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Abstract

This thesis is concerned with models and inference for single 1on channels.

Molecular modelling studies are used as the basis for biologically realistic, large
state-space gating models of the nicotinic acetylcholine receptor which enable
single-channel kinetic behaviour to be characterized in terms of a small number
of free parameters. A model is formulated which incorporates known structural
information concerning pentameric subunit composition, interactions between
neighbouring subunits and knowledge of the behaviour of agonist binding sites
within the receptor-channel proteins. Expressions are derived for various channel
properties and results are illustrated using numerical examples. The model 1s
adapted and extended to demonstrate how properties of the calcium 1on-activated

potassium ion channel may be modelled.

A two-state stochastic model for ion channels which incorporates time interval
omission is examined. Two new methods for overcoming a non-identifiability
problem induced by time interval omission are introduced and simulation studies
are presented in support of these methods. A framework is presented for
analysing the asymptotic behaviour of the method-of-moments estimators of the
mean lengths of open and closed sojourns. This framework is used to clarify the
origin of the non-identifiability and to construct confidence sets for the mean
sojourn lengths. A conjecture concerning the number of solutions of the moment

estimating equations is proved.
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INTRODUCTION

1 Introduction

1.1 Biology of Ion Channels

Each living cell 1s surrounded by a membrane which separates its interior from
1ts exterior. Ion channels are single, or complexes of, protein molecules which
form pores in cell membranes, allowing the cell to communicate with its
surroundings (see, for example, Hille (1992), Aidley and Stanfield (1996)).
Movement of 1ons through these pores determines the electrical properties of
cells, and thus 1s ultimately responsible for transmission of information through
the nervous system. There are many types of channels and they work in concert,
opening and closing to shape the signals and responses of the nervous system.
They perform a very wide variety of functions including guiding limbs in their
movements, controlling the secretion of digestive enzymes, detecting the sounds

that an animal hears and generating the violent electric discharges of the electric

eel.

A channel may be regarded as an excitable molecule since it is specifically
responsive to a stimulus, such as a membrane potential change or the release of
stimulatory molecules, termed agonists, which are recognised by the transmitter

receptor. The channel’s response, known as gating, i1s a simple opening or
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closing of the pore. When the ion channel is open, it allows particular ions to
flow at a very high rate, typically greater than one million ions per second per
channel. For voltage-gated channels, this flow of electric currents across the

membrane has an immediate effect on membrane potential which can be detected

by other voltage-gated channels and they, in turn, become excited. Thus the
electric response is regenerative and self-propagating and the signal is thereby
carried to a point where a nonelectrical response is generated. Ligand-gated
channels also gate ion movements and generate electrical signals, but they do so
In response to a specific chemical neurotransmitter, such as the agonist
acetylcholine. Hence, transmission of ions through ion channels, whether they
are voltage-gated or ligand-gated, is central to signalling within the nervous

system.

The regulation of 10n channels influences the life and functions of cells in nerve,
muscle and other tissues. Ion channels consist of multiple subunits, each with
very similar structure but different electrophysiolo gical characteristics and the
combination of these subunits into complexes results in a wide variety of
properties of ion channels and 1s reflected 1n the diversity of diseases (Rose
(1998)) resulting from 10n channel disorders (channelopathies). Channelopathies
may cause an abnormal gain of function (such as epilepsy, myokymia or
myotonia) or an abnormal loss of function (such as weakness or numbness)

depending on whether loss of channel function leads to excessive membrane
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excitability or to membrane inexcitability. An understanding of the process in
which 1on channels open and close has already provided important insights into
the cellular mechanisms underlying several diseases, including cystic fibrosis (in
which there is a disorder of the chloride channel) and diabetes. Dominant
nocturnal frontal lobe epilepsy is due to mutations in a subunit of the nicotinic
acetylcholine receptor (Steinlein (1995)). The neurophysiological abnormalities
seen 1n multiple sclerosis and Guillain-Barré syndrome may be able to be
explained by sodium channel dysfunction and, further, the potassium channel
blocker 3,4-diaminopyridine can improve leg strength in patients with multiple
sclerosis (Bever et al. (1996)). Other specific channel modulating drugs are
currently under development for migraine, chronic pain and cardiac dysrhythmias.
It 1s hoped that further understanding of ion channel gating will give, not only an
increased understanding of disease processes in which neurotransmission is
impaired (for example, Parkinson’s disease and Alzheimer’s disease) but also
additional insights into the modes of action of drugs, such as local anaesthetics,
which perturb ion channels, and will ultimately result in the rational design of

novel drugs acting on the central nervous system.

The electrophysiological technique of patch clamp recording (Neher and
Sakmann (1976)) enables the registration of the small (ca. 10"* Amp) electrical
currents which pass through individual ion channels. An ion channel tends to be

closed for much of the time and this corresponds to the situation in which no
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current flows across its membrane patch. At apparently random times the channel
opens for a short duration of apparently random length, producing a pulse of
current which, using the patch clamp recording technique, can be directly
observed as it actually happens. Recorded sojourn times in experimentally
distinguishable states are used to make inferences about underlying kinetic states,
their connectivity, and the chemical rate constants which govern transitions
between them. Since the observed behaviour of channels 1s apparently random,
models of ion channel gating mechanisms have been based on a variety of
(usually Markov) stochastic process models. Such models are consistent, at least

to a first approximation, with current understanding of the physical basis of

conformational changes of molecules.

1.2 Mathematical Models of Ion Channels

The gating behaviour of a single ion channel is usually modelled by a continuous
time Markov chain with a finite state space (see section 2.1). To a first
approximation, most channels in patch clamp experiments show only two
conductance levels, namely zero conductance (corresponding to the channel being
closed) and ‘open’ conductance (corresponding to the channel being open). Thus
the complete process is unobservable and the state space is partitioned into two
classes, termed ‘open’ and ‘closed’, and it is possible to observe only which class

the process is in. In practice, the sequence of open and closed sojourns of the
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channel is reconstructed from the observed single-channel records by using a
filter and an associated threshold crossing algorithm (see section 2.2). This
results in the loss of very short sojourns in either the open or the closed classes

of states, a phenomenon known as time interval omission.

One of the main aims of such single channel modelling is to determine properties
of the observable aggregated process from those of the underlying continuous-
time Markov chain (see section 2.1). Another of the main aims of modelling 1s
to draw inferences concerning the structure of, and parameter values governing,
the underlying continuous time Markov chain from the observed aggregated
process (see section 2.3). It is hoped that such modelling will provide 1nsights

into the underlying physical processes of channel gating.

Much of the early research into mathematical modelling of ion channels
concentrated on the development and analysis of stochastic models (Colquhoun
and Hawkes (1982), Fredkin et al. (1985), Dabrowski et al. (1990), Ball et al.
(1991), Ball and Rice (1992), etc.) and, with a few exceptions (e.g. Hom and
Lange (1983)), problems of statistical inference started to be addressed later (Ball
and Sansom (1989), Chung et al. (1990), Magleby and Weiss (1990a), Fredkin

and Rice (1992a), etc.).
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1.3 Main Topics of the Thesis

1.3.1 Models based on the Molecular Structure of Ion Channels

Many recent studies of ion channel gating have employed small state-space
Markov models of single-channel behaviour, and have used results derived from
the theory of stochastic processes in the development and application of such
models. Although major successes have been achieved using this approach, in
many cases a problem arises when the experimental data is best described by
gating models in which the channel may exist in one of many similar closed
states. One solution to this problem is to develop ‘traditional’ Markov models
with suitably large state-spaces. quever, this results 1n models with large
numbers of independent parameters, which present considerable difficulties when
attempting to obtain parameter estimates from experimental data. Several authors
have developed “alternative’ large state-space models which treat channel gating
in terms of diffusion-like processes (e.g. Millhauser et al. (1988), Sansom et al.
(1989), Sigg et al. (1999)). Although such models benefit from having small
numbers of free parameters, it 1s often difficult to judge their relationship to the

underlying structural properties of the ion channels involved.

In parallel with increased understanding of channel gating, the past two decades

have seen remarkable developments in the molecular biology of ion channel
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proteins, and as a result of such studies, it 1s now possible to formulate molecular
models of channel gating. In particular, recent structure determination studies of
the nicotinic acetylcholine receptor from the electric ray Torpedo have provided

a detailed three-dimensional model of the receptor channel (Unwin (1989, 1993,

1995)).

The models which are considered in Chapter 3 of this thesis are an attempt at a
synthesis of these two classes of investigations. We have used molecular models
as the basis for biologically realistic, large state-space gating models of the
nicotinic acetylcholine receptor and the calcium ion-activated potassium 1on
channel which enable single-channel kinetic behaviour to be characterized mn
terms of a small number of free parameters. This has resulted in realistic channel
models which are sufficiently simple to allow the computation of channel

properties.

In Chapter 3, we present, in detail, a model for the nicotinic acetylcholine
receptor which incorporates information concerning the structure of the
corresponding receptor-channel protein. Our model assumes that the channel
consists of 5 subunits arranged in a ring, and that agonists can bind to 2 of these
subunits. Each subunit may exist in either a closed or an open conformation, and
the channel is open if all 5 subunits are in open conformations. Otherwise, the

channel is closed. The model also incorporates interactions between
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neighbouring subunits, using ideas from a sequential model for allosteric proteins
developed by Koshland e al. (1966). Although this model has a large state-
space, symmetries can be exploited to considerably reduce the state-space size.
Further, the model is defined by a relatively small number of parameters which
are directly related to molecular properties of the channel. Under our model, we
derive expressions for various channel properties, including equilibrium
distributions, open and closed entry process equilibrium distributions and mean
lengths of open and closed sojourns and we use numerical algorithms to compute
sojourn time probability density functions and correlation functions. We
illustrate our results using examples based on parameter values which are chosen
by theoretically matching observable properties of our model to those of the
model of Jackson (1989), who estimates optimal values for acetylcholine receptor

equilibrium constants based on physiological considerations (see also Jackson

(1993)).

In Chapter 3, we also describe the formulation of a model for the calcium-
activated potassium ion channel based on its underlying molecular structure. Our
model is similar to that for the nicotinic acetylcholine receptor, but instead
assumes that the channel consists of 4 subunits arranged in a square, and that
calcium ions can bind to all 4 of these subunits. Channel openings and closings
are modelled in the same manner as in the nicotinic acetylcholine receptor model

and this model incorporates two distinct types of interactions between
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neighbouring subunits. Firstly, subunits are modelled to open and close at
varying rates depending upon the number of neighbouring subunits which are
open and, secondly, calcium ion binding and unbinding rates for each subunit are
dependent upon whether zero, one or two of the adjacent subunits already have
a calcium ion bound. Again this model has a large number of states but
symmetries can be exploited to vastly reduce the size of the state-space. This
model also has a small number of free parameters which can be interpreted in

terms of the molecular channel properties.

1.3.2 Inference for a two-state Ion Channel Model

Making inferences for stochastic models of ion channels 1s fraught with

identifiability problems and these can be classified broadly into three types (see

section 2.3.3):

(1) structural non-identifiability (Kienker (1989)) in which two distinct
processes can yield probabilistically indistinguishable aggregated

Processes;

(ii)  overparameterised models (Fredkin ef al. (1985));

(iii) non-identifiability induced by time interval omission.

Chapter 4 1s concerned with problem (iii).
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Yeo et al. (1988) considered the case in which the underlying process has only
two states, one open and one closed. Thus successive open and closed sojourn
lengths are independent negative exponential random variables, with respective
means K, and L, say. They studied the problem of estimating (4, £) 1n the
presence of time interval omission and conjectured that the moment estimating
equations for (&, ) have either zero, one or two solutions, with two solutions
being the usual situation. The distribution of an observed open (or closed)
sojourn, incorporating time interval omission, does not admit a simple form, so
Yeo et al. (1988) considered several approximations. In particular, they
considered an approximation in which observed open and closed sojourns are
assumed to follow negative exponential distributions with appropriate means.
For this approximation, the maximum likelihood and method-of-moments
estimators of (1, i) coincide. Clarke et al. (1993) used Fréchet-type arguments
to derive local asymptotic results, valid under the approximate model, for the two

solutions of the moment estimating equations.

A number of authors have proposed methods of overcoming the above

identifiability problem. Colquhoun and Sigworth (1983), Blatz and Magleby

(1986) and Yeo et al. (1988) suggested the use of samples with different
minimum detectable sojourns and estimating (4, f4.) for each sample. Then as

the detection limit changes, one estimate of (4,, [4-) remains roughly constant

while the other varies significantly, thus permitting the true solution to be

10
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determined. A second computationally highly intensive simulation-based method
Involving modelling the true effects of the filter was proposed by Magleby and

Weiss (1990a). Simulation studies suggest that both these methods will work in

practice.

In Chapter 4 two new methods of overcoming the identifiability problem are
presented. The first (Ball ef al. (1990)) is similar to the method of using samples
with different detection limits and instead allows the agonist concentration to
change between the samples. For agonist-activated channels, the mean length of
a closed sojourn is modelled as a 14, where a is the agonist concentration, which
1s assumed known. Since the method which uses variation in the detection limit
and the method which uses variation in the agonist concentration both involve
observing single channel records under different experimental conditions, and
many authors fit models using records of reconstructed sojourn times, it is clearly
useful to have a method of discriminating between the two solutions on the basis
- of one such record. The second new method (Ball and Davies (1995), Ball et al.

(1994)) proposed in Chapter 4 does not require taking samples under different
experimental conditions, and instead uses the sample variances of observed open
and closed sojourns as a discriminant between the two solutions. Simulation

studies are presented and these suggest that both these new methods will work.

Chapter 4 also presents a framework for analysing the asymptotic behaviour of

11
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the method-of-moments estimators under the exact model as the numbers of
observed open and closed sojourns become large (Ball and Davies (1995)). This
framework clarifies the origin of the non-identifiability discussed above and
allows us to construct confidence sets for (1, K-) corresponding to the two
solutions of the moment estimating equations. It also enables an assessment to
be made of the accuracy of the simultaneous confidence sets given in Clarke et
al. (1993), which were based on an approximate model. Further it provides a
formal justification of the two methods for overcoming the identifiability problem
which involve taking samples under different experimental conditions. We also
provide a proof of the conjecture of Yeo et al. (1988) concerning the number of

solutions of the moment estimating equations.

12
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2  Background

2.1 Markov Models of Ion Channels

A single 1on channel gating mechanism is usually modelled by a finite state space,
continuous time, Markov chain. Thus, given the successive states visited, the
sojourn times in individual states are independent, having exponential
distributions with parameters that depend only on the state being visited. Label
the states 1, 2,....,n. LetO={1,2,...,n,} and C= {n,+ 1, n, + 2,..., n} be the
sets of open and closed states respectively. Let n- be the number of closed states,
so that n, + n-= n. Denote the above Markov chain by {X{(?); r > 0}, where X(7)
1s the state occupied by the channel at time ¢z. The process {X(?); ¢ > 0} is time
homogeneous, irreducible and, within the present context in which there 1s no
external force driving ions through the channel, time reversible (Colquhoun and

Hawkes (1983), Lauger (1995)).

For i # j, let g, be the transition rate of the channel process {X(#); ¢ > 0} from
state 7 to state j. Let Q be the n x n matrix with off-diagonal elements g, and

diagonal elements g = - E q,- Itis convenient (see, for example, Ball and

11
J #1

Sansom (1987)) to partition the matrix Q into

13
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o [Qoo ro) .
Oco Qcc) |

where, for instance, 0, is an n,, x n, sub-matrix corresponding to transitions that
remain within the open states and Q- is an n,, x n. sub-matrix corresponding to
transitions from the open states to the closed states. Hereafter in this thesis we
do not state the dimensions of sub-matrices of partitioned matrices where such
dimensions are apparent from the context. Since the channel process
{X(¥); t > 0} 1s mrreducible, it will possess an equilibrium distribution,
w=(m, ..., ) say, where, throughout this thesis, ' denotes transpose.

Define the transition probability p (2) to be

Pg(f) =PX@® =j | X(0) = i) G,7=12,...mt2>0)

and let P(¢) be the »n x n matrix whose entries are p,(f). Throughout this thesis,
I denotes an identity matrix whose dimensions are apparent from the context.
Note that P(0) = I, that P(¢) has non-negative entries and row sums equal to one,
and that P(¢) satisfies the Chapman-Kolmogorov equations P(s + f) = P(s)P(?) for
s. t > 0. Hence, using standard results (e.g. Grimmett and Stirzaker (1982,

p149)), we obtain the forward equations

P® = POQ (> 0),
where P’(f) denotes the » x n matrix with entries p,'(f) and ° denotes

14
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differentiation. The forward equations, with P(0) = 7, have solution

P(t) = exp(Q0) (¢ > 0), (2.2)

where

= k +k
exp(Q1) = ZO kat

s the usual matrix exponential (see, for example, Bellman (1960)).

Fori=1,2,.., n, let p(0) be the probability that a channel is in state i at time
t =0, and let p(0) be the 1 x n row vector with elements p.(0), p,(0),..., p,(0).
Then the expression given by Colquhoun and Hawkes (1977) for P (f), the
probability that a channel is open at time ¢, follows immediately from equation

(2.2) and 1s given by

P (1) = p(0)exp(Q1) u, (2.3)

where u 1s the n X 1 column vector whose first n, elements are ones, and whose

remaining c¢lements are all zero.

Lauger (1995) discusses the important concept of time reversibility in the ion
channel context and its equivalence to the assumption that channel gating is not
coupled to a source of free energy, such as ion concentration gradients across the

membrane. This situation appears to be true for the majority of ion channels,
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although there have been a few reports of possible non-reversibility (e.g. Hamill
and Sakmann (1981)). The presence of reversibility implies that the stochastic
properties of a model are the same whether an ion channel record is read from left
to night or from right to left (Kelly (1979)). Moreover, at equilibrium, a
reversible cyclic reaction mechanism has no greater tendency to move in one
direction around the cycle than in the opposite direction and the mechanism obeys
the principle known as microscopic reversibility or detailed balance. This

principle is represented by the detailed balance equations

n-j q;‘j = ﬂ_}'qu (Z, ] = 1:’ 23"': n)a (24)

from which the equilibrium distribution 77 may be determined.

Let W be the n x n diagonal matrix with diagonal elements 7;, 7,,..., 7,. Then

the detailed balance conditions (2.4) imply that

WEQW % = (WEQW ). (2-5)

Hence W”“QW ™ is a real symmetric matrix and is therefore diagonalizable with
real eigenvalues A,, A,...., A,, say, where one of the eigenvalues is zero and the
remaining eigenvalues are all strictly negative, and corresponding orthonormal

real right eigenvectors ¢,, C,,..., C,, say. It follows that

wW20wW " = CDCT,
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where D = diag(4,, A,,..., 4,)and Cis an n x n orthogonal matrix with columns

€15 €25..., €5 Since the matrix W”OW ™ admits the spectral representation

W QW * = il YR(XADY

we obtain

(2.6)

where E; = W"c;c;” W”*. The matrices E,, E....., E, satisfy

_ e ifi=j
EiEj-{O i

E1+E2 +...+F =1

n

Further, if, without loss of generality, A, = 0, then E, = 1777. Application of

equation (2.6) to equation (2.3) yields that

P - i; Bt (> 0),

where [, = p(0) E,u. In practice, if nothing is known about the process at time

17
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t = 0, other than that it is in equilibrium, the equilibrium probability vector 7 is

used as the initial probability vector p(0).

In order to analyse open and closed sojourns, we use the semi-Markov framework
of Ball er al. (1991, 1993a). Assume that the first open sojourn commences at
time =0 and let S, = 0. Let S, = min{r> 0: X(¢) € C} be the time at which the
first closed sojourn starts, S, = min{r > S,: X(¢) 61 O} be the time at which the
second open sojourn starts, S; = min{¢ > S,: X(¥) € C} be the time at which the
second closed sojourn starts, and so on. For k=0, 1,..., letJ, =X(S,) be the label
of the state occupied by the channel at time S,. Then J;, J,, Ji,... are the open
states occupied by the channel at the commencement of successive sojourns in the
open class of states and J,, J;, J.,... are the closed states in which the channel
commences successive sojourns in the closed class of states. Let 7, = 0 and
T.=S,-S,,(k=1,2,..). ThenT,, T;, T,... are the lengths of successive sojourns
in the open class of states and 7,, T, T.... are the lengths ot successive sojourns

in the closed class of states. The process {(J,, T})} (k=0, 1,...) 1s Markov and 1s

called a semi-Markov sequence.

The probabilistic properties of {(J,, T,)} are completely determined by its
associated semi-Markov kernel, the » % » matrix function F(f) = [F(£)] (¢ > 0),

defined elementwise by

F®) =PTys t,Jy=jldy_, =0  (J=1, 2 n).

18
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Note that some of the rows and columns of F(¢) will contain only zeros, reflecting
the fact that not all closed (open) states may be reached directly via a transition

from the open (closed) class of states. Since the process {(J,, T)} (=0, 1,...)

alternates between open and closed states, we may partition F(¢) into

0 F_.(f)
F. (@ 0

F(t) =

where F,(?) 1s an n,, X n. matrix corresponding to open sojourns and F,(¢) is an
n- X n, matrix corresponding to closed sojourns. For matrices throughout this

thesis, 0 denotes a zero matrix whose dimensions are apparent from the context.

Following a technique used by Colquhoun and Hawkes (1977, 1981) and Fredkin

et al. (1985), we can define a new process in which no exit from the closed states

is possible. Let P(f) and Q be the transition probability matrix and transition rate
matrix, respectively, of this new process. Then we can partition the matrices P(?

and O into

P.© P,

w B (Qoo ro],
0 {

P =( 0 0

where I is the n- X n. identity matrix. Then fori € O and j € C we have

[Foc®]; = Poc®], and  [f,c®],; = [Poc 0] (2.7)
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where f(1) is the matrix density function corresponding to and partitioned in

identical manner to the distribution function F(¢). The forward equations can

now be written as

Poo® Qoo Pop® Opc
0 0 |

P'() = P(HQ =

from which we have the equation _}300/ (H) = -P-oo () O, with solution

Poo® = exp(Qpof) (2.8)

and the equation

ﬁm/(t) - _P-oo(t) ro . (2.9)

From equations (2.7), (2.8) and (2.9) we obtain

foc(t) = CXPp (Qoot) ro (2.10)

and hence

4

Foc® = [ xp(Qoo®) Qocdu = ~Qo0 U~ exp Qoo M Qo+ (211)

0

Similarly we can show that

foo® = €xp (Qpct) Oco (2.12)
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and hence

Frp® = =0cc (- exp(Qp- 1) O, - (2.13)

Now let P = F(~) be the transition matrix of the Markov chain {J} and partition

P 1into

From equations (2.11) and (2.13) we obtain that

Poc = Foe(=) = "Qc;cl) Qoc (2.14)

and

Pro = co(®) = "Qc:(,}' Oco - (2.15)

2.1.1 Equilibrium Behaviour

Since {J,} alternates between open and closed states, it is periodic with pertod 2
and therefore does not possess an equilibrium distribution. We instead consider
the process {.J,,} (k=0, 1,...), termed the open entry process (Ball et al. (1991)),

which 1s a Markov chain recording the state occupied by the channel each time
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the class of open states is entered. Entry to the class of open states is usually

possible through only a subset of the states in that class and this subset is known

as the open gateway states (Ball ef al. (1991, 1993a)) and denoted O,.. The state
space of the open entry process is O,. Similarly, Worr1 ) (6=0, 1,...) is termed the
closed entry process and has as its state space the set of closed gateway states,

denoted C. Note that P,=P,.P.,and P.= P 0P o are the transition matrices

of {J,,} and {J,,,,}, respectively.

Suppose that there are m, open gateway states and m_. closed gateway states.
Without loss of generality we can assume that the open and closed gateway states
are labelled 1, 2,..., my, and n, + 1, n, + 2,..., n, + m,, respectively. Let
7° = ( 7 9 T, O 72'30 )" be the column vector of open entry probabilities at
equilibrium, so that 7z,° is the probability that the class of open states is entered
via the ith open state. Note that time reversibility of {X(7)} is sufficient to ensure
the existence of 7° and the analogously defined closed entry process distribution
71° (see Ball ef al. (1991, Theorem 3.6)). An expression for 77° can be obtained
by considering channel transitions from all closed states to each open state and

weighting the corresponding rates according to the fraction of time a channel

occupies 1n each closed state at equilibrium (see Colquhoun and Hawkes (1977)).

Thus

0 :
T~ o E g (i =12,.. m,),
jeCl
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which, from the detailed balance conditions (2.4), may be expressed in the form

75’:0 . ”;—E 9 ¢ =1 2,.., my). (2.16)

JjeC

The constant of proportionality in equation (2.16) is chosen so that the

equilibrium open entry probabilities sum to one. A similar result holds for the

vector 71° of equilibrium closed entry probabilities.
2.1.2 Open and Closed Sojourn Probability Density Functions

To obtain an expression for the unconditional open sojourn time probability
density function, f,,(¢) say, we calculate a weighted combination of the conditional
density functions [f,«(f)],, Where f,(?) is given by equation (2.10), with weights
being the equilibrium open entry probabilities, and we sum over the possible
entry states for the succeeding closed sojourn. Let 7, be the n, x 1 column
vector whose first m,, elements are 7, O T, O ... 71'30, and whose remaining

elements are all zero. Throughout this thesis 1 (0) denotes a column vector of

ones (zeros) whose dimension is obvious from the context. Then

fo® = (7)) foc®1 = (mx)"exp(Qpot) Qocl (£ 0).

Note that from the definition of Q, it follows that Q1 = 0, which when expanded

in partitioned form yields Q1 + Q, 1 = 0. Using this fact, we can write
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fo(t) - (770)1— exp(Qoot) Qool (r>0). (2.17)

Let W, be the n,, X n, diagonal matrix with diagonal elements 7, =,.,..., 7, .

Ro

Then expansion of the relation (2.5) in partitioned form yields

/. -y Y. -y
WOZQOO Wo "= (Wozgoo Wo z)Ts

and 1t follows that 0, possesses a spectral representation similar to that for Q.
letw,, w,,..., W, be the real (strictly negative) eigenvalues of W,”Q, W, ”
with corresponding real orthonormal right eigenvectors b,, b,,..., bno, and let
E°=W,"b,b"W," (i=1,2,..,n,). Then f,(f) can be expressed in the form

fol) = 2 & . exp(w ;1) (t > 0), (2.18)
i=1

where &, = -(7,)" W, E’1 (i=1, 2,..., ny). Since {X(¥)} is time reversible, the
coefficients &, (i = 1, 2,..., n,) are non-negative (see Kijima and Kijima (1987))
so that £,(f) is a mixture of exponentials. Similar results hold for f(?), the

unconditional probability density function of closed sojourn times.

2.1.3 Moments

For k=0, 1,..., let M* be the n x n matrix given by
M® = f tk f(r) dt.
0
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The matrix M® contains information regarding the kth moments of open and

closed sojourn lengths. Writing

0 M,
M® - o
M3 0
where, for example, the submatrix M,.* is the kth moment matrix relating to

open sojourn lengths and has dimension », X n., and using equation (2.10), we

have
y + ~-(k + 1
Mg?: i} ftkfoc(f)dt = (-1)*" " k! ro() )ro' (2.19)
0
The analogous result
Mgg = (“1)k+1 k! Q(;éh X Qco (2.20)

holds for the kth moments of closed sojourn lengths.

Now let £, be the unconditional kth moment of open sojourns when the channel

is in equilibrium. Then

T+ 2k
po© = (7,) Mc()c)rl
- + -(k+1
= (7o) (D" D k! Qoo Qocl

= (7)) (-1)*k! Qg 1, (2.21)
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using the fact that Q,,1 + O,-1 =0. An equivalent expression exists for ££. %, the

unconditional Ath moment of closed sojourns when the channel is in equilibrium.

Let ,= p,"V and .= " be the equilibrium mean open and closed sojourn
times, respectively. Another equivalent expression for f, (Colquhoun and
Hawkes (1977)) can be derived as follows. On average the number of channel
openings in a unit of time is given by (4, + 4.)"' = A say. This is the intensity of

the point process describing channel openings and can also be expressed as

).=Z ziqu.,

ieC IjGO

the rate at which the channel leaves the class of closed states at equilibrium.
Since the equilibrium probability that a channel is open is given by

Lo ! (Mp+ M), and alsoby 7, + 7w, + ... + 7, , 1t tollows that

O

Ko = W + /‘C)Z T

ie O

>

ie O

”iq;‘f
ieC jeO

2

ieO

50 ‘jec? (2.22)
using the detailed balance conditions (2.4). A similar expression holds for /.

Alternatively an expression for 4, in terms of L, is given by
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Hc = ﬂO((EieO ”i)_l - 1). (2.23)

From equation (2.21) and an equivalent equation for closed sojourns, the

variances, J,’ and 0’ say, of open and closed sojourn lengths, respectively, are

given by

T -2
0, =27, Qppl — p,* (2.24)

and

0} =27 Q001 - pr. (2.25)

where 7. 1s the n. x 1 column vector whose first m,. elements are

C ..
T, ¢ T, ¢ ..., =, and whose remaining elements are all zero.
C

2.1.4 Autocorrelation and Cross-Correlation Functions

Several authors have noted that important information concerning the structure
of an ion channel gating mechanism is contained in the open and closed sojourn
autocorrelation functions (see, for example, Fredkin ez al. (1985), Colquhoun and

Hawkes (1987), Ball and Sansom (19882 and 1988b), Ball and Rice (1989)) and

the open-closed and closed-open cross-correlation functions (Ball ef al. (1988)).
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The length of the (k + 1)th open sojourn is given by 7,,, , (k= 0, 1,...). The

covariance of 7, and 7, , , 1S

Cov(T, Ty, ) = EIT, T, .1 - E[T]E[T,.,]

= BT} Ty, ] - /”02' (2.26)
Meanwhile
E[T, Ty, = (m))" M2 P, (PY- ' M1, (2.27)

where 77, weights the expectation according to the probabilities that the first open
sojourn starts in the various open states, the first occurrence of M, " corresponds
to the length 7', ot the first open sojourn, P, is concerned with transition to the
start of the second open sojourn, the product (P,)* "' contains information
regarding transitions to the start of the (k + 1)th open sojourn, the second
occurrence of M, corresponds to the length 7., . , of the (k + 1)th open sojourn
and the final vector of ones sums over the possible entry states to the succeeding
closed sojourn. Substituting expressions (2.14), (2.15) and (2.19) into equation

(2.27), we obtain

EIT, T, ] = (7, (Q52 One) (-0 Oue) Q5 Qv O Qo) !
X (Qc;?) Qo) 1

- (”o)T Q(;cz) (ro QCTCI' Qco Q(;(g ¢ (Q(;CI) QOC) 1

(T0)" Qoo Qpe Ccc Cro Coo)* 1, (2.28)
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where the final expression is derived using the fact that 0,1 + 0,1 = 0.

For k=1, 2,..., let r,(k) be the open sojourn autocorrelation function which

measures the degree of correlation between the ith and the (i + k)th channel
openings when the channel is in equilibrium, and let r (k) be the closed sojourn

autocorrelation function. Then since {X(¢)} is time homogeneous, we can use

equations (2.26) and (2.28) to obtain

ro(k) = (7" Qoo Qoc Occ Cco Coo)* 1 - Ho) 1 05 (2.29)
(see Fredkin et al. (1985)). Similarly,

re(k) = (T Qcc Qco Qoo Qoc Qec) 1 - ke) 1 0e, (2.30)

In order to obtain a formula for r, (k) (k = 1, 2,....,), the open-closed cross-
correlation function which measures the correlation between the ith open sojourn
and the (i + k)th closed sojourn, we proceed similarly. The covariance of the first

open sojourn T, and the (k+ 1)th closed sojourn 7, , , (k=0, 1, 2,....) 1s given by

_ l
COV(Tla Tzk...z) = (770) Mc()lc)' (PC)k Mé‘g 1 - HoHc -

Using equations (2.14), (2.15), (2.19) and (2.20) yields
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roc(k) = ((JTO)T (Q(;é ro) (Qgcl‘ Qco Q(;CID ro)k (Q(;C% Qco) 1
~ Hokc) ! \/"ozac:2
= (- (70)" Q00 Qoc Qe Qo Qoo Qoc Occ 1
= Hokc) 0 07, (231

since Qcpl + Orc1 = 0. It is worth noting that, since the channel process
{X(1);, t > 0} 1s time reversible, the closed-open cross-correlation function is

1dentical to the open-closed cross-correlation function, and hence only 7, (k) need

be considered (see Ball er al. (1988)).

To allow us to derive simpler forms for the autocorrelation and cross-correlation

functions, we now show that time reversibility ensures that the matrices P, and
P, are diagonalizable (Fredkin et al. (1985), Ball and Rice (1989)). Using

equations (2.14) and (2.15), we can write

-1 -1
PO - QOO ro QCC Qco - (2.32)
Define JE'O by
P, =WyP,W,". (2.33)

Then substitution of (2.32) into (2.33) yields
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~ v, -1 Yo Vs %2 ar2 A -1 =% % -
Po = Wo Qoo Wo Wo ro We Wcz OccWe 2 WCZ QCO o 2
A1 x A=l
= Q00 C0c Ccc CPco s (2.34)
~ -1 1 - -
where QOO = W(;z QO(I) WO%’
~ 1, -V,
ro . Wo2 QOCW ",
~ -1 Yo =1 gy =Y
Qcc = We Qcc We 2
~ Y Y
and Qco = We QcoWo

From equation (2.34) we can write

' ..-...-_l/2 .-.r__l/z.- .-..._'.I/z...-

~ Y5 “Yox x-V
Qo000 %0 = Loo CocCcc Cec Lo Coo - (2.35)

Expansion of equation (2.5) in partitioned form yields that Q.. = (Q.,)">

Q—-(—)—g = (QW(;(I))"r and Qéé = (Qéé)T, and hence equation (2.35) becomes

~ ~

= Y 2 T
OooPpQpp =44, (2.36)
where 4 = Q&;{Z Qco Qc;g" . Now, using equations (2.33) and (2.36), we obtain

Yo ~Van-1 4T Yo ~Vo
Po = (Wo Qoo) ' 4 A(Wo Qoo ;

demonstrating that P, 1s similar to the real symmetric matrix 44 which is

positive semi-definite and hence has real non-negative eigenvalues (see, for

31



BACKGROUND

example, Mardia et al. (1979), Section A.7). Therefore P, is diagonalizable with
non-negative real eigenvalues (see, for example, Froberg (1969)). Similarly, it
can be shown that P 1s similar to 44". Since the eigenvalues of 44" are the

same as those of 44 (see, for example, Mardia et al. (1979), Theorem A.6.2), P,

1s diagonalizable with the same eigenvalues as P,..

Since P, and P, are diagonalizable, the autocorrelation and cross-correlation
functions admit simple forms (Fredkin er al. (1985), Ball and Rice (1989)).

Suppose that the matrix P, admits the spectral representation

say, where X, (i = 1, 2,..., n,) are the eigenvalues of P, with corresponding
spectral matrices F, determined in the same way as those of Q and (J,,, above.
Since P, is the transition matrix of the open entry process which is an irreducible
aperiodic Markov chain on the finite state space O, the Perron-Frobenius
Theorem (see, for example, Grimmett and Stirzaker (1982, p134)) tells us that
one of the eigenvalues of P, Kk, say, is one and that the remamning
eigenvalues x,, K,,..., K, satisfy | kx| < 1. Hence, for i = 2, 3,..., np,
0 < x,<1. Since 7, is the n, x 1 vector which gives the equilibrium distribution

of the open entry process, it follows that 1(7z,)"P, = 1(7,)", or equivalently that

F, = 1(7p)". Let M= min(m,, m¢). Since Py (Pco) has at most m, (mc) non-
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zero rows and at most m (m,) non-zero columns, it follows that rank (P,-) < M
(rank (P-,) < M). Since P, = P,-P,, a standard result in linear algebra tells us
that the rank of P, is at most M. Thus at most M of the eigenvalues K

(i=1, 2,..., ny) are non-zero. Thus, from equation (2.27),

E[T, Ty 1] = (79)" Mol Pey (i K Fz‘] Mpe 1

= ()" MSg Py 1 (7)) Mg 1

+ (1) My P, ( 2 k¥ T F| M1

- T 1
= Ho f k"1 (1) MC()lc)'PCOFiMC()C)'l'
i=2

Hence
ro(k) = ka_I &, k = 1, 2,..) (2.37)
where
a, = ((WO)T MSQ Pco F. Mgg 1)/002 (=2 3,.. M.

Equivalent formulae can be shown to hold for r(k) and r,(k) so that each of
r (k), r(k) and r,(k) can be written as a sum of M - 1 terms of the form & K

(i=1,2,..,M-1)where0 < k; < 1 and &, > 0 (see Fredkin ez al. (1985) and Ball
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and Sansom (1988a)). Ball and Rice (1989) show that, for the autocorrelation
functions, the coefficients &, (not generally the same for each function) are non-
negative and hence that these two autocorrelation functions are decreasing, non-
negative, and convex. Since P, and P, have the same eigenvalues, the
geometrically decaying terms X are necessarily the same for each of the

autocorrelation and cross-correlation functions (Ball and Rice (1989)).

Correlation functions can give information which aids the process of accepting,
rejecting and choosing between different proposed models. Firstly, Markov
models which yield negative autocorrelation functions cannot be time reversible
and since it seems to be the case that no experimentally observed negative
autocorrelations have been reported 1n the literature (Ball and Rice (1989)), this
correlation-based evidence suggests that most channel gating mechanisms are
indeed time reversible. Secondly, correlation functions provide information
concerning the numbers of open and closed states and the number of transition
routes between the open and closed classes of states (Fredkin ez al. (1985),
Colquhoun and Hawkes (1995)). In fact, at least two open states (with the same
conductance) and at least two closed states (with the same conductance) are
required if correlations are to arise and, moreover, there must be at least two
transition routes between the open and closed classes of states (Colquhoun and
Hawkes (1987), Ball and Sansom (1988b)). Further, a lower bound for

min(m,, m.) can, 1n principle, be obtained by fitting expressions of the form of
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equation (2.37), and an equivalent equation for closed sojourns, to estimated
autocorrelation functions for observed open and closed sojourns. Thirdly, a
number of authors (e.g. Colquhoun and Sakmann (1985), McManus et al. (1985))
have reported that channel openings adjacent to short closings tend to be long.
McManus and Magleby (1989) point out that some non-Markov models can be
rejected on the basis that they do not predict this type of behaviour. Fourthly, the
behaviour of a channel following a jump in agonist concentration or voltage
depends on the correlation functions. The time that elapses before the first
channel opening occurs 1s known as the first latency. In the absence of
correlations, the lengths of all open and closed sojourns after the first latency
have exactly the same distributions as at equilibrium, whereas in the presence of
correlations these sojourn lengths do not immediately attain their equilibrium

distributions, although this does occur given sufficient time (Colquhoun and

Hawkes (1995)).

2.1.5 Clustering

In many experiments (e.g. Sakmann et al. (1980)) it has been observed that
channel openings, or equivalently points in time when a single channel moves
from a closed state to an open state, are grouped together in bursts, and moreover,
these bursts of channel openings themselves occur in clusters. Colquhoun and

Hawkes (1982) modelled this situation by assuming that the closed states are
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further partitioned into short-lived, long-lived and very long-lived closed states,
corresponding to gaps between openings within a burst, gaps between bursts
within a cluster of bursts, and gaps between clusters of bursts, respectively. They
presented general methods of deriving expressions for a large number of
observable characteristics of bursts and clusters, such as the total length of a burst
and the number of bursts per cluster. Further, Ball and Sansom (1987) derived
an expression for a simple descriptive measure which indicates whether or not a
given model does indeed display clustering of openings, and Ball and Davies
(1997) derived an equivalent expression to determine whether or not a given

model displays clustering of bursts of openings.

The approach of both Ball and Sansom (1987) and Ball and Davies (1997) was
as follows. Let {N(®)} = {N(?); t > 0} be a point process. Thus N(0) =0 and for

t > 0, N(f) is the number of points occurring in (0, f]. Then the measures

VarlMl d 1 ( YEM)
vy C D © -~ | "EING)] (238)

contain information concerning the temporal clustering of the point process
{N(f)}. In particular, if the point process is highly clustered, these measures are
much greater than one, whereas, if the point process is evenly spaced, their values
are much smaller than one. Note that, in the case in which {N(#)} is Poisson,

Var[N(?)] / E[N()] has value one.
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2.1.5.1 Clustering of Openings

In this section, we give the expressions derived by Ball and Sansom (1987) for

the measures (2.38) when { V(¢) }is the point process describing channel openings.

Recall from equation (2.6) that an » X n transition matrix O may be written in the

form

where 4, =0and A,, A,,..., A, the eigenvalues of Q, are strictly negative and
expressions for and properties of the matrices E,, E,,... E, are given in section 2.1.

Furthermore, define the » x n matrix O, by
) ( 0 0]
CO QCO 0

and, fori=1,2,...,n, let E. = OQ{,E Qo Then Ball and Sansom (1987) show

that

E[N@®)] = m()' =

Var[N()] = k()" 7 + m@®)" 7 - (m(f)" 7)’,
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where

E. Oo1 (=0

and

h(r) = 2{%!‘2E1Ef + i:

(E,E/ + E.E)
i=2

A2 A,

]

( exp(4.f) - 1 ¢

1 - exp(A.r t At
+ i: ___.__X_I.)_g_‘_). EE | + _fi‘}i_z_?_ EE;
i=2 j=2 /li/lj i=2 ;
exp(A.t) — exp(A.t
. 2 t p(4,7) XP(J)EI.E.* L >0

In this expression for k(?) it is assumed that the eigenvalues A,, A....., A, are

distinct. If this is not the case, say A, = A, then the factor

; ‘i
(exp(A; 1) - exp(A, 1)) / A;(A, - A) in the final component of this expression is
replaced by its limit as A, ~ A, this being (¢ exp(4;f)) / 4, (see Ball and Sansom

(1987)).

Ball and Sansom (1987) also give the asymptotic expression

Var|N(1)]

1- ieC ]GO leC k= me 0O
lm( E[N()]

) _1 22 unz ti'l(Ek,quzm
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which 1s independent of the initial state of the process.

2.1.5.2 Clustering of Bursts of Openings

In this section, we state the formulae derived in Ball and Davies (1997) for the
measures (2.38) when {M(7)} is the point process describing the starts of bursts
of channel openings. First it is convenient to give a more precise definition of a
burst of openings. We now suppose that the closed states are partitioned into just
short-lived and long-lived closed states, the latter being the union of what were
referred to above as long-lived and very long-lived closed states, and that the
class of short-lived closed states is denoted C and the class of long-lived closed
states 1s denoted L. Then a burst 1s a group of successive sojourns of the channel
in O U C. Thus bursts are separated by one or more sojourns of the channel in L,

and a burst is deemed to commence at the start of its first open sojourn.

Ball and Davies (1997) use an approach based on an augmented continuous-time
Markov chain to obtain a direct derivation of expressions for (2.38) when {N(?)}
is the point process describing the starts of bursts of channel openings. Whether
or not a given opening corresponds to the start of a burst requires knowledge of
the history of the channel process. However, the state space of the underlying
single channel process can be augmented so that when the channel is in a short-

lived closed state, 1t is also recorded whether the current sojourn in the short-lived
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closed states was entered from the open states or from the long-lived closed
states. The resulting process 1s still Markov but the number of short-lived closed
states 1s doubled. The state space can now be partitioned into open, closed-open
(short-lived closed states entered from the open states), closed-long (short-lived
closed states entered from the long-lived closed states) and long-lived closed
states. Denote these classes of states by O, C,, C, and L, respectively and let O

be the transition matrix of this augmented process. Then

60 Loc, Yoc, Yor 0., 0. 0 O
o QC”'oC'j Qéoéo Qéof'z; Qf'of Oco Gec 0 O (2.40)
Qe o Y, Qe,6, Yo Oco 0 9Ycc Ye

o T o QLO 0 QLC QLL

The number of bursts commencing in (0, 7] is then given by the number of
transitions into the open states, from either the long-lived closed states or the

closed-long states, made by the augmented process in (0, /]. Then from Ball and

Davies (1997), we obtain, for > 0,
ValN@] _ , , 277 0°20°1 _ 24 Q°Z (I - exp(Q) Q"1

E[N()] 70" 1 70" 11

and

... VNON) 247 9°20°1
E[N(1)] 1
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where 7, the equilibrium distribution of the augmented process, is given by

T, 1 = 1,.,n,
-1 :
1%, (~Qcc o Dy, L= R+l np+ng
7, =
Ti-n, I - ('Qé_cl' Oco l)i—no—nc L= npthnct .., n,+2n,
”z‘—nc I = n,+2n.+1,..,n
and
0 000
0 000
€ =lg., 000/
O, 000
0 000
0 0 0 O
0 20" = eo HO’C"L Oco + QcoZsr Qo 0 0 0
Oro ZééL Oco * 010Z5:Q10 0 0 0
and

Note that Z is the fundamental matrix (see, for example, Keilson (1979), p107)

of the augmented process (with transition matrix ) which records both the state
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of the channel process {X(f)} and whether short-lived closed sojourns were

entered from the open state<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>