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Abstract 

Functional magnetic resonance imaging (fMRI) has become a ubiquitous 

tool in cognitive neuroscience. The technique allows the non-invasive 

measurements of cortical responses, but only on the millimeter scale. Recently, 

two methods aimed at studying the selectivity of neuronal populations on a sub-

voxel scale. The first technique, fMRI adaptation, relies on the observation that 

the fMRI response in a given voxel is reduced after prolonged presentation of a 

stimulus, and that this reduction is selective to the characteristics of the repeated 

stimuli. The second technique, multi-variate pattern analysis (MVPA), makes use 

of multi-variate statistics to recover small biases in individual voxels. This thesis 

compared the two techniques with the aim of studying early- and mid-level 

processing in the visual cortex. 

Chapter 3 investigated whether adaptation and MVPA provide consistent 

results about the properties of the cortical areas under study. To address this 

question, this thesis compared the two methods for their ability to detect the well-

documented orientation selectivity in early visual cortex. Using optimised 

experimental designs for each, this thesis found that the MVPA approach was 

more sensitive to small differences in stimulus orientation than the adaptation 

paradigm. Estimates of orientation selectivity obtained with the two methods were, 

however, very highly correlated across visual areas. 

 Chapters 4 and 5 used both techniques to investigate how local orientation 

signals are combined and detected in intermediate levels of visual processing. In 

both chapters the MVPA was more efficient in detecting differences between 

stimulus categories. In particular, chapter 4 used plaid stimuli, made of the linear 

sum of two sinusoidal gratings. We obtained weak but consistent evidence, 
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pointing to the direction that V2 might play a role in Fourier component integration. 

Chapter 5 used contour stimuli constructed from two luminance modulated 

sinusoidal gratings, with different orientations. Whereas, adaptation failed to 

reveal contour selectivity, MVPA accuracy was high in most areas tested. 

However, the experiment did not reveal a significant difference between the test 

and control conditions. 

Chapter 6 investigated the encoding of spatial phase in the cortex.  Phase is 

a fundamental aspect of spatial vision, crucial both for the extraction of local 

features and overall scene perception. This thesis showed that several visual 

areas, including the primary visual cortex, were sensitive to relative phase 

combinations. However, phase coherence was optimally encoded in extrastriate 

areas as predicted by the physiological properties of higher regions.   

Parts of the work discussed in Chapter 3 were published in the following 

article: 

Sapountzis P, Schluppeck D, Bowtell R, and Peirce JW. A comparison of fMRI 

adaptation and multivariate pattern classification analysis in visual cortex. Neuroimage 

2009. 
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1 Introduction 

‘By nature, all men long to know. An indication is their delight in the senses. 

For these, quite apart from their utility, are intrinsically delightful, and that through 

the eyes more than the others. For it is not only with a view to action but also 

when we have no intention to do anything that we choose, so to speak, sight 

rather than all the others. And the reason for this is that vision is the sense that 

especially produces cognition in us and reveals many distinguishing features of 

things’ (Aristotle, The Metaphysics). 

The above quote from Aristotle’s Metaphysics brilliantly captures the now 

widely accepted link between vision and cognition. Our visual system does not 

just faithfully record images but it also provides the necessary information for us to 

behave appropriately, by giving meaning to the perceived images. The above 

quote is only an example of the way ancient philosophers, based on observation 

and rational thinking, revealed for the first time the mysteries of nature and human 

behaviour that up to that time were only explained through prejudice and 

mythology. However, many have changed since then. Advances in natural 

sciences have allowed the development of techniques that make possible the 

direct study of scientific and philosophical hypotheses. In the last few years new 

tools have been developed that even allow the functional imaging of the human 

brain.   

Functional magnetic resonance imaging (fMRI) is currently the mainstay of 

brain imaging. Since first introduced in the early 1990s, it has a major impact on 

basic cognitive neuroscience research. Its use is so prominent that about eight 

peer-reviewed articles per day include fMRI as a keyword (Logothetis 2008). 

FMRI measurements typically rely on the blood oxygenation level dependent 

(BOLD) signal, which is used to track local increases in neural activity. One of its 
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limitations, in comparison with the direct recording of neuronal responses via 

microelectrode, is its spatial resolution. Improvements to imaging hardware and 

analysis techniques have provided access to higher-resolution images at 

improved signal-to-noise ratios (Moon et al. 2007; Yacoub et al. 2007).  

However, BOLD measurements are ultimately limited in spatial resolution 

by, amongst other things, the spatial scale of the local vascular system. Recent 

fMRI studies have demonstrated new methods for revealing separate 

subpopulations of neurons selectively tuned for different stimuli even when these 

neurons are intermingled at a spatial scale that is smaller than the sampling 

resolution of the measurement. The first technique, fMRI adaptation, relies on the 

observation that the BOLD response in a given voxel is reduced after prolonged 

presentation of a stimulus, and that this reduction is selective to the characteristics 

of the repeated stimuli (adapters). The second technique, multi-variate pattern 

analysis (MVPA), makes use of multi-variate statistics to recover small biases in 

individual voxels in their responses to different stimuli. It is thought that these 

biases arise due to the uneven distribution of neurons (with different properties) 

sampled by the many voxels in the imaged volume. 

Although in recent years these two techniques have been heavily used, they 

have never been compared explicitly, and little is known about their relative 

sensitivities. Thus, one major theme throughout this thesis is to compare the two 

techniques and evaluate their relative sensitivities. The first experimental chapter 

directly compares the two methods for their ability to detect the well-documented 

orientation selectivity in early visual cortex. In the following chapters the 

techniques are used to study more complex visual features. The aim of these 

chapters is to understand how local Fourier components are combined and 

detected in intermediate levels of visual processing. The following literature review 
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summarises known aspects of early- and mid-level vision to the degree they are 

of interest to this thesis.  

1.1 The visual system 

In the first steps of visual processing an image is formed at the back of the 

eye, in the retina, where the photoreceptor mosaic samples it. The output of the 

photoreceptors is compared and combined by the retinal ganglion cells. The optic 

nerves, which are made up of the axons of the ganglion cells convey the visual 

information to the brain. The optic nerves cross at the optic chiasm; after they 

pass the optic chiasm, the axons of the retinal ganglion cells are known 

collectively as the optic tract. Most axons of the optic tract terminate on cells in the 

lateral geniculate nucleus (LGN). Axons of postsynaptic cells in the LGN form the 

optic radiations, which terminate in the primary visual cortex (V1). In addition to 

the primary visual cortex, other surrounding cortical regions are also associated 

with visual processing (e.g. V2, V3, V4) as described in more detail below. 

1.1.1  Projections from retina to the brain                      

The retinal image after the initial stages of processing is conveyed to each 

cerebral hemisphere by the axons of retinal ganglion cells, which cross over at the 

optic chiasm. As a result, those fibres that originate at the nasal part of the retina 

cross over to the opposite hemisphere, while those that originate at the temporal 

retina, continue to the same side of the brain (see Figure 1.1). This means that 

the fibres from the temporal retina of the left eye and from the nasal retina of the 

right eye pass to the left cerebral hemisphere, which therefore looks at the right 

visual field. By contrast, fibres from the nasal retina of the left eye and the 

temporal retina of the right eye pass over to the right hemisphere, which therefore 

looks at the left visual field. Thus, the right visual field projects to the left cerebral 

hemisphere, while the left visual field projects to the right cerebral hemisphere.  
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Figure 1.1 Connections from retina to the cerebral hemispheres. Inset to the left 

shows the lateral geniculate nucleus (LGN) (from Zeki 1993). 

Beyond the optic chiasm the visual pathway is called the optic tract. Most of 

the optic tract fibres terminate at the lateral geniculate nucleus (LGN). In the 

monkey, 90% of the retinal ganglion cells send their axons to the LGN layers 

(Perry et al. 1984). In human, the LGN is a complex, six-layered structure. One 

noteworthy feature of this structure is the specificity of connections between the 

retina and the LGN. The inputs from the two eyes to the LGN are segregated, so 

that the optic nerve fibres coming from the eye on the same side of the LGN in 

question terminate in layers 5, 3 and 2, whereas the fibres coming from the eye 

on the opposite side of the LGN in question terminate in layers 6, 4 and 1. This is 

a very detailed, point-to-point projection from the retina, so that adjacent points on 

the retina project on adjacent points in each layer of the LGN. Moreover, the 

layers are organised in precise registration in terms of retinal representation. For 

example, if the cells at a point A in layer 6 receive input from a particular point in 

the left retina, the cells in point B in the layer below will receive their input from the 

corresponding point in the right retina. Thus, for each point in every layer 
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representing a particular point in one retina, there is a corresponding point in the 

other layers representing the corresponding point in the other retina.  

There is also considerable regularity in the distribution of axons from the 

retinal ganglion cells within the LGN (Connolly and Van Essen 1984; Livingstone 

and Hubel 1988). The four upper layers, called parvocellular layers, contain 

neurons with small cell bodies. The two lower layers, called magnocellular layers, 

contain neurons with large cell bodies. Recently, a third type of cells with very 

small cell bodies called koniocellular (from the Greek ‘κόνιο’ meaning dust) have 

been also discovered (Hendry and Reid 2000). Because koniocellular cells have 

been studied less than the first two types they are not further discussed in this 

thesis.  

The different types of LGN neurons receive input from different types of 

retinal ganglion cells. Parvocellular layers receive their input from midget retinal 

ganglion cells and magnocellular layers from parasol cells. Dacey and Petersen 

(1992) showed that the signals from the two types of retinal ganglion cells form 

two segregated  visual streams. The pathway that begins with the midget ganglion 

cells and projects to parvocellular layers of LGN is known as the parvocellular 

pathway, whereas the pathway that begins with the parasol cells and projects to 

the magnocellular layers of the LGN is known as the magnocellular pathway. 

These two pathways carry different types of information to the brain. The 

parvocellular pathway includes more than the 70% of the retinal ganglion cells 

and draws its input mostly from the central visual field. Damage in the 

parvocellular pathway impairs perception of finer spatial frequencies and colour 

(Merigan et al. 1991; Schiller et al. 1990). The magnocellular pathway carries 

information about coarser spatial frequencies and motion (Holodniy et al. 1993; 

Schiller et al. 1990). The cortical locations these two pathways project to and the 
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degree to which they remain segregated are discussed in more detail in section 

1.1.5. 

The axons of the LGN cells on which the optic nerve fibres terminate, travel 

in the optic radiation to terminate in the visual areas of the occipital cortex at the 

back of the brain. The primary visual cortex (V1) is often called the striate cortex 

because a striation is visible in anatomical sections through this region. In addition 

to V1, more than 30 other ‘extrastriate’ cortical areas are implicated in visual 

processing (Felleman and Van Essen 1991). The projection from each LGN to the 

ipsilateral cortex takes place in an orderly, point-to-point manner. The 

consequence of this is twofold. First, the cortex of each hemisphere receives 

signals from the opposite half of the visual field and second, adjacent retinal 

points are mapped at adjacent points in this cortex, just as they are in the LGN. 

This organised retinal projection on the visual cortex is known as retinotopic 

mapping. 

1.1.2 Retinotopic maps in the visual cortex 

The discovery and analysis of cortical visual areas is a major 

accomplishment of neuroscience. The size and anatomical location of the visual 

areas may vary among individuals (Engel et al. 1997); therefore, the ability to 

define the exact anatomical location and size of these areas for different subjects 

is of great importance in experimental studies of the human brain. These visual 

areas have been extensively studied in animals using invasive techniques, such 

as electrophysiology. In animal models, more information is available to identify 

visual areas (Felleman and Van Essen 1991): (a) retinotopic maps, (b) differences 

in cellular architecture between areas, (c) connectivity between cortical regions 

and (d) regularities in the receptive field properties of neurons. However, in the 

living human brain fewer criteria are available to delineate visual areas. The main 

data available for partitioning visual areas are functional MRI (fMRI) 
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measurements of visual field maps. There are limited data on connectivity and 

cellular architecture, and there are almost no data on neuronal receptive fields 

(Wandell and Wade 2003). Reversely, the existence of these maps turns out to 

very useful for fMRI in that they allow the various visual areas to be delineated 

conveniently and consistently for an individual subject. These maps are typically 

measured using stimuli that cause a travelling wave of neuronal activity in the 

visual cortex (DeYoe et al. 1996; Engel et al. 1997; Engel et al. 1994; Sereno et 

al. 1995).  The actual experiment used to generate retinotopic maps is described 

in section 2.2.  

1.1.3 Early visual areas 

The following sections discuss the representation in early visual areas in the 

occipital cortex and the interconnections between them. Early occipital areas have 

been extensively studied in animal models and many of their neuronal properties 

are well known. However, it has not been easy to discern what is achieved in 

each cortical visual region and how the outcomes of the analyses at each level 

are brought together.        

1.1.4 The primary visual cortex (V1) 

The primary visual cortex (V1) is located within the calcarine sulcus in the 

occipital lobe at the back of the head and it is the first cortical region to process 

visual information. The distinctive properties of V1 cells have been studied heavily 

since the seminal works of Hubel and Wiesel (1962, 1968).  

Cell types 

According to Hubel and Wiesel, cells in V1 can be arranged in a hierarchy 

of simple, complex and hypercomplex cells. Whereas simple cells show linear 

summation in their responses, complex cells do not. As Hubel writes, ‘For the 
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most part, we can predict the responses of simple cells to complicated shapes 

from their responses to small-point stimuli’ (Hubel 1988). Hypercomplex cells (also 

called end-stopped cells) are sensitive to stimulus length (Hubel and Wiesel 

1965). If the length of the stimulus is too long their response will be significantly 

reduced, perhaps even to zero.  

Orientation selectivity 

Another feature of cortical neurons Hubel and Wiesel realised, was that they 

are orientation selective, responding more to stimuli in some orientations than 

others (Hubel and Wiesel 1968; 1962). Figure 1.2 shows a simulation of how 

different orientation-selective V1 neurons might respond to a real scene. 

According to this simulation orientation-selective neurons might to be used to 

detect the ‘edges’ of a visual scene, each at a different orientation. 

 

Figure 1.2 Illustration of how orientation-selective simple cells might 

respond to a real image. Note that each cell type might to be used to detect edges 

at its preferred orientation. To generate this basic illustration the original image 

was convoluted with a Gabor kernel. The size of the kernel was approximately 

equal to the receptive field of a typical V1 simple cell. 
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Orientation selective neurons are spatially organised in the cortex. The 

preferred orientation of neurons varies in an orderly way that depends on the 

cell’s position in the cortex. Orientation selective neurons are arranged in 

orientation columns, each containing cells of a single preferred orientation. 

Successive columns have a preferred orientation slightly advanced from the 

column before (Hubel and Wiesel 1977; Obermayer and Blasdel 1993). 

Figure 1.3 shows a synthetic map in which different colours code 

orientation-selective cells clustered into ‘columns’ of different orientation 

preference. The size of these columns in the macaque is around 500 µm in 

diameter (Bartfeld and Grinvald 1992; Obermayer and Blasdel 1993). Although, 

orientation-selective mechanisms have been extensively studied in animals, only 

recently the study has been extended to the human cortex using mainly fMRI. 

Chapter 3 compares the different techniques used to study orientation selectivity 

in the human cortex.  

 

Figure 1.3 (a) Synthetic orientation tuning map in which different colours code 

orientation selective columns of different orientation preference. The overlaid grid 

corresponds to a 2-dimensional projection of conventional 3x3x3mm
3
 fMRI voxels. 

(b) Histograms showing the amount of orientation selectivity in each voxel (from 

Boynton 2005). 
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Other dimensions of cortical analysis 

Cortical cells are also selective to spatial frequency (Campbell et al. 1969; 

Webster and De Valois 1985). A cell’s spatial frequency tuning curve, like 

orientation tuning, has a distinctive band-pass shape (Figure 1.4). Movshon et al. 

(1978) found a strong positive correlation between the narrowness of tuning of 

cells in the cat across the dimensions of spatial frequency and orientation. Cells 

that are narrowly tuned for spatial frequency tend to be narrowly tuned for 

orientation and vice versa. Experiments measuring the responses of cells across 

a wide range of spatial frequencies and orientations showed that striate cell’s 

receptive fields can be modelled by a 2-dimensional Gabor function (Webster and 

De Valois 1985). Physiological data combined with psychophysical studies 

suggested that orientation and spatial frequency selective neurons may act as a 

set of spatial frequency filters, each set performing a crude Fourier analysis of 

images at different meridians (orientations) (Graham 1977).  

 

Figure 1.4 Responses of a simple cell, from cat’s striate cortex to gratings of 

various (a) spatial frequencies and (b) orientations. This cell responds to only a 

narrow range of spatial frequencies and orientations (from Webster and De Valois 

1985). 
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Another important step in the analysis striate cells perform is contrast 

normalisation (Albrecht and Geisler 1991; Heeger 1992). This step introduces a 

compressive nonlinearity in their responses to stimulus contrast. The same way 

retinal mechanisms of light adaptation discard information about ambient 

illumination (Derrington and Lennie 1982), the striate cortex, through a 

mechanism of contrast adaptation, adjusts its so that the information passed to 

other areas is relatively independent of the absolute level of contrast in the image. 

Striate cells also process perceptual features like binocular disparity, motion 

selectivity, and colour, however, discussion of these goes beyond the aims of this 

thesis. 

In summary, striate cortex, appears to capture local structure and reduce 

redundancy from regions of extended common structure in images. Also, it 

performs a very important analysis step by normalising signals for contrast, so that 

the ratio of neuronal responses remains constant across a wide range of contrast 

levels (Lennie 1998). The ideas discussed above suggest that one of V1’s roles 

might be to construct an economic and elaborate analysis of images. 

1.1.5 Visual cortical pathways 

Striate cortex projects directly to at least seven other areas (Felleman and 

Van Essen 1991). A large projection goes to V2, which in turn projects to V3/VP, 

V4 and MT. Intercortical connections are illustrated in Figure 1.5. Macaque visual 

areas are shown in proportion to their size, and the connections between them 

are drawn proportionally to the relative number of fibres involved. One striking 

feature in this illustration is that the main body of connections leaving V1 is 

directed, through V2 and V4, ventrally to the temporal lobe. Not only the 

interconnections but also the functional properties of cortical regions suggest the 

segregation of visual information within the cortex into two pathways (Ungerleider 

and Mishkin 1982). This modularity in the cortex has been connected with the 
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anatomical and physiological diversity of retinal ganglion cells and neurons in 

LGN (see also section 1.1.1). Hubel and Livingstone (1987) suggested that the 

parvocellular pathway drives the temporal stream in cortex, while the 

magnocellular pathway provides the major input to the parietal stream in cortex. In 

particular, the parvocellular pathway is suggested to be the precursor of a system 

that in the cortex is directed ventrally into the temporal lobe and appears to be 

crucial for shape and object recognition. On the other hand, the magnocellular 

pathway is suggested to be the precursor of a system that in the cortex is directed 

dorsally into the parietal lobe and appears to be crucial for spatial perception, 

motion, depth and visuomotor performance.  

 

Figure 1.5 Illustration of macaque cortical areas shown in proportion to their size. 

The feed-forward connections between them are drawn proportionally to the 

relative number of fibres involved. The estimates are based on two assumptions: 

(1) the density of afferents entering an area is uniform, and (2) the areas to which V1 

projects receive all the output from V1. For a complete discussion on these 

assumptions see Lennie (1998). 



1. Introduction The visual system 

 13 

Although the segregation of parvocellular and magnocellular projections in 

the cortex has been disputed by more recent studies
1
 (e.g. Nealey and Maunsell 

1994), evidence on the existence of two distinct cortical streams has been derived 

from the anatomical and physiological properties of neurons in the areas across 

pathways. Temporal and parietal lesions in monkeys significantly impair 

performance in object discrimination tasks, whereas, posterior parietal lesions do 

not affect visual discrimination, but instead cause deficits in tasks that require 

appreciating the spatial relationships among objects (see Desimone et al. 1985 for 

a review) 

A study in the monkey by Baizer et al. (1991) provided anatomical evidence 

in support of the lesion studies. They injected two different types of tracers into the 

two streams, including areas V1, V2, V4 and MT among others. They found 

almost no neurons containing both tracers, suggesting that neuronal signals are 

directed towards either the parietal or temporal lobe. The functional properties and 

anatomical segregation of the two streams suggest that temporal and parietal 

areas receive and process, to a large degree, different information about the 

visual image (Goodale and Milner 1992; Ungerleider and Mishkin 1982).   

Another feature evident in Figure 1.5 is that beyond V2 the size of visual 

areas becomes progressively smaller. For example, no area after V2 is as large 

as V2. This might suggest that at each level of processing much of the information 

required to make perceptual decisions is discarded. As Lennie (1998) writes, 

‘perceptual decisions are made at each level of the hierarchy; each level passes 

to the next the results of its analysis, but not the information used in undertaking 

the analysis’. The above notion apart from a reasonable explanation about the 

                                                
1
 While one branch of the magnocellular stream continues on an independent path to area 

MT, another branch converges with the parvocellular pathway in the upper layers of V1. 
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decreasing size of visual areas in the hierarchy provides a framework in which the 

concept of hierarchical organisation can be considered.  

1.1.6 Extrastriate cortical areas 

Although it would be desirable to describe how later areas process visual 

information, not enough is understood either of the detailed physiology or the 

functional properties of these areas. This thesis considers how later centres 

combine the outputs of striate cortex in an attempt to provide insight into the 

computational role of extrastriate areas. Therefore, it would be useful to review 

some of the known physiological and functional properties of early extrastriate 

areas to the extent these are related to the purposes of this thesis.  

V2 

V2 is at least as large as the primary visual cortex and serves as an 

intermediate centre via which most cortical information is transmitted from V1 to 

the rest of the cortex. Most V2 cells are orientation selective (Zeki 1978b), though 

may be tuned less sharply than V1 cells (Levitt et al. 1994). However, in most 

respects V1 and V2 neurons are not remarkably different (Hubel and Livingstone 

1987). A very important property is that cells with common preferences tend to be 

clustered in similar ways as in V1. Hence, in a region of around 500 µm cells 

might all prefer similar orientations (Hubel and Livingstone 1987; Tootell and 

Hamilton 1989). Tootell and Hamilton (1989) suggested that there might also be 

some systematic mapping of spatial frequency. The binocular properties of V2 

neurons are somehow different from those in V1. Almost all V2 neurons are driven 

through either eye or both eyes together and, in contrast to V1 cells, most are 

equally excitable through either eye (Burkhalter and Van Essen 1986). These 

properties attribute to V2 an important role towards binocular integration.  
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Does V2 have a role in combining the outputs of V1? One property that may 

point to this direction is that V2 neurons have larger receptive fields than V1.  This 

means that a single cell in V2 carries less precise information about location of a 

stimulus in the visual field than does a V1 cell receiving information from the same 

part of the retina. Although this cruder analysis might suggest a feature integration 

role for V2 cells, there is not much evidence pointing to this direction. However, 

there are experiments to suggest that neurons in V2 have nonlinear integrative 

mechanisms that combine line segments separated by 2° or more. Moreover, 

these mechanisms respond to more complex stimuli like contours or edges 

(Peterhans and von der Heydt 1989; von der Heydt and Peterhans 1989). Despite 

these findings the functional role of V2 remains unclear to a large degree. V2 

lesions in monkeys caused no measurable decrease in visual acuity, contrast 

sensitivity and local discriminations of luminance, colour and orientation (Merigan 

et al. 1993). However, V2 lesions significantly impaired performance on tasks that 

require grouping of distinctive elements. This might suggest that the analyses 

required for some low-level discrimination are undertaken by V1, leaving for V2 

tasks involving more complex spatial discriminations. 

V3 

The role of area V3 is unclear to a large degree as cells in this area usually 

lack distinctive visual properties. V3 projects mainly to V4 and MT, areas that also 

receive much input from V2, making it even harder to infer its functional role. 

Orientation-selective cells are very common in V3 (Felleman and Van Essen 

1987; Gegenfurtner et al. 1997; Zeki 1978a), though more broadly tuned than in 

V2 (Baizer 1982) and respond to a wide range of spatial frequencies. Baizer 

(1982) and Zeki (1978a) found that receptive fields of V3 cells are larger than 

those of V2. These properties indicate that V3 performs a cruder analysis of the 

visual world than V2. For example, an orientation cell in V3 contains less 
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information both about stimulus orientation and stimulus width than an orientation 

cell in V2. In addition, electrophysiological reports indicate that approximately one-

half of the neurons in macaque V3 are motion
 
and direction selective (Felleman 

and Van Essen 1987; Gegenfurtner et al. 1997).  

These observations, suggest that V3 might perform a coarser analysis of 

form especially at low contrasts, as V3 cells appear to have very low contrast 

sensitivities (Gegenfurtner et al. 1997). Moreover, Lennie (1998) considering that 

V3 provides only a small proportion of the input to V4 and MT, suggested this 

area might provide a spatially coarse modulation of information, connecting V1 

and V2 to the parietal and temporal lobes.  

V4 

V4 draws its input mainly from V2 and provides the major source of visual 

input to the inferior temporal cortex. It was Zeki (1973) who first drew attention to 

the colour properties of neurons in V4 and labelled macaque V4 as being the 

‘colour area’. Later studies questioned this and suggested that V4 is involved in 

many different visual tasks besides colour (Desimone and Schein 1987; 

Desimone et al. 1985). Since Zeki (1973) found cells clustered in columns of 

chromatic preference, no other grouping of cells with common properties has 

been observed. Although orientation-selectivity was observed in a majority of 

neurons (Desimone and Schein 1987; Maunsell et al. 1991), Vanduffel et al. 

(2002) found that orientation-selective cells in V4 were clustered irrespective of 

their preferred orientation.  

The stimuli typically used to study cells in V1 and V2 do not drive V4 

neurons with the same success. This might suggest that the optimal stimuli for V4 

cells are more complex than those used to study earlier visual areas. For 

example, Desimone and Schein (1987) found that complex cells in V4 respond to 
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gratings of high spatial frequency but in any orientation. Another interesting 

finding of this study is that few cells in V4 that responded poorly or not at all to 

sine-wave gratings were found to respond well to bars and square-wave gratings, 

suggesting that edge sharpness may be explicitly represented in V4. Other 

examples of stimuli used to drive V4 neurons are radial or spiral (non Cartesian) 

patterns that appear to be more effective than simple (Cartesian) gratings (Gallant 

et al. 1993). Lesions confined to V4 modestly impair monkey’s performance on 

simple detection and discrimination tasks, but severely disrupts performance on 

tasks that require monkey to distinguish forms (Merigan 1996). In summary, these 

findings coupled with the anatomical position of V4 (it is the gateway to temporal 

lobe) suggest that this area might play an important role in grouping the outputs of 

early visual areas, providing input to the object selective areas in the inferior 

temporal cortex (IT in the macaque or LOC in humans).  

Dorsal areas (V3A, V3B, V7) 

The dorsal surface of the human occipital cortex, extending from the 

posterior portion of the intraparietal sulcus forward, contains three retinotopic 

areas (V3A, V3B, V7; see also section 2.2.2). After cortical visual areas V3 and 

V4 were identified and named in macaque monkeys, another region was 

discovered in between
 
them and named "V3 accessory" (V3A) (Zeki 1978a). A 

human V3A map was described in early cortical mapping papers (DeYoe et al. 

1996); however, the first detailed study of the human V3A was from Tootell et al. 

(1997). The V3B map was discussed by Smith et al. (1998) and its presence was 

confirmed and clarified by other labs (see Press et al. 2001 for a detailed 

description of the area). Tootell et al. (1998) described the presence of another 

retinotopic area, V7. However, a detailed description of the retinotopic map in this 

region was given by Press et al. (2001).  
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Tasks involving motion and depth perception produce powerful responses in 

dorsal regions and particularly in V3A (Backus et al. 2001; Tootell et al. 1997). 

Brain damage including these areas can result in deficits when interpreting local 

motion signals (Vaina et al. 2003). Vinberg and Grill-Spector (2008) showed that 

V3A prefers motion edges, whereas, V7 responds more strongly to edges than to 

surfaces and random stimuli. Although, human V3A has a retinotopy
 
that is similar 

to that of the macaque, in functional aspects human V3A appears quite
 
different 

from its macaque counterpart; human V3A is relatively
 
motion-selective, whereas 

human V3 is less so. In macaque, the
 
situation is qualitatively reversed. V3 is 

reported to be prominently
 
motion-selective, whereas V3A is less so (Tootell et al. 

1997). On the other hand, V7 is most robustly activated by disconnected edges 

that do not form a global shape (Vinberg and Grill-Spector 2008). This extends 

previous findings (e.g. Grill-Spector et al. 1998) that implicated V7 in processing 

objects by suggesting that local edges alone are sufficient to activate this area. 

These selective responses to edges across multiple cues may be useful for 

detecting contours in the visual input.  

Areas in the lateral occipital cortex 

A great mystery in vision research is how humans recognise visually 

presented objects with high accuracy and speed despite drastic changes in their 

appearance caused by changes in the viewing conditions. Efforts to duplicate this 

ability in machines have not met much success. The lateral occipital complex 

(LOC) is described in the literature as an area selective to the shape of visual 

objects (Eger et al. 2008; Grill-Spector et al. 2000; Kourtzi and Kanwisher 2000; 

2001; Kourtzi et al. 2003; Malach et al. 1995; Vinberg and Grill-Spector 2008). 

LOC can be usually identified in humans as the set of contiguous voxels activated 

more strongly by images of intact objects than by scrambled versions of the same 

images. In addition, LOC responds more strongly when subjects view pictures of 



1. Introduction The visual system 

 19 

objects than textures, visual noise, scrambled objects, or scrambled Fourier phase 

information (which maintains the spatial frequency spectrum) (Grill-Spector et al. 

1998; Malach et al. 1995). Kourtzi and Kanwisher (2001) found that the LOC 

responded selectively to perceived shape, but not to the contours that define the 

shape. Likewise, Stanley and Rubin (2003) found that the LOC responded to 

perceptually salient regions even when there were no perceived boundaries.  

The LOC can be divided into at least two putative subdivisions: a dorsal 

region [LO (lateral occipital)] and a more ventral region [pFus (posterior fusiform)], 

along the posterior fusiform gyrus. Several studies suggested that different sub-

regions of the LOC process different stimulus dimensions. Grill-Spector et al. 

(1999) and Sawamura et al. (2005) found that the anterior part of the LOC was 

more invariant to changes in object size and position than the posterior and dorsal 

part (1999; Sawamura et al. 2005). Stanley and Rubin (2005) showed that the 

LOC could be subdivided into a posterior, lateral part that responded equally well 

to abstract 2D shapes and familiar objects, and an anterior and ventral part that 

responded preferentially to familiar objects. 

As part of the lateral occipital (LO) cortex, lateral to the dorsal portion of V3, 

Larsson and Heeger (2006) identified two retinotopic areas, which they named 

LO1 and LO2 (see also section 2.2.2). Functionally, LO1 seems to exhibit 

orientation-selective responses to simple grating stimuli, whereas, LO2 shows no 

selectivity for stimulus orientation. On the other hand, LO2 was significantly more 

responsive than LO1 to object stimuli (Larsson and Heeger 2006). The differences 

in response properties between LO1 and LO2 provide evidence for a segregation 

of function between the two areas, with LO1 extracting boundary information and 

LO2 extracting regions and representing shape. The combination of complex 

shape selectivity and retinotopic organisation in LO1 and LO2 suggests that these 

areas represent shape information within a spatial coordinate system. This may 
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be useful for a variety of perceptual organisation processes that rely on spatial 

relations in the visual image (e.g., segmentation, grouping, boundary extraction). 

In addition, the location of LO1 and LO2, midway between ventral and dorsal 

visual processing streams, makes these areas well positioned for integrating 

information from both the dorsal and ventral streams. 
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1.2 Principles of functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) has revolutionised modern 

neuroscience, since it was introduced in 1990 (Ogawa et al. 1990). FMRI allows 

the non-invasive localisation and measurement of neuronal activity. This section 

describes its basic principles. The first part focuses on the physics related to 

magnetic resonance. The second part discusses the principles of the Blood 

Oxygenation Level-Dependant (BOLD) technique that is the most widely used 

method in functional imaging. 

1.2.1 Magnetic Resonance Imaging (MRI) 

To better conceptualise the process of MR imaging the procedure is divided 

into three steps. As a first step, the subject is placed into a magnetic field. 

Second, a radiofrequency pulse is applied; and third the pulse is terminated 

allowing relaxation of nuclei to occur. 

Nuclear Magnetic Resonance  

When a subject is placed in a strong magnetic field, the atomic nuclei in the 

brain interact with the field. Atomic nuclei, with an odd mass number (e.g. 
1
H, 

13
C,

 

23
Na) ‘spin’ on their axis. They can be thought of as spinning around their axis the 

way the earth turns around its axis or as a vinyl record spins round (Figure 1.6). 

Spin or angular momentum describes the fact that each point in the record is 

moving with some velocity about the axis of rotation. However, the spinning 

velocity depends on the radial position of each point. The direction of the angular 

momentum vector, L, is pointing along the axis of rotation, while its magnitude 

depends on the velocity with which the record is spinning (Jezzard and Clare 

2001).      
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Figure 1.6 A spinning record has an angular momentum or spin L pointing along 

the axis of rotation.    

The nucleus that is of most interest in MRI is the hydrogen nucleus because 

it is abundant in the water molecules in the brain. It also yields the strongest 

signal since it has one of the highest nuclear moments (Buxton 2002; Jezzard and 

Clare 2001). When a hydrogen nucleus enters in a magnetic field, the quantum 

mechanics predict that it can be found in two possible energy levels. In the lowest 

energy state the nucleus is aligned parallel to the external magnetic field and in 

the highest energy state the nucleus is aligned anti-parallel to the external 

magnetic field.  

Any moving charge generates a magnetic field. Since the hydrogen nucleus 

is a spinning charged particle (the positive charge of one proton), it produces its 

own magnetic field, called “magnetic dipole moment” (Buxton 2002; Jezzard and 

Clare 2001). Consequently, each hydrogen nucleus behaves like a tiny magnet 

bar, which, in the presence of an external magnetic field B0 tends to align itself in 

the direction of the field (Figure 1.7).  

The magnetic dipoles, under the effect of the magnetic field, follow a 

compound, wobbling motion known as precession. During precession the ‘tail’ of 

each vector is stationary whereas the head is revolving. The same sort of motion 

is seen when we spin a top; the top spins around its axis, while the plane of the 

top precesses around the same axis. The precession frequency (Larmor 

frequency) depends on the type of the nucleus and on the strength of the 

magnetic field (Buxton 2002; Horowitz 1995; Jezzard and Clare 2001).          
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Figure 1.7 A sample of atoms placed in a strong magnetic field. (a) In the absence 

of a magnetic field the spins are randomly oriented and there is no net 

magnetization. (b) In the presence of a magnetic field B0 the spins partially align 

with the field, creating a net magnetization vector M.   

In ideal conditions, all magnetic dipoles placed in a magnetic field will align 

themselves with the field. However, in physiological temperatures only 1 in 

100,000 of the magnetic dipoles is aligned with the external field (Buxton 2002). 

Nevertheless, even this small alignment is sufficient enough to yield a MR signal. 

Eventually, slightly more dipoles align parallel to the field than anti-parallel to the 

field, resulting in a net magnetisation vector M pointing to the same direction as 

the external field B0 (Figure 1.7b). M can be thought of as a weak, but 

macroscopic, local magnetic field that is the net result of summing up the 

magnetic fields due to each of the dipoles. It is actually the difference between 

dipoles aligned to the field and dipoles opposite to the field. The constant that 

describes how much time is required for the alignment to occur is called T1 and is 

different for different types of nuclei (Buxton 2002; Jezzard and Clare 2001). 

The Radiofrequency Pulse  

The magnetisation vector M is not directly observable since it is many 

orders of magnitude weaker than B0. In order for a signal to be detected a brief 

radiofrequency pulse needs to be applied. The radiofrequency (RF) pulse is a 

sinusoidally-modulated electromagnetic wave. The direction of the vector B1 that 

(a) (b) 
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describes the RF pulse is perpendicular to both B0 and M, and lies along the y-

axis (Figure 1.8a). The effect of the RF pulse is to ‘tip’ the M vector from its initial, 

vertical position in the z-axis in the horizontal x-y plane as shown in Figure 1.8a. 

But the M vector does not simply tip over; it follows a complex, spiral motion 

(Figure 1.8b) which is actually the result of two component motions; the 

precession around the z-axis (Figure 1.8c) and the tipping motion from the vertical 

position to the horizontal x-y plane (Buxton 2002; Horowitz 1995).  

 

 

Figure 1.8 (a) The RF pulse is a sinusoidally modulated field B1 perpendicular to 

B0 that causes the magnetisation M to tip over in the horizontal plane. (b) The 

magnetisation vector follows a spiral motion that is the result of the tipping motion 

and (c) the precession around the vertical axis.  

In order to tip the M vector, the frequency of the RF pulse must equal the 

precession frequency of the magnetic dipoles that we wish to affect. Hydrogen 

nuclei are affected over all the other precessing dipoles by choosing a RF pulse of 

equal frequency to the resonant frequency of hydrogen dipoles. Since the net 

effect of the RF pulse is to tip M away from the vertical position, such pulses are 

usually described by the flip angle they produce (e.g. a 40
o
 pulse or a 90

o
 pulse). 

The flip angle is determined by the amplitude and duration of the RF pulse 

(Buxton 2002; Jezzard and Clare 2001).          

(a) 

(b) (c) 
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Relaxation 

After the termination of the RF pulse the nuclei return to their initial state, a 

process known as relaxation. During relaxation the disturbed M magnetisation 

tends to return back to its equilibrium, vertical, position (Buxton 2002; Horowitz 

1995). Vector M consists of a vertical (Mz) and a horizontal (Mx) component 

(Figure 1.9). During relaxation the vertical (Mz) vector grows in magnitude and 

reverts back to the original M vector, and the horizontal (Mx) magnitude decays to 

zero.  

 

Figure 1.9 The M magnetisation is broken down into a vertical (Mz) and a 

horizontal (Mx) component. 

In MRI it is the transverse, Mx component that represents the signal. The 

larger the amplitude of the transverse component, the larger the Mx component, 

and the greater the measurable signal. Therefore, when the 90
o
 RF pulse is 

applied, the M vector converts fully into its horizontal Mx component and the 

maximum signal is obtained. The signal measured after the termination of the RF 

pulse is an oscillating wave, which decays away under an exponential envelope. 

This is called free induction decay (FID) and its profile is shown in Figure 1.10. 

The time constant describing the decay of the signal is called T2 relaxation and is 

discussed in more detail below. 
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Figure 1.10 The free induction decay (FID). After the 90
o
 RF pulse has tipped the 

vertical magnetisation into the horizontal plane, the signal decays exponentially in 

amplitude with a time constant T2.  

When it all comes together 

The time constant expressing the decay of the signal, T2 relaxation, is 

described by the decrease of the Mx component in the horizontal plane. Similarly, 

T1 relaxation is expressed by the re-growth of the Mz component along the vertical 

axis. In other words T1 and T2 are time constants that describe how long it takes 

for the amplitude of the Mz vector to recover and for the Mx vector to decay 

respectively (Horowitz 1995; Jezzard and Clare 2001). 

T1 and T2 relaxation times vary among different tissues (Buxton 2002; 

Jezzard and Clare 2001). This means that after the RF pulse is applied, different 

tissues require different amounts of time for the corresponding M vectors to return 

to their equilibrium position. In this property lies the ability to obtain contrast 

between different tissues in MR images. For example, in the human brain 

T1 700ms for white matter, T1 900ms for grey matter and for cerebrospinal fluid 

(CSF) T1 4000ms (Buxton 2002). Therefore, if the signal is measured at about 

600ms after the termination of the RF pulse the amplitude of the vertical, Mz 

component will be larger for white matter than for the CSF and grey matter and 

the resulting MR image will show white matter bright and CSF dark (Figure 1.11). 

By choosing different parameters it is possible to highlight different tissues in the 
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brain. If the MR signal is measured at a time when the difference between the 

amplitude of the vertical, Mz components is maximised (as above) the images 

obtained are known as T1-weighted. On the other hand, if the signal is measured 

when the difference between the amplitude of horizontal, Mx components is 

maximised the images obtained are known as T2-weighted (Horowitz 1995; 

Jezzard and Clare 2001). Typically during a MR measurement, each time the 

signal has decayed away a new RF pulse is applied. The delay inserted between 

the application of subsequent RF pulses is called scan repetition time (TR). In 

functional imaging this determines the temporal resolution.   

 

Figure 1.11 Example of a T1-weighted image of the brain. 

The T2* decay  

During the delay inserted after each RF, the horizontal magnetisation, and 

thus the signal, would be expected to decrease exponentially with a time constant 

T2 according to the FID curve described above. However, what is usually 

observed is a much more rapid decay than we would expect for a known T2. This 

faster decay, called T2* relaxation, has a smaller value than T2 (Buxton 2002; 

Horowitz 1995).  

Fortunately, it is possible to correct for the effects that cause T2* relaxation 

and obtain the actual T2 relaxation. But before we move on to the correction 

procedure let us examine the source of this faster decay. Right after the 
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termination of the RF pulse the precessing magnetic dipoles have the same 

phase and add coherently to produce the net magnetisation vector M. However, 

over time they gradually get out of phase (Figure 1.12) and tend to cancel each 

other out. As a result they no longer add coherently and the signal decays away. 

The reason for this de-phasing, and hence for the occurrence of T2* decay, is 

magnetic field inhomogeneity (Buxton 2002). As mentioned above, the magnetic 

dipoles precess with a frequency (Larmor frequency) that is proportional to the 

strength of the magnetic field. But because the magnetic field B0 is not completely 

uniform and the head itself is inhomogeneous, the local strength of the field is not 

equal for all magnetic dipoles. This means that some dipoles experience higher 

magnetisation than others and as a result they precess faster. This will cause 

dipoles to de-phase with each other and the signal to decay away because of this 

destructive interference.  

 

Figure 1.12 An example of (a) in phase and (b) out of phase precessing magnetic 

dipoles.  

In functional MRI (fMRI) T2* relaxation is of importance as the technique 

takes advantage of such inhomogeneities in the magnetic field. However, in 

anatomical MRI such effects are not desirable and it is possible to correct for them 

in order to obtain the actual T2 relaxation. This is accomplished by application of a 

180
o
 RF following the 90

o
 RF pulse. Αt time t=0, immediately after the termination 

of the 90
o
 RF pulse, all the magnetic dipoles are in phase. This means they all are 

at the same point in their cycle of precession and the resulting magnetisation 

vector M lays along the x-axis. Due to de-phasing, at a given time after the 

termination of the 90
o
 RF pulse, different dipoles will be at different points in their 

(a) 

(b) 
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cycle of precession. This will cause the magnetisation vector to accrue a phase φ, 

with respect to the x-axis. If, however, an 180
o
 RF pulse is applied at time t=τ it 

will cause the magnetisation vector to flip to phase –φ. But the magnetisation will 

continue to accrue phase so at time t=2τ its phase will be zero again.  This can be 

illustrated with an example (Figure 1.13). Imagine that the magnetisation vector M 

is the hand of a clock that initially registers a certain time. After time t=τ the hand 

has accrued a phase (angle) φ. If at this point the hand is manually shifted 

symmetrically about the horizontal axis, then at time t=2τ it will have returned back 

to its initial position.  

 

Figure 1.13 An analogy of the spin echo pulse sequence. 

It is observed that the re-phasing of the magnetic dipoles generates an echo 

(spin echo). The time duration required for the magnetisation vector to get back in 

phase is known as echo time TE. In other words if the 180
o
 RF pulse is applied at 

time t=τ=TE/2, the echo forms at time t=2τ=TE. The sequence of the 90
o
-180

o
 RF 

pulses, called the spin echo sequence, is widely used in clinical MRI. During such 

a sequence, the parameters TR and TE are determined so as to generate T1 or 

T2 weighted images and, thus, emphasise contrast between different tissues.      

1.2.2 Functional Magnetic Resonance Imaging (fMRI) 

MRI techniques can also be used to study functional activity in the brain, in 

which case this is referred to as functional MRI (fMRI). The growth of this 

(a) (b) 

(c) (d) 
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technique for studying brain function has been quite remarkable over the past 15 

years. FMRI is a non-invasive method that takes advantage of the coupling 

between neuronal activity and haemodynamics in the brain. It is this coupling that 

gives rise to the so-called Blood Oxygenation Level-Dependant (BOLD) technique 

which is the most widely used method in fMRI. Its spatial resolution of 3mm or 

less makes it superior to any of the other non-invasive functional imaging 

techniques in terms of spatial localisation. The typical temporal resolution of fMRI 

is about 1.5s. However, the sluggish haemodynamic response downgrades the 

feasible temporal spacing between trials to 5-8 seconds (Horwitz et al. 2000). This 

section introduces several of the principles related to the fMRI technique and 

considers the relationship between haemodynamics and neuronal activity.  

The BOLD signal 

The first fMRI experiment was performed by Ogawa and colleagues (1990). 

In this pioneering study the brain of a mouse was imaged while breathing different 

levels of oxygen. It was found that the brain image of a mouse breathing 100% 

oxygen was rather bright, uniform and featureless (low contrast). But when the 

mouse breathed 20% oxygen many dark lines appeared indicating the major 

structures of the brain (higher contrast). This effect was later explained by taking 

into account the magnetic properties of oxygenated and deoxygenated blood. 

Deoxyhaemoglobin (red blood cells without an oxygen molecule attached to it) is 

a paramagnetic substance (is slightly attracted to a magnet) and introduces an 

inhomogeneity into the nearby magnetic field. On the other hand, oxyhaemoglobin 

(red blood cells with an oxygen molecule attached to it) is a weakly diamagnetic 

substance (is slightly repelled by a magnet) and has very little effect on the 

surrounding magnetic field (Heeger and Ress 2002; Wandell and Wade 2003).  

When neurons are activated, there is an increased supply of oxygenated 

blood to the brain. As a result, the levels of deoxyhaemoglobin will fall introducing 
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higher field inhomogeneities. The BOLD technique is designed primarily to 

measure changes in such inhomogeneities. The lower the level of 

deoxyhaemoglobin in the blood the higher the field inhomogeneities, and the 

higher the BOLD signal (Heeger and Ress 2002; Wandell and Wade 2003). The 

scanning technique that is most commonly used in fMRI is Echo Planar Imaging 

(EPI) (Mansfield 1977). Techniques of this kind take account of the field 

inhomogeneities and therefore the BOLD effect is more pronounced. The signal 

measured by the BOLD technique is the T2* signal. 

The haemodynamic response function (HRF) 

If neurons are stimulated for only a brief period of time (e.g. after the 

appearance of a transient stimulus) the BOLD response to this stimulation is 

described by the haemodynamic response function (HRF), as shown in Figure 

1.14. The characteristic shape of the HRF consists of three epochs, the properties 

of which are not fully understood.  

 

Figure 1.14 Haemodynamic response function (HRF) measured as the response 

to a brief neuronal stimulation. 

Immediately after the stimulus onset there is a brief period of 0.5–1s during 

which the BOLD signal slightly decreases. Although, this ‘initial dip’ is a subtle 

effect and is not always observed (Hoge and Pike 2001), some users believe that 

it may map more precisely the spatial location of neuronal activity. Subsequently, 
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there is an increase in the BOLD signal that peaks at about 5-8 seconds after the 

stimulus commences. This signal increase is due to an oversupply of oxygenated 

blood. There are two theories aiming to explain this increase in blood flow. The 

first states that the increased blood flow serves to deliver the oxygen used by the 

active neurons. Although there is strong evidence in support of this view, it 

appears that the oxygen supplied by the increased blood flow is much larger than 

the amount used by neurons. An alternative theory is that the increase in blood 

flow compensates for the glucose used by neurons. This is supported by the fact 

that the glucose consumption by the active neurons is directly proportional to the 

increase in blood flow. In any case, the metabolic mechanisms that cause the 

increase in blood flow are not fully understood (see Heeger and Ress, 2002 for a 

review). However, the result of the oversupply in oxygen is the decrease in the 

level of deoxyhaemoglobin in the blood that causes an increase in the fMRI 

signal. Finally, in the last epoch of the HRF the BOLD response returns to 

baseline, accompanied by a ‘post-stimulus undershoot’ during which the response 

is briefly negative.  

 Linear systems analysis 

The haemodynamic response is not a linear function of the stimulus pattern 

since it includes transient features such as the post stimulus undershoot. 

However, the analysis and interpretation of fMRI data relies on the hypothesis that 

the haemodynamic response is a linear function of the average neuronal activity 

(Boynton et al., 1996). This assumption is known as the linear transform model. 

Although it is an approximation, the linear transform model appears to describe 

very well the link between neuronal activity and the fMRI signal (Boynton et al. 

1996). This can be shown as follows. Since the response to a brief stimulus is 

described by the HRF, under the assumption of linearity, the response to a more 



1. Introduction Principles of fMRI 

 33 

sustained stimulus can be predicted by convolving the stimulus pattern with the 

HRF, as shown in Figure 1.15.  

 

       

    

 

    

   

 

Figure 1.16 The Fourier components of (a) a blocked stimulus pattern, (b) the 

predicted haemodynamic response and (c) the measured BOLD signal.  

One way to estimate the statistical significance of the measured fMRI signal 

is to compute the correlation coefficient between the measured signal and the 

 

 

Figure 1.15 (a) Assuming that the BOLD response is linear, the response to a 

sustained stimulus (square) can be described by the convolution of the HRF with 

the stimulus pattern. (b) The measured BOLD response to the stimulus.  
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(a) (b) 
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predicted response. The coefficient can be used as a statistical parameter. By 

choosing a particular threshold value it is possible to select voxels that are 

significantly activated. 

A similar approach is based on the Fourier transform of the time course 

(Engel et al. 1994). If an fMRI scan consists of 5 cycles (alternations between the 

onset and offset of a stimulus), the Fourier spectrum of the time course peaks at a 

prominent fundamental frequency (5 cycles/scan) and a series of odd multiples of 

the fundamental frequency (Figure 1.16a). The mathematically predicted 

response function is smoother; therefore, the higher frequency components are 

not apparent (Figure 1.16b). Finally, the spectrum of the measured data contains 

the fundamental frequency and only one apparent harmonic (Figure 1.16c). A 

metric describing the amount of correlation between the activation of a voxel to 

the stimulus time course can be derived by comparing the amplitude of the 

fundamental frequency to the amplitude of the other frequencies.  

This approach bears several advantages. For example, there is evidence 

that the haemodynamic delay may vary for different parts of the brain and this 

may be a problem for the standard correlation analysis. If the delay used in the 

HRF is not the same as the actual delay, the correlation coefficient will be reduced 

and some activated voxels could be missed (Buxton 2002). Although there are 

techniques to account for this, the method described above deals more effectively 

with the problem. If for example the model function is chosen to be a sine wave, 

the haemodynamic delay is equivalent to a phase shift of the wave. Using the 

Fourier transform the best fit for the delay can be easily computed.  

1.2.3 Limitations of the BOLD technique 

The use of fMRI has undoubtedly revolutionised modern cognitive 

neuroscience. The main advantage is that it allows the non-invasive localisation 
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and measurement of neuronal activity. fMRI led modern neuroscience to a new 

era of research, complementary to the invasive techniques used in animal 

models, to study the real-time function and dysfunction of the human brain. 

However, there are several limitations of the BOLD technique that a user should 

bear in mind. The most important is that the BOLD fMRI signal is an indirect 

measure of neuronal activity and relies on the assumption that neuronal activity 

and haemodynamics are indeed linked. 

A lot of research has been carried out to answer the question of whether or 

not the BOLD fMRI signal is loosely or tightly coupled to neuronal activity. This 

relationship appears to depend on a number of factors (see Heeger and Ress 

2002 for a review). One is the extent to which the signal from large veins is taken 

into account. The BOLD signal is sensitive to the size of veins, since the relative 

decrease in deoxyhaemoglobin is larger in large veins than in small veins. As a 

result, the increase in blood flow is not very specific to the area of neuronal 

activation. Usually, blood is supplied to a larger area of the brain than just the 

activated area. Consequently, the area that shows an increase in fMRI signal 

might be larger than the area of neuronal activation, resulting in spatial blurring. It 

is possible to modify the signal acquisition in order to de-emphasise the BOLD 

signals from larger veins, by suppressing signals that are associated with higher 

flow velocities. This can be also achieved by using stronger magnetic fields. 

Another solution is to choose appropriate experimental protocols and data 

analysis methods. This way it is possible to de-emphasise the signal from large 

veins by forcing the blood flow and oxygenation in large veins to remain roughly 

constant throughout the experiment. Such a design, used to study retinotopic 

organisation in the visual cortex, is described in the General Methods chapter.  

In an attempt to further understand the link between the BOLD signal and 

neuronal activity, Logothetis et al. (2001) compared simultaneously fMRI and 
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direct neuronal signals in anaesthetised monkeys for stimuli of different contrasts. 

They concluded that fMRI and neuronal signals were not simply proportional to 

one another. They found that there is a monotonic but non-linear relationship 

between the fMRI signal and neuronal responses, such that the fMRI responses 

increase more rapidly than neuronal responses at low contrasts, but less rapidly at 

high contrasts. Another important finding of the same study is that large signal 

differences across different recording sites might be obtained.  

Not surprisingly, the strength of the connection between neuronal activity 

and haemodynamics has emerged as one of the most important research areas in 

neuroscience. To summarise the issues discussed above, the BOLD fMRI signal 

appears to be a good approximation of neuronal activity for some recording sites, 

in some brain regions, using certain experimental protocols. Basically, the fMRI 

signal can be seen as a qualitative (Howseman and Bowtell 1999), smoothed 

(Horwitz et al. 2000), and sluggish measurement of the underlying neuronal 

activity. But despite its limitations, the BOLD technique provides additional 

insights beyond other methods (see Wandel and Wade, 2003 for a comparison 

between fMRI and other techniques in vision). Furthermore, it has been 

successful in answering fundamental questions about the properties and 

organisation principles in the human visual cortex. Some of which are discussed 

in the following chapters. 
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1.3 Experimental techniques 

As discussed in the previous section, BOLD measurements are ultimately 

limited in spatial resolution by, amongst other things, the spatial scale of the local 

vascular system. In many studies, the aim is to quantify the selectivity of clusters 

of neurons on a spatial scale much smaller than the 3x3x3mm
3
 volume of a voxel 

used typically in current fMRI experiments. Recent fMRI studies have 

demonstrated new methods for revealing separate subpopulations of neurons 

selectively tuned for different stimuli even when these neurons are intermingled at 

a spatial scale that is smaller than the sampling resolution of the measurement.  

The first technique, fMRI adaptation, relies on the observation that the 

BOLD response in a given voxel is reduced after prolonged presentation of a 

stimulus, and that this reduction is selective to the characteristics of the repeated 

stimuli (adapters). The second technique, multi-variate pattern analysis (MVPA), 

makes use of multi-variate statistics to recover small biases in individual voxels in 

their responses to different stimuli. This section provides a general introduction to 

the two techniques. Further experimental details are discussed in the General 

Methods section and within the relevant chapters. 

1.3.1 Adaptation 

One of the most fundamental properties of the visual system is its flexibility. 

The ability to adjust, or adapt in response to a changing environment is a 

fundamental principle of the visual pathways, beginning at the earliest stages and 

continuing into the central brain representations. 

Ideas about the evolutionary value of adaptation have been motivated by 

two main considerations. First, the visual system must be re-calibrating itself as it 

maps environmental conditions onto patterns of neural activity. Self-calibration is 

the property of a system to change itself in response to changes in the 
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environment (recalibration) and to allow for error-correction within the system. 

Second, neurons in the visual system have a limited dynamic range for the coding 

of visual stimuli. Therefore, adaptation might serve as an optimisation mechanism 

that reduces the transmission of redundant information. This dynamic range 

optimisation might help to improve the visual system’s performance by maximising 

the effective bandwidth available for the transmission of new information about the 

stimuli. The functional considerations of self-calibration and redundancy reduction 

suggest that the visual system should be viewed as a dynamic system. Adaptation 

mechanisms serve this dynamic system by continually operating to match the 

coding employed to the statistical structure of the environment (Clifford 2002). 

Adaptation reflects the phenomenon of reduced responses to repeated 

presentation of a specific stimulus. Psychophysically adaptation can be 

demonstrated in various ways. For example, prolonged viewing of a high contrast 

vertical pattern reduces the perceived contrast of a similar pattern in a 

subsequently viewed test stimulus (contrast adaptation) (Blakemore and 

Campbell 1969). Also, viewing an oriented line for a long time causes subsequent 

lines to appear tilted away from the adapting orientation (tilt aftereffect) (Gibson 

and Radner 1937; Greenlee and Magnussen 1987). Aftereffects reveal a gap 

between appearance and reality, and remind us that what we see is determined 

by how visual information is coded in the brain, and not simply by how things 

‘really are’. The use of adaptation visual science has been so widespread that it 

has been termed the ‘psychophysicist’s electrode’. 

Models of adaptation 

It is not known exactly how and why the response properties of cells in 

visual areas change during and after a period of exposure to an adapting 

stimulus. There are multiple potential neural causes of the adaptation measured 

psychophysically, with single-cell recording, or with fMRI. Three models have 
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been previously proposed in the literature (see Grill-Spector et al. 2006 for a 

review): (a) the fatigue model, according to which the amplitude of firing of 

stimulus responsive neurons decreases, (b) the sharpening model, according to 

which fewer neurons respond, and (c) the facilitation model, according to which 

the latency and the duration of neural activity are shortened.  

The simplest model of adaptation is the fatigue model. According to this, all 

neurons selective to a stimulus dimension show a proportionate reduction in their 

response to repeated presentations of the same stimulus. As a consequence the 

mean population firing rate declines.!One prediction from this model is that the 

amount of adaptation is greater in neurons that respond optimally to the adapting 

stimulus than in other neurons. An advantage hypothesised for such a mechanism 

is that the sensitivity of the system to stimuli that are different from the repeating 

stimulus is increased, thereby providing a mechanism for ‘novelty detection’. 

Reducing the firing rate might also help prevent saturation of the neural response 

function by increasing its dynamic range (see above). This attractively simple 

model can account for a large number of aftereffects resulting from adaptation 

(see Georgeson 2004).  

 

Figure 1.17 Re-tuning of cell responses after adaptation according to the ‘fatigue’ 

model. (a) Schematic response tuning curves for a group of orientation-selective 

cells before adaptation. Blue bars indicate each cell’s preferred orientation. (b) 

After adapting to a stimulus of a given orientation, the responses of cells tuned to 

similar orientations are scaled down. 

(a) (b) 
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The sharpening model, initially described by Desimone (1996), suggests 

that adaptation results in sparser representation of stimuli. According to this 

model, some (but not all) of the neurons that initially responded to a stimulus will 

adapt to subsequent presentations of that stimulus. Critically, the sharpening 

model predicts that neurons adapting little or not at all to a repeated stimulus are 

those who are highly selective for that stimulus. Thus, repetition-related changes 

are viewed as a learning process, in which neuronal tuning is sharpened and as a 

consequence, the representation becomes sparser resulting in fewer responsive 

neurons in total. Such a model could explain the faster processing of repeated 

stimuli observed in many adaptation studies (Grill-Spector et al. 2006).  

In contrast, the facilitation model predicts that repetition causes faster 

processing of stimuli, resulting from shorter latencies or shorter durations of neural 

firing. This approach might be extremely useful in modeling the coupling between 

neuronal activity and the BOLD signal. Given that the hemodynamic response 

measured by fMRI integrates over several seconds of neural activity, a shorter 

duration of neuronal activity results in decreased amplitude of the fMRI signal. A 

shorter duration of neural activity is also consistent with the earlier peaking of the 

fMRI response and might explain why decreases in firing rate can appear to arise 

after the initial visual response. 

The three models differ in their predictions about whether adaptation is 

strongest for the preferred or the non-preferred stimuli. The sharpening model 

predicts that neurons showing little or no adaptation to a repeated stimulus are 

highly selective for that stimulus. By contrast, both the fatigue and facilitation 

models predict that adaptation is proportional to the initial response. Thus, 

neurons that respond optimally to the adapting stimulus should also show the 

greatest adaptation (but see voxel-wise comparisons in Chapter 3). Although it is 

possible that a single model could apply under all conditions, it might be the case 
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that different models apply in different brain regions and under different 

experimental conditions and designs. To distinguish between the models it is 

necessary that new single-cell experiments are performed and more elaborative 

computational models are developed. !

fMRI adaptation 

Adaptation has been used behaviorally (Blakemore and Campbell 1969; 

Bradley et al. 1988; Snowden and Hammett 1996), with single-cell recordings 

(Ohzawa et al. 1985; Sclar et al. 1989; Solomon et al. 2004), and more recently 

the method has been modified for use in conjunction with fMRI scanning. The 

relationship between the three methods is not straightforward. Considering, for 

example, the relationship between adaptation measured with electrophysiology 

and fMRI, one should take into account the fact that fMRI and neuronal signals 

are not simply proportional to one another (Logothetis et al. 2001; Logothetis 

2002). In addition, large variations might be obtained across different recording 

sites and with different cell recording techniques. 

In essence, the basis of the method is that after prolonged presentation of a 

particular stimulus, the BOLD response to that stimulus is reduced in areas 

sensitive to it, more than the response to other stimuli. In the example of 

orientation-selectivity, after prolonged viewing of a high-contrast grating of a 

particular orientation the fMRI response to a low-contrast probe of the same 

orientation is reduced relative to the response to a differently oriented probe. The 

fact that adaptation is not uniform across the domain of interest (e.g. orientation) 

suggests that subpopulations of neurons are responding selectively to particular 

subregions of the space. FMRI-adaptation has been widely used to study, 

orientation selectivity (Engel 2005; Fang et al. 2005; Larsson et al. 2006), 

perception of motion (Huk and Heeger 2002; Krekelberg et al. 2005; Tolias et al. 

2001), objects (Grill-Spector et al. 1999; Kourtzi and Huberle 2005; Kourtzi et al. 
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2003; Sayres and Grill-Spector 2006; Vuilleumier et al. 2002), and faces (Andrews 

and Ewbank 2004; Grill-Spector and Malach 2001; Henson et al. 2002).  

The method of fMRI adaptation is hypothesised to be able to characterize 

the functional properties of neural populations in a sub voxel scale (Grill-Spector 

and Malach 2001). The limited spatial resolution of fMRI (which is in the order of 

mm) places a barrier for studying the properties of groups of selective neurons, 

which are usually co-localised within the volume of a single voxel. Using standard 

imaging techniques it is impossible to access whether the measured BOLD signal 

is a mixture of neurons each tuned to a different stimulus category, or whether it is 

the outcome of the activity of a homogeneous group of neurons that share a 

common property. If for example, one subpopulation of neurons responds to a 

particular stimulus category and a separate subpopulation of intermingled neurons 

responds equally strongly to a different stimulus category, there will be no 

difference in the overall response (averaged across both subpopulations) to the 

two stimulus categories. This makes it difficult, in many cases, to infer from the 

fMRI data the properties of the underlying neurons.  

The two subpopulations could, however, be distinguished using an 

adaptation protocol. A sampled region of tissue containing neurons selectively 

tuned for one stimulus category will adapt after repeated presentation of these 

neurons’ preferred stimulus. If the same tissue contains a second, separate 

subpopulation of neurons selectively tuned for a different stimulus category, that 

tissue would also adapt to that stimulus category. Repeated presentation of one 

stimulus category will not, ideally, affect the responses to the other stimulus 

category. Selective adaptation to a particular stimulus category thus provides a 

measure of the stimulus selectivity of a subpopulation of neurons that is 

unaffected by the stimulus selectivity of other neurons in the same region of 

tissue. 
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1.3.2  Multi-variate Pattern Analyses (MVPA) 

The study of neuronal selectivity in a sub-voxel scale using indirect methods 

such as adaptation requires the averaging of fMRI responses over many trials and 

participants. Averaging takes place in such a way that could obscure much of the 

information present in the spatial pattern of individual brain responses. Another 

characteristic is that fMRI responses are considered separately in individual 

voxels. Time courses are first extracted in individual voxels and then averaged 

together to obtain a mean response within a region of interest (ROI). Because 

each voxel is treated as a separate entity as far as statistical analysis is 

concerned, conventional fMRI analyses are considered as univariate.   

However, fMRI data are fundamentally multivariate; a single acquisition in 

time contains information at thousands of spatial locations. In contrast to 

conventional univariate analyses, recent studies have shown that sensitivity of 

fMRI paradigms can increase significantly by taking into account patterns of 

activity present across many voxels at the same time (Cox and Savoy 2003; 

Haynes and Rees 2006; Norman et al. 2006). An example of the rationale behind 

pattern-classification techniques is given in Figure 1.18. By considering fMRI 

responses in many voxels simultaneously, instead of analysing one location at a 

time, multi-variate pattern analyses (MVPA) take into account the fine-grained 

information in individual voxels. Given the goal of detecting the presence of a 

particular mental state in the brain, the primary advantage of MVPA methods over 

univariate methods is increased sensitivity. Conventional fMRI analysis 

techniques try to find voxels showing a statistically significant response to the 

experimental conditions. To increase sensitivity to a particular condition, these 

methods spatially average across voxels that respond significantly to that 

condition.  
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Figure 1.18 Hypothetical fMRI activity in two voxels in (a) an ideal univariate 

situation. The activity in voxel 2 is plotted versus the activity in voxel 1 and each 

point corresponds to a single fMRI measurement. Voxel 2 is more active in the 

first condition, but it is not active in the second condition. Because the projected 

distributions of the responses do not overlap, a conventional univariate analysis 

could easily discriminate the responses measured under the two conditions.  

However, in situation (b) both voxels are relatively active in both conditions and 

the projection of the responses overlap. In this case conventional analyses would 

be hard to discriminate fMRI activity. Nevertheless, data from each condition 

occupy a distinct region of the two-dimensional space. A linear decision boundary 

can be used to distinguish the response distributions. In panel (c) a linear decision 

boundary would not be sufficient to discriminate responses, therefore, a non-linear 

classification would be required (modified from Cox and Savoy 2003; Haynes and 

Rees 2006) . 

Although this approach reduces noise, it also reduces signal in two 

important ways: First, voxels with weaker responses to a particular condition might 

carry some information about the presence/ absence of that condition. Second, 

spatial averaging blurs out fine-grained spatial patterns that might discriminate 

(a) (b) (c) 

stimulus 1 

stimulus 2 
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between experimental conditions. Like conventional methods, the MVPA 

approach also seeks to boost sensitivity by looking at the contributions of multiple 

voxels. To avoid the signal-loss issues mentioned above, MVPA methods make 

use of small differences in the fMRI response of different voxels thought to result 

from small biases in the spatial distribution of the neural subpopulations sampled 

by each voxel. By ‘learning’ the pattern of these small biases across a large 

number of voxels in an independent training set, multi-variate pattern analysis can 

successfully discriminate between stimuli in a novel set of trials.  

Several reports have shown that such multivariate techniques can reliably 

distinguish between responses to different stimuli, where more conventional, 

voxel-wise univariate approaches, or signal averaging across whole ROIs could 

not. MVPA techniques have been used to decode the orientation of gratings 

(Haynes and Rees 2005; Kamitani and Tong 2005), direction of motion (Kamitani 

and Tong 2006), object categories (Eger et al. 2008; Haushofer et al. 2008; Haxby 

et al. 2001), to study visual categorisation (Li et al. 2007) and also the encoding of 

global form (Ostwald et al. 2008). Some of the aforementioned papers went well 

beyond by predicting from the fMRI patterns of activity the orientation of invisible 

or masked stimuli, thus, performing a kind of ‘brain-reading’. 

Classification performance depends a great deal on the number and choice 

of voxels included in the analysis (Cox and Savoy 2003; Ku et al. 2008). First, the 

number of voxels (features) defines the dimensionality of the problem. 

Classification performance decreases dramatically as the number of features 

exceeds the number of training points, therefore, it is necessary to choose only an 

appropriate subset of the total voxel population. Second, voxels that contain little 

information about the discrimination being made only add unrelated noise to the 

classifier and degrade performance. As a result, many pattern recognition 

applications contain a ‘feature selection’ step in which only a subset of voxels is 
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selected that contains enough information to perform the classification. Of course, 

the type of the feature selection procedure depends on whether the analysis is 

restricted to predefined ROIs or it includes locations across the whole brain.  

Once a set of voxels has been selected for pattern classification, data are 

stored into pattern matrices corresponding to the pattern of activity across the 

selected voxels at a particular time in the experiment. Brain patterns are then 

labeled according to which experimental condition generated the pattern. This 

labeling procedure needs to account for the fact that the hemodynamic response 

measured by the scanner is delayed in time, relative to the neural event under 

investigation.  

Once the fMRI responses are stored into pattern matrices, a subset of these 

labeled patterns (the train sample) are fed into a multivariate pattern classification 

algorithm. Based on these patterns, the classification algorithm learns a function 

that maps between voxel activity patterns and experimental conditions. After the 

classifier is trained, the next step tests the generalisation of the function. Given a 

new pattern of brain activity, not previously presented to the classifier (the test 

sample), can the trained classifier correctly determine the experimental condition 

associated with that pattern? 

In machine learning literature there is an enormous range of classification 

algorithms that can be potentially used in MVPA studies (Duda et al. 2001). The 

majority of MVPA studies have used linear classifiers, including correlation-based 

classifiers (Haxby et al. 2001), neural networks without a hidden layer (Polyn et al. 

2005), linear discriminant analysis (LDA) (Haynes and Rees 2006; Haynes and 

Rees 2005), linear support vector machines (SVM) (Cox and Savoy 2003; 

Kamitani and Tong 2005), and Gaussian Naive Bayes classifiers (Mitchell et al. 

2003). All these classifiers compute a weighted sum of voxel activity values. This 
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weighted sum is then passed through a decision function, which creates a 

threshold for saying whether or not a category is present.  

Because these techniques are relatively new and not fully understood, 

users should be extremely cautious about the interpretation of MVPA results 

(Bartels et al. 2008). Another major concern about MVPA methods is the extent to 

which ‘brain reading’ experiments are ethically acceptable in view of the potential 

use of this technology towards human rights violation in the future. All in all, 

MVPA methods have evolved extensively in the last few years and it is expected 

that MVPA methods will continue to evolve, as better algorithms become available 

in the coming years. Improvements in the spatial resolution of fMRI will make it 

possible to resolve even finer-grained cognitive distinctions. For all of these 

reasons, it is believed that MVPA has a bright future as a tool for characterising 

how information is represented and processed in the brain. 
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2 General Methods 

The following section refers to general experimental methods, which were 

implemented during this thesis. These include the computational steps performed 

in order to segment and flatten cortical surfaces, the technique for delineating the 

borders of retinotopic visual areas, and the fMRI scanning settings. Further 

experimental details are described within the relevant chapters. 

2.1 Cortical segmentation and flattening 

Although the spatial resolution of functional EPI images is quite high in 

terms of spatial localisation, the images themselves do not have sufficient 

resolution in order to overlay functional data on them. It has become typical in 

fMRI studies to acquire a set of high-resolution anatomical images and overlay 

functional data onto these images showing cortical structure. These structural 

images are usually T1-weighted, with good grey-white matter contrast, and are 

acquired during a separate scanning session.  

 

Figure 2.1 Anatomical T1-weighted images are processed so that the grey/white 

matter surface is segmented and inflated. The area surrounding the occipital 

sulcus is then extracted and flattened. The inflated and flattened representations 

help to better appreciate spatial locations in the brain.   
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However, much of the cortical surface in the structural images is obscured 

from view by a complex pattern of folds, making hard to interpret spatial locations 

and visualise functional data. This section describes the computational processing 

performed to extract the surface between the grey and white matter, inflate this 

surface and flatten the occipital cortex. Figure 2.1 summarises the analysis 

stream. These steps help to better appreciate spatial locations in the brain and 

are particularly useful for visualising retinotopic maps and delineating the borders 

of visual areas. 

2.1.1 Analysis Stream 

The most common representation of MR images is as 2-dimensional slices 

throughout the brain volume. However, using this format it is difficult to appreciate 

the spatial relationships between different points in the brain. Furthermore, when 

seen as separate slices, the position of any but the most familiar anatomic 

features is hard to infer. The method for surface extraction involves a series of 

steps starting with a T1-weighted anatomical image of the brain and resulting in 

two cortical surfaces for each hemisphere, one corresponding to the boundary 

between grey and white matter, and the other to the boundary between grey 

matter and CSF. The computational analysis was performed using the freely 

distributed software tool, SurfRelax, developed by Jonas Larsson (Larsson 2001) 

based on the FSL software library.  

The analysis begins with a number of preprocessing steps, which include: 

intensity normalisation, non-brain tissue removal, filling of the ventricles and 

subcortical nuclei and segmenting the hemispheres from each other and from the 

brain stem. After prepocessing a template generated for each hemisphere is 

deformed onto the surface of white matter. Finally, the surface is extracted and 

refined after which may be inflated and flattened.  
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Preprocessing  

MR images are susceptible to intensity variations due to magnetic field 

inhomogeneities. These inhomogeneities result in the same tissue having different 

intensities at different points. This might be a problem when image intensities are 

used to delineate tissues (for example finding the boundary between grey and 

white matter). Thus, in the first step of preprocessing image intensities are 

normalised using a non-parametric heuristic approach (Larsson 2001). Next, non-

brain tissues (e.g. skull) are removed by means of a deformable surface algorithm 

similar to that described by Dale et al. (1999).  

The segmentation procedure extracts the cortical surface at the boundary 

between grey and white matter. However, the medial white mater surface is 

connected to subcortical structures such as basal ganglia, ventricles and the 

thalamus. These structures are of no interest when generating the cortical 

surface. Hence, they are automatically identified and assigned the mean white 

matter intensity.  

 

Figure 2.2 (a) A slice of an anatomical T1-weighted image in horizontal view, and 

(b) the result of the initial preprocessing steps. During these steps the non-brain 

tissues (e.g. skull) are removed and the left and right hemispheres are segmented 

from each other. 

Then the two cortical hemispheres and subcortical structures are initially 

separated using an automated template fit. Predefined templates of the 

(a) (b) 
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hemispheres and the cerebellum are computationally deformed to match the 

shape of the target brain. Once the deformation process is completed the 

templates are smoothed by a series of closing operations and the surfaces of the 

templates are extracted (the result is shown in Figure 2.2b). These surfaces are 

then used to segment the grey/white matter boundary.  

 

Figure 2.3 The extracted surface between the grey and white matter for the left 

hemisphere. This representation helps to appreciate the spatial relation between 

different locations, but much of the surface is hidden from view.  

Although the templates generated in the previous step could be potentially 

used as a starting point for white matter extraction, they are not suitable for this 

purpose as they deviate substantially from the actual shape of the target brain 

white matter. The performance of the surface extraction algorithm is highly 

dependent on the shape of the initial template; therefore, a template volume with 

spherical topology is generated directly from the filled white matter of the target 

brain. An anisotropic diffusion filter smoothes the template volume and the final 

template is extracted by thresholding. The template generated in the previous 

step is deformed onto the filled white matter volume by a series of topologically 

constrained erosions and dilations. These steps ensure that the deformation 

converges in such a way that the final volume is anatomically correct. Finally, the 

surface of the white matter is extracted from this volume using a surface 

extraction algorithm (Larsson 2001). The resulting surface is a good 

approximation of the grey/white matter boundary (the result is shown in Figure 

2.3) and can be used directly as it is. However, to further improve the fit in regions 
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of high curvature and to generate a surface representation of the outer grey 

matter, an optimisation step is applied to the surface as described in the following 

section.  

Surface optimisation 

To improve the fit between the surface and the grey/white matter boundary, 

the surface is iteratively deformed onto the original intensity normalized MR image 

using a method similar to that described by Dale et al. (1999). This deformation is 

done in three stages. First, the surface is expanded a few millimeters toward the 

middle of the cortex. Second, the surface is shrunk back onto the white matter.  

The surface expansion taking place in the first step ensures that the subsequent 

shrinking captures small fragments of white matter which may have been missed 

in the surface extraction stage. Third, the surface is expanded from the middle of 

the cortex to the grey-CSF boundary. 

Surface relaxation and visualisation 

Although the representation generated in the final step greatly improves 

someone’s ability to appreciate the relative spatial relations between different 

locations of activity, still much of the brain area is buried within sulci whose shape 

varies across individuals and whose form is quite complex. To make most of the 

brain surface visible, the surface between the grey and white matter can be 

inflated and flattened.  

To speed up inflation and flattening and to reduce distortions, these 

processes are performed at multiple resolution levels. First, the surfaces are 

resampled to a low and to an intermediate resolution. The resampling method is 

similar to that described by (Wandell et al. 2000). The low-resolution surface is 

relaxed by iteratively moving each vertex toward the mean position of its 

neighbors until it is sufficiently smooth. The vertex displacement parameters used 
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during the low-resolution surface relaxation step are then applied to the 

corresponding vertices in the intermediate resolution surface. The intermediate 

resolution surface is then relaxed under the same constraints. The displacement 

parameters for this surface are then applied to the original surface, and this 

surface is then relaxed until it is sufficiently smooth. The use of resampled 

surfaces makes the relaxation process quite fast, although the resampling 

process itself is computationally demanding. The result of the surface inflation 

process is shown in Figure 2.4. In the inflated representation the lighter and 

darker regions correspond to the major gyri and sulci respectively.  

 

 

Figure 2.4 The surface between the grey and white matter of the left hemisphere 

(of Figure 2.3) is inflated, and the result is shown in lateral (a) and medial (b) view. 

The anatomical location of calcarine sulcus is also indicated.   

Finally, certain cortical regions, including visual cortex, are visualised even 

more easily as a simple flattened patch of cortical sheet. For projecting the inflated 

surface onto a plane, cuts are manually introduced on the inflated surface. The 

cut surface is resampled in the same way as in the inflation process. The low-

resolution surface is projected onto the x-plane as described by Wandell et al. 

(2000). This surface is then relaxed following a similar procedure as in the inflation 

step.  

(a) (b) 
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Figure 2.5 shows the area of the occipital cortex being (a) cut and (b) 

flattened. In the flattened representation, the region towards the right shows the 

medial cortex and the regions towards the left shows the lateral occipital cortex. 

Up and down are dorsal and ventral respectively. Such flattened renderings of the 

cortex are typically used to make it easier to see the representation along 

extended regions of the cortical brain (Wandell et al. 2000). 

 

 

 

 

 

 

 

Figure 2.5 (a) The area surrounding the occipital sulcus of the left hemisphere, 

shown in colour, is extracted and flattened (b). The corresponding anatomical 

directions and the location of calcarine sulcus are also indicated.   

For the purpose of the experiments in this thesis the aforementioned 

procedure was carried out for all participants. This way of visualising the cortex 

helps significantly appreciate the relative locations of activated voxels and 

delineate the early visual areas from each other.  

2.1.2 Comparison with other packages 

The main advantage of SurfRelax over other software packages, both 

commercial and publicly available (Dale et al. 1999; Drury et al. 1996; 

Kriegeskorte and Goebel 2001; Wandell et al. 2000) is the way it deals with 

topological errors. A problem faced by all methods developed for cortical surface 

extraction is to find a way of generating surfaces with sufficient detail to capture 

(b) (a) 
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the fine structure of the cortex and at the same time to preserve the topology of 

the cortical surface. Some packages (e.g. FreeSurfer) implement a manual 

removal of topological errors, an approach that is laborious at best. For example, 

the FreeSurfer manual devotes around 50 pages describing how structural 

defects can be edited in the extracted surfaces. Automated handle removal 

algorithms can distinguish easily between handles and holes, i.e. topological 

errors due to the erroneous inclusion of voxels (which are corrected by removing 

the problematic voxels) or the erroneous exclusion of voxels (which is corrected 

by adding voxels). Such an automated approach that corrects for structural 

defects is implemented in the publicly available mrUnfold software (Wandell et al. 

2000). A similar approach is used by the commercially distributed Brainvoyager 

package (Kriegeskorte and Goebel 2001). Kriegeskorte and Goebel (2001) deal 

with the issue of topological errors removal by implementing a heuristic approach 

that chooses the operation that requires the smallest number of voxel additions or 

subtractions. It is not obvious, however, that this strategy always yields 

anatomically correct results (see Larsson 2001 for a more detailed discussion). A 

different strategy for dealing with topological errors is to use an elastic deformable 

surface based on a template with known topology. The initial surface may be a 

sphere or a plane, which is subsequently deformed to fit the cortical surface, 

guided by local image intensities and other parameters that maintain smoothness 

and prevent self-intersections (Dale and Sereno 1993; MacDonald et al. 2000). A 

major problem with deformable surfaces is that they are prone to self-intersect, in 

which case collision detection algorithms are employed. Because the surfaces are 

typically approximated by a large number of polygons (usually triangles), collision 

detection can be very time consuming. For instance, the method of MacDonald et 

al. (2000) requires 30 hours per brain, most of which is dedicated to check for self-

intersections in the evolving surface.  
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The method of cortical surface extraction developed by Larsson (2001) 

implements a combined approach. The essence of the method lies in the use of a 

deformable template that is voxel-based, rather than surface based. The template 

is deformed voxel by voxel to the white matter surface in a series of steps 

designed to make the deformation process able to capture fine details. The 

surface of the deformed template is then extracted and refined with respect to the 

input image. The use of a deformable volume has two principal advantages. One 

is that the template can capture the precise shape of the input image more easily 

than a deformable surface. The other is that the use of a voxel-based template 

obviates the need for explicit collision detection, which speeds up processing time 

considerably. 
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2.2 Retinotopic mapping 

As discussed in the first chapter, the retinal signal is projected to the cortex 

in an organised manner. This means that adjacent points in the retina project to 

adjacent points in the cortex. Neurons with receptive fields in the central visual 

field are located in the posterior calcarine sulcus, while neurons with receptive 

fields in the periphery are located in the anterior portions of the sulcus. This 

organised registration in the cortex in terms of retinal representation is known as 

retinotopic mapping. Engel et al. (1997) reported that retinotopically organised 

responses extend along a 3-4 cm strip in the human cortex.  

2.2.1 Phase-encoding techniques 

Retinotopic organisation in the cortex makes it possible to delineate the 

borders of early visual areas. What makes it possible to distinguish retinotopic 

areas from each other is that the map reverses at the borders of these regions. 

The method for generating high-resolution retinotopic maps was described first by 

Engel (Engel et al. 1997; Engel et al. 1994) and later by others (DeYoe et al. 

1996; Sereno et al. 1995). The mapping technique is based on checkerboard-like 

stimuli that change position over time and create a travelling wave of neuronal 

activity within retinotopically-organised areas. Such stimuli are shown in Figure 

2.6. They consist of (a) an expanding and contracting ring, used to measure 

retinotopic organisation with respect to visual eccentricity, and (b) a rotating 

wedge, used to measure retinotopic organisation with respect to polar angle. The 

specific spatial and temporal pattern of the stimulus is not important for generating 

maps in early visual areas as many choices can produce satisfactory results 

(Dougherty et al. 2003).  

The rationale of the mapping technique is based on the fact that neurons 

have a limited receptive field. When either the ring or wedge is seen through a 
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small aperture such as the receptive field of a neuron, as the stimulus progresses 

the image seen by the receptive field alternates between the checkerboard and 

the background grey field. This produces a wave of neural responses, as the 

stimulus enters then leaves each neuron’s receptive field. If the stimulus moves 

with a constant velocity from fovea to periphery, the responses differ only in their 

phase. For example, in the case of the expanding ring, neurons with receptive 

fields in the fovea are phase advanced compared to neurons with receptive fields 

in the periphery. Hence, the phase of the temporal modulation defines the 

receptive field position along the dimension of eccentricity. For this reason, 

retinotopic mapping methods in fMRI are often called ‘phase-encoded’ (DeYoe et 

al. 1996; Engel et al. 1997; Engel et al. 1994; Sereno et al. 1995).  

 

Figure 2.6 The stimuli used to measure retinotopic organisation with respect to (a) 

eccentricity and (b) polar angle 

Eccentricity organisation  

Measurements of eccentricity organisation using an expanding/contracting 

ring stimulus produce a single, large, continuous eccentricity map. Figure 2.7 

shows such a map. Data are overlaid on (a) a flattened and (b) an inflated 

rendering of the cortex. Colour represents the phase of visual eccentricity 

encoded at each position according to the colour map (panel c). The way the 

retinal imagery is organised in the cortex with respect to eccentricity is as follows. 

As one moves from posterior to anterior in cortex, the representation of the visual 

field shifts from the centre to the periphery. This is best visualised in the inflated 

(a) (b) 
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depiction (panel b). The foveal representation is visible in the ventral–lateral 

posterior cortex, near the occipital pole; peripheral field stimuli are represented at 

more anterior positions forming a semicircular pattern.  

 

Figure 2.7 Retinotopy with respect to eccentricity on (a) a flattened and (b) an 

inflated representation of the right cortex, of one subject. (c) Colour represents the 

visual eccentricity encoded at each position, according to the colour map.   

Angular organisation 

Measurements of polar angle organisation using a rotating wedge stimulus 

are shown in Figure 2.8b. A flattened representation without the superimposed 

map is shown for comparison (panel a). Colour corresponds to the phase of visual 

angle encoded at each position according to the colour map (panel c). A plot of 

the response amplitude as a function of the stimulus rotation frequency is also 

shown (panel d). This is measured within a disk of approximately 2cm radius of 

cortex, originated at the point indicated by the arrow.  

(a) (b) 

(c) 
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Figure 2.8 (b) Retinotopy with respect to polar angle on a flattened representation 

of the right visual cortex of one subject. (a) The flattened patch without the map 

superimposed is shown for comparison. (c) Colour corresponds to the visual 

angle encoded at each position according to the colour map. HM is horizontal 

meridian, UVM and LVM upper and lower vertical meridian respectively. (d) The 

response amplitude plotted as a function of the stimulus rotation frequency. This 

is measured within a disk of approximately 2 cm radius, originated at the point 

indicated by the arrow, and is presented as an assessment of the reliability of the 

responses (see section 1.2.2).  

The response is significantly greater at the stimulus repetition frequency (10 

cycles/scan, shown in red) than other temporal frequencies. The secondary peak 

at 20 cycles/scan is a harmonic of the fundamental frequency. These harmonics 

often result in large amplitudes due to the square profile of the stimulus time 

course. The measure of statistical significance used is a coherence metric 

computed as the energy of the fundamental frequency divided by the total energy 

(see section 1.2.2).  
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As with eccentricity, the angular representation of each visual field is 

inverted in the cortex. As one moves from the lower (ventral) to the upper (dorsal) 

bank of the calcarine, the representation of the visual field shifts from the upper 

vertical meridian (UVM) through the horizontal meridian (HM) to the lower vertical 

meridian (LVM).  

2.2.2 Identification of early visual areas  

By combining the information of eccentricity and angular maps it is possible 

to delineate the borders of early visual areas. Primary visual cortex V1 contains a 

representation of an entire hemi-field, centred on the calcarine sulcus. As one 

moves from the middle of V1 to the V1/V2 border, the receptive field locations 

change from the horizontal (HM) to the vertical meridian. As one crosses the V1 

border and continues into V2, the receptive field locations move from the vertical 

meridian back towards the horizontal meridian. The lower quadrant representation 

on the dorsal side of the map is V2d (dorsal). The representation of the upper 

quadrant on the ventral side of the map is V2v (ventral). The orderly progression 

of the map reverses direction again at the representation of the horizontal 

meridian, found at the V2/V3 border. The representation of the horizontal meridian 

on the dorsal side forms the boundary between V2d and V3d, and on the ventral 

side between V2v and V3v. Similarly, as one continues into V3, the receptive field 

locations move from the horizontal meridian back towards the vertical meridian. 

The region enclosed by the parallel, mirror-symmetric bands of areas V1, 

V2 and V3 is known as the area of foveal confluence. The confluence 

corresponds to the central 0-2 degrees of visual field. Within this region the foveal 

representations of areas V1, V2 and V3 converge and with conventional fMRI 

resolutions it is not possible to be segmented (Dougherty et al. 2003). The foveal 

confluence is quite large, usually spanning approximately 2100mm
2
, and spreads 

far onto the lateral surface of the occipital cortex (Wandell and Wade 2003). 
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Figure 2.9 Retinotopy with respect to polar angle overlaid on a flattened patch of 

the right occipital cortex of one subject. Colour map codes the phase at each 

angular position of left visual hemi-field as indicated on the upper left. Reversals 

in the change of polar angle were used to identify all visual areas but LOC. LOC 

was mapped based on its functional properties.     

Area V4 directly abuts the ventral portion of V3 and shares a common eccentricity 

representation with V1/V2/V3. V4’s angular map spans a whole visual hemi field. 

The V3v/V4 boundary is formed by the representation of the upper vertical 

meridian (UVM) and as one continues into V4 the receptive field locations move 

from the upper vertical meridian towards the lower vertical meridian (LVM). The 

exact definition of area V4 in humans is part of an ongoing debate. Some authors 

label this area as hV4 to clarify that this map may not be homologous to V4 in 

other species. There is also controversy about what constitutes the anterior border 

of V4. The question is whether V4 ends prior to the lower-field representation, 

leaving area V4v without its corresponding V4d (Sereno et al. 1995), or whether 

the lower visual field representation lateral to V4v constitutes V4d, thus, forming a 
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complete hemi field representation, complementary to the dorsal V3a 

representation (McKeefry and Zeki 1997; Wade et al. 2002). In contrast, Tootell’s 

lab suggested that on the ventral aspect there is a quarter field representation, 

V4v, and that the neighboring cortex belongs to a separate area termed V8, 

consisting of a hemi field representation (Hadjikhani et al. 1998), which is rotated 

relative to V4v. For the purposes of this thesis, we adopted the definition of 

McKeefry and Zeki (1997) and Wade et al. (2002) (for a comparison of definitions 

see Wade et al. 2002). 

 

Figure 2.10 (a) Visual eccentricity representation overlaid on a patch of flattened 

cortex from the right hemisphere of the same subject as in Figure 2.9. (b) Map of 

polar angle representation, indicating the coherence values of the BOLD 

responses in each voxel. Values in both pannels are thresholded at 

coherence>0.3.  

Areas V3A and V3B are located on the dorsal side of V3 and can be defined 

from each other by a common foveal representation (Press et al. 2001; Wandell et 

al. 2005). V3A and V3B each contain a full hemi field map such that their 

dorsal/anterior boundary (with V7) represents the upper vertical meridian (UVM). 

However, the clarity of the common foveal representation can vary significantly 

between subjects. As the two areas cannot be distinguished with confidence in 

every subject it is referred to in this thesis as a composite region, labelled as 
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V3AB, in keeping with previous reports (Larsson and Heeger 2006; Larsson et al. 

2006; Montaser-Kouhsari et al. 2007). 

In the dorsal stream, beyond V3AB, an additional retinotopic area has been 

identified. Area V7 contains an additional hemi field representation anterior to V3A 

(Press et al. 2001). V7 meridians are rotated compared to V3A meridians. In 

particular, the V3A/V7 boundary is formed by the representation of the upper 

vertical meridian (UVM) and as one continues into V7 the receptive field locations 

move from the upper vertical meridian towards the lower vertical meridian (LVM).  

VO1 is a coarsely retinotopic area located in the ventral occipital (VO) 

cortex anterior and lateral to V4 (Wandell et al. 2005). The posterior portion of 

VO1 is adjacent to the peripheral visual field representation of hV4. The V4/VO1 

boundary is formed by the representation of the lower vertical meridian (LVM) and 

as one moves ventrally, the representation shifts towards the upper vertical 

meridian (UVM). 

LO1 and LO2 are the two retinotopically-organised regions in the lateral 

occipital (LO) cortex, lateral to the dorsal portion of V3 (Larsson and Heeger 

2006). LO1 extends from the anterior boundary of V3d about halfway to V5/MT+
1
. 

Within LO1 the representation of visual polar angle progresses gradually from the 

lower vertical meridian (LVM) towards the upper vertical meridian (UVM). The 

anterior boundary of LO1 coincides with the posterior boundary of LO2. LO2 also 

contains an orderly representation of visual angle polar angle extending from the 

upper vertical meridian (UVM) towards the lower vertical meridian (LVM), which 

defines the lateral boundary of LO2.   

                                                
1
 For the purposes of this thesis we did not perform an individual localiser scan to identify 

V5/MT+. 



2. General Methods Retinotopic Mapping 

 65 

2.2.3 Non-retinotopic visual areas 

The lateral occipital complex (LOC) is not retinotopic, but can be reliably 

localised with other functional techiniques. LOC is described in the literature as an 

object selective region (Eger et al. 2008; Grill-Spector et al. 2000; Kourtzi and 

Kanwisher 2000; 2001; Kourtzi et al. 2003; Malach et al. 1995; Vinberg and Grill-

Spector 2008). LOC can be identified as the set of contiguous voxels activated 

more strongly by images of intact objects than by scrambled versions of the same 

images. LOC localiser stimuli were presented in sixteen 16-s blocks (8 s ‘on’, 8 s 

‘off’). Sixteen images of cars, animals, boats, and abstract sculptures were shown 

randomly for 0.5s within each block (128 images in total, 32 of each category). In 

half of the blocks stimuli were intact images and in the remaining half they were 

chopped and scrambled versions of the same images (stimuli were courtesy of Dr. 

Kalanit Grill-Spector). Through the experiment subjects were instructed to covertly 

name the stimuli while fixating.  
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2.3 FMRI scanning 

The following section refers to general experimental settings that were 

implemented during this thesis. Further experimental details are described within 

the relevant chapters. 

2.3.1  Participants 

All volunteers took part in the studies with written consent. Procedures were 

approved by the Medical School Research Ethics Committee of the University of 

Nottingham.  

2.3.2 Visual stimuli 

Stimuli were generated using the open-source package PsychoPy (Peirce 

2007) and were back-projected from an LCD projector at a resolution of 1024x768 

pixels to a screen sited at the feet of the subject. To control for non-linearities in 

the luminance profile of the display, the screen was gamma-corrected using a 

psychophysical procedure of 2
nd

-order motion-nulling (Ledgeway and Smith 

1994). Subjects viewed the screen through prism goggles.  

Probe contrast in event-related paradigms 

Event-related adaptation paradigms (Fang et al. 2005; Larsson et al. 2006; 

Montaser-Kouhsari et al. 2007) rely on the observation that after prolonged 

presentation of a particular high-contrast adaptor, the fMRI response to a similar 

probe stimulus is selectively reduced compared to the response to other probe 

stimuli. However, the exact contrast value at which probe stimuli are presented 

varies between studies.  

From electrophysiological studies in LGN (Solomon et al. 2004) and primary 

visual cortex of cat (e.g. Ohzawa et al. 1982; 1985) and macaque (Sclar et al. 
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1989) we know that adaptation causes a strong right-ward shift in the contrast 

response curve. Due to the saturating nature of this curve, the greatest difference 

in response between adapted and non-adapted conditions occurs for lower 

contrast probes (Maffei et al. 1973). Similarly, in psychophysical studies it has 

been shown that, although at detection threshold there is a highly selective 

adaptation to the spatial frequency of probe- versus adapter-stimuli (Blakemore 

and Campbell 1969), for higher contrast probes the tuning of adaptation is 

considerably broader (Snowden and Hammett 1996) and there is less impact on 

the apparent contrast of the probes following adaptation (Georgeson 1985). The 

use of low contrast probes must, of course, be traded off with the need to 

generate robust BOLD responses in the ROIs - the ideal stimulus is the lowest 

contrast for which a robust response can be measured.  For the above reasons 

we have chosen to present probes in our event-related paradigms at lower than 

the adaptor contrasts.  

2.3.3 Functional imaging  

Blood-oxygen level-dependent (BOLD) cortical responses were recorded 

using gradient-echo (GE) echo-planar imaging (EPI) at 3T (Philips Achieva 

System, Philips Healthcare, Best, the Netherlands). The parameters for scanning 

were; voxel size 3x3x3mm
3
, TR 1.5s, TE 40ms, flip angle 75º, FOV 192x192mm

2
, 

20 slices oriented perpendicular to the calcarine sulcus. To improve signal-to-

noise, functional data were acquired using a pair of surface receiver coils (Philips 

Flex-S Coils) positioned over occipital cortex.  

At the beginning of each session, an anatomical image was obtained that 

covered the same volume as the functional images (T1-weighted MPRAGE, voxel 

size 1.5x1.5x3mm
3
). This ‘co-planar’ anatomy image was used as a proxy to 

register functional data to a high-resolution, whole-head anatomical image 

obtained in a separate session  (T1-weighted 3D MPRAGE, voxel size 1x1x1mm
3
, 
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8-channel SENSE head coil) using a robust registration technique (Nestares and 

Heeger 2000). The high-resolution anatomical images were segmented and 

flattened using standard tools (SurfRelax, Larsson 2001). 

2.3.4  Attention control task  

To control for changes in the attentional state of observers, which are 

known to modulate fMRI responses (Brefczynski and DeYoe 1999; Huk et al. 

2001; Kastner et al. 1999; Somers et al. 1999), participants performed a 

demanding task at fixation. They were asked to count the number of target letters 

(X) appearing among a series of distractor letters (Z, L, N, T), which changed 

every 200ms. The duration of each letter-counting trial varied randomly between 

7-14s. At the end of a sequence of letters, a fixation spot appeared for 1s 

prompting participants to report the number of target letters presented (1-4) by 

pressing one of four response buttons. 

2.3.5 Data analysis 

Functional images were motion-corrected within and between scans using 

MCFLIRT (Jenkinson et al. 2002). In the presence of a localiser scan, the 

following analyses were performed: first, the regions of interest (ROIs) were 

restricted to include only voxels whose time series correlated with the stimulus 

epochs of the localiser scan. Specifically, ROIs were restricted only to those 

voxels with a coherence value greater than a certain cut-off (usually co >0.3). The 

exact coherence threshold did not appear to be critical as other thresholds (0.2, 

0.3, and 0.4) resulted in similar effects. 

The time series of each voxel in the restricted ROIs were then pre-

processed as follows: the mean time series was subtracted and divided to convert 

data from arbitrary image intensity to units of percent signal change. Responses 

were then filtered using a high-pass boxcar kernel to remove the low-frequency 
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drift typical in fMRI measurements (Biswal et al. 1997a; Biswal et al. 1995; Biswal 

et al. 1997b; Purdon and Weisskoff 1998; Smith et al. 1999; Zarahn et al. 1997).  

In event-related paradigms, the fMRI responses were averaged across all 

voxels within the restricted ROI. Additional band-pass filtering was then applied to 

the averaged time courses to remove high-frequency noise and the remaining 

low-frequency drift (cut-off frequencies 0.015 and 0.15Hz). The choice of the 

particular parameters ensured that no artefacts, such as drift or noise, were 

included in the time courses. At the same time it was ensured that no useful 

information was filtered out of the data.  

Adaptation 

In the cases we wanted to evaluate the amount of adaptation in different 

ROIs we computed a metric by fitting event-related responses with a difference of 

two gamma functions (Equation 1) (Glover 1999; Jezzard 2001). The amount of 

adaptation in each ROI was computed as the difference in the maximum values of 

the fitted curves (for ‘same’ and ‘different’ conditions) normalized by their sum.   

 (Equation 1) 

where di=aibi defines the time-to-peak. The initial parameters for non-linear 

regression were, a1=5.15, a2=12.26, b1=0.97s, b2=0.94s, c=0.09. 

 Furthermore, following Larsson et al. (2006), we assessed the statistical 

reliability of adaptation by computing the response amplitude of each trial. For this 

analysis, we first computed a mean response vector  by averaging the 

responses for all trials regardless of the trial type, 
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where N is the number of trials and Ri the individual trials after subtracting 

the response to the blank probe. Then, for each trial, we computed a scalar 

response amplitude Ai as,  

.  

As in previous adaptation studies (e.g. Larsson et al. 2006) we estimated 

statistical reliability for individual subjects using a one-tailed t-test. A significant 

result would indicate the response amplitudes Ai to the probe that had a ‘different’ 

orientation to the adapter were significantly greater than responses to probes that 

had the ‘same’ orientation as the adaptor. 

Pattern classification 

Classification performance depends on the number and choice of the voxels 

included in the analysis (Cox and Savoy 2003; Ku et al. 2008). For each voxel in 

our ROIs, we determined the stimulus-driven response in the localiser scan, 

computed as a t-statistic. Following Haynes & Rees (2005), we selected an 

unbiased sample of 100 voxels with the highest t-values (stimulus versus blank) 

for further analysis. To quantify the dependence of classification performance on 

the number of voxels used, we calculated the MVPA accuracy score on 100 

permutations. In each permutation the order of the voxels included in the analysis 

was shuffled and the MVPA analysis was performed as described below. The 

mean and standard deviation of these 100 reshuffles was then computed.  

The responses of the n=100 voxels at k time-points were sorted in an n-by-k 

matrix. Each column of this matrix corresponds to a feature vector x, which, prior 

to classification, was normalised to unit Euclidean length.  
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Linear discriminant analysis. In some chapters a linear discriminant 

analysis algorithm (Duda et al. 2001) was used. We assumed that patterns of 

responses recorded under different conditions fall in multidimensional, normally 

distributed clusters with equal covariances. We computed the pooled covariance 

matrix as Σ=(Σ1 +Σ2)/2, where Σ1 and Σ2 are the individual covariance matrices, 

describing the spread of each cluster. As both conditions had equal prior 

probabilities, a minimum-error-rate classification can be achieved by use of the 

linear discriminant functions:  

 

where µ1 and µ2 are the means of the two clusters. As the discriminant 

functions are linear, the resulting decision boundary in this two-category case is a 

hyper-plane lying halfway between the means of the clusters. 

Neuronal network classification. In other chapters, a neuronal network 

(without a hidden layer) algorithm was used to classify responses between 

stimulus conditions. This algorithm uses the gradient of a performance function to 

train a neural network, that is, to adjust the weights of the network so that a 

desired output is produced for a given input. The gradient is determined using a 

MATLAB® (©1994-2009 The MathWorks, Inc) implementation of the 

backpropagation technique. The classifier updates the network weights and 

biases in the direction in which the performance function decreases most rapidly, 

that is, the negative of the gradient. One iteration of this algorithm can be written 

as: xk+1=xk-akgk, where xk is a vector of current weights and biases, gk is the 

current gradient, and ak is the learning rate. This procedure, known as conjugate 

gradient, is the simplest implementation of the backpropagation technique and 

has the advantages of good generalising and fast learning (Detre et al. 2006).  
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In both cases, trials were divided into λ groups, each group corresponding 

to responses collected in a pair of blocks. Data from λ-1 of these groups were 

assigned to a training set and the remaining to a test set. During the training stage 

the classifier learned to discriminate between responses recorded under the two 

orientations and to define a decision boundary. Responses from the test sample 

were then used to assess the performance of the classification algorithm and 

compute the error. Classification error was evaluated using a cross-validation 

procedure (Duda et al., 2001) computed as the mean across λ leave-one-out 

permutations. An outline of the ‘pattern assembly’ procedure is shown in Figure 

2.11. 

 

Figure 2.11 (a) The hypothetical experimental design. Two stimuli alternating in 

on/off blocks. (b) The hypothetical fMRI response to the stimuli. The responses in 

k time-points are selected from each block, delayed in time to account for the 

sluggish haemodynamic signal. (c) The input to the pattern-classifier. Each scan 

scan consists of m blocks, resulting in a total of k*m time- points. Data are divided 

into training and testing samples and are cross-validated. 

To compute a single metric describing the classification performance in 

each ROI, we computed the mean accuracy at all points between the 50
th

 and 

(a) 

(b) 

(c) 
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100
th

 voxels. This typically captures the asymptotic performance and provides a 

reasonable aggregate for non-asymptotic cases.  

Permutation test for classification accuracy.  To assess the statistical 

reliability of the multi-variate classification performance, we performed a 

permutation test (Efron and Tibshirani 1993). To simulate the distribution of 

expected classification accuracy scores under the null-hypothesis, we calculated 

the MVPA accuracy score on 5000 resamples. Each resample was generated by 

shuffling the indices assigning the responses to the two different orientation 

conditions, and performing the analysis exactly as described above. From the 

distribution of the classification accuracy values resulting from these resampled 

analyses, we obtained the 95% confidence interval for chance performance. 
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3 Do fMRI adaptation and pattern-classification 
analysis measure the same thing? 

Functional magnetic resonance imaging (fMRI) has proven extremely useful 

in the non-invasive study of human brain function. Measurements of the blood 

oxygenation level dependent (BOLD) signal have been used to track local 

increases in neural activity in a large number of studies. These include studies 

investigating aspects of perception, cognition, and memory. One of the limitations 

of fMRI, in comparison with the direct recording of neuronal responses via 

microelectrode, is its spatial resolution. Improvements to imaging hardware and 

analysis techniques have provided access to higher-resolution images at 

improved signal-to-noise ratios (e.g. Logothetis 2008; Moon et al. 2007; Yacoub et 

al. 2007). However, BOLD measurements are ultimately limited in spatial 

resolution by, amongst other things, the spatial scale of the local vascular system.  

In many studies, the aim is to quantify the selectivity of clusters of neurons 

on a spatial scale much smaller than the 3x3x3mm
3
 volume of a voxel used 

typically in current fMRI experiments. Orientation-selective cells in V1 of the 

primate, for example, are clustered into ‘columns’ of roughly 500µm in diameter 

(Bartfeld and Grinvald 1992; Obermayer and Blasdel 1993). Ocular dominance 

columns in the human primary visual cortex have a mean width of 863µm (Adams 

et al. 2007). In order to resolve differences in orientation tuning between voxels 

‘traditional’ fMRI methods would require voxel dimensions considerably smaller 

than that of the column width 

Recent fMRI studies have demonstrated new methods for studying the 

selectivity of neurons in various domains (such as orientation) without requiring 

that the voxel size be smaller than the resolution of the ‘feature map’. These have 
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used either selective adaptation (Grill-Spector and Malach 2001; Krekelberg et al. 

2006) or multi-variate, pattern-classification analysis (MVPA) (Cox and Savoy 

2003; Haynes and Rees 2006; Norman et al. 2006).  

The use of adaptation has a long history in the psychophysical study of 

visual processing (Blakemore and Campbell 1969; Bradley et al. 1988; Snowden 

and Hammett 1996). Its use has been so prominent that it has been referred to by 

some as the ‘psychophysicists electrode’. There is, however, still a debate about 

the exact mechanism underlying these perceptual effects (see e.g. Desimone 

1996; Grill-Spector et al. 2006). 

More recently, selective adaptation effects have been demonstrated with 

fMRI. Adaptation can be selective for stimulus orientation (Engel 2005; Fang et al. 

2005; Larsson et al. 2006), direction of motion (Huk and Heeger 2002; Krekelberg 

et al. 2005; Tolias et al. 2001), various higher order properties of objects (Grill-

Spector et al. 1999; Kourtzi and Huberle 2005; Kourtzi et al. 2003; Sayres and 

Grill-Spector 2006; Vuilleumier et al. 2002) and faces (Andrews and Ewbank 

2004; Grill-Spector and Malach 2001; Henson et al. 2002). In general, the method 

relies on the observation that after prolonged or repeated presentation of a 

particular stimulus, the BOLD response in areas sensitive to that stimulus, is 

selectively reduced compared to the equivalent response to other stimuli. The 

methodological details of the above studies vary enormously. It is possible that 

the mechanisms underlying the observed reduction in BOLD signal may differ 

between studies and may not reflect the changes measured in psychophysics or 

single-unit physiology experiments. In the example of orientation-selectivity, after 

prolonged viewing of a high-contrast grating of a particular orientation, the fMRI 

response to a probe of the same orientation is reduced relative to that for a 

differently oriented probe. The fact that adaptation is not uniform across different 

orientations is thought to reflect tuning in the underlying neural mechanisms.  
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It should be noted that there is some debate about the degree of selectivity 

demonstrated by the selective adaptation method in early visual areas. Boynton 

and Finney (2003) found no selective adaptation in V1. They suggest that this 

may have been caused by a) the responses of untuned neurons in V1 and V2, b) 

the fact neurons in these areas do not adapt or, c) the fact that a low spatial 

frequency was used for the stimulus (0.25c/º, which would result in only a fraction 

of a single cycle being presented to most V1 receptive fields). Fang et al. (2005) 

attribute Boynton and Finney’s data to the timing of their stimulus; they found that 

using a prolonged adaptation period resulted in significant orientation-selective 

adaptation in all areas tested, although the effect was still stronger in V3 and V4. 

Larsson et al. (2005) use a lower contrast probe stimulus in testing orientation 

selectivity and find no significant difference between the visual areas in adaptation 

index. The choice of probe contrast may well contribute to the previous weak 

selective adaptation in V1 found by Boynton and Finney (2003) and Fang et al. 

(2005).  In this study we have followed Larsson et al. (2005) in using probes of 

10% Michelson contrast for reasons discused in section 2.3.2. 

Multi-variate pattern analysis (MVPA) methods, instead, make use of small 

differences in the fMRI response of different voxels thought to result from small 

biases in the spatial distribution of the neural subpopulations sampled by each 

voxel. By ‘learning’ the pattern of these small biases across a large number of 

voxels in an independent training set, multi-variate pattern analysis can 

successfully discriminate between stimuli in a novel set of trials. Several reports 

have shown that such multi-variate techniques can reliably distinguish between 

responses to different stimuli, where more conventional, voxel-wise univariate 

approaches, or signal averaging across whole regions of interest could not. MVPA 

techniques have been used to decode the orientation of gratings (Haynes and 

Rees 2005; Kamitani and Tong 2005), direction of motion (Kamitani and Tong 

2006), object categories (Eger et al. 2008; Haushofer et al. 2008; Haxby et al. 



3. Comparison of fMRI adaptation and MVPA  

 77 

2001), to study visual categorisation (Li et al. 2007) and also the encoding of 

global form (Ostwald et al. 2008). 

It has already been demonstrated in separate studies, that fMRI adaptation 

and multi-variate techniques are capable of revealing orientation-selective 

responses in early visual areas. The aim of this study was to compare whether the 

results from the two methods are in agreement on their measurement of 

orientation tuning in early visual cortex. The optimal procedures for the two 

paradigms differ; notably, the MVPA method benefits from data acquired in a 

blocked design, whereas an event-related design is optimal for adaptation 

methods. Here we compare the two methods, each with optimal designs, for data 

acquired in equal periods of time. Two questions were used to frame this 

comparison. First, do areas that show strong orientation-specific adaptation also 

show high classification performance? In order to test this we compared, for a 

number of visual areas, the pattern classification accuracy and selectivity of 

adaptation from interleaved scans in a single session. Second, we wanted to 

know which method was more sensitive in detecting subtle orientation differences 

of stimuli. To measure this we reduced, in successive scanning sessions, the 

orientation difference between the two gratings in both adaptation and MVPA 

scans.  

3.1.1 Methods 

Participants, stimuli and procedure 

Three experienced volunteers took part in the study. Subjects participated in 

five scanning sessions; one session to acquire high-resolution anatomical images, 

one session to measure retinotopic organisation in the visual cortex, and three 

sessions to measure responses to gratings differing in orientation by 90º (+/-45°), 

50º (+/-25°) and 25º (+/-12.5°).  
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Visual stimuli. Stimuli consisted of oriented sinusoidal gratings (spatial 

frequency 1.5cycles/°). The gratings were presented in an annulus (inner radius, 

2°; outer radius, 8°) whose edges were smoothed by a Gaussian kernel (std dev 

of 0.083º on the inner edge, 0.333º on the outer edge). The spatial phase of the 

gratings was randomised every 6 frames (100ms) to prevent retinal afterimages. 

Grating orientations were +/-45° (session 1), +/-25° (session 2) and +/-12.5° 

(session 3).  

Scanning session. The degree of orientation-selective adaptation and the 

performance of the pattern-classification algorithm were determined from 

separate, interleaved scans in the same session. An event-related design was 

used to measure the degree of selective adaptation. An adapting high-contrast 

stimulus was presented for a prolonged period, followed by a brief, low contrast 

probe. A block design was used to measure the performance of the MVPA (Figure 

3.2).  

At the beginning of each functional scanning session, we ran a localiser 

scan. This was followed by four adaptation scans, and three MVPA scans, which 

were interleaved. 

Localiser scan. The purpose of the localiser scan was to identify voxels in 

the ROIs that responded to visual stimulation at the spatial location of the 

patterns. Stimuli were the two oriented gratings (see above) presented at high 

contrast (90% Michelson), alternating at 0.5Hz for 15s followed by presentation of 

a blank screen. A fixation point was present throughout. Each localiser scan 

consisted of 8 such blocks. The responses evoked by the localiser stimuli are 

shown in Figure 3.1.  

Event-related adaptation scans.  The event-related fMRI adaptation 

protocol (Fang et al., 2005; Larsson et al., 2006; Montaser-Kouhsari et al., 2007) 
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is shown in Figure 3.2a. Participants were initially adapted to a high-contrast 

grating (90% Michelson) at one of the two orientations for that session for 30s. In 

each subsequent trial, adaptation was maintained by presenting a ‘top-up’ adaptor 

for 4.5s. There followed a blank screen for 0.75s and the probe stimulus was then 

presented for 1.5s. Probes were (a) ‘same’, a 10 % Michelson grating at the 

orientation of the adaptor (b) ‘different’, an equivalent grating at the other 

orientation for that session, and (c) a blank screen (mean luminance). These 

conditions were equally common and randomly chosen. Each trial ended with a 

0.75s presentation of a blank screen, giving a total duration of 7.5s. Each scan 

consisted of 30 such trials (10 in each condition). In each scanning session we 

ran four adaptation scans, two for each adapter orientation.  

 

Figure 3.1 Coherence map elicited by the localiser stimuli. Activation corresponds 

to coherence values greater than 0.3. Data are from the right hemisphere of one 

subject (SH). 

Block-design MVPA scans.  In the MVPA scans (Figure 1b) the two oriented 

gratings used in the particular session (at 90% Michelson contrast) were 

alternated with epochs of blank screen (mean luminance) with a period 30s (15s 

‘on’, 15s ‘off’).  Each scan consisted of 10 blocks, 5 for each orientation.     
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Attention control task. To control for changes in the attentional state of 

observers a letter counting task was performed at fixation (see section 2.3.4). 

 

Figure 3.2 (a) An event-related design was used to measure the degree of 

selective adaptation, with a prolonged presentation of an adapting high-contrast 

stimulus, followed by a brief, low contrast probe. (b) A block design was used to 

measure responses for pattern classification.  

Data analysis 

Regions of interest (ROIs) were restricted to include only voxels whose time 

series correlated with the stimulus epochs of the localiser scan (coherence, c>0.3, 
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phase 0<φ<π). This ensured that the voxels included in adaptation and pattern-

classification analysis were selected from the same overall population, but were 

chosen independently from either the adaptation or the MVPA measurements.  

Adaptation. Responses to individual trials were extracted from the average 

ROI time course by selecting a 18s window starting 3s after the onset of the 

adaptor. The average response to the blank trials (which captures the response to 

the adaptor alone) was subtracted from each trial. Trials of each type were then 

averaged and the resulting event-related time courses were adjusted to zero 

baseline. An adaptation index was computed in each ROI as described in section 

2.3.5 

Pattern-classification. In each scanning session, we obtained data in 30 

blocks (3 blocked scans, 10 blocks per scan). From each block we extracted the 

responses at 10 separate time-points (over 15s), delayed by three TR’s to 

account for the haemodynamic lag. There were therefore a total of 300 time-

points (or repeated ‘examples’ of each response) for each voxel. Trials were 

divided into 15 groups, each group corresponding to responses collected in a pair 

of blocks, 1 from each orientation of the original dataset. Data from 14 of these 

groups were assigned to a training set and the remaining to a test set.  

3.1.2 Results 

Comparison of results across visual areas 

We sought to examine the relationship between orientation-selective 

adaptation and multi-variate pattern-classification analysis (MVPA) across visual 

areas, by considering the responses to two gratings with a large orientation 

difference (+/- 45º). FMRI adaptation and MVPA were evaluated using an event-

related and a blocked design respectively, which were carried out in interleaved 

order in a single scanning session. The probe-related modulations in fMRI signal 
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during the adaptation sequence are shown for one subject, and averaged across 

participants for eight retinotopically-defined areas (Figure 3.3a,b). The degree of 

selective adaptation for each area can be seen as the difference between the 

responses to the probe that had the ‘same’ orientation (shown in light grey) as the 

adapter, versus the ‘different’ orientation (dark grey). This adaptation effect is 

thought to reflect orientation selectivity. There was a substantial difference 

between the responses to the two conditions in ‘lower’ visual areas (V1, V2, V3 

and V4). The adaptation appears less selective in ‘higher’ order areas (V3AB, 

LO1, LO2 and VO1).  

Figure 3.3c,d plots the performance of the pattern classifier based on linear 

discriminant analysis for the same visual areas in one subject (c) and across 

subjects (d). Classification accuracy is plotted against the number of voxels 

included in the analysis. In areas V1, V2 and V3, even when classification is 

computed only for the single voxel, we found classification accuracy on average to 

be better than chance. In these areas, classification performance increased 

monotonically as more voxels were included in the analysis and reached an 

asymptote after 10-20 voxels.  In higher visual regions V4, V3AB and LO1, 

classification accuracy was lower but significantly greater than chance (based on 

a permutation test, see section 2.3.5). The results of adaptation and MVPA for all 

subjects are summarised in Table 1.  

For each method a single selectivity index was determined; the contrast between 

‘same’ and ‘different’ orientations for the adaptation study, and an aggregated 

performance index for the MVPA (see section 2.3.5). Figure 3.4 compares these 

selectivity indices directly in eight retinotopic visual areas averaged across the 

three participants. There was a strong correlation (r=0.85, n=8, p<0.05) between 

classification accuracy and the selective adaptation across regions. Area V4 

deviated somewhat from this pattern; it had a greater selectivity to orientation, as 
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measured by the selective-adaptation index, than would have been predicted by 

the MVPA performance. The V4 data-point does, however, fall within the area of 

95% confidence from the regression analysis, and so its reliability is unclear.  

 

 

Figure 3.3 (a) Event-related modulations in fMRI signal during the adaptation 

sequence for one subject (JWP) and (b) averaged across subjects. The black line 

indicates the ‘different’ orientation condition; the grey line shows the ‘same’ 

orientation. Responses are averaged over 40 trials for each condition. The 

response to the blank condition was subtracted, to account for the response to the 

adapting stimulus. (c) MVPA performance versus number of voxels included in the 

analysis for one subject (JWP). Shaded regions are standard deviations 

computed over 100 reshuffles. (d) MVPA performance versus the number of 

voxels averaged across subjects. Shaded regions represent ±1s.e.m. across 

subjects. The dashed line shows classification accuracy based on chance (50%). 
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The grey solid line indicates the index used to estimate classification performance 

(see section 2.3.5).  

Table 3.1. Response amplitude differences (in units of % fMRI signal change) and 

pattern-classification accuracies for individual subjects by condition. P-values are 

shown in parantheses. Adaptation, p-values were estimated using a one-tailed, 

unpaired-samples t-test (df=37). MVPA p-values are estimated from a permutation 

test conducted on the data for each individual (5000 resamples).  
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Figure 3.4 Classification accuracy plotted against the amount of adaptation across 

visual areas. Data are from three subjects. Error bars represent ±1s.e.m. The 

dashed line indicates the regression line (r=0.85, n=8, p<0.05) computed from the 

averaged data across subjects. 

Comparison of results with decreasing orientation differences 

Next, we tested the sensitivity of adaptation and MVPA across a range of 

orientation differences, for areas that showed strong orientation selectivity. For 

this purpose we ran two additional scanning sessions with exactly the same 

procedure as above, but with smaller separation between grating orientations. In 

one session we tested the responses to +/-25º oriented gratings and in another to 

+/-12.5º gratings. As the separation between orientations is reduced one would 

expect a drop in selective adaptation as well as lower classification accuracy. In 

the limit this must result in a failure to discriminate responses between stimulus 

categories.  

The probe-related fMRI signal modulations are shown for the group 

average, for the +/-25º (Figure 3.5a), and the +/-12.5º (Figure 3.5b) pairs of 
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orientations. There was still a robust selective adaptation for orientations of +/-25º, 

although differences in most cases were not statistically significant (see Table 

4.1). However, when separation between orientations was decreased even further 

(to +/-12.5º) the adaptation was not sufficiently selective to reveal any difference 

between the two probes. MVPA performance is also shown for the +/-25º (Figure 

3.5c), and the +/-12.5º (Figure 3.5d) oriented gratings.  As the difference in 

orientation between target stimuli was decreased, classification accuracy also 

decreased but remained above chance performance even at the smallest 

separation (see also Table 1).  

Figure 3.6 shows a summary of the data for area V1. Adaptation indices 

and MVPA accuracy scores were averaged across participants. Note that, since 

the chance level for MVPA accuracy is 0.5, and the selective adaptation index 

should be 0 at chance, these metrics are plotted on separate Y axes (for both, 1.0 

is the maximum possible value). Surprisingly, the +/-25º orientations did not cause 

any less selective adaptation than the +/-45º condition although it fell to zero as 

separation became smaller (+/-12.5º). The effect was also more variable between 

subjects at lower separations (note the size of the error bars). In contrast, 

classification accuracy  (shown in black) falls monotonically as separation 

decreases, but was remarkably consistent between subjects and remained above 

chance performance even for small differences between target stimuli.  
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Figure 3.5 FMRI modulations in response to probe stimuli during the adaptation 

sequence for the (a) +/-25° and (b) +/-12.5° conditions. Performance of pattern 

classification versus number of voxels for the (c) +/-25° and (d) +/-12.5° 

conditions. Data are shown for the group average. Shaded regions represent 

±1s.e.m. across subjects. Same conventions as in Figure 3.3. 
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Figure 3.6 Amount of adaptation (grey) and classification performance (black) 

plotted against separation in stimulus orientation. Data are V1 responses 

averaged across three subjects. Error bars represent ±1s.e.m. 

3.1.3 Discussion 

A wide range of fMRI studies have used selective adaptation or multi-

variate, pattern-classification analysis (MVPA) methods to show the selectivity of 

neurons on a sub-voxel scale. However, it is not known whether the two methods 

provide consistent results about the properties of the cortical areas under study, 

nor is it known which technique is the more sensitive. To address these questions, 

we compared the two methods directly for their ability to detect the well-

documented orientation selectivity in early visual cortex. First, we considered 

results obtained with the two techniques using stimuli with large orientation 

differences. Second, we reduced the difference in stimulus orientations, to 

determine the dependence of each technique on orientation differences. 
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Both methods were clearly capable of revealing orientation selectivity in 

early visual areas (V1, V2, V3). For the MVPA method this has been shown 

previously by several studies using both support vector machine (Kamitani and 

Tong, 2005) and linear discriminant analysis (Haynes and Rees, 2005) and the 

pattern of results has been rather robust between groups. Kamitani and Tong 

found a diminishing trend of orientation preference across V1-V4, but no 

selectivity in MT+. Similarly, Haynes and Rees obtained higher classification 

accuracy in V1 than in V2 and V3.  

For adaptation a number of groups have also shown that orientation 

selectivity can be demonstrated but the pattern of data has been more variable, 

and seems critically dependent on the choice of experimental parameters. In 

particular the duration of the adaptation period has a clear effect, with short-

durations (1s) failing to show orientation selectivity in area V1 (Boyton and Finney, 

2003). Fang et al (2006) used both short (1s) and long (5s) duration adaptation 

periods and show that with prolonged adaptation, the effects in V1 become 

measurable, although they also found greater effects in extrastriate cortex. 

Larsson et al (2006) used long periods of adaptation (4s) as well as a lower-

contrast probe and found roughly equal adaptation indices across V1, V2, V3 and 

V4. We have used similar parameters with identical findings.  

We found less selectivity to orientation in later visual areas (V3AB, LO1, 

LO2 and VO1), using both MVPA and adaptation methods. The correlation 

between the results across visual areas was high (r=0.85, n=8, p<0.05) indicating 

that the two methods are in strong agreement, at least in the domain of orientation 

specificity. This may not have been the case and increases our confidence in both 

methods. It also potentially informs our understanding of orientation selectivity in 

the areas studied. Electrophysiology studies have demonstrated that orientation 

selectivity is a common feature of early visual areas. This is well-documented for 
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V1 and V2, but has been less explored in V3 (for review see Lennie, 1998). FMRI 

adaptation experiments had suggested a degree of selectivity, but this may have 

been simply a result of adaptation in earlier areas, resulting in reduced input to V3 

(Larsson et al., 2006). The fact that we find high MVPA performance, as well as 

orientation-selective adaptation in this area, increases the confidence that human 

V3 does indeed code for stimulus orientation. Area V4 deviated furthest from the 

regression line but still fell well within its 95% confidence limits. 

Similarly finding an absence of orientation-selective adaptation alone, would 

not rule out the presence of orientation-selective mechanisms; these may be 

present, but not susceptible to adaptation. This possibility is less likely when a 

second independent method (MVPA) also finds a lack of selectivity.  

It should be noted that this pattern of results depended on our choice of 

parameters in the adaptation method, as discussed above. We chose to use low 

contrast probes because these are known to produce robust selective adaptation 

effects in previous psychophysical (Georgeson, 1985; Snowden, 1996), 

neurophysiological (e.g. Maffei et al, 1973) and fMRI (Larrson, 2006) studies. 

However, had we chosen a shorter adaptation period, or higher-contrast probes 

the correlation between the methods may have been weaker. 

In order to determine how each technique depended on stimulus 

orientation, we performed the experiment with smaller orientation differences. 

MVPA performance remained above chance for all pairs of orientations tested and 

was remarkably consistent between participants. Selective adaptation failed to 

distinguish stimuli with smaller separations; for a 50º separation it failed in one of 

the three individuals, for a 25º separation it failed in all participants. This is in 

agreement with previous data from Fang et al. (2005). Their data show that, 

although an adaptation effect can be measured to probe stimuli as little as 7.5º 

from that of the adapter, the effect is not selective; the responses to such probes 
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are statistically indistinguishable from that to probes matching the adapter in 

orientation. Since we are interested in the degree to which these methods can 

separate the underlying neuronal populations, we consider this a failure of the 

method at this orientation difference.  

It should be noted that these results may not be mirrored in other domains 

of visual selectivity. For instance, measuring the degree of selectivity to spatial 

frequency, direction of motion or faces may give very different results if the 

neurons that code these dimensions in a particular area adapt strongly, but are 

only weakly clustered. Clearly however, in the case of orientation selectivity 

measurements, the multi-variate pattern analysis was rather more sensitive than 

the selective adaptation measure, although the two methods were in close 

agreement for most visual areas. 

 

 

 

 

 

 

 

 

 



3. Comparison of fMRI adaptation and MVPA  

 92 

3.2 Does the interleaving of scans affect the performance of the 
methods? 

A limitation with the study might be the fact that the MVPA and adaptation 

scans were run interleaved in the same session. While this would have reduced 

between-scan variability, there is the concern that carry-over adaptation from the 

adaptation scans could bias the MVPA and vise versa. For example interleaving 

would, affect the performance of the MVPA method because analysis included 

time-points following both directions of adaptation. That is, the adaptation may 

have introduced noise into the measurements of the responses that the MVPA 

was relying on for classification. Conversely, the use of both high-contrast 

orientations in the MVPA runs would have washed out the adaptation effect (in 

effect by inducing adaptation to both orientations) which would have reduced 

performance in the subsequent adaptation scan. To address these concerns we 

collected three further sessions of fMRI data on one of the participants, with the 

two adaptation orientations and the MVPA data being collected on three separate 

days.  

3.2.1 Results 

Figure 3.7 shows data from the three further sessions, collected for one 

participant (JWP) in the lowest orientation separation (+/-12.5º). In these sessions 

data for MVPA, for adapt-clockwise and adapt-anticlockwise were collected on 

three separate days, so that none could affect the other. Data were then analysed 

in exactly the same manner as the original dataset, which is also presented for 

comparison. Panels a, c plot adaptation and MVPA responses, collected in the 

original interleaved manner. Panels b, d plot responses with data being collected 

on separate days.  

The pattern of results was the same; for this orientation difference there was 

no evidence of selective adaptation (if anything there was actually a greater 
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response in V1 to the ‘same’ orientation after adapting), but there remained a 

significant, albeit weaker rate of success in discriminating the two orientations for 

the MVPA. 

 

 

Figure 3.7 FMRI modulations in the lowest (+/-12.5°) orientation separation. (a), 

(c) adaptation and MVPA accuracy collected in the original interleaved manner.  

(b), (d) same as above but with data being collected on different days.  
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3.2.2 Discussion 

In order to maximize the similarity between methods in the main 

experiment, data were collected for the experiment in an interleaved manner, with 

alternating runs of adaptation and MVPA data collection. To check that this 

interleaving procedure did not itself affect the results, for example by cross-

adapting the subject to both orientations, resulting in a weak adaptation index, we 

ran three further sessions for one participant (JWP) in the lowest orientation 

separation (+/-12.5º). The data confirmed that, at the lowest orientation 

separation, the data still show no significant selectivity of adaptation but do show 

MVPA classification accuracy above chance. This increases our confidence that 

the effect did not result from the interleaved nature of the scans. There is 

marginally less MVPA accuracy than in the main study, which could be attributed 

to variability between days; since these data are now collected on different days 

of scanning, session-to-session variability now becomes a potential new 

confound. 
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3.3 Do orientation biased voxels adapt more? 

We performed a further analysis to determine whether there was any 

consistent relationship between the methods on an individual voxel level; whether 

a voxel that adapted strongly was also a strong driver of the MVPA classification. 

In our analyses, the former was characterised by the adaptation index calculated 

for individual voxels, the latter ultimately depended on the t-statistic of orientation 

preference for each voxel. In particular, voxels with higher t-values are more 

biased towards a particular orientation. If there was a correlation between 

orientation preference and the amount of adaptation, voxels with higher t-values 

should adapt more.  

3.3.1 Results 

The results of this analysis are shown in Figure 3.8. Data are shown from a 

single, representative subject (JWP), for two ROIs (V1 and V4) and for all three 

orientation separations. This figure plots the adaptation index (from the adaptation 

scans) as a function of orientation preference (from the MVPA scans). Filled 

symbols label the subset (100 voxels) included in the MVPA analysis (based on 

their response during an independent localiser scan). Light grey represents voxels 

preferring clockwise stimuli; dark grey represents voxels preferring anticlockwise 

stimuli. There was no apparent relationship between the methods on a voxel-by-

voxel basis. 

3.3.2 Discussion  

We performed a complementary analysis to determine whether voxels that 

are more biased towards a particular orientation adapt more strongly.  We found 

no such a correlation in any of the conditions tested. There is, in fact, no a priori 

reason that there should be a correlation between the methods on a voxel-wise 

basis, despite the fact that the methods agree in their analyses of the ROIs as a 
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whole. The adaptation index is a relative measure of the responses to identical 

stimuli pre- and post-adaptation and does not necessarily depend on the 

amplitude of the response to that stimulus. Conversely, the MVPA is dependent 

on voxels differing in their actual responses to different stimuli.  

 

Figure 3.8 Voxel-wise analysis from a single participant (JWP), for two ROIs (V1 

and V4) and for all three orientation separations. Filled circles represent voxels 

included in the MVPA.  
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The data presented in this section are in agreement with the sharpening 

adaptation model, which predicts that neurons showing little or no adaptation to a 

repeated stimulus are highly selective for that stimulus (see section 1.3.1). 

Although fMRI data need to be combined with single-cell recordings to conclude 

on the model of adaptation that better applies in this case, the results presented 

here contribute to this direction.  

3.4 High-field (7T) measurements 

Improvements to imaging hardware and analysis techniques have provided 

access to higher-resolution images at improved signal-to-noise ratios. High field 

experiments suggest that imaging with resolutions in the hundreds of microns 

range should be possible, and have reliably mapped columns in primary visual 

cortex with ocular and even orientation selectivity (e.g. Moon et al. 2007; Yacoub 

et al. 2007).  

As 7T imaging is still rather in its infancy, we performed a pilot experiment 

to investigate how results from different magnetic fields compare. In principle, both 

methods should benefit from high-field fMRI. As pattern-classifiers rely on feature 

selectivity and spatial inhomogeneity of feature-selective responses, high spatial 

resolution should improve the performance of the MVPA by reducing averaging 

between columns for instance. Adaptation could benefit simply from the improved 

signal-to-noise ratio. We also re-ran the voxel-wise analysis described in the 

previous section to determine whether and how it differs.  

3.4.1 Methods 

Scanning parameters. High-resolution data were collected on a 7T (Philips 

Achieva) scanner and the scanning region was restricted to include primarily area 

V1 (voxel size 1x1x1.5 mm
3
, TR 2.5s, TE 25ms; FOV 128mm x128mm x 24mm; 

16 slices; 1-shot EPI). 
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Scanning session. At the beginning and the end of the scanning session, 

we ran two localiser scans. This was followed by four adaptation scans (of 90 

dynamics each), and two MVPA scans (of 120 dynamics each). 

Pattern-classification. In each scanning session, we obtained data in 20 

blocks (2 blocked scans, 10 blocks per scan). From each block we extracted the 

responses at 5 separate time-points, delayed by two TR to account for the 

haemodynamic lag. There were therefore a total of 100 time-points (or repeated 

‘examples’ of each response) for each voxel. Trials were divided into 10 groups, 

each group corresponding to responses collected in a pair of blocks, 1 from each 

orientation of the original dataset. Data from 9 of these groups were assigned to a 

training set and the remaining to a test set.  

3.4.2 Results 

The probe-related modulations in fMRI signal obtained at high field are 

shown in Figure 3.9a. Data are from area V1 of one subject, collected at the 

highest orientation separation (+/-45°). We obtained a substantial orientation-

selective adaptation effect in area V1. Figure 3.9b plots the performance of the 

pattern classifier based on linear discriminant analysis. As in previous sections, 

classification accuracy is plotted against the number of voxels included in the 

analysis. Because of the larger TR (2.5s) used in this study, fewer time-points 

were available for the pattern-classification algorithm. As the number of voxels 

included in the analysis depends on the number of training samples available, we 

were forced to include only 60 voxels. We obtained significant MVPA accuracy but 

less compared to the 3T data.     

Figure 3.10 plots adaptation index versus orientation preference t-value for 

300 high-resolution V1 voxels.  The adaptation index was computed for each 

voxel as it was for an ROI and, basically, describes how strongly it adapts (see 
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General Methods). The orientation preference t-value was computed as the 

weighted difference between the responses to the two orientations, and captures 

the orientation bias of each voxel. If there was a correlation between the two, 

voxels with high orientation preference should also adapt a lot. However, as with 

the 3T data no such relationship was obtained.  

 

Figure 3.9 (a) High-field fMRI modulations in response to probe stimuli during the 

adaptation sequence for the +/-45° condition averaged over 40 trials. (b) 

Performance of pattern classification versus number of voxels included in the 

analysis. Data are from area V1 of one participant (JWP). Shaded regions 

represent ±1s.e.m. Same conventions as in Figure 3.3. 

3.4.3 Discussion 

We performed the adaptation and MVPA studies at high magnetic field (7T) 

to benefit from the high spatial resolution and improved signal-to-noise ratio. Data 

were collected for a single participant and the field of view included predominantly 

area V1. Strong selective adaptation and significant pattern classification effects 

were obtained. However, because of the small data set the 7T data cannot be 

directly compared to the 3T. In particular, selective adaptation was stronger at 7T; 

however, this might be due intersession variability. More data on different 

participants need to be collected. MVPA accuracy was significant but reduced 
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compared to 3T.  As discussed above due to the largest TR at 7T less time points 

were available (100 at 7T; 300 at 3T). As the performance of linear discriminant 

analysis depends strongly on the number of time points available, it is critical to 

compare performance between the two field strengths using the same number of 

examples.   

 

Figure 3.10 Voxel-wise analysis for data obtained at high-field. Open circles are 

the 300 V1 voxels. Filled circles are voxels included in the MVPA. Data are for 

one participant (JWP), collected at the largest orientation separation (+/-45°).  

Taking advantage of the improved spatial resolution at 7T we repeated the 

voxel-wise analysis discussed in the previous section.  We wanted to test whether 

voxels biased towards a particular orientation, also adapt stronger to this 

orientation.  As with the 3T data no particular correlation was found. Interestingly, 

high-resolution voxels exhibited smaller orientation preference t-values. All in all, 

despite that fact that 7T fMRI is still in evaluation we obtained comparable results 
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to 3T. This increases our confidence that high magnetic field strength can provide 

a reliable tool for studying activity in the visual cortex.  
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4 How are mechanisms selective for complex 
visual patterns represented in the cortex? 

Having directly compared fMRI adaptation and multi-variate pattern 

analyses (MVPA) in the previous chapter, this chapter uses both techniques to 

investigate how local orientation signals are combined and detected in 

intermediate levels of visual processing. A great deal is known about the initial 

steps of visual processing, however, it is not well understood how the outputs of 

V1 are combined in order to represent more complex visual features. The simplest 

stimulus with which to study the combination of V1 outputs is probably the plaid, 

the linear sum of two (or more) sinusoidal gratings. Although plaids have been 

more typically used to study the combination of motion signals (Huk and Heeger 

2002; Movshon et al. 1986; Rust et al. 2006) they can also be used to study the 

conjunction of form signals (Carandini et al. 1997a; Georgeson and Meese 1997; 

Peirce and Taylor 2006). Peirce and Taylor (2006) presented psychophysical 

evidence that the visual system has mechanisms sensitive to the overall form of 

compound patterns rather than to their components. The rationale of their 

experiments was that if the visual system has plaid detecting mechanisms, then 

these mechanisms would adapt more strongly to a plaid than to the components 

alone. Using a novel method of compound adaptation, participants simultaneously 

adapted to sinusoidal plaid patterns separated across the two visual hemi-fields. 

The two fields contained identical grating components (A, B, C, D) rearranged into 

different plaid patterns (AB, CD vs AC, BD) (Figure 4.1).  

The aim of the experiments presented in this chapter was to use fMRI 

adaptation and MVPA to identify the cortical location of plaid-selective 

mechanisms. In the first experiment we used an event-related adaptation 

paradigm (Fang et al. 2005; Larsson et al. 2006; Montaser-Kouhsari et al. 2007). 
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After prolonged adaptation to high-contrast patterns, sensitivity was tested using 

low-contrast probes. In the second experiment we used a blocked adaptation 

paradigm similar to that of Huk and Heeger (2002). In the third experiment we 

used a multi-variate pattern analysis (MVPA) algorithm (Cox and Savoy 2003; 

Haynes and Rees 2006; Norman et al. 2006) to discriminate between the 

responses to a plaid and its components. 

 

Figure 4.1 (a) Simple component gratings are combined (b) to construct plaid 

stimuli (from Peirce and Taylor, 2006).  

4.1 Experiment 1 

Event-related adaptation paradigms (Fang et al. 2005; Larsson et al. 2006; 

Montaser-Kouhsari et al. 2007) often have the advantage of being closer to their 

psychophysical and electrophysiological counterparts. They rely on the 

observation that, after prolonged presentation of a particular stimulus, the BOLD 

response in areas sensitive to that stimulus, is selectively reduced compared to 

the response to other stimuli.  

In this study, adaptation to a plaid (AB) was compared to adaptation to its 

components (alternating gratings, A and B) (Figure 4.1). Participants were 

adapted to the plaid in one visual hemifield and to the components in the other 

(Figure 4.2). Critically, exposure to the component gratings was equal in both 

hemifields. The design relies on the assumption that areas selective to plaids 

would adapt stronger to the plaid stimuli than to the components. 

(b) 

(a) 
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To maximise the sensitivity of the design we replaced the letter-counting 

task at fixation with a dot-counting task that took place, not at fixation, but was 

distributed across the envelopes of the stimuli being presented. This way we 

forced subjects to attend to the stimuli instead of diverting attention away from 

them. However, the task had a heavy attentional load at all times, and so still 

served to minimise the potential for confounding variations in attention to the 

stimuli. 

4.1.1 Methods 

Participants, procedure and stimuli  

Three experienced volunteers took part in the study. The event-related fMRI 

adaptation protocol is shown in Figure 4.2. At the beginning of each scan 

participants passively viewed the adapting stimuli for 30s. The adaptors were the 

component gratings alternating in one hemi-field and the plaid in the other. 

Critically, each component was presented at 50% contrast for half the time, but 

either presented in or out of phase with each other. This resulted in the plaid 

being presented at full-contrast for half the time and the two half-contrast gratings 

for all the time. This way the exposure to components in terms of duration and 

intensity was equal in both visual hemi-fields
1
. In each trial, adaptation was 

maintained by presenting ‘top-up’ adaptors for 4.5s, followed by a blank screen for 

0.75s. Then, the probe stimuli were presented in both hemi-fields for 1.5s. Four 

probes were shown, (a) component A, (b) component B, (c) plaid AB or (d) blank 

screen. These conditions were equally common and randomly chosen. The 

                                                
1
 An alternative way of controlling for contrast is to present stimuli on both sides at 100% 

with the plaid being presented throughout the adaptation period. This way the pixel 

intensities are matched in both hemi-fields. FMRI measurements and psychophysical 

experiments within the lab indicated similar results for both stimulus presentation ways.  
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Michelson contrast of probe stimuli was 40%
1
. Each trial ended with a 0.75s 

presentation of a blank screen, giving a total duration of 7.5s.  

Scanning session. Each scanning session consisted of a localiser scan at 

the beginning of the session and 4 adaptation scans. Between adaptation scans, 

we alternated the side on which the plaid adaptor was presented, i.e. the plaid 

adaptor was presented on the left hemi-field in 2 scans and on the right in the 

remaining 2. This controlled for the possible side biases that participants might 

(and in fact did) have in BOLD responses. Each scan consisted of 60 trials, 15 

trials for each probe stimulus.  

Visual stimuli. The spatial frequency of component stimuli was 0.75 

cycles/
o
 oriented at 0°or 90°. All stimuli were presented in a Gaussian envelope 

with a standard deviation of 0.33 (such that the stimuli had a diameter of 5
o
 at the 

point at which it fell below 1% contrast). The spatial phase of the stimuli was 

randomised every 2 frames to prevent retinal afterimages. 

Localiser scan. At the beginning of each scanning session we performed a 

localiser scan. The purpose of the localiser was to identify voxels in the ROIs that 

responded to visual stimulation at the spatial location of the patterns. The stimulus 

was a 100% Michelson contrast plaid, presented for 18s in one visual hemi-field 

and for 18s in the other hemi-field. Each localiser scan consisted of 10 such 

blocks. A fixation point was presented throughout. The responses evoked by the 

localiser stimulus are shown in Figure 4.3. 

Attention control task. To control for changes in the attentional state of 

observers, they performed an attention-demanding task. To increase the 

sensitivity of the design, instead of a task at fixation used in the previous chapter, 

                                                
1
 The intensity of probe stimuli was chosen based on a series of psychophysical 

experiments within the lab. 
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the task was distributed across the envelopes of the stimuli being presented. 

Participants were asked to count the number of faint (50% contrast) red coloured 

dots appearing on the region the stimuli were drawn. The duration of each dot-

counting trial varied randomly between 7-12s. Within each trial, 1-4 dots were 

presented at random positions within the envelope of the stimuli, either on the left 

or the right side of the screen. At the end of each dot-counting trial, the fixation 

turned red for 1s prompting participants to report, within this brief period, the 

number of dots counted by pressing a button. A fixation point was presented 

throughout the experiment. 

 

Figure 4.2 Event-related procedure. Each trial consisted of a top-up adaptation 

period for 4.5s, followed by a blank screen for 0.75s, succeeded by probe 

presentation for 1.5s. Trials ended with presentation of the blank screen for 0.75s. 

Total duration of each trial was 7.5s. 

Data analysis 

Regions of interest (ROIs) were restricted to include only voxels whose time 

series correlated with the stimulus epochs of the localiser scan. Specifically, ROIs 

were restricted only to those voxels with a coherence co>0.25 and a response 



4. Mechanisms selective for complex patterns 

 107 

phase 0<φ<π for the left hemisphere, and π<φ<2π for the right hemisphere 

(localiser stimuli initiated on the right visual hemi-field). 

Responses to individual trials were extracted from the average ROI time 

course by selecting a 15s window initiating 3s after the onset of the adaptor. The 

average response to the blank trials (which captures the response to the adaptor 

alone) was subtracted from each trial. Trials of each type were then averaged and 

the resulting event-related time courses were adjusted to zero baseline by 

subtracting the mean of the first two time points (before the onset of the probe 

stimulus). 

4.1.2 Results 

Responses to the localiser stimulus. Responses evoked by the localiser 

plaid stimulus are shown in Figure 4.3. As revealed by the coherence activation 

map, responses were stronger in areas V1, V2, V3, V4 and V3AB. The pattern of 

responses was generally consistent across subjects. As plaid localiser patterns 

were presented consecutively on the left and the right horizontal meridians, 

patches of activation appeared in the midst of V1 and on the borders of areas V2 

and V3, consistent with the expected retinotopic representation. There appeared 

also to be reliable responses dorsal and lateral to LOC, possibly where V5 (MT+) 

is located. Because an individual mapping scan was required to accurately define 

V5 we did not include this area in the analysis. An exploratory analysis was 

performed based on retinotopic and localisation maps to include these activated 

voxels. However, no plaid selectivity was obtained in this region, possibly because 

of the fact that the stimulus phase was jittered, leaving no consistent motion 

signal, and the data are not considered further here.  

Event-related fMRI responses. Event-related fMRI responses to the plaid 

probe are shown in Figure 4.4 for three subjects. Data are shown in nine visual 
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areas for two of the participants and in eight regions for one participant (LOC-

mapping data were not available for subject DS). In general, fMRI signal 

modulations were greater than 0.5% in early visual areas. Responses in lateral-

dorsal areas (LO1, LO2) were weak or variable depending on the participant. 

Lateral ventral areas (VO1 and LOC) that did not show much activation in the 

localiser scan also produced inconsistent responses across subjects.  

 

Figure 4.3 Coherence map elicited by the localiser plaid stimulus. Activation 

corresponds to coherence values greater than 0.25. Adaptation data were 

analysed in ROIs restricted to include only those voxels activated in the localiser 

scan. Data are from the right hemisphere of one subject (SH).  

The degree of selective adaptation in each area can be seen as the 

difference between the response to the plaid probe presented at the side adapting 

to the plaid adapter (shown in light grey), versus the response to the plaid probe 

presented at the side adapting to the components (dark grey). If an ROI exhibits 

plaid selective adaptation then response shown in light grey would be suppressed 

compared to the response shown in dark grey. Subtle plaid-selective adaptation 

effects were evident in some areas in some subjects but these effects were not 
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consistent across participants. Overall, no consistent plaid-selective adaptation 

effect was evident across participants in any of the areas tested. 

 

 

SH 

JWP 
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Figure 4.4 Plaid adaptation fMRI time courses are shown for three subjects (JWP, 

SH, DS) in order of presentation. The response to the plaid probe on the side 

adapting to the plaid is shown light grey and on the side adapting to the 

components in dark grey. Time courses initiated 3s after the onset of the adaptor 

stimulus. They were adjusted to zero baseline by subtracting the mean of the first 

two time points (before the onset of the probe stimulus). LOC mapping data were 

not available for subject DS. Shaded regions are standard errors of the mean.   

4.1.3 Discussion 

In this experiment an event-related adaptation paradigm was used. 

Responses to low-contrast probes were measured after prolonged adaptation to 

high-contrast plaid and grating patterns.  Subtle plaid-selective adaptation effects 

were evident in some instances but these were not replicated across participants. 

Although we modified the attention control task to enhance sensitivity, we did not 

obtain consistent plaid adaptation effects across subjects in the visual areas 

studied. The paradigm described here is the last of a series of plaid adaptation 

experiments performed during the first two years of the PhD. Over this period we 

used a number of different experimental parameters (stimulus contrasts, timing 

DS 
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parameters) and attention control tasks. In none of these experiments did we 

succeed in generating consistent plaid adaptation effects.  One possible 

explanation is that the design itself was not sensitive enough to give rise to an 

effect. In the event-related paradigm described above brief, low-contrast probes 

generated the signal of interest. It is possible that the brevity and low-intensity of 

the probe stimuli was not sufficient to produce a measurable effect.    

For this reason, we tried a different experimental paradigm; namely, a 

blocked adaptation design. This paradigm despite being dissimilar to the 

psychophysics is much simpler. Blocked paradigms have a longer history in fMRI 

research, and have the advantage of being more straightforward in their design 

and their interpretation. This experiment is discussed in the following section.  

4.2 Experiment  2 

In the second experiment we used a blocked adaptation paradigm similar to 

that of Huk and Heeger (2002). The rationale was the following. In one block two 

plaids (AB, CD) were alternating in one visual hemi-field, and in a second block 

four plaids (AB, CD, AC, BD) were alternating in the other visual hemi-field. Again, 

the experimental design ensured that each component grating (e.g. A) was 

presented for the same amount of time in both locations. Therefore, adaptation to 

component gratings was the same in both hemi-fields. However, in the ‘two-plaids’ 

adaptation condition each plaid is presented for half of the duration in each block, 

whereas, in the ‘four-plaids’ condition each plaid is presented for a quarter of the 

duration. Consequently, any putative detector for the plaid would be expected to 

adapt more during the ‘two-plaids‘ condition, since its preferred stimulus was 

present for a greater proportion of the time.  
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4.2.1 Methods 

Participants, procedure and stimuli 

Two experienced volunteers participated in the study. Plaid stimuli (Figure 

4.1) were made of sinusoidal gratings (spatial frequencies 0.75 and 1.5cycles/°) 

oriented at four different orientations (0°, 90° and +/-45°). Stimuli occupied 5° 

degrees of visual angle. The edges of the stimuli were smoothed by a Gaussian 

mask. The spatial phase of the gratings was randomised every 5 frames (83.3ms) 

to prevent retinal afterimages. 

In this experiment no separate localiser scan was performed. Instead we 

averaged all blocked scans and used this to select activated voxels so that the 

data themselves acted as their own, unbiased localiser. Each scanning session 

consisted of 6 blocked adaptation scans. In half of the scans the ‘two-plaid’ 

condition was presented in the left visual field and in the other half in the right 

visual field. Each scan consisted of 10 blocks, 30s each, resulting in a total 

duration of 300s (200TRs) per scan. In each block one of the conditions (two- or 

four-plaid) was presented in one visual field while a blank screen (mean 

luminance) was presented in the other visual field. For example, in scans where 

the two-plaid adaptor was on the left, this would be presented for 30s with nothing 

in the right visual hemifield and then the four-plaid would be presented in the right 

hemifield for 30s with nothing being presented in the left. As a result there was 

always some visual stimulus being presented to the participant, rather than having 

periods where no stimulus was presented, interleaved with periods of both 

presented at the same time. A letter counting task at the centre of fixation 

controlled for attention. 
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4.2.2 Results 

Blocked fMRI responses for one subject are shown in Figure 4.5. Each trial 

consisted of 30 seconds of stimulus onset alternated with 30 seconds display of 

the blank screen (at mean luminance). The degree of selective adaptation in each 

area can be seen as the difference between the response to the ‘four-plaid’ 

condition (light grey), versus the response to the ‘two-plaid’ condition (dark grey). 

In principle, this difference should be greater at the end of the trial when 

adaptation was stronger. Data are from a single scanning session and averaged 

over 30 trials. Blocked time-courses were normalised so that each time course 

started at 0 and its maximum value was 1.  This was done to better appreciate the 

relative signal decrease for the two conditions; since not all plaids in the four-plaid 

condition were present in the two-plaid adaptor, the initial response to the stimulus 

might differ, and this would be of no interest to the current experiment. However, 

responses obtained without normalising for the initial response yielded similar 

results. 

Both conditions caused a robust modulation in the BOLD signal on the stimulus 

onset. Subsequently, fMRI responses gradually decreased during the end of the 

trial, presumably resulting from adaptation. This suppression was observed during 

both conditions and ranged in amplitude from 0.25 to 0.5 of normalised percent 

signal. After the end of stimuli presentation, the BOLD responses returned to 

baseline. Responses in higher regions were noisier, probably due to the small 

number of voxels activated in these regions. However, no consistent evidence of 

plaid-selective adaptation was obtained in any of the areas tested; the time-

courses for the two conditions appeared to overlap.  



4. Mechanisms selective for complex patterns 

 114 

 

 

Figure 4.5. Blocked fMRI responses for the ‘two-plaids’ (dark grey) and ‘four-

plaids’ (light-grey) condition, in nine visual areas. Data are from two subjects 

(JWP, DS), obtained during a single scanning session, and averaged over 30 

trials. LOC data for subject DS were not available. Time-courses were normalised 

so that each time course starts from 0 and its maximum value is one. Shaded 

regions are standard errors of the mean across the trials.  

JWP 

DS 
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4.2.3 Discussion    

Blocked designs are extensively used in fMRI research. In such a design 

different conditions are alternated in separate blocks. Usually a rest condition is 

interleaved between testing trials, during which the BOLD signal returns to 

baseline, introducing a maximum amount of variability. The robust modulations 

usually evoked in a blocked design improves significantly the signal to noise ratio. 

As a result blocked designs offer considerable statistical power (Donaldson and 

Buckner 2001). If a condition consists of repeated presentation of a stimulus 

category it typically results in adaptation in regions sensitive to the stimulus. Such 

a blocked adaptation paradigm is more sensitive to the adapted response near 

the end of the trial. To make the most of the blocked adaptation paradigm we 

used blocks of long duration (30s).  

However, data collected for two participants did not generate consistent 

plaid adaptation effects. The reason for that might be that although block 

adaptation designs generate strong and reliable signals, they produce weak 

psychophysical effects because high-contrast stimuli are used throughout. It is 

also possible that in conventional ROI analyses, where time-courses are 

averaged together across voxels to obtain a mean ROI response, subtle signal 

modulations in voxels that do adapt are lost. As shown in Chapter 3, pattern-

classification analyses are more sensitive in detecting even small differences in 

stimulus parameters. Therefore, we performed a third experiment in which we 

used a pattern classifier to attempt to discriminate between responses to a plaid 

and its components. 

4.3 Experiment 3 

Considering the increased sensitivity of multi-variate pattern classification 

analyses (MVPA) described in the previous chapter, we ran a third experiment in 
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which a plaid stimulus was presented in one block and the components of that 

plaid in another block. Because the accuracies obtained with a parametric linear 

discriminant classifier were low, we decided to use a non-parametric neuronal 

network (without a hidden layer) algorithm to discriminate responses between the 

two conditions. The experiment relies on the hypothesis that visual areas 

containing mechanisms selective to complex stimuli, should exhibit higher 

classification accuracy than the rest.  

In fact, a second mechanism may lead to success on the part of the 

classifier in this experiment. We know that many cortical cells exhibit cross-

orientation suppression; responses to a stimulus with optimal orientation are 

partially suppressed by superposition of a second grating with orthogonal 

orientation (Carandini et al. 1997b; Carandini et al. 2002). This effect is thought to 

be caused by a divisive gain control from suppressive lateral connections of a 

normalisation pool (Heeger 1992). The effect of cross-orientation suppression 

could result in responses to the plaid stimulus in certain voxels or areas being 

reduced. Consequently, MVPA accuracy in these areas would be high, though, 

not due to plaid selectivity. To examine the relative contributions of these two 

effects we ran the analysis multiple times using: a) the set of voxels as in the 

previous chapter for orientation selectivity, b) only the voxels that responded more 

to the plaid than to the components, or c) only the voxels that responded less to 

the plaid than to the components. The procedure is described in more detail 

below.  

4.3.1 Methods 

Participants, stimuli and procedure 

Three experienced volunteers took part in the study. Each scanning session 

consisted of 6 blocked scans. The paradigm is shown in Figure 4.6. In one block 
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the two components, presented at 50% Michelson contrast, were alternating every 

second. In the other block the plaid stimulus, presented at 100% Michelson 

contrast, was alternating with the blank screen every second. This way it was 

ensured that exposure to components was the same in both blocks. The two 

conditions were alternated with epochs of blank screen (mean luminance) with a 

period 30s (15s ‘on’, 15s ‘off’). Each scan consisted of 8 blocks. 

Visual stimuli. Component stimuli consisted of sinusoidal gratings oriented 

at 0° or 90° (spatial frequency 1.5cycles/°). The plaid was made of the 

superposition of the two components. Stimuli were presented in an annulus (inner 

radius, 2°; outer radius, 14°) whose edges were smoothed by a Gaussian kernel 

(std dev of 0.083º on the inner edge, 0.333º on the outer edge). The spatial phase 

of the stimuli was randomised every 6 frames (100ms) to prevent retinal 

afterimages. 

 

Figure 4.6 A block design was used to measure responses for pattern 

classification.  
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Attention control task. To control for changes in the attentional state of 

observers a letter counting task was performed at fixation (see section 2.3.4). 

Data analysis 

Regions of interest (ROIs) were restricted to include only voxels whose time 

series correlated with the stimulus epochs (coherence, c>0.3, phase 0<φ<π).  

Pattern-classification. A linear neuronal network (without a hidden layer) 

algorithm was used to classify responses between stimulus conditions (see 

General Methods). Like the linear discriminant algorithm used in Chapter 3, this 

algorithm is also a linear classifier, however, it does not assume a specific model 

of the data points (is non-parametric). It has been shown that in certain instances 

non-parametric classifiers result in better accuracies (Ku et al. 2008). Because of 

the low accuracies obtained in this section we decided to use a non-parametric 

classifier. However, their disadvantage is that they require considerably more 

computing time. In each scanning session, we obtained data in 48 blocks (6 

blocked scans, 8 blocks per scan). From each block we extracted the responses 

at 10 separate time-points (over 15s), delayed by three TRs to account for the 

haemodynamic lag. There were therefore a total of 480 time-points (or repeated 

‘examples’ of each response) for each voxel. Trials were divided into 12 groups, 

each group corresponding to responses collected in two blocks, 2 from each 

stimulus condition. Data from 11 of these groups were assigned to a training set 

and the remaining to a test set to protect against overfitting. This was repeated 

with different blocks acting as the test set and the performances on each repeat 

averaged (cross-validation). 
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4.3.2 Results 

Mean ROI responses 

The (univariate) mean ROI responses to the two stimulus categories are 

shown in Figure 4.7 for all participants. The BOLD signal modulation to both 

stimulus conditions was greater in V1 and decreased in higher visual areas. 

However, there was no difference in the amplitude of the response between the 

two conditions. 

 

 

Figure 4.7 Mean ROI responses to the alternating gratings (dark grey) and the 

plaid (light grey) for all participants. Shaded regions are s.e.m. 

MVPA performance 

Figure 4.8 plots the performance of the pattern classifier, based on a 

neuronal network algorithm, in one participant (a) and across participants (b). 

Classification accuracy was computed directly on the 100 voxels, in each ROI, 
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included in the analysis. Performance was found to be better than chance in most 

areas tested. However, high classification performance, especially in early visual 

areas, might have resulted from cross-orientation suppression. In these regions, 

the responses to the plaid would be partially suppressed compared to responses 

to the components.  

Figure 4.9 shows a histogram of t-values (in area V1) computed as the normalised 

difference between the responses to the two conditions. Voxels with a negative t-

value responded more to the plaid; voxels with a positive t-value responded more 

to the components. To examine the effect of cross-orientation suppression we re-

ran the analysis by including only voxels with negative t-values.    

 

Figure 4.8 (a) MVPA performance for one subject (JWP). Error bars are standard 

deviations computed over 100 reshuffles. (b) MVPA performance averaged 

across subjects. Error bars represent ±1s.e.m. across the three participants. The 

dashed line shows classification accuracy based on chance (50%).  
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Figure 4.9 Condition preference t-values from area V1 of all participants. The 

same pattern was observed in the other ROIs. 

Table 4.1 Pattern-classification accuracies for individual subjects. Analysis was 

based on voxels in each ROI that responded more strongly to the plaid. P-values 

(uncorrected for multiple comparisons) are shown in parentheses. P-values were 

estimated from a permutation test with 5000 resamples (see General Methods).  

 

 

 

 

The results of the analysis are shown in Figure 4.10, for one participant 

(panel a) and across participants (panel b). Compared to Figure 4.8, classification 

accuracy was somehow lower in most areas. The results (uncorrected for multiple 

comparisons) are summarised in Table 4.1. Classification accuracy was higher 

 V1 V2 V3 

JWP 0.50 (0.431) 0.55 (0.049) 0.52 (0.253) 

DS 0.59 (0.000) 0.58 (0.002) 0.59 (0.000) 

SH 0.56 (0.031) 0.56 (0.015) 0.53 (0.127) 

 V4 V3AB LO1 

JWP 0.54 (0.089) 0.56 (0.022) 0.57 (0.010) 

DS 0.54 (0.101) 0.56 (0.026) 0.53 (0.141) 

SH 0.53 (0.174) 0.51 (0.405) 0.56 (0.031) 
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and significant for all participants in area V2. However, after applying a Bonferroni 

correction for multiple comparisons, performance was significant only for one 

participant (DS). For comparison, Figure 4.10 plots MVPA accuracies for voxels 

that responded more strongly to the components. MVPA accuracies are about 

equal in most visual areas and also more variable compared to Figure 4.10. 

 

Figure 4.10 (a) MVPA performance for one subject (JWP), and (b) averaged 

across subjects. Analysis was based on voxels in each ROI that responded more 

strongly to the components. Same conventions as in Figure 4.8. 

Table 4.2  Pattern-classification accuracies for individual subjects. Analysis was 

based on voxels that responded more strongly to the components. Same 

conventions as above. 

 V1 V2 V3 

JWP 0.49 (0.669) 0.52 (0.253) 0.52 (0.253) 

DS 0.56 (0.015) 0.55 (0.049) 0.54 (0.073) 

SH 0.57 (0.013) 0.58 (0.002) 0.58 (0.004) 

 V4 V3AB LO1 

JWP 0.48 (0.719) 0.58 (0.002) 0.58 (0.000) 

DS 0.54 (0.115) 0.51 (0.350) 0.56 (0.026) 

SH 0.53 (0.174) 0.50 (0.405) 0.53 (0.115) 

4.3.3  Discussion 

In this section we used multi-variate pattern analysis (MVPA) to study 

complex pattern selectivity in the visual cortex. Because of the low MVPA 

accuracies obtained in this section we decided to use a non-parametric classifier. 
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It has been shown that in certain instances non-parametric classifiers result in 

better accuracies (Ku et al. 2008). First, we computed the mean response in each 

area for all participants. Interestingly, mean ROI responses were equal for both 

conditions, in most areas tested. Although time-courses in individual voxels are 

often noisy, the voxel-wise analysis we performed confirmed the results of the 

mean ROI analysis. The stimulus preference histograms indicated a symmetrical 

distribution of responses; about the same number of voxels were responding 

more strongly to each condition.  

Then, we tested the performance of a neural network pattern classifier to 

discriminate responses between a plaid and its components When all voxels in 

each ROI were considered, we obtained better than chance performance in most 

areas. To control for inhibited responses to the plaid due to cross orientation 

suppression, we re-ran the analysis by including only voxels that responded more 

strongly to the plaid. MVPA accuracies in this case were universally above chance 

in area V2. The analysis also indicated significant results in areas V1, V3AB and 

LO1 for at least two of the participants. For comparison, we ran the same analysis 

by including only voxels that responded more strongly to the components. The 

results in this case were more variable across the participants. Although MVPA 

accuracies in this study were weak compared, for example, to those of Chapter 3, 

the results might point to the direction that area V2 could perform tasks such as 

feature integration. 

4.4 General discussion 

A great deal is known about the initial steps of visual processing, however, it 

is not well understood how the outputs of V1 are combined in order to represent 

more complex visual features. In this chapter we used fMRI adaptation and multi-

variate pattern analysis (MVPA) to study plaid selectivity in the human visual 

cortex. Experiment 1 utilised an event-related adaptation paradigm (Fang et al. 
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2005; Larsson et al. 2006; Montaser-Kouhsari et al. 2007), Experiment 2 a 

blocked adaptation paradigm (Huk and Heeger 2002), and Experiment 3 an 

MVPA  method (Cox and Savoy 2003; Haynes and Rees 2006; Norman et al. 

2006). 

Both adaptation experiments failed to reveal plaid selectivity in the areas 

tested. Why was no plaid-specific adaptation effect evident in the visual cortex 

despite consistent evidence from psychophysical studies (Peirce and Taylor 2006, 

and several further studies in the lab)? One possibility is that the magnitude of 

plaid-induced adaptation was too small to be resolved by fMRI. As mentioned 

above, the psychophysical shift in perceived contrast was only 5%. It is possible 

that such subtle modulations in brain activity do not give rise to detectable blood-

oxygen level-dependant (BOLD) changes. In addition, the designs themselves 

provide certain limitations. For example, event-related designs can generate 

strong perceptual effects but the measured signal is weak because of the brief, 

low contrast probes. On the other hand, block adaptation designs generate strong 

and reliable signals, but weak psychophysical effects because high-contrast 

stimuli are used throughout (the adaptor and probe are a single entity). Another 

possibility is that in conventional ROI analyses, where time-courses are averaged 

together across voxels to obtain a mean ROI response, subtle signal modulations 

in voxels that do adapt are lost. On the other hand, pattern-classification analyses 

are more sensitive in detecting even small differences in stimulus parameters (see 

Chapter 3).  

In Experiment 3 we used a neural network classifier to discriminate 

responses between a plaid and its components. As in Chapter 3, the MVPA was 

more sensitive than adaptation in revealing pattern selectivity. However, the 

MVPA accuracies obtained in this study were lower compared, e.g. to those in 

Chapter 3. Furthermore, in most cases, accuracies did not exceed significance 
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after applying a multiple comparison correction. Nevertheless, for uncorrected P-

values, MVPA accuracies were universally better than chance in area V2. V2 is 

ideally located to perform tasks such as feature integration. In terms of functional 

properties, it is known that V2 cells have larger receptive fields than V1 cells. This 

property, coupled with the greater overlap of receptive fields in V2, indicates a 

cruder analysis performed by this area. This, in turn, might suggest a feature 

integration role for V2 cells. Although the results we obtained are somewhat weak, 

they point to the direction that the role of V2 might be to perform tasks such as 

Fourier component integration. 

Plaids have been typically used to study the combination of motion signals. 

However, the adaptive properties of spatial plaid-selective mechanisms are not 

very well understood. On the other hand, contour stimuli have been used in the 

literature in many different forms. For the purpose of studying mid-level vision 

psychophysically, Hancock and Peirce (2008) arranged simple gratings in a way 

that give the percept of edges. Contour stimuli have been used more extensively 

to study mid-level vision and the neuronal mechanisms underlying contour 

selectivity are a lot better understood. In the following chapter we used adaptation 

and multi-variate pattern classification analyses, to study the cortical mechanisms 

underlying contour selectivity. 
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5 Integration of simple contours in the visual cortex 

It appears that at different levels of visual processing, signals from previous 

stages are combined to create a more complex and sparse representation of 

images. In the striate cortex, for example, the outputs of retinal ganglion cells are 

combined to create elongated receptive fields that typically respond to particular 

Fourier (orientation and spatial frequency) components (Hubel and Wiesel 1968). 

These are thought of by many as suitable detectors for edges or lines; locations in 

visual space where chromatic or luminance contrast is high. Little, however, is 

known about how outputs of V1 are organised and combined by the visual system 

in order to represent more complex visual features. Understanding and 

characterising these mechanisms is obviously a fundamental problem for vision 

science. It is possible that conjunctions of local orientation signals are detected in 

intermediate levels of visual processing in the form of curves or corners, thus 

providing the basic building blocks for what Marr (1982) referred to as the primal 

sketch. 

Several investigators have studied how features are integrated into visual 

contours using curved stimuli in various different forms (Field et al. 1993; Hess 

and Field 1993; Loffler et al. 2003; Watt and Andrews 1982). Recent studies have 

reported shape aftereffects that do appear to have a basis in global shape 

processing rather than local orientation (Gheorghiu and Kingdom 2007; 2009; 

2008; Hancock and Peirce 2008; Suzuki 2001; 2003). Particularly, Hancock and 

Peirce (2008) developed a psychophysical adaptation paradigm (Peirce and 

Taylor 2006, see also  previous chapter) that was based on adapting one location 

to a contour and another location to the components of that contour in isolation. 

The Michelson contrast of all the adaptors was 100%. Using this paradigm it was 

ensured that both patches were adapted equally to the orientation components of 
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the stimuli, but only the compound patch was adapted to the global contour. Thus 

any difference in adaptation between the two patches should result from the 

presence of the contour as a global figure. After adaptation participants were 

probed with a high contrast (100% Michelson) compound stimulus in both 

locations. The orientation of the probes was varied according to a staircase 

procedure. Participants were asked to press one of two keys to make a 2 

alternative forced choice (AFC) response indicating the side on which the stimulus 

appeared was most convex to the left. Hancock and Peirce found that the after-

effect resulting from adaptation was greater in the side adapting to the contour 

than in the side adapting to the components. These results suggested the 

existence of detectors for conjunctions of oriented features in the visual system. 

In this chapter we further investigated the nature and anatomical location of 

conjunction mechanisms using fMRI adaptation and multi-variate pattern analysis 

(MVPA). We created contours from the conjunction of two oriented gratings. The 

first grating was orientated clockwise or anticlockwise (at ±20°) and the second 

was mirror symmetric to the first, along the horizontal axis. In this study we ran 

two experiments. In the first experiment we used an event-related adaptation 

paradigm. The design was similar to the Hancock and Peirce (2008) protocol, 

modified to be used in conjunction with fMRI. In the second we used the MVPA 

technique to classify fMRI responses to a contour versus responses to its 

components in isolation.  

5.1 Experiment 1 

In the first experiment we used an event-related adaptation paradigm (Fang 

et al. 2005; Larsson et al. 2006; Montaser-Kouhsari et al. 2007). In half of the 

scans participants adapted to a contour and in the other half to the components of 

that contour (Figure 5.1). They were then probed with contours of either the same 

or the opposite orientation. As a control condition participants were probed with a 
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‘straight’ vertical patch of the same length as the contour stimuli. This third 

condition was introduced to determine whether the observed effects could be 

caused simply by the responses of end-stopped cortical mechanisms which are 

known to be sensitive to stimulus length (Hubel and Wiesel 1965). Such 

mechanisms would respond stronger to the contour than to the components, not 

because they are curvature selective, but because contour stimuli are longer than 

the component stimuli. The design relies on the assumption that in the ‘contour 

adaptation scans’, contour selective areas would adapt stronger to contours of the 

same orientation than to opposite oriented contours or vertical stimuli. 

In this study we also modified the timing of the event-related design. In the 

event-related designs described in the previous chapters presentation of the ‘top-

up’ adaptor was followed by an inter stimulus interval (ISI) of about 0.75s. 

However, other studies have used rapid event-related adaptation paradigms (e.g. 

Grill-Spector and Malach 2001; Kourtzi and Huberle 2005), where stimuli are 

presented sequentially with short ISIs (0.1-0.4s). Designs with very brief ISIs may 

benefit from keeping the probe closer in time to the adapter. In this experiment we 

kept the same design as before, with high contrast adaptors and low contrast 

probes, but decreased the ISI between ‘top-up’ adaptation and probe presentation 

to 0.2s. 

5.1.1 Methods 

Participants, procedure and stimuli 

Two experienced volunteers took part in the study. The experimental 

protocol is shown in Figure 5.1a. Participants initially viewed passively the 

adapting stimulus for 30s. The adaptor was a contour in half of the scans and the 

components of that contour in the other half. In each trial adaptation was 

maintained by presenting ‘top-up’ adaptors for 4s. In the contour adaptation scans 
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the adapting stimulus was shown for only half of the adaptation duration. This way 

exposure to components was kept roughly constant in the ‘contour’ and 

‘component’ adaptation scans. ‘Top-up’ adaptation was followed by a blank 

screen (ISI) for 0.2s. Then, the probe stimuli were presented for 1s. Four probes 

were shown, (a) a contour with the same orientation as the adaptor, (b) a contour 

with the opposite orientation to the adaptor, (c) a vertical control stimulus or (d) 

blank screen (Figure 5.1b). These conditions were equally common and randomly 

chosen. The Michelson contrast of probe stimuli was 50%
1
. Each trial ended with 

a 0.8s presentation of a blank screen, giving a total duration of 6s. 

Scanning session. Each scanning session consisted of a localiser scan at 

the beginning, followed by 6 adaptation scans. In half of the scans the adapting 

stimulus was the contour and in the other half the components of that contour. 

‘Contour’ and ‘component’ scans were interleaved. Each scan consisted of 40 

trials; 10 for each probe stimulus.  

Visual stimuli. The spatial frequency of all stimuli was 1.2 cycles/
o
. 

Contours were made of the conjunction of two oriented gratings. The first grating 

was oriented clockwise or counter clockwise (at ±20°) and the second was mirror 

symmetric to the first, along the horizontal axis. All stimuli were presented in a 

Gaussian envelope with a standard deviation of 0.66° (such that the stimuli had a 

diameter of 4° at the point at which it fell below 1% contrast). The spatial phase of 

the stimuli was randomised every 6 frames (100ms) to prevent the formation of 

luminance afterimages on the retina.!

Localiser scan. At the beginning of each session a localiser scan was 

performed to identify voxels in the ROIs that responded to visual stimulation at the 

spatial location of the patterns. The stimulus was a left bent contour presented at 

                                                
1
 The intensity of probe stimuli was chosen after a series of psychophysical experiments 

within the lab. 
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100% Michelson contrast. Stimulus ‘onset’ was alternated with a blank screen 

every 15s. The localiser scan consisted of 8 such blocks. A fixation point was 

presented throughout.  

 

Figure 5.1 (a) Event-related procedure. Each trial consisted of a top-up adaptation 

period for 4s, followed by a blank screen for 0.2s, succeeded by probe 

presentation for 1s. Trials ended with presentation of the blank screen for 0.8s. 

Total duration of each trial was 6s. (b) The adaptors and probes used in the study. 

Attention control task. To control for changes in the attentional state of 

observers, they performed an attention-control task during the adaptation scans. 

Particularly the fixation was changing to faint red (50% contrast) 1-4 times in each 

attention control trial. The duration of each trial varied randomly between 7-14s. At 
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the end of each trial, fixation turned to green for 1s prompting participants to 

report, within this brief period, the number of changes in the colour of fixation by 

pressing a button. 

Data analysis 

Regions of interest (ROIs) were restricted to include only voxels whose time 

series correlated with the stimulus epochs of the localiser scan. Specifically, ROIs 

were restricted only to those voxels with a coherence co >0.3 and a response 

phase 0<φ<π. Responses to individual trials were extracted from the average ROI 

time course by selecting a 10s window initiating 3s after the onset of the adaptor. 

The average response to the blank trials (which captures the response to the 

adaptor alone) was subtracted from each trial. Trials of each type were then 

averaged and the resulting event-related time courses were adjusted to zero 

baseline by subtracting the response at the first time point of average response. 

5.1.2 Results 

Event-related responses to the three different probes are shown in Figure 5.2. 

This figure shows responses only from the scans in which participants were 

adapted to the contour stimulus. Data are shown in ten visual areas for two 

subjects. The degree of selective adaptation in each area can be seen as the 

difference between the response to the contour probe that had the same 

orientation as the adaptor (dashed light grey), versus the response to the contour 

probe that had the opposite orientation to the adaptor (grey), versus the response 

to the vertical patch probe (dark grey). If an ROI exhibits contour selective 

adaptation then the response shown in dashed light grey would be suppressed 

compared to the rest of the responses.  

In general, signal modulations were at about 0.5% in most visual areas. 

Responses in area V7 were noisier due the small number of voxels activated. 
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Trends towards contour-selective adaptation effects were evident in some 

instances but these were not consistent across participants. Overall, no consistent 

contour-selective adaptation effect was obtained across participants in any of the 

areas tested. 

 

Figure 5.2 Event-related modulations in fMRI signal during the contour adaptation 

sequence for two subjects (JWP & SH). Time courses were averaged over 40 

trials, 10 for each condition. Shaded regions are s.e.m. 
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Figure 5.3 Event-related responses during the component adaptation scans for 

two subjects (JWP, SH). Same conventions as above. 

For comparison, Figure 5.3 plots the responses during the component-

adaptation scans for both subjects.  For one of the participants (JWP) areas LO1 
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and LO2 showed reduced responses to the contour probe that had the same 

orientation as the adapting components. The same effect was evident for the 

second participant (SH) in area LO2. This is rather surprising considering the 

absence of such an effect in the contour adaptation scan. 

5.1.3 Discussion 

In this experiment we used an event-related adaptation design to study 

contour selectivity. In general, contour-selective adaptation effects were evident in 

some instances but these were not consistent across participants. Interestingly, in 

the component-adaptation scans both participants showed reduced responses to 

the anticlockwise oriented contour probe in area LO2. This is surprising, 

considering the absence of such an effect in the contour-adaptation scans. This 

could, however, reveal some limitations of the experimental design itself. To 

ensure that exposure to the components was equal in both contour- and 

component-adaptation scans, the adaptor in the former set of scans was 

presented for half the adaptation duration (e.g. in the 4s ‘top-up’ the timing was 1s 

‘off’, 1s ‘on’, 1s ‘off’, 1s ’on’).  It is, thus, possible that the 2s the ‘top-up’ adaptor 

was presented were not enough to retain adaptation.  

A second limitation might result from the probe contrast we selected. The 

reasons we decided to present probes at low contrast are listed in section 2.3.2. It 

seems, however, that the selection of probe contrast can affect the amount of 

adaptation in certain visual regions. In the case of orientation selective adaptation 

Larsson et al. (2006) and us (chapter 3) used low contrast probes (10% 

Michelson) and found a robust adaptation effect in V1. Adaptation in early 

extrastriate areas (V2, V3, V4) was about the same as in V1. In a different study, 

Fang et al. (2005) used high contrast probes (100% Michelson) with all other 

aspects being similar to Larsson’s et al. (2006) and ours. They found stronger 

orientation selective adaptation in extrastriate regions (e.g. V4) than in V1. It 
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seems, therefore, that a choice of high contrast probe could enhance the 

adaptation effect in higher areas. For the reasons discussed in section 2.3.2 we 

do not think that such a choice is appropriate for studying orientation selectivity. It 

might be the case, though, that for contour stimuli high contrast probes could 

increase the adaptation effect in extrastriate areas.  

5.2 Experiment 2 

In the second experiment we used multi-variate pattern classification 

analysis (MVPA) to examine which areas can better discriminate between 

components and contour stimuli. To measure responses for MVPA, we used a 

blocked design. As in Experiment 1, to control for the potential problem of length-

tuned neurons affecting the MVPA accuracy, we ran a number of scans in which 

stimuli were vertical patches of the same length as the contours (Figure 5.4b). The 

overall experiment relies on the assumption that contour-selective areas would 

exhibit higher classification accuracy. Furthermore, accuracy should be higher for 

the contour vs. components condition than for the control condition.      

5.2.1 Methods 

Participants, procedure and stimuli 

Two experienced volunteers took part in the study. The blocked design 

used is shown in Figure 5.4. Stimuli were presented for 15s alternated with blank 

screen for another 15s. In the ‘components’ block, stimuli were alternating every 

0.75s. In the ‘contour’ block, stimuli were alternating with blank screen every 

0.75s. By presenting the contour for half the block duration exposure to 

components was constant between the blocks.  
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Scanning session. Each scanning session consisted of 8 blocked scans; 4 

contour vs. components and 4 control scans. These were interleaved. Each scan 

consisted of 10 blocks.  

Visual stimuli. The spatial frequency of all stimuli was 1.5 cycles/
o
. 

Contours were made of the conjunction of two oriented gratings orientated at ±10° 

for the first contour and at ±170° for the second. Stimuli in the control scans were 

oriented at 90°. Each component occupied 5° degrees of visual angle in diameter. 

The edges of the stimuli were smoothed by a Gaussian function. The spatial 

phase of the stimuli was randomised every 6 frames (100ms) to prevent retinal 

afterimages. 

Attention control task. A letter counting task at fixation (see Section 2.3.4) 

was used to control for changes in the attentional state of observers. 

 

Figure 5.4 A block design was used to measure responses for pattern 

classification. Alternating components and contours were presented sequentially 

in different blocks. Contour stimuli were shown for half the block duration to 

ensure that exposure to components was the same in both conditions.   



5. Integration of simple contours 

 137 

Data analysis 

To select voxels in the regions of interest (ROIs), we averaged time series 

across all functional scans. Next, ROIs were restricted only to those voxels with a 

coherence co >0.25 and a response phase 0<φ<π for both hemispheres.  

Pattern-classification. For each condition, we obtained data in 32 blocks 

(4 scans per condition, 8 blocks per scan). From each block we extracted the 

responses at 10 separate time-points (over 15s), delayed by three TR to account 

for the haemodynamic lag. There were therefore a total of 320 time-points (or 

repeated ‘examples’ of each response) for each voxel. Trials were divided into 16 

groups, each group corresponding to responses collected in a pair of blocks. Data 

from 15 of these groups were assigned to a training set and the remaining to a 

test set to protect against overfitting. This was repeated with different blocks 

acting as the test set and the performances on each repeat averaged (cross-

validation). 

5.2.2 Results 

Figure 5.5 plots the performance of the pattern classifier based on linear 

discriminant analysis for two subjects. Classification accuracy is plotted against 

the number of voxels included in the analysis. MVPA performance is shown for 

the two conditions; the contour vs. components condition (light grey) and the 

vertical patch vs. components condition (dark grey). Data are presented in six 

areas. In higher regions only a small number of voxels were activated (less than 

50), making it hard to draw safe conclusions. Classification accuracy was high 

(60-70% correct) in most areas tested. Performance increased monotonically as 

more voxels were included in the analysis and reached an asymptote after 40-50 

voxels. In the second participant (SH) less than 100 voxels were activated in 

areas V4, V3AB, and LO1.  
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Figure 5.5 Performance of pattern classification versus number of voxels included 

in the analysis for two subjects (JWP & SH). The dashed line shows predicted 

accuracy based on chance (50%). The solid lines indicate the index used to 

estimate classification performance.  

The pattern classification algorithm discriminated successfully between 

compound stimuli and components in the areas tested. MVPA accuracy was 

somewhat higher in V1 than in extrastriate regions. However, no significant 
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difference between the two conditions was obtained, with the exception of area 

LO1 in one of the participants (JWP). For the second participant (SH), only a small 

number of voxels were activated in LO1 making it hard to draw conclusions. In 

general, the results suggested that the cortex could successfully discriminate 

between the components and the complex stimuli but without revealing any 

particular preference for the curved stimuli.   

5.2.3 Discussion 

We sought to measure contour selectivity in the visual cortex by means of 

multi-variate linear discriminant analysis. We obtained high classification accuracy 

(60-70% correct) in most areas tested but no difference was obtained between the 

two conditions, with the exception of area LO1 in one of the participants. The 

results suggest that the cortex could successfully discriminate between the 

compound and the components; however, the interpretation of the results is not 

straightforward. One possibility is that the significant classification accuracy we 

obtained in higher regions is due to integration cortical mechanisms, which are 

selective to the whole pattern. A different possibility, however, is that the high 

accuracy does not arise from pattern-integration mechanisms but from a 

mechanism selective to stimulus length. The data collected so far do not allow us 

to conclude with certainty on the nature of the mechanisms.  

5.3 General discussion 

We performed two different experiments to study contour integration 

mechanisms in the cortex. In the first we used adaptation and in the second multi-

variate pattern classification analysis (MVPA). The former design failed to reveal a 

contour adaptation effect. The latter showed high classification in most areas, 

however, the results are hard to interpret.  
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Why did the first experiment fail to reveal an fMRI adaptation effect despite 

consistent evidence from psychophysical studies (Hancock and Peirce 2008)? 

One possibility is that the probe contrast we selected was not appropriate for this 

study. As discussed above, the choice of probe contrast can affect the amount of 

adaptation in certain visual regions (e.g. Fang et al. 2005; Larsson et al. 2006). It 

is possible that for contour stimuli, high contrast probes could increase the 

adaptation effect in extrastriate areas. To test this, it would be of interest to collect 

adaptation data using high contrast probes (see discussion in section 5.1.3) and 

maybe a larger TR.  An increase of the TR from 1.5s to 2s could increase the 

signal by about 10%, making the measurement more sensitive. It is possible that 

this experiment could capture contour adaptation more efficiently.  

 In addition, the design itself provides certain limitations. For example, 

event-related designs can generate strong perceptual effects but the measured 

signal is weak because of the brief, low contrast probes. Another possibility is that 

in conventional ROI analyses, where time-courses are averaged together across 

voxels to obtain a mean ROI response, subtle signal modulations in voxels that do 

adapt are lost.  

Indeed, as in the previous chapters, the MVPA was more sensitive than 

adaptation. Classification accuracy was high in all visual areas included in the 

analysis. As a future study, we have redesigned the MVPA paradigm so that it 

generates results that are more straightforward to interpret. This new set of 

experiments is an extension of experiments described above. We hope that these 

new studies will provide insight into the nature of contour integration mechanisms 

in the cortex.
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6 Spatial phase encoding in the cortex 

Evidence has been accumulating over the past years to support the view 

that visual stimuli are detected by a battery of independent mechanisms, each 

responsive to a narrow range of spatial frequencies and orientations. However, to 

fully describe a complex waveform, not only the frequency and amplitude must be 

specified, but also the phase of each component. Spatial phase is a fundamental 

aspect of spatial vision, crucial both for the extraction of local features (Burr et al. 

1989) and overall scene perception. This is because, natural visual stimuli are 

composed of various spatial frequencies added together in a specific phase 

relationship (see also Figure 6.1). Therefore, for the perception of such complex 

stimuli, it becomes important to investigate how the visual system processes 

phase information. 

 

Figure 6.1 The phase information prevails. The hybrid image in panel (c) was 

composed from the Fourier phase of image (a) and the Fourier amplitude of 

image (b). As it can be seen it is the Fourier phase that carries most visual 

information.  
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A straightforward way to study spatial phase is to combine two or more 

sinusoidal gratings of a particular relative phase into a compound waveform. 

Figure 6.2 illustrates such an instance, where four components are added in sine 

or cosine phase (φ=0 or 90). The relative phase components are added in, affects 

the appearance of the compound stimulus. When components are added in sine 

phase the resulting waveform appears edge-like, whereas, when added in cosine 

phase it appears line-like. 

Many of the early studies of spatial frequency analysis by the visual system 

ignored spatial phase, or showed that phase was irrelevant in certain tasks 

(Graham and Nachmias 1971). However, further psychophysical (Badcock 1984a; 

b; Burr 1980; Burr et al. 1989; Huang et al. 2006) and physiological (Aronov et al. 

2003; De Valois and Tootell 1983; Mechler et al. 2002; Pollen et al. 1988) studies 

provided evidence that the visual system is sensitive to the spatial phase of 

patterns under certain conditions.  

 

Figure 6.2 Depending on their relative phase the sum of the same four component 

gratings can give rise to very different spatial compound waveforms. On the left, 

the components are combined in φ=0. The harmonic components coincide at their 

position of maximal slopes, leading to a periodic sequence of on- and off-edges 

approximating a square wave. On the right, components are combined in φ=90. 

The harmonic components coincide at their peaks, leading to a waveform of 

alternating bright and dark lines. Adapted from Mechler et al. (2002).  
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For example, De Valois and Tootell (1983) used compound stimuli made of 

of two components, added in different relative phases. For most of the complex 

cells studied the relative phase of the components did not affect their responses. 

However, a proportion (less than the half) of simple cells did respond to the 

relative phase of two different frequencies. Interestingly, sensitivity to relative 

phase was high for nearby frequencies (f + 2f or f + 3f) but low for combinations of 

more widely spaced frequencies (e.g. f + 4f) (see also Stromeyer et al. 1973). 

Psychophysical studies showed that phase discrimination ability is lost at high 

spatial frequencies (>15cycles/°) (Holt and Ross 1980). Huang et al. (2006) found 

no evidence of cardinal phase (φ=0, 90, 180, 270) detectors in the human visual 

system. This was in contrast to previous studies suggesting that there exist visual 

detectors tuned to one of four cardinal phases (e.g. Burr et al. 1989). 

Mechler et al. (2002) used compound waveforms made of 4 components 

with only odd harmonics being present.  Their stimuli were similar to those used in 

our study. The responses of most V1 cells tested (they recorded responses from 

137 neurons) were rather noisy and displayed low sensitivity to relative phase. 

However, a minority of neurons that included both simple and complex cells were 

highly sensitive and selective to spatial phase. Although the distribution of the 

preferred congruence phase in V1 was broad, with all phases represented, the 

population as a whole, regardless of cell class, displayed a slight bias toward lines 

and possibly edges. Based on this weak bias the authors suggested the existence 

of two classes of cortical feature detectors, one tuned to edge like and the other to 

line-like waveforms. Interestingly, feature preference and selectivity varied within 

local!clusters of V1 neurons. 

In the experiment discussed in this chapter we investigated spatial phase 

encoding in the human visual cortex. The results we obtained in Chapter 3 

indicated higher sensitivity for the multi-variate pattern analysis (MVPA) in 
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detecting similar stimuli. Considering the small perceptual differences between 

stimuli created using similar relative phases, this chapter used multi-variate 

pattern classification analysis (MVPA) to discriminate between relative phase 

combinations. We created eight compound gratings (Figure 6.3). These consisted 

of four superimposed components (f + 3f + 5f + 7f, where f is the fundamental 

frequency), with relative phase, φ, varying in eight equal steps around the phase 

circle [0, 180).  Individual components were added in decreasing contrasts 

(C3f=1/3Cf, C5f=1/5Cf, C7f=1/7Cf, where Cnf is the contrast of the nth component). 

Compound waveforms created in this way have identical root mean square (RMS) 

contrasts, thus, equal overall energies.!

 

Figure 6.3 Luminance profiles of the eight, equal-energy compound gratings used 

in this study. The relative phase, φ, was varied in eight equal steps around the 

phase circle [0, 180). The spatial waveform of the compound gratings varied with 

φ, from edge-like (φ=0) through line-like (φ=90) back to edge-like. Stimuli in the 

[180, 360) phase interval duplicate those in the [0, 180) phase interval, with a half-

cycle shift in the compound waveforms. Therefore, stimuli in the [180, 360) 

interval were not included. Adapted from Mechler et al. (2002).  
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6.1 Methods 

Participants, procedure and stimuli 

Three experienced volunteers took part in the study. A block design was 

used to measure the performance of the MVPA (Figure 6.4). Compound stimuli 

were presented for 12s alternated with blank screen for another 12s. The eight 

compound stimuli were presented in random order. 

Scanning session. Each scanning session consisted of 6 blocked scans; 

sixteen blocks per scan.  

Visual stimuli. Compound stimuli consisted of four superimposed 

components; the fundamental (1.5cycles/°) and the first three odd harmonics. The 

intensity values of the compounds were scaled so that the Michelson contrast of 

the line-like waveform (φ=0) was CM=100%, and smaller for the rest. Critically, the 

RMS contrast of all stimuli was the same (CRMS=23%). Compound gratings were 

presented in an annulus (inner radius, 2°; outer radius, 8°) whose edges were 

smoothed by a Gaussian kernel (std dev of 0.083º on the inner edge, 0.333º on 

the outer edge). The spatial phase of the gratings was randomised every 6 frames 

(100ms) to prevent retinal afterimages. !

Attention control task. To control for changes in the attentional state of 

observers a letter counting task was performed at fixation (see section 2.3.4). 

Data analysis 

To select voxels in regions of interest (ROIs), time series were averaged 

across all functional scans. Next, ROIs were restricted only to those voxels with a 

coherence co >0.3 and a response phase 0<φ<π in both hemispheres.  
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Figure 6.4 The blocked design used to measure performance of the MVPA. 

Pattern-classification. A linear neuronal network algorithm (without a 

hidden layer) was used to classify responses between stimulus conditions (see 

General Methods). Because of the somewhat low accuracies obtained in this 

section we decided to use a non-parametric classifier. In each scanning session, 

we obtained data in 96 blocks (6 blocked scans, 16 blocks per scan) for all eight 

waveforms (12 blocks for each stimulus). From each block we extracted the 

responses at 8 separate time-points (over 12s), delayed by 3 TR to account for 

the haemodynamic lag. Trials were divided into 12 groups, each group 

corresponding to responses collected in a pair of blocks. Data from 11 of these 

groups were assigned to a training set and the remaining to a test set to protect 

against overfitting. This was repeated with different blocks acting as the test set 

and the performances on each repeat averaged (cross-validation). 
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6.2 Results 

Overall responses to compound waveforms 

First, we computed the actual BOLD response elicited by different 

compound stimuli in each visual area. If the visual system had more neurons 

responding to 0 and 90 congruent phases, the responses to these particular 

waveforms should be higher than to the rest. The maximum values of the mean 

ROI responses to the eight different stimuli are shown in Figure 6.5, for the three 

participants.  
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Figure 6.5 FMRI responses to the eight compound stimuli used in the study. Data 

are shown for three participants (JWP, DS, SH). Time courses, in each ROI, were 

adjusted to zero baseline by subtracting the first time point. Error bars represent 

±1s.e.m.  

DS 

SH 
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Interestingly, the prevailing phase was different in different observers. 

Participant JWP (first panel) responded more to the 0 phase compound. In this 

case, responses to intermediate congruence phases (22.5, 45 and 112.5) appear 

to be lower, resulting in a more symmetric pattern across the phase dimension. 

Participants DS and SH (second and third panel) responded more to the 112.5 

and 45 phase waveforms respectively.  

MVPA performance 

We computed classification accuracy based on a neuronal network 

classifier for edge- and line-like (φ=0, 90) compound stimuli. The results are 

shown in Figure 6.6 for all three participants. MVPA accuracy was high in area 

LO1 for two of the observers. The results for subject SH were somewhat variable. 

Interestingly, MVPA accuracy in area V1 of this subject was substantially below 

chance levels. 

Next, we computed classification accuracy for all phase combinations. Figure 6.7 

summarises the results. MVPA accuracies bellow 52% are shown in black, 

whereas, higher accuracies appear progressively brighter. Interestingly, 

classification accuracy appears to be higher in certain extrastriate areas. These 

include V2, V3, V3AB and LO1. However, the pattern of accuracies was 

somewhat variable between participants.  
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Figure 6.6 MVPA accuracy based on a neuronal network classifier for three 

observers. Classification was computed directly on the 100 voxels with the highest 

main effect in each area. The order of voxels was shuffled 100 times and MVPA 

accuracy was computed for each shuffle. Error bars are standard deviations 

computed over the 100 reshuffles.  
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Figure 6.7 MVPA accuracy computed for all relative phase combinations. Brighter 

colours indicate a higher classification accuracy for the particular pair of phases. 

6.3 Discussion 

This chapter investigated the encoding of spatial phase in the cortex. Phase 

information is essential for perception, because important visual features like 

edges emerge at locations of maximal local phase coherence. It is also possible 

that phase congruency might provide a cue for the detection of object boundaries. 

Detection of relative phase requires integration of spatial frequency information 
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across multiple spatial scales. The pooling over different spatial frequency bands 

has been shown to emerge from the statistical properties of natural images. This 

is potentially of great importance because it has been suggested that the human 

visual system has evolved to optimally process stimuli from the natural 

environment (Simoncelli and Olshausen 2001). 

Previously, spatial phase was studied psychophysically (Badcock 1984a; b; 

Burr 1980; Burr et al. 1989), or with electrophysiology (Aronov et al. 2003; De 

Valois and Tootell 1983; Mechler et al. 2002; Pollen et al. 1988). This is one of the 

first studies (see also Henriksson et al. 2009) that looked into phase encoding in 

the human cortex using fMRI. We created compound gratings from four 

superimposed sinusoidal components, added in different relative phase, φ. 

Relative phase was varied in eight equal steps around the phase circle (0, 22.5, 

45, 67.5, 90, 112.5, 135, 157.5). 

First, we computed the mean response to individual stimuli in each ROI. 

Interestingly, different participants responded more strongly to different relative 

phase combinations. This phase preference in individual participants was 

observed in all visual areas included in the analysis. Our results are in agreement 

with those of Mechler et al. (2002) who found a broad distribution of relative phase 

the macaque V1. However, our results do not confirm their observation that there 

is a slight bias towards line-like (φ=90) and possibly edge-like (φ=0) stimuli. Such 

a bias was observed in one of our participants (JWP); however, different 

participants were biased towards different phases.  

Next, we used an MVPA neuronal network algorithm to classify responses 

between pairs of different relative phase. Spatial phase stimuli were successfully 

discriminated in a number of visual areas. Although V1 could discriminate some 

phase combinations, relative phase was more efficiently discriminated in higher 

regions. However, the pattern of accuracies was somehow variable between 
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participants. Our results are in agreement with electrophysiology studies indicating 

that relative phase is coded as early as in V1 (De Valois and Tootell 1983; 

Mechler et al. 2002), but point to the direction that phase might be more efficiently 

represented in extrastriate areas.! 

All in all, our study showed that several visual areas, including the primary 

visual cortex, are sensitive to the difference of phases across spatial frequency 

bands. However, phase coherence might be optimally encoded in extrastriate 

areas. These findings shed more light on the encoding of phase congruence in 

the cortex and potentially the perception of edges and object boundaries in natural 

stimuli. 

 !
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7 General discussion 

Functional magnetic resonance imaging (fMRI) has become a ubiquitous 

tool in cognitive neuroscience. Despite its limitations, it is currently the best 

technique we have for studying brain mechanisms, ranging from low-level visual 

processes, to high-level tasks such as recognition and memory. Considering the 

articles speculating on potential applications, it is believed that fMRI has a bright 

future in basic neuroscience research. However, fMRI is not and will probably 

never be a mind reader, as some of the proponents of the technique suggest, nor 

is it a worthless and non-informative ‘neo-phrenology’ that is condemned to fail, as 

it has been occasionally argued. 

The main advantage of the technique is that it allows the non-invasive 

measurements of cortical responses in the human brain, but only on the millimeter 

scale. Because a typical voxel contains many thousands of neurons with varied 

properties, establishing the selectivity of their responses directly is impossible. In 

recent years, two methods using fMRI aimed at studying the selectivity of 

neuronal populations on a ‘subvoxel’ scale have been heavily used The first 

technique, fMRI adaptation, relies on the observation that the fMRI response in a 

given voxel is reduced after prolonged presentation of a stimulus, and that this 

reduction is selective to the characteristics of the repeated stimuli. The second 

technique, multi-variate pattern analysis (MVPA), makes use of multi-variate 

statistics to recover small biases in individual voxels in their responses to different 

stimuli. It is thought that these biases arise due to the uneven distribution of 

neurons (with different properties) sampled by the many voxels in the imaged 

volume. 



7. General discussion   

 155 

Although in recent years these two techniques have been heavily used, they 

have never been compared explicitly, and little is known about their relative 

sensitivities. One major objective of this thesis was to compare the two techniques 

and evaluate their relative sensitivities. A second objective was to use these two 

techniques to study early- and mid-level processing in the human visual cortex. 

The first experiment (Chapter 3) investigated whether adaptation and multi-

variate pattern classification analyses (MVPA) provide consistent results about the 

properties of the cortical areas under study. To address this question, this thesis 

compared the two methods for their ability to detect the well-documented 

orientation selectivity in early visual cortex.  

Both methods were clearly capable of revealing orientation selectivity in 

early visual areas (V1, V2, V3). For the MVPA method this has been shown 

previously by several studies (Haynes and Rees 2005; Kamitani and Tong 2005). 

For adaptation a number of groups have shown that orientation selectivity can be 

demonstrated but the pattern of data has been more variable, and seems critically 

dependent on the choice of experimental parameters (Boynton et al. 1996; Fang 

et al. 2005; Larsson et al. 2006).  

This thesis found less selectivity to orientation in later visual areas (V3AB, 

LO1, LO2 and VO1), using both MVPA and adaptation methods. The correlation 

between the results across visual areas was high indicating that the two methods 

are in strong agreement, at least in the domain of orientation specificity. This may 

not have been the case and increases our confidence in both methods. It also 

potentially informs our understanding of orientation selectivity in the areas studied. 

Electrophysiology studies have demonstrated that orientation selectivity is a 

common feature of early visual areas. This is well-documented for V1 and V2, but 

has been less explored in V3 (Lennie, 1998). FMRI adaptation experiments had 

suggested a degree of selectivity, but this may have been simply a result of 
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adaptation in earlier areas, resulting in reduced input to V3 (Larsson et al., 2006). 

The fact that we find high MVPA performance, as well as orientation-selective 

adaptation in this area, increases the confidence that human V3 does indeed 

code for stimulus orientation.  

One exception to the strong correlation between the areas was V4 

(although the difference was not statistically significant), which appeared to show 

relatively strong orientation-selective adaptation but with rather poor MVPA 

performance in this stimulus domain. There are several reasons why this might be 

the case. It may result from the spatial organization of V4; for pattern analysis to 

work there must be some inhomogeneity in the spatial distribution of cells, such 

that an individual voxel is more or less tuned to one of the stimuli presented. 

Therefore, it may be that V4 has orientation-selective neurons, in agreement with 

electrophysiological studies in the macaque (Desimone and Schein 1987; 

Maunsell et al. 1991), but that these are not clustered in the same way as in V1, 

V2 and V3. This case is further supported by Vanduffel et al. (2002) who found 

orientation-selective neurons in the macaque V4 to be clustered irrespective of 

their preferred orientation.  

In order to determine how each technique depended on stimulus 

orientation, the above experiment was performed with smaller orientation 

differences. MVPA performance remained above chance for all pairs of 

orientations tested and was remarkably consistent between participants.  

Adaptation results were in agreement with previous data (Fang et al. 2005). 

Selective adaptation failed to distinguish stimuli with smaller separations; for a 50º 

separation it failed in one of the three individuals, for a 25º separation it failed in 

all participants.  

It should be noted that these results might not be mirrored in other domains 

of visual selectivity. For instance, measuring the degree of selectivity to spatial 
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frequency, direction of motion or faces may give very different results if the 

neurons that code these dimensions in a particular area adapt strongly, but are 

only weakly clustered. Clearly however, in the case of orientation selectivity 

measurements, the multi-variate pattern analysis was rather more sensitive than 

the selective adaptation measure, although the two methods were in close 

agreement for most visual areas. 

Having directly compared fMRI adaptation and MVPA in Chapter 3, Chapter 

4 used both techniques to investigate how local orientation signals are combined 

and detected in intermediate levels of visual processing. To study this the thesis 

used plaid stimuli, made of the linear sum of two sinusoidal gratings. Although 

plaids have been more typically used to study the combination of motion signals 

(Huk and Heeger 2002; Movshon et al. 1986; Rust et al. 2006) they have also 

been used to study the conjunction of form signals (Carandini et al. 1997a; 

Georgeson and Meese 1997; Peirce and Taylor 2006). Peirce and Taylor (2006) 

presented psychophysical evidence that the visual system has mechanisms 

sensitive to the overall form of compound patterns rather than to their 

components. This thesis built on this idea by using fMRI adaptation and MVPA to 

study plaid selectivity in the visual cortex. As in Chapter 3, the MVPA was far 

more sensitive in revealing plaid selectivity. Although the results we obtained were 

somehow weak, they pointed to the direction that V2 might play a role in Fourier 

component integration. 

The function of V2 neurons, however, is not very clear despite the 

prominent location of V2 early in the visual hierarchy. It is known that V2 is 

essential for vision. While a lesion in V2 does not affect visual acuity and contrast 

sensitivity, it strongly affects a monkey’s ability to perform more complex spatial 

tasks (Merigan et al. 1993). But up to recently no stimulus was found that excites 

these cells in a way that reveals their obvious contribution to vision. Perhaps this 
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is why V2 remains relatively unstudied compared to other regions such as V1 and 

MT. Recently, Ito and Komatsu (2004) suggested that V2 neurons in the macaque 

respond to stimuli consisting of angled lines placed in the center of each cell’s 

receptive field. These stimuli resembled more the contours used in Chapter 5. 

These results point to the direction that one of the roles of V2 might be to combine 

local orientation signals into more complex features.  

Chapter 5 built on these ideas and investigated how the outputs of V1 are 

organised and combined by the visual system in order to represent more complex 

visual features using contour stimuli. The experiments were based on the 

assumption that conjunctions of local orientation signals might be detected in 

intermediate levels of visual processing in the form of curves or corners. Several 

investigators have psychophysically studied how features are integrated into 

visual contours using curved stimuli in various different forms (Field et al. 1993; 

Hess and Field 1993; Loffler et al. 2003; Watt and Andrews 1982). Recent studies 

have reported psychophysical shape aftereffects that do appear to have a basis in 

global shape processing rather than local orientation (Gheorghiu and Kingdom 

2007; 2009; 2008; Hancock and Peirce 2008; Suzuki 2001; 2003).  

Previous fMRI studies that examined mid-level visual mechanisms have 

used, for example, contours of co-aligned Gabor elements (Altmann et al. 2003; 

Kourtzi and Huberle 2005; Kourtzi et al. 2003), stereoscopic shape contours 

(Kourtzi and Kanwisher 2001), random dot stereograms (Vinberg and Grill-

Spector 2008), or glass patterns (Ostwald et al. 2008). In the experiments 

described in Chapter 5, contour stimuli were constructed from two luminance 

modulated sinusoidal gratings, with different orientations. We believe that, due to 

their simplicity, these stimuli are more appropriate for studying conjunctions of 

local orientation signals. In the first experiment an event-related adaptation design 

was used. Contour-selective adaptation effects were evident in some instances 
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but these were not consistent across participants. Why did the experiment fail to 

reveal contour adaptation despite the consistent effect obtained from the 

psychophysics (Hancock and Peirce 2008)? The discussion in the corresponding 

chapter lists several reasons for that. For example, it is known that the choice of 

probe contrast can affect the amount of adaptation in certain visual regions (e.g. 

Fang et al. 2005; Larsson et al. 2006). It is, thus, possible that high contrast 

probes could increase the contour adaptation effect in extrastriate areas.  

In the second experiment of Chapter 5, a pattern classification analysis was 

used to examine which areas can better discriminate between contour stimuli and 

their components. To control for the potential problem of length-tuned neurons 

affecting the MVPA accuracy, a control condition was introduced. High 

classification accuracy was obtained in most areas tested but no difference was 

obtained between the test and control condition, with the exception of area LO1 in 

one of the participants. The results suggested that the cortex could successfully 

discriminate between the compound and the components, but the interpretation of 

the results was not straightforward.  

The results obtained in Chapter 5, helped us reconsider the experimental 

design and parameters. As mentioned in the corresponding discussion sections 

both experimental paradigms have been redesigned. The adaptation protocol has 

been modified to increase its sensitivity and the MVPA paradigm has been altered 

so that it generates results that are more straightforward to interpret. The new set 

of experiments is an extension of experiments performed in this thesis. Hopefully, 

these new studies will provide insight into the nature of contour integration 

mechanisms in the cortex. 

In the final experimental chapter (Chapter 6) this thesis investigated the 

encoding of spatial phase. Phase information appears to be essential for 

perception, because important visual features like edges emerge at locations of 
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maximal local phase coherence. Detection of relative phase requires integration of 

spatial frequency information across multiple spatial scales. The pooling over 

different spatial frequency bands has been shown to emerge from the statistical 

properties of natural images. This is potentially of great importance because it has 

been suggested that the human visual system has evolved to optimally process 

stimuli from the natural environment (Simoncelli and Olshausen 2001).  

When fMRI responses were considered in a uniavariate manner, this thesis 

showed a broad distribution of relative phase in the cortex, without a preference to 

particular phase congruence across participants. Individual subjects were biased 

towards certain phase combinations but this bias was different in different 

participants.  Next, we used MVPA analysis to classify responses between pairs 

of different relative phase. This thesis showed that several visual areas, including 

the primary visual cortex, were sensitive to relative phase combinations. However, 

we showed that phase coherence might be optimally encoded in extrastriate 

areas. 

All in all, this thesis clearly showed that it is possible to study the selectivity 

of neuronal sub-populations on a scale smaller than conventional fMRI resolution. 

This can be achieved by means of fMRI adaptation or MVPA analyses. We 

showed, using a variety of stimuli, that the MVPA was more sensitive in detecting 

neuronal selectivity. MVPA methods have evolved extensively in the last few 

years and it is expected that they will continue to evolve, as better algorithms 

become available in the coming years. Improvements in the spatial resolution of 

fMRI will make it possible to resolve even finer-grained cognitive distinctions. For 

all of these reasons, we believe that MVPA has a bright future as a tool for 

characterising how information is represented and processed in the brain. 

Regarding the second theme of this thesis, we clearly showed how 

orientation selectivity is encoded in the cortex using two different, independent 
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methods. This thesis also tried to investigate how local orientation and spatial 

frequency signals are combined in later steps of visual processing. We presented 

evidence that V2, as well as other extrastriate areas such as V3, V3AB and LO1 

might play such a role. These experiments were the first step in this direction. The 

corresponding chapters suggested new experiments, which will extend the 

findings of this thesis and hopefully will shed more light on mid-level vision 

processing.  

!
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