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ABSTRACT 

Several techniques are applicable to the modelling of 

production and inventory control systems. In this thesis 

discrete linear control theory is examined as a method of 

modelling multi-product, multi-level systems. These systems 

are categorised and a general discrete linear control model is 

used to determine system stability and to predict system 

responses to specific patterns of input information. The 

response of the system to random variability in input or 

other system variable is also shown to be predictable. A 

library of sub-system models is provided and the method is 

illustrated by examples and a case study. 

Alternative modelling techniques rely upon sequential 

simulation, either directly or in solving equations representing 

the system. The need to include forecasting, inventory and 

production decision-making procedures makes such models large 

and their sequential nature imposes the need for complete re- 

modelling for each system modification and for each input 

pattern. Where random effects are modelled, protracted runs 

are necessary to achieve statistically acceptable results. 

In contrast, discrete linear control theory provides a non- 

sequential model, thereby alleviating these problems. Thus it 

is possible both to reduce computing expense and increase the 

range of systems susceptible to manual analysis. The method 

is limited by the restriction of linearity, but, in many practical 

situations this restriction poses no insuperable difficulty 

in the interpretation of results. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

Production and inventory control in a multi-product, multi- 

level environment is necessarily complex and analysis and design 

of such systems is greatly assisted by suitable modelling. The 

techniques frequently used (e. g. simulation) provide adequate 

but complex models which are usually completely computer orientated. 

Such models are often cumbersome in use and, because of their 

computer dependence, give only limited insight into the modelled 

system. There would therefore be considerable value in a modelling 

technique which can be applied rapidly and simply, whilst also 

being capable of deep and detailed analysis where this is appropriate. 

Because of its ability to handle a complete time-series as 

a single entity, discrete linear control theory may provide such 

a technique. We shall examine its applicability to the problem 

of multi-product, multi-level production and inventory control. 

Our objective will be to establish both the range of possible 

application of such models, and the form (and so usefulness) of 

their results. 

1.2 Synopsis 

We shall discuss in some detail the class of production and 

inventory problems which concern us (1.3). We consider those multi- 

product, multi-level systems where decisions are taken on a fixed 

time-cycle. The method restricts us to linear systems but we 

suggest that this is not so serious a restriction as to invalidate 

the technique. 
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Alternative techniques which may be applied to these systems 

(e. g. simulation, industrial dynamics) are briefly examined (1.4). 

Discrete linear control theory is fully described in the literature 

[Bishop, 1975; Muth, 19771 and we include only basic definitions 

and the results which are needed in practical analysis (Chapter 2). 

These are developed into routine techniques for system modelling. 

The models so derived allow determination of system stability, in 

many cases by inspection. For more complex cases the reader is 

directed to mathematical tests of stability. The models may also 

be used to examine transient responses to standard input patterns 

and to determine performance in response to stochastic inputs. 

We demonstrate the use of these techniques in some detail with 

the aid of a simple, single-level, single-product example 

(Chapter 3). A general model is then constructed; this is capable 

of extension to the full range of production and inventory control 

systems under consideration (Chapter 4). 

Our general technique is only widely applicable if it is 

possible to model, in detail, a broad range of individual system 

elements (e. g. forecasting mechanisms, scheduling rules). We 

therefore give a set of such models (Chapter 5), both for direct use 

where applicable and to demonstrate the ease with which system 

element models can be built. 

Chapter 6 shows an example of the use of both the general 

model of Chapter 4 and some of the system elements developed 

in Chapter 5. Besides its use in detailed and comprehensive system 

analysis, our technique can be applied as a very rapid, simple, 

"back of an envelope" method. We illustrate this with a description 
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of an actual application of the development of a relatively 

simple system which was needed quickly and where only incomplete 

information was available (Chapter 7). 

A simple interactive computer program designed to carry out the 

algebraic manipulation of system modelling is presented (Appendix I). 

Proofs of the results of Chapter 4 are given (Appendix II). 

Our conclusion (Chapter 8) is that the z-transform technique has, 

despite the constraints of discreteness and linearity, a significant 

area of application. It should be considered as an alternative to 

simulation or industrial dynamics wherever these constraints are 

satisfied. Further work based on the theory of z-transforms may 

relax these constraints. We believe that use of the techniques 

described here may also ease further research into the general 

performance of production and inventory systems. 

1.3 The Class of Systems Considered 

Diecretenese 

We consider only those production control systems where 

monitoring and decision occurs at fixed, discrete points in time. 

Thus we include "periodic review" systems but exclude the "reorder 

point" systems, where action is triggered by some continuous 

variable reaching a critical level. 

Both reorder point and periodic review systems are in common 

use. The latter are particularly suited to use in computer based 

systems where a regular processing timetable is often imposed. 

We are therefore addressing a significant range of systems. 
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It is possible that in some areas real-time computer production 

control systems may cause greater use of reorder point systems. 

It is, however, unlikely that more than a few periodic review 

systems will be replaced. 

Linearity 

A system is said to be Zinear if all relationships between 

variables are linear. This is a significant limitation on the use 

of the method since almost all systems in the real world are at 

best only linear within certain limits. For example stocks cannot 

actually become negative. It is however often possible to interpret 

behaviour beyond the limits of linearity without invalidating the 

use of a linear model - negative stocks may be interpreted as 

a backlog of orders. Even where such interpretation is not valid 

a linear model may still be of value for many systems are intended 

to remain in the linear region and are considered to have failed 

when they become non-linear (e. g. when the order backlog becomes 

so great as to affect incoming orders). In systems such as these 

a linear model may be sufficient in predicting the circumstances 

in which an undesired departure from the region of linearity will 

occur. 

The value of linear modelling techniques is also increased 

when we consider the findings of Schneeweiss (1975] and Inderfurth. 

They suggest that, in many cases, it is possible to derive a 

linear decision rule which gives equivalent or only slightly poorer 

results than an optimal non-linear process. In the light of 

this it is advisable to always consider the possibility of using 

a linear system before adopting a more complex non-linear system 
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as the performance advantage of the latter may well be insignificant. 

Mutti-ZeyeZ, multi-product systems 

A multi-level, multi-product system controls the flow of 

materials, components, assemblies and finished products through 

manufacturing facilities. The products may share common parts 

at any level of manufacture. 'Many such systems exist, particularly 

in the consumer durable industries. 

Much theoretical work has been devoted to single-level; 

single-product environments, or to the control of individual 

parts within a multi-level, multi-product system. In particular, 

none of the earlier work using linear control theory has gone 

beyond the single-level, single-product case. Simon [1952] and 

Campbell [1953] both developed continuous inventory control models 

using Laplace transforms, whilst Vassian (1955] uses a discrete 

model employing geometric transforms and Elmaghraby [1959] uses 

z-transforms in a highly theoretical way. Pinkham [1958] extends 

Vassian's work to produce optimal balance between production smoothing 

and inventory smoothing costs. All of these essentially present 

an example illustrating the use of control theory techniques 

and point the way to a deeper investigation of the applicability 

of these techniques. 

Sargent [1966] follows this direction and analyses in detail 

a more complex inventory control system. He illustrates the 

practical use of a discrete linear control model and emphasises 

the analysis of a sophisticated forecasting procedure and its effect 

upon the whole system. It remains, however, a single-level model. 
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The general model we present in Chapter 4 embodies a broad range 

multi-product, multi-level systems. It can handle systems where 

each level is controlled independently to meet demands from the 

level above, integrated systems where control at each level uses 

information about final product demand and mixed systems where 

some parts are controlled one way and some the other. The model 

can represent single-level cases and indeed we use single-level 

examples to illustrate the application of some of the techniques, 

as well as presenting a multi-product, multi-level example. 

We note that, in particular, "material requirements planning" 

systems [Wight, 1974] fall within the scope of the general model 

up to the point of generation of net requirements. A full 

material requirement planning system may also apply non-linear 

scheduling rules to meet supplier constraints. However, we believe 

that a model of the linear part of the system is of value and 

that the evaluation of the supplier scheduling phase of material 

requirements planning may be based upon the known performance of net 

requirements generation. 

1.4 Alternative Techniques 

A number of techniques are available for use in modelling 

production control systems. Probably the most commonly used of 

these is simulation, either manual or computer based. A simulation 

model can be very powerful, allowing detailed modelling of every 

known aspect of the control system and its environment and generating 

quantitative analysis of any variables within the system. There is 

no difficulty in handling non-linear systems. Manual simulations 

are especially useful as demonstrations both as a means of model 
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validation involving line management and as a means of training 

all levels of personel in the operation of a system to be implemented. 

Unfortunately manual simulation becomes impractical for large 

and complex systems : the model is simply too slow to operate. Use 

of computer simulation models relieves this problem and increases 

the size and complexity of system which can be analysed. However, 

the demonstration value of the model is, to a great extent, lost. 

Many computer simulation packages are available commercially and 

it is seldom difficult to select a package appropriate to the 

system to be modelled. Typically such packages compile statistics 

automatically with a minimum of user effort. Random number 

generators within the package facilitate modelling of stochastic 

processes. 

Difficulties still devleop, however, as size and complexity 

increase. Simulation packages make heavy demands on core capacity 

so requiring use of large and expensive computers. The main source 

of expense is, nevertheless, not the cost of an individual run but 

the necessity for repeated runs. Because a simulation is numerical 

in nature, it is necessary to completely rerun the simulation if 

any system parameter is changed. Furthermore, each run must be 

fairly long to be statistically valid. Thus to determine an 

acceptable level of, say, a smoothing constant the simulation must 

be rerun for a range of values. The necessary number of runs 

quickly becomes prohibitive where several such parameters are 

inter-dependent. Computer simulation also tends to be clumsy in 

examining deterministic responses to standard input patterns. 
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An alternative to digital simulation, suggested by Lewis 

11963,1967(2)], is the use of analogue and hybrid-analogue 

computer models. It is significant that in this method we see 

the experimental tools originally conceived for analysis of physical, 

engineering control systems brought to bear upon production control 

systems. In the use of discrete linear control theory we shall see 

the equivalent theoretical tools transferred in the same way. 

Analogue simulation is also restricted as to the size and 

complexity of system which can be modelled as analogue computers 

have limited capacity. Very large machines would be needed to 

model multi-product, multi-level systems. Furthermore analogue 

computers operate in a continuous manner. They can simulate discrete 

systems either by continuous approximation or with the aid of 

"sample hold" mechanisms. There are limits to the precision 

of results and although in some cases qualitative results may 

be sufficient this is a significant problem. 

Forrester [19611 presents systems dynamics as an all-embracing 

modelling system. Here a system is modelled as a set of mathematical 

relationships between state variables called "levels" and "rates". 

The model is analysed by simulating the action over time of these 

relationships using the methods of numerical analysis. Coyle [1977] 

examines the theory of systems dynamics and the methods used to 

simulate model responses. Computer packages are readily available 

to carry out the numerical simulations on a constructed model. 

Despite the breadth of scope claimed by Forrester for systems 

dynamics, its use is not universal in modelling. The dialogue 

between Ansoff at. al. [19681 and Forrester [1968] suggests some of 

the limitations. In some contrast Roberts [1977] presents a collection 
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of papers on applications of systems dynamics. Unlike simulation, 

systems dynamics models do not lend themselves to demonstration 

as they are difficult to present comprehensibly to a layman. 

The equations and diagrams describing the relationships within 

the system tend to be esoteric, and it seems strange to use a discrete 

simulation to analyse a continuous model representing a discrete 

system. Foo [1978] presents a direct comparison of systems dynamics 

and discrete linear control theory using simple examples. Although 

he reaches no conclusions he lists his perception of the relative 

merits of the two techniques. 

Holt et. al. [1968) and Bensoussan [1972] use the principle of 

optimality together with mathematical models similar to those of 

systems dynamics. In particular optimal lot sizes are derived 

in examples. A great deal of work has followed from this (Bensoussan, 

1972(2); Crossley, 1972; Bradshaw, 1973,1974,1975,1976; Axsater, 

1978]. Most of this work is however of a highly theoretical nature, 

and does not directly provide a detailed modelling technique. 
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CHAPTER 2 

DISCRETE LINEAR CONTROL THEORY 

2.1 Preamble 

In this chapter we present the definitions and properties 

of z-transforms and z-transfer functions relevant to the remainder 

of the thesis. No attempt is made to prove properties as adequate 

proofs appear elsewhere (Muth, 1977; Jury, 1964]. We also show 

the technique of system reduction demonstrated in full by Howard 

[1963]. 

2.2 The z-Transform 

If g(t) is a time-series having value g(t) at time t, then the 

z-transform of g(t) is defined as: - 

g(z) -E g(t)z-t 
t-0 

where z is a complex number. 

We shall frequently abbreviate g(z) to g. The time-series in 

the t-domain will always be distinguished by the presence of the 

argument. 

Thus a time-series z-transform is a power series in z-l. Tables 

of z-transforms of most standard time-series are published 

(Beightler at. al, 1961]. These frequently show simplification of 

the power series to shorter expressions. 
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2.3 Properties of the z-Transform 

Linearity 

Let g(t) - h(t) + k(t) be time-series. Then: - 

g(z) - h(z) + k(z) 

Let a be a real scalar, and g(t) - ah(t). Then: - 

g(z) - ah(z) 

Translation 

Let 6 be an integer, and let g(t) - h(t-6) be time-series. 

Then: - 

g(z) . z-6h(z) 

2.4 The z-Transfer Function 

Let T be some linear system operating upon an input time-series 

h(t) to generate the transformed output time-series g(t). This 

is illustrated in Figure 2.4. a. 

nct> ý -r 9<i> 

Figure 2.4. a :A Linear System. 

Then we define T(z), the z-transfer function of T, to be the 

z-transform of g(t) when h(t) is the unit impulse at time ti0 

(i. e. h(t) -1 when t-0, and h(t) -0 otherwise). 

We shall frequently abbreviate T(z) to T. 
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2.5 Properties of the z-Transfer Function 

Transformation 

For any input time-series h(t) to system T the z-transform 

of the output time-series g(t) is given by: - 

g(z) - h(z)T(z) 

Linearity 

If T generates output time-series g(t) in response to the input 

of the sum of time-series h(t) + k(t) then: - 

g(z) - (h(z) + k(z))T(z) - h(z)T(z) + k(z)T(z) 

If T generates output time-series g(t) in response to input 

time-series ah(t) for some scalar a then: - 

g(z) - (ah(z))T(z) - a(h(z)T(z)) 

Serial Transformation 

Let S and T act serially on input time-series h(t) to produce 

output g(t) (Figure 2.5. a), and let (ST) represent their action. 

NO ST g(t) 

Figure 2.5. a : Serial TransFormation 

Then we have: - 

g(z) - h(z)(ST)(z) - h(z)S(z)T(z) 
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Thus the z-transfer function representing the successive 

action of two transformations is the product of the z-transfer 

functions of the two transformations. 

Commutation 

If S(z) and T(z) are z-transfer functions and g(t) a time- 

series then: - 

g(z)s(z) - s(z)g(z) 

and: - 

g(z)S(z)T(z) - g(z)T(z)S(z) 

Derivation 

If g(t) is known to be the output of transformation T when 

h(t) is input then we can derive the z-transfer function T(z) as: - 

T(z) s 
g(z 

h(z) 

2.6 System Reduction 

We shall represent systems as block diagrams in which boxes 

represent transformations and the flows between boxes represent 

time-series. Addition or subtraction of time-series shall be 

represented thus: - 

-> ++ + 

Figure 2.6. a : Time-Series Addition & Subtraction 
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Where a time-series is input to more than one transformation 

this is represented by a branch in the flow: - 

Figure 2.6. b : Time-Series Input To Two TransFormations 

Using such diagrams we can represent any linear system. Depending 

upon the complexity of the system there may be transformations acting 

in series or on parallel branches and loops; the latter may well be 

nested. 

Following Howard [1963] we can reduce any such system to a single 

z-transfer function compounded of the z-transfer functions of the 

elementary transformations of the system. Such reduction uses the 

properties of the z-transform and z-transfer function listed above 

(Sections 2.3 & 2.5). The process is explicitly described by 

Howard, who also demonstrates an alternative diagrammatic representation 

using signal flow graphs. Chapter 3 demonstrates in detail the 

reduction of a system, using these techniques. 

2.7 System Stabilit 

We define a system to be stable if its response to any 

input impulse is bounded in time. That is, given any 6>0 we 

can choose a finite t' such that the response g(t) to an input 

impulse will satisfy g(t)<d for all t> t'. 
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The definitions of z-transfer function (2.4) and z-transform 

(2.2) imply that the z-transfer function is a power series in 

z-l. Such a power series can in turn be expressed as a quotient 

of polynomials Nz. We define the characteristic equation of a 
D(z) 

system to be D(z) - 0. 

It is a necessary and sufficient condition of system stability 

that the roots of the characteristic equation lie within the unit 

circle in the z-plane. (For proofs see Jury [1964] and Muth [1977]). 

Where it is possible to solve the characteristic equation it is, 

therefore, a simple matter to determine system stability. It is 

not always possible however to explicitly solve a polynomial equation 

of degree greater than 2. When this problem arises it is possible 

to use algorithms establishing the location of equation roots relative 

to the unit circle. Such algorithms are described by Truxall [1955]. 

2.8 Transient Responses 

For any standard input time-series we can obtain the z-transform 

either by definition (2.2) or from z-transform tables fBeightler, 1961]. 

The z-transform of the output time-series is then the product of input 

z-transform and system z-transfer function. To determine the 

response time-series we invert its z-transform either by using tables 

or, where the z-transform appears as a power series in z-1, by using 

the z-transform definition. Bishop 11975] demonstrates the application 

of several transient response criteria and the selection of system 

parameters. 
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2.9 Noise Response 

Noise input to a system can be described as a time-series of 

impulses, selected at random, according to some statistical 

distribution. The response to each individual impulse is 

described by the system z-transfer function (2.4) and, for a 

stable system, is bounded in time. Thus for any required precision 

we can describe, in the z-domain, the response to the noise impulse 

x(t) at time t as: - 

a0x(t) + alx(t)z-1 + ... + aux(t)z n. 

All earlier and later impulses have similar responses and so the 

resultant response seen at a given time t is: - 

a0x(t) + a1x(t-1) + ... + anx(t-n). 

Let us assume that the noise distribution is time-independent. 

Then x(t),..., x(t-n) are all selected from the same distribution, 

so the terms a0x(t),..., anx(t-n) are each selected from a scaled 

copy of this distribution. 

However, the distribution of a random variable derived as the 

sum of random variables is, by definition, the convolution of the 

distributions of the summands. 

Hance we have a simple method of determining system responses 

distributions to input random noise; 
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(i) Express the system z-transfer function as a power 

series in z-1. 

(ii) Limit that power series by setting a limit of 

significance on the coefficients. This is always 

possible for a stable system. 

(iii) Write down for each term a copy of the input 

distribution scaled by the coefficient of the power of z. 

(iv) Convolve these to give an output distribution. 

This process is well-defined and finite, though it may, 

depending upon the degree of precision required, be tedious. It is, 

however, susceptible to computer assistance (e. g. Appendix I). 
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CHAPTER 3 

A SIMPLE INVENTORY CONTROL SYSTEM 

3.1 Preamble 

Here we consider a very simple inventory control system. 

Our intention in doing so is to illustrate the techniques 

described above (Chapter 2). 

A diagrammatic representation of the system is given (3.1. a). 

Stock is held to meet customers' demands and is replenished by 

deliveries against schedules placed upon a supplier. A single 

product is considered and no interest is taken in the supplier's 

problems in meeting delivery schedules. 

Figure 3.1. a :A Simple Inventory Control System. 

-20- 



Customers' demand is shown as input to the system and is subject 

to the system's policy on delivery. The current stock together with 

some forecast of demand must be taken into account in raising 

schedules to place upon the supplier. These schedules will be met 

after some lead-time, and result in receipts into stock. Receipts 

and issues to customers are integrated to determine the new stock. 

3.2 The Model 

It is clear that customer demand, issues to customers, forecasts, 

current stock balances, delivery schedules and receipts into 

stock are all time-series and thus that delivery policy, forecasting, 

scheduling, lead-times and stock integration constitute transformations 

of time-series. The z-transforms of the time-series are 

represented symbolically in Figure 3.2. a. 

Figure 3.2. a :A Simple Inventory Control System (Symbolic Representation) 
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Customer Demand is represented by d. 

Issues to Customers are represented by i. In its simplest 

form this time-series is merely a delayed version of d. 

Forecast Gross Requirements are represented by f. When the 

delivery policy lead-time is equal to the supplier's schedule 

lead-time this can be identically equal to d. However the policy 

lead-time will normally be less than the supplier's lead-time, in 

which case some assumption must be made concerning future demand - 

predictions must be used for as yet unknown elements of d. It is 

possible that a forecast based on data other than past demand may 

be used. It would then be necessary to provide a second input to 

the system in which case the use of this model, and the general 

model described later, would be slightly modified. 

Supplier's Delivery Schedules are represented by dl. The 

letter d is used here as well as above because the delivery 

schedules output by this system are the demands input to the supplier's 

control system. 

Receipts from Supplier are represented by r. 

Stock Balance is represented by s. 
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The z-transfer functions of the system elements are also 

represented in the Figure (3.2. a). 

Delivery Policy is represented by I. It will contain lead- 

time delays and any systematic spreading of deliveries. 

Forecasting is represented by F. This generates a forecast 

gross requirement suitable for input to net scheduling. 

Net Scheduling is represented by D. This receives as input 

the difference between a requirement generated by F and the 

current stock balance. D carries out schedule netting and any 

necessary delays and smoothing. A very close link exists between 

F and D. They are together the forecasting and scheduling routines 

and are better considered in this way than as two individual functions. 

They are separated by the point in their arithmetic where the 

current stock balance is subtracted from the gross requirement. 

Stock Integration is represented by S. It receives as input 

the time-series r-i (the resultant of receipts and issues). 

Suppliers Zead-time is represented by L. This may be a simple 

delay, or, for a more difficult supplier, may contain some spreading, 

proportional change or other transformation. 

We shall now derive system z-transfer functions for our system. 

Firstly we consider the z-transfer function from customer demand 

to delivery schedules. It is clear from Figure 3.2. a that: - 
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dl - (f - s)D 

dFD - (r - i)SD 

dFD - d1LSD + dISD 

d(FD + ISD) - d1LSD 

. '. 
d1(1 + LSD) = d(FD + ISD) 

. 
dl d( FD + ISO 

1+ LSD 

Thus the system z-transfer function is: - 

T (d, d1) - 
dl 

- FD + ISD 
d1+ LSD (3.2.1) 

It should be remembered that this derivation has been carried 

out entirely in the z-domain. In the t-domain such manipulation 

of time-series and transformations is invalid. 

Stock balance is a time-series internal to the system. However 

it is important, for system design, to be able to predict its 

behaviour. From Figure 3.2. a we deduce: - 

sý (r-i)S 

= d1LS - dIS 

(f - s)DLS -dIS 

.e. s (l + LSD) -d (FDLS - IS) 

DLS - IS 

CF 1+ LSD) 
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and so we have the system z-transfer function from customer demand 

to stock balance: - 

T (d, s) -s- FDLS - IS 
d1+ LSD 

(3.2.2) 

It must be remembered that, because the system is linear, stock 

may notionally become negative. This must be interpreted as the 

backlogging of orders. The effect of such backlogging, combined 

with the delivery policy, constitutes the system's service to the 

customer. As long as stock remains negative delays are imposed 

over and above the delivery policy determined for the system. It 

is possible, in certain environments, that such an additional delay 

may affect later customer demand, in which case a further feedback 

loop must be considered. 

Both the system z-transfer functions derived above contain the same 

expression as denominator, namely 1+ LSD. This is inevitable as 

both d1 and a lie on the same loop in the system, in this case the 

only loop. 

3.3 The Effects of Random Noise 

In a real environment random noise may be imposed at any or all 

of several points within the system. Although, in a stable system, 

recovery from any disturbance must eventually occur, evaluation of 

the system must include prediction of the effects of such noise. 

The distributions imposed upon time-series as a result of random 

noise generated elsewhere are critical to such factors as the 

necessary size of safety stocks, delivery performance to customers 

and the smoothness of delivery schedules. Since we are dealing wits 
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a linear system it is possible to consider each potential source 

of noise independently as their effects are strictly additive. We 

shall derive, as examples, system z-transfer functions to delivery 

schedules and current stock balance from three points where 

significant noise may be introduced. 

Supplier Performance 

We shall consider first the effects of random variation in 

the supplier's performance against our schedule. This is the most 

likely source of noise as it is beyond the control of those 

responsible for operating the system. Furthermore, it is the recipient 

of blame for most failures and its potential as a disrupting 

influence should be fully understood- 

Supplier 
PerFormance 

Receipts 1ý, Varation 

Stock 
Integration 

Supply 
Lead-Time 

---+ 
Supply 

tock Scheduling Supp ly 
Schedules 

1ce' 

Figure 3.3. a : System Subject To Supplier Performance Variation 
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As the system is linear, customer demand, issues to customers 

and forecasts may be considered identically equal to zero without 

loss of generality. We may now reconstruct Figure 3.1. a omitting 

these and inserting the input noise which is added to receipts from 

supplier to form Figure 3.3. a. When the system elements are 

represented by their z-transforms (3.3. b) we can deduce: - 

dl -sD 

-rSD 

-(r + d1L)SD 

-iSD - d1LSD 

Figure 3.3. b : System Subject To Supplier PerFormance Variation 
(Symbolic Representation) 
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d1(1 + LSD) - -rSD 

d1 - -rSD 
1+ LSD 

So we have: - 

T(r, d1) - 
d1 

-SD (3.3.1) 

r1+ LSD 

This system z-transfer function represents the supplier's view of 

his customer as a "black box" which responds to any variation from 

schedule on the supplier's part. 

Similarly, we can derive the system z-transfer function from r 

to s so as to be able to describe the response of stock balance to 

delivery variability: - 

T(r, s) -S 
1+ LSD 

(3.3.2). 

By applying this to an expected distribution of deliveries we obtain 

the resulting distribution of stock balance and can thus set a 

safety stock to achieve any desired level of performance. If 

other random effects in the system also affect stock balance then 

all such distributions may be convoluted (because of system 

linearity) to provide a resultant stock balance distribution. 

Stock Record Errors 

Recording errors may be considered as a source of noise 

applied to stock balance. This is illustrated by Figure 3.3. c. 



Stock Lead--Tirfie 
Integration 

Stock Record 
Errors +, - 

Stock 

` 
i/ atanc: s 

Scheduling 

0 Suppig Schedules d., 

Figure 3.3. c : System Subject To Stock Record Errors 

We derive as above: - 

T(i, d1) -1+D 
LSD 

(3.3.3) 

and: - 

T(s, s) LSD (3.3.4) 
1+ LSD 

This latter result is of significance because it describes the full 

effect of recording errors upon stock-holding. Any excess or 

reduced stock-holding is the cost of recording inaccuracy. It is 

frequently thought that the limited cost of such errors does not justify 

better recording but it is doubtful that the full effect is always 

understood. 

We can also consider random errors imposed upon issues to 

the customer consisting, for example, of miscounting and pilferage. 

It is clear, from Figure 3.3. b that such errors (let us call their 

z-transform 
i) 

affect the system in precisely the same way as r except 
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that i is subtracted where r is added into the input to S. Thus we 

have: - 

T (i, d1) SD (3.3.5) 

1+ LSD 

and: - 

T (i, s) - -S (3.3.6) 
1+ LSD 

The linearity of the system allows us a great deal of flexibility 

in handling such sources of error as delivery variability, issue 

counting errors, pilferage and stock loss due to deterioration 

since all impinge upon the system at the same point. As we have 

seen, all are subject to the same system z-transfer function. 

Where these factors can be isolated the system's response to their. 

individual distributions can be predicted and, using linearity, the 

response distributions can be combined to predict overall response. 

If, however, it is simpler to determine the distribution of a 

combination of some or all of these factors then the system 

z-transfer functions can provide the combined output distributions. 

Of course, if individual distributions are known, we still have the 

choice of combining them (by convolution) before applying the 

system z-transfer functions. 

3.4 A Specific Example 

We now proceed to define the elements of the system modelled 

above. This demonstrates, in a simple case, the ease with which 

a system may be analysed before we introduce the complications 

of a multi-level, multi-product system. Although the underlying 
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mathematics of the model is sophisticated, its potential application 

and interpretation are simple and elegant. 

We define the system elements as follows: - 

Delivery Policy is that deliveries shall be made during the 

period following receipt of the customer's order. Hence issues from 

stock are the same time-series as demand but delayed by one period. 

Supplier's Zead-time is 3 periods: deliveries shall be made 

in the third period after the schedule is placed. Receipts into 

stock are the same time-series as delivery schedules delayed by three 

periods. 

Scheduling delivery schedules shall be calculated each period. 

using the following expression: - 

Forecast gross requirements for next 3 periods 

- current stock 

- delivery schedules already placed for next 2 periods 

+ safety stock 

delivery schedule 

We shall for the moment apply a safety stock of zero. 

Forecasting we shall forecast the next three periods gross 

requirement very crudely by assuming that the current period's 

demand will be repeated in future periods. 
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Stock Integration adds the net receipts of the current period 

to the stock balance of the last period. 

Customer 
Delay Demand 

Period 

Issues 

Stock 

Integration 

Multiply 

By 3 

Forecast 
Gross 
Reats. 

Stock 
Balance 

Receipts 

2 Period'sy ýHoever 

Schedules 

A Single Level Example Figure 3.4. a 

Delay 
3 

Periods 

Supply 
Schedules 

The block-diagram for this example can be drawn as above. We may 

now proceed to evaluate the z-transfer functions of the system's 

elements. 

Delivery Policy the z-transfer function of a delay of n periods 

is z-n so we have 

Isz (3.4.1) 

Forecasting we need a forecast of the total demand over the next 

3 periods and, since scalar multiplication in the t-domain is 

unchanged by transformation to the z-domain, we have: - 

F- 3 
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Stock Integration may be represented by Figure 3.4. b. Here a new 

stock balance is calculated by adding net receipts (receipts - issues) 

for the current period to the last stock balance. 

ceLpts - Issues 

ock Balance 

Figure 3.4. b : Stock Integration 

From the diagram we see that: - 

s- (r-i)+sz1 

0'. S (l - Z-1 )-r-i 

""" 8 (ä - i) ý. 

1-Z-1 

r-1 1-Z-1 

We expand this, using the binomial theorem, as 

(3.4.3) 

S 1+ z-1 + z-2 +z 
3+ 

..... 
(3.4.4) 

Since we know that zn delays a time-series by n periods it is 

clear that, when stock integration is applied to the time-series of 

net receipts, the resulting stock-balances are each the sums of all 

previous values of net receipts. 

Net Delivery Scheduling is shown in Figure 3.4. c. Each schedule 

is used directly in calculating each of two subsequent schedules. 



From the diagram: - 

. 
'. f-s- d1(1 + z-1 + z-2) 

dlz-1 - dlz-2 

o* O dl = (f - s) 1 

l+z-1+z 2 

. 
'. D- 

d1 

f-s 
1 

l+Z-1+Z-2 (3.4.5) 

This expands to: - 

D1-z 
1+ 

Z-3 _ z-4 + z-6 - Z-7 + .... . (3.4.6) 

We make two points to illustrate the interpretation of this z-transfer 

function. Firstly, the scheduling rule is such that each input 

affects schedules into the infinite future without damping - the 

system hunts. Secondly, every third period is totally unaffected. 

Both these effects will be modified when the scheduling rule is 

incorporated into the entire system because this will introduce 
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a feedback loop from d1 to f-s. 

Supplier's lead-time is defined to be a delay of 3 periods so 

L z-3 (3.4.7) 

Now that we have evaluated the individual z-transfer functions we 

can use them to expand the system z-transfer functions derived 

above (3.2). From equation 3.2.1 we have: - 

T (d, dl) = FD + ISD 

1+ LSD 

3 z-1 

+z1+z2+ (1 - Z-1)(1 + z-1 + Z-2 ) 
3 

-3 z 
1+ 

(1 - z-1)(1 + z-1 + z-2) 

3(1 - Z-1) +z1 

(1- l)(l+z l+z 2 
+z 

3 
z 

3- 3z-1 + z-1 

1+ z-1 + z-2 - z-1 -z 
2- 

Z-3 + $-3 

T (d, d1) -3- 2z-1 

Similarly from equation 3.2.2 we can deduce: - 

T (d, s) - -IS + FDLS 
1+ LSD 

ý2z3-z2-zl 

(3.4.8) 

(3.4.9) 
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As these two system z-transfer functions have reduced to 

polynomials in z-1 their interpretation is particularly simple. 

We recall (Chapter 2) that a z-transfer function is the z-transform 

of the system's response to a unit impulse and that multiplication 

by z-1 represents a unit delay in the t-domain. It is now clear 

from equation 3.4.8 that, in response to a unit impulse customer 

demand, a delivery schedule of 3 is immediately raised followed next 

period by a schedule of -2. Equation 3.4.9 shows that stocks become 

-1 on delivery to the customer and remain so until the next delivery 

schedule is met two periods later. Stock then increases to 2 before 

returning to zero on implementation of the negative schedule. 

In a real system such negative figures may be impossible. They 

can, however, be understood in a number of different ways because 

the system is linear. We may consider the demand impulse to be 

super-imposed upon some larger, underlying demand pattern and thus the 

system z-transfer functions describe the changes in schedules and 

stocks. Negative stocks can be interpreted as the use of a policy 

safety stock or backlogging of customer demand. 

Since we have seen that, if an impulse increase in customer 

demand occurs, it will result in a finite set of scaled, delayed 

impulses in both delivery schedules and stock balances, we can be 

is s t"410, 

satisfied that the systemlas the effect of an impulse is bounded in 

time. 

/l 

Besides requiring a system to be stable we must also consider 

the acceptability of its transient responses. We have looked at the 

system's responses to a unit impulse. The acceptability of these 

responses depends in part on the underlying demand pattern. It is 
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unlikely that a supplier will accept negative schedules which must 

be interpreted as returns to him (there are exceptions such as "sale 

or return" agreements). We must therefore be satisfied that there is 

no significant probability of occurrence of an impulse large enough 

to generate a schedule reduction greater than the underlying 

schedule. 

In order to achieve our stated policy on delivery to customers 

we must hold sufficient safety stock to absorb the stock reductions 

arising from any significantly probable impulse. Since the negative 

effect of an impulse lasts two periods we must provide safety stock 

equal to the sum of any two significantly probable consecutive impulses. 

We shall now examine the system's responses to three other 

standard input patterns and in each case shall discuss the factors 

affecting the acceptability of these responses. 

Unit step 

The z-transform of the unit step can be obtained from z-transform 

tables as: - 

d(z) z 
z-1 

We-know from equation 3.4.8 that: - 

dl = (3 - 2z-1)d 

_ (3-2z1) 

-3 
-Z-, ) 

(z 11 
-2z1I z1 

`Z 1/ 

This can be interpreted, just as for the unit impulse, as the sum of 
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two scaled unit steps, one of which is delayed by one period. 

This is illustrated graphically (3.4. d). 

30 

20 

2e 

in 

10 

0 

e 

-10 

-10 

-2e - ----------------------------- 

Figure MA : Schedule Response To Step 

We know also, from equation 3.4.9 that: - 

a (2z-3 - z-2 - z-1 )d 

(2z3-z2-z-1) z1 
z 1/ 

" 2Z ( -3 z1 -Z (Zl -Z rz 

This is shown in Figure 3.4. e 
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Here the delivery schedule response is quite acceptable as 

the system first raises a large schedule to cover the early demands 

before supply reacts, then immediately settles to a steady level. 

The buffer stock needed to cover this can be determined from 3.4. e 

as 2A + B, where A and B are the magnitudes of any two significantly 

probable, consecutive step changes in customer demand. It is 

worth noting that no faster response, and therefore no smaller safety 

stock, is possible, given the constraint of supplier's lead-time. 

Unfit Ramp 

The z-transform of the unit ramp can be obtained from z- 

transform tables as: - 

?0 
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d(z) z 

(z - 1) 
2 

We know (3.4.8) that: - 

dl " (3 - 2z-1)d 

(3 - 2z-1) z 

(z - 1) 
2 

- 3z-2 

(z - 1) 
2 

(3z2 - 3z + z)z-1 

(z - 1) 
2 

- 3z(z - 1) fZ 2_1 

(2 _ 1) 
2 

3z +z z-1 
z-1 (z-1ý2 

This is the sum of a unit step multiplied by a scalar of 3 and a 

unit ramp, both delayed by one period, which can be illustrated 

graphically (3.4. f). 

X101 
2.20 

1.98 

r-- 
ý leis. 

1.54 

1.3 
r--1--' 

1.10 
__! 

Figure 3.1. F : Schedule Response to Romp 
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We also know (3.4.9) that: - 

s -3 -2 1(2z- 
z- z )d 

(2z-3 - z-2 - z-1) 

z- 1) 
2 

2z-2 - z-1 -1 
(z - 1) 

2 

(-2z 
2- 

z-1)(z - 1) 

(z - 1) 
2 

z -2z-3 - Z-2) 

z- 1) 

This is the sum of one unit step multiplied by -1 and delayed 2 

periods and a second unit step multiplied by -2 and delayed 3 

periods. This is plotted in 3.4. g. 

Here we have a reasonable pattern of delivery schedules increasing 

at the same rate as demand after an initial jump. However, stock 

becomes negative and remains so implying either a permanent reduction 

in buffer stock or a permanent backlogging of demand. If these are 

unacceptable the system must be modified. To improve performance the 

forecasting mechanism must be altered to recognise and predict 

the continuing ramp. 
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Figure 3.1. g : Stock Response To Ramp 

I 

Sinusoid 

By application of the sampling theorem [Truxall 1955, pp. 505-506] 

we know that the demand time-series d(t) cannot reproduce any 

sinusoid whose frequency is greater than half the system review 

frequency. The system's fundamental frequency is 2A radians/period, 

and so any sinusoidal demand, d(t) -a sin w t, input to the system 

need only be considered if its frequency w is such that w<n. 

We know from equation 3.4.8 that: - 

dl m (3 - 2z-1)d 

and so d1(t) is the sum of two scaled sine curves separated by a 

phase angle of w radians. This is illustrated (3.4. h) with 

w=n. When w- it, the sampling limit, the two components of 
5 

d1 tend to reinforce because they are of opposite sign and have a 

phase difference of one period, so we have 

dl(t) 5 sinnt 
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As w decreases the components tend to cancel and so 

lim d1(t) sinwt 
w+0 

We can now interpret the response of d1(t) to any sinusoidal input 

and therefore to any cyclical input. The result will always be an 

amplified version of the demand time-series, having the same 

frequency. Low frequency input patterns will be amplified very 

little and will match the input waveform closely. High frequency 

demands will be amplified up to a maximum of 5 times and will 

suffer considerable waveform distortion through sampling. 

We now examine the response of stock balance to sinusoidal 

demand. From 3.4.9: - 

s -3 -2 1(2z- 
z- z )d 

we know that s(t) is compounded of 3 consecutive sine curves separated 

by one period phase differences: - 

s-2 sin(w(t-3)) - sin(w(t-2)) - sin(w(t-1)) 

which we illustrate (3.4.1) with w-w. 
5 

If we allow w to reach n, its maximum we find that: - 

s -2 sinnt - sinnt + sinnt 

-2 sinnt 

As w decreases the phase differences of one period lose significance 

so: - 

lim a (t) -o 
a+o 
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Thus stock response to sinusoidal input is also an amplified copy 

of demand. The maximum amplification, when w- it, is 2 and when 

frequency is low amplification tends to zero. The system sees a 

very low frequency demand as similar to a step and, as we have 

already seen, can maintain zero stocks. 

Knowing that the system is going to exaggerate its response 

to the high frequency components of demand we are in a position to 

determine its acceptability. We must know the expected demand patterns 

well enough to evaluate the amplitude of any high frequency components. 

Where these are negligible the system's response will show a delayed 

copy of demand with negligible amplification. We may therefore 

wish to increase the review frequency so as to eliminate high frequency 

responses by reducing their frequency. However, we must also consider 

their elimination by reducing system frequency until they are 

unrecognisable. The choice of action will be governed. by the entire 

frequency spectrum of demand. 

By examining the system's response to a range of demand patterns 

we can decide upon its acceptability or the need for its modification. 

Analysis may point to specific modifications, for example, forecasting 

could be improved to detect and predict a ramp demand or system review 

frequency may be changed to improve response to cyclic elements of demand 

Given some knowledge of the market where demands arise and past 

demand patterns it is possible to estimate, at least subjectively, 

the probability of occurrence of particular demand time-series, their 

amplitude relative to underlying demand patterns and their frequency 

spectra. From this knowledge we may decide the need for modification. 

In many cases the need for modification is expressible in economic 

terms. Where response to a probable pattern of demand results in 
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negative stocks we must invest in sufficient buffer stocks and the 

cost of this stock-holding represents the cost of not modifying 

the system. Similarly, where the response is an impossibly 

negative delivery schedule which cannot be offset against underlying, 

steady-state components of delivery schedules we will see an 

undesired surplus stock. 

The fact that our system is stable means that the effect of 

any noise impulse is bounded in time. However, noise is constantly 

generated and the noise response impulses will coincide at other 

points in the system. Each time-series present in the system will 

contain a linear combination of delayed, scaled copies of the noise 

time-series. Hence the system will transmit any noise distribution 

as the convolution of a number of scaled copies of this distribution. 

We derived (3.3.1) the system z-transfer function T(r, dl) and 

we can now substitute the values of the z-transfer functions to 

obtain 

T (r, d1) - -SD 
1+LSD 

11 

= 1- Z-1 + Z-1 +z2 

1+ z-3 
ý1 

-11( -1 -2 1z /\1 
+z+z 

i -1 

(1-Z-1)(1 +z'+Z2)+Z3 

-1 

1+ z 
1+ 

z -2 
_ Z-1 _ Z-2 -z 

-3 + Z-3 

-1 



Thus the system z-transfer function from noise superimposed upon 

supplier's deliveries to delivery schedules is simply scalar 

multiplication by -1. The effect of such noise upon delivery 

schedules is a simple and immediate correction. 

Similarly from 3.3.2: - 

T 6, 
s) S 

1+ LSD 

=1+z1+z-2 

implying that each noise impulse will increase stock immediately 

and for the next two periods. The distribution of stock 

perturbations will therefore be the triple convolution: - 

8-Y+r+r 

which is a flattened, spread version of the input noise distribution. 

Let us take as an example a very simple form ;: 
- 

r (-1) - .2 

r(0) - .5 

r (1) - .3 

r(x) -0 for all x11 or x<-l 
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Then we have: - 

(r + r) (-2) - .2x .2 - . 04 

(i + i)(-I) - .2x .5 + .5x .2- .2 

(r + r) (0) - .2x .3 + .5x .5+ .3x .2- . 37 

(r' + r) (1) - .5x .3 + .3x .5- .3 

(r +r)(, 2) =. 3x .3 -. 09 

and so: - 

(r + + r)(-3) - .2 x . 04 - . 008 

(r +r + i)(-2) - .2 x .2+ .5. x . 04 - . 06 

+r + r')(-1) - .2 x . 37 + .5x .2 + .3x . 04 - . 186 

(r +r +i)(0) - .2 x .3+ .5x . 37 + .3x .2- . 305 

(r + + r) (1) - .2 x . 09 + .5x .3 + .3x . 37 - . 279 

(i +r +r)(2) - .5 x . 09 + .3x .3 - . 135. 

(r +r + i)(3) - .3 x . 09 - . 027 

" We are here using convolution of a finite set of distributions 

to arrive at a resultant distribution of response to noise. This 

method of analysis replaces the traditional simulation analysis 

necessary to evaluate the effect of noise within the system. The 

arithmetic of convolution, in spite of its simplicity, is extensive 

in real environments where noise distributions have a broad band of 

significantly probable values. Each convolution spreads the 

distribution and increases the arithmetic in the next (as is clear 

from the example above). It is, however, a process of fixed length 

(unlike simulation) and can be shortened in many cases by fixing 

a significance limit of probability. Furthermore, standard convolution 

programs are available for use in most computer installations. The 
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program of Appendix II carries out convolution in an arithmetically 

simplified manner suitable for use in this context. 

This method's application is rapid and cheap when compared 

with the extended process of system simulation. We are replacing 

the process of simulation of an entire, complex system by the numerical 

evaluation of its known response in terms of each time-series we 

wish to examine. Irrelevant parts of the system are not part of 

the computation, nor do we require protracted running of the model 

to ensure the occurrence of all combinations of circumstance. 
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CHAPTER 4 

A GENERAL MODEL 

4.1 Preamble 

In the last chapter we demonstrated the use of z-transform 

control techniques in a single-product, single-level environment. 

We now proceed to the development of a general model introducing 

the complexities of a multi-product, multi-level production facility 

controlled by an integrated system. This facility assembles a 

'range of finished products from sub-assemblies and components 

manufactured from raw materials. Products may share common parts 

at any level. 

We shall describe two forms of information flow which together 

comprise the basis of most practical production control systems. 

These two flows will be explicitly included in the general model to 

be developed. We demonstrate that systems within the scope of 

this thesis can be modelled by some combination of sub-systems of 

three distinct forms. The first such sub-system is applied to each 

finished product, whilst one or other of the remaining two is 

applied to each sub-assmebly, component or material as dictated by the 

types of information flow used in controlling its production and 

stocking. 

We can apply z-transform analysis to each sub-system in a 

manner which, particularly in the case of the finished product, is 

similar to Chapter 3. This analysis yields a sub-system s-transfer 

function for each finished product, but, because of commonality of 

use at lower levels, it cannot do so for the remaining sub-systems. 

-49- 



However, we can describe the response of any time-series in the 

sub-system in terms of all its inputs and so linearity allows us 

to analyse the response to any one sub-system input. 

The use of the general analysis developed for each sub-system 

allows the response to any input to be traced through successive 

levels. Thus it is possible to generate a system z-transfer 

function between any two time-series in the system where causal 

relationship exists. Although the development of such a system 

z-transfer function is cumbersome in any general form, it is 

usually a simple matter to derive any desired function from the sub- 

system analysis in a given practical case. For this reason we 

confine analysis of the general model to analysis of the three 

sub-systems and show how they can be combined to form an analysis 

of the entire system. This forms a powerful tool in analysis of 

practical systems and we show its use in a very simple multi-product, 

multi-level example in Chapter 6. 

4.2 Categories of Information Flow 

Two categories of information flow form the basis of most 

multi-product, multi-level production control systems. Although 

z-transform techniques are equally applicable to both categories, 

the flows of information used to control production of parts below 

finished product level differ radically and so their control theory 

models must differ. We shall refer to the two categories as 

"cascaded systems" and "base information systems" and define 

these as follows: - 



4.2.1 In a CASCADED SYSTEM, the only demand information used in 

controlling production of a part is the demand for that 

part generated at higher manufacturing levels. 

4.2.2 In a BASE INFORMATION SYSTEM production of a part is 

controlled using demand for those', finished products 

which contain the part. 

Mixed systems can and do exist where some parts are controlled 

by base information systems and others by cascaded systems. This 

is particularly likely in large, complex organisations where 

inter-departmental relationships are not consistent. Such mixed 

systems are adequately modelled by an appropriate mixture of 

sub-system types. 

4.3 The Environment of the Model 

In this section we define the environment of the general model 

in terms of the structure of products whose assembly and manufacture 

are controlled. 

4.3.1 There is a total range of M finished products which may have 

common components or materials at any stage of manufacture. 

4.3.2 There is a total range of N parts used in the manufacture 

of these products. (Here and henceforth, the term "part" 

is used to denote any sub-assembly, component or material). 

This includes all parts whose manufacture or procurement 

is controlled by the system. 

-S1_ 



4.3.3 There exist K definable levels of manufacture of the product 

range. Thus each part can be considered as belonging to 

some level of the progression from raw material to finished 

product. We follow a widespread, though not universal, 

convention [British Standard 5191,1975] of giving the least 

level number to finished product and increasing that number 

as we work toward raw material. We shall also adopt the almost 

universal parlance which describes levels near to finished 

product as high and those near to raw material as low. 

Despite the apparent inconsistency of giving the lowest 

numbers to the highest levels this combination of conventions 

is in widespread practical use. 

For example, in an environment where raw materials are 

purchased and manufactured into components which are then 

assembled into a finished product we have three levels 

which we shall number from 0 to 2: - 

Level 0: finished product (highest level) 

Level 1: components 

Level 2: raw materials (lowest level) 

4.3.4 Whilst in a real environment the majority of parts are 

used only at one level, there frequently exist parts used 

at several levels. These will tend to be such standard 

items as fasteners, spacers and the like, and we define 

their level as the lowest (i. e. greatest level number) 

at which they are used. To maintain consistency in the 
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general model we forge the links from such parts to their 

uses more than one level up by introducing dummy parts at 

each intervening level. Although such dummies form an 

untidy aspect of the model, their effect on its analysis 

is negligible except as a simplification. 

4.4 The Form of the Model 

The model is formulated by decomposing the entire control system 

into a set of sub-systems, one for each product and part. The 

system category (base information, cascaded or mixed) will determine 

the patterns of information flow both between and within the sub- 

systems. 

We show this decomposition for a cascaded system (Figure 4.4. a). 

In this general diagram it is clear that a flow of information is 
. 

included from each sub-system to every sub-system at the next level 

down. In most real systems each sub-system will ignore many of 

these inputs as irrelevant. It is thus possible to simplify the 

appearance of the general diagram although its basic form remains 

unaltered. 

The general diagram for a base information is also given 

(Figure 4.4. b). This is a more complicated representation as the 

number of information flows is far greater than for the cascaded 

system. Examination shows that the general form is the same as for the 

cascaded system except that each control sub-system receives additional 

information from product demands. The same practical considerations 

are applicable here. 

The latter diagram (Figure 4.4. b) can also represent a mixed 

system. The parts subject to cascaded control will have all base 
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information inputs multiplied by zero and the appropriate internal 

form of their sub-systems will be used. Hence we have a fully 

general decomposition, since it can be applied to any system in the 

environment defined in the last section (4.3). 

Definition of a model of a real system must begin with the 

creation of an appropriate decomposition. Given z-transfer functions 

for each sub-system,. from each input to its output, we may follow 

any causal sequence through the model. Thus we may determine any 

or all responses to a given input to the system. Our next task is 

therefore to derive the z-transfer functions relating to each 

sub-system. The general analysis of each of the three sub-system types 

(and the dummy) follows. 

4.5 Symbolic Representation 

The sub-systems described below as part of the general model are 

developed using a standard notation for z-transforms of time-series 

and z-transfer functions of system elements. This notation is as 

follows: - 

z-transforms of time-series are represented by lower case 

letters. 

z-transfer functions are denoted by capital letters. 

The first subscript of a symbol denotes the manufacturing 

level at which the symbol applies. 

The second subscript denotes the product or part to which the 

symbol refers. 

A third subscript may be used to denote a product or part at 

the level above that identified by the first subscript. 
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We define our symbols as follows: - 

Time-Series 

d.. 
13 

for i-0 is customer's demand for product j. 

for i>0 is demand for part j arising from 

level i-1. 

r.. 
i3 

S.. 
1j 

f.. 
13 

z-transfer 

fuwtions 

Iijk 

represents receipts into stock of part/product 

j at level i. 

represents current stocks of part/product j at 

level i. 

represents forecast gross requirement for part/ 

product j at level i. 

for i-0 represents the application of a delivery 

policy to customer's demand for product j. 

When i-0k is omitted. 

for i>0 represents the use of part j at level i 

in meeting demand for production of 

part/product k at level i-l. 

Fijk for i-0 represents generation of forecast gross 

requirements for product j. When i-0 

k is omitted. 

for i>0 in a base information sub-system, 

represents the generation of forecast 

gross requirements for part j at level i 

arising from customers' demand for model k. 
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for i>0 in a cascaded sub-system, represents 

the generation of forecast gross 

requirements for part j at level i. 

This forecast is based entirely upon 

demand for part j and so k is omitted 

here. 

Sij represents stock integration for part j 

at level i. 

Did represents net requirements scheduling 

for part j at level i. 

represents the application of a production/ 

supply lead-time for part j at level i. 

System z-transfer functions 

The term T(x, y) will denote the z-transfer function of the 

system when it is considered to have time-series x as input and y as 

output. 

Sub-system z-transfer function 

The term r(x, y) will denote the z-transfer function of a sub- 

system when it is considered to have time-series x as input and 

y as output. 

Noise distributions 

Noise distributions will be denoted by the symbol " over that 

representing the time-series upon which they are superimposed. 
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4.6 The Product Control Sub-System 

The product control sub-system, in response to customers' 

demand for the product, schedules its final assembly and so by 

implication generates demands for parts at level 1. This is 

illustrated in Figure 4.6. a from which it is clear that this 

sub-system is similar to the single level system we examined in 

the last chapter. 

The diagram is redrawn (Figure 4.6. b) using the symbolic 

representation of the last section 

Figure i. 6, b : The Product Control Sub-System (Symbolic Representation) 

In order to derive system z-transfer functions incorporating 

such a sub-system it is necessary to know the sub-system z-transfer 

function relating customer demand to demand for level 1 parts. 

This can be done using methods demonstrated in Chapter 3. Detailed 

proofs of this and subsequent results are given in Appendix II. 
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(dom, dlm) FOmDOm + IOmSOmDOm 

1+ LOMSOMDOM 

(4.6.1) 

The response of stock balance to customers' demand is given by: - 

(dom, s 
») 

FOMLOMSOMDOM - IOMSOM 
(4.6.2) 

1+ LomSomDom 

We must also consider the effects upon both stock balance and 

assembly schedules of random noise introduced within the sub-system. 

We shall introduce noise at two points only: variability in 

customers' demand and supply variance against schedule. Representing 

the first noise distribution by dOm we have, from equations 4.6.1 and 

4.6.2 respectively, 

(dom, dlm) s 
FOmDOm + IOmSOmDOm (4.6.3) 

1+ Lom SomDom 

{ (ä 
ff sue) a 

FOMLOMSOMDOM - IOMSOM 
(4.6.4) 

1+ Lom SOMDOM 

Supply variance rOm directly affects stock balance And so may 

also be used to encompass all sources of stock recording errors. Such 

a noise distribution may be determined as the convolution of all of 

these or as a compound distribution by empirical observation of their 

combined effect on stock balance. The sub-system response to this 

noise is described as follows: - 
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-SD 
C(rom. dlm) - (4.6.5) 

1+ LomSomDom 

S 
(rom. som) Om (4.6.6) 

1+ LOmSOmDOm 

We could similarly derive the sub-system z-transfer functions for any 

causal relationship within the sub-system. However those derived above 

are the ones likely to be used most frequently. 

4.7 The Part Control Sub-System - Base Information System 

In the base information system two types of input are applied 

to each part control sub-system. These are demands for the part 

arising from production schedules at the next level up and demands 

for all products using the controlled part. Because the controlled 

part may be common to a range of products and to a range of higher 

level parts there may be several sources of each input type. A 

general form of this sub-system is illustrated (Figure 4.7. a) 

together with its symbolic representation (Figure 4.7. b). 

We shall derive for this sub-system, not z-transfer functions 

but "source equations" which give rise to all sub-system z-transfer 

functions from their inputs d01 see dOM and dk 
l ... dk, 

N' 
These 

source equations include all inputs so the derivation of a specific 

z-transfer function is a simple matter of using system linearity 

to let all but the required input become zero. 

We first derive the source equation from the demands for the 

controlled part to its supply schedules. For this, the first 
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such equation, we show the proof. 

MN 

d= mE1dOmFkpmDkp 
+ 

nE 
-knIkpnSkPDkP 

(k+1)P 

I+ 
pSkpDkp 

Proof :- 

d(k+l)p (f 
kp - skp)Dkp 

MN 
EdF Dkp -r kpS 

D+EdLSD 
M-1 

Om kpm kp kp 
nmi 

kn-kpn kp kp 

(4.7.1) 

MN 

-rZ dCFkpmDkp - d(k+1)pLkpSkpDkp + 
nZ 

dknIkpnSkpDkp 
-1 el 

." 
d(k+1)p(1 + LkpSkpDkp) 

MN 

=E dýFk Dk+Edý 
nsk 

D 
m'1 P 

n=1 cP PP 

MN 

.. 
d(k+l)p 

mZ1dOFkpmDkp 
+ 

nZl 

dkn 
kpnskpDkp 

I+I. 
kp 

SkpDkp 

Proofs of subsequent source equations are to be found in Appendix I. 

Similarly the part's stock balance responds to demands thus: - 
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MN 
Z domFkpmDkpLkpSkp 

nE 

dkn-kpnSkp 

skp m1 (4.7.2) 

1+ LkpSkpDkp 

It is also possible to derive the sub-system's response to 

any noise input. We give below the sub-system's z-transfer functions 

from any of the two types of input (finished product demand and 

part demand) to its output (supply schedules) as these are necessary 

for evaluation of the total system response to noise. 

D 
(dOm, d (k+1)P) s 

Fkpm 
kp (4.7.3) 

1+ LkPSkPDkp 

< 
nd(k+l)p) 

- 
_kp 

(4.7.4)* 

1+L. 
pSkpDkp 

We also show the response of stock balance to such noise, as this 

is a major factor in determining necessary safety stocks. 

idOm' sip) ° 

Fkpm 
kD pLkpSkp (4.7.5) 

1+ LkpSkpDkp 

IkpnSkp (4.7.6) 
( 

n, 
Skp Clk 

1+ LkpSkpDkp 
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4.8 The Part Control Sub-System - Cascaded System 

In the cascaded system only one type of input is applied 

to the part control sub-system, this being demand arising from 

production schedules for parts at the next level up. Because 

the part may be common to a range of higher level parts there 

may be several such sources of input. This is illustrated in 

Figure 4.8. a whilst in Figure 4.8. b we substitute symbols for the 

system elements. In a similar manner to the base information system 

we can derive source equations which give rise to all the sub-system 

z-transfer functions from their inputs, dkl .., 
d". As before 

we give the source equations from the part demands to supply 

schedules and to stock balance. 

r- 
Delivery 

Part 
For Part I 

Supply 
Policy 

Schedule 

Part 1 ; 51, For Part I 

Supply 
Policy 

Delivery 

Part N 
For Part N 

Policy 
Supply 

_ýI Schedule 

Part p Issues Part p Receipts 

Stock 

Integration 
L 

Part p 
Stock Balance 

Part p 
r Forecast ý-- Forecast 

Regt. Part p ar p- 
Forecasting Supply 

Scheduling 

Figure i. 8. o : Part Control Sub-System - Cascaded 

Stock Part p 

Integration 
Lead T iiie 
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-- - 
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P kp P (k+l )p 

Figure 'x. 8.0 " Part Control Sub-System - Cascaded (Symbolic Representation) 

N"N 
E 

_kn 
(Fkp 

'+ 
IkPnSkp )D D 

kp 
d(k+1)p - n=1 

1+ LkpSkpDkp 

N 

Skp s nZ1 

d 
kn 

(F 
kp 

D 
kpLkp 

Ikpn)Skp 

1+ 
pSkpDkp 

(4.8.1) 

(4.8.2) 
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The response to noise which we gave for the base information 

sub-system are here replaced by the following z-transfer functions. 

(_ d(k+l)P) _ 

(Fkp + IkPnSkP)Dkp 
(4.8.3) r* "kn 

1+ LkpSkPDkP 

(FkpDkpLkp - Ikpn)Skp 
Z (dkn'skp) a (4.8.4) 

1+ LkpSkpDkp 

4.9 Dummy Part Control Sub-System 

When a part at level k2 is used directly in satisfying demand 

for production of a part at level kl where k2 0 kl + 1, we may 

introduce as a notational convenience a dumm4y part control sub-system 

at each intervening level. The purpose of this sub-system is purely 

to maintain the rigour of notation used in the model by ensuring 

that each part is issued for demands at the next highest level only. 

Figure 4.9. a represents the action of this dummy sub-system. 

So that it has no effect upon the demand input, its sub-system 

z-transfer function is C (dkp, d(k+l)p) - 1" 

Demand From Part 
Dummy 

Demand For Dummy 
At Higher Level 

ý 
Passed To Lower Level 

Part p --: -: > 
dkp [Control 

d(k+l 
)p 

Figure 4.9. a : Dummy Part Control Sub-System 
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4.10 Overall System Stability 

In Chapter 2 we saw that it is a necessary and sufficient 

condition for system stability that all the roots of the system's 

characteristic equation lie within the unit circle of the 

z-plane; the characteristic equation is derived by setting equal 

to zero the denominator of a system z-transfer function when this 

is formulated as a quotient of polynomials in z-1. 

We note that every sub-system z-transfer function in the general 

model shows the same form of denominator, namely 1+L 
kp 

S 
kp 

D 
kp. 

However, this need not be a polynomial and, in practice, it rarely 

is. It is thus not an equivalent stability condition for the 

sub-system that 1+ LkpSkpDkp -0 has roots within the unit circle. 

Examination of Figure 4.4. b shows a general flow of information 

from left to right (i. e. from finished product control down to 

successively lower level control sub-systems). This is because 

we have assumed that net scheduling will take into account the 

known abilities of production at lower levels to derive at least 

feasible schedules. All predictable factors are included and so 

the only remaining effect which may be imposed by lower level 

sub-systems is random variation. This is better represented by 

the imposition of noise on the receipt time-series. Thus by 

suitable definition of system elements we have eliminated the need 

to represent feedback loops in the overall system. This is in fact 

a realistic formulation of many practical systems where feedback 

is present within each control sub-system but applies between 

sub-systems only in the event of a non-linearity (e. g. a stockout 

or overload on production resources). Such non-linearity can only 
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be modelled by the generation of negative stocks. 

Because of this one-way flow of information we may derive a 

general system z-transfer function between any two time-series, 

gjp and gkq' lying in different sub-systems provided that a true 

causal relationship exists: - 

T(gjplrq) a c(gjp, d(j+l)p) i{dilci2 ... ýi(k-j-1)ýidiq, gkQ)} (4.10.1) 

where: c(gjp, d(j+1)p) is the sub-system z-transfer function from 

the input time-series to the output of its sub-system. 

r'ilci2 "' Ci(k-j-1) is an information route through the 

full system from the sub-system controlling part p to 

that controlling part q. 

C(diq, gkq) is the sub-system z-transfer function from the 

input to the part q sub-system from route i to the required 

output time-series gkq. 

E represents summation over all information routes. 

, 
Thus every system z-transfer function is a sum of products of 

sub-system z-transfer functions. If all sub-system z-transfer 

functions are defined as quotients of polynomials, then derivation 

of any system z-transfer function will also yield such a quotient. 

Each route through the system will yield as denominator a product 

of sub-system z-transfer function denominators, and the system 

z-transfer function will have their lowest common denominator as 

its denominator. Hence any system z-transfer function has as 
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denominator some product of sub-system z-transfer function denominators 

and any roots of the system z-transfer function characteristic 

equations are also roots of the sub-system z-transfer function 

characteristic equations. It is thus a sufficient condition of 

total system stability that all roots of all sub-system z-transfer 

function characteristic equations lie within the unit circle. 

If the roots of any characteristic equation of any z-transfer 

function of any sub-system lie outside the unit circle, that sub- 

system is unstable and its instability will manifest itself in 

any information route through the sub-system. In this event, 

the complete system cannot be described as stable. Thus it is 

necessary for complete system stability that all roots of all 

sub-system z-transfer function characteristic equations lie within 

the unit circle. 

We note, however, that stability in this context implies only 

that the effect of any impulse input is bounded in time. The 

transient response to such an impulse or to other inputs may still 

be unacceptable, as may system response to random noise. 

4.11 Transient Responses and Responses to Random Noise 

We saw in the last section (Equation 4.10.1) the derivation of 

any system z-transfer function. We can use this to determine the 

system's transient response to any input or its response to any 

source of noise. We note that in general it is not sufficient to 

use sub-system z-transfer functions as these may not completely 

describe the relationship between input and output. 
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4.12 Summary 

In this Chapter we have shown a general decomposition of a 

wide range of production control systems together with the general 

forms of each of the elements of that decomposition. We have 

further shown how these elements can be recombined to analyse the 

entire system. 
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CHAPTER 5 

PRODUCTION CONTROL SYSTEM ELEMENTS 

5.1 Preamble 

In this Chapter we derive the z-transfer functions of a 

selection of product delivery policies, forecasting systems, net 

scheduling systems and part delivery patterns such as may commonly 

be found in practical production control systems. These are 

presented for two reasons: firstly to demonstrate that the method 

has sufficient range of application to be a practical tool, and 

secondly to provide a basic library of functions for general use. 

The catalogue presented can in no way be regarded as exhaustive. 

However, we attempt to give general versions of a reasonable range 

of the more commonly applied systems. 

We present in Appendix IV a short list of z-transforms of time- 

series for use in transient analysis, comprehensive tables are 

published elsewhere IBeightler et al., 1961 & Bishop, 1975]. 

The catalogue is presented in four sections corresponding to 

the system elements which may arise in the general model of Chapter 4. 

(The form of stock integration is fixed and was examined in 3.4.3). 

5.. 2 Product Delivery Policies 

We consider that there are only two ways in which a product 

delivery policy may act upon orders: namely by delaying delivery 

for some finite period or by spreading deliveries over a finite 

number of periods. These two can be combined both in practice and 

in theory to provide a single general system element encompassing 

all policies. 
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If customers' demand for product m in period t is dOm (t) then 

deliveries against dOm (t) shall be iOM (t+d) _ +6dOm (t) where 6 is 

an integral number of periods not less than zero and not greater 

than some finite maximum A, and where ¢a is the fraction of demand 

to be delivered after a delay of e periods. (Thus 

ýO + ýl + ... + OA =1 unless there is a policy of over or under 

delivery). This is illustrated in Figure 5.2. a. 

Figure 5.2. a : Product Delivery Policies 

II 



From this it is clear that: - 

iom - domfo + domf 
lz 

1+... 
+ domýQz-A 

and so we have a general z-transfer function: - 

A 
Iý 

isI 
ýdZ O 

d ds0 
Om 

5.3 Forecasting Systems 

(5.2.1) 

The purpose of forecasting is to provide a gross requirement 

over some future period. The duration of this period is determined 

by the form of scheduling routine, so here we present forecasting 

routines which output a forecast for P future periods. Where the 

forecast takes no account of trend this is simply P times the 

current forecast; trend predictors will need the use of more 

complex accumulations. 

Weighted Moving Average 

This forecasting technique is commonly used because of its 

apparent simplicity. Procedurally it is in fact more complex 

than exponential smoothing methods, but its superficial ease of 

comprehension makes it a popular clerical technique. 

The procedure is to average demands over some fixed, finite, past 

period H+1, and to use this average as a forecast. We generalise 

this by allowing the predicted average to be a weighted average of 

past demands: 

H (t-h) 
f 

.. 
(t) -PE "h 

h-0 

a 
where Oh are weighting factors and E 0h-1. 

h-0 
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This is illustrated in Figure 5.3. a. 

ij 

I II 
i 

i 

ýý - ' 
ýHZH 

I-- J 
Figure 5.3. a : Weighted Moving Average 

From the figure it is clear that: - 

f""s P{+0 + 4lz 
1+... 

+ 4kz }di] 

and so the z-transfer function for weighted moving average 

forecasting is: - 

H 
F1j = 

f3 
=PE OhZ-h 

d.. 
h=O 

13 

i 
ýý , ý. _ 

(5.3.1) 

Note that this contains, as special cases, both unweighted moving 

averages, where ýo m f1 fH n1, and the trivial 
H+1 

forecasting system which assumes that the present demand level 

will continue indefinitely; in this case H-0 and $0 " 1. 
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Single Exponential Smoothing 

The procedure of single exponential smoothing is one of the 

simplest statistical forecasting techniques. The exponentially 

smoothed forecast of demand for the next P periods is: - 

fib (t) = P{adij (t) + (1 - a) 
f1] (t-1) } 

P 

for some a normally such that 0<a<1. We illustrate this 

procedure in Figure 5.3. b. 

Figure 5.3. b : Single Exponential Smoothing 
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From the diagram we have: - 

fib = P{adij + (1 - a)f 2. j 
Z-1} 

P 

F, j = 
fib 

= Pa (5.3.2) 
dij 

1- (1 - a)z 
1 

Double Exponential Smoothing 

This sophistication of exponential smoothing enables a forecast 

to detect an underlying trend in the demand time-series. It 

uses the difference between the exponentially smoothed average 

of past demand and the exponentially smoothed average of this 

average as a trend predictor. The procedure is described in full 

by [Brown, 1963] where the following algorithm is given: - 

a13(t) - adij (t) + (1 - a)a13(t-1) 

Pik (t) - cta1 (t) + (1 - a)Pij(t-1) 

aid (t) - 2a.. (t) - Pik (t) 

bid Ct) -a (a. j Pik it)) 
1-a 

AAA 

xij(t+u) - aij (t) + Ubij(t) for all u>0 

where ci3 (t) is the exponentially smoothed average of demands 

to time t. 

pik(t) is the exponentially smoothed average of aij to time t. 
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AA 

a(t) is the expected value of demand at time t (- xij(t)). 

bit(t) is the trend predictor at time t. 

A 

xij (t+u) is the forecast made at time t for period t+P. 

From this it is clear that the forecast of total demand over the 

next P periods, for use in scheduling is: - 

PAAýP 
fi. (t) =E xi. (t+u) ° Pa.. + bit(t) EU 

13 

This figure can be represented by Figure 5.3. c whence we can 

see that in the z-domain: - 

PA A 

f.. - b.. E+ Pa.. 
13 13 usl 1] 

P 
(aid - pik aayE1u+ (2aij - pik )P 

1-= 

PP 

_ (2P +aE A)a.. - (P +aE N)PiJ 
'tea u=i i-a u=i 

But pik - 
ao1j (single exponential smoothing) 

1-(1-a) 
l 

z 

P 
P (P +E u)aa.. 

'- (2P +E u)v.. - 1-a u-i 
1J fJ 

1 1-a 11=1 sl 
1ý 

1-(1-a)z-1 

P_P 
(2P +aE P) (1 - (1 - a)z 

1) 
a(P +aE u) 

- 1-a 1i-1 1-a *1 oiJ 

1- (1 - a)z-1 
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But aid = 
adij (single exponential smoothing) 

1- (1 - a)z-1 

P 
-1 -1 

PP 
2P +aE 2P(1-a)z - oz Eu- aP - 

1u=1 
a(a) E 

fib - adij -a u=1 1-a 
u 

U-1 

(1 - (1 - a)z-1 )2 

PP 
(2-a)P + aE u- (2P(1-a) + aZ u)z-1 

= adij u=1 u=1 

(1 - (1 - a)z-1)2 

and so we have: - 
PP 

a{(2-a)P + aE (2P(1-a) + aE u)z-1} 
F1ý - 

fi] 
- u-1 u-1 

d'3 
(1 - (1 - a)z-1)2 (5.3.3) 

We note that the characteristic equation here, 

(1 - (1 - a)z-1)2 . 0, has the same roots as for single exponential 

smoothing, and so the same stability condition will apply"(i. e. 0<a<2). 

Box Jenkins Modele 

Box and Jenkins [Box et. al., 1970] describe time-series containing 

stochastic elements in terms of "auto-regressive integrated moving 

averages"; this term is usually abbreviated to ARIMA. Using the 

notation conventionally employed an ARIMA is of the form: - 

0p(B)Vdx(t) - Aq(B)c(t) 

where x(t) is the time-series at time t. 
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AA 

e(t) - x(t) - x(t) where x(t) is the expected value of 

the time-series at time t; thus c(t) is the 

stochastic component of the time-series. 

B is the backward translation operator such that 

Bx(t) = 

V is the backward difference operator such that 

vx(t) = x(t) - x(t-1). 

0p is'a polynomial of degree p with coefficients 

00.01. ... 0p. 

Oq is a polynomial of degree q with coefficients 

90,81, ... e 
q. 

The literature implies limits on the ranges p, d, q and the 

coefficients of 0 and 0. Within these limits the precise values 

chosen determine the model's rate of response to differing orders 

of trend. Selection of precise values must be made in the context 

of the system where the model is to be used as a forecasting 

agent. It is fortunate therefore that the predictor derived from 

this model is a linear transformation for which a z-transfer function 

is easily derived. The use of this within a complete system model 

allows examination of stability, transient response and noise 

transmission of the whole system and so assists selection of 

p, d, q, 0 and 0. 

The backward translation operator B clearly has z-transfer 

function Z-1 , whilst the backward difference operator 7 has 

z-transfer function 1- z-1. We can therefore rewrite the above 

expression in the z-domain as: - 
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0Pýz-1ýý1 - z-l) 
dX(z) 

- eq(z-1)£(z) 

and so: - 
0 (z-1) 

x(z) °q e(z) 

0p(z-1) (1 - 
zl)d 

Any quotient of polynomials is expressible as an infinite polynomial 

so we can rewrite this as: - 

x(z) _ 'Y(z-1)e(z) 

ýq(z-1) 
for some infinite polynomial ýV(z-1) 

ýp(z-1 )(1 - Z-1 )d 

Returning to the t-domain we have: - 

x(t) - *Oe(t) + *le(t-1) + 42e(t-2) + ... 

and similarly 

x(t+l) - 40E(t+1) + *le(t) + *2e(t-1) + ... 

x(t+2) - *0e(t+2) + *1E(t+1) + *2C(t) + ... 

etcetera. 

In using the ARD1A as a predictor it is necessary to assume that 

the stochastic element, e(t), is zero for all future times: that 

is,, to predict x(T+1) at time T we assume e(t) -0 for all t>T. 

Thus the last result, used as a predictor, takes the form: - 

x(t+1) - file(t) + *2e(t-1) + *3e(t-2) + ... 

x(t+2) - *2e(t) + $3e(t-1) + *4e(t-2) + ... 

%(t+3) - p3e(t) + i4e(t-1) + *5c(t-2) + ... 

etcetera. 
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Hence the total forecast demand over P future periods, 

x(t+1) + x(t+2) + ... + x(t+P), is: - 

P 
f.. (t) aE x(t+u) 1, 

usl 

P 
E {* £ (t) + 4, 

u+1E(t-1) 
+ 4u+2e(t-2) + ... 

} 

u=1 

P Co 
aZq E(t-X) 

u-1 A-0 u+A 

In the z-domain we thus have: - 

P 
fil(z) EE Z_ýE(Z) 

V-1 X-0 u+x 

Figure 5.3. d represents this forecasting system. 

Forecast 
Forecc Demand Forecast Errors 

dF%j 

Predicted 

Delay I Predict x(t+1) 
redacted Demand 

I Period 
xix Z X18 I+a 

Figure S. 3. d : Box-Jenkins Forecasting 

The development of the z-transfer function Fib is now straight- 

forward. From the diagram: - 

e- did - z1x 

did - Z-1 (E tsl+Xz-ý)E 
Ä-U 

. d. 

1+ÄE1 1p x-x 
- 



P 

But f.. aEEi+ Z-ý 
13 u-1 a=o ua 

P 
-a EE ee+Z 

- u=la=o d.. 
Co 1J 

1+ 1 *xZ 
a=1 

Hence we have: - 

PW 
EE z-a 

Flj = r=1 a=0 

1+Ezx 
a=1 

(5.3.4) 

This is the most intricate forecasting z-transfer function derived, 

and we should expect this as Box-Jenkins in the general case is 

a compiicated technique. In practical cases the values of p, d 

and q are normally very small (values of 1,2 and 3 are common), 

and since future forecasts are unlikely to be based upon errors 

in the distant past we can expect values of to converge rapidly 

to zero. 

a 

5.4 Net Scheduling 

Scheduling systems may or may not embody some form of 

production smoothing rules. It is necessary to distinguish between 

production smoothing rules and any forecast smoothing mechanism. 

Forecast smoothing is intended to eliminate from a forecast the 

effects of random fluctuations superimposed on an underlying demand 

pattern. Such fluctuations must be met from a pre-set safety 

stock which is maintained by the scheduling system. Production 
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smoothing rules are designed to reduce the rate of change of 

schedules, and for such rules to be effective adequate provision 

must be made to support smoothing stocks. 

Net Scheduling Without Smoothing 

We assume that the production lead-time is P periods. That is, 

a schedule generated at time t will be delivered in the period 

leading up to time t+P. A net schedule is calculated by subtracting 

from the forecast of demand over the coming P periods both the current 

stock balance and the schedules already placed for delivery during 

the intervening P-1 periods. This value may be modified by some 

scalar factor a to provide safety stocks. Remembering that the first 

subtraction (stock balance from forecast) is an element of the overall 

part block diagram, we can represent this process as in Figure 5.4. a. 

F -s 13 

Delay P-1 

Z-( 
P-1 ) 

Figure 5.4. a : Net Scheduling Without Smoothing 
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From the figure it is clear that: - 

d(i+l)j a a{fij - sij - d(i+l)jz-1 - ... - d(i+l)jz-(P-1)} 

Q(fij - sij) - ad(i+l)j(z-1 + z-2 + ... + Z-(P-1)) 

ans so we have a z-transfer function: - 

D.. = 

d(i+l)j 

-Q (5.4.1) 

fl, - sl, 1+ Q(z-1 + z-2 + 000 + z- 
t-1)) 

Table 5.4. b shows the stability conditions which apply for lead 

times up to 3 periods. For higher values of P other algorithms 

(Chapter 2) may be used to determine the conditions under which 

scheduling is stable. 

Lead-time P Stability Condition 

1 All values of a. 

2 IaI < 1. 

3 2a 
<1 

o± Q 

Table 5.4. b 
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Net Scheduling With Smoothing 

We assume a lead-time of P periods and first calculate an 

unsmoothed schedule w, modified by a safety factor a. Here however 

we shall attempt to smooth production by reducing the change from 

the last schedule to the newly calculated schedule by a fixed 

proportion a of this change. Thus the actual schedule to be 

placed is calculated as: - 

d(i+l) 
j 

fit) aw - a(aw - d(i+l) 
j 

(t-1)) 

We represent this process in Figure 5.4. c. 

i r--- 
Z-CP-1> 

Figure 5.4. c : Net Schedutbng With Smoothing 
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From the figure we see: - 

d(i+1)j aw - a(aw - d(i+l)j Z-1) 

- (1 - a)aw + ad(i+l)jz-1 

a(1 - a){fij - sij - d(i+l)jz-1 - d(i+l)jz-2 

... 
d(i+l)jz- 

(P-1) 
}+ ad(i+l)jZ 

-1 

CF (1 - a) (f 
ij-s ij 

)+d 
(i+1) i{ az-1 -a (1 - a) (z-1 + z-2 + ... 

... 
+ Z- 

(1 
-i) } 

Thus we have the z-transfer function: - 

Did - 
d(i+1)j c(1 - a) 

fib - sib 1- az-1 + a(1-a){z 
1+z+... 

+ z- 
P-1 } 

(5.4.2) 

Net Scheduling With Arrears/Over-deliveries 

Here we consider a mechanism where outstanding schedules are 

maintained by accumulating from period to period the difference 

between scheduled and delivered quantities. A new schedule is then 

calculated by subtracting from forecast demand both current stock 

balance and this outstanding schedule figure. This process is 

illustrated by Figure 5.4. d. In this case we have, for simplicity, 

applied no schedule smoothing although it is quite straightforward 

to apply smoothing rules as in Figure 5.4. c. 
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x 
:; 

}Hay 
t 

Z 

rI Delivery 
ý- 

- 
J 

-1 Pattern 

L1J 

Figure 5.4. d : Net Scheduling With Arrears/Overdeliver; es 

Lid is the same z-transfer function as appears elsewhere in the 

part block diagram transforming d(i+l)j to rij. 

Note that the time-series x is introduced only as a temporary 

notational convenience and represents outstanding schedules in 

the following derivation of the z-transfer function Did. 

= Z-1 x (x + d(i+l) 
j)- 

Lij d 
(i+1) i 

z-1-L Ld 
(i+l) 3 

1-z 

But d(i+1)j - fij - sij -x 

-f1 -sij -z-1 
-L11 d 

1-z 

z-1 d(i+1)j 1+ 
Llj 

- f1 eij 

1-z 

1-L 
.. 

d(i+l)j i= fii - 8i] 

1-z 
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Thus the z-transform D.. is: - 
13 

D.. = 
a(i+l)j 

a1- z-1 (5.4.3) 

ij ij ij 

Since this z-transfer function has characteristic equation 

1- Lid -0 (see 5.5 for form of Lid), the system's stability 

depends upon the form of the delivery pattern Lid. 

N. B. It is essential in examining the response of a system of 

this nature to random noise imposed upon receipts from suppliers, 

that the noise input rid must be included twice: once (as standard) 

before receipts are added to stock; secondly before receipts are 

deducted from outstanding schedules. As a result the net 

scheduling response to rid cancels the effect of such noise 

on stock balance and so d 
13 

becomes independent of rid. 

5.5 Part Delivery Patterns. 

In the last section (5.4) we examined net scheduling systems 

which included smoothing mechanisms. Such smoothing is a 

deliberate act in planning part supplies. We now examine the manner 

in which the supplier responds to schedules. Ideally the supplier 

will respond precisely to the schedules raised, and the delivery 

transform is a simple delay. In practice deliveries are likely 

to be spread over a number of periods; the spread may contain both 

a random element and an underlying pattern of delayed proportional 

deliveries. We may consider the random element by adding a noise 

input to receipts into stock, whilst a general description of the 
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underlying pattern is contained in the z-transfer function now 

derived. 

If the schedule raised at time t is d(i+l)j(t) then the delivery 

against this schedule at time t+6 shall be: 

rl](t+S) a0S d(i+l)j(t) 

where ýa is the fraction of a schedule to be delivered after 6 

periods. Thus, unless there is a deliberate policy of over - or 

under-delivery on the supplier's part: 

+40 =1 

This process is represented by Figure 5.5. a. 

Figure 5.5. a : Part Delivery Pattern 

-87- 



From the figure: - 

rij s d(i+l)j$o + d(i+l)jýlZ-1 + ... + d(i+l)jOAz-A 

and so we have the z-transfer function: - 

A 
Li 

jrs1: edZ-d 
6-0 d(i+l)j 

(5.5.1) 

and by suitable selection of the values of ýa we can use this 

to represent any delivery pattern. 
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CHAPTER 6 

AN EXAMPLE OF THE APPLICATION OF THE GENERAL MODEL 

6.1 Preamble 

We shall now apply the general model to an example of a multi- 

product, multi-level system. As this example is included to 

illustrate the use of the model a simple production environment 

has been adopted. 

6.2 The Production Environment 

We consider a system controlling the manufacture of two products 

(M - 2) comprised of five parts (N - 5) at three levels (K - 3). 

The product structure is illustrated in Figure 6.2. a which shows 

the relationship between products A and B and their parts U, V, 

W, X and Y. AB 

2 oFF 1 oFF 1 off 2 oFI 

YXY 
I 

t off 
I 

1 oFF U 

\1 off 

Figure 6.2. a : Product/Part Structure 

We shall assume that the manufacturing units are so integrated 

that it is sensible to use a base information system and so 

demand forecasts for A and B are used in scheduling deliveries 

of U and V as well as the level 1 parts. Figure 6.2. b illustrates 

the decomposition of the system (cf. general decomposition : 4.4. b). 
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Note that a dummy part, S, has been introduced at level 2 to form 

the link between V at level 3 and W at level 1. 

6.3 The Proposed Control System 

The following production control system is proposed. 

Delivery to customers will be made from stock allowing only an 

administrative and transport delay. Thus orders placed for A and 

B in one period will be delivered in the next. 

The production and supply lead-time (i. e. schedule lead-time) 

for each part and product are as shown in Table 6.3. a. 

The number of each part used in the manufacture of one unit at 

the level above is also shown in Table 6.3. a. 

Demand for products A and B will be forecast by exponentially 

smoothed average of past demands using smoothing constants aA 

and aB respectively. 

The net requirement schedule for each part will be calculated 

as the precise quantity needed to meet forecast demand during the 

part's schedule lead-time: 

total forecast gross requirement over lead-time 

- current stock balance 

- deliveries expected against previous schedules 

We are thus attempting no form of production smoothing. We 

include no safety or buffer stock elements as linearity allows 

us to interpret a negative stock balance as an inroad into safety 

or buffer stock. 
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PART/PRODUCT USED TO MAKE NUMBER OFF SCHEDULE LEAD-TIME 

A - - 1 
B - - 1 
W A 2 23 
X A, B 1 12 
Y B 2 3 
U X 4 4 
S w 1 0 
V U$ 1 2 

Figure 6.3. a: Product Structure & Lead-Times 

6.4 Modelling The System 

Now we may define the z-transfer functions of the individual 

system elements within each sub-system. 

The declared policy of delivery to customers gives us: - 

'OA 'OB a Z-1 

Stock integration always has the z-transfer function 

1 so we have: - 
- 

S 
OA =S OB -S 1W sS 1X sSly -S 2U iS 3V -l 

_1 

(6.4.2) 

1-z 

Since the schedule lead-time on both products matches the 

customer delivery delay of one period, input customer demand forms 

an adequate forecast of demand over the lead-time. Expected 

deliveries against previous schedules will be zero because of 

immediate delivery. Hence: - 
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FOA ° FOB '1 (6.4.3) 

and 

DOA = DOB a1 (6.4.4) 

Schedule lead-times are stated in Table 6.3. a so we have: - 

-1 LOA LOB L1X =z 

-2 Llw L3V =z 

-3 L1 -z (6.4.5) 

-4 L2U=z 

We assume that in the case of all parts the schedule lead-time 

consists of a planning lead-time of one period before production 

commences and a production lead-time. Thus for each product and 

part the constituents at the next level down are issued from stock 

one period after the delivery schedule is raised. The system 

elements transforming input schedules to issues from stock are 

therefore multiplication by number off and a delay of one period, 

giving: - 

I1WB I1YA = I2UW = I2UY 0 

I1XA I1XB I3VU I3VS z (6.4.6) 

-1 I1WA I1YB s 2z 

I2UX ý4z 
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All forecasts used in part scheduling are of the form 

of Section 5.3.2. Each forecast is multiplied by the quantity 

of the part required for the corresponding model. Hence: - 

4a 
F1WA _A 

-1 1- (1 -aA)z 

F1 =0 

a FIýf['a 
1XA 

A 

1- (1 - aA) Z-1 

F1B ` 
aB 

-1 1- (1-aB)z 

F1YA 

6aB.... 
F1YB 

1- (1 - a$)z-1 

16m i 
F2UA A 

-1 1- (1-aA)z 

F 2UB 
16a$ 

s 

1- (1-aB)Z 
1 

12a 
F3VA iA 

1- (1- , A)z-1 

8a 
F3T sB 

-1 1- (1-aB)z 

(6.4.7) 
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The net scheduling procedures used are of the form of Section 

5.4.1 and so: - 

D1W 1 

-1 1+z 

Dix =1 

Dly 

-1 -2 1+2+Z 

D 
2U =1 

1+Z-1+Z-2+Z-3 

D3V 
=1 

-1 1+z 

6.5 System Stability 

(6.4.8) 

We showed in the general model that all sub-system z-transfer 

e 
functions had in their fmulae the denominator 1+ LSD (Chapter 4). 

Let us therefore represent any one of these as the quotient 

G. Substituting the system elements derived above in the 

1 +. LSD 

denominator using x to represent schedule lead-time and y to 

represent number off we have: - 

G-G 
1 -+ LSD 

1+z 1i 

- z-1 
il 

Z 
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x-1 
G(1 - z-1) (E z-1) 

i-O 

-1 
x-1 

(1 -Z )( E Z-') +Z 

i-O 

-1 
x-1 

G(1 -Z)(EZ 
1-0 

x-1 x 
E Z-1 -E Z_1+ Z 

1-0 i-1 

x-1 
G(1 - z-1)( Z z-') 

i=0 
(6.5.1) 

Above (6.4) we expressed all the sub-system z-transfer functions 

as quotients of polynomials in z1 and amongst these only three 

forms of non-trivial denominators occurred. These were in stock 

integration 1, net scheduling 1 and forecasting 

1-z1 x-1 
-i Ez 

i=0 

yxa . Where either of the first two of these occurs 

in G its denominator is cancelled by one of the factors in 6.5.1. 

Thus the only terms which remain in sub-system z-transfer function 

denominators are the two forecasting denominators. Using the 

arguments in section 4.10 it is therefore a necessary and sufficient 

condition for system stability that the equation 
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(1 - (1 - aA)Z-1)(1 - (1 - aB)Z-1) i0 

has roots within the unit circle. The roots are z-1- aA 

and z-1- aB. Hence for stability we must have: - 

-1 <1- MA <1 and -1 <1- aB <1 

i. e. 0<aA<2 and 0<aB<2. (6.5.2) 

6.6 System z-Transfer Functions 

In order to examine either transient responses or responses 

to noise it is necessary to use the appropriate system z-transfer 

functions. We show here the derivation of one of these, namely 

T(d0A, d4V). We shall use equation 4.10.1 to combine the z-transfer 

functions of all causal routes from demand for product A to delivery 

schedules for part V. 

We can summarise the causal routes as in Figure 6.6. a. In 

Figure 6.6. b we show separate sub-system z-transfer functions 

for each input of a sub-system to its output. Because of system 

linearity the output of each sub-system is the sum of the inputs 

multiplied by the appropriate z-transfer functions. By inspection 

of the diagram we can see that there are seven distinct causal 

routes through the system. Each of these can be represented by 

a product of the sub-system z-transfer functions it includes. The 

system z-transfer function from dOA to d4v is the sum of these 

products. 
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T(doA'd4V) s C(dOA'd1A)r(d1A'd2W)C(d2W'd3S)r(d3S'd4V) 

+ C(doA, d2W); (d2W'd3s)c(d3S'd4V) 

+ c(dOA, d3S)c(d3S'd4V) 

+ ý(dOA'd1A)C(d1A'd2X)C(d2Xýd3U)C(dW dW) 

+ c(doA, d2X)Z(d2Xrd3U)i(d3U'd4V) 

+ r(doA, d3U)c(d3U'd4V) 

+ ý(doA, d4V) (6.6.1) 

We note that, although in this case it is a simple matter to 

identify the full range of causal routes by inspection, in a 

more complex example this becomes less practicable and more 

subject to error. For this reason we demonstrate a more systematic 

approach to the derivation of 6.6.1: 

d4V s d3SC(d3S'd4V) + d3UC(d3U'd4V) + doAc(dOA'd4V) 

{d2WC(d2W, d3S) + dOAZ(dOA, d3S)}r(d3S'd4V) 

+ {d2XZ(d2X'd3U) + dOAc(d0A, d3U)}r(d3U'd4V) 

+ dOAc(doA, d4V) 

{d1AZ(dlk, d2W) + doAý(d0A, d2W)}L(d2WId3S)c(d3S'd4V) 

+ {d1Ac(d1A, d2X) + doAC(d0A'd28)}C(d2%'d3u) (d3U'd4V) 

+ dOA{C(dOA, d3S)r(d3S; d4V) + C(doA, d3U)C(d3U'd4V) 

+ C(doA, d4o)) 
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- dOAr(doA'd1A) (d 
1A'd2W)c(d2W'd3S)c(d3S'd4V) 

+ dOAC(dOA'd1A)C(d1A'd2X)r(d2X'd3U)C(d3U'd4V) 

+ d0A{ridOA, d2W)r(d2W'd3S)»(d3S'd4V) 

+; (doA, d2X)ý(d2X'd3U)G(d3U'd4V) 

+c(doA, d3S)G(d3S'd4V) +C(dOA, d3U)r(d3U'd4V) 

+c(dOA'd4V)} 

'. T(d0A, d4V) - 
d4V 

d0A 

AC 

Z(d0A, d1A)c(d1A, d2W)C(d2W'd3S)c(d3S'd4V) 

If G li :" 
+ C(d0A, d1A)r(d1A'd2X)C(d2X'd3U)r(d3U'd4V) 

Ic c9 
+ r(doA, d2W); (d2W'd3S); (d3S'd4V) 

+ C(doA'd2X)c(d2X, d3U)C(d3U'd4V) 

+ Z(doA'd3S)Z(d3S'd4V) 

IC = 

+ r(dOA'd3U)c(d3U'd4V) 

F 
+ Z(doA'd4V) 

This expression is precisely 6.6.1. 

The general sub-system blocks analysed in sections 4.6,4.7 

and 4.9 allow us to give values to each of the z-transfer functions 

in this expression using the system elements derived above (6.4). 
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It is then a straightforward matter of substitution to complete 

the evaluation of T(dol, d4V)' 

T(doA, d4V) - 12aA + 8aAz-1 + (2 - 16aA)z-2 + 

(2 - 2aA)z-3 _ (4 - aA)z-4 

1- (1 - cl a A) Z-1 (6.6.2) 

This is now in standard form as a quotient of polynomials. 

It can easily be rewritten as an infinite power series, convergent 

provided that the stability conditions (6.5.2) are met. From 

this expansion we may use the methods illustrated in the example 

of Chapter 3 to examine in detail both transient response and 

response to random inputs. 

The task of evaluating 6.6.1 to achieve 6.6.2, although 

straightforward, is tedious as is the work of deriving transient 

responses using 6.6.2. For this reason the computer program of 

Appendix I was developed to carry out the arithmetic involved. 

The. use of the program speeds analysis and restricts the scope for 

error. 

6.7 Transient and Noise Responses 

We now use the program of Appendix I to examine graphically 

the transient responses and response to noise of this system. The 

graphs presented all show part V responses to product A demand; 

both stock and schedule responses are included. Each graph shows 

responses for a-0.1 (continuous line), a-0.3 (broken line) 

and a-0.5 (dotted line). 
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Graphs 6.7. a show responses for the system as described 

earlier in this Chapter. In 6.7. b we have increased, by one 

period, the lead-times for each of the parts W, X and Y and made 

only those system changes directly linked to their lead-times. 

Graphs 6.7. c arise from a cascaded vstem applied to the 

production environment described in 6.2 and graphs 6.7. d are then 

derived, as for 6.7. b by extending the lead-times of parts 

W, X and Y. 

The noise distributions are all responses to the same 

distribution of random demand for product A: - 

Probability of -1 < noise impulse <0 is 0.5 

Probability of 0< noise impulse <1 is 0.5. 

This is a simple distribution but it nevertheless allows 

us to make a first qualitative evaluation of the alternatives. 

A broader, more detailed, distribution will produce similar 

responses and may be used at a later stage of analysis, perhaps 

to determine precise safety stock sizes, or in choosing between 

alternative systems where other criteria are inconclusive. 

A number of points are apparent, simply from close examination 

of the graphs. 

6.7.1 For both cascaded and base information systems, and for all 

values of the smoothing constant a, extended lead-times 

give "poorer" responses in all respects. That is, the initial 

response to perturbation is of greater magnitude 

(i. e. step is overshot, sine is amplified, etc. ), decay to 

steady state is slower and the noise response distribution is 

broader. 
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6.7.2 For given lead-times the cascaded system gives poorer 

response than the base information system. Again the 

initial response to perturbation is more exaggerated in 

the cascaded system and decay is slower. 

6.7.3 In all cases, high values of the forecast smoothing constant 

a give a more rapid decay to steady state and a broader 

noise response distribution. In almost all cases the 

high values of a also give greater initial response. The 

exceptions here are stock response to a step in demand with 

the shorter lead-times. If large steps in demand are probable 

more detailed analysis of this response would be required. 

We may therefore draw the following conclusions. 

6.7.4 There is no operating advantage in applying longer lead-times 

for parts W. X and Y regardless of the control system adopted. 

The disadvantage is quantified and can be compared, say, with 

the capital costs of plant needed to achieve the shorter 

lead-times. 

6.7.5 There is no advantage in operating a cascaded system. If 

organisational constraints preclude a base information 

system, the cost of these constraints is quantified. 

6.7.6 The choice of forecast smoothing constant is dependent 

upon factors such as stock holding costs and market 
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volatility and seasonality. Where the system must respond 

rapidly to changes in demand pattern and return to a 

steady state quickly then a high value of a is indicated. 

The price of this fast response is seen to be the high 

safety stock needed to cover the initial wild fluctuations 

in stock when perturbation occurs and to absorb the broader 

distribution of response to random elements in demand. There 

may well be costs attached to the rapid changes in production 

levels as represented by schedule responses. A small value of 

a will make smaller inroads into safety stock but will take 

longer to achieve a steady state after perturbation. This 

may lead to backlogging of orders. Low values of a require 

less safety stock since their noise distributions are 

narrower. Where seasonal demand patterns occur, the lower 

values of a are much more conservative in response. Low 

values of a provide some smoothing of schedules. 
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'CHAPTER 7 

APPLICATION TO 'THE 'DESIGN 'OF A REAL SYSTEM 

7.1 Preamble 

In this Chapter we show the application of some of the 

preceding theory to an actual production control system design 

problem. This problem arose in a consumer durable manufacturing 

company whose main product line comprised some 2,000 models 

assembled from a range of approximately 6,000 materials, components 

and sub-assemblies. Each model required about 100 distinct parts. 

Thus the complexity is significant but not extreme. 

The company was organised as two distinct divisions enjoying 

considerable autonomy. One of these was responsible for the production 

and sale of a specific large range of components, for which the 

second was a major, but by no means the only, customer. The second 

division was responsible for production and sale of the finished 

product. To this end it was concerned with the manufacture of many 

components from raw materials and the use in assembly of parts from 

the component division and other external sources. 

Within the assembly division, whose activities were diverse, 

the organisation was very complex. It had been created over many 

years by growth and adaptation rather than by design and the control 

systems had grown with the organisation. As a result there were gaps 

in communication and some parts of the control system were mutually 

incompatible. This organisation and its control system derived 

great inertia from its complexity: it was very difficult to 

understand (or even find! ) the entire control system and any major 
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change undertaken in the light of such ignorance would have been 

potentially disastrous. 

Physical modernisation of the factory was planned (and is now 

being carried out) and the installation of new control systems 

would become necessary. Many system changes would be linked to 

physical changes, but others would not. Final decoupling points 

in assembly had been defined as the last stocking points, on any 

route to final assembly, where each part was not destined for 

some specified assembly batch with pre-determined assembly timetable. 

The set of such points became known as "the ring". All control 

within the ring is inextricably tied to the physical characteristics 

of the factory, but the control of provisioning into the ring 

stores, in the case of bought-out parts supplied from the component 

division or elsewhere is not so tied. 

Although it was thus technically possible to begin the 

development of improved provisioning systems, problems arose from 

inter-departmental relationships which could not, instantly, be 

changed. Careful negotiation was needed before development could 

commence, and such development work was usually confined to a 

restricted range of provisioning activity. As a result, opportunities 

for such development arose piecemeal and usually with a demand 

to "do something immediately". Spans of a few weeks for system 

planning, design and implementation were typical. The problems 

of meeting such deadlines were compounded by the need to link 

new systems with hitherto untouched elements of existing systems, 

still beyond the permitted scope of investigations. 
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A modelling technique was needed to predict system behaviour. 

Because of its iterative nature digital simulation is too slow a 

technique to allow analysis of system design in this context, 

and, when carried out mechanically, it gives little insight into 

the dynamics of the system. Since control analysis can be a rapid, 

"back-of-an-envelope" method it proved extremely useful and the 

insight gained by using this manual technique suggested improvements 

to design during modelling. Perhaps most importantly we were able 

to handle elements of the system where we had little or no 

understanding. It was possible to use analysis of the system where 

such elements were undefined and to impose restrictions upon their 

acceptable responses. In this way we could ask precisely the 

relevant questions about these elements, determining their 

acceptability or the need to either modify the current design or to 

enforce change beyond the initial scope of the project. 

We describe the process of development of one such sub-system 

in the remainder of this Chapter. 

7.2 The Sub-System 

We considered the provisioning of parts to final assembly 

stock from the component manufacturing division. Because of the 

special relationship between these two divisions a number of 

anomalies arose. The greatest of these was the form in which 

demand was fed from one to the other, which resulted in a 

mixed base) information and cascaded system. 

Product demand could be fed simultaneously to the sub-system 

controlling final assembly and to the supplier's production control 

system. It-was regarded by the latter as a broad forecast of demand 
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to come. Actual demand was subsequently imposed by the assembly 

control sub-system but this data was available too late to be of 

use in committing the supplier's production. Thus it was necessary 

to design a stable system controlling supplier's production on the 

basis of product demand, yet capable of meeting subsequently derived 

assembly demands. 

To add to the difficulties we also found that the final assembly 

control sub-system was poorly understood and, that for internal 

company reasons its re-design or even overt detailed investigation 

at that time was precluded. All that was known was that it provided 

part demand two periods after input of model demands. We were thus 

obliged to treat the sub-system as a "black box" transforming the 

product demand in some partly random manner to generate part demands 

upon the supplier. Consequently a major portion of the project 

had to be the inclusion of compensators in the provisioning system 

so as to maintain stability under this randomly imposed load. 

Figure 7.2. a takes a simple example of a single part, X, used 

in the assembly of a single product, A. We can base the investigation 

upon this simplified example without loss of generality by regarding 

"product A" as the entire range of products which use part X, the 

assembly control "black box" is then the combined control of this 

product range. Again, without loss of generality, we assume that 

each product requires one part X so that a demand for product A 

represents an equal demand for part X. The remaining elements of 

the diagram all relate to part X and are precisely those we would 

expect to find. The only point of note is that part X demand 

forecasting has, because of the mixed base information/cascaded 

nature of the system, two inputs. 
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figure 7.2. a : The Sub-System 
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The natures of the production and political environments imposed 

fixed forms on some elements of this system and these are noted 

below: - 

C(doA, d1A) : this is the "black box" already described. We will 

henceforth denote this z-transfer function by T. 
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Six 
. this should be the standard z-transfer function for 

stock integration 1. However, although 

1- z-1 

appropriate stock recording systems were under 

development they were not expected to be available 

to this control system in time for its implementation. 

We therefore used a system incorporating no feedback 

of stock records. We shall actually use Slx -1 
l 

1-z 

to derive current stock balances but scale slX 

by zero before subtraction from forecasts. 

Iix : delivery from supplier's finished stock is made in 

the period immediately following delivery schedule 

(dIA)generation. Thus Ilx . z-l. 

Lix : production lead-time is fixed for each part by its 

engineering characteristics. Taking delivery 

lead-time as A for part X then Lix -z1. 

Dix : since stock balance was unavailable netting became 

impossible and we took Dix 0 1. 

It is now clear that the only system element available for 

modification was forecasting, Flx. Several forms of this element 

were considered and these are described below. The descriptions 

are presented in the order in which they arose and were examined. 
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7.3 Proposal I 

The first proposal investigated was that each period, the new 

schedule be calculated as the gross requirement to meet product A 

demand modified by the difference dlA(t) - fixt-2), that is the 

error in the forecast made two periods ago for demand this period 

(Figure 7.3. a). 

Figure 7.3. a - Proposal I 

Since Fix has two inputs it cannot be represented entirely by one 

z-transfer function, but is completely described by the two 

z-transfer functions Flx(d1A, fig) and F1%(doA, flg). These in 

turn are contained in the same equation derived below: 

_ 
-2 flx dOA + (d1A f1XZ 

0 ofix(1 +z 
2) 

- dOA + d1A 

. 
'. flg - 

dOA + d1A 

1 +z2 (7.3.1) 

We note that both z-transfer functions derived from 7.3.1 have 

characteristic equation 1+i2-0 whose roots lie upon the unit 

circle. Thus Fix introduces instability into the system. 
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Here we had a system proposal which superficially seemed 

adequate in that the forecast to be used in scheduling was always 

arithmetically correct. Each schedule accurately reflected the 

best known future demands but, when considered dynamically, the 

system was unstable : any discrepancy between fix and dix would 

result in a permanent undamped oscillation in flX, and a random 

sequence of such forecast errors would accumulate in flx which 

will diverge in a random walk. 

From this point three paths were apparent. These were 

considered as proposals II, III and IV. 

7.4 Proposal II 

There is a strong tradition within the company of using data 

accumulated from some datum point for many and varied purposes, 

so it was not surprising that, as soon as the inadequacy of 

proposal I was exposed, the use of accumulated demand and forecast 

data to generate forecasts was suggested. This was far more the 

next idea in production management's repertoire than anything 

arising out of the analysis of proposal I. 

Thus we considered calculating a new forecast by adding to 

the product demand the difference between accumulated part demand 

and accumulated forecasts for the corresponding period 

(Figure 7.4. a). 
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From the diagram: 

-z f 
1X 

d0A +d IA _zf 1X 

1- z-1 1- Z-1 

''' 
ý1 - Z-1)f1X s d0A(1 Z-') + d1A Z-Zfix 

.0. ix(1 - z-1 + z-2) - d0A(1 z-1) + d1A 

and so we derive the source equation: - 

f 
1X ` 

dOA(1 z-1) + d1A 

1-z-1 +z_ 

(7.4.1) 

which as in the case of proposal 1 (7.3.1) contains both 

FLx(dOA, f, X) and F1x(dlA, flX). These two have the characteristic 

equation: 

1-z-1+z-2.0 

This has roots z-1 s. 
l ± i. 6 

2 

which lie on the unit circle, 

and hence the corresponding values of z lie upon the unit circle. 

Thus this proposal was unstable in just the same way as proposal 

I and was rejected. 

7.5 Proposal III 

The effect of a characteristic equation root lying on the unit 

circle is to introduce an undamped oscillation resulting from any 

perturbation. We directly use the characteristic equation to 

introduce an appropriate form of damping to stabilise the system 

of proposal I. 
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Proposal I had characteristic equation 1+ z-2 -0 with roots 

±i 
upon the unit circle. Let 0<p<1 and take z- -ill. 

Then z-l -i and z-Z = -1 , so to achieve stability we could 
p ý2 

adopt a system with characteristic equation: - 

12 
+ Z-2 s0 

To achieve this without changing the basic form of equation 

7.3.1 we could use the forecasting system: - 

f 
1X - 

d0A + d1A 

---2u 
+ 

Z_2 

i. e. f1x = u2(d0A +d 
ix z 

2f1A) 

However, although this is stable it is also arithmetically 

wrong! It damps the whole of demand as well as the "error" 

term and so despite its stability under-orders. 

The above does suggest that by damping only the forecast error 

term a sensible system may be obtained (Figure 7.5. a). 
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Here it is clear that: - 

fix s dOA +u2 (d1A - z-2 flx) 

. . 
(1 +U 

2Z-2 
)fix ' dOA +2U d1A 

. 
'. fx - 

dOA +u d1A 

+ uZ-2 1 
2 

(7.5.1) 

and this, a source equation for Fix(doA, f1X) and FlX(d1A, f1X)' 

has characteristic equation: - 

1+p2 z-2ý0 

-2 z --1 
2 
U 

z_1 -t 1/ 1 

u 

z -±ii , 

This lies within the unit circle so we have a stable system. 

Allowing ý(doA, dlA) to be its simplest deterministic form we 

can derive the system z-transfer function T(d0A'flX) as follows 

(see Figure 7.2. a for all causal routes): 

T(doA, f1X) - FlX(d0A, f1X) + TF1X(d]A'f1X) 

=l+ X-2 
2 

U1 

i+z2u 
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Hence the forecast is untransformed demand. It is therefore 

only stochastic or spreading components of T which may 

invalidate the proposal. To examine the effect of a stochastic 

element we obtain from 7.5.1: - 

Fix(d1A'f1X) ' v2 

1+ u2z 

u2 - u4z-2 + ji 
6 
z-4 

Thus the response of fix to a unit impulse in d1A is the time- 

series: - 

2468 
V, -u ,u$ -u . """"" 

This is a geometric progression and as such has the infinite sum: - 

u2 lim 1- (-it 
2)n 

- u2 

n- 1 +u2 1+u2 

Thus the net effect of a unit impulse in djA is a total increase 

of u2 in the total forecast. For any real value of u this 

1+u 

is'less than 1. Hence perturbations introduced by assembly 

scheduling will be inadequately reflected in the forecast. 

7.6 Proposal IV 

It is apparent from the above that there is something inherently 

wrong in the solutions tried so far. The fault lies in that the 

wrong error term is being used. We are considering the forecast 
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as directly comparable with delivery schedules, and compensating 

accordingly, but in doing this we introduce comparisons with old 

compensations. We should regard the model demand, d0A, as a 

predictor for part demand d3-A and compensate for errors in this 

predictor (Figure 7.6. a). 

We can derive a source equation as follows: - 

-2 f 
lx = dOA + dý - dOAZ 

fix a dOA(1 - z-2) + d1A (7.6.1) 

This sub-system responds to a unit impulse in doA by a 

positive then a negative unit impulse in flX, and to a unit 

impulse in djA by a positive unit impulse in flx* Thus we have 

a simple and elegant solution achieving the shortest possible 

response delays. 

We proceed to examine the response of the complete system 

when this form of Pix is employed. Using the methods of Chaipter 4 

on Figure 7.2. a we can now easily show that: - 

T(d0A, d2x) - 
d2% 

d0A 

(Fix(doA, fix) + TFlx(d]A'fix + TI1%Slx )Dix 

1+ L1%S1Iý1B 

Which, since S1R -0 and Dix =1 is: - 

T (d0A' d 
2%) -P ,X 

(dOA, f 
lx) + TFlg (d1A 

,f lx) 
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Figure 7.6. a : Proposal IV 



so substituting from 7.6.1 we have: - 

T(doA, d2X)=1-z2+T (7.6.2) 

Thus we know that the system as a whole is stable provided 

only that T introduces no instability. 

We can also predict the possible responses to certain forms of T. 

We designed Fix by assuming T to contain a delay of two periods. 

Substituting T= z-2 in 7.6.2 we have TO 
OA, 

d2X) "1 and so if our 

assumption were accurate the system would achieve the ideal of 

raising part production schedules equal to model demands. 

Returning to Figure 7.2. a and letting Six be the first, non-zero 

component of Six (i. e. Six 

11z1) 

we see that: - 

- 

r 
ýýL six = SIX(-dOATIlx + d2X-1% 

doASi%(-TI1% + T(d0A'd2%)Llx) 

so by substitution: - 

T(d 
OA, s1X ) -six - -Tz1+ (1-z2+T)zX 

d0A 
1- z_1 (7.6.3) 

This has characteristic equation 1- z-1 -0 which has roots on 

the unit circle. Thus stock balance has only limiting stability. 

This is unavoidable since we cannot use feedback to control 

stocks. Noise introduced anywhere but a causal route from d0A to 

d1A will result in a permanent modification to stock balance. Only 

by using stock balances in deriving production schedules can this 

be avoided; this is precluded and within this constraint we can 

w 
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hope for no better than limiting stability. 

We have now established that our system is as stable as it can 

be and that the response of production schedules for part X are 

reasonable. We could however, proceed little further without 

some knowledge of the assembly scheduling z-transfer function, 

T= C(d0A, dIA). As noted above it was politically impractical to 

carry out any detailed investigation into this sub-system whose 

behaviour could only be predicted on the basis of its historical 

output. 

A detailed, though admittedly largely subjective, comparison 

of model demands and assembly schedules over the range of parts 

concerned suggested that T could be regarded as composed of three 

parts: - 

(1) A scalar multiplication of model demand. This factor was 

generally less than one since there was a tradition of 

loading the factory beyond its capacity in the fond belief 

that this increased achieved performance! 

(2) A delay of two periods inherent in the assembly scheduling 

procedure. 

(3) An element which could only be interpreted as random noise 

generated by the scheduling procedures to facilitate assembly. 

No claim is made that it was technically impossible to achieve 

far deeper understanding of assembly scheduling. It was however 

precluded politically. This and the need for rapid provision 

of results justified the use of such a simplified output analysis 

of T. 
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Such an estimate was sufficient in practice to allow us to 

proceed considerably further in predicting the system's responses. 

We looked at the system in relation to a single part, for the same 

analysis could be extended to all parts in the controlled range. 

We examined deterministic response to standard model demand patterns, 

the buffer stocks which were necessary to support the system 

and the response to the stochastic component of T which gave rise to 

a need for safety stocks. 

The actual numerical values concerned are unimportant since, 

in dealing with linear systems, we can scale the results as we please. 

The form of the noise distribution component of T is important 

since the shape of the distribution is passed on distorted by 

convolution through the system. We considered a part whose mean 

demand was 10 per period and applied deterministic analyses from 

this base. The first scalar multiplication component of T was 

taken to be 0.9, whilst the third component is shown in the table 

(Figure 7.6. b). 

NOISE IMPULSE <-3 -3 -2 -1 0 1 2 >2 

PROBABILITY 0 . 05 . 10 . 20 . 25 . 29 . 11 0 

Figure 7.6. b. Distribution of noise components of T. 

7.7 Response to Standard Deterministic Demand Patterns 

Demand ImpuZee 

Substituting T-0.9z-2 (its deterministic component) in 

7.6.3 we have: - 
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TO 
,s 

-Tz 
1+ 

(1 - z-2 + T)z-a 
OA 1X 

1_ z-1 

-0.9z-3 + z-ý(1 - z-2 + 0.9z-2) 

1- Z-1 

-0.9z-3 + z-A - 0.1z-X-2 

1- Z-1 

- (-0.9z-3 + z-X - O. lz-X-2)(1 + Z-1 + z-2 + ..... 
) 

We can interpret this, term by term, as follows: - 

Z represents the arrival of parts as a result of the 

production schedule raised when the demand impulse 

occurs. Delivery occurs one lead-time later. 

-O. 9z 
3 

represents the use of the part in response to assembly 

schedules. 

0., Z-X-2 represents the arrival of a correction schedule raised 

immediately the assembly order is known and delivered A 

periods later. 

-1 -1 (1 -z is stock integration. It perpetuates the effect of 

each of the other terms and it is clear that after A+2 

periods the three perpetuated terms have coefficients 

totalling zero and stock returns to rest. 

Alternatively we can multiply out the expression above and plot 

coefficients of powers of z-1 to represent the variations of stock 

with time. 
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T(doA, slx) -0.9z-3 - 0.9z-4 - 0.9z-5 - 0.9z-6 

-a -a-1 -A-2 -A-3 -A-4 +z+z+z+z+z+..... 

- O. lz-, 
X-2 

- O. lz-X-3 - O. lz-a-4 - ..... 

-0.9z-3 - 0.9z-4 - 0.9z-5 - 0.9z-6 

+ z-x + z-A-1 + 0.9z-X-2 + 0.9z-A-3 + ..... 

So taking X-2 periods we have: - 

T(d0A'S1X) m z-2 + 0.1z-3 

From this we can plot Figure 7.7. a. 

i 

(7.7.1) 

To examine response of production schedules to a unit impulse 

we have, from 7.6.2: - 

T(doA, d2X) -1- Z-2 +T 

l1-z2+0.922 

=1-0.1z-2 

This is an immediate schedule in response to demand followed by 
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a correction when the assembly schedule is available (Figure 7.7. b). 

in 

C 

C 

e 

0 

e 

C 

0 

0 

-e 

4 

'o 

Demand Step 

Stock response to a step is obtained by multiplying 

T(d0A, sl%) by the z-transform of a unit step, (1 - 21)1, so: - 

T(dOA, s1R)(1 - z-1)-1 = -Tz-1 + z-)' (1 - Z-2 + T) 

(1 -z 
-1 )2 

Thus taking T-0.9z-2 and 
.A-2, 

step response is (as in 7.7.1): 

(z-2 + O. 1)(1 - z-1)-1 

=z2+1.1z-3 + 1.1z-4 + ..... (7.7.2) 

which is represented by Figure 7.7. c. 
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0 

0 

0 

e 

0 

0 

0 

e 

e 

0 

Similarly from 7.6.2, and substituting T-0.9z 
2, 

response of 

production schedules to step demand is: - 

T(doA, d2X)(1 - Z-1)-1 ! (1 - 0.1z-Z)(1 - z-1)-1 

-1+ Z-1 + 0.9z-2 + 0.9z-3 + ..... 

(Figure 7.7. d) 
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Thus we see that after generating an initial overorder for 

two periods the system continues to order correctly. However, 

because stock is not fed back, no compensation for the overorder 

ever occurs. 

Demand Rcanp 

A ramp has z-transform z-1 so the stock response to 

ý1-z1) 

a ramp is, from 7.6.2 and substituting T_0.9z-2 and A-2: 

(z + 1.1z 
3+1. lz-4 + ... )(1 -Z 

1)-1 Z1-2 

= z-3 + 2.1z-4 + 3.2z 
5+4.3z 6+ 

60606 

which is illustrated (Figure 7.7. e). 

Similarly we derive production schedule response as: - 

z1+ 2z 
2+2.9z-3 

+ 3.8z 
4+4.7z 5+..... 

which is represented by Figure 7.7. f. 

Sinu8oid Z Demand 

Using the computer program of Appendix I and substituting 

T-0.9z-2 and A-2 we derived the stock and production schedule 

responses to sinusoidal demand as shown in Figures 7.7. g and 

7.7. h. 
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7.8 Response to the Stochastic Component of Assembly Scheduling 

It is a simple matter to derive T(d1A's1X) to be: - 

T(d1A, slx) aZ-Z 

1-Z-1 

-1 -2 -A+1 
a-z 

Thus stock balance has a distribution which is the convolution 

of A-1 copies of the assembly scheduling distribution. For 

2 this is simply a copy. 

When we look at T(d1A, d2X ) we find it is 1. Thus noise is passed 

unmodified to the supplier. 

7.9 Response to Random Elements of Model Demand 

For most parts we found that their commonality to. a wide range of 

models resulted in a very steady demand pattern. A mean demand rate 

was maintained and the period fluctuations were treated as random 

noise. 

We derived a distribution of model demand for part X whose mean 

periodic total demand was 10. This was estimated in much the same 

way as the noise component of assembly scheduling, for similar 

reasons (Section 7.6). 

This distribution is illustrated in Figure 7.9. a. 

NOISE IHPULSE <-2 -2 -1 0 1 2 >2 

PROBABILITY 0 0.10 0.25 0.30 0.25 0.10 0 

Figure 7.9. a. Distribution of noise component of model demand 

for part X. 
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From 7.6.3 we knew that stock would perform a random walk in 

response to demand noise. 

From 7.6.2 and substituting T-0.9z-2 we knew that: - 

T(d0A, d2X) =1-0.1z 
2 

so that the response of production schedules for part X to such 

noise is the convolution of the distribution of 7.9. a and a 

version of itself where the impulses are scaled -0.1. Using the 

program of Appendix I we saw the production schedule distribution 

to be as in Figure 7.9. b. 

7.10 Conclusions 

The above analysis achieved, in a practical sense, two things. 

Firstly we were guided away from proposed scheduling systems 

which contained unnecessary inherent failings; secondly we 

demonstrated that a system where stock'balances are'not fed back 

cannot achieve full stability. We note that either of these could 

have been achieved by other means but the z-transform techniques 

provided a framework approach to the problems which could be applied 

very rapidly during the course of a few hours discussions. 

The result of the whole exercise was that the final proposal 

was implemented. The instability in stock balance was noted and to 

retain control a routine of occasional stock reconciliation was 

superimposed as a temporary measure. 

The procedure operated as described for a year by which time it 

was possible to start implementing a more satisfactory solution. 

As a result of deeper understanding we were able to promote 

organisational changes making possible full control of stocks and 
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a recording system adequate to allow development to include feedback 

loops from stock balance. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Application 

The range of applications of discrete linear control theory 

is limited to those systems where the constraints of linearity 

and discreteness are satisfied. A great many production and 

inventory control systems, particularly the larger, more complex 

ones, are discrete. A significant range of such systems can be 

represented by a linear model, either because they are entirely 

linear, or because the model's behaviour beyond the limits of 

system linearity is open to sensible interpretation. 

It is possible to construct a general model representative 

of a broad range of the multi-product, multi level production 

and inventory control systems which are in use in manufacturing 

industry. This general model is the composition of models of 

subsystems each of which controls a single part or product. The 

composition is finite and well defined (4.10.1). The subsystem models 

can also be decomposed to represent the individual elements of 

the part control system. A range of such elements has been derived 

and the process of derivation has been demonstrated. Any discrete 

linear element can be modelled thus. 

8.2 Results 

We have demonstrated, in some detail, the use of discrete 

linear control models. Results in terms of system stability, response 

to standard inputs, and response to imposed random noise are 

readily obtained. These are of use in system selection, in selection 
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of system parameters (e. g. smoothing constants) and in predicting 

safety stock requirements. 

The construction of a model is essentially a process of drawing 

block diagrams representing information flow. This process itself 

facilitates understanding of the system and can frequently enhance 

communication between the modeller and managers responsible for 

system operation. This advantage is shared by simulation techniques. 

The arithmetic involved in modelling can, when necessary, be 

assisted by computer. The model is easily amended to represent a 

modified system and the necessary re-computation is restricted to the 

scope of the system changes. The computer model can be amended 

interactively (in response to its own output, perhaps), thus 

allowing very rapid system design. The technique also lends itself 

to the generation of easily assimilated graphical results. 

It is often easy both to determine stability and to interpret 

z-transforms as time-series by inspection. In such cases computer 

assistance may be unnecessary and a useful manual analysis can be 

accomplished rapidly. The very process of modelling may suggest 

improvement of the modelled systems (Chapter 7). 

8.3 Implementation 

The use of discrete linear control theory described in Chapter 7 

was successful within the constraints placed upon study at that time. 

Major modernisation of both plant and control systems is now 

proceeding and the technique continuo to be employed in system 

analysis and design. 
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8.4 Possible Research Applications 

Discrete linear control theory may prove to be a useful 

tool in the following areas: - 

8.4.1: The study of the effects of misinformation (particularly 

partly systematic misinformation) upon complex systems. 

8.4.2: The study of the effects of using differing planning 

horizons within complex systems. 

8.5 Possible Extensions of the Modelling Technique 

8.5.1: It may be possible to model certain classes of non-linear 

systems (e. g. pieceaise linear systems) using techniques 

based upon discrete linear control theory. 

8.5.2: Use of the "modified z-transform" [Traxal, 1955] Mould 

allow analysis of a model's behaviour between period ends. 

8.5.3: Use of array-processing techniques may increase the capacity 

and versatility of the possible computer models: we 

may model larger systems and process faster is this way; the 

model's operating charactatistics may . allow greater flexibility 

in running. 

8.6 Summary 

Discrete linear control theory is applicable in aodelling a 

significant range of multi-product, multi-level production and 

inventory control systems. Models so derived can be and have been 

of value in analysis and design of practical working systems, and 

may also be used in theoretical studies. Where applicable the 

technique is worthy of consideration alongside other methods in 

modelling such systems. 
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APPENDIX I 

INTERACTIVE PROGRAM 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C C 
C TIIIS PROGRAM ZIAS BEEN I )RITTEN III FORTRAN IV FOR PORTABILITY. C 

C C 
C 711E II: Pt1T AND AUTPUT CHANNELS ARE SET AT THE START OF THE PROGRAM. C 
C ALL THE POLYN0111AL ARRAYS ARE DECLARED IN THE MAIN SUIIENT AND THEY AND C 
C THEIR SIZES ARE PASSED TO THE SUBROUTINES AS PARAMETERS SO THAT IF IT C 
C IS VISITED TO CHANGE THE SIZE OF THE POLYNO111AL ARRAYS IT IS ONLY C 
C tIErfS; ARY TO CHANGE CODE AT THE START OF PROGRAM C 

C C 
C CHARACTER HANDLING USES Al FORMAT. TWO ROUTINES ARE SUPPLIED AT THE C 
C FIID OF THE PROGRAM, ONE FOR COPYING A CHARACTER FROM ONE LOCATION TO C 

C ANOTHER AND THE OTHER FOR COMPARING TWO CHARACTERS FOR EQUALITY (THESE C 
C ARE 1'ACHIHE DEPENDENT). C 

C C 
C I'LOTTIIJG USES THE GINO-F LIBRARY. BEFORE THE FIRST PICTURE IS DRAWN C 
C A CALL IS PAPE To ROUTINE PICIST TO INITIALISE IMF POTTING DEVICE, C 
C THIS IS DEVICE DEPENDENT AND AN APPROPRIATE SUBROUTINE PICIST SHOULD C 
C tlE SUt STITIITFD BY THE 111PLE11ENTING SITE. CALLS TO GING-F ROUTINES TO C 
C PLnT THE GRAPHS ARE MADE FROM SUBROUTINE SQUILL THEY SHOULD NOT NEED C 
C TO LIE ALTERED. IF PLOTTING ZIAS BEEN REQUESTED DURING THE RUNNING OF C 
C TILE PRQGRAI' SUBROUTINE DEVEND IS CALLED BEFORE EXITING, THIS OCCURS C 
C Ih SUtbROUTINE REPLY FOR EXIT ON RECEIPT OF AN 'END' COMMAND AND IN C 
C SUBROUTINE ERSTOP FOR EXIT AFTER A FATAL ERROR. C 
C C 
C THE OUTPUT FORMATS CONTAIN 2 CHARACTERS WHICH ARE NOT STANDARD FORTRAN C 
C THEY ARE ? (QUESTION FIARK) AND t (COLON). THESE SHOULD BE REPLACED IF C 
C THEY CAUSE ANY INCONVENIENCE. C 
C p 
C TitF: PR(GRAI' IS DESIGNED TO RIIN INTERACTIVELY. HOWEVER IT MAY BE RUN C 

C uFFLI1tE IF THE FIRST DATA CARD CONTAINS THE -MORD *NO*, C 
C UHEH EU'NNJING INTERACTIVELY PROMPTS WILL BE GIVEN WHENEVER NECESSARY. C 
C THE CIH'IIAIJD 'END' HILL STOP THE PROGRAM AT ANY TINE. C 
C SPACE CR NF%ILIU. E ACT AS SEPARATORS FOR CUFDNANDS AND PARAMETERS. C 
C ALL CIIIILAUDS AND ANSWERS IIAY BE ABBREVIATED TO THE FIRST 3 CHARACTERS. C 

C C 
C ALL PILYHUI'IALS ARE RFFEREHCFD BY NAf1E AND NAHES NAY BE UP TO iZ C 
C CHARACTERS IN LENGTH AND CAN INCLUDE ANY CHARACTERS EXCEPT SPACES. C 
C A GRAPH IS GIVEN A TITLE u11IC11 MUST BE 20 CHARACTERS IN LENGTH, SPACES C 
C ARE ALLOWED IN THE TITLE. ' C 
C, THE REPLY Tü ANY QIIESTION STARTING . HOW MANY POLYNOPIALS' MUST BE AN C 
C IIHSl1HEU INTEGER (ZERO IS ALLOWED). C 
C OTHER 1+111: DERS AS PARAIIETFRS ARE CONSIOERFD AS REALS. THEY MAY of C 
C SIGh4EI, OR I'USIGNF. D AND IIAY OR HAY NOT INCLUDE A DECIMAL P01917 BUT c 
C PAY NOT CONTAIN AN EXPOIIFNT. C 
C. C 
C THE FOLLOI! IUG DATA IS REQUIRED t C 
C INTERACTIVE RIIIINING? (ANSWER - YES OR NO) C 
C Ilnti IIAUY PLOYNOIIIALS ARE ABOUT TIP LIE ENTERED? C 
C GURCF OF POLYNOMIALS? (ANS'PER - FILE OR STREAM) C 
C MALME MF P0LVN411! IAL - Y' C 
C IIASH-TI'OTAL ) SUPPLIED FOR EACH POLYMOI'IAL C 
C CCEFFICIEHTS ) A0011T TO Of ENTFRFD C 
C Cnta ANDS TO ItANiPIILATE TILE POLYNUIIIALS C 
C 
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rrrarrr+rrrrrrrrrr*a*w+rwrrrrrrrarrrrrwsrrarrr***rarararrýrrra*raa. rrrraaaaaaaýC 

rr *C 
C* TIC FuuLLnt111iC furl11AU'PS ARE AVAILABLE +1. 

Ca *C 

Cr CIil I Ai P PAR. 1r'E1LPS P11RPOSE *C. 

C* +C 
C* R"t i) 1. IIA! IF Or 1ST POLY Tu BE ADDED TO AUr Tltlt Pnlrl: nl, IALS +C 
r* '. uA11E Or 2m) POLY TO CE ADDED aC 
Ca IiAhr. OF POLY TO HOLD RESULT rC 
Ca *C 

C* DI' lr'I 1. UAI: r nr P(LY TO VE n171DFD TO VIVID[ A POLYIIUI`IAL *C 
C* '. PO1! ER (IF Z**(-1) BY UHICH T(1 BY 7. *a(-Pl) *C 
C* UIVIOE rC 
C* 7 rsAI1F. Or P41LY TV HOLD PLSIILT +C 

rr +C 

c* n1;;, i; I, 1011: 11FR OF VOLY5 ON (I; APH (OAX 3) T11 DRAW A GI'APH OF (uP +C 
C* ?") TO) THREF PULYNO1! IALS *C 
C* ) I: AI! FS OF PULYS TO BE DRAIIIJ *C 
Ca !! +I. ) *C 

C* 11+2. TITLE OF GRAPH (2A CHARACTERS) *C 

ca *C 
(a nu) P Tu PUMP A CurY OF ALL "C 
Cr PnLYNDIIIALS CIIRRFNTLY *C 
Ca IN STORE TO FILE +C 
Ca *C 

C* r"r! n TO END PPOCtSSIHG (CAN *C 
Ca BE USED AT ANY TII: E) *C 
C* *C 
Cr Ir; PUT 1. UIII; RER OF POLYS ABOUT TO BE INPUT TU READ A RL°CK OF *C 
C* '. SOURCE OF POLYS (FILE OR STREAt1) POLYNOPIALS FROM FILE. *C 
Cr 3, ) NAIF., HASH TOTAL OR STREAM *C 
C* ) AIID COEFFICIENTS *C 
C* 1ý+7. ) FOR EACH POLY "C 
Cr +C 
C* I1. 'rt. RT 1, t"IAI: F OF POLY Tu BE INVERTED TO INVERT A POLYNUI. IAL *C 
C. r I. AIIC Of POLY TU HOLD RESULT "C 

Cr 4C 
C* I ILTI1, LY 1.1JAIIE nr 1ST POLY To BE ITIILTIPLIED TO MULTIPLY TWO +C 

C+ ?, IiAIIF OF 2ND POLY TO BE MULTIPLIED POLYNMt1ALS *C 
Ca 3. (RAHE OF POLY TU HOLD RESULT "C 
Cr 'C. 
C* I: SCALf IjA11r: OF NOISE POLY TA BC SCALED TO SCALE THE RAUDUI. "C 
C* ?. SCALAR 111T11 11111011 TO MULTIPLY VARIABLE OF A NOISE +C 
C* '. HAl1E nr POLY TU HOLD RESULT DISTRIBUTION POLYNO11AL "C 
C* *C 
C* 1HTRAI: 5 1. liAIlF Of I) )ISE POLY TO DE 10 7RANSrOR11 A NOISE +C 
C* TRAHSFI+RIUED NOISE DISTRIBUTION *C 
Ca ?. 1oA11F. Or Z-TRAIISFE. R POLY POLYNOHIAL by A *C 
Ca 3. IUAIIF. OF POLY TU HOLD RESULT SYSTEM PALY1: OOIAL "C 
C* "C 
C* 1')'I T 1. HAUE OF POLY Tu HE PRINTED TA LIST A PLOYNOIIIAL 'C 
Cr +C 
Ca SCALF 1. I+AI; E or POLY TV HE SCALED TO MULTIPLY A +C 
C* SCALAP 11ITIf 11111CN To IHILTIPLY POLYNOOIIIAL UY A SCALAR "C 
C* N, 1! IF. Or POLY TO Ilnln RESULT *C 
C* "C 
C* TIDY 1. I. I'I DLH OF POLYS Tn DE DELETED in LIST t: AliLS OF ALL "C 
t: r 7, ) POLYNW'IALS )14 STURE *C 
Cr ) NAHES %IF PuLYS TO BE DELETED AND DELETE THOSE Ißt) +C 

C* Ni-I. ) LONGER RfUUIRED "C 

C* 'C 
rr*rrrr+rrrrraaarr trrr rr+lFr*rýºri1**ý*Rfýtrýt+ýýýýýi ýýa'ýýýýýýýýýýýfýýýiýfýýýý ýýý' 

C C 
C SET IIIITIAL VALUES ; C 

C ICIIA)! - STANDARD INPUT CHANNEL C 
C JCHAt1 - STANDARD OUTPUT CHANNEL C 
C KCHA11 - POLYNOMIALS' INPUT CHANNEL (WHEN FROM FILE) C: 
C LCIIAU - OUTPUT CHANNEL FOR DUt1P OF POLYNOMIALS C 
C 1011) - 11AXIflUtl PERI)ISSIRLE NUMBER OF PO LYNOMIALS C 
C JIM, - 11AXIIIIJI1 PERIIISSIBLE IIUt1BER OF CO EFFICIENTS C 
C C 
C SET DIFFUSIONS Of POLYNOMIAL ARRAYS : C 
C ILA1, EPY(1?, Ibill) C 
C CUEFPY(JDIt, #ID1f, 4) C 
C HASHPY ([D1fI. 4) C 
C X(JDII1r2) C 
C Y(J6)ft+. '. ) C 

C C 
CcccccccccccccCCCCCCCCCCCcCCCCCCCCCCCCccecccCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCC 



L,. f, ICAL ItIIA; r: cONLII: F.. DRAII 
X11 LI'SI1111 htihEPY(1. , 40). corrF'Y(2n, 44). IIASItPY(44). X(4OY(40) 

f f'I 11/ IfJFf / T61ºr(3D). tlct; RFC. IPT, ISPACE. ICHAN. JCNAN. 111'LI11F. 

+I FORI.. HIIIIRPY. NEImLP . DR At) 

, IC!!; it =h 
º5 
L1'ttnt-=1 ý, 
11,11'=4n 

. IUT1:? J1)II 

li'I1; 4=IDII'+4 
In11 CPY=i) 

11( 1* ; FC=, TRitp;, 
nrý1, FALSE. 
f1 ., 1 =1 "III It 

r,; I. L C('1'Y1 (IIAIIIPV(P. IISPACF) 
1 (-, NT1I. i f 

1)1' 2 J=1, JDIi' 

cl, rt'rY(J 
Ci. F II'I! C 

11,1:, ItPY(I)=^. O 

r(it TII. IJL: 

Y. liltIlT=f 
n' LIR; f 71: 111. 

I FI'Rt =r 
4 it Pr: PLY=(I 

I TLBi, CTIVF 1t1111ttTNr+? 
f. 1LL IRSTIR(i. REPLY) 
IF (r! I. EPLY 

"(T. 
0 AND. IJRFPIY 

. 
LT. 3) GOTO S 

r.. u111. T=K''li(: T+1 
IF (KI, LIIJT 

. 1.0.3) CALL ERSTIP(1) 

ItrlRrC=. TRI: l'. 
I Fria'=5 
GoTu 4 
IF (I: I: IT1LY Fit. 2) ONLIIJF = . 

FALSF. 
CALL t, l LP(C""CFPY. IIASIIPY. NAI! E: PY, ]fill?, iDII1S"JIII:, KCHAN) 

fi FI'Itt'=1° 
f, itr 'LY=1 
CALL Ir5TI1-(NI'rPLY) 
It1=1JI'f. PLY+1 
66Tf ( Or2ý.? 0,20, . n. 10.11,12.1t. 14.15. ý0.2ý. 1e. 17.1r~. 1o). N1 

C.. COTAI: D - 'SCALE 
8 1F0r, I'=21 

ti EI; uLb=1 
CALL 0AI; F111(11,11AIIEPY. IDill) 
I F('Itt-22 

" SCAL=REALIII(tl) 
I F0R1'=20 
11Et 0L1)=0 
CALL 14A1; FIH(H, HA11EPY. IDI11) 
IF (NLI. OLD 

. 
FU. (-2)) GOTO 6 

CALL SCAt: LT(SCAL. t1. N"COEFPY"HASIIPY. IDIt, 4. JDIM) 
C, 11TO 6 

C.. CI, ti: AUD - I'IILTIPLY 
^ Irnhr=23 

YC,: u, LU=1 
CALL IDAUCIN(L. NAt1EPY. IDIN) 
1 F0h1'=24 
CALL 1'AI, FIIJ(tt, ºJAItLPY. 1D111) 
I FO RIW0 
I; E1,11LD=0 
CALL t, Ai', FIf! (N, tJAI1EPY. IDIt0 
IF (YCt. OLD "FQ" 

f-2)) CUT() 6 
CALL ILYI1LT(L"II, N. COFFPY. tIASIIPY. IDI114, JD1ft) 
(0TO c. 

f 
... 

Cul"I AtiD - ADD 
1n TFC1t'=25 

Ht: t: I)LD=1 
CALL IiAIIFIII(L. IJAfIEPY. ID111) 
I FARI'=2p 

CALL t+AI! FIt: (1l, UAI1EPY. IDIlt) 
I1Cltt =20 
i11: t: uLD=O 
CALL IMF It'(II, fI, lI'EPY. IDIII) 
IF (I; CI. 0LD 

. 
E11. (-? )) A0TO 6 

CALL I'LVAI'D(I., II, t(. c: (irFPY. IIASNPY. ID1114, JD111) 
G'iT( c, 
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C. rý 11 sr. n -1 'l r. T 
11 1Flýla =? T 

III I ul I' 1 
rA LL I"AI: iIt'(11ol'AI'EPY. IDill) 
Trr, 1'1 =201 
UI '"' 1 sit 

r"", LL I; A I: F )c (i , Will Cf'Y" Inlll) 
IF II Fit. (-fl) ) rutfl u 
CA L PLY II, '! (Ii. N, morrrr. ItASI1I Y. '1AN. PY, 11)1IP11'4, JPIt') 
r, u7u ,, 

C".. r. ul 1 . I. D - rF f t! T 
17 Ic' i. t ?. 

P! 1'I uLl-1 
r, iLL I". 11; ß II'(II, ttt`UP Y. IDIIt) 
CALL . C1: AIL(1', CurFPY, IIA11II, Y 1'!. i'LPY, 1I)It'., 111]114"JP111) 
r, iTu o 

C rill I�+:; (" - PIMP 
17 r ILL I, I1I; r(LCIIAV, co. rrt'Y, IIA-4111-Y. a. ýt"(. rY. InI 1: 11114, Jh 111 

r�T, " I, r. 
. 

Cl 0I AI'1) - II, PIIT 
14 CALL '"I; LP(f. urFPY. IIA;, III'Y, IIAPI. rY, Ihi Ile Intt; 4, JDtII, KCHA") 

r61Tu u 

C. CIA I; AI. D - NiA10 
15 IF (. I: nT. DKAII) CALL PICIST(DRAU) 

CALL SAUIGL(CO)EFP1f. IJAIIEPY, X. Y. IDIII. ID1114. JDIt1. JDINZ) 

f, 11TO t. 
r, CtiI T: ID- TIIY 

16 CALL TII, Y(CnEFPY. IIASHPY#NAIIEPY. IDI11. $DlII4"JOIII) 

COTu u 
C.. (u1 IiAfaD - DIVIDE 

1' I F(, I; 1'=? ' 

If 0f o Llf: 1 
CALL Ia11: r. 11. (ft, IlAIILPY, IftZU) 

t, iºIV=ItJTII(1DU1! IIY) 

IfCltI 270 

CALL LAIiFIf: (H, UAUEPY. IDill) 

IF (LLI1u1. U 
. 

F1+. (-2)) GOTO 6 

CELL ILYDIV(1"t. f1VIV. II. C(BEFPY"HASIIPY. ID1114. JDIM) 

C, 1171) c. 
C. '. rUI I AUD - HSCALE 

1ß 1FRltl'=3J1 

I"it'vll'=1 
CALL IJAIeF14(f1. IIAItEPY. IDIn) 

I Fi1RPa20 
SCAL=ItEALIIJ(N) 
I FriI'a2(j 
I'Ft. 'ILU (I 

CALL IJA11FII: (IJ, IIAIIEPY. Ibill) 
IF (I'l lOLD . FQ. (-2)) GOTT) 6 
CALL I: SCALE(SCAL. 1t. I1. CnEFPY. IIASIIPY, 1DI114. JDIII) 

Guru ., 
f (Of'I. 'AI: D - IITRAIIS 

10 1 rnitI, a31' 
IJEI MLU=1 
CALL I: AIiFII'(LPI! AIIEPY. IDill) 

Fi1: 1'=4A 
ItE1'IJLGDI 
CALL I: AltEltl(11"I: AIlEPY. IDIH) 
I Fr'RI =ZO 

CALL t. AItFIU(II. IWIEPY. 1DIH) 
If (11t: 1Y)LD . EQ. (-i)) GUTO 6 
CALL t4TRAIiS(L. I1. N. CUEFPY. HASNPY. 11Af1EPY. 1DIft, l01M4. JDIN) 

G, ºTG as 
?AIF(. I. CT. nIJLIIJE) CALL ERSTtºP(7) 

NF: I. 1iiCE. TRI, E. 
I F(R1 r2 ... 
teºT(º 7 

run 

:; 
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I1i'CI' DATA 
L')(1rAL HEI'NFC, ONLIttF, DI; AI! 

rill1t0Ij, / 1111bt)ER / Hk)S(13), IPLU$, t11NUS, IPOINT 
r, rº11"C1. / IIIFU / IUIIF(80). NFUPFC. IPT, ISPACE, ICIIAN. JCHAM, u1. LihE, 

+I Fnktt, NIIfiUPY, UEUALD, DRAII 
Cu, I, 01i / CI'AND$ / IliSTR11(3,1? ) 
f.: l'l; (l: / ST01 S/ 11LSS(7,4), ISTR(31) 

t t. TA lif. 1) r1111$(2), IJAS(3), 11(! G(4), 1lOS(5), NOS (6), NoS(7/. tilIS(P. ), 
+ I. 4 j(' ), liiº5(10) / 1H0.111.1H2,1113,1114,1115,1M6.1N7,111R, 1H9 / 

P, %TA IPLUS / 1H+ /, MINUS / 1H- /, (POINT. / 1N. /, ISPACE / IN 
DATA Il; 5TI! I. I(1.1), IIJSTRII(2.1). INSTRII(3.1) / 1HV. 1NE, 111S I. 

f II: öTkl: (10 2), It: ST111)(20 2). IHSTRII(3.2) / 1NN. IHO. 111 It 

+ I: STIII(1,3), IIiSTRI/(2.3)r1uSTRII(3.3) / 1HE , 1MN, 111N I. 

+ II:. TI(11(1,4), Ili%TRII(2.4), INSTRII(3" 4) / 1MSr1HC. 1HA I. 

+ 11; STRif(1,5). I141STRII(2,5), INSTRll(3,5) / 1NMr1N11,111L I. 

+ I1: STRif(1,0,1USTRU(2.6), IHSTRII(3" 6) / 1NA, 1ND, 111fº I. 

+ It';; TI; U(1,7), IHSTRU(2,7), INSTRII(3,7) / 1N1,1MN, liIV /" 

+ IIJ;, Tk11(1,8), IIJSTRtJ(2,, 8). INSTRII(3.3) / 1NP, INR. 1111 I. 

+ I1: 5TIt11(1, '"), 11JSTR(1(2, °). INSTKU(30 V) / 1"D, IHU. 1fill /r 

+ IIJSTP, I(1,10), 11JSTR11(?. 10), flt$TRII(3,1U) / 1111.1MN. 1IIf` /. 

+ It: STklI(1,11), 1NSTRU<2.11>, IIºSTK11t3.11) / 114D. 114R, 1UA I. 

+ INSTk1! (1*12) 0 Il STR11(2,12). INSTRII(3.12) / 1NF. 1NI, 1111 I. 

+ IIiSTk11(1,13), IIJSTRU(2.13), 1NSTRU(3.13) / INS. IHI, lI1R /. 

+ IfJSTkII(1,14), itHSTRU(2,14), 1NSTRII(3.14) / 1MT. 114101No I. 

+ II. STI: if(1,15)rIiSTR(1(2,15), IN5TRU(3,15) / 1ND. 1N1.11tV /, 

+ It: STi: U(1.16), IlSTRU(2,16). INSTRU(3,16) / 1NN, 1NS. 1HC /, 

+ I11STk11(1,17). I1: STRU(2,17), JNSTRIt(3.17) / 1NN, 1NT. 1i1P / 
DATA I"CSSI; ESS(2,1), I(FSS(3.1), 1)ESSC4,1), tIESS(S, 1), l 1SS(6,1), 

+1 EJ5(ý, 1) / 11IAr111tlr1NS, 1HN, 111E, 111R. 1H I. 

+ E55<1,2)rIiFSS(?, T. ). ItE. "ýS<3,2>. f1ESSti. 2)"nESS(5.2), f1FSS(br2). 
+I FSS(7,2) / 1HC, 1NOr1H11,11t11,1NA, lN14.111U /. 
+ ESS(13)IIFSS(2,3)r11ESS(3,3). HESS(4,3). I, ESS(S. 3)"IIESS(6,3). 
fIE! iS(?, 3) / 1IlH, 1IIA. 111ft, 1HE, IN "111 *IN Is 
+ EöS(1,4)rl. f: Sý(7r4)rI1E5S(Z, 4), t; ESS<4, ýi). IIESS(S, ý), ItFSSl6. ý). 
+ I'IESS('r4) / 111Ur111t)#1HIi, 1NA. 1NE. 111R. IN I 

DATA ISTP(1), IST('. (? ), ISTR(3), ISTR(4). ISTR(S)"ISTR(6), ISTR(7). 

+ 1STP(z), IST1: (''), ISTR(1l1). 1STP. (11), 1STR(12). ISTR(13). 1ST0(14)" 
+ ISTP(15)rISTR(1f), ISTR(17), ISTR(11{). ISTR(10). 1STR(20). 
+ IS TR('1). ISTR(2T. ). 1STP03)rISTR(T4). ISTRt2S)"IST it (am 

+ ISTR(27), ISTR(28), ISTI'(29). ISTK(30). ISTR(31) 

+/ 111E. 111H, 1HT,. 1NE, 1HR, 1N , 111N. 1NA, 1H11,1NEAN "1NQ, 1MF. 1N 
+ IIIP, 1Ito, 111L, 1H1,111N, 1M11,1111:. 1H1r1HA, 1Nl"1N . 1NT. 1N0.1M " 
+ 1141`1 , 1HCr11t / 

rum 

SllVWVI1TINE SCAVLT(SCAL, t1, W, COLFPY, HASHPY. 1D1"4#JDIM) 
Plt't'USI II COOFFPY(JDIIi. ID1114), HASHPV(ID1114) 

C 
C P11111I: F TI) 111ILT)P LY A POLYHOIILAL by A SCALAR 
C 

I''%SIIPY(I)=0. Q 
Do 1 J31: JDltl. 
Co FFPY(J. h)=SCAL+COEFPY(J. )1) 
HASH PI., (I. )=IIALHPY(H)+COEFPY(J. N) 

1 (' Tl1: UE 

PETIIRI1 
Ft: D 

SIInkfIIT11Jk PLYIILT(LMe t1. COEFPY. HASI PY. 101114, JD1M) 
nmcnsiun tt rFPY(JD111. ID1114), NASNPY(I01f14) 

C 
C Rnl! T1t1E Tit 14ILTIPLY TWO POLYNWIIALS 
C 

H, 1SUPY(11)=(. A 

DO, 41 J=1. JDIII 

CITE F PY (J ,IO Itt4)  A. A 
rill 1I1. J 
t11=d-1+1 
CttEFPY(J, 1 11; 4) COEFPY(J, IDIH4)+COEFPY(I. L). coEFPY(J11"N) 

1 (OUT 1141tl. 

2 rut: T I IJIIE 
01) 3 J=1. JDII 
cotrrY(J, 1h)*CI. EFPY(J. 1b1114) 
IIASIIPY(U)=HASHPY(N)"COEFPY(J. IMIM4) 
Cl, I: TTIME 
PFTIIPId 
FI. F 
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'I171IJ'IT1tI' PLYADD(Le 1!, NiCOFºPY. It AS HPY#ID1116, JPIH) 
flit [i-, It'f+ [l; FrPY(JDIt,, IP1t"14). HASNPY(1D1114) 

r''''Tm r TO , th' Till) P(LYNnIt1ALS 

P A'IIf PY(1. )=(+. n 
r( 1 J=1. JDIIi 
rtrFFPY(J! +)=("IFFPY(J. l)"Ct)EFPY(J. 11) 

1 IIA$iPY(h)=1! ksifPY(11)iC(1FFPY(J. N) 
RITURI. 

F; 'D 

S11111' "11T1I L i'LYIIVI(I', q. COEFPY. HASHPY, tIALEPY#I41H, 1PIN4. Jtl1I') 
LOCIC, 1L I1Ct! RFC. 0t1LINF, DRAtU 
I)II CI:;, iu11 CUUFFPY(J1II1', IUllt4). IIA. HpY(1U1114), 1JINEPY(12. IDItI) 
cIH I; rrt: / 1N(0 / IDIIF(81)), PIFI1RLC, IPT, ISPACE* ICHAN. JCHAR. ut'LIIJE. 

+I Fo It11. HUItUPY. NE%4OLD. 1 RAI1 
r 
C I""; t1TI1.1 70 1H1VERT A PULY11011IAL 
C 

Fu. 1 J=1. JGII' 
IF (Ar5(CnEFPY<1, I1)) GT. 0.1101) GOTO 3 
CALL I'LYP1 : '(h, 1 . 11. COFFPY, I=ASHPY. IDItt4. JDlH) 

1 c.. ut, T1tIUL 
t'I: I7F(JCIIAf:, 2011) (11A11EPV(K, 1), K=1,12) 
tRITF(JCHAN, 20('2) (HAt1EPY(K, N), K=1.12) 
DO ; J=1, JDII! 
CUEFPY(J, N) A. 0 
COOT I ht'E 
11 ASIfPY'(71)an. ft 

PIT 1) Pt 
3 If (J . fn. 1) GUTO 4 

J1=-(J-1) 
UPITF (JCIIAtI, 2003) (IlAtIEPY(K, N). K=1,12). J1 

4 I1=1f11'4-? 
1'=1 PI1 4-1 
I'=IDIt'4 

SCAL=CCLFPY(1.11) 
DO 5 J=1, JDItt 
ruurFPY(J,. I1)=-CUEFPY(J. IU/SCAL 
CoErrY(J, 1: )=0.0 
C')EFPY(J, 14)=O. A 

CfýL'T 1 t: UE 
cUErPY(1, I1)=0.0 
roFFPY(1, I: )=1.0 
('(, EFPY(1,11)=1. fl 
Iii) 7 Ja1, JDIII 
CALL PLYI'LT(I1,12.13, C0(FPY. HASNPY. IPI114, JD1t1) 
CALL I'LYADD(U. J3, tl, COEFPY. HASHPY. IDItl4, JDlti) 
Pli c, JJ=1, JPIII 
CfitrpY(JJ, I? )=C(1F. FPY(JJº13) 

i, Cn1 ; T11111E 
Coin 11,. (! L. 
CALL SC�t'LT(SCAL, H, tI. CAEFPY. HASIIPY. 101114"JDltt) 
P1. TIIRti 

2.0n1 Eurt. AT(15H CAIIIIUT INVERT . 12A1.1A11 - ZERO POLYNOMIAL) 
; AO' Fi"RI, AT(114 . 12A1,1211 SET TO ZERO) 
20fß' FfPIIAT(2711 PIVIUE IWVERSE POLY11011IAL . 12A1.8H By 7*. (. 13.2311) sEFO 

; RF II TFkPRCTATIsat) 
rw- 

-23$- 



1; 6; IT1111.1`LyDI%1(11,11i1, com, Y. HASItPY IDI1: 4, JDI"; ) 

(I: GI L tnE''ItEC. 1)t: Lit7F. DRA11,1: PITF1 
ril f: tlsI'II Cit[FPY(JDII'. ID11I4). IIASIIPY(1D1114) 
r(+li'('Ii / 1ºifr / 1UtIE(RA), 14E1: P1'C, IPT, ISPACE. ICIIAN, JCMAN, nhLII: E, 

4 IFARf+. (J11f1DPY. f1E11nLD. DRA11 

C 
C RI'I°T11; r Tu 1)I'"II)F A PfLYNUI! IAL BY Z **(-Il) 
C 

I'1, ITr1=. rAl. SE. 

nA, it PY(: I)=fl. 0 

1tS ; J=1, JPIr 

I01: ITF1) (tT(t 1 
Ir J Lr. !I . APP., A11S(CUrrPY(JrIi)) . VT. 0. (101) ORIIF(JC11A1:. 2001) 

1 JI=, i+II 
C''rPY(J 
Ir (JI 

. 
IF. JI) 11; ) CfFFPY(J, U)=Ci, EFPY(JIrI1) 

Vi%S11'Y(11 =NAStIPYCH)atorrPY(J.! º) 

i Cu: T1r111. 
jr (II . 

ýE. Jil II') IIPITF(JC11AN. 2(ºf2) 

f (TIIR1: 

2c(1 r'tni. AT(5011 1'AI9INr - DIVISIr! J GENERATES PuSITIYI POWERS OF T/ 

+75It CNCCY I't, LL FOR RCVER5171% CAUSALITY) 

; 'fl( FO! 1'AT(5011 I)AHHIl1G - P((+ER Tr"I BIG. RESULTAUT POLYNOMIAL SET TO 2t 

ir11) 

SUBROUTINE 1iSCALE(SCAL. It. N. COEFPY, HASHPY. IDlM4, JDtM) 
DII'EI4SION C()F. FPY(JDIM. 1D1144). HASNPY(IDlf 4) 

C 
C Ri'UTII: E TO SCALE TILE RAID011 VARIABLE OF A NOISE DISTRIBUTION POLYNOUTAL 
C 

I1111: 1aID1114-3 
IAA 1 J=1. JDIII 
Ctf FPY CJ . 14)=C(IEFPY(J #110 
Ci-EFPY(J. ID1111)all. 0 

1 COLT I IIUE 
DO 4 J21. JDIll 
If('T=0 

2 T0P=FL0AT(J)/AfS(SCAI) 
IF (FLIAT(JD111) LT. TOP) TOPsFLOAT(JD111) 
JJ= I P(#T+1 
IF (T(, P LT. FLOAT(JJ)) GOTO 3 

CuFFPY(J. I01111)=COEFPY(J. l0ItP1)+COEFPY(JJ. N) 

Ili(, T°JJ 
GUTI) 2 

3 IF (JUI11 AT. JJ) JJ=JDIM 

(OEFPY(JrIDl1i1)sCOEFPY(JiID1141). CUEFPY(JJ. N)+(TOP-FLOAT(IBOT)) 
4 CtINTI1111C 

J1=O 
ISIG=1 
IF (SCAL GE. 11.0"GOTO 5 

JlzJD11 +1 
Ib1G=-1 

5 
. IJ1=J1+ISIG+1 
CI)I: FPY(JJI, 11)=CuFFPY(1.1011+1) 
HASIIPY(II)=Cffl FPY(JJ1. N) 

Di, u J=2. JI+II'" 
JJsJ-1 

J. 11=JI+ISIfi+J 
CIIEFpY(JJ1.1i)=CuFFPY(J. IDII'1)-COEFPY(JJ. Ib1111) 
IIASIIPY (II)=IIASIIPY(I. )+(UEFPY(JJ1 . k) 

n f. uI. T11: I)E 

I? I: TllrI. 

_ 
flip 
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SIIPI: t' IT II; t III ItAI. S(Lrl'r: J, C(1LFPY, IIASIII'Y, ltaflFPY, IDI$, III0'4, JG11: ) 

uGICAL I)L! 'NFC, UULlttFrDR All 
fill FI 1ii11 f. u[FI'Y(J1)11: r1D1114)IIA$IIPY(IhI114)ItA11F. PY111? @IPIP) 
f'01IT1. / ICFü / Iwir (A1)rUf. llRff,. IPTr15PACC, ICIIAN, JCN4y, pl. LIlife 

+I F(1L'I,. IJIIf IIt PY. NEI, nLD, PR All 

R"VT11: t Tuu Tr�t'SFOr, tt A tifISi DISTRIBUTIUUºI P'LYPIQNIAL NY A SYSTEI. 

-TI: Ai., FFk I'll LYt fflTA1. 

Ti>II 17=1101 4-. ' 
T IC I 13=1 fý. l l'4-1 

1 J=1, JP111 
Corri'", (J. I1 lt: ')=f:, eEFr%(J. l) 

1 f, 1;; T1LI't. 
Pi CIr=I"n/rLIIAT(. 11)11t) 
JI'T1.1=JD 1I +1 
fi) ; J=1, Jt)It. 

�II'=Jf11f'1-J 
If ((4'[fM(LDII', 17) CE, RF. CIP) GRTf 
c. ' . iTiIL 
1! h1Tr(JC11.11:,. An1) (I, AI EPY(K, I1), K=1,12) 
I'RITr(Ju; M:, -OA, -) (IiA11EPY(K, L), Y, =1.1? ) 
no 4 J=1. J1)111 

r'rI, ro, (J, I, )=n, n 
f uLTI1, Cf. 
1! i\ IIPY(11)=n. n 
rt T(JPI 

5 Do &' J=1, JDIt+ 
J1=J+1 
If (Ci"FFPY(J, 1, ) 

"IIC. 
RECIP) G(: TO 7 

h CI : iII. I 1. 
r,, 4)T4. 
SCAL=CA1. F1'Y(J. I') 
rALL I'SCALE(SCAL, In1113, p, tn[rpy, HASHPY. lPItl4. JDIM) 
IF (J1 

"r7. 
Lioll', ) G070 s" 

Do ?, J=JI. LUIII 
IF (C(-EFPY(J. I; ) LT. RECIP) GOTO A 

SCAL=C(`LrPY(J, 11) 

CALL I. SCALF. (SCAL, ID1113,1D111"C(ºEFPY. HASIIPY. 1D1144. JDI04) 
CALL I'LYI'"LT(14,1DTI12, H. CI)EFPY, IIASHPY. 1DhII40JD11: ) 

3 Citl! TII UC 
IIASIIPY (1i)=n. n 

PA 1n J=1, JI)111 

II, iStif Y(II)=NASIIPY(tr)+COErPY(J, N) 
1) COf; T II I)E 

PFI I: 
nC1 FierI. AT(? IIi 2-TRAHSFLR FIt11CTIPPi , 12A1.1'11 IS ZERO POLYM01UUAL) 

inn' ruIu: AT(IIII I, Tr, AI, S ntJ , 12A1,3SH ARA?: OONED - POLYNOMIAL SET TO f10) 
r11D 

SIU k(UUTII I 5CIAl'1. (U. roErPY. lASItPY. t4AIIiPY. 16111. IDIM4"JPIII)' 
Li)r IC/L H(I'kEC. fltILI:. F. DRAT 
DII CI: SI(, I f. qF. fPY(J1111". IU1116), HASHrYClelII4). tM1: EPYtt2. leltt) 
CulI('I: / 1Rrn / Int+r(; A), ttCI)Rrc, IPT. ISPACE. ICHAM. JCNAN, AIitINF" 

+1 Fnkl:. t$UIIfpY, NE11pLP. DRAI! 

PiMTII: E TO 11PITC OBIT A POLYUGHIAL 

' NTf(JCU, 11:,? 0'1) (NAIIF. PY(K. N)"k=1.12)"HASHpY(M) 
'r tTf (JCNAI:, 2Q'2) 

, I1 TI,? =(Jt Ir+1)/2 
r" 1 J: 1, JDI1;? 

. 11=J-1 
J? lJ+JDIJi2 
J =J2-1 
r: pITF (JCIIA1',? flfl3) J1. enEFPY(J, t! ). J3. COEFPY(J2. N) 

1CI T11; Ilt: 
RfTUIýI: 

? 0(01 fioiýi AT(1511 TII: 1 SERIFS : . 
Il2Ai. 5X, 13HHASH TOTAL 11 "i1ß, 2) 

201)? fuel AT(1N , 2(15X, 4t1TIlIF, 3X, 5NVALllr. )) 

; 111± fi)1: (. AT(1GA. I3, 'x, F^. 2.1SX. 13. SX. FQ. 2) 
nur 
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5II ^I; I-: IT11: 1 I+1If IN Lt! fit V, CI! EFPY. Il AS If PY. tlA1: C1'Y*111!!. IP1r4. Jf. 1' 

1. (; 1r; L Nf!; F1:, W! LTIUF, P) eAU 

U11 it';; 1i! C, C(PEFpY(JDII:. Ih1114). IIALIIPY(I1º11,4),?. AI #?. AIIFPV(i J"# It 111) 
Cf 1I VI. / It fl' / TR1'f (X11), IIPtlPFC. IYT. ISPACE. IC!! AN, JCMAN, 0? Il16(, 

IOS N!. IlurnPY. NEt! AID"OP. All 
f 
f 
C 

P, j1: T)IE T++ e I'I MIT ALL CW pFIiT P''LY11Q1l1ALS 

11-1 
,. 

1=1, I+1'I: RI'Y 

tt; '1Tf (LLI! AI:,? tlnl) (t: AtlEI'Y(K. I ). C=1.1d), IIASIIPY( I) 

1"I7E�("^2) (l: ('EF{"Y(J, I)&J=1, JDII ) 
CI'I: T 11; 11L 

P Tl'PI+ 
wnnl fnl; IAT(1h *1, '. A1' X. F10.3) 
T1) +1' F+, I'I. AT(1H *.; f''. 2) 

f. l 1ý 

Stec IJTIVE T1UY(f(IErPY, HAS! IPY. NAI1EPY. IDille ID1114, JDl1) 
LOGICAL NEI! i(EC. ()NLTt4F, DRAU 
11I1'Et LIfit! C4)rFPY(JDII'. IDll14). HASHPY(1D1114)"NAFIEPY(12. I Plot) 
Cn11; r'IS / INFO1 / IUt1F(80), NEIIREC, lPT, ISPACE* ICHAN. JCHAM, l1NLII; E1 

+IF (1R(", IiUltDPY, NEUfLD, DRAW 
C 
C 
C 
C 

I; i'l1TTI! E Ta LIST THE NAHES OF ALL POLYNOMIALS CURRENTLY IN STORE AND 
Tit DCLETF A REQUESTED SET OF THEM 

S 

4 

C 

1) 

nýli 

i nný 

UP ITI(JCHAlit 2001) 
11kITE(JCI1AIU, 2002) ((NAIIEPY(K. 1), K=1.12). 181, NUMBPY) 
I F(11,1: =30 
Ili. FL=1t. TIN(IDIII! IIY) 
If (I: UEL rQ. 0) RETURN 
Pit G I1=1. I1'EL 

IFfkt =31 
UEI'u1F 1 
CALL WM IF [I: (t1, tl, it'EPY. I bill) 
Ill. 3 I=1,10ti1ºII(ºPY 
11=1+1 

oil 1 J=1, JD1I1 
f', rrPY(J, I)=Cn[FPY(J. 11) 

CONTINUE 
IIASHPY (I) =11ASIIPY (11 ) 
P(o =11' 
HA1'1hY(K, I)=I4AIILPY(K. 11) 
CUUTII: UE 
ClAt: Tl'lit) C 
Du 4 J=1, JDIII 
COEFPV(J, I) lit; RPY)=0.0 
Ci J7Ii: l: f. 
11i, 5; iPY (I: I11'PPY)=0.0 
Di' S º; =1,12 
CALL L()fY1(IHAIIEPY(K, t11111IPY), 1SPACE: ) 
C''u TII, u 
III! IIPY=Ht1l! RPY-1 
CI'I'T 1 UUL 
PETUPII 
F'WNI AT(: a1n PnLYH t%IALS CURRENTLY III STORE) 
r. 'PIAT(6X, 1ý'A1,3X. 12A1,3X, 12A1,3X. 12A1.3X. 12A1) 
EU6 
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!; IIGGnl! T11'I. "Jill f, L(1; 1! FFPY, iI/: I, [PY, X, Y, ID11t. IPIIl<. JDIN. JnhI ) 

L' (ICAI. III:! tRF. Celll. LI! 'i At 

i'Ii ut.. Sitm U1tIrrY(1?, ]U11U. CUFFPY(JDIII. IDIIU. ) 
tº1I LI Shit! LIºPA1! (%). ITITLE(20), X(JD1t12), Y(JDI! º2) 
CIllI 4114 / 1t'F0 / 11it! F(, I()), tICt: RF. C. IPT. ISPACE. ICHAN, JCHAk, üt LII. F. 

+1F (1Ct-, IlIIHIt'Y, I+Fll(ºLD. DRAII 

r 
C P(11111I: E TI rLIIT !! P Tn THREE POLYNWHIALS OPI A GRAPH (U%IH 6th(I"1) 
C 

AJ. w11 =FLOAT(JI, 11: ) 
W-ll'='2 0 

1 t'! PAI =11; TIt! (1DI1I: i: Y) 

IF MIM A1: 
. 

E. '. 0) Rr7llRI: 
1F (I: UCC, I . 

LF.. 3) GUTO 2 

IF (. 1. ('T. fh! LIt: E) CALL ERSTI)P(0) 
I r('; z1-37 
CALL SCL'II; r (I F(, KI!, JCKA4r0) 

CFI: ItFC=. Tilt[, 
G'ITu 1 

Do 3 1=1. UPkAIJ 
IFORI =I F( 

III uLn=1 
CALL "t1AliF11! (fl, I. AI1EPY. IDIII) 

Tin=111.. 1 

L rC;. I (I) =1, 
Ci'l'ýTIt; I! E 
IF (. I4CT. I1F'. 01: EC AUD. IPT LE. RA) GOTO S 

IF (.:: CT. (if! L11.1 L) GOTO 4 
IF' II =3u 
C, tLL SC111iir(IFn1'I1. JC1(At1. N) 

4 CALL II: 11IIF 
5 CALL PEPLY(l; PLPLV. LEH) 

iEI. I)=IPT+lr 
IF (IElvli GT. U) ILtiPsi1O 

Y=1 

I'ii G I=IPT"IEIID 
CALL COI'Y1 (ITITLF. (K). IDIIF(1)) 
Y. =K+1 

6 fi):; T I IAIiE 
1VT=IL1441 
CALL LEFJIIS 
CALL PICCLE 
Ti, P=0,0 
itGT=R. C 

11() "; 1: =1 , 1! DI; At. I 
L=LUP,, I: (Y ) 

DO 7 J=1, JDIII 
If (rurl'PY(J, L) LT. IlOT) ItuT=CI)tFPY(J. L) 
IF (CuUFPY(J. L) GT. TAP) TiIP. COEFPII(J. L) 
r4ItT ) I: IIL 
CII: TI(: CE 
IF (Ili'T LT. ("O. Onl)) GOT1º a 

CLI: T=1'1. (1 

1; 6rIu 11 
If (T"P W T. 0.01) (. PTO 10 
CtA; T=1'Q. l1 
GuTuu 11 

1(1 CFI'T=RfiT*110.0/(ýU. T-TOP)+1A. 0 

11 CALL AX1P' Z(0. '0.0. CFNT. 15A. 0.1) 
CALL AXIPI)S(0. '0.0. CF1iT. 110.0.2) 
CALL '+XISCA(3. JU11;. 0.0. AJ1ºIII* 1) 

CALL AX IS CA(3.10,11nT. TOP, . 2) 
CALL AXIDFA(1,1.1) 
CALL AXIDkA(-1. -1.4) 
I'DASII= 
RI 1 PAT=11 .0 
DASII=10 .0 
Pit 13 K: 1 . 10PAIº 

1=1 
00 12 J=1. JDIII 

X(I)=J-1 
Y(1)=CC. LFPY(J. 1) 

X(1+1)=J 
Y(1+1 )=C(`t FrV (J. L) 

1=1+i 
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1. ' C.. -il: TIi. UU. 

Ct'. I L ; +A1 Ilf D (1,, '), 1SiI, I I PCAT, 1ASH, II, (j) 

IALL t R,; Pt"I. (Y, Y, JI)T11? ) 

uC^1 AT=1t FPf i, T-4,11 
DA^1. =F-\ 1I-4 .0 

If 

CALI. l `. 1! t I (0rý. ýrý. ýlrr), Q) 

CLL 1 
CLL 1 P(ITITL1..?. 0.1) 

C 

CI'Itcok T(+ L0TTt'rll +if nCi: ECt! 
C, 

r, LL 

ri. t, 

SUpi, f;! T11: 1 6 l! LP(C(FFPY.! 1A5hi'Yv*WA F. {"Y. 1D111, ID1114. JDJI, ', vCNA/: ) 

LI1Cif;, L t'i 1'I: FC. IIN11i7F. T(t1PfºL, PRAI! 

Dil'lI1; IflD C'ºEFPY(JDIII, I111114). HASHPY(IDIU4), º: AIºEPY(12.1D111)" 

+ i: l: l AlI(12) 

c'; i i. (i / 1?: F(º / IRI IF (8,1), t1[i7PEC, IPT, IS PACE . ICHAN"JCNAP* ON tI f" 
I Fria,. titilinPY. NEIIOLD, DRAII 

C 
C R(jUTil3F Tu PrAI A 8L(CK AF PALYtnOºIIIALS, !! POLY IS TNF NUIºPER TO rE RrAD. 
C rR L�CII PI-LYIlAn IAL THC RutITINE REQt1I"ES t1AtiE" HASH TOTAL AND CUFFFICIE1ITS 

C 
11 r0HI =11 

Ill POLY= II 7 I(1nulIt! ) 
Ir (I Pi-LY rib. n) I'FT(IRIZ 
1: 1, TIiT=1! up&IIy+tjIll, RPY 

tr (I ilTi, T . Lr. Ir'It! ) GOTO 
Ir (, IjCT. ('111It. E) CALL CRSTOP(2) 

I r0l? I =11 
CALL SC1: IJF(IF(IR1?. JCHAIIrO) 

I: Ii kFC=, TItI; E, 

(')Tt' 1 
? irri, 1, '. 

I: IiEPLY=G 
(ALL It TIIJ(hRCPLY) 
IF (ITrr. PLY . rT. 11 AIID. IIRIPLY LC. 13) GOTO 4 
IF (. I! (-T. ONLINE) CALL ERSTOP(3) 
I F1110, =5 

I! 1lT1Cs, TK; ltr, 

r, 4)T1_ 

4 TIA P(iL=uftL11: F 
(WW; LlliE=, FALS(:. 

'Tr (711 POL 
, 

AIJD. UREPLY 
, 

EQ. 13) OWLI HEs. TRUE. 

ITEl'P=ICIIAl! 

IF (NKEPLY X10.12) ICHAN*KCHAN 
C 
C RL. \I IP CIICCK PfLYI4fIIIALS 
C 

1=1, IXI'nLY 
I1' 1'. 1 =13 

CALL I. AI: FIII(Il, IIAIIEPY. IDIIt) 
I Mid =15 
IIASI! PY(1. )=RI: AL11: (li) 
IFCIt1 =1iß 
IISUTt'T=(1, A 

11,1 npl =J 1" I I' 

1ºýi o J=1, JD111 
rclrrPrIt J. ia)=RF. ALIN(1I1110)ItF) 

II SIITC"T=IISItTIºT+cur FPY(J. 1: ) 

Vlil'Opt =110I'(k1-1 
I FORI =17 
Cn11T1141ii 
IF (t. I: S(II, PT(, T-IIASIIPY(Il)) AT. 0.0111) CC)T(1 a 

I'!? 1Tr(JCNsiI!. 20(t(') f1SHTnT 
2(' C) Fo; 1i1'AT(5111 I'AkIIIH( : IIASH-TUTAL rnPoA, $1111 OF cnEFr1(111JS   

+ 1`1(). 3) 
IF (. 1.4; T. I'IlLIt! t) GOTO ti 
I rfl1; 1 =18 
glt; kF('a. Tkl! L. 
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1-P. 'I'LY=U 
CALL IIi; TII'(I; ftFPLY) 
IF (IMPLY F. O. 1) 6(1Tn 5 
it (! IItEI'LY 

. 
Co). 2) GI+TO A 

1 Frml =5 
rLi I: FC=" Tkr+F., 

(i11Tu 

CIII. TTtrlik 

+SU^Y(I1)=fl IIT('T 
n;, Llr L=TFI+t'rýL 
TCI? Al'=1TEL: P 

rLTUI'L 
FNP 

; t1^i; f, II IN ri rPLY(141i, LE K) 
L' 1(7L I '-Rrc, oIILIt+F, DI! Au 
cot Ixi. / mFn / IIs!! F(ß1), 1! r17PI"C"IPT, ISPA1CE, ICHA4, JCNAI+. I11lLINi 

1 FnNn, rIuttuPY " F+EI"tiºlD, DPAI+ 
ri! rt / i. IlAIt, S / II4STRI'(307) 

r. 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

I tITII: E TO CHECK FnIi THREE CHARACTEk C6111'AND 

AT I`(SIT1(1f. 1I'T. 
CUt I AI: 1" F011111D IS RETIINIEU IN NA 

1. P =I... YLS NA :7... INVERT 

1; (. = . '. ... 
1") NO 2 ... 

PRINT 

i; =3. E14D rift 2*... DIJPIP 

1. =4... SC. 1LE NO * 1A 
... 

INPUT 

I; G =5... 111ILTIPLY NO : 11 
... 

DkAW 

=6... ADD NO = 12 ... 
FILE 

fill =0... C011111AND 11OT RECOGNISED 

STRING IN 1Rt'f STAI tlkl 

NO s 13 ... STºEAI: 
NO " 14 ... TIDY 
NO " 15 ... DIVIDt 
NO s 16 ... hSCALE 
NO   il ... NTNANS 

IF (I PT 
. 

GT. ail) GATA S 

IFI'p=IPT+17 
IF (1LLD . 

4T. . '. O) ICND=7! 0 

Pu 1 1=1rT, Ift: D 
rALl rýl, r1(InuF(I), JSPAr, E, t1: D) 

I. FIi=1-11'T 
)F (II'D 

. 
(Q. 1) CoOTU 2 

1 Ct. üT I IsI. 
IF (Lki: 

. 
F). 0 

. 
AR. LF. N 

. 
GT. 8) GOT(º S 

I0 4 1: 4=1,17 

Deg ', 1=1,3 
II=IPT+I-1 
CALL CF: IIP1 (I (tuF (I I) ,I IISTRU(I "tq0) " 1ND) 
IF (114D 

. 
CU, ti) GUT0 4 

3 Citl; T11'1'E 

IF 0iV . UF.. 3 . ('P. LEN NF. 3) RETURN 
IF (r1(AIJ) CALL I FVEIif 
STr1' 

4 CuI: T 11. i'E 
5 ttu=y7 

Itr. TUPI 
Fir) 

c 
c 
C 
C 

SI1RROUT I IIE LC FJUS 
LOGICAL tlEI3lEC, (UHLlflF, DRAt$ 
Cf11PI4 / INFO / IBºIF(80), tiENREC. IPT. ISPACE, ICBAN. JCNAN, ONLiNE. 

4I FORf1, t9Uf4DPY, NEWQLD" DRAW 

R')IITII: E Tu HOVE POIUTER PAST LEADING SPACES IN IMF 
IF V' V011-SPACE CHARACTER IS FOUND NEWREC IS SET TO TRUE. 

DO 1 1=IP1, O 
rAu. CrI1P1(IDUF(1)"ISPACE. 1g0) 
IF (1I: D EQ. 0) GOTO 2 

1 MIT IUUE 
I) EIIRECa. TkI1I 
RETURN 

i IPT=I 
IJEI! kEC=. FAISr. 
RE T UPI., 

run 
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I"rlJ'iITINL I ITI'! (rII! FPLY) 

LOCrIC. 1 !! L' I FC., u! rL111F. PRA11 

col I CI / II Il/I!. IýF(8)). IIE! RfC. 11'T. 15PA1 E. 1ý1! AN., ICNANýu'1L1 f" 

41 FýýL'19, IIU11I%PY, 11EtIOLD. DRAII 

c 
C 
C 

PW! TII; t TO I: y, TPArT ItfxT COPt AWAt: SITR Fkft! IUUF 

. UE. ») GITO 3 I it (. I: (, T. T'i. 1'i:! C AIJI. IPT 

IF (. i(: T. (IiL111i) (U: TO 

(: ALL . ci ii. r(IFÖY. IJCHAlit 0) 

if (t+ttfl LY , 
(T. f) IFUR11=2 

? 1ALL lI. I: IIF 

40Tu 1 
CALL 1: 1 PLY((. PFPLY. LEf ) 

I("=Jf'T+LIV 
CALL LtF-19-S 

P1 7Uf I; 
I lif 

C 
C 
C 
C 

' SUtIVOUTIlIE tiAf'tIII(II, NAIHEPY. IDIt1) 
LI)G1CAL NH'REC, 01JL11JE. DRAt4 
DII Ct1SIOII t. AI1EPY(12. IDIt1)rt$EWIIAII(12) 

Cn1'1; ('li / INFO / IBIIF(80), IJEw)REC, IPT, ISPACE, ICNAN"JCNAN. OWLINE. 
+ IFfRII, NIIIIDPY. NENOLD, DRAW 

R0I! TII. E TO EXTRACT A STRIIIG OF CHARACTERS FROM ISUF AND 
Cn1"VARE IT WITH THE HAIES OF THE POLYNOIIIALS ALREADY KNOWN 

IIF(. I. OT. HEIINEC , 
A11D. I PT . LE, 80) GOTO 3 

IF(. I, CT . 0111.114E) GATI) 2 
CALL SCR1t+E(IF0Rt1, JCHAN, N) 
IF (rrl; ULU Eli. (-2)) RETURN 
I FCkI^=3 

2 CALL ICF%UF 
GOTu+ 1 

3 nO 4 K=1.12 
CALL COPY1 (liEUUAtl(K). ISPACE) 

4 MIT IN: IXL 
CALL F; EPLY(tlREPLY. LEN) 
IF (LFn . 

GT. 0 AND. LEN LT. 13) GOTO S 

II: RK=4 
T F(kI'=3 
Gi)Tu 12 

r+ 11=1PT-1 

DO (, K=1 . LEN 
TIK=11+K 
CALL Cf. PY1 (tIEl11: At1(K). IRIIF(I1K)) 

6 Cl hTIUUE 
IF (1: 111 , %PY 

. 
F4.0) GOTO 4 

no i, I=10011! M 

Du ,'i: =1.12 
CALL f. l11P1 (UUAITEPY(K, I). NENNAM(K). IND) 

IF (1I: D 
. 

E(j. 0) GUTO. 8 

7 CO1: T I I. UE 
II=I 
IF (t'LlOLD GE. n) GOTO 11 
IFOI; I'=14 
IEPk=5 
GOT1) 12 
f(It+T I1,11E 
11=1; U1, : PY+1 
IF (t. 'LI": MLD . GT. (I) GnTO 12 

IFoI: I'=11 
Ir. Rit =2 
IF (1' 

"(T, 
1D111) GOT() 13 

DO 1n K=1.12 
CALL CCPY1 (I AIIEPV(K, t)), t. ElRmAFl(K)) 

In CONTII, 11E 

uIIl t rY=1t 
11 IrT=Ir1+LF. U 

CALL LI: F. Ins 
1F TU1tt. 

1.7 1 F(. Itt =7 
TLRL=(" 

13 IF (. 1,1T. OULIUE) CALL LWST1)P(1LRR) 
fUEl'I: FCs. TI011.. 

IF (1 F02t' -. En. 11) NFNnLDa 2 
4nT1i 1 
F. un 

6 



r tIIUCT I (l I UT IU (I nhII! t: Y) 

LOGICAL TiEWRF. C, UIULIIQErhRAll 

Ci)I I: OU / IP! FG / 11IIIF(8(1), tI[uRFC, IPT"1SPACE, ICNAN"JCNAM, flNL)NE. 

+ IFoR14. t711IIllPY, RElIALD. DRAW 
fill UUIIRCi / HUS(10), IPLUS, MIMISr1P(11NT 

C 
C po t! 1II. E To EXTRACT A Pf'SITIVF INTEGER FROM IRUF 
C 

1 IF (. Ij(T. I: FtlkEC . At: D. IPT . LE. 80) GOTfl 3 

IF (. I: CT. OtIL111C) GOTO 2 
CALL CCKII E(IrflktI, JCNAI1, O) 
I PRI'=4 

2 CALL IFGIIF 
Tt) I 

CALL I? EI'LYU PEPLY. LEU) 
t: u(*' K=U 
114 T 11: =0 

4 IF (1t'T LF. s')) GOTG 5 

11F! IItFC:. I IJE. 

IF (Nlif K. r4.1) GOTO 7 

COT0 Z, 

S nil o I=1.1t 
CALL CcI; P1 (IPIIF(IPT), t1(15(I), IND) 

IF (11; D 
. 

10.0) C, OTO 6 

TRTI1: =111TI1: +10+I-1 
NOPK=1 
It'T=1PT+1 
GOT1i 4 

6 C01: TINUL 

CALL CCIIP1(IDUF(IPT), lSPACE"1ND) 
IF (ItND . 

Co. 0) GOTO 8 
CALL LEFJIIS 

7 RCTUPii 
A IF (. f. GT. ()IJL1IIE) CALL ERSTOP(8) 

HIWI EC=. TRUE. 
I F01: 11=4 
GOTO 1 

FtvI) 

FUNCT1(H REALIH(11) 
LnGICAL 1E1! REC, ONLINF. DRAW 
Cnt VO I: / INFO / Itill F(80), IIEIJREC. IPT, IS PACE&ICHAN, JCNAN"(1NLIWe 

+I FORH, NWItIDPY. NEWOLD, DRAW 
C011'014 / N1111DER / NOS(10)"IPLUS, "INU$, IPOINT . wy C 

C R(A)TI1; E Tu EXTRACT A 'REAL- FROM 18UT 
C 

1 IF (. 1: 0T. t1EIIREC AID. IPT . LE. 80) GATO 3t 
1E (. NOT. MILI11E) GOTO 2 
CALL SCRIBE(1FOIt11, JCNAN, N) 
1 FflI t4 
CALL 111ß11F 
r. "ITO 1 

:. CALL I; EPLYiI1P. EPLY, LEN) 
U(1AK: U 
RFALII. O. 0 
kl: Et=1.0 
FACT=1.0 
CALL C0I: P1(IOUF(1PT). IIII11ISsIND) 
IF (IIjD EQ. 0) CWTO 4 
IPT=IPT+1 
1'iir: G*-1.0 
f, fTl) S 

4 CALL CCIIP1 (IRIIF(IPT), IPLIIS"IND) 
IF (114D EQ. 1) IPTxIPT+1 

5 1E(IPT . L1.. AO) Ir. 0T0 6 
I11: i; REC=. TI; 11E. 
IF (NOOK . EQ. 1) GOTO 12 

" G(oTI 13 

40 PC) 7 1-1 , 10 
CALL Cnt', P1(IPIJF(IPT). NOS(I). IND) 
IF (113D 

. 
EQ. 0) AOTU 7 

UUFALII4=UUEAL11I*lo. 0+FLOAT(I-1) 

IPT=IIT+1 

IIfiýK: 1 
(4TO S 
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COI. TII; I: L 
C,; LL c('rrt(IRUF(IPT). IPO IUT, 31.1)) 

IF (II. D 
. io. 0) i! )' o 11 

F, 1C1=f, 1CT+10. x) 
IPT=1I T+1 
Ir0PT 

. 
LF. 46TO 

r, "Ti. 1.1 

nu 1n I=1,10 
r; it. C(I P1(Irllf(ºPT). IlitS(3), ItrD) 
IF (T!; h tli. (1) GiITO 11 
PC. 1LII =: f:. LI1i+FLl), }T(I-1)/FACT 
COi'r: =1 

rW: T1I. 1. 
11 r; LL (I'I; 1,1(Ir1rrcII TACI:, IIt141 

IF (I; G 
. 

I: IT to 1'" 

1, '. C; ALI Lr'f. 11 S 

17, it (. Irr, "T. (14L1UE) CALL [RSTOP(R) 
vi 1'1r. rcx. TUl1F:. 
I FI'I I =1. 
(OTu 1 

rl. 1 r 

Sti, W4 1ºT I liI I!! L'! IF 

LO GIC AL NL"ItrC, 0111TNE, DRAW 
Col 1.01. / 1I F(1 / TRI! F(8A), IJEiREC. IPT. ISPACE#IC1IAN, JCNAN. 0MIIIII" 

+I FQIth, FIUMklPY, NE(SRLD. DRAW 

C' 
C Nf! JT1hE TO FAD A RLCORIº IUTn IfUF 

C 
riAfn(1CHNf,, 1oo^) tßuf 

71'T=1 
CALL LEFJOS 

PETUR!; 
1 Ain FfPI; AT (ZOA1 ) 

F. IºD 

St ('IºTII+E EI? STfP(N) 
I. 0GIC, 1L IIEI! HrC, et LTuuF. DRAt1 
cut t n1. / lUFll / IBlºF(80). NEURE. C. IPT @ISPACE, ICHAN, JCN$1N"UNLIN! " 

+I F'TR11, UUtlUPY, NEtiftb o DRAW 
C 
C $1111Rt ººT1iiL TO 1'R1TE OUT ERROR 1JE$$ 14E At10 ADAN90N THE JIM 
C 

Gt TU (1 r? ''. 4, r, h, ', ß, fl. 10). M 

I IIRITF(JCIIA11.2, )'1) 

c, u1t. 11 
ukITC(JCh, i4i, 2OO2) 
Ci('Tu 11 
ICI I TL (JCIliJ!,? 0'3) 

G1Tto 11 

4 tºk7Tf (JCttM ,? 0(ib) r, t 
Ct fTt) 11 

5 II1? 1TF(JCIIAVt'065) 
(t7( 11 

6 UI? ITF(JCHAII, 2V)0 
GUTti 11 

t'k1TF(JCIiAI:.? 0(17) 
roilo 11 

: "t t'KITF(JCI, \t":,? 0(!. I) y 
ýi TU 11 
UI? ITF (JCt1, ll'.? 0"j) 

G(iTt, 11 
I III (J(II .? 010) 
11 17F(JCH: ý1:. 7ý11) 

IF (1U. M') CALL OEVEI: n 

ST, 11 
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'n.. ' roi=l AT(trr, t, 
(: + 4 r l'1 Ai (1'++ 

[Ili. ' rnr'I IT (1 it 
F: 11 I A-, (1. "11 

k! AT(1i"It 
i'I'T(1511 
I'I ß'T(`; 11! 

Fr"i'I r. T(1' 1 
1111 Fill l. 7(l41ß 

rn: i' 

It: 1'AL1;, º, p(ýpuHSC TO '! 'TI. r ACT fill- PIR. '11RE.? 'I 
!, 'Il, t1t' t! i! t,! tCR ni POI. V . 11i! IAL, f: aCF. hI! ') 
ItVACIU ürSPtlti. r TO '$u1'i\Ci {! ( ! P, -4V! -0P11AIS? ') 
1': "ALT1' 1'Af'E) 
I111['L)(AT( I. Af ) 
nº (*LC0t, 7, )Sfn NAI L) 
II "ALIt' C01111.1011)) 
II:: 'ALIL' I. Igift[R) 
I I'i) 11,111, uF '. P(1LYNIIIIIAL5 
Ilf! F; to1(o111SCA ERPiR) 
jut. APAO'D NE10 

S113Nf ITIlIE SCRIJF(Ir0RII, JCNAR, N) 
r�I: I c"1: / STRI GS / f'ESS(7,4), ISTR(31) 

C 

f 
C 

Rta1! 711, [ 70 IIRITC WIT A IIFSS ; ME 

CAN IF: DP/,! la ah u! iF c. IAI ) 

r, (ITu (2,2,. '., 2,2,? º7,?, 3,4,5,6,7, A, 'i, 10,11,12,13,14,15,16,17,18º19º 

+70,21,22,23,24,25,. '. 6,27,28.2°, 30,31,32,33º34), IFOPM 
1 CALL tRSTOP(10) 
2 I=1rfl l -(1F1)PI! -1)/4*4 

IF (IFfRI LE. 4) IIRITE(JCIIAN, 2001)(MESS(J, l), J=1,? ) 
IF (IFcR; - . 

(. E. 5) IIRITE(JCHAN, 2002)(MESS(J, I), J=1,7) 
PF. TIJ(`I, 
1, P. ITF(JCH: 1R, 2003) 

PFTI/(: t: 
4 1'RI TF (JCHA1:,? 004) 

PrTIlPf: 
5! RITE(JCHAF'º? 005) 

RI: Tl1PI. 

6 Ilk1TF(JCHAll, 2006) 

PI"T1: p11 
IJE'ITE(JCHA11,20117) (ISTR(I). 1=1,25) 

RETIJP! J 
A IIPITC. (JCHAI', 20n8) 

RFTIIPI - 
t: ItlTI. (JCHA1:, 20119) (ISTR(I), 1=1,6) 
PETUrH 

10 ! 1R1TE(JCHAt!, 
2010) (IS7R(1), 1=1, (, ) 

RL TIIPIi 

11 UPI] E (JCIIAII, 2011 )H 
Pt 

.T 
JPl 

12 UR, ITF(JCPANº? 012) 

NFTI! P! J 
1' ! +r1TE (JCHAIP,. '. (013) (ISTR(I), 1=1, G) 

PCT1)PN 
14 111'. 1TE(JCHA1:,? 014) (ISTR(i), 1: 1,28) 

RC1(IRN 
1' uRITF(JCH6N, 2015) (ISTR(I), I=1,31) 

RFTIIPI: 

if. Ill, ITE (J C 11 AU 1201 (P) 
Pr. Tfor1. 

1" Ii PITr(icii. %!,. '. 017) (ISTR(i)"I=1,14) 

PIII. 1 I. 
1 Ifr'ITF(JCIt At!, 2O13) (ISTR(1), 1: 1,14) 

It 1: Tlupl 

1' Iip1TE(JC11od!, 201', ) (1STR(1), 1a1,14) 
PI TIlC1: 

; '(1 I'l 1TF(JCH; ºd, 2070) (ISTP( I)# Jul #14) 
RFTI; P1. 

1 UP 1TF(JCIf At:,?. 0, '. 1) (ISTP. (1)81: 1,31) 

RrILIPI 
2 UP ITE(Jfl!. 111.20ý, '. ) (ISTR(I), 1=1.31) 

PLTI)PI! 
'7 VI: IT E(JCIt At', 'I ) (ISTR(I), 1=1º31) 

PI. TIIPI: 

. '. b 1: 1"'ITF (JCIIA1!, 2.04) 

Pl TI! Rl, 
2 IIItITf(JCHAI!, '(1'S) (ISTR(I), )=l, ä1) 

CCTIIRiI 
ItPITF(JCHAIt, T. 026) 
PFT11it If 
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; -ITF (JCH', V,? r,? (ISTR(I), 1=1,25) 
PF1III'I 

,. t ! ". ITr(JC14/it', 212:; ) (ISTR(1), 1=1,2S) 
PI T1'! '1 

IIr(JCIf At!,? il^fý) (1STR(1). 1=1,25) 
r! Tur, l 
'"!. ITr: (: C11At:, 2Ot(1 (ISTr(i), 1=1,14) 

pfTlirt. 
1! I"IIr(JCItAV, 2fl'"1) 

I, TURI. 

11! 'ITr (J1. HA 1:, `0'". ') (ISTR(T), 1=1,14) 
I? ITU 1: 1: 

3' 111'TT1 (JCVAti,? 4. '. ":; ) (ISTR(I), 121,14) 

F: r? UFI. 
34 1'rITr. (JCI; �1:, 4) (I5TR(T). 1: 1.14) 

I-I: TU1,!. 
2Ö11 FIII l ft (1' II PLVA; f TYPE VALT1) " Al ) 

, '. 
n(0, ' Ft't: I AI(14it II'I! LCaG! IISED , 7AI, 1711 - TRY AGA110 

03 Fttl'1. T(4? It IUTEkACTIV1. ItHti!! ING? (At; S!! f"R - YLS OR NQ)) 

,7 nrr4 rut'! AT (4e it III11: I: Al! ý' POLYNOMIALS ARE ADUi)T TU RE ENTFRFD? ) 
Opi : f-R! AT (:, TII L. A II 1111 1. IIIIDER OF PfLYHQ111ALS EXCElED) 

ýnt(*j FIu? I A7(4r11 ; ii! IrCF 0f PALYUfI: TALS ? (ANSWER - F1LE OR STPL Ali )) 
2110- Fu-Ni AT(1If . 5A1) 

2r, Gr. F( ,1 AT(: 711 01PLICATE HAttE - TRY AGAIN) 

'0O r$ CI AT (111 t, Al V111411ASII-TOTSL) 

2O1' ruPI AT(111 4. Al, 17I(COFFFICIENT S) 
2n1 I roi'1 AT (111 , I?,. '5N 1't1ItE CnrrFICIr. ITS NEEDED) 

1117 ffinl AT(Z'II l'r-TYPT COEFFICILNTS? ) 

2(1' r*'RI AT (1N . tjAl, '. 'tlA COIL UANU) 

1114 FOf! AT(11+ . ZRA1,111INfLD RESULT) 17 
2015 r+, i1! AT (111 r31A1,11IISCALED) 

- r"RI AT(13H LI: TEU SC. ILAR) 'Olt 

n1- roll Al (111 , 14A1,1i.! 11ST MULTIPLICAND) 
201.9 ru RI AT(1! º , 14A1,11, I121: D 1111LTIPLICAND) 
2n1" fi'r! AT (111 , 1411�11141 ST SUIIIIAND) 
7024 Fi+FI"AT(111 , 14Al, 111I2rD SUlIIIAND) 

. 071 FIRIAT(1U , 31A1.81111)VERTED) 

23,7 r1, RI; AT(111 . 31,11,711PRINTED) 

1) ; r0RI. AT(111 . 31Al . 711DIVIDED) 

2n; 4 17'I! 1'AT( 3,. Ii 11011 I! AIHY POLYNtIIIIALS TU or DELETED? ) 
? 0"s fuRVAT(1! I , 31 A1,711DElETED) 
2n: ( r(Il'I, AT(34h IIIº!! llANY POLY110111ALS TO BE DRAWN? ) 
7077 r pi AT(1N . 2cA1,1711(1ST TO BE DRAi: t! )) 
2n; ^ Fnp5AT(114 �6SA1,1711(? ND TO or DRAM! ))) 
2(', ' FI! VI AT( Vil " 75A1 .1 711( 3RD To DE DRAWN: ) 

C31) FR! "1T(1II . 14AI *SIf ORAPH) 

L, Aý1 F""I'I AT(5111 I: AXTI, IIi1 OF 3 POILYFinIIIALS CAN BE DRAW? ON ONE GRAP11) 
; R3? foFI'AT<1t1 , 14A1,2I)1iti(11SE 1'nLY1: Ali11l TO RE SCALED) 
7033 F'1RI'AT(1H . 14A1,. n41II: O1SE POLYPIOltlAL Tn BE TRANSFORMED) 
2n:, 4 riul'IiAT(111 , 14A1,71! Iz-TRANSFER POLY1: 1º111AL) 

rt: D 

Su; >itCUTIVE CUPYl(LOCI . LOC2) 

C 
C R01J711: E TO CAPY A CHARACTER (THIS ROUTINE IS MACHINE DEPENDENT) 

C 
L11C1=LQC2 

PtT11RH 
Flag 

SI $ (UT 11: L CMIP1 (LOC9 . L0C2. I ND) 

c 
C P. )IJTINE Tit COIIPARL A CHARACTER (TIIIS ROUTINE IS MACHINE DEI'FNDr HT) 

C 
Iº1D=(º 

IF (LOCI EQ. LuC2) IND=1 

RCTIIP I: 
rI; p 
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PICIST(FWAI; ) 

C, '1'TIi: t TO SLT UP RACKEIiw FOR G11.10-1 AUD TO SEIFT OORI6111. 
Ti; 15 ;: NMILIs RE ALTFkED IIY TItF 11IPLF. t7ENTIUG SITF. 
IF UI'ITS AVE SPLrlFIFf AS IT. TüF f. IIPNENT CALLS TU PLOTTIt6 P09Tit+ES 

f'fril'"i. F A PICTIII: F 1, iiici; FITS A )1 , PLAY TlIl: f 1'EASUaIPG 134 X 140 11I:. 

U'' ICAL I'I; Al' 
(. LL 14014 

", %L1. (; t 1TS(1.0) 
TII!: F1: LLI't') I: G CALL 141ST RE I'RI. SE T TO SIt IFT 7 }i1 OWIGIN 

(': ALL!; III FT'(A. 'I, IU 
.C) 

N:; 11-. T1: 111. 

Ct Tlil: lj 
FI"', ' 
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APPENDIX II 

PROOFS 

4.6.1 r (dom, dim) - 
Fpjpm + Iom SODC)m 

1+ L%SOMDOM 

Proof 

dim m 'f 
Om - om)Dom 

dOFODom - somDOm 

= dom Fom Dom d, 
), 

I�, ) S�D� 

= dom Foai Dom + domIom Som Dom - rom SoDom 

- dom (Fom Dom + IDM Som Dm) - dim LOm SOm DOm 

. 
*. d 

lm 
(1 + LOMSomDOM) - do(FODom + IOMSOIIDOM) 

.C 
(dom, dlm) - 

dlm 
- 

FpmDpm + IOnSOliDOm 

dom 1+ LomSoDou 

4.6.2 C (dom, som) - 
FpmLomSomDom - I0S0M 

1+ Lom SOMDOM 

Proof 

aOm " (rOm - douIom ) Som 

diLOmSOM - d0mIOMSOm 

(fom - eOM)D"Som - domIosSom 

- dojFolDomL(ýSOlj- som% L(ýmSCým - douIomSom 
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.'. 8 om 
(1 + LomSomDom )- dom (FOLOMSOMDOM - IOMSOM) 

. 
'. 4(dý, sý) 

som 
= 

FOmLOMSOmDOm IOMSOM 

dom 
1+ Lom SomDom 

4.6.5 ý(romdlm) - -SOmDOM 

1+LSOmDOm 

Proof 

dim _ (fOm 0 om 
)Dom 

dOn FOm DOu - (rOm + rOu - dOm IOu )s mom 

dom (Fom - IOm )Dom - rom SomD - romSom Dom 

dom (Fom -J )DOm - dlm 
OmSOmDOm 

; 
omsooom 

Linearity lets us assume d(, w0 whilst considering 

; (rom, dlm) so we have 

dlm - dl LOMSOODOM rom SomDom 

.. C (r.., alm - 
dlm -Soä om 

r.. 1+ LomSoDom 

4.6.6 C (rom, som) - 
SOm 

1+ LomSomDom 

Proof 

som - (rm + rom - domIC)m) S0 

dim 
OmSOm + rOmSom 

- domIom Som 
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- (domFom - som)DOMLOMSOM + romSom - domIOMSOM 

Linearity lets us assume d(, =0 whilst considering 

C6 OMIsOM 
) so we have 

som _- som DOLOSO + rom SOm 

.'. 
irk, sue) - 

sOM 
- 

SOm 

Om 
1+ Lom SOMDom 

MN 

4.7 2s mE 

domFkpm 
kp-kpSkp 

nElýIkpnSkp ' kp 
1+ LPSkPDkp 

Proof 
N 

a kp 
(rkP 

n: 

dkn' 
kPa) 

SkP 

N 

"d (k+1) pkpgkp 
n1 

d_ Ikpn 
kp 

N 

m (f 
kp Skp)DkpLkpSkp 
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4.7.3 ý(dom'd(k+l)p) " 

Proof 

Fkpm kp 

1+ LkpSkpDkp 

From 4.7.1 we have: - 

MN 

d mZ1dOmFkpmDkp 

+ 

nZ 

dkn 
kpnSkpDkp 

(k+1) p 
1+ LkpSkpDkp 

Using system linearity dOm can be assumed to be the 

only input so this becomes: - 

d(k+l)p dojkpD 
kp 

1+ LkpSkpDkp 

'"'C(dOm'd(k+l)p) =d +1 p- 
Fkpm 

kp 

do 1+ LkpSkpDkp 

D 
4.7.4 (dlcýn d 

(k+l)p) - 

/pnSkp 
kp 

1+ 
pSkpDkp 

Proof 

From 4.7.1 we have: - 

NN 

d mZ1dojkpj 
kp + 

nildknikpnSkpDkp (k+1)p 
1+ "kpSkPDkp 

Using system linearity dkn can be assumed to be the 

only input so this becomes: - 
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4.7.6 c (äk skp) _ 
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1+ LK 
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4.8.3 Z(dkn'd(k+l)p) i 

Proof 

(F 
kp 
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From 4.8.1 we have: - 
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APPENDIX III 

CONVOLUTION AND SCALING OF DISTRIBUTIONS 

Convolution 

If a and b are distributions of independent random variables a and 

b respectively, then the distribution c 
of the random variable 

c-a+b is the convolution of a and b. 

If a and b are expressed as histograms then c is derived as: - 

c(c) B ä(a)b(b) for all c 
a+b=c 

" scaling 

Scaling of distributions is a multiplication of the random variable 

by a scalar. 

If b-sä then b can be derived as: - 

b(b) 
- a(ba) for all b 
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APPENDIX IV 

Brief Table of z-Transforms 

TIME-SERIES z-Transforms 

Unit Impulse f(t) -1 ,t = It f(z) - z-k 
at timek =0 ,t 

#k 

Unit Step f (t) =0 ,t < It f (z) -z z-k 
at time k =1 ,t k z-1 

Unit Ramp f(t) -0 t k' f(z) =z z-k 
at time k = t-k ,t >, k 

(z_1)2 

Unit sine f (t) = sin (W) f (z) -z sin w 
frequency w 

z2-2zsines+l 
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SY! 4 OLS IN GENERAL USE 

d demand for a product or part, or schedules for supply 

of a part. 

f forecast gross requirement for a product or part. 

1 issues from stock of a product or part. 

r receipts into stock of a product or part. 

D supply scheduling for a product or part. 

F gross requirement forecasting for a product or part. 

I product delivery policy or part issue pattern. 

K number of levels controlled by system. 

L product or part supply by lead-time. 

M number of products controlled by system-. 

N number of parts controlled by system. 

S Stock integration. 

T(x, y) system z-transfer function from time-series x 

to time-series y. 

C(x, y) sub-system z-transfer function from time series z 

to time-series y. 

x is the distribution of noise superimposed upon 

time series x. 

GENERAL 

1) Upper-case letters denote s-transfer functions. 

2) Lower case letters denote time-series or their z-transforms. 

3) T and { denote syste. and sub-system s-transfer functions, 

respectively. 

4) Subscripts: - 

() first subscript denotes a level. 

(ii) second subscript denotes the controlled part. 

(iii) third subscript denotes a relevant part at a higher 

level. 

5) The following symbols have local significance only, and are 

defined where they occur. 

". b, g. hr jr k. mr Or Pr 4r w. xr ye 

A, 8r G. H, P, T, U, V. W, I, Yr 

a. ar Er {r er ý. Pr Yr ýr ýr er d" Or ý. er Tr 

er 


