed Fisher's information, a is an 

L (T) 
ancillary statistic and c is a suitable normalising constant. This can be used in (4.1.5) to obtain an 

exact or approximate inference. The resulting approximation giving the modified profile likelihood 

as defined in (4.1.1). 
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Note that the maximal invariant statistic in a composite transformation model is an L- 

sufficient statistic for 0 (Barndorff-Nielsen and Jupp (1988)), thus the concept is a natural exten- 

sion of that encountered in the transformation group structure. 

(4.1.3) Bayesian paradigm 

Smith (1983) explores the use of the Bayesian paradigm in the context of a (nuisance) model- 
ling parameter, A. In such a setting inference for the parameter of interest 0 is drawn from the 

posterior, 

p(0 1 x) -c 
f 

p(0, Ä1 x) dX 

oc 
f f(x 10, X)p(0, X) dX 

oc 
(f f(x 10, A)p(A 10) d; [)p(0) 

, 

thus analytical, or approximate, representations of the inner integral of (4.1.5) are necessary. The 

former are possible if the measure p(AJO) is chosen to be the right invariant Haar measure, by 

virtue of theorem (4.1.3) (see Polson (1987)). In general, approximate calculations can be per- 

formed for large sample sizes by adopting some form of expansion of (4.1.5). The next section 

briefly discusses Laplace's method. 

(4.1.4) Approximate computations 

Laplace's approximation can be used to explore the behaviour of the marginal posterior with 

respect to a measure p(; L 10) (Sweeting (1987)). In a sense this is just a restatement of the law of 

stable measurement (Savage (1954)) for the approximation is only valid for large n and the profile 

likelihood is in close agreement with that of the reference posterior. The calculation is, 

p(0 1 x) =f exp( log f(x 10, X) )p(; L 10) dX 

which on application of Laplaces method (Sweeting (1987), Tierney and Kadane (1986)) yields, 

ikpje , 0) , jA - 'Lp(0)p(0) (4.1.6) p(0 1 x) - (27r) 

Under an orthogonal nuisance parameter, 

al 
- 1+0(n-1) 

5TO 
I 

:- 

and (4.1.6) reduces to, 

ik 
p(Olx)-(2n) p(1010)Lmp(O). 
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(4.1.5) Examples 

In this section a brief review of existing computations for families of statistical models is 

given. A selection of examples are given in Barndorff-Nielsen (1983) including, the von Mises- 

Fisher model, the hyperboloid model and matched pairs in contingency tables. Nonlinear regres- 

sion models are considered in Kalbfleisch and Sprott (1972). Further examples are contained in 

Wijsman (1986), Kalbfleisch and Sprott (1970), Dawid et al (1973), Fraser (1968). To illustrate 

the wide application, consider the class of generalised linear models as defined by 

f(x I yfic) = b(x, ic)exp( a(ic)o(x, yr) ) 

Suppose that ic is the parameter of interest, then (Barndorff-Nielsen (1983)) the modified profile 

likelihood for Yc is given by 

Lmp(K) =1 a(K) 1- yd b(x, ir)exp(a(jc)O(x, ik) ) 
1 

where ff is an L-sufficient statistic for Vf. V 

The above formula can be applied in the Bayesian context in a number of ways, see for exam- 

ple, computing sensitivity measures (6.1.1), or approximate posterior distributions (4.1.6). 

(4.2) Reference priors 

Consider a statistical model defined by the triple I X, f(x 10, A), i9xA 1. Suppose now that 

the focus of attention is the specification of the beliefs concerning 0, denoted by p(O). The Bayes 

risk governing the information gain given by the modelling criterion (3.1.2) decomposes as, 

lim I,, o 
- «'k log 

(nf 
P(O)log 

1(0) 1 1)d0. 

27re p(0) 

The necessary regularity conditions being related to the curvature of the likelihood surface and not 

directly to asymptotic posterior normality. Suppose that our beliefs belong to a space 16P, itself 

possibly indexed by a further hyperparameter. Thus the dec is ion- theoretic solution to the represen- 

tation of p(O) of maximising (4.2.1) over the space. P is given by Jeffrey's prior, 7r(O), where 

In general the solution is the projection onto Jeffrey's prior under the constraint Vp. 

(4.2.1) Examples : (i) Moment class 

Suppose that the class 16p is given by the moment constraint 
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l6p =t p(O) If O(O)p(O)dO =01. 

Then an application of the calculus of variations yields the solution, for some Lagrange multiplier 

a, is 

7ro(O) - JI(O) I lexp(-alo(O)) 
. 

Note that in general the solution is related to the I-projection of the prior onto Jeffrey's prior, 

existence and examples of which are contained in Csisz& (1975). 

(4.2.2) Strong inconsistency and amenability 

Stone (1979) contains a review of the results applicable to improper priors. Two such results 

are given in Bondar and Milnes (1981) and Dawid et al (1973) where strong inconsistency disap- 

pears under an amenable group structure and marginalisation paradoxes are avoided for the right 

invariant Haar measure. Other examples can be interpreted in such a setting, for example, Stone 

(1976) considers the free group on two generators, F2, a nonamenable group leading to a possible 

strong inconsistency. 

(4.2.3) Examples : 

(i) Exponential Connection 

Consider two possible location-scale families with densities denoted by f((x-, 4)lcr) and 

g((x-, 4)1a). A possible embedding of the two families is the exponential Connection (see (3.4.1)). 

The log-likelihood is given by 

log P(x I/-" a, 1) = log C; L +X f( X 
ap 

)+ 
(1-1) 9(xap) - 

Reference priors and sensitivity measures are determined by Fisher's information matrix, which for 

this three parameter likelihood takes the form 

b; t 
ax 

a; 
cy 

I(, U, or, A) 
a; L dx +0 
a 

a; L 0d 
2log CA, 

where the constants ax, bz are computable in terms of the functions f(-) and g(. ). 
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(ii) Hierarchical models 

First, consider a binomial sampling framework where the reference prior is given by 

X(O) =0-1 (1-00. 
Suppose that an elaboration of a conjugate prior, Beta(a, P) say, is required. One possibility is to 

generate the class 19P via the exponential connection between the reference prior and the conjugate 

prior as given by (4.2.1), leading to the class 

19P f 
p(O I A)p(A) AI p(O JA) = Beta(Aa + ic, Ap + ic) 

AI 

where Yc = 21 (A - 1). Thus a one parameter mixture of conjugate priors is obtained. 

Similar techniques can be applied to other exponential families and conjugate priors, for 

example to a scale parameter with an exponential prior to generate the inverse chi-squared family. 

The reference prior for the parameter (a, P) can be determined as follows: 

f(xla, fl) = 
ff(xlO)p(Ola, #)dO, 

thus on marginalising with respect to the conjugate beta prior, the log-likelihood becomes, 

log f(xla, ß) = log (F(a+x)F(I +ß-x) )- log (F(a)F(ß+ 1) + F(a+ 1)F(ß) ). 

Fisher's information matrix for (a, 8) is computable in terms of the digamma function, denoted by 

yf(-), as follows, 

I(a, ß) =( 

(a) +I (a + Of 

(a + 

(a+P)2 

A+ 
(a +p)2 

however, this simplifies due to the identity, 

yf, (a+ 1) - y, -'(a) = 
1 

a2 

therefore the reference prior for the parameter (a, P) is given by 

7r(a, 8) =I I(a, P) 11 
. 

Algebraic manipulation gives, for a>0, fi > 0, 

oc 
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Note that for fixed 8a proper prior is obtained, thus avoiding over-shrinkage at the origin, a clearly 
desirable feature. This is typical of second stage reference priors, a fruitful area of application in 

that the ensuing estimators tend to be close to previously proposed shrinkage estimators, see, for 

example, Takada (1979), Akaike (1980), Bondar (1987). 

(4.3) Discussion 

This Chapter contains a survey of existing literature as a basis for future work and discussion 

on the equivalence between classical and Bayesian approaches to the elimination of nuisance 

parameters. Analytical and approximate computations to aid in the implementation of the Bayesian 

paradigm are explored, based mainly on the properties of group transformation models. The 

modified profile likelihood and its relation to marginal Bayesian inferences and the approximation 

of posterior measures are explored. Further areas for future work include the computation of sensi- 

tivity measures (see (6.1.1)) and the approximation of Bayes factors (Lindley (1961)). 

A class of models that has received little attention is that of non-group models which can be 

embedded in a group model by addition of further modelling parameters (Dawid (1975)). 

The limitation and equivalences of the methods adopted throughout this Chapter needs further 

investigation, for example, to large dimensional parameter spaces and to non-group transformation 

models. 

A fruitful area for calculations is that of references priors for hyperparameters in hierarchical 

models, where it appears that the solutions are usually integrable (at least on compacts) and, via 

marginalisation, explain previous functional forms of shrinkage-type estimators. Their behaviour 

might be explained by considering inequalities associated with information measures in hierarchical 

models (Goel and DeGroot (1981), Haitovsky and Zidek (1986)). 
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Chapter 5: Posterior expectations characterising prior distributions in the 

exponential family 

Consider a random variable X whose density belongs to the exponential family throughu i. e. 

dPO(X) = exp(XO - M(O)) du(X) where 0Ee. in the context of Bayesian statistics we are interested 

in estimating functionals of 0, denoted by V/(O), via posterior expectations E(VI(O) I X). 

We consider approaches to the problem of assessing the properties of our prior distribution 

p(O) induced by constraints on the form of E(VI(O)IX). The central characterisation result is that if 

E(M'(O)IX) is linear in X, then the prior distribution is uniquely identified as a conjugate prior 

(Diaconis and Ylvisaker (1979,1985)). Furthermore corresponding results for the location family, 

f(X- 0), are reviewed (Goldstein (1975), Diaconis and Ylvisaker (1985)). 

First we review useful identities that arise in such models (Hudson (1978), Masreliez (1975)). 

Secondly, motivated by a problem of Diaconis and Ylvisaker (1985) concerning characterisations 

when the functionals are polynomials, we look at examples arising in the special case of a N(0,1) 

likelihood, including the class of multimodal priors of the form "polynomial times a normal". 

In the location problem the implications for prior moments take the form of a set of 

recurrence relations (Goldstein (1975)). Then, in certain instances, Carlemann's theorem (Kagan, 

Linnik and Rao (1973)) characterises p(O). For the exponential family, properties of the moment 

generating function reduce the problem either to the determination of E(OIX) or to a differential 

equation for p(O) (Sampson (1975), Diaconis and Ylvisaker (1979), Ralescu and Ralescu (1981)). 

Finally, we consider the possible extension of examples outside the normal family and to 

possibilities for future work. For convenience, E01x(-) will denote the expectation operator when it 

is required to suppress the conditioning. 

(5.1) Identities in the exponential family 

A number of natural identities exist for a continuous random variable in the exponential fam- 

ily with support R (Hudson (1978)). In a Bayesian setting these can be used for a number of 

purposes, primarily for simplification of Bayes risks with regard to shrinkage estimation. In this 

section we review these identities for posterior expectations allowing partial insight into the forms 
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of functionals Vf that arise naturally in this context. 

Consider the exponential family through y in its natural parameterisation, where 0 has sup- 
port R. Thus the posterior will be of the form, 

p(OIX) - p(O)exe-m(9) 

Define 

B(X) f 
p(O) exo- M(O)dO 

Rewriting (5.1.1) gives 

XO-B(X) p(0 IX) = p(O)e - M(9)e 

(5.1.1) 

a density for 0 lying in the exponential family. The following identities hold (Hudson (1978)). 

(i) Let g(O) be any absolutely continuous function on R, such that Ee Ix 19'(0) 1<-, then 

Eoix 
d 

log p(0 I X) g(0) Eg ix(g'(0» . 

(dX 

(ii) Suppose 0 is a discrete parameter taking values in [0,1,2 
.... 

1. Then for g(O) satisfying 

Ee Ix 19(0) 1< 00 

exEolx(g(O)) = Eolx(t(O)g(O- 1)) 
, 

where 

P(o - 1) M(O) - M(O - 1) t(o) = 
P(O) 

e 

(iii) Let y= E(O IX), then the normal, gamma and inverse chi-squared cases of the exponential 

family have the property that there exists a function a(O) such that for all absolutely continu- 

ous functions g(O) the following holds 

Eojx((O-y)g(O)) = Eelx(a(O)g'(0)) 
. 

Due to the fact that the posterior is in the exponential family, the posterior mean is given by 

E(OI X) = B'(X). 

By definition of the score (i. e. minus the derivative of the logarithm) function of the posterior with 

respect to 
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E(OIX) =0-d 109 P(O 1 X) 
- dX 

Hence the posterior variance can be calculated as 

2 
v(01x) f 

P(O X)( 
d 

log p(0 IX) d0 
dX 

therefore, 

V(OIX) = ielx(. ) 
I 

where I(-) is Fisher's information, thus the associated expected Bayes risk, R(-) can be expressed 

as 

EX(V(OIX)) = EX((B,, (X)_0)2), 

by properties of the exponential family we have, 

B'P'P(X) 
, 

therefore, 

2 
f 

P(x) 
dX 

log p(X) dX +f p(X) S" (X) d 
, a2 

2 
where S" (X) 

2 
log f(X 10). Hence, ýjp 

f 
p(X)S"(X)dX - Ix(-) (5.1.2) 

a functional of p(X) which is determined by Fisher's information and a moment constraint. 

(5.2) Functional minimisation of the Bayes risk 

Consider the decision problem defined by the family of measures PO and risk function given 

by (5.1.2). Suppose our prior beliefs for 0E 19 are only specified by the constraint that P(O) E '6, 

for some subset 6 of the space of possible probability measures over e. This then induces a subset 

IOX of the space of possible probability measures over X such that p(X) E Wx. A full Bayesian 

analysis would require a further measure over 6, to average over the set 6. If our primary object is 

to report the posterior mean the associated risk from (5.1.2) can be used to induce a distance on 16. 

The ensuing distance allowing a choice of measure over 16, given by concentrating on the particular 

prior, p(O), which attains 

min R(. ) 
W. 
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Consider the problem of minimising R(-) over the space of all distributions, IP. This can be 

solved by finding the extremal. solutions, using the Euler-Lagrange equations, of the following cal- 
culus of variations problem, 

F(p, p') subject to fp=I 

where 

F(p, p') = pS" 
(p 

p 

The Euler-Lagrange equation being, 

d (DF) 
_ 

aF 

dX ap' ap 

where a is a Lagrange multiplier. Let u(X) =d log P(X), then we have a first order differential 
dX 

equation for u(. ) given by 

du 121 (a 
dX 22 

There are close links with the Riccati and Schr6dinger equations (see also (3.1.6)) which have no 

general solution, but for given forms of S"(X) solutions for u(-) can often be identified. 

For example, suppose the family [Pej is the exponential family with mean 1/0. By direct 

substitution, if p(X) is a gamma density equation (5.2.1) holds. Hence the set I6x is the family of 

gamma densities, which implies that the original prior space is also the set of gamma densities (as 

the likelihood is exponential). Thus, in this setting, an optimal choice of prior measure over W is 

one that concentrates its mass on the gamma family, which is indexed by two hyperparameters. 

The same characterisation holds when the likelihood is also gamma. 

(5.2.1) Links with inference for a location parameter 

Suppose now that our observation X is generated from a location family with scale unity, 

giving rise to a density f(X- 0). This is apparent for the normal family and certain members of the 

exponential family after a suitable transformation (LeJeune and Faulkenberry (1982)). 

By exploring analytic forms for posterior means and variances we obtain guidance to forms of 

departures encountered in model elaboration (Box (1980), Smith (1983)). Under a normal prior, 

the relevant identities for assessment of posterior means and variances are given by the following 

theorem. 
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Theorem (Masreliez (1975)) : Let g(X) 
d 

log p(X) and G(X) = g'(X). Then under a normal 
dX 

prior p(O) = N(m, C2), and a bounded likelihood (see Appendix (5.10)), 

E(OIX) = M+C2g(X) (5.2.2) 

V(OIX) = C2_C4 G(X) 
. 

(5.2.3) 

For a discussion of their interpretation in a robustness setting see Smith (1983), also O'Hagan 

(1979). Similar relations hold for scale parameters and gamma priors (West (1984)). 

For the moment we pursue this direction further by noting that g(X) can be expressed as the 

posterior expectation of the likelihood score. Thus providing a direct link with corresponding 

notions of M-estimation and appropriate choice of score function (Ramsey and Novick (1980), 

Huber (1981), Marazzi (1980)). 

Lemma : Under the conditions of Masreliez's theorem, 

E(OIX) = m+c 2 EOIX 
d 

log Ax - 0) 
(d0 

Proof: By definition, 

E, 9 Ix 
d 

log f(X - 0) =1f p(0)-ý-f(X-0)d0. 
(do ) 

Xx) 
0 

d0 

Interchanging the derivative with respect to 0 with that of X, together with the integral sign yields 

EOIX 
d 

log f(X - 0) =-d log Xx) 
, 

(d0 

dX 

by Masreliez theorem we have the desired result. 

This generalises to a sample of size n, showing that under a normal prior the score function 

for Xi quantitatively describes the behaviour of the posterior mean given by the following lemma. 

Lemma : Suppose our prior is normal and we have a random sample of size n, then 

E(OIX) = m+C 2 EOIX 
d 

log f(Xi 10) Z 

i=l 

(d0 

Note that if we choose a bounded score function then the posterior mean will also be bounded, for 

all X. 
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The Bayesian methodology naturally allows, and encourages, flexible inputs for prior and 

likelihood combinations in order to study robustness in the form of a model elaboration (Box 

(1980), Smith (1983)). One such class that arises naturally is the set of all scale mixtures of nor- 

mality, the addition of hyperparameters giving flexibility in the underlying structure imposed on the 

posterior for the parameter of interest 0. This class incorporates a very wide selection of possible 

shapes including the student, logistic and exponential power families. We now look at the conse- 

quences for posterior moments. 

(5.2.2) Prior elaboration 

First consider a prior elaboration, for known (7, having the representation, 

p(O 
f 

p(O I c, cr)p(c I a) dc 

0 

where, p(O I c, a) = N(m, C 2er2), p(c I a) = p(c). For simplicity, take m=0, a2 = 1. Then, by 

Fubini, 

co 

E(OIX) 
ff 

Of(X-O)p(Oic)dO p(c)dc 
P(X) 

0 

The inner integral can be written using (5.2.2), 

f Off- O)p(O I c)dO C2 
d 

P(x I C) 
dX 

hence, 

E(OIX) =-1fd P(x ic)c2 p(c) dc 
. 

(5.2.4) 
P(X) 0 

dX 

Define the new density p*(c) = c2p(c)IA for suitable normalising constant A and correspondingly 

define p *(X). Then we can write 

E(OIX) =-Ad (X) 
p(X) dXp 

dp* 
(X) 

dX d 
log P(X) 

d 
Xx) 

dX 

dX 

therefore, 
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E(OIX) = -D(X) 
d 

log P(X) (5.2.5) 
dX 

which is of the same form as (5.2.2) in the original theorem except for the introduction of a down- 

weighting factor D(X). In the special case where P(c) is gamma, then so is p*(c) and hence P(O) has 

a t-distribution. 

Alternatively, (5.2.5) can be rearranged in terms of the second moment of the hyperparameter 

c, as follows, 

E(OIX) 
1d 

(p(X)E(C21X)) 
p(X) dX 

d E(C21X) 
- E(C21X) 

d 
log P(X) - dX dX 

The equivalent to (5.2.1) can be determined by evaluating E(021X). Unfortunately, this term 

does not combine neatly with (E(O IX))2 
. 

The following expression for the variance is obtained 

V(OIX) = Ap 
(X) 

-D* (X) 
d 

log p(X) - D(X)2 
d 

log P(x) ' Xx) dX dX 

where A* is the normalising constant for prior c4p(c), and 

d2 

D*(X) =A* 
dX2P 

d 
P(X) dX 

Calculation of the Bayes risk, R(-) 

A useful identity for the Bayes risk for the posterior mean under a quadratic loss structure 

was established in Brown (1971). Define, 3(X) = E(O-XIX). 

By definition, 

EX(V(O 1 X» 

E (X, O)((O_X)2) _ EX(, 5(X)2). 

By hypothesis Var(X) = 1, giving 

f 
P(X)g(X)2dy. 

Hence, depending on the choice of prior we have different forms for 8(X). For example, under a 

normal prior, by Masreliez theorem we obtain 
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R(. ) =1- (5.2.6) 

Hence, as in the exponential family, the Bayes risk is a functional of the Fisher information 

of the marginal beliefs about X. 

Fisher's information can be further expressed in terms of a Kullback-Leibler distance, using 

DeBruijn's identity (see Barron (1985)), by the following theorems. 

(5.2.3) Representation of Fisher's information 

Suppose the conditions for Masreliez's theorem hold, thus (5.2.2) and (5.2.3) are valid. In 

order to relate the decision problem of reporting the posterior mean with risk, R(-), with that of 

reporting the marginal beliefs about X, we apply DeBruijn's identity to represent the Bayes risk, 

R(-), in terms of a Kullback-Leibler distance. Such a distance can itself be interpreted as a Bayes 

risk to a pure inference problem comprising a local utility function which necessarily has to be 

logarithmic (Bernardo (1979a)). 

Theorem : Under the conditions of Masreliez's theorem, 

d 
ä-C2 

(f p(X)log p(X) dX) 2 (5.2.7) 

Proof : This is DeBruijn's identity (see Blachman (1965), Barron (1985)) written in a Bayesian 

context. 

The following theorem links the Bayes risk, R(. ), with the decision problem of projecting 

p(X) onto O(X). 

Theorem : Let O(X) - N(O, r), then the Bayes risk has representation 

2, r2 
d (f 

p(X)Iog 
(P(X))dX) 

d, r O(X) 

Proof : By (5.2.7), the Bayes risk is given by 

2, r2 
1+d (f 

P(X)Iog Pm dX) 
( 

2, r dr 
(5.2.8) 

By definition of O(X), 

p(X)Iog O(X)dX = - 'log r +A 

for some constant A. Hence, 
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d (f 
P(X)Iog O(X)dX) =-1 d, r 2, r 

Substituting into (5.2.8) gives, 

2, r2 
d (f 

p(X)Iog 
(P(X))dX) 

dr OM 

as required. The risk is thus represented as a derivative of the loss when approximating the margi- 

nal beliefs about X by a normal distribution with variance r. 

Minimax solutions can be obtained, as in the exponential family, by minimising (5.2.6) (see 

Bickel (1981)). 

(5.2.4) Likelihood elaboration 

Suppose instead that our likelihood is a scale mixture of normality, with mixing measure 

indexed by A. Reversing the roles of 0 and X leads to a similar expression to (5.2.5) for the poste- 

rior mean as follows. By definition, absorbing irrelevant constants, 

E, (0 IX) 
0 

exp(- 
1 (X -, 0 2 

p(, Z)p(0) dM0 ý(-x) 
ff1 

2-, Xx) 2 

where it is assumed our prior beliefs about A and 0 are independent. Making the substitution 

X-0 gives 

E(OIX) =X+1ff Ap(A)p(X-u)dh(u)dA, 
P(X) 0 -ý 

where h(u) = exp 
U )2). 

In a similar manner to before, integration by parts and reversal of 
2 

derivative and integral sign yields 

E(OIX) =X+f P(, ý)12 
d 

P(X,, ý)dA, (5.2.9) 
P(X) " 

dX 

with the previous notation we obtain 

E(OIX) =X+ 
Ap *(X) d 

log p*(X) - p(X) dX 

Thus in the setting of such an elaborated likelihood, our posterior mean has the functional form of 

X plus a Bayes factor times a score function, the main quantity of interest being the marginal 

beliefs about X under the elaborated likelihood with mixing measure A2 P(; L). 
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Rearranging equation (5.2.9) leads to expressions either in terms of moments of the mixing 
parameter, or the likelihood score function. First, as in (5.2.2), 

E(OIX) =X+d E(, Z2 1 X) + E(, t2 X) 
d 

log Xx) 
- dX dX 

Secondly, in terms of a posterior expectation with respect to p*(; L I X), we have 

E(O IX) =X-AE; IX 
d 

log P(x 
(dX 

where, A=E; L(V). This generalises (5.2.2) as 

E(O IX) =X-AE; Llx(g(X 11)) 

where g(X JA) is the score function calculated under the first stage normality assumption. The 

robustifying mechanism being that of an adaptive averaging of such score functions by the poste- 

rior p*(; LIX). For results concerning outlier proneness for members of the exponential power fam- 

ily see O'Hagan (1979). 

A straightforward application of this last result occurs if we assume our prior beliefs are nor- 

mal, mean zero and scale c2. For then p(XI; L) is directly computable as a N(O, C2+A2) density. 

Correspondingly, the score function g(XIA) = XI(c2+; L2). An adaptive shrinkage estimator of the 

form 

E(OIX)= I-AE; IX 2+A2 (5.2.10) 
(C , 

)) x 
is obtained. In terms of the original posterior, 

E(OIX) l-Eolx 
x2 (C 

2+A2 

invoking approximations to the inner expectation will then lead to expressions resembling known 

forms of shrinkage type estimators (Efron and Morris (1971)). Furthermore, due to positivity of 

the inner expectation it shows that for the elaboration of scale mixtures of normality the posterior 

mean is always shrunk towards the prior mean. 

The corresponding formula for V(O I X) does not simplify for the likelihood elaboration, but 

for completeness it is given by 

1d 2(E; 
l X(g 

(X )))2 V(OIX) =A -A**E; 
i*x( 

p 1, J) 
1))-A 

P(X) (x dx2p(XI, 
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Although the variance function does not have a direct interpretation, it still plays a central 

role in model elaboration. The dispersion properties of mixtures have many applications in statis- 

tics and probability (Finucan (1971), Shaked (1980)). 

(5.3) Examples with a N(O, 1) likelihood 

Suppose our likelihood is normal with mean 0 and variance unity. Throughout we will be 

concerned with a posteriori constraints, for all X, of the form 

E(Vl(0)1 X) = (5.3.1) 

In this section we list five specific examples, where the functionals Y( and 77 are polynomials, 

together with the corresponding prior distributions. Finally we note the asymptotic behaviour of 

E(vp(O)IX) as X -> - (Meeden and Isaacson (1977), Dawid (1973)). Sometimes these conditions 

allow us to show that no such prior exists. 

Examples -. 

(i) Consider a constraint on the nth posterior central moment (i. e. Vf(O) = 0' ) where n is odd. 

Lemma : E(O'IX) =X can be solved with prior given by 

p(O) - exp( 
1 (02 

-20"+l)) 2 n+l 

Proof : See Section (5.6) 

(5.3.2) 

(H) The following example resolves a conjecture of Diaconis and Ylvisaker (1985) as to the 

existence of non-normal priors with Vf and 77 both polynomials. 

Oc 02 le 
2 

Lemma: Suppose p(O) e, then we obtain 

03 
x3 

E(2 -301X) =-+ 3X (5.3.3) 
4 

(04 021X) = 

x4 X2 9 
(5.3.4) E -4 -+3--- , 16 44 

Proof : By Bayes theorem the posterior is given by 

p(0 1 X) oc 02e -(0-1x)2. (5.3.5) 

Integration by parts leads to the following recurrence relation for the posterior moments. 

.1'2x. I 
E(O'IX) 

+ E(O'- IX) + -E(O'- IX) (5.3.6) 
22 



-84- 

we also have (e. g. Diaconis and Ylvisaker (1985)) 

E(O IX) = 
X3 + 6X 

(5.3.7) 
2X2+4 * 

Algebraic manipulation of (5.3.6) for i=2,3,4, and (5.3.7) implies the equations (5.3.2) and (5.3.3). 

As such there exist solutions for certain cubics and quartics with a non-normal prior. 

(iii) Class of priors of the form, O(O)e 30 2 
polynomial 

We outline a method for examining the constraints involved under such a model structure. In 

theory analytical computations can be carried out reducing condition (5.3.1) to that of a linear sys- 

tem of equations as follows. By Bayes' theorem the posterior is given by, 

p(OIX) - O(O)e- (0 - ix), 
. 

M 
The posterior expectation of Vf(O) Y, bjOi, if analytically determined, would take the form 

j=0 

nnM 
(5.3.8) ajCj(X) E(yf(O)IX) aibjCi+j(X) 

(i=O 

i=0 j=0 

where Cj(X) is a polynomial of degree i in X. First note that for (5.3.1) to have a solution we need 

Vf and q to have the same degrees. Hence let 

m 
77(X) djXj 

j=o 

Constraint (5.3.1) now reduces to the polynomial identity in X given by 

nnm 

Z,, aibjCi, j(X) (5.3.9) djXj ai Ci (X) = 2: 2: ( 
=o 

)(i=O 
i=O j=O 

yielding constraints for the possible coefficients in the polynomials. 

The main advantages of this class of priors are that the posterior distribution and its moments 

are analytically tractable, also it contains a varying selection of 'shapes' ranging from normality to 

multi-modality for prior input. 

(iv) yr and 77 both quadratics 

Suppose that Vf and il are both quadratics i. e. without loss of generality, assume that 

E(02 +b, OIX) = do+d, X+ d2X2 
. 

(5.3.10) 

We have the following results: 
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(i) For a solution to exist d2 has to be greater than zero. 

If we restrict our prior to the class considered in Section 4, then (5.3.10) has a solution in this 
class if and only if p(O) is normal (i. e. 0= constant). 

Proof of (i) : First, the following lemma restricts the possibilities for the polynomials 0 and V/. 

Lemma (5.3) : Suppose Vf(O) has complex roots. Then if (5.3.1) has a solution, 77(X) must have 

complex roots also. 

Proof : As yf(O) has complex roots, V/(O) > 0, hence I. h. s. (5.3.1) is > 0. Therefore 77(X) >' 0 i. e. 

77(X) has complex roots. 

Corollary (5.3) If Vf is even and 77 is odd then no solution exists. 

In order to prove (i), rewrite (5.3.10) as 

E(02+b, O+bolX) = do+bo+d, X+d2X2 

for any bo. Choose bo such that 

b, 2 <4bo and do+bo> 0. 

Then V/(O) has complex roots. Hence, the r. h. s. of (5.3.11) has complex roots and as do+ bo >0 we 

must have d2 > 0. 

Proof of (H) : Suppose that there exists a solution to (5.3.10) in the class polynomial times normal 

where degree 0>2 Hence applying the polynomial identity (5.3.9) we obtain 

do = bo- 
(2n + 1) b2 

2 

therefore (5.3.10) now becomes 

E(b2 02+bOIX) 
(2n+ I)b2 

+ 
ýIX+ §X2. 

(5.3.12) 
224 

Now choose 
b12 

and add co to both sides of (5.3.12). By choice of co, the polynomial on the 
t"j - 02 

I. h. s. has complex roots. After algebraic manipulation the discriminant of polynomial on the r. h. s. 

is 2b2 2 (2n+ 1) > 0. Hence it has real roots, contradicting lemma (5.3). Therefore the only solution 

in this class can be the normal. 

It is possible to examine different tail behaviour in relation to posterior expectations, for 

example, let p(O) =e 
-104 

(i. e. light tails) then it will be shown that (see section (5.6)) 
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E(293+ OIX) =X. 

(5.3.1) Asymptotic Behaviour of E(vy(O)IX) as X -+ - 

Using techniques of Laplace approximation it is possible to examine the behaviour of V/(O) as 
X -> - (Meeden and Isaacson (1977)). This is clearly relevant to establishing conditions for 77M. 

Furthermore, it is appealing from a robustness viewpoint when considering aberrant observations 

(see also Dawid (1973)). Rather more can be said about the approximate posterior, it is in fact 

approximately normal. Concentrating on expectations, the following results from Meeden and 

Isaacson are useful. 

(i) Priors 0', e-03/2, lead to posterior means with behaviour like X+ýX-2-A+B as X The 

priorp(O) oc exp(-cO"+ 02) 
,a>2, 

leads to a posterior mean with behaviour like X 1) 

(ii) For a likelihood in the exponential family the behaviour of E(VI(O)IX) for polynomial V/ and 

large X is related to that of E(O JX) via theorem 4 of Meeden and Isaacson, which states that 

lim- 
E(yt(0) 1 X) 

-+ Vf(E(O I X» 

(5.4) Characterisations involving moment generating functions 

A probabilistically appealing tool for characterisations is the moment generating function. 

For exponential families it is directly related to the posterior mean (Sampson (1975), Goldstein 

(1977)) It can further be used as a device to reduce the integral equation (5.3.1) to a differential 

equation for p(O) (Ralescu and Ralescu (1981), Diaconis and Ylvisaker (1979)). First, we review 

the main result of Sampson. 

Theorem (Sampson (1975)) : Suppose [To) is a family of scalar random variables whose density 

lies in the exponential family through ji. Let g(O) = E(TO). Then the density of To is uniquely 

determined via its m. g. f. 

O+s 

exp f g(w)dw 

Note that the converse also holds and there exists a multivariate extension (Sampson (1975)). 

A number of implications arise in a statistical context. First, to that of assessing the inherent 

properties of exponential dispersion models through their variance function V(O) (Tweedie (1947), 

Jorgensen (1987)). The variance function is related to the mean value mapping, M'(0), via 
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d 
mo -1 (0) = V-I(O) 

d0 

Following Sampson (1975) no exponential dispersion model exists with a polynomial mean func- 

tion of degree two or more. This discounts a large class of possible variance functions through 
1 

equation (5.4.1). For example; power variance functions with power 1--, nEN (a special case of 
n 

theorem 2, Jorgensen (1987)), certain variances, V(O), of the form -\fa--+bO as then the mean function 

is quadratic. (see also Burridge (1987)). However, it should be noted that the variance function 

can be a polynomial, for example M(O) =1 /(1 +e-ý corresponds to a Bernoulli random variable 

with V(O) = 0(1 - 0). Although we note here that there are only limited possibilities for quadratic 

variance functions (Morris (1982), Bar-Lev and Stramer (1987)). The required conditions on M(O) 

for the family to be infinitely divisible are contained in (Sampson (1975), Jorgensen (1986)). 

Secondly, in the setting of Bayesian posterior distributions the roles of 0 and X are reversed, 

but the posterior is still a member of the exponential family with respect to the prior for 0. There 

are a number of corresponding results : 

(i) The posterior mean is never a polynomial of degree greater than one (Goldstein (1977)). 

(ii) The posterior mean is never of the form X", a>1 (as there is no power variance exponential 

dispersion model with power between 0 and 1, theorem 2 (Jorgensen (1987))). 

Thus we cannot attempt to predict the posterior mean by a polynomial of degree greater than 

one or power greater than one, a type of shrinkage property for such families. For characterisation 

purposes the above result becomes 

Lemma : E(O IX) characterises the posterior, prior pair for a likelihood in the exponential family. 

Proof : Directly applying Sampson's theorem implies E(OIX) characterises p(OIX) for all X. The 

prior is then determined almost everywhere. 

For example, the constraint E(OIX) = 
x3 + 6x 

haracterises the prior p(O) a02e_ 
j02 

under a 2X2 +4 
c 

N(0,1) likelihood. 

It is possible to recast the integral constraint (5.3.1) into a differential equation for p(O). 

First, when the support ofu is R, we apply the methods of Ralescu and Ralescu (1981). Secondly, 

we adopt the approach of Diaconis and Ylvisaker (1979) which also has application when the sup- 

port of u is the nonnegative integers. 
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(5.4.1) Application of Ralescu and Ralescu (1981) 

Concerned with admissible estimation in the one parameter exponential family with support R 

taking the form 

E(yf(0) 1 X) = 
aX+b 

* cX+d 

Ralescu and Ralescu (1981) detennined a first order differential equation for p(O) (see also Ghosh 

and Meeden (1977)). In the context of constraint (5.3.1) we have the following 

Theorem : Suppose equation (5.3.1) is satisfied with 77(0) a polynomial. Then there exists a dif- 

ferential equation of order degree 77 that the prior p(O) must satisfy. 

Proof : Suppose equation (5.3.1) holds, let e -m. Then by definition of E(VI(O) IX) the follow- 

ing holds 

71(X) 
f 

e oxflp f V1,8p e Ox 

f i7(X) e oxflp can be rearranged, by parts, as 

(5.4.2) 

Now due to the fact that 77 is a polynomial 

(X) e9xßp =q (D (ßp» 
, 

where D denotes the differential operator (e. g. D' denotes the nth derivative with respect to 0). 

Substituting into equation (5.3.1) and using the uniticity of the Laplace transform (as a function of 

X) gives 

77 (D (pp)) = V1,8p , 

a differential equation of order degree 77 for p(O), in theory yielding a solution for the prior, which 

then must be checked to be a proper prior. 

(5.4.2) Application of Diaconis and Ylvisaker (1979) 

In the previous section (5.4.1) the support of ja was R, hence integration by parts does not 

involve endpoint evaluations. Suppose instead that X is discrete and the support of y is the nonne- 

gative integers. For this setting, e is an unbounded open interval to the left. Here it will be 

assumed that 19 = (-., 00), where 00 < o-. As such the technique in (5.4.1) is not directly applica- 

ble, instead (5.3.1) is rewritten in integral form as in Diaconis and Ylvisaker (1979). 
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In this discrete setting, the required moment characterisation property is that a signed meas- 

ure on a compact interval having all moments zero must in fact be zero. 

Let p(O) = d-r(O), then constraint (5.3.1) can be written as an integral equation, 

0.11 
ex9V1(O)e-m('9)dr(0) = j7(X)p(X) 

Without loss of generality assume that 77(0) = 0, then rewriting the I. h. s. gives 

0)( 
0 

Xexydy)ex9d-r(O) =, Xe xy V(O) e- m(O)dT(O) dy 

90 00 

ff(f 

y 

Now the inner integral can be rewritten, using constraint (5.3.1) when X=0, as 

0y 
f 

Vf(O) e- 
M(9)dT(O) f 

Vf(O) e- 
m(' ')dr(O) 

Substituting back, interchanging 0 and y, we obtain, 

0.0 
Xf exe 

(f 
VI(y) e- M(Y)dr(y» d0 = 17 (X)p(X) 

Let F(O) denote the inner integral, then 

e. e 
f 

exeF(O)dO = 
77(x) 

exoe-m(9)dr(O) 
x 

Let t= ee, note that the support becomes the compact interval [0, eeo] . 
Suppose 77(X) = X, then 

the r. h. s. of (5.4.3) reduces to a set of moment constraints for which the above characterisation 

theorem yields, 

F(O)dO = exedT(O) - 

Note that differentiating once with respect to 0 yields a first order differential equation for p(O), as 

in Diaconis and Ylvisaker (1979). 

Reapplying the procedure yields 

) 
dy 

, ex'OF(O)d0 
f Xexy( f F(O)d0 

y 

the inner integral can be expressed as 
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0 00 
iXexy f F(O)d0 dy. 

(y 

Again, the inner integral can be expressed as 

00yt 
f(f 

V/(t) e d0 f VI(t) ef d0 dr(t) 

Hence, on interchange of 0 and y, constraint (5.3.1) becomes 

0. yf 
I7(X) 0e Xoe - m(9)dr(0) 

. 
e xy f (t - y) V(t) e- m()dr(t) dy 

Suppose 77(X) = X2, for then the same characterisation argument applies yielding, 

0 

V(t) e- m(')dr(t) 
=e- 

m(9)d»r(0) 
. 

- 
ffl 

Differentiating this expression twice with respect to 0 will yield a second order differential equa- 

tion for p(O) involving derivatives of Vf and M. Note that the characterisation step will still hold if 

X is in fact continuous. 

(5.4.3) Results of Goldstein (1975) 

By employing linear functionals Johnson (1957,1967) and Ericson (1969) deduced con- 

straints, on prior moments. These results were extended by Goldstein (1975) reducing the problem 

to a set of recurrence relations for the prior moments. The technique can clearly be applied in the 

case where Vf and 0 are polynomials, unfortunately these seem tractable only when V/ and 77 are 

quadratic (or less), for which we have the following example. 

Example : (i) The constraint E(021X) = X2 has no solution for prior with finite variance. 

(ii) Suppose that either E(03) =0 or E(O) = 0. Then for 0<c<1 the constraint 

E(021X) = C+C2X2 

characterises a N(O, T2) prior, where T2= cl(I - c). 

Proof : From (5.4.4), we have for all n, 

cE(X n-2)+c2E(X) = E(E(X'-201X)) = E(OE(X^-21 0)) 

(5.4.4) 

This leads to recurrence relations, for n>2, of the form 
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c 

n-2 
n-2 

Mn-2-r Pr +C2n 
(n) 

'r = 

n-2 
n-2 ý(r 

Mn-, 'P Mn-2-riPr+2 
9 

r=01rIr r=0r=0( 

where Pr is the rth central moment of the prior and mi is defined by, 

mi = E«X - 0)'l 0) 
. 

(5.4.5) 

Now suppose likelihood is symmetric (i. e. mi = 0). Letting n=2 in (5.4.5) uniquely determines P2 

as, V2= cl(l - c), which implies 0<c<1 for a solution to exist. If n is now even in (5.4.5), we 
see recursively that V, r even, are uniquely determined. Similarly the odd moments are uniquely 
determined in terms of P3, or P1. Suppose P3 = 0, from recurrence relations this implies ip, = 0, r 

odd. It is easy to check that (5.4.4) is satisfied for a N(O, r) prior, where r2 = Cl(l _ C). Hence a 

prior satisfying (5.4.4) has the same moments as a N(O, r2 ) distribution. We now show that this is 

the only possibility. 

Computing even moments of the above normal prior gives, 

-1 (92n) 2n 2 n+I 

-ý2ir(n - D! 2 

Estimating this we obtain, 

I 

(p2n) 2n 
> 

therefore, 

2n 
= 00 

(V2n 

Theorem (Carlemann) :A distribution F is uniquely determined by its moments, V. if 

1 (f, 
2n) 

2n 
= (>O . 

Applying this we see that (5.4.4) characterises a normal prior, as required. 

A general theorem for the linear case, combining the use of characteristic functions and 

Carlemann's theorem, is given in Diaconis and Ylvisaker (1985), extending the characterisation of 

Goldstein (1975). 

(5.5) Associated differential equations for moments and priors 

Consider the exponential family through u in its natural parameterisation, from (5.1.1) the 

posterior will be of the form, 
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-B(X) p(OIX) = p(O)ex'9-m(e) 

By interchanging derivatives and integrals, with the required regularity conditions (see section 
(5.9)), a differential equation in X can be formed for posterior moments as follows (see also Gold- 

stein (1977)). 

Theorem : Let f(X) = E(Vf(O) I X), under suitable regularity conditions, 

df 
= E(Oyf(O)IX) - f(X)E(OIX). 

ax 

Proof : For any polynomial Vf(O) we have 

E(V(O) 1 X) =Bf Vi(O)p(O)ex9-m(9)d0. 

Differentiate partially with respect to X, as V/(O) is a polynomial this is valid (see Appendix (5.9) 

and Weir (1973) p. 118,256). Let f(X) = E(yf(O) IX), then 

df 1 00 

dX B(X) 
f OW(O)p(O)ex'9-M(O)dO - B(X)2 

f 
yf(O)p(O)exo-m(O)dO. 

Hence, 

df 
= E(Oyf(O)IX) - E(yf(O)[X)E(OIX) 

dX 

therefore, 

df 
= E(Oyf(O)IX) - f(X)E(OIX). 

dY 

Corollaries : (i) Applying (5.5.1) in the case Vf(O) =0 gives 

df 
= V(OIX) - dX 

(5.5.1) 

(ii) If V/(O) is a quadratic, substituting into (5.5.1) and letting y= f(X) we obtain a differential 

equation of the form 

dy 
(Y2 - bly) 

dX 
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(5-6) Linear regression in X 

In the case where 77(X) is linear in X, it is possible to determine solutions to the a posteriori 

constraint (5.3.1) for the exponential family. The main result aiding in characterisations is theorem 

4 of Diaconis and Ylvisaker (1985). It states, 

Theorem (Diaconis and Ylvisaker (1985)) : Let X be from the family (POI, where the support of 

y contains an open interval in Rd. Then if 

E(M'(O) 1 X) = aX +b (5.6.1) 

for some non zero constant a and vector b, then, a>0 and p(O) is absolutely continuous with 

respect to lebesgue measure with density 

p(O) -c exp(a - l(bO- (1 - a)M(O))) . 
(5.6.2) 

Appropriate versions for discrete data are given in Diaconis and Ylvisaker (1979). The above 

characterisation (5.6.1) can be viewed as a definition of the conjugate family. Furthermore the 

characterisations are invariant to diffeomorphic transformations of the parameter space (Diaconis 

and Ylvisaker (1985)). 

From a robustness viewpoint, as in the location case, we note that (5.6.1) can be rewritten in 

terms of the score function of the likelihood as 

Corollary : Suppose that 

EOIX 
d 

logf(XIO) aX+b, 
(dO 

then a* < 1, and p(O) is given by the conjugate family (5.6.2). 

Proof : By definition of the density for X, the likelihood score function is 

d 
log f(X , 0) =X_M, (0) 

d0 

hence (5.6.3) becomes, 

E(M'(O)IX) = (1-a*)X + b, 

(5.6.3) 

the result follows from (5.6.1). Note that, the condition on a* is a type of shrinkage property for 

such families. 

Consider the example of linear regression in X, with a N(0,1) likelihood where uniqueness is 

only apparent if Vf is also linear. That is, suppose E(yf(O)IX) = 77(X) = X, then there are two 
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possibilities, 

(i) Suppose that W(O) is linear, see Diaconis and Ylvisaker (1985). Here the solution is unique. 
(ii) Consider priors of the form p(O) c-- e- 

ls(e), 
where S is a polynomial such that p(O) forms a 

density. The following lemma establishes a relation between S and 0. 

Lemma : Given any odd polynomial 0 (assumed monic) by choosing S(O) such that 

S'(O) = 2(V/(0) - 0) 
, 

then E(V(O) I X) =X for the prior p(O) -e- 
ts(O) 

(5.6.4) 

Note that, as 0 is of odd degree and monic the solution to (5.6.4) satisfies required integrability for 

the prior. A solution will not exist if 0 is of even degree (see Corollary (5.3)). 

jS(O) Proof : Consider the prior p(O) ae-. Then, by Bayes theorem, we have posterior, 

x(S(O) + 02-2XO) 
p(OIX) e-' 

Define 

C(X) fe- l(S(O)+02-2XO) 
dO, 

which exists for all X if p(O) c: L'. Hence, we have, 

E(VI(O) -X 1 X) =cf (V/(0) - X) e -i(S(0)+02-2X0) d0. (5.6.5) 

If we now choose S(O) such that it satisfies (5.6.4) then the r. h. s. of (5.6.5) is directly integrable by 

parts, giving zero. Hence, 

E(VI(O) I X) =X 

as required. Unfortunately, the class of priors used in (iii) are not analytically tractable in contrast 

to (5.3.8), so posterior moments for this class have to be obtained numerically. 

(5.7) Further constraints on posterior moments characterising priors 

Consider the generalisation of the problem in (5.3.1), namely that for all X the a posteriori 

assumption that, 

E(Vf(0, X) IX) =0- 

First, we prove a lemma that is useful in ensuing characterisations. 

Lemma (5.7) : Let yr2(0) >0a. e. on the range of 0. Let q^(O) = V12(0)p(O). Assume p(O) is such 
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that q^(O) E Ll. Let E. denote the posterior expectation under the prior p(O). Then, 

Ep(yfl Vf2) = Eq(VI)Ep(V2) 
- 

(5.7.2) 

Proof : By assumption 
fA 

q exists, clearly it is not zero as Vf2 >0 and p= 
f 1. Similarly, f 

qf 

exists and is not zero. 

By Bayes' theorem we can compute the I. h. s. (5.7.2) as follows, 

EP(VI V2) -f 

Vl V2Pf 

-f 

vAf 
f 4f 

f 
Pf 

f 4f f 
Pf 

f V, qf 
f V, 

ýPf 
fqf fpf 

Eq(V, )Ep(V2) 

Combining this lemma with the Diaconis and Ylvisaker characterisation (see (5.6.1)) gives 

the following theorem from which many interesting characterisations can be obtained. 

Theorem : Let yfl(O) = EO(X). Suppose the conditions of lemma (5.7) are satisfied. Then 

Ep(yf I Vf2 - (aX + b) Vf2) = 

characterises the prior 

q(0) 
p(0) oc 

Vf2 (0) . 

where q(O) is the conjugate prior associated with (5.6-2). 

Proof : First, apply the characterisation (5.6.1) in the form, 

Eq(Vl) : -- aX+b (5.7.3) 

characterises q- yr2p as a conjugate prior. Hence as Vf2 > 0, p(O) is characterised as required. 

Furthermore, as Ep(yf2) > 0, lemma (5.7) shows that (5.7.3) is equivalent to 

Ep (Vfl Vr2 - (aX + b) V/2) =0- 

Therefore (5.7.4) characterises p(O), as required. 

Examples : (i) t-distributions: From (5.7.4), with a N(0,1) likelihood 

(5.7.4) 

1 --02 

p(0) 0 
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is characterised by 

Ep «j+02 )(20-X» = 0. (5.7.5) 

Proof : The posterior only depends on product f(X I O)p(O) thus if p(O) is characterised for likeli- 
i9a je2 hood f(X 10) then p(O) e is characterised for likelihood f(X 10) e-. Hence (5.7.5) characterises 

a Cauchy prior for a N(20,2) likelihood. Similarly a t.. distribution can be characterised. 

(ii) The prior p(O) -e -s(O) in section (5.6): Here p(O) is characterised by 

102)(O_ i Ep (exp(S(O) 
-2 -10 =0- 

(5.7.1) Characterisations involving ratios 

Some previous attention has been give to characterisations through ratios (e. g. Bilkidar and 
Patil (1968)). Here, as Ep(yf2) > 0, lemma (5.7) can be rewritten 

Ep (V I V2) 
- 

Eq(yfl) (5.7.6) 
Ep(V2) 

therefore, 

Ep(yr, Vf2) 
= aX+b (5.7.7) 

Ep(Yf2) 

characterises V/(O) as 
q(O) 

, where q(O) is the corresponding conjugate prior from (5.6.2). 
Vf2(O) 

Example : Suppose that 0 is restricted to be positive. Then (5.7.7) applies with Vf2 = 0. Condi- 

tions for p(O) are that it has finite first moment and f qf exists, under these conditions 

Ep (y/1 0) 
= aX+b 

Ep(0) 

1, 

characterises p(O) =0 P(O). 

Characterisations involving variance 

We have from (5.5.1) that 

V(OIX) 
d 

E(O IX) 
dX 

Hence assuming V(OIX) is a known function of X, thus E(OIX) is determined up to a constant. 

Then by Sampson's theorem the prior will be characterised. This has an intuitive robustness 

appeal, as one might want V(O IX) to reflect uncertainty when X is large. 
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(5.8) Application to other likelihoods. 

All the methods used in previous sections can be applied to likelihoods in the exponential 
family in its natural parameterisation as long as XER. This is not typical of the well known 

members, so we view some of them separately. We concentrate mainly on the on the case of linear 

regression. 

Examples : (i) Binomial 

In its natural parameterisation we have likelihood, 

f(X 10) - exp(X log( 
,'0)- 

logo - 0» 
. 

The natural parameter is 

6= log( 
100) - 

Unfortunately, X takes only a finite number of values. Hence some proofs, where X -ý -, are not 

applicable. In the case of linear regression in X, the prior 

p(O) - (1-O)e-f 
W(O)dO 

is integrable for 0c (0,1), and gives 

Eoix 
( ýlog(1 '0» )=x- 

Characterisations from section (5.7) 

Returning to the usual binomial parameterisation, then 0>0. We now list some of the 

characterisations which are direct consequences of lemma (5.7) and the result (see Diaconis and 

Ylvisaker (1985)) that Ep(O) -- 
I 

(I + X) characterises the prior p(O) = U(O, 1). 
3 

The reference prior, p(O) - -, 
I 

--T, is characterised by 
0-1(1 

_ 
0)2 

111 
Ep«0- 

3 
(1 +X» Oý(1 - 0)") =0- 

Furthermore, it is possible to characterise the family of conjugate priors via ratios of posterior 

moments as follows. 

Lemma: The prior p(O) m1 ^(0) 's characterised by 
OnP 
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EP(On+ 1) 
= aX+b, (5.8.1) 

Ep (on) 

where ^ is characterised by Efi(G) = aX + b, that is ^ is a Beta distribution. pp 

Hence (5.8.1) characterises the set of conjugate priors and improper priors. Note that, we only 

really need f qf not to vanish in lemma (5.7). 

(ii) Poisson 

Here the likelihood is given by 

f(XIO) - exp(Xlog 0-0) 

The natural parameter is 0= logO. Consider, for example, the case of linear regression. The 

relevant prior would have to be 

p(O) oc exp(e'-f VI(O)dO) 

which is not integrable on R' for polynomial Vf(O). 

(iii) Gamma 

In this case the natural parameter is 0E (0, -o) - 
Hence the results of Section (5.4.1) are not directly 

applicable. The Diaconis and Ylvisaker characterisation (see (5.6.1)) is 

Ep(O-1) = aX+b. 

Hence, lemma (5.7) applies, for example, 

(i) The prior p(O) cc 0 ^(0) is characterised by P 

E (0-2) 
p aX+b ip -(OF 

(ii) The prior p(O) oc 0 -2fi(O) is characterised by 

EP(O-(aX+b) 02) =: 0 

again showing the polynomial nature of the characterisations. 

(iv) Normal likelihood with known mean, unknown variance 

Without loss of generality suppose that the mean is zero, then the likelihood is of the form 

f(y Jr) = exp( ry + 1109 'r ) 

where r>0, y<0. The conjugate prior is 
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p(O) - r' exp(ar) . (5.8.2) 

The results obtained are similar to the gamma likelihood, for example, ratios of posterior moments 

characterise the set of priors (5.8.2). 

If we now consider a normal likelihood where the variance is a function of the mean, for 

example, N(O, 0-2) 
- 

Then the class of priors, p(O) -e -s(e) where S is a polynomial, then we have 

equations of the form (5.7.1), 

E(VI(O, X) 1 X) =0 

where Vf(0, X) is a polynomial in 0 and X. 

(v) Uniform likelihood, U(0,0) 

If P(O) is a gamma distribution, then after computation we obtain equations of the form 

E(VI(O) 1 X) - 
r(X) 

s(X) ' 

where r and s are polynomials such that deg r- deg s= deg Vf. 

Thus likelihoods outside the exponential family admit such polynomial expressions, although 

characterisation results are unknown. 

(5.9) Appendix : justification of differentiation under the integral sign 

In order for validity of theorem (5.1) we give regularity conditions for the function I(X) to 

have derivatives of all orders, where 

VI(O)p(O)exo-m(O)dO 

for polynomials yf. Suppose p(O) is bounded and that M(O) is continuous with M(O) > a02 for 

sufficiently large 0 and some constant a (w. l. o. g. take a= 1). 

Let 

f(X, 0) = yf(O)p(O)exo-M('9). 

Therefore 

d XO-M(0) 
dX 

f(X, 0) = Oyf(O)p(O)e 

In order for differentiation under the integral sign to hold, we require a dominating function, 



- 100- 

independent of X, for Id f(X, O)j (see Weir (1973) p. 118, p. 256). Unfortunately, there does not dX 

exist a dominating function which works for all XER. 

However, every point in R lies in an open interval (-x, x); so it will be enough to prove that 

for each positive real x, 
d 

f(X, 0) is dominated by a function in L 1. Now, for IXI<x, dX 

d 
f(X, 0) AI V/(O) e- m(o) 

dX (5.9.1) 

where jp(O) I <, A by hypothesis. Let g(O) equal the r. h. s. of (5.9.1). Clearly, g(O) is continuous, 
therefore integrable on compact intervals and hence on (- I-x, I+ x). For 10 1>1+x the condi- 
tion on M(O) implies M(O) > (1 + x) 10 1. This implies that in this region g(O) is dominated by a 
polynomial times e- 10 1. Therefore g(O) E L'. Hence I(X) possesses a first derivative and by reap- 

plication has derivatives of all orders. 

In order for the validity of Masreliez theorem, assume that the likelihood is bounded. We 

"0 
require to be able to differentiate f f(X-O)p(O) twice, where the prior is normal. By a linear 

transformation this is equivalent to f f(O)p(X - 0). Due to the fact that p is normal the conditions 

for M(O) hold and together with the boundedness of the likelihood implies that the above holds and 

we have the desired result. The boundedness condition on the likelihood is necessary as the 

theorem is invalid for the function 
I 

exp( - (X _ 0)2). 711 ý-O I 

(5.10) Discussion 

This Chapter explores the behaviour of posterior functionals, primarily the mean and vari- 

ance, in the class of exponential families and scale mixtures of normality. Representation proper- 

ties of posterior moments help understand the flexibility of the model as do their characterisation 

properties. Quantitative measures (for example, the score function) appear in such representations 

and give a guide to further interpretations. Clearly, one possible extension is to explore other pro- 

perties of the posterior, for example, unimodality (see Andrews et al (1973)). The characterisation 

results for the exponential family rely on theorems that can be arrived at by a variety of techniques; 

for example, moment generating functions, differential and integral equations. 

Fisher's information again plays a central role in describing the behaviour of the posterior 

variance in the exponential family, thus allowing results from Chapter 3 characterising prior- 

likelihood combinations to be applicable. 
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A further area of application is to a quantitative robustness setting where the determination of 

the behaviour of posterior functionals over classes of measures is required (Huber (1973), Berger 

(1984)). 

Many of the examples considered require uniqueness of the solutions to be established. 
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Chapter 6: Derivatives; distances; sensitivity 

Here we review the machinery of Diaconis and Freedman (1986a) for the computation of 
derivatives of posterior functionals with respect to the modelling components; for example, prior, 
likelihood or utility structure. To define a suitable notion of derivative for probability measures we 

require a topological structure and a measure of distance. 

(6.1) Derivative of the prior-posterior map 

Consider the set of probabilities as a subset of the space of all signed measures equipped with 

the variational norm as a measure of distance between measures ju and v, that is 

ll. u-vll = 
dy 

- 
dv 

dA, 
fIAAI 

where I is any a-finite dominating measure, thus endowing the set of measures with a Banach 

space structure. 

Consider a family of measures [QO :0(: - f? ) dominated with respect to some a-finite measure 

ý. so that all the Qe are absolutely continuous with respect to A with density f(x 10). Suppose f(., -) 

is measurable and sup f(x 10) <- for every x. Let the Bayes mapping, B :, 4 --> B,,, be defined as 
0 

N,,, (dO) 

D 

where 

N. (dO) = f(x I O)p(dO) and D,, f f(x I 0), u(dO) 

,,, 
and D,, are linear functions of the prior measureju, giving B. a structure similar to that of Thus N 

a M6bius transformation. Note that B,, is only defined for Du > 0, but this is a set of Pu -measure 

one. Let B,, denote the derivative of the map B, itself a map of measures, defined by 

B, 
u+, 5 = Bil + BM(45) + o(114511) (6.1.1) 

as 0, where 3 is a signed measure with signed mass zero. The norm of B,,, quantifies the 

sensitivity of the posterior to small changes in the prioru. By definition, 
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Bu sup Bu(8) 

The following theorem gives forms of (6.1.1) and (6.1.2), 

Theorem (Diaconis and Freedman (1986) : Let sup Ax 10) = su 0 1, then the lp [ f(x 10) : U(O 9 0 
derivative of the Bayes map and its norm are given by 

N, 5(-) B, 
u(8)(-) 2 Dy Du 

sup f(x 10) su lp Ax 10) 
09 B (6.1.4) 

D. 
u 

. 
11 

Du 7 

note that for many priors the upper and lower bounds in (6.1.4) are identical. 

Analytical computation is clearly possible for exponential families under a conjugate prior 

assumption. Approximate computation in the presence of a nuisance parameter is briefly discussed 

in (6.1.3). It has application in defining an outlier-prone model specification by considering 

lim 11 Býu 

which if an unbounded, leads to a non-robust inference. 

(6.2) Relationship with Bayes factors for nested models 

Let MO and M, denote nested parametric models. Consider a family of measures 

We : OE E? ) with densities with respect to a dominating measure A given by f(x 10). Let A denote 

the prior measure. On the basis of the observed data x we require to compare the competing 

models. Let p(x I MO) and p(x I Mj) denote the corresponding posteriors. Jeffreys proposes the odds 

ratio or Bayes factor, BOI(x), defined as 

Bol(x) = 
P(x I MO) 

P(Xlml) 

Consider the chain of maps given by 

sR 

p(0 1 x, Mo) --> p(0 1 x, Mi) , 

where R denotes the inclusion mapping, such that, 

R( p(0 1 X, Mo) )= P(O 1 X, Mi) 
- 



- 104- 

Define the composite map T by the rule 

The norm of a composite map satisfies 

Therefore, 

Furthermore, by the nested property 

ýup f(x 10) < sug f(x 10) 
oemo OE 

, E 

T(Al) = 

11 RS 11 < 11 R 1111 S 11 
. 

IRIJ >, 
11 TIJ 
lisil 

(6.2.1) 

hence, by (6.1.4), 

11 R 11 >, 

s f(x 10) "UZ, 0ý X 
P(x I Mi) 

19S 
s. Ax 10) (6.2.2) 

By (6.2.1) 

R 11 >, 
P(x mo) 

= BOI(x) 
P(x MI) 

thus giving an inequality between the norm of the inclusion mapping R and the Bayes factor 

between models. When comparing models with a large difference in dimensionality (6.2.2) should 

be employed for it shows how the maximised likelihood affects the derivative. 

(6.3) Application to posterior functionals and model choice 

First, consider the problem of establishing the sensitivity of the posterior mean with respect 

to the prior specification. The necessary functional derivative is again in Diaconis and Freedman 

(1986). 

Theorem (Diaconis and Freedman (1986)) : Let the mapping M take y(-) to the posterior mean, 

f Of(x I O)p(dO) 

DI, 

Then the derivative is given by 



- 105- 

Nl(-) Nl(p) 
2 Dg Du 

with coffesponding norm 

M, 2 range 
((0 

- MtL) 
P(X) 

Clearly this can be extended to any posterior functional of 0. 

As in (6.1.1) this has application in the exponential family and can be used to warn of possi- 
ble outlier problems when the inferential problem is that of reporting the posterior mean. 

(6.3.1) Application to model choice and nuisance parameters 

Consider the parametric modelling framework as specified by the family 

[ X, f(x 10, A), 6OxA 1. In order to assess the behaviour of the nuisance parameter consider the 

mapping, BXle, such that, 

B; Lle : p(, ZIO) --- > p(; Llx, 0) 
. 

Then by (6.1.4) the norm of the derivative of this map is given by 

lifimell = 

sug f(x 10, X) 
; tl 

P(x 10) 

Thus from Chapter 4 we see that this is in turn related to the (modified) profile likelihood as fol- 

lows, 

lifixiell 
Lp(0) 

P(x 10) 

LMP(O) 
(6.3.1) 

i0 2p All (x10) 

Note that under a reference prior (6.3.1) simplifies. Furthermore, Patefield (1977) contains formu- 

lae to aid in the calculation of the numerator, LeJeune and Faulkenberry (1982) show that under 

certain transformation properties the derivative can be made unity for some members of the 

exponential family, leading to a least sensitive inference. 

(6.4) An inequality between discrimination information and variation distance 

Given two probability measures P and Q, the discrimination information, I(P, Q), arises 

naturally as a Bayes risk to the pure inference problem of approximating P by Q (Bernardo 
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(1979a)), the corresponding utility function necessarily being the logarithmic function. However, 

the variation distance, V(P, Q), seems more natural as it has the direct application in explaining 

possible sensitivity departures for credible regions and can be used to bound risks for certain 

smooth decision problems. Here we review the inequalities between I and V, sharpening known 

inequalities when V is close to 2. 

Let P and Q be absolutely continuous with respect tog, then define, 

I(P, Q) fp log 
(! ý) dy (6.4.1) 

q 

V(P, Q) f Ip -qI dy. (6.4.2) 

Considerable attention has been directed to determining a lower bound for I in terms of V, for 

example, Volkonskij and Rozanov (1959), Pinsker (1961), Csiszir (1967a), Kullback (1969). More 

recently, Toussaint (1975) proved that, 

I 
1> 

1 
V2 +I V4 +1 V6 (6.4.3) 

2 36 288 

Correspondingly, a bound which works well for V near 2 is given by Vajda (1970), 

log 
2+V 

_ 
2V 

(6.4.4) 
(2-V) 

2+V 

This can be used to show that as V -+ 2, then I -> 

Under a restrictive constraint, this upper bound can be replaced by (Toussaint (1975)), 

I 1> 
Ylog (4 

V2 
(6.4.5) 

2 4- 

The following theorem applies results from Kraft (1955), Wolfowitz and Hoeffding (1958) to 

determine a sharper bound than (6.4.4), but not in the special case of (6.4.5). 

Theorem : Suppose I and V are given by (6.4.1) and (6.4.2) respectively, then V (=- [0,2] and, 

log 
(4 

V2 

Proof : Following Wolfowitz and Hoeffding, 

-II=p log 
I 
dy < log (f (pq)yda) 

2fq 

Therefore, 
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, A)2 < (f (pq) ld 
exp(-I) (6.4.6) 

but we have, see for instance Kraft (1955) lemma 1, 

1 
V2 Y)2. 

4 -, ":: 1- (f (pq)d (6.4.7) 

Combining (6.4.6) and (6.4.7) leads us to, 

exp(- 
1 V2. (6.4.8) 
4 

Therefore, 

log 
(44 

V2 

as required. After some elementary algebra it can be shown that (6.4.8) is a sharper bound than 

(6.4.4) for V near 2. 

(6.5) A survey of results concerning distance measures 

Here we give a brief review of some of the existing literature concerning the properties of the 

Bayesian risk, R(., -), defined on the space of distributions, Y. In general, consider a risk in the 

form of a f-divergence, that is 

R (P, Q) fpf (ýý) 
dy 

q 

where f: R -> R and a corresponding definition for the risk in the discrete case. A comprehensive 

review of such measures is contained in Csiszar (1977), for a more recent unified approach see 

Burbea and Rao (1982). For further results see Vajda (1972) and Osterreicher (1972). 

Csiszdr (1984,1985) develops the notion into one of a generalised I-projection and discusses 

the existence and applications in a probabilistic framework. Other useful results concerning special 

cases of (5.2.1), applicable in a Bayesian framework, are: Blahut (1972) where convexity proper- 

ties of the Kullback-Leibler measure in a discrete setting are established, Abrahams (1982) where 

the applications of f-divergences are contrasted and Burbea and Rao (1984) who view the proper- 

ties in a differential geometric setting. 

(6.6) Application to influence and outlyingness 

in order to examine changes in a posteriori statements resulting from deletion of specific 

observations from the data set, the following decision theoretic measures have been proposed (Pettit 



-108- 

and Smith (1985), Bernardo (1985)). 

O(S) = XX(S) 1 x(S» f XX(S) x(9»p(VI 1 x(9» dyl (6.6.1) 

i(S) f 
P(VIX)Iog 

Xyr x(S» dig. (6.6.2) ( Af 1 x) 
) 

where x(S) denotes the elements of the data x whose labels are in S C= InI and V is the 

parameter of interest for which we wish to report p(iy I x). For example, if V( = x,,, l we are con- 

cerned with the sensitivity of the predictive density p(x,,, 11 x) with respect to x(S). 

It is show that J(S) leads to an upper bound to the sensitivity of a Bayesian credible region, 

irrespective of the dimensionality of yr. A further measure, K(S), is introduced which measures the 

relative information gain in S, which has the advantage that it is symmetric in S and is directly 

related to O(S). 

Theorem : Let O(S) and J(S) be defined by (6.6.1) and (6.6.2), respectively. Define K(S), by 

K(S) = Evlx(S) log p(V 1 x) log P(vf Ix(9» (P(vf 
1 x(S» 

)-( 
P(vf) 

Then, K(S) is symmetric in S and is given by 

Furthermore, for any set A, 

Proof : By Bayes's theorem, 

therefore, 

Hence, by definition of K(S), 

K(S) = K(9) = log P(X(S)) ( 

O(S) 

). 

(6.6.3) IP(Alx) - P(Alx(s)) 12 < exp(-J(S)) 

P(Vlx) P(X(9)Ivf) 
p(v/ 1 x(S» XX(s) 1 x(S» 

P(Vlx) XX(s) p(V 1 x(S» 
p(v/ 1 x(S» XX(g) 1 x(S» p(v/) 

K(S) = log P(X(9) log P(X(S)) (P(X(S)lx(s-))) 
= 

(P(X(S) 

I X(N)) 

therefore, 
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K(S) = log 
( 

O(S) 

). 

By applying inequality (6.6.3) we see that 

p(A I X(g))12 < )12 < IP(Alx) su IP(Alx) 
- P(Alx(S) exp(- J(S)) 

Ap 

For small deviations, we use the bound (6.4.3), which neglecting terms of order V3 gives, for any 
set A, 

ij IP(Alx) 
- P(Alx(g))12 <, I 

as required. 

(6.7) Application in decision theory 

(6.6.3) 

Consider a decision problem specified by a family of probability measures [PO 10 E el and a 

loss function L. Let 6(x) and 3(x(S)), respectively, denote the Bayes rules associated with or 

without using x(S). It is natural in this context, following a suggestion of Diaconis and Ylvisaker 

(1985), to define a distance between the two procedures by the difference in the associated risks, 

hence inducing a measure of influence on the set S given by 

f 
p(yflx)L(VI, 8(x))dyf -f p(yflx(, §))L(yr, 8(x(g)))dyr. 

Assuming that our loss function satisfies suitable smoothness conditions we show that a rough 

bound exists between this natural measure I(S) and J(S). 

Theorem : Suppose the loss function L is bounded and is Lipschitz continuous in its second argu- 

ment i. e. there exist constants A, B such that, 

JL(O, 8) 1 <, A 

I L(O, o5l) - L(O, 82)l <B 145, - 821 

for all rules 3,81,82, and 0c 60. Then the following inequality holds 

I I(S) I= A-ý2--J- +BI 3(x) - 45(x(S-)) I. 

Proof : By definition (6.7.1) and smoothness condition (7.4.2), 

Evlx(S)(L(VI, ö(x» - L(VI, 45(X(S»» +f (p(Vflx) - p(Vlix(9»)L(yf, 8(x»dyf 

(6.7.2) 

therefore, 
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I I(S) I<EvI 
x(s) 

(I L(yf, o5(x)) - L(VI, o6(x(§))) I)+AfI P(Vl I X) - p(yf I x(g)) I dyl 
. 

Using (6.7.2) and (6.4-3) gives 

I I(S) I <, A-N F2J +BI 3(x) - 3(x(S-)) I 

as required. 

(6.7.3) 

The above result shows that the natural measure I(S) can be bounded by a sum of two terms; 

the first involving the measure of influence J, the second the absolute difference in the Bayes rules. 

The bound (6.7.3), although being too coarse for practical application, gives a quantitative 

meaning to the possible sizes of departures to be expected in a sensitivity analysis concerning 

outliers. For a more rigorous bound we could apply a result due to LeCam (1982), Birge (1980) 

which bounds the Hellinger distance which in turn is related to J via inequality (6.4.7)- 

(6.8) Application to moments of Bayes factors 

In a statistical analysis we are forever elaborating on our current modelling framework, 

whether through more data or a model elaboration, albeit with necessary care and attention (Box 

(1980), Smith (1983,1986)). In order to carry out such a procedure we often entertain, a priori, 

the plausibility of two competing models. A posteriori, these models are then compared on the 

basis of a Bayes Factor B01(x). The moments of the Bayes factor can be related to R6nyi's a- 

distance between p and q (Good (1984)) and properties of these moments can then be expressed in 

terms of the distance measure I(P, Q) via an inequality similar to (6.4.6). Furthermore, under suit- 

able regularity conditions, properties of the a-moment with respect a can be studied, complement- 

ing the results of Good (1984). 

In the notation of (6.4), define R6nyi's a-distance, I,,, (p, q), by 

Ia(p, q) 
f (! ý)apdy 

q 

The following lemmas examine the properties of I,, (p, q) with respect to a and the Kullback- 

Leibler distance between p and q. 

Lemma : Suppose p and q are two probability densities, then 

I,,, (p, q) > exp(af p log 
(E)du) 

q 

Proof : By the convexity of the logarithmic function we have, 
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fp log 
(E) 

dy fP log 
((E)") 

dy <, log f- pdy qq 

(pq)" 

Therefore, 

(p, q) > exp afp log 
(P)du) 

q 

Define the distance measure k 
.. 
(p, q), by 

kc, (p, q) (p, q))c' 

(6.8.1) 

If we impose mild regularity conditions on p and q, allowing interchange of derivative and integral, 

then the measure possesses a derivative with respect to a given by 

Lemma : Suppose p and q satisfy the required smoothness constraints, then 

d 
(ka(p, q» = (Ia(p, q»l-alfplog(1ý)(ýý)c'dg. da aqq 

Proof : The smoothness conditions on p and q allow interchange of derivative and integral. By 

definition, 

d Ila- 1a 
(ka (p, q)) 

q 
pdu fp log 

qq 
dy 

da 

(E)(E) 

Hence, 

Ia 
d ((I,,, 

(p, q))a) = (I. (p, q))1-a- 
qq 

dy (6.8.2) 'f 
P log 

da a 

as required. 

The preceding lemmas allow us to show that k,,, (p, q) is an increasing function of a and by 

continuity with respect to a, inequality (6.8.1) yields, 

lim ký� (p, q) = exp(f p log 
(E) 

dp) 
. 

a )0 q 

For the discrete case, and an algebraic proof of the above see Good (1984). 

A related derivative which sometimes proves useful in calculation the two asymmetric 

Kullback-Leibler distances between p and q is, 

d (IG, (p, q) )=fp log 
(L5)(1ý)adg 

. da qq 
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Note that evaluating at a=0,1 yields the two Kullback-Leibler distances between the measures p 
and q. (see Loh (1984)). Hence providing a useful analytical trick for simultaneously calculating 
both Kullback-Leibler measures if Renyi's a-distance is computable; for example, the normal and 
t-family, normal and double exponential, exponential families. 

(6.9) Discussion 

This Chapter explores possible sensitivity measures, either being the norm of a derivative of a 
Bayes mapping, or an induced Bayesian risk from a decision problem concerning the parameter of 
interest. Computations, approximations and relationships in the form of inequalities for the above 

distance measures have been discussed. 

The properties of information measures aid in the understanding of Bayesian risks, for exam- 

ple, leading to convexity which in turn opens up the possibility of reducing the calculus of varia- 

tion constraints in Chapter 3 to one of inequality rather than equality. 

Clearly, the computation of sensitivity measures for a wide range of problems is required, one 

such area is the connection between influence measures and reference priors, especially in situa- 

tions where Fisher's information matrix depends heavily on the design matrix. 

The concept of approximation requires further study, for results in this direction see Crain 

(1977) and Brockett et al (1985). A further area of interest is that of the theory of large deviations 

(Sanov (1957)), where it appears that some results have an interpretation in a Bayesian decision- 

theoretic framework. 
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