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Abstract 

This thesis is concerned with models and inference for single ion channels. 

Molecular modelling studies are used as the basis for biologically realistic, large 

state-space gating models of the nicotinic acetylcholine receptor which enable 

single-channel kinetic behaviour to be characterized in terms of a small number 

of free parameters. A model is formulated which incorporates known structural 

information concerning pentameric subunit composition, interactions between 

neighbouring subunits and knowledge of the behaviour of agonist binding sites 

within the receptor-channel proteins. Expressions are derived for various channel 

properties and results are illustrated using numerical examples. The model is 

adapted and extended to demonstrate how properties of the calcium ion-activated 

potassium ion channel may be modelled. 

A two-state stochastic model for ion channels which incorporates time interval 

omission is examined. Two new methods for overcoming a non-identifiability 

problem induced by time interval omission are introduced and simulation studies 

are presented in support of these methods. A framework is presented for 

analysing the asymptotic behaviour of the method-of-moments estimators of the 

mean lengths of open and closed sojourns. This framework is used to clarify the 

origin of the non-identifiability and to construct confidence sets for the mean 

sojourn lengths. A conjecture concerning the number of solutions of the moment 

estimating equations is proved. 
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INTRODUCTION 

1 Introduction 

1.1 Biology of Ion Channels 

Each living cell is surrounded by a membrane which separates its interior from 

its exterior. Ion channels are single, or complexes of, protein molecules which 

form pores in cell membranes, allowing the cell to communicate with its 

surroundings (see, for example, Hille (1992), Aidley and Stanfield (1996)). 

Movement of ions through these pores determines the electrical properties of 

cells, and thus is ultimately responsible for transmission of information through 

the nervous system. There are many types of channels and they work in concert, 

opening and closing to shape the signals and responses of the nervous system. 

They perform a very wide variety of functions including guiding limbs in their 

movements, controlling the secretion of digestive enzymes, detecting the sounds 

that an animal hears and generating the violent electric discharges of the electric 

eel. 

A channel may be regarded as an excitable molecule since it is specifically 

responsive to a stimulus, such as a membrane potential change or the release of 

stimulatory molecules, termed agonists, which are recognised by the transmitter 

receptor. The channel's response, known as gating, is a simple opening or 
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INTRODUCTION 

closing of the pore. When the ion channel is open, it allows particular ions to 

flow at a very high rate, typically greater than one million ions per second per 

channel. For voltage-gated channels, this flow of electric currents across the 

membrane has an immediate effect on membrane potential which can be detected 

by other voltage-gated channels and they, in turn, become excited. Thus the 

electric response is regenerative and self-propagating and the signal is thereby 

carried to a point where a nonelectrical response is generated. Ligand-gated 

channels also gate ion movements and generate electrical signals, but they do so 

in response to a specific chemical neurotransmitter, such as the agonist 

acetylcholine. Hence, transmission of ions through ion channels, whether they 

are voltage-gated or ligand-gated, is central to signalling within the nervous 

system. 

The regulation of ion channels influences the life and functions of cells in nerve, 

muscle and other tissues. Ion channels consist of multiple subunits, each with 

very similar structure but different electrophysiological characteristics and the 

combination of these subunits into complexes results in a wide variety of 

properties of ion channels and is reflected in the diversity of diseases (Rose 

(1998)) resulting from ion channel disorders (channelopathies). Channelopathies 

may cause an abnormal gain of function (such as epilepsy, myokymia or 

myotonia) or an abnormal loss of function (such as weakness or numbness) 

depending on whether loss of channel function leads to excessive membrane 
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INTRODUCTION 

excitability or to membrane inexcitability. An understanding of the process in 

which ion channels open and close has already provided important insights into 

the cellular mechanisms underlying several diseases, including cystic fibrosis (in 

which there is a disorder of the chloride channel) and diabetes. Dominant 

nocturnal frontal lobe epilepsy is due to mutations in a subunit of the nicotinic 

acetylcholine receptor (Steinlein (1995)). The neurophysiological abnormalities 

seen in multiple sclerosis and Guillain-Barre syndrome may be able to be 

explained by sodium channel dysfunction and, further, the potassium channel 

blocker 3,4-diaminopyridine can improve leg strength in patients with multiple 

sclerosis (Bever et al. (1996)). Other specific channel modulating drugs are 

currently under development for migraine, chronic pain and cardiac dysrhythmias. 

It is hoped that further understanding of ion channel gating will give, not only an 

increased understanding of disease processes in which neurotransmission is 

impaired (for example, Parkinson's disease and Alzheimer's disease) but also 

additional insights into the modes of action of drugs, such as local anaesthetics, 

which perturb ion channels, and will ultimately result in the rational design of 

novel drugs acting on the central nervous system. 

The electrophysiological technique of patch clamp recording (Neher and 

Sakmann (1976)) enables the registration of the small (ca. 10"12 Amp) electrical 

currents which pass through individual ion channels. An ion channel tends to be 

closed for much of the time and this corresponds to the situation in which no 
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INTRODUCTION 

current flows across its membrane patch. At apparently random times the channel 

opens for a short duration of apparently random length, producing a pulse of 

current which, using the patch clamp recording technique, can be directly 

observed as it actually happens. Recorded sojourn times in experimentally 

distinguishable states are used to make inferences about underlying kinetic states, 

their connectivity, and the chemical rate constants which govern transitions 

between them. Since the observed behaviour of channels is apparently random, 

models of ion channel gating mechanisms have been based on a variety of 

(usually Markov) stochastic process models. Such models are consistent, at least 

to a first approximation, with current understanding of the physical basis of 

conformational changes of molecules. 

1.2 Mathematical Models of Ion Channels 

The gating behaviour of a single ion channel is usually modelled by a continuous 

time Markov chain with a finite state space (see section 2.1). To a first 

approximation, most channels in patch clamp experiments show only two 

conductance levels, namely zero conductance (corresponding to the channel being 

closed) and ̀ open' conductance (corresponding to the channel being open). Thus 

the complete process is unobservable and the state space is partitioned into two 

classes, termed `open' and ̀ closed', and it is possible to observe only which class 

the process is in. In practice, the sequence of open and closed sojourns of the 
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channel is reconstructed from the observed single-channel records by using a 

filter and an associated threshold crossing algorithm (see section 2.2). This 

results in the loss of very short sojourns in either the open or the closed classes 

of states, a phenomenon known as time interval omission. 

One of the main aims of such single channel modelling is to determine properties 

of the observable aggregated process from those of the underlying continuous- 

time Markov chain (see section 2.1). Another of the main aims of modelling is 

to draw inferences concerning the structure of, and parameter values governing, 

the underlying continuous time Markov chain from the observed aggregated 

process (see section 2.3). It is hoped that such modelling will provide insights 

into the underlying physical processes of channel gating. 

Much of the early research into mathematical modelling of ion channels 

concentrated on the development and analysis of stochastic models (Colquhoun 

and Hawkes (1982), Fredkin et al. (1985), Dabrowski et al. (1990), Ball et al. 

(1991), Ball and Rice (1992), etc. ) and, with a few exceptions (e. g. Horn and 

Lange (1983)), problems of statistical inference started to be addressed later (Ball 

and Sansom (1989), Chung et al. (1990), Magleby and Weiss (1990a), Fredkin 

and Rice (1992a), etc. ). 
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INTRODUCTION 

1.3 Main Topics of the Thesis 

1.3.1 Models based on the Molecular Structure of Ion Channels 

Many recent studies of ion channel gating have employed small state-space 

Markov models of single-channel behaviour, and have used results derived from 

the theory of stochastic processes in the development and application of such 

models. Although major successes have been achieved using this approach, in 

many cases a problem arises when the experimental data is best described by 

gating models in which the channel may exist in one of many similar closed 

states. One solution to this problem is to develop `traditional' Markov models 

with suitably large state-spaces. However, this results in models with large 

numbers of independent parameters, which present considerable difficulties when 

attempting to obtain parameter estimates from experimental data. Several authors 

have developed ̀ alternative' large state-space models which treat channel gating 

in terms of diffusion-like processes (e. g. Millhauser et al. (1988), Sansom et al. 

(1989), Sigg et al. (1999)). Although such models benefit from having small 

numbers of free parameters, it is often difficult to judge their relationship to the 

underlying structural properties of the ion channels involved. 

In parallel with increased understanding of channel gating, the past two decades 

have seen remarkable developments in the molecular biology of ion channel 
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INTRODUCTION 

proteins, and as a result of such studies, it is now possible to formulate molecular 

models of channel gating. In particular, recent structure determination studies of 

the nicotinic acetylcholine receptor from the electric ray Torpedo have provided 

a detailed three-dimensional model of the receptor channel (IJnwin (1989,1993, 

1995)). 

The models which are considered in Chapter 3 of this thesis are an attempt at a 

synthesis of these two classes of investigations. We have used molecular models 

as the basis for biologically realistic, large state-space gating models of the 

nicotinic acetylcholine receptor and the calcium ion-activated potassium ion 

channel which enable single-channel kinetic behaviour to be characterized in 

terms of a small number of free parameters. This has resulted in realistic channel 

models which are sufficiently simple to allow the computation of channel 

properties. 

In Chapter 3, we present, in detail, a model for the nicotinic acetylcholine 

receptor which incorporates information concerning the structure of the 

corresponding receptor-channel protein. Our model assumes that the channel 

consists of 5 subunits arranged in a ring, and that agonists can bind to 2 of these 

subunits. Each subunit may exist in either a closed or an open conformation, and 

the channel is open if all 5 subunits are in open conformations. Otherwise, the 

channel is closed. The model also incorporates interactions between 
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neighbouring subunits, using ideas from a sequential model for allosteric proteins 

developed by Koshland et al. (1966). Although this model has a large state- 

space, symmetries can be exploited to considerably reduce the state-space size. 

Further, the model is defined by a relatively small number of parameters which 

are directly related to molecular properties of the channel. Under our model, we 

derive expressions for various channel properties, including equilibrium 

distributions, open and closed entry process equilibrium distributions and mean 

lengths of open and closed sojourns and we use numerical algorithms to compute 

sojourn time probability density functions and correlation functions. We 

illustrate our results using examples based on parameter values which are chosen 

by theoretically matching observable properties of our model to those of the 

model of Jackson (1989), who estimates optimal values for acetylcholine receptor 

equilibrium constants based on physiological considerations (see also Jackson 

(1993)). 

In Chapter 3, we also describe the formulation of a model for the calcium- 

activated potassium ion channel based on its underlying molecular structure. Our 

model is similar to that for the nicotinic acetylcholine receptor, but instead 

assumes that the channel consists of 4 subunits arranged in a square, and that 

calcium ions can bind to all 4 of these subunits. Channel openings and closings 

are modelled in the same manner as in the nicotinic acetylcholine receptor model 

and this model incorporates two distinct types of interactions between 
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neighbouring subunits. Firstly, subunits are modelled to open and close at 

varying rates depending upon the number of neighbouring subunits which are 

open and, secondly, calcium ion binding and unbinding rates for each subunit are 

dependent upon whether zero, one or two of the adjacent subunits already have 

a calcium ion bound. Again this model has a large number of states but 

symmetries can be exploited to vastly reduce the size of the state-space. This 

model also has a small number of free parameters which can be interpreted in 

terms of the molecular channel properties. 

1.3.2 Inference for a two-state Ion Channel Model 

Making inferences for stochastic models of ion channels is fraught with 

identifiability problems and these can be classified broadly into three types (see 

section 2.3.3): 

(i) structural non-identifiability (Kienker (1989)) in which two distinct 

processes can yield probabilistically indistinguishable aggregated 

processes; 

(ii) overparameterised models (Fredkin et al. (1985)); 

(iii) non-identifiability induced by time interval omission. 

Chapter 4 is concerned with problem (iii). 
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Yeo et al. (1988) considered the case in which the underlying process has only 

two states, one open and one closed. Thus successive open and closed sojourn 

lengths are independent negative exponential random variables, with respective 

means /jo and ac, say. They studied the problem of estimating (po, ac) in the 

presence of time interval omission and conjectured that the moment estimating 

equations for (Jo, pc) have either zero, one or two solutions, with two solutions 

being the usual situation. The distribution of an observed open (or closed) 

sojourn, incorporating time interval omission, does not admit a simple form, so 

Yeo et al. (1988) considered several approximations. In particular, they 

considered an approximation in which observed open and closed sojourns are 

assumed to follow negative exponential distributions with appropriate means. 

For this approximation, the maximum likelihood and method-of-moments 

estimators of (1uo, Luc) coincide. Clarke et al. (1993) used Frechet-type arguments 

to derive local asymptotic results, valid under the approximate model, for the two 

solutions of the moment estimating equations. 

A number of authors have proposed methods of overcoming the above 

identifiability problem. Colquhoun and Sigworth (1983), Blatz and Magleby 

(1986) and Yeo et al. (1988) suggested the use of samples with different 

minimum detectable sojourns and estimating (Po, Luc) for each sample. Then as 

the detection limit changes, one estimate of (p0, pc) remains roughly constant 

while the other varies significantly, thus permitting the true solution to be 
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INTRODUCTION 

determined. A second computationally highly intensive simulation-based method 

involving modelling the true effects of the filter was proposed by Magleby and 

Weiss (1990a). Simulation studies suggest that both these methods will work in 

practice. 

In Chapter 4 two new methods of overcoming the identifiability problem are 

presented. The first (Ball et al. (1990)) is similar to the method of using samples 

with different detection limits and instead allows the agonist concentration to 

change between the samples. For agonist-activated channels, the mean length of 

a closed sojourn is modelled as ä' pc, where a is the agonist concentration, which 

is assumed known. Since the method which uses variation in the detection limit 

and the method which uses variation in the agonist concentration both involve 

observing single channel records under different experimental conditions, and 

many authors fit models using records of reconstructed sojourn times, it is clearly 

useful to have a method of discriminating between the two solutions on the basis 

of one such record. The second new method (Ball and Davies (1995), Ball et al. 

(1994)) proposed in Chapter 4 does not require taking samples under different 

experimental conditions, and instead uses the sample variances of observed open 

and closed sojourns as a discriminant between the two solutions. Simulation 

studies are presented and these suggest that both these new methods will work. 

Chapter 4 also presents a framework for analysing the asymptotic behaviour of 
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the method-of-moments estimators under the exact model as the numbers of 

observed open and closed sojourns become large (Ball and Davies (1995)). This 

framework clarifies the origin of the non-identifiability discussed above and 

allows us to construct confidence sets for (yo, pc) corresponding to the two 

solutions of the moment estimating equations. It also enables an assessment to 

be made of the accuracy of the simultaneous confidence sets given in Clarke et 

al. (1993), which were based on an approximate model. Further it provides a 

formal justification ofthe two methods for overcoming the identifiability problem 

which involve taking samples under different experimental conditions. We also 

provide a proof of the conjecture of Yeo et al. (1988) concerning the number of 

solutions of the moment estimating equations. 
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BACKGROUND 

2 Background 

2.1 Markov Models of Ion Channels 

A single ion channel gating mechanism is usually modelled by a finite state space, 

continuous time, Markov chain. Thus, given the successive states visited, the 

sojourn times in individual states are independent, having exponential 

distributions with parameters that depend only on the state being visited. Label 

the states 1,2,..., n. Let 0= {1,2,..., no} and C= {no + 1, no + 2,..., n} be the 

sets of open and closed states respectively. Let nc be the number of closed states, 

so that no + nc = n. Denote the above Markov chain by {X(t); t >_ 0}, where X(t) 

is the state occupied by the channel at time t. The process {X(t); t> 0} is time 

homogeneous, irreducible and, within the present context in which there is no 

external force driving ions through the channel, time reversible (Colquhoun and 

Hawkes (1983), Läuger (1995)). 

For i#j, let qj be the transition rate of the channel process {X(t); t >_ 0} from 

state i to state j. Let Q be the nxn matrix with off-diagonal elements qj and 

diagonal elements q,, =-E qýv . 
It is convenient (see, for example, Ball and 

1*i 
Sansom (1987)) to partition the matrix Q into 

13 
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Qoo Qoc 
Q 

Qco Qcc 
(2.1) 

where, for instance, Q00 is an no x no sub-matrix corresponding to transitions that 

remain within the open states and Qoc is an no x nc sub-matrix corresponding to 

transitions from the open states to the closed states. Hereafter in this thesis we 

do not state the dimensions of sub-matrices of partitioned matrices where such 

dimensions are apparent from the context. Since the channel process 

{X(t); t> 0} is irreducible, it will possess an equilibrium distribution, 

ýz = (n,, Tr2,..., ýCn)T say, where, throughout this thesis, T denotes transpose. 

Define the transition probability p, (t) to be 

py (t) =P (X(t) =j1 X(O) = i) (i, j=1,2,..., n; tz 0) 

and let P(t) be the nxn matrix whose entries are p,, (t). Throughout this thesis, 

I denotes an identity matrix whose dimensions are apparent from the context. 

Note that P(Q) = I, that P(t) has non-negative entries and row sums equal to one, 

and that P(t) satisfies the Chapman-Kolmogorov equations P(s + t) = P(s)P(t) for 

s, tz0. Hence, using standard results (e. g. Grimmett and Stirzaker (1982, 

p 149)), we obtain the forward equations 

P ý(t) = P(t) Q (t > 0), 

where P' (t) denotes the nxn matrix with entries pýj' (t) and ' denotes 

14 
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differentiation. The forward equations, with P(O) _ I, have solution 

P(t) = exp(Qt) (t> 0), (2.2) 

where 

exp (Qt) = 
Qk tk 

k=0 k! 

is the usual matrix exponential (see, for example, Bellman (1960)). 

For i=1,2,..., n, let p; (0) be the probability that a channel is in state i at time 

t=0, and let p(O) be the 1xn row vector with elements p1(0), p2(0),..., p, ß(0). 

Then the expression given by Colquhoun and Hawkes (1977) for Po(t), the 

probability that a channel is open at time t, follows immediately from equation 

(2.2) and is given by 

Po(t) = p(O) exp(Qt) u, (2.3) 

where u is the nx1 column vector whose first no elements are ones, and whose 

remaining elements are all zero. 

Läuger (1995) discusses the important concept of time reversibility in the ion 

channel context and its equivalence to the assumption that channel gating is not 

coupled to a source of free energy, such as ion concentration gradients across the 

membrane. This situation appears to be true for the majority of ion channels, 

15 
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although there have been a few reports of possible non-reversibility (e. g. Hamill 

and Sakmann (1981)). The presence of reversibility implies that the stochastic 

properties of a model are the same whether an ion channel record is read from left 

to right or from right to left (Kelly (1979)). Moreover, at equilibrium, a 

reversible cyclic reaction mechanism has no greater tendency to move in one 

direction around the cycle than in the opposite direction and the mechanism obeys 

the principle known as microscopic reversibility or detailed balance. This 

principle is represented by the detailed balance equations 

; rI qýl = qj, (i, j=1,2,..., n), (2.4) 

from which the equilibrium distribution 7r may be determined. 

Let W be the nxn diagonal matrix with diagonal elements Tr,, 7t2,..., 7rn. Then 

the detailed balance conditions (2.4) imply that 

WVV2 QW /'2 
_ 

(TAT'2 Q W- ýY2 )T (2.5) 

Hence W 'QW-"' is a real symmetric matrix and is therefore diagonalizable with 

,, say, where one of the eigenvalues is zero and the 
real eigenvalues ,..., 

A, 

remaining eigenvalues are all strictly negative, and corresponding orthononnal 

real right eigenvectors c,, c2,..., c., say. It follows that 

1'º' 

/2QIl /2 
= 

CDCT, 
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where D= diag(A,, 
,..., 

Aj and C is an nxn orthogonal matrix with columns 

cl, c2,..., cn. Since the matrix W 'QW-' admits the spectral representation 

W Y2 QW2- 

we obtain 

Ai(CiC1T ), 

i=1 

Q= ýýElý 

where E1= W-2cjcjT W ý. The matrices E,, E2,..., E,, satisfy 

EI 
E, E =0 

and 

ifi =j 
ifi#j 

E1+E2 +... + En = I. 

(2.6) 

Further, if, without loss of generality, /1, = 0, then E, =1 7ET. Application of 

equation (2.6) to equation (2.3) yields that 

Po(t) eA1 t (t > 0), 
1=ý 

where /3 = p(O) E, u. In practice, if nothing is known about the process at time 
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t=0, other than that it is in equilibrium, the equilibrium probability vector i is 

used as the initial probability vector p(0). 

In order to analyse open and closed sojourns, we use the semi-Markov framework 

of Ball et al. (1991,1993a). Assume that the first open sojourn commences at 

time t=0 and let So = 0. Let S, = min{t > 0: X(t) E C} be the time at which the 

first closed sojourn starts, S2 = min{t > S,: X(t) E O} be the time at which the 

second open sojourn starts, S3 = min{t > S2: X(t) E Cl be the time at which the 

second closed sojourn starts, and so on. For k=0,1,..., let Jk = X(Sk) be the label 

of the state occupied by the channel at time Sk. Then Jo, J2, J4,... are the open 

states occupied by the channel at the commencement of successive sojourns in the 

open class of states and J1, J3, Js,... are the closed states in which the channel 

commences successive sojourns in the closed class of states. Let To =0 and 

Tk = Sk 
- 

Sk_ 
1 (k=1,2,... ). Then T,, T3, T5,... are the lengths of successive sojourns 

in the open class of states and T2, T4, T6,... are the lengths of successive sojourns 

in the closed class of states. The process {(Jk, Tk)} (k= 0,1,... ) is Markov and is 

called a semi-Markov sequence. 

The probabilistic properties of {(Jk, Tk)} are completely determined by its 

associated semi-Markov kernel, the nxn matrix function F(t) = [FF(t)] (t >_ 0), 

defined elementwise by 

Fl (t) =P (Tk s t, 
. 
Jk =f1 Jk 

-1= 
i) (i, f=1,2,..., n) . 
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Note that some of the rows and columns of F(t) will contain only zeros, reflecting 

the fact that not all closed (open) states may be reached directly via a transition 

from the open (closed) class of states. Since the process {(Jk, Tk)) (k = 0,1,... ) 

alternates between open and closed states, we may partition F(t) into 

F(t) 
0 Foc(t) 

Fco(t) 0 

where Fi(t) is an no x nc matrix corresponding to open sojourns and Fco(t) is an 

nc x no matrix corresponding to closed sojourns. For matrices throughout this 

thesis, 0 denotes a zero matrix whose dimensions are apparent from the context. 

Following a technique used by Colquhoun and Hawkes (1977,1981) and Fredkin 

et al. (1985), we can define a new process in which no exit from the closed states 

is possible. Let P(t) and Q be the transition probability matrix and transition rate 

matrix, respectively, of this new process. Then we can partition the matrices P(t) 

and Q into 

Pt= 
(0o(t) P°C(t) 

and 

(Q00 Qvc 
C) 

01Q 00 

where I is the nc x nc identity matrix. Then for iE0 and jEC we have 

[FFC(r)]= [I'oc(t)]and [f (t)Itj = [Poc (t)} j, (2.7) 

19 



BACKGROUND 

where f(t) is the matrix density function corresponding to and partitioned in 

identical manner to the distribution function F(t). The forward equations can 

now be written as 

Pt=Pt= 
Poo (t) Q00 ) 

00 (t) Qoc 

00 

from which we have the equation Pool (t) = Poo (t) Q00 with solution 

Poo (t) = exp (QO0 t) (2.8) 

and the equation 

POCý(t) = POO(L) Q0 
. 

(2.9) 

From equations (2.7), (2.8) and (2.9) we obtain 

fi(t) = exp (Qoot) Qoc (2.10) 

and hence 

I 

Fes, (t) =f exp (Qoo u) Qoc du =- QQö (I - exp (Q00 t)) Qoc Q. (2.11) 

0 

Similarly we can show that 

fc©(t) = exp (Qcc t) Qco (2.12) 
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and hence 

Fro (t) Qcc (I - exp (Qcc t)) Qco (2.13) 

Now let P= F(oo) be the transition matrix of the Markov chain {Jk) and partition 

P into 

0 poc 
P= 

Pco 0 

From equations (2.11) and (2.13) we obtain that 

Poc = Foc(oo) = -Qoö Qoc 

and 

Pco = Fco (co) =- Qcc Qco 
" 

2.1.1 Equilibrium Behaviour 

(2.14) 

(2.15) 

Since {Jk} alternates between open and closed states, it is periodic with period 2 

and therefore does not possess an equilibrium distribution. We instead consider 

the process {J} (k = 0,1,... ), termed the open entry process (Ball et al. (1991)), 

which is a Markov chain recording the state occupied by the channel each time 
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the class of open states is entered. Entry to the class of open states is usually 

possible through only a subset of the states in that class and this subset is known 

as the open gateway states (Ball et aL (1991,1993a)) and denoted OG. The state 

space of the open entry process is OG. Similarly, {J2 
I} (k = 0,1,... ) is termed the 

closed entry process and has as its state space the set of closed gateway states, 

denoted Cc. Note that Po = PocPco and Pc = PcoPoc are the transition matrices 

of {J} and {J, }, respectively. 

Suppose that there are mo open gateway states and me closed gateway states. 

Without loss of generality we can assume that the open and closed gateway states 

are labelled 1,2,..., mo and no + 1, no + 2,..., no + mc, respectively. Let 

e= (ter °, 7r2 °,..., Zö )T be the column vector of open entry probabilities at 

equilibrium, so that 7rl° is the probability that the class of open states is entered 

via the ith open state. Note that time reversibility of {X(t) } is sufficient to ensure 

the existence of a' and the analogously defined closed entry process distribution 

)rc (see Ball et al. (1991, Theorem 3.6)). An expression for no can be obtained 

by considering channel transitions from all closed states to each open state and 

weighting the corresponding rates according to the fraction of time a channel 

occupies in each closed state at equilibrium (see Colquhoun and Hawkes (1977)). 

Thus 

r; ° (x 
1: 

ir qj, m0), 
jeC 
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which, from the detailed balance conditions (2.4), may be expressed in the form 

iri° oc iz 
1: 

q1 (i = 1,2,..., m°). 
feC 

(2.16) 

The constant of proportionality in equation (2.16) is chosen so that the 

equilibrium open entry probabilities sum to one. A similar result holds for the 

vector t of equilibrium closed entry probabilities. 

2.1.2 Open and Closed Sojourn Probability Density Functions 

To obtain an expression for the unconditional open sojourn time probability 

density function, fa(t) say, we calculate a weighted combination of the conditional 

density functions [foc(t)]q, where f (t) is given by equation (2.10), with weights 

being the equilibrium open entry probabilities, and we sum over the possible 

entry states for the succeeding closed sojourn. Let 7ro be the no xI column 

vector whose first mo elements are X10, X20,.. 10 ?rö, and whose remaining 

elements are all zero. Throughout this thesis 1 (0) denotes a column vector of 

ones (zeros) whose dimension is obvious from the context. Then 

fo(t) ('ro)T 
. 
foc(t)1 = (7ro)T exp (Qoot) Qoc 1 (t > 0). 

Note that from the definition of Q, it follows that Q1= 0, which when expanded 

in partitioned form yields Q001 + QOc1= 0. Using this fact, we can write 
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J0 (t) _- (Z0)T exp ( Qoot) Q001 (t > o) (2.17) 

Let Wo be the no x no diagonal matrix with diagonal elements r 19 7r2,..., 7rn 
0. 

Then expansion of the relation (2.5) in partitioned form yields 

)T Wö Qoo Wo V2 
= (Wö Qoo W0 

- 
vi 

and it follows that Q00 possesses a spectral representation similar to that for Q. 

Let &l, w2, ... , rvno be the real (strictly negative) eigenvalues of WQ QQOWQ Y 

with corresponding real orthonormal right eigenvectors b1, b2,..., bno, and let 

E. ° = W0' bl bl7 WW2 (i = 1,2,..., n°). Then f0(t) can be expressed in the form 

n 

f0 (t) =tat exp(w 1 t) 
(t > 0), (2.18) 

i=I 

where al = -(ýzo)T i EI°1 (i = 1,2,..., no). Since {X(t) } is time reversible, the 

coefficients a (i = 1,2,..., no) are non-negative (see Kijima and Kijima (1987)) 

so that fo(t) is a mixture of exponentials. Similar results hold for fc(t), the 

unconditional probability density function of closed sojourn times. 

2.1.3 Moments 

For k=0,1,..., let M) be then xn matrix given by 

Go 
M(k) = 

ftkf(t)dt. 

0 
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The matrix Mk) contains information regarding the kth moments of open and 

closed sojourn lengths. Writing 

0 M(k) 
M(k) 

oc 

M(k) d co 

where, for example, the submatrix Moc(k) is the kth moment matrix relating to 

open sojourn lengths and has dimension no x nc, and using equation (2.10), we 

have 

m 

M= ftkfoc(t)dt 
= (-1)k +1k! Qoö + 1) Qoc " (2.19) 

0 

The analogous result 

mW = (- 1)k +1k! Qcc + 1) Qco (2.20) 

holds for the kth moments of closed sojourn lengths. 

Now let po') be the unconditional kth moment of open sojourns when the channel 

is in equilibrium. Then 

Yö = (ýo)T M(k) 1 

= (zo)T (-1)( 1) k! QOO + 1' QOC 1 

= (7'0)T (-1)k k! Qoö 1, (2.21) 
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using the fact that Q001 + QOc1= 0. An equivalent expression exists for pc("), the 

unconditional kth moment of closed sojourns when the channel is in equilibrium. 

Let pa = p, (') and pc = Pc(') be the equilibrium mean open and closed sojourn 

times, respectively. Another equivalent expression for go (Colquhoun and 

Hawkes (1977)) can be derived as follows. On average the number of channel 

openings in a unit of time is given by (p0 +, uc)"' =X say. This is the intensity of 

the point process describing channel openings and can also be expressed as 

I=Ez, E qzj , iEC jeO 

the rate at which the channel leaves the class of closed states at equilibrium. 

Since the equilibrium probability that a channel is open is given by 

go / (po + Inc), and also by r1 + Z2 + ... + Z. 
0, 

it follows that 

iEo 

N 
ri 

iEC jeO 

E91 ieO 

rZ Eq2.22 
i¬O jeC 

using the detailed balance conditions (2.4). A similar expression holds for Luc. 

Alternatively an expression for pc in terms of /O is given by 
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PC /JD((EiEO '0-1 - 1). (2.23) 

From equation (2.21) and an equivalent equation for closed sojourns, the 

variances, UO2 and or c'2 say, of open and closed sojourn lengths, respectively, are 

given by 

, or 
2=2 

)TOT Q -21 11 2 

and 

2 'Q -2 
-2 ffC 2 ýC CC1 ýC 

(2.24) 

(2.25) 

where 7zc is the nc x1 column vector whose first me elements are 

7rl c, 3r2 c5... 
1, st 

c, 
and whose remaining elements are all zero. 

2.1.4 Autocorrelation and Cross-Correlation Functions 

Several authors have noted that important information concerning the structure 

of an ion channel gating mechanism is contained in the open and closed sojourn 

autocorrelation functions (see, for example, Fredkin et al. (1985), Coiquhoun and 

Hawkes (1987), Ball and Sansom (1988a and 1988b), Ball and Rice (1989)) and 

the open-closed and closed-open cross-correlation functions (Ball et al. (1988)). 
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The length of the (k + 1)th open sojourn is given by T2k 
+1 

(k = 0,1,... ). The 

covariance of TI and T2k 
+1 

is 

Cov (Ti, T 
2, t., 1) =E [Ti T2k+ 

1] -E [T, ] E IT 
2k + z] 

=E [Ti T2k 
+ 1] - Y02 

1 

Meanwhile 

(2.26) 

E [Ti T* 
1] = (; ro)T Möc Pco (F0)k -1 Möc 1 (2.27) 

where iro weights the expectation according to the probabilities that the first open 

sojourn starts in the various open states, the first occurrence ofM0C(1) corresponds 

to the length T, of the first open sojourn, Pco is concerned with transition to the 

start of the second open sojourn, the product (P0)k -I contains information 

regarding transitions to the start of the (k + 1)th open sojourn, the second 

occurrence of MOC' 1 corresponds to the length T2k+ l of the (k + 1)th open sojourn 

and the final vector of ones sums over the possible entry states to the succeeding 

closed sojourn. Substituting expressions (2.14), (2.15) and (2.19) into equation 

(2.27), we obtain 

E [T1 T2k 
+ 11 _ (ýo)T (Qoö Qoc) (- Qcc Qco) (Qoö Qoc Qcc Qc0YC -1 

x (QOO QOC) 1 

(7'o)T Qoo 2 (Qoc Qcc Qco Qoo)k (Qoo Qoc)1 

_ (7r0) Qoö (Q0 Qcc Qco Qoö)k 1, (2.28) 
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where the final expression is derived using the fact that Q001 + Qoc1= 0. 

For k=1,2,..., let ro(k) be the open sojourn autocorrelation function which 

measures the degree of correlation between the ith and the (i + k)th channel 

openings when the channel is in equilibrium, and let rc(k) be the closed sojourn 

autocorrelation function. Then since (X(t)) is time homogeneous, we can use 

equations (2.26) and (2.28) to obtain 

o (2.29) ro(k) = ((lr)T Q0 (Qoc Qcc Qco Qoö)k 1- ýö) /2 

(see Fredkin et al. (1985)). Similarly, 

I Q0 Qcc)k 1- /c) / Qý, (2.30) rc(k) = (( c)T Qcc (QC0 Q- 00 

In order to obtain a formula for roc(k) (k = 1,2...... ), the open-closed cross- 

correlation function which measures the correlation between the ith open sojourn 

and the (i + k)th closed sojourn, we proceed similarly. The covariance of the first 

open sojourn Tl and the (k + 1)th-closed sojourn T2k+2 (k = 0,1,2,.... ) is given by 

Cov (T1, T, 
+ 2) _ (Iro)T Mg (1'c)' 11 ', 1- PO Pc 

Using equations (2.14), (2.15), (2.19) and (2.20) yields 
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roc(k) = C(; ro)T (Qoö Qoc) (Qcc Qco Qoö Qoc)k (Qcc Qco) 1 

- /0 /jc) / °o2 °c2 

- (- (go)T Qoc (Qoc Qcc Qc0 Qo 1)k Qac Qcc 1 

1jo Pc) C02 °c2 (2.31) 

since Qco1 + Qcc1 = 0. It is worth noting that, since the channel process 

{X(t); t >_ 0} is time reversible, the closed-open cross-correlation function is 

identical to the open-closed cross-correlation function, and hence only roc(k) need 

be considered (see Ballet al. (1988)). 

To allow us to derive simpler forms for the autocorrelation and cross-correlation 

functions, we now show that time reversibility ensures that the matrices Po and 

Pc are diagonalizable (Fredkin et al. (1985), Ball and Rice (1989)). Using 

equations (2.14) and (2.15), we can write 

Po = Qoö Qoc Qcc QCo 

Define Po by 

%2 
- 

%s 

Po =w Po WO 
. 

Then substitution of (2.32) into (2.33) yields 

(2.32) 

(2.33) 
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P= 
/2 1 

TiT 
V2 

7TT 
32 

-'A nT 2 nr 22 rar 
V2 

0o Qoo j'ý' o Wo Qoc WC ý/ýI c Qcc '/ýI c Wc Qco Wo 

Qoo Qoc Qcc Qco 
, 

where-1 
%z -I- %2 

Q00 =WQWI 

QOC = VO QOC WC /2, 

-1 _ 
%2 1 %z QCC 

^ 
ýC QCC Fý'C 

and Qco = We Qco WO - Y2 

From equation (2.34) we can write 

(2.34) 

Q%z -'h - %i -% 6-Y2 
00 

Po Qoo = Qoo Qoc Qcc % Qcc Qco Qoo 
" 

(2.35) 

Expansion of equation (2.5) in partitioned form yields that QO, = (Qco)T 
, 

Qoo = «oo)T and Qcc = (Qcc) 
3, and hence equation (2.35) becomes 

V2 
- 

Y2 

Qoo Po goo =A 
'A, 

(2.36) 

where A= Qcc Qc0 Qoo 
. 

Now, using equations (2.33) and (2.36), we obtain 

PO = (W , Q00) -1 A 'A (W0 Q00) 
, 

demonstrating that Po is similar to the real symmetric matrix ATA which is 

positive semi-definite and hence has real non-negative eigenvalues (see, for 
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example, Mardis et al. (1979), Section A. 7). Therefore Po is diagonalizable with 

non-negative real eigenvalues (see, for example, Fröberg (1969)). Similarly, it 

can be shown that PC is similar to AAT 
. 

Since the eigenvalues of AAT are the 

same as those ofATA (see, for example, Mardia et al. (1979), Theorem A. 6.2), Pc 

is diagonalizable with the same eigenvalues as Po. 

Since Po and Pc are diagonalizable, the autocorrelation and cross-correlation 

functions admit simple forms (Fredkin et al. (1985), Ball and Rice (1989)). 

Suppose that the matrix P. admits the spectral representation 

P©= xT F 

say, where 1c (i = 1,2,..., no) are the eigenvalues of Po with corresponding 

spectral matrices F; determined in the same way as those of Q and Q00 above. 

Since Po is the transition matrix of the open entry process which is an irreducible 

aperiodic Markov chain on the finite state space 0, the Perron-Frobenius 

Theorem (see, for example, Grimmett and Stirzaker (1982, p134)) tells us that 

one of the eigenvalues of Po, K, say, is one and that the remaining 

eigenvalues K2 , x3 ,..., no satisfy I ic I<1. Hence, for i=2,3,..., no, 

0 <_ IC,. < 1. Since Tro is the no x1 vector which gives the equilibrium distribution 

of the open entry process, it follows that 1(Iro)TPo =1('r0)T, or equivalently that 

F, =1(z'o)T. Let M= min(mo, me). Since Poc (Pco) has at most mo (mc) non- 
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zero rows and at most me (mo) non-zero columns, it follows that rank (Poc) sM 

Crank (Pco) ý M). Since Po = PocPco, a standard result in linear algebra tells us 

that the rank of Po is at most M. Thus at most M of the eigenvalues x 

no) are non-zero. Thus, from equation (2.27), 

E [T T+]_ (ý )T Moc Pxk -1 F. ý'IIöc 1 I Zlý ID CO 11 
i= 1 

(7r©), MI 
(I 

Pco 1 (Tro)T moc) 1 

co K. k -1 IF, m(l) 1 + (Oo)T Möc P 
i=2 

fj 2+ Kik `1 (2ro)T MM Pco F Möc 1. 
0 i=2 

Hence 

ro (k) =f Kik -1 ai (k = 1,2, 
- ") 

(2.37) 

where 

oc cc Pco F1 i 1) / Qö cri _ 
((7to)T M (i = 

Equivalent formulae can be shown to hold for rc(k) and roc(k) so that each of 

ro(k), rc(k) and roc(k) can be written as a sum of M-1 terms of the form tlk 

(i =1,2,..., M-1) where 0s /ý- s1 and ai z0 (see Fredkin et al. (1985) and Ball 
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and Sansom (1988a)). Ball and Rice (1989) show that, for the autocorrelation 

functions, the coefficients a; (not generally the same for each function) are non- 

negative and hence that these two autocorrelation functions are decreasing, non- 

negative, and convex. Since Po and Pc have the same eigenvalues, the 

geometrically decaying terms x are necessarily the same for each of the 

autocorrelation and cross-correlation functions (Ball and Rice (1989)). 

Correlation functions can give information which aids the process of accepting, 

rejecting and choosing between different proposed models. Firstly, Markov 

models which yield negative autocorrelation functions cannot be time reversible 

and since it seems to be the case that no experimentally observed negative 

autocorrelations have been reported in the literature (Ball and Rice (1989)), this 

correlation-based evidence suggests that most channel gating mechanisms are 

indeed time reversible. Secondly, correlation functions provide information 

concerning the numbers of open and closed states and the number of transition 

routes between the open and closed classes of states (Fredkin et al. (1985), 

Colquhoun and Hawkes (1995)). In fact, at least two open states (with the same 

conductance) and at least two closed states (with the same conductance) are 

required if correlations are to arise and, moreover, there must be at least two 

transition routes between the open and closed classes of states (Colquhoun and 

Hawkes (1987), Ball and Sansom (1988b)). Further, a lower bound for 

min(mo, mc) can, in principle, be obtained by fitting expressions of the form of 
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equation (2.37), and an equivalent equation for closed sojourns, to estimated 

autocorrelation functions for observed open and closed sojourns. Thirdly, a 

number of authors (e. g. Colquhoun and Sakmann (1985), McManus et al. (1985)) 

have reported that channel openings adjacent to short closings tend to be long. 

McManus and Magleby (1989) point out that some non-Markov models can be 

rejected on the basis that they do not predict this type of behaviour. Fourthly, the 

behaviour of a channel following a jump in agonist concentration or voltage 

depends on the correlation functions. The time that elapses before the first 

channel opening occurs is known as the first latency. In the absence of 

correlations, the lengths of all open and closed sojourns after the first latency 

have exactly the same distributions as at equilibrium, whereas in the presence of 

correlations these sojourn lengths do not immediately attain their equilibrium 

distributions, although this does occur given sufficient time (Colquhoun and 

Hawkes (1995)). 

2.1.5 Clustering 

In many experiments (e. g. Sakmann et al. (1980)) it has been observed that 

channel openings, or equivalently points in time when a single channel moves 

from a closed state to an open state, are grouped together in bursts, and moreover, 

these bursts of channel openings themselves occur in clusters. Colquhoun and 

Hawkes (1982) modelled this situation by assuming that the closed states are 
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further partitioned into short-lived, long-lived and very long-lived closed states, 

corresponding to gaps between openings within a burst, gaps between bursts 

within a cluster of bursts, and gaps between clusters of bursts, respectively. They 

presented general methods of deriving expressions for a large number of 

observable characteristics of bursts and clusters, such as the total length of a burst 

and the number of bursts per cluster. Further, Ball and Sansom (1987) derived 

an expression for a simple descriptive measure which indicates whether or not a 

given model does indeed display clustering of openings, and Ball and Davies 

(1997) derived an equivalent expression to determine whether or not a given 

model displays clustering of bursts of openings. 

The approach of both Ball and Sansom (1987) and Ball and Davies (1997) was 

as follows. Let {N(t) }= {N(t); t >_ 01 be a point process. Thus N(O) =0 and for 

t>0, N(t) is the number of points occurring in (0, t]. Then the measures 

Var[N(t)] {t > 0) and lim t 

(Var[N(t)I' 
(2.38) 

E[N(t)] E[N(t)] 

contain information concerning the temporal clustering of the point process 

{N(t)}. in particular, if the point process is highly clustered, these measures are 

much greater than one, whereas, if the point process is evenly spaced, their values 

are much smaller than one. Note that, in the case in which {N(t)) is Poisson, 

Var[N(t)] / E[N(t)] has value one. 
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2.1. s. 1 Clustering of Openings 

In this section, we give the expressions derived by Ball and Sansom (1987) for 

the measures (2.3 8) when {N(t) } is the point process describing channel openings. 

Recall from equation (2.6) that an nxn transition matrix Q may be written in the 

form 

Q= liEi, 
i=1 

where Al =0 and A2, A3,..., A, the eigenvalues of Q, are strictly negative and 

expressions for and properties of the matrices E,, E2,... E,, are given in section 2.1. 

Furthermore, define the nxn matrix Quo by 

00 
Qco = Qco 

and, for i=1,2,..., n, let E. * = Qco E; Qco. Then Ball and Sansom (1987) show 

that 

E[N(t)] = m(t)T yt 

and 

Var[lY(t)] 
= 

h(t)' 2r + M(t)T Z- (m(t)T jr)2, 
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where 

(exp(A 
l t) -1 

m(t) =t El + EI Qco 1 (t z 0) 
i=2 

ýi 

and 

h(t) =2 12t 2 El E1* 
exp(AA t) -1 

t=2 ý2 

t (El El* + E1 El) 
21 

1- exp(2 . t) t exp(2 t) 
+1 EI E*' +1 Er 

j=2 
Äi Aý 

2 
ÄI r 

+ 

(expA 
I t) - exp(Ä, t) 

E. E. * 1 (t Z 0). 
i=2, i*j j=2 

Äj (A1 - 
Äj) 

In this expression for h(t) it is assumed that the eigenvalues A2,23,..., 
1iw, are 

distinct. If this is not the case, say Ai = 4J, then the factor 

(exp(A, t) - exp(2, t)) / 4j (A1 - 
4) in the final component of this expression is 

replaced by its limit as. A, - Aj, this being (t exp(r% t)) / Aj (see Ball and Samson 

(1987)). 

Ball and Sansom (1987) also give the asymptotic expression 

2iL. 
ý 

qi Ak 1 (Ek)jl 
E 

qlm 

1 
Var[N(t)] 

iEC jeO 
ýIEC 

k=2 mEO 

E[N(t)] qIj 
iEC jE0 (2.39) 
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which is independent of the initial state of the process. 

2.1.5.2 Clustering of Bursts of Openings 

In this section, we state the formulae derived in Ball and Davies (1997) for the 

measures (2.38) when {N(t)) is the point process describing the starts of bursts 

of channel openings. First it is convenient to give a more precise definition of a 

burst of openings. We now suppose that the closed states are partitioned into just 

short-lived and long-lived closed states, the latter being the union of what were 

referred to above as long-lived and very long-lived closed states, and that the 

class of short-lived closed states is denoted C and the class of long-lived closed 

states is denoted L. Then a burst is a group of successive sojourns of the channel 

in 0uC. Thus bursts are separated by one or more sojourns of the channel in L, 

and a burst is deemed to commence at the start of its first open sojourn. 

Ball and Davies (1997) use an approach based on an augmented continuous-time 

Markov chain to obtain a direct derivation of expressions for (2.38) when {N(t)} 

is the point process describing the starts of bursts of channel openings. Whether 

or not a given opening corresponds to the start of a burst requires knowledge of 

the history of the channel process. However, the state space of the underlying 

single channel process can be augmented so that when the channel is in a short- 

lived closed state, it is also recorded whether the current sojourn in the short-lived 
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closed states was entered from the open states or from the long-lived closed 

states. The resulting process is still Markov but the number of short-lived closed 

states is doubled. The state space can now be partitioned into open, closed-open 

(short-lived closed states entered from the open states), closed-long (short-lived 

closed states entered from the long-lived closed states) and long-lived closed 

states. Denote these classes of states by 0, Co, CL and L, respectively and let Q 

be the transition matrix of this augmented process. Then 

Q66 QOCo QOCL QOL 
QOO QOC 0 QOL 

QC0O QCoco QCoCL QCoL QCO QCC 0 QCL 

Q 
_ QCLO QCLCO QCLCL QCLL 

- (2.40) 
QCO 0 Qcc QCL 

QL'Ö 0,10" QLCL OLL' 
QLO ° QLC QLL 

The number of bursts commencing in (0, t] is then given by the number of 

transitions into the open states, from either the long-lived closed states or the 

closed-long states, made by the augmented process in (0, t]. Then from Ball and 

Davies (1997), we obtain, for t>0, 

Var[N(t)] 
+2 

; cam Q*ZQ*1 2 ;rQ,, Z2 (I - exp(Q t)) Q*1 

E[N(t)] ffr Q*1 fT Q*1t 

and 

Var[N(t)] 
=1+ 

2f Q*2Q*19 
li. ul 

( 

E[N(t)] 2zß Q* 1 
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where 7r, the equilibrium distribution of the augmented process, is given by 

it. 

%i. 
l 

= 

and 

Iri C-QCC QC0 1)i-no 

7ri-nC 1 (-QcI QCO')i-no-nc 

Z. 
i- nc 

i=1,..., no 

i= no + 1,..., no + nc 

i= no + nc + 1, 
---, no +2 nß 

i=no+2nc+1,..., n 

o000 
0000 

Q* _ Q0000 
QLO 000 

and 

0000 
0 000 

Q* 
, 
2Q* 

QCO 2O 
C, Qco + QCO 2OL QLO 000 

QL 
O 

20 
CL 

QCO + QL 
O 

2OL QL 
O00o 

2 =-1r+(1ýr-Q)-ý. 

Note that 2 is the fundamental matrix (see, for example, Neilson (1979), p 107) 

of the augmented process (with transition matrix Q) which records both the state 
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of the channel process {X(t) } and whether short-lived closed sojourns were 

entered from the open states or from the long-lived closed states. 

The matrix Z0CL is given by 

ZOCL ý 
-1 lrT )OL QLC QC; + Ai 1 [Ei1OL QLC QCC 

i=2 

the matrix ZOL is given by 

pik 
1 Ek tI E 0, j c L), 

k=2 i>. 1-nc 

and Z exp(Q t) is given as follows. Partitioning Z exp(Q t) in a similar fashion 

to equation (2.40), we give expressions for [Z exp(Q t)]EF where E, P=Ö, Co, 

CL, L. Using the notation that if E=Ö, Co, CL, L then E=0, C, C, L, 

respectively, and similarly for F, F, we have 

[2 
exp( t)]EF = 

[Z 
exp(Qt)]EF 

fort >_ 0, P = Ö, Co, CL, L and F=Ö, L, where 

ZAi Eý and Z exp(Qt) =-A' exp(A1 t) E,. 
=z i=2 

Further, the matrix Qcc also admits a spectral representation, given by 
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n 

say, where A and F, (i = 1,2,..., nc) are, respectively, the eigenvalues of Qcc and 

the corresponding projection matrices (see, for example, Fredkin et al. (1985)). 

If Aj p for all i and j, and E CL, then, for t >_ 0, 

L2 
exp(Q t)I EÖ = [1 'rT]EL QLC Q -2 eXP(Qcc t) 

L cc 

n 

[EI ]EL QLC Fj Ai Ai)-i [exp(1uj t) - exp(A1 t)] (2.41) 
i=2 j=1 

ZEL QLC Qcc eX P(Qcc t) 

If A. =p for some i and j, then the term (pug - 
A)-' [exp(, uj t) - exp(A; t)] in the 

above is replaced by t exp(A, t). If E= CL, then, for t >_ 0, 

ýZ 
exp(Q t)] ,f LeL 

[1 7rT]CL QLC Qcc exp(Qcc t) 

- [Ei]a QLC F3 2 1(j; 
-A)-' [exp(, u, t) - exp(21 t)] (2.42) 

i=2 j=i 

- ZcL Qzc Qcc exp(cc t) - Qcc exp(. Qcc t), 

with the same modification if A. = pj for some i and j. For E=D, CL, L and 

F= CO, the sub-matrices [Z exp(Q t)]EF and [Z exp(Q t)]FF are given by equations 

(2.41) and (2.42) respectively, but with the subscript L replaced by the subscript 

0 throughout. 
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2.2 Data Acquisition and Time Interval Omission 

In practice, there is a major problem with single channel analysis. The limited 

frequency response and filtering effect of the electronic recording system, 

together with noise and sampling the signal at regularly spaced points in time, 

results in failure to detect very brief channel sojourns in either the open or closed 

classes of states, a phenomenon known as time interval omission. 

2.2.1 Data Acquisition 

The current through an ion channel is assumed to consist of rectangular pulses 

with infinitely short transition times. In order to analyse channel activity it is 

necessary to estimate the amplitudes and transition times in the measured 

currents. Cell physiologists Erwin Neher and Bert Sakmann (winners of the 1991 

Nobel Prize in Physiology or Medicine) developed a technique (Neher and 

Sakmann (1976)) that allows the measurement of the electrical currents of 

magnitude ca. 10-12 Amp that pass through ion channels. This technique, known 

as the patch-clamp technique, has caused a revolutionary advancement of many 

areas of membrane and cell biology. The basic approach requires a low-noise 

recording procedure. This is achieved by using suction to tightly seal a glass 

microelectrode onto the plasma membrane of an intact cell, thereby isolating a 

small patch. The currents flowing through ion channels enclosed by a pipette tip 
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12 34 5 

Original data 

Reconstruct ion 

2ms 

Figure 2.1. Threshold analysis of closely spaced events. Simulated rectangular events (top trace) 

were filtered and displayed (middle trace) and the reconstruction obtained from the threshold- 

crossing analysis is shown in the lower trace. Events I and 2 were just below threshold and thus 

not detected, event 4 was even shorter, but was detected because it followed event 3 by a 

sufficiently short closed interval. [From Colquhoun and Sigworth (1983). ] 

within that patch are measured using a patch-clamp amplifier. In practice the 

current signal from a patch-clamp amplifier is filtered (Figure 2.1 and Colquhoun 

and Sigworth (1983)). Firstly the patch-clamp amplifier places a limit on its 

frequency response (say < 100 kHz) so that its output is a filtered version of the 

true current signal. Secondly all the various types of tape recorders used to record 

the data incorporate some sort of filter. Finally, the data are filtered again to 

reduce the background noise enough to enable openings and closings to be 
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detected and identified. This is an important step since the basic problem in 

identifying channel activity is that short channel openings cannot be differentiated 

from random noise fluctuations about the baseline and that short closings cannot 

be distinguished from fluctuations away from the level of current associated with 

channel openings. The data are always obtained initially in the form of a voltage 

signal and are subsequently converted to digital form for storage on a digital tape 

or for computer analysis. The analog-to-digital converter used for this purpose 

samples the voltage at discrete times. Typically, the sampling interval is of the 

order of 100 microseconds, whereas the durations of openings are of the order of 

milliseconds. If the sample rate is not sufficiently high, rapid changes in current 

may be missed. 

The list of the estimates of the times and amplitudes of transitions in the current 

record is known as an idealised record. These data approximate the channel 

activity and are often used for statistical analysis of ion channel kinetics. 

Although this analysis can incorporate corrections for missed events (see below), 

it is important that the idealised record is as complete and unbiased as possible. 

Often, in practice, the two operations of finding events and fitting the transitions 

are carried out separately. For example, a transition finder can scan a channel 

record for activity and then, once the events are found, they can be fitted to an 

idealised time course (Colquhoun and Sigworth (1983)). The latter step of 

computing a theoretical time course for the current can be very time-consuming 
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and may conceivably require the data to be filtered differently. Alternatively, a 

simple threshold detector may be used to combine the processes of detection and 

characterisation of channel events. The use of a simple threshold detector is the 

most widely employed method of single channel analysis (particularly for 

channels without multiple conductance levels). Firstly the channel amplitude is 

estimated and this estimate is used to set a threshold level. Commonly this 

threshold level is set to half the estimated channel amplitude. Then each crossing 

of the threshold is interpreted as an opening or a closing of the channel, with all 

time spent above the threshold taken to be an estimate of the time that the channel 

has spent in the open class of states (see Figure 2.1). The filter risetime is 

informally defined to be the minimum length of a pulse to which the filter gives 

a nearly full-amplitude response (e. g. 90% of full-amplitude), and events shorter 

than a dead time, z say, of approximately half the filter risetime will be missed 

since, after filtering, they will never reach the threshold. The exact value of rfor 

this detection technique may be either measured experimentally, or be calculated 

by determining the length of the pulse to which the recording system gives a half- 

amplitude response. Note that, although this threshold-crossing technique should 

exclude events whose true pulse width is less than t, the effect of noise will be 

to include some of these events and, similarly, to exclude some longer events. 

However, this problem is not too serious if r is sufficiently small. Indeed, the 

threshold-crossing technique performs best when r is reduced as much as 

possible to reduce the number of missed events. The length z of the minimum 
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detectable sojourn is known in ion channel literature as the resolution of the data. 

Note that this minimum length may not be so clearly defined for other less 

common detection techniques. 

2.2.2 Modelling Time Interval Omission 

One effect of time interval omission is to make openings appear longer than they 

really are if short closings are undetected since several openings separated by 

undetected closings will be counted as a single opening, often referred to as an 

apparent or observed open sojourn. A similar effect in which the lengths of 

closed sojourns are distorted may occur when short openings are missed, but this 

is not considered to be as serious as the distortion of open sojourn lengths since 

the channel openings are of far greater interest than the lengths of closings. Time 

interval omission is usually modelled by assuming that any sojourn of duration 

less than the resolution rfails to be detected. Thus an observed open sojourn is 

defined as beginning with an actual open sojourn of duration at least t, followed 

by a number of pairs of closed and open sojourns with the closed sojourns each 

having length less than r, and is immediately followed by a closed sojourn of 

duration at least z An observed closed sojourn is defined analogously. 

A general semi-Markov framework for analysing single channel data 

incorporating time interval omission has been developed by Ball et al. (1991, 
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1993a). This f amework is based on a process, analogous to the process {Jk, Tk} 

discussed in section 2.1, which is an embedded semi-Markov process {Jk, Tk} say, 

where Jk (k = 0,1,... ) are the gateway states for observable sojourns, To =0 and 

Tk (k = 0,1,... ) are the successive sojourn times in the open and closed classes of 

states. The properties of the observed single channel record incorporating time 

interval omission are completely determined by the associated semi-Markov 

kernel. In practice, only the Laplace transform of this kernel is readily available 

and it is generally not possible to invert this analytically to obtain a closed form 

expression for the kernel (see next paragraph). Whilst some observed channel 

properties, such as moments and correlation functions of observed sojourns are 

derivable from this Laplace transform, the probability density functions of 

observed open and closed sojourns are not, although they can be derived from the 

kernel itself. Further, the kernel is also required for exact likelihood based 

inference. 

We now restrict our attention to the case in which the underlying single channel 

is Markov and discuss methods of overcoming the problem of the non-existence 

of a non-recursive, closed form expression for the kernel. Blatz and Magleby 

(1986), Yeo et al. (1988) and Crouzy and Sigworth (1990) described various 

approximate methods of predicting the distributions of observed open and closed 

sojourn lengths. These methods all involved approximating the distributions by 

mixtures of exponential distributions. Roux and Sauve (1985) considered an 
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approximation in which the lengths of undetected open (closed) sojourns within 

an observed closed (open) sojourn are ignored and they also considered numerical 

inversion of the Laplace transform of the kernel. Ball (1990) considered the case 

in which the resolution is not constant, but instead follows a negative exponential 

distribution. Hawkes et al. (1990) obtained exact recursive expressions for the 

open and closed sojourn probability density functions by term-wise inversion of 

an infinite series expansion for the Laplace transform. These probability density 

functions, fo(t) and j (t) say, each take the form of a sum of exponentials 

multiplied by polynomials in t, with a different form holding over each different 

range of length r. So, for example, over the interval [k r<t< (k + 1) il 

(k = 1,2,... ), the multiplying polynomials are of degree (k - 1) and the density is 

zero for [0 <t< Z]. Unfortunately, this exact expression is numerically unstable 

even for moderate values of t. Other derivations of this expression have 

subsequently been provided by Ball et al. (1993b) and Ball (1997). Ball and Yeo 

(1994) considered an alternative approach based on the numerical solution of a 

system of renewal type integral equations, which can also be used when the 

underlying process is semi-Markov. Ball et al. (1993b) further showed that the 

exact recursive expression of Hawkes et al. (1990) can also be extended into this 

more general semi-Markov setting, although in terms of functions that generally 

do not admit closed form expressions. Jalali and Hawkes (1992a, 1992b) used 

Tauberian theorems to obtain asymptotic expressions for the probability density 

functions fo(t) and fi(t) as t -º co. These expressions are extremely accurate for all 
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but very small values of t. The exact and approximate expressions for the kernel 

can therefore be used in combination to closely approximate the kernel for all 

values oft. For example, Hawkes et al. (1992) recommend using the exact form 

for t 
_< 

3 -rand the asymptotic form for t>3z Ball (1997) showed that the kernel 

satisfies a system of linear delay differential equations and exploited the theory 

of series expansions for the solutions of such equations to explain why the 

asymptotic expression of Jalali and Hawkes (1992a, 1992b) is accurate even for 

small t. 

2.3 Inference 

One of the main aims of the analysis of single ion channels is to make inferences 

regarding the structure and the parameter values of the continuous-time Markov 

chain used in modelling the ion channel gating kinetics. The inference method 

often consists of two steps: (i) experimental data on channel structure (e. g. 

number of subunits), together with the forms of the open and closed sojourn time 

probability density functions and the correlation functions, are used to postulate 

an underlying model, and (ii) the parameters of the postulated model are 

estimated. The majority of studies (including this thesis) have based inference 

on the reconstructed sequence of open and closed sojourns described in section 

2.2, although several authors have based inference directly on the current record 

(ie. on the noisy digitised data), thus avoiding the problems of time interval 
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omission. 

2.3.1 Inference based directly on Current Records 

Most approaches to current record-based inference have used the theory of hidden 

Markov models. Using hidden Markov models, Fredkin and Rice (1992a) 

investigated maximum likelihood parameter estimation and formulated a non 

model-based technique to determine the conductance levels of the channel and 

the mean sojourn times at each such level. Chung et al. (1990) used hidden 

Markov models to identify channel conductance levels and both Chung et al. 

(1990) and Fredkin and Rice (1992b) used these models to restore sequences of 

channel sojourns. Magleby and Weiss (1990a, 1990b) explicitly modelled the 

effects of filtering and noise using a simulation-based estimation method. More 

recently, Ball et al. (1999) and Hodgson (1999) have both considered the use 

Markov chain Monte Carlo methods for making Bayesian inferences directly 

from current records. 

2.3.2 Inference based on Sequences of Reconstructed Sojourns 

The success of inference based directly on the current record is, to some extent, 

dependent on the signal to noise ratio in the data and on whether the seal 

resistance can be kept constant during the recording period to avoid a change in 
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the baseline current. Whilst it is not yet known whether identifiability problems 

arise with inference based directly on current records, inference based on 

reconstructed sojourns tends to be fraught with identifiability problems. Time 

interval omission, in particular, is a great problem. Ball et al. (1993a) point out 

that structural inferences whose origin is in the structure of the gateway process, 

such as correlation functions, are likely to be robust to time interval omission, 

whereas information owing to the parametric form of the semi-Markov kernel of 

the gateway process, such as sojourn time probability density functions, may be 

considerably more difficult to recover when time interval omission is present. In 

the absence of time interval omission, the likelihood of a sequence of sojourn 

times can be derived relatively easily (see Appendix A for details) and this 

likelihood function can then be maximised using numerical procedures (see Horn 

and Lange (1983), Fredkin et al. (1985), Chay (1988) and Ball and Sansom 

(1989)). The main problem in extending the method of maximum likelihood to 

the case in which time interval omission is present has been the difficulty in 

calculating the likelihood function posed by the absence of a closed form for the 

semi-Markov kernel. Several authors have therefore considered maximum 

likelihood estimation based on approximations to the kernel (e. g. Roux and Sauve 

(1985), Blatz and Magleby (1986), Yeo et al. (1988)). Due to the difficulties 

associated with maximum likelihood-based inference, alternative methods of 

inference have been considered. These include Laplace transform based 

inference, the derivation of parameter estimates from the forms of observed two- 
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dimensional open-closed and closed-open sojourn time probability density 

functions (Magleby and Weiss (1990a, 1990b)), and a method involving Poisson 

sampling (Ball et al. (1992)). 

2.3.3 Identifiability Problems 

As already mentioned in section 1.3.2, three main identifiability problems arise 

in making inferences for ion channel gating mechanisms. 

2.3.3.1 Structural Non-identifiability 

Firstly there is a problem with structural non-identifiability since in some cases 

two distinct Markov models yield aggregated processes which possess identical 

probabilistic properties. Kienker (1989) gave necessary and sufficient conditions, 

in terms of the transition rate matrix of the underlying process and under mild 

regularity conditions, for two distinct models to give rise to probabilistically 

indistinguishable aggregated processes. Edeson et al. (1994) examine some of 

the structural properties which underlie this type of non-identifiability and show 

that the conditions of Kienker (1989) can be used to determine whether or not a 

given model is identifiable. Edeson et al. (1994) also point out that there are 

cases in which multiple sets of model parameter values give rise to not only the 

same marginal density functions, but also the same joint density of open and 
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closed sojourn times. 

2.3.3.2 Overparameterised Models 

Fredkin et al. (1985) considered the problem of determining the maximum 

number of parameters on which an identifiable model can depend. They 

considered the marginal open and closed sojourn time probability density 

functions, the joint open-closed and closed-open sojourn time probability density I 

filnctlons, the closed-open-closed and open-closed-open sojourn time joint 

probability functions, and so on, and showed that, under the same mild regularity 

conditions as those considered later by Kienker (1989), the parameters of all joint 

probability density functions of dimension greater than two can be obtained from 

just the parameters of the joint open-closed and closed-open sojourn time 

probability density functions. Fredkin et al. (1985) then determined the number 

of free parameters in these latter joint probability density functions and showed 

that in order for a model to be identifiable its number of parameters must be no 

more than twice the product of the numbers of open and closed states. The more 

stringent result that this number must be at most nunc + no + nc -1 holds for time 

reversible models (Bates et al. (1990)). 
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2.3.3.3 Non-identifiability induced by Time Interval Omission 

Time interval omission not only causes considerable computational problems, but 

also introduces identifiability problems even for mechanisms which have 

distinguishable aggregated processes in the absence of time interval omission. 

It creates difficulties with parameter estimation, in that there is sometimes more 

than one set of parameter estimates which yield a maximum value of the 

likelihood function. In this situation the heights of the maxima of the likelihood 

function are not generally identical but are often very nearly equal. In such cases 

it is necessary to determine which set of parameter estimates corresponds to the 

true model parameters. This problem was outlined in section 1.3.2 and will be 

discussed in detail in Chapter 4 for a Markov model with just one open state and 

one closed state. 

2.4 Ion Channel Biophysics 

Biophysicists recognise that voltage-gated channels, such as Na+, KK and Ca2+ 

channels, have some functional similarities and thus regard these as a super- 

family of related ion channels. Likewise, ligand-gated channels gated by 

acetylcholine, glutamate, glycine and y-aminobutyric acid seem similar and are 

regarded as another super-family. In chapter 3 we model the molecular structure 

of one type ofligand-gated channel, the nicotinic acetylcholine receptor (nAChR) 
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channel, and one type of voltage-gated channel, the Cat+-activated potassium ion 

channel. 

2.4.1 The Nicotinic Acetylcholine Receptor 

The acetylcholine-activated channels found in the vertebrate neuromuscular 

junction are by far the best studied ligand-gated channels. They are specialised 

for mediating fast chemical synaptic transmission and, whilst they gate ion 

movements and generate electrical signals, they do so in response to the chemical 

neurotransmitter acetylcholine. Since the alkaloid nicotine imitates the effects of 

acetylcholine in acetylcholine channels at the neuromuscular junction, they are 

termed nicotinic. The nicotinic acetylcholine receptor is a term which refers to 

an entire macromolecule comprising the pore and the associated acetylcholine 

binding sites. 

The subunit composition and amino acid sequence of nAChR channels from 

muscle-derived tissue were the first to be established (Conti-Tronconi and Raftery 

(1982), Changeux et al. (1984)). It was found that the polypeptides a, ß, y and 

8 exist in a peutameric stoichiometry, a2ßyb. The two a-subunits carry the 

binding sites for acetylcholine and the antagonist (blocker) a-bungarotoxin. 

More recently the subunit composition of nAChR channels from neurons has 

been investigated (Lindstrom et al. (1987), Steinbach and Ifune (1989)). It 
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appears that these channels are also pentameric, but are made up of only two 

classes of subunits and have an a, ß3 stoichiometry. 

Figure 2.2. Three-dimensional details of the nicotinic acetylcholine receptor (see text). [From 

Brisson and Unwin (1985). ] 

The overall shape of the nAChR from the electric ray has been determined by 

using low-angle x-ray diffraction and electron-microscope image reconstruction 

using crystallographic methods on a two-dimensional lattice formed by channel 

proteins which were highly concentrated in lipid bilayers (Kistler et al. (1982), 

Toyoshima and Unwin (1988)). Viewed face-on, as in Figure 2.2, the molecule 

has a rosette appearance with a central well. The five subunits form a pentagonal 

complex through the membrane with the void between them presumably being 

part of the aqueous pore (see Figures 2.2 and 2.3). The five subunits are 

structurally similar and each occupies an equivalent position in the symmetrical 

complex. Brisson and Unwin (1985) contains a figure of a face-on view of a 
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nAChR channel from an electric ray and gives a probable identification of the 

subunits with the two a-subunits separated by a ß-subunit (Figure 2.2). This 

identification is confirmed in a three-dimensional study by Beroukhim and Unwin 

(1995). More recent studies (Unwin (1995)) have revealed further structural 

details, as summarised in Figure 2.3. 

MB 

Figure 2.3. Simplified diagram showing the shape of the subunits of the nicotinic acetylcholine 

receptor. [Drawn after Hucho et al. (1996). ] A section through the pentameric assembly is 

shown, cut parallel to the pore axis. So that the pore between the subunits can be seen, only four 

subunits are displayed. The kinked transmembrane rods, thought to be the M2 segment are 

shown (M2), as is the approximate position of an acetylcholine binding site (A). The rectangle 

(MB) represents the membrane bilayer. 

The above information regarding the molecular structure of the nicotinic 

acetylcholine receptor is the basis for the main nAChR channel model formulated 

59 



BACKGROUND 

and analysed in Chapter 3. This model assumes an a2ß3 subunit stoichiometry 

and can be used as a possible model either for nAChR in mammalian neurons 

(a2ß3) or, noting that there is very little known about any differences between the 

behaviour of ß, y, and 6-subunits, for nAChR in muscle tissue (a2ß'8). 

2.4.2 The Calcium-activated Potassium Ion Channel 

Prominent large conductance calcium-activated potassium ion channels occur in 

nearly every vertebrate excitable cell. Their long and large unitary currents are 

easily recorded and therefore these channels have been well-studied in the 

literature (e. g. Blatz and Magleby (1987), Latorre et al. (1989)). These large 

conductance channels are known as BK channels, where the `B' denotes ̀ big', 

and, in this thesis, it is these that we are concerned with rather than the `small' 

(SK) and intermediate ones which were discovered later and have different 

properties (Romey and Lazdunski (1984), Pennefather et al. (1985), Blatz and 

Magleby (1987)). Single BK channel records show the intrinsic voltage 

dependence clearly and the gating rates and resulting probability of being open 

are also sensitive functions of the number of calcium ions bound. The 

microscopic gating kinetics of BK channels have been investigated in more detail 

than for any other channel (Moczydlowski and Latorre (1983), Magleby and 

Pallotta (1983a, 1983b), McManus and Magleby (1988), Rothberg and Magleby 

(1999)) and the proposed gating mechanisms are remarkably complex with 
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numerous kinetic states. Section 3.6 contains a discussion of how known results 

regarding the gating kinetics of BK channels can be taken into account for 

modelling purposes. 

All potassium ion channels show core similarities to each other and are believed 

to have the same underlying structure. Whilst there have been very few studies 

of the molecular structure of the BK channel, the potassium ion channel (KcsA) 

from the bacterium Streptomyces lividans has an amino acid sequence similar to 

that of all known K+ channels including Cat+-activated KK channels and, with a 

subunit size of only 160 amino acids, KcsA is amenable to structural studies 

(Doyle et al. (1998), Sansom (1998)). X-ray analysis has been used to determine 

detailed structural information, such as pore architecture and, more specifically, 

to explore the selectivity filter which allows the passage of potassium ions, but 

not of smaller sodium ions. It is known that potassium channels are tetraaneric 

(MacKinnon (1991)) and that typically the four subunits are identical (Ketchum 

et al. (1995)). The four subunits of KcsA exhibit four-fold symmetry about a 

central pore and the inner helices are tilted so that the subunits open like the 

petals of a flower facing the outside of the cell (Doyle et al. (1998)). Moreover, 

the known structure of the KcsA potassium ion channel is in excellent agreement 

with results from functional and mutagenesis studies on Shaker channels from 

Drosophila. The term homology is commonly used by molecular biologists to 

indicate the degree of similarity between two genetically related sequences and 
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it is believed that the high degree of homology between BK channels and the 

more-studied KcsA and Shaker channels implies that BK channels are almost 

certainly tetrameric. Experimentally calculated Hill coefficients (see Appendix 

B, Hill (1909)) suggest that a BK channel has a minimum of four calcium 

binding sites (e. g. Barrett et al. (1982), Magleby and Pallotta. (1983a, 1983b), 

McManus and Magleby (1991), Golowasch et al. (1986) and Oberhauser et al. 

(1988)) and Schreiber and Salkoff (1997) report that BK channels have one or 

more Ca2+ binding sites per subunit. Although the total number of binding sites 

on a BK channel is as yet unknown, the known symmetry of the related KcsA 

channel has heightened the belief that a BK channel must have a binding site on 

each subunit. The known information regarding the structure of the BK channel 

together with the likely assumption that a BK channel has one binding site per 

subunit is the basis for the BK channel model formulated and discussed in 

Chapter 3. Section 3.6.3 contains a discussion of how the model for a BK 

channel with one binding site per subunit can be adapted to model the situation 

in which each subunit has two calcium ion binding sites. 
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3 Models based on the Molecular Structure of 

Ion Channels 

3.1 Introduction 

The majority of this chapter is concerned with the formulation and analysis of a 

model for the nicotinic acetylcholine receptor which incorporates information 

concerning the structure of the corresponding receptor-channel protein, and uses 

ideas derived from the sequential model for allosteric proteins developed by 

Koshland et al. (1966). As discussed in section 2.4.1, the nAChR channel is 

composed of 5 similar subunits which form a ring-like structure surrounding a 

central pore (Jackson (1993)). For simplicity, we assume that these subunits 

comprise two a-subunits and three ß-subunits, as in mammalian neurons, rather 

than assuming the more complex a2 [3'y 6 stoichiometry of nAChR in muscle 

tissue. There are two binding sites for acetylcholine, one on each a-subunit. In 

the gating model of nAChR discussed below each of the five subunits may switch 

between an `open' and a `closed' conformation. In the light of the results of 

Unwin (1995), this conformational change may correspond to kinking of the 

pore-lining M2 helices. In our gating model, conformational changes of subunits 

are only partially coupled, and channel states containing mixtures of `open' and 

`closed' subunits are possible. However, interactions between neighbouring 
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subunits occur, so that conformational changes of adjacent subunits are not 

entirely independent. We use this model to predict the gating kinetics of the 

acetylcholine receptor. Our numerical examples (section 3.4), based on 

parameter values determined according to biophysiological considerations and 

derived indirectly from Jackson (1989), show that the model performs well in its 

prediction of channel behaviour. 

Section 3.6 contains the formulation of a model for the large conductance 

calcium-activated potassium ion channel. This model is based on the molecular 

structure and known Cat+-binding properties of the BK channel. The BK channel 

is known to consist of 4 identical a-subunits which are believed to be arranged 

in a square formation. There are four binding sites for Cat+, one on each a- 

subunit. In the model presented in section 3.6 each of the four subunits may 

switch between an ̀ open' and a ̀ closed' conformation. As for the related model 

of nAChR, channel states containing mixtures of `open' and ̀ closed' subunits are 

possible and interactions between neighbouring subunits occur. The model 

presented may be used to predict the gating behaviour of the BK channel. 

The majority of earlier studies of single-channel kinetics of receptor-gated ion 

channels employed underlying gating mechanisms with, typically, between 2 and 

10 states. However basing models on such a small number of states causes 

difficulties when a channel may exist in many non-identical closed states. In this 
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case a large state-space is needed to accurately describe ion channel behaviour. 

Although it is possible to develop `traditional' Markov models with a larger 

number of states, this results in a commensurate proliferation of model 

parameters and this causes problems in parameter estimation. Alternative models 

with a large number of states have been developed by a number of authors, 

including Läuger (1988), Millhauser et al. (1988) and Doster et al. (1990), who 

treat channel gating in terms of diffusion-like processes. Whilst these large state- 

space models have few free parameters, their relationship to the underlying 

structural properties of channels is unclear. This chapter exploits our 

understanding of the structural biology of ion channel proteins as the basis for 

structurally reasonable, large state-space gating models which allow single- 

channel kinetic behaviour to be characterised in terms of a small number of free 

parameters. 

In this chapter, we first formulate a model for acetylcholine receptors, explaining 

how the model features, including parameters, relate to the underlying channel 

structure. We then employ the mathematical framework of section 2.1 to derive 

a number of channel properties, considering also a special case of our model in 

which no interactions between subunits occur, and a more general case of our 

model in which the five subunits may comprise any combination of a-subunits 

and ß-subunits. We present some results of numerical computations showing that 

our model agrees with experimental observations and we give a biophysical 
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discussion of the model. Next we formulate a model for calcium-activated 

potassium ion channels, discuss its relationship to biophysiological channel 

properties and channel structure, and we explore how the model can be adapted 

to take into account experimental findings. Finally, we consider the relationship 

between our large state space models based on molecular channel structure and 

the work of other authors who have considered large state space models. 

3.2 Formulation of the Model for 

Receptors 

3.2.1 Model Description 

Acetylcholine 

The acetylcholine channel models developed in this chapter satisfy the following 

criteria: 

(i) they have large state-spaces so as to agree with a range of 

experimental/statistical studies of ion channel closed time distributions; 

(ii) they are based upon realistic molecular proposals for channel gating 

mechanisms; 

(iii) they are defined in terms of a small number of free parameters in order to 

minimise difficulties when attempting to obtain parameter estimates from 
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experimental data. 

3.2.1.1 States, Subunits and Substates 

3.2.1.1.1 a2f 33 Model 

The a2ß3 model described in this chapter assumes that a channel consists of 5 

subunits arranged in a ring, reflecting the known structure of the nicotinic 

acetylcholine receptor (nAChR). Two of these subunits are a-subunits and can 

have an agonist molecule bound to them. The remaining 3 subunits are ß- 

subunits and cannot have agonist molecules bound to them. In line with studies 

of the molecular structure of nAChR (e. g. Brisson and Unwin (1985)), it is 

assumed that, for the a2ß3 model, the positions of the two types of subunits 

within the ring are as given in the channel representation given in Figure 3.1. 

Figure 3.1. Positions of a-subunits and ß-subunits within the subunit ring for the nAChR model. 
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We refer to the state occupied by a channel subunit at any given time as its 

substate. Each subunit may exist in either a closed substate, C, or an open 

substate, 0. In addition, if an a-subunit with an agonist molecule bound to it is 

closed, it occupies substate CA, and if it is open, it occupies substate OA. Since 

each of the 2 a-subunits can occupy any one of the 4 substates C, 0, CA and OA, 

and each of the 3 ß-subunits can occupy either of the 2 substates C and 0, there 

are 42 x 23 = 128 possible combinations of substates occupied by the 5 channel 

subunits. Each of these 128 combinations corresponds to a different channel 

state. Further, the channel is in an open state if and only if all 5 subunits are in 

open substates, regardless of the number of agonist molecules bound to the 

channel (see Jackson (1986) who observes spontaneous openings of an nAChR 

channel in cultured mouse muscle in the absence of agonist), otherwise it is in a 

closed state. Statistical properties and numerical examples based on the a2fi3 

model are given in sections 3.3.1 and 3.4.1, respectively. 

3.2.1.1.2 a, (35 
_, 

Model 

In section 3.3.3, the a2(33 model is generalised to arßs 
- r, 

where r (r = 0,1,2,3,4 

or 5) is the number of a-subunits and the number of n-subunits is 5-r, reflecting 

discussion of a5, a3(32 and a4ß models for acetylcholine channels in ion channel 

literature (e. g. Couturier eta!. (1990)). The general arßs 
_I 

model thus formulated 

and analysed in this chapter also assumes that a channel consists of 5 subunits 
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arranged in a ring and it encompasses the cx2R3 model and several other related 

models. Note that if r=2 or 3, two distinct models exist - one model with the 

property that all the a-subunits are adjacent to each other in the subunit ring and 

one model without this property. The substates which can be occupied by each 

a-subunit or ß-subunit are the same as those for a2ß3 model. Since each of the 

r a-subunits can occupy any one of 4 substates and each of the 5-r (3-subunits 

can occupy either of 2 substates, there are 4' x 25 T possible different channel 

states and the channel is open if and only if all 5 subunits are in open substates. 

The case in which r=5 is of special interest for several reasons (Sansom et al. 

(1998)). Firstly, as channels are known to exist in the brain of insects, e. g. 

locusts. Secondly, they have been seen in vitro in experiments in which five a- 

subunits obtained from a chick's brain (known in the literature as a7 for 

historical reasons) have been expressed in a frog's egg resulting in the formation 

of a nAChR channel. Thirdly, they have been the subject of a number of 

molecular modelling studies since their homopentameric nature gives fivefold 

rotational symmetry which simplifies modelling procedures. Statistical properties 

of the general arP5 
-T model are discussed in section 3.3.3 and numerical results 

for this model when r=5 are compared with those for the a2ß3 model in section 

3.4.2. 
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3.2.1.2 Transitions 

There are 4 types of transitions which an a-subunit can undergo: 

(i) The opening of a subunit in a closed substate, 

(ii) The closing of a subunit in an open substate, 

(iii) The loss of an agonist molecule from a subunit in CA or OA, 

(iv) The binding of an agonist molecule to a subunit in C or 0. 

A (3-subunit can undergo only transitions (i) and (ii). Whenever any channel 

subunit undergoes a transition from one substate to another, the channel enters a 

different state. The rate for such a channel transition is given by the 

corresponding subunit transition rate, which may or may not be dependent upon 

the substates occupied by neighbouring subunits, and is given by Figure 3.2 for 

an a-subunit and by Figure 3.3 for a ß-subunit, where a is the concentration of 

the agonist acetylcholine, and the parameters h, koN, K$ a, Li and Bare defined 

and explained in section 3.2.2. 
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Figure 3.2. Transition rates for a-subunits for a nAChR channel. 
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Figure 3.3. Transition rates for n-subunits for a nAChR channel. 

3.2.1.3 Subunit Interactions between Nearest Neighbours 

The treatment of allosteric globular proteins by Koshland et al. (1966) includes 

interactions between neighbouring subunits. The assumption that neighbouring 

subunits interact whereas non-neighbouring subunits do not directly interact is 
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realistic since changes in subunit conformations are associated with changes in 

subunit shape and a change in the shape of a subunit is likely to affect only 

neighbouring subunits (Hucho et al. (1996)). Such interactions are incorporated 

into our model via the equilibrium constant L,,, described further in section 

3.2.2.2. Essentially a subunit's opening rate, closing rate, or both, are modelled 

to vary according to whether zero, one or two of the subunits which lie adjacent 

to that subunit in the subunit ring are open. 

3.2.2 Definition and Explanation of Parameters 

The parameters of our model are defined and explained below. These parameters 

may, in principle, be estimated using maximum likelihood estimation. However 

parameter estimation for our model is outside the scope of this thesis. 

3.2.2.1 KB, koN, handa 

If an a-subunit is closed then association and disassociation of an agonist 

molecule occur at rates akONand kON/KB, respectively, where a denotes the agonist 

concentration, koN is an agonist molecule association rate and KB is an affinity 

constant. If an a-subunit is open then association and disassociation of an agonist 

molecule occur at rates akoN and koN / ((1KB), respectively, where the parameter 

a reflects the increased affinity of an open subunit for agonist. The parameter h 
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is an intrinsic transition rate of the conformational change of subunit opening and 

closing. Its value can be chosen to set the mean length of an open sojourn and it 

is scaled according to subunit interactions in order to obtain subunit opening and 

closing rates. 

3.2.2.2 L,, K7, K, Koc and Kcc 

In the ion channel literature, models are often described in terms of equilibrium 

constants, the equilibrium constant for a given transition being the ratio of the 

transition rates for that transition and the reverse transition. Thus the equilibrium 

constant for a given subunit to open (ie. to go from state C to state 0, or from 

state CA to state OA) is Li. We introduce nearest neighbour subunit dependency 

into our model by varying the equilibrium constant L; according to the substates 

occupied by the two nearest neighbours of the subunit in question. This is 

achieved by letting i=0,1 or 2, according to whether the subunit in question has 

0,1 or 2 open neighbouring subunits, and defining Lo, LI and L2 by 

2 -2 Lo = KTK CK , 
1 

L1 = KT KOO Kcc 

and 
2 -2 L2=KTKOK, c, 

where KT relates to the transition of a subunit from an open substate to a closed 

substate, or vice versa, and Koo, Koc and Kcc relate to the strengths of interactions 

between 2 open subunits, between an open subunit and a closed subunit, and 
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between 2 closed subunits, respectively. So, for example, in order to increase the 

opening rate (with respect to the closing rate) of a subunit with one open 

neighbouring subunit and one closed neighbouring subunit, it is necessary to 

increase the value of L, by increasing Koo with respect to Kcc. An interpretation 

of the equilibrium constant L, in terms of the strengths of subunit interactions and 

the corresponding parameters is represented diagrammatically in Figure 3.4. This 

figure represents the fact that Koc'Kcc' and Ko0Koc are associated with the 

strengths of interactions between neighbouring subunits for a closed subunit with 

one open neighbour and for an open subunit with one open neighbour, 

respectively. Additionally, the reciprocal Koc-'Kcc' is associated with the loss of 

subunit interactions (open-closed and closed-closed) associated with the 

transition out of the original channel substate, whereas Ko0Koc is associated with 

the new interactions (open-open and open-closed) gained by the transition to the 

new channel substate. The parameter KT is an intrinsic equilibrium constant for 

the closing of the open subunit and is independent of subunit interactions. The 

equilibrium constant L1 is given by multiplication of Koc-'Kcc', KK, and Ko(Koc- 

The equilibrium constants Lo and L2 have similar interpretations. 
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Figure 3.4. Diagrammatic interpretation of the parameter L,. 

It should be noted that if the equilibrium constants Lo, L, and L2 satisfy 

Lo = L1 = L2, then each of the 5 subunits behaves independently of the other 4 

subunits. This gives the special case, discussed in section 3.3.2, of a model in 

which there are no interactions between channel subunits. 

3.2.2.3 6 

As shown in Table 3.1, the value of ß8 determines whether and how the subunit 

closing rate (when ßf = 0), the subunit opening rate (when ß= 
- 1), or both of these 

rates (when fi 0 or -1) are dependent upon the substates occupied by 

neighbouring subunits. It is worth noting that the ratio of closing rate to opening 

rate for a given subunit remains constant as 6 varies. 
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Effect of an increase in L, on the subunit opening and closing rates 

Opening Rate Closing Rate 

)6= 0 Constant Decreases 

, 
9= 

-1 Increases Constant 

fl e (-1,0) Increases Decreases 

ß< 
-1 Increases Increases 

P> 0 Decreases Decreases 

Table 3.1. Effect on opening and closing rates of increasing L; for different values of 83. 

3.3 Mathematical Treatment 

3.3.1 Formulation of a Mathematical Model for o2ß3 

We now return to the a2ß3 structure of channel subunits described in section 

3.2.1.1 and consider how it may be modelled using the framework described in 

section 2.1. We first introduce some notation. Label the channel subunits 

1,2,..., 5, assigning labels in a clockwise direction around the subunit ring, 

starting from the ß-subunit situated in-between the two a-subunits. Thus the a- 

subunits are numbered 2 and 5, and the ß-subunits are numbered 1,3 and 4. Let 

Zi (t) be the substate of subunit i at time t, where 

Z1(t) =0 
or C 

O, OA, C or CA 
if i=1,3 or 4, 
if' I=2 or 5, 
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and the notation of substates 0, C, OA and CA is as described in section 

3.2.1.1.1. Then Z(t) = (Z, (t), Z2(t),..., ZS(t)) describes the state of the channel at 

time t. 

As pointed out in section 3.2.1.1.1, the number of distinct channel states, n, is 

128. A channel is open if and only if all 5 channel subunits are in open substates. 

Thus (0,0,0,0,0), (O, OA, 0,0,0), (0,0,0,0, OA) and (O, OA, O, O, OA) are the 

possible open states of a channel. Therefore the number of open states, no, is 4, 

and the number of closed states, nc, is 124. As in section 2.1, let mo and me 

denote the numbers of open and closed gateway states, respectively. The 

transition of a channel from an open state to a closed state consists of the closure 

of one open subunit. Therefore, each open state is an open gateway state, yielding 

mo = 4. Since a channel in any one of the 4 open states can enter a distinct closed 

state by closing any one of its 5 subunits, there are 4x5 closed gateway states, 

ie. me = 20, and it follows that the set of closed gateway states comprises all 

closed states in which the channel has precisely one closed subunit. 

Label the channel states 1,2,..., 128 so that 0= 11,2,3,4} and 

C={5,6,..., 128). The precise labelling is not important at this stage and will be 

described in more detail later. Let {X(t); t >_ 0) be the integer-valued Markov 

chain which records the label X(t) of the state occupied by the channel at time t, 

ie. X(t) is the number assigned to the state Z(t). 
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In order to determine the off-diagonal elements q of the 128 x 128 transition rate 

matrix Q of the process {X(t); t >_ 0}, we require some more notation. Let Yký`ý 

be the substate of subunit k when the channel is in state i, where 

y(i) _O 
or C 

k O, OA, C or CA 
ifk=1,3or4, 
ifk=2or5. 

Then V(i) = describes state i in terms of the substates 

occupied by the 5 subunits of a channel in that state. For i : t- j, consider the 

vectors Y() and V) which describe states i and j. Each possible channel transition 

involves the transition, from one substate to another, of exactly one of its 

subunits, so if V and y) differ in more than one of their corresponding 

elements, then q, = 0. This represents the fact that it is not possible for two or 

more subunits to change substate simultaneously. Further, if states i and] differ 

in only one subunit, subunit k say, but substate Yk) cannot be reached from 

substate Yk ̀ ) in a single transition by that subunit, again q, = 0. Suppose now that 

states i and j differ in subunit k only and that substate Yk) can be reached directly 

from substate Yk ̀ @. Then the transition rate q. of the channel process {X(t); t >_ 01 

is given by the subunit transition rate from substate Yk ̀ ° to substate Yk W given in 

Figure 3.2 for an a-subunit or in Figure 3.3 for a ß-subunit. For example, if 

Yk T> =0 and YkO) = OA, then q;. = akon. Note that if Yk() is an open substate and 

Yklý» is a closed substate, or vice versa, the channel transition rate q, 3 will be 

dependent on the number of open subunits neighbouring subunit k. The diagonal 
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elements of the transition rate matrix Q are given by q, T q. 

3.3. x. 1 Equilibrium Distribution 

Assume Y(') _ (0,0,0,0,0) and suppose for the time being that Ir,, the 

equilibrium probability that a channel is in state 1, is known. We show how to 

calculate 7i later. Clearly it is possible for a channel in state 1 to reach any other 

state in 7 or fewer transitions. Let i be any state other than state 1, and suppose 

that a channel, starting from state 1, visits states j 1, 
J21 

... , jnf 
_1 

followed by state 

i in n; consecutive transitions, where j 1, J2, ... , jnj 
_1 

are appropriate state labels, 

in the order in which the corresponding states are visited. We assume now that 

the process {X(t); t 
_> 

0} is time reversible, an assumption we justify later. Then, 

by repeated application of the detailed balance conditions (2.4), 

q1l 

I'ii jk jk+gj, 

qjl 1 k= l q. 1f+I Jk 
gl 

fin; -ý 

which can be rewritten as 

(: 

kJk+1) _KK. 
(3.1) 

l -'R; -i 

where K1k = qk / q,, is defined to be the equilibrium constant for the channel 

transition from state j to state k. Note that, by Kolmogorov's criterion for 
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reversibility (see, for example, Kelly (1979)), this product of equilibrium 

constants is independent of the particular states visited by a channel on its path 

from state 1 to state i. 

Given a single channel transition from state j to state k, it is easy to verify that the 

corresponding equilibrium constant KJk can be written in the form 

Kk = (aKB)'ALTI'ALOI0 L1I'L2-I2, 

where the exponents IA, IOA, Io, I, and I2 are all zero unless the transition involves 

the binding of an agonist molecule to an a-subunit, in which case IA = 1, or the 

entrance of an a-subunit into substate OA, in which case IOA = 1, or, for r=0,1 

or 2, the closing of an open subunit with r open neighbouring subunits, in which 

case Ir = 1. Since Lo L2 = L, 2, we can rewrite the product LO L1I'L2-I2 as 

-2I0-I1 I0-I2 
LI L2 

7l 
.= t 

Thus 7z,. can be expressed in the form 

1(aK) 
1a2113L24 (i = 2,3, 

... , 
128) (3.2) 

for some xk ̀ ) (k = 1,2,3,4), which we shall now determine. 
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Figure 3.5. Equilibrium constants for open-closed subunit transitions (see text). 

0 

C 

If a channel in state i has no closed subunits, then, clearly, x3(') and x4(`) are both 

zero. Suppose that a channel in state i has ri (1 
_< rf 

5) closed subunits and that 

the states visited by a channel on its path from state 1 to state i are chosen so that 

the first r; transitions undergone by the channel, to states j, j2, 
... , 

jr, say, each 

11 /\ 
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consist of the closing of one open subunit, and the remainder of the transitions 

each consist of the binding of one agonist molecule to an a-subunit. 

Then Kiel K..... KTl_lthe product of the equilibrium constants for the first 
27 

U) 0) 

rl transitions, equals L 1"' 
3 L2x4 

In Figure 3.5, the pentagon with all 5 vertices labelled 0 represents state 1, and, 

similarly, the pentagon with all 5 vertices labelled C represents the state in which 

a channel has all its subunits in substate C. For each of the 6 remaining 

pentagons in Figure 3.5, number its vertices 1 to 5 in a clockwise direction 

starting from any vertex, and, for k=1,2,..., 5, let Vk be the label of vertex k, ie. 

vk is either 0 or C. Then the pentagon with consecutive vertices labelled v1, v2, 

v3, v4 and v5 represents the 5 states (v1, v2, v3, v4, v5), 
(v2, v3, v4, v5, v1), (v3, v4, v5, v1, V2), 

(V4, V5, V1, V2, V3) and (v5, v,, v2, v3, v4). Moreover, each of the 32 distinct states in 

which a channel has no agonist molecules bound is represented by exactly one of 

the 8 pentagons in Figure 3.5. 

Suppose a channel undergoes a transition from state j to state k. Then the 

corresponding equilibrium constant Krk is given by the label on the arrow from the 

pentagon representing state j to the pentagon representing state k in Figure 3.5. 

Given states j 1, 
j2, 

... 5 
jr, 

" the product KJl 
.i 

K3 
. 1). 2 ... 

KJ. 
'; -1j'i 

can be calculated by 

multiplication of the appropriate equilibrium constants given in Figure 3.5. It is 

readily verified that x3(`) equals the number of pairs of adjacent closed subunits of 

a channel in state i, and x4() = r, - x3ý`ý. 
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The factor aKB will appear in x, (') of the equilibrium constants in equation (3.1), 

where x, (`) is the number of agonist molecules which must necessarily become 

bound to a channel in order for that channel to undergo the transition(s) from state 

jrl to state i. It follows that x, (`) is the number of agonist molecules bound to a 

channel in state i. Similarly, the factor a will appear in x2(`) of the equilibrium 

constants in equation (3.1), where x2(`) is the number of (X-subunits which must 

enter substate OA in order for a channel to undergo the transition(s) from state jr, 
r 

to state i. Thus, x2(`) is the number of a-subunits in substate OA when a channel 

is in state i. 

We now show that q, 9 
/ qjk = Tz. / 7zk (q, 

9., qjk 0; j, k=1,2,..., 128), thus justifying 

our earlier assumption that the process {X(t); t >_ 0) is time reversible. Clearly, 

a transition by a channel from state k to state j corresponds to a single subunit of 

that channel undergoing a single corresponding substate transition according 

either to one of the entries, or to the reverse of one of the entries, in the fast 

column of Table 3.2. Since the detailed balance conditions (2.4) for states k and 

j are symmetrical in k and j, it is not necessary to consider separately channel 

transitions which correspond to subunit transitions which are the reverse of those 

considered in Table 3.2. Then the third column of Table 3.2 contains an 

expression for q. / qjk, obtained using Figure 3.2 and/or Figure 3.3, as appropriate, 

for each type of subunit transition and for each possible number i say, where 

iE {O, 1,2}, of neighbouring open subunits of the subunit undergoing the 
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transition. From equation (3.2), we have 

(1, k) (1, k) 
_-(1, 

k) 
_ 

(1, k) 

n /nk = (aKB)y' aY2 Liy3 L2y4 (j, k=1,2,..., 128), 

where ym(j'k) = Xm(j) 
- Xm(k) (m = 1,2,3,4) and values of ym0"k" are displayed in 

columns 4 to 7 of Table 3.2. These values are used to determine i/ 7zk, shown 

in the final column of Table 3.2. Using the fact that Lo L2 = L, 2, it is immediately 

clear that q,, / qjk =7/ 7rk for all states j and k that directly communicate. Hence 

the detailed balance conditions (2.4) are satisfied and the process {X(t); t 
_>. 

0} is 

time reversible. 

Subunit 

Transition 
T q4 qjk 

(!. k) 
Yi 

(f, k) 
Y2 

('c k) 
Y3 

ý k) 
Y4 1t %z 

k 

O -ºC 0 L-' 0 0 2 -1 L2 

1 L-' 0 0 1 0 L-' 

2 L-' 0 0 0 1 L-' 

OA - CA 0 (aL )-' 0 -1 2 -1 a-'L -2L 

1 (aL )-' 0 -1 1 0 a-'L -' 

2 aL -' 0 -1 0 1 a-'L -' 

O -OA 0,1,2 aaK 1 1 0 0 aaK 

C -CA 0,1,2 aKB 1 0 0 0 aKB 

Table 3.2. Values used in showing that {X(t); tz 0} is time reversible. For details, see text. 

Summing the equilibrium probabilities, we obtain that 
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(1) (I) x 
(I) 

-x 
(`) 

(aKýxI a X2 L3 L2 4=1, 
i=1 

from which it follows, after a little algebra, that iz,, the equilibrium probability 

that a channel is in state 1, can be expressed as 

ýcl = 25 [h s+5 h5 L21 Chi + hl (Li l+ L2' )) 

+ 25 (a - 1)2 (aKB)2 (1 + L1 i)L22 (3.3) 

+ 5hoLi1L21(h4(L11 + L21ý + h2L1-2) + ho Lisp-1 

where 

h1 = (aKBa)i + aKB(5 - i) +5 (i = 01 1 5). (3.4) 

It follows from equation (3.2) that Po, the equilibrium probability of a channel 

being open, is given by 

Po = irl (1 +a KB a)2. (3.5) 

Recall that an expression for Po(t), the probability that the channel is open at time 

t, is given by equation (2.3). 

3.3.1.2 Hill Coefficient 

The Hill Coefficient (see Appendix B of this thesis, Hill (1909)) is frequently 
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calculated in ion channel literature and is interpreted as giving, firstly, a lower 

bound for the number of agonist binding sites and, secondly, an indication of 

whether or not there is cooperativity between the agonist molecules, i. e. whether 

or not binding of one agonist molecule promotes binding of another. The Hill 

Coefficient, nH, can therefore be used to aid comparison of this model with other 

literature examples. It is defined by nH = H(a*) where a* is the value of the 

agonist concentration for which Po = 0.5 and 

H(a) =d [1oio 
P 

dX 1- Po 

where X= log10 a. 

Setting A= aK8C4 the Hill Coefficient for our model is given by 

H(a) _ 
r1-1 (1 + Aý-i _1 

10 ) 
d 

dX ý1-' (1 

I- I 

+ A'_2 -11 

Following some elementary differentiation, we obtain 

(- (ir1-')) (1 + A) -2 _2 r1-1 (1 + A) -3 A In 10 
H(a) 1I 

An 10 (7t, -i (1 + A) -2 - 1) 

where 

5 
(3.6) 
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d (z1-i) =1 
[2h5 H5 +5 H5 L2-1(h3 + hi (L1-1 + L2-1)) dX 25 

+ 5h5L2-1(H3 + H1(L1-1 + L2-1)) 

+ 25 (a - 1)2 (a KB)2 (2 In 10) L2 2 (1 + L11) 

+5 HoL1 -lL2-i (h4 (L1-i + L2-1) + h2 L1-2) 

+5 h0Ll-i L2-1(H4 (L1-1 + L2-') + H2L1-2) +2 hoHOL1-5 ], 

with 

H =aKB1n10(a, +5-i) (i=0,1,..., 5). 

3.3.1.3 Mean Sojourn Lengths 

The unconditional mean open sojourn length yo is given by equation (2.22). The 

numerator of equation (2.22) is simply the equilibrium probability of a channel 

being open. Assume (0,0,0,0,0), (O, OA, 0,0,0), (0,0,0,0, OA) and 

(O, OA, O, O, OA) are states 1,2,3 and 4 respectively. Then, using equation (3.2) 

in the denominator of equation (2.22), we obtain 

(1+aKBa)2 
Po = 

E 
qij + (aKB a) q2j + 

1: 
q3 j+ 

(aKB a)2 
E 

q4j 
jEC jEC jEC jEC 

If a channel in open state k has ak agonist molecules bound to it, its closing rate 
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is given by 

hh E 
qkj 

= 

(5- ak) # ak 
1 

fEc Lß +1 
aLý+ 

Hence it follows that 

LP+ 10 +aKBa) 
3pO 

h(5+ 3aKBa+ 2aKB) 
(. 7) 

Using equations (2.23) and (3.7), the mean length of a closed sojourn can be 

expressed as 

PC 
L' + 1(1 

- z1(1 + aK$a)2) 

h, rl(5+3aKBa+2aKB)(l+aKBa) 

Recall that the variances of open and closed sojourn lengths are given by 

equations (2.24) and (2.25), respectively. 

3.3.1.4 Reduction of State Space Size 

In order to determine channel properties such as sojourn time probability density 

functions and autocorrelation and cross-correlation functions, it is necessary to 

carry out computations involving the submatrices of the Q-matrix partitioned in 
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equation (2.1). Since the channel process {X(t); t >_ 0} can be in any one of 128 

states, computational difficulties may arise. However, by exploiting the 

symmetry properties of the transition rate matrix, we can reduce our 128-state 

model to an equivalent model with only 72 states, resulting in a smaller Q-matrix 

and therefore a saving in computing time. 

Let S denote the state space of the 128-state model discussed above and consider, 

for example, the states (C, C, O, C, OA) and (C, OA, C, O, C) in S. The substates 

occupied by a channel's a-subunits and ß-subunits, the interactions of its 

neighbouring subunits, and hence its transition rates and observed properties, are 

the same regardless of which of these two states it occupies. Thus the two states 

are equivalent and we can formulate a `reduced state space model' in which we 

do not distinguish between them. This type of symmetry is present in many pairs 

of states in S, and hence the state space, SR, of this reduced model will contain a 

significantly smaller number of states than the state space S. 

We now proceed more formally. If i is the label of a state in S, let T(i) be the 

label of the state in S which is the mirror image of state i when reflected in the 

dotted line in Figure 3.6. For example, if Y' = (O, OA, C, O, C), then 

Y(ni)) = (O, C, O, C, OA). The states of S fall into two categories. Let i be a state 

in S. Then we term ia type 1 state if T(i) = i, and we term ia type 2 state 

otherwise. In the reduced model we do not distinguish between type 2 states i 
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and j with the property that T(i) =j. Hence we replace any pair of states in S, i, 

j say, which satisfy this equation, by a single state in S' which is occupied by a 

channel if and only if that channel is in either state i or state j in S. In addition, 

for each type 1 state, i say, in S, the reduced state space SR contains a state which 

is occupied by a channel if and only if that channel is in state i in S. 

i T(i) 

S(5) 

S(l) 

S(2) S(2) 

S(1) 
C 

S(5) 

S(4) S(3) S(3) S(4) 

Figure 3.6. Reduction of state space size. For k=1,2,3,4 and 5, let S(k) be the substate 

occupied by subunit k when the channel is in state i. Then a channel in state i and a channel in 

state T(i), the reflection of i in the dotted line, have identical properties (see text). 

We now calculate the size of the reduced state space S. If i is a type 1 state in 

S, then subunits 2 and 5 of a channel in state i occupy the same substate as each 

other, as do subunits 3 and 4. Since subunits 1 and 3 can occupy either of 

substates 0 and C, and subunit 2 can occupy any one of substates 0, C, OA. and 

CA, there are 2x4X2 =16 type 1 states in S. Each of these 16 states is also a 

Staate of S. This leaves 112 type 2 states in S. Arrange these type 2 states into 

pairs, i and j say, such that T(i) =j. Then each of these 56 pairs in S is equivalent 
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to a single state in SR. Thus SR contains a total of 16 + 56 = 72 states. These 72 

states are comprised of 3 open states and 69 closed states. Note that it is not 

possible to reduce the state space to fewer than 72 states since there are no further 

symmetries to exploit. 

To each type 1 state in S, i say, assign the vector Y(), and to each pair, i, j say, of 

type 2 states in S such that T(i) = j, assign the vector Y(min (',; ))s procedure 

gives 72 distinct vectors, which we shall use to describe the 72 states of S. (For 

example, the vector (O, CA, O, O, C) describes the single state in SR occupied by a 

channel if and only if that channel occupies one of the 2 states (O, CA, O, O, C) and 

(O, C, O, O, CA) in S. ) Re-label these vectors YR»'», YR020,..., YR(72) and label the 

states of SR described by these vectors 1,2,..., 72 respectively so that 

OR ={1,2,3 } are the open states of SR and CR = 14,5,..., 721 are the closed states 

of SR. We now give an explicit labelling of the gateway states in SR for use in the 

sequel. Let 1,2 and 3 be the labels of the open gateway states (0,0,0,0,0), 

(O, OA, O, O, O) and (O, OA, O, O, OA) respectively, and let 4,5,..., 14 be the labels 

of the closed gateway states (O, C, O, O, O), (C, O, O, O, O), (O, O, C, O, O), 

(C, OA, O, O, O), (O, OA, C, O, O), (O, OA, O, C, O), (O, CA, O, O, O), (O, OA, O, O, C), 

(C, OA, O, O, OA), (O, OA, C, O, OA) and (O, OA, O, O, CA) respectively. We do not 

give an explicit labelling of the remaining states of SR since this is not necessary 

for the sequel. 
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In the remainder of this chapter, we work in the reduced state space SR, unless 

specified otherwise, and use the same notation as we have used for working in S, 

except that we embellish symbols with the superfix (or suffix) R, where 

appropriate. We now determine the elements of QR, the 72 x 72 transition rate 

matrix of the integer-valued Markov chain {XR(t); t >_ 0} which records the label 

AR(t) of the state of S' occupied by the channel at time t. Let i and i be states of 

SR. Then the transition rate q, R is determined by a method identical to that for 

determining elements of Q (described in the paragraph immediately preceding 

section 3.3.1.1) with the exception that if T(i) =i and T(j) j, then q. R equals 

twice the rate given by this method. For example, if YR('ý = (C, OA, O, O, O) and 

YR'ý) = (C, OA, O, C, O), then q, 1' = hL2 '), whereas if YR(`) = (C, OA, O, O, OA) and 

YR(ý) _ (C, OA, O, C, OA), then qý1R= 2hL2 1 since the single state 

(C, OA, O, C, OA) in SR represents two states of S. 

33.1.5 Open and Closed Entry Process Equilibrium Distributions 

Let ir° be the equilibrium probability that the open class of states is entered via 

the ith open state of S. Then it follows immediately from relation (2.16) that 

O RE RR 
7r l 

j¬CR 
qýj (i EO). (3.8) 

Using equation (3.2), it is easy to show that the equilibrium probabilities ßr1' ,1R 
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and ý3R equal ii, 2'ri(aKBa) and u1', (aKBa)2 respectively, where r, is given by 

equation (3.3). Summing the transition rates to the closed states, out of each of 

the open states, we obtain that 

g= 5hL2 ý+ 1), 
jECR 

1: R 

q2j=C4 
jECR 

a-1)hL2(6 + 1) 

and 

R 

q3; _ (3 + 
jECR 

2 a-')hL2(, 6 + 1) 

Thus the open entry process equilibrium distribution z' is given by 

ýz° = R-1(5, ýBa (4 + a-1), (aKBa)2 (3 + 2a-1))T 
, 

where 

R= (5 + 3aKBa + 2aKB)(1 + aKBa). 

(3.9) 

(3.10) 

Similarly, it can be shown that the closed entry process equilibrium distribution, 

7Zc say, is given by 

zC=R-1(2,1,2,2aKBa, 2aKBa, 2aKBa, 2aKB, 

2aKBa, ( 
Ba)2,2( Ba)2,2a( B)2)T, 

(3.11) 

where the ith element of this vector is the equilibrium probability that the class 
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of closed states is entered via state n0R +i of SR. 

3.3.1.6 Sojourn Time Density Functions and Correlation Functions 

In this section, we give an explicit formula for the open sojourn time probability 

density function ff (t). The corresponding closed sojourn time probability 

density function ff (t) is a sum of 69 exponential terms, and is therefore not 

given explicitly here. Note that, in practice, ff (t) can usually be fitted quite 

accurately by a mixture of, say, 2 or 3 exponentials (see section 3.4.1.7) since 

many of the (necessarily negative) eigenvalues of Qcc will be relatively large in 

modulus. 

It is convenient to write the matrix QO'o in the form 

QUO 

X+Y 

=B 
0 

2A 0 

XA 

2B X-Y 

where 

A=akON, 

B= kQN (aKB)-1, 

X= -B -A- (4 + a-i)hL2 + 1), 

and 
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Y=B-A+ ýa-i _ 1)hL2(6 + 1) 

Let Wo = diag()z1R, )T R 
, 7Z) Then 23 

X+Y 

(WR R i2 QOO(ýo)- i2 4AB 

0 

o 

xý. 

giw X-Y 

It follows after a little algebra that (r, )" QRý (T ) 'ý2 has eigenvalues o), =X-T, 

(v2 =X and Cd3 =X+T, where T= (Y2 + 4AB)ý'2, and corresponding orthonormal 

eigenvectors b, (i = 1,2,3) given by 

bi = si 
1 (2 - i) T+Y, 

(2 i) T Y2 
, 

(2 - i) T-Y 
2AB 

where, for i=1,2,3, 

s1 = 4T 2 (2 - i)2 + 
Y2 T2 

(1 - (2 - i)2). 
2AB 

Then, using equations (2.18) and (3.12), we obtain 

f(r) [SB ((2 - i) T+ 1) + (4 + a-1) ((2 - i)2 T2- Y2) 
0 

(3.12) 

+A (3 +2 a-1) ((2 - i) T- Y)l 

x [(2 - j) (A + B) T+ (B - A) Y+ (2 - i)2 T2- Y2] 

x [X + (2 - i)7]R-'B-2sj-2 eX p((X + (2 - i)7)t), 

where R is given by equation (3.10). 
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Formulae for open and closed sojourn autocorrelation functions and for dwell 

time cross-correlation functions are given by equations (2.29), (2.30) and (2.31) 

after appropriate substitution for the Q-matrix of our present model. 

3.3.1.7 Clustering 

Experimental studies (e. g. Sakmann et al. (1980)) have found that channel 

openings are grouped together in bursts, and further, that these bursts of channel 

openings are themselves grouped together in clusters. Ball and Sansom (1987) 

derived an expression (see section 2.1.5.1) for a simple descriptive measure 

which indicates whether or not a given model does indeed display clustering of 

openings, and Ball and Davies (1997) derived an equivalent expression (see 

section 2.1.5.2) to determine whether or not a given model displays clustering of 

bursts of openings. Note that, although the results of sections 2.1.5.1 and 2.1.5.2 

have been stated in the notation of the unreduced state space, equivalent results 

for the reduced state space hold when the derivations of these expressions are 

based on the transition matrix Q. 

In order to use the theory outlined in section 2.1.5.2 to examine clustering of 

bursts of openings for the a2ß3 model, we need to partition the closed states into 

short-lived and long-lived closed states. In practice there is, of course, no way of 

telling whether a given closed sojourn is entirely within the short-lived closed 
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states, entirely within the long-lived closed states or neither of these two. This 

problem has been addressed by Colquhoun and Hawkes (1981), who use Bayes' 

theorem to calculate the probability that a given closed sojourn is part of a burst, 

and by Colquhoun and Sakmann (1981) and Colquhoun and Hawkes (1982), who 

allocate closed sojourns to within bursts and between bursts according to whether 

they are less than or greater than some critical duration. However, for the a2ß3 

model, examination of simulated realisations of the model strongly suggests that 

closed sojourns in which the channel has two agonist molecules bound are gaps 

within a burst, closed sojourns in which the channel has one agonist molecule 

bound are gaps between bursts within a cluster of bursts, and closed sojourns in 

which the channel has no agonist molecules bound are gaps between clusters of 

bursts. Thus to calculate the degree of clustering of bursts for the model, we shall 

assume that the short-lived closed states correspond to two agonist molecules 

being bound to the channel, whilst the long-lived closed states correspond to zero 

or one agonist molecules bound. It follows that, working in the reduced state- 

space, the model has 19 short-lived closed states and 50 long-lived closed states. 

Colquhoun and Hawkes (1982) derive expressions for a large number of 

observable characteristics of bursts of openings and also give an analogous theory 

for the case when bursts of openings are grouped into clusters. These results are 

used to obtain the numerical results in section 3.4.1.9.3 (see also Appendix C) for 

the a2ß3 model. The application of the theory of Colquhoun and Hawkes (1982) 
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to the calculation of properties of clusters of bursts of openings for the a2ß3 

model is based on the following categorisations of closed states. It is assumed, 

as above, that the channel is in a short-lived closed state whenever it is closed 

with two agonist molecules bound. However, the long-lived closed states are 

partitioned further into long-lived closed states which represent gaps between 

bursts within a cluster of bursts and very long-lived closed states which represent 

gaps between clusters of bursts. It is assumed that the channel is in a long-lived 

closed state whenever it is closed with one agonist molecule bound, and that it is 

in a very long-lived closed state if it is closed with no agonist molecules bound. 

Hence, working in the reduced state-space, the model has 19 short-lived closed 

states, 31 long-lived closed states and 19 very long-lived closed states. When 

calculating properties of bursts of openings, the partition into long-lived closed 

states and very long-lived closed states is not required. 

3.3.2 A Special Case: The a2ß3 Model with Independent Subunit 

Behaviour 

In this section we examine the special case in which the parameters L,, L2 and L3 

satisfy L1 = L2 = L3 = L, say. In this case all the transition rates for a given 

channel subunit will be independent of the substates occupied by any of the other 

4 channel subunits. This assumption allows some simplifications in the 

calculation of single channel properties. 
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First, it is possible to determine a simpler expression for the equilibrium 

distribution rr Using the detailed balance conditions (2.4), it is easy to calculate 

the equilibrium probabilities that (i) a given cc-subunit is in each of the substates 

O, C, OA and CA, and (ii) a given ß-subunit is in each of the substates 0 and C. 

Appropriate multiplication of these probabilities yields that the equilibrium 

probability that a channel occupies state i (i = 1,2,..., 128) is given by 

ýI = (1 + L)-3(1 +L+ LaKBa + aKB)-2Lx'(LaKBa)x2(aKB) , 

where x,, x2 and x3 are the number of channel subunits in substates 0, OA and 

CA, respectively, when a channel is in state i. Thus the equilibrium probability 

Po that a channel is open is given by 

L3 L+ LaKBa 2 
P0 cri= 

i. 1 1 +L 1 +L +LaKBa+aKB 

Second, the symmetries arising from the assumption of independent subunit 

behaviour can be exploited to reduce the state space size to 40, which decreases 

the necessary CPU time for computations. Since the interactions of neighbouring 

subunits are no longer of interest, the positions of a-subunits and n-subunits in 

the subunit ring are irrelevant. Thus all states in S with the same numbers of a- 

subunits in each of the substates 0, C, OA and CA, and with the same number of 

open n-subunits, are equivalent to each other and can be replaced by a single state 

in a reduced state space which we denote by S. For example, the 6 states 
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(O, CA, C, C, OA), (O, OA, C, C, CA), (C, CA, O, C, OA), (C, OA, C, O, CA), 

(C, CA, C, O, OA) and (C, OA, O, C, CA) in S are equivalent to a single state of S. 

Since the 2 (unordered) a-subunits of a channel can occupy any one of 10 distinct 

combinations of substates, and the channel can have either 0,1,2 or 3 open ß- 

subunits, the number of states in Sz is 10 x4= 40. In particular, the state space 

SL comprises 3 open states and 37 closed states, of which all 3 open states, and 

7 closed states, are gateway states. An integer-valued Markov chain on SL, 

analogous to {XR(t); t >_ 0) on SR, can be set up and its 40 x 40 transition rate 

matrix QL determined in order to calculate statistical properties of a single 

nAChR channel under a model in which its subunits are assumed to behave 

independently. 

3.3.3 A More General Case: Model Formulation for ar(35-T 

(r = 0,1,..., 5) 

In this section, following Couturier et al. (1990), we consider more general 

models for ion channels whose subunit rings consist of r a-subunits and 5-r 

ß-subunits, where r is 0,1,2,3,4 or 5 (as discussed in section 3.2.1.1.2). Since 

a channel with 2 a-subunits and 3 ß-subunits can have its subunits arranged so 

that its 2 a-subunits are either adjacent to each other or are separated by a 

ß-subunit, there are 2 distinct models in the case r=2. However, these 2 models 

are closely related and many of their statistical properties will be identical. 
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Similarly there are 2 possible models when r=3. As there is a unique ordering 

of r (X-subunits and 5-r ß-subunits in a subunit ring when r is 0,1,4 or 5, there 

are, in total, eight distinct models with r a-subunits and 5-r ß-subunits to be 

considered. 

r Number of states (gateway states) for the ca 5 _, model 

en Closed 

0 1 (1) 31 5) 

1 2(2) 62(10) 

2 4(4) 124(20) 

3 8(8) 248(40) 

4 16(16) 496(80) 

5 32(32) 992(160) 

Table 3.3. Number of states and number of gateway states for a channel with r a-subunits and 

5-r ß-subunits. 

Table 3.3 gives the numbers of distinct open and closed states which can be 

occupied by a channel with r a-subunits and 5-r ß-subunits. Suppose that these 

numbers are no' and nc respectively, and label the channel states 1,2,..., nor + ncJ 

so that{ 1,2,..., no'} is the set of open states and {nor + 1, nor + 2,..., nor + nT } 

is the set of closed states. For each of the required channel models, we can set up 

an integer-valued Markov chain analogous to {X(t); t >_ 01 in section 3.3.1 and, 

using the method described in that section, we can determine the elements of the 

101 



MODELS BASED ON MOLECULAR STRUCTURE 

associated transition rate matrix. Hence it is possible to derive expressions for 

the statistical properties of a channel under each of the eight models. 

3.3.3.1 Equilibrium Distribution 

An expression for the equilibrium distribution for the a, ß5_, model (r = 0,1,..., 5) 

can be determined as in section 3.3.1.1 for the a2ß3 model. Suppose that a 

channel in state i has x, (`) agonist molecules bound to it, x2(`) of its a-subunits in 

substate OA, XP) pairs of adjacent closed subunits, and a total of XP) +xP) closed 

subunits. Then the equilibrium probability that a channel with r a-subunits and 

5-r ß-subunits is in state i is given by 

x 
(') 

x 
(1) -x3 -xä`) 

? tip = ni 
(r) (aKB) 'a2L1 L2 

where the probability that all 5 channel subunits are in substate 0, can be 

obtained by summing the equilibrium probabilities, and hence can be expressed 

in the form 

ý1(r) _ [ur + Ur -1 h5 
- TL- + clr) L1 1 L2 1+ C2r) L2 2 

+ C3')L1 
1L2-2 + c4')Li 

2L21 + y'- 1hrL1-3L21 + yrL15]-1 

where u= aKBa+ 1, v= aKB + 1, h; (i = 0,1,..., 5) is given by equation (3.4) and, 

for r=0,1,..., 5, expressions for cl(r), c2(r), c30 and c4(r) are given in Table 3.4. 

Note that, in the cases when the a-subunits are adjacent to each other and r=2 

102 



MODELS BASED ON MOLECULAR STRUCTURE 

or 3, c, (') and c2(T) must be interchanged, asmust c3(r) and c4('). Further, the 

equilibrium probability that the channel is open is ; z, (r) ur. 

Fr-l [C , 
(r) 

C2 
(r) 

C3 
(r) 

C , 
(r) 

0 5 5 5 5 

1 3u+2v 3u+2v 2u+3v 2u+3v 

2 u(u+4v) u(u+4v)+(u-v)2 v(4u+v)+(u-v)2 v(4u+v) 

3 uv(4u+v) u[v(4u+v)+(u-v)2] v[u(u+4v)+(u-v)2] uv(u+4v) 

4 u? v(2u+3v) u? v(2u+3v) uv2(3u+2v) uv2(3u+2v) 

5J 15 u3 v-2 5 u3 v2 5 u2 v3 5 u? v; 

Table 3.4. Coefficients in the expression for 7r, (') (see text). 

3.3.3.2 Mean Sojourn Lengths 

For a channel with r (X-subunits and 5-r ß-subunits (r = 0,1,..., 5), let «i) and 

/J be the equilibrium mean lengths of sojourns in the open and closed classes 

of states respectively. Then, by a similar argument to that of section 3.3.1.3, the 

mean length of an open sojourn is given by 

ß+i 

/ýýöý = 
h5 L2 

5 hy-rh 

where h; (i = 0,1,..., 5) is given by equation (3.4), and, using equation (2.23), the 

mean length of a closed sojourn is given by 
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Pc -P (Orl l(Ir, (r) 
Ur)-1 - 1). 

3.3.33 Reduction of State Space Size 

r Ntunber of states (gateway states) in 
unreduced state space . 

Number of states (gateway states) in 

reduced state space 

Open Closed T Open Closed 

0 1 (1) 31 (5) 1 (1) 7(l) 

1 2(2) 62(10) 2(2) 38(6) 

2 4(4) 124(20) 3(3) 69(11) 

3 8(8) 248(40) 6(6) 138(22) 

4 16(16) 496(80) 10(10) 262(42) 

5 EL3? ý 

1 

992(160) 8(8) 128(20) 

Table 3.5. Number of states and number of gateway states for the reduced state space a, ßß 

model. 

As in the a2(33 model discussed in detail above, the size of the state space in each 

of the other 7 models can be reduced in order to facilitate computations. This 

reduction can be carried out in a manner identical to that described in section 

3.3.1.4, although when r is 0 or 5, the state space size can be reduced still further 

since all 5 channel subunits are of the same type and it is therefore no longer 

necessary to distinguish between states which are rotations of each other. For 

example, a channel with its 5 subunits in substates 0, C, C, C and C occupies one 
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of 5 states in an unreduced state space, depending on which of its subunits is in 

substate 0. However, when r is 0 or 5, these 5 states can be replaced by a single 

state, in a reduced state space, which is occupied by the channel if and only if the 

channel is in one of these 5 states in the original state space. For each value of 

r, the numbers of open and closed states in these reduced state spaces are given 

in the fourth and fifth columns of Table 3.5. 

3.3.3.4 Open and Closed Entry Process Equilibrium Distributions 

We do not give the open and closed entry process equilibrium distributions based 

on either the unreduced or the reduced state space here, since in order to do so it 

would be necessary to give an explicit labelling of the gateway states for each 

model, and this would be rather lengthy, as can be seen from the number of open 

and closed gateway states for each model given in Table 3.5. However, we give 

here the open entry process equilibrium probabilities for aggregations of all open 
. r- -- 

states with the same number of agonist molecules bound, which is still of interest 

since it allows us to confirm whether or not the channel is more likely to open 

with a higher number rather than a lower number of agonist molecules bound, but 

it is less lengthy to display. For this derivation, let the label of an aggregation of 

channel states be k (k = 1,2,..., r+ 1) if and only if a channel in any state in that 

nor 

ggregation is open and has exactly k-I agonist molecules bound to it,, noting 

that not all open states with the same number of agonist molecules bound share 
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identical statistical properties. Suppose r : f- 0, since clearly the result is trivial for 

r=0, and embellish symbols with the superfix A, where appropriate, to denote 

that states are aggregated as described above. Then, summing the equilibrium 

probabilities for the unreduced state space, we obtain that the equilibrium 

probability that a channel is open with k-1 agonist molecules bound is given by 

7tk = 'T (a KB a)x -1 
(k- r1 

Further, in obvious notation, it is easy to show that 

q= 
CCk 

- 1)Ca-i _ 1) + 5) hL2('6 +1ý. 
jE CA 

For r=Iý2,..., 5, let the vector n(r) -( Ir, '(r), 7; '(r), ---, 7r,, , 
'(r))' be the open 

entry process equilibrium distribution based on the state aggregations described 

above. Then using the above results together with an equation identical to 

equation (3.8) but with the superfix R replaced by the superfix A throughout, it 

follows that, for k=1,2,..., r+1, the equilibrium probability Irk'(r) that a 

channel in an open sojourn entered the class of open states via state k, is given by 

(1 +a KB a)r -1 h5-r 
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3-3.3.5 Sojourn Time Density Functions and Correlation Functions 

A formula for the unconditional open sojourn time probability density function 

is given by equation (2.18), with a similar result holding for the unconditional 

closed sojourn time probability density function. Formulae for open and closed 

sojourn autocorrelation functions and for dwell time cross-correlation functions 

are given in equations (2.29), (2.30) and (2.31). 

3.4 Numerical Examples 

3.4.1 a2133 Model 

3.4.1.1 Parameter Values 

Each parameter value that we use in the numerical examples for the aAmodel 

is chosen either according to biophysical considerations or by theoretically 

matching observable properties of our model to those of the model of Jackson 

(1989). Let P(O) (P(Q) be the equilibrium probability that a channel is open 

(closed) with i agonist molecules bound, where i is 0 or 2. Then, using values of 

from Scheme I of Jackson (1989), we obtain the equations equilibrium constants -- --- 

P(O0) =5x 10-6 x P(C0) =5x (3.13) 
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and 

P(02) = 14 x P(C2). (3.14) 

Using equation (3.2), and setting x= L2-' and y=L I-', equations (3.13) and (3.14) 

can be written as 

5(1+Y)x2 + 5(1+Y+Y2+Y3)x + (Y5-2x105) =0 (3.15) 

and 

2+? +1++? +? y+ 
?+3 

)y3jX2 

aa a2 a a2 

(3.16) 
+ 

{(3ý. )+(1 
ý±y+ 

4+ 1 
y2x + ys- 1=p, 

aaa a2 a2 14 

respectively. Clearly solutions of equation (3.15) with x>0 and y>0 lie on a 

decreasing curve in the x-y plane and. solutions of equation (3.16) with x>0 and 

>0 lie on a second decreasing curve in the x-y plane. Plotting these two curves 

for a range of values of ir, it can be seen that, for reasonable values of L, and 
L2,, 

they intersect exactly once if the value of y when x=0 is greater for the curve 

given by (3.16) than for the curve given by (3.15), and that they do not intersect 

otherwise. This yields the condition a> 200 x -v/70. In the numerical examples 

in this section we use the value &= 5000 which is consistent with this condition. 

Solving equations (3.15) and (3.16) numerically, gives the values L, = 0.08706 

andL2=231.2. 
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In order to reflect the observed increased stability of substates in which a subunit 

has open neighbours, we assume that I= Kcc < Koc < Koo (Koshland et aL 

(1966)). Together with the definitions ofL , and L2in section 3.2.2.2, this implies 

that 

KT < mi. n(Li L2 1, L2) = 3.8 x 10-5. 

Confonning with this inequality, we set KT= 10-'. This yields 

Koo = L1 I KT = 8706 

and 

Koc = L1 / KTL2 = 1.81. 

It follows that 

Lo =KTKKc =3.28x10-5. 

The parameter value K. = 10' M-' is consistent with equivalent kinetic parameter 

values used in ion channel literature (e. g. Ogden et al. (1987)). The parameter 

value kox is set to kov = 
107 S-1 M-1 

which lies between the estimate of 

5x 10' s-' TW' of Jackson (1989) and the limit of 10' s-' ý& set by diff-usion (see 

Jackson (1989)). We use the values #= 0 and, #= 
-1 in our calculations in order 

to obtain channel properties under the respective assumptions that subunit closing 
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rates (only) and subunit opening rates (only) are dependent upon the substates 

occupied by neighbouring subunits, noting that there is insufficient information 

at the molecular level to identify the most realistic value forfi. We concentrate 

ainly on values of agonist concentration in the range 
10-7M to I 0-'M (see 

section 3.4.1.2), although we show results for a wider range of values when 

appropriate. Hille (1992, Chapter 6) describes a number of experiments drawn 

. 
r__ 

- 

from ion channel literature and, from the results, concludes that the mean open 

lifetime for the nAChR channel is approximately I ms. Therefore we determine 

values for h when fl =-I and 8=0 by imposing the restriction that the mean 

length of an open soj ourn is 10' s when a= 10' M. Using equation (3.7), this 

yields h=33 Os-' for 8=-I and h= 770OOs-' for 8=0. 

3.4.1.2 Equilibrium Distribution 

Figure 3.7 demonstrates that the equilibrium probability that a channel is open 

varies from approximately its minimum to its mid-height to its maximum as the 

agonist concentration increases from 10' to 10' to 10' M, which is consistent 

with experimental findings. Therefore, throughout section 3.4, these are the three 

main values used to compare channel properties as agonist concentration vanes. 
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Figure 3.7. Equilibrium channel open probability as agonist concentration varies. 

Figures 3.8a. and 3.8b are bar charts of the channel equilibrium distribution when 

a= 10' M and a= 10' M, respectively. For i=0,5 andj = 0,1 and 2, each 

figure gives the equilibrium probability that a chamel will occupy a state in 

which it has i open subunits and j agonist molecules bound. Note that, from 

equation (3.2), it can be verified that the equilibrium probability that a channel 

is in any given state is independent of fi. It can be seen from Figures 3.8a and 

3.8b that for high agonist concentrations the channel is predominantly open with 

two agonist molecules bound, whereas for low agonist concent-ations it is 

predominantly closed with no agonist molecules bound. These figures also 

demonstrate that, at each agonist concentration, an open channel usually has two 

lagonist molecules bound and that the number of agonist molecules bound to a lzý 

closed channel tends to decrease as the number of closed subunits increases. 
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These results are consistent with those of Colquhoun and Sak-mann. (1985) who 

observe recordings which suggest that the channel is sometimes open with fewer 

than two agonist molecules bound, although they note that these recordings also 
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Figure 3.8. Aggregated equilibrium probabilities when the agonist concentration is (a) I 0-'M and 

(b) 10-7 M. 
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suggest that open channels usually have two agonist molecules bound. 

3.4.1.3 Time-dependent Channel Open Probability following a jump in 

Agonist Concentration 

Although in vitro experiments on ion channels are under predominantly 

equilibrium conditions, synapses and action potentials do not function in a steady 

state and so it is important to understand channel behaviour in the transient state 

before equilibrium is attained. Furthermore, such considerations provide more 

stringent tests of possible models. In experiments, it is common to mimic a 

synaptic current by applying a very brief rectangular pulse of agonist to a patch 

and to measure the first latency, i. e. the time that elapses before the channel 

opens. We restrict attention to the case when. the transition rates between states 

do not vary with time and the agonist concentration is constant other than at a 

stepwise jump at time t=0, say. We examine the behaviour of a channel 

following such a jump in agonist concentration from a very low concentration at 

which the channel is almost always closed to a higher concentration at which it 

is more frequently open. Thus we calculate the probability that a channel is open 

as time varies, using the equilibrium distribution for a channel at an agonist 

concentration of 10-14 M as the initial vector, p(O) in equation (2.3), and using a 

higher agonist concentration when calculating the entries of the transition matrix 

in that equation. Since first latency experiments are frequently illustrated by 
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plots of the macroscopic current which represents the sum or average of a set of 

single channel records (see, for example, Colquhoun and Hawkes (1995)), a 

graph of the probability that a channel is open as time varies, under our model, 

can be used to compare the behaviour of a channel under our model with 

experimental results. 

For )6 =-1,, Figure 3.9a shows plots of the probability that a channel is open, as 

time varies, following a jump in agonist concentration at time t=0 from (i) 

a= 10" M to a= 10-'M, (ii) a= 
10-14 Mto, a= 10'M and (iii)a= 10-14 M to 

a= 10-' M. As expected, a jump to a higher agonist concentration results in a 

higher probability that the channel is open at time t for all values of t>0. 

However,, when, 8= 
-I the curves do not near their maximum values for over 100 

seconds. This is not consistent with the values of the first latency found 

experimentally which are typically very short (e. g. 2 ms) for nicotinic receptors. 

Figure 3.9b is a similar graph for the case 8=0. For this value of 8, the 

equivalent functions, near their maximum values much quicker, suggesting that, 

in practice, theOCAmodel may be more consistent with experimental results 

when 16= 0 than wheng= -1. 
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Figure 3.9. Channel open probability as time varies following a jump in agonist concentration 

from a= 
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3.4.1.4 RM Coefficient 
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Figure 3.10. Hill Plot. 

The Hill Coefficient nHis deterniined by evaluating H(a), using equation (3.6), 

at a= a* where a* is the value of a for which the equilibrium probability that a 

channel is open is 0.5. Substituting our parameter values into equation (3.5) and 

setting PO = 0.5, we obtain a* = 1.0 19 x 10"' M. Thus the Hill Coefficient, which 

represents the gradient ofthe corresponding Hill Plot (see Appendix B), displayed 

in Figure 3.10 when a=1.019 x 10-6M, is nH =1.55. This is entirely consistent 

with the structure of the modelled nicotinic acetylcholine channel since nH is 

interpreted as a lower bound for the number of agonist binding sites on the 

channel (see section 3.3.1.2 and Appendix B). This value of the Hill coefficient 
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is similar to experimental results calculated using Hill plots in which the 

proportion of time that a channel is open is plotted against agonist concentration 

on logarithmic scales. Jackson (1993, Chapter 7) gives two examples of 

experimentally determined FEII coefficients: nH -'"": 1.6, calculated at 

a=2x 10' M, for channels in mouse cells and n,, = 1.7, calculated at 

a=7.7 x 10-' M, for electric ray receptors and Dionne et al. (1978) give similar 

results with values of nHin the range 1.5 to 2. 

3.4.1.5 Mean Sojourn Lengths 

Table 3.6 shows that, for both 8=0 and 8=-1, the mean length of an open 

sojourn remains approximately constant as the agonist concentration varies in the 

range of interest, whereas the mean length of a closed sojoum varies 

considerably. Recall that the parameter values of h for j6 =0 and for 
jO = -I are 

determined in section 3.4.1.1 by imposing the restriction that the mean length of 

an open sojourn is 1 ms (Ilille (1992, Chapter 6)) when a= 10' M, thus ensuring 

that the mean open soj ourn lengths are realistic. Problems arise when calculating 

closed sojourn lengths experimentally since it is not always known how many 

channels are contained in a patch. Hence there is a paucity of data with which to 

compare the mean closed so ourn lengths obtained here. j 
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)6 
Agonist 

Concentration 
Mean Length of 

Open Sojourn (ms) 
(Standard Deviation (ms)) 

Mean Length of 
Closed Sojourn (ms) 

(Standard Deviation (ms)) 

0 10-7 0.99 (0.99) 77.83 (452.19) 

0 10-6 1.00 (1.00) 1.06 (10.94) 

10-1 1.00 (1.00) 0.10 (0.42) 

-1 
10-7 0.91 (0.93) 78.56 (13496.82) 

10-6 1.00 (1.00) 1.07 (540.07) 

10-1 1.01 (1.01) 0.10 (55.98) 

Table 3.6. Mean open and closed so ourn lengths. i 

3.4.1.6 Open and Closed Entry Process Equilibrium Distributions 

From equations (3.9) and (3.11), it can be seen that the open and closed entry 

process equilibrium distributions are independent of 8 The results given in this 

subsection are based on an agonist concentration of 10' M and our calculations 

show that, for our parameter values, the entry process equilibrium distributions 

do not vary greatly as agonist concentration varies within a physiologically 

sensible range. The proportion of entries into the open class of states which are 

made via the open state in which the channel has two agonist molecules bound 

is 94.9%, with nearly 5.1 % of entries being made via the open states in which the 

channel has one agonist molecule bound. Unfortunately, there is a shortage of 

experimental data with which to compare these results, although the results do 

th - findings ofColquhoun and Sakmann (1985) and Jackson seem consistent with die 

(1986,1988) who note that, although most transitions from the closed class of 
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states to the open class of states occur when the channel has two agonist 

molecules bound, experimental findings indicate that it is also possible for the 

channel to open when one or zero agonist molecules are bound. Note that, since 

channel gating in theC03model is assumed to be consistent with microscopic 

reversibility, the proportion of entries into the closed class of states which are 

made via the closed state(s) in which the channel has a given number of agonist 

molecules bound is the same as the proportion of entries into the open class of 

states made via the open state(s) in which the channel has that number of agonist 

molecules bound. Further,, the probability that the closed class of states is entered 

via a closed state in which the channel has an agonist molecule bound to the 

closed subunit is only 0.000 129, reflecting the model property that a subunit with 

no agonist molecule bound has a much higher closing rate than a subunit with an 

agonist molecule bound. 

3.4.1.7 Open and Closed Sojourn Probability Density Functions 

Using the results of section 3.3.1.6 with P=0 and a= 10' M, the open sojourn 

time probability density function is given by 

fo(t) = 0.001004exp(-1684.23t) 

6.76 exp (- 1341.47 t) + 993.67 exp (- 998.71 t) - 

Figure 3.11 is a graph of this open time probability density ftmction drawn on a 

log-log scale as is common in ion channel literature (see McManus et aL (1987)). 
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From this graph, we can see that, although the probability density ftmction is a 

sum of three exponential terms, one exponential term is dominant. This is a 

consequence of, firstly, the coefficient of one ofthe three exponential tenns being 

significantly larger than the other two coefficients, and, secondly, one ofthe three 

eigenvalues of Q0'0 being significantly larger than the other two eigenvalues. Our 

calculations demonstrate that as the agonist concentration varies in our range of 

interest, the largest eigenvalue of QORO remains approximately constant, whereas 

ý1- - 

Lne other two eigenvalues vary whilst remaining considerably smaller than the 

largest eigenvalue. Similarly, when j6= -1 and a= 10-6M, the dominant term of 

fo(t) is 987.11 exp(-990.44 t) and hence the graph offo(t) for j6 = -I is very 

similar to that for P= 

5 
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Figure 3.11. Open sojoum time probability density fimction. The graph is based on an agonist 

concentration of I 0-6M and #= 0. Graphs for agonist concentrations 10-' M and 10' M and for 

,6= -I appear very similar to this graph (see text) and are not shown here. 
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It is interesting to note from our numerical results that fo(t) is a mixture of 

negative exponential distributions whose time constants form an arithmetic 

Progression. This has been shown (not presented in this thesis) to always be a 

feature of probability density functions of open sojourn times for a more general 

(r:, -- 0,, 1,., n; n-2,3,4,.,... ) model. 
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Figure 3.12. Closed sojourn time probability density functions for agonist concent-ations of 

10-1 M (dotted line), I 0-6M (solid line) and I 0-7M (dashed line) when (a) P=0 and (b) 8=-1. 
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The closed sojourn time probability density function is a sum of 69 exponential 

terms and we have determined an expression (not given here) for this ftmction 

using a computer. We note that, basing all calculations on the 72-state reduced 

state space discussed in section 3.3.1.4, our software (written using 

FORTRAN 77 employing the NAG library of numerical subroutines and run on 

a VAX 11/785) determined this expression in approximately 5 seconds, compared 

with several hours when calculations were based on the 128-state unreduced 

state-space. From Figures 3.12a and 3.12b, we can see that, in practice, the 

closed sojourn time probability density function can be fitted quite accurately by 

a mixture of 2 to 4 exponentials, depending on the value of 8. We have found 

that Qcc has just a few eigenvalues which are negative and of small absolute 

value and the remainder of the eigenvalues of Qcc are negative and of large 

absolute value. Thus the shape of the graph offc(t), which is determined by 

exp(Qc'c), is ultimately dependent on the values of the few eigenvalues of small 

modulus. Figures 3.12a, and 3.12b are consistent with the results of a large 

number of experimental studies which predict that the closed sojourn time 

probability density: ftmction can be approximated by a sum of 2 to 6 exponential 

components. As a result of such experimental studies, many models postulated 

in the ion channel literature have been based on a small number of closed states 

(see, for example, Colquhoun and Sigworth (1995), Horn and Lange (1983)). It 

is interesting to note that the time constants of the closed sojourn probability 

density function occur in distinct batches that can be related to the structure ofthe 
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matrix 
QcRc. 

3.4.1.8 Autocorrelation and Cross-Correlation Functions 
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Figure 3.13. Open sojourn (solid line) and closed sojourn (dashed line) autocorrelation functions 

and open-closed (dotted line) cross-correlation ftmctions for an agonist concentration of 10-6 M 

when (a) j6= 0 and (b), fl= 
-I- The lag value on the horizontal axis indicates which sojourns' 

correlation is plotted. For example, when the lag is 2, the correlation between the kth open / 

closed sojoum and the (k + 2)th open / closed sojoum is plotted- 
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Figure 3.13 confirms that the open sojoum and closed sojoum autocorrelation 

functions are decreasing, non-negative, and convex (see section 2.1.4). As 

reported in ion channel literature (e. g. Jackson (198 8)), long open soj ourns tend 

to be adjacent to short closed sojoums, and vice versa, and this is consistent with 

the negative values taken by the cross-correlation fimction in Figure 3.13a. 

Figure 3.13b shows that sojourn lengths are subject to lower correlations when 

I than when )6 = 

Figure 3.14 shows the effect upon the closed autocorrelation function of varying 

the agonist concentration within the range 10-' M to 10' M when 8=0. As the 

agonist concentration decreases within this range, the lengths of closed sojourns 

become more highly correlated. Our studies have shown that open sojourn 

autocorrelation functions and cross-correlation fimctions also take higher values 

as the agonist concentration decreases within the same range and that similar 

results hold for 6=-1. These results are a consequence of the reductions in 

agonist binding rates and the resultant decrease in the time spent by the channel 

in states in which it has one or more agonists bound, and thus the decrease in the 

number of different transition pathways between the open and the closed classes 

of states predominantly used by the channel. Note fliat, as the agonist 

concentration approaches zero, the class of open states is almost always exited via 

the open state in which the channel has no agonist molecules bound, and that, as 

the agonist concentration approaches infinity, the open states are almost always 
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exited via the open state in which the channel has two agonist molecules bound. 

Hence, as the agonist concentration approaches zero or infinity, all the correlation 

functions approach zero. 
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Figgire 3.14. Closed sojourn autocorrelation fimctions for agonist concentrations of 10-' M 

(dashed line), 10-6 M (solid line) and 10' M (dotted line) when fi = 0. 

3.4.1.9 CIUStering 

The study of characteristics of clusters of channel openings and clusters of bursts 

of openings yields useful information about the chemical reactions which govem 

channel behaviour. These properties have been widely studied in ion channel 

literature since membrane patches often contain multiple channels and, although 

it cannot be guaranteed that only one channel is being observed, it is extremely 
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likely that all the openings in any given burst are from a single channel with 

openings in preceding and subsequent bursts possibly being from a different 

channel. To date however there is a shortage of experimental studies quantifying 

the degree of clustering of openings and the degree of clustering of bursts of 

openings and hence we are currently unable to compare the numerical results of 

this section with experimental data. 

3.4.1.9.1 Clustering of Openings 

Let JN(t)) be the point process describing the starts of channel openings. Then, 

for P=0 and 6= 
-I respectively, Figures 3.15a and 3.15b show the value of 

lim Var[N(t)] / E[N(t)], given by equation (2.39), as the agonist concentmtion 

varies. For each of these values ofAthese figures demonstrate that our model 

does indeed predict that, in the agonist concentration range of interest, channel 

openings will be highly clustered in time. This model feature is consistent with 

many experimental studies (e. g. Sakmann et al. (1980), Colquhoun and Sakmann 

(1985) and Dionne and Leibowitz (1982)). Further, the degree of clustering of 

openings is greater for the case 61 than for the case j6 = 0. 

126 



MODELS BASED ON MOLECULAR STRUCTURE 

(a) 
150 

100 

(0 50 
E 

-J 

1. OX105 

0.8xlo5 

0.6xlO' 

0 6. 
10-11 10-9 10-7 10-5 10-1 

Agonist Concentration (M) 

0.4x10r> 
Co 

0.2x1C 

0- 
1011 10-1 10-7 10-5 10-1 

Agonist Concentration (M) 

Figure 3.15. Clustering of channel openings: lim 
-- 

Var[N(t)]/E[N(t)] as a fimction of agonist 

concentrafion when (a) fl =0 and (b) #=-1. 

Fora= 10' K Figure 3.16a, (, fl= 0) and Figure 3.16b (, #= 
-1) show the value 

of Var[N(t)]/E[N(t)jas, t varies (see section 2.1.5.1). Fora= ICr6M, and also for 

a= 10' M (not shown), the ftmction Var[N(t)]1E[N(t)] is monotonically 

increasing for both, 8= 0 and, 6= 
-1 - 

However, this is not generally the case for 
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higher agonist concentrations when openings are not clustered. For example, 

when, g= 0 and a= 10-'M, Var[N(t)]/E[N(t)] decreases from 1 at t=0 to 0.915 

at t=0.000852 before increasing to 0.970 for large values of t. 
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Figure 3.16. Clustering of channel openings: Var[N(t)]1E[N(t)] as a function oftime when agonist 

concentration is 10-6M for (a), B= 0 and (b), fl= 
-1. 
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3.4.1.9.2 Clustering of Bursts of Openings 
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Figure 3.17. Clustering of bursts of channel openings: lim Var[N(t)]1E[N(t)] as a fimction of 

agonist concentration when (a) )6 =0 and (b) )6 =-1. 

Now let JN(t)) be the point process describing the starts of bursts of channel 

openings (see section 2.1.5.2 and section 3.3.1.7). Figure 3.17a (P = 0) and 
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Figure 3.17b (P = -1) show lim 
-. 

Var[N(t)]/E[N(t)] as a function of agonist 

concentration. Bursts of openings are not clustered in the P=0 model, except 

very slightly for a= 10-' M. However, they are very highly clustered in the 

p=-I model, notably when az 10-' M. 

Figure 3.18 shows Var[N(t)]/E[N(t)] as a: ftmction of time when a= 10' M and 

-I. Although Var[N(t)]1E[N(t)] is monotonically increasing with t when 

az 10-6M, this is not the case when 8=0 nor when 8=-I for much higher 

values of agonist concentration (e. g. a= 10' M) at which bursts of openings are 

not clustered. Note that lim, 
-OVar[N(t)]/E[N(t)] =I (see Ball and Davies (1997)). 
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Figure 3.18. Clustering of bursts of channel openings: the function Var[N(t)]1E[N(t)] when 

agonist concentation is I 0-6M for the case )6 =-1. 
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Two mechanisms widely employed to investigate the nicotinic acetylcholine 

receptor are the 5-state model of Colquhoun and Hawkes (1982,4.1) and the 

4-state linear model studied by Ball and Sansom (1989, Mechanism I). For both 

these models we have calculated that lim OVar[N(t)]1E[N(t)] takes values 

between 0.4 and 1.0 1 for all realistic values of agonist concentration, indicating 

that they predict that bursts of channel openings are not clustered, contrary to 

experimental findings (e. g. Sakmann et al. (1980)). Thus, in this respect, the 

OCArnodel, particularly with 6=-1, is an improvement on these smaller state 

space models. 

3.4.1.9-3 Properties of Bursts of Openings and of Clusters of Bursts of 

Openings 

Appendix C contains numerical results for the (ý. Amodel based on the 

expressions for various observable characteristics of bursts of openings and 

clusters of bursts of openings derived by Colquhoun and Hawkes (1982). These 

results are obtained by categorising each closed state according to whether a 

sojourn in that state represents a closing within a burst, a closing between bursts 

of openings or a closing between clusters of bursts of openings (see section 

3.3.1.7). 

We do not discuss these results in detail here since there are currently a number 
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of difficulties in assessing whether they accurately predict channel behaviour. 

Firstly, although the C03 Model lends itself to 'natural' definitions of bursts of 

openings and of clusters of bursts of openings in terms via the categorisation of 

closed states described in section 3.3.1.7,, such definitions have caused difficulty 

when interpreting observed ion channel data. Most such definitions categorise 

closed soj ourns. according to whether or not they are greater than specified critical 

sojourn lengths, but the method by which such a critical value is chosen varies 

widely (e. g. Colquhoun and Sakmann (1985), Jackson et aL (1983) and Magleby 

and Palotta (I 983b)) and in some cases makes a very significant difference to the 

interpretation of observations. Other methods used include the use of Bayes' 

theorem by Colquhoun and Hawkes (1981) to calculate the probability that a 

particular closed sojoum is within a burst. These variations in definitions will 

clearly affect the interpretation of data. Secondly, due to the presence of time 

interval omission, it is not possible in practice to observe many of the shorter 

channel openings and closings. In most cases, many sojourns are of shorter 

duration than the detection limit and it is not possible to obtain accurate 

experimental results with which to compare the results in Appendix C. This 

situation was observed, for example, by Colquhoun and Sakmann (1985), who 

measured apparent open times which were often made up of several open 

sojourns separated by undetected closed sojourns rather than measuring open 

sojourns themselves. Thirdly, in most experiments it is not known how many 

channels are being observed and, if, for example, two successive openings 
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originate from different channels, the closed soj ourn between them is likely to be 

incorTectly interpreted. 

3.4.2 Comparison of the a5Model with the lX203Model 

In this section we examine numerical results for the a5model by comparing them 

with those for theaAmodel. Such a comparison is ofvalue since channels with 

a, stoichiometry exist in the form of insect nAChR channels and there is 

speculation (e. g. Aidley and Stanfield (1996)) that the original nAChR in some 

of the earliest multi-cellular animals had a. stoichiometry and that the subunits 

ofnAChR channels underwent an evolutionary divergence from each other which 

started over a billion years ago, resulting in channels withCC2P3 stoichiometry. 

We use the same parameter values as detailed in section 3.4.1.1, with the 

exception ofKB, which we reduce to 2206.3 1W so that the equilibrium channel 

open probability for the ýY. 5model, shown in Figure 3.19, reaches half its 

maximurn height at the same agonist concentration as for theO43model and the 

dose response curve (see Appendix B) appears realistic. 
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Figure 3.19. Channel open probability as agonist concentration varies. The solid line shows the 

channel open probability for the U2P3 model with K,, = 100000 M-', the dotted line corresponds 

to the a, model with K. = 100000 M-' and the dashed line corresponds to the a. model with 

KB = 2206.31 M-1. 

We make the following observations: 

The equilibrium distribution for the a. model is similar to that for the 

a2P3 model in that at low agonist concentrations the channel 

predominantly occupies the closed state in which it has no agonist 

molecules bound and at high agonist concentrations it tends to occupy the 

open state with an agonist molecule bound at each binding site. 
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0 Graphs ofthe a5model time-dependent pr(ýbability that a channel is open 

following an initial jump in agonist concentration from a= 10" M to 

a= 10'M,, 10-6Mor 10-7 M are very similar to Figure 3.9a, (when, 8= 
- 1) 

and Figure 3.9b (when, 9= 0), although, as t increases, the probability that 

ý1- - 

die channel is open approaches a higher value for the a, model than for 

. 1- 
- Me a2P3 model. This result concurs with expectation since the a, model 

has three agonist binding sites more than theaAmodel. 

0 The Hill coefficient for the a, model is n. = 4.5387. Given the 

interpretation of nH, this value is consistent with the five agonist binding 

sites assumed by our model. Unfortunately, there are very few 

experimental data with which to compare this result due to a problem 

known as 'run down' in which continued stimulation of receptors causes 

channels to disappear so that sufficient data cannot be collected. 

0 In contrast with the 003model, the mean length of an open sojourn 

varies with agonist concentration under the (X, model. Further, the mean 

length of a closed sojourn varies with agonist concentration to a greater 

extent under the a. model Um under theOCAmodel. This variation, 

demonstrated in Table 3.7, can be explained by examining the forms of 

the formulae for mean sojourn lengths given in section 3.3.3.2. Such 

results have not been reported in the ion channel literature and it is likely 
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that they are not realistic. However, no experiments which can confirm 

or refute these results have yet been carried out. 

)6 Agonist 
Concentration 

(M) 

Mean Length of 
Open Sojourn (ms) 
(Standard Deviation 

(ms)) 

Mean Length of 
Closed Sojourn (ms) 
(Standard Deviation 

(Ins)) 

0 10-7 1.26 (2.20) 6144.57 (14857.11) 

0 10-6 7.21 (16.61) 5.83 (113.46) 

0 10-1 65.39 (83.49) 
1 

0.02 (0.18) 

-1 
10-7 1.27 (2.21) 6202.25 (190043.26) 

-1 
10-6 7.28 (16.70) 5.88 (1232.37) 

-1 10-1 66.01 (84.11) 0.02 (6.6ý) 

Table 3-7. Mean open and closed sojoum lengths for the a. model. 

0 For each of the agonist concentrations 10-' M and 10' M, Figure 3.20 

shows the probabilities (independent of the value of A that a channel has 

0,1,2,3,4 and 5 agonist molecules bound when it enters the class of 

open states. In contrast with theCCAmodel, the open entry process 

equilibrium probabilities are highly dependent on agonist concentration 

within the range ofrealistic values of agonist concentration, with a greatly 

increased probability ofthe channel having more agonist molecules bound 

when it opens at high agonist concentrations than at low agonist 

concentrations. Further, we note that, when a= 10-5 M, the open states 

are usually entered from the closed state in which the four open subunits 
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each have one agonist molecule bound but the closed subunit has no 

agonist molecule bound. 
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Figure 3.20. Open entry process equilibrium probabilities (as functions of the number 

of agonist molecules bound to the channel) for the a, model. The white bars represent 

values for an agonist concentration of 10' M and the darker bars represent values for an 

agonist concentration of 10' M. 

In comparison with the(ý43model, an increased number of exponential 

terms dominate both the open and closed sojourn time probability density 

functions in the a, model, as can be seen in Figure 3.2 1. While there is 

a lack of experimental data with which to compare these figures, these 

results serve as a prediction. 
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Figure 3.2 1. Open (a) and closed (b) sojoum time probability density functions for the 

a, model for agonist concentrations of 10' M, 10' M and 10-7 M When P= 0. 

The open and closed sojoum autocorrelation fimctions and the open- 

closed cross-correlation fimction for the a, model are very similar to 

those for theaAmodel. 
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3.5 Biophysical Discussion of the nAChR Models 

3.5.1 Channel Structure 

The nicotinic acetylcholine receptor models discussed above are valid in terms 

of the structure of the channels being modelled. The models incorporate a 

pentameric channel structure, identification and positioning of a-subunits and P- 

subunits within a subunit ring as reported for nAChR, and nearest neighbour 

subunit interactions. Thus, in terms of the known structural information 

regarding nAChF, these models are realistic. 

3.5.2 Channel Physiology 

It is not so easy to judge the above nAChR models in terms of their agreement 

with physiological data. This is chiefly due to a lack of relevant data in the ion 

channel literature, and, in particular, a lack of data relating single acetylcholine 

channel behaviour to agonist concentration. Recent experimental work has 

tended to be concentrated on other types of ion channels, particularly glutamate 

receptors and potassium channels. 

one reason for the lack of recent physiological studies of n. AChR is that there is 

a problem with collecting sufficient data to enable discrimination between models 
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since the channels are prone to a phenomenon known as desensitization. When 

acetylcholine is continuously present at the neuromuscular junction, it becomes 

insensitive to ftu-ther application and the channels will no longer open. This 

desensitization is evident in single channel records as long periods of inactivity 

interrupted by clusters of channel openings. At high agonist concentrations a 

channel may spend most of its time in the desensitized state, with agonist 

molecules bound but the channel closed. In such circumstances measurements 

are restricted to clusters when investigating characteristics of the active channel. 

This yields further problems if multiple channels may be present since different 

clusters may appertain to different channels. As a result of desensitization, the 

typical number of n. AChR openings recorded is usually only several thousand, 

whereas it is possible to record hundreds of thousands of openings of a BK 

channel. A second phenomenon that occurs at high agonist concentrations is an 

increase in the number of very brief channel closings. These may be caused by 

the temporary blockage of the channel pore by acetylcholine molecules 

themselves (Aidley and Stanfield (1996)) and appear on channel records as rapid 

flickering between openings and closings. The frequency of the flicker is too 

high to be detected by the recording equipment and the currents are noisy and 

reduced in amplitude. Thirdly, like a number of other types of ion channel, 

nAChR channels sometimes display subconductance states in which channel 

conductance is lower tim normal (e. g. Colquhoun and Sakmann (1985)). This 

behaviour has yet to be explained but may indicate 'subunit by subunit' changes 
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in Channel conformation, consistent with one of the assumptions underlying our 

model. 

With all these complexities in nicotinic acetylcholine channel kinetics there has 

been little recent progress in kinetic analysis of nAChR behaviour. Further 

progress may result from more experiments in which a very brief pulse of agonist 

is applied to a patch resulting in a jump in agonist concentration from a low 

concentration at which the channel is almost always closed to a higher 

concentration at which it is more frequently open. Desensitization can be 

incorporated into ion channel models by inclusion of a third class of states in the 

semi-Markov model of BO et aL (1991,1993 a) (described in section 2.1 of this 

ý1- - 
thesis). Thus the state space would consist of open states, closed states and 

desensitized (or absorbing) states which, once entered by a channel, are never 

exited. Although the semi-Markov process does not possess open and closed 

entry process equilibrium distributions, progress can still be made in determining 

certain model properties. For example, using an initial vector relating to states 

occupied at a very low (pre-jump) agonist concentration, and transition matrices 

whose entries relate to a higher (post-jump) agonist concentration, we have 

determined formulae for properties such as the expected number of openings 

following an agonist concentration jump before desensitization, the expected 

length of time between an agonist concentration jump and desensitization, etc. 
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3.5.3 Relationship to Macroscopic Allosteric Models 

The most well-known models (Monod et aL (1965), Koshland et aL (1966), 

Eigen (1968)) associated with allosteric proteins were onginally developed to 

explain observations in haemoglobin and in the kinetic behaviour of various 

enzymes and there has been much discussion (e. g. Newsholme and Start (1973)) 

regarding the relative validity ofthese models. As early as 1967 it was suggested 

that the ideas behind these types of models could be applied to ion channels 

(Karlin (1967)), although, of course, there was very little information regarding 

detailed ion channel structure until more recently, and hence earlier applications 

of these ideas were unable to incorporate the structural features that are 

incorporated in the models described in this chapter. 

In 1965, Monod, Wyman and Changeux (MWC) published a classic paper 

(Monod et al. (1965)) in which they proposed a molecular model to explain 

cooperative behaviour in allosteric proteins. Their model assumes that an 

allosteric protein comprises a number of separate subunits which each occupy an 

equivalent position wifliin the protein and that each subunit possesses one ligand 

binding site. All binding sites are assumed to be equivalent to each other and the 

binding of ligand to any individual subunit in a particular protein state has no 

influence on the binding of ligand to the other subunits in the protein in that state. 

it is assumed that two conformations of the protein exist in the absence of ligand 
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and that these two conformations differ in their ability to bind ligand. Positive 

cooPerativity of ligand binding is explained by the transition from the 

conformation in which subunits have less affinity for ligand to that in which they 

have a greater affinity for ligand. In terms of pentameric acetylcholine channels, 

the state space of the MWC model comprises states in which either all subunits 

are in open conformations or all subunits are in closed conformations. Any 

number of the subunits may have agonist bound in either case, although the 

channel will have a greater affinity for agonist when all subunits are in open 

confonnations. 

The model of Koshland et al. (1966) provides a different explanation for the 

cooperative behaviour in allosteric proteins. In this model any subunit exists in 

either conformation A say, with no ligand bound, or in conformation B say, with 

ligand bound. Hence this model requires the existence of only one state of the 

protein in the absence of ligand and this state is the one in which all subunits are 

in conformation A. It is further assumed that a conformational change induced 

by ligand binding to one subunit can modify the conformation of another subunit 

without ligand bound. The binding of ligand by one subunit therefore produces 

a conforinational change that is transferred to another subunit so that the latter is 

able to bind ligands more easily. The binding of the second ligand molecule 

stabilizes this conformation in the second subunit., and influences the 

confon-nation of a third subunit. The binding of ligand becomes progressively 
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easier in this sequential process. Thus, in terms of acetylcholine channels, the 

state space of the Koshland model comprises all states in which the channel has 

a combination of open subunits with agonist molecules bound and closed 

subunits with no agonist molecules bound, and there is positive cooperativity of 

, qgonist molecule binding as a result of a subunit with agonist bound interacting ZD 

with the remaining subunits so that their agonist binding rates are increased. 

Eigen (1968) presents a more general model which encompasses both the MWC 

model and the Koshland model. In this model any protein subunit may exist in 

either of two conformations and when in either conformation may exist with or 

without ligand bound. However, this model has a large number of independent 

parameters and so is rarely used in practice. 

The nAChR models formulated in this chapter have state spaces akin to that of 

the Eigen model, i. e. subunits may be open or closed and may, in either of these 

conformations have no agonist molecule bound, or, provided that the subunit has 

an agonist binding site, may have one agonist molecule bound. Thus our nAChR 

models are without the aforementioned restrictions of the MWC model or the 

Koshland model. The neighbouring subunit interactions incorporated into our 

models use ideas adapted from the treatment of allosteric globular proteins by 

Koshland et aL (1966). Whilst there has been a deficit of recent studies 

comparing the consistency of these particular types of large state space models 
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for the nicotinic acetylcholine channel, Rothberg and Magleby (1999) examine 

various kinetic schemes for the Caý'-activated potassium ion channel drawn from 

the MWC model and the Eigen model. They conclude that MWC-type models 

are too simple to account for certain details of BK channel gating. They also find 

that several models based on the general model of Eigen are not consistent with 

experimental data at high levels of Caý' concentration, but that an extended 

50-state Eigen model has sufficiently many states and transition pathways to 

describe many features of the data. Thus the basis of our modelling and the large 

state spaces of our models for nicotinic acetylcholine channels are in line with the 

conclusions of Rothberg and Magleby (1999) regarding BK channel models. 

3.6 Formulation of a Model for Calcium-activated 

Potassium Ion Channels 

3.6.1 Model Description 

Many of the features of our model for the nicotinic acetylcholine receptor can be 

adapted and used to formulate models for other types of ion channels which 

reflect the underlying structural properties of those channels. In this section, we 

describe the formulation of such a model for calcium-activated potassium ion 

channels. In common with the models already discussed in this chapter, the BK 
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channel model presented below satisfies the three criteria listed at the beginning 

of section 3.2.1. Statistical properties of the BK channel based on this model can 

be detennined using a Markov ftmework analogous to that used to analyse the 

nAChR channel model. However, detailed mathematical and numerical results 

for the BK channel are not given in this thesis as they can be obtained in a manner 

identical to that for the results obtained in sections 3.3 and 3.4 for the nAChR 

channel. Instead we focus on how the model is formulated and adapted to best 

describe experimental findings and how it improves on previous studies based on 

smaller state-space models of calcium-activated potassium ion channel gating. 

States, Subunits and Substates 

The BK channel model presented here assumes that a channel consists of four 

(X-subunits arranged in a square, reflecting the known structure of potassimn ion 

channels. Many authors (e. g. Barrett et al. (1982), Magleby and Pallotta, (1983a, 

1983b), McManus and Magleby (199 1), Golowasch et al. (1986) and Oberhauser 

et al. (1988)) have conducted experiments to calculate Hill coefficients for the 

BK Channel. Although there is some variation in the values of the Hill 

coefficients calculated (caused for example by obtaining data at different pH 

values), the mean Hill coefficients were between three and four, suggesting that 

the channel has a minimum of four calcium binding sites. Hence in our model 

we assume that each of the four subunits has a calcium binding site to which at 
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most one calcium ion may be bound. 

Further, experimental findings (e. g. Methfessel and Boheim (1982), Magleby and 

Pallotta (1983 a), Moczydlowski and Latorre (1983)) have noticed Caý'-dependent 

shifts in the time constants of both the open and closed exponential components 

of the probability density functions, indicating that both open and closed channel 

states should be capable of binding and unbinding Caý', a property which is 

reflected in our model. As in the model of the acetylcholine channel, we refer to 

ý1- - 

the state occupied by a channel subunit at any given time as its substate. Each 

suburlit may exist in either a closed substate, C, or an open substate, 0. In 

addition, we use the notation that if a subunit with a calcium ion bound to it is 

closed, it occupies substate Ccý, and if it is open, it occupies substate Oc, 

Since each of the 4 subunits can occupy any one of the 4 substates C, 0, Ccý, and 

Oca, there are 44= 256 possible combinations of substates occupied by the 4 

channel subunits,, each combination corresponding to a different channel state. 

Further, we assume that the channel is in an open state if and only if all 4 subunits 

are in open substates, regardless of the number of calcium ions bound to the 

channel. Thus the state space comprises 16 open states and 240 closed states. 
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3.6-1.2 Transitions 

There are 4 types of transitions which a subunit can undergo: 

The opening of a subunit in a closed substate, 

(ii) The closing of a subunit in an open substate, 

(iii) The loss of a calcium ion from a subunit in substate Cc. or substate Oca, 

(iv) The binding of a calcium ion to a subunit in substate C or substate 0. 

x kox / Kjr 

/I 
koA, / (a, Kjy ") 

qCa 

hIL, PI hIL, I"' h/ (a2Lf) Ih/ (a, L116' ') 

x kox / Kjy 
"ýCCa 

kox l(a2Kjr") 

Figure 3.22. Transition rates for a BK channel subunit 

Whenever any channel subunit undergoes a transition from one substate to 

another, the channel enters a different state. The rate for such a channel transition 
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is given by the corresponding subunit transition rate, which may or may not be 

dependent upon the substates occupied by neighbouring subunits, and is given by 

Figure 3.22, whose parameters are defined and explained in section 3.6.1.4. 

3.6.1.3 Subunit Interactions between Nearest Neighbours 

In the model for the acetylcholine receptor, described in section 3.2, subunits' 

opening rates, closing rates, or both, are modelled to vary according to whether 

zero, one or two of the subunits which lie adjacent to that subunit in the subunit 

ring are open. This type of subunit interaction is incorporated into the BK 

channel model via the equilibrium constant L, in exactly the same manner as for 

the nAChR model. As for the nAChR model, the assumption that only 

neighbouring subunits interact is based on the fact that a change in subunit 

confonnation corresponds to a change in subunit shape which is likely to affect 

only touching subunits. 

Additionally,, the C2' binding and unbinding rates for a subunit are modelled to 

take different values depending upon the number of adjacent subunits which 

already have Ce bound. The equilibrium constant K, is incorporated into the 

Ce binding and unbinding rates to allow this second forra of nearest neighbour 

subunit interaction and its use is described in more detail in the next subsection. 
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3.6.1.4 Deftition and Explanation of Parameters 

If a subunit is closed then association and disassociation of a calcium ion occur 

at rates xko, ýIK, 
Y 
and 

kON1(q2KJ ý"), respectively, where x is the Caý' concentration, i 

k0A, is the association rate, Kj is an affinity constant (see below), the value of 

determines the nature of the dependence of Caý' binding and unbinding on the 

number of neighbouring subunits with Caý' bound (see below) and the parameter 

a2< I 
reflects the decreased affinity of a closed subunit for Caý'. If a subunit is 

open then association and disassociation of an agonist molecule occur at rates 

xkoA r and koml(aKjý"), respectively, where the parameter a, >I reflects the i 

increased affinity of an open subunit for Caý'. The parameters h, L, K,, Koo, Koc 

and Kcc and, # are exactly as defined in section 3.2.2 for the nAChR model. 

The equilibrium constant for a given subunit to bind a calcium ion (ie. to undergo 

a transition from state 0 to state Oc,, or from state C to state Ccj is the ratio of 

the transition rates for that transition and the reverse transition and is thus K,. 

McManus and Magleby (199 1) conclude from experimental results that 

independent Ca" binding sites are inconsistent with the data and that there must 

be some form of cooperative interaction among binding sites. It is not yet known 

whether this cooperative interaction is based on four equivalent C2' binding sites 

or is a feature of sequential binding occurring when the binding at a site induces 

a conformational change which either exposes the next site or increases the 
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binding constant of the next site from a negligible value. We will model this 

cooperative interaction by the introduction of nearest neighbour subunit 

dependency of binding and unbinding of Caý' which incorporates a variation in 

the value of Kj according to the substates occupied by the two subunits adjacent 

to the subunit in question. So letj = 0,1 or 2, according to whether the subunit 

in question has 0,1 or 2 neighbouring subunits with Ca' bound and set the values 

of K, accordingly. McManus and Magleby (199 1) conducted experiments using 

large-conductance calcium-activated potassium ion channels from rat skeletal 

muscle and found that the effective equilibrium constant for C2' binding 

increased approximately 6-fold for the binding ofthe second calcium ion and then 

increased another 60-fold for the binding of the third calcium ion, with the fourth 

binding being many times faster than at least the first two. In order for the model 

to display the property that calcium ions are more likely to be bound to subunits 

whose neighbours, already have calcium ions bound, the values ofKj must satisfy 

K2> K, > KO. It should be noted that our BK channel model can be shown to be 

time reversible using a similar argument to that used in section 3.3.1.1 for the 

O'f 
2 

P3 
model and that Kolmogorov's criterion for reversibility imposes the 

condition KO K2= KI'. It should also be noted that, if the parameters satisfy 

KO-K, =K2, then each of the 4 subunits binds and unbinds Ci' independently 

of its neighbouring subunits. 

The value of r detennines whether and how the Ca" binding rate (r=- 1) for a 
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subunit, the Caý' unbinding rate (y = 0) for a subunit, or both of these mtes 

0 or -1) are dependent upon the substates occupied by neighbouring 

subunits. McManus and Magleby (199 1) have found experimentally that both 

Ca? + binding and unbinding rates vary according to the number of Ca? + already 

bound, suggesting that y t- 0 or -1. It is worth noting that the ratio of CaF+ 

binding rate to Caý' unbinding rate for a given subunit remains constant as 

varies. 

3.6.2 Biophysical Discussion of Model Properties 

In this section we discuss properties of the BK channel model formulated above 

and show that they are consistent with the results of experimental studies of large 

conductance BK channels in the ion channel literature. 

3.6.2.1 Reversible Markov Process 

Studies by McManus and Magleby (1991) of skeletal muscle potassium ion 

channels suggest that the gating should be consistent with a Markov process in 

which tile transition rates from any given state depend only on the state that the 

channel is in and not on the history of the preceding transitions. Support 

consistent with Markov gating comes from the observation that the time constants 

of the components in the open-time and closed-time probability distributions are 
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independent of previous channel activity (McManus and Magleby (1989)). 

Further, the gating should be consistent with microscopic reversibility, as 

indicated by the observation that the relationship between the durations of 

- -1. adjacent open and closed intervals is independent ofthe time direction ofanalysis 

(McManus and Magleby (1989)). As discussed in section 3.6.1.4, our BK 

channel model is time reversible. 

3.6.2.2 Numbers of Channel Open and Closed States 

In the Or2P3 nAChR model, states which can be pictorially represented as 

reflections of each other (see section 3.3.1.4 and Figure 3.6) are aggregated to 

form a single state in a reduced state space. In the BK channel model, some 

further reduction of the state space is possible since all four subunits are 

a-subunits and are modelled as having identical behaviour to each other, 

therefore yielding further symmetry to exploit. In this model, states which can be 

pictorially represented as rotations of each other are also aggregated together to 

give a single state in the reduced state space. Thus it can be shown that the 

reduced state space for the BK channel model comprises 55 states, compared with 

the unreduced state space which comprises 256 states. Assuming that all four 

subunits must be in open substates in order for the channel to be open, these 55 

states comprise 6 open states and 49 closed states. 
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The numbers of exponential components fitted by McManus and Magleby (1988) 

to the dwell-time distributions that they obtained experimentally indicate that the 

BK channel should have at least three or four open states and at least six to eight 

closed states. Note that the observed number of exponential components in the 

dwell-time distributions is entirely consistent with a large state space model in 

which many ofthe states have similar kinetic properties and are thus not detected. 

McManus and Magleby (199 1) consider a number of small state space models 

and comment that it is possible that the inability of these simpler schemes to give 

. 1- 
- 

daeoretically perfect descriptions of the data arises because the gating has some 

of the features of models with larger state spaces. In particular, Rothberg and 

Magleby (1999) examine a number of possible small state space models and find 

that they cannot accurately describe the dependency between lengths of adjacent 

so . ourns at high Ca 2+ 
concentrations. Rothberg and Magleby (1999) also j 

investigate a possible 50-state model for the BK channel and find that the 

additional kinetic complexity gives a model capable of capturing a greater range 

of experimental channel behaviour. Thus the numbers of open and closed states 

in our model of the BK channel are consistent with the conclusions of McManus 

and Magleby (1988), McManus and Magleby (199 1) and Rothberg and Magleby 

(1999). 
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3.6.2.3 Durations of Channel Openings and Closings 

When Caý' is bound to a subunit, its closing mte is h/ (aL, 16"), whereas its 

closing rate is h/ Lj)6+ I when no Caý' is bound. Since in our model we set a, > 1, 

the closing rate of a subunit with Caý' bound is less than its closing rate with no 

Caý' bound, and hence, on average, a subunit remains open for longer when it has 

a calcium ion bound. Similarly, given a value of a2< 1, consideration of the 

opening rates enables us to verify that, on average, subunits remain in a closed 

state for less time when they have Caý' bound than when they have no Caý' 

bound. Magleby and Pallotta (I 983a) reported that openings in the longer 

duration open states required a BK channel to have more calcium ions bound than 

openings in the briefer duration open states. Conversely, they found that closings 

in the longer duration closed states required a BK channel to have less calcium 

ions bound than closings in the briefer duration closed states. Our assumptions 

regarding the values of a, and q2, and their resulting impact on the subunit, and 

hence channel, opening and closing rates are consistent with these results. It 

should also be noted that increasing the calcium ion concentration, x, in our 

model drives each subunit, and hence the channel, from the longer duration 

closed states to the briefer duration closed states and from the briefer duration 

open states to the longer duration open states, which is again consistent with the 

experimental findings of Magleby and Pallotta (1983a). 
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In a realistic model, parameters take values such that Ca" binding and unbinding 

rates are relatively small compared to subunit opening and closing rates. This 

means that a closing (opening) of a subunit with Caý' bound will usually be 

adjacent to an opening (closing) in which that subunit has a Caý' bound. A 

similar phenomenon occurs when no calcium ion is bound to the subunit. Since 

a subunit with Ce bound has, on average, longer openings and shorter closings 

t1m when no Caý' is bound, one feature of this model will be an inverse 

relationship between the durations of adjacent openings and closings of each 

subunit, and hence of a channel. This inverse relationship is a feature supported 

by the experimental findings of McManus et al. (1985) who, for a large 

conductance calcium-activated potassium ion channel in skeletal muscle, plot the 

mean duration of all open intervals adjacent to closed intervals within a specified 

range of durations against the mean duration of the specified closed intervals (see 

McManus et al. (1985) Figure 1). As the specified closed intervals become 

longer, the mean durations of the adjacent open intervals become shorter. 

McManus et al. (1985) also found a similar inverse relationship between the 

durations of adjacent open and closed intervals when the mean closed intervals 

adjacent to specified ranges of open intervals were determined (see McManus et 

al. (1985) Figure 2). Note that these experimental findings exclude models for 

the BK channel in which there is only one transition pathway between the open 

and closed states since such models require that the mean durations of adjacent 

open and closed intervals be independent. 
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3.6.3 Model Variations suggested by Experimental Studies 

Since the model developed above is based so closely upon channel structure and 

has parameters which can be interpreted directly in terms of channel 

biophysiological properties, it is easy to adapt it to reflect different assumptions 

which may be suggested by experimental data. This feature makes our model an 

improvement on smaller state Markov models previously considered in the 

literature whose parameters had an unclear relationship to the underlying 

structural properties ofthe ion channels involved and hence could not be so easily 

adapted. Further, an increase in the complexity of channel properties to be 

described by our model does not necessarily result in a commensurate 

proliferation of model parameters, as demonstrated in the two examples below. 

3.6-3.1 Channels to which more than four calcium ions may be bound 

In two offliirteen experiments conducted by McManus and Magleby (199 1), Hill 

coefficients greater than four (4.1 and 5.0) were observed, suggesting that a 

mimmum of five CW' binding sites may be required in some cases. In particular, 

an increase in the Hill coefficient has been observed when the pH level at which 

the data have been obtained has been decreased (e. g. Cook et aL (1984), 

Christensen and Zeuthen (1987), Blatz (1989), Kume et al. (1990) and Laurido 

et al. (1990)). 
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Figure 3.23. A possible scheme of transition rates for a BK channel subunit which can bind two 

calciwn ions. 

One way in which possible binding of an increased number of Caý' ions to a 

channel may be incorporated into our model is by increasing the number of Caý' 

which may be bound to one or more subunits, or, equivalently, increasing the 

number of substates which one or more subunits may occupy. Although this will 

result in an increased state space size, it is not necessary to increase the number 

of parameters if, for example, we proceed as follows. Let02CL andC2c. denote 

open and closed substates, respectively, in which a subunit has two Caý' bound. 

Then the transition rates for that subunit could be defined by Figure 3.23, where 

all parameters retain their biophysical interpretation as given above. Note that the 

opening and closing rates for a subunit with two Caý' bound contain the factors 

11 a2 2 
and 

l1a 
12, respectively, since experimental data suggest that a BK channel 
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has a faster opening rate when more calcium ions are bound (McManus and 

Magleby(1991)). The incorporation of these factors also ensures that the model 

retains its microscopic reversibility property. Using this new transition rate 

scheme, we can calculate equilibrium distributions and statistical properties as for 

the original model. 

3.6-3.2 Channels which open only when calcium ions are bound 

Although Hill coefficients calculated experimentally can give an indication ofthe 

minimum number of calcium ions which are bound to the channel when it is fully 

activated, it is not known for certain whether a BK channel requires aii ---- 

number of calcium ions to be bound in order for that channel to be open. 

McManus and Magleby (199 1, Scheme X) give an 8-state model with 3 open and 

5 closed states such that the channel can open only with 2,3 or 4 Caý' bound and 

comment that since their data suggest that the duration of the open state increases 

with the number of Ca 2+ bound, it may well be the case that the channel can also 

open with zero or one Ce bound but that the durations of the openings in these 

cases will be so brief that they are not detected experimentally. Our model can 

easily be adapted to cater for a requirement in which a minimum number of Caý' 

are required for the channel to open by relaxing the assumption that a channel 

with 4 open subunits is always open. For example, for a model in which a 

channel requires two Ci' to be bound for it to open, the reduced state space will 

consist of 4 open and 51 closed states instead of 6 and 49 respectively, the two 
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extra closed states being those in which all 4 subunits are in open substates but 

the channel has zero or one Ce bound. This reclassification of some open states 

as closed states affects neither the total number of states nor the transition rates 

between those states and it is therefore very simple to recalculate channel 

properties under this model variation. 

3.7 Discussion of Large State Space Models based on 

Molecular Structure 

All the models examined in this chapter are based on simple postulates and yet 

have resulted in a relatively high level of complexity, particularly regarding the 

number of states required to accurately describe the channels being modelled. 

The requirement for this level ofkinetic complexity is supported by Rothberg and 

Magleby (1999) who reject a variety of small state space BK channel models 

which cannot replicate experimental results in favour of a model with 50 states. 

However, Rothberg and Magleby (1999) point out that even this 50 state model 

is a reduced model compared with the likely actual gating mechanism since states 

with similar properties (which they term isoforms) are not all included in their 

model. Inclusion of these states would increase the state space size to I 10. 

Further, Rothberg and Magleby (1998,1999) suggest that BK channels may have 

additional brief lifetime closed states which, when included in their model, 

improve the description of the Caý' dependence of the kinetic structure and give 
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rise to the majority of the brief closings (flickers) in the gating. The inclusion of 

these states increases the state space by a finther 50%. Recent improvements in 

technology have allowed analysis ofincreasingly large data samples (e. g. 500,000 

openings, and Silberberg et al. (1996) have found that BK channels exhibit a 

fiuther feature, termed wanderlust kinetics, in which slow changes in kinetics 

occur over a time course of tens of seconds to minutes. This feature could be 

modelled by allowing several kinetic modes with different levels of open 

probability, introducing more states, more parameters, and thus yet more 

complexity into the modelling process. 

Although BK channel models have been examined in some detail, models of 

some other types of ion channels have not been investigated in such depth. 

However, the small state space models of various types of ion channels which 

have been studied tend not to have the ability to fully describe channel data. 

Whilst larger state space models may be more successful in describing certain 

features of experimental data, it seems that as further experimental research has 

resulted in an increase in known channel kinetic properties, the models 

accounting for such properties have become increasingly complex. The models 

formulated in this chapter attempt to describe known features of channel kinetics 

using a large state space whilst remaining simple in tenns of their number of free 

parameters and the postulates upon which they are based. As is the case with any 

model, as fin-ther information becomes available, these models will require 

reftement. 
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4 Inference for a Two-state Ion Channel Model 

4.1 Introduction 

Model 

As discussed in section 2.1, the gating behaviour of a single ion channel is usually 

modelled by a continuous-time Markov chain with a finite state space. The 

complete process is unobservable; rather the state space is partitioned into two 

classes, termed 'open' and 'closed' corresponding to the channel being 

respectively open or closed, and it is possible to observe only which class the 

process is in. In this chapter, a two-state Markov model with one open state and 

one closed state is considered. Open and closed sojourns are assiuned to be 

independent negative exponential random variables with means Iwo and luc. Let 

TI, SI, T2, S2,... be the durations of successive open and closed sojourns of the 

channel. It is assumed that short sojoums in either state fail to be detected (see 

section 2.2). In particular, it is assumed that there are known constants ro and rc 

such that any open (closed) sojourn of duration less than ro (rc) is undetected. 

Under this model,, an observed open sojourn, T say, is defined as commencing 

with an open sojourn of duration at least zo, followed by a random number, N 
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say ,, of arbitrary open sojourns separated by undetected closed sojourns, and 

terminated as soon as there is a detected closed sojourn. Hence 

(T-,, + Si*),, (4.1) 

where T' has the same distribution as T, conditional on T, being greater than zo, 

Sj* (i = 19 2,... ) has the same distribution as S, conditional on Si being at most rc 

and the sum is omitted if N=0. 

In practice it is more convenient to work with adjusted observed open and closed 

so . ourns, defined respectively by U=P- ro and P=S- Zc. 9 

4.1.2 Distribution of Observed Open and Closed Sojourns 

Moment-generating Functions, Means and Variances 

For i=1,2,..., let fT, (t), fs(t), fs. (t) and fT. (t) be the probability density 
Iii 

functions of Ti, S, S*, and T, respectively, and let FS1(t) and FT 
1 
(t) be the 

distributionfimctions ofS, and T1, respectively (Milne et al. (1988)). Then since 

2,... ) are exponentially distributed with mean yo, 

0t:: 
5.0 

fTi (t) 
po-1 exp(-t//jo) t> 03, 
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with a similar expression holding for fS 
i 
(t). For i=1,2,..., the sojourn length T' 

has the same distribution as T, conditional on T, being greater than ro. Therefore 

fT 
- 
(t) = fT 

I 
(t) (1 - 

FT 
I 
(ro))- I 

for t> To and so 

fT 
/ 
(t) 

0t:! ý To 

po- 1 exp (t - ro) 1yo) t> ro. 

For i=1,2,..., the sojourn length S*, has the same distribution as S, conditional on 

S, being no more than I"c. Therefore fs 
i- 
(t) = fs 

i 
(t) (Fs 

I 
(rc))-l forO<t:! ý -rcand 

hence 

0t:! ý 0 and t> -rc 
fsi. (t) 

[pc exp(- rc/pc))]-l exp(-t Ilid 0<t:! ý, -rc - 

The nwnber N of undetected closed soj ourns in an observed open soj oum r has 

a geometric distribution with parameter 1- Fsl(-rc) = exp (- rc /jj c). Thus 

pN k) (_, rCIIjC)(1 - exp(-. r 1, UC))k 0,15... ) exp c 

and, for 0 ::! ý s :! ý 1, the probability generating fimction, GAs), of N is given by 

G (S) Sk eX (-, r / IjC) exp (-. r IUC))k Npcc 
k=O 

= exp(-rc//ic)(I - (I - exp(-rclljc))s)-l. 
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ReCalling the standard theory that, if S=X, + X2 + 
... 

+XA,, where X1, X2,..., Xmare 

independent identically distributed random variables with moment-generating 

fimction 0, (0), and N has probability generating function H, (s), then the 

moment-generating fimction of S is given by HN(Ox(O)), it follows, by 

independence of successive sojourns, that the moment-generating function, 

45U (0) = E[exP (- CJ 0A say, of the adjusted observed open sojourn length U 

is given by 

E[exp(-I'O)]E[exp(-Ot(T.,, + Si*))]E[exp(-roO)] 

= OT'(0) GN 145TI (0) IP Si- 
(0) ] exp (ro 0) (0 2: 0)5 

where, for 19 ý!! 0, the moment-generating: ftmctions OT, (O), OTI (0) and 0 
SI* 

(0) 

of 7, T, and S, * respectively, are given by 

00 

OT- (0) = 
fexp 

t 0) po- 1 exp (- (t - ro) / po) dt 

ro 

= exp(- r. 0) (1 + po 6)-' 

cc 

OTI (0) = 
fexp (- t 0), ao- 1 exp (- t/ po) dt 

0 

= (1 

and 

(0 : -> 
0)10 

(0 z 
0)9 
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rc 
fexp(-tO)pc-'(l 

- exp(-rc/pc))-lexp(-t//jc)dt 

0 

= (1 - exp(-rc//. Ic))-' (I + ljcO)-' 

exp(-(O + pc rc)) 

Hence, for 0 ý! 0, 

4517 (0) = 
(I pc 

(0 -2: 

j92 + (, ao +y )ig] e (r + eX [#O/jc 
c xp c /j cp 

igr 
c) 

(4.2) 

Since the mean and variance, vo and jro' say, of U are given by -0 'U (0) and 

45 "c 
j 

(0) 
- 

(0 - 
ci 

(0))2 
respectively, where " denotes differentiation, it follows 

that 

and 

vo = (, uo + jjc)exp(rc/jjc) - yc - -rc (4.3) 

~2 = [(, go + Y. ) eXP(, r. /ß. ) - rC]2 010 

(4.4) 
2 

- 2/joljcexp(rc/lic) pc C, 

j2 Similarly, the mean and variance, vc and C 1, of adjusted observed closed 

sojourns are given by 

Vc=(, ao + lic)exp(ro/po) - po - ro (4.5) 
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and 

-2 OrC = [(Ijo + IjC) eXp('ro//jo) - 1.0]2 

(4.6) 

- 2poacexp(ro/yo) - ýto 0. 

4.1.2.2 Approximations 

Let TI, SI, T2, S2,... be the durations of successive observed open and closed 

sojourns and let U1, VI, U2, V2,... be the corresponding adjusted observed sojourn 

lengths. Note that U,, PI, U2, V2,... inherit mutual independence from T,, &I, T2, 

Suppose we wish to make inferences concerning (yo, 1.1c) from a random 

sample ý,, ý,, ki, ý,, of n successive pairs of adjusted observed open and 

closedsojourns. Exact likelihood-based inference is difficult since OU(O) and OV(8) 

cannot easily be inverted analytically in the presence of time interval omission 

(but see Hawkes et aL (1990) and Jalali and Hawkes (I 992a)) and thus there are 

no sinaple expressions for the probability density fimctions, fa(t) and fp(t) say, 

of adjusted observed open and closed sojourns. Yeo et al. (1988) considered 

maxlmwn likelihood estmation of (gý lic) based on various approximations to f&(t) 

and fp(t), three of which are discussed below. 
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4.1.2.2.1 Approximation derived by ignoring Undetected Sojourns 

D- 

Roux and Sauve (1985) considered an approximation to P in which the 

contribution of the undetected closed sojourns, Si* (i = 1,2,..., N), is ignored in 

equation (4.1). Although this is not an unreasonable approach if rc is very small 

compared to go, estimation based on this approximation will clearly be biased. 

Let 45(l) (0) be the moment-generating fimction of an adjusted observed open U 

sojourn under this approximation. Then adapting the derivation of OU(O) to 

ignore undetected closed sojourns, it immediately follows that 

4p(l) U 
(0) = OT'(0) GN [ OTI (0) ] exp (ro 0) 

= (I /-loexp(rc//ic)O)-l (0 0)5 

which is readily recognised as the moment-generating fimction of a negative 

1 

exponential distribution with density function ý,, ) (t) given by 
U 

0 

ili-, "(t) = u v, -l exp(-t/vl) 

where 

v, = uoexp(rc//jc). 

týO 

t>O, 
(4.7) 

(4.8) 

Similarly the density fimction fý, ')(t) of adjusted observed closed sojourns is 
V 

given by 
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0 

.4 
11(t) = v -1 exp(- tl v2) 2 

where 

v2 = pcexp(ro/yo). 

4.1.2.2.2 Approximation using Exponential Distributions with True Means 

(4.9) 

Yeo et al. (1988) also study a natural approximation which improves on equation 

(4.7) by replacing v, with v,,, the true mean duration of an adjusted observed 

open sojourn, given in equation (4.3). Let fo(, 2) (t) denote the probability density 

. 
r_ 

- -- 

function for adjusted open sojourns under this approximation. 

4.1.2.2-3 Bi-exponential Approximation 

Another approximation tofC, (t) is derived by expanding exp(- Orc) in Og(O) in 

equation (4.2) to the term in 02 and inverting the resulting moment-generating 

function using partial fractions. Again the mean duration ofan adjusted observed 

open sojourn coincides with its true mean and this approximation is usually good 

since rc is small. 

týO 

> 03, 
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Yeo et al. (1988) state that, under this approximation, the density function 

,3 
)ý" )W 

say, for adjusted observed open sojourns is given by U 

fýlw 0t :ý0 
u (alla2) exp (- tl a2) + (a3l aý exp (- tl a4) t>0 

where 

T2 - PC) (a2 
- a4) 

a3 al 

and 

a2, a4 = V2(p ± (p2 - 4q)y2) 'ý'a 
01ý2 

' 4)ý 

where 

p= (po + pc) exp(-rc / pc) - zc, 

and 

po pc exp( rc / yc) + 1/2 -cc'. 

4.13 Inference from Observed Sojourn Times 

Maximum Likelihood Estimators and Method-of-Moments 

Estimators 

Consider the approximations of sections 4.1.2.2.1 and 4.1.2.2.2, under which 

durations of successive adjusted observed open sojoums, U say, are 
UP) U25-ý 

n 
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assumed to be independent identically distributed random variables having 

negative exponential distribution with mean VO = VO(, U) where p denotes 

(/40,1-1c). Let U15 U2,,. 
", u,, be the realisations of U,,, U2,, 

---, 
U, 

and let -U denote the 

sample mean given by 

ui 

,, with mean vc = vc(p), realisations v,, v2,..., v,, and sample Define Vj, V2,..., V 

mean V, analogously for adjusted observed closed sojourns. 

Then the likelihood fanction,, L(p) say, is given by 

fj(vo(p))-lexp[-(vo(p))-luj] 

i=l 

(vc(lj))-l exp[-(vc(/j))-l vj 

= L, (vo(p)) L2( vC UJA say' 

The log-likelihood: ftmctions In [LI(vo(I-1))] and In [L2(Vc(1j))] are given by 

ln[Ll(vo(, u))] = -n(ln(vo)+ulvo) 

and 

ln [L2(VC(#))] = -n (ln(vc) + v-/ vc) 3, 
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and are maximised at vo(, a) = u- and Vc(, a) = V, respectively. Let 

VO(p), vc(ju)). If values of go and pc exist which satisfy qp) = (U 
9 
v), 

then those values maximise L(p) and the maximum likelihood estimator of 

coincides with the method-of-moments estimator of /J. 

Let v= h(p) = (ho(p), hc(p)), where the function h is determined according to 

which approximation is under consideration. For the approximation discussed 

in section 4.1.2.2.1, the function ho is detennined by setting ho = v, where v, is 

given by equation (4.8) and, for the approximation discussed in section 4.1.2.2.2, 

it is deterrained by setting ho = yo where yo is given by equation (4.3). The 

fimction hc is determined using similar equations for closed sojourns. For the 

approximation of section 4.1.2.2.2, in which ad usted observed sojourns are j 

assumed to follow negative exponential random variables having the correct 

means, it is proved in Theorem 4.1 of section 4.2.2 that the equation h(IJ) = Vhas 

either zero, one or two solutions according to the position of the point ( VO, vc) in 

relation to a particular strictly decreasing fimction vc f( vo), say. Define sets 

«x, y) c (R +)2 :y == i(X)} 
3, 

T=ýy 

and 

{(x, y) E (R')' :< i(x)l 
- 

Tben, by Ibeorem 4.1, the equation h(p) =v has one solution for vE0, two 
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solutions for vGT and zero solutions for vGZ. Equivalent results hold for the 

aPProximation considered in 4.1.2.2.1 (see Yeo et al. (1988)). 

In the case (ii, -v) C0 (7), the method-of-moments estimating equations have one 

(two) solution(s) giving the maximum likelihood estimator(s) of p. Now 

consider the case in which (-u, -v) GZ and the method-of-moments cannot be used 

to provide maximum likelihood estimators of /J. In order to determine the 

maximum likelihood estimator(s) of p, we proceed by maximising L(v) = 

L 
I( 

vo)L2( VC) for vE0uT. First suppose that V=( vo', vc') G{vET 

vo ý!: U and vc ý: V 1. Let V* denote the point of intersection of 0 with the straight 

line joining V and (u-, Vv). It is easily shown that, for vo > U-, L I( vo) increases as 

vo decreases and therefore that Ll(vo*) ý! Ll(vo'). Similarly, L2(VC*) 2! L2(VCI)I, 

and hence L(V*) ý! L(V). Next suppose that v" = (vo", vc"') c {v e T. 

vo 2! U and vc < V} and let V vo 1, vc') now denote the point of intersection 

of the two straight lines vo = vo" and vc = -V, noting that VGIvG T-. 

vo ýý U and vc ýý V). Clearly, LI( vo') =LI( vo "), and it is easily shown that, for 

vc < V, LA VC) increases as vc increases and therefore that L2(VCI) > LAVC // )* 

Hence L( V) > L( V"). Finally, suppose V" CIvCT vo < u- and vc ý! -v 1. Then 

a similar argument shows that there is again a point V say, in {vGT. 

vo ý! u and vc ý! -V) with L( V) > L( V"). It follows that, for any v60uT, there 

is a point 11 G0 such that L( V) ý! L( 0. Thus the problem is reduced to locating 

the maximum ofL( V) subject to vc vo) and ii :. -ý vo:! ý (-v). This problem U 
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can be solved using an appropriate numerical software package. 

4.1.3.2 Identifiability Problems 

Section 4.1.3.1 raises a problem with inference for the two-state model. Time 

interval omission induces non-identifiability in that, whenever vET, there are 

two solutions to the method-of-moments estimating equations, corresponding to 

two peaks of almost equal height of the likelihood surface. In Theorem 4.2 of 

section 4.2.3, we show that v EF T is the usual situation when the number of 

observed sojoums is sufficiently large. 

For the approximation discussed in section 4.1.2.2.1, Yeo et al. (1988) prove that 

the method-of-moments estimating equations have zero, one or two solutions 

depending on the value of v (see Section 4.2.4.1). Yeo et al. (1988) also prove 

that the bi-exponential approximation of section 4.1.2.2.3 yields an identifiable 

model. Further, it is conjectured by Yeo et al. (1988) that the approximation 

considered in section 4.1.2.2.2 yields method-of-moments estimating equations 

with zero, one or two solutions. This conjecture is proved in section 4.2. 

Two methods have been proposed for overcoming the above identifiability 

problem. In practice, the sequence of open and closed so ourns of the channel is j 

reconstructed from the observed single channel record by using a filter and an 
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associated threshold crossing algorithm. A computationally highly intensive 

simulation-based method has been suggested by Magleby and Weiss (1990a) 

which involves modelling the true effects ofthe filter. Another method proposed 

by Colquhoun and Sigworth (1983), Blatz and Magleby (1986) and Yeo et al. 

(1988) involves using samples with different minimum detectable sojourn lengths 

and estimating (yo, pc) for each sample. Then, as the detection limit varies, one 

estimate of (, uo, lic) remains approximately constant while the other varies 

significantly, thereby allowing the true solution to be determined. 

In section 4.3 two new methods of overcoming the identifiability problem are 

discussed. The first bears resemblance to the method of using samples with 

different minimum detectable sojourn lengths limits but instead uses samples 

with different agonist concentrations. The mean length of a closed sojoum of an 

agonist-activated channel is modelled as a-'yc, where a is the agonist 

concentration, which is assumed to be known. In order to use the methods which 

involve varying the detection limit or varying the agonist concentration, it is 

necessary to observe single channel records under different experimental 

conditions. As, in practice, records of reconstructed sojourn times are frequently 

used to fit models, it is clearly beneficial to have a method of discriminating 

between the two solutions on the basis of one such record. The second new 

method proposed in section 4.3 does not require taking samples under different 

experimental conditions but instead uses observed open and closed soj ourn length 
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sample variances to discriminate between the two solutions. Numerical examples 

based on simulated data provide evidence that these two new methods will work 

in practice. 

4.133 Asymptotic Behaviour of Method-of-Moments Estimators 

Clarke et al. (1993) investigate local asymptotic theory for situations when there 

are multiple solutions of the likelihood equations and apply this to obtain 

simultaneous consistency and asymptotic normality results for the maximum 

likelihood estimators for y under the approximate models of sections 4.1.2.2.1 

and 4.1.2.2.2. As stated in section 4.1.3.1, under these approximate models these 

maximum likelihood estimators correspond to method-of-moments estimators. 

In section 4.2,, a framework is developed for analysing the asymptotic behaviour 

of these method-of-moments estimators under the exact model as the numbers of 

observed open and closed sojourns become large. This fi-amework can be used 

to shed light on the origin of the non-identifiability discussed in section 4.1.3.2 

and makes possible an evaluation ofthe accuracy ofthe simultaneous confidence 

sets given in Clarke et al. (1993), which were based on the approximate model 

discussed in section 4.1.2.2.2. Further, this fimnework can be used to give a 

formal justification of the methods for overcoming the identifiability problem 

which involve using multiple samples with varying detection limits or agonist 

concentrations. 
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4.2 Method-of-Moments Estimators 

4.2.1 Notation 

In this section, a direct argument is used to derive asymptotic results for the 

method-of-moments estimators under the exact model. Modifying the notation 

(po, IjC)T V= (V 

of section 4.1.3, let 11 = and 0, 
Vý)T Then 

h(p) = (ho(ja), hc(p))', where the fimctions ho and hc are determined by 

equations (4.3) and (4.5). The method-of-moments estimators, /!,, say, of /j, 

based on a sample of n pairs of observed adjusted open and closed sojourns, are 

obtained by solving h(p) = P,, where 

T It iii, I :ý 
-ýi = (VnI. 

' 
Vnd Vn 

nn 

say. Before asymptotic properties of the estimator ^ are derived, some facts are 
w 

lln 

required concerning the function h. These facts are collected together in Theorem 

4.1 below. First some further notation is needed. 

Let 

aho ahoý 
apo a. "C 
ahc ahc 
apo ajac) 

177 



INFERENCE FOR A TWO-STATE ION CHANNEL MODEL 

and J(p) =I H(I)(, u) I be respectively the Jacobian matrix and the Jacobian of 

the transformation h. By elementary differentiation of (4.3) and (4.5), it follows 

that 

aho 

-= exp (rc / lid, (4.1 Oa) alio 

aho 
= exp(-rc/pc) (1 -2( 

aßc -rc il c ßo + yc »-1, (4.10b) 

jh C 
-ro 0) ro p0 -2( exp 00 + uc)) (4.10c) 

apo 

and 

ahc 
= exp(ro/po). (4.1 Od) 

apc 

LetA QR2 be an open set. For reN, a fimction h: A-R2 is of class C(r) on A 

(see Stromberg (198 1), p3 67) if all the rth-order partial derivatives of ho and hc 

are defined, finite and continuous on A. Further, h is of class 0') on A if it is of 

class 0') on A for all rGN. 

4.2.2 The Identifiability Problem 

Theorem 4.1 provides a proof of the conjecture of Yeo et al. (1988) concerning 

the number of solutions of the moment estimating equations and proves some 

facts concerning the function h which are needed in order to analyse the 
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behaviour of the method-of-moments estimators of /J. 

Theorem 4.1 (see Figure 4.1) 

(a) For all ve (R+ )2 the equation h(p) =v has either zero,, one or two 

solutions in (R' 

(b) The equation J(p) =0 implicitly defines a function pc =f(juo) on (0, oo) 

that is strictly decreasing, with lim 
.-0 

{Ax)) = oo wid lim 
. -,,. 

{Ax) I=0. 

Let 

«x, y) e (R')' -y =flx)1 , 

(x, y) E (R')': y >_gx». � 

and 

{(x, y) E (R')': y <ftx». 

The image, 0 say, of L under h implicitly defines, a strictly decreasing 

c function f: R' - R' by vf( vo). Let T (x, y) e (R +)2 :y> 

and let hs and hFbe the map h restricted to the sets S and F respectively. 

Then hs is a bij ection from S to T, with inverse : ftmction gs, say. 

Similarly, hFis a bijection from F to T, with inverse function gF, say. 

Moreover, the fimctions gs and gFare both of class C() on T. 
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Pe I 
vc = Zo 

Figure 4.1. Sets F, S, L, T and 0, and the bijections hs and hFwhen ro = rc = 0.1 ms, illuminating 

the proof of Theorem 4.1, part (a) (for details, see the statement of, and the text immediately 

following, Theorem 4.1). 

Proof 

First we prove the facts in part (b) concerning the equation J(1-1) = 0. Using 

equations (4.1 Oa-d), 

'VC (p 0+ PC) J(ß) =ec0 exp 
C(1---1 

ßc #0) 
ý 

Uc, 
ý 

/i c2 

x exp - 
70 

) (1 

- 
ro (po + PC) 

#0) 
, 

flo 
2 

So, letting u=1.16-' and v= pc7', equation (4.11) can be rewritten as 

J(, u) = exp (rc v+ ro u) [I-G (u, v)], 

180 
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where 

qu, v) = 
[exp 

rc v) +r V2/U +r V] cc 

+ 'r 0 U2/V +r 
[exp 

(- ro u) -10 Ul 

Hence J(, u) =0 if and only if G(u, v) = 1. By elementary partial differentiation 

of G(u, v) with respect to u, we obtain that 

aG 

au = 'vo 
[exp (- rc v) -1+ rc v] 

[l 
- exp (- ro u) +2uv-11 

ro T'C V+ rc v 
2U-2[l 

- eXp(-. roU) _ roUeXp(_ro U)l - 

Now, for x>0, exp(-x) -I+x>0 and I- exp(-x) -x exp(-x) > 0, and so 

aG / au >0 for all u. v>0. Similarly, aG / av >0 for all u, v>0. 

For uO > 0, 

limv-oýG(UO, V)j = äm ý (eX (_ Z. V) +rV2 UO + rc V) v-0pcc 

x 
(exp 

(- ro ud 7 U2V-1 + 'Vo Uo) 00 

exýp (-, r V) +r V2 U1+ rc v cc0 
= 

ämv 

-0' rou0 

1 

= HM u2 

(_ 
7C eX]p (_'ZC V) + 2-rcvu- 1+ 

-rc V-0 
ý ro 00 )ý 51 

by I'Hopital's rule, and so lim 
v-0 

{G(uo, v)) = 0. It is easily shown that 

lim 
,-. 

{G(uo, v) I ..: oo. Thus, since G(uo, v) is strictly increasing in v, there is a 

unique vo >0 such that G(uO, vo) = 1. Hence for each value of po, there is a 
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unique value of pc such that J(1j) -0 and therefore J(1j) =0 implicitly defines a 

stnctly monotone function pc =J(po) on (0, oo). Since, for vo > 0, G(u, vo) is 

strictly increasing in u, it follows that J(1j) is increasing in po for fixed values of 

1.1c, and similarly J(p) is increasing in lic for fixed values of po. Thus the 

fimetion lic =J(, uo) is strictly decreasing. By a similar argument, for each v, > 0, 

there is a unique ul >0 such that G(u,, v) = 1. It follows that, 

limpo 
- otf(ljo)) = 00 and lim/jo 

-- 
V(PO)l = 0- 

To prove part (a) it is convenient to change our notation slightly. Write x, y, w 

and z for go, lic, vo and vc, respectively. Tben, from equations (4.3) and (4.5), 

we are interested in the solutions of 

fl(x, y) = (x + y) exp(rc/y) -y- rc = w, (4.12) 

and 

f2(X" Y) = (x + y) exp (r., / x) -x- ro = z� (4.13) 

Bor (w, z) E (R'Y. Fix (wo, zo) E (R)'. For x>0, the inverse image of the line 

z= zo under the above mapping is given by 

y= (z. + ro + x) exp (- ro / x) -x=h, (x) say. 

Now 

(4.14) 
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hl (x) = (z. + ro + x) ro X -2 exp (- ro / x) + exp (- ro / x) 

For y>0, equation (4.14) implies that (zo + -ro + x) exp (- -ro / x) >x and so 

hl (x) > ro /x+ exp (- ro / x) -1 

>0. 

Now 

limý, (X) 
«ZO + 7,9) X -2 +X- 

1) 
7011 

_oh' = lün.., 
exp (ro / x) 

+ 
exp (ro / x) 

«ZO + ro) x2 +X) r0 

exp (r. x) 

= 

-1. 

As noted by Yeo, et al. (1988), h, (x) has a single zero, at xO say, in (0, oo). 

Therefore y= hl(x) is a strictly increasing fimction defined on (xo, oo). Further 

(zo + ro) + lim,, 
_. 

[x(exp(--ro/x) 

(zo + ro) + limx 
-o 

(exp (- ro x) 

x 

=Z0 ýý 

again by I'Hopital" s n: de. 
rP 
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Now consider the fimetion w(x) defined on (xo, oo) by w(x) = f, (x, h, (x)). Then, 

I--- ý1- - 

by the chain rule, 

dw afl af, dh 
I 

dx ax ay dx 
(4.15) 

evaluated at (x, hl(x)). But h, is defmed implicitly byf2 (x, hI (x)) = zo and so, 

again by the chain nile, 

c1h, af2 M 

dx ax ay 

evaluated at (x, h, (x)), noting that 

af2 

= exp(ro/x) *0 or co 
ay 

(4.16) 

for x ý! xO. It follows from equations (4.15) and (4.16) that 
dw 

=0 if and only 
dx 

if 

af, M af, M0 
ax ay ay ax 

or, equivalentlY, if and OnlY if Ax, hl(x)) = 0. Thus the turning points of w(x) 

satisfyJ(x, hl(x)) =0 and henceAx) = hl(x). But we have shown that h, is strictly 

increasing on [xO, oo) with hl(xo) ---: 0 and thatf is strictly decreasing on R' with 
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Ax) = 0. Therefore w(x) has exactly one turning point. 

Now 

w(x) = liniý-�, [fl(x, hl(x»] 

= limy 
_0[ 

(xo + y) exp (rc / y) -y- rc)] 

= 00 

and 

liniý, w(x) = liný, [fl(x, hl(X»] 

= lünx [fý (X, Z�)] 

= limx (x + zo) exp (ro / zo) - zo - ro)1 

00 

Thus the turning point of w(x) must be a minimum. Let w* = w*(zo) be the 

corresponding ii value ofw(x). Then it follows that equations (4.12) and 

(4.1 ý), with (w,, z) replaced by (wo, zo), have zero, one or two solutions according 

to whether w,, < w*, w,, = w* or wo > w*, respectively. 

Returning to part (b), and using the above results, any horizontal line z= zo 

mtersects 0 at exactly one point. A similar argument shows that the same is true 

for any vertical line w= wo. Thus 0 implicitly defines a strictly monotone 

function f: R' - R', given by f (z) =w* (z), alternatively written as vc f( vo). 
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It is clear from equation (4.14) that the value of hl(x), at the value of x at which 

hI (x) and L intersect, is greater for higher values of zo. Therefore the shape of the 

monotone function vc - I( vo) can be determined by considering the value of 

( VO, Vc) at which z= zo intersects 0 as zo -0 and zo - oo, or equivalently as 

(0, OO)T and/i 
. 

__,, 
(00,0) T. By manipulation of equation (4.3), 

lim, 
( 

*rc 
c 

exp (rc / yc) - 
Tc 

_ (0, _)- 
vo = lim, 

_ (0, go exp 
ý Pc) 

+I 
rc / PC 

= 

since, by Mopital's rule, 

limijc 
- co 

exp(rc//ic) 

Tc / /ic 
= limx 

-0 
exp (x) -1 ( =I- 

It is easy to show that 

limß 
- (0, -)- 

and therefore, by symmetry, 

limß 
- (-, 0)- ( vog vc) = (DO 5, 

Hence 1 is strictly decreasing. 

The bijection property of hFand hs follows directly from the proof of part (a). 
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Finally, it is easily verified that h,, and hs are of class C(') on F and S respectively. 

It then follows from the Inverse Function Theorem for R' (Stromberg (198 1), 

pages 377-378) that gFand gs are both of class C() on T. 

4.2.3 Asymptotic Properties of the Method-of-Moments 

Estimators 

This section contains an analysis of the asymptotic behaviour of the method-of- 

moments estimators as the number of observed open and closed sojourns 

becomes large. First some more notation is introduced. 

For vGT, let g= gs(v) and /J'= gF( V) be the two solutions of h(ja) =v where 

T, If =FT aa and lics > lic. Then from equation (4.3) it (po, /jc) (0Pc) 

follows that 

I U 
ss Sý) SF+ 

JF UF 
F 

(Y 0 Pý) exp cj0 eXp (, rC c + -rc / /I 

This equation can be rearranged to obtain 

sF 
exp rc( I-1 )1 

Po --: Po 
Fs 

PC PC 

L 7C / �F exp(-r. /p cca- 1)] 
. 

s 
pF (exp ý) - 1) - ßs (exp (rc / ßs 

By considering the series expansions of exp( rc / lic') and exp( I'c / ljcý, it follows 
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immediately that 

FFss 
pc (exp(rc / pý) - 1) - uc (exp(rc / pý) > 

and thus juos > po F. Hence g and If are termed the 'slow' and 'fast' solutions 

respectively (see also Yeo et al. (1988)). 

Since h is one-to-one on L, gs and gFean be extended to Tu0 by defining 

gs(O = gF( V) = h-1 ( 1) for vG0. Estimators fi,, s and fi,, Fof g and pFcan now 

be defmed by gs( VI) and /2ý' = gAVn), where for completenessfinS = ljýF =0 

if ^ (f Tu0. Let Gs(')(v) and GF(')( v) be the Jacobian matrices of gs and gF Vn 

respectively. Writing gs( V) = (gos( V), gcs( V)), it follows by standard theory that 

ss ago ago ahc aho 

a VO a VC 
=I 

alls aps cc 

ag. S a9cs c 
J ahc ahO 

a VO avcl a" s aps 0 01 

where 

aho ahc 

a, " s alis 0c 

aho ahc 

a, us aps c0 

Writing gA 0= (go'( 0, gc( 0), a similar expression holds for GF(')( t) 
- 
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Theorem 4.2 

If pTL then 

P( -GT for all sufficiently large n) = 1, Vn 

ýS 
as. SF as, F 

/in p and --,. p as n -- c*, Jn 

Is sD 

VI-n- 
PnP 

N(O, E) as n- oo, 
ýF F 

1jn P) 

where 

(1) (1) T) 

Gs (v)DGS('I)(V)T Gs" ( v) D GF', ( v) 
(1) 

T7 
: - J, 

GF(l)(v)DGS(')( V)T GF(l)(v)DGF(l)( V)T 

and 

016 
2o 

o2 uc 

( dF 2ý d ? ), diag 
.0c say). 

(b) If pGL then 

1'rlln--Ip( vn 7)1= V2; 

(ii) if 11,, s is defmed by 
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s 

s 
Ifn 

gn" 
if 

if vn 

and A' is defined similarly, then 

&S. F &S. 

and Ir. ' p asn-oo. 

Proof 

By the strong law of large numbers, 

v as oo. Vn 

Now y (t L implies that v6T, so part (a) (i) follows immediately since T is an 

open set. Also, since the function gs is continuous on Tu0, 

.S Pn 

and similarly 

a. s. s 
as n -- oo gs("n) - 9S(V) =P 

as. F 
as co. 
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Part (a) (ii) now follows, as does part (b) (ii) on noting that if pGL and v= h(, u) 

then gs( V) = g,, ( v) = /j. 

To prove part (a) (iii), first note that by the Central Limit Theorem 

D 

vfn- v) Z as n- oo, vn 

where Z- N(O, D). Now 

ýs 1jn - /is g, (V. ) - g, (V) 

, 
1jn -P) 

9F 
(A- 

9F(V) Vn) 

(4.17) 

so since gs and gFare both differentiable at V, it follows using the delta-method 

(see, for example, Andersen et al. (1992), pages 109-110) that 

Pn is D GS(l) ( v) 
Z as n- oo, 

ýp 
IjF 

) ýGF 
(V)) 

and part (a) (iii) follows. 

To prove part (b) (i), let go G L, VO = h(PO) =( vooý, voc)-' say, 

tan-', - af (Voo) a VO 
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and 

cos - sin 

sin cos 

Then the transformation x= M( V- VO) maps the curve vc = I( vo) to a curve 

X2 -,,: 
11 (xl) (where we have written x= 

(XI 
1, 

X2 
)T) 

satisfying 11 (0) =0 and 

0, where is the first derivative of A with respect to x,. For 

2,..., let x^,, = M(Vn- VO). ThenVnE T if and only if, using obvious notation, 

^> Using (4.17), Xn2 

D 
ýn- x^, --> 

MZ as n -- co � 

so since (0) =0 and 1, '(0) = 0, application of the delta-method yields that 

D 

vrn- (ic' I 
n2 1(: 

e X 
nd) 

Z 

where Z' = (0 I)MZ. 

Now Z- N(O, D) so Z' - N(O, &), where 

as n- oo 

or 2= (0 1) MD M' (0 lf 

= Sin2o d" + COS20 drC2. 
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Thus 

lün, P (1117 G T) = lim» P (ýn (42 - 
ii(ýý»i» > vn 

= P(Z, > 0) 

=1 

as required. 

The following corollary is an immediate consequence of Theorem 4.2, part (a) 

(iii), and can be used to construct confidence sets for g and yF. Let 

E, = Gs(')(v)DGs(l)( V)T anddefine E similarly. S, v F, v 

CoroUary 4.1 

If p (t L then, as n- oo, 

D 2 
n V,, 

- 
piýT 

S, v 
(9sn X2 

and 

F_ 
#F)T Z -1 ,FF2 n (ýi. F, v 

Wn -P)' X2 
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Since F(x) =I- exp(-x/2) is the distribution function of a X22random variable and 

hence F'(1 - a) = -2 In a, it follows that the ellipses 

R2 : 
(gS 

_ 
AT 

E -I(e _ n. vn 
ys) :: ý -2 In a) (4.18) 

H S, n 

and 

I IjF 2 (gF _, -1 (gF UF)T E- /I 
F) RnnF, 

vn -2 In a) 

are approximate 100(1 - a)% confidence sets for fe and respectively. 

In practice, Es', and EF 
, will be unknown and hence will have to be estimated 

_r__ - 

iiroM the data. The matrix E 
s' 0 

for example, can be estimated by setting 

& G (1)('ý 
bG(l)( A T5 

IES, VS 
Vn) 

S 
Vn) where b is obtained by replacing the variances 

and jc' in the definition of D by their corresponding sample variances. 

Altematively,. b could be estimated from equations (4.4) and (4.6) by replacing 

(140, lic) with 12,, s. In either case, Ss 
, and 9F 

, are strongly consistent 

estimators of Es' 
, and EF, 

, respectively, and application of Slutsky's Theorem 

shows that Corollary 4.1 still holds with ES, 
v and EF, 

v replaced by SS, 
. and 

ZaOF, 

v5 respectively. 
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4.2.4 Approximations based on Negative Exponential 

Distributions 

4.2.4.1 Approximation derived by ignoring Undetected Sojourns 

In the approximation described in section 4.1.2-2.1, the positive contribution of 

undetected sojourn lengths is ignored in equation (4.1). Therefore the means 

given by equation (4.8) and (4.9) are less than the true means. Yeo et al. (1988) 

show that, under this approximation, whenever the moment equations 

/joexp(rc//jc) 

and 

pcexp(ro/po) =V 

(4.19a) 

(4.19b) 

have only one solution, then that solution lies on the hyperbola L say, given by 

polic = 10 rc, and that there is a one-to-one correspondence between values of v 

and p for which equations (4.19a) and (4.19b) have a single solution. Under this 

mapping, L is transformed to a strictly decreasing convex curve 0 say, given by 

vc = j( vo) say, where j( VO) approaches infinity (zero) as vo approaches zero 

(infinity). Further, Yeo et aL (1988) prove that equations (4.19a) and (4.19b) 

have two (zero) solutions whenever vlies above (below) 0 and that the curves 

and 0 lie strictly below the curves L and 0, respectively. It is clear from their 
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argument that whenever there are two solutions of equations (4.19a) and (4.19b), 

they lie on either side of the curve L. They also show that these two solutions 

I, FI OPý 
wo! O jL&c) and (po', Itic") say, have the property that 1. fO < pos and lic' < lics. 

Let r=f (x, y) c (R')' :y> j(x) 1. By the strong law of large numbers, 

as. 
Vn 

--+ v as n ao 

Since any value of p is mapped by equations (4.3) and (4.5) to a value of vthat 

lies on or above 0,. it follows that VIies strictly above 0 and hence VEr. Sincer 

is an open set, it follows that, for all /j, 

for all sufficiently large n) = 1. 

Let 9=f (x, y) G (R +)2 : Xy > ro -rcl and P=f (x, y) G (R +)2 : Xy < ro rc). Let 

h (ho (p), hc (1j))T VI 
ýv 

)T 

where the functions ho and hC are 2 

determined by equations (4.8) and (4.9), and let hS and hFbe the map h 

restricted to the sets ý and. P, respectively. Then fis ( hF) is a bij ection from & (P) 

to T, with inverse fimction &s Q&F) say. By the Inverse Function Theorem for 

(Stromberg (1981)), as and kFare both of class 0-) on r. Hence 

.S 
as. 

Yn -'ý 
kSOýn) ks( V) :0 as co , 
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with a similar result holding for fi,. Thus the approximation is asymptotically 

biased. 

Now, the fimction ks (kF) maps points inrto points in & (ý) and maps points on 

the curve 6 to points on the curve L. In particular, points in 
-T u6 which lie 

stnctly below 0 are mapped by ks (kF) to a connected set Ls (L-F) say, which is 

bounded below (above) by L c: Ls (LF). Since, asymptotically, ^ lies above 0 Vn 

and 9S and kFare bij ections, it follows that, asymptotically, ks (^) and kF(^) Vn Vn 

do not lie in the connected set LsU LF. 
Hence there is a set of values which, 

asymptotically, cannot be taken by estimates of 11 under the approximation 

derived by ignoring undetected sojourns. 

By the Central Limit Theorem 

D 

vln- ( j7, - v) -Z as n- oo 

where Z- N(O, D). Now using the delta-method (Andersen et aL (1992)), it 

follows that 

Is 
(-( 

'an - kS(V) D Gý"(v) 
vFn pF -I. - rl) Z as n- oo 

ý 
1jn - kF ( V)) Qý (v) 

) 

- (1) - (1) 1 
where G (y) and Gý (y) are given by expressions similar to those for GO(y) 

SS 
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0 and GF) ( v), but with ho and hc replaced by ho and hC, respectively, throughout. 

Thus 

(s-~( 

v) 
ýn- /i Je gs 

.F 
ý 

ßn - gF(V» 
N(O, 2) as n- oo, 

where 

- 11) - (1) T 

G' (v)DGS' (y) s 
(1) (1)( 

V) 
T 

F (v)D(js 

- (1) - (1) T 

Gs' (v)DGF' ( v) 

OF)(v)D(3F)(v) 

Table I of Yeo et aL (1988) gives maximum likelihood estimates of po and lic, 

under this approximation and also under the approximation using exponential 

distributions with true means, for three examples taken from ion channel 

literature. Yeo et al. (1988) point out that, in their examples, under this 

approximation, the estimated values of the slow solution are slight over- 

estimates, and those ofthe fast solution are substantial under-estimates, compared 

to the estimates under the approximation using exponential distributions with true 

means. These results are broadly consistent with our results displayed in 

Table 4.2 of section 4.3.2.3.2. 
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4.2.4.2 Confidence Sets based on the Approximation using Exponential 

Distributions with True Means 

Now consider the approximate model described in section 4.1.2.2.2 in which the 

adjusted observed open and closed so ourns, U and V, are assumed to follow i 

negative exponential distributions with means vo and vc respectively. Thus (J 

and V are now assumed to have variances vo 2 and vc 2 respectively and Theorem 

4.2 and Corollary 4.1 hold for this approximate model provided that D is replaced 

V 2, V 2) by D, = diag( 0' c' . 
In this section, the asymptotic accuracy of the resulting 

approximate confidence sets is assessed. Note that these approximate confidence 

sets coincide with those of Clarke et al. (1993) which were derived using a quite 

different approach. 

For ease of exposition, it is convenient to restrict attention to confidence sets for 

It. Fix ae (0,1) and let I, s be the confidence set estimator for g with 

coverage probability I-a, given in expression (4-18) for the exact model but 

with Es,, replaced bygs,,. Then 

2S 
")T 

"CO 
-1(, IS ln, 

S fli cR: nVn a S, vR 

where F'(1 - a) = -2 In a. Let I",, s be the equivalent set based on the n, 

approximate model. Then 
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n, S 
R2 : n(j! 

s 
p) -5 n 

p)-l- (S *' Is 
S, V) 

- (9 

where S's, 
v= 

Gs(')( vn)bGs(')( vn)" and b, = diag(VnO 2, VnC 2). 

Let AnSý7rF'(1-q)j ^ 11'2 and A/= 7rF' 
JY2 

be the areas of IES, Y4 S (i - a) IS'S, 
v 

A I, s and I'm s respectively. Then Am sAS JbI 2/Ib, I ', which converges 

almost surely to co cc as n- oo, where co =-/ vo and cc = dc'l vc are dos 

respectively the coefficients of variation of adjusted observed open and closed 

sojourns when (yo, lic) = (pos, lics). From equations (4.3) and (4-4), 

S2sS2 
Co = po [(vo + #ý) - 2#sopscexp(rl#ý) - (/*) - rc 

s2ss-a 
1+ 2(yclvo) [exp(rc/pý) -1- rc/ß c 

V2 (VC 
SCý 

c30 

1+ 2(p s /vg (rc/#säcý / k!, c k=3 (4.20) 

with a similar expression holding for cc 2. Hence co >I and cc > 1, and so the 

confidence sets based on the approximate model will tend to have a smaller area 

than those based on the exact model. 

Let 0ý(a) be the coverage probability of the approximate confidence set I ", 

under the exact model with p and let ip(q) = lim,, 
_. 

f 0, ý(a)}. Since D, is 

a strongly consistent estimator of D1, 
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n O'(a) [P{nV _ 
'a 

S)T ("Co" -1V 

S, n a) 

lim" T A-1 

_. 
[P{Y,, 'D, Y,,:! ý F-1(1 

= lim,, 
_. 

[P I Y. TDI-l Y.:! ý F-1(1 - a)j], 

where Y= (Gs0)(v))-I(Al - AVn. By Theorem 4.2, part (a)(iii), YD 
n -+ Y say, 

as n -- oo, where Y- N(O, D). Hence D'Y - N(O, 1), where I is the 2x2 identity 

matrix, and D'12Y =Z= (ZO, Zc)' say, where Zo and Zc are independent standard 

normal random variables. It follows that 

YT Dj-lY = 
(DY2, Z)T 

DI-1 (D 
Y2ýý 

= Z'Dy2D, - 'D 112Z 

s/ 
vý, ) 

2 

ZT 

0 

(CO 20 

ZT Z 
0cc2) 

0 

(dr S1 
V )2 

c cd 

C 
2Z 2+C 27 2 

00c '"C 

D 
-1 

D 
-1 Since Y. -Y as n- oo, it follows that Y. 'D, Y. -. Y'D, Y as n- oo and 

so 

Or(a) = lim. 
-. 

[P { Y. TD, I Y. :.! r, F-1 (1 - a) II 

= P( c02 Z02 +c c2 
Zc2 

-. ý F-1(1 - a)). (4.21) 
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By conditioning on ZO, equation (4.2 1) may be expressed as 

Vaicý 

2 Z02 ,: ý ZC fP 
-cc' 

ra 
- co 

Va-cO 

< cc' 
ýa 

- C2Z2 x q5(x) dx 00 ZO 

va-cý I 

22 f 
cc' 

ýa 
- COX2) - 4b( -Cc' 

ýa- 
COX2 46(x) dx 

Afia6 

2f2 (D 
(cc' 

ýa, 
- co2x2) -II q5(x) dx,, 

0 (4.22) 

where a=F -'(1 - a), and O(x) and O(x) are the standard normal density and 

distribution functions, respectively. Thus rp(q) can be calculated numerically by 

using a quadrature procedure. 

Bounds for ip(q) can be obtained as follows. Let c, and c2be respectively the 

minimum and maximum of cO' and cC'. Then 

-1 222222-122 
C2 (4 + Zý) 

:! ý CO Zý +CC Zý <C1 V8 + Zý)ý 

and so, from equation (4-2 1), 

22 
P [cl-' (ZO + ZC) g F-1(I 

PLC-, 2 
2 

(Zý 2 
Zý):! ý F-1(1 

Hence 
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F [c, F-1 (1 - a)] :5 ý&(a) :: ý F [c2F-I(l - a)]. 

But F(x) =I- ýexp(-x / 2) and F-'(1 - a) = -2 In a. Thus 

1-a cl 
--5, 

Or(a) : ýý 1-a c2 (0 <a< 1). (4.23) 

Since co >1 and cc > 1, it follows immediately that c, :! ý c2< I and hence the 

confidence sets based on the approximate model will asymptotically have 

coverage probabilities that are less than the intended I-a. Note from equation 

(4.20) that, as pj< pcs, co will be larger for the fast solution than for the slow 

solution. A similar conclusion holds for cc. Thus the asymptotic coverage 

probabilities in the approximate model will be worse for the fast solution 1-f than 

for the slow solution g. 

In most practical situations co and cc will be very close to one (see the numerical 

examples in section 4.2-5). In such circumstances a good approximation to ip(q) 

is obtained by using its Taylor series expansion in (co, cc) about (1,1) as follows. 

Let Yo = coZo and Yc = ccZc. Then Yo and Yc are independent with 

Yo - N(O, C02) and Yc ~ N(O, Cc 
2) 

, and 

22 
P [(Yo + Yc) :ý F-1(1 - er)]. 

Now (YO, Yc) has joint probability density ftmction fyoyc (yo, yc) say, where 
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exp(- 
2C-2 

2y 
2C -2) fy 

0yC 
(yo, yc) = (2; rco cc) 2yo 0cc 

for (-oo < yo, yc < oo). Therefore 

exp(- 
2 -2 2 -2 f(2 

7rcocc) 2yo Co ! /2yC CC) dyo dyc, 

D 
(4.24) 

where D=I (yo, yc) : yo2+ yc2 :! ý F-'(1 - a)j. Let §O(a) = §O(co, cc). 71hen, by 

Taylor's theorem, 

ýf (Icoi, Cd ýý 0'(13,1) ' (Ico - 1) Vfco(l, 1) ' (cc - 1) O'cc(l, 1), (4.25) 

where, for example, the subscript co denotes partial differentiation with respect 

to co. Differentiating (4.24) partially with respect to co yields 

; rC 
2V 2C-2 2 -2 -1 exp(- 2yo 0 

V2YC CC f(-2 
occ) 

aco D 

e12-2-2-223 + (2 7rcOCc)- exp(-V2yo Co Y2yc 
Cc ) (yý / cý) dyo dyc, 

and setting (co, cc) = (1,1) gives 

vl(a) 20 
2+ 

Y2 ) 

ac = 
f(- 2 r) exp(- V,, vo c) dyo dyc 

0 (1,1) D 

f(27r) 
-12 eX]P( _V2+d YO 2 (yo Yc) yo dyc 

D 

(4.26) 
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By symmetry, the second integral in equation (4.26) can be rewritten so that 

2 
P[Zý + Zc ý-. F- l(1 

aco 
(1,1) 

f(2; 
r)-l (Y2 + Y2) 

2+, 2)) d exp V, vc 
V2 

2, 
CV6 

Lvo d 0cc 
D 

and transforming to polar coordinates gives 

or(a) 
=- P[Z, 92 

+ Zc2 
:! ý F-1(1 - a)] 

aco (1,1) 
, V/F-1(1 - a) 2n 

V2 ff (2ir)-lr 3 
exp(- 

V2r 2) dO dr. 

r=08=0 

Calculating the second integral with respect to 0, and then substituting u= 
1/2r' 

and recalling that ýýP'(l - a) = -In a, gives 

aco 

By symmetry,, 

- In ir 

=-ue -' du 

=- (1 - a) + [a In a- (a - 1)] 

=a In a. 

a oýa) 
acc aco 
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Substituting these results into expression (4.25) yields 

ý& (a) = (1 - a) + (co + cc - 2) a In a (4.27) 

for 0< a< 1. 

4.2.5 Numerical Examples 

The above theory is now illustrated using simulated data for five examples, taken 

from the ion channel literature, that have been considered previously by Milne et 

al. (1989). They are CS from Colquhoun and Sigworth (1983), BMI and BM2 

based on Blatz and Magleby (1986), and P, andp2from Prod'hom et al. (1987). 

The results are displayed in Table 4.1 and Figure 4.2. 

For each example, the sample mean adjusted open and closed sojourn times PO 

and VC are given in Table 4.1, together with the detection limits r= ro - rc and 

. 0- 
- 

the slow and fast method-of-moments estimates, g and 17. All the values are 

in milliseconds. For each of the two estimates g and /7, Table 4.1 also gives the 

coefficients of variation c. and cc, calculated by assuming that the estimates are 

the true values of /j, and the corresponding asymptotic coverage probability 

ip(O. 05), calculated numerically from equation (4.22), of the 95% confidence set 

for p based on the approximate model described in section 4.1.2.2.2. The Taylor 

series approximation to IP(O. 05) obtained in approximation (4.27) and the lower 
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and upper bounds for ip(O. 05), given by inequalities (4-23), are also shown. 

Solution CO CC IP(O-05) Approx- Lower Upper 
imation bound bound 

to for for 
I P(O. 05) 0(0.05) ý IP(O-05) 

Example CS. - VO = 0.4. ) 
Vc = 1.89 0.2 

slow 1.010 1.002 0.9482 0.9483 0.9470 0.9495 
#= (0.2990,0.8787) 

ast 1.049 1.007 0.9413 0.9417 0.9344 0.9480 11 

y= (0.1063,0.111§ý_ 

Example BMI: 00 = 2.790, Vc = 0.1160, r= 0.1 

Slow 1.000 1.013 0.9480 0.9481 0.9462 0.9499 
(1.0034,0.1003) 

Fast 1.001 1.098 0.9334 0.9351 0.9166 0.9496 
1 

p= (0.1443,0.03 59) 1 1 1 11 1 

Example BM2: '00 = 1.678, Vc = 0.2262, r 0.1 

Slow 1.000 1.003 0.9494 0.9494 0.9490 0.9499 
p= (0.9997,0.2000) 

Fast 1.004 1.056 0.9405 0.9411 0.9319 0.9489 
1 

p= (0.0800,0.0364) 11 1 1 1 
- 

Example Pj: 00 = 1.165,0.125, Z"= 0.035 VC 

Slow 1.000 1.001 0.9499 0.9499 0.9498 0.9500 
p= (0.8647,0.1194) 

Fast 1.002 1.040 0.9434 0.9437 0.9372 0.9494 
(0.0 190,0.0093) 

Example P.: ^=0.445, Vc = 0.145, r= 0.035 VO 

slow 1.000 1.001 0.9498 0.9498 0.9497 0.9499 

p= (0.3352,0.1289) 

Fast 1.007 1.030 0.9444 0.9446 0.9407 0.9480 

p= (0.0191,0.0128) 1 1 
-I 

I I I 

Table 4.1. Coverage probabilities for confidence sets derived from the approximate model. 
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For each example, rp(O. 05) is very close to the intended 0.95, indicating that the 

approximation is very good. Also the Taylor series approximation to ip(O. 05) is 

always extremely good, as are the lower and upper bounds. All these 

observations are a consequence of the fact that both co and cc are always very 

close to one. Note that, as predicted by the theory, these results are always 

slightly worse for the fast solution than for the slow solution. 

The number of observed open and closed sojourns on which Pwas based was not 

generally given in these examples. Figure 4.2 shows 95% confidence sets for g 

and If for the example BMI, assuming that n= 5000, which is quite typical for 

single-channel experiments. The confidence sets based on the approximate 

model are too small, though the difference is very slight, especially for the slow 

solution. 

In the above, we have restricted attention to confidence sets with a=0.05. 

However, similar results hold for all values of a. Although the approximate 

model clearly gives very good results in all the examples that we have considered, 

we still recommend the use of confidence sets based on the exact model, as they 

are no more difficult to implement. 
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0.1041 

ý 

PC 
0- 1 

0.096 L---7 

0.0340, 

0.140 0.14S 0.15 

Po 

Figure 4.2. (a) Simultaneous confidence sets for the parameters pO' and lic' based on the BM, 

values ^=2.790 ms, Vc = 0.1160 ms, Z', = I'c = 0.1 and swnple size n= 5000. The plot shows VO 

the 95% confidence set for g derived from expression (4.18) for the exact model (solid line) and 

the equivalent confidence set based on the approximate model (dotted line). The method-of- 

moments estimate 1I. s= (1.0034,0.1003)'is marked. (b) Simultaneous confidence sets equivalent 

to those shown in (a), but for the parameters po' and pc'. The method-of-moments estimate 

, 
#ý' = (0.1443,0.03 59)' is marked. 
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4.3 Resolving the Identiflability Problem 

In this section, we discuss various methods of resolving the identifiability 

problem. We first show that in the method, first proposed by Colquhoun and 

Sigworth (1983), which involves obtaining estimates of (, uo, 1.1c) for several 

samples, each with a different detection limit, one estimate is approximately the 

same for each sample, while the other varies significantly. A similar argument 

can be used to justify a new method of distinguishing between the two solutions 

in which maximum likelihood estimates are obtained for several samples, each 

with a different agonist concentration. This new method is then described, 

together with results of simulation studies carried out under a variety of 

conditions. Finally, another new method which uses observed open and closed 

sojourn length sample variances to discriminate between the two solutions is 

presented, supported by numerical examples. 

43.1 Introduction 

Of the proposed methods (mentioned in section 4.1.3.2) of overcoming the 

identifiability problem, two are methods which distinguish between the two 

solutions on the basis of more than one sample. One of these methods involves 

using samples with different detection limits and the other involves using samples 

with different agonist concentrations. Consider the first of these methods and 
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suppose for ease of exposition that ro = rc (= r say) and note that the sets L, S 

and F defined in the statement of Theorem 4.1 depend implicitly on r Let 

IT = (Iio*, /Jý) where /10* and I-jc* are chosen so that p* = rp. It follows from 

the shape of the curve J(1j) =0 that, for fixed /j*, there exists rx >0 such that 

(pO*1 rx, 1jC*1 rx) c L. Since pGS if and only if p0*1 -r> p0*1 zx- or pc*/ z, > pc*l zx-, 

it follows that pGS if and only if Z< zx. Similarly pEF if and only if z, > zx 

and peL if and only if -r= rx. Now suppose that r< rx, so that g= (po, lic) 

is the true value of p which does not vary as r varies and 

1JF = (/Joý JjcF)=gF[hs(1. P)j is the corresponding false solution. Now the maps 

gFand hs depend implicitly on r We will now show that p' varies as r varies. 

From equation (4.3), 

ssssFFFF 
vo +r= (/jo + #ý) exp(r/#ý) - lic (/jo + #ý) exp(r/#ý) - lic 

so that 

Fs+ 
PS )- /JS + 

4] 
eXp(_ rlljF /Jo = l(ijo ý) _F4.28) exp(, r//is c PC - c 

Clearly, either 
ýOF' is non-zero andjac' varies as rvaries, or 

d'JF' 

is zero. In the 
dr dr 

latter case, differentiation of equation (4.28) setting 
dpFC 

=0 yields dr 

F d/i 0FFSs 
-=- exp(- rlpc) (pc lic) -' [(Ijo + ljsý) exp(r/psý) - ps dr 

c 

SF (/Jc PC) 

F 

andd" 0 is clearly negative since pcs > ljcfý Hence /joFdecreases as rincreases. dr 
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Therefore If varies as r varies whenever /-I lies in S. Similarly it can be shown 

that if Z> rx, and therefore the true solution is the fast solution y, that the slow 

solution g varies as r varies. This is illustrated for the case 

/-I' = (0.8787,0.2990) by Figure 3 of Yeo et al. (1988). In practice, g and #Fare 

estimated from the data. However, the consistency results of Theorem 4.2, part 

(a) (ii), imply that taking samples with different values of -r will enable us to 

distinguish between the true and false solutions, provided that the sample sizes 

are sufficiently large. Similar arguments to the above hold when the agonist 

concentration is varied as in the method described in the next section. 

43.2 Varying Agonist Concentration 

43.2.1 Theory 

Agonist concentration dependence of channel gating kinetics is incorporated in 

the two-state Markov model described in section 4.1.1 as follows. Let C 

represent the closed (unliganded) state of the channel and OA the open (mono- 

liganded) state. Let the channel opening rate be a 1, uC where a is the agonist 

concentration and let the channel closing rate be I lpo. Then the opening rate 

is dependent on the agonist concentration, whereas the closing rate is constant. 

This can be represented as 
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al. ac 

C- OA. (4.29) 

i/po 

Since this is simply the model described in section 4.1.1 with lic replaced by 

yC la, the theory of sections 4.1 and 4.2 hold for this model. In particular, let 

fo(')(u), fo(')(u) and fo(')(u) denote the probability density fimctions for adjusted 

observed open soj ourns under the approximations described in sections 4.1.2.2.1, 

4.1.2.2.2 and 4.1.2.2.3 respectively with lic replaced by yC Ia in each case. Let 

CCC 
f (1)(V), f (2)(V) 

andf (3ý(v) denote the corresponding probability density functions 

for adjusted observed closed sojourns. 

43.2.2 Maximum Likelihood Estimation 

The model parameters po and lic can be estimated using maximum likelihood 

methods (Horn and Lange (1983), Colquhoun and Sigworth (1983), Ball and 

Sansom (1989)) based on any ofthe approximate density functionsfO(')(u), fO(')(u) 

0CCC 
(3)(U) (f (1)(V)qf (2)( (3)( d and V) an fV of adjusted observed openings (closings). 

As successive openings (closings) are independent for the model in (4-29) 

(Fredkin et al. (1985)), one form of the normalised log-likelihood (see 

Appendix A and Yeo et al. (1988)) is given by 

[In fo(u,, p) + In fc(v,, p)], (4.30) 
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wherefo andfc represent the probability density functions of adjusted observed 

openings and closings, respectively, under any one of the three approximations 

and where there are m adjusted observed open-closed time pairs (ui, v). Tbus 

maximisation. of I(jj) provides a method for estimating /jO and pc. 

In the gating model (4.29), the agonist concentration, a, is an experimentally 

controllable variable. We consider two basic approaches to likelihood estimation. 

In the first approach p is estimated independently at each value of a and the 

behaviour ofthe resultant estimates is examined. In the second approach a global 

log-likelihood, corresponding to simultaneous fitting of the model to data 

obtained at n different agonist concentrations aj (j = 1, 
..., n), is maximised in 

order to estimate p. The normalised global log-likelihood is given by 

IG (/J) (4.31) 

where I(aj, p) is the log-likelihood, as defined in equation (4.30), at a single 

agonist concentration a, and m is the corresponding nuniber of open-closed time 

pairs. 

parameter error estimates and correlations are obtained by inversion of the 

corresponding Hessian matrices (see Appendix A) as follows. Let 
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1 (100 Icc 

lcc 
-i oc 

)) 

iýC 

ý- loc loo )) Lao, ýic, 

where subscripts 0 and c denote partial differentiation with respect to po and pc 

respectively. Then the standard deviations of ý and 1 are given by -v/vI, and YO PC 

'/2 Vv22respectively and the coffelation between 2 and 2 is given 
byV12 (VI 

I V22) Po PC 

where v. (ij = 1,2) is the (i, j)th element of V. Expressions for 100,10c and Icc 

for each ofthe three approximations of section 4.1.2.2, with agonist concentration 

dependent opening rates incorporated, are given in Appendix D. 

4.3.2-3 Numerical Examples 

4.3-2-3.1 Computer-simulated Data 

The theory of sections 4.3.2.1 and 4.3.2.2 is illustrated here using data simulated 

according to the model represented by expression (4.29) for a range of agonist 

concentrations. The maximum likelihood procedure is used to examine the 

behaviour of the parameter estimates generated by the three approximations. 

In selecting model parameter values for the simulations, two assumptions have 

been made. Firstly it has been assumed that association of the agonist molecule 

with the receptor is diff-usion limited, yielding pc = 10' M ms. Secondly, the 
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dissociation constant for the receptor-agonist complex has been assumed to be 

10-4M, 
yielding po =I ms. These values yield agonist-concentration-dependent 

channel kinetics comparable with examples in the literature (e. g. Ball and Sansom 

(1989)), and fall within physiologically reasonable limits. 

Channel openings were simulated for four different agonist concentrations, 

a= 
10-6 

11 10-110 10-4 
and 10-3 M, 

corresponding to channel open probabilities of 

0.01,0.09,0.50 and 0.91, respectively. This range of concentrations is 

comparable to that used in experimental studies (e. g. Colquhoun and Ogden 

(1988) and Kerry et al. (1988)). Five thousand observed channel openings and 

closings were simulated at each concentration. A detection limit 

r= ro - rc = 0.1 ms was used, and this resulted in omission of approximately 

10% of channel openings at each agonist, concentration. The fraction of closings 

which were undetected ranged from approximately 0.1 % at a= 10' M to 

approximately 63% at a= 
10-3 M. The value of rused is comparable to that used 

in several literature examples, including Yeo et al. (198 8). 

4-3. z3.2 Likelihood Surfaces 

For each agonist concentration, the normalised log-likelihood was evaluated 

under each of the three approximations of section 4.1.2.2 for a range of po and 

ljc, thus generating a likelihood surface. Contour plots of these likelihood 
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surfaces are displayed in Figure 4.3 (a-d) for four different values of agoniSt 

concentration under the approximation derived by ignoring undetected sojourns. 

The equivalent contour plots for the other two approximations are not shown here 

as they are extremely similar. For convenience in displaying the contour plots of 

ý1- - 

Lae likelihood surfaces., the po and pc axes have been transformed according to 

00 
= In ßo 

and oc = In 
( il c 

31 /im 
M 

0) c 

where the superscript ' indicates the parameter values used in the model 

simulation. Typically, values of q50 of between - 12 and + 12 were used and this 

corresponds to values of go between 6.1 x 10' po' and 1.6 x 
105 j M. /0 

As predicted by the theory of this chapter, at each of the four agonist 

concentrations, the corresponding log-likelihood surface has two maxima. These 

are most widely separated at the lower agonist concentrations, but are still distinct 

at a= 10' M. As also expected, the 'false' parameter estimates depend on the 

agonist concentration used, whereas the 'true' parameter estimates remain almost 

constant as agonist concentration varies. 
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Figure 4.3. Contour plots of the normalised log-likelihood surfaces for four agonist 

concentrations: (a) a= 10' M; (b) a= 10' M; (c) a= 10' M; (d) a= 10' M. Values on the 

horizontal axes correspond to 00 and values on the vertical axes correspond to q5c. The contour 

intervals are (a) 7.5; (b) 3; (c) 3; (d) 0.95. Other details are as described in the text. 
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Figure 4.4. Behaviour of the two sets of parameter estimates as functions of agonist 

concentration. The points for the 'false' estimates are labelled with the corresponding agonist 

concentmtions. 

In Figure 4.4, for each agonist concentration, the positions of the two parameter 

estimates (again under the approximation derived by ignoring undetected 

sojourns) are plotted in the (q5O, Oc) plane. Two distinct loci can be seen, 

demonstrating the dependence of the 'false' parameter estimates, but not the 

'-true' parameter estimates, on the value of agonist concentration. Furthermore, 

the invariant estimates are tightly clustered about (00, Oc) - (0,0), ie. about the 

point corresponding to the parameter values used in the simulation. The values 

of the parameter estimates used to construct Figure 4.4 are given in Table 4.2 (in 

ý1- - 

die rows relating to the approximation of section 4.1.2.2.1), together with the 

corresponding parameter estimate standard deviations and correlations. The 
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correlation between the 'true' estimates is smaller than that between the 'false' 

estimates at all agonist concentrations. At all four agonist concentration levels 

the 'false' parameter estimates are markedly different from the underlying model 

values. Note also from Table 4.2 that, at each agonist concentration, the two 

values of the log-likelihood corresponding to the two values of (/10,11c) are 

identical, or almost identical for the bi-exponential approximation, so that it is not 

possible to distinguish between the estimates on the basis of the values ofthe log- 

likelihood. However, these numerical results confirm that the identifiability 

problem for this gating model can, in principle, be solved by obtaining data at 

different levels of agonist concentration, calculating and plotting both sets of 

estimates against the agonist concentration, and selecting that set which varies 

least. From Table 4.2 it can be seen that this approach should work for each of 

the three approximations. 

The independence from the agonist concentration ofthe 'true' parameter estimate 

starts to break down when the fi-action ofundetected events reaches exceptionally 

high levels. For example, in Figure 4.4, the 'true' solution only deviates 

noticeably from the model parameters for a> 10-3 M. For a= 10" M, the 'true' 

parameters are po = 1.643 pom and pc = 1.170 pcm, so that both estimates 

(marked with an asterisk in Figure 4.4) are significantly higher than the model 

values. However, for this agonist concentration, the fraction of undetected 

closings is extremely high (96%). 
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a/M A True / 
False 

I(P) /10 / ms 
(standard 
deviation) 

jIC / 10' ms M 
(standard deviation) 

_ 

Correlation 
between 

_. 
a, andg, 

10-6 1 True -6.72 7 72 1.015 (0.014) 0.9976 (0.0142) 0.099 

False -6.72 0.0118 (0.00002) 0.000243 (0.0000008) 0.353 

2 True 
. 
72 -6.72 1.016 (0.014) 0.9985 (0.0142) 0.099 

False 
. 
72 -6.72 0.0128 (0.00002) 0.000305 (0.000001) 0.278 

3 True -6.72 1.015 (0.014) 0.9978 (0.0142) 0.099 

False -6.72 0.0127 (0.00002) 0.000306 (0.000001) 0.279 

10-1 1 True -4.41 1.018 (0.014) 0.9861 (0.0140) 0.108 

False -4.41 0.0164 (0.00004) 0.00242 (0.00001) 0.389 

2 True -4.41 1.017 (0.014) 0.9846 (0.0140) 0.109 

False -4.41 0.0186 (0.00005) 0.00319 (0.00002) 0.297 

3 True -4.41 1.015 (0.014) 0.9851 (0.0140) 0.109 

False -4.42 0.0186 (0.00005) 0.00320 (0.00002) 0.300 

10-4 1 True -2.24 1.008 (0.014) 1.035 (0.015) 0.194 

False -2.24 0.0267 (0.0001) 0.0268 (0.0001) 0.499 

2 Tme -2.24 1.002 (0.014) 1.029 (0.015) 0.204 

-2.24 0.0342 (0.0002) 0.0345 (0.0002) 0.394 

3 True -2.24 1.003 (0.014) 1.029 (0.015) 0.204 

F Is 

7alse] 

-2.24 0.0342 (0.0002) 0.0345 (0.0002) 0.393 

10-3 1 True -0.86 1.007 (0.023) 1.042 (0.016) 0.756 

False -0.86 0.0693 (0.0009) 0.2702 (0.0015) 0.764 

2 True -0.86 0.9927 (0.0251) 0.9872 (0.0175) 0.823 

False -0.86 0.1468 (0.0030) 0.3600 (0.0033) 0.829 

3 True -0.86 1 0.9941 (0.0250) 9889 (0.0175) 0.821 E 

Fals( alse F- -0.87 
10.1451 

(0.0031) 0.3590 (0.0033) 

1 

0.838 

j 

Table 4.2. Parameter estimates against agonist concentration for the three approximations. In the 

column entitled 'A', the labels 1,2 and 3 indicate whether the approximation given in section 

4.1.2.2.1,4.1.2.2.2 or 4.1.2.2.3, respectively, was used to calculate the likelihood. 
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4-3.2-3-3 Global-Likefihood Surface 

oc 
LL 

5 

00 

Figure 4.5. Contour plot of the global log-likelihood surface derived from analysis of the swne 

data as that used to construct the surfaces in Figure 4.3. The contour interval is 5. 

The surface shown in Figure 4.5 is the global likelihood, defined in equation 

(4.3 1), under the approximation derived by ignoring undetected soj ourns and 

corresponding to the four agonist concentrations discussed above. Note that this 

surface corresponds to a summation of the four surfaces seen in Figure 4.3 (a-d). 

It is clear that there is only a single maximum on the global surface, 

corresponding to the 'true' parameter estimate. The position of this single 

maximum corresponds to fjo = 1.0 17 ms, a=1.0 17 xI 0-4M ms, with standard PC 

deviations of 0.0076 ms and 0.0068 x 10' M ms, respectively, and a correlation 

between the parameters of 0.338. Further studies have shown that the global 
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likelihood surface derived from data simulated at only two different agonist 

concentrations can also show a single maximum, corresponding to the 'true' 

parameter estimate. 

43.23.4 Effect of varying the Detection Limit 

Using fin-ther simulations we have explored the extent to which the success of 

this approach for identifying the 'true' parameter set is dependent on the value 

of Z'. Experimentally, the value of rused in processing single-channel recordings 

depends on the signal to noise ratio for those recordings and realistic values of r 

range from less than 0.05 ms, for high signal to noise ratio data, to more than 

0.2 ms for poor signal to noise ratio data. 

We have explored the behaviour of (/10,11c) as a function of agonist 

concentration for values of rin the range 0.02 ms to 0.5 ms. Other simulation 

conditions were the swne as for the examples discussed above and the results are 

presented in Figure 4.6 as graphs of (/Io, 11c) against agonist concentration for the 

various values of r based on the approximation derived by ignoring undetected 

soi ourns. It can be seen that the 'false' values of (/10,11c) are strongly dependent 

on -r, whereas the 'true' values of (/20,12c) are tightly clustered about 

(00, Oc) = (0,0) (see Yeo et al. (198 8)). The exception to this (not shown on 

Figure 4.6) was for Z'= 0.5 ms at agonist concentrations in excess of 10' M, for 
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which the 'true' estimates differed considerably from the model parameter values 

used in the simulation. However, under these conditions the fraction of 

undetected closings was more than 99%. This situation would be immediately 

recognisa le in experimental data as it would result in poorly resolved, noisy 

openings of greatly reduced wnplitude, which would be difficult to process. 

However, even in this case, evaluation of the global likelihood surface for 

r=0.5 ms produced only a single maximum at (/10,11c) = 

(0.9447 p0m, 1.005 lic') and the overall approach for identifying the. 'true" 

parameter estimates still appears to work. 

2 

0 

-2 

0 
-4 

c 

-6 

-8 
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0.1 0.5 

0.02 

10 L- 

-6 -2 
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Figure4.6. Behaviour ofthe'true'and'false' estimates as fimctions ofminimum detectable dwell 

time z". For each value of -r, the agonist concentration ranges firom a= 10-6-5 M to a= 10-2,5 M, 

with the exceptions of r=0.2 ms, for which the a= 10'-' M point has been omitted, and of 

r= 0.5 ms, for which points corresponding to a ý! 10-3-' M have been omitted (see text). 
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4-3.2-3.5 Further Simulation Studies 

The above estimation procedures have also been repeated employing (i) smaller 

sample sizes, (ii) different model parameter values, and (iii) the fast solution as 

the set of model parameter values for the simulations. In each case the values of 

the detection limit and agonist concentrations used were as given in section 

4.3.2.3.1. Similar results were obtained using each of the three approximations 

so only results based on the approximation derived by ignoring undetected 

sojourns are given here. 

Table 4.3 shows that the method of identifying the 'true' solution still works 

reasonably well even when the sample sizes used are much smaller than those 

typically used in comparable studies. For example, using a sample consisting of 

500 observed openings and closings, the single maximum ofthe global likelihood 

II surface corresponds to PO = 1.001 pom and 1-1c = 1.013 pcm. Even with a 

sample size of just 50, maximisation of the global likelihood surface yields 

parameter estimates of /10 = 1.033 pom and pc = 0.8862 pcm. It is worth 

recalling that estimation based on the approximation used in these examples is 

biased so the parameter estimates are likely to differ slightly from the model 

parameter values no matter how large the sample size used. 
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Sample a/M 'True' 'False' 
Size 

/10 / ms / (10' ms M) 
116L 

ms #^C / (10-4 M 

Ms 
50 10-1 1.148 1.081 0.0671 0.2657 

10-4 0.8448 0.8194 0.0288 0.0286 

10-1 1.095 0.711 0.0173 0.00240 

10-6 0.9008 0.8596 0.0120 0.000232 

500 10-3 1.212 1.126 0.0650 0.262 

10-4 0.9941 1.073 0.0264 0.0269 

10-1 0.9095 0.9716 0.0165 0.002496 

10' 1.020 0.984 0.0118 0.000224 

Table 4.3. Parameter estimates for a range of sample sizes. The detection limit used in the 

simulations is r, = 0.1 ms. 

Table 4.4 contains results which demonstrate that the approach is valid for a wide 

range of model parameter values. In each case, a sample size of 5000 was used. 

All the results presented so far have used the 'slow' solution as the 'true' 

solution. However, further simulation studies (not presented here) have also 

sho)AM that the method of identifying the 'true' solution by using samples with 

different agonist concentrations works equally well when the 'fast' solution is the 

'true" solution. 
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Model Parameters a/M 'True' 'False' 

Ar 
- -L2a/ -MS 

/Ic/ (ms M) MS y-C / (104 Ms M)' 

0.1 10-3 1.026 0.1016 0.0117 0.2236 

104 1.011 0.0995 0.0092 0.0213 

10-1 1.005 0.1016 0.0076 0.00205 

10-46 

0.9953 0.1013 0.0064 0.000198 

100 0.0001 10-3 97.12 0.0001 0.0466 0.1155 

10-4 100.06 0.000101 0.0225 0.0118 

10-1 101.19 0.000101 0.0147 0.00113 

10-6 99.11 0.0001 0.0110 0.00011 

100 0.1 10-3 101.69 0.0999 0.0110 0.1095 

10-4 98.12 0.1010 0.0087 0.0107 

10-5 101.02 0.1010 0.0073 0.00105 

10-6 100.98 0.1000 0.0062 0.000103 

Table 4.4. Parameter estimates for a range of model parameters. The detection limit used in the 

simulations is -r = 0.1 ms. 

433 Sample Variance Discrimination 

4-3-3.1 Method 

The two methods of overcoming the identifiability problem which are considered 

in sections 4.3.1 and 4.3.2 require data from more than one channel record to 

discriminate between the two solutions. In this section, a method which 

discriminates between the slow and fast solutions on the basis ofjust one channel 
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record is described. The idea underlying this method is that, although the means 

of observed open and closed sojoum times are the same for the two solutions, the 

corresponding variances differ slightly. Since channel records are typically quite 

long, it is possible to determine the true solution by comparing the sample 

variances of observed open and closed sojourns with those predicted by the slow 

and fast solutions. 

Returning to the model (discussed in sections 4.1 and 4.2) without agonist- 

concentration-dependent opening rates, suppose that we have a random sample 

of n successive pairs of adjusted observed open and closed sojourns, 

Ulý Vlý U25 V2, 
..., u,,, v,, say,, with respective sample variances S02 given by 

212_1 :ýi)2 
So = 

:ý 
Ul n- 

n-Ii=1nI. =I 

and s. 1 given by the same expression but with ui replaced by vi. Then 

E[S02] = jro, where 
&02 is given by equation (4.4), and (Kendall and Stuart 

0 
(S 2) 1 )-1 (j 2)2ý, 

(1977), p296) var 0- n-1 K4+ 2 (n - where K4is the fourth cumulant 

of an adjusted observed open sojourn which is given (Milne et al. (1988)) by 

K4= 6(po + pcý exp(4rC//Jc) 

+ IjC)2 [(/jo + ýUC) - 24 (, uo r, +y0pc] exp (3 -r, /p C) 

,r2 (yo + /1 )2 +'a 
2 Ij 

2] 
eX (2 ýIpC) + 12 [4 r, (po + /ic), ao yc +2c. c0cp 

- rC2 [(po + lic) rý +3 ljojuc] exp (r, //jc) -6 Ij 
4 

c 
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Similar expressions hold for E[sc2] and Var(SC2), noting that the fourth cumulant 

of an adjusted observed closed so ourn has an expression identical to that for K4 i 

but with yo and yc mterchanged and rc replaced by ro. 

-=( 21, 
S 

2)T 
Let v= 

(&02, CTc')' and v so c. Then, for large n, V^ approximately follows 

a bivariate normal distribution with mean vector v and dispersion matrix 

diag ( var(so 2 ), var(sc2)}. Note that the off-diagonal elements of I are zero 

since successive adjusted observed open and closed sojoums are mutually 

independent. Let vs and Ss be respectively the mean vector and dispersion 

matrix of Y^ given and define vFand '17Fsimilarly. Then we wish to 

determine whether v^ comes from a N(vs, Ss) or a N(vF, SF) distribution. This 

can be done by using a linear discriminant function (see, for example, Mardia et 

al. (1979)) and replacing the unknown parameters by their estimates as follows. 

T('4 I 
-Y Suppose that Ss = EF(= I say). Let H(v) =av 2(VS + VA), where 

a= E-'(vs - vF). Then the maximum likelihood discriminant rule allocates v to 

N(vs, Ss), i. e. decides that p=g, if H(v) >0 and allocates V^ to N(vF, 
SF) if 

H(v) :! ý 0. Since Ss : f- SF, we have replaced S by 112(. 9s + SF) in the 

discriminant function H. When applying the method, g and it will be unknown 

F 

and hence (vs, Es) and (vF, XF) are estimated by replacing p by lj^,. s /In 

respectively. 

Since H(vý follows aN (- V2 aTSa., aT TFa) distribution whenever p= pF, it 
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follows that, for known g and yF, 

P [decide p= #' I 

Similarly 

F1 =a 

T( Es 

4 ýa ; j. 

IjF I Ij = pS 
-a 

T( 2s +2 F)a P [decide p 
-TZ 4 ýa =; ý 

i 

(4.32) 

(4.33) 

These misclassification. probabilities may be estimated by replacing the unknown 

parameters in these expressions by their estimates. 

The assumption that Ss = SFcan be relaxed in detennining an allocation rule. 

This results in a quadratic discriminant function Q(v) say, (see, for example, 

Krzanowski (1988)), given by 

=In 
is'l, 

ý 
issi 

ý 

'OT 
S 

WS 
IjS (/j )TS Ij S-IJUF) ((, jS)TE-1 

F 2, OT (, Es lis -F "F 

Discrimination based on this quadratic discriminant function classifies le as the 

true solution if Q(v) >0 and yFas the true solution if Q(v) :: ý 0. Again the 

unknown parameters may be replaced by their estimates when applying this 

2F)al 
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method. It should be noted that the misclassification probabilities based on this 

quadratic discriminant function method are more difficult to calculate than those 

based on the linear discriminant function method above. 

433.2 Numerical Examples 

4-3-3.2-1 Tests based on Examples from Ion Channel Literature 

The theory of section 4.3.3.1 is illustrated using simulated data for the same five 

examples, taken from the ion channel literature, that were considered in section 

4.2.5. The results are displayed in Table 4.5. For each of the five examples CS, 

BM,, BM2, P, andp2,, one thousand data sets with n= 1000, ie. consisting of 1000 

successive pairs of adjusted observed open and closed sojourns, were simulated 

by using the appropriate model parameter g, given in Table 4.5. For each data 

set, a discrimination test based on the linear discriminant function and a 

discrimination test based on the quadratic discriminant function were performed 

and the misclassification probability for the former test was estimated using the 

methods described in section 4.3.3.1. This procedure was repeated with data sets 

simulated using model parameter It, given in Table 4.5, and also with n= 5000 

and n= 10000. For each of the five examples, and for each combination of n and 

g or /f, Table 4.5 gives the number of correct classifications in the 1000 

simulations for each ofthe two discrimination tests and the mean ofthe estimated 
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misclassification probabilities for the tests based on the linear discriminant 

function. The results show that, for the examples considered, the two 

discrimination methods are reasonably effective in determining the correct 

solution. Note that the results of the tests based on the quadratic discriminant 

ftinction are not, in general, any better than those for the tests based on the linear 

discriminant function, suggesting that the linear discriminant function should be 

used in preference to the quadratic discriminant function. 

From Table 4.5, it can be seen that the misclassification probabilities shown are 

considerably overestimated. We investigated this overestimation by repeating our 

simulation study, but now using the known true values ofg and /I in calculating 

both the linear discriminant function H(vý and the misclassification probabilities. 

The numbers of misclassifications were now consistent with the calculated 

misclassification probabilities, indicating that the discrepancy is not a 

consequence ofthe normal approximations; rather it is an artefact of replacing g 

and /J' by their method-of-moments estimators g and ýOF. To estimate the 

misclassification probabilities, it is necessary to estimate the mean and variance 

of H(v). Returning to our original simulation study, we found that, although the 

mean of H(v) was being estimated fairly accurately, its variance was always 

appreciably overestimated, and consequently so were the misclassification 

probabilities. However, it should be noted that g and g are negatively 

dependent, and failure to take account of negative dependence is often the cause 

of overestimation of variance. 
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Example Slow 
Fast 

Sample 
Size 

Number of correct 
allocations based 

on H(v) (Q(v)) 

I 

Mean 

misclassification 
probability 

(based on 

CS Slow 1000 766(804) 0.3314 
T=0.2 

T e 5000 921(923) 0.1638 
j = (0.2990,0.8787) 
IJF= (0.1063,0.2148)T 10000 967(964) 0.0828 

Fast 1000 701(655) 0.3433 

5000 899(896) 0.1823 

10000 971(973) 0.0999 

IBM, Slow 1000 925(932) 0.1640 

-r= 0.1 
-' 

5000 998(995) 0.0142 
l, e = (1.0034,0.1003) 

(0.1443,0.0359)T 10000 10000000) 0.0010 

Fast 1000 901(894) 0.2062 
jjF) 

5000 995(997) 0.0330 

10000 1 L02 I 000ý 
-L 

0.0047 

BM2 Slow 1000 817(8 3) 0.2738 
0.1 

T 5000 966(964) 0.0894 OOO) 

= (0.9997,0.2 

= (0.0800,0.0364)T 10000 997(995) 0.0287 

Fast 1000 772(743) 0.2945 
(Ij P F) 

5000 964(968) 0.1134 

10000 994(995) 0.0438 

Slow 1000 759(782) 0.3256 
0.035 

T 5000 728(929) 0.1560 ) 

= (0.8647,0.1194 
)T 

If = (0.0 190,0.0093 
10000 976(975) 0.0764 

Fast 1000 699(674) 0.3372 
(0 P 5000 897(897) 0.1740 

1 10000 972(972) 1 0.0922 

P2 Slow 1000 704(748) 0.3697 

r= 0.035 
T 5000 853(859) 0.2290 9) g= (0.3352,0.128 

pF= (0.0 191,0.0128)T 
10000 943(944) 0.1468 

Fast 1000 626(573) 0.3769 
#F) 

5000 831(825) 0.2418 

II QQQCj 937(931) 01610- 

Table 4.5. Discrimination between the slow and fast solutions on the basis of the sample 

variances of observed open and closed sojourns. 
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We carried out further simulation studies using other quantities, including the 

sums of the squares of simulated observed open and closed sojourn times, the 

sums of the cubes of these times,, their skewness and their kurtosis, as 

discriminants between the slow and fast solutions. However, since the results 

obtained indicated that none of these quantities is a better discriminant t1m the 

sample variance, the results of these studies are not shown here. 

4-3-3.2.2 Effect of varying the Detection Limit 

In this section we investigate the dependence of the performance of the sample 

variance discrimination method on the detection limit. In the examples 

considered, ro = rc = r, say. Restricting our attention to the example CS in 

Table 4.5, we assumed that the slow solution g= (0.2990,0.8787)' is the true 

solution and, for various values of the detection limit -r, we calculated the 

corresponding false solutions. For each value of r and each given record 

length n, we simulated 1000 data sets from the true model, each consisting of n 

observed open sojourn times and n observed closed sojoum times. For each data 

set we calculated 9 and /2, discriminated between the two solutions using the 

linear discriminant function H(vý, and calculated the approximate 

misclassification, probability. We then repeated the procedure but with data sets 

simulated from the corresponding false model. Note that the true model 

parameter values (/. 10, lic) remain the same for all values of I' , 
but that the false 

model parameter values (JAO, 1-ic) vary with r 
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Record Data simulated from true model Data simulated from false model 
Length 

Number of 
correct 
allocations 

Mean 

misclassification 
probability 

Number of 
correct 
allocations 

Mean 

misclassification 
probability 

0.05 True Model: y= (0.2990,0.8787), do'= 0.1011, dc2 = 1.0881 
False Model: Ij = (0.014521,0.02086), 602 = 0.1052, jc= 1.0%2 

1000 647 0.4094 630 0.4130 

5000 767 0.3044 765 0.3113 

10000 1 856 1 0.2347 1 861 1 0.2433 

0.1 True Model: y= (0.2990,0.8787), do' 0.1166, dc2= 1.5548 
False Model: 11 = (0.03804,0.06189), do'= 0.1247, dc' = 1.5739 

1000 746 0.3465 673 0.3565 

5000 881 0.1887 896 0.2048 

10000 1 961 1 0.1062 1 937 1 0.1218 

0.15 True Model: /I = (0.2990,0.8787), do'= 0.1369, dc' = 2.2421 
False Model: Ij = (0.06881,0.1251), do'= 0.1480, dc' = 2.2705 

1000 743 0.3228 700 0.3358 

5000 923 0.1518 899 0.1713 

10000 1 979 1 0.07297 1 981 t 0.08974 

0.2 True Model: p= (0.2990,0.8787), er'O' = 0.1632, erc' = 3.2505 
False Model: p= (0.1063,0.2148), do' = 0.1759, dc' = 3.2872 

1000 747 0.3312 714 0.3431 

5000 903 0.1637 917 0.1825 

10000 971 
1 

0.08282 
1 

957 
10.09991 

0.3 True Model: (0.2990,0.8787), jo' = 0.2399, Crc' = 6.8675 
False Model: Ij (0.2008,0.4982), 602 = 0.2498, dc2= 6.8971 

1000 - - - - 

5000 784 0.3062 739 0.3149 

10000 845 0.2358 830 0.2443 

Table 4.6 Results of simulations carried out to investigate the performance of the sample 

variance discrimination method. For Z- 0.3, V is very close to the curve 0 of Figure 4.1 and, 

when the record length is small, e. g. n= 1000,0 often lies below 0, and the moment estimating 

equations have no solution. Thus these cases have been omitted from this table. 
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The results are shown in Table 4.6. For each combination of detection limit r 

and record length n, the number of correct classifications in the 1000 simulations 

and the mean of the estimated misclassification probabilities are shown when the 

data are simulated from each of the true model and the false model. 

Whilst it can be seen from Table 4.6 that the discriminant method works 

satisfactorily over a wide range of detection limits, it is also clear that, for fixed 

record length n, the proportion of correct classifications does not vary 

monotonically with z,. We examined this relationship by considering the 

dependence ofthe misclassification probabilities, as predicted by equations (4.32) 

and (4.33), on the detection limit r. 

"D - 
Ftecall Figure 4.1 of section 4.2.2 and let p,, (Ijo, pc, 1) be the misclassification 

probability calculated from equation (4.32) if (140, pc) lies in the region F, or 

r__ - from equation (4.33) if (, Uo, lic) lies in the region S, when the detection limit is 

r the record length is n, and /10 and lic are, respectively, the true means of open I 

and closed so ourn tianes. By re-scaling time so that -r= 1, we obtain that j 

r=I po PCI, PJPOýl JUCII 
) Pn(r 

Pn P03, PC) 5 (4.34) 

say, . 
Hence it is sufficient to examine the behaviour ofp,, *(, uo, lic) as (go, pc) 

varies. Figure 4-7(a) is a contour plot ofp,, *(jAO,, uc) when the record length n is 
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10000. Note that p,, *(, Uo, /Jc) is close to '/, in the region of the curve L in Figure 

4.1 of section 4.2.2, as then the two solutions are very close together and it is 

therefore difficult to discriminate between them. Figure 4.7(b) shows the cross- 

section of the surface p,, *(pO, 
jac) along the line 0.8787 yo = 0.2990 pc, which 

corresponds to varying Tin the CS example. The misclassification probability 

PA110, lic) tends to V2as #0 (and hence lic) tends to zero or infinity. (The limit 

as po tends to infinity is not clear from Figure 4.7(b), but was verified by further 

calculations. ) The cross-section also has a peak of height V2at the point where 

(yo, lic) crosses the curve L. Thus, for a given model, sample variance 

discrimination will be poor for values of z, for which (po, uc) is near L and for 

very high and very low values of r, but it will be good for the remaining values 

of r. In the first case, the slow and fast solutions are very close together, so a 

misclassification. may not be too serious. In the second case, very large values of 

-C do not occur in practice, but it is unfortunate that as r becomes smaller it 

becomes more difficult to discriminate between the two solutions. When 

mterpretmg Figures 4.7(a) and 4.7(b), it should be remembered that, because of 

,. I- -. Cae time re-scaling used in deriving equation (4.34), large (small) values of po 

and lic correspond to small (large) values of r. Note that generally the 

misclassification probabilities are considerably smaller in the case when 1-io and 

pc are distinct than in the case when they are the same. Remember also that, 

whilst the estimated misclassification probabilities are a good indication of 

whether or not the method is likely to be working well, these probabilities are 

usually overestimated. 
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(a) 
4.0 1 

0.12S' 

3.0 

PC 

2.0 

1. s 

1. o' 

0.5 1.0 

(b) 0. 

0 

0 

Pcs(p) 

0 

C 

Figure 4.7. (a) Contour plot of the misclassification probability p,, . (#0, lic) for record length 

n= 10000 and detection limit T= 1.0. (b) Cross-section of the surface of misclassification. 

probabilities p, *(. Uo, lic) for record length n= 10000, along the line 0.8787#0 = 0.2990#c. The 

line pcs(p) = p,, *(p, 0.8787, p / 0.2990) is plotted for 0 10. 
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CONCLUSION 

Conclusion 

5.1 Models based on the Molecular Structure of Ion 

Channels 

In Chapter 3 of this thesis we use continuous-time Markov chains to describe the 

single-channel kinetics of receptor-gated channels in tenns of underlying gating 

mechanisms. The large state-space models thus formulated incorporate 

information from biological investigations of ion channel structure. We develop 

such a model for nicotinic acetylcholine receptors which takes account of the 

pentameric structure of the membrane proteins and the interaction between 

neighbouring subunits and we derive expressions for various channel properties. 

By exploiting symmetries to reduce the size of the state space, and using 

parameter values chosen by a combination of biophysical considerations and 

theoretically matching observable properties of our model to those of the model 

of Jackson (1989), we evaluate these expressions for channel properties. Our 

results show that our model displays a wider range of observed channel properties 

than those displayed by simpler models discussed in the literature. We generalise 

our model so that, in addition to treating those receptor channels with two agonist 

binding subunits, it may also be applied to systems with an arbiff-ary number of 

agonist binding subunits. We further adapt and extend the underlying concepts 
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to model the BK channel,, taking account of its tetrameric structure and more 

complex subunit interactions. 

Our models have the considerable merit of being defined by a relatively small 

number ofparameters which are directly related to the molecular properties ofthe 

channel. However, preliminary investigations (not presented in this thesis) for 

ý1- - 
die BK channel model, using simulated data and based on the method of 

maximum likelihood, find that even this relatively small number of parameters 

is sufficiently large that significant problems may arise in trying to estimate them. 

For example, in one ofthe simplest ofthese investigations, we assume that all but 

three parameter values are known and we attempt to estimate the remaining three 

values (Ky., Koo and Koc) by maximising the log-likelihood using the simplex 

method (NAG numerical subroutine E04CCF) on a VAX 11/785. We find that 

problems occur during the estimation procedure since, during the maximisation 

subroutine, some calculations involve early estimates of parameter values which 

cause eigenvalues of Qcc to be extremely small and hence, following rounding 

errors, cause entries of exp(Qcct) to be zero. This results in spurious parameter 

estimates which are dependent on the manually entered estimates used as starting 

points 
by the subroutine. Further, our FORTRAN77 programs take a very long 

time (days) to run even when the sample size is only several hundred. Thus 

questions of inference remain largely unaddressed for our models. 
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In order to improve our models there are a number of features which could be 

incorporated. Firstly, we could include time interval omission. For many channel 

properties this is not problematic and we have indeed calculated values (not 

presented in this thesis) for a number of channel properties, assuming the 

presence of time interval omission. However, it is not clear how time interval 

omission should be modelled when the state space is partitioned into more than 

two classes (e. g. open, short-lived closed and long-lived closed) as it is in 

calculations to determine clustering properties. Secondly, there are a number of 

characteristics of ion channels (e. g. response of BK channels to changes in 

voltage (Hille (1992))) which have been ignored in formulating our models and 

incorporation of such features requires further studies. Thirdly, our models do 

not incorporate desensitization. We have calculated expressions (not presented 

in this thesis) for several channel properties assuming the existence of three 

classes (open, closed and desensitized) of states for a semi-Markov model of 

channel gating in the case in which it is known which states are in the 

desensitized class and how they are interconnected to each other and to other 

states. We have also specialised these results to the Markov case. Further work 

is required to deterniine how to fonnulate biologically realistic large state-space 

models which incorporate desensitized states. 

Together with the large number of mathematical problems yet to be solved, if 

realistic ion channel models are to be developed, there is a strong need for fin-ther 
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experimental research to obtain additional details of the structure, function and 

behaviour of ion channels. A real understanding of channel physiology at atomic 

resolution requires simulation studies to provide dynamic images of the events 

during ion permeation and gating and such studies are reliant on precise 

knoWledge of channel structure. In terms of the models formulated in this thesis, 

one specific area requiring further study is the behaviour of channels with respect 

to the binding and unbinding of agonist molecules or calcitun ions and the 

number and location of binding sites within channels. It is not known whether, 

in some cases, such binding activity is necessary in order for channels to open. 

More experimental studies are needed to demonstrate the effect of agonist 

concentration on the gating behaviour of the nicotinic acetylcholine channel and 

also to determine patterns of clustering of channel openings. Further work is also 

required to increase understanding of the functions and behaviour of individual 

channel subunits and this would enable us to more confidently specify our model 

parameter values. In particular, there is currently insufficient information 

available for us to specify parameter values for our BK channel model with any 

real degree of confidence, thus preventing us from evaluating that model by 

examining predicted channel properties. 

We show how the nicotinic acetylcholine channel model formulated in this thesis 

can be varied to provide us with a model for the BK channel. This illustrates that 

the new style of model developed in Chapter 3 can be easily adapted to describe 
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other polymeric ion channels, given sufficient information regarding relevant 

channel structure. Further studies are needed to specify and evaluate models of 

other types of channel. 

5.2 Inference for a two-state Ion Channel Model 

Although a two-state model is undoubtedly only a very crude approximation to 

. 1- 
- 

the complex dynamical behaviour of an ion channel, analysis of such a relatively 

simple Markov model is a useful first step towards investigating more complex 

Markov models, which have proved difficult to analyse theoretically in the 

presence oftime interval omission. Thus this simple model provides a conceptual 

fi-amework for increasing our understanding of time interval omission and the 

problems that it causes, as well as for exploring ways to overcome these 

problems. In Chapter 4 of this thesis we analyse an ion channel model, with one 

open state and one closed state such that successive open and closed sojoums are 

independent negative exponential random variables with respective means po and 

yc, incorporating time interval omission. We develop a fi-amework to analyse the 

behaviour of the method-of-moments estimators of po and pc as the number of 

observed so ourns becomes large. We use the fi-amework to explore and i 

understand the non-identifiability induced by time interval omission and to 

construct confidence sets for the mean sojoum lengths. We prove a conjecture 

that the moment estimating equations have zero, one or two solutions and we 
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devise two new methods to overcome this non-identifiability. We illustrate much 

of this theory using numerical examples based on simulated data. Thus we 

resolve the unsolved problems raised by Yeo et aL (1988). 

The natural extension ofthis theory is to examine Markov models with more than 

two states. Unfortunately such an extension presents problems. The presence of 

time interval omission introduces difficulties with many methods of parameter 

estimation. In the case of maximum likelihood estimation, it results in the lack 

of a convenient expression for the likelihood of a sequence of observed sojourn 

times and, in at least some models, induces the non-identifiability problem 

examined in detail in this thesis. In the case of the two-state model, we apply the 

method-of-moments to several different approximate probability density 

functions of adjusted observed open and closed sojoums, for each of which the 

method of maximum likelihood yields the same estimators as the method-of- 

moments. However, this approach is not so easy to apply in models with more 

than two states. First, it is not clear which moments (e. g. higher moments) should 

be used in the estimation procedure. Second, a model with more states usually 

bas a larger number of parameters and this results in increased complexity in the 

equations to be solved. For example, using simulated data, an investigation (not 

presented in this thesis), based on the method-of-moments, of a three-state linear 

model with four parameters shows that existing commercially available 

optimisation software is not generally capable of simultaneously estimating all 
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four parameters without being fed an initial point that lies very close to the true 

Parameter set. Second, it is extremely difficult to determine whether or not the 

moment estimating equations have multiple solutions, and there is a possibility 

that the existence of an identifiability problem may even depend on the choice of 

moments used. 
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APPENDIX A 

Appendix A 

This appendix contains a description of the method of maximum likelihood (see 

section 2.3 and Chapter 4 of this thesis). Parameter estimation in ion channel 

models has frequently employed the method of maximum likelihood (see, for 

example, Colquhoun and Sigworth (1983), Horn and Lange (1983), Ball and 

Sansorn (1989) and Yeo et aL (1988)). This method can be formulated as follows 

(see, for example, Silvey (1975)). Consider a probability model in which 

observable independent random variablesX,, X2,..., X,, have respective probability 

density fimctionsfj(xj, O, f2(X2, O)i-- fn(Xw 0), where Ois a k-dimensional row 

vector of parameters. The j oint probability density function ofX,, X2,..., X,, is the 

product of their individual probability density functions and may be regarded as 

a function of 0, in which case it is known as the likelihood function L of the 

random sample and we write 

L(O) = fl(xl, O)f2(x2,0) f (X.,, 0). 

The method of maximum likelihood selects the estimate 
6V 

19 X2, ... I 
XJ Of 

O'f 

6F(XI-) 
X2, 

---, 
XJis the value of 0 which maximises the likelihood function L(O). 

Given an estimate d(xi, x2,..., x. ) of 0, the corresponding k-vector of random 

variables 9(XI, X2,..., X. ) is called an estimator of 0. Frequently there will be a 

unique maximum likelihood estimator LI(X,, X2,..., Xn) of 0, and often it may be 

obtained by the process of differentiation. 

A. 1 



APPENDDC A 

Since each of the functions L(O and In L(O) attains its maximum for the same 

value of 0, we may instead maximise a normalised version of the likelihood 

function (Yeo et aL (198 8)) such as 

l(0) =n- 'In L(O), 

which we tenn the normalised log-likelihood function. Let Oi denote the ith 

element ofthe vector 0 Assuming 1(0) is differentiable, the likelihood equations 

are given by the equations 

al(o) 
- OIP 

aoi 

whose solutions are local maxima, local minima, or saddle points of 1(0). For 

any local maxima 9 which is a solution of these equations, the (per observation) 

information matrix given by the Hessian 

J(d) 
a 21( 6p) 

_a 
o, a oj. 

gives information regarding the precision of 6(XI, X2,..., X. ) as an estimator of 

the true parameter 0. Further, the estimated asymptotic dispersion matrix of the 

estimator 9 is given by the matrix n-'[J( 9)]-', whose entries comprise the 

estimated variances and covariances of tf, 
. and which can be used to construct 

0) j 6f (6f _ 19)T confidence regions for 0 since the quadratic form n (d - 

2 
asymptotically aXkdistribution (see section 5.3.2 of Silvey (1975)). 
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Note that under certain regularity conditions (see, for example, Lehmann (1983)), 

maximum likelihood estimators are consistent, asymptotically normally 

distributed (with means equal to the true parameter values and dispersion matrix 

n-'L'J'k 9)]-') and ofminimum variance. These asymptotic propertiesjustify the use 

of the method of maximum likelihood to estimate parameters in ion channel 

models since the data sets associated with these models are usually very large. 
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Appendix B 

This appendix contains a brief account of elementary ligand-receptor theory 

(Newsholme and Start (1973), Aidley and Stanfield (1996), Jackson (1993)) 

based on the model of Hill (1909) for the reaction between haemoglobin and 

oxygen. We asswne here that a channel has n equivalent agonist binding sites 

and that there are no intermediate states of binding site occupancy, i. e. the 

number of agonist molecules bound to the channel is either zero or n. 

Let [R] be the concentration of receptors with no agonist molecules bound, let 

[A, R] be the concentration of receptors with n agonist molecules bound and let 

[A] (or, equivalently, a) be the concentration of agonist molecules. Then the 

reaction between n molecules of agonist and a receptor with n agonist binding 

sites can be described by the equation 

k+j 

nA;:: t 
An R,, 

k-I 

where k,, and k, are transition rate constants. The equilibrium binding constant, 

Kb (n) 

, equal to k,, / k_,,, is given by 

K (n) [An R] 

b [R] [A]n 
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so that [AR] = Kb(n) [R] a. Letting p be the proportion of channels that have n 

agonist molecules bound, we have 

[An R] 

IRI + [An R] 

"(n) [. R] an "-b 

[R] +K 
(n) 

[R] an b 

an 
(Kb(n) 

+an 

and hencep / (I -p) = an Kb("). Thus we obtain the Hill equation 

log p 

P) 
=n log a+ log Kb(n), 

which can, in theory, be used to obtain a value for n. 

Since, in practice, p cannot be measured directly, some other property has to be 

used as a measure of agonist-receptor action, and it is common practice to replace 

with tile channel open probability PO in the Hill equation. The relation between 

the agonist concentration and the size of the response (PO) is called the dose 

response curve. 

A Hill plot consists of a graph of PO / (I - PO) against agonist concentration on 

logarithmic scales and the Hill coefficient, n,,, is usually obtained by measuring 

the slope of the Hill plot at the value of agonist concentration for which PO = 0.5. 

B. 2 



APPENDIX B 

Following Hill (1909), we assumed that the channel can have only zero or n 

agonist molecules bound to it. This assumption predicts that the Hill plot should 

be linear with slope equal to n, the number of agonist binding sites on a channel. 

However, the assumption that partially ligated intermediates can be neglected is 

unrealistic (Weber (1975)). Hence the Hill coefficient should be interpreted 

cautiously as a lower bound for the number of binding sites. 

The Hill coefficient is also an important and widely used indication of the degree 

of interaction between the channel subunits, in terms of agonist binding. At the 

two extremes PO =0 and PO = 1, n, takes the value one and there is no 

cooperativity between the binding sites on each subunit: in the case Po -. 05 

almost all the subunits have no agonist molecules bound and as PO - 1, almost 

all the subunits have agonist molecules bound. However, in the intermediate 

range, nHreaches a maximum and the Hill plot looks roughly linear with nH> " 

It should be noted that the overall shape of the FEII plot is hence sigmoidal. 

Whereas a value of n,, -I indicates a complete lack of cooperativity between the 

a-gonist molecules, a value of nH>l indicates cooperativity in that the binding 
C7 

of one agonist molecule promotes the binding of another, and a value of n,, <I 

may indicate the presence of negative cooperativity. If n. is equal to the number 

of receptor binding sites, n then there is total cooperativity in that the channel 

only ever has zero or n agonist molecules bound, as in the assumptions of the 

model discussed above. A value of n, greater than one suggests that two or more 

aggonist molecules must be bound to a channel before it becomes fully active. 4;; p 
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Appendix C 

This appendix contains numerical results for the 
43model 

based on the 

expressions for various observable characteristics of bursts of openings and of 

clusters of bursts of openings derived by Colquhoun and Hawkes (1982) (see 

section 3.4.1.9.3). 

CA Properties of Bursts of Channel Openings 

Tables C. 1.1 and C. 1.2 contain results of numerical calculations of properties of 

bursts of channel openings for a range of agonist concentrations when 6=0 and 

-1,, respectively. 
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Channel Property Agonist Concentration 
1 

10-1 M1 10-6 M 
1 

10-7 M 

Probability that a channel has 2 agonist 0.962 0.698 0.109 
molecules bound at the start of a burst 

Probability that a channel has 0 agonist 0.00016 0.0261 0.463 
molecules bound at the start of a burst 

Expected number of openings in a burst 139.104 62.031 9.926 

Expected number of openings in a burst 140.746 83.61 77.827 
starting in an open state in which 2 agonist 
molecules are bound 

Expected number of openings in a burst 54.049 2.295 1.016 
starting in an open state in which 0 agonist 
molecules are bound 

Expected length of an opening within a 1.000 0.999 0.979 
burst 

Expected length of a closing within a burst 0.0734 0.0688 0.0690 

Expected length of a closing, between bursts 3.942 63.110 1362.015 

Expected burst length 149.300 56.175 

1 

10.243 

Expected total burst open time 139.165 61.974 9.627 

Expected total burst closed time 10.135 4.201 0.615 

Expected length of a burst starting in an 151.060 89.287 83.008 

open state in which 2 agonist molecules are 
bound 

Expected length of a burst starting in an 57.825 2.012 0.619 

open state in which 0 agonist molecules are 
bound 

Table C. 1.1. Properties of bursts of channel openings when j6 =0 for various agonist 

concentrations. All times are given in milliseconds. 
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Channel Property Agonist Concentration 
1 

10-1 M1 10-6 M 7m 

Probability that a channel has 2 agonist 0.708 0.412 0.0172 

molecules bound at the start of a burst 

Probability that a channel has 0 agonist 0.00017 0.0292 0.777 

molecules bound at the start of a burst 

Expected number of openings in a burst 786958.17 115920.6 3253.762 

Expected number of openings in a burst 787147.91 119838.79 15956.97 

starting in an open state in which 2 agonist 
molecules are bound 

Expected number of openings in a burst 431074.21 12803.64 166.66 

starting in an open state in which 0 agonist 
molecules are bound 

Expected length of an opening within a 1.010 1.009 0.997 
burst 

Expected length of a closing within a burst 0.0688 0.0878 0.251 

Expected length of a closing between bursts 24723.42 68555.94 112612.76 

Expected burst length 848819.91 127100.54 4060.43 

Expected total burst open time 794695.32 116920.72 3244.33 

Expected total burst closed time 54124.61 10179.83 816.10 

Expected length of a burst starting in an 849024.15 131379.85 19577.31 

open state in which 2 agonist molecules are 
bound 

Expected length of a burst starting in an 464960.84 14039.38 207.70 

open state in which 0 agonist molecules are 

I I 

bound L- 

Table C. 1.2. Properties of bursts of channel openings when 8= 
-I for various agonist 

concentrations. All times are given in milliseconds. 
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C. 2 Properties of Clusters of Bursts of Channel 

Openings 

Tables C. 2.1 and C. 2.2 contain results of calculations of properties of clusters of 

bursts of channel openings for a range of agonist concentrations when P= 0 and 

)6- -1, respectively. 

CA 
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Channel Property Agonist Concentration 

10-1 M 10-6 M 10-7 M 

Probability that a channel has 2 agonist 
molecules bound at the start of a cluster 

0.962 0.717 0.12 

Probability that a channel has 0 agonist 
molecules bound at the start of a cluster 

0 0.0004 0.011 

Expected number of openings in a cluster 139.138 63.636 17.427 

Expected number of openings in a cluster 
starting in an open state in which 2 agonist 
molecules are bound 

140.746 83.61 77.827 

Expected number of openings in a cluster 
starting in an open state in which 0 agonist 
molecules are bound 

54.05 2.295 1.016 

Expected length of an opening within a cluster 1 0.999 0.988 

Expected length of a closing within a cluster 0.734 0.0688 0.0689 

Expected length of a closing between clusters 3.942 63.171 1355.279 

Expected length of a closing between bursts in 

a cluster 

1.25 1.232 0.489 

Expected length of any closing 0.101 1.06 77.833 

Expected cluster length 149.337 67.899 18.345 

Expected total cluster open time 139.199 63.588 17.212 

Expected total cluster closed time 10.138 4.311 1.132 

Expected length of a cluster starting in an open 
state in which 2 agonist molecules are bound 

151.061 89.287 83.007 

Expected length of a cluster starting in an open 
state in which 0 agonist molecules are bound 

57.825 2.012 0.619 

Expected number of bursts in a cluster 1.822 1.133 1.101 

Expected number of openings in a burst 76.374 56.143 15.835 

Expected burst length 81.408 59.759 16.624 

Expected total burst time per cluster 148.31 67.735 18.295 

Table C. 2.1. Properties of clusters of bursts of channel openings when P= 0 for various agonist 

concentrations. All times are given in milliseconds. 
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Channel Property Agonist Concentration 

10-1 M 10-6 M 10-7 M 

Probability that a channel has 2 agonist 
molecules bound at the start of a cluster 

0.807 0.235 0.00709 

Probability that a channel has 0 agonist 
molecules bound at the start of a cluster 

0.0493 0.461 0.908 

Expected number of openings in a cluster 739565.18 69594.9 1435.97 

Expected number of openings in a cluster 
starting in an open state in which 2 agonist 
molecules are bound 

756486.65 119111.66 15945.12 

Expected number of openin, -,,,, s in a cluster 
starting in an open state in which 0 agonist 
molecules are bound 

414282.9 12725.98 166.54 

Expected length of an opening within a 
cluster 

1.01 1.009 0.997 

Expected length of a closing within a cluster 0.0688 0.0878 0.251 

Expected length of a closing between clusters 24674.25 68382.04 112454.98 

Expected length of a closing between bursts 
in a cluster 

10.896 4.787 3.786 

Expected length of any closing 0.102 1.07 78.564 

Expected cluster length 797701.16 76307.21 1791.83 

Expected total cluster open time 746836.43 70195.13 1431.58 

Expected total cluster closed time 50864.69 6112.08 360.25 

Expected length of a cluster starting in an 
open state in which 2 agonist molecules are 
bound 

815952.48 130582.65 19562.8 

Expected length of a cluster starting in an 
open state in which 0 agonist molecules are 
bound 

446849.48 13954.23 207.55 

Expected niunber of bursts in a cluster 420.56 372.1 73.61 

Expected number of openings in a burst 1758.53 187.03 19.51 

Expected burst length 1885.9 200.3 20.61 

Expected total burst time per cluster 793129.52 74530.59 1516.9 

Table C. 2-2. Properties of clusters ofbursts of channel openings when P= 
-I for various agonist 

concentrations. All times are given in milliseconds. 
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Appendix D 

This appendix contains expressions for the second partial derivatives of the 

normalised log-likelihood defined in equation (4.30) under each of the three 

approximations described in section 4.1.2.2 but with agonist concentration 

dependent opening rates incorporated as described in section 4.3.2.1. These 

derivatives are used to calculate standard deviations and correlations ofparameter 

estimates (see section 4.3.2.2). 

D. 1 Single Exponential Approximations 

Define probability density ftmctionsfo(u) andfc(v) of adjusted observed openings 

and closings, respectively, as follows. Let 

0u 

-s- 
0 

fo (U) 
r-'exp(- uI r) u>0 

and 

0v 
! -. 0 

fc (V) = 

Is 

-'exp(- v1s) v> oip 

where the definitions of r and s are given in D. 1.1 or D. 1.2, depending upon 

which single exponential approximation is under consideration. The normalised 
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log-likelihood is given by 

m In (r exp (- u, r+ In (s exp (- v, s 

-[]jar+ lias+ur-1 +vs-1], 

where 

m ui and v= M-1 V1. 

Throughout this appendix, let the subscripts 0 and c denote partial differentiation 

with respect to po and pc, respectively. Then 

0 
(1j) = (ijr 2-r -') ro + (- -2 - 1) 

ur vs S Sol, 

C 
(1j) = (- -2- -2 1) I ur -r -') rc + (vs - s- scl, 

00 ur -2 - r-')roo + (r -2 2 u-r -3 )r2 
0 

(- -2 -I)+ (S-2 VS-3)S2 vs -s Soo -2 010 

Icc (IJ) ( ur -2 - r-')rcc + (r -2 
-2ur 

-3) r2 c 

-2 -I)+ (S-2 - -3)S2 vs -s scc - 2vs C 

and 
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loc(IJ) ur -2 - r- 
1) 

roc + (r -2 
-2 u-r -3 ) ro rc 

(V-S -, -s -') soc + (S-2 
-2 v-s -3) So SC * 

Sections D. 1.1 and D. 1.2 contain expressions for r, s and their first and second 

partial derivatives under the approximations described in sections 4.1.2.2.1 and 

4.1.2.2.2, but with agonist concentration dependent opening rates incorporated. 

Approximation derived by ignoring Undetected Sojourns 

Under the approximation described in section 4.1.2.2.1, but with agonist 

concentration dependent opening rates incorporated, 

r= po exp (a rc / lic) and sa pc exp (ro / po). 

It follows that 

ro = exp (a rc / pc) 

S0=-a-1 yCg0-2 r. eXp (Z., / po) , 

-2 
rc = -apopc rcexp(a-rclpc)i, 

sc =a-1 exp (ro / yo) ý 
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roo : -- 

3 
soo =a UC /, o ro exp (ro / po) (ro pol 

-3 -I rcc =a go pc rc exp (a rc / pc) (a rc lic 

scc = 

-aj 
-2 

r exp (a rc / lic) oc Ic c 

and 

soc a-' 100 
2 

ro exp (ro / go) 

D. 1.2 Approximation using Exponential Distributions with True 

Means 

Under the approximation described in section 4.1.2.2.2, but with agonist 

concentration dependent opening rates incorporated, 

(/jo +a-1 pc) exp (a rc / pc) -a-1, ac - rc 

and 

(yo + a-', uc)exp(ro//. io) - po - ro. 

it follows that 

DA 
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ro = exp(arc/pc), 

ßo 
2 

ro (mo +a-1, m, )] exp (-ro 1, uo) -1 jh 

rc = [a-' - apc 2 rc (po +a PCA exp (a rc / pc) -a 

sc = a-lexp(ro/po). s 

roo = 

Soo ao3 [-ro + a-11jo 
1 
lic-ro + 2a-lpc]exp(ro/, uo), 

TC, 21 
rcc =uc [a rc +a pc go rc +2 ago ] exp (a rc / /ic) 

cc = 
05 

-2 
roc a rc lic exp (a rc / pc) 

and. 

soc = -a-' rclio exp ( ro /1,0). 
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D. 2 Bi-exponential Approximation 

Incorporating agonist concentration dependence of opening rates into the 

expression for the approximate probability density function of adjusted observed 

openings given in section 4.1.2.2.3 and a similar expression for the equivalent 

probability density fimction for closings, let 

0u0 

f(u) 
al Ir 

- exp(- u/ a2) +I exp (- u/ a4) u> Oý, 
'72 'r4 

where 

a, = (ix2 - a-'Iic) (a2 - 

4ý73 ý- 1- al 
ý 

2(p + (P2 a2 4q)) 

and 

a4 = V2(p 
- (p' - 4q)'2, ) ýl 

where 

p=(, Uo + a-'fic) exp(a *rcllic) - Zc 

and 

q= dlpopc exp(a -rclljc) + V-z Zc2. 

SHiMlarly, let 

g (v) =10v 
:g 

. 
ß' 

exp(- vIß2) + -ýI exp (- v/ 
ß4) v>0, 

ß2 ß4 
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where 

(1wo - A) 
04- 

A)-lq 

ß3= i-fl1, 
1 1 
V2) ß2 : ý-- I2(X + (X2 

- 4y) 

and 

ß4 
ý 1/2 (X 

- 
(X2 

- 

where 

x= (po + a-lfic) exp(z7c//Io) - 'co 

and 

a'11011c exp(-ro//Io) + Y2 ro. 

Then Au) and g(v) are the probability density functions of adjusted observed 

openings and closings, respectively, under this approximation, and the nomialised 

log-likelihood is given by 

. 
12L 

m-'E [Inf(u) + Ing(v)]. 
i=I 

It foHows that 

fo (ui) + go (V)] 
10 Aui) 9(Vi) 

f(u) 9(Vj) 
fc (U) + gc (V)l 
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f(I 
)2(f 

I 
)f 

o(U))2 m 00(u) Ii 
i=I 

f(U) f(u) 

goo (V) _(1)2 (go (V))21 
9(vi) g(vi) 

II 
t" (I)(I )2(f 

fcc (U) -- C(U))2 f(u) f(Ui) I 

gCC(V) _(I)2 (gC(V))2 
AV) g(v). 

I 

and 

oc(p) =mf( UL 
)'f, (Ui)f, (U) 

I 
oc 

(U) 

i=I f(u) f(U) 

g, (V) -( ý', 
), 

g, (V) g, (V) 
9(V) g(vi) 

where 

(U) aAu) a a, 
aaý- alio 

fc (U) aA U) a a, 
a ý- apc 

a2 
foo (u) =aa5*+ 

! xu) 

* 

a24ý. 

2 
. 

apo apo) 
12 0 
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fcc(u) 2AU) a. 
I 

a ai 
( 

air 1) + aAu) a21r. 
*i aapa. ayc alic) ala. aIJ2 c 

and 

1: a2AU) a gri 
(a 

4ý- + 
8AU) 

a2aý 

oaaaý. 13lic (9, " 0 aa. apo(3lic 

Expressions for go(v), gc(v), gOO(v), gcc(v) and goc(v) are the sarne as those for 

fo(v), fc(v), foo(v), fcc(v) andfoc(v) respectively, but withfreplaced by g and 

replaced by gi (i = 1,2,3,4) throughout. 

By elementary partial differentiation, 

af(u) 
- 

a2- 
I 

exp (- Ulr2- 

aal 

af(U) 
- al tr2 -2(Ua2-1 - I)eXp(-Ua2-1), 

8 a2 

af(u) 
- 

af4 exp(-ULT4-1) 
a a3 

af(u) - a3a4 -2(Ua4-1 - I)eXp(-Ua4-1). 

(3 a4 
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2f(U) 

=aa -3 (u 2a -2 
- 4ua2-1 + 2) exp(-ua -1) 

a a2 2 

a 2f(U) 

"': a -3 (u 2a -2 
- 4ua4-1 + 2) exp(-ua4-1), 

13 a4 23 
a4 4 

a 2f(U) 
(U a2 

3_ 
tr2-2) exp (- ua2-1) 

aal8a2 

and 

a 2f(U) 
(U a4 -3 _ a4 -2 ) exp(-ua4-1). 

13 a3lo a4 

The second partial derivatives ofAu) which are not given above are all zero. 

Expressions for the first and second partial derivatives of g(v) are the same as 

those for the corresponding partial derivatives ofAv), but with a, replaced by fij 

(i =Iý, 2,3,4) throughout. 

The first partial derivatives of a, (i = 1,2,3,4) with respect to /10 and lic are 

given by 

aa2 
V -Y 

ago 
2[po + (p 2 

- 4q) 2(ppo - 2qo)], 

a a4 

PO 
13 a2 

31 
apo ago 
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aa, 
1 aa2 

- (a2 - jr4)-2(a2 -'/jc) 

(a 
ir2 a a4 

ago 
(a 

2- ir4) 

apo -aý ago apo 

aa3 aal 
apo ago 

aa 2 V, [pC + (p 2 2- 4q) 2(ppc -2 qc)], 
al-ic 

8 a4 

PC 
a a2 

alic apC 

aal a2 
alic 

= (a2 
- lr4)-l 

alic 

3a 8a 
(jr2 - a4)-2 (jr2 

-a -'jvc) 
24 

apc apc) 

and 

a a3 aal 
alic alic 

The first partial derivatives of fl, (i = 1,2,3,4) with respect to po and pc are 

given by 
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aß2 

apo 
2 [XO + (X 2- 4y)-Y2(xxo - 2y0)], 

a P6 6 
a, 

4x 
ap 

2 

Jo 
0 

allo 

a 8,8 = (JO2 - )64) 

a) 
2 

ago apo 

- 062 - 184)-2 
662 aa2 

/jo apo 

aJ64 

apo 

a, # 3 ap, 
ago ayo: ý 

aß2 

aßc 
2 [x 

C+ 
(X 2- 4y)-V" (xxc - 2yc)], 

a, 84 a)62 

ajuc 
= xc - 

apc 31 

aß, a ß2 

_ (ß2 _ -2( 

( 
aß2 aß4 

ý 

= (ß2 - 
ß4) -1- ß4) ß2 

- /10) -- 
ý-/IC a#C ý a, "c ayc) 
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and 

a)8 
3 a, 61 

alic alic 

By further elementary partial differentiation, the second partial derivatives of ai 

(i = 1,2,3,4) are given by 

a2a 
2 

: -- 
V2 [Poo + (Ppoo +p2_ 2qoo) (p 2- 4q)- 1/2 

aJU0 
20 

- (ppo - 2qoý(p2 - 4q) -3/2 1ý 

a2 'r4 a2 a2 

ago 
2 Poo - aljo 

2 

a2a 
L 

lr2 - lr4) 

a2 'r2 
2(a2 - jrý -2 

a a2 13 a2 

_a 

a4 

alio 
2a 

po 
2 allo, ago alio, 

- (a2 - a-I IJC)(a2 - a4)-2 

(32 a2 
- 

a2 «4 
-2 (a2 - ir4) 

a2 (3 a4 
2 

aao 
2 

apo 
2 apo (3, U 0 

a2a 
3 

a2 al 

apo 
2a 

po 
2 

D. 13 



APPENDIX D 

a2jr 
'2 2 (p 2 -1/2 

apc 
2 

V2 [P 
CC 

+ (ppcc + pc -2 qcc) - 4q) 

- (ppc -2 qc)2 (p 2- 4q)-3/2 ] 
1, 

a2 a4 
= PCC _ 

a2 a2 

opc2 
alic 

2 

a21r 
(r2 

- LT4) 

a2a, 
2- (a a- 

IjC)(a2 
- jr4)-2 

alic 
2 

alic 
22 

- 2(a2 - aý -2 
a a2 

-a-Ia 
lr2 a a4 

( alic alic alic) 
a2 L72 a2 a4 

-2 (a2 - a4) 
a2 a4 

ý2 

ap c2 aju c2 alic C) p C, 

a2 a3 a2a 
I 

opc 2 

alic 
2 

a2 'r2 

_= 
V2[poc 

+ (ppoc + popc - 2qoc)(p2 4q)- 1/2 

apo alic 

- 
(ppo -2 qo) (ppc -2 qc) (p 2-4 

q) -3/2 

a2 a4 

= Poc -a2 
a2 

- 

alio alic alio alic 
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a2jr 
I (a2 - a4) -1 

a2 a2 

- (a2 
- a4) -2 

aljo alic al. 10 alic 
aa2 8 a2 

_ 
aa4 

+ 

aa2 aa2 a a4 

. 
ayo apc aljc, ajuc 

, apo apo 
- (a2 

-a IJC)(a2 -a4 )-2 

a2 a2 a2 a4 

alio amc aijo apc) 

- 2(a2 - a4) 

a a2 a a4 a a2 a a4 

apo apo alic apc 

and 

a 
2a 

3 
a2a 

I 

alio aac aljo aljc 

The second partial derivatives of 8j (i = 2,3,4) are given by the expressions for 

the corresponding second partial derivatives of a,, but with p, q and a replaced 

by x, y and fi, respectively, throughout, and 

a2j6l a2J62 
C82 #4)-' 

- -2 - 2( _ fl 4) 

( a, 62 a, 62 a, 64 

a2 po 
2 

ago , apo apo apo) 
ß -2 

4) - (ß2 - #0) (P2 

a2j 62 a2ß4 

2 (ß2 - 
ßý-1 

aß2 aß4 
2 

a /jo 
2 apo 2 C3P0 aßo 
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a2 fil 
02 

- 

a2 
182 2 (fl2 - 

Pý -2 
aP2 a, 62 

_ 
a, 6, ' 

alic 
2 

apc 
2 alic alic alic) 

- 
(92 -P0) (182 -6 4) 

-2 

a2a2 P64 2a)4)2 x22-2 (fl2 
aj6 6 

apc apc ) 
apc apc) 

and 

a 
2fil 

(P2 
)v 

1 
a2#2 

(92 - )64)-2 
Fap aljo c alio alic 

C3 P2 a a J6 4 
ofi 

2 a) 2 a)64 
x 

apo apc apC apc apo apo 

226 4) 
-2 x a2 

--- 

A 
a264 P 

apoapc apoapcl 

- 
2(92 - 

P4) 
aj6 2 

6 ap 4 a 162 
at 4) 

apo apol apc apc, 

Finally, the first and second derivatives ofp, q, x and y are given by 

po = exp(arc//jc), 

-rC jC-2( -1 
pc = exp (a -rc / pc) [a a ao +a /Jdl 91 

Poo = 

pcc =a -rC IjC-3 exp(arc//jc)(2/io + arcliolic-1 + rc), 
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Poc =-a rC IjC-2 exp (a rc /, uc) , 

qo = a-'/icexp(arc/pc)., 

qc = exp (a rc / lic) (a -1 Po - T"c ljc- 1 /jo) 11 

qoo = 31 

qcc = arc 
2 110 /JC -3 exp (a rc / lic) , 

qoc = (a-' - rc1jc-l)exp(a-rc1pc), 

x0=(/ Ij [1 -2(, -1 
exp ro 0) _ 1.0 110 ao +a /Jdl 

xc = a-lexp(-ro/ijo), 

X00 = ro ljo-3 -l/ -1-, + "o) exp (ro / po) (2 a ic +a "o PC Po 

xcc = 
01, 

x0c =- a-' ro jjo-2 exp (10 / po) I, 
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YO = exp(ro/, uo)(a-'/. ic - 

yc = a-', uoexp(ro/, uo), 

yoo = a-' ro 
2 

/JC #0 -3 exp (ro / po) , 

YCC ý 

and 

yoc = (a -1-a-1 rc ijo- 1) exp (r. / po) . 
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