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In this thesis, we present a theoretical study of the effects that a current-carrying

Two-Dimensional Electron Gas (2DEG) produce on a neighbouring magnetically trapped

Bose-Einstein Condensate of alkali atoms (BEC). We suggest that technology used for

magnetic micro-controlling of cold gases could be improved by replacing or combining the

metallic wires used in such structures with 2DEG-based conductors or quantum electronic

devices. All calculations presented in this thesis consider parameters attainable with

present technology, suggesting that experimental realization of the scenarios proposed

here is already feasible.

In Chapter one we present the general context in which this thesis is developed. It

includes a definition of the Bose-Einstein condensate state, a description of the principles

of magnetic trapping and a brief review of the developments in the area of micro-

manipulation of atomic BECs. Chapter two is devoted to describe the characteristics

of the heterojunction considered in the thesis, and a simple model used to evaluate the

electron flow in the 2DEG it contains. Chapter three shows in detail the properties of

magnetic trapping configurations considered afterwards.

We study two simple applications that can be developed by bringing a BEC near

to a current carrying 2DEG. Firstly, in Chapter four, we demonstrate the feasibility of
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creating magnetic trapping potentials using a current-carrying 2DEG and an external

magnetic field. We identify the advantages of such a 2DEG-based trap over traditional

metal-based traps and the conditions needed for operability.

Recently developed techniques of magnetic field microscopy with BECs motivate

our second considered application, namely, using a Bose-Einstein Condensate to probe

the electron transport in 2DEGs and structural characteristics of the heterojunction.

In Chapter five, we demonstrate how the quantization of conductance occurring in

Quantum Point Contacts (QPC) fabricated from the heterojunction in the 2DEG, can

be detected through a localized depletion of the BEC caused by a small inhomogeneity

of the magnetic field that originates from a current through the QPC.

In addition, we show that the electron density fluctuations in the 2DEG can be

measured by detecting the corresponding inhomogeneous magnetic field produced when

current flows, via modulation of the BEC’s density. We establish the conditions under

which a sensitive response of the BEC to the magnetic field is possible. We also derive

a general relation between the modulation of the magnetic field affecting the BEC and

the distribution of ionized donors in the heterojunction.

Creating semiconductor-cold-atom hybrid systems, where electrons in the semicon-

ductor and atoms in the BEC are coupled to each other, requires a full understanding of

the properties of both systems. Since typical micro-traps have an elongated geometry,

in Chapter six we present a study of phase correlations of BECs in such geometries. To

do this, we use a recently proposed effective one-dimensional equation that takes into

account the 3D character of the BEC.

Finally, in Chapter seven, we conclude and identify directions for future work emerg-

ing from this thesis.



Acknowledgements

With these lines, I would like to thank all people that made this thesis possible.

First and foremost I would like to thank Prof. Mark Fromhold for giving me the

great opportunity to join the Condensed Matter group in the University of Nottingham.

Through his brilliant ideas, dedication and passion for physics he gave me not only good

advice but also encouraged me to perform most of the work presented in this thesis.

It has been a pleasure to work with and learn from his experience in relevant aspects

of physics as science and social activity. His ideas, suggestions and careful reading of

the manuscript were really valuable for the development of this thesis. Nonetheless,

mistakes, inaccuracies and misspelling present in the text are entirely my responsibility.

I also want to thank all people in the group whom I have many physics-related chats.

I want to thank specially to Tao Ya, with who I discussed several common problems,

pointed to usually by his critical thinking. He also provide me with useful ideas for the

solution of several issues I had with the coding. I also want to thank Robin Scott for

taking part of his time to read and comment about Chapter six of this work. Thanks

are also due to Andrew Henning for dragging me to the pub to share a couple of pints

from time to time.

I cannot leave without mention to Anton Piccardo-Selg for providing me the skeleton

for several figures, being this a substantial aid for the presentation of this thesis. I also

want to acknowledge the support of Prof. Peter Krüger during the writing period.
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Introduction

According to the spin-statistic theorem, the quantum states of a system composed

of particles with half-integer spin (Fermions), cannot be occupied by more than one

particle (Pauli’s exclusion principle). If the particles have integer spin (Bosons), such

a constraint is relaxed. Both statements have impressive consequences for dynamics of

many-particle systems at low temperatures, where the population of the quantum states

can be strongly influenced by the bosonic or fermionic nature of the system components

(degenerate regime) [1].

As an example of such consequences, Fermionic systems in the degenerate regime

have a significant amount of energy due to the distribution of particles over many

states. This internal energy produces an associated pressure, whose origin comes from

the inability to have more than one particle in the same quantum state. This pressure

is, for example, responsible for the stability of some massive stars against gravitational

collapse. In a Bosonic system in the same regime, a large proportion of the particles are

in the same quantum state, forming what is known as a Bose-Einstein condensate [2].

Modern techniques of magnetic trapping of neutral particles and of laser and evap-

orative cooling, all developed during the last thirty years of the 20th century, provide

the tools needed to create dilute atomic gases in which the degenerate regime can be

reached by cooling the system to nano-Kelvin temperatures. This technique gave rise

to the experimental realization of an atomic Bose-Einstein condensate in 1995 [3, 4, 5]

and enabled the observation of effects associated with Fermi statistics in 1999 [6].

Magnetic trapping offers almost perfect isolation of a gas from external perturba-

tions, creating convenient environments to investigate physics under controllable condi-

tions. The case of degenerate Bosonic gases or Bose-Einstein condensate (BEC), which

this thesis focuses on, has been particularly successful and several theoretically predicted

phenomena have been already observed, including: interference fringes of matter waves

[7], quantised vortices [8], vortex lattices [9, 10], Feshbach resonances [11, 12], BCS-

BEC crossover [12, 13, 14, 15], quantum reflection [16], soliton waves [17, 18, 19], and

the Berezinskii-Kosterlitz-Thouless transition in quasi-2D geometries [20], among many

ix
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other examples.

In addition to interesting fundamental physics, BECs are also suitable for developing

applications that take advantage of their quantum nature. Due to the isolation conditions

mentioned, such applications could offer sensitivities and efficiencies beyond the limits

reached by semiconductor-based technology. The realization of simple devices, like a

matter-wave interferometer [21], high sensitivity and resolution field microscope setups

[22] and a miniaturised atomic clock [23], suggests a promising future in this direction.

Along these lines, the last decade has seen the appearance of the “atom chip” as

a standard setup used to control the dynamics of BECs. Using micron-sized sources

of magnetic field, the atom chip produces controllable potentials useful for manipulat-

ing atomic gases and registering their state. The high precision and flexibility in the

design of microstructured patterns have made possible the creation of a wide range of

trapping potentials as well as some analogues to optical devices such as matter-wave

splitters and interferometers. With the miniaturization of the trapping potential, other

areas of interest have appeared; including low dimensional systems (quasi-1D and quasi-

2D), matter-wave interferometry [21], high precision sensors of force and atom-surface

interactions [22], BECs in disordered potentials [24], quantum information processing

[25], integrated atom-optics [26]. In analogy with the development of semiconductor

technology, miniaturization of the atom-chip has become a key element for the success

of applications [26, 27].

Microtraps in atom-chips usually hold about 104 − 106 atoms at distances above

10 µm from the surface over which the magnetic sources are deposited [26, 27]. At

smaller separations, processes like spin flips induced by Johnson Noise in the surface

[28], surface absorption due to the attractive Casimir-Polder potential [29], fabrication

imperfections [30] and technical noise [31], strongly restrict the possibilities for coherent

manipulation, and therefore the functionality of the system.

A potential breakthrough in this context would be the integration of semiconductor

structures with devices that are either able to control the atomic behaviour or whose

properties depend sensitively in the atom-semiconductor interaction. Apart from adding

new features, such structures could produce a simple solution to the problems mentioned

above, improving the prospects for developing applications. Also, the quality of the atom-

chip would be improved by using established techniques for fabricating structures with

nanometre precision, such as deep and shallow etching, gate depletion or ion implantation

[32]. Hybrid systems could use a large range of solid-state devices, including quantum

dots, quantum point contacts, ferromagnetic semiconductors, spin-polarised currents or

2DEG-superconductor devices, to manipulate and detect single atoms or atomic clouds.

Currently, integration of semiconductor technology for atom manipulation is restricted

by the typically large atom-surface separation, making the direct coupling between an

electron (or hole, if the semiconductor device is p-type) and atomic magnetic moments
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very weak: to our knowledge no example of such direct coupling currently exists.

In this work, as a first step towards the integration of semiconducting devices into

atom chips, we consider how currents through a Two-Dimensional Electron Gas (2DEG),

embedded in a semiconductor device, affect a neighbouring Bose-Einstein condensate

(BEC). We demonstrate the feasibility of creating magnetic trapping potentials using

currents in a 2DEG and identify their advantages over traditional metal-based traps. We

show that properties and effects occurring in the 2DEG, like electron density fluctuations

and quantization of the conductance, can be measured through modulation of a BEC’s

density by the inhomogeneous magnetic field produced. We also establish the conditions

under which a sensitive response of the BEC to this magnetic field is possible.

Finally, we use an effective 1D model to describe the phase fluctuations of elon-

gated BECs in different regimes of confining. This study has two motivations: firstly,

understanding the phase properties of BEC is a key element to successfully develop-

ing applications, and secondly, typical atom chip configurations creates elongated atom

clouds, almost of 1D character, whose dynamic is dominated by the phase the condensate

wave function.

New materials useful in scientific and technological applications are discovered very

frequently. It is worth evaluating how these can be incorporated into atom-chip con-

figurations to understand the physics of both systems and to develop applications. An

example of such a situation is the 2DEG-BEC hybrid system considered in this thesis.



CHAPTER 1

Bose-Einstein condensation (BEC) in micro-trap potentials

A system of bosons is said to form a Bose-Einstein condensate (BEC) if, qualitatively

speaking, a large portion of its particles are in the same quantum-mechanical state. By

extending the ideas of S. Bose on the statistics of photons, in 1925 A. Einstein predicted

this condensed state for a gas of massive non-interacting particles, where a macroscopic

occupation of the ground state can occurs below a finite critical temperature.

Experiments with helium at low temperatures showed the first evidence of Bose-

Einstein condensation. In particular, in 1938 F. London [33] suggested that the super-

fluid transition observed in 4He was the equivalent of the BEC transition of the ideal

gas, occurring in a strongly interacting system. Subsequent theoretical work by Landau

[34, 35], Bogoliubov [36], Landau and Lifshitz [37], Penrose [38] and Penrose and On-

sager [39], established the superfluid-BEC relation suspected by London, and rigorously

extended the notion of Bose-Einstein condensation to the case of interacting particles.

Theory and experiments demonstrated that due to the strong interaction between he-

lium atoms in liquid 4He well below the superfluid critical temperature, the lowest energy

state is occupied only by ∼ 8% of the total number of atoms [39].

It took about 70 years after Einstein’s prediction to observe experimentally the spec-

tacularly large condensed fraction characteristic of the non-interacting case. In 1995,

two groups reported the creation of BEC in dilute atomic gases: the team lead by W.

Ketterle condensed 5 × 105 23Na atoms at a temperature below 2 µK (MIT-USA, [4]),

while the research group at JILA, led by C. E. Wieman and E. A. Cornell, reached a

degenerate state of 2 × 104 87Rb atoms at a temperature of 170 nK [3]. Since then,

at least 75 research groups around the world have reported the achievement not only of

1
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the Bose condensed state, but also of the Fermionic gases in the degenerate regime 1.

So far, the Bose-Einstein condensed state has been reached with vapour gases of alkali

atoms of 7Li, 23Na, 41K, 52Cr, 85Rb, 87Rb, 133Cs and 174Yb [40].

This huge experimental success rekindled theoretical interest in the field of quan-

tum degenerate gases [2, 40]. Finite temperature mean field methods, established by

Bogoliubov in the 1950’s, provide a satisfactory description of many features observed

at temperatures well below the transition temperature (Tc). Currently, the extension to

regimes where the mean field approach is no longer valid is attracting great attention

from the scientific community [41]. Additionally, modern computing facilities allow the

simulation of complex situations, getting close to reproducing many of the experimental

conditions, and considerable effort has also been devoted to this area [42].

The aim of this Chapter is to introduce the terminology and conventions used in

this thesis, as well as the general framework in which this work has been developed.

Section 1.1 establishes the definition of the Bose-Einstein condensed state. A brief

introduction to the concept of magnetic trapping is presented in Section 1.2. Finally,

some developments in the area of micromanipulation of BECs are (very) briefly reviewed

in Section 1.3.

1.1 Definition of BEC and the Gross-Pitaevskii equa-

tion

In fermionic systems (composed of particles with semi-integer spin), the Pauli exclusion

principle implies the single occupancy of any single-particle state. This limitation over

the occupancy of levels does not apply for systems made up of particles with integer spin

(Bosons). In Bosonic systems at very low temperatures, a macroscopic proportion of

the particles can occupy the quantum state with lowest energy, creating what is known

as a Bose-Einstein condensate (BEC).

To illustrate how the transition from a thermal gas to a BEC occurs, consider N

non-interacting Bosons in a large volume. According to the Bose-Einstein distribution

[1], the average number of particles in a state i is given by:

Ni =
1

exp([Ei − µ]/kBT ) − 1
(1.1)

where Ei is the energy of the state and µ is the system’s chemical potential, which

is fixed by the total number of particles, N , and the temperature, T , of the system

according to:

N =
∑

i

1

exp([Ei − µ]/kBT ) − 1
(1.2)

1http://ucan.physics.utoronto.ca/News
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In the non-interacting case, the energy eigenstates are obtained by solving the single-

particle time-independent Schrödinger equation, and it is convenient to change the sum-

mation over states into a summation over the energy spectrum:

N =
∑

n

gn

exp([En − µ]/kBT ) − 1
(1.3)

where gn is the number of states with energy En. For a large volume system, the

spacing between energy levels tends to zero and the summation over n can be replaced

by integration over the energy:

N =

∫

dE
g(E)

exp([E − µ]/kBT ) − 1
(1.4)

where g(E)dE is the number of states within the energy interval [E,E + dE].

The simplest situation occurs when particles, of mass m, are free to move in a 3D

box of volume V . The density of states is then [1]:

g(E) = V
m3/2E1/2

π2~3
√

2
(1.5)

Substituting Eq. (1.5) into Eq. (1.4) yields a relation between the particle density

η = N/V and the chemical potential, µ:

ηλ3 = g3/2(z) (1.6)

with the standard definitions:

λ =

√

2π~2

mkBT
(1.7)

z = exp(µ/kBT ) (1.8)

gk(z) =

∞
∑

ℓ=1

zℓ

ℓk
(1.9)

for the thermal wavelength (λ), the fugacity (z = exp(µ/kT )) and the Bose function

gk(z), respectively [1].

A plot of g3/2(z) is shown in Figure 1.1(a). This function is well defined for z ≤ 1

and its slope becomes infinite at z = 1. As a consequence, the right hand side of Eq.

(1.6) has an upper bound equal to g3/2(1) ≃ 2.612, which imposes a limit to the product

ηλ3. In other words, Eq. (1.6) can be solved only if the condition:

ηλ3 6 g3/2(1) (1.10)

is satisfied. This critical condition can be violated either if the temperature is very small,

making λ → ∞ according to Eq. (1.7), or, if the particle density is large enough for a

given temperature.
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Notice that by replacing the summation in Eq. (1.3) by an integral in Eq. (1.4),

the density of states corresponding to the zero momentum state is completely neglected

(g3/2(0) = 0), and therefore Eq. (1.6) counts the particles with momentum different

from zero. Violation of Eq. (1.10) means that, in accordance with the Bose distribution,

the number of particles with non-zero momentum is smaller than the total number of

particles by a finite fraction. If the total number of particles is conserved, the remaining

finite fraction should be accommodated in the zero momentum (p = 0) state. The

number of such condensed particles depends on how far the system is from satisfying

Eq. (1.10), and saturates at T = 0 when all particles are in the zero momentum state.

Eq. (1.10) can be used to define conditions under which Bose-Einstein condensation

occurs in the ideal gas. Assuming a fixed density, the critical temperature Tc below

which the number of particles in the p = 0 state becomes macroscopic is:

Tc =
2π~

2

mkB

[

η

g3/2(1)

]2/3

(1.11)

and, assuming a given critical temperature Tc, Eq. (1.10) defines the critical density:

ηc = g3/2(1)

[

mkBTc

2π~

]3/2

(1.12)

Below Tc, the fraction of particles with zero momentum, N0, becomes [1]:

N0

N
= 1 −

(

T

Tc

)3/2

(1.13)

In the thermodynamic limit, considered here by replacing the summation over energy

by an integral, the condensation occurs as a second order phase transition at a finite

temperature Tc, as seen by the discontinuity in the condensate fraction shown in Figure

1.1(b) [40]. The discontinuities of the thermodynamic functions in this limit, smooth out

when the system only contains a finite number of particles, but still change dramatically

near the critical temperature [43, 44].

At this point, two remarks deserve mention. First, the potential energy acting on

the bosons, and the dimensionality of the system, both influence the character and

presence of BEC by defining the density of states (see Eq. (1.4)) [40]. For example, true

condensates are not present in the thermodynamic limit of 2D and 1D uniform systems

at any finite temperature [2]. Second, the previous definition of BEC cannot be applied

directly to an interacting system because single-particle energy levels are only defined

for the non-interacting case. However, generalisation of the BEC concept can be done

by considering eigenstates of the one-particle reduced density matrix [39], as described

in the next Section.
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(a) (b)

 0
 0  0.5  1

g 3
/2

z

 0

 0.5

 1

 0  0.5  1  1.5

N
0/

N

T/Tc

Condensate fraction

Figure 1.1: (a) Right hand side of Eq. (1.6). This function has an infinite slope

at z = 1, which implies that Eq. (1.10) has no solutions for z ≥ 1 (b) Fraction of

particles in the zero momentum state for a non-interacting Bose gas. Below the critical

temperature, Tc, a macroscopic fraction populates this state.

1.1.1 Definition of BEC for interacting systems

The general definition of the Bose-Einstein condensation phenomenon was originally

introduced by R. Penrose and L. Onsager [39]. Using the properties of the one-particle

reduced density matrix, they generalised the notion of the ideal BEC in a non-interacting

and free gas, to interacting and trapped cases. Their approach also provides a suitable

framework for describing the system’s dynamics in terms of its excitation spectrum, as

done initially by Bogoliubov [36]

Consider a system of N bosons in thermal equilibrium in the many-particle state

|Ψ〉. The one body reduced density matrix is defined by:

ρ̂(1) = N Tr2...N |Ψ〉 〈Ψ| (1.14)

where Tr2...N means the trace is taken with respect to particles 2 . . . N but not particle

1. In the spatial-coordinate representation, the eigenvalues of this operator are defined

by the integral equation:
∫

dr′ρ(1)(r, r
′)φi(r

′) = Niφi(r) (1.15)

where Ni is the occupation number of the single-particle state φi. The eigenfunctions,

φi, define an orthonormal and complete basis of the system’s Hilbert space, and the

density operator can be written as:

ρ(1)(r, r
′) =

∑

i

Niφi(r)φ∗i (r
′) (1.16)

Bose-Einstein condensation occurs when one of the single-particle states, φ0, is macro-

scopically occupied while the other single-particle states have an occupation of order
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1. This condition is equivalent to establishing positive upper and lower bounds for the

fraction of particles in a single-particle state φ0 [39].

Under this condition, the major contribution to the density matrix Eq. (1.16) comes

from the macroscopically occupied state, φ0. Therefore, it is convenient to separate out

it from Eq. (1.16), which can be written as:

ρ(1)(r, r
′) = N0φ0(r)φ∗0(r

′) +
∑

i6=0

Niφi(r)φ∗i (r
′) (1.17)

In general, the second term involves a superposition of functions with all possible length

scales, and tends to zero for large separation |r−r′| → ∞ [2, 39]. The first term gives a

finite contribution up to distances fixed by the extension of the function φ0(r), making

ρ(1)(r, r
′) 6= 0 for all relevant distances in the system. This characteristic of the density

matrix is known as long-range order and under Bose-Einstein condensation all relevant

non-diagonal elements of the density matrix of a system are finite, in contrast with the

situation in a non-condensed state, where they tend to zero [2].

1.1.2 The Gross-Pitaevskii Equation

The Gross-Pitaevskii equation (GPE) corresponds to the mean-field approximation of a

system of weakly interacting bosons at T = 0. It differs from the Schrödinger equation

by a non-linear term proportional to the local density of the system. The GPE enables

the system’s dynamics to be described in terms of a reduced set of parameters with a

clear physical meaning [40, 45]. Phenomena like the creation of sound waves, solitons

and vortices are described with great accuracy by the GPE [40].

To obtain the Gross-Pitaevskii equation in its usual form, consider a system of N

interacting particles, described in the many-body representation by the Hamiltonian

operator:

Ĥ =

∫

drΨ̂†(r, t)

[

− ~
2

2m
∇2 + Vext(r)

]

Ψ̂(r, t)

+
1

2

∫

dr

∫

dr′Ψ̂†(r, t)Ψ̂†(r′, t)V (r − r′)Ψ̂(r, t)Ψ̂(r′, t) (1.18)

where Ψ̂(r, t) and Ψ̂†(r, t) are the Boson field operators for annihilation and creation of

a particle at position r, respectively, and V (r−r′) is the two-body interaction potential.

Defining the Bose-Einstein condensed state in terms of the single-particle density

matrix and its eigenstates allows us to identify the single-particle states for both the

interacting and non-interacting cases. These functions can be used to expand the field

operators, Ψ̂(r, t) and Ψ̂†(r, t) respectively, in terms of single-particle annihilation and

creation operators :

Ψ̂(r, t) = φ0(r, t)φ̂0 +
∑

i6=0

φi(r, t)φ̂i (1.19)
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where the contribution associated with a macroscopically occupied single-particle state

φ0 has been separated out. The annihilation and creation operators satisfy the usual

relations:

φ̂†i |N0N1 . . . Ni . . .〉 =
√

(Ni + 1) |N0N1 . . . Ni + 1 . . .〉 (1.20)

φ̂i |N0N1 . . . Ni . . .〉 =
√

Ni |N0N1 . . . Ni − 1 . . .〉 (1.21)

[

φ̂i, φ̂
†
j

]

= δi,j;
[

φ̂i, φ̂j

]

= 0;
[

φ̂†i , φ̂
†
j

]

= 0 (1.22)

If the system has a large number of particles and most of them are in a single-

particle state φ0, the action of the corresponding creation and annihilation operators

on the equilibrium state can be approximated by the c-number, composed of the real

factor
√
N0 times an arbitrary phase factor 2. This is equivalent to ignoring the non-

commutativity of the operators φ̂0 and φ̂†0 and considering the main contribution to the

field operator as a classical entity. The field operator then can be split in the form:

Ψ̂(r, t) = ψ0(r, t) + Ψ̂′(r, t) (1.23)

where ψ0(r, t) =
√
N0φ0(r) is a complex function normalised to:

∫

|ψ0(r, t)|2dr = N0 (1.24)

and plays the role of an order parameter. Substituting Eq. (1.23) into the Heisenberg

equation of motion for Ψ̂ and dropping second order terms gives:

i~∂tψ0(r, t) =

{

− ~
2

2m
∇2 + Vext(r) +

∫

ψ∗
0(r

′, t)V (r − r′)ψ0(r
′, t)dr′

}

ψ0(r, t)

(1.25)

In dilute gases, only the low energy binary collisions are relevant and the interaction

potential can be characterized by a single parameter, the s-wave scattering length (as)

[40]. The two body interaction can be then represented by a δ-function potential energy:

V (r′ − r) =
4π~

2as

m
δ(r′ − r) (1.26)

Within this approximation, the time evolution of ψ0(r, t) is governed by the equation:

i~∂tψ0(r, t) =

{

− ~
2

2m
∇2 + Vext(r) +

4π~
2as

m
|ψ0(r, t)|2

}

ψ0(r, t) (1.27)

which is known as the Gross-Pitaevskii Equation (GPE) [47]. The total energy of the

interacting system described by the condensed wave function ψ0(r) is given by:

E[ψ] =

∫

dr

[

~
2

2m
|∇ψ(r)|2 + Vext(r)|ψ(r)|2 +

1

2

4π~
2as

m
|ψ(r)|4

]

(1.28)

2This procedure is known as the Bogoliubov shift [46]. By choosing a fixed phase of the condensate

wave-function, the gauge symmetry of the Schrödinger Equation is broken.
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To obtain the equilibrium configuration, the energy functional Eq. (1.28) must be

minimised, subject to the normalisation condition Eq. (1.24). This leads to the time-

independent Gross-Pitaevskii equation:

µψ0(r) =

{

− ~
2

2m
∇2 + Vext(r) +

4π~
2as

m
|ψ0(r)|2

}

ψ0(r) (1.29)

where µ is the Lagrange multiplier associated with the normalisation condition Eq. (1.24)

and coincides with the system’s chemical potential.

1.2 Trapping neutral Bosons

Bose-Einstein condensation in atomic gases has been achieved by combining techniques

of magnetic and optical trapping (1980’s) [48] with laser and evaporative cooling pro-

cedures developed during the 1990’s [4]. As magnetic trapping is a central topic in this

thesis, its general principles are now presented.

Under appropriate conditions, the coupling of the atomic magnetic moment to ex-

ternal magnetic fields can be used to confine the motion of atoms with low kinetic

energy (cold atoms) into small spatial regions (mm – µm). This is a flexible mechanism

because the two main ingredients can be controlled experimentally with high precision.

A desired atomic magnetic moment3 can be induced by shining laser fields with the ap-

propriate frequencies. In addition, almost arbitrary spatial magnetic field profiles can be

produced by an appropriate distribution of sources (electric currents and/or permanent

ferromagnets).

Consider an atom in the state |F,mF 〉 moving through an inhomogeneous magnetic

field (B(r)), where F is the quantum number corresponding to the total angular mo-

mentum, and mF is its projection along one chosen spatial direction. The interaction

potential is given by [2]:

V̂ (r) = −µ̂F · B(r) (1.30)

where µ̂F is the operator for the magnetic moment of the atom.

When the atom’s translational energy is small enough, the atomic magnetic moment

follows adiabatically the direction of the magnetic field and its projection on the local

direction of the magnetic field remains constant along the trajectory of the atom. This

adiabatic condition can be expressed using a classical model for the atomic magnetic

moment as follows: The spatial translation of the atom should be much slower than the

precession of its spin around the magnetic field local direction. Under this condition,

Eq. (1.30) becomes:

V̂ (r) = mF gFµB |B(r)| (1.31)

3Of course, one that is allowed by quantum mechanics
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where mF is the projection of the atomic magnetic moment along the direction of B

and gF is the Landé g-factor.

In terms of the atomic energy level structure, the trapping mechanism can be ex-

plained as follows. Consider an alkali atom whose valence electron is in an S orbital and

with total angular momentum:

F̂ = Î + Ŝ (1.32)

where Î corresponds to the nuclear angular momentum and Ŝ the electronic spin.

The interaction between nuclear and electronic spins lifts the degeneracy of the S or-

bital with respect to the total angular momentum (hyperfine splitting), and the states

|F = I + 1/2,mF 〉 and |F = I − 1/2,mF 〉 have different energy, EF=I±1/2. Coupling

the nuclear and electronic spins to an external magnetic field, B, lifts the remaining

degeneracies; this is the Zeeman effect. At low magnetic fields, the Zeeman splitting is

linear and small compared with the hyperfine splitting. In this case the atomic energy

is given by:

E = EF +mF gFµB|B| (1.33)

The key feature of equations (1.31) and (1.33) is that the energy depends on the

magnitude of the magnetic field, |B|, whose spatial dependence creates a potential

landscape for the atomic motion. The equilibria points will coincide either with maxima

or minima of this quantity, according to the sign of the magnetic moment, mF gFµB . We

can conclude, therefore, that states with negative magnetic moment will be attracted

towards regions of low field intensity (low field seeker states) whilst atomic states with a

positive magnetic moment are attracted towards regions of high field (high field seeker

states).

The time-independent Maxwell equations prohibit the creation of a local maximum

of magnetic field in free space, but do not forbid a minimum being attained [49, 50]. The

task of producing a trapping potential for cold atoms therefore translates into creating

a magnetic field distribution with localized regions of low magnetic field.

A basic setup to create a magnetic trap consists of combining the magnetic field

produced by a thin and infinitely long wire, carrying a current I:

B =
µ0

2π

I

r
(1.34)

with a uniform bias magnetic field (BBias) orthogonal to the current flow [26, 50, 51, 52],

as shown in Figure 1.2(a).

Assuming the bias field is applied parallel to the y axis in Figure 1.2, the total

magnetic field has a minimum along z axis, located at a distance:

z0 =
µ0I

2πBBias

(1.35)

from the wire. The position of minimum magnetic field is also referred to as the trap

position. The total magnetic field distribution produces an ideal side trap where the
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Figure 1.2: (a) Geometry of a simple magnetic trap setup. The bar represents a long

and thin current carrying conductor. External uniform fields are represented by blue

(bias field) and red (offset field) arrows. The dashed circle indicates the magnetic field

produced by the wire. (b) Isopotential curves for the waveguide configuration in (a).

Energy contours are equally spaced by 0.0625BBias . (c) Potential energy Eq. (1.31)

along the axes crossing the trap position. Notice that when an offset field is added,

the potential energy rounds off near the minimum (red lines). In a typical setup, the

trap is located at few tens of micrometre, z ∼ 10 µm and the fields has an intensity

of a few tens of Gauss, BBias, Boffset ∼ 10 G.

atoms are free to move parallel to the wire but their motion in the orthogonal plane

is restricted. In Figure 1.2, panel (b) shows potential energy curves (Eq. (1.31)) in

the plane transverse to the wire, and panel (c) plots the energy along the y and z

axes, shown as purple lines in panel (b). Notice that when the minimum potential

energy equals zero, the potential energy increases linearly with distance to the minimum

position (green lines).

In panels (b) and (c) of Figure 1.2, the length scale have been set to the distance

between the centre of the wire and z0. In typical experiments with atom chips, such
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a distance is in the range of 10µm – 100µm. For experiments is also common using

micron-sized conductors that support currents of a few hundreds of mA up to 1 A,

creating magnetic fields of a few tens of Gauss. As the distance between the source

of magnetic field is comparable with its size, finite size effects have to be included to

evaluate the distribution of magnetic field. In order to simplify the presentation, such

an effect is ignored in this chapter and the wire is considered as infinitely long and thin.

Near the trap position z0, the components of the magnetic field in the y − z plane,

B⊥, are well approximated by a quadrupole distribution [40]:

B⊥ = (By, Bz) = α(z − z0, y) (1.36)

where α is the gradient of the magnetic field evaluated at the trap centre z0. In an ideal

quadrupole distribution, the magnetic field varies linearly with the distance to the point

where it vanishes. For comparison, the ideal quadrupole and the exact magnetic field

distributions of the ideal side trap are shown in Figures 1.3(a) and 1.3(b), respectively.

 0.5
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-0.5  0  0.5

z

y

 0.5

 1

 1.5

-0.5  0  0.5
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(a) (b)

Figure 1.3: (a) Ideal quadrupole magnetic field distribution. (b) Magnetic field distri-

bution in a side trap produced by an ideal wire plus a Bias field, shown in Figure 1.2.

Similarly to Figure 1.2, the length scale here is typically ∼ 10 µm.

The quadrupole trap has two orthogonal axes (dashed lines in Figure 1.3). Along one

of them the magnetic field points towards the position of zero magnetic, while along the

other the magnetic field points in the opposite direction (see arrows along the dashed

lines in Figure 1.3(a)). Comparing with Figure 1.2(b), it can be seen by inspection that

the magnetic field in the ideal side trap has approximately the same properties as the

ideal quadrupolar magnetic field distribution, Eq. (1.36).

Atoms can escape from the magnetic trap due to its thermal motion or to transitions

involving electronic spin-flips transition to untrapped states. These processes are partic-

ularly common at places where the magnetic field is zero because there the electron spin

does not have a preferred direction to be projected. Also, at positions where |B| = 0,
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the adiabatic condition over the atomic motion cannot be satisfied because there is no

spin precession [40].

In order to reduce atom losses in a trap like the one in Figure 1.2, due to the absence

of magnetic field at the minimum, it is common to apply uniform magnetic field parallel

to the wire (usually called offset field: Boffset). With this additional field, the position of

the minimum of the total magnetic field does not change (Eq. (1.35)), but the value of

B at z0 becomes equal to Boffset 6= 0. The additional offset field fixes a quantization axis,

which the spin of all trapped atoms projects over, reducing significantly the probability

of atomic transitions involving spin flips.

The presence of the offset field does not modify the validity of the quadrupole

approximation, Eq. (1.36), for the components of the magnetic field in the y − z

plane. The offset field adds non-linearly to the total potential energy, Eq. (1.31),

rounding off the potential energy near the minimum, as can be seen in Figure 1.2(c)

(red lines). Therefore, the potential energy is no longer a linear function of the distance

from the minimum of magnetic field, and the next level of approximation is a quadratic or

harmonic potential, being now its curvature (translated into frequency) the appropriate

quantity to describe the tightness of the trap.

1.3 BEC in micro-trap potentials

The use of microstructured surfaces has enabled the control of cold atom clouds on a

micrometre scale. The principle of operation relies on the interaction of the atom’s mag-

netic moment with a controllable external magnetic field, whose sources commonly are

current carrying wires and/or permanent magnets. A brief review of some developments

in the area of micro-manipulation of cold atoms is presented below.

Micro-traps offers a broad range of possible applications, many of them the subject

of ongoing development and study. Amongst others, the following can be mentioned:

dynamics of low-dimensional quantum gases, effects of disordered potentials [53], atom

optics (interferometry [54], quantum reflection [16, 55], diffraction of matter waves

[56, 57]), quantum information processing [58, 59], force and field sensors [60].

In comparison with the first setups used in the MIT and JILA experiments, production

of micro-trapped atomic Bose-Einstein condensates is simplified by the proximity of

microstructures [61, 62, 63, 64]. Very strong trapping potentials can be easily produced

by small currents in micro-wires in particular when the atom-wire distance is in the

micrometre range. The tight confinement reduces the time scale of the collisions in

the trapped cloud and accelerates the forced evaporation stage. In addition, a surface

close to a thermal atomic cloud acts like a thermal knife, removing the hottest atoms

by the action of an attractive potential towards the surface (Casimir-Polder force). As

a consequence of these two effects, the vacuum conditions needed for BEC preparation
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are relaxed compared with the requirements of pioneering experiments [50].

(a) (b)

(c) (d)

Figure 1.4: Several setups developed for atom manipulation. (a) Conveyor belt by

Reichel, et al. [61]. Left panel: layout of the chip; right panel: potential energy

at different times. The motion of the potential wells is indicated by dashed lines. (b)

Atom chip by Günter et al. [65]. Axial confinement is provided by a set of vertical wires

separated by 650 µm, such that the position of the trap can be displaced horizontally by

adjusting the current in those wires. (c) Atomic shift register by Whitlock et al. [66].

A patterned FePt magnetic film is used to trap atom clouds at micrometre distances

(∼ 10 µm). The position of the trap can be translated by modifying the direction of the

external field . (d) Y junction on a chip by Cassettari et al. [67]. Left panel: schematic

of the wire layout showing the Y-shaped guide. Right panel: images of guided atoms

showing it is possible to control the splitting

Precise positioning and displacement of trapped atoms can be performed relatively

easily by using microtrapping setups. Different schemes have been applied to transport

trapped clouds across a few cm with velocities of a few mm/s. For example, Reichel et al.

[61] and Hänsel et al. [62, 68] developed an Archimedean screw analogue to transport

cold atoms. By combining segments of wires carrying ac-currents out of phase, they

created a train of moving trap potentials wells that can transport atoms at a speed of

∼ 10mm/s (see Figure 1.4(a)).

An alternative approach was developed by Günther et al. [65]. They used a set of
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parallel conductors orthogonal to the main trapping structure. By using an appropriate

set of time-dependent currents in the parallel wires, the barriers producing the lateral

confinement are displaced smoothly, thus enabling arbitrary control of the trapping po-

sition (see Figure 1.4(b)).

A completely different transport mechanism was demonstrated by Whitlock et al.

[66] (see Figure 1.4(c)). They used a lattice of permanent magnets plus external uni-

form fields to create a 2D array of trapping wells. Then, by smoothly changing the

orientation of one external field, the trapping positions can be shifted simultaneously,

and the trapped atoms are driven to adjacent sites of the periodic potential. This setup

demonstrates a way to perform operations on a large number of individual clouds as

required for possible quantum computing applications.

A more advanced feature of microtrap devices is the possibility to perform so-called

atom optics. Careful design of the magnetic field distribution can produce effects on

the trapped atoms similar to those that optical devices produce on light. The atomic

wave nature can be exploited in this way and coherent manipulation of atomic clouds

has been already demonstrated [69]. Such optical-like setups can be built by bending

the current carrying wires, adding time-dependent magnetic fields, using laser light, or

using microstructured solid state surfaces from which quantum reflection can occur [16].

A beam splitter for matter-waves can be produced by a Y junction of current carrying

wires (see Figure 1.4(d)). Adding a uniform magnetic field to this setup produces a trap

where a single branch splits into two following the shape of the junction. A slowly moving

BEC approaching the junction from the single branch region, can be split or deflected

into one of the junction arms, by controlling the current in the wires. An experimental

demonstration of such a switch has been reported by Cassettari et al. [70].

Closing the Y junction on the opposite side of the structure produces a matter-wave

Mach-Zehnder interferometer device [74] (see Figure 1.5(a)). In this case, a cloud slowly

approaching the junction is split in two. Then, each part moves along the branches of

the interferometer and are finally recombined by an inverted Y junction. The state of the

atom cloud at the end of the interferometer arm depends on the relative phase acquired

by the two interfering clouds. This relative phase can originate from localized forces

along the interferometer arms (see Anderson and Kasevich [74]). T. Müller et al. [75]

have proposed an interferometer device based on a superconducting atom chip. Up to

now, however, no experimental realization of this interferometer has been reported.

Continuous transformation of a single well trapping potential into a double-well can

be used to create a different interferometric device [26]. A cloud can be split by slowly

increasing a central potential barrier. Each part of the split cloud can then be exposed to

different external effects inducing a phase difference that shapes the interference pattern

produced when the clouds are recombined by lowering the barrier [76].

Diffraction of matter waves has been demonstrated by Günter et al. [56, 65]. They
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(a) (b)

(c) (d)

Figure 1.5: (a) Schematic of a matter-wave Mach-Zehnder interferometer. The figure

shows the wire geometry needed (upper panel) and the guiding potential as well as

some eigenfunctions at different positions along the interferometer. This scheme was

proposed by Anderson and Kasevich [71]. (b) Sketch of the experiment of diffraction

of matter waves, by Günter et al. [56]. Left panel: current scheme used to create

a magnetic lattice. Right panel: procedure followed to imprint a phase pattern into

a BEC. (c) Numerical simulation of focusing an atomic cloud by reflecting it from

a patterned surface. Left panel: original condensate. Right panel: condensate after

reflection from the side pattern surfaces. Figures produced by Tom Montgomery [72].

(d) Fragmentation of ultra-cold cloud of 85Rb trapped at ∼ 45 µm from a electro-plated

conductor. Taken from Kraft et al. [73]. All figures were taken from the indicated

references.

used an array of parallel wires carrying currents in alternating directions to create a

periodic magnetic potential (see Figure 1.5(b)). Then, a BEC was held for a short

period of time near the current pattern, causing it to acquire a spatially dependent

phase. The phase pattern is revealed later when the cloud is left to expand freely, forming

an interference pattern. A theoretical model shown by the same authors explains the

observed pattern in terms of the superposition of several orders of diffraction [56, 77].

Judd et al. [78] then produced a more complete model by performing full 3D solutions

of the GPE and establishing the effect of inter-atomic interactions on the diffraction

process.

A recently proposed setup for matter-wave manipulation is based on the quantum

reflection effect [55]. Numerical evidence shows that lithographically sculptured surfaces

can be used as lenses for matter waves, for example to focus coherent atomic clouds.
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Simulation of the 3D Gross-Pitaevskii equation shows that two parallel sets of Fresnel

rings can focus a freely expanding BEC into an area of few a nm [72] (see Figure

1.5(c)). This is potentially useful for nano-fabrication processes, if the focused cloud

can be deposited on top of a semiconductor substrate for subsequent treatment and

production [79]

Research on fundamental aspects of the light-matter interaction is also possible

using microtrapping setups. In typical experimental situations, atoms are held at small

distances from the field sources. When the atom-surface distance is of the order of a few

tens of micrometres, the trapping potential becomes affected by defects in the trapping

elements or from the surface itself.

Distortion of the magnetic field sources corrugates the trapping potential and pro-

duces fragmentation of the trapped clouds (see Figure 1.5(d)) [30, 60, 80]. This effect

is greatly reduced by optimising the fabrication process of the conducting elements [22],

or by polishing the conductor edges [81].

Also, at short distances, the trapping potential becomes affected by the fluctuating

magnetic field surrounding the trapping elements [31, 82, 83]. The source of this field

is the Johnson noise in the material, which, at thermal equilibrium, produces a fluctu-

ating field whose spectral density depends on the shape of the elements and on their

temperature and conducting properties.

The fluctuating field can induce spin flips promoting losses of the trapped atoms [84,

85]. To develop future applications, it is therefore important to understand these effects

deeply. Several proposals have been made to reduce the magnetic noise, including the

use of metal alloys [86], anisotropic materials [87], carbon nano-tubes [88], permanent

ferromagnets [89, 90] and superconductors [85, 91, 92, 93, 94], as trapping elements,

but only the last two have been experimentally realized so far.

The next generation of microtraps should expand the already high flexibility of atom-

chips, from which a small sample has been given above. One of the major problems to

overcome its to understand the effects of the atom-surface interactions and, if possible,

to exploit them as a tool for manipulating the atoms. Also, solid state structures, like

semiconductors, ferromagnets, graphene, superconductors, meta-materials may in due

course to be used in microtrapping and micro-manipulating technologies. The present

work is expected to contribute to such advances.



CHAPTER 2

The Two-Dimensional Electron Gas (2DEG)

Schottky barriers, p-n junctions, field effect transistors and laser-diodes are devices made

by combining layers of materials with different conducting properties [95]. The working

principle of such devices relies on the fact that abrupt changes of the band structure, oc-

curring at layer interfaces, produce a carrier redistribution which can be can be controlled

by external electric or magnetic fields [96].

This chapter describes the origin and properties of a Two Dimensional Electron

Gas (2DEG), formed near the interface between layers of (AlGa)As and GaAs. The

typical layer structure of this heterojunction is described in Section 2.2. The model used

to evaluate the effect of ionized donors over the motion of electrons in the 2DEG is

presented in Section 2.3.

The description presented here is used in Chapters 4 and 5 to the determine the

effects of a magnetic field produced by current flows in a 2DEG, over a BEC magnetically

trapped near the heterojunction.

2.1 Some features of semiconducting materials

The one-electron model [97] has been used successfully to predict the electrical properties

of some semiconductor materials. In this model, solids are considered as crystalline

structures with atomic nuclei rigidly fixed to crystal sites and valence electrons moving

under an effective potential, origining from the electron-electron and electron-nuclear

interaction. The energy levels of the system form a band structure associated with each

representation of the translation symmetry group [97]. Each eigenstate is identified

17
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by two indices: one related to crystal momentum, k, and the other to the level band

index, n. The variation of the energy with the crystal momentum, En(k), known as

the dispersion relation of the nth band, determines the response of the system to applied

electromagnetic fields. The band structure of GaAs is shown in Figure 2.1 (from [95]).

Figure 2.1: Energy band structure for GaAs. Adapted from [95]

Once the band structure of the material is known, the electric properties can be

obtained by distributing the valence electrons in the allowed states, satisfying the Pauli

exclusion principle. The occupied band with the highest energy is defined as the valence

band and the empty band immediately above it is known as the conduction band.

Depending on the total number of valence electrons, materials can be classified into four

categories: If all bands are completely full, then the crystal behaves as an insulator. If

one band is partially filled, the system behaves as a metal. Semimetal or semiconducting

behaviour is present when one band is slightly empty or filled [97].

Material Lattice constant (Å) Eg (eV) m∗
e/m

0
e

Si 5.43 1.11 0.33

Ge 5.65 0.66 0.22

AlAs 5.66 2.23 0.26

GaAs 5.65 1.42 0.067

Table 2.1: Properties of technologically important semiconductor materials at room

temperature (300 K). Eg is the calculated energy gap between the conduction and

valence band. m∗
e is the electronic effective mass, expressed as a fraction of the free

electron mass m0
e.
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Relevant properties of some technologically important semiconductor materials are

shown in Table 2.1. The elements Ge, Si and compounds GaAs and AlAs have eight

valence electrons per unit cell, which completely fills four bands (2 electrons per state if

they are spin-degenerate). Typically, the distance between the top of the valence band

and the bottom of the conductance band is a few eV, corresponding to a temperature

scale of 12000 K. At zero temperature, the conduction band remains completely empty

and electrical conduction is not possible. At finite temperature, though, some electrons

can be thermally transferred to the conduction band making electrical transport possible,

but with a large resistance compared with normal metals like gold (Au), silver (Ag) or

copper (Cu) [97].

By doping semiconductor materials with alien species added to the crystalline struc-

ture, the number of charge carriers can be increased, modifying the conducting properties

with respect to the pure crystal. In GaAs, for example, one atom of Ga can be replaced

by Si, which has five valence electrons. Assuming that the crystal structure is not heavily

modified, the extra valence electron becomes only weakly attached to the Si nucleus,

occupying an energy level just below the bottom of the conduction band. This extra

electron is easily transferred thermally to the conduction band, where it behaves as a

free charged particle with a material dependent effective mass m∗
e [97].

Electrons in the conduction band can transfer energy to the lattice through inelas-

tic scattering with crystal vibrations, imperfections and boundaries. In response to a

low external electric field (E), such scattering events produce a finite current density

following, in a linear approximation, the Ohm’s law:

j = σE (2.1)

where the conductivity of the material, σ, depends on the density of electrons in the

conduction band, the temperature and scattering process of electrons with the crystal

and impurities [97].

2.2 The GaAs/(AlGa)As heterojunction and the 2DEG

Electronic devices are designed using materials whose electrical characteristic can be

controlled by applied external fields. Semiconductors are natural elements for this task

because current technology makes possible to engineer the way as their transport prop-

erties depend on controllable external fields. This section briefly describes the origin and

properties of a two-dimensional electron gas at the interface between two semiconductor

materials.

GaAs is a semiconductor with a direct band gap of Eg,GaAs = 1.42 eV at room

temperature and located at the Γ point of the reciprocal space (see Figure 2.1). The

alloy AlxGa1−xAs is obtained from GaAs by replacing a fraction x of the Ga atoms by
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Al. Its band gap depends on x and lies between the AlAs (Eg,AlAs = 2.23 eV) and GaAs

band gaps. The direct character of the band gap is broken when x = 0.45 is exceeded

[98].

A typical GaAs/AlxGa1−xAs heterojunction is a four layers device with an optional

metallic gate. The first two layers are a substrate, made of ultrapure GaAs, and a n-

doped AlxGa1−xAs alloy. The third layer, known as the spacer, consist of un-doped

AlxGa1−xAs. The structure is completed by a cap layer of GaAs. The equilibrium

state between the components of the heterojunction is reached by charge transfer be-

tween them, accompanied by bending of the conductance band determined by Poisson’s

equation. At equilibrium, a 2DEG forms near the interface between the GaAs and

AlxGa1−xAs spacer layers. The spatial variation of conduction band edge energy across

the heterojunction is shown in Figure 2.2. The optional metallic gate, grown on top

of the substrate, can be used to control the bending of the conductance band across

the heterojunction and thus the density of the 2DEG near the interface between the

substrate and the spacer layers.

All numerical calculations for the 2DEG presented in this thesis were performed

for a heterojunction prepared by Prof. Mohamed Henini in the Semiconductor Physics

Group of the University of Nottingham, identified as NU2239. The structure, shown

schematically in Figure 2.2, consists of a 20 nm thick cap layer, doped and undoped

spacer layers each 400 nm thick, grown on a substrate of ultrapure GaAs. The potential

energy at the cap-vacuum interface is pinned by the surface states to 0.770 eV and the

doped region contains 1.3 × 1024 m−3 Si atoms.

The process responsible for the appearance of an electron gas can be described as

follows: Electrons in the conduction band at the n-AlxGa1−xAs side (high conduction

band edge energy) migrate into regions of lower potential energy, i.e., the GaAs material

(Figure 2.3). These electrons cannot go too far into the GaAs because of their attraction

to the ionized Si atoms left behind them. Once the electrons leave their original material,

they cannot easily return because the offset between the conduction band edge energy

of the two materials acts like a barrier. The electron flow stops once equilibrium is

established between the chemical potential in the AlxGa1−xAs and GaAs layers. This is

achieved by the band bending created by the transfer of electrons from the donors to the

2DEG. The transferred electrons are free to move in the plane parallel to the interface

but not along the direction orthogonal to it, where they are confined.

The transport properties of the heterostructure NU2239 have been determined ex-

perimentally by standard Hall bar measurements, and are summarised in Table 2.2 [96].

This sample was chosen for the present work because it represents a standard setup in

the sense that the properties of typical high mobility heterojunctions are in the same

range.
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Figure 2.2: Layer structure and conduction band profile calculated for the GaAs-n-

AlGaAs-AlGaAs-GaAs heterojunction modelled in this thesis. The 2DEG forms near

the right-hand edge of the structure and is indicated by a red rectangle. The inset

shows the standard layer diagram of the heterojunction.
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Ec
Ec

Ef
Ef

donors
2DEG

Figure 2.3: Process of formation of a 2DEG. Electrons in the AlxGa1−xAs material

with the higher conduction band edge energy migrate to the adjacent GaAs. Flux stops

once the equilibrium condition is reached, leaving a thin sheet of electrons (indicated by

red filled circles) close to the interfaces and a positively charged region in the material

of origin (blue filled circles). The dotted line corresponds to the Fermi level (a) before

equilibrium (b) at equilibrium

2.2.1 Limits for the current density in a 2DEG

Typically, heterostructures with a 2DEG embedded can sustain small current densities

producing power dissipation of not more than a few 106 W/m2 [99]. An estimate of

the maximum current density supported by a 2DEG can therefore be made as follows:
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Property value

Electron density (ηe) 3.3 × 1015 m −2

Fermi energy (Ef ) 11.79 meV

Fermi wavelength (λF ) 4.3635 × 10−8 m

Fermi velocity (VF ) 2.49 × 105 m/s

Scattering time (τm) 5.33 × 10−11 s (1.9047 × 10−13 s)

Scattering length (Lm) 13.29 × 10−6 m (4.747 × 10−7 m)

Mobility (µ) 140 m2(Vs)−1 (0.5 m2(Vs)−1)

Conductivity (σ) 7.4 × 10−2 Ω−1 (2.644 × 10−4 Ω−1)

Donor -2DEG distance (h) 500 nm

Table 2.2: Properties of the 2DEG in the NU2239 sample, determined at liquid Helium

temperatures. Values in parentheses correspond to room temperature.

it is expected that an electron travelling a distance of the order of the scattering length,

Lm, loses an energy equal to a fraction of the Fermi energy ∆E = ǫEf , ǫ ∈ [0, 1]. This

consideration implies that, to produce a stationary electron flow, the maximum electric

field that can be applied is ∆E/(eLm), corresponding to a maximum current density of

jmax = σ(ǫEF )/(eLm).

Applying this consideration to the NU2239 heterostructure at liquid Helium temper-

ature (see Table 2.2) and assuming ǫ = 1/3, 1 the maximum allowed current density is

jmax = 0.296 mA/µm, which corresponds to a power density dissipation of P = 1.2×106

W/m2 and is comparable with the peak power reported in [99]. For the same sample,

this consideration imposes a maximum applied electric field of |Emax| = 4.0kV/m (4.0

mV/µm).

For the purposes of this thesis, it is important to establish the operational conditions

which allow the largest possible current density to be obtained for a small electric field.

The electric current induced by an external electric field is determined by its mobility

tensor. For an isotropic 2DEG at the interface of the GaAs/AlxGa1−xAs heterostructure,

the mobility depends on the temperature and the intensity of the electric field as shown in

figure 6.1 [99]. From the data shown in Figure 6.1 (a), we can conclude that by increasing

the electric field, the mobility remains constant for samples at room temperature, but

falls very fast for cooled systems. Similarly, from Figure 6.1 (b), it can be observed

that the mobility at low temperature is much larger than at room temperature. This

can be explained by the suppression of e−–phonon scattering [100] at low temperatures.

In conclusion, combining low temperatures and a low electric field |E| << 1kV/cm

optimises the electrical conductivity of the 2DEG and hence the maximum possible

1Meaning that after three momentum relaxation periods, electrons lose an energy equivalent to the

2DEG Fermi energy, EF .
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current flow [99].

(a) (b)

Figure 2.4: (a) Calculated (solid line) and measured (dashed line) electron mobility of

a 2DEG as function of electric field for different donor impurity concentrations (NI) and

at room and liquid nitrogen temperatures. (b) Measured electron mobility in a 2DEG

at different temperatures (dashed lines). Current versus electric field characteristics

were measured in the dark at several temperatures, between 77 K and 300 K. Solid

line corresponds to the calculated mobility for bulk GaAs containing different donor

impurity concentrations, NI and 300 K. Taken from reference [99].

2.3 The ionized-donor potential

State of the art technology can produce 2DEGs with mobilities as large as µ = 3100

m2s−1V−1 [101], but typical ones, like in NU2239, are in the range of a few hundred

m2s−1V−1 at liquid Helium temperatures and ∼ 1 m2s−1V−1 at room temperature. At

low temperatures (< 77 K) lattice modes are strongly suppressed and the main electron

scattering mechanism corresponds to the interaction of the electrons with their parental

ionized donors at the opposite side of the interface. This section presents calculations

of the potential landscape experienced by an electron in the 2DEG and the effect that

the ionized donors has on the electron distribution and electric current.
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Suppose that the ionized donors are distributed randomly in an infinitesimally thin

layer positioned at a distance d from the 2DEG plane. Also assume that the number of

ionized donors and electrons in the 2DEG coincide. In this case, the length scale and

strength of the spatial fluctuations in the donor potential felt by electrons in the 2DEG

depends on both the statistical distribution of donors and on the donor-2DEG distance.

If the separation between the 2DEG and the donor layer is large enough and the

charge density within these layers is also large, the electrostatic donor potential is ef-

fectively screened by the 2DEG. Using a linear screening approximation, the effective

(screened) potential that an electron in the 2DEG experiences is given by [102]:

Φscreened(r) =
e2

4πǫǫ0

∫

e−kd ηd(k)eik·r

k + ks
dk (2.2)

where r = (x, y) is a position vector in the plane of the 2DEG, k = (kx, ky), k =
√

k2
x + k2

y, ηd(k) is the 2D Fourier Transform of the donor density, ηd(r), ǫ is the

relative permittivity of GaAs and

ks =
e2m∗

e

2ǫǫ0π~2
(2.3)

is the screening wave vector, with m∗
e the electron effective mass.

Linear screening model applies when the concentration of electrons is large com-

pared with the changes in the concentration brought about by fluctuations in the bare

electrostatic potential produced by the ionized donors. This approximation is valid if

the relevant values of k in the integral Eq. (2.2) are much smaller than the screen-

ing wavelength ks [102], which is certainly the case for structures with a large spacer

layer (d) compared to the screening length of the 2DEG, λs = 2π/ks. For the AlGaAs

heterostructure ks = 2.1 × 108m−1

Fig. 2.5(a) shows a typical donor density profile calculated assuming a random uncor-

related distribution, characterized by the ensemble average 〈ηd(r)ηd(r
′)〉 = η2

dδ(r−r′).

This distribution can obtained by positioning Nd donors on a regular array of M cells,

defined in a region of total area A. Two independent random generators provide each

one of the components of the position for each donor rd = (xd, yd). Once all donors

are distributed, the local density is then calculated as the ratio between the number of

donors in each cell and its area, A/M . For the calculations presented here, there is no

restriction over the number of donors that can be in each cell.

Figure 2.5(b) shows the amplitude of the 2D Fourier transform, |Φscreened(kx, ky)|,
of the screened potential. For clarity, a section of this Fourier transform is presented

in Figure 2.5(c). Notice the amplitude of Φscreened(0, ky) decays very fast as ky → ∞,

satisfying the condition required to apply Eq. (2.2), i.e., the major contributions to

integral Eq. (2.2) correspond to small values of k compared with ks

The electron density in the 2DEG can be calculated assuming local equilibrium and
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Figure 2.5: (a) Typical donor density profile calculated for the NU2239 heterostructure.

The colour scale at the right is in units of 3.3 × 1015donors/m2. (b) Amplitude of

the 2D Fourier transform of the screened potential, |Φscreened(kx, ky)|, due to the donor

distribution shown in (a). Arbitrary units are employed. (c) A section of Φscreened(kx, ky)

along the line k = (0, ky) (dashed line in panel (b)). The exponential decay constant

is given by the 2DEG-donor distance.

using the Thomas-Fermi approximation. Combining these two assumptions results in

[102]:

ηe(r) =
m∗

e

π~2
(Ef − Φscreened(r))θ(EF − Φscreened(r)) (2.4)

where θ(x) is the Heaviside step function, Φ(r) is given by (2.2) and Ef is the Fermi

energy of the system (or chemical potential).

If all donors are ionized, the number of electrons in the 2DEG is equal to the number
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of donors and the Fermi level in Eq. (2.4) can be evaluated by:

Nd = Ne =

∫

Area
ηe(r)d2r (2.5)

The electron density profile in the 2DEG can be calculated for a given distribution of

donors by combining Eqs. (2.2), (2.4) and (2.5). Typical results of this model applied

to the NU2239 heterojunction are shown in Figures 2.6(a) and 2.6(b).

The randomness of the distribution of the ionized donors affects the density profile of

the 2DEG. For the case presented here, the electric potential experienced by an electron

in the 2DEG fluctuates on an energy scale ≈ 10% of the Fermi energy. Consequently, ηe

is not uniform and exhibits similar percentile inhomogeneity. Finally, the length scale of

these spatial fluctuations are of the same order of magnitude as the 2DEG-donor layers

separation ∼ 0.5 µm. Fluctuations on a shorter length scale are suppressed by the e−kd

term in Eq. (2.2)

(a) (b)

Figure 2.6: (a) Calculated screened potential and (b) electron density, both for a small

sample (2 × 2 µm2) of the NU2239 heterojunction. The colour scale on the right are

10 mV and 3.3 × 1015 m−2 respectively.

The potential energy fluctuations created by the ionized donors affect the trajectory

that an electron follows when a uniform electric field is applied to the 2DEG. Instead

of moving in a straight line, the electron path is deflected by the valleys and hills of

the electrostatic potential. Ignoring boundary conditions defining a finite sample, the

current flow then can be described by two contributions:

j = σ0E − σ0
~∇Φscreened(r)

e
(2.6)

The first term on the right corresponds to the uniform flow generated by an applied

homogenous electric field. The second term corresponds to the current inhomogeneities
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created by the potential fluctuations associated with the remote ionized donors. The

properties of the inhomogeneous component are determined by the donor distribution,

the electron density and the donor-2DEG distance.
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Figure 2.7: Contours of the screened potential, Φscreened, for a 2.0 µm square sample.

Contours are 0.25 meV apart. The vector field corresponds to −~∇Φscreened, which,

according to Eq. (2.6), determines the inhomogeneities of the current in the 2DEG.

Near the 2DEG, the magnetic field produced by the current in Eq. (2.6) reflects the

properties of the electron gas. This can be quantified by combining Eqs. (2.2 - 2.6) with

the Biot-Savart law. The impact of this inhomogeneous current on the the magnetic

field profile close the 2DEG is explored in Chapters 4 and 5.

2.4 Summary

Materials with different band structures can be combined to create a low dimensional

electron gas near one of the interfaces, whose density is determined by equilibration of

the chemical potential, and can be manipulated by externally applied fields. In the case

of the GaAs/AlGaAs heterojunction, a 2DEG appears next to the interface on the GaAs

side. The current flow in such a 2DEG is limited by energy dissipation considerations,

and typically cannot exceed jmax = 0.295 A/m2.

In the model presented here, the electric transport properties of the 2DEG are de-
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termined by the distribution of ionized donors, the distance between the donor and the

2DEG layers, and the density of electrons. The presence of the parental ionized donors

affects the trajectory of electrons in the 2DEG, making them deviate from ideal straight

paths, as quantified by combining Eqs. (2.2) and (2.6).

The non-uniform electron flow in a 2DEG creates an equally inhomogeneous magnetic

field, whose characteristics reflect the properties of the heterojunction. This magnetic

field is the quantity of interest in subsequent Chapters in this thesis.



CHAPTER 3

Simple setups for magnetic microtrapping

The coupling of the dipole moments of an atom with external fields can be used to confine

slow atoms into regions of inhomogeneous magnetic and/or electric fields. Assuming that

the atomic moment can be selected by shining laser light tuned to the right frequency,

the task of designing a trap reduces to finding an appropriate distribution of sources of

electric and/or magnetic fields.

Quantum degenerate gases can be produced by trapping neutral atoms through

the interaction between their intrinsic magnetic moment and external inhomogeneous

magnetic fields. At the beginning of this century, several groups implemented mag-

netic microtraps for ultra-cold alkali atoms, recently reviewed in [26, 50], establishing

the nowadays standard setup for microtrapping: the atom chip. It combines the in-

homogeneous magnetic field produced by current-carrying wires or permanent magnets

microfabricated on a substrate, with magnetic fields and laser light produced by external

sources.

Due to the vector nature of the magnetic field, although the Biot-Savart law is well

known, designing a magnetic trap is not a trivial matter and, apart from using a purely

numerical approach, several analytic methods have been developed for this purpose

[103, 104]. Depending on the complexity of the required system, and its intended

task, determining an appropriate grid of current carrying elements and/or permanent

ferromagnets, easily can become a computationally heavy task.

This chapter contains general definitions and summarizes the relevant aspects of

trapping configurations needed for the work presented in Chapters 4 and 5. Definitions

of relevant trapping characteristics are presented in Section 3.1. Effects associated with

the finite size of the current elements are explained in Section 3.2. Finally, the trapping

29
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properties of setups relevant in this thesis, are described in Sections 3.3, 3.4 and 3.5.

3.1 Magnetic traps on a chip: The atom chip

In section 1.2 we show that the potential energy of a slow atom in an inhomogeneous

magnetic field depends on its magnetic moment and the intensity of the magnetic field

so that:

V (r) = mF gFµB|B(r)| (3.1)

Atomic states with mF gF > 0 are attracted towards regions of low magnetic field.

The strength of the attraction and subsequent trapping depends on the gradient of the

magnetic field, which is determined by the shape and intensity of the sources.

An atom chip is a circuit-shaped array of current carrying miniaturized conductors,

whose magnetic field is used to trap and manipulate ultra-cold atoms1. These setups

can be designed to produce magnetic profiles with almost arbitrary geometry on the

micrometre scale, which can be made time-dependent by controlling the current over

different sections of the array.

The atom chip configuration enables fast manipulation of trapped atomic clouds,

currently at the milli-second scale, due to the tight confining potentials they provide.

Also, atom chips are suitable for incorporating devices to control and register the trapped

atomic clouds, thus allowing complex tasks to be performed like precise control of atom

position, transporting the trapped particles and splitting and merging of atomic clouds.

Some of these tasks were briefly mentioned in Section 1.3. Other applications, currently

under development, include studies of low dimensional quantum gases, disordered sys-

tems, quantum information processing, matter-wave dynamics, precision sensors (force,

magnetic and gravitational fields, accelerometers), amongst others (see [26]).

Practical limitations relating to material properties and fabrication techniques should

be taken into account to design a magnetic microtrap. For example, melting the wires

should be avoided by limiting the current density to a maximum value, jmax, determined

by the thermal coupling between the conductor and the environment. This restriction

affects the achievable strength of the trap since the intensity of the magnetic field is

proportional to the current in the wires. On the fabrication side, limits on the resolution

and size of the defined structures affect the shape of the trap. These limitations have not,

however, prevented the creation of flexible setups using combinations of current-carrying

wires.

Two effects limit the operational distance between the chip surface and the trapped

atoms to about 1 µm, adding difficulty to the development of advanced applications,

1They can also include micrometre permanent ferromagnets as sources of magnetic field and other

devices used to register/modify the atomic behaviour.
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Figure 3.1: Sketch of the basic building block of an atom chip microtrap. A current

carrying wire (current flow direction indicated by green arrow) produces a magnetic

field which is combined with two other magnetic fields: a compensating bias field (blue

arrow) orthogonal to the current flow and an offset field (red arrow) parallel to it.

The x axis is oriented along the current flow in the trapping wire. The bias field is

the component of the external magnetic field used to compensate the magnetic field

created by the central wire. The offset field produces a global shift of the potential

energy and is also oriented along the x axis. The bias field cancels the wire’s magnetic

field above the wire, at z0. L and W are the length and width for the wire, respectively.

The red bubble indicates a cloud of trapped atoms.

in particular creating strong confinement. First, thermal fluctuations of the field near

the chip surface and its components (see Chapter 4) induce losses of atoms due to

transitions to untrapped states with mF gF < 0. Proposals to reduce the amplitude of

such fluctuations includes the use of alloys [86], conductors with anisotropic conductivity

[87] and superconductors [92]. The second effect originates from the inevitable attraction

force between any surface and a nearby atom. At distances . 5 µm from the surface, the

Casimir-Polder surface-atom attraction has a strong impact in the trapping potential,

causing many atoms to escape from the part of the trap nearest to the surface [29].

Figure 3.1 shows a sketch of the atom chip fundamental building block and conven-

tions for the coordinate system, the bias and offset field, used in this thesis. A current

carrying micron-sized wire deposited on a substrate produces a magnetic field, which,

when compensated by the bias field, creates a magnetic trap located above the wire

itself, at a distance z0.
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3.1.1 Depth, gradient and frequency of a magnetic trap

The ionisation threshold of an atom and the work function of a metal are two parameters

that indicate how strongly an electron is trapped in those physical systems. In the

context of trapped cold atoms, the trapping properties refer to a set of parameters

(depth, gradient and frequency) that indicate how strongly a particle is confined into a

spatial region of inhomogeneous magnetic field.

These parameters determine the degree of stability of the trap with respect to pro-

cesses that can kick particles out of the trapping region. The relative importance of

such processes can be established by comparing the atom’s intrinsic energy and time

scales with those of the trapping potential2.

Although definitions of trapping properties can be done for arbitrary configurations

[50], here the discussion is restricted to traps made by combining the magnetic field

produced by several parallel current carrying wires, with homogenous externally applied

magnetic fields, as shown in Figure 3.1.

The magnetic field in these kinds of traps can be decomposed as:

B = (Boffset,B⊥) (3.2)

where Boffset is a homogenous component of the magnetic field, which is orthogonal to

the 2D vector B⊥, defined in the y − z plane shown in the Figure 3.1.

Combining Eqs. (3.1) and (3.2), the potential energy becomes:

V = mF gFµB(B2
offset + |B⊥|2)1/2 (3.3)

The trap position, r0 = (x0, y0, z0), is defined as the place where the transverse

components of the magnetic field become zero, i.e. B⊥ = 0. As shown in Chapter 1,

near r0, the magnetic field can be approximated by B⊥ ∼ (α(z − z0), α(y − y0)) and

therefore the potential energy Eq. (3.3) exhibit an approximate cylindrical symmetry.

The magnetic trap can be characterized by studying the potential energy, Eq. (3.3),

along a line orthogonal to the chip plane and passing through the trap position r0.

Figure 3.2 shows a typical potential energy curve along such a line, corresponding to the

z direction in Figure 3.1. The red and green curves correspond to the potential energy

when Boffset = 0 and Boffset 6= 0, respectively.

Figure 3.2 motivates the definition of three parameters to describe the trap produced

by a setup like the one in Figure 3.1. The rate of transitions to untrapped states is

determined by the strength of the trap, expressed in terms of the gradient of magnetic

2 The quality of an atom chip operation is then characterized by the rates of atom loss, heating

and decoherence. In this thesis, only properties related with the first aspect are discussed. These rates

depend on the distance from the atom chip’s surface (trap height) and on the strength of the trapping.
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Figure 3.2: Definition of the trapping properties considering the potential energy along

the z axis in Figure 3.1. Red and green lines show the potential energy without and

with offset magnetic field, respectively. The black and blue lines approximate the field

profiles near the minimum at r0 = (0, 0, z0), for the same cases. Note the chip surface

is at z = 0.

field at the trap position. The definitions of these parameters are given below, along

with a short discussion of typical values they have in actual atom chips.

1. Depth

The trap depth is the energy difference between the bottom of the trapping po-

tential and its maximum inside the region of interest.

∆V = mF gFµB(|Bmax| − |Bmin|) (3.4)

Atoms near a surface can collapse against it due to the Casimir-Polder atom-

surface attraction [26], and the trapping potential Eq. (3.3) should, therefore,

provide a barrier large enough to counteract such attraction and effectively avoid

the tunnelling of the atoms towards the chip surface.

This potential barrier is given by the difference of potential energy at the trap

position r0 = (0, 0, z0) and at the chip surface r = (0, 0, 0), as shown in Figure

3.2. This is the definition of trap depth adopted in this thesis.

In general, a small rate of atom losses due to thermal motion requires a large ∆V

compared with the thermal energy kBT . Typically, microtrap setups have a depth

of a few µK, restricting the trapping possibilities to such low temperature atoms.
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2. Gradient (or Restoring force)

If the chip is oriented with the z axis parallel to the gravitational field, as is

usually the case, the force associated with the potential energy Eq. (3.1) should

counteract the weight of the atom:

−gFµBmF
d

dz
|B| > mg (3.5)

In particular, when the magnetic field near the trap position has an approximate

quadrupole distribution (Eq. 1.36), the potential energy along the z axis becomes:

V (0, 0, z) = gFµBmF |α(z − z0)| (3.6)

and condition Eq. (3.5) gives:

−gFµBmFα > mg (3.7)

To have an idea of the order of the magnitude involved in this condition, note that

the gravitational force on a 87Rb atom is ∼ 10−24N which can be compensated

by a magnetic field gradient of ∼ 15 Gauss/cm.

If near the bottom of the trap the potential energy is approximated by a harmonic

potential, the gravitational attraction on the atoms causes a displacement of the

trap position.

3. Trap frequency

According to Eq. (3.3), the offset magnetic field affects the potential energy in

a non-linear way, and has two different effects on the trap. First, the magnetic

field at the trap centre becomes non-zero, fixing a quantization axis for the pro-

jection of the atomic angular momentum. Second, the potential energy around

the equilibrium position, z0, can be approximated by a harmonic potential:

V (y, z) =
mω2

y

2
y2 +

mω2
z

2
(z − z0)

2 + |mF gFµBBoffset| (3.8)

where m is the atomic mass and the frequencies are given by:

ω2
y,z =

mF gFµB

m

1

Boffset

(∂y,z|B⊥|)2
∣

∣

r0
(3.9)

When the magnetic field B⊥ behaves like a quadrupole field, the trap frequencies

Eq. (3.9) simplifies to:

ω2
z = ω2

y =
mF gFµB

m

1

Boffset

α2 (3.10)

Note that when Boffset = 0, these frequencies diverge. This is expected because in

this limit the harmonic trap transforms into a quadrupole trap, and the potential
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energy, instead of having quadratic dependence, varies linearly with distance from

the trap centre.

The frequencies ωy,z are good indicators of the strength of the trap. Trapping

potentials with elongated geometry are very common. They have large frequencies

(∼kHz) in two spatial directions and a small frequency (∼Hz) along the remaining

direction.

4. Majorana losses

The atomic translation motion in the trapping region can induce spin flips, thereby

driving the atom to a high-field seeking state. Such processes are known as

Majorana spin flips and are due to the loss of the adiabaticity of the motion in the

trapping potential.

The probability of such transitions is small if, in the atom’s reference frame, the

direction of the magnetic field changes slowly enough for the spin to follow adia-

batically the local field direction. The rate of Majorana flips of a single atom in a

harmonic trap is given by [26, 105]:

ΓMF =
π

2
√
e
ω exp

(

− ω̂
3

ω3

)

(3.11)

where ω is the trapping frequency and ω̂ is a critical frequency defined by:

ω̂ =

[

(mF gFµB)2(∂z|B⊥||r0
)2

~m

]1/3

(3.12)

where ∂z|B⊥||r0
is the magnetic field gradient at the centre of the trap when the

offset field is absent.

A low rate of spin flips occurs if ω ≫ ω̂. Using Eq. (3.10), this condition imposes

the following lower bound on the offset field:

∣

∣Bmin
offset

∣

∣ =

[

~m1/3

(mF gFµB)1/2
∂zBy|r0

]2/3

(3.13)

In typical experiments, the value of the offset field is a few tens of Gauss, and in

most situations this is enough to satisfy Eq. (3.13) [26].

According to the previous definitions, the key quantity to characterize the trap

strength is the gradient of the magnetic field, ∂xi
|B⊥||r0

, with xi = x, y, z
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3.2 Magnetic field of a planar wire

By definition, low field seeker states are attracted towards regions of low magnetic field

(see Section 1.2) and the equilibrium point in the potential energy coincides with the

position where the magnetic field is minimum. As seen in Chapter 1, a magnetic field

distribution with a localized minimum can be produced by superposing the magnetic field

due to a single current carrying ideal wire with a homogeneous magnetic field transverse

to the current flow.

Real-life conductors have a finite cross section and length. When the distance to the

magnetic field sources is comparable to, or less than, any of its dimensions, the magnetic

field distribution is affected by the finite size of the conductors. This situation is common

in the microtrapping context, where the atom-conductor distance and the dimensions of

the conductors are both in the range 1 − 100 µm. In this section, planar geometry is

considered (Figure 3.3), since it is a good approximation to wires of rectangular cross

section with small height/width ratios.
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y/
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Figure 3.3: Comparison between the magnetic field produced by a planar conductor

(conductor in yellow, field shown by red arrows) and the magnetic field corresponding

to current through an ideal wire located at the origin (green arrows). Notice that

these fields differ mainly near the conductor and rapidly become indistinguishable as

the distance from the conductor increases. Length is scaled to the width of the wire,

W .

In this case, the Biot-Savart law is restricted to an integration over a rectangular

planar region:

~B(r) =
µ0

4π

∫ W
2

−W
2

∫ L
2

−L
2

j(r′) × (r − r′)

|r − r′|3 d2r′ (3.14)
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where j is the current density distribution, r′ is a vector position in the plane of the

conductor and r is a vector position in 3D space. L, W and the axes orientation are

defined in Figure 3.1. If the current flows along the x-axis, the integral Eq. (3.14) gives

us:

By =
µ0j

4π

{

arctan

(

[x+ x0][y + y0]

z[(x+ x0)2 + (y + y0)2 + z2]1/2

)}∣

∣

∣

∣

(x0,y0)=(−L/2,W/2),(L/2,−W/2)

(x0,y0)=(L/2,−W/2),(−L/2,W/2)

(3.15)

(3.16)

Bz =
µ0j

4π
log
(

[x+ x0] + [(x+ x0)
2 + (y + y0)

2 + z2]1/2
)

∣

∣

∣

∣

(x0,y0)=(L/2,−W/2),(−L/2,W/2)

(x0,y0)=(L/2,W/2),(−L/2,−W/2)

(3.17)

where the notation f(x)|(x=a,b)
(x=c,d)

is shorthand for f(a) + f(b) − f(c) − f(d).

In the limit of an infinitely long wire (L→ ∞), this reduces to:

By =
µ0j

2π

{

arctan

(

[y +W/2]

z

)

− arctan

(

[y −W/2]

z

)}

Bz =
µ0j

4π
log

(

[y +W/2]2 + z2

[y −W/2]2 + z2

)

(3.18)

Several features differ from the magnetic field produced by an ideal wire (infinitely

long and infinitesimally thin). In the former case, the magnetic field does not diverge at

any position in the space. It reaches a maximum on the plane of the conductor (z = 0),

equal to the uniform magnetic field generated by an infinite plane with the same current

density Bs = µ0j/2. In addition, the magnetic field decreases at a lower rate up to

distances of about 2W , and at larger distances the magnetic field produced by the plane

converges to that generated by a thin wire. Finally, at the conductor surface (z = 0),

the gradient of the magnetic field has a finite value, in contrast to the case of an ideal

wire where it is also divergent. All these characteristics are shown in Figure 3.4. Notice

that the finite value of both the gradient and the magnetic field limits the achievable

trap depth of a setup like that in Figure 3.1.

Eq. (3.18) indicates that the intensity of the magnetic field is proportional to the

product Bs = µ0j/2 and the length scale of its variations is fixed by the wire’s width

W . In what follows, unless otherwise indicated, reduced units for the magnetic field

B̃ = B/Bs, length x̃ = x/W , and energy Ẽ = E/E0 with E0 = gFµBmFBs are used.

Table 3.1 summarizes these definitions along with typical values of this parameters.

Using this scaling, Eqs. (3.18) results in:

B̃y =
1

π

{

arctan

(

[ỹ + 1/2]

z̃

)

− arctan

(

[ỹ − 1/2]

z̃

)}

B̃z =
1

2π
log

(

[ỹ + 1/2]2 + z̃2

[ỹ − 1/2]2 + z̃2

)

(3.19)
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Figure 3.4: Comparison between the magnetic field of an ideal thin wire (solid, red)

and a wide wire (dotted, blue). Notice that at z = 0, the magnetic field corresponding

to the wide wire has an non-zero value and gradient.

Dimension scale Typical Value

Length Scale W 1 µm

Magnetic field at surface Bs = µ0j/2 1 G

Energy scale E0 = gFµBmFBs 10 µK

Frequency Scale ω0 = ( |µ|Bs

π2mW 2 )1/2 2π × 1KHz

Gradient Scale Bs/W 10 Gauss/cm

Table 3.1: Definition of the scaling factors.

and the potential energy Eq. (3.1) becomes:

Ṽ (ỹ, z̃) = |B̃|
= (B̃2

x + B̃2
y + B̃2

z )1/2 (3.20)

If the magnetic field can be split as in Eq. (3.2), the potential energy can be written as:

Ṽ (ỹ, z̃) = (B̃2
offset + |B̃⊥|2)1/2 (3.21)

Finally, the trap properties previously defined transform to:

• Depth

Ṽmax − Ṽmin = (|B̃max| − |B̃min|) ≫ kBT/E0 (3.22)

• Gradient

− d

dz̃
|B̃| > mgW

E0
(3.23)
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• Frequency

ω̃2
ỹ,z̃ =

1

B̃offset

(∂ỹ,z̃B̃z̃,ỹ)
2
∣

∣

∣

r̃0

(3.24)

• Majorana flips (Lower bound for the offset field)

∣

∣

∣
B̃

min
offset

∣

∣

∣
=

(

~ω0

π2mW 2

)2/3 (

∂z̃B̃y

)4/3
∣

∣

∣

∣

r̃0

(3.25)

These definitions are now applied to different trapping setups.

3.3 Case 1: Magnetic trap using a single wire plus ex-

ternal field

Figures 3.1 shows the sketch of the simplest possible magnetic micro-trapping setup.

A current conductor is placed in a homogenous bias magnetic field, resulting in a line

of vanishing magnetic field. This forms a quadrupole trap for paramagnetic atoms

(gFmF > 0). The addition of an offset field (B̃offset), transforms the quadrupole trap

into an Ioffe trap, with a non-zero magnetic field along the trap axis and a spatial profile

that is well approximated by a quadratic potential near the trap axis.

Assuming the coordinate system in Figure 3.1 and applying Eq. (3.19), the total

magnetic field is:

B̃x = B̃offset (3.26)

B̃y = B̃bias +
1

π

{

arctan

(

[ỹ + 1/2]

z̃

)

− arctan

(

[ỹ − 1/2]

z̃

)}

(3.27)

B̃z =
1

2π
log

(

[ỹ + 1/2]2 + z̃2

[ỹ − 1/2]2 + z̃2

)

(3.28)

Note that the magnetic field can be split as in Eq. (3.2)

In absence of the offset field, there is a line of zero magnetic field at z̃0 satisfying:

z̃0 =
1

2
tan

(

2

πB̃bias

)

(3.29)

The potential energy of an atom in this magnetic field can be evaluated by combining

Eq. (3.26)-(3.28) with Eq. (3.21). A qualitative description of the trap produced can be

made using the isoenergy curves, the magnetic field variation and the potential energy

curves along different directions as shown in Figure 3.5. The parameters in this figure

have been adjusted to create a trap near z̃0 = 1.

In this figure, the isopotential curves indicate the presence of a local minimum along

the z axis. The trap strength, estimated by the distance between different contours,

depends on the spatial direction, indicating that the cylindrical symmetry is only approx-

imate due to the wire’s finite width.
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Figure 3.5: (a) Energy contours for the trapping configuration shown in Figure 3.1

(single wire plus external fields with Boffset = 0). The conductor slab is schematically

shown in yellow. Energy contours are equally spaced by 0.05E0 as indicated. The bias

field was set to produce a minimum of potential energy at y/W ∼ 1. (b) Magnetic

field near the position of the trap (y/W ∼ 1, enclosed region in panel (a)). Note

that along the ideal quadrupole axis (green lines), the field is nearly parallel to them,

demonstrating that the magnetic field distribution is well approximated by a quadrupole

field. (c) Potential energy along the y axis (horizontal blue line in panel (a)) with and

without an offset field (red and green line, respectively). Notice that in the former

case, the minimum and the curvature of the potential are non-zero at y = 0. (d)

Potential energy along the z axis (vertical blue line in panel (a)), for two bias fields

set to produce a trap at z/W ∼ 1 and z/W ∼ 0.5, and with or without an offset field

(red/green and blue/magenta lines).

Figure 3.5(b) shows the magnetic field distribution near the trap position. Observe

that B̃⊥ (arrows) are almost aligned with the ideal quadrupole axes (green lines), indi-

cating that it can be approximated by a quadrupole distribution B̃⊥ ∼ α̃(z̃− z̃0, ỹ− ỹ0).

The presence of an offset field does not modify the previous statements. Its effects

on the trap can be seen in Figure 3.5(c)-(d), where the energy along the ỹ axis, centred

on the trap position z̃0, and along the z̃ axis are shown. The offset field modifies the

energy curve and the original quadrupole potential is rounded off near z̃0.
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The previous statements can be quantified, according to the definitions given in the

previous section, as follows:

1. Depth

The trap depth, defined as the difference between the potential at the centre of

the wire r̃ = (0, 0, 0) and the trap position, r̃0 = (0, 0, z̃0), is obtained by applying

Eqs. (3.26)-(3.28) to Eq. (3.20):

∆Ṽ = |B̃(0, 0, 0)| − |B̃(0, 0, z̃0)|
= (1 − B̃2

Bias + B̃2
offset)

1/2 − B̃offset (3.30)

The position of the trap depends on the bias field through Eq. (3.29), which,

combined with (Eq. (3.30)), gives:

∆Ṽ =

(

1 − 4

π2
arctan2

(

1

2z̃0

)2

+ B̃2
offset

)1/2

− B̃offset (3.31)

Figure 3.6 shows the trap depth for different trapping positions. Compared with

the quadrupole trap, the potential barrier at the wire surface (z̃ = 0) is reduced

by the presence of the offset field.
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Figure 3.6: Trap depth as a function of its position. The solid (red) curve corresponds

to the depth when B̃offset = 0. Turning on the offset field reduces the trap depth, as

indicated the dotted (green) curve.

2. Gradient:

Using Eqs. (3.26)-(3.28) and (3.20), the potential energy along the z axis is:

Ṽ (z̃) =

(

B̃2
offset + (B̃Bias +

2

π
arctan2(1/2z̃))

)1/2

(3.32)
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and its gradient at the trap position z̃0 is:

d

dz
Ṽ (z̃)

∣

∣

∣

∣

z̃0

=
1

π

[

z̃2
0 +

1

4

]−1

(3.33)

As shown in Figure 3.7, the gradient has a Lorentzian dependence with respect to

the trap position, which saturates as the trap position approaches the wire’s plane

(z̃0 = 0) [26].
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Figure 3.7: The gradient of the potential energy as function of the trap position.

3. Curvature and trap frequency

Substituting Eq. (3.33) into Eq. (3.9), the frequency of the trap obtained by

applying an offset field is given by:

ω̃z =

(

1

B̃offset

)1/2 [

z̃2
0 +

1

4

]−1

(3.34)

It has the same dependence as the gradient. High frequencies are reached by small

offset fields. Similar to the gradient, the frequency has a Lorentzian dependence

with the trap position and saturates approaching to the wire’s surface, i.e. as

z̃0 → 0.

4. Majorana Losses

According to Eq. (3.25), reducing significantly the Majorana spin flips, requires

an offset field that depends on the position of the trap as:

B̃offset =
Boffset

Bs
≫
(

~
2

π2W 2µmBs

)1/3 [

z̃2
0 +

1

4

]−2/3

(3.35)
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3.4 Case 2: On chip biased trapping configuration

From the experimental point of view, the source of the compensating bias magnetic field

is better controlled when it is located in the same plane as the trapping wire, allowing

a better knowledge of the trap geometry [26].

Figure 3.8: Simple geometry with an on-chip bias field. The green arrows indicate the

current direction in each wire.

Here, we consider a trapping setup made of three wires. In addition to a central

trapping wire, this configuration contains two long side wires carrying parallel currents.

The additional magnetic field generated plays the role of the uniform bias field in the

single wire configuration presented in the previous section (see Figure 3.8).

The symmetric configuration where the side wires have the same width and carry

the same current density is considered here. The convention of signs and coordinates

are shown in Figure 3.8. Due to the homogeneity of the system along the x axis, the

dependence on x can be ignored and the magnetic field and the trap properties are

evaluated at points in the plane x = 0 (or equivalently the y − z plane).

In addition to the width, W , of the central wire and the current density, j, it carries,

three other parameters are needed to characterize this setup: the width of the side wires,

W ′, their current densities j′ and their centre-to-centre distance, S, from the trapping

wire (see Fig. 3.8). As in the case of a single wire trap, all trap properties are given

in terms of scaled quantities defined with respect to the central wire dimensions, and
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indicated in Table 3.1.

Using Eq. (3.17) centred at each wire and the scaling factors defined in Table 3.1,

the combined magnetic field is:

B̃x(ỹ, z̃) = B̃offset

B̃y(ỹ, z̃) =
1

π

(

β arctan
ỹ + S̃ − W̃ ′/2

z̃
− β arctan

ỹ + S̃ + W̃ ′/2
z̃

+β arctan
ỹ − S̃ − W̃ ′/2

z̃
− β arctan

ỹ − S̃ + W̃ ′/2
z̃

− arctan
ỹ + 1/2

z̃
+ arctan

ỹ − 1/2

z̃

)

B̃z(ỹ, z̃) =
1

π

(

β log
(ỹ + S̃ − W̃ ′/2)2 + z̃2

(ỹ + S̃ + W̃ ′/2)2 + z̃2
− β log

(ỹ − S̃ − W̃ ′/2)2 + z̃2

(ỹ − S̃ + W̃ ′/2)2 + z̃2

+ log
(ỹ − 1/2)2 + z̃2

(ỹ + 1/2)2 + z̃2

)

(3.36)

where β is the ratio between the current densities in the wire, β = j′/j. The contribu-

tions from each wire, to the total magnetic field, are easy to identify in Eq. (3.36).

Along the line of symmetry, ỹ = 0, the magnetic field component B̃z cancels out

and the magnetic field B̃y is given by:

B̃y(0, z̃) =
2

π

(

β arctan
S̃ − W̃ ′/2

z̃
− β arctan

S̃ + W̃ ′/2
z̃

− arctan
1

2̃z

)

(3.37)

The trap is centred at the point where the magnetic field of the three wires com-

pensates exactly, r0 = (0, z̃0), where z0 satisfies:

β

[

arctan
S̃ − W̃ ′/2

z̃0
− arctan

S̃ + W̃ ′/2
z̃0

]

= arctan
1

2z̃0
(3.38)

Again, qualitative characteristics of this trap can be deduced by plotting the potential

energy and magnetic field. Figures 3.9(a)-(d) show isopotential curves, the magnetic

field distribution near the trap position and the potential energy along different directions

in the y − z plane.

The properties of this trap are similar to those exhibited by the single wire config-

uration, as can be concluded from comparing Figures 3.9(a)-(b) with 3.5(a)-(b). For

example, the magnetic field near z0 can be approximated by a quadrupole field, as can

be verified qualitatively from Figures 3.9(b) where the ideal quadrupole field axes are

also shown.

Figure 3.9(c) and 3.9(d) show the potential energy Eq. (3.20), evaluated along the

z and y axes, using different combinations of parameters in the same way as for the
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Figure 3.9: (a) Typical energy contours for the trapping configuration made by a three

wire setup (Figure 3.8). Conductor slabs, schematically shown in yellow, have relative

widths W̃ ′ = W ′/W = 2 and the centre-to-centre distance from the central conductor

to side ones is S̃ = S/W = 2.5. The relative currents were set to produce a trap

located at z/W ∼ 1 and energy contours are equally spaced by 0.1E0, as indicated. (b)

Magnetic field near the position of the trap (z/W ∼ 1, enclosed region in panel (a)).

Similar to the single conductor case, along the ideal quadrupole axis (green lines), the

field is nearly parallel to them, demonstrating that the magnetic field distribution is well

approximated by a quadrupole field. (c) Potential energy along the y axis (horizontal

blue line in panel (a)) with and without offset field (red and green line, respectively).

Notice that in the former case, the minimum and the curvature of the potential are

non-zero at y = 0. (d) Potential energy along the z axis (vertical blue line in panel

(a)), for two bias fields set to produce a trap at z/W ∼ 1 and z/W ∼ 0.5, and with or

without an offset field (red/green and blue/magenta lines).

single wire trap. Using Eqs. (3.36) and (3.20) the characteristics of the trap presented

here are:

1. Depth

The potential energy Eq. (3.20) evaluated using Eq. (3.36) has a minimum at

r0 = (0, z̃0), equal to Ṽ (0, z̃0) = |B̃offset|. As shown in Figure 3.2(a) and (b), there
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are two symmetric maxima along the y axis, and two maxima along the z axis,

one of them in the middle of the central wire at r = (0, 0) in the y−z plane. The

last two become approximately equal as the trap approaches to the chip surface.

In the middle of the central wire, r = (0, 0), the contributions to the magnetic field

coming from the side wires cancel exactly and the total magnetic field becomes

B̃(0, 0) = (B̃offset, 1, 0) (see Eq. (3.36)). Therefore, the trap depth, relative to the

magnetic potential energy at the central wire, becomes:

∆Ṽ = Ṽ (0, 0) − Ṽ (0, z̃)

=
(

1 + B̃2
offset

)1/2
− |B̃offset| (3.39)

From Eq. (3.39), we conclude that the maximum depth occurs in the absence of

an offset field and that it is independent of the trap position, z0.

2. Gradient

As mentioned previously, in the absence of an offset field, the magnetic field

distribution can be approximated by a quadrupole field centred at the trap position.

The gradient of the potential along the z axis, centred at the trap position, is

calculated by differentiating Eq. (3.36):

∂z̃Ṽ (0, z̃)
∣

∣

∣

z̃0

=
2

π

(

2

1 + 4z̃2
0

− β
S̃2 − W̃ ′2/4 − z̃2

0

(S̃2 + W̃ ′2/4)2 + z̃2
0(2S̃2 + W̃ ′2/2) + z̃2

0

)

(3.40)

Notice that as the trap position has a non-trivial dependence on the system pa-

rameters, z̃0 = z̃0(β, S̃, W̃
′), the full dependence of the potential energy gradient

on all the parameters is not explicit in Eq. (3.40).

3. Trap frequency

Again, using a harmonic approximation, the potential energy near z0 is given by:

Ṽ (ỹ, z̃) =
ω̃2

ỹ

2
ỹ2 +

ω̃2
z̃

2
(z̃ − z̃0)

2 + B̃offset (3.41)

where, applying Eq. (3.9), the trap frequency is:

ω̃z̃ =

(

1

B̃offset

)1/2

∂z̃B̃ỹ (3.42)

An explicit formula can be obtained by replacing Eq. (3.40) into the previous

expression.

4. Majorana Losses

To make the rate of spontaneous spin flips small, the offset field should satisfy the

condition Eq. (3.25). The result of combining this condition with Eq. (3.42) is:
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Boffset

Bs
≫
(

4~
2

π2µmBsW 2

)1/3
w

Bs

π

2
∂z̃B̃z̃|r̃0

(3.43)

3.5 Case 3: Full 3D trapping

The single and three wire configurations shown previously provide confinement in the

plane orthogonal to the current flow but not along the wire’s axis. By bending the wires,

e.g. forming U or Z shapes, as in Figure 3.10(a) and 3.11(a), confinement along the

trap axis can be achieved.

In these configurations, external uniform magnetic fields produce effects similar to

those described above: an offset field parallel to the current flow at the centre of the

structure controls the trapping strength, and the trapping position is defined by a bias

field transverse to the same current flow.

If the length of the central wire (L) is much larger than its width W , a good

approximation to the total magnetic field can be obtained by splitting the wire into

rectangular sections and then using Eq. (3.17) for each one. This procedure, which

ignores the bending of the current occurring at the corners of the wire, is accurate

enough to estimate the magnetic field near the centre of the trap, in a region smaller

than the dimensions of the wire.

This thesis uses a purely numerical approach to evaluate the magnetic field distribu-

tion produced by the array of current elements and the properties of the trap produced.

Typical features of the potential energy in these configurations are shown in Figures 3.10

and 3.11.

In both cases, the bending of the wires breaks the cylindrical symmetry, which was

present, to a good approximation, in the previous trapping configurations. Figures

3.10(b)–(c) and 3.11(b)–(c) show the contours of potential energy in the planes (0, y, z)

and (x, y, z0). The presence of closed contours demonstrates asymmetric trapping along

the three spatial directions. In the U-shaped case, the trap is not centred above the

central wire, but is shifted away from it. In the Z-shaped wire, the trap is tilted along

the central wire (see Figure 3.11(b)).

Figures 3.10(d)–(e) and 3.11(d)–(e) show the potential energy along the lines (0, 0, z)

and (x, 0, z0), again for the U and Z-shaped wires, respectively. The nature of the result-

ing trapping potential in the U and Z geometries is quite different. In the Z geometry,

the orthogonal segments produce a magnetic field parallel to the current flow, which is

nearly uniform at the centre of the wires. This magnetic field plays a similar role to the

offset field defined in previous section. The resulting potential is smooth along the three

spatial directions, and can be approximated by a harmonic function near the position
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of the potential minimum. With the U shape geometry, the magnetic field at the trap

position is zero, and the trap has a quadrupole-like dependence.

All the definitions given here to characterize the strength of the trapping potential

can be straightforwardly applied to the present case and extended to all three spatial

directions. Although, Eq. (3.17) can be used to obtain approximate analytic expressions

for the harmonic trapping potential, the results are very complex and do not make clear

the properties of such traps. Therefore, in this thesis we do not used this procedure

for trapping configurations that include bended wires, limiting ourselves to a numerical

approach.

3.6 Summary

Magnetic trapping of cold atoms is possible because particles with negative magnetic

moment are attracted towards regions where the magnetic field is small. Magnetic field

distributions with a localized minimum can be built by combining different field sources

that locally cancel each other.

The strength of the trapping is characterized by the absolute value of the potential

energy (depth), and its gradient, evaluated at the position of the minimum. Analytic

expressions for such properties have been found for trapping setups relevant to this

thesis.

Confinement along the three spatial directions can be provided by bending the central

trapping structure. In this case, the total magnetic field can be calculated by adding the

contributions associated with the different sections of the wire.

The analysis presented here will be used to establish the possibility of preparing

trapping potentials with current flows through two-dimensional electron gases, and the

general conditions demanded to achieve a useful trapping potential.
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Figure 3.10: (a) Schematic diagram of a U-wire magnetic trap setup. Note that the

wire’s bending provides confinement along the central wire axis, and pushes away the

trap position from the centre of the wire. Other panels show the potential energy of an

atom in the magnetic field produced by a current in an U-shaped wire and an external

bias field. (b) Iso-potential energy curves in the y − z plane, spaced by 0.05E0. (c)

Contours of the potential energy in x − y plane, spaced by 0.0025E0 . (d) and (e)

shows the potential energy along the z and x axis (blue lines in panels (b) and (c),

respectively). No offset field is considered in this configuration.
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Figure 3.11: (a) Schematic diagram of a Z-wire magnetic trap setup. Note that the

wire’s bending provides confinement along the central wire axis and an intrinsic offset

field at the centre of the trap. Other panels show the potential energy of an atom in the

combined magnetic field produced field produced by a current in an Z-shaped wire and

an external magnetic field. (b) and (c) show contours of the potential energy in y − z

and x − y planes respectively. Panels (d) and (e) corresponds to the potential energy

along the z and x axis with origin at the centre of the setup. It can be observed that

the offset field has the same effect previously discussed.



CHAPTER 4

Magnetic trap fabricated using a Two-Dimensional Electron Gas

wire

Good conductors, like gold or copper, have been the preferred material to use in atom

chips setups like that shown in the previous chapter. These materials support large

current densities with low heating rates, making possible the production of strong mag-

netic fields and, consequently, strong magnetic traps. The production of atom-chips has

also benefitted from the ability to create intricate webs of wires with micrometre resolu-

tion, by using standard techniques of deposition/etching over semiconducting substrates

[106].

The material properties and fabrication techniques limit the flexibility and quality of

the traps that can be built with metallic conductors. As an example of this, thermal

damage of the atom chip components should be avoided by limiting the current density

in the wires to below a certain value, jmax, determined by the thermal properties of the

conductor, substrate interfaces and boundary conditions [107]. This maximum current

density sets the smallest possible wire cross section and/or the maximum current (Imax)

that a wire can support, therefore limiting the strength of the trapping potential. In

general, establishing the optimal distribution of elements in the atom chip, thereby

obtaining an effective sink of the heat dissipated by the current flow1, is a complex

problem [26].

On the other hand, the quality of the magnetic trap can be affected by defects in the

wires originating from the production process [30, 60, 80]. Geometrical imperfections

and finite grain size are sources of corrugation that can deviate the current flow from

1Typical microtraps use current densities in the range of 1010 − 1012 mA/µm2, which produce a

power of a few Watts along the whole wire [50].

51
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idealised paths. This may cause the trapped clouds to break up into fragments along

the length of a current carrying wire. The extent of the fragmentation is then dictated

by the wire quality and is typically observed for a large range of atom-wires distances,

e.g. at ∼ 10 µm for lithographically formed wires, and ∼ 100 µm from electro-plated

wires [26].

Neighbouring surfaces have important effects on the trapped atoms. At micrometre

atom-surface separations, the interaction of the atoms with magnetic field fluctuations,

created by the surface become relevant and the rate of induced spin-flip transitions,

decoherence and heating of the trapped clouds is greatly increased [60] compared with

their rates in vacuum. The temperature of the surface, the amount of material below it

and its conductivity, determine the intensity, time and length scales of such effects, and

impose limits on the quality of the trapping potential [31, 80].

Limitations associated with using metallic materials for atom trapping and manipu-

lation are nowadays well understood [26]. It is interesting, therefore, to explore different

materials which can open other possibilities. Proposals of using superconducting wires

[85, 91], metallic alloys [86] and materials with anisotropic conductivity [87], have al-

ready been made but only the first one has been experimentally tested.

This chapter explores the possibility of using a 2DEG as a conducting material

for microtrapping. As motivation, a prediction of the life-time of trapped states near

dielectric surfaces is presented in Section 4.1. The conditions required for operation of

a simple 2DEG-based trapping configuration with acceptable strength are established

in Section 4.2. To perform this analysis, results of Sections 3.3 and 3.4, are applied

considering that, in this context, the only relevant differences between a metallic material

and a 2DEG are their conductivities and thickness.

The potential landscape experienced by an electron in a 2DEG has inhomogeneities

that cause deviations in the electron’s trajectory, as explained in Chapter 2. In turn,

this creates inhomogeneities of the generated magnetic field. In Section 4.3 we show

how this inhomogeneous magnetic field distribution corrugates the trapping potential

and modulates the density of a trapped BEC.

The last section summarizes this chapter and discusses the feasibility and potential

advantages/disadvantages of using 2DEGs for ultra-cold atom trapping.

4.1 Lifetime of trapped states near a dielectric body

The thermal motion of charges inside any body generates a fluctuating electromagnetic

field near its surface, determined by the electrical properties of the material, the shape

of the body and its temperature. So far, two equivalent approaches have been used to

compute the magnetic component of this fluctuating field [83]. One of them [108], uses
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an application of Nyquist’s Theorem [1], whereby the distribution of current fluctuations

in the body is evaluated and then the magnetic field can be worked out through Maxwell’s

equations. The second method evaluates directly the spectrum of the magnetic field by

using the relation given by the Fluctuation-Dissipation theorem [1], between the magnetic

field (fluctuation) and the material dynamic permeability (dissipation) [82, 83, 109].

An atom near the surface of a body can be strongly affected by the fluctuating

field associated with the thermal motion of the charges at and below the surface. If an

atom in the state |F,mf 〉 is magnetically trapped (see Eq. (3.1)), the fluctuations of

the magnetic field field can drive spin flips to states with lower mf , which are weakly

trapped and more likely to escape [31].

The rate of the process |F,mi〉 → |F,mf 〉 (Γif ) is given by Fermi’s golden rule and

involves the spectral density of the magnetic fluctuation at the frequency of the transition

(~wfi = Ef − Ei) and the matrix elements of the interaction operator [28, 31, 85]:

Γif (r) =
∑

αβ

〈i|µα |f〉 〈f |µβ |i〉
~2

Sαβ
B (r;−wfi) (4.1)

where µα, α = x, y, z are the components of the magnetic moment operator and

Sαβ
B (r;−wfi) is the spectral density of the magnetic field, which depends on the imag-

inary part of the dielectric function of the surface material and on the surface shape

[109].

The purpose of this section is to estimate the transition rate, or equivalently the

lifetime, of atoms trapped near a heterostructure containing a near-surface 2DEG and

compare it with the rates for atoms near a good conducting material. A schematic

diagram of the geometry considered is shown in Figure 4.1.

In this geometry, three length scales determine the rate of transitions: the atom-

surface distance (z0), the thickness of the conducting layer (h) and its skin depth, given

by:

δ =

√

2ρ3D

µ0ωfi
(4.2)

where ρ3D is the 3D resistance of the material and ωfi is the transition frequency.

Analytic results for several regimes have been reported [26, 28, 85] and can be

summarised as follows [85]:

τ =

(

8

3

)2 τ0
nth + 1

(ωfi

c

)3
×



















z4
0

3δ δ ≪ z0, h

δ2z0

2 δ, h ≫ z0
δ2z2

0

2h δ ≫ z0 ≫ h

(4.3)
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Figure 4.1: (a) Typical geometry for trapping atoms near surfaces. The thick slab (in

blue) represents a dielectric substrate, over which there is a conducting slab of thickness

h (in yellow). Atoms are trapped at a distance z0 from the surface [26, 85, 28] (b)

Expected lifetime of the atomic state |f = 2,mF = 2〉, near 2DEG and copper wires.

We assume a 87Rb in a uniform magnetic field of B ∼ 0.2G, corresponding to a Larmor

precession frequency of 279.92 kHz. Only spin-flip transitions due to the thermal

fluctuating electromagnetic field near the materials have been considered [85].

where nth = [exp(~ωfi/kBT ) − 1]−1 is the Bose factor, τ0 is the lifetime in free space:

τ0 =
3π~c3

µ0ω3
fi

∑

α=x.y,z µ
2
Bg

2
F

∣

∣

∣
〈f | F̂α |i〉

∣

∣

∣

2 (4.4)

in which F̂α,(α = x, y, z) are the Cartesian components of the total angular momentum

operator.

Typical experimental situations with atoms trapped by an atom chip configuration

correspond to the third case in Eq. (4.3) (δ ∼ a few hundreds of µm ≫ z0 ∼ a few

tens of µm ≫ h ∼ a few µm ). From the same equation, it can be concluded that long

lifetimes of trapped states are favoured by using thin conductors and/or by keeping the

atoms far from any metal surface [26].
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To quantify the possible benefit of trapping atoms using a 2DEG-based atom chip,

consider a 87Rb atom in a magnetic trap with an offset field Boffset = 0.2 G, and compare

the transition rate of the process |F = 2,mF = 2〉 → |F = 2,mF = 1〉, when it occurs

close to a 2DEG and to a thin copper slab [84]. In this case, the transition frequency, ωfi

coincides with the Larmor frequency of the spin precession around the offset magnetic

field axis, ωfi = gFµB |B|/~ ∼ 2π × 0.3 MHz.

Figure 4.1(b) shows the calculated lifetime of the trapped state above a 2DEG, with

the properties shown in Table 2.2, at 300 K (top curve) and 4.2 K (green curve) and also

next to a 1.0 µm thick copper slab (cyan curve) and a 10 nm copper layer (blue curve),

both at room temperature. The lifetime limit due to collision with the background gas is

also shown [26]. Table 4.1 shows the properties of copper and the 2DEG considered here,

and compares the lifetime of a trapped atom located at 1 µm above these materials.

Material Resistance (Ω) δ (µm) Thick (h) δ2/2h (m) τ at 1 µm (s)

2DEG (300 K) 3.78 × 10−5 5649.4 10 nm 1595.8 2.465 × 103

2DEG (4.2 K) 1.35 × 10−7 337.6 10 nm 5.7 6.289 × 102

Cu (300 K) 1.69 × 10−8 119.5 1 µm 0.00714 1.101 × 10−2

Cu (300 K) 1.69 × 10−8 119.5 10 nm 0.7 1.101

Table 4.1: Comparison between the properties of copper and a 2DEG at different

temperatures, and lifetime of a trapped atom held 1 µm above them.

Due to its small conductance and thickness, magnetic field fluctuations near a 2DEG

are weaker than close to a normal metal. Consequently, the lifetime of trapped states

is largely increased and becomes limited only by collisions with background atoms (typ-

ically a hundred seconds [29]) even at sub-micrometre distances. Notice the apparent

contradiction that the lifetime above a 2DEG a room temperature is larger than when

it is cooled to 4.2 K. This occurs because the enhancement of the magnetic fluctua-

tions occurring with increasing temperature (Bose factor in Eq. (4.3)) is overcome by a

reduction driven by the enhancement of the material resistance (δ2 ∝ ρ3D in Eq. (4.2)).

Traps with long lifetimes would present great advantages for the manipulation and

storage of cold atoms, which is a strong motivation to explore the possibilities that a

2DEG offers as a trapping structure.

4.2 Feasibility of a 2DEG-based microtrap for cold atoms

This section establishes the conditions required to produce a magnetic trap using a 2DEG

as the conducting material, for the single-wire and on-chip biased setups explained in

Sections 3.3 and 3.4. The magnitude of the bias/offset magnetic fields and the current

density are restricted according to the limitations on the current density that can flow



2DEG-BASED MICROTRAP 56

through a 2DEG, as explained in subsection 2.2.1.

In order to be potentially useful, a trap produced by a current carrying 2DEG should

have characteristics comparable with that typically found in experiments on atom-chips

with metallic conductors [26]. In particular, it should have a minimum located at a

distance between 1− 10 µm from the main trapping structure, transverse frequencies in

the range of 1− 10 kHz and a depth of a few tens of µK. The conditions needed to get

such a trap and a discussion about how those conditions can be achieved/tolerated by

using a high-mobility 2DEG are discussed in this section.

For a 2DEG-based atom trap, the wire’s size is of the order of 1 µm (both width and

length). As the Fermi wave length of electrons in the 2DEG (10 nm) is much smaller than

those dimensions, effects due to the quantisation of energy levels associated with the wire

geometry can be neglected and the 2DEG is simply considered as a slab of conducting

material with a thickness of a few tens of nano-meters [95]. However, we mention in

passing that the interaction between ultra-cold atoms and quantised electronic states

in heterostructures may be of interest in its own right, and currently remains a poorly

studied topic.

4.2.1 Single wire trapping

Consider the single wire trapping setup described in Section 3.3. To quantify the achiev-

able trapping strength, we must first set the values of current flow and the dimensions

of the wire. As shown in section 2.2.1, a 2DEG can tolerate a maximum current of

the order of jmax ∼ 0.3 mA/µm. For illustration, consider a smaller flow j = 0.16

mA/µm ≃ jmax/2, which yields a magnetic field of Bs = 1 G at the wire surface. For

this current, the trap parameters, defined in Section 3.3 (Eqs. (3.29) - (3.35)), scale

according to (see Table 3.1):

Quantity Symbol value

Wire’s width W 10 µm

Magnetic field at surface Bs 1 G

Energy scale E0 67.2 µK

Frequency Scale ν0 = ω0/2π 404 Hz

Gradient factor Bs/W 10 T/m = 0.1 G/m

Table 4.2: Scaling factors of the trapping properties associated with a plausible single-

wire setup including a 2DEG as conducting material

Once the width of the trapping wire is fixed, all properties of the trapping potential

depend only on the ratios BBias/Bs and Boffset/Bs (as shown in Figure 4.2) scaled by an

appropriate factor. For the set of parameters in Table 4.2, the trapping potential has

the following properties:
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Figure 4.2: Characteristics of the trapping potential generated by a single planar wire plus

external homogenous fields (panel (a)). All quantities are scaled according to the definitions in

Table 3.1. (b) Vertical position of the trap (z0) as function of magnetic bias field. (c) Trap

gradient (d) Minimum value of the offset field needed to satisfy the adiabatic condition Eq.

(3.25). (e) Contours of the trap depth versus offset and bias fields. Contours are separated

each 0.05E0 (starting with the dotted curve at 0.05E0) (f) Trap frequency as function of offset

and bias fields. Contours are separated by 1.0ν0 (starting with the dotted curve at ν0). The

dashed region in (e) and (f) corresponds to values of Boffset that do not satisfy the adiabatic

condition, according to panel (d).
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1. Trap positions below W ∼ 10 µm can be obtained by a bias field satisfying

BBias/Bs ≥ 1/3 (indicated by the arrow in Figure 4.2(b)), which, according to

Table 4.2, corresponds to BBias ≥ 300 mG.

2. The trap depth (∆Ṽ ) and radial frequency (ω̃z) are functions of both the bias

and the offset fields (see Eq. (3.31) and (3.34) respectively). Contour curves

of shown in Figures 4.2(e) and 4.2(f). From Figure 4.2 and using the scaling

factors in Table 4.2, it can be conclude that using magnetic fields in the ranges

Boffset ∈ [0.1, 1] G and BBias ∈ [0.3, 1] G, produces traps with satisfactory depth

(∼ 10µ) and frequency (∼ 1 KHz).

3. In the absence of an offset field, the trap can be approximated by a quadrupole

configuration with a gradient (α in Eq. (1.36)) larger than 3 T/m ∼ 0.3Bs/W

(arrow in Figure 4.2(c)), which is strong enough to compensate the gravitational

attraction on an 87Rb atom.

4. Eq. (3.35) provides a lower bound for the offset field required to avoid Majorana

spin flips. In dimensionless units, this lower bound is Bminimum
offset ∼ 10−3Bs, which,

according to Table 4.2, corresponds to Bminimum
offset ∼ 1 mG.

The order of magnitude of all relevant trap parameters, for the single wire trap

configuration, are summarized in Table 4.2. Quantifying such properties can be done by

combining this scaling with results shown in Figures 4.2(b) - 4.2(f), which corresponds

to Eqs. (3.29) - (3.35). Notice that by using external bias and offset magnetic fields of

a few hundred mG, produces at trap at the position and with the strength required. For

example, using BBias = 550 mG and Boffset = 500 mG creates a trap located 5 µm above

the 2DEG plane, with transversal frequency of 1.2 kHz and a depth of 13.4 µK.

This particular set of parameters illustrates the order of magnitude of the trap char-

acteristics that can be achieved by using 2DEG as conducting elements in atom chips.

These results are comparable with those realized in current experiments (see [26]) and

encourage us to explore a more complex system: the on-chip biased trap.

4.2.2 On-chip biased trap.

Consider a three wire configuration like that in Section 3.4, with a W = 10 µm wide

central wire and W ′ = 10 µm wide side wires with a centre-to-centre separation of

S = 40 µm (see Figure 4.3 (a)). Once the geometry is fixed, the position of the trap

is determined by the ratio between the currents, j and j′ of the central and side wires,

respectively. For example, as can be seen in Figure 4.3 (b), positioning the trap below

W = 10 µm requires a ratio satisfying j′/j & 3.

The length scales of the system are set by the width of the central wire and the

strength of the trapping potential depends only on the ratio j′/j and the applied offset
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field, as can be seen from Eqs. (3.39) - (3.43) in section 3.4. Using the same scaling

parameters in Table 4.2, the trapping properties can be summarized as follows:

1. In Figure 4.3(b), observe that locating the trap a few micrometres above the

central wire, by using micrometre wide wires, requires j′/j & 3.

2. According to Eq. (3.39), in this configuration the trap depth is independent of

the current in the side wires, j′, and only depends on the ratio between the offset

field and BS . The depth can be several tens of µK (∆Ṽ ∈ [0.1, 1]) if the offset

field varies between 100 mG and 4 G (Boffset/Bs ∈ [0.1, 4]).

3. Similarly to the single wire case, the ratio Bs/W corresponds approximately to

10 T/m. According to Figure 4.3(c), the gradient of the quadrupole (Eq. (3.40))

trap is several T/m, and therefore the gravitational attraction can be compensated

by this setup.

4. The trap frequency depends on the ratio j′/j and on the offset field. Contours of

ν(Boffset, j
′/j) are shown in Figure 4.3(f). Frequencies of a few kHz are achieved

for combinations of Boffset ∈ [0.1, 4] G and j′/j ∈ [3,∞).

5. The adiabatic condition Eq. (3.43), plotted in Figure 4.3(d), is satisfied if the

offset field is larger than 0.01BS ∼ 10 mG.

The considerations presented here enable us to identify the order of magnitude of

the parameters and conditions needed to create a trap useful for atom manipulation,

by using current flows through a 2DEG. A current producing a magnetic field at the

surface of 1G combined with bias and offset magnetic fields of ∼ 100 mG, can create a

potential strong enough to trap condensed atoms.

To guarantee low levels of power dissipation during the operation of the trap, the

2DEG must have a high electrical conductivity, which can be achieved by keeping the

sample cooled to cryogenic temperatures ∼ 4.2 K. Such low temperatures complicates

the experimental setup, but certainly the design would not be very different from the

experiments already made using superconductors as trapping structures [93, 94]. In the

next chapter, we show that BECs can be used to probe the electronic properties of

2DEG-base components such as quantum wires and dots. Since these structures often

only exhibit quantum phenomena at 4.2 K or below, a natural way to probe such effects

using a BEC microscope would be to use the 2DEG to fabricate both the trapping wires

an the components to be probed.

Finally, considerations about the three-wire configuration suggest that hybrid sys-

tems, combining currents through metal conductors and semiconductor materials, are

needed to produce strong trapping. Specifically, in the example presented, to obtain a

trap at a micrometre distance, ∼ 1 − 10 µm, from the surface, the current in the side
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Figure 4.3: Characteristics of the trapping potential generated by a three wire configuration

(panel (a)). All quantities are scaled following the definitions in Table 3.1 (b) Vertical position

of trap position versus magnetic bias field. Note that to reach trapping distances lower than

10 µm requires a bias field larger than 0.3 times Bs. (c) Trap gradient (d) Minimum value of

the offset field needed to satisfy the adiabatic condition Eq. (3.25). (e) Trap depth as a function

of offset field. (f) Trap frequency versus offset and bias fields. Contours are separated by ν0

(starting with the dotted line = 1.0).
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wires must be three times that in the central wire, which can easily exceed the maximum

tolerable current in a 2DEG, thus requiring metallic side wires.

4.3 Trap corrugation due to current flow in a 2DEG

The previous section considered trapping setups where the current flow is homogeneous.

Defects in the definition of the wire edges and local changes in the properties of the

conductor can locally deviate the current and produce a corrugation of the trapping

potential. This corrugation is then imprinted in the density distribution of trapped

atoms [22, 80, 110].

As mentioned in Chapter 2, 2DEGs at low temperatures have large mobilities, limited

mainly by the interaction of the electrons with their parent ionized donors. The donor-

electron potential leads to a long-range and small angle scattering of the electron path,

creating a branched flow pattern [111, 112], like that illustrated in Figure 2.6.

The effect of inhomogeneity of a 2DEG used to form a Z-trap (Section 3.5) is

evaluated in this section. It is assumed that, along the central portion of a Z-shaped

wire, the current has a uniform contribution j = (j, 0) along the x direction and an

inhomogeneous component ∆j = (∆jx,∆jy). The inhomogeneous component ∆j is

calculated from Eqs. (2.2) and (2.6) as follows: Eq. (2.2) is used to determine the

screened donor potential in a region the same size as the central portion of the Z-trap.

Then, the current distribution is obtained using Eq. (2.6). The total magnetic field

profile is then evaluated from the Biot-Savart law Eq. (3.14).

Each component of ∆j affects the trapping potential in a different way. This can be

seen most easily by assuming that the magnetic field at a given point (x, y, z) is mainly

due to the current element just below it. Then ∆jx shifts the trapping position because

the magnetic field acquires an extra contribution, which changes the vertical position

(i.e. along z) where the applied BBias is exactly compensated. On the other hand, ∆jy

shifts the bottom of the potential energy because it creates a magnetic field along the

x axis that locally changes the offset field.

As explained in Section 3.5, the superposition of a uniform magnetic field and the

inhomogeneous magnetic field produced by the current through a wire bent into a Z

shape produces a 3D trapping potential. Simulations presented here consider parameters

that are attainable in current experiments (see Table 4.3).

As shown in Table 4.3, by choosing different external bias and offset fields the trap

position and frequency can be set to selected values. To study the form of the confined

atom cloud, we calculate the ground state of a BEC made of 105 87Rb atoms in the

|F = 2,mf = 2〉 state is in traps located at different distances from the 2DEG plane.

An imaginary-time evolution of the Gross-Pitaevskii Equation within a Crank-Nicolson
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scheme was the numerical method used to evaluate the atom density distribution of the

ground state (see Appendix A). Figure 4.3 shows the result of this procedure.

Parameters of the 2DEG Z-trap

Length 1.0 mm

Width 20 µm

Mobility 140 m2s−1V−1

Applied electric field 11.1 mV/µm

current 0.12 A

Boffset 0.2 G

Different configurations of a 2DEG-based trap

Bbias (G) 2.27 3.2 4.2

z0 (µm) 10 5 3

ω⊥/2π (Hz) 412.3 1020 2410

ωx/2π (Hz) 6.6 7.5 10.3

Table 4.3: Full set of parameters used to create a trapping potential from a Z-shaped

2DEG wire. The parameters to the left define the geometry of the trap. To the right

we show several combination of parameters and properties of the trap (position and

frequency).

Figure 4.4: Geometry of the proposed trapping configuration using a 2DEG as the

conducting element

The inhomogeneity of the potential imprints itself on the density of atoms. The

length scale of the corrugation is of the order of the 2DEG-BEC distance and its am-

plitude increases as the distance to the 2DEG is reduced. The effect on a trapped

Bose-Einstein condensate is large if the potential inhomogeneities are comparable with
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the chemical potential of the BEC. In the simulation presented here, very weak modu-

lation occurs at a distance above 5 µm (< 10%) (Figures 4.3(a) and 4.3(b)) while at

1 µm the atomic cloud has a strong modulation and the condensate breaks apart (Figure

4.3(c)).
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Figure 4.5: Ground state of 105 87Rb atoms at different distances from a 2DEG

trapping wire. Effects of the inhomogeneities in the electron density are appreciable at

distances around 1 µm. The trap configurations are detailed in Table 4.3

The calculations shown so far demonstrate that, using a 2DEG as the main trapping

structure, it is possible to produce magnetic traps with strength similar to those used

in experiments that use current carrying metal wires (for example [22, 113]). Trapping

configurations employing 2DEG would have several advantages: firstly, the lifetime of

trapped states would be restricted only by collisions with the background atoms present

in the experiment, even when the atoms are located at submicrometre distances of

the heterojunction surface. Secondly, as it is possible to pattern to 2DEG with sub-

micrometre resolution, a higher spatial control of the atomic cloud is possible. Thirdly,

using this semiconductor structures for trapping and control leaves the surface free for
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other components such as metal gates, improving the quality of the trapping potential

and introducing a additional degree of freedom in the design of the atom chip. Finally,

the large inhomogeneity at very short distances between the trap and the 2DEG can be

reduced by applying time dependent currents, as has been proposed and demonstrated

already in atom chips experiments [22, 113].

4.4 Summary

This Chapter has explored the possibility of using a 2DEG as the conducting material

for the microtrapping setups discussed in Chapter 3. To demonstrate the feasibility of

such a trapping device, all calculations were performed using parameters accessible in

present experiments.

The initial motivation for this study was the prediction of long lifetimes for the

trapped states, due to the small amplitude of the electromagnetic noise near a 2DEG.

Ignoring other mechanisms that induce spin flips in trapped atoms, the predicted im-

provement is such that the lifetime near a 2DEG would be limited only by collisions with

background atoms, even at sub-micrometre distances (Figure 4.1).

In general, it would be possible to produce traps located at distances between 1 −
10 µm from the 2DEG plane and with frequencies up to a few kHz (see un-dashed

region in Figure 4.2 and 4.3). The weakness of the trapping potential due to the low

peak current that can pass through a 2DEG, can be compensated by using small external

fields. Table 4.3 illustrates a particular combination of parameters (current, geometry

and external fields), all attainable in present experiments, which produces a 3D magnetic

trap.

Effects of the inhomogeneity of the 2DEG on the trapping potential are also reported

in this chapter. At low temperatures, the current flow in a 2DEG is not uniform due

to the interaction of the electrons with the ionized-donor layer. This affects the quality

of the trapping potential, limiting its operation to distances larger than 1 µm. To

illustrate this, the density profile of an 104 87Rb BEC in a Z-trap was calculated for

different distances between the trap and the 2DEG plane. At distances of 1 µm, the

inhomogeneities of the potential are strong enough to split a trapped BEC into several

disconnected pieces, while above 5 µm the density modulations are below 10% (see

Figure 4.3).

Despite the low current density that a 2DEG can support, and the strong modula-

tion of the trapping potential at short distances, the use of 2DEGs as conductors for

microtrapping can provide several advantages over normal metallic conductors, some of

them briefly suggested below.

Semiconductor fabrication techniques like ion implantation, deep-etching or shallow-
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etching [32] have sub-micrometre resolution, which could reduce the modulation of

the trapping potential due to imperfect definition of the wire edges, as observed in

[30, 60, 73, 114, 115]

Also, because the 2DEG is embedded within the semiconductor device, the nearest

surface to the trapped atoms is left free, allowing additional elements of control to be

fabricated on top. In addition, due to the long-life time of trapped states, the 2DEG

based-trap could be used to store ultra-cold atoms, which are extracted later on to

be used by independent atom-manipulation configurations. BEC microscopes could be

made by fabricating both the trapping wires and the quantum electronic structure to be

probed in the same 2DEG.

Several technical questions, like the thermal coupling of the conductors to the sub-

strate required for heat dissipation or the stability of the trapping configuration with

respect to fluctuations in the current have not been considered. Nevertheless, from the

considerations presented here, we can conclude that a 2DEG in its high-mobility regime

can be used to create potentials that are flexible enough to manipulate cold atoms in a

similar way to that achieved using normal metals as conducting elements.



CHAPTER 5

Exploring 2DEGs with BEC microscopy

Magnetic field sensors, with unprecedented combinations of resolution (∼ µm) and

sensitivity (∼ nT), have been recently demonstrated experimentally using atomic Bose-

Einstein condensates [69, 110, 116, 117]. With these setups, a single measurement

process is enough to determine one component of the magnetic field inside elongated

regions of area ∼ 100 µm × 1 µm [69, 110, 117] . By combining high resolution-

sensitivity and large area sampling with a single-shot, BEC-Magnetic Field Microscopy

(BEC-MFM) has emerged as a promising tool to perform measurements in regimes

inaccessible to other magnetic sensors like SQUIDs, Hall probes, atomic magnetometers

or magnetic force microscopes [69].

On the other hand, semiconductor systems have been used extensively to study the

boundary between classical and quantum dynamics as the system size becomes com-

parable to the carrier de Broglie wavelength. Current-voltage characteristics measured

under controlled conditions of temperature and external applied electric and/or magnetic

fields, provide evidence of a wide range of quantum phenomena including quantum Hall

Effects, weak localization, universal conductance fluctuations and quantization of con-

ductance. Such effects are revealed when the dimensions of the system are comparable

to one of the carriers characteristics lengths scales: free-path, thermal wavelength or

Fermi wavelength for example [96].

This chapter describes how a BEC-MFM can be used to study the structure and

operation of heterostructures containing a 2DEG. We show that information can be ob-

tained about electron transport in the 2DEG and the distribution of the donor impurities

that create it. Section 5.1 contains a brief explanation of the operational principle of

the BEC-MFM [69] and its properties. Section 5.2 explains how a BEC-MFM setup can

66
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be employed to perform measurements of the quantized conductance in Quantum Point

Contacts (QPC) defined in a high-mobility 2DEG. Section 5.3 shows that the magnetic

field produced by a current through a 2DEG can be measured by a BEC-MFM, providing

information about the distribution of ionized donors inside the heterojunction. Finally,

Section 5.4 presents a summary of the relevant findings described in this Chapter with

emphasis on further applications to be developed.

5.1 BEC Magnetic Field Microscopy (BEC-MFM)

The BEC-MFM technique is based on detecting density modulations of a Bose-Einstein

condensate produced by an inhomogeneous magnetic field. Since the atomic cloud

distributes according to the intensity of the magnetic field, inhomogeneities in the field

translate into density modulations of the condensate, which can be detected by optical

methods [30, 60].

Typically, the magnetic field in this systems is produced by two sources: a micro-

trap setup (Btrap) (see Chapter 3), that fixes the location of the BEC and its sensitivity

to inhomogeneities [22] and an inhomogeneous current or magnetization distribution

(Bprobed), which generates the magnetic field to be probed. The total trapping potential

becomes corrugated, producing an atomic distribution with density modulations propor-

tional to the intensity of the corrugation relative to the condensate chemical potential

(∆η/η ∼ µBBprobed/µ).

To quantify the effect that an inhomogeneous magnetic field distribution has on

a typical trapping potential, consider a trap made by combining the magnetic field

produced by a single current carrying wire (BWire = (0, BWire,y, BWire,z)) and an externally

applied uniform bias-offset field (BBias,offset = (Boffset, BBias, 0)), as shown in Figure 3.5.

This combination produces the magnetic field distribution:

Btrap = (Boffset, BBias +BWire,y, BWire,z) (5.1)

A magnetic trap with approximate cylindrical symmetry is produced if the bias field is

orientated to compensate the magnetic field produced by the wire. The axis of the

resulting trap becomes parallel to the current carrying wire, and located at a distance

z0 given by the condition:

BBias +BWire,y(z0) = 0 (5.2)

Now consider a single current element ∆j = (∆jx,∆jy, 0), like the shown in Figure

5.1, located at the origin of coordinates, just below the trap axis. The magnetic field

produced by this element of current is:

∆B(z) = (∆Bx,∆By, 0)

=
µ0

4π

dxdy

z2
(∆jy,−∆jx, 0) (5.3)
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Figure 5.1: (a) Magnetic field components produced by a small current element.

The tiny magnetic field generated by ∆j modifies: (b) the trap position through the

component along the bias field (blue arrows) and (c) the bottom of the trap (the

potential energy at the minimum) by affecting the applied offset field (red arrows).

where dxdy is the area occupied by the current element. This additional magnetic field

affects the shape and position of the trap in a small region directly above the current

element position. The new trap position z′0 is defined by the condition:

Bbias +BWire,y(z
′
0) + ∆By(z

′
0) = 0 (5.4)

Performing a first order Taylor expansion around the original trapping position, this

produces:

Bbias +BWire,y(z0) + ∂zBWire,y|z0
(z′0 − z0)

+∆By(z0) + ∂z∆By|z0
(z′0 − z0) = 0

(5.5)

Defining ∆z0 = (z′0 − z0) and noticing that ∂zBWire,y ≫ ∂z∆By
1, the shift of the

trapping position is:

∆z0 = −∆By(z0)

∂zBWire,y
(5.6)

Finally, combining Eqs. (3.10), (5.3) and (5.6), the relative shift of the trap axis is:

∆z0
z0

=
∆jx
z3
0

µ0

4π
dxdy

1

ωz

√

mF gFµB

mBoffset

(5.7)

where ωz is the trap frequency. In situations of interest, the change of the trap position

is of the order of several Bohr radii and, therefore, it can be neglected.

1This inequality is satisfied if |∆j| ≪ |jwire|
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The presence of the small current element ∆j also affects the shape of the trap: the

magnetic energy of an atom with magnetic moment µ, trapped just above the current

element, becomes2:

E′
0 = µ(Boffset + ∆Bx)

E′
0 = E0 + µ∆Bx (5.8)

Combining Eqs. (5.3) and (5.8), the relative shift of the trap minimum is:

∆E

E0
=

∆Bx

Boffset

=
∆jy
z2

µ0

4π
dxdy

1

Boffset

(5.9)

where ∆E = E′
0 −E0. Wildermuth et al. [118] demonstrated an 87Rb-based magneto-

metric setup sensitive to relative inhomogeneities of order ∆E/E0 ∼ 4 × 10−6. Based

on the fact that the sensitivity is increased by reducing the scattering length of the inter-

atomic interaction (see Eq. (5.13), below), they also proposed that using a condensate

of 133Cs and adjusting its atomic scattering length through a Feshbach resonance, the

sensitivity can be improved up to two orders of magnitude. 133Cs is a good candidate

to improve the sensitivity, because there is a resonant change in its scattering length at

a magnetic field of only ∼ 17 G, which can be made compatible with the presence of

the microtrap potential.

Although the working principle for magnetometry is independent of the shape of the

trapping potential, elongated geometries containing needle-shaped condensates have

been preferred by experimental groups. This trapping shape has a double advantage:

first, it allows large area sampling with a single measurement process and second, the

simplicity of the relation between the magnetic field distribution along the trap axis and

the atomic linear density of quasi-1D condensates simplifies the analysis of the data

obtained [69, 110, 116, 117]. In the Thomas-Fermi approximation, the 1D density (η1D)

is related to the intensity of the magnetic field by:

µ1D −mF gFµB |B(x)| = ~ω⊥
√

1 + 4asη1D(x) (5.10)

where ω⊥ is the frequency in the transverse direction and the effective 1D chemical

potential µ1D is fixed by the total number of condensed particles, the scattering length

and the trap shape [119].

The sensitivity of the magnetic BEC microscope can be evaluated using Eq. (5.10).

In the mean field regime where 4asη1D(x) ≫ 1, a small current element produces a

change in the density of:

∆η1D =
mF gFµB∆Bx

2~ω⊥as
(5.11)

If a measurement of the density is performed with resolution ∆x0, then the difference

in the number of atoms detected compared with the unperturbed trap is:

∆N =
mF gFµB∆Bx∆x0

2~ω⊥as
(5.12)

2Here, it is assumed that the projection of the atomic moment is not modified by the small perturbing

magnetic field, ∆B.
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Now examine the above calculation as follows: if ∆N is the minimal atom number

resolved by an imaging system with resolution ∆x0, the smallest variation in the magnetic

field that can be registered is:

∆B =
2~

2as

mmF gFµB

∆N

ℓ20∆x0
(5.13)

where ℓ0 is the size of the condensate along the strong trapping direction [69]. This ex-

pression indicates that the sensitivity can be adjusted to the level of the inhomogeneities

to be probed by manipulating the trapping potential, the atom-atom interaction strength,

or both.

Two regimes of sensitivity can be identified in Eq. (5.13), depending on the spatial

resolution of the magnetic microscope [118]. They are shown in Figure 5.2. In the first

case, if ℓ0 is smaller than the resolution of the imagining system, then the sensitivity

has a strong dependence on the spatial resolution, ∼ 1/∆x3
0. Nowadays, the achievable

optical resolution is typically in the range (0.5 − 10) µm, corresponding to transverse

frequencies of (464.73−7.299) Hz ((303.99−4.775) Hz) for a 87Rb (133Cs) condensate.

Figure 5.2: Figure taken from Wildermuth, et al. [118]. Sensitivity vs. spatial

resolution for BEC-MFM. Dotted line corresponds to the estimated sensitivity of a 133Cs

BEC with a scattering length of 0.1 nm. The shaded region indicates the sensitivity-

resolution range accessible by the setup reported in the same reference, using an 87Rb

condensate. The field sensitivity vs. resolution of modern magnetic microscopes are

shown for comparison.

The second regime corresponds to trapping geometries where the size of the ground

state along the transverse direction is bigger than the optical resolution. For this case,

the spatial resolution in the transverse direction is given by ℓ0 =
√

~/mω⊥, and is set

by the imaging system along the weak trapping axis. The sensitivity can be improved

only by reducing the imaging resolution and scales as ∼ 1/∆x0. This second regime
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corresponds to traps with frequencies of the order or smaller than ∼ 1 Hz, which are

technically challenging and difficult to realize [69].

The magnetic field microscope demonstrated by Wildermuth, et al. has a resolution

of 3 µm and sensitivity of 4 nT [118]. Better sensitivities could be obtained by manip-

ulating the atomic scattering length through the Feshbach resonance mechanism. For

example, the atomic scattering length of 133Cs can be adjusted to ∼ 0.1 nm by control-

ling the offset magnetic field at the mG level [118], which would allow a sensitivity of the

order of ∼ 10 pT, i.e., three orders of magnitude better than attained so far [69, 118].

The magnetic sensor described here can be used to study the internal structure of

materials and the dynamics of electron transport in conducting systems [118]. For ex-

ample, the distribution of electric current through a metallic film has been reconstructed

from measurements of the magnetic field produced [22, 110, 118]. The same idea is

applied in the next two sections to study the current flow through a typical high-mobility

2DEG.

5.2 Detection of quantization of conductance in QPCs

The transport properties of a 2DEG depend on several length scales: the mean free

path, ℓfree, the coherence length, ℓφ, the de Broglie wavelength, λF and the size of the

sample, L. The first two are limited by imperfections in the crystalline structure of the

semiconducting layers and the electron-phonon interaction. At very low temperature,

the electron-phonon interaction is strongly suppressed and the only remaining scattering

mechanism is associated with the lack of periodicity of the system. Additionally, the

carriers move ballistically if the size of the sample is smaller than the mean free path.

Further reduction of the sample’s size, making it comparable to the carriers’ de Broglie

wavelength (or Fermi wavelength), enhances the role of the quantization of modes,

associated with the geometry of the sample, on the electron transport properties.

In a Quantum Point Contact (QPC) electrons move through a channel smaller than

the mean-free path and the coherence length, and whose width is comparable with the

Fermi wavelength. In this section we suggest how the quantized conductance of a QPC

can be studied with the field microscopy techniques described in the previous section.

5.2.1 Quantized conductance of a 2D rectangular conductor

When a difference of potential (V ) is applied between the ends of a conductor, an

electric current (I) flow through it. Ohm’s law relates both quantities in a linear form:

I = GV (5.14)

where G is the system’s conductance.
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The conductance of a 2D rectangular conductor of length L, along the direction of

current flow and with W , is given by:

G =
σW

L
(5.15)

where the conductivity σ is independent of the shape of the conductor [96].

Eq. (5.15) indicates that as the length of the conductor is reduced, the conductance

should increase without limit. In contrast, measurements performed with QPCs defined

in a 2DEG demonstrated that G approaches a finite value when the length of the

conductor becomes shorter than the carrier mean free path (see B. J. van Wess et al.

[120] and D. Wharam et al. [121]). Along with this observation, discrete jumps in the

conductance, of size Gc = 2e2

h , occur as the width (W ) of the QPC is varied.

Both characteristics [95, 96], finite conductance and its quantization, are conse-

quences of the discrete nature of the electronic energy spectrum in a bounded region.

This dominates the transport properties when the system’s dimensions are comparable

with the carrier’s de Broglie wavelength, and smaller than the mean-free path and the

coherence length, as discussed above.

Confining geometries in a 2DEG act like waveguides for electrons, causing quanti-

zation of the propagating modes (see Fig. 5.3(a) and (b)). The simplest case consists

of a rectangular region with hard wall boundary conditions, for which the energy of the

motion in the transverse direction to the conductor’s length is quantized according to:

Eℓ =
h2

2m∗
n2

4W 4
, λℓ =

2W

n
(5.16)

where m∗ the carrier effective mass and n = 1, 2, 3 . . . [96].

Since only modes with energy smaller than the carrier’s Fermi level (EF ) are pop-

ulated, the total number of occupied modes can be modified either by changing EF or

the structure of the energy spectrum, Eq. (5.16), as illustrated in Figure 5.3 (a). In

this simple example, the number of transverse occupied modes, M , in the rectangular

region is approximately:

M ≃ int

[

W

λF/2

]

(5.17)

where λF is the Fermi wavelength.

If the rectangular conductor connects two electron reservoirs with different electro-

chemical potential (∆µ = µL − µR), as illustrated in Figure 5.3(b), and assuming that

the electrons enter and leave the conductor without reflecting from the contacts, the

conductance of the system is given by [96]:

eI

∆µ
= G =

2e2

h
M (5.18)

where M is the number of open modes in the central region [95, 96]. This equation

explains the quantization of conductance observed by B. J. van Wess et al. [120] and

D. Wharam et al. [121], shown in Figure 5.3(d).
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Figure 5.3: (a) Sketch showing how the abrupt change of the occupied modes in

a QPC occurs. The number of modes below the Fermi level (dashed line) change

abruptly by modifying the potential energy. (b) Conductor sandwiched between two

contacts with an applied bias voltage equal to µL−µR. The harmonic potential shown

in panel (a) describe the electron confining in the transverse direction of the conductor.

(c) Schematic diagram showing a QPC formed by depleting a 2DEG. (d) Conductance

versus gate voltage (which controls W ) in a 2DEG at different temperatures. Quantized

jumps of the conductance are due to changes in the occupancy of the energy levels

(from [120].)

A Quantum Point contact (QPC) is an approximated experimental realization of

the system described above. It consists of a thin constriction connecting two wide

electrically-conducting regions in a 2DEG and whose width is comparable to the elec-

tron wavelength. Such a constriction can be produced by applying a negative voltage

to an appropriate shaped layer of metallic material deposited on top of the cap layer of

a heterojunction, as schematically shown in see Figure 5.3 (c) [96]. This setup is par-

ticularly convenient because the constriction width can be controlled via the intensity

of the negative voltage, allowing control over the number of open modes (for electron

transport) between the side regions.

In a 2DEG like that considered here (see Table 2.2), the quantization of the conduc-

tance would be observable when the electrons are forced to pass through a constriction

a few tens of nm wide [96, 100, 122]. The current flow in the QPC depends on the

voltage applied between the regions connected. To estimate this quantity, consider a

QPC with ∼ 5 open channels, and an applied voltage of 0.5 mV across the constriction;
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this would produce a current of the order ∆jx ∼ 2.6 A/m. Table 5.1 indicates a set of

parameters of a QPC modelled as a rectangular region in the 2DEG we are using as a

model.

QPC parameters

Width ∼ 20 nm

Length ∼ 0.1 − 0.5 µm

Fermi wavelength ∼ 40 nm

Open modes ∼ 50 per µm

Table 5.1: Properties of a typical QPC modelled as a small rectangular conducting

region.

Electron flow through QPCs has been studied in the quantum conductance [122]

and Quantum Hall regimes [123] confirming the mode occupation interpretation briefly

reviewed here.

5.2.2 Detection of quantization of conductance with a BEC-MFM

The magnetic field generated by electron flow through a thin constriction in a 2DEG

(noted as BQPC) can produce a localized modulation of the density in a neighbouring

BEC. We now establish the conditions needed to make such a modulation observable by

a magnetic BEC microscope.

Suppose a magnetic trap holds a BEC near a current carrying QPC. The effect of

BQPC on the microtrap is maximized by an appropriate orientation of the trapping setup

with respect to the current flow to be probed. As shown in Section 5.1 (specifically

Eq. (5.8)), the trapping potential is mainly affected by the component of the perturbing

magnetic field parallel to the trap axis3 as shown in Figure 5.1(c), produced by a current

orthogonal to this axis.

A relative orthogonal orientation between the trapping wire and the current flow

in the semiconductor structure results in an offset magnetic field, Boffset, parallel (anti-

parallel) to BQPC. In this configuration, the trapping potential develops a small barrier

(dimple) (see Figure 5.1(c)) whose height (depth) is proportional to the current in the

semiconductor structure IQPC. As a consequence of this perturbation on the trapping po-

tential, the condensate becomes less (more) dense at the position of the barrier (dimple).

3The effect on the position of the trap can be neglected. Using a set of typical values for the trapping

setup and the QPC condition, Eq. (5.7) produces:

∆z0

z0

∼ 1 × 10−5

Assuming a working distance for the BEC-MFM of z0 ∼ 10−6 m, the displacement of the trapping

position becomes smaller than the atomic radius (∆z0 ∼ 0.1 Å).
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Figure 5.4: Schematic of a magnetic BEC microscope set to detect quantized changes

in the conductance of a QPC. The trapping potential is generated by a current carrying

Z-shaped wire (bent arms not shown ) with external bias and offset fields. The trap

axis (along the x-direction) is oriented orthogonal to the current flow in the QPC (along

the y-direction, on average) so that the magnetic field generated by the QPC current

has a large effect on the condensate. Continuous lines In the lower layer represent the

electron flow through the constriction and the shadows correspond to regions in the

2DEG depleted by the voltage applied to the gates.

This is schematically shown in Figure 5.4

Consider the QPC as a rectangular region with the dimensions and properties indi-

cated in Table 5.1. Figure 5.5 shows the intensity of the magnetic field produced by

IQPC = 0.038 µA as function of the perpendicular distance from the QPC’s centre, which

is given by Eq. (3.17).

In order to establish the conditions needed to detect the small magnetic field BQPC

and its quantized jumps, three aspects should be considered: the range of operation

of a typical magnetic BEC sensor, the intensity of the magnetic field produced and the

trapping and resolution characteristics.

Regarding the range of atom-surface distances offered by a magnetic BEC micro-

scope, notice that due to the presence of an atom-surface attractive potential (Casimir-

Polder potential), BEC-MFM can only operate at a distance between the tested source

and the condensate larger than 1 µm [118]. A typical BEC-MFM setup can be set to

work in the range of distances 1 − 5 µm from the surface [22].

The sensitivity required for a magnetic field sensor to detect quantized conductance

is set by the intensity of the magnetic field, BQPC, whose value depends on the distance

to the source. For a QPC with the properties considered above, and with a voltage of
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Figure 5.5: Magnetic field due to current through a rectangular sample of 2DEG

with a single occupied mode (W = 21.82 nm) and lengths 300 nm (dashed curve)

and 10 µm (solid curve), as a function of the perpendicular distance, z0. Upper and

lower horizontal lines correspond to the detection sensitivity levels of 87Rb and 133Cs

condensates, respectively [69, 118].

0.5 mV applied, the magnetic field produced would have an intensity of the order of

BQPC ∼ 0.129 nT at a distance of 3µm.

Finally, assume that the BEC is prepared in a trap with transverse frequency ∼
300Hz and imaged with a spatial resolution of ∆x0 = 1 µm and atom sensitivity of

∆N ∼ 5 atoms. It follows from Eq. (5.13) that detecting jumps of conductance, via

the corresponding magnetic field change BQPC ∼ 0.129 nT, can be done if the condensate

comprises an atomic species with a scattering length of as ∼ 0.5 nm= 10a0.

Trapping setup

Shape Z

Width (W) 100 µm

Length (L) 1000 µm

Current 213.8 mA

Bias Field 12.9 G

Offset Field 30 G

Position(z0) 3 µm

Frequencies (4.32, 267.1, 272.4) Hz

Table 5.2: Parameters of the magnetic trap suitable to measure the quantization of

conductance in a QPC.
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Natural scattering lengths for alkali atoms are usually larger than 15a0 ∼ 1 nm [40].

Smaller scattering lengths can, however, be achieved by using the Feshbach resonance

mechanism. Cesium is a good candidate to be used as a field sensor since its scattering

length becomes zero at a low magnetic field of 17 G [69, 118]. Near this zero crossing,

the scattering length scales linearly with a slope ∼ 6 nm/G, requiring mG control to

obtain a scattering length in the desired range as ∼ 0.1 nm .
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Figure 5.6: Density profiles for 10000 133Cs atoms with (a) as = 0.1 nm (b) as = 0.05

nm. The centre of the trapping potential is positioned at 3 µm from a rectangular

conductor of dimensions 0.3 nm ×MλF/2, with M = 0, 1, 2, 3 and 40 being the number

of open modes, carrying a current of ∼M×0.038 µA. The trapping potential is built by

superposing the magnetic field produced by the QPC (Figure 5.5) and the trap created

by the setup in Table 5.2. The depth of the central dimple increases with the number

of open modes.
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Further reduction of the scattering length results in a more sensitive magnetometer.

Figure 5.6 shows the calculated ground state of a 10000 133Cs atom BEC trapped at

z0 = 3.0 µm from a thin and short rectangular conductor (simulating the QPC), carrying

a small current IQPC ∼ 0.038 µA/mode. The exact distribution of magnetic field was

calculated for a trap comprising the traditional Z-shaped current carrying wire plus bias

and offset magnetic fields using the parameters shown in Table 5.2 In the absence of

current through the QPC, the potential energy near the bottom of the trap can be

approximated by a harmonic potential of frequencies (4.32, 267.1, 272.4) Hz along each

of the three spatial directions. As can be seen, each time a new transverse mode in the

conducting region is occupied, a variation in the density of the condensate on the level

of ∼ 10% is produced. Relative changes of this size are easily observable by present

imaging systems used in BEC-MFM [80].

5.3 Detection of long-range order in the donor distri-

bution of heterostructures

Doped heterojunctions with a conducting layer embedded have great technological value.

Their transport properties depend on the composition of the sample, which can be

precisely controlled under modern fabrication conditions and can be manipulated through

externally applied electric and magnetic fields.

At low temperatures, the electrical behaviour of a 2DEG is determined mainly by the

charge distribution inside the heterojunction [100], which is difficult to measure due to

the impossibility of having direct access to either the free carriers or the donors. One way

to probe the distribution, however, is to perturb locally the carrier density by coupling

capacitively the tip of a scanning probe microscope (SPM) to the sample [112]. Then,

measurements of the conductance provide information about the charge density directly

below the tip [112]. With this technique, the electron density and its flow in a 2DEG

have been observed with resolution better than 10 × 10 nm2, in samples of lateral size

up to a few hundred of µm [112, 123]. A high resolution image of a large sample area

can be produced by performing many measurement procedures placing the sensing tip

at different positions above the sample.

This section shows that the BEC-MFM, described in Section 5.1, provides a good

alternative to determine features of the donor distribution involving micrometre length

scales, with a single measurement shot. This result is based on numerical evaluation

of the magnetic field produced by electron flow in a high mobility 2DEG and of the

resulting density profile of a BEC held by a trap near the 2DEG.
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5.3.1 Inhomogeneous magnetic field produced by a current in a

2DEG

At low temperatures, when the electron-phonon interaction is suppressed, electrons in

the 2DEG are deflected, usually at small angles, by their interaction with ionized donors.

The Coulomb interaction between ionized donors and free charges in a 2DEG is screened

by the electron-electron Coulomb interaction. In the linear screening regime, where the

effect of the ionized-donors on the 2DEG is weak, the screened potential is given by Eq.

(2.2) [102].

Although neutral donors in a heterojunction deposit randomly during the fabrication

process, the distribution of ionized donors acquires a nanometre-scale correlation length

when they donate the electrons to form the 2DEG, that depends, among other factors,

on the temperature and illumination conditions under which that process occur. The

screened potential, Eq. (2.2), would only reflect properties of the donor distribution if

the distance between the donor and 2DEG layers is smaller than this correlation length.

Deflection of the carriers’ paths is determined by the gradient of Φscreened in Eq.

(2.2), and imprints information about the correlation of the donor distribution in the

magnetic field produced. Signatures of the correlation of the donor distribution on the

magnetic field would survive up to distances smaller than its correlation length, due to

the suppression of features with length scale λ according to ∼ exp(−2πz/λ) in Eq.

(2.2).

The magnetic BEC microscope, described previously in this chapter, can detect

magnetic fields at distances larger than 1 µm from its sources, which is much larger

than the correlation length of the donor distribution in a heterojunction, typically a few

hundred nanometres [124]. As a consequence, considering an uncorrelated distribution

of ionized donors is enough to evaluate the effects of interest here.

Consider the non-uniform contribution to the current flow, ∆j(r), i.e. originating

from fluctuations in the donor distribution. The current flow generated by a voltage

applied in the plane of the 2DEG has a non-uniform component, ∆j(r), originating

from the inhomogeneity of the donor distribution. This component is given by the

gradient of the screened donor potential Eq. (2.2):

∆j(r) = −σ∇Φscreened(r) (5.19)

where σ is the conductivity of the 2DEG.

In a typical heterojunction, the electron-donor potential has features with a length

scale of ∼ 100 nm, which is comparable to the distance between the 2DEG and the

donors. The amplitude of those features is . 10% of the Fermi energy, typically ∆Φ ∼
1.0 meV. Consequently, from Eq. (5.19), the intensity of inhomogeneities of the current

are |∆j| = 1 A/m for a sample with σ = 2.58 × 10−4 Ω−1.
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Figure 5.7: (a) Screened electron-donor potential within a typical 2DEG (parameters

given in Table No. 2.2) and current flow lines (black). (b)-(d) Component of the

magnetic field along the y-direction (parallel to the mean current direction) (in nT)

calculated from Eq. (5.19) at (b) 1 µm, (c) 3 µm and (d) 5 µm above a 2DEG

sample. For this calculation, the 2DEG is assumed to have a conductivity of σ =

2.58 × 10−4 Ω−1.

The magnetic field produced by this current has inhomogeneities whose intensity and

length scale depend on the distance to the 2DEG. Figure 5.7 shows the component of

this inhomogeneous magnetic field along the x−axis, i.e. in the plane of the 2DEG and

parallel to the electric field (x) corresponding to the applied voltage (see Appendix A for

details about how this calculation was done). As explained in Section 5.2, the density of

a neighbouring BEC trapped by a Z-trap configuration oriented along the x−axis would

be modulated by the x component of the inhomogeneous magnetic field (the one which

is parallel or anti-parallel to Boffset).

As the distance to the 2DEG increases, the amplitude of the magnetic field inho-

mogeneities decay and their profile becomes smoothed. Similar behaviour has been
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observed in several experiments where the magnetic field produced by current-carrying

metallic films is mapped from the density modulations of a BEC held next to it [22,

110, 116, 117, 118]. To analyse those experiments, calculation of the magnetic field

produced by current confined in a plane were performed (see Section 5.3.3). These cal-

culations successfully explain the general trend of the magnetic field intensity and have

revealed interesting long-range structure in the pattern of current flow in metals. We

now consider how a BEC-MFM would respond to the magnetic field above and current

distribution within a 2DEG.

The magnetic field has features with a typical length scale comparable to the distance

from the BEC to the 2DEG. This is because fluctuations with a length scale λ in the

plane of the 2DEG decrease exponentially such that very fast fluctuations do not reach

the BEC. Next section show that the amplitude of the inhomogeneities of the magnetic

field produced by a current flow through the 2DEG considered here are large enough to

be detected by an appropriate BEC-MFM setup.

5.3.2 Density modulations of a BEC trapped next to a current

carrying 2DEG

To prove the feasibility of measuring the inhomogeneous magnetic field produced by

a current-carrying 2DEG, consider a typical BEC magnetic microscope setup holding

a condensate next to the 2DEG. Figure 5.7 suggests that the microscope will require

a sensitivity of ∼ 1 nT. Assuming that a 87Rb condensate is imaged with an isotropic

resolution of 1 µm, such sensitivity can be easily reached with an atom number resolution

of ∆N ∼ 12.

Three factors impose a micrometre scale limit for the resolution: the minimum

distance at which a BEC can be held from a surface, the exponential decay of the

magnetic field produced by a planar current (see Section 5.3.3), and the resolution

of optical imaging, which falls in the range of (0.5 − 10) µm. Figure 5.8 shows a

schematic diagram of a setup intended to measure the inhomogeneities of the magnetic

field produced by a current-carrying 2DEG [118].

Suppose the condensate is trapped by a Z-wire setup (see Section 3.11) where the

current and external magnetic fields are adjusted to locate the trap at different heights

from the 2DEG, in which a small inhomogeneous current j2DEG flows. Table 5.3 specifies

precise combinations of parameters needed to create a trap 5 µm, 3 µm and 1 µm above

the heterostructure, using a trap configuration as shown in Figure 3.11, with a central

wire of dimensions L ×W = 1.5 mm × 100 µm. If the condensate is positioned far

from the edges of the trapping wires, but close to the 2DEG, the modulation of the

condensate density would be determined only by inhomogeneities in the 2DEG, and be

proportional to j2DEG, with imperfections of the wire edges having a negligible effect [22].
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Figure 5.8: The inhomogeneous magnetic field produced by a current-carrying 2DEG

modulates the density of a BEC held nearby in a microtrap. Controlling the external

magnetic fields allows precise positioning of the condensate and adjustment of its

sensitivity.

Trapping setup

z0(µm) Boffset (G) BBias (G) Current (mA) (wx, wy, wz)/2π (Hz)

1 20 12.98 209.54 (2.46, 499.54, 500.00)

3 20 12.70 210.22 (3.00, 499.54, 500.00)

5 20 12.45 211.56 (3.47, 499.54, 500.00)

Table 5.3: Parameters of the magnetic trap used to measure the inhomogeneous mag-

netic field produced by a current-carrying 2DEG.

To quantify how the presence of a current in the 2DEG affects the density of the

condensate, we evaluate the density profile of a condensate comprising 104 87Rb atoms.

We did this by calculating the ground state of the atomic system using an imaginary-time

evolution of the Gross-Pitaevskii equation (1.27) (see Appendix A).

The magnetic field distribution that determines the potential energy, Eq. (1.31), is

given by the trapping setup together with the magnetic field produced by the current

distribution j2DEG, Eq. (5.19). The first contribution, the harmonic potential trapping,

can be evaluated (in an approximate way) by splitting the Z-wire into three rectangular

sections and applying Eq. (3.17) to each one of them.

The contribution coming from the current in the 2DEG is evaluated for a sample

of dimensions ∼ 3 mm × 3 mm. The current distribution, j2DEG, is determined by a
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combination of Eqs. (2.2) and (5.19), whilst the magnetic field produced is calculated

by numerical integration of the Biot-Savart law over the full sample area.

Computationally, the last mentioned task is the most difficult to perform. This is

because the magnetic field should be evaluated in a 3D volume, with a spatial resolution

high enough to allow a precise integration of the Gross-Pitaevskii equation. This numer-

ical work produces the density distribution of the condensate in the combined magnetic

field, which, when integrated along the transverse plane (y − z) direction, gives the

density profile along the trap axis (η(x)). This result is shown in Figure 5.9 for different

distances between the 2DEG and the BEC. In this figure, we also present the change of

the atom density relative to the unperturbed ground state ((η − η0)/η0 × 100), in the

central region of the BEC (see insets and zoom).

The lowest density modulation so far detected using a BEC-MFM is around 5% [22,

110]. This suggests that, from the results presented in Figure 5.9, the inhomogeneous

magnetic field produced by the current in the 2DEG is strong enough to be detected by

a condensate held at a distance between 1 µm and 3 µm from the 2DEG. When this

distance is 5 µm, the modulation of the density falls just below the present detection

limit.

We find clear correspondence between the magnetic field and atom density modu-

lations are evident at distances z0 = 5 µm and z0 = 3 µm, where the positions where

∆Bx = 0 points (Figs. 5.7 (a),(b)) along the trap axis coincide with those where

∆η = 0 (Figs. 5.9 (a), (b)), but when the cloud extension in the transverse direction is

comparable with the length scale of the inhomogeneities, as occurs at z0 = 1 µm, this

correspondence is weaker (compare upper panel in Fig. 5.9(c) and 5.7(c)).
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Figure 5.9: Calculated density profiles of a 87Rb BEC containing 104 atoms (red line), held at different distances from a current-carrying 2DEG.

Detailed parameters of the trapping potential are shown in Table 5.2. The position of the trap corresponds to (a) 5 µm, (b) 3 µm and (c) 1 µm.

The local relative density modulation is shown for the central region in each case (upper panels). Blue lines (green lines) in lower (upper) panels

corresponds to the ground state in absence of trap corrugation.
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5.3.3 Relation between the donor statistics and the inhomogeneous

magnetic field above a 2DEG

Now, we turn our attention to the relation between the magnetic field inhomogeneities

and the underlying donor distribution. Combining Eq. (2.2) and the fact that the

magnetic field produced by a current distribution confined in a two dimensional region

can be obtained from its 2D Fourier transform [125] (see Appendix B), then Bx(x; z0)

along the trap axis is given by:

Bx(x, z0) =
µ0σe

4ǫǫ0

∫

d2k
ky ηd(k)

k + ks
e−k(d+z0)e−ikxx (5.20)

where k = (kx, ky), ηd is defined in Section 2.3 and d is the donor-2DEG distance.

Eq. (5.20) reveals two key results. First, the intensity of the magnetic field is propor-

tional to the conductance of the 2DEG and depends critically on the donor distribution,

whose Fourier transform is ηd(k). Second, the magnetic field is sensitive to fluctuations

in the donor distribution with length scales larger than the distance between the source

of the fluctuation, i.e. the donor layer, and the trap position (h + z0) (see the real

exponential factor in Eq. (5.20)).

The above statements imply that information about the statistical distribution of

the donors can be obtained from measurements of the magnetic field produced by a

current through the heterostructure. To illustrate this point, we consider the mean-

square average of Bx along the trap axis,
〈

B2
x

〉

, and the power spectral density, Dkx
(z0),

of Bx versus position along the trap axis, x, at height z0. It follows from Eq. (5.20)

that (see Appendix B):

〈

B2
x

〉

=

(

µ0σe

4ǫǫ0

)2 ∫

d2k
k2

ye
−2k(d+z0)

(k + ks)2
S(k), and (5.21)

Dkx
(z0) =

(

µ0eσ

4ǫǫ0

)2 1

〈B2
x〉

∫

dky

k2
ye

−2k(d+z0)

(k + ks)2
S(k) (5.22)

respectively, where 〈〉 indicates averaging along the trap axis and S(k) corresponds to

the spectral power of the donor density, defined by [1]:

〈

ηd(k)ηd(k
′)
〉

= S(k)δ(k + k′) (5.23)

The way that
〈

B2
x

〉

decays with the distance to the magnetic field source is directly

related to the statistical properties of the current distribution that produces the inhomo-

geneous magnetic field (see [30, 80] and references therein). Fig. 5.10(a) shows
〈

B2
x

〉

given by Eq. (5.21) (red line) corresponding to an uncorrelated random distribution of

donors with S(k) ∼
〈

η̄2
d

〉

. In this case, we have verified numerically that the decay of
〈

B2
x

〉

is given by a power law which fits to ∼ 1/z4 (cyan line in Figure 5.10(a)).

This scaling law is different from that predicted for the roughness associated with

imperfection of the wires’ edges or surface [80], which gives to
〈

B2
x

〉

∼ 1/z5 (green
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line in Fig. 5.10(a)). The difference originates from the statistical properties of the

systems. In the case of the 2DEG considered here, the sources of inhomogeneity of the

magnetic field are distributed randomly and without correlation, while the irregularities

of the wires’ edges have a Gaussian distribution with a characteristic length scale of a

few ∼ 100 µm [30].

To illustrate the dependence of
〈

B2
x

〉

on the nature of the donor distribution, we use

Eq. (5.21) to calculate
〈

B2
x

〉

for two correlation relations:

exponential, which:
〈

ηd(r)ηd(r
′)
〉

= η̄2
de

−|r−r′|/λc → S(k) ∼ λ2
c/(k

2 + λ−2
c )3/2,

periodic modulation, which: ηd(r) ∼ η̄d + ∆ηd sin(2πx/λp) → S(k) ∼ δ(kx − 2π/λp)

The length scales for correlation are λc and λp for the exponential and periodic cases,

respectively. Plots of
〈

B2
x

〉

versus z0 are shown in Figures 5.11(a) and 5.11(b). The

exponentially correlated donor distribution produces a slow decay (blue and green lines

in Fig. 2.5(a), corresponding to λc = 49 µm and 12 µm, respectively) with a rate

depending on the correlation length λc. The harmonically correlated distribution presents

a nearly exponential decay (blue line in Fig. 5.11(b)). In Figs. 5.10(a) and 5.11, scaling

laws ∼ z−4 and ∼ z−5 are shown for comparison (red and cyan lines).
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Figure 5.10: (a). Normalised mean-square average of the magnetic field as a function

of the height above the 2DEG, for a random uncorrelated distribution of donors (red

line). The cyan line corresponds to the ∼ z−5 scaling. (b) Spectral power density of

the magnetic field roughness at different distances from the 2DEG corresponding to four

wavelengths, from bottom to top, λc = 1, 3, 9 and 25 µm. For this case, the random

donor distribution is uncorrelated.

The spectral power density of the inhomogeneous magnetic field (Dkx
(z)) also pro-

vides information about the donor distribution. Fig. 5.10(b) shows Dkx
(z) for an

uncorrelated donor distribution and for different kx = 2π/λx values, where, from bot-

tom to top, λx = 1, 3, 9 and 25 µm. Similar to previous observations above metallic

samples [117], at distances larger than the corresponding wavelength, λx ∼ 2π/kx, the

spectral power density decays in an algebraic way, at a rate independent of kx (dashed

line). Also, an abrupt change in the decay rate occurs at distances comparable with
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Figure 5.11: (a) Normalised mean-square average of the magnetic field as function of

the heigh above the 2DEG, for exponentially correlated donor distribution, with correla-

tion length of λc = 12.0 µm (green line) and λc = 49.0 µm (blue line). For comparison,

the uncorrelated case and the z−5 scaling laws are shown (red and cyan lines, respec-

tively). Notice the axis are in log-log scale. (b) The blue line represents the normalised

mean-square average of the magnetic field as function of the heigh above the 2DEG, for

a harmonically modulated donor distribution, with period of λp = 10.0 µm. As in panel

(a), the uncorrelated case and the z−5 scaling laws are shown for comparison (see text).

Notice the axis are in linear-log scale.

2π/kx (arrows in Fig. 5.10(b)). The position of this kink and its variation with kx

provide additional information to characterize the donor distribution.

External fields, change of the temperature or illumination of the sample are other

mechanisms that produce changes in the distribution of ionized donors [100]. Our

calculations indicate that such changes can be determined by detecting and analysing

the magnetic field produced by a current in the 2DEG. As an specific example, consider

that the sample is illuminated by an optical diffraction pattern, which produces periodic

modulation of the ionized donor distribution with a period of a few micrometre. As

shown in Figure 5.11(b), in comparison with the uncorrelated case, a change in both

the intensity and the decay rate of the inhomogeneous magnetic field would be observed

(see Appendix B).

The shortest working atom-surface distance and the optical resolution are both ∼
1 µm, with sub-micrometre features being inaccessible to present experiments. This

implies that, since donors in a heterostructure are randomly distributed with typical

correlation lengths of a few hundreds of nanometres (∼ 100 nm) [126], only global

characteristics of the distribution would be accessible by state-of-the-art BEC based

microscopy techniques. This technical limitation is expected to be overcome as the field

of BEC-MFM develops and its operation can be extended to sub-micrometre distances.

The following procedure could be used to determine the statistical properties of the

donor distribution, using the results shown in this section: First, measure the magnetic
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field distribution in the x − y plane at different distances from the 2DEG. Second,

evaluate the mean square fluctuations, power spectral density, and other moments of

the magnetic field distribution, as a function of the distance to the 2DEG. Finally, by

inverting equations like (5.22), the properties of the distribution can be determined.

As a final remark, notice that BEC-MFM could enable functional imaging of 2DEG

systems by imaging, for example, the response of the 2DEG under a thermal cycle,

illumination or back-gate voltages. In addition, the procedure suggested here has the

advantage of causing a negligible perturbation on the semiconductor, while the mea-

surement is done. This is in contrast to the Scanning Probe Microscope method widely

used [112], where local modifications of the 2DEG properties are key to obtaining an

image of the electron density of the 2DEG.

5.4 Summary and Discussion

This Chapter shows how BEC magnetic microscopy can be used to study features of

heterojunctions containing a 2D conducting layer. In the situations presented, the QPC

and the infinite 2DEG sample, a nearby BEC close to those devices, exhibits density

modulations that depend on the characteristics of the current flow in the 2DEG. All

of the simulations presented were performed using experimentally accessible parameters

and therefore demonstrate the feasibility of the systems and experiments proposed.

The magnetic field produced by a current-carrying 2DEG depends on the electric

transport properties and/or the statistical distribution of ionized donors within the het-

erojunction. In the case of a QPC, the magnetic field is weak and quantized in units

determined by the underlying quantized conductance and the applied voltage.

For a current-carrying 2DEG, the characteristics of the distribution of ionized donors

is imprinted in the mean-square amplitude of the magnetic field inhomogeneities,
〈

B2
x

〉

,

in particular the rate at which these fluctuations decay with distance from the 2DEG.

The spectrum of the magnetic field’s spatial fluctuations can also be related to the

properties of the ionized donor distribution through Eq. (5.22).

Within the resolution of the microscopy technique, measurements of the magnetic

field can be used to probe the current flow in the 2DEG and the distribution of ionized

donors in the heterojunction. Such studies can be performed under different conditions

of illumination, temperature and external magnetic fields, thus revealing how the 2DEG

responds to changes in these parameters.

Instead of thinking of the condensate as a probe of the 2DEG, the magnetic field

produced by semiconducting devices may also control or modify the dynamics of the

condensate. For example, the random nature of the distribution of ionized donors can

be used to produce random atomic potentials whose features can be controlled by tem-
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perature or illumination of the sample.

As a final proposal, the magnetic field generated by arrays of QPCs and other quan-

tum structures defined in the 2DEG may also be used to control the behaviour of the

BEC. For example, Figure 5.5 shows that the cloud can be split by controlling the num-

ber of open modes in the QPC. The density of the condensate could also be modulated

as by setting up an array of QPCs near the BEC, which would mimic the action of an

optical lattice, but enable the width and depth of individual walls to be controlled. The

possibility to reach nanometre control over condensates is another feature that could

be implemented by using semiconductor devices in atom-chip configurations. Finally,

applications could also exploit the ballistic nature of the electron motion in the 2DEG,

which would help to reduce fabrication-related imperfections.



CHAPTER 6

Bose-Einstein condensates in 1D geometries

Creating semiconductor-cold-atoms hybrid systems, where electrons in the semiconduc-

tor and atoms in the BEC are sensibly coupled each other, requires a full understanding

of the properties of both systems. Bearing in mind that typically micro-traps are pro-

duced with an elongated geometry, this Chapter presents a calculation of the phase

correlation of BEC in elongated geometries.

The physics in low-dimensional systems can be fundamentally different from those

presented by usual three-dimensional cases. In particular, in Bose gases, the coherence

properties and characteristics of thermodynamic phase transitions are affected by the

dimensionality of the system. An example of this is the well known Mermin-Wagner-

Hohenber theorem [127, 128], which establishes the impossibility of off-diagonal long-

range coherence (defined below) in homogeneous one-dimensional (1D) Bose gases at

all temperatures and in two-dimensional (2D) Bose gases at any non-zero temperature

[129]. The impossibility of long-range coherence is due to the enhancement of the phase

fluctuations in the system, induced, in turn, by changes in the density of states and

spectrum originating from the geometrical constrictions imposed on the gas.

Low-dimensional degenerate Bose gases can be experimentally realized by lowering

the mean-field interaction energy in a 3D condensate below the energy splitting of

the quantised levels along one or two spatial directions [129]. Such a situation can

be produced by modulating a 3D condensate with one-dimensional or two-dimensional

optical lattices and applying selective evaporative cooling to deplete particular wells

[130, 131, 132]. In general, quasi-2D and quasi-1D degenerate gases are produced

inside very asymmetric traps, where the motion along one or two spatial directions,

respectively, requires an energy larger than the accessible thermal energy.

90
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Microtrapping setups, like those described in Chapters 3 and 4, produce harmonic

traps with approximate axial symmetry and a large aspect ratio between the frequencies

along the axial and the transverse directions (see Table 4.3). For this reason, in order

to develop hybrid solid-state - BEC systems, where the dynamics of the atoms and solid

are mutually dependent, it is essential to know in detail the properties of such quasi-1D

degenerate gases. An example of the relevance of such studies is the evidence that the

lack of complete phase coherence along elongated clouds can be exploited to improve

the sensitivity of interferometric setups [133, 134].

The phase coherence properties of low-dimensional degenerate gases continues to

attract great interest both experimentally [20, 135, 136] and theoretically [129, 137,

138, 139, 140, 141]. This chapter presents a numerical study of the phase correlation

function in quasi-1D Bose-Einstein condensates, focusing on a qualitative description of

the results for different regimes. General definitions of the correlation function and its

properties in Bose gases are presented in Section 6.1. Section 6.2 presents the derivation

of the effective 1D non-linear equation proposed by A. Muñoz-Mateo and V. Delgado

[142], which can be used to describe condensed (or quasi-condensed) Bose gases in

different regimes of transverse confinement [142, 143].

The central result of this chapter is presented in Section 6.3. This is the use of the

Muñoz-Delgado effective 1D equation to obtain the low-energy excitation modes of the

Bose gas, and evaluate the phase correlation function in different regimes of confinement,

as defined by Menotti et. al [143]. Our results are compared with analytic expressions by

Petrov, et al [138, 139], corresponding to two extreme regimes of confinement. Finally,

Section 6.4 summarizes the findings of this chapter.

6.1 Low-dimensional Bose gases

Consider a particle of mass m trapped in a 3D harmonic potential, where the frequency

along one or two spatial directions is much larger than along the remaining direction.

The motion along the directions of strong confinement is almost completely constrained

if the total energy of the particle is smaller than the splitting of the energy levels along

those directions in the trap. In a gas at temperature T , the thermal motion has an

average energy of kBT , and therefore such constriction is achieved if ~ωi ≫ kBT .

Surprisingly, this condition is independent of the strength of the inter-atomic interactions

if the potential is harmonic [40] .

Features of thermodynamic phase transitions depend on system dimensionality [1].

For a Bose gas, this is due to the dependence of the density of states with the spatial

dimension occupied by it. To illustrate this point explicitly, consider a uniform gas of

density η2D with non-interacting particles of mass m moving in a 2D plane of area A.
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(a) (b)

Figure 6.1: Schematic diagram illustrating how the motion along one spatial direction

can be constrained by increasing the strength of the potential along it. The dashed

line indicates the Fermi level or chemical potential and solid lines indicate the energy

levels of the trap. When the level splitting is small ((a)), transitions between these

levels are easier to perform than when the splitting is large ((b)).

The density of states in this case is given by [96]:

g2D(E)dE =
1

2

Am

π~2
dE (6.1)

Substituting this result into the equation of state Eq. (1.4), the condition relating the

chemical potential and the total number of particles, equivalent to Eq. (1.6) for the 3D

gas, becomes:

η2Dλ
2 = − ln(1 − exp(µ/kBT )) (6.2)

For any temperature and density, Eq. (6.7) can be satisfied if the chemical potential is

given by:

µ = kT ln(1 − exp(−T/T2D)) (6.3)

where

T2D =
2π~

2η2D

mk
(6.4)

is the so called temperature of degeneracy. Notice that, in contrast to the 3D case (Eqs.

(1.6)-(1.9)), the chemical potential µ(T ) is analytic for all T 6= 0, with a monotonic

increase with decreasing temperature [144].

Note that there is no need to separate out the particles occupying the zero mo-

mentum state, as done for the 3D case in Chapter 1. The occupation number of this

state becomes of the order of the total number of particles, N , if the temperature sat-

isfies T < T2D/ logN , which goes to zero in the thermodynamic limit (N → ∞, A →
∞, N/A = η2D). This implies that at any non-zero temperature, Bose-Einstein conden-

sation of a uniform 2D system cannot occur in the limit of a large system.

A similar situation occurs for the non-interacting boson gas confined to a one-

dimensional box of length L. In this case, the density of states is [96]:

g1D(E)dE =
Lm1/2

π~21/2E1/2
dE (6.5)
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and the degeneracy parameter is η1DλT = (T/T1D)1/2, with

T1D =
~

2

mkB
η2

1D. (6.6)

The corresponding relation between the total number of particles and the chemical

potential in the quantum degeneracy regime is:

µ = − πkBT

(η1DλT )2
(6.7)

The chemical potential, µ, is a continuous function of the density and the temperature

of the system, demonstrating the absence of a thermodynamic transition in the uniform

1D ideal Bose gas [40]. Similar to the 2D case, the zero momentum state becomes

macroscopically occupied if the temperature satisfies T ≪ T1D/N , which goes to zero

in the thermodynamic limit.

These two examples illustrate how the dimensionality of a Bose gas affects its be-

haviour at low temperature. In particular, the presence of a Bose-Einstein condensed

phase, in terms of a macroscopic occupation of a single-particle state, is ruled out for

the uniform 2D and 1D gases. This simple picture is modified by the presence of inter-

actions between particles and a confining potential. This can be explained more clearly

by considering the BEC in terms of the one-particle reduced density matrix introduced

in Chapter 1.

6.1.1 Phase correlations in low-dimensional Bose gases

The Bose-Einstein condensate transition is characterized by the appearance of a coher-

ent state, occupied by a macroscopic fraction of the particles in the system. These

concepts, coherence and macroscopic occupation, can be defined in terms of the non-

diagonal elements of the density matrix and its eigenvalues/eigenfunctions, respectively

(see Section 1.1.1), which allows an unambiguous identification of the single-particle

state occupied by particles in an interacting system.

The condition of long-range coherence, characteristic of the condensed phase, implies

that the non-diagonal elements of the density matrix are different from zero. The one

body density matrix can be calculated in the long range limit using the macroscopic

representation of the field operator (Ψ̂(r, t) in Eq. (1.18)) in terms of its modulus and

phase [2], which, in the time-independent case, is:

Ψ̂(r) =
√

η0(r)eiŜ(r), (6.8)

where η0(r) is the condensate density and Ŝ is the phase operator of the field. With

this, the one-particle density matrix, Eq. (1.14), becomes:

ρ(1)(r, r
′) =

√

φ0(r)φ∗0(r
′)〈ei(Ŝ(r)−Ŝ(r′))〉 (6.9)
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Off-diagonal long-range coherence occurs when:

lim
|r−r′ |→L

ρ(1)(r, r
′) 6= 0

where L is the linear dimension of the system. In this limit, the density matrix is

dominated by the exponential factor, which, assuming a Gaussian probability distribution

for the occurrence of phase fluctuations, becomes [2]:
〈

e[Ŝ(r)−Ŝ(r′)]
〉

= e〈[Ŝ(r)−Ŝ(r′)]2/2〉. (6.10)

The argument of the exponential factor can be expressed in terms of the phase

fluctuation and correlation functions as follows:

1

2
〈[Ŝ(r) − Ŝ(r′)]2〉 =

1

2
〈Ŝ(r)2〉 +

1

2
〈Ŝ(r′)2〉 − 〈Ŝ(r)Ŝ(r′)〉 (6.11)

which, as consequence of the average, in the case of an homogenous system becomes:

1

2
〈[Ŝ(r) − Ŝ(r′)]2〉 = 〈Ŝ(r)2〉 − 〈Ŝ(r)Ŝ(r′)〉 (6.12)

This shows that the phase correlation function, χ(r, r′) = 〈Ŝ(r)Ŝ(r′)〉, is the quan-

tity dominating the long-range coherence. For example, a linear dependence χ(r, r′) ∼
|r − r′|/ℓS , corresponds to an exponential decay of the density matrix within a length

scale ℓS and if the size of the system is such that ℓS > L, then the system shows

long-range coherence.

To evaluate explicitly the correlation function χ(r, r′), it is useful to write the phase

operator in terms of the excitations of the system (defined in Eq. 1.15) [145, 146]:

Ŝ(r) = (4η0(r))−1/2
∞
∑

j=1

(

f+
j (r)φ̂j + (f+

j (r))∗φ̂†j

)

(6.13)

where φ̂j is the annihilation operator of the excitation with quantum numbers j and

energy ǫj (see Section 1.1), f+
j the symmetric combination of the uj and vj Bogoliubov-

de Gennes modes (see Appendix C).

Expansion of Eq. (6.13) allows us to write the phase correlation function in the

form:
〈

Ŝ(r)Ŝ(r′)
〉

=

∞
∑

j=1

[

f+
j (r)

(4η0(r))1/2

f+
j (r′)

(4η0(r
′))1/2

]

(1 + 2Nj) (6.14)

where Nj = (eǫj/kT − 1)−1 is the Bose-Einstein occupation number of the excitations

in thermal equilibrium.

To identify the role of dimensionality on the coherence properties of the atom cloud,

consider a D-dimensional uniform interacting gas in the thermodynamic limit1. In this

1The thermodynamic limit of the uniform system consists of taking the volume and the total number

of particle to both approach infinity i.e. N, V D → ∞ whilst the density is kept constant (η = N/V D =

η0).
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case, the energy and wave-function of the excitation modes with small momentum, p,

correspond to [2, 40] :

ǫ(p) = cp (6.15)

f+
p (r) =

1√
2V D

(

mc

η0p

)1/2

eip·r (6.16)

The previous result is valid for p < pmax, where pmax is a cut-off momentum, which

specifies the validity limit of the hydrodynamic approach, underlying Eq. (6.8) [2].

In addition, by taking the thermodynamic limit, the discrete summation in Eq. (6.14)

should be replaced by an integral over the momentum space:

∞
∑

j=1

→ V D

(2π~)D

∫

dDp (6.17)

where V D is the corresponding volume in the D-dimensional space. Considering a

temperature high enough that the Bose distribution can be approximated by the classical

distribution, N(p) = kT/cp, the phase correlation function becomes:

〈

Ŝ(r)Ŝ(r′)
〉

=
mc

η0

1

(2π~)D

∫

dDp
eip·s

p

(

1 +
2kT

cp

)

(6.18)

where s = r − r′. This integral depends on the dimensionality of the system through

the volume element in the corresponding momentum space dDp. In the long-range limit

(s → ∞), the thermal contribution produces the following correlation functions [2, 40]:

〈

Ŝ(r)Ŝ(r′)
〉

3D
≃ kTm

4π~2η0

1

s
(6.19)

〈

Ŝ(r)Ŝ(r′)
〉

2D
≃ 2T

T2D
ln(s/sm), with sm ∼ ~/pmax (6.20)

〈

Ŝ(x)Ŝ(x′)
〉

1D
≃ mkT

η0~2
s (6.21)

The divergent behaviour of the phase correlation when s → ∞, eliminates the long-

range order of the one-particle density matrix in the 2D and 1D cases. This can be seen

by substituting Eqs. (6.19)-(6.21) into Eq. (6.9), which yields:

ρ(1),3D(r, r
′) → (η1D

0 )2 (6.22)

ρ(1),2D(r, r
′) → (ηη2D

0 )2
(sm

s

)T/T2D

(6.23)

ρ(1),1D(r, r
′) → (η1D

0 )2e(mkBT/η1D~2)|s|/2 (6.24)

At finite temperatures, the off-diagonal elements of the density matrix for the 2D and

1D cases tend to zero as s → ∞, demonstrating the impossibility of Bose-Einstein

condensation for those cases. Notice that in the 2D case, the decay of non-diagonal

elements of the density matrix is intermediate between that of the BEC, Eq. (6.22),
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and that of a normal system [2]. The distance over which the 2D system is still phase

correlated can be estimated from Eq. (6.23), to be:

L2D
S ∼ sme

T2D/2T (6.25)

For the one dimensional situation, the density matrix decays exponentially and defines

a coherence length of:

L1D
S =

1

η1D
0

T1D

T
(6.26)

These results prove that the existence of long-range order in uniform ideal Bose gases

depends on the dimensionality of the system. This picture is modified substantially by

the presence of a confining potential acting over the particles and making the system

non-uniform [144]. In particular, if the system size is smaller than the coherence lengths

Eqs. (6.25) and (6.26), the off-diagonal long-range order is recovered, allowing, at low

enough temperature, the collapse of the particles into a single coherent state forming a

BEC.

To conclude this section, Table 6.1 summarizes the statements about the existence/non-

existence of Bose-Einstein condensation in different dimensions and in the presence of

interactions. In the case of T 6= 0, the possibility of BEC is defined as the existence of

a finite temperature below which the condition of long-range coherence is satisfied.

T = 0, g = 0 T 6= 0, g = 0 T = 0, g > 0 T 6= 0, g > 0

1D No No No No

2D yes No yes No

3D yes yes yes yes

Table 6.1: Presence of off-diagonal long-range coherence in Bose gases under different

conditions of temperature and interparticle interaction. If the system is confined to a

finite region of the space, off-diagonal order is always possible.

6.2 BEC in an elongated trap (quasi-1D Bose gas)

Consider a degenerate Bose gas trapped by a harmonic potential with axial symmetry

along the x axis:

V (x, r⊥) =
mω2

xx
2

2
+
mω2

⊥r2
⊥

2
(6.27)

where r⊥ = (y, z) is a 2D vector position in the yz plane (transverse plane).

The frequencies of the potential energy determine the time scales in corresponding

subspaces. In a highly asymmetric situation (ω⊥ ≫ ωx) the degrees of freedom in the

transverse direction (indicated by the symbol ⊥) adjust instantaneously to an equilibrium
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configuration compatible with the state along the axial direction (indicated by the letter

x) [142, 147]. The condensate wave function can, therefore, be approximated by a

factorized form:

ψ0(r, t) = ϕ(r⊥, η1D(x, t))φ(x, t) (6.28)

where η1D(x) is the 1D density along the x axis, normalized to the total number of

particles:

η1D(x, t) = N

∫

|ψ0(r, t)|2dr⊥ = N |φ(x, t)|2 (6.29)

and the transverse factor is normalized to unity:

1 =

∫

|ϕ(r⊥, η1D(x, t))|2dr⊥ (6.30)

Substituting this ansatz into the Gross-Pitaevskii equation, Eq. (1.27), yields:
(

i~∂tφ+
~

2

2m

d2φ

dx2
− mω2

xx
2

2
φ

)

ϕ =

(

− ~
2

2m
∇2

⊥ϕ+
mω2

⊥r2
⊥

2
ϕ+

4π~
2a

m
η1D|ϕ|2ϕ

)

φ

(6.31)

where the spatial and time variations of ϕ(r⊥, η1D(x, t)) induced by the axial density

φ(x, t) have been neglected.

Multiplying Eq. (6.31) by ϕ∗ and integrating with respect to the transverse coordi-

nates produces:

i~∂tφ = − ~
2

2m

d2φ

dx2
+
mω2

xx
2

2
φ+ µ⊥(η1D)φ (6.32)

with

µ⊥(η1D) =

∫

ϕ∗
(

− ~
2

2m
∇2

⊥ +
mω2

⊥r2
⊥

2
+

4π~
2a

m
η1D|ϕ|2

)

ϕdr⊥ (6.33)

Inserting Eq. (6.32) into Eq. (6.31), gives an equation for the transverse wave-function:

µ⊥(η1D)ϕ = Ĥeffϕ (6.34)

µ⊥(η1D)ϕ =

(

− ~
2

2m
∇⊥ +

mω2
⊥r2

⊥
2

+
4π~

2a

m
η1D|ϕ|2

)

ϕ (6.35)

where, we have defined Ĥeff , the nonlinear Hamiltonian characteristics of the effective

mode, as follows:

Ĥeff =

(

− ~
2

2m
∇⊥ +

mω2
⊥r2

⊥
2

+
4π~

2a

m
η1D|ϕ|2

)

(6.36)

Equation (6.35) is an equilibrium Gross-Pitaevskii equation for the transverse factor

of the condensate wave-function, which depends parametrically on the 1D density η1D.

Equation (6.32) is useful as far as Eq. (6.35) can be solved for ϕ, which can be done

approximately in two extreme cases.

Firstly, the 1D mean-field regime is defined when the non-linear term in Eq. (6.35),

∼ |ϕ|2, is small compared with other terms contributing to µ⊥. In this case, the non-

linear contribution can be treated as a perturbation of the linear part of the equation,
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which coincides with a non-interacting 2D harmonic oscillator. The zero order wave

function corresponds, therefore, to the Gaussian ground state of the transverse harmonic

oscillator:

ϕ(r⊥) =
1

(πa2
⊥)1/2

e−|r⊥|2/2a2
⊥ (6.37)

and the first order corrected to the chemical potential, given by the expected value Eq.

(6.33), results in:

µ(η1D) = ~ω⊥ + 2~ω⊥aη1D (6.38)

This regime occurs whenever the chemical potential is smaller than the energy splitting

of modes corresponding to the transverse confining potential, i.e., µ . ~ω⊥.

The second situation is called the 3D cigar-shaped regime, and occurs in the opposite

limit, i.e., when the nonlinear contribution is the dominating factor in Eq. (6.35). In

this case, neglecting the kinetic energy contribution, a Thomas-Fermi approximation

provides the transverse wave-function:

|ϕ(r⊥)|2 =
m

4π~2aη1D

2µ⊥(η1D) −mω2
⊥|r⊥|2

2
(6.39)

Using this approximation in Eq. (6.33), produces the chemical potential:

µ⊥(η1D) = 2~ω⊥
√
aη1D 3D-cigar regime (6.40)

According to Menotti and Stringari [143], the different regimes of transverse con-

finement can be characterized by the dimensionless combination:

λ = N
ωx

ω⊥

a

a⊥
(6.41)

where λ is known as the cross-over parameter. Eq. (6.41) produces the phase diagram in

Figure 6.2. If (Nωxa)/(ω⊥a⊥) ≫ 1 many configurations of the harmonic oscillator in the

transverse direction are excited, corresponding to the 3D-cigar regime. In the opposite

limit, (Nωxa)/(ω⊥a⊥) ≪ 1, all particles occupy the ground state of the transverse

potential and the system is in the 1D mean-field regime.

It is interesting to find an approximate solution to Eq. (6.32) valid for the cross-over

between these two regimes. This can be done by noticing that the exact solution of

Eq. (6.35) minimizes the chemical potential functional Eq. (6.33). As a consequence,

an approximate solution for ϕ can be obtained by applying a variational approach to

minimize the functional Eq. (6.33) [142]. A convenient trial function consists of the

harmonic ground state for the transverse plane, using its width as a variational parameter:

ϕ(r⊥) =
1

(π1/2(Γa⊥)2)1/2
e−|r⊥|2/2(Γa⊥)2 (6.42)

The chemical potential functional is minimized by this function when its width is

scaled by the factor [142]:

Γ = (1 + 4aN |φ|2)1/4 (6.43)



LOW ENERGY MODES IN A QUASI-1D BOSE GAS 99

Combining Eqs. (6.42), (6.43) and (6.33) yields:

µ⊥(η1D) = ~ω⊥
√

1 + 4aη1D (6.44)

A very interesting feature of this resulting chemical potential is that, by taking the

corresponding limits, it reproduces the result for both the 1D mean-field (Eq. (6.38))

and the 3D-cigar (Eq. (6.40)) regimes.

An effective 1D equation for the axial factor of the wave function can be obtained

by substituting Eq. (6.44) into Eq. (6.32):

i~∂tφ = − ~
2

2m

d2φ

dx2
+
mωxx

2

2
φ+ ~ω⊥

√

1 + 4aη1Dφ (6.45)

This equation includes approximately the effects due to the transverse degrees of free-

dom. Muñoz and Delgado [142, 147, 148] have shown that Eq. (6.45) describes the

equilibrium configuration and dynamics of the lowest-energy modes of an elongated de-

generate Bose gas, with a precision comparable to the full 3D GPE Eq. (1.27). In

addition to this, the remarkable feature of reproducing both the 1D mean-field and 3D-

cigar-shaped limits, motivates us to use Eq. (6.45) for evaluating the phase correlation

properties of quasi-1D degenerate Bose gases in the cross-over regime (see Figure 6.2).

6.3 Low-energy modes and Phase correlation in quasi-

1D degenerate Bose gases

The phase coherent properties of low-temperature Bose gases in the 1D mean-field

and the 3D-cigar regimes, have been studied by Petrov, et. al [138, 144, 139]. They

consider a chemical potential much larger than the splitting of the energy levels of the

axial trapping potential (µ ≫ ~ωx), such that a Thomas-Fermi approximation can be

applied to obtain the density profile in terms of polynomials of x.

In the 1D mean-field regime, where the transverse function corresponds to a Gaussian

profile, Eq. (6.37), the low-energy excitation energies and modes are given by [138]:

ǫj = ~ωx

√

j(j + 1)/2 (6.46)

f+
j =

(

j + 1/2

R1D
TF

)1/2{2µ

ǫj

[

1 − x2

(R1D
TF)2

]}1/2

Pj(x/R
1D
TF) (6.47)

where Pj(x/RTF) (j = 1, 2, 3, . . .) are Legendre polynomials, and the Thomas-Fermi

radius is defined by

RTF,x =

√

2µ

mω2
x

(6.48)

In the 3D-cigar regime, where the transverse function corresponds to an inverted parabola
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(Eq. (6.39)), the low-energy excitations/modes are [139]:

ǫj = ~ωx

√

j(j + 3)/4 (6.49)

f+
j =

[

(j + 2)(2j + 3)gη0

4π(j + 1)R2
TF,⊥RTF,xǫj

]1/2

P
(1,1)
j (x/R3D

TF) (6.50)

where

RTF,⊥ =

√

2µ

mω2
⊥

; RTF,x =

√

2µ

mω2
x

(6.51)

Notice that in both cases, the energy spectrum, {ǫj , j = 1, 2, . . .}, is independent

of the number of particles N , the strength of the transverse confinement and of the

interparticle interaction, g.

In the 1D mean-field regime, a direct calculation of the temperature dependence of

the mean-square phase difference with respect to the cloud centre,
〈

[Ŝ(0) − Ŝ(x)]2
〉

,

made by combining Eqs. (6.13) and (6.47), produces [138]:

〈

[Ŝ(0) − Ŝ(x)]2
〉

=
4Tµ

3T1D~ωx

[

ln
RTF,x − x

RTF,x + x

]

(6.52)

the temperature, Tφ, at which Eq 6.52 is of the order unity at x ∼ RTF,x is given by:

Tφ = T1D

~ωx

kBµ
(6.53)

For the 3D-cigar regime, an explicit expression equivalent to 6.52 cannot be obtained.

Nevertheless, it can be probed that in this regime,
〈

[Ŝ(0) − Ŝ(x)]2
〉

obeys a universal

function of the form:
〈

[Ŝ(0) − Ŝ(x)]2
〉

δ2R
= f(0, x/RTF,x) (6.54)

δ2R ≈ T

Tc

a2/5m1/5ω
22/15
⊥

N4/15ω
19/15
x

(6.55)

with f independent of system details. The presence of axial phase fluctuations is gov-

erned by the parameter δ2R, which becomes close to unity above the temperature:

T 3
φD = 15(~ωz)

2N/32µ (6.56)

The 1D mean-field and the 3D-cigar regimes define, each one, natural temperatures

scales above which such fluctuations become relevant. In this thesis, Eqs. (6.53) and

(6.56) are used as temperature scales in corresponding regimes, whilst for the cross-over,

the temperature scale have been arbitrarily chosen as Eq. (6.53).

For the cross-over between these two regimes, Eq. (6.45) can be used to evaluate

the low-energy energy spectrum and the corresponding fluctuations of the phase for



LOW ENERGY MODES IN A QUASI-1D BOSE GAS 101

the condensate wave-function. This is achieved by linearizing this equation around

small deviations from an equilibrium configuration φ0, resulting in a set of Bogoliubov-

de Gennes equations (see details in Appendix C). The mode spectrum is obtained

numerically by solving the eigen-problem:

ǫj

(

uj

vj

)

=

(

L −|φ0|2ζ̇0
|φ0|2ζ̇0 −L

)(

uj

vj

)

(6.57)

where:

L = − ~
2

2m

d2

dx2
+ V (x) − µ+ ζ̇0|φ0|2 + ζ0 (6.58)

with

ζ0 = ~ω⊥

√

1 + 4aη0
1D

ζ̇0 = ~ω⊥
2aη0

1D
√

1 + 4aη0
1D

The Bogoliubov-de Gennes equation (6.57) depends on the equilibrium condensate

wave-function, φ0, and on the nonlinear term of the effective equation and its variation

with respect to η0
1D = N |φ0|2, ζ0 and ζ̇0 respectively. Each eigen-energy, ǫj, have

associated a pair of functions, uj and vj, corresponding to the positive and negative

Fourier components in the time domain. Density and phase fluctuations can be expressed

in terms of the antisymmetric and symmetric combinations, f−j = uj − vj and f+
j =

uj + vj , respectively [144]. At low temperatures, T ≪ Tφ, the density fluctuations are

small and f−j → 0, making possible the wave-function factorization Eq. (6.8) [144] and

leaving as the only relevant modes the symmetric combination f+
j [144].

With the energy spectrum and their corresponding wave-functions f+
j , we can evalu-

ate the mean square of the phase difference between two positions, Eqs. (6.12)- (6.14).

The trap centre, r = 0, is a convenient reference point, and therefore, we evaluate the

phase correlation function relative to it:
〈

[∆Ŝ(x)]2
〉

=
〈

[Ŝ(0) − Ŝ(x)]2
〉

, which follows

from Eq. (6.12). We have performed these calculations exploring the phase space of

transverse confinement shown in Figure 6.2 (see Table 6.2, using the parameters corre-

sponding to the points labelled A–G in the same figure. These numerical results are then

compared with the analytical predictions given by Petrov, et. al [138, 139], obtained

applying Eqs. (6.47) and (6.50) (see Figures 6.6 and 6.7, below).
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Figure 6.2: Phase diagram defining the different regimes of transverse confinement in

a quasi-1D Bose gas. The line corresponds to Nωx/ω⊥ = a⊥/a, marking the cross-over

between the 1D mean-field and the 3D-cigar regimes. The circles, labelled A-G, indicates

the cases studied in section 6.3 (see Table 6.2)

To facilitate comparison between the results corresponding to different regime, a

convention of colours is used in all figures in this chapter: red lines correspond to results

obtained from the 1D effective equation (Eq. (6.45)), green lines to the 1D mean-field

regime and blue lines to the 3D-mean field regime.

Case N ωx/2π (Hz) ωt/2π (Hz) λ (µ− ~ω⊥)/(~ωx)

A 70 10 10000 0.00338 23.31

B 200 10 10000 0.00965 46.6

C 200 50 20000 0.03412 42.6

D 2000 10 10000 0.09650 207.5

E 20000 10 10000 0.965498 837.7

F 50000 5 760 4.37542 289

G 106 20 1000 305.15228 255.15

Table 6.2: Parameters of the configurations used to evaluate the excitation modes. In

all cases we consider a gas of 87Rb atoms, whose s-wave scattering length is as = 5.2

nm. The chemical potential and ground state were obtained by solving numerically Eq.

(6.45) (see Appendix A).
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6.3.1 Density profile

Figures 6.3 and 6.4 show the density profiles calculated for the parameters specified in

Table 6.2. Three different profiles were obtained for each of the cases A–G, corresponding

to: (a) an imaginary-time evolution of the 1D effective equation Eq. (6.45) (ηEE), (b)

the Thomas-Fermi profile of the 1D mean-field regime η1D, and (c) the Thomas-Fermi

profile of the 3D-cigar regime η3D
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Figure 6.3: Density profiles calculated for cases A–D specified in Table 6.2. For

A–C, the density profiles given by Eq. (6.45) (red line, EE) and by the Thomas-

Fermi approximation in the 1D mean-field regime (green line, 1D TF) are almost

indistinguishable. In D, these two predictions have a different peak density, but are

similar in shape. All these cases are far from the 3D-cigar regime (blue curve, 3D TF)

and, therefore, the density profiles predicted by Eq. (6.60) (blue line) are appreciably

different from the other results. In all cases, the cyan line corresponds to the ground

state of the full 3D GPE equation (Eq. (1.27)).

For the 1D mean-field and 3D cigar regimes, the density profiles are given by :

η1D(x) =
2µ1D

TF −mω2
xx

2

4~ω⊥a
(6.59)

η3D(x) =
µ3D

TFm

8~2a
R2

TF,⊥

(

1 − x2

R2
TF,x

)2

(6.60)

respectively, where the widths of the cloud are defined according to Eqs. (6.48) and
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(6.51) and the chemical potentials satisfy:

µ1D
TF =

(

3

2
aN~ω⊥

√

mω2
x

2

)2/3

and µ3D
TF =

(

15

4
(~ω⊥)2Na

√

mω2
x

2

)2/5

(6.61)

Cases A–D lies below the cross-over line in Figure 6.2, with increasing cross-over

parameter (λA = 0.00338 → λD = 0.0965). Correspondingly, the difference between the

density profiles resulting from the 1D effective equation (ηEE) and from the 1D mean-field

approximation (η1D), increases with increasing lambda λ, being almost indistinguishable

for small values (Cases A–C, red and green lines in Figure 6.3(a)–(c)). In these cases,

the 3D-cigar approximation cannot be applied because the non-linear term is not very

large (4aη1D ≪ 1) and, consequently, the profile predicted in this approximation is quite

different from the other two calculations (blue line in Figure 6.3(a)–(d)).
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Figure 6.4: Density profiles calculated for cases D–G specified in Table 6.2, showing a

smooth transformation between the 1D mean-field (green curves, 1D TF) and the 3D-

cigar regimes (blue curves, 3D TF). The density profile becomes more 3D-cigar-like as λ

increases. This sequence of figures, demonstrate how the 1D mean-field approximation

(green line, 1D TF) becomes progressively less effective to describe the density profile

of the system, and the opposite with respect to the 3D-cigar approximation (blue curve,

3D TF). In all cases, the cyan line corresponds to the ground state of the full 3D GPE

equation (Eq. (1.27)).

Case E corresponds to the crossover regime. Predictions of the 1D mean-field and

3D-cigar regimes are similar (green and blue lines in Figure 6.4(b)) but differ appreciably
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from the 1D effective field equation (red line in Figure 6.4(b)). In case F, the cross-over

parameter is not too big (λD = 4.37) and the density profiles corresponding to the 1D

effective equation is close to that predicted by the 3D-cigar regime (red and blue lines

in Figure (6.4(c)), respectively).

Case G has a large cross-over parameter, λF = 305.15, and, not surprisingly, the

density profile predicted by the 3D-cigar regime (η3D) and by the 1D effective equation

ηEE are indistinguishable, whilst the 1D mean-field prediction becomes ineffective for this

case.

These results show how the effective theory, Eq. (6.45), is able to reproduce the

smooth transformation of the density profile, from the 1D mean-field to the 3D-cigar

regimes, as the cross-over parameter is increased.

6.3.2 Excitation spectrum (Bogoliubov modes)

The Thomas-Fermi approximation can be used whenever the chemical potential is much

larger than the separation of the energy levels in the trapping potential (µ≫ ~ωx, ~ω⊥).

When such criteria is not satisfied, the excitation spectrum is not well represented either

by Eq. (6.47) or Eq. (6.50). Instead, Eq. (6.45) can be used to obtain (numerically)

the excitation spectrum for such situations, as well as for the crossover between the 1D

mean field and the 3D-cigar regimes.
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Figure 6.5: Energy spectrum of the low-energy modes of a 1D BEC. Harmonic oscil-

lator, 1D mean-field and 3D cigar regimes correspond to thick, dotted and thin black

lines, respectively. Other lines corresponds to the configurations specified in Table 6.2.
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Figure 6.5 shows the energy spectrum of excitations for the cases defined in Table

6.2. With the exception of the very low-energy modes (inset in Figure 6.5), for all the

cases studied, the low-energy spectrum is approximately linear with respect to the mode

number, ǫ ∼ αj. The largest slope, α, corresponds to the non-interacting case (harmonic

oscillator, thick black line in Figure 6.5) while the smallest α corresponds to the 3D-cigar

regime (thin black line in Figure 6.5). The excitation spectrum corresponding to the 1D

mean-field regime falls in between these two situations (dashed black line in Figure 6.5).

We have found cases where, although the Thomas-Fermi approximation produces the

correct shape of the density profile, the energy spectrum has a harmonic-oscillator-like

structure with a slope, αHO, satisfying αHO > α > α1D, and is not well represented by

Eq. (6.47). This typically occurs when the chemical potential is just a few tens of ~ωx

(Cases A, B and C in Table 6.2, red, green and blue lines in Figure 6.5, respectively.).

In Case D, the chemical potential is ∼ 200 × ~ωx, but still smaller than the en-

ergy splitting along the transverse direction (∼ 1000~ωx). Consequently, this case

corresponds to the 1D mean-field regime, where a Thomas-Fermi approximation can be

applied in the axial direction, while the wave-function in the transverse plane looks like

the ground state of the transverse potential. The corresponding spectrum to this case

(cyan line in Figure 6.5), is well approximated by Eq. (6.47), despite the density profile

starting to deviate from the 1D mean-field prediction (see Figure 6.3(d)).

In Cases E and F, there are several hundred axial levels below the chemical potential

and the Thomas-Fermi approximation can be safely applied. These cases are close to

the cross-over regime and the spectra for these cases lies between those corresponding

to the 1D mean-field or the 3D-cigar regimes (see sea-blue and yellow lines in Figure

6.5).

The excitation spectrum in case G, which has a large cross-over parameter (λ ∼ 300)

and a density profile that is well described by the 3D-cigar regime, is not accurately

described by the 3D-cigar regime (Eq. (6.50)). However, in Figure 6.5 the slope of the

spectrum, α, decreases as λ is made bigger and bigger, indicating a transition between

the 1D mean-field and the 3D-cigar regimes.

Figures 6.6 and 6.7 show some modes for the cases defined in Table 6.2, determined

by solving the Bogoliubov equations corresponding to Eq. (6.45) (red curves), the 1D

mean-field Eq. (6.47) (green curves) and the 3D-cigar Eq. (6.50) (blue curves). The

spatial width of the excitations corresponds to that of the density profile, and, as a

consequence, the 1D mean-field excitations approximate the results of the Bogoliubov

analysis (Eq. (6.45)) in Cases A–D. In the cross-over region, we can observe how

the corresponding Bogoliubov excitations approach those associated with the 3D-cigar

regime (Eq. (6.50)). It is interesting to notice that in Cases A–C, where the slope of

the excitation spectrum, α, is between the non-interacting case and the 1D mean-field

regimes, corresponding high energy modes are wider than the condensate, reflecting the

non-interacting character of the spectrum and cannot be reproduced by results Eqs.

(6.47) and (6.50).
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(a) (b)

(c) (d)

λ = 0.00338 λ = 0.00965

λ = 0.03412 λ = 0.09650

Figure 6.6: f+
j modes corresponding to (a) λ = 0.00338, (b) λ = 0.00965, (c)

λ = 0.03412 and (d) λ = 0.09650 (d). Each panel, from top to bottom, shows the

modes j = 0, 1, 2, 3 and 75. The colour convention is described in the text. For clarity,

in all panes at the bottom, the line corresponding to the 3D cigar regime is omitted.
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(a) (b)

(c) (d)

λ = 0.0965 λ = 0.9650

λ = 4.3754 λ = 305.15

Figure 6.7: f+
j modes for λ = 0.0965 (a), λ = 0.9650 (b), λ = 4.3754 (c) and

λ = 305.15 (d). Each panel, from top to bottom, shows the modes j = 0, 1, 2, 3 and

75. The colour convention is described in the text. For clarity, in all panes at the

bottom, the line corresponding to the 3D cigar regime is omitted.
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6.3.3 Phase Fluctuations and correlations in 1D degenerate Bose

gas

Expressing the phase operator in terms of the low-energy excitations is a convenient

way to quantify the phase correlation in elongated degenerate Bose gases. The one-

dimensional version of Eq. (6.13) corresponds to:

Ŝ(x) = [4η0(x)]
−1/2

∞
∑

j=1

f+
j (x)φ̂j + (f+

j (x))∗φ̂†j (6.62)

As indicated by Eqs. (6.9) and (6.10), the long-range behaviour of the non-diagonal

elements of the density matrix is dominated by the mean square of the difference of

the phase between two points along the condensate, in this case
〈

[∆Ŝ(x, x′)]2
〉

=
〈

[Ŝ(x) − Ŝ(x′)]2
〉

. Taking into account the bosonic character of the operators φ̂j and

the definition of the phase operator in terms of the excitations (Eq. (6.62)), the mean-

square phase difference can be written as follows [2]:

〈

[∆Ŝ(x, x′)]2
〉

=

∞
∑

j

[

f+
j (x)

[4η0(x)]1/2
−

f+
j (x′)

[4η0(x′)]1/2

]2

(1 + 2Nj) (6.63)

where Nj is the thermal occupation of mode j:

Nj =
1

(eǫj/kT − 1)
(6.64)

Eq. (6.63) has two contributions. The quantum contribution corresponds to the

temperature independent term. The contribution associated with thermal fluctuations

depends on the thermal occupation number of the excitation modes. These two terms

are evaluated for Cases A–G in Table 6.2 by the three approaches shown before: (a) a

numerical solution of the Bogoliubov equations associated with Eq. (6.45) (see Appendix

C), (b) using the excitations for the 1D mean-field regime, Eq. (6.47), and (c) using

the excitations for the 3D-cigar regime, Eq. (6.50).

The results presented in the next section are shown as functions of a dimensionless

unit of length x/R, where R is the cloud width corresponding to each approximation.

Quantum Fluctuations

Figures 6.8 and 6.9 present the quantum contribution to
〈

[∆Ŝ(x)]2
〉

for the cases

specified in Table 6.2. All three approaches, the 1D effective equation (red curves),

the 1D mean-field regime (green curves) and the 3D-cigar regime (blue curves), produce
〈

[∆Ŝ(x)]2
〉

versus x/R plots with three distinct regions. Near the cloud centre (x = 0),

there is an approximate logarithmic (fast) increase ( ∼ ln(x/ℓc)). Then, the growth be-

comes linear along a region whose extension depends on the system parameters. Finally,

near the edge of the cloud, the phase correlation grows exponentially.
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Figure 6.8: Phase correlation function (vertical axes) for Cases A-D in Table 6.2,

versus distance to the trap centre. In all these cases, the function
〈

(∆Ŝ(x))2
〉

corresponding to the effective equation (red curves, Eq. (6.45)) is very close to that

resulting from the 1D mean-field approximation (green curves) in the Thomas-Fermi

regime. Blue curves are calculated in the 3D-cigar regime.

According to Petrov et. al [138, 139], the phase correlation, in both the 1D mean-

field and the 3D-cigar regimes, is given by universal functions of the form:

〈

[∆Ŝ(x)]2
〉

= β(µ)f(x/R), (6.65)

where R is the width of the cloud (Eq. (6.48) and (6.51)), β is a factor that depends

on the number of particles and the trapping configuration, and the function f(x/L) is

a independent of the details of the system like the trap frequencies, number of atoms

and scattering length.

The results in Figures. 6.8 and 6.9 show that the 1D effective model produces

phase correlations with the form of Eq. (6.65), with a corresponding universal form

fEE(x/L), only for configurations whose spectrum lies between the Harmonic oscillator

and the 1D mean-field regimes (see Figure 6.5), such as Cases A–C in Table 6.2. The

previous statement can be proven by scaling the results in Figure 6.9 (red curves) to a

common scale, whereupon it becomes evident that all red curves correspond to the same
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function, fEE(x/L), multiplied by a different factor. Figure 6.10(a) compares the forms

of fEE(x/L) (red curve), f1D(x/L) (green curve) and f3D(x/L) (blue curve), all of them

numerically evaluated, and scaled to have the same value at x = 0.42 (this position can

be arbitrarily chosen, without appreciable change in the scaled functions). In this plot,

the different regions of phase correlation variation are indicated and the corresponding

fitted functions are also plotted.

Observe that the function fEE(x/L) (red curve) is similar to that corresponding to

the 1D mean-field (green curve), differing only near the edge of the cloud, where the

excitation modes also differ, as mentioned previously. It is worth noting that the regions

with logarithmic and linear growth of the phase correlation function have almost the

same sizes and functional dependence for both fEE(x/L) and f1D(x/L).

 0

 500

 1000

 1500

 2000
 0  0.2  0.4  0.6  0.8  1

EE
1D mean-field

3D-cigar

x/R

 0

 2500

 5000

 7500

 10000
 0  0.2  0.4  0.6  0.8  1

EE
1D mean-field

3D-cigar

x/R

 0

 2000

 4000

 0  0.2  0.4  0.6  0.8  1

EE
1D mean-field

3D-cigar

x/R
 0  0.2  0.4  0.6  0.8  1

 0

 2000

 4000

 6000

 8000

EE
1D mean-field

3D-cigar

x/R

(a) λ = 0.09650 (b) λ = 0.9650

(c) λ = 4.37542 (d) λ = 305.1523

Figure 6.9: Phase correlation (vertical axes) for Cases D–G in Table 6.2, versus

distance to the trap centre. For cases E–G, a transition between the 1D mean-

field and the 3D-cigar regimes can be observed, as the blue curve (3D-cigar regime)

approaches to the red one (Effective equation), while, simultaneously, the green curve

(1D mean-field) moves away from the effective equation prediction.

Case D in Table 6.2 has a spectrum coinciding with that predicted in the 1D mean-

field regime. In this case, the phase correlation functions corresponding to the 1D

mean-field regime (green curve in Fig. 6.9(D)) and the 1D effective equation (red curve
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in Fig. 6.9(D)) are very close, due to the similarity of the excitation modes in both cases

(see Figs. 6.7).

When the energy level spectrum lies in the cross-over region, it is not possible to

identify a universal function for the phase correlation calculated from the excitations of

the effective model Eq. (6.45) (red curves in Fig. 6.9). For these cases, although three

regions with similar features can still be identified, the width of each one depends on

the particular system under consideration (see Figure 6.10(b)).

The evolution of the mean square of the phase difference during the transition be-

tween the 1D mean-field and the 3D-cigar regimes is explored in Figure 6.10(b). The

first region, where a fast increase occurs (∼ ln(x/ℓc)), has about the same length in all

cases, while the width of the region with linear growth reduces as the system approaches

the 3D-cigar regime.
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Figure 6.10: Scaled
〈

(∆Ŝ(x))2
〉

(vertical axes) versus x/R. (a) Cases A–C in Table

6.2 (red curve, only one case shown for clarity). The scaling factor is chosen to obtain,

in all cases, the same value at x = 0.42. In all cases, after scaling, all functions coincide

with a universal function f(x/L). The scaled 1D mean-field (green curve) and 3D-

cigar (blue curve) predictions are also shown, along with the best logarithmic (cyan

curve) and linear (light blue) fits, in the corresponding regions. (b) Corresponding to

cases D–G in Table 6.2, the 1D mean-field and 3D-cigar predictions. Three regions of

variation can be defined, whose width depends on the particular situation considered,

such that, in contrast to panel (a), no universal function can be defined.

Thermal Fluctuations

Result for the thermal contribution to the mean square phase difference are shown in

Figures 6.11, 6.12 and 6.13. For comparison, the quantum contribution is also shown,

demonstrating that this contribution is much smaller than the thermal one.
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Figure 6.11: Thermal contribution to
〈

[∆Ŝ(x)]2
〉

for Case D, obtained using differ-

ent approaches: (a) the 1D effective equation. (b) the 1D mean-field approximation

and (c) the 3D-cigar approximation. All figures show curves corresponding (from

bottom to top) to the temperatures 0 (cyan curve), Tφ, 5Tφ, 10Tφ, 15Tφ and 20Tφ.

In all cases,
〈

(∆Ŝ)2
〉

can be factorized in the form β(T )f(x/L), with a common

f(x/L) that depends on the approach used

Figure 6.11 shows
〈

[∆Ŝ(x)]2
〉

for different temperatures, corresponding to case D.

All other cases have, qualitatively, the same characteristics. The 1D mean-field and

3D-cigar predictions (panels (b) and (c) of Figure 6.11, respectively) follow universal

functions given by Eq. (6.65), in which β now also depends on the temperature. In

contrast, the effective model Eq. (6.45), produces a dependence of the form:

〈

[∆Ŝ(x)]2
〉

= β(µ, λ, T )f(µ, ξ, x/L), (6.66)

where ξ depends on the details of the trapping potential, and f is a function which does

not depend on the temperature of the system, but does depend on the system details

such as the trap geometry or the number of particles (Figure 6.11(a)).

Similar to the quantum contributions, when the excitation spectrum is between the

harmonic oscillator and the 1D mean-field regimes (case A, B and C), the mean square

phase difference given by the effective equation (6.45) is similar to that produced by
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the 1D mean-field in the Thomas-Fermi approximation. This can be observed in the

sequence of Figures 6.12(a)-(d), where a small difference between the red and green

curve is seen.
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Figure 6.12: Thermal contribution to
〈

[∆Ŝ(x)]2
〉

corresponding to cases A–D

(panels (a)-(d) respectively). In all these cases, the results corresponding to the 1D

mean-field approximation (green curves) and the 1D effective equation (red curves)

are similar, and differ significantly only near the edge of the cloud (x/R ∼ 1).

In all cases, two regions can be defined. One where the phase correlation grows

linearly with the distance to the centre of the cloud and a second where fast growth

occurs. The widths of these regions, as well as the rate of growth, depend on the specific

system considered and its temperature. Figure 6.13 shows a transition between the 1D

mean field and the 3D-cigar regimes as the dimensional parameter, λ, is increased,

similar to our observations for the quantum contribution (Figure 6.9). In the first panel,
〈

[∆Ŝ]2
〉

is close to the prediction of the 1D mean-field regime and gradually it becomes

similar to the the 3D-cigar prediction.
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Figure 6.13: Thermal contribution to
〈

[∆Ŝ(x)]2
〉

corresponding to Cases D–G

defined in Table 6.2 (panels (a)–(d) respectively). This set of plots shows that the

1D effective equations (red curve) reproduces a smooth transition between the 1D

mean-field (green curves) and the 3D-cigar (blue curves). In all cases, the cyan curve

corresponds to the quantum contribution.

6.4 Summary

This chapter presents some characteristics of low-dimensional degenerate Bose gases

(BEC or condensate), with particular emphasis on the so-called quasi-1D regime. This

regime is achieved by imposing an asymmetric trapping potential, with a very strong

confinement along two of the three spatial directions in 3D.

We consider a 3D harmonic potential with cylindrical symmetry, characterized by

the frequencies along the transverse, ω⊥, and axial directions, ωx, with ω⊥ ≫ ωx. In

this situation, two extreme regimes can be defined: (a) when the trap in the transverse

direction is so high that the condensate only populates the lowest state in the transverse

direction (1D mean-field regime) and (b) when there are many levels occupied along

both the transverse and axial directions, such that a Thomas-Fermi approximation can

be applied in all spatial directions (3D-cigar regime).

The density of states and excitation spectrum of the condensate depend on the trap-
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ping potential, affecting the spatial correlation of the wave-function of the condensate

[40, 2]. For the two regimes mentioned, 1D mean-field and 3D-cigar, there are analytical

expressions for the spectrum, excitation modes and phase correlation of the condensate

wave-function (Eq. 6.63), in the Thomas-Fermi approximation [138, 139] .

Muñoz and Delgado have proven that a simple one-dimensional equation, Eq. (6.45),

can be use to evaluate the density profile and the low-energy dynamics of the condensate,

with the same accuracy than a full 3D Gross-Pitaevskii simulation. Their 1D equation

remains valid in the cross-over between the 1D mean-field and the 3D-cigar regimes,

characterized by a dimensionless parameter λ = N(ωxa)/(ω⊥a⊥) [143, 147].

This effective equation is used to evaluate the density profile, the excitation modes

and the mean-square phase difference,
〈

(∆Ŝ(x))2
〉

, for configurations A–G indicated

in Table 6.2. These calculations show how the properties of the quasi-1D condensate

change as the system crosses from the 1D mean-field to the 3D-cigar regimes.

We have compared the density profile given by the equilibrium state of the Eq. (6.45)

with the equilibrium state of a 3D-GPE. The comparison is favourable and probes the

accuracy of the effective equation for this calculation. Cases A–G indicated in Table 6.2

can be classified in three groups (according to their dimensionless parameter, λ).

To the first group belongs cases A–C. All of them have a dimensional parameter λ≪
1, and therefore, lie in the 1D mean-field regime. In these cases, despite the chemical

potential being just a few orders of magnitude higher than the energy quantum of the trap

in the axial direction (i.e. ~ωx), the density profile is well approximated by a Thomas-

Fermi approximation of the 1D mean-field (Figure 6.3). In contrast, the spectrum of

excitations does not follows the rule given by the 1D mean-field approximation (ǫj =

~ωx

√

j(j + 1)/2) (Figure 6.5). The reason for this behaviour is the low number of

particles, which makes the spectrum have a non-interacting character, corresponding to

the harmonic oscillator dispersion relation. This is shown in figure 6.5, where, for large

j, the slope of the dispersion relation, ǫj = αj, corresponding to these cases satisfies

αHO > α > α1D.

In this group, the 1D effective equation and the 1D mean-field predictions of the

wave-functions for the low energy excitations only differ slightly near the edges of the

cloud, which is expected because of the failure of the Thomas-Fermi approximation

involved in the 1D mean-field result. For high energy modes, the difference becomes

appreciable; the spatial extension of the modes according to the 1D effective equation

can be larger than the condensate size, while the Thomas-Fermi approximation of the

1D mean-field case rules out this possibility by definition (see Figure 6.6).

Also for Cases A–C corresponding to this group, the quantum and thermal contri-

butions to
〈

[∆Ŝ(x)]2
〉

predicted by the spectrum of the effective equation and by the

1D mean-field are similar but, again, differ close to the edges of the cloud. The quan-

tum contribution reveals three spatial regions of variation: logarithmic growth, lineal
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growth and exponential growth. The length of each region is the same for all cases

(see Figure 6.10(a)), i.e., is independent of λ, and satisfies the universal form of Eq.

(6.65). Similarly, in the thermal contribution, two regions can be distinguished: linear

and exponential growths, but in this case the extension of these depends on the system

having the form of Eq. (6.66).

The second group has a single member, Case D in Table 6.2, which, according to

its dimensional parameter, lies in the 1D mean-field regime. In fact, the density profile,

excitation spectrum and
〈

[∆Ŝ(x)]2
〉

determined from the effective equation and the

1D mean-field regime differ only near the edges of cloud, again as a consequence of the

Thomas-Fermi approximation used in the second method.

The last group is formed by Cases E, F and G. According to their dimensional param-

eters, λ, they lie in the cross-over region between the 1D mean-field and the 3D-cigar

regimes. Comparing the density profiles, it can be observed how the effective equation

predictions move away from the 1D mean-field and get close to the 3D-cigar regime. A

similar transition occurs in the energy level spectrum (Figure 6.5) and excitations modes

(Figure 6.4), and in both the quantum an thermal contributions to
〈

(∆Ŝ(x))2
〉

(Figures

6.10(b) and 6.13). The same regions of variation with the distance to the cloud centre

can be observed as in Cases A–C, but the length of each one depends on λ, as shown

by Eq. (6.66). Respect to the thermal contribution to the phase fluctuations, it should

be highlighted that it cannot be described by a universal function, in contrast to cases

in the first group.

In the sequence of figures presented in this chapter, we have shown how the 1D

effective equation Eq. 6.45 produces a a smooth transition between the 1D mean-field

and the 3D-cigar regimes. This can be see by noticing that for λ≪ 1 the red and green

curves are similar, and as λ is increased, the green curves (1D mean-field predictions)

move away from the red ones (effective equation predictions), while the blue curves

(3D-cigar predictions) move closer to the red curves.



CHAPTER 7

Outlook and directions for future work

Recent experimental and theoretical work has highlighted the great potential of magnet-

ically trapped dilute atomic gases in the Bose-Einstein condensed phase, for developing

applications and to study fundamental physics [26]. The degenerate regime can be

reached by isolating the gas from uncontrollable perturbations, making this an ideal

system to test the validity of fundamental concepts in quantum physics like the spin-

statistics theorem, spontaneous symmetry breaking, coherence, quantum phase transi-

tions, etc. [2, 40]. In addition, the effect that an external perturbation has on the

degenerate gas can be exploited in a two way: first, as a tool to understand the source

of the perturbation and second to perform controlled transformations of the gas itself.

The BEC magnetic field microscope [117, 125] corresponds to the first situation, while

several examples of atomic micro-manipulation with magnetic surface traps illustrate the

second possibility [26, 61].

A standard setup generically called an “atom chip”, is being used by many exper-

imental groups to manipulate atomic BECs [26]. It consists of a set of controllable

magnetic field sources mounted on a surface. Good conducting materials (like copper,

gold and silver) are preferred as the sources of magnetic field, mainly because they

support large current densities, therefore, producing low Joule heating, which can be

dissipated fast enough to avoid destruction of the system components. Large currents

produce strong and stable confining potentials, desirable to develop fast dynamics and

perform several operations during the BECs life-time. Proof of principle setups of sev-

eral applications have been already developed, including atomic guides, beam splitters,

coherent manipulation and interferometry experiments [26].

118
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Nowadays, the cold atom community is beginning to study different materials re-

placing the conducting wires in the atom chip. So far, few of these systems have been

explored, including ferromagnetic magnetic traps and lattice experiments [90], supercon-

ductor atom chips (recent experiments reported in [94]), a proposal of magnetic trapping

with carbon-nano-tubes [88], considerations of using alloys as conducting elements [86]

and materials with anisotropic conductivity [87]. Until now, the possible advantages of

the production of the atom chip, and of the properties of the materials are largely unex-

ploited experimentally. The list of alternatives (or complements) to metals also includes

graphene, semiconducting ferromagnets, and all the set of semiconducting devices such

as quantum dots, quantum wires or nano-resonators which have not being used so far

in any experiment to control the BEC in a direct form.

This thesis explores the coupling of an atomic Bose-Einstein condensate to a high-

mobility two-dimensional electron gas, through the magnetic field generated by a current

in the 2DEG. Two simple observations motivate studying this combination of systems:

due to its quasi-2D nature and its smaller conductance compared with a good conducting

metal, the life-time of trapped states near a 2DEG is expected to be much larger than

above a metallic slab. The second motivation is technical: structures over semiconduct-

ing devices can be patterned with high resolution (nm precision), potentially reducing

significantly the modulation of the magnetic field profile due to geometrical imperfection

of the patterns, which can limit the possibilities of operation and has been observed in

many atom chip experiments [26, 80].

The magnetic field produced by a typical high-mobility 2DEG at cryogenic temper-

atures, can be used to trap the condensate. The trap produced can be easily located at

distances between 1−10 µm above the 2DEG, with a depth of a few tens of µK. This trap

is weaker than most of the traps reported in experiments [26], but still strong enough to

hold a typical BEC containing 104−105 atoms. Hybrid systems combining the magnetic

field produced by a 2DEG and metal wires can improve the trapping conditions, keeping

the advantages identified above of using a semiconducting device. On the other hand,

the irregularities of the electron motion inside the 2DEG produces inhomogeneities of

the magnetic field, which affect strongly the continuity of a trapped condensate when it

is located at distances of the order of 1 µm from the surface. These results suggest that

implementing trapping potentials using 2DEGs, or similar semiconducting devices, can

open a new range of atom chip operation below 10µm, with the advantage of having

atomic and coherence lifetimes limited only by collisions with background atoms.

The second problem considered in this thesis consists of using a BEC close to a 2DEG

to probe the semiconducting system by sensing the irregularities of the magnetic field

produced. Two examples of this situation are presented: determination of quantised

conductance in a quantum point contact and determination of characteristics of the

donor distribution in the heterojunction containing the 2DEG. In both cases, a simple

model of the heterojunction provides a relationship between its structure and the mag-
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netic field produced. The level of sensitivity needed to detect variations of the magnetic

field due to changes in the conductance of a QPC can be reached by an atomic BEC

with a small scattering length which can be set, e.g. by using a Feshbach resonance of
133Cs.

In the second example, it was proven that the magnetic field profile can be used to

extract information about the statistics of the donor distribution in the heterojunction.

The development of such applications would present great advantages for the study of

semiconductor materials. For example, the single shot character of the measurement,

which means that a single experimental process can provide information about the het-

erojunction at different points within it. A second advantage is the non-perturbative

character of this technique, in the sense that properties of the 2DEG are not appreciably

changed by the presence of the BEC. A major disadvantage is the poor resolution of the

technique compared with other imaging procedures [122]. A micrometre resolved image

of the heterojunction is not enough to resolve all their details, which have a typical

length scale of a few hundred nm, but can be useful to identify long-range correlations.

Because of its geometry, atoms chips usually create trapping potentials with ex-

tremely elongated geometries, placing the BEC into a quasi-1D regime [143]. Such low

dimensional systems have phase coherence properties different from those observed in a

3D system, and whose understanding is needed to perform coherent manipulation of the

condensates in applications such as the matter-wave interferometer [26]. In this thesis,

we use the effective 1D equation proposed in [147], to evaluate the coherence properties

of elongated BECs in different regimes of transverse confinement [143]: 1D mean-field,

3D-cigar and the crossover between these two extremes. Predictions of the correlation

of the phase based on such an equation (Eq. (6.45)) show a smooth transition between

the two extreme regimes, confirming the ability of the equation to describe, in addi-

tion to the density profile of elongated BEC, the low energy dynamics of the system

[142, 147, 148].

Several directions of study can be pointed out. Apart from the examples mentioned

above of atom chips using non-metallic wires, other material systems have been con-

sidered, including the coupling BECs to a forest of carbon nano-tubes [149] and using

nano-magnets for trapping [150]. There is still a lot of room for research involving other

materials, and in particular establishing how solid state devices and BEC can be cou-

pled. As an example of what could be done to establish the possibilities for magnetic

trapping offered by different materials, here we illustrate the case of semiconducting

ferromagnets.

Trapping and manipulation of atoms using permanent magnets has been demon-

strated by R. Gerritsma et al. [90], but such designs suffer from the inflexibility of

having a fixed magnetization. Ferromagnetic semiconductors, or Dilute Magnetic Semi-

conductors (DMS), are materials whose magnetic properties can be changed by adjusting
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the carrier concentration or applying stress through a piezoelectric structure [151]. This

material seems adequate for implementing designs for cold atom manipulation with im-

proved flexibility over the permanent magnet based setups.

Firstly, a suitable geometry should be established. Two slabs of material magnetized

in the same direction, as shown in figure 7.1(a), plus externally applied bias (along z) and

offset (along x) fields, constitute the simplest possible trapping configuration involving

uniform magnetised material. In this configuration, trapping properties (position, depth

and frequency) depend on the magnetization and distance between slabs centres. Figures

7.1(b) and (c) show typical values achievable with this setup.
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Figure 7.1: (a) Typical trap properties achievable with a couple of DMS slabs in

a parallel configuration. (b) Trap properties for different trap positions. (c) Typical

potential energy for an 87Rb in presence of a setup like shown in (a)

The magnetization density of a DMS reaches just a few tens of kA/m [151], which

means that in order to build a trap working in the micrometre region, the required

dimensions of the slabs should be around one order of magnitude larger than the typical

ones deposited for DMS (3 µm vs. 300 nm). Perhaps it is not impossible to grow DMS

slabs with the required geometry, but it definitely is not a common task in the context of

DMS. In addition, it seems difficult to incorporate a simple way to control the intensity

and direction of the magnetic field. Advantages and implementation strategies for the

design of setups for atom manipulation are open questions.

Apart from trapping, new materials can offer the possibility to couple with the BEC

in such a way that they are, themselves, influenced by its presence. For example, we can

think of applications where the density of free electrons in a semiconductor is modified by
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the BEC, maybe due to the interaction between atomic and electron dipolar moments

[79]. Also, improving the coherence properties, lifetime and control of cold atomic

clouds could be achieved by integrating semiconductor devices in atom chips, opening a

broad range of possibilities for both technological applications and fundamental research.

Work in the direction of creating hybrid systems combining solid state devices and BECs

is nowadays an open field which surely, in the near future, will bring us interesting

applications and also new challenges.



APPENDIX A

Numerical solution of the GPE

This appendix describes how to produce a numerical solution of the Gross-Pitaevskii

equation, Eq. (1.27), and in particular how to calculate the ground state configuration

of a condensate described by the GPE. The presentation here follows mainly two bib-

liographic sources: the well known Numerical recipes: The art of scientific computing

[152] and the PhD. thesis presented by Robin Scott [153], where many additional details

can be found.

A.1 Operator splitting

The time splitting method, or method of fractional steps, is a procedure used for solving

partial differential equations by combining several finite difference schemes [152]. Con-

sider an operator L responsible of the time evolution of a function u(x, t), according to

the partial differential equation:

∂tu = Lu (A.1)

where the spatial (x) and temporal (t) dependencies of both u and L are assumed but

not explicitly indicated.

Suppose that L is a linear sum of M pieces, which act additively on u [152], i.e.,

the full operator L can be written as:

L = L1 + L2 + . . . (A.2)

and consider the set of equations with the form:

∂tu = Lmu (A.3)
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with m = 1, 2, . . . ,M .

Let Um be a scheme which solves approximately Eq. (A.3), by updating the function

u in discrete time steps, from its value at a given time t to the next instant t + ∆t.

The M updating schemes, one corresponding to each contribution to the operator L,

perform a discrete time evolution of the variable u according to:

ut+∆t = U1(u
t,∆t) (A.4)

ut+∆t = U2(u
t,∆t) (A.5)

ut+∆t = U3(u
t,∆t) (A.6)

...

such that Um is a discrete version of the individual operator Lm.

Including all the terms of the original operator, L, in each one of the updating

schemes Um, and not only the mth contribution, allows us to perform a complete up-

dating sequence corresponding to the full operator. This procedure should follows the

sequence [152]:

ut+∆t/m = U1(u
t,∆t/m) (A.7)

ut+2∆t/m = U2(u
t+∆t/m,∆t/m) (A.8)

· · ·
ut+∆t = Um(ut+(m−1)∆t/m,∆t/m) (A.9)

This combination of individual updating schemes provides the time evolution deter-

mined by the full operator L.

A.2 Crank-Nicolson updating scheme.

Consider the Gross-Pitaevskii equation, Eq. (1.27), with an external potential of the

form:

V (r) =

D
∑

i=1

Vi(xi) (A.10)

where D is the spatial dimensionality of the system and r = (x1, . . . xD) represents a

spatial vector position. A potential energy of the form Eq. (A.10) implies that motion

along each spatial direction contributes to V (r). The simplest example of this kind of

potential is the three dimensional harmonic potential with independent elastic constants

along each spatial direction.

With this form of the potential, the GPE operator can be split into contributions

corresponding to each spatial direction.

i~∂tψ =

D
∑

i

Liψ (A.11)
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where the one-dimensional Gross-Pitaevskii operator (1D-GP), Li , has the form:

Li = − ~
2

2m

∂2

∂x2
i

+ Vi(xi) +
1

3

4π~
2as

m
|ψ|2 (A.12)

For this form of potential energy, the operator splitting method,explained in the previous

section, can be used to solve the GPE.

According to this method, the time-evolution of the condensate wave function is built

by successive applications of updating schemes corresponding to each contribution to

the GP operator, satisfying the Eq. (A.3). The non-integrability of the 1D-GP operator,

Eq. (A.12), requires the use of numerical methods to evaluate the time-evolution of

the condensate wave-function ψ. This is done by imposing a discretisation of the time

and space coordinates in steps of ∆t and ∆xi, respectively, and representing the wave-

function, ψ, on such a grid of spatial points and evaluating its time-evolution at finite

time steps [153].

By discretizing the time and space, the partial derivative operators in the GPE take

the approximate form:

∂tψ ≈
ψt+∆t

j − ψt
j

∆t

∂xi
ψ ≈

ψt
j+1 − 2ψt

j + ψt
j−1

(∆xi)2
(A.13)

where j indicates the position in the spatial grid.

Replacing directly the discrete versions of the differential operators, Eqs. (A.13),

into the time evolution equation corresponding to the 1D-GP operator, Eq. (A.12),

produces:

i~
ψt+∆t

j − ψt
j

∆t
= − ~

2

2m

ψt
j+1 − 2ψt

j + ψt
j−1

(∆xi)2
+ (V j

i +
U0

3
|ψt

j |2)ψt
j (A.14)

where V j
i indicates the ith contribution to the potential energy evaluated at the jth

position in the spatial grid. Notice that using Eq. (A.14), the value of the wave function

at the next instant of time, ψt+∆t, can be evaluated explicitly by its values corresponding

to the previous instant of time, ψt. This procedure is known as an explicit scheme, since

the wave-function in the new instant of time can be obtained explicitly from the wave

function at previous instants.

On the other hand, the condensate wave function should satisfy the GPE at every

instant of time. Therefore, with the same level of accuracy as Eq. (A.14), the right

hand side of the GPE should be satisfied by the updated wave function, ψt+∆t:

i~
ψt+∆t

j − ψt
j

∆t
= − ~

2

2m

ψt+∆t
j+1 − 2ψt+∆t

j + ψt+∆t
j−1

(∆xi)2
+ (V j

i +
U0

3
|ψt+∆t

j |2)ψt+∆t
j (A.15)

In contrast with Eq. (A.14), this last equation cannot be solved explicitly for the updated

wave-function. In Eq. (A.15), there is a mixture of the wave-function evaluated at
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different grid points, at the instant of time t + ∆t, which are precisely the unknown

variables. This is an example of an implicit scheme, where the future wave-function is

determined by the relation of its values at different positions.

According to Robin Scott [153]:

“Both schemes (explicit and implicit) have the disadvantage that dif-

ferent sides of the equations are centred at different times. Specifically,

the left-hand side of the explicit scheme is centred at time t + ∆t
2 , while

the right-hand side is centred at time t. The left-hand side of the implicit

scheme is also centred at time t+ ∆t
2 but the right-hand side is centred at

time t+ ∆t.”

To solve this inconsistency, it is enough to take an average of the explicit and

implicit schemes, producing what is known as the Crank-Nicolson method, with the

finite difference equation:

i~
ψt+∆t

j − ψt
j

∆t
= − ~

2

2m

ψt+∆t
j+1 − 2ψt+∆t

j + ψt+∆t
j−1 + ψt

j+1 − 2ψt
j + ψt

j−1

(∆xi)2

+

(

Vj +
U0

3
|ψt+∆t

j |2
)

ψt+∆t
j +

(

Vj +
U0

3
|ψt

j |2
)

ψt
j (A.16)

Reorganising Eq. (A.16) by separating the updated bits of the form ψt+∆t
j , from the

old ones, ψt
j , this equation can be written as:

ψt+∆t
j

(

1 + 2β + α

(

U0

3
|ψt+∆t

j |2 + Vj

))

− βψt+∆t
j+1 − βψt+∆t

j−1 =

ψt
j

(

1 − 2β − α

(

U0

3
|ψt

j |2 + Vj

))

+ βψt
j+1 + βψt

j−1 (A.17)

with

α = i
~∆t

2~
and β =

i~∆t

2m(∆xi)2
(A.18)

Finally, Eq. (A.17) is conveniently written in the matrix form:



















1 + ξt+∆t
j −β · · ·

−β 1 + ξt+∆t
j+1 −β 0 · · ·

0 −β 1 + ξt+∆t
j+2 −β 0 · · ·

0 0 −β 1 + ξt+∆t
j+3 −β 0 · · ·

...
...





































ψt+∆t
j

ψt+∆t
j+1

ψt+∆t
j+2

ψt+∆t
j+3
...



















=



















1 + ξt
j −β · · ·

−β 1 − ξt
j+1 −β 0 · · ·

0 −β 1 − ξt
j+2 −β 0 · · ·

0 0 −β 1 − ξt
j+3 −β 0 · · ·

...
...





































ψt
j

ψt
j+1

ψt
j+2

ψt
j+3
...



















(A.19)
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where

ξt
j = 2β + α

(

U0

3
|ψt

j |2 + V j
i

)

(A.20)

The right hand side of Eq. (A.19) can evaluated explicitly since it depends entirely

on the known function ψt
j . In contrast, the diagonal elements of the matrix on the left-

hand side (LHS) depend on the updated function,ψt+∆t
j , which is unknown, and therefore

they cannot be explicitly calculated. A way to resolve this issue consists of using the

old function, ψt
j , to evaluate the matrix entries and then estimate the updated function.

This first estimation of ψt+∆t
j is used to evaluate the LHS matrix, and then solved again

to find a new updated function. This procedure should be repeated iteratively until it

reaches convergence, which sounds worse than it is in practice, since usually just two

iterations are enough to obtain an updated function with good accuracy [153].

According to the time-splitting method, a complete time evolution of the full GPE is

obtained by applying the scheme indicated by the tridiagonal Eq. (A.19) for each spatial

direction, but including the pieces of the operator L corresponding to the other spatial

directions. In practice, this means that Eq. (A.20) should be replaced by:

ξt
j = 2β + α(U0|ψt

j |2) + Vj) (A.21)

with Vj being the total potential energy at position j in the grid and not just the

contribution corresponding to the spatial coordinate involved in the momentum operator.

The tridiagonal form of the problem Eq. (A.19) is conserved for each direction if

the wave-function is stored according to the order of the grid along the corresponding

direction. This requires that between applications of the updating scheme along dif-

ferent directions, the vector ψj should be reorganised. See [153] for details about the

reorganisation sequence.

Finally, it should be mentioned that the boundary conditions over the wave-function

should be carefully taken into account when building the tridiagonal matrices in Eq.

(A.19).

A.3 Imaginary-time evolution of the GPE

Consider a generalised Schrödinger equation:

i~∂tψ = Lψ (A.22)

with L a Hermitian operator. Replacing the time variable by the complex quantity −it,
converts the wave-equation Eq. (A.22) into a diffusion equation, which can be used to

obtain equilibrium configurations.

Formally, the real-time evolution of a general Schrödinger equation is given by:

|ψ(t)〉 = e−iL̂t/~ |ψ(t = 0)〉 (A.23)
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Using the set of eigen-states of the operator L̂, satisfying L̂ |φj〉 = ǫj |φj〉, any initial

condition can be expanded as:

|ψ(t = 0)〉 =
∑

ψj |φj〉 (A.24)

and therefore, the time evolution takes the form

|ψ(t)〉 =
∑

j

e−iǫjt/~ψj |φj〉 (A.25)

Performing the change t → −it, the time evolution of each component of the state

becomes a decaying exponential. After a given evolution period, the whole wave-function

decreases in amplitude as consequence of the non-conservation of the norm introduced

by the ficticious i factor. The components corresponding to excitations states decay

faster than the associated with the ground state of the system (lowest eigen-energy).

To avoid the wave-function going to zero after prolongated evolution, a renormalization

should be realized periodically. The result of this processes is the suppression of all

components except the one corresponding to the lowest energy state [153].

Figure A.1: Sketch of how the imaginary time evolution of an initial state eliminates

the high energy components.

Figure A.1 illustrates an example of how the composition of the initial states changes

as the imaginary-time evolution occurs. Panel (a)p shows a representation of the coeffi-

cients of the initial state: |ψ(t = 0)〉 = 1√
2
|0〉 + 1√

2
|1〉, where the states have energies

satisfying ǫ0 < ǫ1. After a period of imaginary time evolution and renormalisation, the

coefficients of the superposition transform as shown in the panel to the right. After

repeated evolution and renormalization processes, the component corresponding to the

higher energy vanishes.



APPENDIX B

Magnetic field due to a 2D distribution of currents

This appendix shows how the magnetic field produced by a two-dimensional current flow

can be obtained in terms of the Fourier transform of the distribution. A straightforward

application of such relation allows us to obtain the magnetic field produced by a current

flowing in a 2DEG and the donor distribution in the hetero-junction, Eq. (5.20).

This direct relation between the magnetic field and the donor distribution can be

used to establish the relation between the statistics properties of those two quantities,

as illustrated by Eqs. (5.21) and (5.22).

This appendix follows the definitions of ensemble average and correlation function

by Kerson Huang in [1].

B.1 Magnetic field in terms of the Fourier Transform of

the current density

This section follows the presentation in Ref. [125]. Consider a thin conducting layer

lying in the x − y plane and carrying a time-independent current density j = (jx, jy).

This current density represents the charge passing through a transverse section of the

2D plane, per unit of time and ”area” of the transverse section. In 2D a transverse

section corresponds to a line and therefore, the current considered here, j, is in units of
charge

length×time .

The Biot-Savart law relates the magnetic field with its sources according to:

B(r) =
µ0

4π

∫

j(r′) × (r − r′)

|r − r′|3 d2r′ (B.1)
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where µ0 is the permeability of the vacuum, r = (x, y, z), r′ is a position vector in the

plane of the conductor and the integral is performed over the complete region where the

current flows.

After examining each component of the magnetic field given by Eq. (B.1), the Biot-

Savart law can be interpreted as a convolution of the current density with the weighting

function (r − r′)/|r − r′|3. For example, consider the x-component of the magnetic

field, which, according to Eq. (B.1), is given by:

Bx(r) =
µ0

4π
z

∫

jy(r
′)(x− x′)

((x− x′)2 + (y − y′)2 + z2)3/2
dx′dy′ (B.2)

The convolution theorem establishes a relation between the Fourier Transform of the

convoluted function and the weighting factor [152]. In the present case, the convoluted

function corresponds to the current density components while the weighting factor is

given by the components of ∼ (r−r′)
|r−r′ |3 ) [152], according to Eq. (B.1) Applied to Eq.

(B.2), this theorem reads out as:

bx(k, z) = g(k, z)jy(k) (B.3)

where k = (kx, ky), bx(k, z) and jy(k) are the 2D Fourier transforms of the magnetic

field and current density, respectively, and g(k, z) is the 2D Fourier transform of the

factor multiplying the current density in Eq. (B.2):

g(k, z) =
µ0

2
e−kz (B.4)

where k =
√

k2
x + k2

y [125]

Similar results can be obtained for the y and z components of the magnetic field,

which are summarised as follows [125]:

bx(kx, ky, z) =
µ0

2
e−kzjy(kx, ky) (B.5)

by(kx, ky, z) = −µ0

2
e−kzjx(kx, ky) (B.6)

bz(kx, ky, z) = i
µ0

2
e−kz

(

ky

k
jx(kx, ky) −

kx

k
jy(kx, ky)

)

(B.7)

B.2 Derivation of Equation (5.20)

Equation (5.20) establishes the relation between the magnetic field produced by a current

in a 2DEG, and the distribution of donors in the hetero-junction.

Consider a typical hetero-junction containing a 2DEG whose electrons come from a

thin layer of dopant. As explained in Chapter 2, the electron-electron Coulomb repulsion

screens the electrostatic potential due to the ionized donors. In the linear screening
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regime [96], the total electrostatic potential is given by Eq. (2.2):

Φscreened(r
′) =

e2

4πǫǫ0

∫

e−kd ηd(k)eik·r
′

k + ks
dk (B.8)

where d is the separation between the donor layer and the 2DEG plane, k = (kx, ky),

ηd(k) is the 2D Fourier Transform of the donor density ηd(r
′), r′ is a vector position in

the 2DEG plane, ǫ is the relative permittivity of GaAs and

ks =
e2m∗

e

2ǫǫ0π~2

is the screening wave vector, with m∗
e the electron effective mass.

The inhomogeneous component of the current flow occurring when a small uniform

electric field is applied to the 2DEG, is determined by the gradient of Eq. (B.8):

j(r′) = −σ~∇Φ(r)

e
(B.9)

where σ is the 2D conductivity of the layer, which has units of charge
length×time

charge×length
energy

When converting Eq. (B.9) to k-space, the derivative operator becomes a mul-

tiplication by the corresponding wave-vector component. Therefore, in k-space, the

inhomogeneous contribution to the current density, Eq. (B.9), becomes:

j(k) = −σΦ(k)

e
k (B.10)

Combining this last equation with the screened potential, Φ, given by Eq. (B.8), the

Fourier Transform of the inhomogeneous components of the current in the 2DEG is

obtained:

j(k) = σ k
e

2ǫǫ0
e−kd ηd(k)

k + ks
(B.11)

The Fourier components of the x-component of the magnetic field produced by this

current, can be evaluated by applying the convolution theorem Eq. (B.5), which yields:

bx(k, z) =
µ0

2
e−kzσky

e

2ǫǫ0
e−kd ηd(k)

k + ks
(B.12)

Finally, an inverse Fourier transform over Eq. (B.12) produces the magnetic field

distribution in real space:

Bx(r) =
µ0σe

4ǫǫ0

∫

d2k ky
ηd(k)

k + ks
e−k(d+z)eik·r (B.13)

which, along the x-axis (y = 0) becomes:

Bx(x, z) =
µ0σe

4ǫǫ0

∫

d2k ky
ηd(k)

k + ks
e−k(d+z)eikxx (B.14)

coinciding with Eq. (5.20).
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B.3 Derivation of Eqs. (5.21) and (5.22)

Eq. (B.14) establishes a direct relation between the statistical distribution of the donors

in the hetero-junction containing the 2DEG and the inhomogeneous magnetic field pro-

duced when a small current flows inside it.

This equation also can provide a relation between the statical properties of these two

quantities. A simple example is the self-correlation of the component of the magnetic

field along the x-axis, given by:

〈

Bx(x, z)Bx(x′, z)
〉

=

(

µ0σe

4ǫǫ0

)2 ∫ ∫

d2kd2k′ kyk
′
y

〈ηd(k)ηd(k
′)〉

(k + ks)(k′ + ks)

× e−(k+k′)(d+z)eikxx+k′
xx′

(B.15)

where the correlation of the donor density distribution, in momentum space, can be

identified.

Assuming that the donor distribution, ηd(r
′), belongs to an stationary ensemble with

probabilities independent of the origin of coordinates, then the correlation function of

the density distribution satisfies:

〈

ηd(r
′)ηd(r

′ + ∆r′)
〉

= C(∆r′) (B.16)

i.e. it depends only on the relative distance between the points.

This relation implies that, in the momentum representation, the auto-correlation

function of the donor density satisfy the standard relation [1]:

〈

ηd(k)η(k′)
〉

= S(k)δ(k + k′) (B.17)

where S(k) is the spectral density of the donor density distribution. Using this equation

in Eq. (B.15) eliminates one of the integrals and yields:

〈

Bx(x, z)Bx(x′, z)
〉

=

(

µ0σe

4ǫǫ0

)2 ∫

d2k k2
y

S(k)

(k + ks)2
e−2k(d+z)eikx(x−x′) (B.18)

The mean-square of the magnetic field can be obtained by taking x = x′ in Eq.

(B.18):
〈

B2
x(z)

〉

=

(

µ0σe

4ǫǫ0

)2 ∫

d2k k2
y

S(k)

(k + ks)2
e−2k(d+z) (B.19)

which corresponds to Eq. (5.21)

The spectral power of the magnetic field Bx(x, z), considered as a function of x,

can be defined as [1]:

Dkx
(z) =

1

2π

1

〈B2
x(z)〉

∫

d(x− x′)
〈

Bx(x, z)Bx(x′, z)
〉

e−ikx(x−x′) (B.20)
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Therefore, applying Eq. (B.18), Dkx
(z) can be written in the form:

Dkx
(z) =

(

µ0σe

4ǫǫ0

)2 1

〈B2
x(z)〉

∫

dky

k2
ye

−2k(d+z)

(k + k2
s)

S(k) (B.21)

corresponding to Eq. (5.22).

The averages considered here correspond to ensemble averages, i.e. averages over

different realizations of the donor distribution. According to the ergodic hypothesis,

valid for a stationary ensemble [1], the average in Eq. (B.15) is equivalent to an average

over real space, meaning that a single measurement of the magnetic field along the

x-axis, can be used to determine the statistical properties here mentioned.



APPENDIX C

Bogoliubov - de Gennes modes for the 1D effective model of a

quasi-1D degenerate Bose gas

In a Bose-Einstein condensate, the small amplitude oscillations around a stationary con-

figuration are described by the Bogoliubov - de Gennes equations. These can be obtained

by linearising the Gross-Pitaevskii equation around a small deviation from the equilibrium

configuration.

Here we consider a 1D generalised Gross-Pitaevskii equation with arbitrary non-linear

dependence on the condensate density, η1D = |ψ|2 :

i~∂tψ = − ~
2

2m
∂2

xψ + V (x)ψ + ζ(η1D)ψ (C.1)

where ψ is normalised to the total number of particles, N , according to:

∫

|ψ|2dx = N (C.2)

An equilibrium configuration, ψ0, satisfies the time independent non-linear Schrödinger

equation:

µψ0 = − ~
2

2m
∂2

xψ0 + V (x)ψ0 + ζ(η0
1D)ψ0 (C.3)

where µ is the chemical potential.

The time evolution of a small deviation from the equilibrium configuration can be

studied by writing the condensate wave-function in the form:

ψ(x, t) = (ψ0(x) + ǫδψ(x, t))e−iµt (C.4)
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The Taylor expansion of the non-linear function ζ(η1D), around the equilibrium

configuration ψ0 has the form:

ζ(η1D) = ζ(η0
1D) + ǫ

∂ζ

∂η1D

∣

∣

∣

∣

η0
1D

ψ0(δψ + δψ∗) (C.5)

where we have considered the particular case of ψ0 as a real function.

Using this expansion, the fact that ψ0 satisfies Eq. (C.3), and keeping only first

order terms in ǫ, the linear deviation satisfies:

i∂tδψ = − ~

2m
∂2

xδψ + ψ2
0 ζ̇0(δψ + δψ∗) + (ζ0 − µ)δψ (C.6)

where

ζ0 = ζ(η0
1D)

ζ̇0 =
∂ζ

∂η1D

∣

∣

∣

∣

η0
1D

The excitation modes of the system can be obtained by expanding the linear deviation

of the condensate function in Fourier components of frequency ωj:

δφ =
∑

j

uj(x)e
−iωjt − v∗j (x)e

iωj t (C.7)

As result of replacing expansion Eq. (C.7) into Eq. (C.6) and separating out the positive

and negative frequency factors, a set of two coupled equations for the coefficients uj(x)

and vj(x) is produced:

~ωjuj = − ~
2

2m

d2uj

dx
+ (V (x) − µ)uj + |ψ0|2ζ̇0(uj − vj) + ζ0vj (C.8)

−~ωjvj = − ~
2

2m

d2vj

dx
+ (V (x) − µ)vj + |ψ0|2ζ̇0(uj − vj) + ζ0uj (C.9)

These coupled equations are known as the Bogoliubov-de Gennes equations and can be

written in the matrix form:

~ωj

(

uj

vj

)

=

(

L −|ψ0|2ζ̇0
|ψ0|2ζ̇0 −L

)(

uj

vj

)

(C.10)

where

L = − ~
2

2m

d2

dx2
+ V (x) − µ+ ζ̇0|ψ0|2 + ζ0 (C.11)

In this form, the Bogoliubov-de Gennes equations correspond to a eigen-problem for

the matrix at the right hand side of Eq. (C.10). For an arbitrary external potential

V (x) and non-linear function, ζ, numerical solutions to this equation can be found by

expanding the matrix in a complete basis of functions, {φj(x), j = 1, . . .}, satisfying the

ortho-normality condition:
∫

dxφ∗j (x)φi(x) = δij (C.12)
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The uj(x) and vj(x) functions can be expanded as:

uj(x) =
∑

n

un
j φn(x) (C.13)

vj(x) =
∑

n

vn
j φn(x) (C.14)

and, the matrix in Eq. (C.10) can be written as:

(

Lnm −(|ψ0|2ζ̇0)nm

(|ψ0|2ζ̇0)nm −Lnm

)

(C.15)

with

Lnm =

∫

dxφ∗mLφn (C.16)

(|ψ0|2ζ̇0)nm =

∫

dxφ∗m(|ψ0|2ζ̇0)φn (C.17)

In this thesis we have chosen a discrete spatial representation for the functions uj(x)

and vj(x), i.e., they are represented by a vector containing the value of the functions at

points of a regular grid spaced by ∆x, in a region of length L

With this representation, the action of the operator L over an arbitrary function, f ,

is given by:

L[f ] = − ~
2

2m

fk+1 − 2fk + fk−1

∆x2
+ (Vk − µ+ ζ0,k + |ψ0,k|2ζ̇0,k)fk (C.18)

where the subindex k indicates the value of the corresponding function at position k in

the spatial grid.

Finally, the matrix representation of operators L and |ψ0|2ζ̇0 becomes:

L =



















gk + 1
∆x − 1

2∆x 0 · · ·
− 1

2∆x gk+1 + 1
∆x − 1

2∆x 0 · · ·
0 − 1

2∆x gk+2 + 1
∆x − 1

2∆x 0 · · ·
0 0 − 1

2∆x gk+3 + 1
∆x − 1

2∆x 0 · · ·
...

...



















(C.19)

|ψ0|2ġ0 =



















|ψ0,i|2ζ̇0,k 0 . . .

0 |ψ0,i|2ζ̇0,k+1 0 . . .

0 0 |ψ0,i|2ζ̇0,k+2 0 . . .

0 0 0 |ψ0,i|2ζ̇0,k+3 0 . . .
...

...
...

...
. . .



















(C.20)
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Results in Chapter 6 were obtained by solving the eigen-problem of the matrix Eq.

(C.15), composed by the sub-matrices Eqs. (C.19) and (C.20). The ground state of the

condensate was calculated by an imaginary-time propagation of the GPE, as explained

in Appendix A. For each case presented, the size of the region where the Bogoliubov

modes are evaluated is taken at least two times the extension of the condensate. In

addition, the size of the space of the grid was taken smaller than the healing length at

the peak density of the condensate. The eigenstates of the matrix were calculated by a

standard LAPACK subroutine (see http://www.netlib.org/lapack/).
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and T.M. Fromhold. Zone-plate focusing of Bose-Einstein condensates for atom

optics and erasable high-speed lithography of quantum electronic components.

cond-mat.quant-gas/0912.1846.

[80] T. Schumm, J. Estve, C. Figl, J.-B. Trebbia, C. Aussibal, H. Nguyen, D. Mailly,

I. Bouchoule, C. I. Westbrook, and A. Aspect. Atom chips in the real world: the

effects of wire corrugation. Eur. Phys. J. D, 32:171, 2005.

[81] L. Della Pietra, S. Aigner, C. von Hagen, Sönke Groth, I Bar-Joseph, H. J. Lezec,

and J. Schmiedmayer. Designing potentials by sculpturing wires. Phys. Rev. A,

75:063604, 2007.

[82] G. S. Agarwal. Quantum electrodynamics in the presence of dielectrics and con-

ductors. I. Electromagnetic-field response functions and black-body fluctuations

in finite geometries. Phys. Rev. A, 11:230, 1975.

[83] C. Henkel. Magnetostatic field noise near metallic surfaces. Eur. Phys. J. D,

35:59, 2005.

[84] D. M. Harber, J. M. McGuirk, J. M. Obrecht, and E. A. Cornell. Thermally In-

duced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature

Surfaces. J. Low Temp. Phys., 133:229, 2003.

[85] S. Scheel, P. K. Rekdal, P. L. Knight, and E. A. Hinds. Atomic spin decoherence

near conducting and superconducting films. Phys. Rev. A 72, 042901 (2005) (4

pages), 72:042901, 2005.

[86] V. Dikovsky, Y. Japha, C. Henkel, and R. Folman. Reduction of magnetic noise

in atom chips by material optimization. Eur. Phys. J. D, 35:87, 2005.

[87] T. David, Y. Japha, V. Dikovsky, R. Salem, C. Henkel, R. Folman, and Ben-

Gurion. Magnetic interactions of cold atoms with anisotropic conductors. Eur.

Phys. J. D, 48:331, 2008.

[88] P. G. Petrov, S Machluf, S. Younis, R. Macaluso, T. David, B. Hadad, Y. Japha,

M. Keil, E. Joselevich, and R. Folman. Trapping cold atoms using surface-grown

carbon nanotubes. Phys. Rev. A, 79:043403, 2009.



IMAGINARY-TIME EVOLUTION OF THE GPE 146

[89] T. Fernholz, R. Gerritsma, S. Whitlock, I Barb, and R. J. C. Spreeuw. Fully

permanent magnet atom chip for Bose-Einstein condensation. Phys. Rev. A,

77:033409, 2008.

[90] R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J.-U. Thiele,

J. B. Goedkoop, and R. J. C. Spreeuw. Lattice of microtraps for ultracold atoms

based on patterned magnetic films. Phys. Rev. A 76, 033408 (2007), 76:033408,

2007.

[91] Bo-Sture K. Skagerstam, Ulrich Hohenester, Asier Eiguren, and Per Kristian

Rekdal. Spin Decoherence in Superconducting Atom Chips. Phys. Rev. Lett.,

97:070401, 2006.

[92] T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J.-M.

Raimond, and S. Haroche. Realization of a Superconducting Atom Chip. Phys.

Rev. Lett., 97:200405, 2006.

[93] C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M.

Raimond, and S. Haroche. Bose-Einstein condensation on a superconducting atom

chip. Eur. Phys. Lett., 81:56004, 2008.

[94] D Cano, B. Kasch, H. Hattermann, R. Kleiner, C. Zimmermann, D. Koelle, and
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