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Abstract

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent of a group of

persistent organic pollutants (POPs). The aryl hydrocarbon receptor (AhR) has a

high affinity for these dioxin-like compounds with activation increasing

transcription of CYP1A1. The aim of this paper was to measure the agonistic and

potential antagonistic effects of four of the most prevalent and potent dioxin-like

agonists: 3-Methylcholanthrene (3-MC), 2,3,7,8-Tetrachlorodibenzofuran

(TCDF), 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) and 3,3’,4,4‘,5-

Pentachlorobiphenyl (PCB 126), comparing them with TCDD. An example of a

suspected partial agonist (DF 203) and an antagonist (CH 233191) were also

assayed. A method of measurement that uses real-time PCR was calibrated to

quantify the induction of CYP1A1. Potency determination for different incubation

times was also investigated using 3-MC and TCDD. An increase in EC50 (~40

fold) between 4 and 24 hours was observed for 3-MC, whereas a lesser difference

(~4-fold) was seen with TCDD. This showed that time is a clear variable when

measuring CYP1A1 induction. Four individual determinations of the potency of

TCDD at inducing P4501A1 gave an average EC50 = 35 pM (± 5.8 pM),

demonstrating the reproducibility and reliability of the method. Successful

measurement of the agonistic properties of the four compounds was characterised:

3-MC EC50= 2.3 nM (Confidence interval = 1.3 - 3.8 nM); TCDF = 5.8 nM (2.8 -

11 nM); PeCDF = 2.2 nM (1.4 - 3.4 nM); PCB 126 = 765 pM (645 - 907 pM).

However, no antagonistic properties were observed demonstrating that within a

TCDD containing mixture, they will have no effect on the prediction of TCDD-

like toxicity. Nevertheless, the method successfully characterized antagonism in

the positive control compounds, DF 203 and CH 223191.
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1. Introduction

1.1 AhR-ligand dependant transcription of CYP1A1

1.1.1 Aryl Hydrocarbon Receptor (AhR)

The Aryl hydrocarbon receptor (AhR) is a ligand activated transcription factor

which was first characterised by Poland and co-workers in 1976 (Poland et al.,

1976). The AhR regulates the expression of a whole host of genes specifically

CYP1A1 and CYP1A2. AhR has a basic-helix-loop-helix (bHLH) near the N-

terminus. Evidence shows the basic part is for DNA binding and the Helix-loop-

helix (HLH) relates to protein-protein dimerization (Dension et al., 2002;

Whitlock, 1999). AhR belongs to the PAS (Per-Arnt-Sim) family of evolutionary

genes which include drosophila genes; Per and Sim and the mammalian Arnt gene

regions (Whitlock, 1999).

Figure 1.1: Domain structure of AhR – Adapted model of AhR structure from Denison et al.

(2002). bHLH: basic helix-loop-helix, NLS: Nuclear localization sequence, PAS: Per-Arnt-Sim,

A: Per A, B: Per B, hsp90: heat shock protein-90KDa, AhR: Aryl Hydrocarbon Receptor, Arnt:

Aryl hydrocarbon Receptor Nuclear Translocator, DRE: Dioxin responsive element.
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The AhR protein partner Arnt (Aryl Hydrocarbon Receptor Nuclear Translocator)

is also included in this family which all have a bHLH (except Per) binding it both

to the DNA and to other proteins. The precise role of each region is unknown, but

together they influence protein-protein binding, DNA recognition and ligand

binding (Whitlock, 1999). Further along the AhR is the C terminal segment that

contains the transactivation domain. The dormant AhR is found in the cytoplasm

and consists of a multi-protein complex of chaperone proteins (Denison et al.,

2003; Whitlock, 1993) which unbind from the AhR once it has entered the

nucleus. These chaperone proteins include two chaperone proteins called hsp90

(heat shock protein-90KDa), an X-Associated protein (XAP2) and a 23KDa co-

chaperone protein; p23 (Bell and Poland, 2000; Denison et al., 2003). According

to Bell and Poland (2000) the hsp90 may stop the unliganded Ah receptor from

binding with the DNA. The AhR can be induced by both halogenated aromatic

hydrocarbons (HAH) and polycyclic aromatic hydrocarbons (PAH). Induction is

an adaptive response that facilitates detoxification by increasing the levels of

metabolising enzymes.

1.1.2 Cytochrome P450 and CYP1A1

Cytochrome P450 is a diverse super family of hemoproteins, which in humans,

can be found in the inner membrane of the mitochondria or the endoplasmic

reticulum. The cytochromes metabolise thousands of endogenous and exogenous

compounds and play an important role in hormone synthesis and breakdown. It is

the most important element of oxidative metabolism in humans. Activation of the

AhR will induce the transcription of P450 enzymes including CYP1A1.
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CYP1 enzymes are usually involved in drug and steroid metabolism. CYP1A1 is a

gene located on chromosome 15 between 15q22 and 15q24 which encodes the

P450 enzyme CYP1A1, involved in xenobiotic and drug metabolism. Normally,

CYP1A1 has a role in xenobiotic metabolism in which it oxygenates lipophillic

compounds to inactive compounds however there is evidence that shows oxidative

DNA damage due to the breakdown products (Park et al., 1996).

1.1.3 Activation of AhR-mediated events

The AhR is activated by specific ligands which must display binding specificity to

activate the receptor. Once binding of the ligand to the AhR has occurred, the

ligand-AhR complex undergoes a conformational change leading to the AhR

exposing the nuclear localising sequence. The ligand-AhR complex translocates to

the nucleus (Hord et al., 1994; Pollenz et al., 1994), where the chaperone complex

unbinds from the ligand-AhR allowing the complex to bind with another protein

called Arnt producing a heterodimer. Binding of the ligand-AhR complex with

Arnt has been shown to increase the binding affinity for DNA (Hankinson et al.,

1995; Probst et al., 1993; Whitlock, 1993).
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Figure 1.2: The mechanism of ligand activated AhR transcription – 1: Binding of AhR to

ligand. 2: Translocation from cytoplasm to nucleus. 3: Unbinding of chaperone proteins from

AhR. 4: Binding of AhR and Arnt to form heterodimer. 5: Binding of AhR:Arnt complex to DRE.

6: Transcription of CYP1A1 RNA. AhR: Aryl hydrocarbon receptor, Arnt: Aryl hydrocarbon

Receptor Nuclear Translocator, DRE: Dioxin responsive element. Figure was adapted from

Denison et al. (2003).

An enhancer is located upstream of the CYP1A1 coding region and contains

multiple copies of binding sites for the AhR-Arnt heterodimer (Denison et al.,

1988a; Denison et al., 1988b). These specific locations are known as xenobiotic-

or dioxin-responsive elements (XRE or DRE) and have the sequence of 5’-

TNGCGTG-3’ (Denison et al., 1988a; Whitlock, 1999). The more proximal

control element has the functional properties of a transcriptional promoter, located

immediately upstream of the CYP1A1 gene (Jones et al., 1990). The promoter

contains several other binding sites for other transcriptional factors but not for

AhR or Arnt. The promoter contains a guanine-rich region, a TATA box and

CCAAT box transcriptional factors (Whitlock, 1999). The promoter requires an

Ligand

AhR complex

Chaperone

Proteins

Arnt

CYP1A1 RNA

AhR:Arnt:DRE

1.

2.

3.

4.

5.
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Cytoplasm

Nucleus



Richard Wall

5

operational enhancer and all protein-DNA interactions are AhR and Arnt

dependant. Therefore it has been suggested that the enhancer controls the

promoter, with the prospect that the promoter attaches in some way to the

AhR/Arnt complex with the enhancer via the TATA box, folding the DNA

(Whitlock, 1999).

1.2 Ligands of AhR and Agonism

1.2.1 Definition of Agonism

Interactions of ligands with receptors are assumed to follow the law of mass

action, with the way they interact with the receptor measured by two properties,

affinity and efficacy. Affinity is the property of attraction between a ligand and

the receptor, whereas efficacy is the property that allows the ligand, once bound,

to produce a response (Kenakin, 1997). This allows ligands to be split into several

categories of full agonists, partial agonists, antagonists and inverse agonists.

Another property allowing ligands to be categorised and compared is intrinsic

efficacy. Intrinsic efficacy is the measure of the stimulus per unit of drug-receptor

complex (Urban et al., 2007). A full agonist would have a high intrinsic efficacy

whereas a competitive antagonist would have none, however the antagonist would

still bind to the receptor blocking interaction with an agonist. A full agonist will

produce a maximal response irrelevant of its affinity for the receptor whereas a

pure antagonist won’t produce any response. A partial agonist has a lower

intrinsic efficacy than a full agonist and does not produce a maximal response

irrelevant of the dose. It would be assumed that a full agonist would work as

efficiently as the endogenous ligand for that receptor, however in the instance of

the AhR, a receptor responsible for xenobiotic metabolism, the exact endogenous
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ligand is unknown as the receptor binds to a large variety of ligands both synthetic

and naturally occurring. Potency is the expression of the activity of the ligand in

terms of concentration or the amount needed to provide an observable response

(Jenkinson et al., 1995). The effective dose at which provides 50% of the maximal

response (EC50) can be used to estimate the potency of an agonist. The lower the

concentration needed for an effect, the higher the potency. TCDD is one of the

most potent inducers of the AhR. A competitive antagonist will compete with the

agonist for the receptor but can be over come by increasing the concentrations of

the agonist. This means the dose-response curve will shift to the right but the

agonist will still have the same maximal response. Contrary to this is non-

competitive antagonism where the antagonist binds at a different site from the

agonist, or binding covalently to the same site and can’t be overcome by

increasing the concentration of agonist.

The definition of a partial agonist; is an agonist which binds with high affinity to a

receptor, but activates only a small proportion of receptors hence a low efficacy.

In some instances the agonist may appear to have only agonist properties but

when in the presence of another compound, may also elicit antagonist effects by

reducing the potency of the other compound. Schild regression analysis is a useful

way of estimating the agonist or antagonistic response caused by the receptor.

Using a dose response curve of the agonist in the presence and absence of various

concentrations of antagonist, it is possible to calculate the potency of a partial

agonist or antagonist (Calderone, 1998).
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1.2.2 AhR agonists

1.2.2.1 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent of a family of

halogenated aromatic hydrocarbons (HAHs). TCDD induces a diverse spectrum

of phase I and phase II drug metabolising enzymes including CYP1A1, CYP1A2

and CYP1B1, and their dependant activities, glutathione s-transferase,

glucuronosyl transferase and NAD(P)H quinine oxidoreductase (Safe, 1986;

Whitlock, 1993). Proteins modulated by TCDD include growth and diffentiation,

cytokines, xenobiotic metabolising enzymes and enzymes involved in the

metabolism of fatty acids. TCDD is both highly stable and lipophillic, and is also

one of the most potent known CYP1A1 inducers (Whitlock, 1993). TCDD is

relatively resistant to metabolism and has a half life of 17-31 days in rats and 10

years in Humans (Van den Berg et al., 1994; Whitlock, 1993).

O

OCl

Cl

Cl

Cl

2,3,7,8-Tetrachlorodibenzo-p-dioxin

Figure 1.3: Chemical formula for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)

TCDD is absorbed primarily through the consumption of dairy and fat, where it

accumulates. In animals, TCDD has differing effects with a wide range of

biological effects including changes to metabolic pathways, immunological

changes, teratogenic effects and neoplasia (Poland et al., 1982; Safe, 1986;

Walker et al., 2005; Whitlock, 1993). TCDD originated as a by-product of plastic

and general industrial manufacture, but its production, even unintentional, was
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banned in the 1970-1980s. The TCDD levels in the environment have decreased

over the last three decades but TCDD is still a much studied compound due to its

much higher toxicity compared to other, more abundant environmental pollutants.

One of the most notable endpoints of TCDD poisoning is Chloracne, an acne-like

eruption of black heads (Tindall et al., 1985). There is also evidence that TCDD

causes an increased likelihood of cancer in humans (Manz et al., 1991) but most

research agrees that even the highest environmental background level of TCDD

will not increase the initiation of cancer (Aylward et al., 1996; Bertazzi et al.,

1989; Brown et al., 1998). Furthermore, evidence suggests that TCDD is more of

a promoter than an initiator, with humans being less sensitive to TCDD than

animal models (Aylward et al., 1996; Ema et al., 1994; Harper et al., 2002).

During the Vietnam War, Agent Orange was a herbicide used by the Americans to

remove the foliage covering the Vietnam army. The herbicide, which rapidly

increases plant leaf growth before defoliating them, was a mixture of two

chemicals: 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-

trichlorophenoxyacetic acid (2,4,5-T). However, it was later found that the

herbicide contained TCDD as a by-product in the production of 2,4,5-T. Authors

have found large concentrations of TCDD in milk lipid and blood samples of the

people involved in the dispersal of the herbicide but have found that current levels

are decreasing to that found in industrialised areas (Kahn et al., 1988; Schecter et

al., 1995).

1.2.2.2 3-Methylcholanthrene (3-MC)

3-Methylcholanthrene (3-MC) is a polycyclic aromatic hydrocarbon produced

when burning organic compounds at very high temperatures. It is a known potent
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carcinogen, implicated in prostate cancer, which is used in study models as an

inducer of cancer (Malins et al., 2004; Sekimoto et al., 2004; Wood et al., 1978;

Xu et al., 2005).

3-Methylcholanthrene

Figure 1.4: Chemical formula for 3-Methylcholanthrene (3-MC)

Poland and Glover (1974) demonstrated that 3-MC activated the AhR and induced

CYP1A1. The authors also found that induction by 3-MC decreased with time,

explaining this as metabolism. This has since been confirmed by other authors,

although the comparison of potency and affinity with TCDD previously quoted by

Poland and Glover (1974) has been considerably refined (Riddick et al., 1994;

Sekimoto et al., 2004; Xu et al., 2005). Research has shown the 3-MC has a

slightly lower binding affinity (Okey et al., 1982) and a lower potency (Riddick et

al., 1994) in comparison to TCDD.

1.2.2.3 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-

Pentachlorodibenzofuran (PeCDF)

2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran

(PeCDF) are both polychlorinated dibenzofurans. TCDF is a halogenated aromatic

hydrocarbon which has no known industrial use but is still widespread in the

environment (Birnbaum et al., 1980). Both TCDF and TCDD have a similar

structure with TCDF having a slightly lower affinity for the AhR (Safe et al.,

1990).

CH
3
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O

Cl

Cl

Cl

Cl
O

Cl

Cl

Cl

Cl

Cl

2,3,7,8-Tetrachlorodibenzofuran 2,3,4,7,8-Pentachlorodibenzofuran

Figure 1.5: Chemical formula for 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) and 2,3,7,8-

Tetrachlorodibenzofuran (TCDF).

Polychlorinated dibenzofurans (PBDFs) are often found as a by-product of PCB

production although the only large scale incident of exposure was in Japan

(Masuda et al., 1985). Symptoms are similar to that of TCDD and include

chloracne, gastrointestinal problems and fatigue. PeCDF is an important dioxin-

like compound because it contributes a considerable amount to the TEQ

estimation (Budinsky et al., 2006). TCDF has a half-life of only 2 days in rats

suggesting the compound is rapidly metabolised (Birnbaum et al., 1980; Clemons

et al., 1997).

1.2.2.4 3,3’,4,4‘,5-Pentachlorobiphenyl (PCB 126)

Polychlorinated biphenyls (PCBs) have the same mechanism of action as dioxin-

like compounds with 3,3’,4,4‘,5-Pentachlorobiphenyl (PCB 126) being the most

potent of them. PCBs had a wide spread use until they were banned in the 1970s

due to their high toxicity and ability to bioaccumulate. PCBs were used as

coolants for transformers and stabilizing additives in electrical insulation, flame

retardants, sealants and adhesives.
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3,3’,4,4‘,5-Pentachlorobiphenyl

Figure 1.6: Chemical formula for 3,3’,4,4‘,5-Pentachlorobiphenyl (PCB 126)

Induction of PCB 126 is well researched estimating it to be approximately 10-fold

less potent than TCDD (Peters et al., 2004; Sanderson et al., 1996; Silkworth et

al., 2005). Due to this large amount of research on PCB 126, the WHO have

authorised its use as a reference compound, as an alternative to TCDD (Van den

Berg et al., 2006).

1.2.3 AhR Partial Agonists and Antagonists

1.2.3.1 DF 203

Also tested in this study was a putative partial agonist: 2-(4-Amino-3-

Methylphenyl)Benzothiazole (DF 203). DF 203 is a synthetic anti-tumour agent

(Chua et al., 2000; Elferink et al., 2003; Loaiza-perez et al., 2002), which has

known agonist properties (Bazzi, 2008; Chua et al., 2000; Loaiza-perez et al.,

2002). However, studies by Bazzi (2008) demonstrate that the compound has a

high binding affinity (Ki = 9.9 nM 95% CI = 5.3 - 18.17 nM) but through

CYP1A1 induction assays, found that DF 203 is a weak agonist. This difference

between the high binding affinity and low efficacy may indicate that DF 203 has

partial agonistic/antagonistic properties.
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2-(4-Amino-3-Methylphenyl)Benzothiazole

Figure 1.7: Chemical formula for 2-(4-Amino-3-Methylphenyl)Benzothiazole (DF 203)

When sensitive cells are treated with DF 203, it is metabolised to 2-(4-

aminophenyl-3-methylphenyl)-6 -hydroxybenzothiazole (6-OH 203 or IH 130). 6-

OH 203 is a potential antagonist that inhibits CYP1A1 (Bazzi, 2008).

1.2.3.2 CH 223191

As well as compounds inducing the AhR and increasing the transcription of

CYP1A1, there are also compounds which inhibit induction called antagonists.

One example of an AhR antagonist is 2-methyl-2H-pyrazole-3-carboxylic acid (2-

methyl-4-o-tolylazo-phenyl)-amide (CH 223191) (Bazzi, 2008; Kim et al., 2006).

N
NN N N

O
H

CH
3

CH
3

2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide

Figure 1.8: Chemical formula for 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-

tolylazo-phenyl)-amide (CH 223191)

Bazzi (2008) demonstrated that even at concentrations of 10 µM, CH 223191

showed no agonist effects, concluding that it was a pure antagonist. Kim et al.,

(2006) showed that CH 223191 prevented toxic responses caused by TCDD in

both in vivo and in vitro models, concluding that it could be used as a preventative
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agent against TCDD-related toxicity (Kim et al., 2006). TCDD, in the presence of

a suitably large concentration of this compound, should have no effects on

induction of CYP1A1, however at lower concentrations of CH 223191, the

antagonist will have partial effects on the induction threshold but at some point

the concentration of TCDD will overpower the antagonist.

1.3 Human Health

1.3.1 Persistent Organic Pollutants

Dioxins, Furans and Polychlorinated biphenyls (PCBs) are all persistent organic

pollutants (POPs). Dioxins and furans have been unintentionally produced in the

production industry or by incineration. It’s generally accepted that these POPs all

undergo a similar pathway of toxicity. The aryl hydrocarbon receptor (AhR) has a

high affinity for certain dioxin-like compounds. Activation of the AhR increases

the transcription of CYP1A1 which is involved in xenobiotic metabolism. 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD) is an agonist of the AhR and is the most

characterised of the AhR ligands. Due to the complex mixtures of POPs in the

environment, toxic equivalency factors (TEF) for the majority of dioxin-like

compounds have been established to allow risk assessment of the toxic effects of

dioxin congeners. These are calculated in relation to TCDD and can be used to

determine the total toxic TCDD-equivalent dose (TEQ) (Van den Berg et al.,

2006).

1.3.2 Toxic Equivalency Factors

In 2005, the World Health Organisation (WHO) re-evaluated a method of

estimating the toxic potency of environmental mixtures (Van den Berg et al.,
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2006). The method involves estimating the relative effect potency (REP) for each

compound which had been derived from various research studies on each

chemical. At the meeting, the committee used this data to calculate the toxic

equivalency factor (TEF). In the environment these AhR agonists are in complex

mixtures so it is necessary to estimate the toxicity of the whole mixture. An

additivity method is used which combines each individual TEF in the mixture and

multiplies it with the concentration. This new value is known as the total toxic

equivalency (TEQ) and is used to estimate the total TCDD-like activity of the

mixture (Van den Berg et al., 2006).

Congener TEF Value

2,3,7,8-TCDD 1.0

1,2,3,7,8-PeCDD 1.0

1,2,3,6,7,8-HxCDD 0.1

OCDD 0.0003

2,3,7,8-TCDF 0.1
2,3,4,7,8-PeCDF 0.3

1,2,3,7,8-PeCDF 0.03

1,2,3,6,7,8-HxCDF 0.1

PCB 77 0.0001

PCB 81 0.0003

PCB 126 0.1

PCB 169 0.03

Table 1.1: TEF Values - Shows a selection of examples for TEF values for dioxin-like

compounds (Van den Berg et al., 2006).

The TEF for each compound is calculated in comparison to a reference

compound, TCDD. In order for a compound to be included in the TEF system it

must have a similar structural relationship to Polychlorinated dibenzo-p-dioxins

(PCDDs) and undergo the same mechanism of toxicity via the AhR receptor. The
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compound also needs to be persistent and show signs of biomagnification. (Van

den Berg et al., 2006). A database of information on REP distribution and point

estimates was established by Haws et al. (2006). With regards to error calculation,

the authors describe the method as quantitative allowing uncertainty analysis to

measure the strength of the REP calculated (Haws et al., 2006). The REP is

calculated using dose-response curves for the agonist and TCDD. The EC50 of the

TCDD curve is divided by the EC50 of the agonist however this system requires

that the same maximum response is reached by both compounds. Further work

has concentrated on how the REPs are estimated and weighted to produce the

TEF. This includes problems with the data used to estimate the TEF which can be

derived from different dosage methods making a large difference in the potency

estimation of the TEF (Devito et al., 1995). Therefore the WHO meeting

concluded that a standardized method of estimating the REP was required before

it can be used to further estimate the TEF. However the main issue, which will be

discussed further, relates to the method of predicting the TEQ of a mixture by

applying the additivity approach and factors which may affect it.

1.3.3 Limitations of TEQ predictive method

Although AhR agonists have varying potencies, it is thought that they all undergo

a similar pathway of toxicity by binding to the AhR, and causing ligand-

dependent induction of a gene battery (Whitlock, 1993; Wu and Whitlock, 1993).

It is therefore believed that the relative potency of each compound in a mixture, in

relation to concentration, can be added together to predict the potency of the full

mixture. The additivity method used to calculate the TEQ, combines each

individual TEF in the mixture and multiples it with the concentration. This system
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assumes that all the compounds are agonists and will have no antagonist activity

in the presence of other AhR agonists. However, if an AhR agonist also has

antagonistic properties, this would affect the overall toxic potency of the mixture

by potentially reducing it. An evaluation of the TEF and TEQ process by the

WHO stated that more research needs to be done in this area (Van den Berg et al.,

2006). Numerous authors have undertaken experimental analysis of the additivity

approach and demonstrated the reliability of the method for risk assessment

(Ahlborg et al., 1994; Fattore et al., 2000; Hamm et al., 2003; Safe, 1990, 1994;

Walker et al., 1996). A more recent study into mixture characteristics was done by

Walker et al., (2005) assessing the TEF additivity model by assaying TCDD, PCB

126 and PeCDF, individually and in a mixture. The authors concluded that the

TEQ system did not accurately predict potency but instead supported the use of a

potency adjusted dose-additive approach discussed in a previous paper

(Toyoshiba et al., 2004). Using this method, the authors support the future use of

the TEF system in cancer risk assessment (Walker et al., 2005). Toyoshiba and

co-workers (2004) disagreed with the additivity approach used by the WHO TEQ

comparing it unfavourably against same-shape fit and simple additivity models

(Toyoshiba et al., 2004). They concluded that, due to differences in dose-response

shape of compounds and the lack of dose additivity, the relative potency factors

used to calculate the TEFs are not consistent with the WHO TEFs.

Further concerns include the use of the additivity approach for the use of dietary

intake predictions. Due to the presence of naturally occurring AhR agonists and

antagonists in the body, accurate prediction of TEQ becomes very complicated

(Safe, 1998). An example of a naturally occurring antagonist is resveratrol (3,5,4’-

trihydroxystilbene) found in red wine. According to research by Casper et al.,
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(1999), resveratrol competes with TCDD and other AhR ligands, and inhibits the

induction of CYP1A1. The antagonist binds to the AhR receptor, displacing

TCDD, translocates to the nucleus and binds to the relevant enhancer site on the

DNA but doesn’t induce transcription of the CYP1A1 gene (Casper et al., 1999).

Zhang et al. (2003) measured the agonist/antagonist effects of several flavonoids

and found that three of the compounds, kaempferol, quercetin and Luteolin, had

antagonistic effects in the presence of TCDD whereas a selection of the other

ligands tested had slight agonist properties including chrysin. Other examples of

natural AhR ligands include bilirubin (Phelan et al., 1998), indole-3-carbinol

(Bjeldanes et al., 1991; Gillner et al., 1985), resveratrol (Casper et al., 1999;

Ciolino et al., 1998) and flavones (Henry et al., 1999).

Some mixture studies conducted have shown inconclusive results, with the

authors commenting that mixtures could be additive, antagonistic or synergist, and

concluded that a better understanding of mechanisms of action or the

toxicokinetic behaviour was required for future predictions (Chu et al., 2001;

Safe, 1998). With respect to inter-species differences, Pohjanuita and co-workers

(Pohjanuita et al., 1995) showed the varying effects of TCDD-like compounds

between different strains of rat, demonstrating a potential problem when

calculating the TEF by using REPs from different strains. Furthermore, complex

mixtures can contain compounds that act through different metabolic pathways

and therefore the additivity approach may not always be appropriate (Safe, 1998).

Another potential problem is super-induction, which occurs in a particular TCDD

containing mixture, where CYP1A1 is transcribed at a higher rate than by TCDD

alone although it decreases protein translation (Lussaka et al., 1992, Ma et al.,

2000). If translation has been inhibited leading to a build up of CYP1A1 RNA, the
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toxicity of a mixture could be affected, implying the predicted risk assessment

TEQ maybe too high.

However, one of the leading concerns associated with the WHO TEQ additive

approach is the application of the method to a mixture containing partial agonists

and antagonists, which may reduce the TCDD-like effects of the mixture. Some of

the most documented examples of partial agonists, from a TEQ point of view, are

a selection of PCBs which have been found to have both agonistic and

antagonistic properties (Clemons et al., 1998; Chu et al., 2001; Schmitz et al.,

1995; Suh et al., 2003). Clemons et al. (1998) combined various concentrations of

TCDD with different PCBs and showed that some of the PCBs had antagonistic

effects which would produce a lower toxic effect than that predicted by the TEQ

additivity approach. This conclusion was further complicated by the differing

effects of antagonistic PCBs in complex mixtures of HAHs (Clemons et al.,

1998).

This paper will assay a selection of the most potent and prevalent dioxin-like AhR

ligands to assess any potential antagonist properties. These include Dioxins

(TCDD), Furans (TCDF and PeCDF) and PCBs (PCB 126). Also tested in this

study will be a polycyclic aromatic hydrocarbon (3-MC). If antagonism/partial

agonism is exhibited by any of the compounds tested in this assay, Schild

regression analysis can be used to measure the potency of the antagonist. This

experiment will also use an example of both a putative partial agonist (DF 203)

and an antagonist (CH 223191).
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1.4 Measurement of AhR activation

1.4.1 CYP1A1 Induction

The reasons that in vitro models were used over in vivo include: the ease of

dosing, allowing the maximal effect to be reached at very early time points. Cells

are exposed to the full concentration directly without, for example, gradual uptake

from digestion or reduction by metabolism. This also means that the cells are

exposed to compounds without initial metabolism by liver or bioaccumulation in

adipose tissue, allowing lower doses of compounds to be used and permitting a

more reliable estimation of the EC50. Liver cells have a large amount of AhR in

comparison to other cell types. Also taken into account, is the reduced cost and

simplicity of in vitro models and finally the low basal CYP1A1 levels which can

be easily induced. Previous confirmation of the presence of AhR in H4-IIECE

cells has been achieved (Bazzi, 2008). It is generally accepted that the most

sensitive way to measure the activation of the AhR is through the measurement of

CYP1A1 RNA as it is one of the most potent effects of AhR activation. The

reasons that CYP1A1 induction is measured are three-fold; firstly induction is

robust, with a high signal to noise ratio; secondly, induction occurs in both in vivo

and in vitro models, allowing the use of cultured cells (Whitlock, 1999). Finally,

induction allows genetic analysis of the mechanism of action due to the

possibilities of induction-defective mutants; however this is not a required factor

in this particular experiment (Whitlock, 1999).
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1.4.2 Measurement of CYP1A1 RNA by Real-Time PCR

To measure partial agonism of the test compounds in this study, cells will be

treated with various concentrations of TCDD with a set concentration of potential

antagonist. This allows a more accurate calculation of the antagonistic properties

of the test compound by measuring the shift of the dose response curve to the

right. This gives more information on the compound in question compared with

adjusting the concentration of antagonist and using a set concentration of TCDD.

A low dose of antagonist is used so accurate calculation of the EC50 can be

conducted while at the same time, 15% induction is large enough to be

significantly different over the baseline level of CYP1A1 RNA. One of the most

accurate ways of measuring mRNA is by using Real-Time PCR (RT-PCR) which

gives a real time view of mRNA. This is done through the measurement of PCR

cycling threshold (Ct) values, defined as the cycle in which the mRNA recorded is

above a particular threshold. The Ct values are calculated for CYP1A1 and two

reference genes, AhR and ȕ-Actin, by the Mx4000 software. The PCR efficiency,

which measures the efficiency of each PCR cycle, can also be calculated using

this software. Further analysis using the Ct values is conducted using Qbase

software. Qbase will normalise the CYP1A1 RNA Ct values against the two

reference genes, AhR and ȕ-Actin, which should be unaffected by treatment. This

calculates the normalised relative amount of CYP1A1 RNA in the sample. The

normalised data is then plotted on to a dose-response graph to allow comparison

between different compounds using the dose that gives 50% of maximal response

(EC50) and its 95% confidence intervals.
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Aims

Measure the agonistic and the potential antagonistic effects of 3-MC, TCDF,

PeCDF and PCB 126, comparing them with TCDD. An example of a known

partial agonist (DF 203) and an antagonist (CH 233191) will also be assayed.

1. Calibrate a method of accurately measuring CYP1A1 RNA using real-time

PCR in H4-IIEC3 rat liver cells.

2. Measure the induction of AhR by various agonists and partial agonists

using H4-IIEC3 cells.

3. Locate/measure any potential antagonist effects of the known agonists by

combining them with various concentrations of TCDD in H4-IIEC3 cells.

4. Establish whether time affects the induction of CYP1A1.
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2. Method

2.1 Reagents

2.1.1 Cell Culture Chemicals

 Rat hepatoma H4-IIEC3 cells cat # 85061112

 Minimum essential medium eagle (MEM) 100x cat # M2279

 Non essential amino acid solution 100x cat # M7145

 Fetal bovine serum cat # F7524

 L-Glutamine-penicillin-streptomycin 100x solution cat # G1146

 Dulbecco's phosphate buffered saline cat # D8537

 Trypsin-EDTA solution 10x cat # T4174

The H4-IIECE cells and the medium reagents were purchased from Sigma

(Dorset, UK).

2.1.2 Kits and Reagents

The ‘Absolutely RNA® Miniprep Kit’ (Catalogue #400800), ‘AffinityScipt™

QPCR cDNA Synthesis Kit’ (Catalogue #600559) and ‘Brilliant® Multiplex

QPCR Master Mix’ (Catalogue #600553) were purchased from Stratagene

(Amsterdam, The Netherlands).

‘Quanti-iT TM Ribogreen® RNA’ assay kit (Catalogue #R11490), ‘Quanti-iT TM

Picogreen® dsDNA’ assay kit (Catalogue #P7589) and ‘DNA ladder 1kb plus’

(Catalogue #10488-085) were purchased from Invitrogen Molecular Probes

(Paisely, UK).
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2.1.3 Compounds and Solutions

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) (purity 99%, catalogue # ED-901-

B) was purchased from Cerilliant Cambridge Isotope Laboratories (Middlesex,

UK). A 155M top stock of TCDD was made with dimethyl sulfoxide (DMSO)

which was kept at room temperature and protected from light. Further dilution of

TCDD was done in DMSO to 10 µM which was aliquoted into eppendorf tubes

and stored at -20oC. All further dilutions of TCDD were made using ‘24hr old’

medium, giving a final DMSO concentration of <0.02%.

3-Methylcholanthrene (3-MC) (purity 98%, catalogue # 213942) was purchased

from Aldrich. An initial top stock of 20 mM 3-MC was made by diluting in p-

dioxane and stored at -20oC. The compound was also protected from light. Further

dilutions were made using ‘24hr old’ medium, giving a final DMSO concentration

of ~0.01% and a final concentration of <0.001% p-dioxane. Visual inspection

confirmed solubility (no analytic confirmation).

.

2,3,7,8-Tetrachlorodibenzofuran (TCDF) (Purity 98%, catalogue # EF-903-C)

and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) (Purity 98%, catalogue # EF-

956-C) were both purchased from Cerilliant Cambridge Isotope Laboratories

(Middlesex, UK). A top stock of 100 mM was made for both compounds by

diluting them into DMSO and stored at -20oC. Further dilutions of each

compound were made using ‘24hr old’ medium, giving a final DMSO

concentration of <0.02%
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3,3’,4,4‘,5-Pentachlorobiphenyl (PCB 126) (Purity 98%, catalogue # PCB-126-

C) was purchased from Cambridge Isotope Laboratories (Massachusetts, US). A

top stock of 10 mM was made by dilution in DMSO. This was stored at -20oC

with further dilutions made using ‘24hr old’ medium, which gave a final DMSO

concentration of <0.02%.

2-(4-Amino-3-Methylphenyl)Benzothiazol (DF 203) was produced by Cancer

Research Laboratories at the University of Nottingham (UK) and the Drug

Synthesis and Chemistry Branch (NCI) following published methods (Hutchinson

et al., 2001). The compound was kindly provided by Dr Tracey Bradshaw. A top

stock of 10 mM was stored at -20oC and protected from light. Further dilutions of

DF 203 were made using ‘24hr old’ medium, giving a final DMSO concentration

of <0.02%.

CH 223191 (2-Methyl-2H-Pyrazole-3-Carboxylic Acid (2-Methyl-4-o-Tolylazo-

Phenyl)-Amide) (purity 95.71%) (Catalogue # 182705) was purchased from

Calbiochem (Nottingham, UK). A 10 mM top stock was made by dilution into

DMSO. The solution was stored at -20oC and protected from light. Further

dilutions were done using ‘24hr old’ medium, giving a final DMSO concentration

of <0.02%.

2.1.4 Solutions, Buffers and Medium

Lysis buffer-ȕ-ME: 0.7 ȝl ȕ-ME + 100 ȝl Lysis Buffer (Absolutely RNA®

Miniprep kit).

RNase-Free DNase I: 50 ȝl of DNase Digestion Buffer + 5 ȝl of reconstituted

RNase-Free DNase I (Absolutely RNA® Miniprep kit).
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De-proteinated water (DEPC treated water):

- 1 ml Diethyl Pyrocarbonate

- 9 ml Ethanol

- Distilled water to make up to 1 Litre (autoclaved after mixing to neutralise)

10X TBE buffer:

- 108 g Tris

- 55 g Boric Acid

- 40 ml 0.5M EDTA pH 8

- Distilled water to make mixture up to 1 Litre

10X Loading dye:

- 50% Glycerol

- 0.25% Bromophenol Blue

- 0.25% Xylene Cyanol FF

- 1 nM Ethylenediaminetetreacetic Acid (EDTA)

Complete Medium:

- 500 ml Essential Medium

- 50 ml Fetal Bovine Serum

- 5 ml L-Glutamine-Pencillin-Streptomycin Solution

- 5 ml Non-essential Amino Acids

1X TE buffer: pH 7.5

- 1 ml 20X TE Buffer

- 19 ml Purified Water
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2.2 Measurement of CYP1A1 induction

2.2.1 Cell culture

2.2.1.1 Cell growth curve

H4-IIECE rat liver cells (H4-IIE) were used because of their fast life cycle and

rapid exponential growth. A cell growth curve was constructed by counting cells

with a haemocytometer, showing that total confluence of a 25cm2 flask could be

accomplished within 7 days when starting from a concentration of 10 ×105¢/ml.

H4-IIEC3 cells were cultured in 96 well plates in 180 µl medium which was

changed after 96 hours. At the same time everyday cells were trypsinised with 60

µl trypsin, washed in 60 µl PBS and counted using a haemocytometer. This was

done for 8 days generating a graph of cell growth.

2.2.1.2 Maintenance

When the flasks reached total confluence there was approximately 300 x 106 cells.

All solutions are pre-heated to 37oC before being added to the cells. Passaging

involved removing the old medium from the flask and washing the cells with 3 ml

PBS. The PBS is removed and 1.5 ml trypsin added and incubated at 37oC for 1

minute. 3.5 ml of new medium is added and mixed with the trypsin-cell mixture to

neutralise the trypsin. 9 ml of new medium is then added to a clean flask with 1

ml of the cell mixture. Cells are stored in an incubator at 37oC at 5% CO2. All

experiments were conducted between passage no. 8 and 22.

2.2.1.3 Treatment

Cells were cultured on a 96 well plate using a similar method to that used in

section 2.2.1.2 but with the following exceptions. Initially, 200µl of cell mixture
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is added to each well and allowed to settle for 2/3 days and until total confluence

is reached or 90% confluence in the case of cells treated for 24 hours. Cells were

washed with PBS then treated with particular mixture or compound. Each partial

agonism assay will be split into two separate experiments: 1) location of the

concentration of agonist which gives 15% of the maximal response, 2) treatment

of cells with various concentrations of TCDD in the presence of the concentration

found in the first experiment (with the exception of CH 233191, where the

concentrations were derived from Kim et al., 2006). Table 2.1 gives an example

of concentration calculations for TCDD in the presence of 300 pM 3-MC.

Initially, the concentration of TCDD will be ~10% higher before addition of

medium containing the agonist is added to the solution; this gives more accurate

final concentration for both compounds.

Ref.
Final TCDD

Medium
Volume Total after Volume of

Concentration of TCDD transfer 3 nM 3-MC

A 100 nM 990µl 10µl of 10 µM 900µl 100µl

B 10 nM 900µl 100µl of 100 nM (A) 690µl 77µl

C 3 nM 490µl 210µl of 10 nM (B) 700µl 78µl

D 1 nM 900µl 100µl of 10 nM (B) 690µl 77µl

E 300 pM 490µl 210µl of 1 nM (D) 700µl 78µl

F 100 pM 900µl 100µl of 1 nM (D) 710µl 79µl

G 30 pM 490µl 210µl of 100 pM (F) 700µl 78µl

H 10 pM 720µl 80µl of 100 pM (F) 730µl 81µl

I 1 pM 630µl 70µl of 10 pM (H) 700µl 78µl

J Untreated with 3MC - - 600µl 67µl

K Untreated - - 600µl 0µl

Table 2.1: Dosing concentrations - Dilutions of concentrations used to dose H4-IIECE cells with

various concentrations of TCDD in the presence of 300 pM 3-MC. Table shows final

concentration of TCDD, however a slightly higher concentration is used initially which is reduced

when the medium containing agonist is added (e.g. 900µl 110 nM TCDD + 100µl 3 nM 3-MC =

1000µl 100 nM TCDD and 300 pM 3-MC). ‘Medium’ indicates 24 hour old medium (see section

2.2.1.3.)
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The treatments were made freshly, with visual inspection of solubility (not

analytical) and then added to cells. Agonist only treatments were designed using a

similar method. Both assay types were dosed for 4 hours. For the time dependant

induction assays, cells were treated with various concentrations of the agonist for

either 4 or 24 hours. The concentrations are made up of 24 hour old medium, 0.1-

0.2% DMSO and the particular treatment. 24hr old medium is medium which has

been in the presence of a small quantity of cells for 24 hours and is used because

of the presence of indirubin, an AhR agonist, found in fetal bovine serum (Adachi,

2001), which decreases after 24 hours. Doses contained only <0.02% DMSO

which was found not to be toxic at such low concentrations. Controls included in

the experiment may include; agonist/antagonist only control (AC) and 10 µM

TCDD only control (TC) with all experiments containing a vehicle control (VC).

All concentrations were treated with triplicate replicates and kept as biological

triplicates throughout RNA purification and cDNA synthesis.

Once the cells have been treated for the appropriate time, the medium is removed

and 60µl PBS is used to wash the cells. This is removed and 60µl Trypsin is

added and incubated for 1 min at 37oC. 120µl ‘24 hour old’ medium is added to

the trypsin-cell mixture and then all the mixture is transferred to an eppendorf

tube. The tube is spun in a centrifuge for 5 minutes at 7000rpm at room

temperature. The medium is then removed leaving a cell pellet attached to the

bottom of the eppendorf tube ready for RNA purification.
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2.2.2 RNA purification

RNA was purified using Stratagene Absolute Miniprep Kit as per instructions

with the following alterations:

 ‘Appendix I: Protocol Modifications for small samples’ was followed

omitting the prefiltration step.

 100ul Lysis buffer with 0.7µl B-ME was added to each sample before

100µl of 70% ethanol.

 30µl of Elution buffer was warmed to 60oC then added to the fiber matrix.

 Purified RNA samples were aliquoted and stored at -20oC.

Gel Electrophoresis was carried out as a qualitative measure of the RNA present

in the samples. The gel consisted of 50 ml 1X TBE with 0.5g of agarose and 0.5

ml 10% SDS, which was melted and stored at 60oC till required. 1X TBE was

used as the buffer. Each lane contained 6µl sample RNA, 1µl 10X loading dye

and 3µl DEPC treated water. Unknown samples were compared against 1kb DNA

ladder, positive RNA control and a negative control. The samples were run for 90

minutes at 90 volts and 400mA. Visualisation of the RNA was done using a post-

staining technique of ethidium bromide staining for 25mins followed by a wash

with DEPC treated water for 20mins. A Bio-rad UV camera (Bio-rad Labs, USA)

was used to capture the DNA fragments using UV. Two bands are expected at 18s

and 28s to indicate good quality RNA.

Quanti-iT TM Ribogreen® RNA assay kit was used to estimate the RNA

concentrations in each sample and was also a useful way of checking the presence

of the RNA instead of using a gel which required a large volume of RNA to
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visualise it. A Wallac Victor2 plate reader (Perkin Elmer) was used to measure the

fluorescence from 0.5X Ribogreen dye. The plate reader was set at 485nm

excitation and 510nm emission. Each unknown sample contained 0.5µl 200X

Ribogreen dye, 2µl of RNA and 198µl 1X TE Buffer. A concentration curve was

made using known concentrations of 0, 20, 100, 500 and 1000ng/ml RNA which

allowed estimation of RNA in the unknown samples.

2.2.3 cDNA Synthesis

cDNA was produced using Stratascript QPCR cDNA Synthesis kit as per

instructions but with the following alterations:

 1µl of oligo primers and 1µl of random primers along with 1µl Reverse

Transcriptase (RT) was added to 10µl Master Mix. Finally, 7µl of RNA

was added giving a final total of 20µl.

 A no RT and a no RNA control were made to check for contamination of

the reagents of cDNA or RNAs.

 A thermocycler (Techne ‘Genius’) was used, programmed for: 25oC for

5min, 42oC for 45mins, 95oC for 5min and then left at a storing

temperature of 4oC.

The cDNA was stored at -20oC. The cDNA concentration was measured using

Quanti-iT TM Picogreen® dsDNA assay kit as per instructions. A concentration

curve was used to estimate the concentration of cDNA in each sample, using a

linear curve with concentrations of 0, 10, 50, 100, 500 and 1000ng/ml. A Wallac

Victor2 plate reader (Perkin Elmer), which was set at 485nm excitation and

510nm emission, was used to measure the fluorescence produced by the Picogreen
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dye. Each sample contained 0.5X Picogreen dye, 5µl unknown cDNA and 195µl

TE Buffer. Picogreen dye required incubation for 2 minutes and was always

protected from light. All the samples collected from the 96 well plates were found

to have a cDNA concentration of 2-3ng/ml so purified water was added to each

sample to give a final concentration of 2ng/ml for each sample.

2.2.4 Quantitative Real-Time PCR

2.2.4.1 Methodology

Quantification of activation of the AhR requires a robust method of quantifying

induction of an AhR-dependent gene, in this case CYP1A1. Expression of the

CYP1A1 gene was achieved using Quantitative Real-Time PCR (RT-PCR). The

AhR and ȕ-Actin genes were also quantified to use as a control. This involved

developing a RT-PCR method which can be applied to several different AhR

agonists.

2.2.4.2 Probes and Primers

The probe and primer sequences for RT-PCR were obtained from Bell et al.

(2007). Table 2.2 shows the sequences of rat probes and primers used in RT-PCR

for CYP1A1, AhR and ȕ-Actin. Sequences are shown from 5’ to 3’, with Genbank

Accession number, reporter dye and quencher dye. Bell et al., (2007) found that

these three genes could be run in the same reaction and verified the identity and

reliability of the PCR products amplified by the primers (Bell et al., 2007).
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Gene Sequence GenBank Number Labels

CYP1A1 X00469

Primer (f) CCACAGCACCATAAGAGATACAAG

Primer (r) CCGGAACTAGTTTGGATCAC

Probe ATAGTTCCTGGTCATGGTTAACCTGCCAC FAM-BH1

AhR K02422

Primer (f) GCAGCTTATTCTGGGCTACA

Primer (r) CATGCCACTTTCTCCAGTCTTA

Probe TATCAGTTTATCCACGCCGCTGACATG HEX-BH1

ȕ-Actin V01217

Primer (f) CTGACAGGATGCAGAAGGAG

Primer (r) GATAGAGCCACCATCCACA

Probe CAAGATCATTGCTCCTCCTGAGCG ROX-BH2

Table 2.2: Sequences of Rat Probes and Primers - Forward (f) and Reverse (r) primers and

probes are indicated. Table shows gene name and sequence with Genbank Accession number,

reporter dye and quencher dye. Sequences are shown from 5’ to 3’. FAM: iscarboxy fluorescein,

HEX: hexachlorofluorescein and ROX: 5(6)-carboxy-X-rhodamine. The reporter dye is located at

the 5’ end of the probe, and the quencher dye, Black Hole-1 or -2 (BH1 or BH2), is found at the 3’

end. Sequences and information obtained from Bell et al. (Bell et al., 2007).

2.2.4.3 RT-PCR Efficiency

Development of an accurate RT-PCR method which can be applied to several

different AhR agonists was the first prerequisite. It was found initially that PCR

efficiencies for all three genes were ~60-90%, which is an anomalous result. One

hypothesis for this is too much probe. Therefore the effects of a reduction in probe

concentration from 200-600 nM to 100-300 nM, was tested using a TaqMan

Thermocycler (Mx4000). A concentration curve (1 to 3.91 x 10-3ng/ml) was

created. A final volume of 12.5µl buffer solution was added to each well

containing: 6.25µl master mix, A) 200-600 nM or B) 100-300 nM probes and



Richard Wall

33

200-600 nM of the primer pairs with 2ng cDNA. Mx4000 software was used to

calculate the PCR efficiency using a least mean squares curve fitting logarithm.

Results concluded that a lower concentration of probe gave improvement of both

correlation coefficient and slope, with efficiency of ~100-120% (See results

3.1.2.2). Critical analysis of PCR efficiency is thus a prerequisite for accurate

data.

2.2.4.4 Measurement of CYP1A1 induction

Real-time PCR (RT-PCR) was done using a TaqMan Thermocycler (Mx4000).

Each well contained 2µl of 2ng/ml cDNA from each unknown sample made to a

final volume of 12.5µl with 10.5µl RT-PCR mixture (See table 2.3).

Table 2.3: Quantities of reagents used for each sample – Table shows the required volume of

each probe and primer that makes up the correct proportions for the RT-PCR mixture. 2µl of 2ng

sample cDNA will be added to this mixture. The initial concentration of all the primers and probes

used was 10 µM and 5 µM, respectively (Diluted to required concentration using TE Buffer pH

7.5).

Component Each Sample

Master mix 6.25µl

CYP1A1 Forward 0.25µl

Reverse 0.25µl

Probe 0.5µl

ȕ-Actin Forward 0.5µl

Reverse 0.5µl

Probe 1µl

AhR Forward 0.75µl

Reverse 0.5µl

Probe 1.5µl
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All reactions were done in duplicate (Duplicates of biological triplicates for each

concentration tested). During each experiment, five separate controls were run

simultaneously using the same RT-PCR mixture (Figure 2.3). Firstly, a 10 nM

TCDD sample and an untreated sample, both from the same batch, were run

allowing comparison between experiments. Secondly, internal controls were run

for each individual experiment consisting of a no template control (NTC) to check

for contamination in the RT-PCR master mix, a No RT and No RNA control to

check contamination during the cDNA synthesis stage. A 40 cycle programme of

20 seconds at 95oC and 90 seconds at 58oC was used. The mRNA levels for each

gene were calculated using PCR cycling threshold (Ct) values generated by the

Mx4000 software. The Ct values for the control genes should be relatively similar

so can be used to normalise the CYP1A1 RNA.

2.2.5 Qbase and Graph Software

Although the cDNA was normalized before RT-PCR it was still necessary to

normalize the CYP1A1 RNA against both ȕ-Actin and AhR RNA for increased

accuracy. This was done using Qbase software (Hellemans et al., 2007) which

gives relative values of CYP1A1 RNA in comparison to levels of reference genes,

ȕ-Actin and AhR. To ensure accurate assessment of the results produced by

Qbase, two quality measures are calculated. Firstly, the coefficient of variation

(CV) of the normalized relative quantities, also known as the gene evaluation

value, with a low value indicating high stability. Secondly, the geNorm value

which measures the stability of the genes, confirming that they are stably

expressed. This allows identification of the best genes to use for normalisation,

which in these assays will always be a combination of both AhR and ȕ-Actin.
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With the exception of initial method calibration, data will be assessed based on

the gene evaluation value alone.

The relative values for CYP1A1 RNA are then converted into percentages with

the largest value denoted as 100%. In the instance of the partial agonism

experiments, the curve, which was generated using Prism 5 software, had its

lower limit set to the percentage of the maximal response of the antagonist in the

absence of TCDD. This was generally about 15% of the induction of the maximal

response of the agonists. Graphs were generated using a non linear regression

curve with the settings ‘log[agonist] vs. normalised response’. The Prism software

also calculated the EC50 and the 95% Confidence interval allowing comparison

between partial agonism and control curves. Normalised CYP1A1 RNA data was

plotted alongside the relevant controls which could include; agonist/antagonist

only control (AC), 10 µM TCDD only control (TC) and vehicle control (VC).
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3. Results

3.1 Cell Growth Curve

The growth of H4-IIE cells was characterised so accurate estimation of

confluence could be conducted. Therefore, a cell growth curve was generated.
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Figure 3.1: Cell Growth Curve for H4-IIEC3 – Cells were cultured in a 96 well plate with

180µl medium which was changed after 96 hours. On each day, cells were washed with PBS,

tripsinised and counted with a haemocytometer as described in method 2.2.1.1. Each point equals

mean ± S.D. of 3 replicates.

Figure 3.1 shows the H4-IIEC3 cell growth curve over a period of 8 days.

Confluence was reached after 6 days with concentrations of ~2 x 105¢/well.

3.2 CYP1A1 Induction - Method Calibration

3.2.1 Methodology

Quantification of activation of the AhR requires a robust method of quantifying

induction of an AhR-dependent gene, in this case CYP1A1. This involves

developing a RT-PCR method which can be applied to several different AhR
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agonists. Initially, a dose-response curve was produced for TCDD which allowed

construction and optimisation of a method of measurement of AhR activation.

3.2.3 Method calibration using TCDD

3.2.3.1 RNA and cDNA

H4-IIEC3 Rat Liver cells were treated with TCDD (100 fM- 10 nM) for 4 hours.

RNA was purified using Absolutely RNA Miniprep kit (Stratagene) as described

(section 2.2.2). Quality of RNA was assayed using a 1X TBE agarose gel, post

stained with ethidium bromide and photographed with Biorad UV camera (Figure

3.2).

Figure 3.2: Agarose gel showing RNA - Cells were treated with and without TCDD for 4 hours;

RNA was then purified as mentioned in the method (section 2.2.2). Samples were run for 90 mins

(90 volts/max. 400mA). Gel was post stained with ethidium bromide. A digital image of the gel

under UV illumination is shown. (Lane 1) 1kb DNA ladder, (Lane 2) positive control, (Lane 5)

negative control, (Lane 3) untreated RNA and (Lane 4) 10 nM TCDD treated RNA.

Figure 3.2 shows bands at 18s and 28s confirming the quality of the purified

RNA. RNA from the samples was then quantitated using a Ribogreen RNA

quantition Kit. A standard curve was produced with known RNA concentrations

1

2

3

4

5
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allowing a comparative measure of RNA in the unknown samples (see method,

section 2.2.2). RNA yield was typically 15-20 µg per well. RNA quality and

quantity checks were only performed during method calibration and initial TCDD

dose-response curve. cDNA was synthesised using AffinityScript QPCR cDNA

Kit (see method, section 2.2.3). Quantitation of cDNA concentration was done

using Picogreen cDNA quantitation Kit. A standard curve was used to measure

cDNA quantities in each sample during every experiment. Yield was typically 1-3

µg cDNA per reaction.

3.2.2.2 Real Time-PCR

The induction of CYP1A1 RNA was chosen as it is one of the most sensitive

measures of AhR activation. It is necessary to determine the efficiency of PCR, as

this has a substantial effect on estimation of RNA amount. In order to test this,

several standard curves were produced with various concentrations of probe. Each

well contained the master mix (Table 2.2) with probe concentrations changed

accordingly, and various concentrations of cDNA.
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Figure 3.3: PCR efficiency for CYP1A1, ȕ-Actin and AhR, (A) 200-600 nM Probe and (B)

100-300 nM Probe. A concentration gradient was constructed from a known cDNA concentration.

RT-PCR was conducted as mentioned in method (section 2.2.4). The initial quantity of input

cDNA is shown on the x-axis as a relative amount, and the Ct for each dilution is shown on the Y-

axis, for n=3 replicates. The fit of the data to the line was determined by r2 analysis, and the

efficiency of PCR was determined from the slope of the line.

Figure 3.3A shows the amount of RNA measured (Ct) as a function of input

cDNA; this analysis shows a poor fit of the data to the line of best fit (Figure

3.3A), and efficiency of PCR is ~60-105%, an anomalous result. The initial

quantity of input cDNA is shown on the x-axis as a relative amount, and the Ct for

each dilution is shown on the Y-axis, for n=3 replicates. The fit of the data to the

line was determined by r2 analysis, and the efficiency of PCR was determined

from the slope of the line. The r2 values for figure 3.3A were 0.982, 0.838 and

0.840 for CYP1A1, ȕ-Actin and AhR, respectively. Figure 3.3B demonstrates the

effect of a reduction in probe concentration from 200-600 nM to 100-300 nM,

with improvement of both correlation coefficient and slope, with efficiency ~100-

115%. The r2 values for figure 3.3B were 0.997, 0.998 and 0.999 for CYP1A1, ȕ-

B
pe
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Actin and AhR, respectively, providing a far bet fit than figure 3.3A. Analysis of

PCR efficiency is thus a prerequisite for accurate data. Once PCR efficiency was

improved, it was possible to measure the induction of CYP1A1 RNA by TCDD.
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Figure 3.4: RT-PCR Amplification plots - (A) CYP1A1 (B) ȕ-Actin and (C) AhR, when dosed

with various concentrations of TCDD for 4hrs. RNA was purified, cDNA was synthesised and RT-

PCR was run as demonstrated in the method (section 2.2.4). All genes were run in same well. The

Y-axis shows the fluorescence at each Ct, for n=mean of 6 replicates (duplicates of 3 biological

replicates).

Figure 3.4 shows the amplification plots for CYP1A1 and ȕ-Actin when dosed

with various concentrations of TCDD for 4 hours. The input cDNA was first

normalized thus giving 2ng of cDNA per sample. Figure 3.4B and 3.4C shows

that the control genes, ȕ-Actin and AhR were unaffected by the TCDD treatment.

Qbase was used to analyse the data derived from RT-PCR analysis. Qbase

normalizes the expression of CYP1A1 against the reference genes, AhR and ȕ-

Actin. The reference gene expression should be within two-fold, indicating

accurate sample preparation and quantitation. The amplification plots in figure 3.4

show the mean of 6 replicates with the average standard deviation = ± 0.8.

C
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3.2.2.3 Dose-response curve

RT-PCR was used to measure CYP1A1 induction with the results normalised to

relative quantities using Qbase. Qbase calculates two quality measures, firstly, the

coefficient of variation (CV). The CV, also known as the gene evaluation value,

for AhR and ȕ-Actin was 16% and 19%, respectively, indicating high stability.

Secondly, the geNorm value, which measures the stability of the genes

(Hellenmans et al., 2006): 0.37, confirming that they are stably expressed; further

work will only look at the gene evaluation value (see method, section 2.2.5).
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Figure 3.5: Induction of CYP1A1 RNA by TCDD. H4-IIEC3 cells were treated with the

indicated dose of TCDD, or vehicle control, for four hours, as described in materials and methods

section 2.2.1. RNA was isolated from cells, and analysed for CYP1A1, ȕ-Actin and AhR RNAs by

real-time PCR, as described in section 2.2. CYP1A1 RNA was normalised using Qbase (section

2.2.5) against ȕ-Actin and AhR RNAs, and then normalised to the maximum response, which is

shown as 100%. The response of CYP1A1 against log dose is shown, and each point represents

n=3 biological replicates, ± S.D. VC: Vehicle control.
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The last phase was to produce a dose-response curve using the normalized relative

quantities (NRQ) of CYP1A1 RNA calculated by Qbase. The EC50 and the 95%

confidence intervals for the EC50 were determined using a non linear regression

curve with the settings ‘log[agonist] vs. normalised response’. Figure 3.5 shows

the response of CYP1A1 against the dose. The plot of response of CYP1A1

against log dose yields an EC50 = 34 pM, 95% Confidence interval = 29 pM - 38

pM. The dose/response relationship shows a classical curve with a small 95% CI

due to the use of multiple concentrations. Replicate EC50 estimates were similar in

four repeats (Figure 3.7). CYP1A1 (Figure 3.4A) was induced by ~150-fold over

control (10 nM against vehicle) with high induction indicating large signal to

noise ratio and accurate induction parameters.
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Figure 3.6: Confirmation of no induction by AhR or ȕ-Actin RNA by TCDD. H4-IIEC3 cells

were treated with the indicated dose of TCDD, or vehicle control, for 4 hours, as described in

section 2.2.1. RNA was isolated from cells, and analysed for CYP1A1, ȕ-Actin and AhR RNAs by

real-time PCR, as described in section 2.2. The two reference genes have been compared against

maximal normalised value of CYP1A1 RNA. The response of ȕ-Actin and AhR against log dose is

shown, and each point represents n=3 biological replicates, ± S.D. VC: Vehicle control.



Richard Wall

44

Figure 3.6 demonstrates that the reference genes, ȕ-Actin and AhR, were

unaffected by the treatment even at the maximum concentrations of TCDD.
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Figure 3.7: Induction of CYP1A1 RNA by TCDD – Comparisons of Four Separate TCDD

D/R Curves - H4-IIEC3 cells were treated with the indicated concentrations of TCDD for 4 hours.

The graph shows four curves taken from each experiment in section 3.2. Cell treatment, RNA

isolation and RT-PCR analysis was as described for Figure 3.5. The normalised response of

CYP1A1 against log dose is shown, and each point represents n=3 biological replicates, ± S.D.

VC: Vehicle control.

Figure 3.7 compares four TCDD only dose-response curves taken from various

assays in section 3.2. The curves have a similar shape with considerable

overlapping of means and 95% confidence intervals. This gave an average EC50 of

35 pM (S.D. = ± 5.8 pM). The average of the Qbase derived gene evaluation

values were ~25% and ~33% for ȕ-Actin and AhR, respectively. This allows

comparison of data between assays as the EC50 of each TCDD curve is similar and

provides evidence that each repeat is reproducible and hence reliable.
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3.3 Partial Agonism Assays

3.3.1 Methodology

The ability of known AhR agonists to act as partial agonists of the induction of

CYP1A1 was evaluated by determining if these chemicals could antagonise the

induction of CYP1A1 RNA by TCDD in H4-IIEC3 cells, as previously reported.

Five different AhR agonists and one AhR antagonist were evaluated. The

approach taken was to determine the amount of test chemical that would give

approximately 15% of maximal induction of CYP1A1 RNA; this concentration of

chemical was then used to determine whether it could antagonise the induction of

CYP1A1 RNA by TCDD.

3.3.2 3-Methylcholanthrene (3-MC)

The induction of CYP1A1 RNA by 3-Methylcholanthrene (3-MC) was examined.

Cells were treated with 3-MC (1 µM to 1 pM) and compared with a vehicle

control (VC). The reference genes had gene evaluation values of 46% and 39%

for ȕ-Actin and AhR, respectively. The data was plotted into a dose-response

curve (figure 3.8) which has an EC50 = 2.3 nM (95% Confidence interval = 1.3

nM to 3.8 nM). The concentration at which 15% of maximal response was

reached was 300 pM. Thus this experiment robustly estimates the agonist potency

of 3-MC.
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Figure 3.8: Induction of CYP1A1 RNA by 3-MC - H4-IIEC3 cells were treated with the

indicated dose of 3-MC, or vehicle control, for four hours, as described in materials and methods

section 2.2.1. RNA was isolated from cells, and analysed for CYP1A1, ȕ-Actin and AhR RNAs by

real-time PCR, as described in section 2.2. CYP1A1 RNA was normalised using Qbase (section

2.2.5) against ȕ-Actin and AhR RNAs, and then normalised to the maximum response, which is

shown as 100%. The response of CYP1A1 against log dose is shown, and each point represents

n=3 biological replicates, ± S.D. VC: Vehicle control.

In order to determine whether 3-MC could act as an antagonist, cells were treated

with various concentrations of TCDD (100 nM to 1 pM) in the presence or

absence of 300 pM 3-MC. This was compared to an agonist only control (AC) and

vehicle control (VC).
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Figure 3.9: Induction of CYP1A1 RNA by TCDD with and without 300 pM 3-MC - H4-IIEC3

cells were treated with the indicated concentrations of TCDD, in the presence or absence of 300

pM 3-MC. Cell treatment, RNA isolation and RT-PCR analysis was as described for Figure 3.8.

The normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D. VC: Vehicle control. AC: Agonist only control.

Figure 3.9 shows TCDD in the presence and absence of 300 pM 3-MC. The

results show that the response to 3-MC only control (AC) is approximately 15%

of maximal induction. The gene evaluation values were 17% and 19% for AhR

and ȕ-Actin, respectively: this shows that there is little variation in the

measurements of AhR and ȕ-Actin, thereby giving confidence in the RT-PCR.

The EC50 of TCDD with 3-MC was 49 pM (95% confidence interval = 19 pm-126

pM) compared with an EC50 of 50 pM (95% Confidence interval = 19 pM to 133

pM) for TCDD alone: these are not significantly different, thus 3-MC has no

detectable antagonist activity in this assay.
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3.3.3 2,3,7,8-Tetrachlorodibenzofuran (TCDF)

The induction of CYP1A1 RNA by 2,3,7,8-Tetrachlorodibenzofuran (TCDF) was

analysed. H4-IIEC3 cells were treated with various concentrations of TCDF or

vehicle control (VC) to characterise the induction of CYP1A1 RNA. AhR and ȕ-

Actin gave gene evaluation values of 102% and 65%, respectively. An EC50 of 5.8

nM (95% confidence interval of 2.8 nM to 11 nM) was estimated for induction of

CYP1A1 RNA (figure 3.10). This gave a concentration of 300 pM TCDF (15% of

maximal response) which was then added to TCDD treated cells (various

concentrations between 10 nM and 100 fM).
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Figure 3.10: Induction of CYP1A1 RNA by TCDF - H4-IIEC3 cells were treated with the

indicated concentrations of TCDF. Cell treatment, RNA isolation and RT-PCR analysis was as

described for Figure 3.8. The normalised response of CYP1A1 against log dose is shown, and each

point represents n=3 biological replicates, ± S.D. VC: Vehicle control.

The dose-response curve for TCDD in the presence of 300 pM TCDF is shown in

figure 3.11 which has been compared with a TCDD only curve. A 300 pM TCDF
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only control (AC) and a vehicle control (VC) were also run in the same

experiment. Gene evaluation values were 51% and 38% for AhR and ȕ-Actin,

respectively. Cells exposed to TCDF alone induced CYP1A1 RNA to 39.5% of

maximal induction however it is still possible to use the data to compare the EC50

for each curve.
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Figure 3.11: Induction of CYP1A1 RNA by TCDD with and without TCDF - H4-IIEC3 cells

were treated with the indicated concentrations of TCDD, in the presence or absence of 300 pM

TCDF. Cell treatment, RNA isolation and RT-PCR analysis was as described for Figure 3.8. The

normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D. VC: Vehicle control. AC: Agonist only control.

The results for TCDD with 300 pM TCDF show that the background is

approximately 40% induction of the possible antagonist, TCDF, however when

the EC50 of TCDD with TCDF (EC50 = 104 pM, 95% CI = 20 pM-535 pM) is

compared with TCDD alone (EC50= 65 pM, 95% CI = 39 pM-107 pM) there is no

significant difference with complete crossover of the 95% confidence intervals.
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Therefore it can be concluded that TCDF exhibited no detectable antagonistic

properties in this experiment.

3.3.4 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)

2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) was added to cells for 4 hours and

the induction of CYP1A1 RNA was measured to locate the concentration of

PeCDF which gives 15% of the maximal response. Gene evaluation values were

48% and 40% for AhR and ȕ-Actin, respectively.
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Figure 3.12: Induction of CYP1A1 RNA by PeCDF - H4-IIEC3 cells were treated with the

indicated concentrations of PeCDF. Cell treatment, RNA isolation and RT-PCR analysis was as

described for Figure 3.8. The normalised response of CYP1A1 against log dose is shown, and each

point represents n=3 biological replicates, ± S.D. VC: Vehicle control.

Figure 3.12 shows the dose-response curve for PeCDF with the EC50 as 2.2 nM

(95% CI = 1.4 nM to 3.4 nM) and reveals the concentration for 15% of maximal
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response which was 1 nM. H4-IIEC3 cells were then treated with various

concentrations of TCDD (10 nM – 100 pM) with the addition of 1 nM PeCDF. A

1 nM PeCDF only control (AC) and a vehicle control (VC) were also included.

The TCDD with PeCDF dose-response curve was compared with a TCDD alone

curve (Figure 3.13) and shows that the background is 14% induction of the

possible antagonist, PeCDF.
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Figure 3.13: Induction of CYP1A1 RNA by TCDD with and without 1 nM PeCDF - H4-

IIEC3 cells were treated with the indicated concentrations of TCDD, in the presence or absence of

1 nM PeCDF. Cell treatment, RNA isolation and RT-PCR analysis was as described for Figure

3.8. The normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D. VC: Vehicle control. AC: Agonist only control.

Normalised quantities of AhR and ȕ-Actin reference genes had gene evaluation

values of 21% and 20%, respectively. The EC50 of TCDD with PeCDF was 24 pM

(95% CI = 13 pM-46 pM) which was compared against TCDD alone (EC50= 34

pM, 95% CI = 18 pM-63 pM) and was found to be significantly similar, with
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considerable crossover of the 95% confidence intervals of the EC50s. The results

have demonstrated that PeCDF has no antagonist properties in this experiment.

3.3.5 3,3’,4,4‘,5- Pentachlorobiphenyl (PCB 126)

The induction of CYP1A1 RNA by 3,3’,4,4‘,5- Pentachlorobiphenyl (PCB 126)

was measured. Cells were treated for 4 hours with various concentrations of PCB

126 (100 nM to 1 pM) and compared with a vehicle control (VC).

-16

0

50

100

150

200

-12 -11 -10 -9 -8 -7VC
Dose log[M]

N
o
rm

al
is
ed

C
Y
P
1
A
1
R
N
A

[%
o
f
M
ax
im

al
R
es
p
o
n
se
]

Figure 3.14: Induction of CYP1A1 RNA by PCB 126 - H4-IIEC3 cells were treated with the

indicated concentrations of PCB 126. Cell treatment, RNA isolation and RT-PCR analysis was as

described for Figure 3.8. The normalised response of CYP1A1 against log dose is shown, and each

point represents n=3 biological replicates, ± S.D. VC: Vehicle control.

Figure 3.14 shows dose compared with the normalised induction of CYP1A1 by

PCB 126 which was derived from the normalisation of CYP1A1 RNA by Qbase

(gene evaluation values of 14% and 12% for ȕ-Actin and AhR, respectively). The

curve shows the EC50 which was 765 pM (95% CI = 645 pM-907 pM) and allows

identification of the concentration of PCB 126 which gives 15% of maximal
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induction which was 100 pM. Cells were then treated with various concentrations

of TCDD (10 nM to 100 fM) in the presence of 100 pM PCB 126 for 4 hours and

compared with a 100 pM PCB 126 only control (AC) and a vehicle control (VC).

CYP1A1 RNA was then normalised using Qbase software against the reference

genes, ȕ-Actin and AhR (gene evaluation values of 48% and 68%, respectively).
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Figure 3.15: Induction of CYP1A1 RNA by TCDD with and without PCB 126 - H4-IIEC3

cells were treated with the indicated concentrations of TCDD in the presence and absence of 100

pM PCB 126. Cell treatment, RNA isolation and RT-PCR analysis was as described for Figure

3.8. The normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D. VC: Vehicle control. AC: Agonist only control.

Figure 3.15 shows the induction of CYP1A1 by TCDD in the presence and

absence of 100 pM PCB 126 compared with a 100 pM PCB 126 only control

(AC) and a vehicle control (VC). The EC50 of TCDD with PCB 126 was 66 pM

(95% CI = 31 pM-139 pM) which was compared with TCDD alone (EC50 = 34

pM, 95% CI = 22 pM-51 pM). This comparison shows that there is no significant
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difference between the EC50s and demonstrates that in this assay PCB 126 has no

antagonistic effects in the presence of TCDD.

3.3.6 2-(4-Amino-3-Methylphenyl)-Benzothiazole (DF 203)

Previous literature (Bazzi, 2008; Chau et al., 2000; Elferink et al., 2003; Loaiza-

Perez et al., 2002) has described 2-(4-Amino-3-Methylphenyl)Benzothiazole (DF

203) as having agonist properties but with data collected by Bazzi (2008), the

potential antagonistic effects should also be investigated. The induction of

CYP1A1 RNA by DF 203 shown in figure 3.16 demonstrates that the compound

has agonist properties. Cells were treated with various concentrations of DF 203

(100 µM to 1 nM) which was compared with a vehicle control (VC).

-16

0

50

100

150

200

-9 -8 -7 -6 -5 -4
Dose log[M]

N
o
rm

al
is
ed

C
Y
P
1
A
1
R
N
A

[%
o
f
M
ax
im

al
R
es
p
o
n
se
]

VC

Figure 3.16: Induction of CYP1A1 RNA by DF 203 - H4-IIEC3 cells were treated with the

indicated concentrations of DF 203. Cell treatment, RNA isolation and RT-PCR analysis was as

described for Figure 3.8. The normalised response of CYP1A1 against log dose is shown, and each

point represents n=3 biological replicates, ± S.D. VC: Vehicle control.
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Figure 3.16 shows the induction of CYP1A1 RNA by DF 203 which has an EC50

of 1.5 µM (95% CI = 1.2 µM-1.8 µM). Gene evaluation values of 13% and 13%

for ȕ-Actin and AhR, respectively. The curve also allows location of the

concentration that gives 15% of maximal induction which was estimated, based

on the curve, to be 300 nM. Cells were then treated with various concentrations of

TCDD in the presence of 300 nM DF 203 which was compared with a 300 nM DF

203 only control (AC) and a vehicle control (VC). ȕ-Actin and AhR gene

evaluation values were 19% and 21%, respectively.
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Figure 3.17: Induction of CYP1A1 RNA by TCDD with and without 300 nM DF 203 - H4-

IIEC3 cells were treated with the indicated concentrations of TCDD in the presence and absence of

300 nM DF 203. Cell treatment, RNA isolation and RT-PCR analysis was as described for Figure

3.8. The normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D. VC: Vehicle control. AC: Agonist only control.

Figure 3.17 shows the induction of CYP1A1 RNA by TCDD in the presence of

300 nM DF 203 (EC50= 24 pM, 95% CI = 7.2 pM-79 pM). This was compared

with TCDD alone (EC50= 34 pM, 95% CI = 18 pM-63 pM). It can be seen from
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the results that 15% of maximal induction by 300 nM DF 203 was not reached by

the agonist only control or the lower concentrations of TCDD with DF 203 and

there is no significant difference between EC50s. Due to this a second dose-

response curve for TCDD in the presence of DF 203 was produced but using a

larger concentration of DF 203. In the second dose-response curve, a

concentration of 1 µM DF 203 was added to cells treated with various

concentrations of TCDD (10 nM to 100 fM).
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Figure 3.18: Induction of CYP1A1 RNA by TCDD with and without 1 µM DF 203 - H4-

IIEC3 cells were treated with the indicated concentrations of TCDD in the presence and absence of

1 µM DF 203. Cell treatment, RNA isolation and RT-PCR analysis was as described for Figure

3.8. The normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D. VC: Vehicle control. AC: Agonist only control.

Reference genes, ȕ-Actin and AhR, had gene evaluation values of 11% and 10%,

respectively. Figure 3.18 shows that there is a background of 54% induction in the

presence of 1 µM DF 203. The EC50 of TCDD with DF 203, which was 726 pM

(95% CI = 69 pM-7.6 nM), was significantly different from that of TCDD alone
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(EC50 = 34 pM, 95% CI = 18 pM-63 pM) and there is no crossover of 95%

confidence intervals. It can be seen that in the presence of DF 203, the TCDD

induction curve moves to the right demonstrating that DF203 has both agonistic

and antagonistic properties.

3.3.7 CH 223191

A known antagonist, 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-

tolylazo-phenyl)-amide (CH 233191) has no reported agonist properties. Kim et

al. (2006), and this paper looked to estimate concentrations of CH 223191 that

would provide antagonism in the presence of TCDD. Using data from the study

by Kim et al. (2006), two concentrations of antagonist were determined, 300 nM

and 10 µM. As in previous assays, cells were treated with various concentrations

of TCDD (10 nM to 100 fM) however; in this instance they were also compared

with a 10 µM TCDD only control to confirm maximal response. An antagonist

only control (10 µM CH 223191) was also performed to confirm that the

compound had no agonist properties. In figure 3.19, 300 nM CH 223191 was

added to various concentrations of TCDD and compared with a 10 µM TCDD

(TC), an antagonist only control (AC) and a vehicle control (VC). Gene

evaluation values of 58% and 41%, for AhR and ȕ-Actin.
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Figure 3.19: Induction of CYP1A1 RNA by TCDD with and without 300 nM CH-223191 -

H4-IIEC3 cells were treated with the indicated concentrations of TCDD in the presence and

absence of 300 nM DF 203. Cell treatment, RNA isolation and RT-PCR analysis was as described

for Figure 3.8. VC: Vehicle control, AC: Antagonist only control, TC: 10 µM TCDD only control.

The normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D.

Figure 3.19 shows various concentrations of TCDD in the presence and absence

of 300 nM CH 223191. The EC50 of TCDD with CH 223191 was 44 pM (95% CI

= 28 pM - 70 pM) which was compared with TCDD alone (EC50 = 29 pM, 95%

CI = 21 pM - 39 pM). The data shows that there is no difference between EC50s

with the 95% CI from each curve overlapping considerably. It is therefore

possible to deduce that at this concentration of antagonist, CH 223191 has no

effect on the induction of CYP1A1 by TCDD. One possibility is that a larger

concentration of CH 223191 is required to obtain measurable antagonism. In the

next assay, 10 µM of CH 223191 was added to TCDD treated cells (various

concentrations). This was also compared with a 10 µM TCDD only control (TC),
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antagonist only control (AC) and a vehicle control (VC). Gene evaluation values

of 88% and 53% were obtained for AhR and ȕ-Actin, respectively.
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Figure 3.20: Induction of CYP1A1 RNA by TCDD with and without 10 µM CH-223191 - H4-

IIEC3 cells were treated with the indicated concentrations of TCDD in the presence and absence of

10 µM CH 223191. Cell treatment, RNA isolation and RT-PCR analysis was as described for

Figure 3.8. VC: Vehicle control, AC: Antagonist only control, TC: 10 µM TCDD only control.

The normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D.

It can be seen in figure 3.20 that CH 223191 has inhibited the induction of

CYP1A1 by TCDD by approximately >100 fold. Unfortunately, it isn’t possible

to derive an accurate and reliable EC50 from this data set, so comparison is subject

to considerable inaccuracy. However, there is a large difference between curves,

which is likely to be significant, although this can’t be supported quantitatively.
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3.4 The Effect of Time of Exposure on Induction of CYP1A1 RNA

3.4.1 Methodology

The standard induction assay used in this thesis exposes cells to chemical

treatment for only four hours, on the basis that this minimises the effect of

metabolism on the chemical. However, the effect of exposure time on induction of

CYP1A1 has not been carefully examined. The hypothesis that longer exposure

times would increase the apparent EC50 (decrease the potency) of metabolically-

labile chemicals, whilst not affecting the EC50 of metabolically-resistant

chemicals, was tested. RT-PCR was used (Section 3.1) with cells also been treated

for 24 hours. Induction of CYP1A1 RNA by 3-MC was measured for both 4 and

24 hours and compared with TCDD which was also measured at 4 and 24 hours.

3.4.2 3-Methylcholanthrene

The induction of CYP1A1 RNA by 3-Methylcholanthrene (3-MC) was measured

where cells were treated for 4 and 24 hours. Various concentrations (10 µM - 1

pM 3-MC) were compared against vehicle controls (VC) (controls were treated

for either 4 or 24 hours, giving two sets). Gene quality evaluation values were

39% and 46% at 4 hours and 15% and 13% at 24 hours for AhR and ȕ-Actin,

respectively. The normalized response data was then plotted against concentration

(Figure 3.21).
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Figure 3.21: Induction of CYP1A1 RNA by 3-MC at 4 and 24 hours - H4-IIEC3 cells were

treated with the indicated dose of 3-MC, or vehicle control, for 4 or 24 hours, as described in

materials and methods section 2.2.1. RNA was isolated from cells, and analysed for CYP1A1, ȕ-

Actin and AhR RNAs by real-time PCR, as described in section 2.2. CYP1A1 RNA was

normalised using Qbase (section 2.2.5) against ȕ-Actin and AhR RNAs, and then normalised to

the maximum response, which is shown as 100%. Each curve has been individually normalised

and then compared. The response of CYP1A1 against log dose is shown, and each point represents

n=3 biological replicates, ± S.D. VC: Vehicle control.

There is a significant difference in the potency of 3-MC between 4 and 24 hours.

The EC50 after four hours treatment was 2.3 nM (95% CI = 1.3 nM-3.8 nM) and

94 nM (95% CI = 74 nM-120 nM) after 24 hours treatment. In agreement with the

prior hypothesis, larger concentrations are required for maximal response at 24

hours in comparison to 4 hours, and this effect is substantial, with 3-MC being

~40-fold less potent at the later time point.
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3.4.3 Tetrachlorodibenzo-p-dioxin

The induction of CYP1A1 RNA by TCDD when treated for 4 and 24 hours was

analysed in order to establish whether metabolically stable compounds show a

constant potency with time. Concentrations between 10 nM and 100 fM were used

each time and compared against a vehicle control (VC). Figure 3.22 shows the

induction of CYP1A1 RNA at each time. At 4 hours the gene evaluation values

were 9% and 8% for ȕ-Actin and AhR, respectively and at 24 hours they were

13% and 13%.
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Figure 3.22: Induction of CYP1A1 RNA by TCDD at 4 and 24 hours - H4-IIEC3 cells were

treated with the indicated concentrations of TCDD in the presence and absence of 1 µM DF 203.

Cell treatment, RNA isolation and RT-PCR analysis was as described for Figure 3.20. The

normalised response of CYP1A1 against log dose is shown, and each point represents n=3

biological replicates, ± S.D. VC: Vehicle control.

At 4 hours the EC50 was 34 pM (95% = 18 pM-63 pM) and at 24 hours the EC50

was 149 pM (95% CI = 120 pM-185 pM), a difference of ~4 fold (Figure 3.22).



Richard Wall

63

This demonstrates a significant increase in concentration required for induction

between 4 and 24 hours, although this ~4-fold difference is smaller than the ~40-

fold difference for 3-MC. These results demonstrate that time of exposure of cells

to compound is a key variable that affects potency estimations.
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4. Discussion

4.1 Measurement of CYP1A1

4.1.1 The Use of the H4-IIE Bioassay

Induction of CYP1A1 alone does not imply a toxic effect but instead works in

parallel with other responses responsible for those toxic effects (Whyte et al.,

2004). Therefore care is required when using CYP1A1 induction to estimate the

toxicity of a compound even though previous evidence confirms the parallel

relationship between CYP1A1 induction and toxic effects (Safe, 1990). The H4-

IIE bioassay method is useful for estimating the toxicity of HAHs in organisms

but not so well for PAHs, as they are easily metabolised and don’t bioaccumulate

to the extent of HAHs. H4-IIE cells have low basal Aryl hydrocarbon hydroxylase

(AHH) and CYP1A1 levels (Benedict et al., 1973). The main advantage of H4-IIE

cell models is that the treatment won’t be effected by metabolism. Further

advantages of in vitro models, with regards to in vivo models, are the high

through-put and elimination of inter-animal differences.

4.1.2 CYP1A1 mRNA vs. EROD Enzyme Analysis

Quantitative analysis of the activation of AhR, through measurements of CYP1A1

RNA, is critically dependent on the methodology for RNA measurement.

CYP1A1-associated enzymes, Ethoxyresorufin-O-deethylase (EROD) and Aryl

hydrocarbon hydroxylase (AHH) are induced by TCDD-like compounds

(Kennedy 1993). EROD activity has historically been used as a measure of AhR

activation (; Clemons et al., 1997, 1998; Hilscherova et al., 2001; Peters et al.,

2004; Sanderson et al., 1996; Schmitz et al., 1995; Silkworth et al., 2005). EROD
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activity measures the rate of CYP1A1-mediated deethylation of 7-ethoxyresorufin

(7-ER) leading to the production of highly-fluorescent resorufin, measured using a

plate reader. The method replaced AHH activity in the mid 1980’s due to the

increased safety and economy of EROD, compared with AHH measurement. The

system also has a greater efficiency and is much more cost effective (Whyte et al.,

2004). PCR technology has allowed the measurement of CYP1A1 RNA which

provides a more sensitive measurement of AhR activation compared with EROD

(Vanden Heuvel et al., 1994). Research has shown that certain PCBs inhibit the

EROD enzyme-substrate reaction making mixture experiments impossible to

accurately measure, and illustrating the generic pitfall that enzyme activity

measurement can be a flawed measure of AhR activation (Petrulis et al., 1999).

CYP1A1 RNA induction is one of the most potent effects of AhR activation so

would be expected to give both the most accurate and most sensitive results.

Measurement of resorufin requires that the cells are treated for longer periods of

time to allow translation of the enzymes. Longer periods of treatment can lead to

the metabolism of some compounds, including 3-MC (Riddick et al., 1994) and

TCDF (Clemons et al., 1997). In this thesis a method of measuring the induction

of CYP1A1 was calibrated using RT-PCR. Several variables that affect accurate

measurement of CYP1A1 RNA were identified and optimised, yielding a

methodology with considerable statistical power for the determination of the

potency of an agonist for inducing CYP1A1 RNA. Statistical power is a

prerequisite for detecting small differences in potency. Such quantitative

measurement of induction potency enables the application of a variety of

pharmacological tools to investigate the nature of agonism.
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4.1.3 Reliability of Data

Several mechanisms were put in place to ensure the reliability of the data.

Initially, the cDNA yield was normalised using Picogreen (Quanti-iT TM

Picogreen® dsDNA assay kit). During PCR, three different controls confirmed

that there was no DNA contamination, in both cDNA synthesis and RT-PCR

analysis. Also during RT-PCR analysis, controls of 10 µM TCDD and vehicle

were also run demonstrating no substantial differences between assays. The

induction of CYP1A1 RNA was normalised against two reference genes, ȕ-Actin

and AhR, which were unaffected by any of the treatments used. Measurement of

these reference genes was conducted on every sample alongside CYP1A1 as a

way to normalise the levels of CYP1A1 RNA. The results of figure 3.5 show that

neither of the reference genes, AhR and ȕ-Actin, were affected by the vehicle or

various concentrations of TCDD which proves that the cDNA used was of good

quality and equal concentration within each sample.

The quality of the reference genes used for normalisation of CYP1A1 RNA was

evaluated by Qbase, with the more reliable genes allocated a lower gene

evaluation value. The gene evaluation value indicates how stably expressed the

gene is with values of <50% considered reliable and higher values indicating less

reliable results (Hellenmans et al., 2007). The mean gene evaluation values for

TCDD in this study were ~25% and ~33% for ȕ-Actin and AhR, respectively,

with similar values seen throughout the study with only a few exceptions, such as

TCDF, that were >50%. The normalised data was used to produce a dose-response

curve which allowed calculation of the EC50. Comparison of EC50 is a useful

method but is only applicable when the dose-response curves are identically
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positioned on the Y-axis, differing only in their position on the X-axis (Whyte et

al., 2004). The curves of four separate TCDD assays were compared to

demonstrate the robustness of the method used and the reliability of the data

collected. Multiple determinations of the EC50 gave an average value of 35 pM

(S.D. = ± 5.8 pM) with considerable overlap of means and 95% confidence

intervals.

4.2 Partial Agonism studies

4.2.1 Agonist Properties

The results demonstrate that there were several compounds that are potent

agonists of the AhR and induced CYP1A1 RNA with nanoMolar EC50 values. It

was possible to conclude from this data that, with the exception of CH 223191, all

of the compounds tested had agonist properties since they induced CYP1A1 RNA.

4.2.2 Comparison of EC50 with Previous Literature

The average EC50 of TCDD found in this research was similar to that found by

several other authors (Bazzi, 2008; Hilscherova et al., 2001; Sanderson et al.,

1996; Schmitz et al., 1995; Silkworth et al., 2005). The majority of research

summarised in table 3.1 was conducted in rat H4-IIE cells, however there are

several salient differences. The treatment times varied between 4 hours (Bazzi,

2008) and 72 hours (Hilscherova et al., 2001), and another difference is the

method of measurement used which, for the majority of studies, was measurement

of EROD activity, with only two studies using RT-PCR (Bazzi, 2008; Silkworth

et al., 2005). The study by Silkworth et al. (2005) uses rat liver hepatocytes but
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was included as a further example of an EC50 found using a method more closely

related to mRNA induction.

Table 4.1: Comparison of EC50 with previous literature – a4 hours treatment, b24 hours

treatment, c48 hours treatment, d72 hours treatment, eRat liver hepatocytes, *± Standard

Deviation/Standard Error, Method1: Method used in each experiment. RT-PCR: Real-time

Polymerise Chain Reaction, EROD: Ethoxyresorufin-O-deethylation, Invader: RNA invader®

invasive cleavage amplification assay (consists of an upstream oligonucleotide and a probe) see

Silkworth et al. (2005).

4.2.2.1 TCDD, 3-MC and DF 203

TCDD is a well studied compound, used as a reference compound in many of the

studies. The data shows that all the EC50s from each paper are within a ~10-fold

Compound with EC50 (95%
CI) from this paper

Method1
EC50 (95% CI or SD/SE*)

from literature
Author of
literature

TCDD
35 pM (22 pM – 56 pM)

RT-PCRa
40 pM (± 13 pM*) Bazzi 2008

Invader 2.7 pM (1.2 pM – 5.9 pM)e Silkworth 2005

ERODc
41 pM (23 pM – 74 pM)e Silkworth 2005

ERODb
11.8 pM (± 3.9 pM*) Clemons 1997

ERODc
9.0 pM (± 2.1 pM) Clemons 1998

ERODd
34.5 pM (± 1.96 pM*) Hilscherova 2001

EROD 50 pM (± 13 pM*) Schmitz 1995

ERODd
10 pM Peters 2004

ERODd
19.6 pM (± 5.6 pM*) Sanderson 1996

3-MC
2.3 nM (1.3 nM – 3.8 nM)

RT-PCRa
9 nM (7 nM – 13 nM) Bazzi 2008

TCDF
5.8 nM (2.8 nM - 11 nM)

ERODb
45.0 pM (± 15.2 pM*) Clemons 1997

PeCDF
2.2 nM (1.4 nM - 3.4 nM)

ERODd
76 pM (± 0.4 pM*) Sanderson 1996

PCB 126
765 pM (645 pM - 907 pM)

Invader 1.5 nM (0.5 nM – 4.3 nM)e Silkworth 2005

ERODc
330 pM (110 pM – 990 pM)e Silkworth 2005

ERODd
264 pM (± 0.4 pM*) Sanderson 1996

ERODd
100 pM Peters 2004

DF 203
1.5 µM (1.2 µM – 1.8 µM)

RT-PCRa
3 µM (0.9 µM – 13 µM) Bazzi 2008
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difference of each other, with an average EC50 of ~25 pM, which compares well

with this paper (Average EC50 = 35 pM). Bazzi (2008) assayed 3-MC and DF 203

with similar results to those found by this paper. The EC50 for 3-MC in this paper

was 5.8 nM (95% CI = 2.8 nM – 11 nM) which compares well to the findings of

Bazzi (2008) which was 9 nM (95% CI = 7 nM – 13 nM). Furthermore, Bazzi

(2008) found the EC50 of DF 203 to be 3 µM (95% CI = 0.9 µM – 13 µM) which

compared well with the EC50 found in this paper which was 1.5 µM (95% CI =

1.2 µM -1.8 µM). This confirms the previous conclusion of other papers, that DF

203 has agonist properties (Bazzi, 2008; Loaiza-perez et al., 2002).

4.2.2.2 TCDF and PeCDF

A 100-fold difference in the EC50 for TCDF, in comparison with the literature,

was found (Clemons et al., 1997). Similarly, there is an 80-fold difference in the

EC50 found for PeCDF compared with the literature (Sanderson et al., 1996).

Calculation of the relative potency (REP) in relation to TCDD gave values of

0.006 and 0.016, for TCDF and PeCDF, respectively. This compares

insufficiently with the WHO TEFs of 0.1 and 0.3 for TCDF and PeCDF,

respectively. Review of the method reveals one possible explanation, in that the

vehicle used to dissolve the compounds, was DMSO. In order to reduce the

number of variables between experiments, the same solvent was used as a vehicle

for each compound where possible. However, previous authors dissolved TCDF

in p-dioxane (Bazzi, 2008) or isooctane (with further dilutions in DMSO)

(Clemons et al., 1997), with PeCDF also dissolved in isooctane (Sanderson et al.,

1996). Solubility of the compounds into the vehicle was only visually assessed

and therefore complete solubility may not have occurred in DMSO. This would
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mean the EC50 estimates may show a higher concentration than in other research.

This should not have any impact on agonism experiments other that the

concentration used to give 15% of maximal induction would be lower than stated

for TCDF and PeCDF. Another possible explanation for the differences seen

between the EC50 found in this paper and previous research is the use of RT-PCR

instead of EROD activity. Clemons et al. (1997) found the EC50 for TCDF only 1-

2 fold higher than TCDD. Furthermore, Clemons et al. (1997) showed a ~7-fold

increase in the EC50 of the EROD activity of TCDF between exposures of 6 and

72 hours in H4-IIE Rat liver cells. In order to test the hypothesis that treatment

duration affects the induction by TCDF, the effects at different exposure times

could be assessed in a similar experiment as described in this paper (section 3.4).

4.2.2.3 PCB 126

The literature provided a wide range of values for the EC50 of PCB 126 ranging

from 100 pM (Peters et al., 2004) to 1.5 nM (Silkworth et al., 2005). The EC50

found in this paper (765 pM) does lie comfortably within this range but with the

majority of previous research utilising the EROD activity assay (Clemons et al.,

1998; Peters et al., 2004; Sanderson et al., 1996; Silkworth et al., 2005),

comparison is complex. The REP was calculated in relation to TCDD which was

0.05, compared with 0.1 predicted by the WHO TEF. Although lower than the

WHO TEF, it does compare better with previous authors who measured 0.03

(Silkworth et al., 2005) and 0.75 (Sanderson et al., 1996) in rat liver hepatocytes

and H4-IIE rat liver cells, respectively. Nevertheless, there is a slight discrepancy

between research found in this paper and that published by the WHO. In this

paper, PCB 126 was dissolved in DMSO as described by previous authors

(Clemons et al., 1998; Silkworth et al., 2005), although Sanderson et al. (1996)
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used isooctane as a vehicle, presumably to reduce the number of variables. The

slight discrepancy between values could therefore be due to the method of

measurement (EROD activity) which was shown to be inhibited by other PCBs

(Clemons et al., 1998) however there is no previous evidence of this.

4.2.3 Effects of Partial Agonism on CYP1A1 RNA Induction

The four agonists that were tested, 3-MC, TCDF, PeCDF and PCB 126, showed

no antagonistic properties in the particular experiments carried out in this study.

Clemons et al. (1998) tested TCDD in the presence of various PCBs including

PCB 126 and found that the compound also had no effect on induction by TCDD

(Clemons et al., 1998). Walker et al. (2005) conducted mixture experiments in

rats with the occurrence of neoplastic and nonneoplastic effects as an endpoint.

Although the WHO additivity method was not directly applied, the authors did

conclude that PCB 126 had no observable partial agonistic effects.

By comparing the 95% confidence intervals of the EC50 from each partial agonism

experiment with that of TCDD alone it can be concluded that there was no

significant difference in the concentrations of TCDD required for CYP1A1 RNA

induction. This shows that the four agonist compounds tested do not have

detectable antagonist properties in rat H4-IIEC3 cells, when compared with

TCDD. If the compounds tested had an effect on the concentrations of TCDD

required for induction; a shift of the dose-response curve to the right would be

observed in a similar way to figure 3.14 (1 µM DF 203) and figure 3.16 (10 µM

CH 233191). The EC50 determinations have 95% confidence intervals spanning a

3-5 fold range, and so these experiments are sufficiently powered to detect

antagonism that shifts the EC50 of TCDD by ~5-fold. A compound with a high
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intrinsic efficacy does not need to bind to as many receptors as a compound with a

low intrinsic efficacy, such as a partial agonist, to reach the same response

(Kenakin, 1997). Given the comparatively low dose of potential antagonist tested

(~15% of maximal induction), a compound would need to have intrinsic efficacy

which is >90% antagonistic to be detected in this assay.

4.2.4 Partial agonism by DF 203

The agonist only curve confirms previous research that describes DF 203 as

having agonist properties (Bazzi, 2008; Loaiza-perez et al., 2002). Induction of

CYP1A1 by TCDD in the presence of 1 µM DF 203 demonstrated that the

compound had partial agonistic properties. Research by Bazzi (2008)

demonstrated that DF 203 had a high binding affinity (Ki) but low efficacy. This

difference between affinity and efficacy could be explained by DF 203 having

antagonistic properties. From the dose-response curve in figure 3.16, this

concentration should be ~300 nM DF 203, however this provided no change in

induction when in the presence of TCDD (Figure 3.17), indicating that the

concentration was too low to induce CYP1A1 RNA (i.e. 15% of maximal

response) which one would assume was therefore also too low to antagonise

TCDD. A second dose-response curve was then established using a higher

concentration of 1 µM DF 203 (Figure 3.18). In this case, it would appear that the

estimation of 15% of maximal response is too high but comparable to that of the

original agonist only dose-response curve, which is also supported by previous

research (Bazzi 2008). It was possible to calculate the EC50 of the curve which

was 726 pM (95% CI = 69 pM-7.6 nM) which was found to be significantly

different from TCDD alone (EC50 = 34 pM, 95% CI = 18 pM - 63 pM). It is

therefore possible to conclude that this compound has both agonist and antagonist
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properties. The fact that DF 203 has been shown to have antagonistic properties is

a novel finding not tested previously. Bazzi (2008) assayed a congener of DF 203

known as 5F 203, which is also an experimental synthetic anti-tumour agent.

Bazzi (2008) calculated the EC50 for 5F 203 to be 3µM (95% CI = 1.3 µM –

7.7µM), similar to the EC50 for DF 203, also demonstrating that it had agonistic

properties but with a low potency compared with TCDD (Bazzi 2008).

Furthermore, the Ki was found to be 2.8 nM (2 nM – 5 nM) which is 5-fold lower

than the Ki for DF 203 (9.9 nM), suggesting that 5F 203, is a slightly stronger

antagonist than DF 203. In agreement with this, Bazzi (2008) found that 1 M 5F

203 shifted the TCDD dose-response curve by ~100-fold, whereas this report

finds that 1 M DF 203 shifted the TCDD dose-response curve by ~20-fold. Thus

the empirical finding is that DF 203 has slightly lesser antagonist properties than

5F 203.

4.2.5 Antagonistic properties of CH 223191

The inhibition of TCDD to induce CYP1A1 RNA by CH 223191 was measured.

Figure 3.20 shows treatment with TCDD in the presence of 10 µM CH 223191

however the concentrations of TCDD required for induction are too low to allow

calculation and comparison of the EC50. Potentially it is possible to compare the

two curves (TCDD in presence and absence of CH 223191) and see that there is a

considerable shift of the curve to the right which would indicate antagonism of

TCDD however it isn’t possible to quantify this with the given data. Figure 3.19

shows that when 300 nM CH 223191 was added to TCDD treated cells, the

antagonist had little or no observable effect of induction of CYP1A1 RNA by

TCDD, even though an effect was observed by Kim et al. (2006). There are two
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major factors that might explain this difference. Firstly, HepG2 human hepatoma

cells were tested instead of H4-IIE rat liver cells and secondly, cells were pre-

treated with CH 223191, one hour before treatment with TCDD, which was not

done in this paper. This could explain the discrepancy seen when treating cells

with 300 nM CH 223191, which should have produced an effect according to data

from Kim et al. (2006) but in this paper had no observable antagonistic effects

(figure 3.19). Furthermore, Kim et al. (2006) measured a single concentration of

TCDD in the presence of only three concentrations of CH 223191, visualised

using Reverse Transcriptase- PCR, which can be quite inaccurate and unreliable.

4.3 Time Dependent Induction Assays

4.3.1 3-Methylcholanthrene vs. 2,3,7,8-Tetracholodibenzo-p-dioxin

Previous authors (Poland et al., 1974; Riddick et al., 1994; Sekimoto et al., 2004;

Xu et al., 2005) have described 3-MC as being metabolised rapidly by P450

enzymes. In the time-dependent induction assay conducted in this paper, cells

were treated with 3-MC at various concentrations for 4 hours and 24 hours. The

EC50s were calculated for each curve and compared, demonstrating a 40-fold

significant difference with no overlapping of the 95% confidence intervals. This

difference in induction thresholds between 4 and 24 hours could be due to a

variety of factors including; metabolism of the ligand, degradation of CYP1A1

RNA over time or reduction in AhR-mediated induction of CYP1A1 RNA.

Firstly, 3-MC has a reported half-life of ~16 hours in rats (Aitio et al., 1974)

although no experimental work has actually quantified the half-life in H4IIE cells,

research does show a decrease of the half-life of 3-MC compared with TCDD

(Aitio et al., 1979). Nevertheless using this estimation as a guide, a reduction of
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~40% of 3-MC could be expected in cells over a period of 24 hours. Therefore it

could be concluded that this will have a huge impact in the reduction of the

induction of CYP1A1 RNA by 3-MC between 4 and 24 hours. Cells were also

treated with TCDD in a separate experiment for 4 and 24 hours to allow

comparison to 3-MC. TCDD has a half life of 17-31 days in rats (Van den Berg et

al., 1994) so metabolism would not be expected to affect induction of CYP1A1

RNA. However despite this, a 4-fold significant difference in TCDD induced

CYP1A1 RNA levels was found between 4 and 24 hours. Other literature shows

no significant change in EC50 of TCDD up to 72 hours after treatment (Bazzi,

2008; Clemons et al., 1997). The important advantage of this study over previous

work (Bazzi, 2008) is the greater statistical power for estimating the EC50

produced from the increased number of concentrations utilised and the use of

simultaneous normalisation of CYP1A1 RNA against the two references genes.

This would make the method used in this paper more adept at observing minute

changes in induction. Another explanation for this discrepancy is that TCDD is

known to be lipophilic so over 24 hours, TCDD may have fallen slightly out of

solution or more likely adsorbed to the 96-well plate or even the densely packed

lipids making up the cell membrane.

With the data collected, it isn’t possible to comment on the mechanism by which

CYP1A1 RNA levels decreased with regards to TCDD. However, the degradation

of CYP1A1 RNA or the reduction in AhR-mediated induction of CYP1A1 RNA

may have an important role. Theoretically there must be a system within the cell

to remove un-necessary RNA. Recent studies have described small interfering

RNAs (siRNA) which degrade RNA and interfere with the expression of a

specific gene (Hannon et al., 2004). Reduction of CYP1A1 could be attributed to
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naturally occurring siRNAs, as well as the ligand being metabolised by P450

enzymes over time. Another explanation is that there may be a reduction in the

initial AhR-mediated induction of CYP1A1. This reduction could be attributed to

any one of the stages of the mechanism of action; however it would seem

conceivable that the quantity of AhR may decrease quickly in the presence of a

high concentration of a specific AhR ligand, which would in turn decrease the

induction of CYP1A1 RNA. Giannone and co-workers (1998) confirmed that the

AhR population rapidly decreases following treatment with TCDD and can

remain low for at least 24 hours after exposure has ended (Giannone et al., 1998),

however the authors did acknowledge the fact that CYP1A1 levels remained

constant 72 hours after treatment despite reduced AhR levels. Superinduction

appears to show an increase in response as CYP1A1 RNA levels build up because

protein translation is inhibited (Ma et al., 2000). Ma et al., (2000) demonstrated

this using three compounds which increased the induction of CYP1A1 by TCDD,

two of which work by inhibiting AhR degradation (Ma et al., 2000) showing the

effect of reducing the depletion of AhR, at least in the presence of certain other

compounds, can maintain CYP1A1 levels. Consequently, although the data

required to make a reliable conclusion is not available, it can be hypothesized that

both of these additional reasons for a decrease in AhR activity, could be

associated with the differences observed between 4 and 24 hours in TCDD with

the large addition of metabolism affecting 3-MC. Future work would reconfirm

the values found for the two agonists and would look into explanations for

differences in AhR binding and degradation.
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4.4 Bioassay Limitations and Future Use

4.4.1 Limitations of assays

This paper looked at potential antagonist compounds individually or in a mixture

with only TCDD. In the environment, these compounds will be in complex

mixtures with a large variety of dioxin-like and non dioxin-like compounds, and

therefore the compounds tested could behave differently. It isn’t realistic to

measure the interaction between every compound or to measure every conceivable

mixture variation however using this data may allow the estimation of the

characteristics of a particular compound in a given situation. This is what makes

the TEQ system such a powerful risk assessment tool by collecting data similar to

this paper on individual compounds or small mixtures, and using it to predict how

the compound will act in a complex mixture. Furthermore, assays were performed

under control conditions in H4-IIEC3 bioassays which may not be fully

representative of how the compounds may interact in vivo.

The benefits of using H4-IIE cells are well researched including excellent growth

properties, low basal AHH and CYP1A1 levels, with a high degree of

responsiveness towards dioxin-like compounds (Benedict et al., 1973). Research

by Niwa et al. (1975) demonstrated the extreme potency of TCDD in H4-IIE cells

(Niwa et al., 1975). Authors have shown comparative results from H4-IIE cells to

structure-activity relationships, binding assays and in vivo responses in rats (Safe,

1986) furthermore H4-IIE cells have high levels of AhR. In this paper the effects

of AhR antagonists were assayed, however as previously discussed a compound

with antagonistic properties will bind to the Ah receptor but will not activate it.

Therefore by choosing a cell line with decreased number of Ah receptor,
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observation of antagonistic effects may become more easily detectable. A

comprehensive study in rat cell lines showing levels of Ah receptor has not been

conducted previously, however cell types with low levels of AhR include brain,

kidney and skeletal muscles as demonstrated by Dolwick et al. (1993) in human

tissues (Dolwick et al., 1993).

4.4.2 Future application of bioassay

There are several PCBs which exhibit both agonistic and antagonistic properties

which could be further investigated in relation to risk assessment and the

additivity approach (Chu et al., 2001; Clemons et al., 1998; Schmitz et al., 1995).

Clemons et al. (1998) combined various concentrations of TCDD with different

PCBs and showed that some of the PCBs had antagonistic effects which would

produce a lower toxic potency than that predicted by the TEQ additivity approach.

This conclusion was further complicated by the differing effects of antagonistic

PCBs in complex mixtures of HAHs. Other compounds not currently included

within the WHO TEQ compounds, such as polybrominated diphenylethers

(PBDEs), could also have implications on risk assessment in complex

environmental mixtures. Peters et al. (2004) measured TCDD in the presence of

various PBDEs and found that several of the compounds had inhibitory effects,

producing a significantly lower response than TCDD alone. These would

potentially affect the TEQ estimation if not accounted for. A more detailed

investigation of naturally occurring agonists should be conducted.

4.5 Conclusion

The aim of this paper was to observe and where possible, quantitate the

antagonistic effects for several of the most potent and prevalent dioxin-like AhR
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ligands. It was found that the four agonists tested did not have antagonistic

properties however this paper has successfully demonstrated the antagonistic

properties of DF 203, when in the presence of TCDD. Furthermore, the

antagonistic effects of CH 223191 on the induction of CYP1A1 RNA by TCDD

was verified and confirmation of a decrease in the ability to activate the AhR over

time by 3-MC was demonstrated. The method designed for measuring the

activation of the AhR by different agonists was successfully applied to all of the

compounds used in this experiment. RT-PCR, with increased sensitivity of

CYP1A1, decreasing costs and faster output; should become the default method

for measurement in the future. Furthermore, investigation into the bioassay may

improve the observation of antagonistic effects with increased knowledge of

compound metabolism derived from the induction measured at different exposure

times. Finally, future work will need to analyse the potential effects of natural

ligands, as well as partial agonists, on the TEQ calculated using the additivity

approach.
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