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Abstract

The present thesis is devoted to the study of a class of cyclically presented

groups, an important theme in combinatorial group theory.

1. Introduction

We introduce the cyclic presentations which will be the object of our

study. We explain why these are important and we state some known

results. In view of this we propose a conjecture (Conjecture 1.2.7) to

which we give a partial answer in the following chapters. We finally

give a definition of irreducibility, p-irreducibility and f-irreducibility for

a presentation in the class which we are studying.

2. Method of proof

Here we give a short report on split extensions and (van Kampen)

diagrams, which are the two basic ingredients involved in our proofs.

We then outline the method of proof, which is a generalization of the

method used in [11] and makes use of an analysis of modified diagrams.

3. The p-irreducible case

We start giving a geometric constraint on diagrams and we show, as

described in Chapter 2, that a presentation whose diagram respects this

constraint gives rise to an infinite group. After studying four particular

cases we give conditions on the integer parameters of a presentation in

the class considered in order to have a diagram which satisfies the given

geometric constraint. Finally, we prove Theorem 2 which partially

answers Conjecture 1.2.7 in the p-irreducible case.
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4. The f-irreducible case

Given certain constraints the problem is reduced to a particular case.

We then study this case as outlined in Chapter 2. We also show that

these constraints can be weakened if the number of generators is odd.

5. Conclusions

We show how the results achieved can be used to prove a theorem in

a more general setting; we explain what one should prove in order to

confirm Conjecture 1.2.7 and why our method fails in these cases.
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Chapter 1

Introduction

Combinatorial group theory is essentially the study of groups given by means

of presentations. The present thesis aims to study a particular class of cycli-

cally presented groups which generalises a classical example of Higman (see

[15]) and has been given attention in several recent papers (see, for example,

[10, 11] and [14]).

1.1 Cyclic presentations and their relevance

Let X = {x0, . . . , xn−1} and let σ denote the (unique) automorphism of

F = F (X) such that xiσ = xi+1 where the subscripts are taken modulo n.

Definition 1.1.1 With the above notation a cyclic presentation is a pre-

sentation Gn(w) = 〈X|w, wσ, . . . , wσn−1〉 for some cyclically reduced w ∈ F .

A group G is said to be cyclically presented or to have a cyclic presen-

tation if there exist w ∈ F and n ∈ N such that G ∼= Gn(w).

There are several motivations for studying cyclic presentations. First of all

cyclic presentations are balanced, that is they have the same number of gen-
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erators and defining relators, hence cyclic presentations of the trivial group

provide potential counterexamples to the well known Andrews-Curtis conjec-

ture (see, for example, [2, 21]) which is of some interest in topology as well

as from a combinatorial group theory point of view. Another connection to

topology arises from the following fact. Let M be a closed compact orientable

3-manifold. In 1968 Neuwirth [24] described an algorithm for producing a

presentation for π1(M), the fundamental group of M . The output of the algo-

rithm turns out to be a cyclic presentation. These aspects have been studied

by many authors (see, for example, [4, 6, 9] and [25] ). Dunwoody suggested

a connection between cyclic presentations and cyclic branched covers of knots

which has been recently confirmed by Cavicchioli, Ruini and Spaggiari [7].

Further investigation of this connection can be found in papers as [3, 13, 22]

and [27].

Many of the families of groups studied in the papers above are interesting

from a purely combinatorial point of view and are generalizations of classical

families of groups which are indeed cyclically presented such as the Fibonacci

groups, the fractional Fibonacci groups and the Sieradski groups. These have

presentations F (r, n) = Gn(x0 · · ·xr−1x
−1
r ), F̃l,k = Gn((x−l

0 xl
1)

kx1(x
−l
2 xl

1)
k)

and S(n) = Gn(x0x2x
−1
1 ), respectively.

1.2 The problem and some known results

In [18] Johnson introduced the polynomial associated with the cyclic presen-

tation for Gn(w). This is the polynomial fw(t) :=
∑n−1

i=0 ait
i where ai is the

exponent sum of xi in w. He also showed that the order of the abelianization

Gn(w)ab of Gn(w) equals |
∏n−1

i=0 fw(ζi)| where the ζi are the complex nth
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roots of unity (here we agree that |Gn(w)| = ∞ if this product vanishes) and

proved that Gn(w)ab is trivial if and only if the associated polynomial is a

unit in the quotient ring Z [t] /(tn−1). It has been conjectured by Dunwoody

that |Gn(w)| = 1 =⇒ fw(t) = ±ti. This is now known to be false as Edjvet,

Hammond and Thomas proved in [10] providing a counterexample for n = 5.

Nevertheless the conjecture led many authors (see [10, 11, 12] and [14]) to

consider the following question.

Problem 1.2.1 For what n and w is Gn(w) trivial?

Following Edjvet [10] it suffices to answer the question above for cyclic pre-

sentations Gn(w) which are irreducible, that is when either n = 1 or, for

n ≥ 2, if w involves only xi1 , . . . , xik where ij < ij+1 for 1 ≤ j ≤ k − 1 then

k ≥ 2 and h :=hcf(i2 − i1, i3 − i2, . . . , ik − ik−1, n) = 1.

Notice that if h > 1 then Gn(w) decomposes into the free product of h ir-

reducible factors all isomorphic to an irreducible cyclically presented group

Gm(ŵ) where n = hm.

Problem 1.2.1 is a very general and difficult question even if we restrict

our attention to irreducible presentations. We therefore confine ourselves to

study a special class of cyclically presented groups. The following problem

has been considered in [11] with the convention that [a, b] = a−1b−1ab.

Problem 1.2.2 For which values of n, i, j, k; αr is G = Gn

(
xα1

i

[
xα2

j , xα3

k

])

both irreducible and trivial?

This class of groups generalizes one of the first examples of an irreducible

cyclic presentation of the trivial group, namely G2

(
x0

[
x−1

0 , x1

])
(see Higman

[15]) and has been partially investigated in [10, 11, 12] and [14].
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First of all we observe that there is no loss in assuming α1 = 1, for if not

the abelianization Gab of G is not trivial being the free product of n copies

of the cyclic group of order |α1|; moreover since the presentation is cyclic we

can also assume i = 0. We can therefore reformulate the given problem as

follows.

Problem 1.2.3 For which values of n, i, j; α and β is G = Gn

(
x0

[
xα

i , xβ
j

])

both irreducible and trivial?

In particular Edjvet and Hammond [11] considered Problem 1.2.3 for (i, j) =

(1, 2). Their proofs involve an analysis of modified van Kampen diagrams

over a split extension of G and some computation for small values of the

parameters. Here we want to generalize the geometric construction to the

general case and to prove similar statements for different values of i and j.

Although the geometric analysis involves only elementary techniques, it turns

out to be quite complicated and somewhat involved; in order to simplify this

analysis we introduce the so-called elementary moves which determine an

equivalence relation on the set of presentations of the form Gn

(
x0

[
xα

i , xβ
j

])

(for a fixed n) which respects isomorphims (that is presentations in the

same equivalence class define isomorphic groups). We will then work modulo

this equivalence relation and study geometrically suitable representatives of

classes.

Definition 1.2.4 Two words w = x0[x
α
i , xβ

j ] and w′ = x0[x
α′

i′ , xβ′

j′ ] in X± are

said to be equivalent, and we write w ∼ w′, if w′ can be obtained from w

by a sequence of the following elementary moves:

(E1) changing xk with x−1
k for each k;
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(E2) cyclic permutation;

(E3) inversion;

(E4) permutation induced by an automorphism of indices in Zn.

Clearly, ∼ is an equivalence relation and we have the following.

Lemma 1.2.5 If w ∼ w′ then Gn(w) ∼= Gn(w′).

Proof. Each elementary move does not change the isomorphism class.

�

Remark. Notice that elementary moves can only interchange and change

the signs of α and β. Since we are working modulo the equivalence relation

defined by these moves we will always give symmetric conditions on the

parameters α and β. Moreover elementary moves take irreducible cyclic

presentations to irreducible cyclic presentations.

The next result is a consequence of a theorem of Pride [26] and is useful in

what follows.

Proposition 1.2.6 Let G = Gn(w) be a cyclically presented group. If n ≥ 4,

w involves the generators x0 and x1 only and if x0 or x1 has zero exponent

sum in w then G is infinite.

In view of this we can assume in Problem 1.2.3 that if n ≥ 4 then i and j

are distinct and both different from zero. Using elementary moves we can

also assume 0 < i < j < n and i ≤
n

2
. In fact if i > j then the sequence

of elementary moves (E3)-(E2)-(E1) interchanges i and j (so we can assume

i < j) and if i < j but i >
n

2
we can apply the automorphism k 7→ n − k
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first (E4) and then again (E3)-(E2)-(E1).

We now give some known results concerning Problem 1.2.3.

• Gn

(
x0

[
x−1

0 , x1

])
is trivial and irreducible for n = 2 or 3 (Higman [15]),

and it follows that G2

(
x0

[
xα

0 , xβ
1

])
is trivial for all α and β; on the

other hand G3

(
x0

[
x−k

0 , x1

])
is infinite for k ≥ 2 (Neumann [23]);

• the groups G3 (x0 [x1, x2]), G3

(
x0

[
x−1

1 , x−1
2

])
, G4

(
x0

[
x−1

1 , x−1
2

])
and

G4 (x0 [x1, x3]) are both trivial and irreducible (Edjvet, Hammond and

Thomas [10]);

• more generally G2k

(
x0

[
xα

i , xα
i+k

])
, where α ∈ Z \ {0} and k ≥ 2, is

irreducible and trivial for each i such that hcf(i, k) = 1 (Havas and

Robertson [14]);

• for n ≥ 5 and (|α|, |β|) 6= (1, 1) the group Gn

(
x0

[
xα

1 , xβ
2

])
is infinite

(Edjvet and Hammond [11]).

We also point out that using elementary moves we can assume 0 < i <

j ≤ n − i. A computation with KBMAG [16] shows that for 5 ≤ n ≤ 10,

0 < i < j ≤ n − i and 0 < |α|, |β| ≤ 3 the group Gn

(
x0

[
xα

i , xβ
j

])
is both

irreducible and trivial if and only if it is of the Havas-Robertson type. This

prompted the following.

Conjecture 1.2.7 Let n ≥ 5, α, β ∈ Z \ {0} and G = Gn

(
x0

[
xα

i , xβ
j

])
be

irreducible where 0 < i < j < n and i ≤
n

2
. Then G is trivial iff α = β,

n = 2k and j = i + k.

Notice that the presentation Gn

(
x0

[
xα

i , xβ
j

])
is irreducible if and only if

hcf(n, i, j) = 1, therefore the conjecture says precisely that for n ≥ 5 there are
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no trivial and irreducible groups except from the Havas-Robertson examples.

In order to prove partial results towards this conjecture we will distinguish

two cases.

Definition 1.2.8 Let hi := hcf (i, n) and hj := hcf (j, n). The presentation

Gn

(
x0

[
xα

i , xβ
j

])
is said to be p-irreducible if it is irreducible and hi = 1

or hj = 1; it is said to be f-irreducible if it is irreducible and hi, hj > 1.

From now on we will assume n ≥ 5.

In Chapter 3 we will study the p-irreducible case. This study will culminate

with a proof of the following.

Theorem 2 Let G = Gn

(
x0

[
xα

i , xβ
j

])
. Suppose that hi = 1 or hj = 1 and

that |α| > 1, |β| > 1 and |α| 6= |β|.

If n is odd and n ≥ 11 then G is infinite.

Chapter 4 is devoted to the study of the f-irreducible case. The main result

is the following theorem.

Theorem 3 Let G = Gn

(
x0

[
xα

i , xβ
j

])
. If hi > 1, hj > 1, |α| > 1 and

|β| > 1 then G is infinite.

For n odd we can weaken the hypotheses on α and β and prove the follow-

ing. Theorem 4 Let G = Gn

(
x0

[
xα

i , xβ
j

])
. If n is odd, hi > 1, hj > 1 and

(|α|, |β|) 6= (1, 1) then G is infinite.

In the final chapter we give a short report of the results achieved and give

conditions under which we can prove Gn

(
x0

[
xα

i , xβ
j

])
to be infinite using

the theorems above. More precisely we look at the hypotheses as constraints

on the 5-tuple ((n, i, j, α, β)) and we prove the following.

Theorem 5 Let G = Gn

(
x0

[
xα

i , xβ
j

])
be irreducible. If there exists m such

that m | n, m ∤ j − i and the 5-tuple (m, i′, j′, α, β), where i′ ≡ i mod m and

7



j′ ≡ j mod m, respects one of the conditions in Theorem 2, Theorem 3 or

Theorem 4, then G is infinite.

We finally discuss which cases are left in order to confirm Conjecture 1.2.7

and explain why our method fails in these cases.

We point out that for n < 5 there are examples of presentations defining a

non-trivial and finite group (for example G3

(
x0

[
x−1

1 , x2

])
, which has order

120, has been checked by Martin Edjvet with the computer software KB-

MAG [16]); nevertheless we believe that for n ≥ 5 if Gn

(
x0

[
xα

i , xβ
j

])
is

irreducible and non-trivial then it is infinite.

8



Chapter 2

Method of proof

Our main method of proof involves two ingredients, namely group extensions

and (modified) van Kampen diagrams.

2.1 Group extensions.

Definition 2.1.1 Let E, G, H be groups and 1 denote the trivial group. We

say that E is an extension of G by H if there exists a short exact sequence

of groups and homomorphisms

1 −→ G −→ E −→ H −→ 1

Then G can be thought as a normal subgroup of E and E/G ∼= H .

A particularly interesting case of extension is when E is the semi-direct prod-

uct of G and H .

Definition 2.1.2 Let E, G, H be groups. If G � E, H 6 E, GH = E and

G ∩ H = 1 then we say that H is a complement for G in E. Then E is the
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semi-direct product of G and H and we write E = G ⋊ H; we also say

that E splits over G by H or that E is a split extension of G by H.

It is important to notice that if E = G⋊H then E is an extension of G with

the notation above and that the correspondence h 7−→ σh ∈ Aut(G), where

σh : g 7−→ h−1gh, gives a homomorphism H −→ Aut(G).

On the other hand given groups G and H and a homomorphism α : H −→

Aut(G), then the set E = H × G equipped with the binary operation

(h1, g1)(h2, g2) = (h1h2, g1(h2α)g2) is a group such that G � E, H 6 E,

GH = E and G∩H = 1, so it is the semi-direct product (with respect to α)

of G and H . Here α says how elements of G conjugate by elements of H in

E and we write E = G ⋊α H . Thus we have an equivalent definition of split

extension which will be very useful in our context.

The next result is Corollary 1 on page 140 of [17] and shows how to construct

a presentation for E = G⋊α H once we are given presentations for G and H .

Proposition 2.1.3 Let G = 〈X|R〉 and H = 〈Y |S〉 be groups, and let α :

H −→ Aut(G) be a homomorphism such that x(yα) = wy,x, a word in X±,

x ∈ X, y ∈ Y . Then the semi-direct product E = G ⋊α H has presentation

E =
〈
X, Y |R, S, {y−1xyw−1

y,x| x ∈ X, y ∈ Y }
〉

�

We now show why this is particularly important from our point of view.

Consider the group G = Gn

(
x0

[
xα

i , xβ
j

])
and the cyclic group Cn = 〈t| tn〉.

Let φ : Cn −→ Aut(G) be defined by t 7−→ σ where xiσ = xi+1 for i =

0, . . . , n − 1 (subscripts modulo n) and form the semi-direct product E =

E(n; α, β; i, j) := G ⋊φ Cn. Then G � E and [G : E] = n therefore in order

10



to prove that G is infinite it suffices to show that E is infinite. According to

Proposition 2.1.1 we have the following presentation for the extension E:

〈
x0, . . . , xn−1, t| tn, xk

[
xα

i+k, x
β
j+k

]
, xk = t−1xk−1t, (k = 0, . . . , n − 1)

〉

where subscripts are taken modulo n.

Now apply Tietze transformations to delete generators using the last n −

1 relations: we have xk = t−kx0t
k for k = 1, . . . , n − 1, the (n + 2)-th

relation yields x0 = t−nx0t
n and the relations xk

[
xα

i+k, x
β
j+k

]
yield conjugates

to x0t
−ix−α

0 ti−jx−β
0 tj−ixα

0 ti−jxβ
0 tj. Renaming x0 = x we have the following:

E(n; α, β; i, j) =
〈
x, t| tn, xt−ix−αti−jx−βtj−ixαti−jxβtj

〉
.

This presentation will be the main object of our study. The next section pro-

vides the geometric preliminaries we need in order to study these extensions.

2.2 Geometric preliminaries

Definition 2.2.1 Let P = 〈X| R〉 be a group presentation and w a word in

X±. A van Kampen diagram K over P for w is a planar and simply

connected 2-complex such that the following are satisfied:

(i) each edge is labelled by an element of X and is given an orientation;

(ii) reading the labels on the boundary of each 2-cell (for some choice of

starting point and orientation) yields an element of R (here we agree

that if an edge is labelled by x one reads x or x−1 if the edge is traversed

according or opposite to its orientation, respectively);

(iii) reading the labels on the boundary ∂K of K yields w.

11



Then w is called the boundary word of K.

We can construct van Kampen diagrams labelling boundaries of 2-cells by

elements of R and their inverses R− and gluing them along edges according

to edge labels and orientation. Thus each loop in such a diagram gives a

word which is a product of conjugates of words in R±, hence a word which

represents the identity in the group G = 〈X| R〉; in particular the boundary

word represents the identity of G. This gives a geometric method for deducing

consequences of the relators in 〈X| R〉. Quite remarkably, this statement has

a converse, as pointed out in the following result due to van Kampen.

Proposition 2.2.2 Let G = 〈X| R〉 and w be a word in X±. Then w = 1G

if and only if w is the boundary word of some van Kampen diagram over

〈X| R〉.

Let K be a van Kampen diagram (or simply a diagram) over 〈X| R〉 and

let ∆ and ∆′ be distinct regions of K whose boundaries share at least one

edge. Let r and r′ be the words obtained reading the boundary labels of ∆

and ∆′ (respectively) starting from one common edge and according to its

orientation. If r = r′ as words in F (X) then (∆, ∆′) is said to be a reducible

pair.

A van Kampen diagram over 〈X| R〉 for w is said to be reduced if there is

no reducible pair in K and is said to be minimal if it has minimal number

of 2-cells among all other van Kampen diagrams over 〈X| R〉 for w.

If a diagram over 〈X| R〉 is not reduced then there is a reducible pair, say

(∆, ∆′). If we delete common edges of the ∆ and ∆′ and combine the re-

maining edges folding and identifying them according to their labels and

orientations then we get a new diagram with the same boundary word and

12



fewer regions; it follows that a minimal diagram is reduced.

We will always assume that van Kampen diagrams are minimal.

We now show how we will use this construction to study the extensions

E = E(n; α, β; i, j). This is a generalization of the construction used in [11]

by Edjvet and Hammond to study the extension E(n; α, β; 1, 2).

Since t has order n in the extension E, it follows that we can insert t±n in

the second relator of the extension in such a way that all the t-exponents

are in the interval
[
−

n

2
,
n

2

]
; since we are assuming i ≤

n

2
it follows that i is

always in the given interval and so we have the following three cases:

Case (1) j ≤
n

2
, in which case all the t-exponents are already in the given interval

and we say they are reduced modulo n;

Case (2) j >
n

2
and j − i ≤

n

2
, in which case j is not reduced modulo n and

becomes j − n after reduction;

Case (3) j − i >
n

2
, in which case j, j − i and i − j reduce to j − n, j − i − n

and i − j + n respectively.

Notice that each reduction changes the sign of the exponent (hence the ori-

entation of the corresponding t-edges).

Suppose we want to prove that the extension is infinite and assume, by way

of contradiction, that x is a torsion element in E, say xl = 1 for some mini-

mal l < ∞. Then, by Proposition 2.2.1, there exists a van Kampen diagram

K over E(n; α, β; i, j) for xl. This diagram is made up by two different types

of 2-cells (or regions) up to inversion, whose boundary is labelled by the two

relators (after reductions of t-exponents) in the relevant presentation. Then

the boundary of K is a simple closed curved labelled by xl. Now collapse
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to a point each edge in K which is labelled by x±1 and retain the labels for

the angles created. What we obtain is a so-called modified van Kampen

diagram over E(n; α, β; i, j) for xl which is a tessellation D of the 2-sphere

whose regions are the regions of K after the collapses. Regions corresponding

to the relator tn are left unchanged by the collapses and are called s-regions,

while regions corresponding to the other relator are called m-regions and

are given (up to inversion) by the following figure :

t
j−i

t i−j+n   

t
j−i

t j

t i−j+n      

ti ti ti

t
j−i

t
j−i t

j−i t
j−i

t n−j  t n−j  

t i−j+n   

Case (2) Case (3)Case (1)

u

w

z

q

r

r

r

r

r

r

u

u

u

w

w

w

z z z

q

q

q q

q

z

w

w

z

u

u

a

b

cd

e

a

b

cd

e

a

b

cd

e

Here we used powers of t to label sequences of edges and the corner labels tell

us how many x-edges have been collapsed (and their previous orientation)

where they appear. So their values are given by the following table:

a b c d e s u w z q r

1 −α −β α β 0 0 0 0 0 0

where s is the label of each corner in an s-region. The labels in the inverted

regions will be overlined and clearly their values will have opposite sign (for

example in an inverted m-region there will be a label a whose value is −1).

From now on we will omit the orientation of edges in diagrams.

The vertex obtained from collapsing the boundary of K is called the distin-

guished vertex and will be denoted by v0; the vertices which are not distin-

guished are said to be interior and are denoted by vr where r is the label of the

corresponding corner in the considered region. A region having v0 as a vertex
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is called a boundary region, otherwise a region is said to be interior. The label

l(v) of a vertex v in D is the word given by the corner labels at v read anti-

clockwise (and so is defined up to cyclic permutation); the label sum of l(v) is

the sum of the values of the corner labels at v. It follows that the label sum

of each interior vertex will be 0 and that the label sum of the distinguished

vertex will be l. This is essentially because we are now working over the one-

relator product (〈x| 〉 ∗ 〈t| tn〉)
/ 〈〈

xt−ix−αti−jx−βtj−ixαti−jxβtj
〉〉

and follows

by the minimality of K; since there is no loop made up of interior x-edges

in K it follows that the interior x-edges form a forest; the collapse of each

connected component of the forest results in the label sum of a single vertex

in the modified van Kampen diagram obtained; each x-edge gives a contri-

bution to exactly two values of angle labels in two m-regions created by the

collapse and since it is traversed in opposite directions in the two regions

before the collapse its contribution to those values are 1 and −1; it follows

that if v is an interior vertex then v has zero label sum.

We aim to prove that this construction leads to a contradiction; in order to

do that we need some further definitions.

Definition 2.2.3 The degree of a vertex v in D, denoted by d(v), is the

number of edges occuring at v.

Definition 2.2.4 The measure of an angle θ in D is m(θ) := 2π
d

where d

is the degree of the vertex at which θ occurs.

Definition 2.2.5 The curvature of a vertex v, denoted by c(v), is equal to

2π −
∑

i∈I m(θi), where I is a set of indices such that the θi are the angles

occuring at v.
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In view of these definitions all angles at a given vertex are equal and it follows

immediately that each vertex in the diagram D has zero curvature.

Definition 2.2.6 Let ∆ be a region in D with k edges and whose vertices

v1, . . . , vk have degree d1, . . . , dk respectively. Then the interior angles of this

region have measures
2π

d1

, . . . ,
2π

dk

. We define the curvature of ∆, denoted

by c(∆), as follows:

c(∆) := 2π −

[(
π −

2π

d1

)
+ · · ·+

(
π −

2π

dk

)]
.

Notice that c(∆) := 2π −
∑k

i=1

(
π −

2π

di

)
= 2π − kπ + 2π

∑k

i=1

1

di

.

Definition 2.2.7 The total curvature T of the tessellation D is defined

as follows:

T :=
∑

v∈D

c(v) +
∑

∆∈D

c(∆)

Since c(v) = 0 ∀v ∈ D we can write T =
∑

∆∈D
c(∆).

Before describing how we will use this construction to obtain a contradiction

we want to clarify the terminology that will be used and introduce the star

graph associated to D and the concept of bridge move in D (see [8]). The

first is a graph which is very useful in order to find all the possible vertex

labels for a given degree and is particularly efficient for small degrees; the

latter provides a way to obtain new modified van Kampen diagrams from D

and allows us to exclude some vertex labels or sublabels once we are given

certain maximality and/or minimality conditions on D .

Definition 2.2.8 An m-segment is a sequence of t-edges in an m-region

whose end corners are labelled by a non-zero power of x and the other corners

are labelled by zero-valued labels (in other words it is a sequence of t-edges
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corresponding to the powers of t in the second relator of the extension after

reduction modulo n).

An s-segment is a sequence of edges in an s-region whose vertices have

degree 2 except for the end vertices which have degree > 2.

A splitting in a m-segment of an m-region is a vertex of degree > 2 in the

m-segment and which is not an end vertex.

It follows from the definition that there are five m-segments in each m-region.

The m-segment whose end vertices are vy and vz will be denoted by yz and

we will use |yz| to denote the length of yz which is the number of edges in

yz. Of course (y, z) ∈ {(a, b), (b, c), (c, d), (d, e), (e, a)} up to inversion.

If there is a splitting of degree m in some m-segment we will also say that

the segment splits in degree m. Moreover we will use the term segment to

refer to both m-segments and s-segments if no confusion can arise.

Definition 2.2.9 The associated star graph Γ to D consists of two vertices

t, t−1 and one oriented edge labelled by y from t−ǫ1 to tǫ2 (where ǫk = ±1 for

k = 1, 2) if the sequence tǫ1ytǫ2 (with y ∈ {a, b, c, d, e, u, w, z, q, r, s}) appears

in one of the relators (up to cyclic permutation) of E (n; α, β; i, j).

If in the star graph, for y ∈ {u, w, z, q, r}, we substitute y = λ or y = µ when

the sequences t−1yt−1 or tyt appear respectively, we get the modified star

graph.

Definition 2.2.10 A path in the (modified) star graph is said to be admis-

sible if it is closed, cyclically reduced (that is the word spelled out reading

the edge labels along the path is cyclically reduced) and has 0 as sum of the

edge labels (recall that edges in the star graph correspond to corners in the

modified van Kampen diagram D).
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Now the label of an interior vertex in D corresponds to an admissible path

in the (modified) star graph. This gives us a way to construct a list of all

possible labels for a vertex of a given degree. Figures 2.1 and 2.2 show the

star graph in case (1) and the modified star graphs in cases (1), (2) and (3).

(  )i

c

e d

a

+ −

s

b

u

w

q

z

r

(   )ii

c

e d

a

+ −
b

λ

s

µ

λ ∈ {u, w, z−1, q, r−1} and µ ∈ {u−1, w−1, z, q−1, r}

Figure 2.1: Star graph and modified star graph in case (1).

Here we must be careful listing the admissible paths since in the modified

star graph the edges labelled by λ and µ cannot be traversed opposite to

their orientation.

Remark

As a matter of notation when we need to write multiple labels we will often

use curly brackets to list the possible choices (e.g. a{λ, s}b stays for aλb or

asb).

Moreover if there is no difference in using any of the 0-valued labels, or if it

is clear from the context to which we are referring, we will sometimes use the

generic 0.
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(  )i

+ −
a

b

e

s

µ
λ

dc

(   )ii

+ −

λ

s

µ

b

d

c

e

a

λ ∈ {u, w, z−1, q, r} λ ∈ {u, w−1, z, q−1, r}

µ ∈ {u−1, w−1, z, q−1, r−1} µ ∈ {u−1, w, z−1, q, r−1}.

Figure 2.2: Modified star graph in cases (2) and (3).

Definition 2.2.11 Let ∆ be a region in D. The degree of ∆, denoted by

d(∆), is defined to be the number of vertices of ∆ of degree ≥ 3.

We gave this definition because the presence of vertices of degree 2 does not

affect the computation of the curvature of a region. Notice that the curvature

of a region ∆ depends only on the degree of ∆ and the degree of its vertices,

therefore we will often write only the degree of vertices of degree≥ 3 when

computing the curvature. For example if d(∆) = 4 and ∆ has two vertices of

degree 3 and two vertices of degree 5 we will write c(∆) = c(3, 3, 5, 5) =
2π

15
.

Lemma 2.2.12 Let ∆ be a region of D. If d(∆) ≥ 6 then c(∆) ≤ 0 with

equality if and only if d(∆) = 6 and ∆ has no vertex of degree more than 3.

Proof

Let d(∆) = k. We know that
1

π
c(∆) = (2 − k) +

∑k

i=1

2

di

where di ≥ 3 for

i = 1, . . . , k.

It follows that an upper bound for the sum
∑k

i=1

2

di

is given by substituting

each di by 3, therefore
1

π
c(∆) ≤ (2 − k) + k

2

3
and so c(∆) ≤ 2π −

kπ

3
.
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Now for k ≥ 7 we have c(∆) ≤ 2π −
7π

3
< 0 and for k = 6 since di ≥ 3 for

every i it follows from the formula that equality holds if and only if di = 3

for every i.

�

Definition 2.2.13 Let u be a proper subword of a vertex label l(v) (we will

often refer to u has a sublabel of v). Suppose that u corresponds to an

admissible path in the (modified) star graph. If we cut the diagram along

the edges occuring at v which are adjacent to the sublabel u and we pull as

illustrated in the following figure

1v 2v

==1v 2v
1v 2v

���������
���������
���������
���������
���������
���������
���������
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���������
���������
���������
���������
���������
���������
���������
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�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

u

u u

we obtain a new diagram D ′ which is still a modified van Kampen diagram

over the given extension. Such a move is called bridge move at v relative

to the sublabel u.

We will use bridge moves to avoid certain proper sublabels once a diagram is

given certain conditions of maximality and/or minimality. For example if we

assume a diagram to have maximal number of vertices of degree 2 and u is a

possible label for a vertex of degree 2 then a bridge move relative to u creates

a new vertex of degree 2 and does not kill any such vertex when d(vi) > 2

for i = 1, 2. Similarly, if d(v) = 4 and u is as above then a bridge move at

v relative to u creates two new vertices of degree 2 killing at most one if at

least one among v1 and v2 is a vertex of degree > 2; if d(v1) = d(v2) = 2 we
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can apply a sequence of bridge moves at v and eventually find a bridge move

which involves a vertex of degree > 2 as illustrated below.

1v 2v

2v’’v
1

’v
1 2v’

== 2v’’v1

We will use bridge moves in order to show that certain vertex sublabels force

a diagram to be not reduced (see Lemmas 3.1.1 and 3.1.2). More precisely, if

there is a vertex sublabel of the form yuy with u as in Definition 2.2.13 and

y ∈ {a, b, c, d, e} then a bridge move at that vertex relative to u gives a new

diagram which is not reduced, hence is not minimal and we can decrease the

number of regions.

2.3 Method of proof

Suppose that G = Gn

(
x0

[
xα

i , xβ
j

])
is finite and let D be a modified van

Kampen diagram for xl over the extension E(n; α, β; i, j). Denote by

• V the number of vertices in D ;

• E the number of edges in D ;

• F the number of regions (or faces) in D .

Lemma 2.3.1 The following holds:

T =
∑

∆∈D

c(∆) = 4π.
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Proof. Denote by e(∆) the number of edges in ∆, so that we have

T =
∑

∆∈D

(2π − πe(∆)) +
∑

∆∈D


2π

e(∆)∑

i=1

1

di


 .

Since each edge is shared by two regions it follows that
∑

∆∈D
(2π − πe(∆)) =

−π
∑

∆∈D
(e(∆) − 2) = −π

∑
∆∈D

e(∆) + π
∑

∆∈D
2 = −2πE + 2πF .

Now consider the sum
∑

∆∈D

(
2π

∑e(∆)
i=1

1

di

)
;

every angle
2π

di

appears in the outer sum exactly di times, once for each of the

regions sharing the corresponding vertex. It follows that each vertex gives a

contribution equal to 2π, so we can write

∑

∆∈D



2π

e(∆)∑

i=1

1

di



 = 2πV.

It follows that T = −2πE + 2πF + 2πV = 2π (V − E + F ).

It is well known that the Euler characteristic V − E + F of the sphere is 2.

It follows that

T =
∑

∆∈D

c(∆) = 4π.

�

In order to obtain the desired contradiction we introduce the pseudo-cur-

vature c∗(∆) of a region ∆ which is given by c(∆) plus all the positive

curvature ∆ receives and minus all the positive curvature transferred from

∆ according to a compensation scheme or a distribution process which will

be specified case by case. So we will proceed as follows:

1) we will classify the positively curved interior regions and describe a

distribution process or a compensation scheme for their curvature;
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2) we will then show that each interior region has non-positive pseudo-

curvature;

3) we will then distribute the curvature of the boundary regions and show

that their pseudo-curvature is strictly less than
4π

k0
(where k0 is the

degree of the distinguished vertex).

Of course T =
∑

∆∈D
c(∆) =

∑
∆∈D

c∗(∆) and since there are at most k0

boundary regions it follows from 2) and 3) that T < 4π, a contradiction to

Lemma 2.3.1. This contradiction shows that the considered extension E is

infinite, hence so is G.
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Chapter 3

The p-irreducible case

3.1 Introduction

In this chapter we want to study the groups G = Gn

(
x0

[
xα

i , xβ
j

])
where

0 < i < j < n, i ≤
n

2
and hi := hcf (i, n) = 1 or hj := hcf (j, n) = 1.

In Chapter 2 we have described a geometric construction distinguishing three

cases (1), (2) and (3).

From now on D will denote a modified van Kampen diagram for xl over the

extension E = E(n; α, β; i, j) of G = Gn

(
x0

[
xα

i , xβ
j

])
according to the geo-

metric construction given in Chapter 2. We will only specify in which of the

cases (1), (2) or (3) the given presentation falls (often giving constraints on

(n, i, j)). Moreover for the remainder of the chapter we will always assume

|α|, |β| > 1 and |α| 6= |β|.

The idea here is to show first that a presentation falling into cases (1) or (3)

for which there is a corresponding modified van Kampen diagram with no

s-region of degree ≤ 3, |α|, |β| > 1 and |α| 6= |β|, gives rise to an infinite

group.
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Secondly, we will show that when n is odd we can apply elementary moves in

order to find a new presentation Gn

(
x0

[
xα

i′ , x
β
j′

])
for G which does satisfy

the hypotheses above, except in few cases that will be studied separately in

Section 3.3.

We will use the modified star graph in order to find the possible labels for

vertices of a given degree in the diagrams.

We start giving some assumptions on diagrams, under which we do not lose

generality, and then prove two lemmas which allow us to simplify the geo-

metric study.

Let Gn

(
x0

[
xα

i , xβ
j

])
be in case (1); we can assume without any loss of gen-

erality that each of the following conditions holds:

A1 D is minimal with respect to the number of regions.

A2 Subject to A1, the number of vertices in D with label ce (up to inver-

sion and cyclic permutation) is maximal.

A3 Subject to A2, the number of vertices of D of degree 2 is maximal.

Let Gn

(
x0

[
xα

i , xβ
j

])
be in case (3); we can assume without any loss of gen-

erality that each of the following conditions holds:

B1 D is minimal with respect to the number of regions.

B2 Subject to B1, the number of vertices in D with label ce (up to inversion

and cyclic permutation) is maximal.

B3 Subject to B2, the number of vertices in D with label bd (up to inver-

sion and cyclic permutation) is maximal.

B4 Subject to B3, the number of vertices of D of degree 2 is maximal.
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Lemma 3.1.1 If Gn

(
x0

[
xα

i , xβ
j

])
is in case (1), D satisfies A1-A3 above

and l(v) is a vertex label, then the following hold:

(i) l(v) is cyclically reduced;

(ii) l(v) cannot have as proper sublabel xwx or xwx where w is a sublabel

with zero label sum and x ∈ {a, b, c, d, e};

(iii) ce, up to cyclic permutation and inversion, cannot appear as a proper

sublabel of l(v);

(iv) we cannot have l(v) = y1y2y3y4 where the yi’s are zero-valued labels.

Proof. Let K be a van Kampen diagram which reduces to D after the

collapses of x-edges. If (i) does not hold then K is not reduced, contradicting

its minimality (and so we can reduce the number of regions, a contradiction

to A1).

If (ii) does not hold we can apply a bridge move relative to w (as explained

at the end of Section 2.2) and reduce the number of regions using (i).

If (iii) does not hold we could apply a bridge move at v relative to the sublabel

ce creating a new vertex with label ce and not killing any such vertex, hence

contradicting A2.

If (iv) does not hold we could apply bridge moves (as seen at the end of

Section 2.2) at v creating two new vertices of degree 2 and killing at most

one vertex of degree 2 which is not labelled by ce, hence contradicting A3.

�

Lemma 3.1.2 If Gn

(
x0

[
xα

i , xβ
j

])
is in case (3), D satisfies B1-B4 above

and l(v) is a vertex label, then the following hold:
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(i) l(v) is cyclically reduced;

(ii) l(v) cannot have as proper sublabel xwx or xwx where w is a sublabel

with zero label sum and x ∈ {a, b, c, d, e};

(iii) ce, up to cyclic permutation and inversion, cannot appear as a proper

sublabel of l(v);

(iv) we cannot have l(v) = sxsy, up to cyclic permutation and inversion,

where x and y are zero-valued labels;

(v) bd, up to cyclic permutation and inversion, cannot appear as a proper

sublabel of l(v).

Proof. The proof of (i)-(iv) is analogous to that of the previous lemma. It

remains to prove (v). Suppose D satisfies B1-B4 and bd is a subword of l(v).

A bridge move at v relative to bd creates a new vertex with label bd; moreover

it does not change the number of regions and does not kill any vertex labelled

by ce (up to cyclic permutation and inversion) since |de| = n − j + i > 1. It

follows that the new diagram satisfies B1-B2, contradicting assumption B3

on D .

�

The next result is a consequence of Theorem 1.1 in paper [11] by Edjvet and

Hammond and will be useful in what follows.

Proposition 3.1.3 If n ≥ 5 and j = 2i then G is infinite.

Proof. Since G is irreducible i 7→ 1 defines an automorphism of Zn, hence

G ∼= Gn

(
x0

[
xα

1 , xβ
2

])
which is infinite as proved in [11].
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Notice that the constraints |α|, |β| > 1 and |α| 6= |β| are stronger than the

hypotheses given in [11], where it is assumed (|α|, |β|) 6= (1, 1). In view of the

previous proposition we will assume for the rest of the chapter that j 6= 2i.

3.2 A geometric constraint.

It is very useful to have a list of possible labels for interior vertices of small de-

gree. Figure 3.1 shows labels in m-regions (up to inversion) and the modified

star graphs for j ≤
n

2
and j − i >

n

2
, respectively.

i(  )

b

cd

∆

a

e

λ λ

λ

µ

µ

ii(   )

c

e

µ

λ
b

s d

a

+ −

iii(    )

b

cd

∆

a

e
λµ

µ

λ

µ

iv(   )

µ

λ

s
+ −

b

d

e

c

a

Figure 3.1: labels in an m-region ((i) and (iii)) and modified star graphs

((ii) and (iv)) for j ≤
n

2
and j − i >

n

2
, respectively.

Here follows the list of possible labels for vertices of degree 2 and 3 involving

a, b, c, d, e or s (up to cyclic permutation and inversion).

For j ≤
n

2
:
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degree 2 : ce, sλ with no consequence on α and β ;

degree 3 : bds, bdµ with no consequence on α and β ;

daa ⇒ α = −2 ;

daa ⇒ α = 2 .

For j − i >
n

2
:

degree 2 : ce, bd, sλ with no consequence on α and β ;

degree 3 : none .

Lemma 3.2.1 Let ∆ be an interior s-region in D. Then the following hold:

• if j ≤
n

2
and d(∆) ≥ 5 then c(∆) < 0;

• if j − i >
n

2
and d(∆) ≥ 4 then c(∆) ≤ 0.

Proof.

If d(∆) ≥ 6 the result follows from Lemma 2.2.12; therefore assume d(∆) ≤ 5.

First assume j ≤
n

2
and d(∆) = 5. There is only one possible label involving

s for a vertex of degree 3, namely bds. We now show that two vertices of

degree 3 cannot be separated by a sequence of vertices of degree 2.

Suppose v1 and v2 are two such vertices. Since db is not a segment label it

follows that there must be a vertex of degree≥ 4 between v1 and v2.

v1 v2bd
s

b
d s

∆
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It follows that ∆ cannot have more than two vertices of degree 3, therefore

c(∆) ≤ c(3, 3, 4, 4, 4) = −
π

6
< 0.

Now suppose j − i >
n

2
and let ∆ be an s-region of degree ≥ 4; since an

interior vertex cannot have degree 3, it follows that c(∆) ≤ c(4, 4, 4, 4) = 0.

�

Lemma 3.2.2 Let ∆ be an interior m-region in D. If j ≤
n

2
then c(∆) ≤ 0.

Proof.

According to the geometric construction of the modified van Kampen dia-

gram for j ≤
n

2
the lengths of segments in ∆ are

|ab| = |ab| = i ;

|ea| = |ea| = j ;

|bc| = |cd| = |de| = |bc| = |cd| = |de| = j − i .

First assume d(vc) = d(ve) = 2. Since |bc| = j − i < j = |ea| the segment ea

splits and the splitting has degree≥ 4 since it has sublabel {b, λ}µ.

If there is a splitting in the segment bc then this splitting must have sub-

label λµ ( because |ea| > |bc| ), hence degree≥ 4, and it follows that

c(∆) ≤ c(3, 3, 3, 4, 4) = 0. We can therefore assume that the segment bc

does not split. Since |ea| > |bc| it follows that vb has sublabel bµ, therefore

d(vb) ≥ 4 (see Figure 3.2 (i)).

If there is another splitting c(∆) ≤ c(3, 3, 3, 4, 4) = 0 and there is nothing to

prove; so assume there is no other splitting in ∆. Since |cd| = |de| it follows

that vd has sublabel ddd so that d(vd) ≥ 6 (see Figure 3.2 (ii)).

It follows that c(∆) ≤ c(3, 4, 4, 6) = 0.

Now assume that only one of the vertices vc and ve has degree 2.
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/λb

i(  )
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∆
ec

µ
b
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µ

e

/λb

ii(   )

cd

∆
ec

µ
b

a

µ

e
d

d

Figure 3.2: interior m-region with d(vc) = d(ve) = 2.

/λb

i(  )

cd

∆
ec

µ
b

a

ii(   )

cd

∆
e

µ
b

a

e

µ

d

Figure 3.3: interior m-region with either d(ve) = 2 or d(vc) = 2.

If d(ve) = 2 as before the segment ea splits in degree≥ 4; moreover d(vc) ≥ 4

and d(va), d(vb), d(vd) ≥ 3, therefore c(∆) ≤ c(3, 3, 3, 4, 4) = 0 (see Figure

3.3 (i)).

If d(vc) = 2 then d(ve) ≥ 4. If one of the segments bc or cd splits then the

splitting has degree ≥ 4 because |ea| > |bc| and |de| = |cd|, respectively.

So we can assume there is no splitting (otherwise c(∆) ≤ 0) and therefore vd

has sublabel dd and vb has sublabel bµ; hence d(vd) ≥ 5 and d(vb) ≥ 4.

If d(va) ≥ 4 then c(∆) ≤ c(4, 4, 4, 5) < 0; if d(va) = 3 then l(va) ∈ {aad, aad}

and comparing the segments lengths it turns out that ea must split.

It follows that c(∆) ≤ c(3, 3, 4, 4, 5) < 0 (see Figure 3.3 (ii)).

Finally, if d(ve), d(vc) > 2 then c(∆) ≤ c(3, 3, 3, 4, 4) = 0, since ve and vc

cannot have degree 3.

�
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Figure 3.4: positively curved interior m-region for j − i >
n

2
.

Lemma 3.2.3 Let ∆ be an interior m-region in D. If j−i >
n

2
and c(∆) > 0

then ∆ is one of the regions in Figure 3.4, hence c(∆) ≤
3π

35
.

Proof. Observe that d(va) ≥ 4; moreover d(vi) 6= 3 for i ∈ {b, c, d, e}.

It follows that if three or four of the vertices vb, vc, vd and ve have degree> 2

then c(∆) ≤ c(4, 4, 4, 4) = 0.

Now suppose that exactly two of the vertices vb, vc, vd and ve have degree 2.

Observe that a splitting cannot have degree 3, therefore we can assume there

is no splitting in ∆ otherwise c(∆) ≤ c(4, 4, 4, 4) = 0. Moreover since |ab| <

|de| and |ea| < |bc|, we can assume d(vd) ≥ 4 and d(vc) ≥ 4 otherwise de splits

or bc splits, respectively. It follows that we must have d(vb) = d(ve) = 2.

Since we are assuming there is no splitting in ∆ it follows that va has sublabel

µaµ which implies d(va) ≥ 5.

Now the segment cd has maximal length, therefore the adjacent region along

this segment must be an s-region. To see why that is, one can check that

any other label would either imply a splitting or contradict statement (iii)

or (v) in Lemma 3.1.2.

It follows that vc and vd have sublabels ccs and sdd, respectively.
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Using the modified star graph one can easily see the following:

If d(vc) = 5 one the following holds:

i)

∥∥∥∥∥∥∥∥∥∥∥∥∥

2β + α = 0

2β − α = 0

2β + α − 1 = 0

2β − α − 1 = 0

If d(vc) = 6 one the following holds:

ii)

∥∥∥∥∥∥∥∥∥∥∥∥∥

α − 3β = 0

α + 3β = 0

α − 3β + 1 = 0

α + 3β − 1 = 0

If d(vd) = 5 one the following holds:

iii)

∥∥∥∥∥∥∥∥∥∥∥∥∥

2α + β = 0

2α − β = 0

2α + β + 1 = 0

2α − β + 1 = 0

If d(vd) = 6 one the following holds:

iv)

∥∥∥∥∥∥∥∥∥∥∥∥∥

3α + β = 0

3α − β = 0

3α + β + 1 = 0

3α − β + 1 = 0

It follows that if one of the vertices vc and vd has degree 5 then the other one

has degree≥ 7 hence c(∆) ≤ max{c(5, 5, 7), c(5, 6, 6)} =
3π

35
and a positively
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curved region looks like Figure 3.4 (i) or (ii).

Now suppose that exactly one of the vertices vb, vc, vd and ve has degree> 2.

If d(vb) > 2 or d(ve) > 2 it is easy to see that the segments bc, cd and de

split, hence c(∆) ≤ c(4, 4, 4, 4, 4) < 0.

So we can assume d(vb) = d(ve) = 2, l(vb) = bd and l(ve) = ec.

If d(vc) > 2 and d(vd) = 2 then l(vd) = db and d(vc) ≥ 4.

Since |ab| < |bc| and |cd| = |de| it follows that de splits. We can assume

there is no other splitting, otherwise c(∆) ≤ c(4, 4, 4, 4) = 0. It follows that

va and vc have sublabels µaµ and ccc respectively, which imply d(va) ≥ 5

and d(vc) ≥ 6; moreover the splitting v in de has sublabel {a, λ}µλ which

implies d(v) ≥ 6. A positively curved region ∆ looks like Figure 3.4 (iii) and

c(∆) ≤ c(5, 6, 6) =
π

15
.

If d(vc) = 2 and d(vd) > 2 then l(vc) = ce and d(vd) ≥ 4.

Since |ea| < |bc| and |cd| = |bc| it follows that bc splits. We can assume

there is no other splitting, otherwise c(∆) ≤ c(4, 4, 4, 4) = 0. It follows that

va and vd have sublabels µaµ and ddd respectively, which imply d(va) ≥ 5

and d(vd) ≥ 6; moreover the splitting v in bc has sublabel λµ{a, λ} which

implies d(v) ≥ 6. A positively curved region ∆ looks like Figure 3.4 (iv) and

c(∆) ≤ c(5, 6, 6) =
π

15
.

Finally suppose d(vb) = d(vc) = d(vd) = d(ve) = 2, hence l(vb) = l(vd) = bd

and l(vc) = l(ve) = ce.

Since |ea| < |bc|, |ab| < |de| and be is not a segment label it follows that the

segments bc, de and cd split and so c(∆) ≤ c(4, 4, 4, 4) = 0.

�

Lemma 3.2.4 Let ∆ be an interior s-region of degree 4 in D. If j ≤
n

2
and
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Figure 3.5: positively curved interior s-regions of degree 4 for j ≤
n

2
.

c(∆) > 0 then ∆ is one of the regions in Figure 3.5, in particular c(∆) ≤
π

3
.

Proof. If there is no vertex of degree 3 in ∆ then c(∆) ≤ c(4, 4, 4, 4) = 0.

Recall that the unique possible label involving s for a vertex of degree 3 is

bds and that two such vertices cannot be adjacent.

It follows that a positively curved region is given by Figure 3.5 (i)-(ii) where

c(∆) ≤
π

3
and c(∆) ≤

π

6
respectively.

�

For the remainder of the section we will assume that diagrams D do not have

s-regions of degree ≤ 3.

We are now able to describe the distribution process of the positive curvature

for these diagrams in case (1) and case (3).

Distribution of curvature in case (1).

In this case there is no positively curved interior m-region (Lemma 3.2.2)

and the positively curved interior s-regions are given by Figure 3.5 (i)-(ii)

(see Lemma 3.2.4).

Let ∆ be a positively curved interior s-region; we transfer the curvature
π

6
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Figure 3.6: distribution scheme for j ≤
n

2
.

through each segment labelled by de adjacent to ∆ and such that l(vd) = bds.

This choice is illustrated in Figure 3.6.

Notice that the m-segments de in Figure 3.6 might or might not split (when

the adjacent vertex of degree≥ 4 has sublabel sλ or se, respectively).

Distribution of curvature in case (3).

In this case there is no positively curved interior s-region (Lemma 3.2.1) and

the positively curved interior m-regions are given by Figure 3.4 (i)-(iv) (see

Lemma 3.2.3). Let ∆ be a positively curved interior m-region; we transfer

the curvature according to Figure 3.7.

Observe that an m-region which receives some positive curvature can not be

positively curved in fact if ∆ is an m-region receiving curvature then either

the segments bc and cd both split or the segments cd and de both do.

Lemma 3.2.5 If j ≤
n

2
and ∆ is an interior region of D then c∗(∆) ≤ 0.

Proof. We distributed the curvature in such a way that every interior s-

region has non-positive pseudo-curvature; moreover there is no positively
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.

curved interior m-region, so we only need to check those m-regions which

receive positive curvature from an s-region.

Let ∆ be such a region, then it receives the curvature
π

6
through the segment

labelled by de, which might split.

Now observe that if de does not split then d(ve) ≥ 4; similarly, if cd does not

split then d(vc) ≥ 4; moreover if ea does not split then d(va) ≥ 4.

Since d(vb) ≥ 3, d(vd) ≥ 3 and the splittings cannot have degree < 4 it

follows that c∗(∆) ≤ c(3, 3, 4, 4, 4) +
π

6
= 0.

�

We denote the distinguished vertex of D by v0 and set d(v0) = k0.

Lemma 3.2.6 If j ≤
n

2
and ∆ is a boundary region of D then c∗(∆) <

4π

k0

.

Proof. Let ∆ be a boundary s-region.

Then ∆ does not receive positive curvature.

Since t has order n in the extension E(n; α, β; 2, 3), it follows that each con-

sequence of the relators must have exponent sum of t congruent to 0 modulo

n; this implies that the distinguished vertex coincides with exactly one vertex
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of ∆ for if not we would have a loop labelled by ts, with s < n, contradicting

the fact that n is the order of t.

Since d(∆) ≥ 4 it follows that c∗(∆) = c(∆) ≤ c(3, 3, 3, k0) =
2π

k0
<

4π

k0
.

Now let ∆ be a boundary m-region. The maximum amount of curvature that

∆ can receive is
π

6
.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

As seen before the exponent sum of t in each consequence of the relators

must be congruent to 0 modulo n. This implies that m ≤ 4 and we can have

m = 4 only if v0 does not coincide with any of the vertices va, vb, vc, vd and

ve.

First suppose m = 4. Since d(vi) ≥ 3 for i ∈ {a, b, d} we have c∗(∆) ≤

c(3, 3, 3, k0, k0, k0, k0) +
π

6
= −3π +

8π

k0

+
π

6
≤ −3π + π +

π

6
< 0 <

4π

k0

.

Now suppose m = 3. Since d(∆) ≥ 4 and the maximum total amount

of curvature ∆ can receive is
π

6
, it follows that c∗(∆) ≤ c(∆) +

π

6
≤

c(3, k0, k0, k0) +
π

6
= −

4π

3
+

2π

k0
+

4π

k0
+

π

6
≤ −

7π

6
+

π

3
+

4π

k0
<

4π

k0
.

Now suppose m = 2. We have c∗(∆) ≤ c(∆) +
π

6
≤ c(3, 3, k0, k0) +

π

6
=

−
2π

3
+

4π

k0
+

π

6
= −

π

2
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

Suppose v0 does not coincide with ve or with a splitting in the segment ea.

Since d(ve) < 4 implies that ea splits in degree≥ 4, it follows that c∗(∆) ≤

c(∆) +
π

6
≤ c(3, 3, 4, k0) +

π

6
= −

π

6
+

2π

k0

+
π

6
=

2π

k0

<
4π

k0

.

Finally if v0 does coincide with ve or with a splitting in ea, then it follows

as in the last part of the proof of Lemma 3.2.2 that there is an interior ver-

tex of degree≥ 4 in ∆, therefore c∗(∆) ≤ c(∆) +
π

6
≤ c(3, 3, 4, k0) +

π

6
=
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−
π

6
+

2π

k0
+

π

6
=

2π

k0
<

4π

k0
.

�

Lemma 3.2.7 If j−i >
n

2
and ∆ is an interior region of D then c∗(∆) ≤ 0.

Proof. We distributed the curvature in such a way that every positively

curved interior m-region has non-positive pseudo-curvature.

We only need to check those regions which receive positive curvature accord-

ing to Figure 3.7. Let ∆ be such a region.

Let ∆ be an s-region receiving curvature from k positively curved m-regions.

Then the incoming curvature is at most k
3π

35
and c(∆) is maximised when

one of the end vertices of the segment through which the curvature has been

transferred has degree 5 and the other one has degree 7. It follows that

c∗(∆) ≤ −π(d(∆)− 2) +
π

2
(d(∆)− k − 1) +

k + 1

2
·
2π

5
+

k + 1

2
·
2π

7
+ k

3π

35
=

−
π

2
d(∆) + 2π − k

5π

70
−

11π

70
< 0 since d(∆) ≥ 4.

If ∆ is an m-region receiving curvature in correspondence to the vertex vc

of degree 2, then the segments bc and cd both split in degree 5 and 6, re-

spectively (see Figure 3.7 (iii)). Since d(va) ≥ 4 and d(ve), d(vd) < 4 implies

that de splits in degree≥ 4, it follows that c(∆) ≤ c(4, 4, 5, 6) = −
4π

15
. The

maximum total amount of curvature that ∆ can receive is
π

15
+

π

15
=

2π

15
,

hence c∗(∆) < 0.

It remains to check those m-regions receiving curvature only in correspon-

dence to the vertex vd of degree 2.

In this case the segments cd and de both split in degree 6 and 5, respectively

(see Figure 3.7 (iv)); moreover d(va) ≥ 4 and d(vb), d(vc) < 4 implies that the

segments bc splits. It follows that c∗(∆) ≤ c(∆)+
π

15
≤ c(4, 4, 5, 6)+

π

15
< 0.
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�

Lemma 3.2.8 If j − i >
n

2
and ∆ is a boundary region of D then c∗(∆) <

4π

k0
.

Proof. Let ∆ be a boundary s-region. Then ∆ receives at most the positive

curvature
3π

35
and the distinguished vertex coincides with exactly one vertex

of ∆.

Since d(∆) ≥ 4 it follows that c∗(∆) ≤ c(∆) +
3π

35
≤ c(3, 3, 3, k0) +

3π

35
=

−
29π

70
+

2π

k0

<
4π

k0

.

Now let ∆ be a boundary m-region. The maximum total amount of curvature

that ∆ can receive is
π

15
+

π

15
=

2π

15
(see Figure 3.7 (iii)-(iv)).

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

As seen before m ≤ 4 and we can have m = 4 only if v0 does not coincide

with any of the vertices va, vb, vc, vd and ve.

First suppose m = 4. Since d(va) ≥ 4 we have c∗(∆) ≤ c(4, k0, k0, k0, k0) +

2π

15
= −3π +

π

2
+

8π

k0
+

2π

15
≤ −3π +

π

2
+ π +

2π

15
< 0 <

4π

k0
.

Now suppose m = 3. Since d(∆) ≥ 4 it follows that c∗(∆) ≤ c(∆) +
2π

15
≤

c(4, k0, k0, k0) +
2π

15
= −

3π

2
+

2π

k0
+

4π

k0
+

2π

15
≤ −

41π

30
+

π

3
+

4π

k0
<

4π

k0
.

Now suppose m = 2. We have c∗(∆) ≤ c(∆) +
2π

15
≤ c(4, 4, k0, k0) +

π

15
=

−π +
4π

k0
+

2π

15
= −

13π

15
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

Suppose v0 does not coincide with vc or with a splitting in the segment bc.

Since d(vc) < 4 implies that bc splits in degree≥ 4, it follows that c∗(∆) ≤

c(∆) +
2π

15
≤ c(4, 4, 4, k0) +

2π

15
= −

π

2
+

2π

k0

+
2π

15
<

2π

k0

<
4π

k0

.
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Finally if v0 does coincide with vc or with a splitting in bc, then it is easy

to see that there is an interior vertex of degree≥ 4 in ∆, therefore c∗(∆) ≤

c(∆) +
2π

15
≤ c(4, 4, 4, k0) +

2π

15
= −

π

2
+

2π

k0
+

2π

15
<

2π

k0
<

4π

k0
.

�

We can now easily prove the main theorem of this section.

Theorem 1 Consider the irreducible group presentation G = Gn

(
x0

[
xα

i , xβ
j

])

where 0 < i < j < n, |α|, |β| > 1, |α| 6= |β| and let D be a corresponding

modified van Kampen diagram for xl over the extension E(n; α, β; i, j) satis-

fying A1-A3 or B1-B4.

Suppose that there is no s-region of degree≤ 3 in D. If one of the following

conditions hold:

• j ≤
n

2
, (that is G is in case (1));

• j − i >
n

2
, (that is G is in case (3));

then the group G is infinite.

Proof. If G is in case (1) it follows from Lemma 3.2.5 and Lemma 3.2.6

that the total curvature T < 4π, a contradiction to Lemma 2.3.1, hence the

diagram D cannot exist and so G is infinite; similarly when G is in case

(3) it follows from Lemma 3.2.7 and Lemma 3.2.8 that T < 4π, again a

contradiction to Lemma 2.3.1.

�

We end this section with a corollary and a remark.
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Corollary 3.2.9 Let G = Gn

(
x0

[
xα

i , xβ
j

])
where 0 < i < j < n, |α|, |β| >

1, |α| 6= |β|.

If j <
n

3
or j − i >

2n

3
then G is infinite.

Proof. Simply observe that in both cases the maximal segment length in an

m-region of D is strictly less than
n

3
hence there is no s-region of degree≤ 3.

�

Remark

Theorem 1 says that if we are in cases (1) or (3) and there exists a modified

van Kampen diagram which respects certain geometric constraints then the

given presentation defines an infinite group. Observe that the assumption

i ≤
n

2
(that we made in the first chapter) is useless in this context since in

cases (1) and (3) we always have i ≤
n

2
. This is the reason why this assump-

tion does not appear in the statement of the theorem. We also want to clarify

why we avoided case (2) in Theorem 1. In Section 3.4 below we will perform

elementary moves to transform the given presentation G = Gn

(
x0

[
xα

i , xβ
j

])

into another one which is either in case (1) or in case (3) and for which any

modified van Kampen diagram for xl over the extension E(n; α, β; i, j) (pro-

vided it is constructed as outlined in Chapter 2 and satysfies the constraints

A1-A3 or B1-B4) respects the geometric constraints of Theorem 1. This

will be done ensuring that i and j respect certain conditions under which the

maximal length of an m-segment is strictly less than
n

3
so that there is no

s-region of degree < 4 and Theorem 1 applies. Observe that in case (2) no

assumption on the parameters n, i and j can be given to ensure that there

are no s-regions of degree< 4 in the modified van Kampen diagram. In fact
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the segment lengths in an m-region are n− j, i and j − i and they cannot all

be strictly less than
n

3
: if j− i <

n

3
and i <

n

3
then j <

2n

3
and so n−j >

n

3
.

3.3 Four particular cases

In this section we will assume that n ≥ 12 is a multiple of 3, say n = 3n1.

Proposition 3.3.1 Let n = 3n1, n ≥ 12, |α|, |β| > 1 and |α| 6= |β|.

Then the groups Gn

(
x0

[
xα

1 , xβ
n1

])
and Gn

(
x0

[
xα

1 , xβ
2n1

])
are infinite.

Proof.

Let G ∼= Gn

(
x0

[
xα

1 , xβ
n1

])
.

Consider the split extension E(n; α, β; 1, n1) of G. There is an epimorphism

E(n; α, β; 1, n1) = 〈x, t|tn, xt−1x−αt1−n1x−βtn1−1xαt1−n1xβtn1〉 ։

։ 〈x, t|tn1 , t−1x−αtx−βt−1xαtxβ+1〉 = E(n1; α, β; 1, 0)

where the second relator in the last presentation is cyclically reduced since

β 6= −1. This is an extension of Gn1

(
x0

[
xα

1 , xβ
0

])
which is infinite since

n1 ≥ 4 (see Proposition 1.2.6). It follows that E(n; α, β; 1, n1) is infinite,

hence so is G. The other case is analogous.

�

Proposition 3.3.2 Let n = 3n1, n ≥ 12, |α|, |β| > 1 and |α| 6= |β|.

Then the groups Gn

(
x0

[
xα

2 , xβ
2n1+2

])
and Gn

(
x0

[
xα

1 , xβ
2n1+1

])
are infinite.

According to the method of proof described in Chapter 2 we assume, by way

of contradiction, that xl = 1 in the corresponding split extension E and we

denote by D a modified van Kampen diagram for xl over E satifying the
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assumptions B1-B4.

In both cases the given presentation is in case (3), that is j−i >
n

2
; moreover

the maximal segment length in an m-region is n − j + i =
n

3
.

We have already classified the positively curved interior m-regions (Lemma

3.2.3, Figure 3.4) and shown that there is no positively curved interior s-

region of degree≥ 4 (Lemma 3.2.1). However the compensation scheme for

the positively curved m-regions described in Figure 3.7 no longer works now

that there are s-regions of degree 3.

We will proceed as follows:

• first we give a classification of the positively curved interior s-regions

of degree 3 and describe a way to compensate their curvature distin-

guishing several subcases;

• secondly we give a more refined classification of the positively curved

m-regions, starting from the result of Lemma 3.2.3;

• we then describe the compensation process for positively curved interior

m-regions;

• we finally prove that if ∆ is interior then c∗(∆) ≤ 0 and that if ∆ is a

boundary region then c∗(∆) <
4π

k0

.

Since each s-region is adjacent to m-regions only and since the maximal

segment length in an m-region is exactly
n

3
, it follows that the three segments

of an s-region of degree 3 are all segments of maximal length in the adjacent

m-regions.

This gives restrictions on the possible sublabels of the vertices of such an

s-region. More precisely, up to inversion, a possible sublabel is given by
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choosing a label in the following brackets: {b, c, d, c, d, e}s{c, d, e, b, c, d}.

An analysis of the modified star graph shows the following easy facts:

- if there is a vertex of degree 4 one of the following holds:

i) α ± β ± 1 = 0;

- if there is a vertex of degree 5 one of the following holds:

ii)

α ± 2β = 0;

2α ± β = 0;

α ± 2β ± 1 = 0;

2α ± β ± 1 = 0.

One can check straightforward that any two of the i’s and the ii’s are mutually

exclusive. As a consequence if none of them holds then there is no positively

curved interior s-region.

Moreover the occurence of a vertex of degree 4 excludes the presence of

vertices of degree 5 in an s-region of degree 3 and conversely.

Therefore we only need to distribute the curvature when either there is a

vertex of degree 4 or there is a vertex of degree 5.

One can also check that if ∆ is an s-region of degree 3 with a vertex of degree

5 then there is no vertex of degree 6 in ∆.

If there is a vertex of degree 4 then we distribute the curvature according to

Figure 3.8.

If there is a vertex of degree 5 then we distribute the curvature according to

Figure 3.9.

In both cases each segment is a segment of maximal length in each adjacent

m-region.
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Figure 3.8: distribution for s-regions of degree 3 and at least one vertex of
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Figure 3.9: distribution for s-regions of degree 3 and at least one vertex of

degree 5.

We now go back to the classification of positively curved interior m-regions

starting from the results of Lemma 3.2.3.

There we proved that such a region looks like one in Figure 3.4.

We have already mentioned that the distribution process described in Figure

3.7 turns out to be appropriate only if there is no s-region of degree≤ 3.

Consider Figure 3.4 (i)-(iv).

If |α| > 2 and |β| > 2 then d(va) ≥ 6 and ∆ can be positively curved only if

it looks like Figure 3.4 (ii).
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In this case vc and vd have sublabels ccs and sdd respectively; we have already

proved that if vc has degree 5 then vd has degree≥ 7 and conversely if vd has

degree 5 then vc has degree≥ 7.

Since ∆ can have positive curvature only if there is a vertex of degree< 6 it

follows that if ∆ is positively curved then c(∆) = c(5, 6, 7) =
2π

105
where va

is the vertex of degree 6 and the vertices of degree 5 and 7 are vc and vd (not

necessarily in the given order).

An analysis of the star graph shows that if d(vc) = 7 then one the following

constraints holds:
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

3α − 2β = 0;

3α + 2β = 0;

3α − 2β + 1 = 0;

3α + 2β − 1 = 0;

2α − 3β + 1 = 0;

2α + 3β − 1 = 0;

α − 2β + 1 = 0;

α − 2β − 1 = 0;

α + 2β + 1 = 0;

α + 2β − 1 = 0;

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

α − 4β = 0;

α + 4β = 0;

α − 4β + 1 = 0;

α + 4β − 1 = 0;

2α − 3β = 0;

2α + 3β = 0;

α − 2β + 2 = 0;

α − 2β = 0;

α + 2β = 0;

α + 2β − 2 = 0.

Similarly, if d(vd) = 7 then one the following holds:
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

4α + β + 1 = 0;

4α − β + 1 = 0;

4α + β = 0;

4α − β = 0;

2α + β + 1 = 0;

2α − β + 1 = 0;

2α + β = 0;

2α − β = 0;

3α + 2β + 1 = 0;

3α − 2β + 1 = 0;

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

3α + 2β = 0;

3α − 2β = 0;

2α + 3β + 1 = 0;

2α − 3β + 1 = 0;

2α + β + 2 = 0;

2α − β + 2 = 0;

2α + 3β = 0;

2α − 3β = 0;

2α + β − 1 = 0;

2α − β − 1 = 0.

It follows that we can have d(vc) = 5 and d(vd) = 7 only for (α, β) = (−5, 3)

and d(vc) = 7 and d(vd) = 5 only for (α, β) = (−3, 5).

It follows from Figure 3.8 and 3.9 that ∆ cannot receive positive curvature

from the s-region adjacent to the segment cd, therefore we distribute the

curvature according to Figure 3.10.

Now suppose |α| = 2.

Consider Figure 3.4 (ii); since vc has sublabel ccs it follows that d(vc) ≥ 7.

In Figure 3.4 (iii), vc has sublabel ccc which implies d(vc) ≥ 8 hence c(∆) ≤

c(5, 6, 8) < 0.

Similarly for |β| = 2, in Figure 3.4 (ii) we have d(vd) ≥ 7 and in Figure 3.4

(iv) we have d(vd) ≥ 8 and c(∆) < 0.

The distribution processes are described by Figure 3.11 and 3.12, respectively.
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∆c (   )= 2π
105

∆c (   )= 2π
105

2π
105

2π
105

cd

a

e bc d

µ µ

cd
s s

cd

a

e bc d

µ µ

cd
s s

(α,β)=(−3,5) (α,β)=(−5,3)

Figure 3.10: distribution for m-regions, |α| > 2 and |β| > 2.
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π∆c
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35

∆c

3π
35

cd
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e bc d

µ µ

e

λµ

d
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e bc d

µ µ
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s s

Figure 3.11: distribution for m-regions, |α| = 2.
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35
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µ µ

µλ

b
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Figure 3.12: distribution for m-regions, |β| = 2.
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We are now able to prove that our choice of distribution of the positive

curvature is a good one.

Lemma 3.3.3 Suppose (i, j) ∈ {(2,
2n

3
+ 2), (1,

2n

3
+ 1)}.

If ∆ is interior then c∗(∆) ≤ 0.

Proof. Let ∆ be an s-region.

We distributed the curvature in such a way that c∗(∆) ≤ 0.

Now let ∆ be an m-region which is receiving positive curvature from another

m-region. Observe (Figure 3.10, 3.11 and 3.12) that ∆ cannot be positively

curved, in fact the three segments of maximal length do not split in a pos-

itively curved region. Moreover, in each of the subcases |α| = 2, |β| = 2,

(α, β) = (−3, 5) and (α, β) = (−5, 3), ∆ cannot receive positive curvature

from more than one m-region.

Furthermore, ∆ cannot receive other curvature from more than one s-region,

in fact this is transferred through maximal length segments bc, cd and de.

The maximum amount of curvature coming from an s-region is
π

6
.

If |α| = 2 and ∆ receives the curvature
3π

35
from an m-region then d(vc) ≥ 7,

d(va) ≥ 4 and there is a splitting of degree 5 or 6 and sublabel µaµ in the

segment de.

If d(ve) > 2 or d(ve) = 2 and there is another splitting in de, then c∗(∆) ≤

c(4, 4, 5, 7) +
3π

35
+

π

6
= −

11π

35
+

3π

35
+

π

6
< 0. If d(ve) = 2 and there is no

other splitting in de, then the splitting in de has sublabel µaµλ contradicting

the fact that the splitting has degree 5 or 6.

If |α| = 2 and ∆ receives the curvature
π

15
from an m-region then the seg-

ments cd and de both split; the splitting in cd has degree≥ 6 and the splitting

in de has exactly degree 5.
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But what has been said before implies that the splitting in de can have de-

gree 5 only if there is another splitting in de or d(ve) > 2. It follows that

c∗(∆) ≤ c(4, 4, 5, 6) +
π

15
+

π

6
= −

4π

15
+

π

15
+

π

6
< 0.

If |β| = 2 and ∆ receives the curvature
3π

35
from an m-region then d(vd) ≥ 7,

d(va) ≥ 4 and there is a splitting of degree 5 or 6 and sublabel µaµ in the

segment bc.

If d(vb) > 2 or d(vb) = 2 and there is another splitting in bc, then c∗(∆) ≤

c(4, 4, 5, 7) +
3π

35
+

π

6
= −

11π

35
+

3π

35
+

π

6
< 0. If d(vb) = 2 and there is no

other splitting in bc, then the splitting in de has sublabel λµaµ contradicting

the fact that the splitting has degree 5 or 6.

If |β| = 2 and ∆ receives the curvature
π

15
then the segments bc and cd both

split; the splitting in cd has degree≥ 6 and the splitting in bc has exactly

degree 5.

But the splitting in bc can have degree 5 only if there is another splitting in bc

or d(vb) > 2. It follows that c∗(∆) ≤ c(4, 4, 5, 6)+
π

15
+

π

6
= −

4π

15
+

π

15
+

π

6
< 0.

If (α, β) = (−3, 5) the maximum amount of curvature that ∆ can receive from

an m-region is
2π

105
. We have d(va) ≥ 4, d(vc) = 7 and there is a splitting of

degree 6 and sublabel µaµ in the segment de.

As seen before since the splitting has degree 6 it follows that there is another

splitting in de or d(ve) > 2. Therefore c∗(∆) ≤ c(4, 4, 6, 7) +
2π

105
+

π

6
=

−
8π

21
+

2π

105
+

π

6
< 0.

If (α, β) = (−5, 3) the maximum amount of curvature that ∆ can receive

from an m-region is
2π

105
. We have d(va) ≥ 4, d(vd) = 7 and there is a split-

ting of degree 6 and sublabel µaµ in the segment bc.

Since the splitting has degree 6 it follows that there is another splitting in bc
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or d(vb) > 2. Therefore c∗(∆) ≤ c(4, 4, 6, 7)+
2π

105
+

π

6
= −

8π

21
+

2π

105
+

π

6
< 0.

It remains to consider those m-regions which receive positive curvature from

s-regions only.

Since we are transferring the positive curvature through the segments of max-

imal length it follows that ∆ cannot receive positive curvature from more than

three s-regions.

Recall that in each m-region we have d(va) ≥ 4.

First suppose ∆ receives curvature from three s-regions, that is through the

segments bc, cd and de.

Then we have d(vb) ≥ 4, d(vc) ≥ 4, d(vd) ≥ 4 and d(ve) ≥ 4.

Since the maximum total amount of curvature that ∆ can receive is
π

2
, it

follows that c∗(∆) ≤ c(4, 4, 4, 4, 4) +
π

2
= 0.

Now suppose ∆ receives curvature from exactly two s-regions.

These can either be bc and cd, bc and de or cd and de.

If the curvature arrives through bc and cd then d(vb) ≥ 4, d(vc) ≥ 4 and

d(vd) ≥ 4. The maximum total amount of curvature that ∆ can receive is
π

3
.

If d(ve) > 2 or there is a splitting in ∆ then c∗(∆) ≤ c(4, 4, 4, 4, 4) +
π

3
< 0;

so assume that l(ve) = ec and the segments de and ea do not split. This im-

plies that vd and va have sublabels sdd and µa respectively, hence d(vd) ≥ 5

and d(va) ≥ 5. Furthermore the vertex vc has sublabel scs, which implies

d(vc) ≥ 5.

If we are transferring
3π

35
through each segment then we also have d(vb) ≥ 5

and c∗(∆) ≤ c(5, 5, 5, 5) +
6π

35
< 0.

If we are transferring
π

6
through each segment then d(vc) ≥ 6 and d(vd) ≥ 6,

therefore c∗(∆) ≤ c(4, 5, 6, 6) +
π

3
< 0.
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If the curvature arrives through bc and de then d(vb) ≥ 4, d(vc) ≥ 4, d(vd) ≥ 4

and d(ve) ≥ 4, hence c∗(∆) ≤ c(4, 4, 4, 4, 4) +
π

3
< 0.

If the curvature arrives through cd and de then d(vc) ≥ 4, d(vd) ≥ 4 and

d(ve) ≥ 4. The maximum total amount of curvature that ∆ can receive is
π

3
.

If d(vb) > 2 or there is a splitting in ∆ then c∗(∆) ≤ c(4, 4, 4, 4, 4) +
π

3
< 0;

so assume that l(vb) = bd and the segments ab and bc do not split. This im-

plies that vc and va have sublabels ccs and aµ respectively, hence d(vc) ≥ 5

and d(va) ≥ 5. Furthermore the vertex vd has sublabel sds, which implies

d(vd) ≥ 5.

If we are transferring
3π

35
through each segment then we also have d(ve) ≥ 5

and c∗(∆) ≤ c(5, 5, 5, 5) +
6π

35
< 0.

If we are transferring
π

6
through each segment then d(vc) ≥ 6 and d(vd) ≥ 6,

therefore c∗(∆) ≤ c(4, 5, 6, 6) +
π

3
< 0.

Finally assume that ∆ receives positive curvature from exactly one s-region;

this can arrive through either bc, cd or de and can be
π

6
or

3π

35
.

Suppose ∆ receives the curvature
π

6
through bc only.

If d(ve) = d(vb) = 2 then the segment de splits, therefore there is another

vertex of degree≥ 4. Now we can assume that d(vb) = d(vc) = 4, for if not

vb or vc has degree≥ 6 and c∗(∆) ≤ c(4, 4, 4, 6) +
π

6
= 0. But d(vc) = 4

implies that vc has sublabel sca; since |ba| < |cd| it follows that cd splits and

c∗(∆) ≤ c(4, 4, 4, 4, 4) +
π

6
< 0.

Suppose ∆ receives the curvature
3π

35
through bc only.

If d(ve) = d(vb) = 2 then the segment de splits, therefore there is another

vertex of degree≥ 4; moreover we have d(va) ≥ 4, d(vb) ≥ 5 and d(vc) ≥ 5.

It follows that c∗(∆) ≤ c(4, 4, 5, 5) +
3π

35
< 0.
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Suppose ∆ receives the curvature
π

6
through cd only.

If d(vc) = 4 then bc splits and if d(vd) = 4 then de splits. We can therefore

assume d(vc) = d(vd) = 4 for if not then c∗(∆) ≤ c(4, 4, 4, 6) +
π

6
= 0. It

follows that bc and de both split and c∗(∆) ≤ c(4, 4, 4, 4, 4) +
π

6
< 0.

Suppose ∆ receives the curvature
3π

35
through cd only.

We have d(vc) = d(vd) = 5, but this implies that either bc or de splits, hence

c∗(∆) ≤ c(4, 4, 5, 5) +
3π

35
< 0.

Now suppose ∆ receives the curvature
π

6
through de only.

If d(vb) = d(vc) = 2 then the segment bc splits, therefore there is another

vertex of degree≥ 4. Now we can assume that d(vd) = d(ve) = 4, for if not

vd or ve has degree≥ 6 and c∗(∆) ≤ c(4, 4, 4, 6) +
π

6
= 0. But d(vd) = 4

implies that vd has sublabel ads; since |ae| < |cd| it follows that cd splits and

c∗(∆) ≤ c(4, 4, 4, 4, 4) +
π

6
< 0.

Finally, suppose ∆ receives the curvature
3π

35
through de only.

If d(vb) = d(vc) = 2 then the segment bc splits, therefore there is another

vertex of degree≥ 4; moreover we have d(va) ≥ 4, d(vd) ≥ 5 and d(ve) ≥ 5.

It follows that c∗(∆) ≤ c(4, 4, 5, 5) +
3π

35
< 0.

�

Recall that k0 denotes the degree of the distinguished vertex v0.

Lemma 3.3.4 Suppose (i, j) ∈ {(2,
2n

3
+ 2), (1,

2n

3
+ 1)}.

If ∆ is a boundary region then c∗(∆) <
4π

k0

.

Proof. Let ∆ be an s-region.

Recall that the distinguished vertex cannot coincide with more than one ver-

tex in ∆. Moreover an s-region does not receive any positive curvature from
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adjacent regions. It follows that c∗(∆) = c(∆) ≤ c(4, 4, k0) =
2π

k0
<

4π

k0
.

Now let ∆ be an m-region.

Suppose that the distinguished vertex coincides with m vertices of ∆.

Notice that k0 ≥ 2m.

As seen before the exponent sum of t in each boundary word must be con-

gruent to 0 modulo n. It follows that m ≤ 5.

If m = 4 or 5 then v0 concides with a splitting in each segment of maximal

length and ∆ does not receive positive curvature; it follows that c∗(∆) =

c(∆) ≤ c(k0, k0, k0, k0) = −2π +
8π

k0
≤ −π <

4π

k0
.

If m = 3 then v0 must coincide with a splitting in at least two maximal

length segments and the maximum amount of curvature that ∆ can receive

is
π

6
.

It follows that c∗(∆) ≤ c(∆) +
π

6
≤ c(k0, k0, k0) +

π

6
= −π +

6π

k0
+

π

6
=

−π +
3π

k0
+

3π

k0
+

π

6
≤ −π +

π

2
+

3π

k0
+

π

6
<

3π

k0
<

4π

k0
.

If m = 2 then v0 coincides with either a splitting or an end vertex of a seg-

ment of maximal length and the maximum amount of curvature that ∆ can

receive is
π

3
.

Since d(∆) ≥ 3 it follows that c∗(∆) ≤ c(∆) +
π

3
≤ c(4, k0, k0) +

π

3
=

−π +
π

2
+

4π

k0
+

π

3
<

4π

k0
.

If m = 1 then the maximum total amount of curvature that ∆ can receive

is
π

2
. If d(∆) > 3 then c∗(∆) ≤ c(∆) +

π

2
≤ c(4, 4, 4, k0) +

π

2
= −2π +

3π

2
+

2π

k0
+

π

2
=

2π

k0
<

4π

k0
. If d(∆) = 3 then there is an interior vertex of degree≥ 6

and the maximum amount of curvature that ∆ can receive is
π

6
; it follows

that c∗(∆) ≤ c(∆) +
π

6
≤ c(4, 6, k0) +

π

6
= −π +

5π

6
+

2π

k0

+
π

6
=

2π

k0

<
4π

k0

.

�
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We can now prove the proposition stated at the beginning of the section.

Proof of Proposition 3.3.2.

This follows from Lemma 3.3.3 and Lemma 3.3.4 in the same way Theorem

1 follows from Lemmas 3.2.5-3.2.8.

�

3.4 Applying elementary moves

In Section 3.2 we gave a geometric constraint on the modified van Kampen

diagrams (no s-region of degree≤ 3) under which the correspondent presen-

tation is the presentation of an infinite group.

Corollary 3.2.9 illustrates some combinatorial hypotheses which ensure that

this geometric constraint is satisfied.

In this section we want to show that under reasonable hypotheses on n

we can apply a sequence of elementary moves to transform a presentation

Gn

(
x0

[
xα

i , xβ
j

])
into another one for which any modified van Kampen dia-

gram (as constructed in Chapter 2) does not have any s-region of degree≤ 3.

Section 3.3 deals with those cases for which we are unable to perform such a

sequence of elementary moves as it will be clear from that which follows.

The key point is given by the following technical lemma.

Lemma 3.4.1 Let n ∈ N be odd, n ≥ 11 and j ∈ Zn, j 6= 0 or 1 modulo

n, j /∈

{
n

3
,
n

3
+ 1,

2n

3
,
2n

3
+ 1

}
(the so-called critical values of j). Then

there exists an automorphism of Zn sending (1, j) to (i′, j′) such that one of

the following is satisfied:

• i′, j′ <
n

3
;
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• i′ <
n

3
, n − j ′ + i′ <

n

3
.

Proof. First assume n is coprime to 3. In this case 1 7→ 3 defines an

automorphism of Zn and j /∈

{
n

3
,
n

3
+ 1,

2n

3
,
2n

3
+ 1

}
.

If j <
n

3
there is nothing to prove.

If
n

3
< j <

4n

9
apply the automorphism 1 7→ 3.

Then i′ = 3 <
n

3
and j′ = 3j − n <

n

3
.

If
4n

9
< j <

n

2
apply the automorphism 1 7→ 2.

Then i′ = 2 <
n

3
, j′ = 2j so that n − j ′ + i′ < n −

8n

9
+ 2 <

n

3
since n ≥ 11.

If
n

2
< j <

2n

3
apply the automorphism 1 7→ 2.

Then i′ = 2 <
n

3
and j′ = 2j − n <

n

3
since j <

2n

3
.

If
2n

3
< j <

7n

9
apply the automorphism 1 7→ 3.

Then i′ = 3 <
n

3
and j′ = 3j − 2n <

n

3
since j <

7n

9
.

Finally if j >
7n

9
then n − j + 1 < n −

7n

9
+ 1 <

n

3
since n ≥ 11.

Now suppose that 3 divides n.

If j <
n

3
there is nothing to prove.

By assumption j /∈
{n

3
,
n

3
+ 1

}
.

If
n

3
+ 1 < j <

n

2
apply the automorphism 1 7→ 2.

Then i′ = 2 <
n

3
and n − j ′ + i′ = n − 2j + 2 < n −

2n

3
− 2 + 2 =

n

3
.

If
n

2
< j <

2n

3
apply the automorphism 1 7→ 2.

Then i′ = 2 <
n

3
and j′ = 2j − n <

n

3
since j <

2n

3
.

By assumption j /∈

{
2n

3
,
2n

3
+ 1

}
.

Finally if j >
2n

3
+ 1 then n − j + 1 < n −

2n

3
− 1 + 1 =

n

3
.

�
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Theorem 2 Let G = Gn

(
x0

[
xα

i , xβ
j

])
. Suppose that hi = 1 or hj = 1 and

that |α| > 1, |β| > 1 and |α| 6= |β|.

If n is odd and n ≥ 11 then G is infinite.

Proof. Since hi = 1 or hj = 1 we can assume, after applying suitable

elementary moves if necessary, that i = 1. Since the conditions on α and β

are symmetric we can assume they are unchanged; it follows that we only

need to study Gn

(
x0

[
xα

1 , xβ
j

])
.

Now Lemma 3.4.1 precisely says that there is an elementary move Φ such

that Φ
(
Gn

(
x0

[
xα

1 , xβ
j

]))
satisfies the hypotheses of Theorem 1 (hence G is

infinite) except when 3|n and j ∈

{
n

3
,
2n

3
,
n

3
+ 1,

2n

3
+ 1

}
.

If j ∈

{
n

3
,
2n

3

}
then G is infinite by Proposition 3.3.1.

If j =
2n

3
+ 1 then G is infinite by Proposition 3.3.2.

If j =
n

3
+ 1 apply first the elementary move given by the automorphism of

Zn defined by 1 7→ 2 to see that G is infinite by Proposition 3.3.2.

�
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Chapter 4

The f-irreducible case

4.1 Introduction

Consider the group presentation G = Gn

(
x0

[
xα

i , xβ
j

])
where 0 < i < j < n

and i ≤
n

2
.

Put hi := hcf (i, n) and hj := hcf (j, n).

The aim of this chapter is to provide a proof for the following two theorems.

Theorem 3 Let G = Gn

(
x0

[
xα

i , xβ
j

])
be irreducible. If hi > 1, hj > 1,

|α| > 1 and |β| > 1 then G is infinite.

Theorem 4 Let G = Gn

(
x0

[
xα

i , xβ
j

])
be irreducible. If n is odd, hi > 1,

hj > 1 and (|α|, |β|) 6= (1, 1) then G is infinite.

For the remainder of the chapter we will assume hi, hj > 1. Before going

through the proof of the theorems above as outlined in Chapter 2, we will
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prove a lemma which allows us to consider only those cases where n is a

product of two primes (as long as the conditions on α and β are symmetric

with respect to the elementary moves).

Lemma 4.1.1 In the f-irreducible case it is enough to study the presenta-

tions Gpq

(
x0

[
xα

p , xβ
q

])
where p and q are primes such that p < q.

Proof. Let G = Gn

(
x0

[
xα

i , xβ
j

])
and p and q be primes such that p | hi

and q | hj . We can assume without any loss that p < q. Consider the

split extension E(n; α, β; i, j); add the relator tpq and reduce the t-exponents

modulo pq. Since p | i it follows that i ≡ up mod pq for some u, similarly

j ≡ vq mod pq and we have an epimorphism

E(n; α, β; i, j) = 〈x, t|tn, xt−ix−αti−jx−βtj−ixαti−jxβtj〉 ։

։ 〈x, t|tpq, xt−upxαtvq−upx−βtup−vqxαtvq−upxβtvq〉 = E(pq; α, β; up, vq).

which is an extension of Gpq

(
x0

[
xα

up, x
β
vq

])
.

Let û := u−1 mod q and v̂ := v−1 mod p (recall that Zq and Zp are fields).

By the Chinese Remainder Theorem there exists λ such that λ ≡ û mod q

and λ ≡ v̂ mod p. So we have

q | λ − û =⇒ q | λu − 1 =⇒ pq | λup − p =⇒ λup ≡ p mod pq; similarly

λvq ≡ q mod pq. It follows that Gpq

(
x0

[
xα

up, x
β
vq

])
∼= Gpq

(
x0

[
xα

p , xβ
q

])
via

the isomorphism induced by the automorphism 1 7→ λ of Zpq. It follows that

if Gpq

(
x0

[
xα

p , xβ
q

])
is infinite then G is infinite, hence the claim.

�

4.2 Proof of Theorem 3

This section will be devoted to proving the following.
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Proposition 4.2.1 The group G = G6

(
x0

[
xα

2 , xβ
3

])
where |α|, |β| 6= 1 is

infinite.

Given this we can prove Theorem 3 as follows.

Proof of Theorem 3

Suppose hi > 3. Since G is irreducible, that is hcf(n, i, j) = 1, it follows

that hcf(j, hi) = 1 and hi ∤ j − i.

Therefore there is an epimorphism

E(n; α, β; i, j) = 〈x, t|tn, xt−ix−αti−jx−βtj−ixαti−jxβtj〉 ։

։ 〈x, t|thi , x1−αt−j′x−βtj
′

xαt−j′xβtj
′

〉 = E(hi; α, β; 0, j ′).

where the second relator is cyclically reduced since α 6= 1.

This group is an extension of Ghi
(x0[x

α
0 , xβ

j′])
∼= Ghi

(x0[x
α
0 , xβ

1 ]) via the iso-

morphism induced by the automorphism j ′ 7→ 1 of Zhi
(since hcf(hi, j

′) = 1

by irreducibility) which is infinite by S. J. Pride’s result ([26]) since hi ≥ 4

(see also Proposition 1.2.6). It follows that G is infinite.

Similarly, since β 6= −1, if hj > 3 then G is infinite.

This leaves the case 1 < hi, hj ≤ 3.

Since G is irreducible it follows that hi 6= hj.

Applying elementary moves if necessary, we can assume that hi = 2 and hj =

3. By Lemma 4.1.1 there is an epimorphism E(n; α, β; i, j) ։ E(6; α, β; 2, 3)

which is an extension of G6(x0[x
α
2 , xβ

3 ]) and is infinite by Proposition 4.2.1.

It follows that G is infinite.

�

We return now to the proof of Proposition 4.2.1.

In order to prove it, it is enough to show that the element x of the extension
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Figure 4.1: regions of D (i) and star graph (ii)

E = E(6; α, β; 2, 3) has infinite order.

Suppose, by way of contradiction that xl = 1 for l < ∞. Then there is a

modified van Kampen diagram D for xl over E.

The regions of D are given, up to inversion, by Figure 4.1(i), the star graph

by Figure 4.1(ii) and the values of labels by the following table:

a b c d e s λ µ1 µ2

1 −α −β α β 0 0 0 0

If d(vλ) = 2 we will refer to the pair of edges (vavλ, vλvb) as a double edge

labelled by aλb; similarly we will use the terms double edge labelled by eµ1µ2

or µ1µ2a and triple edge labelled by eµ1µ2a in the obvious sense.

We can assume without any loss of generality that each of the following

conditions holds:

C1 D is minimal with respect to the number of regions.

C2 Subject to C1, the number of vertices in D with label ce (up to inversion

and cyclic permutation) is maximal.
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C3 Subject to C2, the number of vertices of D of degree 2 is maximal.

C4 Subject to C3, the number of vertices of D having proper sublabel sµ1

is minimal.

Lemma 4.2.2 If D satisfies C1-C4 above and l(v) is a vertex label, then

the following hold:

(i) l(v) is cyclically reduced;

(ii) l(v) cannot have as proper sublabel xwx or xwx where w is a sublabel

with zero label sum and x ∈ {a, b, c, d, e};

(iii) ce, up to cyclic permutation and inversion, cannot appear as a proper

sublabel of l(v);

(iv) we cannot have l(v) = y1y2y3y4 where the yi’s are zero-valued labels;

(v) if l(v) has sµ1 a proper sublabel then it has sublabel sµ1b or sµ1s;

(vi) if l(v) has sµ1s as a proper sublabel then the adjacent vertex v ′ ( see

Figure 4.2) has label sµ1.

Proof. The proof of statements (i)-(iv) is analogous to that of Lemma 3.1.1.

This leaves (v) and (vi) to be proved. Let v be a vertex in D with sublabel

sµ1x. It follows from the star graph that x ∈ {a, a, d, d, λ, µ2, s, b}.

If x 6= b, s applying a bridge move at v relative to sµ1 we obtain a new

diagram satisfying C1-C3 but contradicting C4. (See Figure 4.2).

Finally, if x = s and l(v′) 6= sµ1 we can contradict assumption C4 applying

the same bridge move.

�
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Figure 4.2: Bridge move relative to sµ1

Martin Edjvet has checked by computer that the following holds.

Proposition 4.2.3 If 0 < |α|, |β| ≤ 5 then G6(x0[x
α
2 , xβ

3 ]) is an infinite

automatic group.

This has been done case by case with the software KBMAG (see [16] for

details).

Thus from now on we can assume

C5 it is NOT the case that 0 < |α|, |β| ≤ 5.

For the rest of the section we will assume that diagrams satisfy assumptions

C1-C4 and the given presentation satisfies C5.

Using the star graph we can make the list of possible labels for interior

vertices of degree 2, 3 and 4 (up to cyclic permutation and inversion) and

the consequences, if any, on α and β:
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degree 2 : ce, λµ1, λµ2, λs, µ1µ2, µ1s, µ2s no consequence on α and β;

degree 3 : bds, bdµ1, bdµ2, bdλ no consequence on α and β ;

daa ⇒ α = −2 ;

daa ⇒ α = 2 ;

bµ1c, bµ2c, bλc, bsc, bµ1e, bµ2e, bλe, bse ⇒ α = β ;

bµ1c, bµ2c, bλc, bsc, bµ1e, bµ2e, bλe, bse ⇒ α = −β .

degree 4 : adad no consequence on α and β ;

aa{λ, µ1, µ2, s}b ⇒ α = 2 ;

aab{λ, µ1, µ2, s} ⇒ α = −2 ;

a{λ, µ1, µ2, s}{c, e}b ⇒ α + β − 1 = 0 ;

a{λ, µ1, µ2, s}{c, e}b ⇒ α − β − 1 = 0 ;

ab{c, e}{λ, µ1, µ2, s} ⇒ α − β + 1 = 0 ;

ab{c, e}{λ, µ1, µ2, s} ⇒ α + β + 1 = 0 ;

d{λ, µ1, µ2, s}{c, e}{λ, µ1, µ2, s} ⇒ α = β ;

d{λ, µ1, µ2, s}{c, e}{λ, µ1, µ2, s} ⇒ α = −β ;

db{c, e}{λ, µ1, µ2, s} ⇒ 2α = β ;

db{c, e}b ⇒ α = β ;

db{c, e}{λ, µ1, µ2, s} ⇒ 2α = −β ;

db{c, e}b ⇒ α = −β ;

b{λ, µ1, µ2, s}{c, e}{c, e} ⇒ α = −2β ;

b{λ, µ1, µ2, s}{c, e}{c, e} ⇒ α = 2β .
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Observe that we always have d(va), d(vb), d(vd) ≥ 3 and we cannot have

d(ve) = d(vµ1
) = 2, therefore d(∆) ≥ 4 for each interior m-region ∆.

Let k0 denote the degree of the distinguished vertex of D and c∗(∆) the

pseudo-curvature of a region ∆.

As pointed out in the previous chapter, in order to prove that the group

presented by G6(x0[x
α
2 , xβ

3 ]) is infinite we only need to show, after describing

the distribution process, that c∗(∆) ≤ 0 if ∆ is interior and c∗(∆) <
4π

k0
if ∆

is a boundary region.

Lemma 4.2.4 Let ∆ be an interior m-region of D. Then c(∆) ≤ 0.

Proof. Distinguish the following cases:

1. |α| = 2 (in which case |β| ≥ 6);

2. |α| > 2 and |β| 6= |α|;

3. |α| > 2 and β = α;

4. |α| > 2 and β = −α.

Case 1.

If d(vc), d(ve) > 2 the assumption C5 implies d(vc), d(ve) ≥ 5.

It follows that c(∆) ≤ c(3, 3, 3, 5, 5) < 0.

If d(vc) = d(ve) = 2 then l(vc) = l(ve) = ce, therefore the vertices vb, vd

and vµ1
have sublabels bµ1, ddd and bµ1 respectively; the constraint |α| = 2

implies then d(vb), d(vµ1
) ≥ 5 and d(vd) ≥ 6.

It follows that c(∆) ≤ c(3, 5, 5, 6) < 0.

If d(ve) = 2 and d(vc) > 2 we have d(vc), d(vµ1
) ≥ 5 and d(vd) ≥ 5.

It follows that c(∆) ≤ c(3, 3, 5, 5, 5) < 0.
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Similarly if d(vc) = 2 and d(ve) > 2 we have d(ve), d(vb) ≥ 5 and d(vd) ≥ 5.

It follows that c(∆) ≤ c(3, 5, 5, 5) < 0.

Case 2.

We have d(va) ≥ 4, d(vb), d(vd) ≥ 3; moreover the adjacent vertices ve and

vµ1
cannot have both degree ≤ 3.

If d(vc) = 2 then l(vc) = ce and as before the vertices vb and vd have sublabels

bµ1 and dd respectively, which imply d(vb) ≥ 4, d(vd) ≥ 5.

It follows that c(∆) ≤ c(4, 4, 4, 5) < 0.

If d(vc) > 2 the given assumptions imply d(vc) ≥ 4 therefore c(∆) ≤

c(3, 3, 4, 4, 4) < 0.

Case 3.

We have d(va) ≥ 4, d(vb), d(vd) ≥ 3.

If d(ve) = 2 then l(ve) = ec and so vd and vµ1
have sublabels dd and bµ1

respectively; this implies d(vd) ≥ 5 and d(vµ1
) ≥ 3.

If d(vµ1
) > 3 then d(vµ1

) ≥ 5 (see the list of labels for vertices of degree 4

when α = β) and we have c(∆) ≤ c(3, 4, 5, 5) < 0; so assume d(vµ1
) = 3, in

which case l(vµ1
) = bµ1{e, c} and so vµ2

has sublabel {d, d}µ2 and d(vµ2
) ≥ 3.

It follows that c(∆) ≤ c(3, 3, 3, 4, 5) < 0.

If d(ve) = 3 then l(ve) = eb0, therefore either d(vµ1
) ≥ 5 or d(vµ2

) ≥ 5.

It follows that c(∆) ≤ c(3, 3, 3, 5, 5) < 0.

If d(ve) ≥ 4 we can assume d(vc) = 2, otherwise c(∆) ≤ c(3, 3, 3, 4, 4) = 0,

therefore vd has sublabel dd and d(vd) ≥ 5.

We could have positive curvature only if d(vµ1
) = d(vµ2

) = 2 in which case

∆ must be adjacent to an s-region along the triple edge. It follows that va

has sublabel sa which under the constraint α = β implies d(va) ≥ 5.
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It follows that c(∆) ≤ c(3, 4, 5, 5) < 0.

Case 4.

We have d(va) ≥ 4, d(vb), d(vd) ≥ 3.

Moreover at least one of the vertices ve and vµ1
has degree ≥ 3.

If d(vc) = 2 then l(vc) = ce and so vd and vb have sublabels dd and bµ1

respectively; this implies d(vd) ≥ 5 and d(vb) ≥ 3.

If d(vb) > 3 the constraint α = −β implies d(vb) ≥ 5 and we have c(∆) ≤

c(3, 4, 5, 5) < 0; so assume d(vb) = 3, in which case l(vb) = bµ1{c, e} and so vλ

has sublabel λ{d, d} and d(vλ) ≥ 3. It follows that c(∆) ≤ c(3, 3, 3, 4, 4) = 0.

If d(vc) > 2 then the assumptions imply that at least one of the vertices vc

and vd has degree ≥ 4, therefore c(∆) ≤ c(3, 3, 3, 4, 4) = 0.

�

4.2.1 The case |α| = 2.

Assume |α| = 2. By Lemma 3.2.2 (which applies also in this particular case)

we know that there is no positively curved interior m-region.

In view of C5 we will exclude, without any specific mention, those labels

which have |β| ≤ 5 as a consequence.

Lemma 4.2.5 Let ∆ be an interior s-region of D which is not adjacent to

an m-region along the triple edge labelled by aµ2µ1e; then one of the following

holds:

(a) ∆ is NOT adjacent to any double edge labelled by aλb and c(∆) ≤ 0.

(b) ∆ is adjacent to three double edges labelled by aλb and c(∆) ≤
π

2
;

(c) ∆ is adjacent to exactly two double edges labelled by aλb and c(∆) ≤
π

3
;
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(d) ∆ is adjacent to exactly one double edge labelled by aλb and c(∆) ≤
π

6
.

Proof. If ∆ is not positively curved there is nothing to prove, therefore we

can assume d(∆) ≤ 5 and c(∆) > 0.

First suppose ∆ is not adjacent to any double edge labelled by aλb.

If d(∆) = 5 we can assume without any loss that the unique double edge is

v1v2v3. By assumptions this double edge can have labels aµ2µ1 or µ2µ1e.

In both cases we have d(v1), d(v3) ≥ 4, therefore c(∆) ≤ c(3, 3, 3, 4, 4) = 0.

If d(∆) = 4, since we are assuming there is no triple edge in ∆, there are two

cases:

s

s

s

s

s

s

s

s

s

s

s

s

(1) (2)

Case (1)

There are four subcases:

2µ

µ1

2µ

µ1

a

a

a

2µ

µ1

e2µ

µ1

a

2µ

µ1

2µ

µ1

e

e

µ1

µ1

2µ

2µ
e

s

s

s

s

s

s

(1.1)

s

s

s

s

s

s

(1.2)

s

s

s

s

s

s

(1.3)

s

s

s

s

s

s

(1.4)

Case (1.1)

The vertices v1, v3 and v5 have sublabels as, sµ1 and asµ1 respectively.

It follows that d(v1) ≥ 4, d(v3), d(v5) ≥ 5 and so c(∆) ≤ c(3, 4, 5, 5) < 0.

Case (1.2)

The vertices v1, v3 and v5 have sublabels as, se and µ2sµ1 respectively.
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It follows that d(v1) ≥ 4, d(v3), d(v5) ≥ 5 and so c(∆) ≤ c(3, 4, 5, 5) < 0.

Case (1.3)

The vertices v1, v3 and v5 have sublabels µ2s, sµ1 and ase respectively.

It follows that d(v1), d(v3) ≥ 5, d(v5) ≥ 6 and so c(∆) ≤ c(3, 5, 5, 6) < 0.

Case (1.4)

The vertices v1, v3 and v5 have sublabels µ2s, se and µ2se respectively.

It follows that d(v1), d(v3) ≥ 5, d(v5) ≥ 6 and so c(∆) ≤ c(3, 5, 5, 6) < 0.

Case (2)

There are three subcases:

2µ

µ1

2µ

µ1 e

µ1µ1

2µ

e

µ1 µ1

e

a

a

a

2µ
2µ

2µ
s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

(2.3)(2.2)(2.1)

In each case we have d(vi) ≥ 4 for i = 1, 2, 4, 5.

It follows that c(∆) ≤ c(4, 4, 4, 4) = 0.

If d(∆) = 3 there is only one possible configuration and four subcases:

2µ

µ1

a

2µ

µ1

2µ

a

a

µ1

2µ µ1

a

2µ

µ1

a e

2µµ1

s

s

s

s

s

s

µ1

µ12µ

2µ

µ1

a e

e

2µ

s

s

s

s

s

s

µ1

2µ

µ1µ1

e

2µ e

2µ e

s

s

s

s

s

s

s

s

s

s

s

s

In each case we have d(vi) ≥ 6 for i = 1, 3, 5.

It follows that c(∆) ≤ c(6, 6, 6) = 0.

Now suppose ∆ is adjacent to three double edges labelled by aλb.

There is only one possibility:
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s

s

s

s

s

s

λ

λ λ

b

a b

a
a b

where d(∆) = 3 and v1, v3 and v5 all have sublabel asb.

This implies d(vi) ≥ 4 for i = 1, 3, 5 and so c(∆) ≤ c(4, 4, 4) =
π

2
.

Now suppose ∆ is adjacent to exactly two double edges labelled by aλb.

We can have d(∆) = 3 or d(∆) = 4.

If d(∆) = 4 there are two cases:

s

s

s

s

s

sλ

b

s

s

s

s

s

sλ λ

b

(1) (2)

λ

b

a b a

a

a

Case (1)

The vertices v1, v3 and v5 have sublabels asb, as and sb respectively.

It follows that d(v1) ≥ 4 and d(v3) ≥ 4, therefore c(∆) ≤ c(3, 3, 4, 4) =
π

3
.

Case (2)

The vertices v1, v2, v4 and v5 have sublabels as, sb, as and sb respectively.

It follows that d(v1), d(v4) ≥ 4, therefore c(∆) ≤ c(3, 3, 4, 4) =
π

3
.

If d(∆) = 3 we can assume, without any loss, that the double edges labelled

by aλb are v1v2v3 and v5v6v1.

s

s

s

s

s

sλ λ

b

a b

a
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This forces d(v1), d(v3) ≥ 4.

Since d(v4) = 2 there are two subcases:

a

2
µ

1
µ

1
µ

2
µ e

s

s

s

s

s

sλ λ

b

s

s

s

s

s

sλ λ

b

(1) (2)

a b

a

a b

a

Case (1)

The vertices v1, v3 and v5 have sublabels asb, asµ1 and asb respectively.

It follows that d(v1), d(v5) ≥ 4 and d(v3) ≥ 5; moreover either d(v1) ≥ 5 or

d(v5) ≥ 5, therefore c(∆) ≤ c(4, 5, 5) =
3π

10
<

π

3
.

Case (2)

The vertices v1, v3 and v5 have sublabels asb, ase and µ2sb respectively.

It follows that d(v1) ≥ 4, d(v3) ≥ 6 and d(v5) ≥ 5 and so c(∆) ≤ c(4, 5, 6) =

7π

30
<

π

3
.

Finally suppose ∆ is adjacent to exactly one double edge labelled by aλb.

We can assume without any loss that the double edge is v1v2v3, which forces

d(v3) ≥ 4.

If d(∆) = 5, since d(v3) ≥ 4, we have c(∆) ≤ c(3, 3, 3, 3, 4) =
π

6
.

If d(∆) = 4 there are three cases:

s

s

s

s

s

s λ

b

(1)

s

s

s

s

s

s λ

b
s

s

s

s

s

s λ

b

(2) (3)
a aa

Notice that in each case v3 has sublabel as which implies d(v3) ≥ 4.

Case (1)
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There are two subcases:

2
µ

e1
µ

1
µ

a
2

µ

s

s

s

s

s

s λ

b
s

s

s

s

s

s λ

b

(1.1) (1.2)

aa

Case (1.1)

The vertices v3 and v5 have sublabels asµ1{b, s} and as respectively.

This implies d(v3) ≥ 6 and d(v5) ≥ 4; therefore c(∆) ≤ c(3, 3, 4, 6) =
π

6
.

Case (1.2)

The vertices v3 and v5 have sublabels ase and µ2s respectively.

This implies d(v3) ≥ 6 and d(v5) ≥ 5; therefore c(∆) ≤ c(3, 3, 5, 6) <
π

6
.

Case (2)

There are two subcases:

2
µ

1
µ

1
µ

e

2
µa

s

s

s

s

s

s λ
s

s

s

s

s

s λ

(2.1) (2.2)

b b

a a

Case (2.1)

The vertices v1 and v5 have sublabels asb and sµ1 respectively.

This implies d(v1) ≥ 4 and d(v5) ≥ 5; therefore c(∆) ≤ c(3, 4, 4, 5) <
π

6
.

Case (2.2)

The vertices v1 and v5 have sublabels µ2sb and se respectively.

This implies d(v1) ≥ 5 and d(v5) ≥ 5; therefore c(∆) ≤ c(3, 4, 5, 5) <
π

6
.

Case (3)

There are two subcases:
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2
µ

1
µ

a

e

2
µ

1
µ

s

s

s

s

s

s λ

b
s

s

s

s

s

s λ

b

(3.1) (3.2)
a a

Case (3.1)

The vertices v4 and v6 have sublabels sµ1 and as respectively.

This implies d(v4) ≥ 5 and d(v6) ≥ 4; therefore c(∆) ≤ c(3, 4, 4, 5) <
π

6
.

Case (3.2)

The vertices v4 and v6 have sublabels se and µ2s respectively.

This implies d(v4), d(v6) ≥ 5; therefore c(∆) ≤ c(3, 4, 5, 5) <
π

6
.

If d(∆) = 3 then there is only one possible configuration and the following

four subcases:

2µ

µ1

a

2µ

µ1

a

2µ

µ1

e

µ1

a

2µ

s

s

s

s

s

s

(2)

λ

b

a

a

2µ

µ1

µ1

2µ

e

s

s

s

s

s

s

(3)

λ

b

a

e

µ1

2µ

µ1

2µ

e

s

s

s

s

s

s

(4)

λ

b

a

s

s

s

s

s

s

(1)

λ

b

a

Case (1)

The vertices v1, v3 and v5 have sublabels asb, asµ1{b, s} and asµ1{b, s} re-

spectively.

This implies d(v1) ≥ 4 and d(v3), d(v5) ≥ 6; therefore c(∆) ≤ c(4, 6, 6) =
π

6
.

Case (2)

The vertices v1, v3 and v5 have sublabels asb, ase and µ2sµ1{s, b} respec-

tively.

This implies d(v1) ≥ 4, d(v3) ≥ 6 and d(v5) ≥ 6; therefore c(∆) ≤ c(4, 6, 6) =

π

6
.
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Case (3)

The vertices v1, v3 and v5 have sublabels µ2sb, asµ1{b, s} and ase respec-

tively.

This implies d(v1) ≥ 5, d(v3) ≥ 6 and d(v5) ≥ 6; therefore c(∆) ≤ c(5, 6, 6) <

π

6
.

Case (4)

The vertices v1, v3 and v5 have sublabels µ2sb, ase and µ2se respectively.

This implies d(v1) ≥ 5 and d(v3), d(v5) ≥ 6; therefore c(∆) ≤ c(5, 6, 6) <
π

6
.

�

Lemma 4.2.6 Let ∆ be an interior s-region of D which is adjacent to an

m-region along the triple edge labelled by aµ2µ1e; then one of the following

holds:

(a) ∆ is adjacent to two triple edges and c(∆) ≤
2π

3
.

(b) ∆ is adjacent to exactly one triple edge and c(∆) ≤
π

3
.

Proof. Firstly suppose ∆ is adjacent to two triple edges; then d(∆) = 2 and

there are two vertices, say v1 and v4, with sublabel ase.

This implies d(v1), d(v4) ≥ 6 hence c(∆) ≤ c(6, 6) =
2π

3
.

Now suppose ∆ is adjacent to exactly one triple edge; we can assume this is

v4v5v6v1.

The vertices v1 and v4 have sublabels as and se respectively, therefore d(v1) ≥

4 and d(v4) ≥ 5.

If d(∆) = 4 then c(∆) ≤ c(3, 3, 4, 5) =
7π

30
<

π

3
.

We can therefore assume d(∆) = 3.

There are two different possible configurations:
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µ1
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s

s

s

s

s

s

s

s

s

s

(1) (2)

Case (1)

If the double edge is labelled by aλb the vertex v3 has sublabel as.

It follows that at least one of the vertices v1 and v3 has degree ≥ 5, hence

c(∆) ≤ c(4, 5, 5) =
3π

10
<

π

3
.

If the double edge is labelled by aµ2µ1 the vertex v1 has sublabel asµ1 hence

d(v1) ≥ 5. It follows that c(∆) ≤ c(4, 5, 5) =
3π

10
<

π

3
.

If the double edge is labelled by µ2µ1e the vertex v1 has sublabel ase hence

d(v1) ≥ 6, moreover v3 has sublabel µ2s hence d(v3) ≥ 5.

It follows that c(∆) ≤ c(5, 6, 6) =
π

15
<

π

3
.

Case (2)

If the double edge is labelled by aλb the vertex v4 has sublabel ase which

implies d(v4) ≥ 6.

If d(v2) ≥ 4 we have c(∆) ≤ c(4, 5, 6) =
7π

30
<

π

3
.

If d(v2) = 3 then l(v2) = bds which forces v1 to have sublabel ase and so

d(v1) ≥ 6. It follows that c(∆) ≤ c(3, 6, 6) =
π

3
.

If the double edge is labelled by aµ2µ1 the vertex v2 has sublabel sµ1 hence

d(v2) ≥ 5. It follows that c(∆) ≤ c(4, 5, 5) =
3π

10
<

π

3
.

If the double edge is labelled by µ2µ1e the vertex v2 has sublabel se hence

d(v2) ≥ 5. It follows that c(∆) ≤ c(4, 5, 5) +
3π

10
<

π

3
.

�
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Distribution process

Recall from Lemma 4.2.4 that there are no positively curved interior m-

regions. The pseudo-curvature of a region in D , denoted by c∗(−), is

obtained redistributing the curvature from every positively curved interior

s-region ∆ as follows:

- transfer the curvature
π

6
through each double edge labelled by aλb

adjacent to ∆;

- transfer the curvature
π

3
through each triple edge adjacent to ∆ when

the triple edge is in common with an interior region.

Moreover for the boundary s-regions:

- transfer the curvature
π

6
through each adjacent triple edge from each

boundary s-region of degree 2 (this affects only the boundary regions).

Lemma 4.2.7 If ∆ is interior then c∗(∆) ≤ 0.

Proof. In view of Lemma 4.2.5 and Lemma 4.2.6, if ∆ is an interior s-region

then c∗(∆) ≤ 0.

We only need to prove that c∗(∆) ≤ 0 for every interior m-region ∆.

Distinguish two cases:

A) the region ∆ receives positive curvature from exactly one s-region;

B) the region ∆ receives positive curvature from exactly two s-regions.

Notice that since the positive curvature is distributed only through particular

edges it follows that ∆ cannot receive curvature from more than two s-regions.

Case A)

There are two subcases:
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A1) the region ∆ receives positive curvature through the double edge aλb;

A2) the region ∆ receives positive curvature through the triple edge eµ1µ2a.

Case A1)

Observe that d(va) ≥ 4; moreover at least one of the vertices vb and vc has

degree ≥ 5.

If d(ve) = 2 then l(ve) = ce which implies that vµ1
and vd have subla-

bels bµ1 and dd respectively. This implies d(vµ1
), d(vd) ≥ 5, hence c∗(∆) ≤

c(4, 5, 5, 5) +
π

6
< 0.

If d(ve) > 2 then the constraint |α| = 2 implies d(ve) ≥ 5, moreover d(vd) ≥ 3.

If d(vc) = 2 then l(vc) = ce which implies that vb and vd have subla-

bels bµ1 and dd respectively. This implies d(vb), d(vd) ≥ 5, hence c∗(∆) ≤

c(4, 5, 5, 5) +
π

6
< 0.

If d(vc) > 2 then the constraint |α| = 2 implies d(vc) ≥ 5. It follows that

c∗(∆) ≤ c(3, 3, 4, 5, 5) +
π

6
< 0.

Case A2)

We have d(v1) ≥ 4, d(vb), d(vd) ≥ 3 and d(ve) ≥ 5.

If d(vc) = 2 then l(vc) = ce which implies that vb and vd have sublabels bµ1

and dd respectively. This implies d(vb), d(vd) ≥ 5; moreover either vd or ve

has degree ≥ 6, hence c∗(∆) ≤ c(4, 5, 5, 6) +
π

3
< 0.

If d(vc) > 2 then the constraint |α| = 2 implies d(vc) ≥ 5.

It follows that c∗(∆) ≤ c(3, 3, 4, 5, 5) +
π

3
< 0.

Case B)

It follows from the distribution process that va has sublabel sas which im-

plies d(va) ≥ 6. Moreover d(ve) ≥ 5 and d(vb), d(vd) ≥ 3.

If d(vc) = 2 then l(vc) = ce which implies that vb and vd have sublabels bµ1
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and dd respectively. This implies d(vb), d(vd) ≥ 5; moreover either vd or ve

has degree ≥ 6, hence c∗(∆) ≤ c(5, 5, 6, 6) +
π

3
+

π

6
< 0.

If d(vc) > 2 then the constraint |α| = 2 implies d(vc) ≥ 5.

It follows that c∗(∆) ≤ c(3, 3, 5, 5, 6) +
π

3
+

π

6
< 0.

�

Lemma 4.2.8 If ∆ is a boundary region then c∗(∆) <
4π

k0
.

Proof. Let ∆ be a boundary s-region.

Then ∆ does not receive positive curvature.

Since t has order n in the extension E(n; α, β; 2, 3), it follows that each

consequence of the relators must have exponent sum of t congruent to 0

modulo n; this implies that the distinguished vertex coincides with exactly

one vertex of ∆.

Observe that if d(∆) ≥ 4 then c(∆) ≤ c(3, 3, 3, k0) =
2π

k0
<

4π

k0
, so we can

assume d(∆) ≤ 3.

If d(∆) = 3 there are seven subcases:

2µ

µ1

v0

a

2µ

v0

e

µ1

a

v0

2µ

µ1

a

e

v0

s

s

s

s

s

s

(4)

s

s

s

s

s

s

(1)

s

s

s

s

s

s

(3)

s

s

s

s

s

s

(2)

v0 v0

µ1

2µ

a

2µ

µ1
a

v0

µ1

2µ

a

e e

e

s

s

s

s

s

s

s

s

s

s

s

s

(6)(5)

s

s

s

s

s

s

(7)
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Observe that in cases (1), (2), (4), (5) and (6) there are two vertices of degree

≥ 4. It follows that c∗(∆) = c(∆) ≤ c(4, 4, k0) =
2π

k0

<
4π

k0

.

In case (3) we can have d(v2) = 3, but only if l(v2) = bds , in which case v1

has sublabel ase hence d(v1) ≥ 7.

It follows that c∗(∆) = c(∆) ≤ c(3, 7, k0) <
2π

k0

<
4π

k0

.

In case (7) we have d(v1) ≥ 6. It follows that c∗(∆) = c(∆) ≤ c(3, 6, k0) =

2π

k0
<

4π

k0
.

If d(∆) = 2 then the vertex v1 6= v0 has sublabel ase which implies d(v1) ≥ 6.

According to the distribution process described above we have c∗(∆) ≤

c(6, k0) −
π

3
=

2π

k0

<
4π

k0

.

Now let ∆ be a boundary m-region.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

As seen before the exponent sum of t in each boundary word must be con-

gruent to 0 modulo n. This implies that m ≤ 3 and we can have m = 3 only

if v0 = vb = vd = vµ1
.

Suppose m = 3. Since d(∆) ≥ 4 and the maximum total amount of curvature

∆ can receive is
π

2
, it follows that c∗(∆) ≤ c(∆) +

π

2
≤ c(3, k0, k0, k0) +

π

2
=

−
4π

3
+

2π

k0

+
4π

k0

+
π

2
≤ −

5π

6
+

π

3
+

4π

k0

<
4π

k0

.

Now suppose m = 2. We have c∗(∆) ≤ c(∆) +
π

2
≤ c(3, 3, k0, k0) +

π

2
=

−
2π

3
+

4π

k0
+

π

2
= −

π

6
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

Suppose v0 concides with va, vλ or vµ2
. We have d(vd) ≥ 3 and d(vb) ≥ 3.

Moreover the vertices ve and vµ1
cannot have both degree ≤ 4, and similarly

the vertices vc and vd cannot both have degree ≤ 4.
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Since the maximum total amount of curvature that ∆ can receive is
π

3
we

have c∗(∆) ≤ c(3, 5, 5, k0) +
π

3
<

2π

k0
<

4π

k0
.

Now let v0 concides with vb.

We can use the same argument as before with va playing the role of vb.

Suppose v0 concides with vc. We have d(va), d(vb), d(vd) ≥ 3.

Moreover the vertices ve and vµ1
cannot have both degree ≤ 4.

Since the maximum total amount of curvature that ∆ can receive is
π

2
we

have c∗(∆) ≤ c(3, 3, 3, 5, k0) +
π

2
<

2π

k0
<

4π

k0
.

Now assume v0 concides with vd. We have d(va), d(vb) ≥ 3.

Moreover the vertices ve and vµ1
cannot have both degree ≤ 4 and the ver-

tices vc and vb cannot have both degree ≤ 4.

Since the maximum total amount of curvature that ∆ can receive is
π

2
we

have c∗(∆) ≤ c(3, 5, 5, k0) +
π

2
<

2π

k
<

4π

k0
.

Let v0 concides with ve. We have d(va), d(vb), d(vd) ≥ 3.

Since ve = v0, the maximum total amount of curvature that ∆ can receive

is
π

3
(in fact the triple edge, if any, is in common with another boundary

region).

If d(vc) = 2 then l(vc) = ce which implies that vb and vd have sublabels

bµ1 and dd respectively. This implies d(vb), d(vd) ≥ 5, hence c∗(∆) ≤

c(3, 5, 5, k0) +
π

3
<

2π

k0
<

4π

k0
.

If d(vc) > 2 then the assumption C5 implies d(vc) ≥ 5.

It follows that c∗(∆) ≤ c(3, 3, 3, 5, k0) +
π

3
<

2π

k0

<
4π

k0

.

Finally suppose v0 concides with vµ1
. We have d(va), d(vb), d(vd) ≥ 3.

Moreover the vertices ve and vd cannot have both degree ≤ 4 and the vertices

vc and vb cannot have both degree ≤ 5.
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Since the maximum total amount of curvature that ∆ can receive is
π

6
we

have c∗(∆) ≤ c(3, 5, 5, k0) +
π

6
<

2π

k0
<

4π

k0
.

�

Now the result follows from what has been said in Chapter 2.

4.2.2 The case |α| > 2.

Before describing the distribution process we must produce a list of the pos-

itively curved interior regions in D . In view of Lemma 3.1.2 there is no

positively curved interior m-region.

We will distinguish three cases:

(a) |α| 6= |β|;

(b) α = β;

(c) α = −β;

Let ∆ be an interior s-region of degree 5. We can assume without any loss

that the vertex of degree 2 is v6 (see Figure 4.1 (i)).

Case (a)

The unique possible label for a vertex of degree 3 is bds.

Since we are assuming d(v6) = 2 it follows that d(v1) ≥ 4 (simply by checking

the possible labels for the adjacent double edge).

If d(v5) ≥ 4 then c(∆) ≤ c(3, 3, 3, 4, 4) = 0; therefore we can assume d(v5) = 3

and l(v5) = bds. This implies that v4 has sublabel se which forces d(v4) ≥ 4

(see Figure 4.3 (i)). It follows that c(∆) ≤ c(3, 3, 3, 4, 4) = 0.
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Case (b)

The possible labels involving s for a vertex of degree 3 are:

bds , bse and bsc.

Since we are assuming d(v6) = 2 it follows that d(v1) ≥ 4.

If d(v5) ≥ 4 then c(∆) ≤ c(3, 3, 3, 4, 4) = 0; therefore we can assume d(v5) =

3.

If l(v5) = bse or l(v5) = bsc it follows that v4 has sublabel sc, in which case

d(v4) ≥ 4 and c(∆) ≤ c(3, 3, 3, 4, 4) = 0 (Figure 4.3 (ii)).

We can therefore assume l(v5) = bds. Clearly ∆ can be positively curved

only if d(v4) = d(v3) = d(v2) = 3, but d(v4) = 3 implies l(v4) = seb and then

v3 has sublabel sc and so d(v3) ≥ 4 (Figure 4.3 (iii)).

It follows that c(∆) ≤ c(3, 3, 3, 4, 4) = 0.

Case (c)

The possible labels involving s for a vertex of degree 3 are:

bds , bsc and bse.

Since we are assuming d(v6) = 2 it follows that d(v1) ≥ 4.

If d(v5) ≥ 4 then c(∆) ≤ c(3, 3, 3, 4, 4) = 0; so we can assume d(v5) = 3.

If l(v5) = bsc then d(v6) > 2, a contradiction (see Figure 4.3 (iv)).

If l(v5) = bds then v4 has sublabel se and this forces d(v4) ≥ 4 (Figure 4.3

(v)).

It follows that c(∆) ≤ c(3, 3, 3, 4, 4) = 0.

We can therefore assume l(v5) = bse. Clearly ∆ can be positively curved

only if d(v4) = d(v3) = d(v2) = 3 and this forces l(v4) = l(v3) = l(v2) = bsc.

A positively curved region would look like Figure 4.3 (vi), in which case
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Figure 4.3: interior s-regions of degree 5

applying a bridge move at the vertex v1 relative to the sublabel µ2s we

would contradict C3. It follows that c(∆) ≤ 0.

We can conclude that there is no positively curved region of degree 5.

Now let ∆ be an interior s-region of degree 4 of D .

We can distinguish three different configurations:

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

(1) (2) (3)
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Configuration (1)

Case (a)

The vertices v1 and v4 have sublabels as and se respectively.

This implies d(v1) ≥ 4 and d(v4) ≥ 4.

If d(v2) = 3 then l(v2) = bds. This forces v3 to have sublabel λs, in which

case a bridge move at v3 relative to this sublabel contradicts C3.

It follows that d(v2) ≥ 4, therefore ∆ can be positively curved only if

d(v3) = 3.

In this case v4 has sublabel λse which implies d(v4) ≥ 6 (see Figure 4.4 (i)).

It follows that c(∆) ≤ c(3, 4, 4, 6) = 0.

Case (b)

The vertices v1 and v4 have sublabels as and se respectively.

This implies d(v1) ≥ 5 and d(v4) ≥ 4.

In order to have positive curvature at least one of the vertices v2 and v3 must

have degree 3.

First suppose d(v2) = 3.

If l(v2) = bds then v3 has sublabel λs, in which case a bridge move at v3

relative to this sublabel contradicts C3 (Figure 4.4 (ii)).

If l(v2) = bsc then v3 and v1 have sublabels ds and asc respectively, there-

fore d(v3) ≥ 4 and d(v1) ≥ 6 (Figure 4.4 (iii)). It follows that c(∆) ≤

c(3, 4, 4, 6) = 0.

If l(v2) = bse then v1 has sublabel asc, which implies d(v1) ≥ 6. Either

d(v3) ≥ 4, in which case c(∆) ≤ 0, or d(v3) = 3 with l(v3) = bds. In this case

v4 has sublabel λse, therefore d(v4) ≥ 5.

It follows that ∆ can be positively curved only if d(v1) = 6, 7 and d(v4) = 5
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Figure 4.5: positively curved interior s-regions of degree 4 (Configuration

(1))

in which case it looks like (Figure 4.5 (i)) where c(∆) ≤ c(3, 3, 5, 6) =
π

15
.

Now suppose d(v3) = 3.

We have already found the positive region in the case l(v3) = bds.

If l(v3) = bse or l(v3) = bsc then v2 has sublabel sc which implies d(v2) ≥ 4.

Moreover either d(v2) ≥ 5, in which case c(∆) ≤ c(3, 4, 5, 5) < 0, or d(v1) ≥ 6

in which case c(∆) ≤ c(3, 4, 4, 6) = 0.

Case (c)

Here we will give different upper bounds for the curvature depending on the

degree of the end vertices of the triple edge.
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The reason why we do that will be clear when we will describe the distribution

process of curvature.

The vertices v1 and v4 have sublabels as and se respectively.

This implies d(v1) ≥ 5 and d(v4) ≥ 3.

First assume d(v4) = 3.

Observe that if d(v2) = 3 then d(v1) ≥ 6.

It follows that c(∆) ≤ max{c(3, 3, 3, 6), c(3, 3, 4, 5)} =
π

3
(see Figure 4.5

(ii)). Moreover if d(v1) ≥ 7 then c(∆) ≤ c(3, 3, 3, 7) =
2π

7
(see Figure 4.5

(iii)).

Now suppose d(v4) ≥ 4.

We have c(∆) ≤ c(3, 3, 4, 5) =
7π

30
(see Figure 4.5 (iv)).

Configuration (2)

There are nine subcases:
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Configuration (2.1)

The vertices v1, v3 and v5 have subalbels as, sµ1{b, s} and asµ1b respectively

(see Lemma 4.2.2 (v) and (vi)), so d(v3) ≥ 5.

Case (a)

Since |α| > 2 we have d(v1) ≥ 4 and d(v5) ≥ 6.

It follows that c(∆) ≤ c(3, 4, 5, 6) < 0.

Case (b)

Since α = β we have d(v1) ≥ 5 and d(v5) ≥ 7.

It follows that c(∆) ≤ c(3, 5, 5, 7) < 0.

Case (c)

Since α = −β we have d(v1) ≥ 5 and d(v5) ≥ 7.

It follows that c(∆) ≤ c(3, 5, 5, 7) < 0.

Configuration (2.2)

The vertices v1, v3 and v5 have subalbels as, se and µ2sµ1{b, s} respectively.

Case (a)

Since |α| > 2 and |α| 6= |β|, we have d(v1) ≥ 4, d(v5) ≥ 6 and d(v3) ≥ 4.

It follows that c(∆) ≤ c(3, 4, 4, 6) = 0.

Case (b)

Since α = β we have d(v1) ≥ 5, d(v5) ≥ 5 and d(v3) ≥ 4.

It follows that c(∆) ≤ c(3, 4, 5, 5) < 0.

Case (c)

Since α = −β we have d(v1) ≥ 5 and d(v5) ≥ 5.

It follows that we can have positive curvature only if d(v3) = d(v2) = 3. This

forces l(v3) = bse and so l(v2) = bsc.

Moreover v1 has sublabel asc, therefore d(v1) ≥ 6.
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A positively curved region looks like Figure 4.7 (i) where c(∆) ≤ c(3, 3, 5, 6) =

π

15
.

Notice that if v5 has sublabel µ2sµ1s then d(v5) ≥ 6 and so c(∆) ≤ 0.

Configuration (2.3)

The vertices v1, v3 and v5 have subalbels as, sb and asµ1b respectively.

Case (a)

Since |α| > 2 and |α| 6= |β|, we have d(v1) ≥ 4 and d(v5) ≥ 6.

Moreover at least one of the vertices v2 and v3 must have degree ≥ 4. It

follows that c(∆) ≤ c(3, 4, 4, 6) = 0.

Case (b)

Since α = β we have d(v1) ≥ 5 and d(v5) ≥ 7.

It follows that we can have positive curvature only if d(v3) = d(v2) = 3. This

is possible only if l(v3) = bds and l(v2) = bse, in which case v1 has sublabel

asc, therefore d(v1) ≥ 6 (see Figure 4.6 (i)).

It follows that c(∆) ≤ c(3, 3, 6, 7) < 0.

Case (c)

Since α = −β we have d(v1) ≥ 5 and d(v5) ≥ 7.

It follows that we can have positive curvature only if d(v3) = d(v2) = 3. This

forces l(v3) = bds and so v2 has sublabel se and cannot have degree 3. It

follows that c(∆) ≤ c(3, 4, 5, 7) < 0.

Configurations (2.4), (2.5) and (2.6)

The vertex v1 has subalbel µ2s, therefore d(v1) ≥ 5.

Since |α| 6= 1, the vertex v in Figure 4.6 (ii) has degree > 2.

Moreover we have d(v2) > 2; it follows that applying a bridge move at v1

relative to µ2s we contradict C3.
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Figure 4.6: interior s-regions of degree 4 (Configuration (2))

Configuration (2.7)

In all cases (a), (b) and (c) we have d(v3) ≥ 5.

Case (a)

Since |α| > 2 we have d(v1) ≥ 4 and d(v5) ≥ 5. Moreover d(v3) ≥ 5.

It follows that c(∆) ≤ c(3, 4, 5, 5) < 0.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5 and d(v5) ≥ 5. Moreover d(v3) ≥ 5.

It follows that c(∆) ≤ c(3, 5, 5, 5) < 0.

Configuration (2.8)

The vertices v1, v3 and v5 have subalbels as, se and µ2sb respectively.

Case (a)

Since |α| > 2 we have d(v1) ≥ 4, d(v3) ≥ 4 and d(v5) ≥ 5.

We can therefore have positive curvature only if d(v2) = 3, in which case

l(v2) = bds and v3 has sublabel λse. This implies d(v3) ≥ 6, hence c(∆) ≤

c(3, 4, 5, 6) < 0.

Case (b)

Since α = β we have d(v1) ≥ 5, d(v3) ≥ 4 and d(v5) ≥ 5.

It follows that c(∆) ≤ c(3, 4, 5, 5) < 0.
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Case (c)

Since α = −β we have d(v1) ≥ 5, d(v3) ≥ 3 and d(v5) ≥ 5.

If d(v3) > 3 then c(∆) ≤ c(3, 4, 5, 5) < 0.

If d(v3) = 3 then l(v3) = bse and we can have positive curvature only if

d(v2) = 3 and l(v2) = bsc, in which case v1 has sublabel asc hence d(v1) ≥ 6.

A positively curved region looks like Figure 4.7 (ii) where c(∆) ≤ c(3, 3, 5, 6) =

π

15
.

Configuration (2.9)

The vertices v1, v3 and v5 have subalbels as, sb and asb respectively.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 4, d(v3) ≥ 3 and d(v5) ≥ 5.

If d(v2), d(v3) > 3 then c(∆) < 0 therefore we can assume at least one of the

vertices v2 and v3 has degree 3.

If d(v2) = 3 then v3 has sublabel λsb which implies d(v3) ≥ 5 and so

c(∆) ≤ c(3, 4, 5, 5) < 0.

If d(v3) = 3 then v2 has sublabel se and d(v2) ≥ 4.

Moreover at least one of the vertices v1 and v2 has degree > 4.

It follows that c(∆) ≤ c(3, 4, 5, 5) < 0.

Case (b)

Since α = β we have d(v1) ≥ 5 and d(v5) ≥ 5.

It follows that ∆ can be positively curved only if d(v2) = d(v3) = 3, which

forces l(v3) = bds and l(v2) = bse.

This also implies that v1 has sublabel asc and hence d(v1) ≥ 6.

A positively curved region looks like Figure 4.7 (iii) where c(∆) ≤ c(3, 3, 5, 6) =

π

15
.
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Figure 4.7: positively curved interior s-regions of degree 4 (Configuration

(2))

Case (c)

Since α = −β we have d(v1) ≥ 5 and d(v5) ≥ 5.

It follows that ∆ can be positively curved only if d(v2) = d(v3) = 3, but if

d(v3) = 3 then l(v3) = bds and v2 has sublabel se, which implies d(v2) ≥ 4.

It follows that c(∆) ≤ c(3, 4, 5, 5) < 0.

Configuration (3)

Due to symmetry we can distinguish the following six configurations:
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Configuration (3.1)

We have d(v2), d(v5) ≥ 5.

Cases (a), (b) and (c)

Since α 6= −1 we have d(v1), d(v4) ≥ 4.

It follows that c(∆) ≤ c(4, 4, 5, 5) < 0.

Configuration (3.2)

We have d(v4), d(v5) ≥ 5.

Moreover it is easy to see that v1 and v2 cannot have degree 3 at the same

time. It follows that c(∆) ≤ c(3, 4, 5, 5) < 0.

Configuration (3.3)

We have d(v5) ≥ 5.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 4 and d(v4) ≥ 4.

It follows that ∆ can be positively curved only if d(v2) = 3, d(v1) = d(v4) = 4

and d(v5) = 5.

By checking all the possibilities one finds out that d(v4) = 4 and d(v5) = 5

can occur only if l(v4) = ascb and l(v5) = dsµ1b0. This implies α−β−1 = 0.

On the other hand, since l(v2) = bds, the vertex v1 has sublabel ase, therefore

v1 can have degree 4 only if α − β + 1 = 0.

It follows that c(∆) ≤ c(3, 4, 5, 5) < 0.

Cases (b) and (c)

In these cases we have d(v1), d(v4) ≥ 5. It follows that c(∆) ≤ c(3, 5, 5, 5) < 0

Configurations (3.4) and (3.5)

Consider Figure 4.8. Since |α| 6= 1 the vertex v has degree > 2.

Therefore applying a bridge move at v1 relative to µ2s we contradict C3.
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Figure 4.9: positively curved interior s-regions of degree 4 (Configuration

(3))

Configuration (3.6)

Case (a)

Since |α| > 2 and |α| 6= |β| we have d(v1) ≥ 4 and d(v4) ≥ 4.

It follows that, in order to have positive curvature, at least one of the vertices

v2 and v5 must have degree 3.

If they both have degree 3 then v1 and v4 both have sublabel ase.

The unique possible label in degree 4 is therefore aseb which implies α−β −

1 = 0.

A positively curved region looks like Figure 4.9 (i) where c(∆) ≤ c(3, 3, 4, 4) =

π

3
.
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Without this constraint on α and β we have d(v1), d(v4) ≥ 5 and a positively

curved region looks like Figure 4.9 (ii), where c(∆) ≤ c(3, 3, 5, 5) =
2π

15
.

If only one of v2 and v5 has degree 3 the other one must have degree≥ 5;

in order to have positive curvature we must have d(v1) = d(v4) = 4. It

follows that a positively curved region looks like Figure 4.9 (iii), where

c(∆) ≤ c(3, 4, 4, 5) =
π

15
and α − β − 1 = 0.

Cases (b) and (c)

In both cases d(v1), d(v4) ≥ 5, moreover the only possible label in degree 3

with sublabel sb is bds.

Since c(3, 4, 5, 5) < 0, we can have positive curvature only if d(v2) = d(v5) = 2

in which case l(v2) = l(v5) = bds. This forces v1 and v4 to have both sublabel

ase, hence d(v1), d(v4) ≥ 6 and c(∆) ≤ c(3, 3, 6, 6) = 0.

Now let ∆ be an interior s-region of degree 3 of D .

We can distinguish three different configurations:
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There are eleven subcases:
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Configuration (1.1)

Cases (a), (b), (c)

The vertices v1, v3 and v5 all have sublabel asµ1b, therefore d(vi) ≥ 6 for

i = 1, 3, 5. It follows that c(∆) ≤ c(6, 6, 6) = 0.

Configuration (1.2)

The vertices v1, v3 and v5 have sublabels ase, µ2sµ1{s, b} and asµ1b respec-

tively.

Case (a)

Since |α| > 2 and |α| 6= |β| we have d(v1) ≥ 4, d(v3) ≥ 6 and d(v5) ≥ 6.

If d(v1) = 4 then l(v1) = aseb, therefore α + β + 1 = 0.

Moreover we have d(v3), d(v5) ≥ 7 and a positively curved region looks like

Figure 4.10 (i) where c(∆) ≤ c(4, 7, 7) =
π

14
and α + β + 1 = 0.

If d(v1) ≥ 5 then observe that v3 and v5 cannot have both degree 6. A posi-

tively curved region looks like Figure 4.10 (ii) where c(∆) ≤ c(5, 6, 7) =
2π

105
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 6, d(v3) ≥ 5 and d(v5) ≥ 7.

It follows that c(∆) ≤ c(5, 6, 7) =
2π

105
and a positively curved region looks
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Figure 4.10: positively curved interior s-regions of degree 3 (Configurations

(1.2) and (1.3))

like Figure 4.10 (iii).

Configuration (1.3)

The vertices v1, v3 and v5 have sublabels asb, asµ1b and asµ1b respectively.

Case (a)

Since |α| > 2 it follows that d(v1) ≥ 5, d(v3) ≥ 6 and d(v5) ≥ 6.

If α ± 1 ± β 6= 0 then d(v3), d(v5) ≥ 7 and so c(∆) ≤ c(5, 7, 7) < 0.

If α±1±β = 0 then one of the vertices v3 and v5 has degree ≥ 7 and a posi-

tively curved region looks like Figure 4.10 (iv) where c(∆) ≤ c(5, 6, 7) =
2π

105
.

Cases (b) and (c)

Since |α| = |β| it follows that d(v1) ≥ 5, d(v3) ≥ 7 and d(v5) ≥ 7.

It follows that c(∆) ≤ c(5, 7, 7) < 0.

Configuration (1.4)

The vertices v1, v3 and v5 have sublabels ase, µ2se and µ2sµ1 respectively.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 4, d(v3) ≥ 6 and d(v5) ≥ 6.
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Figure 4.11: positively curved interior s-regions of degree 3 (Configuration

(1.4))

If d(v1) = 4 then l(v1) = aseb and α + β + 1 = 0.

In this case d(v5) ≥ 7 and a positively curved region looks like Figure 4.11

(i) where c(∆) ≤ c(4, 6, 7) =
5π

42
.

If d(v1) = 5 then either d(v3) ≥ 7 or d(v5) ≥ 7 and a positively curved region

looks like Figure 4.11 (ii) where c(∆) ≤ c(5, 6, 7) =
2π

105
.

If d(v1) ≥ 6 then c(∆) ≤ c(6, 6, 6) = 0.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 6, d(v3) ≥ 5 and d(v5) ≥ 5.

A positively curved region looks therefore like Figure 4.11 (iii) where c(∆) ≤

c(5, 5, 6) =
2π

15
.

Configuration (1.5)

The vertices v1, v3 and v5 have sublabels asb, ase and µ2sµ1{s, b} respectively.

Case (a)

Since |α| > 2 and |α| 6= |β| we have d(v1) ≥ 5, d(v3) ≥ 4 and d(v5) ≥ 6.

If d(v3) = 4 then l(v3) = aseb and so α + β − 1 = 0.
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Figure 4.12: positively curved interior s-regions of degree 3 (Configuration

(1.5))

In this case d(v5) ≥ 7 and a positively curved region looks like Figure 4.12

(i) where c(∆) ≤ c(4, 5, 7) =
13π

70
.

If d(v3) ≥ 5 then a positively curved region looks like Figure 4.12 (ii) where

c(∆) ≤ c(5, 5, 6) =
2π

15
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5, d(v3) ≥ 6 and d(v5) ≥ 5. A positively

curved region looks like Figure 4.12 (iii) where c(∆) ≤ c(5, 5, 6) =
2π

15
.

Configuration (1.6)

The vertices v1, v3 and v5 have sublabels asb, asb and asµ1b respectively.

Case (a)

Since |α| > 2 we have d(v1) ≥ 5, d(v3) ≥ 5 and d(v5) ≥ 6. A positively

curved region looks like Figure 4.13 (i) where c(∆) ≤ c(5, 5, 6) =
2π

15
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5, d(v3) ≥ 5 and d(v5) ≥ 7. A positively

curved region looks like Figure 4.13 (ii) where c(∆) ≤ c(5, 5, 7) =
3π

35
.
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Figure 4.13: positively curved interior s-regions of degree 3 (Configuration

(1.6))

Configuration (1.7)

The vertices v1, v3 and v5 have sublabels ase, µ2sb and asµ1b respectively.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 4, d(v3) ≥ 5 and d(v5) ≥ 6.

If d(v1) = 4 then l(v1) = aseb and so α + β + 1 = 0. In this case a positively

curved region looks like Figure 4.14 (i) where c(∆) ≤ c(4, 5, 6) =
7π

30
.

If d(v1) ≥ 5 then a positively curved region looks like Figure 4.14 (ii) where

c(∆) ≤ c(5, 5, 6) =
2π

15
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 6, d(v3) ≥ 5 and d(v5) ≥ 7. A positively

curved region looks like Figure 4.14 (iii) where c(∆) ≤ c(5, 6, 7) =
2π

105
.

Configuration (1.8)

The vertices v1, v3 and v5 all have sublabel µ2se.

Case (a)

Since |β| 6= |α| > 2 we have d(vi) ≥ 6 for i = 1, 3, 5.

It follows that c(∆) ≤ c(6, 6, 6) < 0.
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(1.8) and (1.9))

Cases (b) and (c)

Since |α| = |β| we have d(vi) ≥ 5 for i = 1, 3, 5. A positively curved region

looks like Figure 4.15 (i) where c(∆) ≤ c(5, 5, 5) =
π

5
.

Configuration (1.9)

The vertices v1, v3 and v5 have sublabels µ2sb, ase and µ2se respectively.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 5, d(v3) ≥ 4 and d(v5) ≥ 6.

If d(v3) = 4 then l(v3) = aseb and so α + β − 1 = 0. In this case positively

curved region looks like Figure 4.15 (ii) where c(∆) ≤ c(4, 5, 6) =
7π

30
.
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If d(v3) ≥ 5 then a positively curved region looks like Figure 4.15 (iii) where

c(∆) ≤ c(5, 5, 6) =
2π

15
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5, d(v3) ≥ 6 and d(v5) ≥ 5. A positively

curved region looks like Figure 4.15 (iv) where c(∆) ≤ c(5, 5, 6) =
2π

15
.

Configuration (1.10)

The vertices v1, v3 and v5 have sublabels µ2sb, asb and ase respectively.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 5, d(v3) ≥ 5 and d(v5) ≥ 4.

If d(v5) = 4 then l(v5) = aseb and so α + β − 1 = 0. In this case positively

curved region looks like Figure 4.16 (i) where c(∆) ≤ c(4, 5, 5) =
3π

10
.

If d(v5) ≥ 5 then a positively curved region looks like Figure 4.16 (ii) where

c(∆) ≤ c(5, 5, 5) =
π

5
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5, d(v3) ≥ 5 and d(v5) ≥ 6. A positively

curved region looks like Figure 4.16 (iii) where c(∆) ≤ c(5, 5, 6) =
2π

15
.
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Figure 4.16: positively curved interior s-regions of degree 3 (Configurations

(1.10) and (1.11))
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Configuration (1.11)

The vertices v1, v3 and v5 all have sublabel asb.

Cases (a), (b) and (c)

In all these cases we have d(vi) ≥ 5 for i = 1, 3, 5 and a positively curved

region looks like Figure 4.16 (iv) where c(∆) ≤ c(5, 5, 5) =
π

5
.

Configuration (2).

We can distinguish the following three subcases:

2µ
2µ 2µ

e e e

µ1 µ1 µ1
2µ

µ1 2µ

a

ea a µ1 a
s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s λ

(2.1) (2.2) (2.3)

a

b

Notice that in this configuration there is a triple edge adjacent to ∆.

We will give upper bounds for the curvature in cases (b) and (c); this is what

we need as will be clear when we will describe the distribution process.

Configuration (2.1)

The vertices v1, v3 and v4 have sublabels ase, µ2s and se respectively.

Figure 4.17 shows that this configuration cannot occur: since |α| 6= 1, the

2µ

µ1

a

2µ

µ1

e

a

e

s

s

s

s

s

s

v

Figure 4.17: Configuration (2.1) cannot occur.
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Figure 4.18: positively curved interior s-regions of degree 3 (Configuration

(2.2)).

vertex v has degree > 2; applying a bridge move at v3 relative to µ2s we

contradict C3.

Configuration (2.2)

The vertices v1, v3 and v4 have sublabels asµ1b, as and se respectively.

Case (a)

In this case we have d(v1) ≥ 6, d(v3) ≥ 4 and d(v4) ≥ 4.

Moreover at least one of the vertices v3 and v4 has degree ≥ 5. A positively

curved region looks like Figure 4.18 (i) where c(∆) ≤ c(4, 5, 6) =
7π

30
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 7, d(v3) ≥ 5 and d(v4) ≥ 3.

If d(v4) = 3 then l(v4) = bse and α = −β; moreover v3 has sublabel asc

which implies d(vc) ≥ 6. It follows that c(∆) ≤ c(3, 6, 7) =
2π

7
(see Figure

4.18 (ii)).

If d(v4) ≥ 4 then c(∆) ≤ c(4, 5, 7) =
13π

70
.

A region of positive curvature looks like Figure 4.18 (iii).
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Figure 4.19: positively curved interior s-regions of degree 3 (Configuration

(2.3)).

Configuration (2.3)

The vertices v1, v3 and v4 have sublabels asb, as and se respectively.

Case (a)

In this case we have d(v1) ≥ 5, d(v3) ≥ 4 and d(v4) ≥ 4.

Moreover the vertices v3 and v4 cannot have both degree ≤ 4. A positively

curved region looks like Figure 4.19 (i) where c(∆) ≤ c(4, 5, 5) =
3π

10
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5, d(v3) ≥ 5 and d(v4) ≥ 3.

If d(v4) = 3 then l(v4) = bse and α = −β; moreover v3 has sublabel asc

which implies d(v3) ≥ 6. If d(v1) = 5 or 6 then c(∆) ≤ c(3, 5, 6) =
2π

5

and a positively curved region looks like Figure 4.19 (ii). If d(v1) ≥ 7 then

c(∆) ≤ c(3, 6, 7) =
2π

7
and a region of positive curvature looks like Figure

4.19 (iii).

Finally if d(v4) ≥ 4 then c(∆) ≤ c(4, 5, 5) =
3π

10
.

A region of positive curvature looks like Figure 4.19 (iv).
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Configuration (3)

We can again distinguish three different subcases as follows:

a

2µ

a

2µ

a

2µ

e e

µ1 µ1 µ1

a

2µ

µ1

2µ

µ1

e

e

s

s

s
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s

s

s

s

s

s

s

s

s

s

s

s

(3.1) (3.2) (3.3)

a

λ

b

Configuration (3.1)

The vertices v1, v2 and v4 have sublabels as, sµ1{b, s} and ase respectively.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 4, d(v2) ≥ 5 and d(v4) ≥ 4.

If d(v2) = 5 then l(v2) ∈ {sµ1b0d, sµ1sbd} and so v1 has sublabel as{e, c}.

It follows that the vertices v1 and v4 cannot have both degree ≤ 4. A posi-

tively curved region looks like Figure 4.20 (i) where c(∆) ≤ c(4, 5, 5) =
3π

10
.

If d(v2) ≥ 6 then a positively curved region looks like Figure 4.20 (ii) where

c(∆) ≤ c(4, 4, 6) =
π

3
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5, d(v2) ≥ 5 and d(v4) ≥ 6. It follows that

c(∆) ≤ c(5, 5, 6) =
2π

15
; a positively curved region looks like Figure 4.20 (iii).

Configuration (3.2)

The vertices v1, v2 and v4 have sublabels as, se and µ2se respectively.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 4, d(v2) ≥ 4 and d(v4) ≥ 6.

Moreover the vertices v1 and v2 cannot have both degree ≤ 4. A positively

curved region looks like Figure 4.21 (i) where c(∆) ≤ c(4, 5, 6) =
7π

30
.
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Figure 4.20: positively curved interior s-regions of degree 3 (Configuration

(3.1)).
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Figure 4.21: positively curved interior s-regions of degree 3 (Configuration

(3.2)).

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5, d(v2) ≥ 3 and d(v4) ≥ 5.

If d(v2) = 3 then l(v2) = bse and α = −β; it follows that v1 has sublabel asc,

hence d(v1) ≥ 6. A positively curved region looks like Figure 4.21 (ii) where

c(∆) ≤ c(3, 5, 6) =
2π

5
.

If d(v2) > 3 then a positively curved region looks like Figure 4.21 (iii) where

c(∆) ≤ c(4, 5, 5) =
3π

10
.
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Figure 4.22: positively curved interior s-regions of degree 3 (Configuration

(3.3)).

Configuration (3.3)

The vertices v1, v2 and v4 have sublabels as, sb and ase respectively.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 4, d(v2) ≥ 3 and d(v4) ≥ 4.

If d(v2) = 3 then l(v3) = bds and consequently the vertices v1 and v4 cannot

have both degree ≤ 4. A positively curved region looks like Figure 4.22 (i)

where c(∆) ≤ c(3, 4, 5) =
17π

30
.

If d(v2) > 3 then d(v2) ≥ 5 and a positively curved region looks like Figure

4.22 (ii) where c(∆) ≤ c(4, 4, 5) =
2π

5
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 5, d(v2) ≥ 3 and d(v4) ≥ 6.

If d(v2) = 3 then l(v2) = bds and so d(v1) ≥ 6.

A positively curved region looks like Figure 4.22 (iii) where c(∆) ≤ c(3, 6, 6) =

π

3
.

If d(v2) > 3 then d(v2) ≥ 5 and a region of positive curvature looks like

Figure 4.22 (iv) where c(∆) ≤ c(5, 5, 6) =
2π

15
.
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Figure 4.23: positively curved interior s-regions of degree 2.

Finally suppose ∆ is an interior s-region of degree 2 of D .

There is one possible configuration, where v1 and v4 both have sublabel ase.

Case (a)

Since |β| 6= |α| > 2 we have d(v1) ≥ 4 and d(v4) ≥ 4.

If one (or both) of the vertices v1 and v4 has degree 4 then it has label aseb

which implies α + β + 1 = 0.

A positively curved region looks like Figure 4.23 (i) where c(∆) ≤ c(4, 4) = π.

If α + β + 1 6= 0 then d(v1), d(v4) ≥ 5 and a positively curved region looks

like Figure 4.23 (ii) where c(∆) ≤ c(5, 5) =
4π

5
.

Cases (b) and (c)

Since |α| = |β| we have d(v1) ≥ 6 and d(v4) ≥ 6. A region of positive

curvature looks like Figure 4.23 (iii) where c(∆) ≤ c(6, 6) =
2π

3
.

This ends the study of positively curved interior s-regions of D .

We can now describe the distribution process for the cases (a), (b) and (c).

Case (a) splits into five subcases:

(a1) α ± β ± 1 6= 0;

(a2) α + β + 1 = 0;
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(a3) α − β + 1 = 0;

(a4) α + β − 1 = 0;

(a5) α − β − 1 = 0.

In each diagram we agree to draw the least possible degree for each ver-

tex, unless specified otherwise. For instance if we are transferring a certain

amount of curvature through the double edge aλb when d(v3) = 3 (and a

different amount of curvature if d(v3) ≥ 4), then d(v3) = 3 will be printed

somewhere in the figure.

The regions in the compensation scheme are obtained from those classified

earlier (which will be indicated) using elementary consequences of the con-

straints of each case.

Distribution for case (a1), (α ± β ± 1 6= 0).

According to the classification we can obtain the positively curved interior

regions from Figures 4.9 (ii), 4.10 (ii), 4.11 (ii), 4.12 (ii), 4.13 (i), 4.14 (ii),

4.15 (iii), 4.16 (ii), 4.16 (iv), 4.18 (i), 4.19 (i), 4.20 (i), 4.20 (ii), 4.21 (i),

4.22 (i), 4.22 (ii), 4.23 (ii).

The upper bounds for the curvature are sometimes decreased using the con-

straint α ± β ± 1 6= 0 and the positive curvature is distributed according to

the scheme which follows.
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Lemma 4.2.9 If ∆ is interior then c∗(∆) ≤ 0.

Proof. We distributed the positive curvature in such a way that every

positively curved interior region has non-positive pseudo-curvature.

Let ∆ be an interior m-region receiving positive curvature according to the

scheme above. Distinguish two cases:

1. the region ∆ receives positive curvature from exactly one s-region;
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2. the region ∆ receives positive curvature from exactly two s-regions.

Notice that since the positive curvature is distributed only through particular

edges it follows that ∆ cannot receive it from more than two s-regions.

Case 1.)

There are three subcases; the region ∆ receives positive curvature through:

1.1) the double edge labelled by eµ1µ2;

1.2) the double edge labelled by aλb;

1.3) the triple edge labelled by eµ1µ2a.

Case 1.1)

We see from the compensation scheme that d(ve) ≥ 5 and d(vµ2
) ≥ 5.

The maximum amount of positive curvature the region ∆ can receive is
π

15
.

Since d(vb), d(vd) ≥ 3 and d(va) ≥ 4 it follows that c∗(∆) ≤ c(3, 3, 4, 5, 5) +

π

15
< 0.

Case 1.2)

We have d(va) ≥ 5 and d(vb), d(vd) ≥ 3.

The maximum amount of positive curvature the region ∆ can receive is
π

15
.

If d(ve) = 2 then l(ve) = ec; this implies that vd and vµ1
have sublabels dd

and bµ1 respectively, which imply d(vd) ≥ 5 and d(vµ1
) ≥ 4. It is not difficult

to see that if d(vµ1
) = 4 then α = ±2β, hence d(vd) ≥ 6.

It follows that c∗(∆) ≤ max{c(3, 5, 5, 5), c(3, 4, 5, 6)}+
π

15
< 0.

We can therefore assume that d(ve) > 2, which implies d(ve) ≥ 4.

If d(vc) = 2 then l(vc) = ec; this implies that vd and vb have sublabels dd

and bµ1 respectively, which imply d(vd) ≥ 5 and d(vb) ≥ 4.

It follows that c∗(∆) ≤ c(4, 4, 5, 5) +
π

15
< 0.
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We can therefore assume that d(vc) > 2, which implies d(vc) ≥ 4.

In this case we have c∗(∆) ≤ c(3, 3, 4, 4, 5) +
π

15
< 0.

Case 1.3)

We have d(va) ≥ 5, d(vb), d(vd) ≥ 3 and d(ve) ≥ 4.

First assume d(ve) = 4. This implies l(ve) = esdb or l(ve) = esb{e, c}, hence

2α + β = 0 or α + 2β = 0, respectively.

According to the compensation scheme above the maximum amount of cur-

vature the region ∆ can receive is
3π

10
.

If d(vc) = 2 then l(vc) = ce, which forces vd and vb to have sublabels dd and

bµ1 respectively. This implies d(vb) ≥ 4 and d(vd) ≥ 5.

Now if d(vb) ≥ 5 then c∗(∆) ≤ c(4, 5, 5, 5) +
3π

10
= 0.

So assume d(vb) = 4, which implies l(vb) = bµ1cc or l(vb) = bµ1ee (be-

cause we have 2α + β = 0 or α + 2β = 0); in both cases d(vλ) ≥ 3 and so

c∗(∆) ≤ c(3, 4, 4, 5, 5) +
3π

10
= 0.

If d(vc) > 2 then d(vc) ≥ 4. If d(vc) ≥ 5 then c∗(∆) ≤ c(3, 3, 4, 5, 5)+
3π

10
< 0.

If d(vc) = 4 then vd and vb cannot both have degree≤ 3; it follows that

c∗(∆) ≤ c(3, 4, 4, 4, 5) +
3π

10
< 0.

Now assume d(ve) ≥ 5. The maximum amount of positive curvature the

region ∆ can receive is
2π

5
and we have d(va) ≥ 5 and d(vb), d(vd) ≥ 3.

First assume d(vc) = 2. This implies l(vc) = ce, hence vd and vb have subla-

bels dd and bµ1 respectively; therefore d(vb) ≥ 4 and d(vd) ≥ 5.

If d(vb) ≥ 5 then c∗(∆) ≤ c(5, 5, 5, 5) +
2π

5
= 0.

If d(vb) = 4 then l(vb) ∈ {bµ1ee, bµ1cc, bµ1ee, bµ1cc}. If l(vb) 6= bµ1ee then

d(vλ) ≥ 3 hence c∗(∆) ≤ c(3, 4, 5, 5, 5) +
2π

5
< 0; if l(vb) = bµ1ee and

d(vλ) = 2 then α = 2β and va has sublabel saµ2 therefore d(vd) ≥ 5 and
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d(va) ≥ 6. It follows that c∗(∆) ≤ c(4, 5, 6, 6) +
2π

5
< 0.

Now assume d(vc) > 2, which implies d(vc) ≥ 4.

If d(vc) ≥ 5 then c∗(∆) ≤ c(3, 3, 5, 5, 5) +
2π

5
< 0.

If d(vc) = 4 then vd and vb cannot both have degree< 4; it follows that

c∗(∆) ≤ c(3, 4, 4, 5, 5) +
2π

5
< 0.

Case 2.

There are two subcases; the region ∆ receives positive curvature through:

2.1) two double edges;

2.2) one double edge and one triple edge.

Case 2.1)

The maximum amount of curvature that ∆ can receive is
π

15
+

π

15
=

2π

15
.

We have d(va), d(ve), d(vµ2
) ≥ 5 and d(vb), d(vd) ≥ 3.

It follows that c∗(∆) ≤ c(3, 3, 5, 5, 5) +
2π

15
< 0.

Case 2.2)

The maximum amount of curvature that ∆ can receive is
2π

5
+

π

15
=

7π

15
.

We have d(vb), d(vd) ≥ 3 and d(ve) ≥ 4.

Since va has sublabel sas it follows that d(va) ≥ 7.

The same argument of case 1.3), with the unique difference on the degree of

va, shows that c∗(∆) ≤ 0.

�

Lemma 4.2.10 If ∆ is a boundary region then c∗(∆) <
4π

k0

.

Proof. In order to prove the lemma we need some extra distribution of

curvature which involves boundary regions only. This will not affect the
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interior regions and so the proof of the previous lemma.

As seen before (see Lemma 4.1.6), we can assume that the distinguished

vertex coincides with a unique vertex of each boundary s-region and with no

more than three vertices of each boundary m-region.

Distinguish the following cases:

1. ∆ is an s-region;

2. ∆ is an m-region.

Case 1.

We can assume without any loss that the distinguished vertex coincides with

v4. Since ∆ is an s-region it does not receive positive curvature from any

interior region.

Now if d(∆) ≥ 4 then c∗(∆) = c(∆) ≤ c(3, 3, 3, k0) =
2π

k0
<

4π

k0
, so we can

assume d(∆) ≤ 3.

Case 1.1), d(∆) = 3

There are seven subcases:

2µ

µ1

v0

a

2µ

v0

e

µ1

a

v0

2µ

µ1

a

e

v0

s

s

s

s

s

s

(4)

s

s

s

s

s

s

(1)

s

s

s

s

s

s

(3)

s

s

s

s

s

s

(2)

v0 v0

µ1

2µ

a

2µ

µ1
a

v0

µ1

2µ

a

e e

e

s

s

s

s

s

s

s

s

s

s

s

s

(6)(5)

s

s

s

s

s

s

(7)
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If there is no interior vertex of degree 3 then c∗(∆) = c(∆) ≤ c(4, 4, k0) =

2π

k0

<
4π

k0

. Since the unique possible label in degree 3 is bds it follows that

in cases (1), (2), (4), (5) and (6) we have two interior vertices of degree≥ 4

and so c∗(∆) <
4π

k0
.

In case (3) we can assume d(v2) = 3 and l(v2) = bds, moreover we have

d(v1) ≥ 5. We choose to transfer the positive curvature
π

5
through the triple

edge.

It follows that c∗(∆) = c(∆) ≤ c(3, 5, k0) −
π

5
<

2π

k0
<

4π

k0
.

In case (7) we can assume d(v5) = 3 and l(v5) = bds, moreover we have

d(v1) ≥ 5. We choose to transfer the positive curvature
π

5
through the triple

edge.

It follows that c∗(∆) = c(∆) ≤ c(3, 5, k0) −
π

5
<

2π

k0
<

4π

k0
.

Case 1.2), d(∆) = 2

The vertex v1 has sublabel ase which implies d(v1) ≥ 5.

We choose to transfer the curvature
π

5
through each triple edge; it follows

that c∗(∆) ≤ c(5, k0) −
2π

5
=

2π

k0
<

4π

k0
.

Case 2.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

Suppose m = 3 (hence v0 = vb = vd = vµ1
). In this case va is not the

distinguished vertex and d(va) ≥ 4. Since d(∆) ≥ 4 and ∆ does not receive

any positive curvature from interior or from boundary regions (as described

above), it follows that c∗(∆) = c(∆) ≤ c(4, k0, k0, k0) = −2π +
π

2
+

6π

k0
≤

−
π

2
<

4π

k0
.

Now suppose m = 2. We have c∗(∆) ≤ c(∆) +
2π

5
+

π

15
= c(∆) +

7π

15
≤
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c(3, 3, k0, k0) +
7π

15
= −

2π

3
+

4π

k0
+

7π

15
= −

π

5
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

The maximum amount of curvature that ∆ can receive is
2π

5
+

π

15
=

7π

15
.

Suppose d(vc) = 2 and vc is not distinguished. Then l(vc) = ce, moreover

vb and vd have sublabels bµ1 and dd respectively. For interior vertices we

have d(va) ≥ 4, d(vb) ≥ 4, d(vd) ≥ 5, moreover ve and vµ1
cannot both

have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can be the

distinguished one, it follows that c∗(∆) ≤ c(4, 4, 4, k0)+
7π

15
=

2π

k0
−

π

30
<

4π

k0
.

Suppose d(vc) > 2 and vc is not distinguished (and so d(vc) ≥ 4). For interior

vertices we have d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3, moreover ve and vµ1
cannot

both have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can be the

distinguished one, it follows that c∗(∆) ≤ c(3, 3, 4, 4, k0)+
7π

15
=

2π

k0
−

π

5
<

4π

k0
.

So we can assume v0 = vc, in which case d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3,

moreover ve and vµ1
cannot both have degree< 4. It follows that c∗(∆) ≤

c(3, 3, 4, 4, k0) +
7π

15
=

2π

k0

−
π

5
<

4π

k0

.

�

Distribution for case (a2), (α + β + 1 = 0).

According to the classification we can obtain the positively curved interior

regions from Figures 4.9 (ii), 4.10 (i), 4.10 (ii), 4.10 (iv), 4.11 (i), 4.11 (ii),

4.12 (ii), 4.13 (i), 4.14 (i), 4.14 (ii), 4.15 (iii), 4.16 (ii), 4.16 (iv), 4.18 (i),

4.19 (i), 4.20 (i), 4.20 (ii), 4.21 (i), 4.22 (i), 4.22 (ii), 4.23 (i), 4.23 (ii).

The upper bounds for the curvature are sometimes decreased using the con-

straint α + β + 1 = 0 and the positive curvature is distributed according to

the scheme which follows.
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Lemma 4.2.11 If ∆ is interior then c∗(∆) ≤ 0.

Proof. We distributed the positive curvature in such a way that every pos-

itively curved interior region has non-positive pseudo-curvature.

Of course we only need to consider those m-regions which receive some pos-

itive curvature according to the scheme above. Distinguish two cases:

1. the region ∆ receives positive curvature from exactly one s-region;
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2. the region ∆ receives positive curvature from exactly two s-regions.

Notice that since the positive curvature is distributed only through particular

edges it follows that ∆ cannot receive it from more than two s-regions.

Case 1.

There are three subcases; the region ∆ receives positive curvature through

1.1) the double edge labelled by eµ1µ2;

1.2) the double edge labelled by aλb;

1.3) the triple edge labelled by eµ1µ2a.

Case 1.1)

We have d(ve) ≥ 4 and d(vµ2
) ≥ 5. Moreover d(vb), d(vd) ≥ 3 and d(va) ≥ 4.

The maximum amount of positive curvature the region ∆ can receive is
π

6
.

It follows that c∗(∆) ≤ c(3, 3, 4, 4, 5) +
π

6
< 0.

Case 1.2)

The maximum amount of positive curvature the region ∆ can receive is
π

15
.

Observe that, according to the compensation scheme above, we have d(vb) ≥

3, d(vd) ≥ 3 and d(va) ≥ 5. Moreover the vertices ve and vµ1
cannot both

have degree< 4.

If d(vc) = 2 then l(vc) = ce, this forces vb and vd to have sublabels sbµ1 and

dd respectively, which imply d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(4, 5, 5, 6) +
π

15
< 0.

If d(vc) > 2 then the constraint α + β + 1 = 0 implies d(vc) ≥ 4.

It follows that c∗(∆) ≤ c(3, 3, 4, 4, 5) +
π

15
< 0.

Case 1.3)

First assume d(va) = d(ve) = 4. This implies l(va) = l(ve) = abes, therefore
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vλ has sublabel cλ and so d(vλ) ≥ 4. Moreover we have d(vb), d(vd) ≥ 3.

The maximum amount of positive curvature the region ∆ can receive is
π

2
.

If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels bµ1

and ddλ respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6. It follows that

c∗(∆) ≤ c(4, 4, 4, 5, 6) +
π

2
< 0.

If d(vc) > 2 then the constraint α + β + 1 = 0 implies d(vc) ≥ 4, hence

c∗(∆) ≤ c(3, 3, 4, 4, 4, 4) +
π

2
< 0.

Now assume d(ve) = 4 and d(va) ≥ 5.

The maximum amount of positive curvature the region ∆ can receive is
9π

20
.

If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels bµ1 and

ddλ respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6.

Let ∆′ be the m-region adjacent to ∆ in the following figure; denote the

vertices of ∆′ by v′
r for r = a, λ, b, c, d, e, µ1, µ2 and redistribute the curvature

as follows:

1µ

2µ

s
s

s

b

’∆

1µ

2µ

π
15

s

20
9π

20
3π

λ

a
λ

b

c
d

e

s
s

s

e

a

λ
b

c

d

∆

a

where d(v′
c) > 2 when ∆′ is interior.

If ∆′ is a boundary region there is nothing to prove so assume ∆′ is interior.

If d(v′
c) = 2 then vd has sublabel dddλ which implies d(vd) ≥ 8. We don’t

have the extra distribution and it follows that c∗(∆) ≤ c(4, 5, 5, 8)+
9π

20
= 0.

If d(v′
c) > 2 then c∗(∆) ≤ c(4, 5, 5, 6) +

9π

20
−

3π

20
< 0; moreover we have
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d(v′
a) ≥ 3, d(v′

d) ≥ 3, hence c∗(∆′) ≤ c(3, 3, 4, 5, 6) +
3π

20
+

π

15
< 0.

Now let d(vc) > 2 so that d(vc) ≥ 4. If d(vc) = 4 then l(vc) = cba0, therefore

d(vb) ≥ 5 and d(vd) ≥ 4.

It follows that c∗(∆) ≤ c(4, 4, 4, 5, 5) +
9π

20
< 0.

If d(vc) ≥ 5 observe that if d(vb) < 5 then d(vc) ≥ 7, therefore c∗(∆) ≤

c(3, 3, 4, 5, 7) +
9π

20
< 0.

Now assume d(ve), d(va) ≥ 5.

The maximum amount of positive curvature the region ∆ can receive is
2π

5
.

If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels bµ1 and

ddλ respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(5, 5, 5, 6) +
2π

5
< 0.

If d(vc) > 2 then the constraint α + β + 1 = 0 implies d(vc) ≥ 4. Moreover

if d(vb) < 5 then d(vc) ≥ 7, therefore c∗(∆) ≤ c(3, 3, 5, 5, 7) +
2π

5
< 0.

Case 2.

There are two subcases; the region ∆ receives positive curvature through

2.1) two double edges;

2.2) one double edge and one triple edge.

Case 2.1)

The maximum amount of curvature that ∆ can receive is
π

15
+

π

6
=

7π

30
.

We have d(va), d(vµ2
) ≥ 5, d(ve) ≥ 4 and d(vb), d(vd) ≥ 3.

It follows that c∗(∆) ≤ c(3, 3, 4, 5, 5) +
7π

30
< 0.

Case 2.2)

We have d(vb), d(vd) ≥ 3, d(va) ≥ 5 and d(ve) ≥ 4.

The maximum amount of positive curvature the region ∆ can receive is
9π

20
+
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π

15
=

31π

60
.

If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels bµ1 and

dd respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6.

Let ∆′ be as in case 1.3). The same argument of case 1.3) shows that c∗(∆) ≤

0 and c∗(∆′) ≤ 0.

If d(vc) > 2 then d(vc) ≥ 4. If d(vc) = 4 then l(vc) = cba0, therefore d(vb) ≥ 5

and d(vd) ≥ 4. It follows that c∗(∆) ≤ c(4, 4, 4, 5, 5) +
31π

60
< 0.

Suppose d(vc) ≥ 5.

If d(vb) = d(vd) = 3 then vc has sublabel ccc which implies d(vc) ≥ 10,

therefore c∗(∆) ≤ c(3, 3, 4, 5, 10) +
31π

60
< 0.

If only one of the vertices vb and vd has degree 3, then vc has sublabel cc

which implies d(vc) ≥ 7. It follows that c∗(∆) ≤ c(3, 4, 4, 5, 7) +
31π

60
< 0.

If d(vb), d(vd) > 3 then c∗(∆) ≤ c(4, 4, 4, 5, 5) +
31π

60
< 0.

�

Lemma 4.2.12 If ∆ is a boundary region then c∗(∆) <
4π

k0
.

Proof. As in the analogous lemma for case (a1) we need some extra dis-

tribution of curvature which involves boundary regions only. This will not

affect the interior regions and so the proof of the previous lemma.

Moreover we can assume that the distinguished vertex coincides with a unique

vertex of each boundary s-region and with no more than three vertices of each

boundary m-region. Distinguish the following cases:

1. ∆ is an s-region;

2. ∆ is an m-region.
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Case 1.

We can assume without any loss that the distinguished vertex coincides with

v4. Since ∆ is an s-region it does not receive positive curvature from any

interior region.

Now if d(∆) ≥ 4 then c(∆) ≤ c(3, 3, 3, k0) =
2π

k0

<
4π

k0

, so we can assume

d(∆) ≤ 3.

Case 1.1), d(∆) = 3

There are seven subcases:
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s
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s

(1)

s

s

s

s

s

s
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s
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s

s

s

s

s

s

(7)

Observe that the only admissible label in degree 3 involving s is bds.

It follows that in all cases, except cases (3) and (7), there are two vertices of

degree ≥ 4, hence that c∗(∆) = c(∆) ≤ c(4, 4, k0) =
2π

k0
<

4π

k0
.

We will then consider only cases (3) and (7) and assume that there is an

interior vertex of degree 3.

In case (3) we have d(v2) = 3 therefore l(v2) = bds which forces v1 to have

sublabel ase. The constraint α + β + 1 = 0 implies d(v1) ≥ 6.

It follows that c∗(∆) = c(∆) ≤ c(3, 6, k0) =
2π

k0
<

4π

k0
.
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In case (7) we have d(v5) ≥ 3 and so l(v5) = bds. This implies that v1 has

sublabel ase, hence d(v1) ≥ 6.

It follows that c∗(∆) = c(∆) ≤ c(3, 6, k0) =
2π

k0
<

4π

k0
.

Case 1.2), d(∆) = 2

The vertex v1 has sublabel ase which implies d(v1) ≥ 4.

We choose to transfer the curvature
π

4
through each triple edge; it follows

that c∗(∆) ≤ c(4, k0) −
π

2
=

2π

k0
<

4π

k0
.

Notice this further compensation does not affect the pseudo-curvature of any

interior region.

Case 2.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

Suppose m = 3, then v0 = vb = vd = vµ1
. Since d(∆) ≥ 4 and ∆ does

not receive any positive curvature from interior or from boundary regions (as

described above), it follows that c∗(∆) = c(∆) ≤ c(4, k0, k0, k0) = −2π +
π

2
+

6π

k0

≤ −
π

2
<

4π

k0

.

Now suppose m = 2. We have c∗(∆) ≤ c(∆) +
π

2
+

π

15
= c(∆) +

17π

30
≤

c(3, 3, k0, k0) +
17π

30
= −

2π

3
+

4π

k0
+

17π

30
= −

π

10
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

The maximum amount of curvature that ∆ can receive is
π

2
+

π

15
=

17π

30
.

Suppose d(vc) = 2 and vc is not distinguished. Then l(vc) = ce, moreover

vb and vd have sublabels bµ1 and dd respectively. For interior vertices we

have d(va) ≥ 4, d(vb) ≥ 5, d(vd) ≥ 5, moreover ve and vµ1
cannot both

have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can be the

distinguished one, it follows that c∗(∆) ≤ c(4, 4, 5, k0)+
17π

30
=

2π

k0
−

π

30
<

4π

k0
.

125



Suppose d(vc) > 2 and vc is not distinguished (and so d(vc) ≥ 4). For interior

vertices we have d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3, moreover ve and vµ1
cannot

both have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can

be the distinguished one, it follows that c∗(∆) ≤ c(3, 3, 4, 4, k0) +
17π

30
=

2π

k0
−

π

10
<

4π

k0
.

So we can assume v0 = vc, in which case d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3,

moreover ve and vµ1
cannot both have degree< 4. It follows that c∗(∆) ≤

c(3, 3, 4, 4, k0) +
17π

30
=

2π

k0
−

π

10
<

4π

k0
.

�

Distribution for case (a3), (α − β + 1 = 0).

According to the classification we can obtain the positively curved interior

regions from Figures 4.9 (ii), 4.10 (ii), 4.10 (iv), 4.11 (ii), 4.12 (ii), 4.13 (i),

4.14 (ii), 4.15 (iii), 4.16 (ii), 4.16 (iv), 4.18 (i), 4.19 (i), 4.20 (i), 4.20 (ii),

4.21 (i), 4.22 (i), 4.22 (ii), 4.23 (ii).

The upper bounds for the curvature are sometimes decreased using the con-

straint α − β + 1 = 0 and therefore 4.9 (ii), 4.10 (ii) and 4.11 (ii) are not

positively curved. The positive curvature is distributed according to the

scheme which follows.
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Lemma 4.2.13 If ∆ is interior then c∗(∆) ≤ 0.

Proof We distributed the positive curvature in such a way that every posi-

tively curved interior region has non-positive pseudo-curvature.

Let ∆ be an interior m-region receiving positive curvature according to the

scheme above. Distinguish two cases:

1. the region ∆ receives positive curvature from exactly one s-region;
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2. the region ∆ receives positive curvature from exactly two s-regions.

Case 1.

There are three subcases; the region ∆ receives positive curvature through

1.1) the double edge labelled by eµ1µ2;

1.2) the double edge labelled by aλb;

1.3) the triple edge labelled by eµ1µ2a.

Case 1.1)

We have d(ve), d(vµ2
) ≥ 5. Moreover d(vb), d(vd) ≥ 3 and d(va) ≥ 4.

The maximum amount of positive curvature the region ∆ can receive is
π

15
.

It follows that c∗(∆) ≤ c(3, 3, 4, 5, 5) +
π

15
< 0.

Case 1.2)

The maximum amount of positive curvature the region ∆ can receive is
π

15
.

Observe that, according to the compensation scheme above, we have d(vb) ≥

3, d(vd) ≥ 3 and d(va) ≥ 5. Moreover the vertices ve and vµ1
cannot both

have degree< 4.

If d(vc) = 2 then l(vc) = ce, this forces vb and vd to have sublabels sbµ1 and

dd respectively, which imply d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(4, 5, 5, 6) +
π

15
< 0.

If d(vc) > 2 then d(vc) ≥ 4. It follows that c∗(∆) ≤ c(3, 3, 4, 4, 5) +
π

15
< 0.

Case 1.3)

Observe that, according to the compensation scheme above, we have d(ve) ≥

5 and d(va) ≥ 4.

First assume d(va) = 4.

This implies l(va) = ab{e, c}s, therefore vλ has sublabel cλ and so d(vλ) ≥ 5.
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Moreover we have d(vb), d(vd) ≥ 3.

The maximum amount of positive curvature the region ∆ can receive is
π

2
.

If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels bµ1 and

ddλ respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(4, 5, 5, 5, 6) +
π

2
< 0.

If d(vc) > 2 then d(vc) ≥ 4. It follows that c∗(∆) ≤ c(3, 3, 4, 4, 5, 5) +
π

2
< 0.

Now assume d(va) ≥ 5.

The maximum amount of positive curvature the region ∆ can receive is
2π

5
.

If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels bµ1 and

ddλ respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(5, 5, 5, 6) +
2π

5
< 0.

If d(vc) > 2 then d(vc) ≥ 4. Moreover the vertices vb and vc cannot both

have degree< 5. It follows that c∗(∆) ≤ c(3, 3, 5, 5, 5) +
2π

5
< 0.

Case 2.

There are two subcases; the region ∆ receives positive curvature through

2.1) two double edges;

2.2) one double edge and one triple edge.

Case 2.1)

The maximum amount of curvature that ∆ can receive is
π

15
+

π

15
=

2π

15
.

We have d(va), d(vµ2
), d(ve) ≥ 5 and d(vb), d(vd) ≥ 3.

It follows that c∗(∆) ≤ c(3, 3, 5, 5, 5) +
2π

15
< 0.

Case 2.2)

We have d(vb), d(vd) ≥ 3 and d(va), d(ve) ≥ 5.

The maximum amount of positive curvature the region ∆ can receive is
2π

5
+

π

15
=

7π

15
.
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If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels bµ1 and

ddλ respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(5, 5, 5, 6) +
7π

15
= 0.

If d(vc) > 2 then d(vc) ≥ 4. Moreover the vertices vb and vc cannot both

have degree< 5.

It follows that c∗(∆) ≤ c(3, 4, 5, 5, 5) +
7π

15
< 0.

�

Lemma 4.2.14 If ∆ is a boundary region then c∗(∆) <
4π

k0
.

Proof Again, we need some extra distribution of curvature which involves

boundary regions only. This will not affect the interior regions and so the

proof of the previous lemma.

Moreover we can assume that the distinguished vertex coincides with a unique

vertex of each boundary s-region and with no more than three vertices of each

boundary m-region.

Distinguish the following cases:

1. ∆ is an s-region;

2. ∆ is an m-region.

Case 1.

As before we can assume that the distinguished vertex coincides with v4 and

d(∆) ≤ 3.

Case 1.1), d(∆) = 3

There are seven subcases:
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s

s
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Observe that the only admissible label in degree 3 involving s is bds.

It follows that in all cases, except cases (3) and (7), there are two vertices of

degree ≥ 4, hence that c∗(∆) = c(∆) ≤ c(4, 4, k0) =
2π

k0
<

4π

k0
.

We will then consider only cases (3) and (7) and assume that there is a vertex

of degree 3.

In case (3) we have d(v2) = 3 therefore l(v2) = bds which forces v1 to have

sublabel ase and so d(v1) ≥ 4.

We choose to transfer the curvature
π

6
through the triple edge.

It follows that c∗(∆) = c(∆) −
π

6
≤ c(3, 4, k0) −

π

6
=

2π

k0
<

4π

k0
.

In case (7) we have d(v5) = 3 and so l(v5) = bds. This implies that v1 has

sublabel ase therefore d(v1) ≥ 5.

We choose again to transfer the curvature
π

6
through the triple edge.

It follows that c∗(∆) = c(∆) −
π

6
≤ c(3, 5, k0) −

π

6
<

2π

k0

<
4π

k0

.

Case 1.2), d(∆) = 2

The vertex v1 has sublabel ase which implies d(v1) ≥ 6.

We choose to transfer the curvature
π

6
through each triple edge; it follows

131



that c∗(∆) ≤ c(6, k0) −
π

3
=

2π

k0
<

4π

k0
.

Notice that this choice does not affect the interior regions.

Case 2.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

Suppose m = 3, then v0 = vb = vd = vµ1
. Since d(∆) ≥ 4, d(va) ≥ 4 and

∆ does not receive any positive curvature from interior or from boundary

regions (as described above), it follows that c∗(∆) = c(∆) ≤ c(4, k0, k0, k0) =

−2π +
π

2
+

6π

k0
≤ −

π

2
<

4π

k0
.

Now suppose m = 2. We have c∗(∆) ≤ c(∆)+
π

2
+

π

15
≤ c(3, 3, k0, k0)+

17π

30
=

−
2π

3
+

4π

k0
+

17π

30
= −

π

10
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

The maximum amount of curvature that ∆ can receive is
π

2
+

π

15
=

17π

30
.

Suppose d(vc) = 2 and vc is not distinguished. Then l(vc) = ce, moreover

vb and vd have sublabels bµ1 and dd respectively. For interior vertices we

have d(va) ≥ 4, d(vb) ≥ 5, d(vd) ≥ 5, moreover ve and vµ1
cannot both

have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can be the

distinguished one, it follows that c∗(∆) ≤ c(4, 4, 5, k0)+
17π

30
=

2π

k0

−
π

30
<

4π

k0

.

Suppose d(vc) > 2 and vc is not distinguished (and so d(vc) ≥ 4). For interior

vertices we have d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3, moreover ve and vµ1
cannot

both have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can

be the distinguished one, it follows that c∗(∆) ≤ c(3, 3, 4, 4, k0) +
17π

30
=

2π

k0
−

π

10
<

4π

k0
.

So we can assume v0 = vc, in which case d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3,

moreover ve and vµ1
cannot both have degree< 4. It follows that c∗(∆) ≤
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c(3, 3, 4, 4, k0) +
17π

30
=

2π

k0
−

π

10
<

4π

k0
.

�

Distribution for case (a4), (α + β − 1 = 0).

According to the classification we can obtain the positively curved interior

regions from Figures 4.9 (ii), 4.10 (ii), 4.10 (iv), 4.11 (ii), 4.12 (i), 4.12 (ii),

4.13 (i), 4.14 (ii), 4.15 (ii), 4.15 (iii), 4.16 (i), 4.16 (ii), 4.16 (iv), 4.18 (i),

4.19 (i), 4.20 (i), 4.20 (ii), 4.21 (i), 4.22 (i), 4.22 (ii), 4.23 (ii).

The upper bounds for the curvature are sometimes decreased using the con-

straint α + β − 1 = 0 and therefore 4.9 (ii), 4.10 (ii), 4.11 (ii) and 4.14 (ii)

are not positively curved. The positive curvature is distributed according to

the scheme which follows.
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Lemma 4.2.15 If ∆ is interior then c∗(∆) ≤ 0.

Proof We distributed the positive curvature in such a way that every posi-

tively curved interior region has non-positive pseudo-curvature.

Let ∆ be an interior m-region receiving positive curvature according to the

scheme above. Distinguish two cases:

1. the region ∆ receives positive curvature from exactly one s-region;

2. the region ∆ receives positive curvature from exactly two s-regions.

Case 1.

There are three subcases; the region ∆ receives positive curvature through

1.1) the double edge labelled by eµ1µ2;

1.2) the double edge labelled by aλb;
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1.3) the triple edge labelled by eµ1µ2a.

Case 1.1)

We have d(ve) ≥ 4 and d(vµ2
) ≥ 5. Moreover d(vb), d(vd) ≥ 3 and d(va) ≥ 4.

The maximum amount of positive curvature the region ∆ can receive is
π

6
.

It follows that c∗(∆) ≤ c(3, 3, 4, 4, 5) +
π

6
< 0.

Case 1.2)

Firstly suppose d(vb) = 3.

The maximum amount of positive curvature the region ∆ can receive is
59π

210
.

Observe that, according to the compensation scheme above, we have d(vb) =

3, d(vd) ≥ 3 and d(va) ≥ 4.

This implies l(vb) = bds, hence vc has sublabel cc and d(vc) ≥ 6.

If d(ve) = 2 then l(ve) = ec, this forces vµ1
and vd to have sublabels bµ1 and

dd respectively, which imply d(vµ1
) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(3, 4, 5, 6, 6) +
59π

210
< 0.

If d(ve) > 2 then d(ve) ≥ 4.

If d(va) = 4 then l(va) = as{e, c}b and so vµ2
has sublabel µ2c and d(vµ2

) ≥ 4.

In this case c∗(∆) ≤ c(3, 3, 4, 4, 4, 6) +
59π

210
< 0.

If d(va) ≥ 5 we have c∗(∆) ≤ c(3, 3, 4, 5, 6) +
59π

210
< 0.

Now assume d(vb) > 3 which indeed implies d(vb) ≥ 5 (see the compensation

scheme).

The maximum amount of positive curvature the region ∆ can receive is
π

15
.

The vertices ve and vµ1
cannot both have degree < 4.

If d(vc) = 2 then l(vc) = ce, this forces vb and vd to have sublabels sbµ1 and

dd respectively, which imply d(vb) ≥ 5 and d(vd) ≥ 6.

Since d(va) ≥ 4 it follows that c∗(∆) ≤ c(4, 4, 5, 6) +
π

15
< 0.
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If d(vc) > 2 then d(vc) ≥ 4 and it follows that c∗(∆) ≤ c(3, 4, 4, 4, 5)+
π

15
< 0.

Case 1.3)

According to the compensation scheme above we have d(va) ≥ 5 and d(ve) ≥

4; moreover d(vb) ≥ 3 and d(vd) ≥ 3.

The maximum amount of positive curvature the region ∆ can receive is
2π

7
.

If d(vc) > 2 then d(vc) ≥ 4; moreover if d(vd) = 3 then d(vc) ≥ 6.

It follows that c∗(∆) ≤ max{c(3, 3, 4, 4, 6), c(3, 4, 4, 4, 5)}+
2π

7
< 0.

If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels bµ1 and

ddλ respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(4, 5, 5, 6) +
2π

7
< 0.

Case 2.

There are two subcases; the region ∆ receives positive curvature through

2.1) two double edges;

2.2) one double edge and one triple edge.

Case 2.1)

If d(vb) = 3 the maximum amount of curvature ∆ can receive is
59π

210
+

π

6
=

47π

105
. We have d(va) ≥ 4, d(vµ2

) ≥ 5, d(ve) ≥ 4, d(vc) ≥ 6 and d(vd) ≥ 3.

It follows that c∗(∆) ≤ c(3, 3, 4, 4, 5, 6) +
47π

105
< 0.

If d(vb) > 3 (hence d(vb) ≥ 5) then the maximum amount of curvature ∆

can receive is
π

15
+

π

6
=

7π

30
.

We have d(va) ≥ 4, d(vµ2
) ≥ 5, d(ve) ≥ 4 and d(vd) ≥ 3.

It follows that c∗(∆) ≤ c(3, 4, 4, 5, 5) +
7π

30
< 0.

Case 2.2)

Since ∆ is receiving curvature through both the double edge labelled by aλb
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and the triple edge labelled by eµ1µ2a, the vertex va has sublabel sas, hence

d(va) ≥ 5.

Firstly assume d(vb) = 3; the maximum amount of curvature ∆ can receive

is
19π

105
+

2π

7
=

7π

15
.

We have d(va) ≥ 5, d(ve) ≥ 4, d(vc) ≥ 6 and d(vd) ≥ 3.

If d(vd) > 3 then c∗(∆) ≤ c(3, 4, 4, 5, 6) +
7π

15
< 0.

If d(vd) = 3 then vc has sublabel ccc hence d(vc) ≥ 8.

It follows that c∗(∆) ≤ c(3, 3, 4, 5, 8) +
7π

15
< 0.

Now assume d(vb) > 3 which implies d(vb) ≥ 5 (vb has sublabel sb).

We have d(vd) ≥ 3, d(ve) ≥ 4 and d(va) ≥ 5.

The maximum amount of positive curvature the region ∆ can receive is
2π

7
+

π

15
=

37π

105
.

If d(vc) = 2 then l(vc) = ce, which forces vb and vd to have sublabels sbµ1

and ddλ respectively. This implies d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(4, 5, 5, 6) +
37π

105
< 0.

If d(vc) > 2 then d(vc) ≥ 4. It follows that c∗(∆) ≤ c(3, 4, 4, 5, 5) +
37π

105
< 0.

�

Lemma 4.2.16 If ∆ is a boundary region then c∗(∆) <
4π

k0
.

Proof. Again, we need some extra distribution of curvature which involves

boundary regions only. This will not affect the interior regions and so the

proof of the previous lemma.

Moreover we can assume that the distinguished vertex coincides with a unique

vertex of each boundary s-region and with no more than three vertices of each

boundary m-region.

Distinguish the following cases:
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1. ∆ is an s-region;

2. ∆ is an m-region.

Case 1.

As before we can assume that the distinguished vertex coincides with v4 and

d(∆) ≤ 3.

Case 1.1), d(∆) = 3

There are seven subcases:

2µ

µ1

v0

a

2µ

v0

e

µ1

a

v0

2µ

µ1

a

e

v0

s

s

s

s

s

s

(4)

s

s

s

s

s

s

(1)

s

s

s

s

s

s

(3)

s

s

s

s

s

s

(2)

v0 v0

µ1

2µ

a

2µ

µ1
a

v0

µ1

2µ

a

e e

e

s

s

s

s

s

s

s

s

s

s

s

s

(6)(5)

s

s

s

s

s

s

(7)

Observe that the only admissible label in degree 3 involving s is bds.

Since de is a single edge, it follows that in all cases, except cases (3) and (7),

there are two vertices of degree ≥ 4.

It follows that c∗(∆) = c(∆) ≤ c(4, 4, k0) =
2π

k0
<

4π

k0
.

We will then consider only cases (3) and (7) and assume that there is a vertex

of degree 3.

In case (3) we have d(v2) = 3 therefore l(v2) = bds which forces v1 to have

sublabel ase. The constraint α + β − 1 = 0 implies d(v1) ≥ 5.
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We choose to transfer the curvature
π

15
through the triple edge.

It follows that c∗(∆) = c(∆) −
π

15
≤ c(3, 5, k0) −

π

15
=

2π

k0
<

4π

k0
.

In case (7) we have d(v5) = 3 and so l(v5) = bds. This implies that v1 has

sublabel ase therefore d(v1) ≥ 4.

We choose to transfer the curvature
π

6
through the triple edge.

It follows that c∗(∆) = c(∆) −
π

6
≤ c(3, 4, k0) −

π

6
=

2π

k0
<

4π

k0
.

Case 1.2), d(∆) = 2

The vertex v1 has sublabel ase which implies d(v1) ≥ 7.

We choose to transfer the curvature
π

7
through each triple edge; it follows

that c∗(∆) ≤ c(7, k0) −
2π

7
=

2π

k0
<

4π

k0
.

Notice this choice does not affect the interior regions.

Case 2.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

Suppose m = 3, then v0 = vb = vd = vµ1
. Since d(∆) ≥ 4, d(va) ≥ 4 and

∆ does not receive any positive curvature from interior or from boundary

regions (as described above), it follows that c∗(∆) = c(∆) ≤ c(4, k0, k0, k0) =

−2π +
π

2
+

6π

k0
≤ −

π

2
<

4π

k0
.

Now suppose m = 2; then we can have v0 = vb = vd or v0 = vb = vµ1
or

v0 = vd = vµ1
or v0 = vλ = vµ2

or v0 = vc = ve.

According to the distribution described above, the maximum amount of cur-

vature that ∆ can receive is
π

6
+

59π

210
=

47π

210
(when v0 = vc = ve). We

have c∗(∆) ≤ c(∆) +
47π

210
≤ c(3, 3, k0, k0) +

47π

210
= −

2π

3
+

4π

k0
+

47π

210
=

−
31π

70
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

139



The maximum amount of curvature that ∆ can receive is
2π

7
+

59π

210
=

17π

30
.

Suppose d(vc) = 2 and vc is not distinguished. Then l(vc) = ce, moreover

vb and vd have sublabels bµ1 and dd respectively. For interior vertices we

have d(va) ≥ 4, d(vb) ≥ 5, d(vd) ≥ 6, moreover ve and vµ1
cannot both have

degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can be the distin-

guished one, it follows that c∗(∆) ≤ c(4, 4, 5, k0) +
17π

30
=

2π

k0
−

π

30
<

4π

k0
.

Suppose d(vc) > 2 and vc is not distinguished (and so d(vc) ≥ 4). For inte-

rior vertices we have d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3, moreover ve and vµ1

cannot both have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1

can be the distinguished one, it follows that c∗(∆) ≤ c(3, 3, 4, 4, k0) +
17π

30
=

2π

k0
−

π

10
<

4π

k0
.

So we can assume v0 = vc, in which case d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3,

moreover ve and vµ1
cannot both have degree< 4. It follows that c∗(∆) ≤

c(3, 3, 4, 4, k0) +
17π

30
=

2π

k0

−
π

10
<

4π

k0

.

�

Distribution for case (a5), (α − β − 1 = 0).

According to the classification we can obtain the positively curved interior

regions from Figures 4.9 (i), 4.9 (ii), 4.9(iii), 4.10 (ii), 4.10 (iv), 4.11 (ii),

4.12 (ii), 4.13 (i), 4.14 (ii), 4.15 (iii), 4.16 (ii), 4.16 (iv), 4.18 (i), 4.19 (i),

4.20 (i), 4.20 (ii), 4.21 (i), 4.22 (i), 4.22 (ii), 4.23 (ii).

The upper bounds for the curvature are sometimes decreased using the con-

straint α − β − 1 = 0 and therefore 4.12 (ii) is not positively curved. The

positive curvature is distributed according to the scheme which follows.
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e
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a
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∆

5
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s

s

s
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Lemma 4.2.17 If ∆ is interior then c∗(∆) ≤ 0.

Proof We distributed the positive curvature in such a way that every posi-

tively curved interior region has non-positive pseudo-curvature.

Let ∆ be an interior m-region receiving positive curvature according to the

scheme above.

Distinguish two cases:

1. the region ∆ receives positive curvature from exactly one s-region;

2. the region ∆ receives positive curvature from exactly two s-regions.

Case 1.

There are three subcases; the region ∆ receives positive curvature through

1.1) the double edge labelled by eµ1µ2;

1.2) the double edge labelled by aλb;

1.3) the triple edge labelled by eµ1µ2a.

Case 1.1)

We have d(ve), d(vµ2
) ≥ 5. Moreover d(vb), d(vd) ≥ 3 and d(va) ≥ 4.

The maximum amount of positive curvature the region ∆ can receive is
π

15
.
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It follows that c∗(∆) ≤ c(3, 3, 4, 5, 5) +
π

15
< 0.

Case 1.2)

Let d(vb) = 3; the maximum amount of curvature that ∆ can receive is
π

6
.

We have d(va) ≥ 4, moreover the vertices ve and vµ1
cannot both have

degree< 4.

Since we must have l(vb) = bds it follows that vc has sublabel cc which im-

plies d(vc) ≥ 6. It follows that c∗(∆) ≤ c(3, 3, 4, 4, 6) +
π

6
< 0.

Now assume d(vb) > 3. The constraint α − β − 1 = 0 implies d(vb) ≥ 5.

Moreover the vertices ve and vµ1
cannot both have degree< 4; the vertices va

and vµ2
cannot both have degree< 5 and the vertices vc and vd cannot both

have degree< 5. It follows that c∗(∆) ≤ c(4, 5, 5, 5) +
π

15
< 0.

Case 1.3)

The maximum amount of positive curvature the region ∆ can receive is
2π

5
.

According to the compensation scheme above we have d(ve), d(va) ≥ 5; more-

over d(vb), d(vd) ≥ 3.

First assume d(vc) = 2.

This implies l(vc) = ce, therefore vb and vd have sublabels bµ1 and dd respec-

tively. Since α − β − 1 = 0 we have d(vb) ≥ 5 and d(vd) ≥ 6.

It follows that c∗(∆) ≤ c(5, 5, 5, 6) +
2π

5
< 0.

Now assume d(vc) > 2, hence d(vc) ≥ 4.

Let d(vc) = 4. Then vc has label c0ab, therefore vb has sublabel bλ and

d(vb) ≥ 5. It follows that c∗(∆) ≤ c(3, 4, 5, 5, 5) +
2π

5
< 0.

Finally if d(vc) ≥ 5 we have c∗(∆) ≤ c(3, 3, 5, 5, 5) +
2π

5
< 0.

Case 2.

There are two subcases; the region ∆ receives positive curvature through
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2.1) two double edges;

2.2) one double edge and one triple edge.

Case 2.1)

The maximum amount of curvature that ∆ can receive is
π

15
+

π

6
=

7π

30
.

We have d(va) ≥ 4, d(vµ2
), d(ve) ≥ 5 and d(vb), d(vd) ≥ 3.

It follows that c∗(∆) ≤ c(3, 3, 4, 5, 5) +
7π

30
< 0.

Case 2.2)

First assume d(vb) = 3.

The maximum amount of positive curvature the region ∆ can receive is
2π

5
+

π

6
=

17π

30
.

Since l(vb) = bds the vertex vc has sublabel cc and therefore d(vc) ≥ 6.

We have d(ve), d(va) ≥ 5 and d(vd) ≥ 3.

Moreover if d(vd) = 3 then vc has sublabel ccc, hence d(vc) ≥ 8.

It follows that c∗(∆) ≤ max{c(3, 3, 5, 5, 8), c(3, 4, 5, 5, 6)}+
17π

30
< 0.

Now assume d(vb) > 3 which under the constraint α − β − 1 = 0 implies

d(vb) ≥ 5.

The maximum amount of positive curvature the region ∆ can receive is
2π

5
+

π

15
=

7π

15
.

If d(vc) = 2 then l(vc) = ce and as in case 1.3) above we have d(vb) ≥ 5 and

d(vd) ≥ 6. It follows that c∗(∆) ≤ c(5, 5, 5, 6) +
7π

15
= 0.

If d(vc) > 2 then the constraint α − β − 1 = 0 implies d(vc) ≥ 4.

It follows that c∗(∆) ≤ c(3, 4, 5, 5, 5) +
7π

15
< 0.

�

Lemma 4.2.18 If ∆ is a boundary region then c∗(∆) <
4π

k0
.
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Proof. Again, we need some extra distribution of curvature which involves

boundary regions only. This will not affect the interior regions and so the

proof of the previous lemma.

Moreover we can assume that the distinguished vertex coincides with a unique

vertex of each boundary s-region and with no more than three vertices of each

boundary m-region. Distinguish the following cases:

1. ∆ is an s-region;

2. ∆ is an m-region.

Case 1.

We can assume that the distinguished vertex coincides with v4 and d(∆) ≤ 3.

Case 1.1), d(∆) = 3

There are seven subcases:
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s
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s
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s
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s

s

s
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(7)

Observe that the only admissible label in degree 3 involving s is bds.

It follows that in all cases, except cases (3) and (7), there are two interior

vertices of degree ≥ 4. It follows that c∗(∆) = c(∆) ≤ c(4, 4, k0) =
2π

k0
<

4π

k0
.
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We will then consider only cases (3) and (7) and assume that there is a vertex

of degree 3.

In case (3) we have d(v2) = 3 therefore l(v2) = bds which forces v1 to have

sublabel ase. The constraint α − β − 1 = 0 implies d(v1) ≥ 7.

It follows that c∗(∆) = c(∆) ≤ c(3, 7, k0) =
2π

k0

−
π

21
<

4π

k0

.

In case (7) we have d(v5) = 3 and so l(v5) = bds. This implies that v1 has

sublabel ase therefore d(v1) ≥ 7.

As above c∗(∆) = c(∆) ≤ c(3, 7, k0) =
2π

k0
−

π

21
<

4π

k0
.

Case 1.2), d(∆) = 2

The vertex v1 has sublabel ase which implies d(v1) ≥ 5.

We choose to transfer the curvature
π

5
through each triple edge; it follows

that c∗(∆) ≤ c(5, k0) −
2π

5
=

2π

k0

<
4π

k0

.

Notice this choice does not affect any interior region.

Case 2.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

Suppose m = 3, then v0 = vb = vd = vµ1
. Since d(∆) ≥ 4, d(va) ≥ 4 and

∆ does not receive any positive curvature from interior or from boundary

regions (as described above), it follows that c∗(∆) = c(∆) ≤ c(4, k0, k0, k0) =

−2π +
π

2
+

6π

k0
≤ −

π

2
<

4π

k0
.

Now suppose m = 2; recall that the maximum total amount of curvature

that ∆ can receive is
2π

5
+

π

6
=

17π

30
. We have c∗(∆) ≤ c(∆) +

17π

30
≤

c(3, 3, k0, k0) +
17π

30
= −

2π

3
+

4π

k0
+

17π

30
= −

π

10
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

The maximum amount of curvature that ∆ can receive is
2π

5
+

π

6
=

17π

30
.
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Suppose d(vc) = 2 and vc is not distinguished. Then l(vc) = ce, moreover

vb and vd have sublabels bµ1 and dd respectively. For interior vertices we

have d(va) ≥ 4, d(vb) ≥ 5, d(vd) ≥ 6, moreover ve and vµ1
cannot both

have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can be the

distinguished one it follows that c∗(∆) ≤ c(4, 4, 5, k0)+
17π

30
=

2π

k0

−
π

30
<

4π

k0

.

Suppose d(vc) > 2 and vc is not distinguished (and so d(vc) ≥ 4). For interior

vertices we have d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3, moreover ve and vµ1
cannot

both have degree< 4. Since one of the vertices va, vb, vd, ve and vµ1
can be the

distinguished one it follows that c∗(∆) ≤ c(3, 3, 4, 4, k0) +
17π

30
=

2π

k0
−

π

10
<

4π

k0
.

So we can assume v0 = vc, in which case d(va) ≥ 4, d(vb) ≥ 3, d(vd) ≥ 3,

moreover ve and vµ1
cannot both have degree< 4. It follows that c∗(∆) ≤

c(3, 3, 4, 4, k0) +
17π

30
=

2π

k0
−

π

10
<

4π

k0
.

�

Distribution for case (b), (α = β).

According to the classification we can obtain the positively curved interior

regions from Figures 4.5 (i), 4.7 (iii), 4.10 (iii), 4.11 (iii), 4.12 (iii), 4.13

(ii), 4.14 (iii), 4.15 (i), 4.15 (iv), 4.16 (iii), 4.16 (iv), 4.18 (iii), 4.19 (iv),

4.20 (iii), 4.21 (iii), 4.22 (iii), 4.22 (iv), 4.23 (iii).

The upper bounds for the curvature are sometimes decreased using the con-

straint α = β and the positive curvature is distributed according to the

scheme which follows.
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Lemma 4.2.19 If ∆ is interior then c∗(∆) ≤ 0.

Proof We distributed the positive curvature in such a way that every posi-

tively curved interior region has non-positive pseudo-curvature.

Let ∆ be an interior m-region receiving positive curvature according to the

scheme above.

Distinguish two cases:

1. the region ∆ receives positive curvature from exactly one s-region;

2. the region ∆ receives positive curvature from exactly two s-regions.

Case 1.

There are three subcases; the region ∆ receives positive curvature through

1.1) the double edge labelled by eµ1µ2;

1.2) the double edge labelled by aλb;

1.3) the triple edge labelled by eµ1µ2a.

Case 1.1)

The incoming curvature is
π

15
. Observe that, according to the distribution

scheme, we have d(ve), d(vµ2
) ≥ 5; moreover d(va) ≥ 5 and d(vb), d(vd) ≥ 3.
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It follows that c(∆) ≤ c(3, 3, 5, 5, 5) = −
7π

15
and so c∗(∆) < 0.

Case 1.2)

The incoming curvature is
π

15
. Observe that, according to the distribution

scheme, we have d(va), d(vb) ≥ 5, moreover d(vd) ≥ 3.

If d(ve) = 2 then l(ve) = ec, therefore vd and vµ1
have sublabels dd and bµ1.

The constraint α = β implies d(vd) ≥ 5.

It follows that c(∆) ≤ c(3, 5, 5, 5) = −
2π

15
and so c∗(∆) < 0.

If d(ve) > 2 and d(vc) = 2 then l(vc) = ce therefore vd has sublabel dd and

so d(vd) ≥ 5.

It follows that c(∆) ≤ c(3, 5, 5, 5) = −
2π

15
and so c∗(∆) < 0.

If d(ve), d(vc) > 2 then c(∆) ≤ c(3, 3, 3, 5, 5) = −
π

5
and so c∗(∆) < 0.

Case 1.3)

The incoming curvature is
π

3
. Observe that, according to the distribution

scheme, we have d(ve) ≥ 4 and d(va) ≥ 5, moreover d(vb), d(vd) ≥ 3.

First suppose d(va) = 5; since va has sublabel sa this forces l(va) = sadab.

It follows that vλ has sublabel eλ and so d(vλ) ≥ 3.

If d(vc) = 2 then l(vc) = ce, which forces vd to have sublabel dd and so

d(vd) ≥ 5.

In this case c(∆) ≤ c(3, 3, 4, 5, 5) = −
11π

30
and so c∗(∆) < 0.

If d(vc) > 2 then c(∆) ≤ c(3, 3, 3, 3, 4, 5) = −
13π

30
and so c∗(∆) < 0.

Now suppose d(va) ≥ 6.

If d(vc) = 2 then l(vc) = ce, which forces vd and vb to have sublabels dd and

bµ1 respectively; it follows that d(vd) ≥ 5.

If, in addition, d(vb) > 3 then the constraint α = β implies d(vb) ≥ 5.

It follows that c(∆) ≤ c(4, 5, 5, 6) = −
11π

30
and so c∗(∆) < 0.
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If d(vb) = 3 instead, then the curvature of ∆ is not negative enough, in gen-

eral, to compensate the incoming curvature, and this actually happens when

l(vb) = bµ1e (if l(vb) = bµ1c then d(vλ) ≥ 3 and so c∗(∆) ≤ c(3, 3, 4, 5, 6) +

π

3
< 0).

Let ∆′ be the m-region adjacent to ∆ in the following figure; denote the

vertices of ∆′ by v′
r for r = a, λ, b, c, d, e, µ1, µ2 and redistribute the curvature

as follows:
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λ
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c
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e

∆

e

d

e

a

λ

bc

d

Then we have c∗(∆) ≤ 0.

Since d(v′
e) = 2, ∆′ cannot receive more than

π

15
from other s-regions.

If ∆′ is a boundary region there is nothing to prove, so assume ∆′ is inte-

rior. We have d(v′
a) ≥ 5 and d(v′

µ2
), d(v′

b) ≥ 3; moreover if d(v′
c) = 2 then

d(v′
b) ≥ 5, therefore c(∆′) ≤ max{c(3, 3, 5, 5, 5), c(3, 3, 3, 3, 5, 5)} = −

7π

15
.

Finally, if d(vc) > 2 then observe that vc and vb cannot have degree 3 simul-

taneously.

It follows that c(∆) ≤ c(3, 3, 4, 4, 6) = −
π

3
and so c∗(∆) ≤ 0.

Case 2.

There are two subcases; the region ∆ receives positive curvature through

2.1) two double edges;
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2.2) one double edge and one triple edge.

Case 2.1)

The incoming curvature is
π

15
+

π

15
=

2π

15
. Observe that, according to the

distribution scheme, we have d(va), d(vµ2
), d(ve) ≥ 5; moreover d(vb), d(vd) ≥

3.

It follows that c(∆) ≤ c(3, 3, 5, 5, 5) = −
7π

15
and so c∗(∆) < 0.

Case 2.2)

The incoming curvature is
π

15
+

π

3
=

2π

5
.

Observe that d(ve) ≥ 4 and d(vb), d(vd) ≥ 3; moreover since va has sublabel

sas we have d(va) ≥ 7.

If d(vc) = 2 then l(vc) = ce, therefore vb and vc have sublabels sbµ1 and dd

respectively; this implies d(vb), d(vd) ≥ 5.

It follows that c(∆) ≤ c(4, 5, 5, 7) = −
29π

70
and so c∗(∆) ≤

2π

5
−

29π

70
< 0.

So assume d(vc) > 2. The vertices vb and vc cannot both have degree≤ 4.

It follows that c(∆) ≤ c(3, 3, 4, 5, 7) = −
101π

210
and so c∗(∆) ≤

2π

5
−

101π

210
< 0.

�

Lemma 4.2.20 If ∆ is a boundary region then c∗(∆) <
4π

k0
.

Proof. Again, we need some extra distribution of curvature which involves

boundary regions only. This will not affect the interior regions and so the

proof of the previous lemma.

Moreover we can assume that the distinguished vertex coincides with a unique

vertex of each boundary s-region and with no more than three vertices of each

boundary m-region.

Distinguish the following cases:
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1. ∆ is an s-region;

2. ∆ is an m-region.

Case 1.

We can assume without any loss that the distinguished vertex coincides with

v4 and that d(∆) ≤ 3.

Case 1.1), d(∆) = 3

There are seven subcases:
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s
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s
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s
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s
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s

s

s

s

s

s

(7)

Observe that in all cases except case (3) and case (7), there are two interior

vertices of degree ≥ 4. It follows that c∗(∆) = c(∆) ≤ c(4, 4, k0) =
2π

k0
<

4π

k0
.

In case (3) we might have d(v2) = 3, but in this case l(v2) = bds and so v1

has sublabel ase which implies d(v1) ≥ 6.

It follows that c∗(∆) = c(∆) ≤ c(3, 6, k0) =
2π

k0
<

4π

k0
.

In case (7) we might have d(v5) = 3, but in this case l(v5) = bds and so v1

has sublabel ase which implies d(v1) ≥ 6.

It follows that c∗(∆) = c(∆) ≤ c(3, 6, k0) =
2π

k0
<

4π

k0
.
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Case 1.2), d(∆) = 2

The vertex v1 has sublabel ase which implies d(v1) ≥ 6.

We choose to transfer the curvature
π

6
through each triple edge; it follows

that c∗(∆) ≤ c(6, k0) −
π

3
=

2π

k0

<
4π

k0

.

Notice that this choice does not change the pseudo-curvature of any interior

region.

Case 2.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m.

Suppose m = 3, then v0 = vb = vd = vµ1
. Since d(∆) ≥ 4, d(va) ≥ 5 and

∆ does not receive any positive curvature from interior or from boundary

regions (as described above), it follows that c∗(∆) = c(∆) ≤ c(5, k0, k0, k0) =

−2π +
2π

5
+

6π

k0
≤ −

3π

5
<

4π

k0
.

Now suppose m = 2. The maximum amount of curvature that ∆ can receive

is
π

3
+

π

15
=

2π

5
. We have c∗(∆) ≤ c(∆) +

2π

5
≤ c(3, 3, k0, k0) +

2π

5
=

−
2π

3
+

4π

k0

+
2π

5
= −

4π

15
+

4π

k0

<
4π

k0

.

We can therefore assume that v0 coincides with a unique vertex of ∆.

The maximum amount of curvature that ∆ can receive is
π

3
+

π

15
=

2π

5
.

Suppose d(vc) = 2 and vc is not distinguished. Then l(vc) = ce, moreover vb

and vd have sublabels bµ1 and dd respectively. For interior vertices we have

d(va) ≥ 5, d(vb) ≥ 3, d(vd) ≥ 5, moreover either two of the vertices ve, vµ1
and

vµ2
have degree≥ 3 or one of the vertices ve, vµ1

and vµ2
has degree≥ 4. Since

one of the vertices va, vb, vd, ve, vµ1
and vµ2

can be the distinguished one it

follows that c∗(∆) ≤ max{c(3, 4, 5, k0), c(3, 3, 3, 5, k0)}+
2π

5
=

2π

k0

−
π

30
<

4π

k0

.

Suppose d(vc) > 2 and vc is not distinguished (and so d(vc) ≥ 4). For interior
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vertices we have d(va) ≥ 5, d(vb) ≥ 3, d(vd) ≥ 3, moreover ve and vµ1
cannot

both have degree< 3. Since one of the vertices va, vb, vd, ve and vµ1
can be the

distinguished one it follows that c∗(∆) ≤ c(3, 3, 3, 4, k0) +
2π

5
=

2π

k0
−

π

10
<

4π

k0

.

So we can assume v0 = vc, in which case d(va) ≥ 5, d(vb) ≥ 3, d(vd) ≥ 3,

moreover ve and vµ1
cannot both have degree< 3. It follows that c∗(∆) ≤

c(3, 3, 3, 5, k0) +
2π

5
=

2π

k0
−

π

5
<

4π

k0
.

�

Distribution for case (c), (α = −β).

According to the classification we can obtain the positively curved interior

regions from Figures 4.5 (ii), 4.5 (iii), 4.5 (iv), 4.7 (i), 4.7 (ii), 4.10 (iii),

4.11 (iii), 4.12 (iii), 4.13 (ii), 4.14 (iii), 4.15 (i), 4.15 (iv), 4.16 (iii), 4.16

(iv), 4.18 (ii), 4.18 (iii), 4.19 (ii), 4.19 (iii), 4.19 (iv), 4.20 (iii), 4.21 (ii),

4.21 (iii), 4.22 (iii), 4.22 (iv), 4.23 (iii).

In this case a compensation scheme would be more complicated than before.

In several cases we will distribute different amount of curvature from regions

with the same adjacent labels but different degree of some vertices. For this

reason it seems to be easier to describe the distribution process in the same

fashion as we have done in the case |α| = 2. One can easily check that with

the following choice of distribution each positively curved interior region from

the list above has non-positive pseudo-curvature.

The distribution for the boundary regions will be described directly in Lemma

4.2.22.

Let ∆ be a positively curved interior s-region.

- transfer the curvature
π

15
through each double edge labelled by aλb
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adjacent to ∆ and whose end vertices both have degree ≥ 5;

- transfer the curvature
π

15
through each double edge labelled by µ2µ1e

adjacent to ∆ where d(vµ2
) ≥ 5 and d(ve) ≥ 3;

- transfer the curvature
π

3
through each triple edge adjacent to ∆ where

d(ve) = 3 and d(va) = 5 or 6;

- transfer the curvature
2π

7
through each triple edge adjacent to ∆ where

d(ve) = 3 and d(va) ≥ 7;

- transfer the curvature
3π

10
through each triple edge adjacent to ∆ where

d(ve) = 4 and d(va) ≥ 5;

- transfer the curvature
π

3
through each triple edge adjacent to ∆ where

d(ve) ≥ 5 and d(va) ≥ 5.

Lemma 4.2.21 If ∆ is interior then c∗(∆) ≤ 0.

Proof. We distributed the positive curvature in such a way that every

positively curved interior region has non-positive pseudo-curvature.

Let ∆ be an interior m-region receiving positive curvature according to the

scheme above.

Distinguish two cases:

1. the region ∆ receives positive curvature from exactly one s-region;

2. the region ∆ receives positive curvature from exactly two s-regions.

Case 1.

There are three subcases; the region ∆ receives positive curvature through
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1.1) the double edge labelled by eµ1µ2;

1.2) the double edge labelled by aλb;

1.3) the triple edge labelled by eµ1µ2a.

Case 1.1)

The maximum amount of curvature the region ∆ can receive is
π

15
.

Observe that, according to the distribution process described above, we have

d(ve) ≥ 3 and d(vµ2
) ≥ 5; moreover the constraint α = −β implies d(va) ≥ 4

and d(vb), d(vd) ≥ 3. It follows that c∗(∆) ≤ c(3, 3, 3, 4, 5) +
π

15
< 0.

Case 1.2)

The maximum amount of curvature the region ∆ can receive is
π

15
.

Observe that, according to the distribution process above, we have d(va) ≥ 5

and d(vb) ≥ 5; moreover d(vd) ≥ 3.

If d(ve) = 2 then l(ve) = ec, therefore vd and vµ1
have sublabels dd and

bµ1 respectively. This implies d(vd) ≥ 5 and d(vµ1
) ≥ 3 and it follows that

c∗(∆) ≤ c(3, 5, 5, 5) +
π

15
< 0.

If d(ve) > 2 and d(vc) = 2 then l(vc) = ce therefore vd has sublabel dd and

so d(vd) ≥ 5. It follows that c∗(∆) ≤ c(3, 5, 5, 5) +
π

15
< 0.

If d(ve), d(vc) > 2 then c∗(∆) ≤ c(3, 3, 3, 5, 5) +
π

15
< 0.

Case 1.3)

The maximum amount of curvature the region ∆ can receive is
π

3
.

Observe that d(ve) ≥ 3 and d(va) ≥ 5, moreover we have d(vb), d(vd) ≥ 3.

First suppose d(va) = 5 and d(ve) = 3.

In this case, since va has sublabel sa, l(va) = sadab and l(ve) = bes.

This implies that vλ has sublabel eλ and so d(vλ) ≥ 4.

If d(vc) = 2 then l(vc) = ce, which implies that vd has sublabel dd and so
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d(vd) ≥ 5. It follows that c(∆) ≤ c(3, 3, 4, 5, 5) = −
11π

30
and so c∗(∆) < 0.

If d(vc) > 2 then the vertices vd and vc cannot both have degree≤ 4. It

follows that c(∆) ≤ c(3, 3, 3, 4, 5, 5) = −
7π

10
and so c∗(∆) < 0.

Now suppose d(va) = 6 and d(ve) = 3.

In this case va must have sublabel sad or sad therefore vλ has sublabel eλ or

cλ respectively. It follows that d(vλ) ≥ 3.

The same arguments as above (d(vc) = 2 or d(vc) > 2) show that c∗(∆) < 0.

Now suppose d(va) ≥ 7 and d(ve) = 3.

In this case the maximum amount of curvature that ∆ can receive is
2π

7
.

If d(vc) = 2 then l(vc) = ce; it follows that vb and vd have sublabels bµ1 and

dd respectively, hence d(vd) ≥ 5.

If d(vb) = 3 then l(vb) = bµ1{e, c}, which forces vλ to have sublabel λd or λd

and so d(vλ) ≥ 3. It follows that c∗(∆) ≤ c(3, 3, 3, 5, 7) +
2π

7
< 0.

If d(vb) > 3 then the constraint α = −β implies d(vb) ≥ 5 but the curvature of

∆ is not negative enough, in general, to compensate the incoming curvature.

Let ∆′ be the m-region adjacent to ∆ shown in the following figure; denote

by v′
r (r = a, λ, b, c, d, e, µ1, µ2) its vertices and redistribute the curvature as

follows
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s

s
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s

a
λ

b

ce
e

λ

d

c
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Then c∗(∆) ≤ c(3, 5, 5, 7) +
2π

7
−

4π

105
≤ 0 and if ∆′ is a boundary region

there is nothing else to prove, so assume ∆′ is interior.

We have d(v′
d), d(v′

µ1
), d(v′

a) ≥ 5 and d(v′
b) ≥ 3.

Notice that since d(v′
e) = 2 it follows that ∆′ cannot receive more than

π

15
of positive curvature from the s-regions, thus we have c∗(∆′) ≤ c(3, 5, 5, 5)+

4π

105
+

π

15
< 0.

Now return to ∆. If d(vc) > 2 then observe that the vertices vd and vc cannot

both have degree< 5. It follows that c∗(∆) ≤ c(3, 3, 3, 5, 7) +
2π

7
< 0.

Now assume d(ve) = 4.

According to the compensation process we have d(va) ≥ 5, moreover d(vd) ≥

3 and d(vb) ≥ 3.

In this case the maximum amount of curvature that ∆ can receive is
3π

10
.

If d(vc) = 2 then l(vc) = ce and so vd has sublabel dd which implies d(vd) ≥ 5.

Moreover vb has sublabel bµ1 therefore if d(vb) < 5 then d(vλ) ≥ 3.

It follows that c∗(∆) ≤ max{c(3, 3, 4, 5, 5), c(4, 5, 5, 5)}+
3π

10
≤ 0.

If d(vc) > 2 then observe that either d(vd) ≥ 5 or d(vc) ≥ 5.

It follows that c∗(∆) ≤ c(3, 3, 4, 5, 5) +
3π

10
< 0.

Finally assume d(ve) ≥ 5.

The maximum amount of curvature that ∆ can receive is
π

3
.

We have d(va) ≥ 5 and d(vd), d(vb) ≥ 3.

If d(vc) = 2 then l(vc) = ce and so vd has sublabel dd which implies d(vd) ≥ 5.

Moreover vb has sublabel bµ1 therefore if d(vb) < 5 then d(vλ) ≥ 3.

It follows that c∗(∆) ≤ max{c(3, 3, 5, 5, 5), c(5, 5, 5, 5)}+
π

3
< 0.

If d(vc) > 2 then observe that the vertices vd and vc cannot both have

degree< 5. It follows that c∗(∆) ≤ c(3, 3, 5, 5, 5) +
π

3
< 0.
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Case 2.

There are two subcases; the region ∆ receives positive curvature through

2.1) two double edges;

2.2) one double edge and one triple edge.

Case 2.1)

The maximum amount of curvature the region ∆ can receive is
π

15
+

π

15
=

2π

15
.

Observe that, according to the compensation process, we have d(va) ≥ 5,

d(vb) ≥ 5 and d(vµ2
) ≥ 5; moreover d(vd), d(ve) ≥ 3.

It follows that c∗(∆) ≤ c(3, 3, 5, 5, 5) +
2π

15
< 0.

Case 2.2)

Since va has sublabel sas we have d(va) ≥ 7.

First assume d(ve) = 3.

Since d(va) ≥ 7 it follows that the maximum amount of curvature the region

∆ can receive is
2π

7
+

π

15
=

37π

105
. Observe that, according to the compensation

process, we have d(vb) ≥ 5; moreover d(vd) ≥ 3.

If d(vc) = 2 let ∆′ be the m-region adjacent to ∆ as in case 1.3). Redistribute

the curvature as follows:
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Then we have c∗(∆) ≤ c(3, 5, 5, 7) +
37π

105
−

11π

105
= 0 and we can assume ∆′

is interior.

If ∆′ does receive positive curvature through the double edge aλb then

d(v′
b) ≥ 5 therefore c∗(∆′) ≤ c(5, 5, 5, 5) +

11π

105
+

π

15
< 0.

If ∆′ does not receive positive curvature through the double edge aλb then

d(v′
b) ≥ 3 therefore c∗(∆′) ≤ c(3, 5, 5, 5) +

11π

105
< 0.

Now return to ∆ and assume d(ve) = 4.

The maximum amount of curvature that ∆ can receive is
3π

10
+

π

15
=

11π

30
.

Observe that, according to the compensation process, we have d(vb) ≥ 5;

moreover the vertices vd and vc cannot both have degree< 5. It follows that

c∗(∆) ≤ c(4, 5, 5, 7) +
11π

30
< 0.

Finally assume d(ve) ≥ 5.

The maximum amount of curvature that ∆ can receive is
π

3
+

π

15
=

2π

5
.

From the compensation process we know that d(vb) ≥ 5; moreover the

vertices vd and vc cannot both have degree< 5. It follows that c∗(∆) ≤

c(5, 5, 5, 7) +
2π

5
< 0.

�

Lemma 4.2.22 If ∆ is a boundary region then c∗(∆) <
4π

k0

.

Proof Distinguish the following cases:

1. ∆ is an s-region;

2. ∆ is an m-region.

Case 1.

As seen before the distinguished vertex coincides with exactly one vertex of
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∆ and we can assume without any loss that v0 = v4 and that d(∆) ≤ 3.

Case 1.1), d(∆) = 3

There are seven subcases:

2µ

µ1

v0

a

2µ

v0

e

µ1

a

v0

2µ

µ1

a

e

v0

s

s

s

s

s

s

(4)

s

s

s

s

s

s

(1)

s

s

s

s

s

s

(3)

s

s

s

s

s

s

(2)

v0 v0

µ1

2µ

a

2µ

µ1
a

v0

µ1

2µ

a

e e

e

s

s

s

s

s

s

s

s

s

s

s

s

(6)(5)

s

s

s

s

s

s

(7)

Observe that in cases (1), (2) and (4) there are two interior vertices of degree

≥ 5 (otherwise d(∆) > 3). It follows that c∗(∆) = c(∆) ≤ c(5, 5, k0) =

2π

k0
−

π

5
<

4π

k0
.

In other cases we can assume that there is an interior vertx of degree 3,

otherwise c∗(∆) = c(∆) ≤ c(4, 4, k0) =
2π

k0

<
4π

k0

.

In case (3) we can have d(v2) = 3, but only if l(v2) = bds or l(v2) = seb, in

which case v1 has sublabel ase or asc respectively, hence d(v1) ≥ 6.

It follows that c∗(∆) = c(∆) ≤ c(3, 6, k0) =
2π

k0
<

4π

k0
.

In case (5) we have d(v2) ≥ 5. We choose to transfer a positive curvature

of
π

15
through the triple edge (which might be in common with an interior

region). Notice that this choice respects all the upper bounds given in the

distribution process for transferring curvature through a triple edge from an

interior region, so the proof of the previuos lemma is not affected.

162



It follows that c∗(∆) ≤ c(3, 5, k0) −
π

15
=

2π

k0
<

4π

k0
.

In cases (6) and (7) we have d(v6) ≥ 5 and d(v1) ≥ 5 respectively (otherwise

d(∆) > 3). We choose to transfer a positive curvature of
π

15
through the

triple edge (which is in common with another boundary region).

It follows that c∗(∆) ≤ c(3, 5, k0) −
π

15
=

2π

k0

<
4π

k0

.

Case 1.2), d(∆) = 2

The vertex v1 has sublabel ase which implies d(v1) ≥ 6.

We choose to transfer the curvature
π

6
through each triple edge; it follows

that c∗(∆) ≤ c(6, k0) −
π

6
=

2π

k0

<
4π

k0

.

Case 2.

Suppose the distinguished vertex v0 coincides with m vertices of ∆. Notice

that k0 ≥ 2m. As seen before we can assume m ≤ 3. The maximum total

amount of curvature that ∆ can receive is
π

3
+

π

15
=

2π

5
.

Suppose m = 3. We have c∗(∆) ≤ c(∆) +
2π

5
≤ c(3, k0, k0, k0) +

2π

5
=

−
4π

3
+

2π

k0

+
4π

k0

+
2π

5
≤ −

14π

15
+

π

3
+

4π

k0

<
4π

k0

.

Now suppose m = 2. We have c∗(∆) ≤ c(∆) +
2π

5
≤ c(3, 3, k0, k0) +

2π

5
=

−
2π

3
+

4π

k0
+

2π

5
= −

4π

15
+

4π

k0
<

4π

k0
.

We can therefore assume that v0 coincides with a unique vertex of ∆.

Suppose d(vc) = 2 and vc is not distinguished. Then l(vc) = ce, moreover

vb and vd have sublabels bµ1 and dd respectively. For interior vertices we

have d(va) ≥ 5, d(vb) ≥ 3, d(vd) ≥ 5, moreover the vertices ve and vµ1

cannot have both degree 2 and d(vb) < 5 implies d(vλ) ≥ 3. Since one of the

vertices va, vλ, vb, vd, ve and vµ1
can be the distinguished one it follows that

c∗(∆) ≤ max{c(3, 5, 5, k0), c(3, 3, 3, 5, k0)} +
2π

5
=

2π

k0
−

2π

15
<

4π

k0
.

Suppose d(vc) > 2 and vc is not distinguished. For interior vertices we have
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d(va) ≥ 5, d(vb) ≥ 3, d(vd) ≥ 3, moreover ve and vµ1
cannot both have

degree< 3 and if d(vb) < 5 then d(vλ) ≥ 3. Since one of the vertices va,

vλ, vb, vd, ve and vµ1
can be the distinguished one it follows that c∗(∆) ≤

max{c(3, 3, 3, 5, k0), c(3, 3, 3, 3, 3, k0)} +
2π

5
=

2π

k0
−

π

5
<

4π

k0
.

So we can assume v0 = vc, in which case d(va) ≥ 5, d(vb) ≥ 3, d(vd) ≥ 3,

moreover ve and vµ1
cannot both have degree< 3. It follows that c∗(∆) ≤

c(3, 3, 3, 5, k0) +
2π

5
=

2π

k0
−

π

5
<

4π

k0
.

�

Proof of Proposition 4.2.1

The proof follows from Lemmas 4.2.7-4.2.22 in the same way as Theorem 1

follows from Lemmas 3.2.5-3.2.8.

�

4.3 Proof of Theorem 4

This section will be mainly devoted to proving the following proposition.

Proposition 4.3.1 The group G = G3q(x0[x
2
3, x

−1
q ]) where q is a prime q ≥

5, is infinite.

Before going through the proof of this proposition we show how Theorem 4

can be derived from it.

Proof of Theorem 4

We are assuming hi, hj > 1. By Lemma 4.1.1 it suffices to consider the pre-

sentations Gpq

(
x0

[
xα

p , xβ
q

])
where p and q are different primes such that p|hi,

q|hj . Moreover, rearranging if necessary, we can assume p < q.
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Since we are assuming n = pq odd, it follows that 2 < p < q.

This implies q ≥ 5. Therefore if β 6= −1 it follows from Pride’s result ([26])

that G is infinite (see proof of Theorem 3).

So we can assume β = −1 and consequently |α| 6= 1.

If p > 3 Pride’s result implies again that the given group is infinite (since

α 6= 1). This leaves the cases G = G3q

(
x0

[
xα

3 , x−1
q

])
.

To see why we can consider only the case α = 2 observe that there is

an epimorphism from the extension E(3q; α,−1; 3, q) of G to the extension

E(3; α,−1; 0, 1) of G3

(
x0

[
xα

0 , x−1
1

])
which is infinite by Theorem (4.4) in [23]

(To see why that is simply take p = q = r = α and s = t = u = α + 1).

�

We now return to the proof of Proposition 4.3.1.

Observe that q =
n

3
, therefore the modified star graph is given by Figure 2.1

(ii) and the maximal segment length in an m-region is realized by ea and is

exactly q.

Let D be a modified van Kampen diagram for the given presentation.

It follows that there is no s-region of degree 2 in D , and those of degree 3

which are positively curved are easily classified because of the restrictions on

the labels of the adjacent segments.

We will assume D to satisfy assumptions C1-C3 and so statements (i)−(iv)

in Lemma 4.2.2 hold. Then we have the following list of possible labels for

interior vertices of degree 2, 3 and 4 (up to inversion and cyclic permutation).

degree 2 : ce, λµ, λs;

degree 3 : bds, bdµ, daa;

degree 4 : adad, aa{µ, s}b, a{µ, s}{c, e}b, b{µ, s}{c, e}{c, e}.
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Lemma 4.3.2 If ∆ is an interior m-region then c(∆) ≤ 0.

Proof. We have d(va), d(vb), d(vd) ≥ 3; moreover vc and ve cannot have

degree 3.

It follows that if d(vc), d(ve) > 2 then c(∆) ≤ c(3, 3, 3, 4, 4) = 0.

If d(ve) = 2 then l(ve) = ec. Now |bc| < |ea|, therefore the segment ea splits

and the splitting has sublabel {b, λ}µ. In both cases the splitting has degree

≥ 4.

In order to have positive curvature we must have d(vc) = 2 and no other

splitting in ∆, for if not c(∆) ≤ c(3, 3, 3, 4, 4) = 0.

This forces vd and vb to have sublabels ddd and bµ respectively, thus d(vd) ≥ 6

and d(vb) ≥ 4. It follows that c(∆) ≤ c(3, 4, 5, 6) < 0.

�

We now proceed to classify the positively curved interior s-regions.

Let ∆ be an interior s-region.

Since the unique possible label in degree 3 which involves s is bds and since

two such vertices cannot be separated by a sequence of vertices of degree 2,

it follows that if d(∆) ≥ 5 then c(∆) < 0.

Let d(∆) = 4; if there is no vertex of degree 3 then c(∆) ≤ c(4, 4, 4, 4) = 0,

so assume there is a vertex v of degree 3, which must be labelled by bds.

It follows that the sum of the length of the two segments of ∆ which have

v as an end point is less than or equal to |ab| + |de| = 3 + q − 3 = q.

Since the maximal segment length is q and the total length around an s-

region is 3q, it follows that no vertex of ∆ is a splitting in the adjacent m-

regions and the remaining segments of ∆ must have maximal length, hence

are labelled by ae. Then there is a vertex v′ with sublabel ase (which implies

166



d(v′) ≥ 5) and the remaining two vertices have degree≥ 4. It follows that

a positively curved interior s-region ∆ looks like the following figure where

c(∆) ≤ c(3, 4, 4, 5) =
π

15
.

a

e a

e

s

s

s

s

d b

e a

Finally let ∆ have degree 3.

We have already mentioned that the maximal segment length is q =
n

3
and

is realized only by the segment labelled by ea.

It follows that each of the three vertices of ∆ has sublabel ase and so degree≥

4. Therefore c(∆) ≤ c(4, 4, 4) =
π

2
.

We are in the position to describe the distribution process for the positive

curvature of the interior regions.

Distribution of curvature for interior regions

Let ∆ be a positively curved interior s-region.

We distribute the curvature as follows:

a

ea

e a

a

a

e

e

e

π
6

π
6π

6 π
6

s

s

s

s

bd

ae

s

s s

Now Proposition 4.3.1 can be deduced from the following two lemmas as

pointed out in Chapter 2.
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Lemma 4.3.3 If ∆ is interior then c∗(∆) ≤ 0.

Proof.

Clearly we only need to consider interior m-regions which receive some pos-

itive curvature from adjacent s-regions.

Notice that the positive curvature is transferred only through the segment

labelled by ea such that d(va), d(ve) ≥ 4.

The incoming curvature is
π

6
and we have d(vb), d(vd) ≥ 3.

We can assume that d(vc) = 2, hence l(vc) = ce, and that neither bc nor cd

splits, otherwise c∗(∆) ≤ c(3, 3, 4, 4, 4) +
π

6
= 0.

Since |bc| < |ea| and |cd| = |de| it follows that vb and vd have sublabels bµ

and dd respectively.

This implies d(vb) ≥ 4 and d(vd) ≥ 6, hence c∗(∆) ≤ c(4, 4, 4, 6) +
π

6
= 0.

�

Lemma 4.3.4 If ∆ is a boundary region then c∗(∆) <
4π

k0
.

Proof. Let ∆ be a boundary s-region. Recall that the distinguished vertex

v0 coincides with exactly one vertex of ∆.

If d(∆) ≥ 4 then c∗(∆) = c(∆) ≤ c(3, 3, 3, k0) =
2π

k0
<

4π

k0
and no additional

distribution is required.

Similarly, if d(∆) = 3 then the constraints on the labels in ∆ imply c(∆) ≤

c(4, 4, k0) =
2π

k0

<
4π

k0

.

It remains to check the boundary m-regions.

Observe that d(∆) ≥ 4 since for interior vertices we have d(va), d(vb), d(vd) ≥

3 and if d(ve) = 2 then the segment ea splits.

Since any closed path in D must have t-exponent divisible by n it follows
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that no more than two vertices among va, vb, vd, ve and a splitting in ea

coincide with the distinguished one.

Assume that v0 coincides with m vertices in ∆; then k0 ≥ 2m and c(∆) ≤

c(3, 3, k0, . . . , k0) where k0 appears m times.

Since the maximum amount of curvature that ∆ can receive is
π

6
, it follows

that c∗(∆) ≤ c(3, 3, k0, . . . , k0)+
π

6
= −mπ +

4π

3
+

2mπ

k0
+

π

6
≤ −mπ +

3π

2
+

2mπ

2m
= −mπ +

5π

2
.

Therefore c∗(∆) ≤ 0 for m ≥ 3.

Now suppose that the distinguished vertex coincides with exactly two vertices

of ∆. What has been said before implies that c∗(∆) ≤ c(3, 3, k0, k0) +
π

6
=

−
π

2
+

4π

k0
<

4π

k0
.

Finally, assume that v0 coincides with exactly one vertex of ∆.

For interior vertices we have d(va), d(vb), d(vd) ≥ 3, moreover if d(ve) < 4

then there is a splitting of degree ≥ 4 in the segment ea. It follows that

c∗(∆) ≤ c(3, 3, 4, k0) +
π

6
=

2π

k0

<
4π

k0

.

�

Proof of Proposition 4.3.1

The proof follows from Lemmas 4.3.3-4.3.4 in the same way as Theorem 1

follows from Lemmas 3.2.5-3.2.8.

�
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Chapter 5

Conclusions

In this last short chapter we want to summarize what has been achieved in

Chapter 3 and 4 and prove a general statement which gives a partial answer

to Conjecture 1.2.7.

5.1 Summary

We first recall the main results obtained in Chapter 3 and 4 for n ≥ 5.

Theorem 2 Let G = Gn

(
x0

[
xα

i , xβ
j

])
. Suppose that hi = 1 or hj = 1 and

that |α| > 1, |β| > 1 and |α| 6= |β|.

If n is odd and n ≥ 11 then G is infinite.

Theorem 3 Let G = Gn

(
x0

[
xα

i , xβ
j

])
. If hi > 1, hj > 1, |α| > 1 and

|β| > 1 then G is infinite.

Theorem 4 Let G = Gn

(
x0

[
xα

i , xβ
j

])
. If n is odd, hi > 1, hj > 1 and

(|α|, |β|) 6= (1, 1) then G is infinite.

The hypotheses given in the theorems above can be viewed as conditions on

the 5-tuple (n, i, j, α, β). With this in mind we can prove the following.
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Theorem 5 Let G = Gn

(
x0

[
xα

i , xβ
j

])
be irreducible. If there exists m such

that m | n, m ∤ j − i and the 5-tuple (m, i′, j′, α, β), where i′ ≡ i mod m and

j′ ≡ j mod m, respects one of the conditions in Theorem 2, Theorem 3 or

Theorem 4, then G is infinite.

Proof. Notice that since m ∤ j − i there is an epimorphism

E(n; α, β; i, j) = 〈x, t|tn, xt−ix−αti−jx−βtj−ixαti−jxβtj〉 ։

։ 〈x, t|tm, xt−i′x−αti
′−j′x−βtj

′−i′xαti
′−j′xβtj

′

〉 = E(m; α, β; i′, j′).

which is an extension of Gm

(
x0

[
xα

i′ , x
β
j′

])
and is infinite by Theorem 2,

Theorem 3 or Theorem 4. It follows that G is infinite.

�

5.2 What is left to be proved?

The theorems stated in the previous section do not answer completely Con-

jecture 1.2.7.

In this section we want to clarify what is left to be proved in order to confirm

the conjecture and why our method of proof fails in these cases.

First of all we observe that the Havas-Robertson presentations are all p-

irreducible. It follows that in the f-irreducible cases we would need to prove

the statement of Theorem 3 also for |α| = 1 or |β| = 1. Now consider the

epimorphism we used in the proof of Theorem 3. If α = 1 or β = −1 the

co-domain could be the presentation of a finite cyclic group and therefore we

cannot conclude that the given group is infinite. Since we are working mod-

ulo the equivalence relation determined by the elementary moves and since
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these moves can interchange α and β and also change their signs, it follows

that our conditions on α and β must be symmetric with respect to these

moves and the easiest way to ensure that our method works is to assume

|α| > 1 and |β| > 1. Here we could have been more precise and weakened

these constraints assuming α 6= 1 and β 6= −1. This is due to the fact that

we only need to study the presentations under the condition 0 < i < j < n;

if φ is a sequence of elementary moves which maps x0

[
xα

i , xβ
j

]
to x0

[
xα′

i′ , xβ′

j′

]

where 0 < i < j < n and 0 < i′ < j′ < n then (α′, β ′) ∈ {(α, β), (−β,−α)}.

In view of these the weaker constraints which ensure that the co-domain of

the epimorphism above is not trivially cyclic are α 6= 1 and β 6= −1. In

order to prove Theorem 3 with these weaker hypotheses we are left to study

G6

(
x0

[
x−1

2 , xβ
3

])
and G6 (x0 [xα

2 , x3]). In view of Proposition 4.2.3 we can

assume |β| ≥ 6 and |α| ≥ 6, respectively. These cases will be discussed else-

where, but we want to remark that they can be proved to be presentations of

infinite groups using the same geometric arguments as the present work. We

decided not to include these proofs since they are remarkably cumbersome

and the hypotheses |α| > 1 and |β| > 1 seem to be reasonably weak in this

context. Anyway, provided this is true, we are left to study the cases when

α = 1 or β = −1.

Now consider the results achieved in the p-irreducible case.

If n is odd we are left to check what happens for n = 5, 7 or 9 and to prove

the statement in Theorem 2 without the constraints |α| > 1, |β| > 1 and

|α| 6= |β|. We believe that the method of proof outlined in Chapter 2 can be

used to study the cases n = 5, 7 and 9. We point out that using elementary

moves we can assume i = 1 and j ∈ {2, 4}, j ∈ {2, 3, 6} or j ∈ {2, 3, 4, 6, 8}
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when n = 5, 7 or 9, respectively; for these cases we know that Conjecture

1.2.7 is true for 0 < |α|, |β| ≤ 3; moreover in view of Edjvet and Hammond

paper [11] we don’t have to study the case j = 2.

Furthermore, when (n, j) ∈ {(7, 6), (9, 8)} we know by Corollary 3.2.9 that

for |α|, |β| > 1 and α 6= ±β these groups are infinite; this leaves the cases

|α| = |β| ≥ 4, |α| = 1 and |β| ≥ 4 or |α| ≥ 4 and |β| = 1.

It follows that we are left with five cases for which we have data when

0 < |α|, |β| ≤ 3 as pointed out in Chapter 1.

Finally, if n = 2k is even we need to study those cases for which any odd

integer dividing k and greater than 3 divides j− i (of course if the remaining

cases for n odd are solved). Notice that the Havas-Robertson presentations

are of this special case, hence the first case to consider is when α 6= β.
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